
App::Basis::ConvertText2

May 13, 2014

Title
App::Basis::ConvertText2

Author
Kevin Mulholland

Contents

• 1 Document header and variables
• 2 Table of contents
• 3 Fenced code-blocks
• 4 Buffering data for later use
• 5 Sparklines
• 6 Charts
• 6.1 Pie chart
• 6.2 Bar chart
• 6.3 Mixed chart
• 7 Message Sequence Charts - mscgen
• 8 DIagrams Through Ascii Art - ditaa
• 9 UML Diagrams
• 10 Graphviz
• 11 Venn diagram
• 12 Barcodes
• 12.1 Code39

1

• 12.2 EAN8
• 12.3 EAN13
• 12.4 COOP2of5
• 12.5 IATA2of5
• 12.6 Industrial2of5
• 12.7 ITF
• 12.8 Matrix2of5
• 12.9 NW7
• 12.10 QR code
• 13 YAML convert to JSON
• 14 Table
• 15 Links
• 16 Version table
• 17 Start a new page - page
• 18 Gle / glx
• 19 Gnuplot
• 20 Gotchas about variables
• 21 Using ct2 script to process files

This document may not be easily readable in this form, try pdf or HTML as
alternatives. These have been generated from this file and the software provided
by this distribution.

This is a perl module and a script that makes use of App::Basis::ConvertText2

This is a wrapper for pandoc implementing extra fenced code-blocks to allow
the creation of charts and graphs etc. Documents may be created a variety of
formats. If you want to create nice PDFs then it can use PrinceXML to generate
great looking PDFs or you can use wkhtmltopdf to create PDFs that are almost
as good, the default is to use pandoc which, for me, does not work as well.

HTML templates can also be used to control the layout of your documents.

The fenced code block handlers are implemented as plugins and it is a simple
process to add new ones.

There are plugins to handle

• ditaa
• mscgen
• graphviz
• uml
• gnuplot
• gle
• sparklines
• charts

2

docs/README.html
http://johnmacfarlane.net/pandoc
http://www.princexml.com
http://wkhtmltopdf.org/

• barcodes and qrcodes
• and many others

As a perl module you can obtain it from https://metacpan.org/pod/App::Basis::ConvertText2
or install

cpanm App::Basis::ConvertText2

Alternatively it is available from

You will then be able to use the ct2 script to process files

1 Document header and variables

If you are just creating simple things, then you do not need a document header,
but to make full use of the templating system, having header information is
vital.

Example

title: App::Basis::ConvertText2
format: pdf
date: 2014-05-12
author: Kevin Mulholland
keywords: perl, readme
template: coverpage
version: 5

As you can see, we use a series of key value pairs separated with a colon. The
keys may be anything you like, except for the following which have special
significance.

• format shows what output format we should default to.
• template shows which template we should use

The keys may be used as variables in your document or in the template, by
upper-casing and prefixing and postfixing percent symbols ‘%’

Example

version as a variable %VERSION%

If you want to display the name of a variable without it being interpreted, prefix
it with an underscore ’_’, this underscore will be removed in the final document.

Example

3

%TITLE%

Output

App::Basis::ConvertText2

2 Table of contents

As documents are processed, all the HTML headers (H1..H4) are collected
together to make a table of contents. This can be used either in your template
or document using the TOC variable.

Example

%TOC% will show

Contents

• 1 Document header and variables
• 2 Table of contents
• 3 Fenced code-blocks
• 4 Buffering data for later use
• 5 Sparklines
• 6 Charts
• 6.1 Pie chart
• 6.2 Bar chart
• 6.3 Mixed chart
• 7 Message Sequence Charts - mscgen
• 8 DIagrams Through Ascii Art - ditaa
• 9 UML Diagrams
• 10 Graphviz
• 11 Venn diagram
• 12 Barcodes
• 12.1 Code39
• 12.2 EAN8
• 12.3 EAN13
• 12.4 COOP2of5
• 12.5 IATA2of5
• 12.6 Industrial2of5
• 12.7 ITF
• 12.8 Matrix2of5
• 12.9 NW7
• 12.10 QR code

4

• 13 YAML convert to JSON
• 14 Table
• 15 Links
• 16 Version table
• 17 Start a new page - page
• 18 Gle / glx
• 19 Gnuplot
• 20 Gotchas about variables
• 21 Using ct2 script to process files

Note that if using a TOC, then the HTML headers are changed to have a number
prefixed to them, this helps ensure that all the TOC references are unique.

