
Leo 1991 and Aycock-Horspool 2002 Work Together: A

Proof

Jeffrey Kegler

January 4, 2011

Abstract

Joop Leo in a 1991 article modified Earley’s algorithm to run in O(n) time for LR-regular
grammars. Aycock and Horspool introduced practical innovations to Earley’s in their 2002
article. Earley items were defined differently in the two algorithms. Leo used Earley items
containing a single dotted rule, which was their original form. Aycock and Horspool modified
Earley’s items to contain sets of dotted rules which were states of a finite automata (AHFA
states). Proof is given that Marpa’s adaptation of the Leo algorithm to use AHFA states is
correct.

Contents

1 Introduction 2

2 Marpa’s Grammar and the AHFA States 3

3 The Strategy of the Proof 4

4 Definitions 5

4.1 Dotted Rules and Instances . 5
4.2 Location Mappings . 5
4.3 Ties . 6
4.4 Relevant Ties . 6
4.5 Shadowing . 6
4.6 Candidates and Rejects . 6
4.7 Leo Conformance . 7
4.8 Conservation . 7

5 Operations in Constructing the AHFA 7

5.1 NFA State Creation . 7
5.2 NFA State Expansion . 7
5.3 NFA State Splitting . 7

6 Instances are Conserved 8

7 Sources are Conserved 8

8 Singleton Completions are Conserved 9

1

9 All NFA States are Tied 9

10 Relevant Ties are Ties 10

11 Relevant Ties are Conserved 10

12 Shadowing is Conserved 11

13 Reject Instances are Conserved 12

14 Reject States are Conserved 12

15 Leo Conformance is Conserved 12

16 NFA State Creation is Leo-conformant 13

17 Non-kernel States are Leo-conformant 13

18 Construction of the AHFA 13

18.1 Construction of the LR(0) DFA . 14
18.2 Construction of the ǫ-DFA . 14
18.3 Construction of the Split ǫ-DFA . 14

19 The Main Induction 14

19.1 Basis . 14
19.2 Inductive Step . 14

20 All Leo Candidates are in Singleton AHFA States 15

21 All Leo Completions are in Singleton AFHA States 15

1 Introduction

Marpa is a new parser based on Earley’s algorithm. It includes modifications to Earley’s algorithm
from Joop Leo’s 1991 parser and from the parser described by Aycock and Horspool in their 2002
paper. This document assumes that the reader is familiar with LR(0) automata, Earley’s algorithm,
Leo’s 1991 paper1 and Aycock and Horspool’s 2002 paper2.

In this article the recognizer described in Joop Leo’s 1991 paper will be called Leo1991. The
recognizer described in Aycock and Horspool’s 2002 paper will be called AH2002.

The major obstacle to combining the two algorithms was the difference in the way each algorithm
defined an Earley item. Leo1991 followed Earley is having one dotted rule per Earley item. AH2002
combined dotted rules into states of a finite automaton. (That automaton will be called an AHFA
in this document.) AHFA states are sets of one or more dotted rules.

When a grammar was right-recursive, Earley’s original algorithm needed to add a chain of Earley
items to every Earley set where the recursion might end. This chain was a series of completions,
culminating in what Leo 1991 calls a “topmost” item. In these chains, most of the Earley items

1Leo, Joop, "A General Context-Free Parsing Algorithm Running in Linear Time on Every LR(k) Grammar
Without Using Lookahead", Theoretical Computer Science, Vol. 82, No. 1, 1991, pp 165-176.

2Aycock, John and Horspool, R. Nigel, "Practical Earley Parsing", The Computer Journal, Vol. 45, No. 6, 2002,
pp. 620-630.

2

were almost completely useless. They were used once when creating the chain and never after that.
Only one chain, the chain that was final Earley set of the right recursion, went on to have any of
its non-topmost items included in the parse.

As the recursion lengthened, the chain of useless Earley items lengthened with it. The effect
was that Earley’s time complexity was quadratic for right recursion.

Leo’s idea was to create only topmost items until the semantic phase. At that point the chain
in the final Earley set of the right recursion could be expanded, based on the information in the
series of topmost items. In Marpa, these topmost items are called Leo completions.

This paper proves that Leo completions are always Aycock-Horspool singletons – Earley items
whose AHFA states contain only a single dotted rule. AHFA singletons are in effect identical to the
conventional Earley items used by Leo, because both correspond to a single dotted rule.

