
PDF Extraction Toolkit – Version 0.9

The PDF Extraction Toolkit (formerly “PDF Analyser”) is a framework for performing
document analysis of PDF files and creating custom conversion methods. GraphWrap, a
system for graph-based wrapping, or semi-automatic data extraction, from PDF files, is also
included within the PDF Extraction Toolkit. The main toolkit (including GraphWrap) is
released under the Apache licence, which allows it to be freely incorporated into proprietary
software.

A GUI is also included, built upon the “XMIllum” library, which enables the results of the
document analysis process to be visualized. Also, an interactive graph visualization is
provided to view the graph structures created by the system and allow the interactive
creation and testing of graph-based wrappers on PDF documents. This GUI is released under
the GPL licence.

Getting started

Version 0.9 (2011-02-22) of the PDF Extraction Toolkit consists of three project downloads:

• PDF Analyser – the backend, including GraphWrap, published under the Apache
licence

• PDF Analyser GUI – the GUI, published under the GPL licence
• TouchGraph-Modified – a minor modification made to the “TouchGraph” library, also

published under the Apache licence.

Both PDF Analyser and PDF Analyser GUI are standalone projects. The compiled PDF
Analyser JAR is included within PDF Analyser GUI (but not vice versa).

The compiled TouchGraph-Modified JAR is included within the project PDF Analyser; you
only need to download it for reference or if you wish to modify the TouchGraph library
further.

Code structure

Package structure:
• at.ac.tuwien.dbai.pdfwrap

◦ contains the main classes ProcessFile (to process a PDF) and GraphMatcher (to
perform graph-based text extraction)

• at.ac.tuwien.dbai.pdfwrap.model.document
◦ contains the elements for the document model representation:

▪ GenericSegment is the base class of a rectangular block
▪ TextSegment adds text and font fields to GenericSegment
▪ CompositeSegment is the base class of a block containing a List<? Extends

GenericSegment> of sub blocks
▪ a document is a List<Page>
▪ Page is a CompositeSegment<GenericSegment>
▪ TextBlock is the granular block as returned by the segmentation algorithm

• a TextBlock is built up of TextLines; single lines of text (enforced by
generics)

• a TextLine is built up of LineFragments; usually just a single one, unless
font changes occur within the line (a LineFragment may not have any font
changes)

• a LineFragment consists of TextFragments (single COS (sub)instructions,
typically 2-3 characters long, sometimes only 1 character)

• a TextFragment consists of one or more CharSegments
▪ Graphical items include Images (bitmap images), LineSegments (straight lines)

and RectSegments (rectangular segments; filled or unfilled). Currently, there is
no hierarchy imposed.

• at.ac.tuwien.dbai.pdfwrap.model.graph
◦ AdjacencyGraph – neighbourhood graph built up from the document model plus

AdjacencyEdges in the four directions of the compass
▪ for segmentation and document analysis, this graph Is used

◦ DocumentGraph: for graph display and graph-based information extraction, a
simpler model is used. Currently, only one single hierarchical level is supported.
▪ DocumentGraph(AdjacencyGraph ag) – constructor creates a

DocumentGraph out of an AdjacencyGraph
▪ DocNode – essentially a TextSegment; includes matching criteria; extends

TouchGraph Node class
▪ DocEdge – joins two DocNodes; includes relation string (currently only

adjacency relations are used) includes matching criteria; extends TouchGraph
Edge class

• at.ac.tuwien.dbai.pdfwrap.analysis
◦ classes, which perform document analysis, i.e.: grouping of blocks, segmentation,

recognition of larger structures, etc.
• at.ac.tuwien.dbai.pdfwrap.comparators

◦ comparators
• at.ac.tuwien.dbai.pdfwrap.gui

◦ EdgeSegment – used to display edges in the XMIllum view
• at.ac.tuwien.dbai.pdfwrap.exceptions

◦ DocumentProcessingException
• at.ac.tuwien.dbai.pdfwrap.operator

◦ location of the methods overriding PDFBox's native methods that are carried out
when a particular COS operator is encountered

◦ Resources/PDFObjectExtractor.properties is the mapping from the operator to
operator method – please note the NotImplemented operators!

• at.ac.tuwien.dbai.pdfwrap.pdfread
◦ classes for reading in the PDF:

▪ PDFPage – intermediate representation of a page before it is analysed
▪ PDFObjectExtractor – methods for extracting low-level objects from the PDF

from the COS stream
• at.ac.tuwien.dbai.pdfwrap.utils

◦ utility methods

Coordinates

Throughout the document model, PDF coordinates are used (72ppi; (0,0) at bottom left). For
output to XMIllum, these coordinates are converted to screen coordinates ((0,0) at top left).

Main methods:

• at.ac.tuwien.dbai.pdfwrap.ProcessFile.main
• at.ac.tuwien.dbai.pdfwrap.GraphMatcher.main

Processing a PDF using the command line

See the file process-file.sh. Running the command without parameters will print out the
usage syntax.

Processing a PDF using the Java method
in class at.ac.tuwien.dbai.pdfwrap.ProcessFile:

public static List<Page> processPDF(byte[] theFile, int processType, boolean rulingLines,
 boolean ignoreSpaces, int startPage, int endPage, String encoding, String password,
 int maxIterations, List<AdjacencyGraph<GenericSegment>> adjGraphList, boolean GUI)
 throws DocumentProcessingException

theFile the input file

processType PageProcessor.PP_BLOCK – the blocks after segmentation or
PageProcessor.PP_MERGED_LINES for individual lines of text as
TextBlocks (note: the TextBlocks include the individual lines
anyway)

rulingLines usually set to true; if false, then ruling lines will be ignored in the
segmentation process

ignoreSpaces usually set to false; might be necessary for monospaced text

startPage and endPage if set to -1, will use the first and last page respectively

encoding default is “” (or null)

password default is “” (or null) – unless a password is required to open the
file

maxIterations default is 0; other values for testing purposes only

adjGraphList default null; include an empty list if you wish to receive the
generated graphs

GUI default false; true only if called by the GUI

Extracting text

Look at the TextBlock objects that have been returned and their getText() methods. Note
that a TextSegment (incl. TextBlock) can only have one font, fontsize and style. To access
font changes within the block, you need to go down to the LineSegment level. See the
TextBlock.addAsXHTML() method.

Converting PDF to (X)HTML

processFile.sh input-file.pdf output-file.xml -xhtml [-startPage 1 -endPage 1 -password pw]

Pages are processed independently of each other and in sequence. Each individual TextBlock
is represented as a HTML <p> element (see TextBlock.addAsXHTML() method). Graphic
objects are currently ignored.

GraphWrap

Please see the following URL for information about the GraphWrap system:

http://www.tamirhassan.com/graphwrap.html

You can find a link to an instruction leaflet (in English and German) on the bottom of this
page demonstrating how to interactively create a wrapper. Please note that these instructions
are from a previous, demonstration version of the software.

In the graphwrap-example subdirectory of the PDF Analyser project, you can find this
example wrapper. The file graphwrap-example.sh shows how GraphWrap can be executed
from the command line.

Tamir Hassan
pdfxtk@tamirhassan.com
23 February 2011

http://www.tamirhassan.com/graphwrap.html

