
MCSim:

A Monte Carlo Simulation Program

by Frédéric Y. Bois and Don R. Maszle

User’s Manual, software version 5.0.0

Copyright c© 1997-2004 Frederic Bois. All rights reserved.
Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by the author.
contact:
Frederic Bois
INERIS
Parc Technologique ALATA
F-60550, Verneuil en Halatte
frederic.bois@ineris.fr
fredomatic@free.fr

Chapter 1: Software License 1

1 Software License

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright c© 1989, 1991 Free Software Foundation, Inc. 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

1.1 PREAMBLE

The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public License is intended to guarantee your
freedom to share and change free software–to make sure the software is free for all its users.
This General Public License applies to most of the Free Software Foundation’s software
and to any other program whose authors commit to using it. (Some other Free Software
Foundation software is covered by the GNU Library General Public License instead.) You
can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for this service if you wish), that you receive source code or
can get it if you want it, that you can change the software or use pieces of it in new free
programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know
their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on the original authors’
reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in
effect making the program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

2 MCSim User’ Manual

1.2 TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by
the copyright holder saying it may be distributed under the terms of this General Public
License. The "Program", below, refers to any such program or work, and a "work based
on the Program" means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it, either verbatim or with
modifications and/or translated into another language. (Hereinafter, translation is included
without limitation in the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted, and
the output from the Program is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program). Whether that is
true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish on
each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty; and give any other
recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming
a work based on the Program, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:

• a) You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

• b) You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a whole at
no charge to all third parties under the terms of this License.

• c) If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most ordinary way, to
print or display an announcement including an appropriate copyright notice and a notice
that there is no warranty (or else, saying that you provide a warranty) and that users
may redistribute the program under these conditions, and telling the user how to view a
copy of this License. (Exception: if the Program itself is interactive but does not normally
print such an announcement, your work based on the Program is not required to print an
announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of
that work are not derived from the Program, and can be reasonably considered independent
and separate works in themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you distribute the same
sections as part of a whole which is a work based on the Program, the distribution of the
whole must be on the terms of this License, whose permissions for other licensees extend to
the entire whole, and thus to each and every part regardless of who wrote it.

Chapter 1: Software License 3

Thus, it is not the intent of this section to claim rights or contest your rights to work
written entirely by you; rather, the intent is to exercise the right to control the distribution
of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2)
in object code or executable form under the terms of Sections 1 and 2 above provided that
you also do one of the following:

• a) Accompany it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

• b) Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distribution, a
complete machine-readable copy of the corresponding source code, to be distributed under
the terms of Sections 1 and 2 above on a medium customarily used for software interchange;
or,

• c) Accompany it with the information you received as to the offer to distribute corre-
sponding source code. (This alternative is allowed only for noncommercial distribution and
only if you received the program in object code or executable form with such an offer, in
accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications
to it. For an executable work, complete source code means all the source code for all
modules it contains, plus any associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a special exception, the
source code distributed need not include anything that is normally distributed (in either
source or binary form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component itself accompanies
the executable.

If distribution of executable or object code is made by offering access to copy from a
designated place, then offering equivalent access to copy the source code from the same
place counts as distribution of the source code, even though third parties are not compelled
to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or distribute
the Program is void, and will automatically terminate your rights under this License. How-
ever, parties who have received copies, or rights, from you under this License will not have
their licenses terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the Program), you indicate
your acceptance of this License to do so, and all its terms and conditions for copying,
distributing or modifying the Program or works based on it.

4 MCSim User’ Manual

6. Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, distribute or
modify the Program subject to these terms and conditions. You may not impose any further
restrictions on the recipients’ exercise of the rights granted herein. You are not responsible
for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for
any other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they do
not excuse you from the conditions of this License. If you cannot distribute so as to satisfy
simultaneously your obligations under this License and any other pertinent obligations,
then as a consequence you may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by all those who receive
copies directly or indirectly through you, then the only way you could satisfy both it and
this License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular cir-
cumstance, the balance of the section is intended to apply and the section as a whole is
intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property
right claims or to contest validity of any such claims; this section has the sole purpose of
protecting the integrity of the free software distribution system, which is implemented by
public license practices. Many people have made generous contributions to the wide range
of software distributed through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing to distribute software
through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by
patents or by copyrighted interfaces, the original copyright holder who places the Program
under this License may add an explicit geographical distribution limitation excluding those
countries, so that distribution is permitted only in or among countries not thus excluded. In
such case, this License incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version
number of this License which applies to it and "any later version", you have the option of
following the terms and conditions either of that version or of any later version published
by the Free Software Foundation. If the Program does not specify a version number of this
License, you may choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose
distribution conditions are different, write to the author to ask for permission. For software
which is copyrighted by the Free Software Foundation, write to the Free Software Founda-
tion; we sometimes make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and of promoting the
sharing and reuse of software generally.

Chapter 1: Software License 5

NO WARRANTY
11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO

WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICA-
BLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITH-
OUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE
QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO
IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE,
BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCI-
DENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABIL-
ITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA
OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR
THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY
OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

6 MCSim User’ Manual

Chapter 2: Overview 7

2 Overview

MCSim is a simulation and statistical inference tool for algebraic or differential equation
systems. Other programs have been created to the same end, the Matlab family of graphical
interactive programs being some of the more general and easy to use. Still, many available
tools are not optimal for performing computer intensive and sophisticated Monte Carlo
analyses. MCSim was created specifically to this end: to perform Monte Carlo analyses in
an optimized, and easy to maintain environment. The software consists in two pieces, a
model generator and a simulation engine:

- The model generator, "mod", was created to facilitate structural model definition and
maintenance, while keeping execution time short. You code your model using a simplified
syntax and mod translates it in C.

- The simulation engine is a set of routines are linked to your model to produce executable
code. After linking, you will be able to run simulations of your structural model under a
variety of conditions, specify an associated statistical model, and perform Monte Carlo
simulations.

2.1 General procedure

Model building and simulation proceeds in four stages:

1. You create with any text editor (e.g., emacs) a model description file. The reference
section on mod, later in this manual gives you the syntax to use (see Chapter 5 [Setting-
up Structural Models], page 17). This syntax allows you to describe the model variables,
parameters, equations, inputs and outputs in a C-like fashion without having you to
actually know how to write a C program.

2. You instruct the model generator, mod, to preprocess your structural model description
file. Mod creates a C file, called ‘model.c’.

3. You compile and link the newly created ‘model.c’ file together with a library containing
the other C routines (or with the other C files of the ‘mcsim/sim’ directory). MCSim C
code is standard, so you should be able to compile it with any standard C compiler, for
example GNU gcc. After compiling and linking, an executable simulation program is
created, specific of your particular model. These preprocessing and compilation steps
can be performed in Unix with a single shell command makemcsim (in which case, the
‘model.c’ is created only temporarily and erased afterward). This produces the most
efficient code for your particular machine.

4. You then write any number of simulation specification files and run them with the
compiled mcsim program. These simulation files describe the kind of simulation to run
(simple simulations, Monte Carlo etc.), various settings for the integration algorithm
if needed, and a description of one or several simulation conditions (eventually with a
statistical model and data to fit) (see Chapter 6 [Running Simulations], page 29). The
simulation output is written to standard ASCII files.

Little or no knowledge of computer programming is required, unless you want to tailor
the program to special needs, beyond what is described in this manual (in which case you
may want to contact us).

8 MCSim User’ Manual

Under Unix, a graphical user interface written in Tcl/Tk, XMCSim (called by the com-
mand xmcsim), is also provided. This menu-driven interface automatizes the compilation
and running tasks. It also offers a convenient interface to 2-D and 3-D plotting of the
simulation results.

2.2 Types of simulations

Five types of simulations are available:
• A simple simulation will solve (eventually integrate) the equations you specified, using

the default parameter values eventually overridden in the simulation specification file.
User-requested outputs are sent to an output file of your choice.

• "Monte Carlo" simulations will perform repeated (stochastic) simulations across a ran-
domly sampled region of the model parameter space (see [MonteCarlo() specification],
page 33).

• A Markov-chain Monte Carlo (MCMC) simulation performs a series of simulations
along a Markov chain in the model parameter space (see [MCMC() specification],
page 33). In MCMC simulations the random choice of a new parameter value is in-
fluenced by the current value. They can be used to obtain the Bayesian posterior
distribution of the model parameters, given a statistical model, prior parameter dis-
tributions (that you need to specify) and data for which a likelihood function can be
computed. The program handles hierarchical (e.g., random effects and mixed effects)
statistical models (see Section 6.2.5 [Setting-up statistical models], page 42).

• A "SetPoints" simulation solves the model for a series of specified parameter sets, listed
in a separate ASCII file (see [SetPoints() specification], page 35). You can create these
parameter sets yourself (on a regular grid, for example) or use the output of a previous
Monte Carlo or MCMC simulation.

• An "OptimalDesign" procedure optimizes the number and location of observation times
for experimental conditions, in order to minimize the variance of a parameter or an
output you specify, given a structural model, a statistical model, and prior distributions
for their parameters (see [OptimalDesign() specification], page 36).

2.3 Major changes introduced with version 5.0.0

• An autoconf script simplifies installation under Unix/Linux operating systems.
• Starting with this version MCSim uses some routines of the GNU scientific libray (gsl),

which is now required.
• Random variate generating functions "BinomialRandom", "BetaRandom",

"BinomialBetaRandom", "Chi2Random", "ExpRandom", "InvGGammaRandom",
"GammaRandom, "GGammaRandom", "LogNormalRandom", "LogUniformRan-
dom", "NormalRandom", "PiecewiseRandom", "PoissonRandom", "TruncInvGGam-
maRandom", "TruncLogNormalRandom", and "TruncNormalRandom", are available
for structural model building.

• For MCMC simulations, the parameters of a Distrib() specification can include
Data() qualifiers, in addition to Prediction() qualifiers. At any position (except
in the second, reserved for the distribution name) of a Distrib() specification, Data()

Chapter 2: Overview 9

can be used to designate data about an input, state or output variable. For any distri-
bution shape parameter, Prediction() can also specify a model input, state or output.
This give much more flexibility to Distrib() specifications. For example:

Distrib (Data(R), Binomial, Prediction(P), Data(N));

is now valid. In addition, the new keywords, Likelihood() and Density(), have been
defined; they are equivalent to Distrib() and have the same syntax. They can help
specify clearer statistical models. Likelihoods can now be different at different levels
or sub-levels.

• A vector syntax, using square brackets is available for specifying the structural model
(note: this syntax is not yet available for input file and is for now of limited usefulness).

• The "OptimDesign()" specification (see [OptimalDesign() specification], page 36) al-
lows you to optimize some aspects of the design of planned experiments.

• The xmcsim graphical user’s interface (see Chapter 8 [XMCSim], page 49) allows you
to run MCSim under XWindows and allows graphic outputs.

For a detailed list of changes, you should consult the ‘MCSim-changelog’ file distributed
with the source code.

10 MCSim User’ Manual

Chapter 3: Installation 11

3 Installation

3.1 System requirements

MCSim is written in ANSI-standard C language. We are distributing the source code
and you should be able to compile it for any system, provided you have an ANSI C compliant
compiler.

Starting with version 5 MCSim is using routines from the GNU Scientific Library (gsl).
Version 1.5 (or higher) of the shared gsl library, gslcblas library, and gsl include files should
be installed on your system.

On a Unix or Linux system we recommend the GNU gcc compiler (freeware). The au-
tomated installation script checks for the availability on your system of the tools needed for
compilation and proper running of the software. It should warn you of missing component
and eventually adapt the installation to your environment (for example by generating only
the documentation formats that you can read).

For other operating systems (MacOS, Windows...) you will need a C language develop-
ment environment or at least a compiler, and some familiarity with it. Here also you might
considerer installing a freeware version of gcc, such as djgpp.

To run the graphical user interface XMCsim, you need a Linux/Unix system with "XWin-
dows", "Tcl/Tk" and "wish" installed.

3.2 Distribution

MCSim source code is available on Internet through:

‘ftp://prep.ai.mit.edu/pub/gnu/’,

‘http://www.gnu.ai.mit.edu/home.html’,

‘http://fredomatic.free.fr’,

‘http://toxi.ineris.fr’.

and mirror sites of the GNU project.

Two mailing lists are available for MCSim users:

You can request help from us, and from other MCSim users, by sending email to:

- "help-mcsim@prep.ai.mit.edu".

You can report bugs to us, by sending email to:

- "bug-mcsim@prep.ai.mit.edu".

You can also subscribe to those lists if you want to automatically receive bug reports
and help messages from others:

To add yourself, send to (list name)-request@prep.ai.mit.edu the word subscribe (as sub-
ject or content). So, for example, for help-mcsim@prep.ai.mit.edu the address would be
help-mcsim-request@prep.ai.mit.edu.

To remove yourself, send to (list name)-request@prep.ai.mit.edu the word unsubscribe
(as subject or content).