The proof that Leo completions are singletons is the only non-intuitive part of the correctness
proof, and is the only part described in this document. The proof that non-topmost completions
in the chains are also always AHFA singletons would simply repeat the arguments of the proof for
Leo completions. It is clear that Leo’s correctness proof in his 1991 can be extended to Marpa.

Most of this paper assumes the context is a context-free grammar, G. The AFHA is assumed
to be constructed from G. This assumption is only made explicit when properties of the grammar
itself are important.

In this document, the term NFA is often used in its inclusive sense, and can mean either a
deterministic finite automaton (DFA) or a properly non-deterministic finite automaton. The AHFA
is an proper NFA, while most of the steps in its construction are DFA’s.

2 Marpa’s Grammar and the AHFA States

Marpa follows AH2002 in rewriting its grammars. Here are some features of this rewrite that are
relevant in this document.

1. Marpa augments its grammars by adding a special start symbol.

2. Marpa may have a null parse rule. If it exists, the null parse rule is an empty rule with
Marpa’s special start symbol on its LHS.

3. All symbols in Marpa are either nulling or non-nullable. A Marpa grammar contains no proper
nullable symbols.

4. There are no empty rules. The null parse rule is the only exception to this.

5. Every rule contains at least one non-nullable symbol. The null parse rule is the only exception
to this.

Marpa also follows AH2002 in its special treatment of dotted rules in the AHFA states. Here are
special features of Marpa’s dotted rules which are relevant in this document.

1. As previously noted, Earley items contain AHFA states, which represent sets of one or more
dotted rules.

2. No dotted rule has a nulling symbol after the dot.

3. All transitions between AHFA states are over non-nullable symbols.

3

4. Any transition over a non-nullable symbol A in an AHFA state also moves the dot past any
nulling symbols after the symbol A.

5. A prediction is a dotted rule where the dot is before the first non-nullable symbol. As a
consequence, the dot in an AHFA’s prediction is not necessarily before the first symbol of the
rule.

6. A completion always has the dot after the last symbol of the rule. In the terminology of Leo
1991, AHFA states contain no quasi-completions.

7. Predictions are never completions. This is because rules must contain at least one non-nullable
symbol. The null parse rule is the only exception to this.

3 The Strategy of the Proof

The proof defines “Leo conformance”. This is a property of an NFA state. A Leo-conformant NFA
state either is an AHFA singleton or else it contains no candidates for Leo completions. If all the
states in a NFA are Leo-conformant, clearly all candidates for Leo completions in the NFA will be
in AHFA singletons.

AH2002 Earley items use sets of dotted rules in their Earley items, instead of individual dotted
rules. These sets of dotted rules are states of a NFA which Aycock and Horspool call a “split ǫ-DFA”.
In this document, a split ǫ-DFA is called an Aycock-Horspool Finite Automaton (AHFA).

The proof contains many inductions on the construction of the AHFA. The one which establishes
the Leo conformity of the AHFA is the main induction. AHFA construction starts with the
creation of the LR(0) DFA start states from the LR(0) NFA. As the basis for the induction, the
LR(0) DFA start states are shown to be Leo-conformant. Each step of the construction after that
is a step of the induction. It is shown that all new NFA states are Leo-conformant, and that all
transformed NFA states preserve Leo conformance.

Most of the work of the proof is done in a series of theorems which preceed the main induction.
Most of these prove “conservation” properties to be used in the induction. Intuitively, a property or
object is conserved if, once it comes into existence, it never changes. The conservation properties
depend on each other and must be established in order. They often use induction on the construction
on the AHFA.

Key to the proof will be the idea of “shadowing”. It is possible for completions to be bound
together in the same AFHA state, and this would appear to be an obstacle, perhaps a fatal one,
to using Leo1991 with AHFA states. But Leo1991’s additional logic is only applied when the
postdot symbol in the completion’s parent (or predecessor) Earley set is unique. The concept of
shadowing converts this uniqueness requirement into a property of dotted rule instances. In the
form of shadowing, the uniqueness requirement of Leo1991 can be applied in an induction on the
steps in the construction of a DFA.