3 Fenced code-blocks

A fenced code-block is a way of showing that some text needs to be handled
differently. Often this is used to allow markdown systems (and pandoc is no
exception) to highlight program code.

code-blocks take the form

Example

~~~~{.tag argument1=’fred’ arg2=3}
contents ...
~~~~

code-blocks ALWAYS start at the start of a line without any preceding whites-
pace. The ‘top’ line of the code-block can wrap onto subsequent lines, this line is
considered complete when the final ‘}’ is seen. There should be only whitespace
after the closing ‘}’ symbol before the next line.

We use this construct to create our own handlers to generate HTML or markdown.

Note that only code-blocks described in this documentation have special handlers
and can make use of extra features such as buffering.

4 Buffering data for later use

Sometimes you may either want to repeatedly use the same information or may
want to use the output from one of the fenced code-blocks .

To store data we use the to_buffer argument to any code-block.

Example

5

http://johnmacfarlane.net/pandoc


~~~~{.buffer to_buffer=’spark_data’}
1,4,5,20,4,5,3,1
~~~~

If the code-block would normally produce some output that we do not want
displayed at the current location then we would need to use the no_output
argument.

Example

~~~~{.sparkline title=’green sparkline’ scheme=’green’
from_buffer=’spark_data’ to_buffer=’greenspark’ no_output=1}

~~~~

We can also have the content of a code-block replaced with content from a buffer
by using the from_buffer argument. This is also displayed in the example
above.

To use the contents (or output of a buffered code-block) we wrap the name of
the buffer once again with percent ‘%’ symbols, once again we force upper case.

Example

%SPARK_DATA% has content 1,4,5,20,4,5,3,1
%GREENSPARK% has a generated image

Buffering also allows us to add content into markdown constructs like bullets.

Example

* %SPARK_DATA%
* %GREENSPARK%

Output

• 1,4,5,20,4,5,3,1

•

5 Sparklines

Sparklines are simple horizontal charts to give an indication of things, sometimes
they are barcharts but we have nice smooth lines.

The only valid contents of the code-block is a single line of comma separated
numbers.

The full set of optional arguments is

6

• title

– used as the generated images ‘alt’ argument

• bgcolor

– background color in hex (123456) or transparent

• line

– color or the line, in hex (abcdef)

• color

– area under the line, in hex (abcdef)

• scheme

– color scheme, only things in red blue green orange mono are valid

• size

– size of image, default 80x20, widthxheight

Example

~~~~{.buffer to_buffer=’spark_data’}
1,4,5,20,4,5,3,1
~~~~

here is a standard sparkline

~~~~{.sparkline title=’basic sparkline’ }
1,4,5,20,4,5,3,1
~~~~

or we can draw the sparkline using buffered data

~~~~{.sparkline title=’blue sparkline’ scheme=’blue’ from_buffer=’spark_data’}
~~~~

Output

here is a standard sparkline

or we can draw the sparkline using buffered data

7

6 Charts

Displaying charts is very important when creating reports, so we have a simple
chart code-block.

The various arguments to the code-block are shown in the examples below,
hopefully they are self explanatory.

We will buffer some data to start

Example

~~~~{.buffer to=’chart_data’}
apples,bananas,cake,cabbage,edam,fromage,tomatoes,chips
1,2,3,5,11,22,33,55
1,2,3,5,11,22,33,55
1,2,3,5,11,22,33,55
1,2,3,5,11,22,33,55
~~~~

The content comprises a number of lines of comma separated data items. The
first line of the content is the legends, the subsequent lines are numbers relating
to each of these legends.

6.1 Pie chart

Example

~~~~{.chart format=’pie’ title=’chart1’ from_buffer=’chart_data’
size=’400x400’ xaxis=’things xways’ yaxis=’Vertical things’
legends=’a,b,c,d,e,f,g,h’ }

~~~~

Output

8

6.2 Bar chart

Example

~~~~{.chart format=’bars’ title=’chart1’ from_buffer=’chart_data’
size=’600x400’ xaxis=’things ways’ yaxis=’Vertical things’
legends=’a,b,c,d,e,f,g,h’ }

~~~~

Output

9

6.3 Mixed chart

Example

~~~~{.chart format=’mixed’ title=’chart1’ from_buffer=’chart_data’
size=’600x400’ xaxis=’things xways’ axis=’Vertical things’
legends=’a,b,c,d,e,f,g,h’ types=’lines linepoints lines bars’ }