12 MCSim User’ Manual

3.3 Machine-specific installation

3.3.1 Unix/Linux operating systems

To install on a Unix/Linux machine, download (in binary mode) the distributed archive
file to your machine. Place it in a directory where there is no existing ‘mcsim’ subdirectory
that could be erased (make sure you check that). Decompress the archive with GNU
gunzip (gunzip <archive-name>.tar.gz). Untar the decompressed archive with tar (tar
xf <archive-name>.tar) (do man tar for further help). Move to the ‘mcsim’ directory just
created and issue the following commands:

./configure
make
make check

The first command above checks for the availability of the tools needed for installation and
proper running of the software. The second compiles the mod program and the dynamic
libmcsim.so library and eventually compiles this manual in various formats. The third
checks whether the software is running and producing meaningful results in test cases.
In case of error messages, don’t panic: check the actual differences between the culprit
output file and the file ‘sim.out’ produced by the checking. Small differences may occur
from different machine precision. This can happen for random numbers, in which case the
Markov chain simulations (MCMC) can diverge greatly after a while.

If you are logged in as "root" or have sufficient access rights, you can then install the
software in common directories in ‘/usr’ by typing at the shell prompt:

make install

If this system-wide installation is successful the executable files mod, makemcsim, xmcsim
are installed in ‘/usr/local/bin’. The library libmcsim.so is placed in ‘/usr/lib’. A
copy of the ‘mcsim’ source directory (with the ‘mod’, ‘sim’, ‘doc’, ‘samples’, and ‘xmcsim’
subdirectories) is placed in ‘/usr/share’. If you have the GNU info system available, an
mcsim node is added to the main info menu, so that info mcsim will show you this manual.
Finally, a symbolic link to ‘/usr/share/mcsim/doc’, which contains the documentation files
and this manual (if it was generated), is created as ‘/usr/share/doc/mcsim’.

If you do not have the necessary access rights or just want to install MCSim in your own
directory, type:

make install-here

This will copy or move ‘mod’, ‘makemcsim’, and ‘xmcsim’ in a ‘/bin’ directory in your home
directory, creating it if necessary. The library libmcsim.so will be moved to a ‘/lib’ direc-
tory in your home directory. The other files in the ‘mcsim’ installation directory (sources,
manuals, samples) are left untouched. You should move the entire ‘mcsim’ directory in your
home directory, otherwise you will have to edit the ‘bin/xmcsim’ and the ‘bin/makemcsim’
scripts to indicate the location of the ‘mcsim’ directory

3.3.2 Other operating systems

Under other operating systems (MacOS, Windows, etc.) you should be able to both
uncompress and untar the archive with widely distributed archiving tools. Refer to the

Chapter 3: Installation 13

documentation of your compiler to create an executable ‘mod’ file from the source code
files (mod.c, lex.c, lexerr.c, lexfn.c, modd.c, modo.c, modi.c, strutil.c) provided in the ‘mod’
directory. Place the executable ‘mod’ on your command path. The ‘sim’ directory con-
tains all the source files (sim.c, getopt.c, lex.c, lexerr.c, lexfn.c, list.c, lsodes1.c, lsodes2.c,
matutil.c, matutilo.c, mh.c, modelu.c, optdsign.c, random.c, simi.c, siminit.c, simmonte.c,
simo.c, strutil.c, yourcode.c) to create a dynamic library or a set of objects to link with the
‘model.c’ files generated by mod after processing your models.

You are now ready to use MCSim. We recommend that you go to the next section of
this manual, which walks you through an example of model building and running.

14 MCSim User’ Manual

Chapter 4: Working Through an Example 15

4 Working Through an Example

Pharmacokinetics models describe the transport and transformation of chemical com-
pounds in the body. These models often include nonlinear first-order differential equations.
The following example is taken from our own work on the kinetics of tetrachloroethylene
(a solvent) in the human body (Bois et al., 1996; Bois et al., 1990) (see [Bibliographic
References], page 51).

Go to the ‘mcsim/samples/perc’ directory (installed either locally or by default in
‘usr/share’ under Unix/Linux). Open the file ‘perc.model’ with any text editor (e.g.,
emacs or vi under Unix). This file is an example of a model definition file. It is also printed
at in Appendix the end of this manual (see Section B.3 [perc.model], page 57). You can use
it as a template for your own model, but you should leave it unchanged for now. In that
file, the pound signs (#) indicate the start of comments. Notice that the file defines:

• state variables for the model (for which differentials are defined), for example:
States = {Q_fat, # Quantity of PERC in the fat (mg)

Q_wp, # ... in the well-perfused compartment (mg)
Q_pp, # ... in the poorly-perfused compartment (mg)
Q_liv, # ... in the liver (mg)
Q_exh, # ... exhaled (mg)
Q_met} # Quantity of metabolite formed (mg)

• output variables (obtainable at any time as analytical functions of the states, inputs
and parameters), for example:

Outputs = {C_liv, # mg/l in the liver
C_alv, # ... in the alveolar air
C_exh, # ... in the exhaled air
C_ven, # ... in the venous blood
Pct_metabolized, # % of the dose metabolized
C_exh_ug} # ug/l in the exhaled air

• input variables (independent of the others variables, and eventually varying with time),
for example:

Inputs = {C_inh, # Concentration inhaled (ppm)
Q_ing}; # Quantity ingested (mg)

• model parameters (independent of time), such as:
LeanBodyWt = 55; # lean body weight (kg)

• model initialization and parameters’ scaling (the parameters used in the dynamic equa-
tions can be made functions of other parameters: for example volumes can be computed
from masses and densities, etc.),

• system’s dynamics (differential or algebraic equations defining the model per se),

• equations to compute the output variables.

This model definition file as a simple syntax, easy to master. It needs to be turned
into a C program file before compilation and linking to the other routines (integration, file
management etc.) of MCSim. You will use mod for that. First, quit the editor and return
to the operating system.

16 MCSim User’ Manual

To start mod under Unix just type mod perc.model. After a few seconds, with no error
messages if the model definition is syntactically correct, mod announces that the ‘model.c’
file has been created. It should operate similarly under other operating systems.

The next step is to compile and link together the various C files that will constitute the
simulation program for your particular model. Note that each time you want to change
an equation in your model you will have to change the model definition file and repeat
the steps above. However, changing just parameter values or state initial values does not
require recompilation since that can be done through simulation specification files.
• Under Unix, the simplest is to use the makemcsim script. Just type makemcsim and

compilation will be done automatically (see Section 5.2 [Using makemcsim], page 17).
An executable ‘mcsim.perc’ is created. You can rename it if you wish.

• Under other operating systems, you should use the command make or its equivalent
to compile and link together the ‘model.c’ file created by mod and the other C files
of the ‘sim’ directory (see Chapter 3 [Installation], page 11). That should create an
application (you should give it a name specific to the model you are developing, e.g.,
‘mcsim.perc’). Refer to your compiler manual for details on how to use your program-
ming environment. Your executable ‘mcsim.perc’ program is now ready to perform
simulations.

To start your MCSim program just type mcsim.perc (if you gave it that name) under
Unix. After an introductory banner (telling in particular which model file the program has
been compiled with), you are prompted for an input file name: type in perc.lsodes.in (see
Section B.4 [perc.lsodes.in], page 62, to see this file in Appendix), then a space, and then
type in the output file name: perc.lsodes.out. After a few seconds or less (depending
on your machine) the program announces that it has finished and that the output file is
‘perc.lsodes.out’. You can open the output file with any text editor or word processor,
you can edit it for input in graphic programs etc.

Several other models and simulation specification files are provided with the package as
examples (they are in the ‘samples’ directory. Try them and observe the output you obtain.
You can then start programming you own models and doing simulations. The next sections
of this manual reference the syntax for model definition and simulation specifications.

Chapter 5: Setting-up Structural Models 17

5 Setting-up Structural Models

The model generator, "mod", was created to facilitate structural model definition and
maintenance, while keeping short execution time through compilation. This chapter ex-
plains how to use mod, and how to code your models using a simplified syntax that mod can
translate in C (creating thereby a ‘model.c’ file).

After compiling and linking of the newly created ‘model.c’ file together with the other C
files of the ‘mcsim/sim’ directory (or after linking with a dynamic library ‘libmcsim.so’),
an executable simulation program is created, specific of your particular model. These
preprocessing and compilation steps can be performed in Unix with a single shell command
makemcsim (in which case, the ‘model.c’ is created only temporarily and erased after that).

Several examples of model simulation files are included in the ‘mcsim/samples’ directory.
Some of them are reproduced in Appendix (see Appendix B [Examples], page 55).

5.1 Using mod to preprocess model description files

The mod program is a stand-alone facility. It takes a model description file in the "user-
friendly" format described below (see Section 5.3 [Syntax of mod files], page 18) and creates
a C language file ‘model.c’ which you will compile and link to produce the simulation
program. Mod allows the user to define equations for the model, assign default values
to parameters or default initial values to model variables, and to initialize them using
additional algebraic equations. Mod lets the user create and modify models without having
to maintain C code. Under Unix/Linux, the command line syntax for the mod program is:

mod [input-file [output-file]]

where the brackets indicate that the input and output filenames are optional. If the input
filename is not specified, the program will prompt for both. If only the input filename is
specified, the output is written by default to the file ‘model.c’. Unless you feel like doing
some makefile programming, we recommend using this default since the makefile for MCSim
assumes the C language model file to have this name. You have to have prepared a text file
containing a description of the model following the syntax described in the following (see
Section 5.3 [Syntax of mod files], page 18).

Most error messages given by mod are self-explanatory. Where appropriate, they also give
the line number in the model file where the error occurred. Beware, however, of cascades
of errors generated as a consequence of a first one; so don’t panic: start by fixing the first
one and rerun mod. If you get really stuck you can send a message to the mailing list
"help-mcsim@prep.ai.mit.edu" (see Chapter 3 [Installation], page 11) or to the authors of
this manual.

5.2 Using makemcsim to fully process model files

makemcsim is a Unix sh shell script that further facilitates preprocessing and compilation.
You run makemcsim by entering it at the command prompt:

makemcsim [model-file]

where the brackets indicate that the model filename is optional. If a model filename
is not specified, the first file having extension ‘.model’ (by alphabetical order) is used.

18 MCSim User’ Manual

Makemcsim calls mod if the model file has changed since last compilation, compiles the
‘model.c’ generated, links it to the shared ‘libmcsim.so’ library to create an executable
‘mcsim.<root-model-name>’. The extension ‘root-model-name’ corresponds to your model
filename (without its last extension if it has one; i.e.,typically, without the ‘.model’ exten-
sion). The ‘model.c’ file is deleted afterward; if you want to inspect it (for example, if you
got error messages from mod), run mod on your model definition file.

Two variants of makemcsim are also available: makemcsims, which creates a standalone
version (no dynamic libraries needed), and makemcsimd, which creates a standalone version
with debugging symbols included (so that you can use gdb, for example, to check what the
code does).

5.3 Syntax of the model description file

The model description file is a text (ASCII) file that consists of several sections, in-
cluding global declarations, dynamics specifications (with derivative calculations), model
initialization ("scaling"), and output computations. Here is a template for such a file (for
further examples see Appendix B [Examples], page 55):

Model description file (this is a comment)
<Global variable specifications>
Initialize {
<Equations for initializing or scaling model parameters>

}
Dynamics {
<Equations for computing derivatives of the state variables>

}
CalcOutputs {
<Equations for computing output variables>

}

Initialize, Dynamics and CalcOutputs are reserved keywords and, if used, must ap-
pear as shown, followed by the curly braces which delimit each section (see Section 5.3.6
[Model initialization], page 25; Section 5.3.7 [Dynamics section], page 26; Section 5.3.8
[Output calculations], page 27). Please note that at least one of the sections Dynamics or
CalcOutputs should be defined, and that Dynamics must be used if the model includes
differential equations.

5.3.1 General syntax

The general syntax of the model description file is as follows:
• Comments begin with a pound sign (#) and continue to the end of the line.
• Blank lines are allowed and ignored.
• All commands can span several lines and are terminated by a semi-colon (;).
• Four types of variables are used: state variables, output variables, input variables, and

parameters (see Section 5.3.2 [Global variable declarations], page 21). The name of
a variable should be a valid C identifier, starting with a letter or underscore (_) and

Chapter 5: Setting-up Structural Models 19

followed by any number of alpha-numeric characters or underscores, up to a maximum
of 80. Variable names are case sensitive. Note that the name IFN, in capital letters, is
reserved by the program and should not be used as parameter or variable name.

• Variable assignments have the following syntax:
<variable-name> ’=’ <constant-value-or-expression> ’;’

The equal sign is needed. The right-hand side expression can be a valid C mathematical
expression including numerical constants, already defined variables, standard ANSI C
mathematical functions, and MCSim’s "special functions" (see Section 5.3.4 [Special
functions], page 23) or "input functions" (see Section 5.3.5 [Input functions], page 24).
Special functions can take already defined variables, constant values or expressions as
parameters. Input functions can only be used on the right hand side of assignments to
input variables.
Colon conditional assignments have the following syntax:

<variable-name> = (<test> ? <value-if-true> : <value-if-false>);

For example:
Adjusted_Param = (Input_Var > 0.0 ? Param * 1.1 : Param);

In this example, if ‘Input_Var’ is greater than 0, the parameter ‘Adjusted_Param’
is computed as the product of ‘Param’ by ‘1.1’; otherwise ‘Adjusted_Param’ is equal
to ‘Param’. Note that conditional assignments can be nested (i.e., <value-if-true> or
<value-if-false> can themselves be a conditional expression). The comparison operators
allowed are the equality operator ==, and non-equality operators !=, <, >, <>, <= and
>=.