Leo 1991 had its own reasons for requiring that postdot symbols be unique – it enabled Leo’s
algorithm to have linear time-complexity for LR-regular grammars. But the result is very fortunate
for adapting Leo1991 to AHFA states. It is an interesting question whether this is simply a happy
coincidence or the consequence of a deep property.

4

4 Definitions

4.1 Dotted Rules and Instances

A dotted rule is a duple (rule, dot), where rule is a rule of G and dot is a number from 0 to n,
where n is the number of symbols in rule’s right hand side. A dotted rule is more traditionally
represented by showing the rule as a production with a raised dot to indicate the dot position:
A → α • β.

A dotted rule instance is a triple (rule, dot, id). rule and dot are as in the definition of a
dotted rule. id is an unique identifier. More formally, an id is assigned to a dotted rule instance
when it is created, such that id will never be equal to the id of any other dotted rule instance.
Where the meaning is clear, a dotted rule instance is called a rule instance or an instance.

NFA states are defined as sets of dotted rule instances. Within an NFA state there is never more
than one dotted rule instance for any dotted rule. But an NFA may contain different instances of
the same dotted rule. Without the use of instances, confusion can arise when dealing with the
movement of an element from one NFA state into another NFA state.

We say that a dotted rule instance is in an Earley item, if that dotted rule instance is an
element of the AHFA state in that Earley item. We say that a dotted rule instance is in an Earley

set, if that dotted rule instance is in any Earley item in that Earley set.
The reader may wish to note that even dotted rule instances are not necessarily unique within an

Earley set. The same AHFA state can occur in multiple Earley items in the same Earley set. This
does not seem to present any problem for the proofs in this document, but it was a complication
that needed to be watched.

A singleton is an NFA state that contains only one dotted rule instance. A completion is
a dotted rule instance with its dot position after its last symbol. A singleton completion is an
NFA state whose only element is a completion.

A prediction is a dotted rule instance with its dot position before the first non-nulling symbol
of its rule. An initial instance is a prediction of a start rule.

The source of a dotted rule instance is another dotted rule instance that was used in its creation.
Initial instances do not have sources. If the instance is a non-prediction, the source is also called
a predecessor.

4.2 Location Mappings

Location mappings are properties of dotted rule instances and NFA states. Let w be a string in
the symbol vocabulary of the current grammar: w ∈ V ∗. Let G be the current grammar. Let V

be the symbol vocabulary of G. The location mapping for an AHFA state s is Locates(w), where
Locates(w) is the set of Earley sets such that s is the AFHA state of some Earley item in the
Earley set. The location mapping for a dotted rule instance d is Located(w), where Located(w) is
the Locates(w) such that d ∈ s. Note that w is not necessarily in the language of G, L(G), that
the parse is not necessarily successful, and that the set of Earley sets may be infinite.

Intuitively, the location mapping describes the locations where dotted rule instances are found
when Marpa parses w according to the AHFA generated from G. There may be more than one
Earley set occurrence of the same dotted rule instance, but Located(w) is not defined as a multiset.
Even if the same dotted rule instance d is present in more than Earley item in an Earley set when
string w is parsed, that Earley set is only a single element in the range of the mapping Located(w).

5

4.3 Ties

An Earley set that contains an AHFA state also contains all the dotted rule instances in that AHFA
state. For this reason, dotted rule instances in an AHFA state have the same location mapping as
that AHFA state.

Two dotted rule instances are tied if they have the same location mapping. From the above, it
is clear that all pairs of dotted rule instances in an AHFA state are tied.

We say that an NFA state is tied if all the pairs of dotted rule instances in it are tied. AHFA
states are tied. It will be proved (section 9 on page 9) that all NFA states arising in the consruction
of an AHFA are tied.

Two AHFA states are tied together if they have the same location mapping. The tying
together of AHFA states will become relevant when dealing with the NFA State Splitting operation
(section 5.3 on the next page). (The result of NFA State Splitting is always an AHFA state.)

Theorem: If two AHFA states are tied togther, every pair of dotted rule instances from either
state is tied. Proof : Because they are tied together, the two AHFA states have the same location
mapping, call it m. Because they are AHFA states, all dotted rule instances in both states also
have mapping m. Therefore all pairs of these are tied. QED.

4.4 Relevant Ties

By definition, dotted rule instances are tied if they have the same location mapping. This property
is conserved during AHFA construction, but that proof would be complex because a coincidence of
location mappings can arise in many ways. A weaker theorem, which restricts itself to relevant ties,
is much easier to prove and is all that is necessary to prove the main results in this document.

