
Params-Callbacks-2.002004/lib/Params/Callbacks.pm

Page 1

NAME
Params::Callbacks - Make your subroutines accept blocking callbacks

VERSION
version 2.002004

SYNOPSIS
 use Params::Callbacks 'callbacks', 'callback'; # Or use ':all' tag
 use Data::Dumper;

 $Data::Dumper::Indent = 0;
 $Data::Dumper::Terse = 1;

 sub foo
 {
 my ($callbacks, @params) = &callbacks;
 # If &callbacks makes the hairs
 # on your neck standp, then use
 # a cleaner alternative:
 #
 # - callbacks(@_), or ...
 # - Params::Callbacks->new(@_)

 return $callbacks->transform(@params);
 }

 # No callbacks; no change to result!
 my @result_1 = foo(0, 1, 2, 3);
 print Dumper([@result_1]), "\n"; # [0,1,2,3]

 # With callback, result is transformed before being returned!
 my @result_2 = foo(0, 1, 2, 3, callback { 0 + 2 ** $_ });
 print Dumper([@result_2]), "\n"; # [1,2,4,8]

 # With multiple callbacks, result is transformed in multiple stages
 my @result_3 = foo(0, 1, 2, 3, callback { 0 + 2 ** $_ }
 callback { 0 + 10 * $_ });
 print Dumper([@result_3]), "\n"; # [10,20,40,80];

DESCRIPTION
Use this module to enable a function or method to accept optional blocking
 callbacks. Perhaps you
would like to allow the caller to accept your function's
 return value as is, or to intercept, change,
eliminate, or otherwise process that
 result before it is finally returned.

How callbacks are identified and processed
Callbacks are passed to your function by placing them at the end of the call's
 argument list. This
module provides you with a means to identify and separate any
 callbacks from your function's
arguments. It also provides dispatchers that will
 pass the return value into the callback chain and
capture the result, ready to
 pass it back up to the caller.

Callbacks work simply enough. Like any function, they accept input in @_
 and their output is returned
explicitly or as the result of their terminal
 expression. When chaining together multiple callbacks, the
dispatcher takes
 the function's return value and passes it to the first callback; the output
 from that
callback is then passed to the following callback, and so on until
 their are no more callbacks to

Params-Callbacks-2.002004/lib/Params/Callbacks.pm

Page 2

process the value. The result of the final
 callback is returned to the program ready to be returned to
the caller.

As a convenience, a callback also receives a copy of the input value in $_.

If an empty list is returned then the value is discarded and the callback
 chain is terminated for that
value.

Creating and passing callbacks into a function
 ##################################
 # We define our MyModule.pm file #
 ##################################

 package MyModule;
 use Exporter;
 use Params::Callbacks 'callbacks';
 use namespace::clean;
 use Params::Callbacks 'callback';
 our @EXPORT = 'callback';
 our @EXPORT_OK = 'awesome';
 our @ISA = 'Exporter';

 sub awesome {
 my ($callbacks, @names) = &callbacks;
 return $callbacks->transform(@names);
 }

 1;

 #############################
 # Meanwhile, back in main:: #
 #############################

 # No callbacks ...
 #
 use MyModule 'awesome';
 my @team = awesome('Imran', 'Merlyn', 'Iain');
 print "$_\n" for @team;
 #
 # Imran
 # Merlyn
 # Iain
 #
 # (Not so awesome.)

 # With a callback ...
 #
 use MyModule 'awesome';
 my @team = awesome('Imran', 'Merlyn', 'Iain', callback {
 "$_, you're awesome!"
 });
 print "$_\n" for @team;
 #
 # Imran, you're awesome!
 # Merlyn, you're awesome!
 # Iain, you're awesome!

Params-Callbacks-2.002004/lib/Params/Callbacks.pm

Page 3

 #
 # (This time with added awesome!)

 # With two callbacks ...
 #
 use MyModule 'awesome';
 my @team = awesome('Imran', 'Merlyn', 'Iain', callback {
 "$_, you're awesome!"
 } # Comma is optional here.
 callback {
 print "$_[0]\n";
 return $_[0];
 });
 #
 # Imran, you're awesome!
 # Merlyn, you're awesome!
 # Iain, you're awesome!
 #
 # (Moar awesome!)

METHODS
new

Takes a list of scalar values, strips away any trailing callbacks and returns
 a new list containing a
blessed array reference (the callback chain) followed
 by any values from the original list that weren't
callbacks.

A typical use case would be processing a function's argument list @_:

 sub my_function
 {
 ($callbacks, @params) = Params::Callbacks->new(@_);
 ...
 }

It is also possible to pass in a pre-prepared callback chain instead of
 individual callbacks, in which
case that value will be returned as the callback
 chain, without inspecting the list for individual
callbacks — this behaviour
 is useful when the ability to efficiently forward callbacks onto a more
deeply
 nested call is required.

The output list is packaged in such a way as to make parsing the argument list
 as easy as possible.

transform
Transform a result set by passing it through all the stages of the callbacks
 pipeline. The
transformation terminates if the result set is reduced to
 nothing, and an empty result set is returned.

Empty or not, this method always returns a list.

smart_transform
Transform a result set by passing it through all the stages of the callbacks
 pipeline. The
transformation terminates if the result set is reduced to
 nothing, and an empty result set is returned.

Empty or not, this method always returns a list if a list was wanted.

If a scalar is required, a scalar is returned. If the result set contains a
 single element then the value of
that element will be returned, otherwise a
 count of the number of elements is returned.

Params-Callbacks-2.002004/lib/Params/Callbacks.pm

Page 4

EXPORTS
Nothing is exported by default.

The following functions are exported individually upon request; they may all be
 imported at once using
the import tags :all and :ALL.

callbacks
Takes a list of scalar values, strips away any trailing callbacks and returns
 a new list containing a
blessed array reference (the callback chain) followed
 by any values from the original list that weren't
callbacks. The typical
 imagined use case is in processing a function's argument list @_:

 sub my_function
 {
 ($callbacks, @params) = callbacks(@_);
 ...
 }

 sub my_function
 {
 ($callbacks, @params) = &callbacks;
 ...
 }

It is also possible to pass in a pre-prepared callback chain instead of
 individual callbacks, in which
case this function will return that value
 as its own callback chain, without inspecting the list for
individual
 callbacks. This behaviour is useful when forwarding callbacks onto a
 more deeply nested
call.

The output list is packaged in such a way as to make parsing the argument list
 as easy as possible.

callback
A simple piece of syntactic sugar that announces a callback. The code
 reference it precedes is
blessed as a Params::Callbacks::Callback
 object, disambiguating it from unblessed subs that
are being passed as
 standard arguments.

Multiple callbacks may be chained together with or without comma
 separators:

 callback { ... }, callback { ... }, callback { ... } # Valid
 callback { ... } callback { ... } callback { ... } # Valid, too!

REPOSITORY
* http://search.cpan.org/dist/Params-Callbacks/lib/Params/Callbacks.pm

* https://github.com/cpanic/Params-Callbacks

BUG REPORTS
Please report any bugs to http://rt.cpan.org/

AUTHOR
Iain Campbell <cpanic@cpan.org>

COPYRIGHT AND LICENCE
Copyright (C) 2012-2015 by Iain Campbell

This library is free software; you can redistribute it and/or modify
 it under the same terms as Perl
itself.