• Vectors: (Warning: for now, the square bracket notation can be only used in the
model definition file. It is not recognized in simulation specification files; for those,
the underscore (’ ’) unrolling syntax can be used to address vector components. This
limits the usefulness of this feature).
Vectors’ declaration: To declare a variable as a vector use the one of the two following
syntaxes when you first define it:

<variable-name> ’[’ <integer> ’]’
<variable-name> ’[’ <integer> ’-’ <integer> ’]’

The variable name is immediately followed by an opening square bracket (’[’). The
array index bounds (which will correspond to valid indices) can be given as (long)
integers separated by an hyphen (’-’) (spaces are allowed). In this case the second
integer must be higher the first. They are followed by a closing bracket (’]’). The
hyphen and second integer are optional. If only one bound (integer) is given, only the
component with corresponding index is declared. Both syntaxes can be mixed. For
example:

States = {y[0-9]};
alpha[0-2] = 1;
beta[0] = 1;
beta[1] = 2;
beta[2-4];

The previous lines define a state variable ‘y’ as a vector of length 10, with valid indices
ranging between 0 and 9, included. The parameter vector ‘alpha’ is defined with range

20 MCSim User’ Manual

0 to 2, each component being initialized to value 1. For parameter ‘beta’, components
0, 1 and 2 to 4 are initialized separately (components 2 to 4 are initialized with default
value 0).
Accessing vectors’ components: After declaration, vector’s components can be accessed
individually using the square bracket syntax:

<variable-name> ’[’ <integer> ’]’

For example:
Outputs = {x[0-1]};
beta[0] = 0;
beta[1] = beta[0] + 1;
CalcOutputs {
x[0] = beta[0] * t;
x[1] = beta[1] * t;

}

In the above example, ‘beta[0]’, ‘beta[1]’, ‘x[0]’, and ‘x[1]’ are accessed individu-
ally. The variable ‘t’ refers to the implicit variable ’time’.
Vectorization of equations: The equations specifying the model, which consist in assign-
ments, can be vectorized in the Initialize, Dynamics and CalcOutputs sections (but
not in the global section) (see Section 5.3.2 [Global variable declarations], page 21).
Vectorization allows you to specify an operation for an entire vector or parts of it. The
following syntax should be used:

<var-name>’[’<integer>’-’<integer>’]’ = <vectorized-expression>;

On the right-hand side, the vectorized expression should be a valid C mathematical
expression including numerical constants, already defined state, input, output, other
(parameter) variables or vectors, and standard ANSI C mathematical functions or
special functions (see Section 5.3.4 [Special functions], page 23). Here also, input
functions (see Section 5.3.5 [Input functions], page 24) can only be used on the right
hand side of assignments to input variables. Vector indices on the right-hand side
can take the special form of "bracketed expressions". Bracketed expressions can be
composed of integers, the 4 basic arithmetic operators (’+’, ’-’, ’*’, ’/’), parentheses
and the index letter ’i’. The running index ’i’ points in turn to each component in the
range specified on the left-hand side (imagine that the range given on the left-hand side
corresponds to a ’for’ loop with index ’i’ running from the lower bound to the upper
bound). This is best understood by looking at some code. In the previous example,
the assignments to x[0] and x[1] obviously deserve vectorization. This is achieved by
the following statements:

CalcOutputs {
x[0-1] = beta[i] * t;

}

Here, the index ’i’ refers to the values 0 and 1. Here is another example:
Outputs{x[1-10]};
CalcOutputs {
x[1] = 0;
x[2-10] = x[i-1] + 1;

}

Chapter 5: Setting-up Structural Models 21

This is equivalent to:
Outputs{x[1-10]};
CalcOutputs {
x[1] = 0;
x[2] = x[1] + 1;
...
x[10] = x[9] + 1;

}

and will assign value 1 to ‘x[2]’, 2 to ‘x[3]’, etc. On the right-hand side, more com-
plicated bracketed expressions like ‘[(2*i-1)/(i+3)]’ can be used. Another, working,
example of vector use is given in the ‘mcsim/samples/pde2’ directory.
Alternative ’underscore’ (’ ’) syntax : Individual vector components can be declared
and used (everywhere in the model file) with the following syntax:

<variable-name>’_’<integer>

The integer indicates which component of the vector is referred to. For example ‘x_1’
is strictly equivalent to ‘x[1]’. Note!: No space are allowed between the variable name,
the underscore and the integer. Note also!: This syntax is the only one that can be
used in simulation specification files. If you declare a parameter ‘beta[1-10]’ in your
model definition file, the only way to refer to it in the simulation input file will be
through its individual components ‘beta_1’, ‘beta_2’, ... etc. This limitation will be
removed in a future release of the software.

5.3.2 Global variable declarations

Commands not specified within the delimiting braces of another section are considered
to be global declarations. In the global section, you first declare the state, input, and output
variables. There should be at least one state or output variable in your model.

• States are variables for which a first-order differential equation is defined in the
Dynamics section (see Section 5.3.7 [Dynamics section], page 26) (higher orders or
partial differential equations are not allowed).

• Inputs are variables independent of the others variables, but eventually varying with
time (for example an exposure concentration to a chemical).

• Outputs are dependent model variables (obtainable at any time as analytical functions
of the states, inputs or parameters) that do not have dynamics. They can receive
assignments in the Dynamics or CalcOutputs sections.

The format for declaring each of these variables is the same, and consists of the keyword
States, Inputs or Outputs followed by a list of the variable names enclosed in curly braces
as shown here:

States = {Qb_fat, # Benzene in the fat
Qb_bm, # ... in the bone marrow
Qb_liv}; # ... in the liver and others

Inputs = {Q_gav, # Gavage dose
C_inh}; # Inhalation concentration

22 MCSim User’ Manual

Outputs = {Cb_exp, # Concentration in expired air
Cb_ven}; # ... in venous blood

After being defined, states, inputs and outputs can then be given initial values (con-
stants or expressions). Inputs can also be assigned input functions, described below (see
Section 5.3.5 [Input functions], page 24). Some examples of initialization are shown here:

Qb = 0.1; # Default initial value for state variable Qb

Input variable assigned a periodic exponential input function
Q = PerExp(1, 60, 0, 1); # Magnitude of 1.0,

period of 60 time units,
T0 in period is 0,
Rate constant is 1.0

If a state, input, or output variable is not explicitly given an initial value, that value
will be set to zero by default. Initial values are reset to their specified value by the simu-
lation program at the start of each simulation of an Experiment (see [Simulation sections],
page 40).

All the other variables are "parameters". Model parameters you want to be able to
change in simulation input files should be declared in the global section. For example:

Wind_speed; # (m/s) Local wind speed

Parameters are by default assigned a value of zero. To assign a different nominal values,
use the assignment rules given above. For example:

BodyWt = 65.0 + sqrt(15.0); # Weight of the subject (in kg)

All parameters and variables are computed in double precision floating-point format.
Initial values should not be such as to cause computation errors in the model equations;
this is likely to lead to crashing of the program (so, for example, do not assign a default
value of zero to a parameter appearing alone in a denominator). Note that the order of
global declarations matters within the global section itself (i.e., parameters and variables
should be defined and initialized before being used in assignments of others), but not with
respect to other blocks. A parameter defined at the end of the description file can be used
in the Dynamics section which may appear at the beginning of the file. Still, such an inverse
order should be avoided. For this reason, the format above, where global declarations come
first, is strongly suggested to avoid confusing results. Note again that the name IFN, in
capital letters, is reserved by the program and should not be used as parameter or variable
name. Finally, if a parameter is defined several times, only the first definition is taken into
account (a warning is issued, but beware of it).

5.3.3 Model types

This section deals with structural models. Statistical models that you setup for model
calibration and data analysis are defined in the simulation input files, through statistical
distribution functions. They are dealt with later in this manual (see Section 6.2.5 [Setting-
up statistical models], page 42).

MCSim can easily deal with purely algebraic structural models. You do not need to
define state variables or a Dynamics section for such models. Simply use input and output
variables and parameters and specify the model in the CalcOutputs section. You can use
the time variable t if that is natural for your model. If your model does not use t, you

Chapter 5: Setting-up Structural Models 23

will still need to specify "output times" in Print() or PrintStep() statements to obtain
outputs: you can use arbitrary times. If you do not use t as "independent" model variable,
you will also need do define a Simulation section (see [Simulation sections], page 40) for
each combination of values for the independent variables of your model. This may be clumsy
if many values are to be used. In that case, you may want to use the variable t to represent
something else than time.

Ordinary differential models, with algebraic components, can be easily setup with MC-
Sim. Use state variables and specify a Dynamics section. Time, t is the integration vari-
able, but here again, t can be used to represent anything you want. For partial differential
equations some problems might be solved by implementing line methods (see examples in
‘mcsim/samples/pde1’ and ‘mcsim/samples/pde2’)...

You can use MCSim for discrete-time dynamic models (or difference models). That is
a bit tricky. Assignments in the CalcOutputs section are volatile (not memorized), so the
model equations have to be given in a Dynamics section. But the model variables should
still be declared as outputs, because they should not be updated by integration. However,
you need at least one true differential equation in the Dynamics section, so you should
declare a dummy state variable (and assign to its derivative a constant value of zero). You
also want the calls to Dynamics to be precisely scheduled, so it is best to use the Euler
integration routine (see [Integrate() specification], page 32) which uses a constant step.
Since Euler may call repeatedly Dynamics at any given time, you want to guard against
untimely updating... Altogether, we recommend that you examine the sample files in the
‘mcsim/samples/discrete’ directory provided with the source code for MCSim.

5.3.4 Special functions

The following special functions (whose name is case-sensitive) are available to the user
for assignment of parameters and variables in the model definition file:
• BetaRandom(alpha, beta, a, b): returns a Beta distributed variate on the interval

[a,b] with shape parameters alpha and beta;
• BinomialBetaRandom(E, alpha, beta): return random variate, of mathematical ex-

pectation E, drawn from a binomial distribution with probability p, p being Beta
distributed with parameters alpha and beta;

• BinomialRandom(p, N): returns a binomially distributed random variate;
• CDFNormal(x): the normal cumulative density function;
• Chi2Random(dof): returns a Chi-squared random variate with dof degrees of freedom;
• erfc(x): the complementary error function;
• ExpRandom(beta): returns an exponential variate with inverse scale beta;
• GetSeed(): returns the current value of the random generator seed;
• GammaRandom(alpha): returns a gamma distributed random variate with shape param-

eter alpha and inverse scale equal to 1;
• GGammaRandom(alpha, beta): returns a gamma distributed random variate with shape

parameter alpha and inverse scale beta;
• InvGGammaRandom(alpha, beta): returns an inverse gamma distributed random variate

with shape parameter alpha and scale parameter beta;

24 MCSim User’ Manual

• lnDFNormal(x, mean, sd): the natural logarithm of the normal density function;
• lnGamma(x): the natural logarithm of the gamma function;
• LogNormalRandom(mean, sd): returns a lognormally distributed variate with geomet-

ric mean mean and geometric standard deviation sd (i.e., the log of the returned variate
is normally distributed with mean ln(mean) standard deviation ln(sd);

• LogUniformRandom(a, b): returns variate log-uniformly distributed on the interval
[a,b];

• NormalRandom(mean, sd): returns a normally distributed random variable with pre-
scribed mean and standard deviation;

• PiecewiseRandom(min, a, b, max): the distribution of the returned variate has the
form of a truncated triangle, with base from min to max and a plateau between a and
b. If a = b, the distribution is the triangular distribution;

• PoissonRandom(mu): returns a Poisson-distributed random variate, of rate mu;
• SetSeed(seed): sets the current value of the pseudo-random generator seed to the

specified seed. That seed can be any positive real number. Seeds between 1.0 and
2147483646.0 are used as is, the others are rescaled within those bounds (and a warning
is issued);

• GGammaRandom(alpha, beta, a, b): returns a truncated gamma distributed random
variate with shape parameter alpha and inverse scale, in the range [a,b]. Explicit
specification of a,b is required;

• TruncLogNormalRandom(mean, sd, a, b): returns a truncated lognormal variate with
geometric mean mean and geometric standard deviation sd, in the range [a,b]. Explicit
specification of a,b is required;

• TruncNormalRandom(mean, sd, a, b): returns a truncated normal variate with pre-
scribed mean and standard deviation, in the range [a,b]. Explicit specification of a,b
is required;

• UniformRandom(min, max): returns a uniformly distributed random variable, sampled
between min and max. The algorithm used is that of Park and Miller (Barry, 1996; Park
and Miller, 1988; Vattulainen et al., 1994) (see [Bibliographic References], page 51). A
default random generator seed (314159265.3589793) is used.

Note: for all the above random number generating functions, a default random generator
seed is used. It can be changed with the function SetSeed. Note also that assignment of
a random number generating function to a state variable derivative will define a form of
stochastic differential equation. MCSim’s integration routines are not particularly suited
to the resolution of such equations. If you wish to try it anyway, you may want to consider
using the "robust" Euler method (see [Integrate() specification], page 32).