A tie between dotted rule instances is relevant if it is between two dotted rule instances in
the same NFA state, or if it is between dotted rule instances in two AHFA states which are tied
together. This definition does not require that a relevant tie be a tie, but that will be proved in
section 10 on page 10.

4.5 Shadowing

The predecessor of a dotted rule instance may be “shadowed”. This definition is key to the proof.
A predecessor p is shadowed by another dotted rule instance q, if

• q is relevantly tied to p,

• p 6= q, and

• p and q have the same postdot symbol.

Where q is not important, we simply say that p is shadowed. Intuitively, shadowing captures the
notion that, whenever a dotted rule instance with p as its predecessor occurs in the recognizer,
Leo1991’s uniqueness requirement fails to be met.

4.6 Candidates and Rejects

As a reminder, a Leo completion is one of Earley items that replace chains of Earley items when
the methods of Leo1991 are used. The Leo completion is a stand-in for the entire chain, and
especially for its topmost item.

6

A dotted rule instance is a candidate for Leo completion, if it is a completion with an
unshadowed predecessor. A candidate for Leo completion is usually called just a candidate, or
sometimes Leo candidate. An NFA state is a candidate if any of its dotted rule instances is
a candidate. Intuitively, a candidate is an dotted rule instance or an NFA state which could be
included in a Leo completion.

A dotted rule instance is a reject if it is not a candidate. An NFA state is a reject if all of its
dotted rule instances are rejects. Where confusion might arise, rejects are called Leo rejects.

4.7 Leo Conformance

Leo conformance is a property of an NFA state. A state of a NFA may be Leo-conformant in
one of two ways. An NFA state is Leo-conformant if it is a singleton completion. A state of an
NFA is also Leo-conformant if it is a Leo reject. An NFA is Leo-conformant if all of its states are
Leo-conformant.

4.8 Conservation

The term conservation will be used for a series of related concepts in this document. The concept
will be formalized differently in each case, but the cases share a common intuition. A property is
conserved if the AHFA construction never changes it. An object is conserved if, once it comes
into existence, it never disappears.

5 Operations in Constructing the AHFA

In the construction of the AHFA, three operations on NFA states occur: creation, expansion, and
splitting. The pre-operation NFA state which provides data is called an operand. There will be
only one operand, which may or may not be changed by the operation. The NFA states which are
potentially changed or which are created by an operation are its results. Each operation has one
or two results.

5.1 NFA State Creation

When a NFA state is created, the operand is an existing NFA state, s, which is not changed. A
symbol transition from s is used to created dotted rule instances to put into the result, s′. s′ is
created during the operation. All dotted rule instances in s′ will be non-predictions, and will have
predecessors in s.

5.2 NFA State Expansion

When a NFA state is created, the operand is an existing NFA state, s. s is also the result. NFA
state expansion adds a new dotted rule instance, D, to s. D is a non-initial prediction. D will have
as its source a dotted rule instance in s.

5.3 NFA State Splitting

When a NFA state is split, the operand is an existing NFA state, k. The result of the split will be
k and optionally, a new state nk. The result state k is called the kernel state. nk is the non-kernel

7

state.
Every non-initial prediction instance, D, is moved from s into nk. D is not changed in the move.

Since by definition D is the triple (rule, dot, id), rule, dot, and id are also not changed. Because
there will always be either an initial rule instance or a non-prediction instance in s, an NFA State
Splitting operation always leaves k with at least one dotted rule instance.

By the definitions of the Marpa and AH2002 algorithms, for every parse, whenever k occurs in
an Earley set, nk occurs along with it. In the terminology of this document, k and nk are tied
together.

NFA State Splitting is always the last operation on any operand. This means that its result
states are AHFA states, and are never the operands of any operation.

6 Instances are Conserved

Statement of the Theorem:

1. Dotted rule instances are not deleted once created.

2. Where a dotted rule instance is the triple (rule, dot, id), rule, dot, and id never change.

3. For the properties of being a completion rule instance, being a prediction rule instance, and
their negations, once a dotted rule instance has that property, it keeps that property.

4. For the properties of being an initial rule instance and its negation, once a dotted rule instance
has that property, it keeps that property.