~~~~

Output

10

7 Message Sequence Charts - mscgen

Software (or process) engineers often want to be able to show the sequence in
which a number of events take place. We use the msc program for this. This
program needs to be installed onto your system to allow this to work

The content for this code-block is EXACTLY the same that you would use as
input to msc

There are only optional 2 arguments

• title

– used as the generated images ‘alt’ argument

• size

– size of image, widthxheight

Example

~~~~{.mscgen title="mscgen1" size="600x400}
# MSC for some fictional process
msc {

a,b,c;

11

http://www.mcternan.me.uk/mscgen/
http://www.mcternan.me.uk/mscgen/


a->b [ label = "ab()" ] ;
b->c [ label = "bc(TRUE)"];
c=>c [ label = "process(1)" ];
c=>c [ label = "process(2)" ];
...;
c=>c [ label = "process(n)" ];
c=>c [ label = "process(END)" ];
a<<=c [ label = "callback()"];
--- [ label = "If more to run", ID="*" ];
a->a [ label = "next()"];
a->c [ label = "ac1()\nac2()"];
b<-c [ label = "cb(TRUE)"];
b->b [ label = "stalled(...)"];
a<-b [ label = "ab() = FALSE"];

}
~~~~

Output

8 DIagrams Through Ascii Art - ditaa

This is a special system to turn ASCII art into pretty pictures, nice to render
diagrams. You do need to make sure that you are using a proper monospaced

12

font with your editor otherwise things will go awry with spaces. See ditaa for
reference.

The content for this code-block must be the same that you would use to with
the ditaa software

• title

– used as the generated images ‘alt’ argument

• size

– size of image, default 80x20, widthxheight

Example

~~~~{.ditaa }
Full example
+--------+ +-------+ +-------+
| | --+ ditaa +--> | | | |
| Text | +-------+ |diagram|
|Document| |!magic!| | |
| {d}| | | | |
+---+----+ +-------+ +-------+

: ^
| Lots of work |
\-------------------------+

~~~~

Output

13

http://ditaa.sourceforge.net
http://ditaa.sourceforge.net

9 UML Diagrams

Software engineers love to draw diagrams, PlantUML is a java component to
make this simple.

You will need to have a script on your system called ‘uml’ that calls java with
the component.

Here is mine, it is also available in the scripts directory in the

#!/bin/bash
run plantuml
moodfarm@cpan.org

we assume that the plantuml.jar file is in the same directory as this executable
EXEC_DIR=‘dirname $0‘
PLANTUML="$EXEC_DIR/plantuml.jar"

INPUT=$1
OUPUT=$2
function show_usage {

arg=$1
err=$2
if ["$err" == ""] ; then

err=1
fi

"Create a UML diagram from an input text file
(see http://plantuml.sourceforge.net/ for reference)

usage: $0 inputfile outputfile.png
"

if ["$arg" != ""] ; then
echo "$arg

"
fi
exit $err

}
if ["$INPUT" == "-help"] ; then

show_usage "" 0
fi
if [! -f "$INPUT"] ; then

show_usage "ERROR: Could not find input file $1"
fi
if ["$OUPUT" == ""] ; then

show_usage "ERROR: No output file specified"
fi
we use the pipe option to control output into the file we want
cat "$INPUT" | java -jar $PLANTUML -nbthread auto -pipe >$OUPUT

14

http://plantuml.sourceforge.net

exit 0

The content for this code-block must be the same that you would use to with
the PlantUML software

The arguments allowed are

• title
– used as the generated images ‘alt’ argument

• size
– size of image, default 80x20, widthxheight

Example

~~~~{.uml }
’ this is a comment on one line
/’ this is a
multi-line
comment’/
Alice -> Bob: Authentication Request
Bob --> Alice: Authentication Response

Alice -> Bob: Another authentication Request
Alice <-- Bob: another authentication Response
~~~~

Output

15

http://plantuml.sourceforge.net

PlantUML can also create simple application interfaces See Salt

Example

~~~~{.uml }
@startuml
salt
{

Just plain text
[This is my button]
() Unchecked radio
(X) Checked radio
[] Unchecked box
[X] Checked box
"Enter text here "
^This is a droplist^

{T
+ World
++ America
+++ Canada
+++ **USA**
++++ __New York__
++++ Boston
+++ Mexico
++ Europe
+++ Italy
+++ Germany
++++ Berlin
++ Africa

}
}
@enduml
~~~~

Output

16

http://plantuml.sourceforge.net
http://plantuml.sourceforge.net/salt.html

10 Graphviz

graphviz allows you to draw connected graphs using text descriptions.