5.3.5 Input functions

These functions can be used in special assignments, valid only for input variables. Inputs
can be initialized to a constant or to a standard mathematical expression, or assigned one
of the following input functions:
• PerDose() specifies a periodic input of constant <magnitude>. The input begins at

<initial-time> in the <period> and lasts for <exposure-time> time units. Syntax:

Chapter 5: Setting-up Structural Models 25

PerDose(<magnitude>, <period>, <initial-time>, <exposure-time>);

• PerExp() specifies a periodic exponential input. At time <initial-time> in the <period>
the input rises instantaneously to <magnitude> and begins to decay exponentially with
the constant <decay-constant>. The input is turned off once the magnitude reaches a
negligible fraction (10−17) of its original value. Note that the input does not accumulate
across periods, it resets at each period start. Syntax:

PerExp(<magnitude>, <period>, <initial-time>, <decay-constant>);

• NDoses() specifies a number of stepwise inputs of variable magnitude and their starting
times. The first argument, <n>, is the number of input steps and start times. Next
come a list of magnitudes and a list of corresponding initial times. Each list is comma-
separated. The duration of each input step is computed automatically by difference
between the listed times. Currently this function can only be used in the simulation
description file, and not in the model description file (which simply implies that you
cannot use it as a default). Syntax:

NDoses(<n>, <list-of-magnitudes>, <list-of-initial-times>);

Note that the list of times must begin at the starting time of the simulation (typically
time zero), even if the magnitude at that first time is zero.

• Spikes() specifies a number of instantaneous inputs of variable magnitude and their
exact times of occurrence. The first argument, <n>, is the number of inputs and input
times. Next come a list of magnitudes and a list of times. Each list is comma-separated.
Currently this function can only be used in the simulation description file, and not in
the model description file (which simply implies that you cannot use it as a default).
Syntax:

Spikes(<n>, <list-of-magnitudes>, <list-of-times>);

The arguments of input functions can either be constants or variables. For example, if
‘Mag’ and ‘RateConst’ are defined model parameters, then the input variable ‘Q_in’ can be
defined as:

Q_in = PerExp(Mag, 60, 0, RateConst);

In this way the parameters of input functions can, for example, be assigned statistical
distributions in Monte Carlo simulations (see [Distrib() specification], page 37). Variable de-
pendencies are resolved before each simulation specified by an Experiment (see [Simulation
sections], page 40).

For each of the periodic functions, a single exposure beginning at time initial-time can
be specified by giving an effectively infinite period, e.g. 1010. The first period starts at the
initial time of the simulation. Magnitudes change exactly at the times given.

Input variables assigned input functions can be combined to give a lot of flexibility
(e.g., an input variable can be declared as the sum of others). Separate inputs can also be
declared in the global section of the model definition file and combined in the Dynamics
(see Section 5.3.7 [Dynamics section], page 26) and CalcOutputs (see Section 5.3.8 [Output
calculations], page 27) sections.

5.3.6 Model initialization

The model initialization section begins with the keyword Initialize (the keyword
Scale is obsolete but is still understood) and is enclosed in curly braces. The equations

26 MCSim User’ Manual

given in this section will define a function (subroutine) that will be called by MCSim after
the assignments specified in each Experiment are done (see [Simulation sections], page 40).
They are the last initializations performed. The model file in ‘mcsim/samples/perc’ gives
an example of the use of Initialize (see Section B.3 [perc.model], page 57, in Appendix).

All model variables and parameters, except inputs, can be changed in this section. Mod-
ifications to state variables affect initial values only. In this section, state variables, outputs
and parameters (but not input variables) can also appear at the the right-hand side of
equations.

Additional parameters (to those declared in the global section) may be used within the
section. They will be declared as local temporary variables and their scope will be limited to
the Initialize section (i.e., their value and existence will be forgotten outside the section).

The dt() operator (see Section 5.3.7 [Dynamics section], page 26) cannot be used in this
section, since derivatives have not yet been computed when the scaling function is called.

5.3.7 Dynamics section

The dynamics specification section begins with the keyword Dynamics and is enclosed in
curly braces. The equations given in this section will be called by the integration routines at
each integration step. Dynamics must be used if the model includes differential equations.

Additional parameters (to those declared in the global section) may be used for any
calculations within the section. They will be declared as local temporary variables. (Note,
for example, the use of ‘Cout_fat’ and ‘Cout_wp’ in the ‘perc.model’ sample file). Local
variables are not accessible from the simulation program, or from other sections of the model
definition file, so don’t try to output them.

Each state variable declared in the global section must have one corresponding differential
equation in the Dynamics section. If a differential equation is missing, mod issues an error
message such as:

Error: State variable ’Q_foo’ has no dynamics.

and no ‘model.c’ file or executable program will be created.
The derivative of a state variable is defined using the dt() operator, as shown here:

dt(state-variable) ’=’ constant-value-or-expression ’;’

The right-hand side can be any valid C expression, including standard math library calls
and the special functions mentioned above (see Section 5.3.4 [Special functions], page 23).
Note that no syntactic check is performed on the library function calls. Their correctness
is your responsibility.

The dt() operator can also be used in the right-hand side of equations in the dynamics
section to refer to the value of a derivative at that point in the calculations. For example:

dt(Qm_in) = Qmetabolized - dt(Qm_out);

The integration variable (e.g., time) can be accessed if referred to as t, as in:
dt(Qm_in) = Qmetabolized - t;

Output variables can also be made a function of t in the Dynamics section.
Note that while state variables, input variables and model parameters can be used on

the right-hand side of equations, they cannot be assigned values in the Dynamics section. If
you need a parameter to change with time, you can declare it as an output variable in the

Chapter 5: Setting-up Structural Models 27

global section. Assignments to states, inputs or parameters in this section causes an error
message like the following to be issued:

Error: line 48: ’YourParm’ used in invalid context.
Parameters cannot be defined in Dynamics{} section.

5.3.8 Output calculations

The output calculation section begins with the keyword CalcOutputs and is enclosed
in curly braces. The equations given in this section will be called by the simulation pro-
gram at each output time specified by a Print() or PrintStep() statement (see [Print()
specification], page 41, and see [PrintStep() specification], page 42). In this way, output
computations are done efficiently, only when values are to be saved.

Only variables that have been declared with the keyword Outputs, or local temporary
variables, can receive assignments in this section. Assignments to other types of variables
cause an error message like the following to be issued:

Error: line 56: ’Qb_fat’ used in invalid context.
Only output and local variables can be defined in CalcOutputs section.

Any reference to an input or state variable will use the current value (at the time of
output). The dt() operator can appear in the right-hand side of equations, and refers to
current values of the derivatives (see Section 5.3.7 [Dynamics section], page 26). Like in the
Dynamics section, the integration variable can be accessed if referred to as t, as in:

Qx_out = DQx * t;

5.3.9 Comments on style

For your model file to be readable and understandable, it is useful to use a consistent
notation style. The example file ‘perc.model’ tries to follow such a style (see Section B.3
[perc.model], page 57). For example we suggest that:

• All variable names begin with a capital letter followed by meaningful lower case sub-
scripts.

• Where two subscripts are necessary, they can be separated by an underscore, such as
in ‘Qb_fat’.

• Where there is only one subscript an underscore can still be used to increase readability
as in ‘Q_fat’.

• Where two words are used in combination to name one item, they can be separated
visually by capitalizing each word, as in ‘BodyWt’.

These conventions are suggestions only. The key to have a consistent notation that
makes sense to you. Consistency is one of the best ways to:

1. Increase readability, both for others and for yourself. If you have to suspend work for a
month or two and then come back to it, the last thing you want is to have to decipher
your own file.

2. Decrease the likelihood of mistakes. If all of the equations are coded with a consistent,
logical convention, mistakes stand out more readily.

28 MCSim User’ Manual

Last, but not least, do use comments to annotate your code! Also: make sure your
comments are accurate and update them when you change your code. In our experience,
an enormous number of hours has been wasted in trying to figure out inconsistencies that
existed only because of inaccurate comments (e.g., erroneous comments about the reasons
for choice of default parameter values). That does not decrease the value of good comments,
however...

Chapter 6: Running Simulations 29

6 Running Simulations

After having your model processed by mod or makemcsim, and obtained an executable
‘mcsim_...’ file, you are ready to run simulations. For this you need to write simulation
files. This chapter explains how to write such files with the proper syntax and how to run
the executable program.

You may want to first give a look at the examples given in the ‘mcsim/samples’ di-
rectory. An sample file ‘perc.lsodes.in’, which works with the perchloroethylene model
‘perc.model’, is also given in an Appendix to this manual (see Section B.4 [perc.lsodes.in],
page 62).

6.1 Using the compiled program

MCSim provides several types of simulations for the models you create. Simulations are
specified in a text file of format similar to that of the model description file.

Assume that your model ‘a.model’ has been preprocessed and compiled by makemcsim
(see Section 5.2 [Using makemcsim], page 17) to generate an executable ‘mcsim_my’. If you
have renamed the executable file, substitute ‘mcsim_my’ by the name of your executable in
the following. In Unix the command-line syntax to run that executable is simply:

mcsim_a [input-file [output-file]]

where the brackets indicate optional arguments. If no input and output file names are
specified, the program will prompt you for them. You must provide an input file name.
That file should describe the simulations to perform and specify which outputs should be
printed out (see Section 6.2 [Syntax of simulation files], page 30). If you just hit the return
key when prompted for the output name, the program will use the name you have specified
in the input file, if any, or a default name (see [OutputFile() specification], page 32). If just
one file name is given on the command-line, the program will assume that it specifies the
input file. For the output filename, the program will then use the name you have specified
in the input file, if any, or a default name.

When the program starts up, it announces which model description file was used to
create it. While the input file is read or while simulations are running, some informations
will be printed on your computer screen. They can help you check that the input file is
correctly interpreted and that the program runs as it should. MCSim can also post error
messages, which should be self-explanatory. Where appropriate, they show the line number
in the input file where the error occurred. Beware, however, of cascades of errors generated
as a consequence of a first one; also errors may be detected after the line in which they really
occur and the line number shown will be unhelpful; don’t panic: start by fixing the first
error in the input file and rerun your executable. You should not need to recompile your
executable, unless you have changed the model itself. If you get really stuck you can send
a message to the mailing list "help-mcsim@prep.ai.mit.edu" (see Chapter 3 [Installation],
page 11) or to the authors of this manual.

The program ends (if everything is fine) by giving you the name of the output file
generated. If you want to run the program in batch mode (in the background), you may
want to redirect the screen output and error messages; refer for this to the man pages for
your shell.

30 MCSim User’ Manual

6.2 Syntax of the simulation definition file

A simulation specification file is a text (ASCII) file that consists of several sections,
starting with global specifications and assignments (valid throughout the file), followed by
a number of Simulation sections (see [Simulation sections], page 40), eventually enclosed
in Level sections. (The keyword Experiment is now obsolete but can still be used as a
synonym for Simulation.)

Each Simulation section defines simulation conditions, from an initial time (or whatever
the dependent variable represents, see Section 5.3.3 [Model types], page 22) to a final time.
Initial values of the model state variables, parameter values, input variables time-course, and
which outputs are to be printed at which times, can all be changed in a given Simulation
section.

In simple cases, the general layout of the file is therefore (see also the sample file in
Section B.4 [perc.lsodes.in], page 62):

Input file (text after # are comments)
<Global assignments and specifications>
Simulation {
<Specifications for first simulation>

}
Simulation {
<Specifications for second simulation>

}
Unlimited number of simulation specifications
End # Optional End statement. Everything after this line is ignored

For Markov chain Monte Carlo simulations (see [MCMC() specification], page 33), the
general layout of the file must include Level sections. Level sections are used to define
a hierarchy of statistical dependencies (see Section 6.2.5 [Setting-up statistical models],
page 42). In that case, the general layout of the file is:

Input file
<Global assignments and specifications>
Level {

Up to 10 levels of hierarchy
Simulation {
<Specifications and data for first simulation>

}
Simulation {
<Specifications and data for second simulation>

}
Unlimited number of simulation specifications

} # end Level
End # Optional statement.

Chapter 6: Running Simulations 31

6.2.1 General input file syntax

The general syntax of the file is the same as that of structural model definition files (see
Section 5.3.1 [General syntax], page 18) except that:

• No new variable can be created (all variables must have been defined in the model defi-
nition file). Assignments can only modify the value of already defined model variables.
This implies that parameters needed to set up a statistical model must be declared in
the model definition file, even if the structural model does not use them.

• Assignments to state variables or parameters can only use constant values; mathemat-
ical expressions are not allowed.

• Input variables’ assignments can use any input function (including the NDoses() and
Spikes() functions) or constant values.

• Output variables cannot receive assignments.

At the program start, all model parameters are initialized to the nominal values specified
in the model description file. Next, after the input file is read, modifications given in its
global section (including random sampling) are applied, then those specified at each Level,
and finally any modifications specified by the Simulation sections. Computations specified
in the Initialize section of the model definition file are the last initialization statements
executed.