Proof : 1. By the definitions of NFA State Creation, NFA State Expansion and NFA State Splitting,
no dotted rule instance is ever deleted. So by induction on the AHFA construction, no dotted rule
instance is ever deleted. This establishes part 1 of the theorem.

2. A dotted rule instance D is the triple (rule, dot, id) as a matter of definition. From part 1,
we know that D is not deleted. This establishes part 2 of the theorem.

3. The properties listed are all consequences of rule and dot position. From part 2, we know that
rule and dot position never change. Therefore the properties listed cannot change. This establishes
part 3 of the theorem.

4. An initial rule is a prediction whose rule is a start rule. Therefore being an initial rule
instance, and its negation, are consequences of the rule and the dot position. From part 2, we
know that rule and dot position never change. Therefore the properties of being initial and of being
non-initial cannot change. This establishes part 4 of the theorem. QED.

7 Sources are Conserved

Statement of the Theorem: Let D be a dotted rule instance and S = (srule, sdot, sstate) its source.
If S ever exists, srule and sdot never change.

Proof : When a non-inital rule instance is added, it has a source. By the Instance Conservation
Theorem, the source will continue to exist and its rule and dot position will never change. QED.

8

8 Singleton Completions are Conserved

Statement of the Theorem: Once an NFA state becomes a singleton completion, it will remain one
for the entire AHFA construction.

Proof : By the Instance Conservation Theorem, completions are never deleted and never lose
the property of being a completion. It remains to show that singletons are conserved when their
only dotted rule instance is a completion.

Case for NFA State Creation: By its definition, NFA State Creation does not add instances to
any existing NFA states. This establishes the case for NFA State Creation.

Case for NFA State Expansion: The only NFA state to which NFA State Expansion adds
instances is its operand. However, the operand of an NFA State Expansion will never be a singleton
completion. This is because the added rule instances are predictions, and in Earley’s algorithm these
are made using postdot symbols. A singleton completion has only one rule instance, a completion.
Completions have no postdot symbols. Therefore, NFA State Expansion will never affect a singleton
completion. This establishes the case for NFA State Expansion.

Case for NFA State Splitting : The dotted rule instance in a singleton completion is either an
initial instance (the null parse rule instance) or a non-prediction. In either case, it remains in the
kernel state. No dotted rule instances are ever added to the operand when it becomes the kernel
state, so the operand of NFA State Splitting remains a singleton. Since it remains a singleton and
its sole dotted rule instance remains a completion, the operand remains a singleton completion when
it becomes the kernel state. This established the case for NFA State Splitting.

Concluding the Proof : We have shown that all of the operations in an AHFA construction
preserve singleton completions. By induction on the AHFA construction, singleton completions,
once created, are preserved. QED.

9 All NFA States are Tied

Statement of the Theorem: At every point in an AHFA construction, every NFA state is a tied
state.

Starting the Proof: The proof that the NFA states in the AHFA Construction are tied proceeds
by induction on its construction. The induction proceeds in reverse from the usual order. The basis
of the induction is the final product, the AHFA states. The steps of the induction will be toward
the initial states. We show the steps of the induction by cases, one for each operation.

Basis of the Induction: It was mentioned above that AHFA states are tied. That followed
immediately from the definitions of the Marpa and AH2002 algorithms: The Earley items for these
algorithms contain AHFA states, so that all the dotted rule instances in an AHFA state must always
occur together in an Earley set.

Case for NFA State Splitting : NFA State Splitting is always the last operation in the construction
of the NFA states involved. The one or two NFA states which result (k and nk) are AHFA states.
As AHFA states, k and nk are tied. We need to show that the operand is tied. Call this operand,
s.

By the definition of NFA State Splitting, k and nk are not only tied states, they are tied together.
This means that states k and nk have the same location mapping. Since they are AHFA states, all
the dotted rule instances in k and nk have the same location mapping as their AHFA states, and as
each other. The dotted rule instances in s are exactly the union of those in k and nk. Therefore all
the dotted rule instances in s have the same location mapping. This means that all pairs of dotted

9

rule instances in s are tied. So, by the definition of a tied state, s is tied. This establishes the case
for NFA State Splitting.

Case for NFA State Expansion: We assume, from the reverse induction, that s′, the result of
NFA State Expansion, is tied. We seek to prove that s, the operand of NFA State Expansion, is
tied.