The content for this code-block must be the same that you would use to with
the graphviz software

The arguments allowed are

• title

– used as the generated images ‘alt’ argument

• size

– size of image, default 80x20, widthxheight

Example

17

http://graphviz.org
http://graphviz.org


~~~~{.graphviz title="graphviz1" size=’600x600’}
digraph G {

subgraph cluster_0 {
style=filled;
color=lightgrey;
node [style=filled,color=white];
a0 -> a1 -> a2 -> a3;
label = "process #1";

}

subgraph cluster_1 {
node [style=filled];
b0 -> b1 -> b2 -> b3;
label = "process #2";
color=blue

}
start -> a0;
start -> b0;
a1 -> b3;
b2 -> a3;
a3 -> a0;
a3 -> end;
b3 -> end;

start [shape=Mdiamond];
end [shape=Msquare];

}
~~~~

Output

18

11 Venn diagram

Creating venn diagrams may sometimes be useful, though to be honest this
implementation is not great, if I could find a better way to do this then I would!

Example

19


~~~~{.venn title="sample venn diagram"
legends="team1 team2 team3" scheme="rgb" explain=’1’}

abel edward momo albert jack julien chris
edward isabel antonio delta albert kevin jake
gerald jake kevin lucia john edward
~~~~

Output

• only in team1 : chris jack julien momo abel

– only in team2 : isabel antonio delta
– team1 and team2 share : albert

• only in team3 : lucia john gerald

– team1 and team3 share :
– team2 and team3 share : jake kevin
– team1, team2 and team3 share : edward

20

12 Barcodes

Sometimes having barcodes in your document may be useful, certainly qrcodes
are popular.

The code-block only allows a single line of content. Some of the barcode types
need content of a specific length, warnings will be generated if the length is
incorrect.

The arguments allowed are

• title

– used as the generated images ‘alt’ argument

• height

– height of image

• notext

– flag to show we do not want the content text printed underneath the
barcode.

• version

– version of qrcode, defaults to ‘2’

• pixels

– number of pixels that is a ‘bit’ in a qrcode, defaults to ‘2’

12.1 Code39

Example

~~~~{.barcode type=’code39’}
123456789
~~~~

Output

21

12.2 EAN8

Only allows 8 characters

Example

~~~~{.barcode type=’ean8’}
12345678
~~~~

Output

12.3 EAN13

Only allows 13 characters

Example

~~~~{.barcode type=’EAN13’}
1234567890123
~~~~

Output

12.4 COOP2of5

Example

~~~~{.barcode type=’COOP2of5’}
12345678
~~~~

Output

22

12.5 IATA2of5

Example

~~~~{.barcode type=’IATA2of5’}
12345678
~~~~

Output

12.6 Industrial2of5

Example

~~~~{.barcode type=’Industrial2of5’}
12345678
~~~~

Output

12.7 ITF

Example

~~~~{.barcode type=’ITF’}
12345678
~~~~

Output

23

12.8 Matrix2of5

Example

~~~~{.barcode type=’Matrix2of5’}
12345678
~~~~

Output

12.9 NW7

Example

~~~~{.barcode type=’NW7’}
12345678
~~~~

Output

12.10 QR code

As qrcodes are now quite so prevalent, they have their own code-block type.

We can do qr codes, just put in anything you like, this is a URL for bbc news

Example

~~~~{.qrcode }
http://news.bbc.co.uk
~~~~

To change the size of the barcode

~~~~{.qrcode height=’80’}
http://news.bbc.co.uk

24



~~~~

To use version 1

Version 1 only allows 15 characters

~~~~{.qrcode height=60 version=1}
smaller text..
~~~~

To change pixel size

~~~~{.qrcode pixels=5}
smaller text..
~~~~

Output

To change the size of the barcode

To use version 1

Version 1 only allows 15 characters

To change pixel size

25

13 YAML convert to JSON

Software engineers often use JSON to transfer data between systems, this often
is not nice to create for documentation. YAML which is a superset of JSON is
much cleaner so we have a

Example

~~~~{.yamlasjson }
list:

- array: [1,2,3,7]
channel: BBC3
date: 2013-10-20
time: 20:30

- array: [1,2,3,9]
channel: BBC4
date: 2013-11-20
time: 21:00

~~~~

Output

{
"list" : [

{
"time" : "20:30",
"channel" : "BBC3",
"array" : [

"1",
"2",
"3",
"7"