Structural changes to the model (e.g., addition of a state, input, output or parameter)
cannot be done here and must be done in the model description file. The simulation
specification file is read until its end is reached, or until an End command is reached.

6.2.2 Input functions (revisited)

Input variables can be assigned all the input functions defined previously (see Sec-
tion 5.3.5 [Input functions], page 24). Briefly, these are:

• PerDose():
PerDose(<magnitude>, <period>, <initial-time>, <exposure-time>);

• PerExp():
PerExp(<magnitude>, <period>, <initial-time>, <decay-constant>);

• NDoses():
NDoses(<n>, <list-of-magnitudes>, <list-of-initial-times>);

• Spikes():
Spikes(<n>, <list-of-magnitudes>, <list-of-times>);

6.2.3 Global specifications

In the global section you can modify, by assignment, the value of already defined state
or input model variables or parameters (you cannot assign a value to an output variable).
These assignments will be in effect throughout the input file, unless they are overridden
later in the file. Here is an exemple of assignment (assuming that x and Pi have been
properly defined in the model definition file):

32 MCSim User’ Manual

x = 10; # set the initial value if x is a state variable
Pi = 3; # to stop worrying about little decimals...

In the global section, you can also give specifications relevant to all Simulation or
Level sections. These specifications are not needed if you just want to perform simple
simulations. They should also not appear inside Simulation or Level sections (with the
notable exception of Distrib() specifications which can appear inside Level sections).
They are used to call for and define the parameters of special computations (e.g., the
number of Monte Carlo simulations to run, which sampling distributions to use for a given
parameter, the data likelihood, etc.) These specifications are the following:

OutputFile() specification

The OutputFile() specification allows you to specify a name for the output file of basic
simulations. If this specification is not given the name ‘sim.out’ is used if none has been
supplied on the command-line or during the initial dialog. The corresponding syntax is:

OutputFile("<OutputFilename>");

where the character string <OutputFilename>, enclosed in double quotes, should be a valid
file name for your operating system.

Integrate() specification

The integrator settings can be changed with the Integrate specification. Two integra-
tion routines are provided: Lsodes (which originates from the SLAC Fortran library and
is originally based on Gear’s routine) (Gear, 1971b; Gear, 1971a; Press et al., 1989) (see
[Bibliographic References], page 51) and Euler (Press et al., 1989).

The syntax for Lsodes is:
Integrate(Lsodes, <rtol>, <atol>, <method>);

where <rtol> is a scalar specifying the relative error tolerance for each integration step. The
scalar <atol> specifies the absolute error tolerance parameter. They are used for all state
variables. The estimated local error for a state variable y is controlled so as to be roughly
less (in magnitude) than rtol× |y|+ atol. Thus the local error test passes if, for each state
variable, either the absolute error is less than <atol>, or the relative error is less than <rtol>.
Set <rtol> to zero for pure absolute error control, and set <atol> to zero for pure relative
error control. Caution: actual (global) errors may exceed these local tolerances, so choose
them conservatively. The <method> flag should be 0 (zero) for non-stiff differential systems
and 1 for stiff systems. You should try both and select the fastest for equal accuracy of
output, unless insight from your system leads you to choose one of them a priori. In our
experience, a good starting point for <atol> and <rtol> is about 10−6.

The syntax for Euler is:
Integrate(Euler, <time-step>, 0, 0);

where <time-step> is a scalar specifying the constant time increment for each integration
step. The next two scalars are reserved for future use and should be set to zero.

Note: if the Integrate() specification is not used, the default integration method is
Lsodes with parameters 10−5, 10−7 and 1. We recommend using Lsodes, since is it highly
accurate and efficient. Euler can be used for special applications (e.g., in system dynamics)
where a constant time step and a simple algorithm are needed.

Chapter 6: Running Simulations 33

MonteCarlo() specification

Monte Carlo simulations (Hammersley and Handscomb, 1964; Manteufel, 1996) (see
[Bibliographic References], page 51) randomly sample parameter values and run the model
for each parameter set so generated. The statistical distribution of the model outputs can
be studied for uncertainty analysis, sensitivity analysis etc. Such simulations require the
use of two specifications, MonteCarlo() and Distrib(), which must appear in the global
section of the file, before the Simulation sections. They are ignored if they appear inside
a Simulation section.

The MonteCarlo specification gives general information required for the runs: the output
file name, the number of runs to perform, and a starting seed for the random number
generator. Its syntax is:

MonteCarlo("<OutputFilename>", <nRuns>, <RandomSeed>);

The character string <OutputFilename>, enclosed in double quotes, should be a valid
filename for your operating system. If a null-string "" is given, the default name ‘simmc.out’
will be used. The number of runs <nRuns> should be an integer, and is only limited by
either your storage space for the output file or the largest (long) integer available on your
machine. The seed <RandomSeed> of the pseudo-random number generator can be any
positive real number. Seeds between 1.0 and 2147483646.0 are used as is, the others are
rescaled within those bounds (and a warning is issued). Here is an example of use:

MonteCarlo("percsimmc.out", 50000, 9386.630);

The parameters’ sampling distributions are specified by a list of Distrib() specifica-
tions, as explained in the following (see [Distrib() specification], page 37). The format of
the output file of Monte Carlo simulations is discussed later (see Section 6.3 [Analyzing
simulation output], page 46).

MCMC() specification

Markov chain Monte Carlo (MCMC) can be defined as stochastic simulations following
a Markov chain in a given parameter space. In MCMC simulations, the random choice
of a new parameter value is influenced by the current value. They can be used to obtain
a sample of parameter values from complex distribution functions, eventually intractable
analytically. Such complex distribution functions are typically encountered during Bayesian
data analysis, under the guise of posterior distributions of a model’s parameters. The reader
wishing to use the MCMC capabilities of MCSim is referred to the published literature
(for example, Bernardo and Smith, 1994; Gelman, 1992; Gelman et al., 1995; Gelman et
al., 1996; Gilks et al., 1996; Smith, 1991; Smith and Roberts, 1993) (see [Bibliographic
References], page 51).

MCMC simulation chains (which in MCSim start from a sample from the specified prior)
need to reach "equilibrium". Checking that equilibrium is obtained is best achieved, in our
opinion, by running multiple independent chains (cf. Gelman and Rubin, 1992, and other
relevant statistical literature). MCSim does not deal (yet) with convergence issues.

The Bayesian analysis of data with MCSim requires you to setup:

− a structural model (see Chapter 5 [Setting-up Structural Models], page 17),
− a statistical model (see Section 6.2.5 [Setting-up statistical models], page 42),

34 MCSim User’ Manual

− prior distributions for the model parameters you want to sample and "data likelihoods"
(defining the probability of some observed realizations of the modeled process, condi-
tionally to the model) (see [Distrib() specification], page 37).

Setting-up a statistical model requires Level sections and Data() specifications. Assign-
ing priors and likelihoods is achieved through the Distrib() statements (or its equivalents
Density() and Likelihood()). Please refer to the corresponding sections of this manual, if
you are not familiar with them. The MCMC() statement, gives general directives for MCMC
simulations and has the following syntax:

MCMC("<OutputFilename>", "<RestartFilename>", "<DataFilename>",
<nRuns>, <simTypeFlag>, <printFrequency>, <itersToPrint>,
<RandomSeed>);

The character strings <OutputFilename>, <RestartFilename>, and <DataFilename>, en-
closed in double quotes, should be valid file names for your operating system. If a null-string
"" is given instead of the output file name, the default name ‘MCMC.default.out’ will be
used.

If a restart file name is given, the first simulations will be read from that file (which
must be a text file). This allows you to continue a simulated Markov chain where you left
it, since an MCMC output file can be used as a restart file with no change. Note that the
first line of the file (which typically contains column headers) is skipped. Also, the number
of lines in the file must be less than or equal to <nRuns>. The first column of the file should
be integers, and the following columns (tab- or space-separated) should give the various
parameters, in the same order as specified in the list of Distrib() specifications in the
input file.

If a data file name is given, the observed (data) values for the simulated outputs will be
read from that file (in ASCII format); otherwise, Data() specifications (see [Data() speci-
fication], page 45) should be provided. We recommend that you use Data() specifications
rather that the data file, which is much more error prone. The first line of the data file
is skipped and can be used for comments. The total number of data points should equal
the total number of outputs requested. The data values should be given on the second and
following lines, separated by white spaces or tabs. A data value of "-1" will be treated as
"missing data" and ignored in likelihood calculations. The convention "-1" can be changed
by changing INPUT MISSING VALUE in the header file ‘mc.h’ and recompiling the entire
library.

The integer <nRuns> gives the total number of runs to be performed, including the runs
eventually read in the restart file. The next field, <simTypeFlag> should be either 0, 1, or
2. It should be set at zero to start a chain of MCMC simulations. In that case, parameters
are updated by Metropolis steps, one at a time. If the value of <simTypeFlag> is set to 1 or
2, a restart file must also be specified. In the case of 1, the output file will contain codes for
the level sequence, simulation numbers, printing times, data values and the corresponding
model predictions, computed using the last parameter vector of the restart file. This is useful
to quickly check the model fit to the data. If <simTypeFlag> is equal to 2, the entire restart
file is used to compute the parameters’ covariance matrix. All parameters are then updated
at once using a multivariate normal kernel as proposal distribution of the Metropolis steps.
This may result in large improvement in speed. However, we recommend that this option be
used only when convergence is approximately obtained (therefore, you should run MCMC

Chapter 6: Running Simulations 35

simulations with <simTypeFlag> set to 0 first, up to approximate convergence, and then
restart the chain with the flag at 2).

The integer <printFrequency> should be set to 1 if you want an output at each iteration,
to 2 if you want an output at every other iteration etc. The parameter <itersToPrint> is the
number of final iterations for which output is required (e.g., 1000 will request output for the
last 1000 iterations; to print all iterations just set this parameter to the value of <nRuns>).
Note that if no restart file is used, the first iteration is always printed, regardless of the
value of <itersToPrint>. Finally, the seed <RandomSeed> of the pseudo-random number
generator can be any positive real number. Seeds between 1.0 and 2147483646.0 are used
as is, others are rescaled silently within those bounds.

Finally, the format of the output file of MCMC simulations is quite similar to that
of straight Monte Carlo simulations and will discussed in a later section (see Section 6.3
[Analyzing simulation output], page 46).

SetPoints() specification

To impose a series of set points (i.e., already tabulated values for the parameters), the
global section can include a SetPoints() specification. It allows you to perform additional
simulations with previously Monte Carlo sampled parameter values, eventually filtered. You
can also generate parameters values in a systematic fashion, over a grid for example, with
another program, and use them as input to MCSim. Importance sampling, Latin hypercube
sampling, grid sampling, can be accommodated in this way.

This command specifies an output filename, the name of a text file containing the chosen
parameter values, the number of simulations to perform and a list of model parameters to
read in. It has the following syntax:

SetPoints("<OutputFilename>", "<SetPointsFilename>", <nRuns>,
<identifier>, <identifier>, ...);

If a null string is given for the output filename, the set points output will be written to
the same default output file used for Monte Carlo analyses, ‘simmc.out’.

The SetPointsFilename is required and must refer to an existing file containing the
parameter values to use. The first line of the set points file is skipped and can contain
column headers, for example. Each of the other lines should contain an integer (e.g., the
line number) followed by values of the various parameters in the order indicated in the
SetPoints() specification. If extra fields are at the end of each line they are skipped. The
first integer field is needed but not used (this allows you to directly use Monte Carlo output
files for additional SetPoints simulations).

The variable <nRuns> should be less or equal to the number of lines (minus one) in the
set points file. If a zero is given, all lines of the file are read. Finally, a comma-separated list
of the parameters to be read in the SetPointsFilename is given. The format of the output file
of set points simulations is discussed below (see Section 6.3 [Analyzing simulation output],
page 46).

Following the SetPoints() specification, Distrib() statements can be given for param-
eters not already in the list (see [Distrib() specification], page 37). These parameters will
be sampled accordingly before to performing each simulation. The shape parameters of the
distribution specifications can reference other parameters, including those of the list.

36 MCSim User’ Manual

OptimalDesign() specification

The "OptimalDesign" procedure optimizes the number and location of observation times
for experimental conditions you specify, in order to minimize the variance of a parameter
or an output you designate. It requires a structural model (see Chapter 5 [Setting-up
Structural Models], page 17), a statistical model in the form of a likelihood() function
(see Section 6.2.5 [Setting-up statistical models], page 42), and a random set of parameter
vectors sampled from a prior distribution (using Monte Carlo or MCMC simulations) (for
example and details, see Bois et al., 1999) (see [Bibliographic References], page 51). The
statistical model used should be quite simple and cannot not use Level sections (and hence
cannot be hierarchical).

The OptimalDesign command has the following syntax:

OptimalDesign("<OutputFilename>", "<ParameterSampleFilename>",
<nSamples>, <RandomSeed>, <Style>,
<identifier>, <identifier>, ...);

The character strings <OutputFilename>, and <ParameterSampleFilename>, enclosed in
double quotes, should be valid file names for your operating system. If a null-string "" is
given instead of the output file name, the default name ‘simopt.default.out’ will be used.