Since s′ is tied, all pairs of dotted rule instances in s′ are tied. The dotted rule instances in s are
a subset of those in s′. Therefore, all pairs of dotted rule instances in s are tied. From the definition
of a tied state, this means that s is tied. This establishes the case for NFA State Expansion.

Case for NFA State Creation: Because this operation does not alter its operand, this case is
true trivially.

Concluding the Proof : We have show that the final product of AHFA construction, the AFHA
states, are tied. We have shown that for every operation in the construction, if the NFA states
which result are tied, then the operands are tied. This completes the induction and shows that all
NFA states in an AHFA construction are tied. QED.

10 Relevant Ties are Ties

Statement of the Theorem: All relevant ties are ties.
Proof : The definition of a relevant tie has two cases: relevant ties within an NFA state and

relevant ties between NFA states. The proof is by these cases.
Case for Within: By a previous theorem (section 9 on the previous page), all NFA states are

tied. By the definition of a tied NFA state, every pair of dotted rule instances which are elements of
the same NFA state is tied. This establishes the case for relevant ties between dotted rule instances
within a single NFA state.

Case for Between: By another previous theorem (section 4.3 on page 6) all dotted rule instances
are tied if they are in two AHFA states which are tied together. This establishes the case for relevant
ties between dotted rule instances in NFA states which are distinct, but tied together.

Concluding the Proof : Since in both cases, every pair of dotted rule instances which is relevantly
tied is also tied, all relevant ties are ties. QED.

11 Relevant Ties are Conserved

Lemma

Statement of the Lemma: The operand of an operation is never an AHFA state tied to another
state.

Proof of the Lemma: An NFA state tied to another state is always the result of NFA State
Splitting. NFA State Splitting is always the the last operation on any NFA state. Therefore, the
results of NFA State Splitting never become the operand of any operation, including another NFA
State Splitting operation. QED.

Theorem: Relevant Ties are Conserved

Statement of the Theorem: Once two dotted rule instances become relevantly tied in the course of
AHFA construction, they remain relevantly tied.

Starting the Proof : This proof is by induction on the construction of the AHFA.

10

Basis of the Induction: The basis of the induction is the first step of the AHFA construction: the
initial states of the LR(0) DFA construction. The basis is vacuously true, since prior to the initial
states are no dotted rule instances, no ties between them and therefore no relevant ties between
them.

Inductive Step:
We first note that it is vacuously true that all relevant ties between dotted rule instances in two

distinct NFA states are preserved by the induction steps. This is because a relevant tie between
dotted rule instances in distinct NFA states must be due to one NFA state being tied to another.
By the previous Lemma, an NFA state tied to another NFA state is never the operand for any
operation.

It remains to show that relevant ties between dotted rule instances in a single NFA state are
preserved. This is shown by cases, one for each operation.

Case for NFA State Creation: NFA State Creation does not change the dotted rule instances in
any existing NFA states, including its operand. So all pre-existing relevant ties will be preserved.
This established the case for NFA State Creation.

Case for NFA State Expansion: The only NFA state whose dotted rule instances are changed
by NFA State Expansion is its operand. All relevant ties not in the operand will be preserved.

All pairs of dotted rule instances in the operand are preserved in the result. The result is a
single NFA state, so all such instance pairs are relevantly tied. This means that any relevant ties
pre-existing the operation are preserved. This establishes the case for NFA State Expansion.

Case for NFA State Splitting : The only NFA state whose dotted rule instances are changed by
NFA State Splitting is its operand, so it is only necessary to show that any relevant ties between
dotted rule instances in the operand are preserved.

Call the two result states, k and nk. Consider two arbitrary dotted rule instances from the
operand, D1 and D2.

We need to deal with two subcases. First, D1 and D2 might be in the same AHFA state. Second,
they might be in different AHFA states.

First subcase: If D1 and D2 are in the same AHFA state, they are relevantly tied, so that any
relevant tie they had previously is preserved. This establishes the first subcase.

Second subcase: Consider the other subcase, where D1 and D2 are in different AHFA states.
Without loss of generality, put D1 into n and D2 into nk. By the definition of NFA State Splitting,
n and nk are tied together. Therefore D1 and D2 are relevantly tied, and any relevant tie they had
previously is preserved. This establishes the second subcase.