26

https://en.wikipedia.org/wiki/Json
https://en.wikipedia.org/wiki/Yaml
https://en.wikipedia.org/wiki/Json

],
"date" : "2013-10-20"

},
{

"time" : "21:00",
"channel" : "BBC4",
"date" : "2013-11-20",
"array" : [

"1",
"2",
"3",
"9"

]
}

]
}

14 Table

Create a simple table using CSV style data

• class
– HTML/CSS class name

• id
– HTML/CSS class

• width
– width of the table

• style
– style the table if not doing anything else

• legends
– csv of headings for table, these correspond to the data sets

• separator
– what should be used to separate cells, defaults to ‘,’

Example

~~~~{.table separator=’,’ width=’100%’ legends=1
from_buffer=’chart_data’}

~~~~

Output

27

apples
bananas
cake
cabbage
edam
fromage
tomatoes
chips

1
2
3
5
11
22
33
55

1
2
3
5
11
22
33
55

1
2
3
5
11
22
33
55

1
2
3
5
11
22
33
55

15 Links

With one code-block we can create a list of links

The code-block contents comprises a number of lines with a reference and a URL.
The reference comes first, then a ‘|’ to separate it from the URL.

The reference may then be used elsewhere in your document if you enclose it
with square ([]) brackets

There is only one argument

• class

– CSS class to style the list

Example

~~~~{.links class=’weblinks’ }
pandoc | http://johnmacfarlane.net/pandoc
PrinceXML | http://www.princexml.com
markdown | http://daringfireball.net/projects/markdown
msc | http://www.mcternan.me.uk/mscgen/
ditaa | http://ditaa.sourceforge.net
PlantUML | http://plantuml.sourceforge.net
See Salt | http://plantuml.sourceforge.net/salt.html
graphviz | http://graphviz.org
JSON | https://en.wikipedia.org/wiki/Json

28



YAML | https://en.wikipedia.org/wiki/Yaml
wkhtmltopdf | http://wkhtmltopdf.org/
~~~~

Output

• ditaa

– http://ditaa.sourceforge.net

• graphviz

– http://graphviz.org

• JSON

– https://en.wikipedia.org/wiki/Json

• markdown

– http://daringfireball.net/projects/markdown

• msc

– http://www.mcternan.me.uk/mscgen/

• pandoc

– http://johnmacfarlane.net/pandoc

• PlantUML

– http://plantuml.sourceforge.net

• PrinceXML

– http://www.princexml.com

• See Salt

– http://plantuml.sourceforge.net/salt.html

• wkhtmltopdf

– http://wkhtmltopdf.org/

• YAML

– https://en.wikipedia.org/wiki/Yaml

29

http://ditaa.sourceforge.net
http://graphviz.org
https://en.wikipedia.org/wiki/Json
http://daringfireball.net/projects/markdown
http://www.mcternan.me.uk/mscgen/
http://johnmacfarlane.net/pandoc
http://plantuml.sourceforge.net
http://www.princexml.com
http://plantuml.sourceforge.net/salt.html
http://wkhtmltopdf.org/
https://en.wikipedia.org/wiki/Yaml

16 Version table

Documents often need revision history. I use this code-block to create a nice
table of this history.

The content for this code-block comprises a number of sections, each section
then makes a row in the generated table.

version YYYY-MM-DD
change text
more changes

The version may be any string, YYYY-MM-DD shows the date the change took
place. Alternate date formats is DD-MM-YYYY and ‘/’ may also be used as a
field separator.

• class

– HTML/CSS class name

• id

– HTML/CSS class

• width

– width of the table

• style

– style the table if not doing anything else

Example

~~~~{.version class=’versiontable’ width=’100%’}
0.1 2014-04-12

* removed ConvertFile.pm
* using Path::Tiny rather than other things
* changed to use pandoc fences

~~~~{.tag} rather than xml format <tag>
0.006 2014-04-10

* first release to github
~~~~

Output

Version

Date

30



Changes

0.1

2014-04-12

• removed ConvertFile.pm
• using Path::Tiny rather than other things
• changed to use pandoc fences ~~{.tag} rather than xml format
0.006
2014-04-10

– first release to github

17 Start a new page - page

Nice and simple, starts a new page

Example

~~~~{.page}
~~~~

18 Gle / glx

This is a complex graph/chart drawing package available from http://glx.sourceforge.net/

The full set of optional arguments is

• title

– used as the generated images ‘alt’ argument

• size

– size of image, default 720x540, widthxheight, size is approximate

• transparent

– flag to use a transparent background

Example