A parameter sample file name must be given (that file must be a text file). The first
line of the file (which typically contains column headers) is skipped. The number of lines
in the file must be less than or equal to <nSamples>. The first column of the file should
be integers (typically row numbers), and the following columns (tab- or space-separated)
should be values of the various parameters in the order indicated in the list at the end of the
OptimalDesign() specification. If extra fields are at the end of each line they are skipped.
The first integer field is needed but not used (this allows you to directly use Monte Carlo
output files for OptimalDesign simulations).

The integer <nSamples> indicates the number of lines to read from the <ParameterSam-
pleFilename> file. The seed <RandomSeed> of the pseudo-random number generator can
be any positive real number. Seeds between 1.0 and 2147483646.0 are used as is, others
are rescaled silently within those bounds. The directive Style should be either the keyword
Forward or the keyword Backward. Forward optimization will start from no new data and
will add, sequentially, optimal observation times. Backward optimization starts with the full
set of observation times you propose and delete the least informative ones, sequentially. We
recommand that you try both options. Finally, a comma-separated list of the parameters
to be read in the ParameterSamplFilename should be given.

The input file must then contain two sets of Simulation definitions. You should look at
the sample optimal design files provided in ‘mcsim/samples’.

The first set specifies all experimental conditions and the set of observation times to
optimize, for one or several output variables given in Print statements. The output times
you specify for each output variable define an array of observation time values that the
optimization algorithm will rank by order of the estimated variance reduction they permit
for variables or parameters you will specify in the second set of Simulation definitions.
Data will be simulated for each of the required output. There must be one Data statement
per output specified (the data values are arbitrary). An error model must be specified for
those data, using a Likelihood statement (see [Distrib() specification], page 37).

Chapter 6: Running Simulations 37

The second set of Simulation specifies optimization target parameters or outputs. The
algorithm will select time-points (in the first section’s Simulation specifications) that mini-
mize the estimation variance of those parameters or outputs. When a parameter is targeted
no inputs are needed. If you optimize for an output variable variance (i.e., for the variance
of a model prediction), the experimental conditions can be very different from those of the
experiment whose conditions you optimize. The link is afforded solely by the parameters
(in the first set you are trying to determine the conditions that will optimally identify the
parameter values conditioning the predictions – or trivially, the parameters – of the second
set)

The format of the output file of design optimization simulations is quite specific. The first
column is an iteration number. At each iteration one observation point is added (Forward
mode) or removed (Backward mode). Each step is therefore conditioned by the selection of
an observation time-point made by the previous step. The following columns give, for each
observation time point you specify, the average variance of the target outputs or parameters
achieved if this point is added (Forward mode) or removed (Backward mode). Next the
chosen time point at this step is given (the one minimizing average variance), followed by
the variance it leads to (in expectation) and the corresponding standard deviation. The
last column "Utility" is zero, unless you uncomment the function Compute_utility and
modify its code in ‘optdesign.c’ to compute a utility of your own.

Distrib() specification

The specification of distributions for simple Monte Carlo simulations is quite straighfor-
ward. MCMC simulations require the definition of a full statistical model and the use of
distributions there is somewhat more complex. We start with simple things; the MCMC
case will be dealt with later in this section.

In the context of MonteCarlo() or SetPoints() simulations (see [MonteCarlo() speci-
fication], page 33, and [SetPoints() specification], page 35), one (and only one) Distrib()
specification must be included for each model parameter to randomly sample. State, in-
put or output variables cannot be randomly sampled by Distrib() in this context. A
simulation specification file can include any number of Distrib() commands at the global
level.

Distrib() specifies the name of the parameter to sample, and its sampling distribution.
Its syntax is:

Distrib(<identifier>, <distribution-name>, [<shape parameters>]);

The <identifier> gives the name of the parameter to sample. The <distribution-name>
and the corresponding <shape parameters> indicate the sampling distribution to use
(Bernardo and Smith, 1994; Gelman et al., 1995) (see [Bibliographic References], page 51).
They are specified as follow:

• Beta, takes at least two strictly positive real shape parameters: A and B. By default
the Beta distribution is defined over the interval [0;1]. If a range is given for the beta
distribution, the [0;1] interval is mapped onto the specified range.

• Binomial, needs two strictly positive numbers: the probability p (a real in the interval
[0;1]), and the sample size N, an integer. If N is not given as an integer it will be
rounded down during the computations.

38 MCSim User’ Manual

• Chi2, takes one strictly positive real number as parameter: n. This distribution is the
same as Gamma(n/2, 1/2).

• Exponential, uses one strictly positive real number: the inverse-scale b. The density
of this distribution is equal to be−bx.

• Gamma, uses two strictly positive real parameter: the shape and the inverse scale.
• HalfNormal, takes one reals number as parameter: the standard deviation, strictly

positive. The mean is automatically set to zero.
• InvGamma (inverse gamma distribution), needs two strictly positive real parameters:

the shape and the scale.
• LogNormal, takes two reals numbers as parameters: the geometric mean (exponential

of the mean in log-space) and the geometric standard deviation (exponential, strictly
superior to 1, of the standard deviation in log-space).

• LogNormal_v, is the lognormal distribution with the variance (in log space!) instead of
the standard deviation as second parameter. You can use it to specify a hierarchical
model with a conjugate prior on the variance (see Section 6.2.5 [Setting-up statistical
models], page 42).

• LogUniform, with two shape parameters: the minimum and the maximum of the sam-
pling range (real numbers) in natural space.

• Normal, takes two reals numbers as parameters: the mean and the standard deviation,
the latter being strictly positive.

• Normal_v, is also the normal distribution with the variance instead of the standard
deviation as second parameter. You can use it to specify a hierarchical model with
a conjugate prior on the variance (see Section 6.2.5 [Setting-up statistical models],
page 42).

• Piecewise, uses four reals as parameters: the minimum, A, B, and the maximum. The
distribution has the form of a truncated triangle, with a plateau between A and B. If
A = B, the distribution is the triangular distribution.

• Poisson, needs a strictly positive real: the rate A.
• TruncInvGamma (truncated inverse gamma distribution), needs four strictly positive

real parameters: the shape, the scale, the minimum and the maximum.
• TruncLogNormal (truncated lognormal distribution), uses four real numbers: the geo-

metric mean and geometric standard deviation (strictly superior to 1), the minimum
and the maximum in natural space. For example:

Distrib(Var, TruncLogNormal, 1, 2.718, 0.01, 10)

samples ‘Var’ such that ln(V ar) is a standardized normal variate of mean ln(1) and
standard deviation ln(2.718) — while ‘Var’ is truncated to fall between 0.01 to 10.

• TruncLogNormal_v, is like the truncated lognormal, except that it takes the variance
(in log space!) instead of the standard deviation as second parameter. You can use it
to specify a hierarchical model with a conjugate prior on the variance (see Section 6.2.5
[Setting-up statistical models], page 42).

• TruncNormal (truncated normal distribution), takes four real parameters: the mean,
the standard deviation (strictly positive), the minimum and the maximum.

• TruncNormal_v, is like the truncated normal distribution with the variance instead of
the standard deviation as second parameter.

Chapter 6: Running Simulations 39

• Uniform, with two shape parameters: the minimum and the maximum of the sampling
range (real numbers).

The shape parameters of the above distributions can symbolically reference other model
parameters, even if distributions for these have already been defined. For example:

Distrib(A, Normal, 0, 1);
Distrib(B, Normal, A, 2);

In the context of MCMC sampling, MCSim provides extensions of the above Distrib()
specification syntax.

First, when Distrib() is used to specify the distribution of a model parameter, that
parameter can also appear as a shape parameter, if a distribution has already been specified
for the parameter at an upper Level of the file. For example:

Level { # upper level
Distrib(A, Normal, 0, 1);
Distrib(B, InvGamma, 2, 2);
Level { # sub-level

Distrib(A, Normal_v, A, B);
...

} # end sub-level
} # end upper level

In that case, the parameter A, used for shape specification (as the mean of a Normal
distribution) in the sub-level, refers to the "parent" A parameter, for which a standard
Normal distribution is defined at the upper Level. The sampled values of the parent
parameters A and B will be used as mean and variance for their "child" parameter, A,
when it will be its turn to be randomly sampled. This forms the basis of the specification of
multilevel (hierarchical) models (see Section 6.2.5 [Setting-up statistical models], page 42).

Next, in MCMC simulations, you usually assign a probability distribution (or a likeli-
hood) to the data you are trying to analyze. Typically, your model’s state and/or output
variables will attempt to predict some aspect of the observed data distributions (mean, vari-
ance, etc.). MCSim gives you the possibility to specify a distribution for your data, using
model parameters, input, state, or output model variables, or even other data, to define
the distribution shape. This is achieved through the use of the Data() and Prediction()
"qualifiers".

Data() can be used at the first position of a Distrib() statement, or as a distribution
shape parameter. It uses the following syntax:

Data(<identifier>)

where <identifier> corresponds to a valid input, state or output model variable for which
data are available. Model parameters cannot be used (but you can assign a simple param-
eter value to an output variable in your model definition file and use that output here).
The actual data values need to be given later in the simulation input file through Data()
specifications (which, in addition to a variable identifier, give a list of numerical data values,
see [Data() specification], page 45) or in a separate datafile (see [MCMC() specification],
page 33).

Working hand in hand with Data(), and using the same syntax, the Prediction()
qualifier can be used to designate actual model inputs, states and outputs for any shape

40 MCSim User’ Manual

parameter of a specified distribution (therefore Prediction() must appear after the distri-
bution name). The actual predicted values, matching exactly the corresponding data, need
to be given later in the simulation input file through Print() or PrintStep() specifications
[see [Print() specification], page 41 and [PrintStep() specification], page 42).

Here are some example of use of Data() and Prediction() in the extended syntax of a
Distrib() specification:

Distrib (Data(y), Normal, Prediction(y), 0.01);
...
Data (y, 0.1, 2, 5, 3, 9.2);
Print(y, 10, 20, 40, 60, 100);

Distrib (Data(y), Normal, Prediction(y), Prediction(sigma));
...
Data (y, 1.01, 1.20, 0.97, 0.80, 1.02);
PrintStep(y, 10, 50, 10);
PrintStep(sigma, 10, 50, 10);

Distrib (Data(R), Binomial, Prediction(P), Data(N));
...
Data (R, 0, 2, 5, 5, 8, 9, 10, 10);
Data (N, 10, 10, 9, 10, 9, 9, 11, 10);
Print(P, 10, 20, 30,40, 50,60,70, 80);

(these could not appear all as such in an input file, they would need to be embedded in
Level and Simulation sections.)

Last, for more readable input files, two keywords, Density() and Likelihood(), can be
used instead of Distrib(). They are equivalent to Distrib() and have the same syntax.

SimType() specification

This specification is now obsolete and should not be used. It is left for compatibility
with old input files. It specifies the type of analysis to perform. Syntax:

SimType(<keyword>);

The following keywords can be used: DefaultSim (the list of specified simulations is
simulated), MonteCarlo, MCMC (previously Gibbs), SetPoints. If MonteCarlo, MCMC, or
SetPoints analyses are requested, additional specifications are needed (see below).

6.2.4 Specifying basic conditions to simulate

Any simulation file must define at least one Simulation section. Simulation sections
include particular specifications, which are presented in the following.

Simulation sections

After global specifications, if any, Simulation sections must be included in the input
file. Expectedly, these sections start with the keyword Simulation and are enclosed in
curly braces.

Chapter 6: Running Simulations 41

A Simulation section can make assignments to any state variable, input variable or
parameter defined in the global section of the model description file. Output variables
cannot receive assignments in simulation input files.

State variables and parameters can only take constant values (see Section 6.2.1 [General
input file syntax], page 31). For state variables, this sets the initial value only. So, for
example, in a Simulation section the parameter Speed, if properly defined, can be set
using:

Speed = 83.2;

This overrides any previously assigned values, even if randomly sampled, for the specified
parameter.

Inputs can be redefined with input functions (see Section 6.2.2 [Input functions revis-
ited], page 31) or constant values. Input functions can reference other variables (eventually
randomly sampled), as in:

Q_in = PerExp(InMag, 60, 0, RateConst);

The maximum number of Simulation sections allowed in an input file is 200. This can
be changed by changing MAX INSTANCES and MAX EXPERIMENTS in the header file
‘sim.h’ and recompiling the program (this requires re-installation).

Within a Simulation section, several additional specifications can be used:
• StartTime(),
• Print(),
• PrintStep(),
• Data().

The Data() specification is used only when a statistical model is set up and will be
covered in the corresponding section of this manual (Section 6.2.5 [Setting-up statistical
models], page 42).

StartTime() specification

The origin of time for a simulation, if it needs to be defined, can be set with the
StartTime() specification:

StartTime(<initial-time>);

If this specification is not given, a value of zero is used by default. The final time
is automatically computed to match the largest output time specified in the Print() or
PrintStep() statements.