Concluding the case: Since the choice of D1 and D2 was arbitrary, every pair of dotted rule
instances from either k or nk is relevantly tied. Therefore any relevant tie which existed previously
is conserved. This establishes the case for NFA State Splitting.

Concluding the proof : We have shown that relevant ties are vacuously preserved when they are
due to NFA states tied together. We have shown that relevant ties of dotted rule instances in a
single NFA state are preserved in the basis of the induction and in its steps. This establishes the
theorem.

QED.

12 Shadowing is Conserved

Statement of the Theorem: If a dotted rule instance becomes shadowed during AHFA construction,
it remains shadowed.

11

Proof : By the definition of shadowing, it is based on existence of two dotted rule instances, their
postdot symbols and the relevant tie between them. The postdot symbol is a function of the rule
and dot position in a dotted rule instance and is therefore conserved. Since the existence of dotted
rule instances, their postdot symbols, and relevant ties between them are conserved, shadowing is
conserved. QED.

13 Reject Instances are Conserved

Statement of the Theorem: If a dotted rule instance becomes a Leo reject instance during AHFA
construction, it remains a Leo reject instance.

Proof : A dotted rule instance may be a Leo reject because it is a non-completion or because
its predecessor is shadowed. Dotted rule instances, predecessor relationships, shadowing and non-
completion are all conserved objects or properties. Therefore, Leo reject instances are conserved.
QED

14 Reject States are Conserved

Statement of the Theorem: If an NFA state becomes a Leo reject state during AHFA construction,
it remains a Leo reject state.

Proof : A Leo reject state is one all of whose dotted rule instances are Leo rejects.
Case for NFA State Creation: NFA State Creation does not affect existing states, so it conserves

all Leo reject states.
Case for NFA State Expansion: NFA State Expansion adds non-initial predictions to existing

states. Non-initial predictions are always non-completions and therefore Leo rejects. Adding a Leo
reject instance to a Leo reject NFA state results in a Leo reject NFA state.

Case for NFA State Splitting : NFA State Splitting produces two new states from an existing
one. Each of these will contain only dotted rule instances from the original state. If the operand
was a Leo reject, then it contained only Leo reject instances. It was proved in section 13 that Leo
reject instances are conserved, including by NFA State Splitting. Therefore both new NFA states
(kernel and non-kernel) will contain only Leo reject instances. And therefore, both the kernel and
non-kernel NFA states will be Leo rejects.

Concluding the Proof : Since all the operations conserve Leo reject NFA states, Leo reject NFA
states are conserved. QED.

Note: Leo candidates are not conserved.

15 Leo Conformance is Conserved

Statement of the Theorem: If an NFA state becomes Leo conformant during AHFA construction, it
remains Leo conformant.

Proof : An NFA state is Leo-conformant either because it is singleton completion, or because it
is a Leo reject state. As we have shown, both these properties are conserved. Therefore, once an
NFA state is Leo-conformant, it remains Leo-conformant. QED.

12

16 NFA State Creation is Leo-conformant

Statement of the Theorem: The NFA states produced by the NFA State Creation operation are
Leo-conforming.

Proof : NFA State Creation is by transition over a symbol T from its operand, s. The operand
is also the source of the transition. Call the new NFA state r. We distinguish three cases.

Singleton Completion Case: r contains a single dotted rule instance, and that instance is a
completion. Then r is a singleton completion, and therefore Leo-conforming. This establishes the
singleton completion case.

Singleton Non-completion Case: r contains a single dotted rule instance, D, and D is a non-
completion. Therefore, D is a Leo reject. Since D is the only dotted rule instance in r, all the rule
instances in r are Leo reject instances, and r is a Leo reject. As a Leo reject, r is Leo conforming.
This establishes the singleton non-completion case.

Non-singleton Case: There is more than one dotted rule instance in r. These dotted rule
instances were created by transition over a single symbol, T . Call one of the dotted rule instances
in r, D1. Call another dotted rule instance in r, D2. We are allowed to assume D1 6= D2, because
the assumption for this case is that there is more than one dotted rule instance in r. Call the
predecessor of D1, P1. Call the predecessor of D2, P2.

We know that P1 6= P2, because they are predecessors of D1 and D2 through the same transition
over symbol T , and if P1 = P2, then D1 = D2, which we have assumed not to be the case.