~~~~{.gle}

set font texcmr hei 0.5 just tc

begin letz

31

data "saddle.z"
z = 3/2*(cos(3/5*(y-1))+5/4)/(1+(((x-4)/3)^2))
x from 0 to 20 step 0.5
y from 0 to 20 step 0.5

end letz

amove pagewidth()/2 pageheight()-0.1
write "Saddle Plot (3D)"

begin object saddle
begin surface

size 10 9
data "saddle.z"
xtitle "X-axis" hei 0.35 dist 0.7
ytitle "Y-axis" hei 0.35 dist 0.7
ztitle "Z-axis" hei 0.35 dist 0.9
top color blue
zaxis ticklen 0.1 min 0 hei 0.25
xaxis hei 0.25 dticks 4 nolast nofirst
yaxis hei 0.25 dticks 4

end surface
end object

amove pagewidth()/2 0.2
draw "saddle.bc"
~~~~

Output

32



19 Gnuplot

This is the granddaddy of charting/plotting programs, available from
http://gnuplot.sourceforge.net/.

The full set of optional arguments is

• title

– used as the generated images ‘alt’ argument

• size

– size of image, default 720x540, widthxheight

Example

~~~~{.gnuplot}
$Id: surface1.dem,v 1.11 2004/09/17 05:01:12 sfeam Exp $
#
set samples 21
set isosample 11
set xlabel "X axis" offset -3,-2
set ylabel "Y axis" offset 3,-2

33

set zlabel "Z axis" offset -5
set title "3D gnuplot demo"
set label 1 "This is the surface boundary" at -10,-5,150 center
set arrow 1 from -10,-5,120 to -10,0,0 nohead
set arrow 2 from -10,-5,120 to 10,0,0 nohead
set arrow 3 from -10,-5,120 to 0,10,0 nohead
set arrow 4 from -10,-5,120 to 0,-10,0 nohead
set xrange [-10:10]
set yrange [-10:10]
splot x*y
~~~~

Output

20 Gotchas about variables

• Variables used within the content area of a code-block will be evaluated
before processing that block, if a variable has not yet been defined or saved
to a buffer then it will only be evaluated at the end of document processing,
so output may not be as expected.

• Variables used in markdown tables may not do what you expect if the
variable is multi-line.

34



21 Using ct2 script to process files

Included in the distribution is a script to make use of all of the above code-blocks
to alter markdown into nicely formatted documents.

Here is the help

$ ct2 --help

Syntax: ct2 [options] filename

About: Convert my modified markdown text files into other formats, by
default will create HTML in same directory as the input file, will only
process .md files.
If there is no output option used the output will be to file of same name
as the input filename but with an extension (if provided) from the
document, use format: keyword (pdf html doc).

[options]
-h, -?, --help Show help
-c, --clean Clean up the cache before use
-e, --embed Embed images into HTML, do not use this if

converting to doc/odt
-o, --output Filename to store the output as, extension will

control conversion
-p, --prince Convert to PDF using princexml, can handle

embedded images
-s, --template name of template to use
-v, --verbose verbose mode
-w, --wkhtmltopdf Convert to PDF using wkhtmltopdf, can handle

embedded images

If you are creating HTML documents to send out in emails or share in other ways,
and use locally referenced images, then it is best to make use of the –embed
option to pack these images into the HTML file.

If you are using PrinceXML remember that it is only free for non-commercial
use, it also adds a purple P to the top right of the first page of your document.

27escape

Kevin Mulholland (c) 2014

2014-05-12

35

http://daringfireball.net/projects/markdown
http://www.princexml.com

	1 Document header and variables
	2 Table of contents
	3 Fenced code-blocks
	4 Buffering data for later use
	5 Sparklines
	6 Charts
	6.1 Pie chart
	6.2 Bar chart
	6.3 Mixed chart

	7 Message Sequence Charts - mscgen
	8 DIagrams Through Ascii Art - ditaa
	9 UML Diagrams
	10 Graphviz
	11 Venn diagram
	12 Barcodes
	12.1 Code39
	12.2 EAN8
	12.3 EAN13
	12.4 COOP2of5
	12.5 IATA2of5
	12.6 Industrial2of5
	12.7 ITF
	12.8 Matrix2of5
	12.9 NW7
	12.10 QR code

	13 YAML convert to JSON
	14 Table
	15 Links
	16 Version table
	17 Start a new page - page
	18 Gle / glx
	19 Gnuplot
	20 Gotchas about variables
	21 Using ct2 script to process files