Print() specification

The value of any model variable or parameter can be requested for output with Print()
specifications. Their arguments are a comma-separated list of variable names (at least one
and up to 10), and a comma-separated list of increasing times at which to output their
values:

Print(<identifier1>, <identifier2>, ..., <time1>, <time2>, ...);

The same output times are used for all the variables specified. The size of the time list
is only limited by the available memory at run time. The limit of 10 variables names can be

42 MCSim User’ Manual

increased by changing MAX PRINT VARS in the header file ‘sim.h’ and re-installing the
whole software. The number of Print() statements you can used in a given Simulation
section is only limited by the available memory at run time. The same variable or parameter
can appear in more than one PrintStep() in a given Simulation section.

PrintStep() specification

The value of any model variable or parameter can be also output with PrintStep()
specifications. They allow dense printing, suitable for smooth plots, for example. The
arguments are the name of only one variable, the first output time, the last one, and a time
increment:

PrintStep(<identifier>, <start-time>, <end-time>, <time-step>);

The final time has to be superior to the initial time and the time step has to be less than
the time span between end and start. If the time step is not an exact divider of the time
span the last printing step is shorter and the last output time is still the end-time specified.
The number of outputs produced is only limited by the memory available at run time. You
can use several PrintStep(), and the same variable or parameter can appear in more than
one PrintStep(), in a given Simulation section.

6.2.5 Setting-up statistical models

With MCSim, you must define a statistical model to use the MCMC() specification. MCMC
simulations will give you a sample from the joint posterior distribution of the parameters
that you designate as randomly sampled through Distrib() specifications. You do not
need to specify explicitly that joint posterior distribution (in fact, in most case, this is
impossible). The posterior distribution is implicitly defined by a statistical model, that is
simply a set of conditional relationship between the parameters and some data.

MCSim handles multilevel (hierarchical) random effects and mixed effects statistical
models in a Bayesian framework. These models need to be defined in the simulation spec-
ification file, rather than in the structural model definition file. Yet, due to compilation
constraints, if you need special parameters for your statistical model (e.g., variances) you
have to declare them in the structural model file, even if they are not used by the structural
model itself.

So, how do we go about specifying a statistical model with MCSim? Take for example
the following simple linear regression model:

yi = N(µi, σ
2) (1)

µi = α + β(xi − x) (2)

where the observed (x, y) pairs are (1, 1), (2, 3), (3, 3), (4, 3) and (5, 5). Assume that the pa-
rameters α and β are given N(0, 10000) priors, and that 1/σ2 is given a Gamma(10−2, 10−2)
prior. We want the posterior distributions of α, β, and σ2.

The first thing to do is to define a structural (or link) model to compute y as a function
of x. Here is such a model (quite similar to the one distributed with MCSim source code
(see Section B.1 [linear.model], page 55):

Chapter 6: Running Simulations 43

Model definition file for a linear model

Outputs = {y};

Structural model parameters
Alpha = 0;
Beta = 0;
x_bar = 0;

Statistical parameter
Sigma2 = 1;

CalcOutputs { y = Alpha + Beta * (t - x_bar); }

The parameters’ default values are arbitrary, and could be anything reasonable. They
will be changed or sampled through the input file. Note thatσ2 is not used in the model
equations, but still needs to be defined here in order to be part of the statistical model. On
the other hand, µ is not defined, since we do not really need it. Finally x is replaced by the
time, t, for convenience. An alternative would be to define an input ‘x’ and use it instead
of t.

We now need to write an input file specifying the distribution of y (i.e., the likelihood),
and the prior distributions of the various parameters. Technically, MCSim uses Metropolis
sampling and you do not need to worry about issues of conjugacy or log-concavity of your
prior or posterior distributions. Here is what a simulation file with a statistical model looks
like:

Simulation input file for a linear regression

MCMC ("linear.MCMC.out", "", "", 50000, 0, 5, 40000, 63453.1961);
Level {
Distrib(Alpha, Normal_v, 0, 10000);
Distrib(Beta, Normal_v, 0, 10000);
Distrib(Sigma2, InvGamma, 0.01, 0.01);
Likelihood(Data(y), Normal_v, Prediction(y), Sigma2);
Simulation {

x_bar = 3.0;
PrintStep (y, 1, 5, 1);
Data (y, 1, 3, 3, 3, 5);

}
} # end Level
End

The file begins with MCMC() (see [MCMC() specification], page 33). The keyword Level
comes next. Level is used to specify hierarchical dependences between model parameters.
There should be at least one Level in every MCMC input file, even for a non-hierarchical
model like the one above. See below for further discussion of the Level keyword. You can

44 MCSim User’ Manual

also look at the MCMC input files provided as examples with MCSim source code. The
Distrib() statements define the parameter priors. Normal_v specifications are used since
we use variances instead of standard deviations. The inverse-Gamma distribution is used for
the variance component, since the precision is supposed to be Gamma-distributed. The like-
lihood is the distribution of the data, given the model: it is specified by a Likelihood()
specification, valid for every y data point. Again, note that the µ variable is not used.
Instead, the Prediction(y) specification designates the linear model output. The distribu-
tions and likelihoods specified are in effect for every sub-level or every Simulation section
included in the current Level.

The "simulations" to perform, and the corresponding data values, are specified by a
Simulation section. Only one Simulation section is needed here, but several could be
specified. In this section, the value of x is provided. The different values of x (time in our
formulation of the model) can be specified via PrintStep() (see [PrintStep() specification],
page 42), since they are equally spaced. More generally, Print() can also be used (see
[Print() specification], page 41). The data values are given in a Data() statement (see
below).

The following paragraphs deal with Level sections and Data() specifications.

Level sections

Markov chain Monte Carlo simulations require the definition of a statistical model struc-
tured with "levels". Think for example of the definition of a prior distribution as a top level
in a hierarchy, with the data likelihood being at the lowest level. The hierarchy levels are de-
fined in MCSim with the help of Level sections. At least one Level section must be defined
in the simulation input file (you cannot use Level in a structural model definition file). A
Level section starts with the correesponding keyword and is enclosed in curly braces (’{}’).
It can include any number of sub-levels or Simulations sections. Simulations (where the
data are specified) form the lowest level of the hierarchy (see [Simulation sections], page 40).
In terms of structure, Simulation sections behave like Level sections (in particular with
regard to "cloning" of random variables, see below) except that they cannot include further
levels. There must be one and only one top Level and at most 10 nested sub-levels in the
hierarchy. This limit of 10 can be increased (up to 255) by changing MAX LEVELS in the
header file ‘sim.h’ and re-installing MCSim.

A Level can specify or change the sampling distribution of any model parameter properly
defined in the global section of the structural model description file. These distribution
specifications apply to all sub-levels of the Level where they take place. For example:

MCMC("samp.out", "", "", 1, 1, 1, 1, 1); # we are in an MCMC context
Level { # this is the top level

Distrib(A, Uniform, 0, 1);
Likelihood(Data(y), Normal, Prediction(y), 1);
Level { # sub-level 1

Distrib(A, Normal, A, 1);
Simulation { ... } # simulation 1
Simulation { ... } # simulation 2

} # End sub-level 1
} # End top, end file

Chapter 6: Running Simulations 45

A Level can also make simple assignments to any model parameter (see Section 6.2.1
[General input file syntax], page 31). So, for example, in an simulation, the parameter A
could be modified with:

A = 2.0;

This overrides any previously assigned values for the specified parameter, even if ran-
domly sampled, and applies to the sub-levels of the Level where it take place.

An important concept to grasp here is that of parameter "cloning". Cloning automat-
ically creates, using templates, as many new parameters as you need in your multilevel
model. One of the characteristic feature of multilevel models is the same parameters ap-
pear at several levels. For example, in a random effect model, a parameter (e.g., size) will
be assumed to be randomly distributed in a population of individuals. If you have 100 indi-
viduals in your database, your model will have to deal with 100 individual size parameters
and an average size. To spare you the tedium of defining the same distribution for many
parameters, MCSim creates an appropriate number of parameters for your model on the
basis of its level structure. Assume that you have specified a distribution for a parameter
A at a given level (that we label L1 for clarity). MCSim will automatically create new
parameters ("clones") with the same distribution as A to match the number of immediate
sub-levels in L1. For example, if there are three sub-levels included in L1, MCSim creates
two clones to form a total of three instances of A (the original and its two clones).

In the sample of code given above, the parameter A, defined at the top level, will be
simply moved to sub-level 1 (cloning is not necessary since there is only on sub-level directly
included in the top level). *** "cloned" as many times as there are sub-levels or simulations
enclosed its defining level (hence, it will be cloned once here). This mean that two A
parameters will

(hence, it will be cloned twice in the example above, once for each Simulation section
defined). In that way, the parameters distributions defined at one level in fact apply to the
next lower sub-level, or at the Simulation level. This convention saves a lot writing and
effort in the long run. For example, the uniform distribution assigned to A, at the top level,
applies to the sub-level 1. There is only one "clone" of A at sub-level 1 since only one sub-
level is included in the top level. In contrast, two normally-distributed "clones" of A will
be defined and sampled. The first one will apply to simulation 1, and will be conditioned
by the data of that simulation only, and the other will apply to simulation 2. A total of
three variables of "type" A will be sampled and will be printed in the output file (coded
so that the position in the hierarchy is apparent): the "parent" A(1), a priori uniformly
distributed, and two "dependents" A(1.1) and A(1.2), a priori normally distributed around
A(1).

Data() specification

Experimental observations of model variables, inputs, outputs, or parameters, can be
specified with the Data() command. Markov chain Monte Carlo sampling requires that
you specify Data() statements (see [MCMC() specification], page 33; see Section 6.2.5
[Setting-up statistical models], page 42). The data are then used internally to evaluate the
likelihood function for the model. The arguments are the name of the variable for which
observations exist, and a comma-separated list of data values:

46 MCSim User’ Manual

Data(<identifier>, <value1>, <value2>, ...);

This specification can only be used with a matching Print() or PrintStep() for the
same variable (see [Print() specification], page 41; see [PrintStep() specification], page 42).
You must make sure that there are as many data values in the Data() specification as
output time requested in the corresponding Print() or PrintStep(). A data value of
"-1" is treated as "missing data" and ignored in likelihood calculations. The convention
"-1" can be changed by changing INPUT MISSING VALUE in the header file ‘mc.h’ and
recompiling.

6.3 Analyzing simulation output

The output from Monte Carlo or SetPoints simulations is a tab-delimited text file with
one row for each run (i.e., parameter set) and one column for each parameter and output
in the order specified. Thus each line of the output file is in the following order:

<# of run> <parameters> <outputs for Exp 1> <outputs for Exp2> ...

The parameters are printed in the order they were sampled or set.
The first line gives the column headers. A variable called name requested for output in

an simulation i at a time j is labeled name i.j.
The output of Markov chain Monte Carlo simulations is also a text file with one row

for each run. It displays a column of iteration labels, and one column for each parameter
sampled. The last three columns contain respectively, the sum of the logarithms of each pa-
rameter’s density given its parents’ values (‘LnPrior’), the logarithm of the data likelihood
(‘LnData’), and the sum of the previous two values (‘LnPosterior’). The first line gives the
column headers. On this line, parameters names are tagged with a code identifying their
position in the hierarchy defined by the Level sections. For example, the second instance
of a parameter called name placed at the fist level of the hierarchy is labeled name(2); the
first instance of the same parameter placed at the second instance of the second level of the
hierarchy is labeled name(2.1), etc.

The tab-delimited file can easily be imported into your favorite spreadsheet, graphic or
statistical package for further analysis.

6.4 Error handling

If integration fails for a imulation in DefaultSim simulations no output is generated for
that simulation, and the user is warned by an error message on the screen. In MonteCarlo
or SetPoints simulations, the corresponding simulation line is not printed, but the iteration
number is incremented. Finally, in MCMC simulations, the parameter for which the data
likelihood was computed is simply not updated (which implicitly forbids the uncomputable
region of the parameter space). In all cases an error message is given on the screen, or
wherever the screen output has been redirected.

Chapter 7: Common Pitfalls 47

7 Common Pitfalls

The following mistakes are particularly easy to make, and sometimes hard to notice, or
understand at first.
• Forgetting about type-related arithmetics in C: ‘1000/882’ gives ‘1’ since it is inter-

preted as an integer division by the compiler. To get a floating-point (usual) division
use ‘1000./882.’.

• Forgetting a semi-colon (’;’) at the end of statements: the error is usually detected at
the following line(s) where in fact nothing may be wrong.

48 MCSim User’ Manual

Chapter 8: XMCSim 49

8 XMCSim

XMCSim is a menu-driven interface which automatizes the compilation and running
tasks of MCSim. It also offers a convenient interface to 2-D and 3-D plotting of the simu-
lation results. Note that you need XWindows, Tcl/Tk and wish installed to run XMCSim.
xemacs is also recommended.

Just type xmcsim at the command promt. A windows appear, with a menu bar. Menu
items are:
• File, which allows you to choose an existing model file or to exit the program. Once

you have chosen a model file, its file name appears as a reminder at the bottom of the
window.

• Edit, which calls xemacs for you to create a new model file or edit any file of your
choice (for example an input or output file). Note: if you do not have xemacs installed
you can change the file ‘xmcsim’ to replace the call to xemacs by a call to your editor.

• Compile has two items: Compile model will compile the current model file or prompt
you for one and will call mod to generate a ‘model.c’ file from it; Compile mcsim
will first call mod and will then go on to create an executable mcsim filevia a call to
makemcsim create an executable program.