P1 and P2 are both in s and therefore are relevantly tied. Since they are relevantly tied and
share the same postdot symbol, T , and since P1 6= P2, P1 shadows P2.

Because P1 shadows P2, and P2 is the predecessor of D2, D2 is a Leo reject. Since the choice
of D2 was arbitrary, all dotted rule instances in r are Leo rejects. Since all dotted rule instances in
r are Leo rejects, r is a Leo reject. Since r is a Leo reject, it is Leo conforming.

This establishes the non-singleton case.
Concluding the Proof : It has been shown in all three cases that the NFA states created by the

NFA State Creation operation are Leo conforming. QED.

17 Non-kernel States are Leo-conformant

Statement of the Theorem: When the NFA State Splitting operation produces a non-kernel state
as a result, that non-kernel state is Leo-conforming.

Proof : By the definiton of NFA State Splitting, only non-initial predictions go into the non-
kernel state. The only prediction which is a completion is the null parse rule instance, and that is
an initial instance. Therefore, all dotted rule instances in the non-kernel state are non-completions.

Since dotted rule instances in the non-kernel state are non-completions, they are all Leo rejects.
Since all rule instances in the non-kernel state are Leo rejects, the non-kernel state is a Leo reject.
Since the non-kernel state is a Leo reject, it is Leo-conformant. QED.

18 Construction of the AHFA

This section reviews the AHFA construction to show that everything in it is accounted for by the
operations listed above.

13

18.1 Construction of the LR(0) DFA

It is assumed that the reader is familiar with the procedure for constructing an LR(0) DFA. After
creation of the initial states of the LR(0) DFA, construction of its accessible states proceeds by
transitions over symbols and by ǫ-transitions. These correspond to NFA State Creation and NFA
State Expansion operations, respectively.

18.2 Construction of the ǫ-DFA

Aycock and Horspool, in their presentation of the construction of the AHFA, show an intermediate
transformation – conversion of an LR(0) DFA into a ǫ-DFA. Aycock and Horspool then go on to
suggest a grammar rewriting, which they call NNF. This grammar rewriting accomplishes the same
thing more easily. Their ǫ-DFA is apparently only for pedagogic purposes.

In this proof the grammar is assumed to be the result of the Marpa grammar rewritings as
described above. Marpa’s grammar rewritings incorporate the NNF rewriting as suggested by
Aycock and Horspool. The grammar rewriting is done before construction of the LR(0) NFA, and
the result is that the LR(0) DFA is also an ǫ-DFA.

18.3 Construction of the Split ǫ-DFA

The final stage splits NFA states into one or two non-empty NFA states. This is the operation
described above as NFA State Splitting. The result of NFA State Splitting is what Aycock and
Horspool call a “split ǫ-DFA”. It is the final product of the construction. The “split ǫ-DFA” is what
this document has been calling an AHFA.

19 The Main Induction

19.1 Basis

Proof : The construction of the AHFA begins with one or two initial states. The null parse start
state is Leo conformant because it is a singleton completion. The non-null parse start state is Leo
conformant because all dotted rule instances in it are non-completions and therefore Leo rejects.
Therefore all initial states are Leo conformant.

19.2 Inductive Step

Most of the work of the induction steps was done in the preceeding theorems. All states once
created remain Leo-conformant, as proved in the section 15 on page 12.

By the definition of the operations, new NFA states are created in three ways:

1. As initial states. These were proved Leo-conformant in section 19.1 and do not form part of
the inductive step.

2. In the NFA State Creation operation. These were proved Leo-conformant in section 16 on the
previous page.

3. As non-kernel states, during the NFA State Splitting operations. These were proved Leo-
conformant in section 17 on the preceding page.

14

20 All Leo Candidates are in Singleton AHFA States

Theorem: All Leo candidates are in singleton AHFA states.
Proof : The main induction (section 19 on the previous page) shows that all the states in the

AHFA are Leo conformant. Therefore, by the defiinition of Leo-conformant, all AHFA states are
either contain no Leo candidates, or are singletons. This proves the theorem. QED.

21 All Leo Completions are in Singleton AFHA States

Theorem: All Leo completions are in singleton AFHA States
Proof : An Earley item can only be a Leo completion if its AHFA state contains a candidate

for Leo completion. The previous section (20) showed that these these AHFA states are always
singletons. Therefore Leo completions will always be singletons. QED

15