• Run with three items: Run which will prompt you for an executable mcsim file, an input
file and an output file (the latter is optional) and will then launch the executable; Stop
will just stop a running executable; Debug will produce a standalone executable with a
name starting with ‘debugmcsim’ and will launch xemacs for you (you will then need to
call gdb or another debugger by yourself; if you find a way to start gdb on an executable
via xemacs on the command line please tell me...).

• Plot will start an Xgnuplot-based interface to gnuplot An Help menu available there
to guide you further in the arcanes of gnuplot, but we recommend that you also browse
gnuplot documentation.

At some point MCSim will do symbolic computations, wash dishes, clothes and cars,
and write poems, but for now, that’s all folks!

50 MCSim User’ Manual

Bibliographic References 51

Bibliographic References

Barry T.M. (1996). Recommendations on the testing and use of pseudo-random number
generators used in Monte Carlo analysis for risk assessment. Risk Analysis 16:93-105.

Bernardo J.M. and Smith A.F.M. (1994). Bayesian Theory. Wiley, New York.
Bois F.Y., Gelman A., Jiang J., Maszle D., Zeise L. and Alexeef G. (1996). Population

toxicokinetics of tetrachloroethylene. Archives of Toxicology 70:347-355.
Bois F.Y., Smith T.J., Gelman, A., Chang H.Y., Smith A.E. (1999). Optimal design for

a study of butadiene toxicokinetics in humans. Toxicological Sciences 49:213-224.
Bois F.Y., Zeise L. and Tozer T.N. (1990). Precision and sensitivity analysis of pharma-

cokinetic models for cancer risk assessment: tetrachloroethylene in mice, rats and humans.
Toxicology and Applied Pharmacology 102:300-315.

Gear C.W. (1971a). Algorithm 407 - DIFSUB for solution of ordinary differential equa-
tions [D2]. Communications of the ACM 14:185-190.

Gear C.W. (1971b). The automatic integration of ordinary differential equations. Com-
munications of the ACM 14:176-179.

Gelman A. (1992). Iterative and non-iterative simulation algorithms. Computing Science
and Statistics 24:433-438.

Gelman A., Bois F.Y. and Jiang J. (1996). Physiological pharmacokinetic analysis using
population modeling and informative prior distributions. Journal of the American Statisti-
cal Association 91:1400-1412.

Gelman A., Carlin J.B., Stern H.S. and Rubin D.B. (1995). Bayesian Data Analysis.
Chapman & Hall, London.

Gelman A. and Rubin D.B. (1992). Inference from iterative simulation using multiple
sequences (with discussion). Statistical Science 7:457-511.

Gilks W.R., Richardson S. and Spiegelhalter D.J. (1996). Markov Chain Monte Carlo
In Practice. Chapman & Hall, London.

Hammersley J.M. and Handscomb D.C. (1964). Monte Carlo Methods. Chapman and
Hall, London.

Manteufel R.D. (1996). Variance-based importance analysis applied to a complex prob-
abilistic performance assessment. Risk Analysis 16:587-598.

Park S.K. and Miller K.W. (1988). Random number generators: good ones are hard to
find. Communications of the ACM 31:1192-1201.

Press W.H., Flannery B.P., Teukolsky S.A. and Vetterling W.T. (1989). Numerical
Recipes (2nd ed.). Cambridge University Press, Cambridge.

Smith A.F.M. (1991). Bayesian computational methods. Philosophical Transactions of
the Royal Society of London, Series A 337:369-386.

Smith A.F.M. and Roberts G.O. (1993). Bayesian computation via the Gibbs sampler
and related Markov chain Monte Carlo methods. Journal of the Royal Statistical Society
Series B 55:3-23.

Vattulainen I., Ala-Nissila T. and Kankaala K. (1994). Physical tests for random num-
bers in simulations. Physical Review Letters 73:2513-2516.

52 MCSim User’ Manual

Appendix A: Keywords List 53

Appendix A Keywords List

You should avoid using the following reserved keywords when building your models:

Beta LogUniform
BetaRandom LogUniformRandom
Binomial Lsodes
BinomialBetaRandom MCMC
BinomialRandom MonteCarlo
CDFNormal NDoses
CalcOutputs Normal
Chi2 NormalRandom
Chi2Random Normal v
Data OptimalDesign
DefaultSim OutputFile
Density Outputs
Distrib PerDose
dt PerExp
Dynamics Piecewise
End PiecewiseRandom
Euler Poisson
ExpRandom PoissonRandom
Experiment Prediction
Exponential Print
GGammaRandom PrintStep
Gamma Scale
GammaRandom SetPoints
GetSeed SetSeed
Gibbs SimType
IFN Simulation
Initialize Spikes
Inputs StartTime
Integrate States
InvGGammaRandom t
InvGamma TruncLogNormal
Level TruncLogNormalRandom
Likelihood TruncLogNormal v
lnDFNormal TruncNormal
lnGamma TruncNormalRandom
LogNormal TruncNormal v
LogNormalRandom Uniform
LogNormal v UniformRandom

54 MCSim User’ Manual

Appendix B: Examples 55

Appendix B Examples

You will find here some examples of model description files and simulation input files.

B.1 ‘linear.model’

Linear Model with a random component
y = A + B * time + N(0,SD_true)
Setting SD_true to zero gives the deterministic version
#---

Outputs
Outputs = {y};

Model Parameters
A = 0;
B = 1;
SD_true = 0;
SD_esti = 0;

CalcOutputs { y = A + B * t + NormalRandom(0,SD_true); }

B.2 ‘1cpt.model’: A sample model description file

One Compartment Model
First order input and output
#---

Inputs
Inputs = {Dose};

Outputs
Outputs = {C_central, AUC, ln_C_central, ln_AUC,

SD_C_computed, SD_A_computed};

Model Parameters
ka = 1;
ke = 0.5;
F = 1;
V = 2;

Statistical Parameters
SDb_ka = 0;
SDw_ka = 0;
SDb_ke = 0;
SDw_ke = 0;
SDb_V = 0;
min_F = 0;
max_F = 0;

56 MCSim User’ Manual

SD_C_central = 0;
SD_AUC = 0;
CV_C_cen = 0;
CV_AUC = 0;
CV_C_cen_true = 0;
CV_AUC_true = 0;

Calculate Outputs
CalcOutputs {

algebraic equation for C_central
C_central = (ka != ke ?

(exp(-ke * t) - exp(-ka * t)) *
F * ka * Dose / (V * (ka - ke))):
exp(-ka * t) * ka * t * F * Dose / V);

algebraic equation for AUC
AUC = (ka != ke ?

((1 - exp(-ke * t)) / ke - (1 - exp(-ka * t)) / ka) * F * ka * Dose /
(V * (ka - ke))):
F * Dose * (1 - (1 + ka * t) * exp(-ka * t)) / (V * ke));

C_central = C_central + NormalRandom(0, C_central * CV_C_cen_true);
AUC = AUC + NormalRandom(0, AUC * CV_AUC_true);

ln_C_central = (C_central > 0 ? log (C_central) : -100);
ln_AUC = (AUC > 0 ? log (AUC) : -100);

SD_C_computed = (C_central > 0 ? C_central * CV_C_cen : 1e-10);
SD_A_computed = (AUC > 0 ? AUC * CV_AUC : 1e-10);

} # End of output calculations

Appendix B: Examples 57

B.3 ‘perc.model’: A sample model description file

#---
perc.model
A four compartment model of Tetrachloroethylene (PERC)
and total metabolites.
Copyright (c) 1993. Don Maszle, Frederic Bois. All rights reserved.
#---
States are quantities of PERC and metabolite formed, they can be output

States = {Q_fat, # Quantity of PERC in the fat
Q_wp, # ... in the well-perfused compartment
Q_pp, # ... in the poorly-perfused compartment
Q_liv, # ... in the liver
Q_exh, # ... exhaled
Qmet}; # Quantity of metabolite formed

Extra outputs are concentrations at various points

Outputs = {C_liv, # mg/l in the liver
C_alv, # ... in the alveolar air
C_exh, # ... in the exhaled air
C_ven, # ... in the venous blood
Pct_metabolized, # % of the dose metabolized
C_exh_ug}; # ug/l in the exhaled air

Inputs = {C_inh} # Concentration inhaled

Constants
Conversions from/to ppm: 72 ppm = .488 mg/l

PPM_per_mg_per_l = 72.0 / 0.488;
mg_per_l_per_PPM = 1/PPM_per_mg_per_l;

#---
Nominal values for parameters
Units:
Volumes: liter
Vmax: mg / minute
Weights: kg
Km: mg / minute
Time: minute
Flows: liter / minute
#---

InhMag = 0.0;
Period = 0.0;
Exposure = 0.0;

58 MCSim User’ Manual

C_inh = PerDose (InhMag, Period, 0.0, Exposure);

LeanBodyWt = 55; # lean body weight

Percent mass of tissues with ranges shown

Pct_M_fat = .16; # % total body mass
Pct_LM_liv = .03; # liver, % of lean mass
Pct_LM_wp = .17; # well perfused tissue, % of lean mass
Pct_LM_pp = .70; # poorly perfused tissue, will be recomputed in scale

Percent blood flows to tissues

Pct_Flow_fat = .09;
Pct_Flow_liv = .34;
Pct_Flow_wp = .50; # will be recomputed in scale
Pct_Flow_pp = .07;

Tissue/blood partition coeficients

PC_fat = 144;
PC_liv = 4.6;
PC_wp = 8.7;
PC_pp = 1.4;
PC_art = 12.0;

Flow_pul = 8.0; # Pulmonary ventilation rate (minute volume)
Vent_Perf = 1.14; # ventilation over perfusion ratio

sc_Vmax = .0026; # scaling coeficient of body weight for Vmax

Km = 1.0;

The following parameters are calculated from the above values in
the Scale section before the start of each simulation.
They are left uninitialized here.

BodyWt = 0;

V_fat = 0; # Actual volume of tissues
V_liv = 0;
V_wp = 0;
V_pp = 0;

Flow_fat = 0; # Actual blood flows through tissues
Flow_liv = 0;
Flow_wp = 0;
Flow_pp = 0;

Appendix B: Examples 59

Flow_tot = 0; # Total blood flow
Flow_alv = 0; # Alveolar ventilation rate

Vmax = 0; # kg/minute

#---
Dynamics
Define the dynamics of the simulation. This section is
calculated with each integration step. It includes
specification of differential equations.
#---

Dynamics {

Venous blood concentrations at the organ exit

Cout_fat = Q_fat / (V_fat * PC_fat);
Cout_wp = Q_wp / (V_wp * PC_wp);
Cout_pp = Q_pp / (V_pp * PC_pp);
Cout_liv = Q_liv / (V_liv * PC_liv);

Sum of Flow * Concentration for all compartments

dQ_ven = Flow_fat * Cout_fat + Flow_wp * Cout_wp
+ Flow_pp * Cout_pp + Flow_liv * Cout_liv;

Venous blood concentration

C_ven = dQ_ven / Flow_tot;

Arterial blood concentration
Convert input given in ppm to mg/l to match other units

C_art = (Flow_alv * C_inh / PPM_per_mg_per_l + dQ_ven) /
(Flow_tot + Flow_alv / PC_art);

Alveolar air concentration

C_alv = C_art / PC_art;

Exhaled air concentration

C_exh = 0.7 * C_alv + 0.3 * C_inh / PPM_per_mg_per_l;

Differentials

dt (Q_exh) = Flow_alv * C_alv;
dt (Q_fat) = Flow_fat * (C_art - Cout_fat);

60 MCSim User’ Manual

dt (Q_wp) = Flow_wp * (C_art - Cout_wp);
dt (Q_pp) = Flow_pp * (C_art - Cout_pp);

Quantity metabolized in liver

dQmet_liv = Vmax * Q_liv / (Km + Q_liv);
dt (Q_liv) = Flow_liv * (C_art - Cout_liv) - dQmet_liv;

Metabolite formation

dt (Qmet) = dQmet_liv;

} # End of Dynamics

#---
Scale
Scale certain model parameters and resolve dependencies
between parameters. Generally the scaling involves a
change of units, or conversion from percentage to actual
units.
#---

Scale {

Volumes scaled to actual volumes

BodyWt = LeanBodyWt/(1 - Pct_M_fat);

V_fat = Pct_M_fat * BodyWt/0.92; # density of fat = 0.92 g/ml
V_liv = Pct_LM_liv * LeanBodyWt;
V_wp = Pct_LM_wp * LeanBodyWt;
V_pp = 0.9 * LeanBodyWt - V_liv - V_wp; # 10% bones

Calculate Flow_alv from total pulmonary flow

Flow_alv = Flow_pul * 0.7;

Calculate total blood flow from the alveolar ventilation rate and
the V/P ratio.

Flow_tot = Flow_alv / Vent_Perf;

Calculate actual blood flows from total flow and percent flows

Flow_fat = Pct_Flow_fat * Flow_tot;
Flow_liv = Pct_Flow_liv * Flow_tot;
Flow_pp = Pct_Flow_pp * Flow_tot;
Flow_wp = Flow_tot - Flow_fat - Flow_liv - Flow_pp;

Appendix B: Examples 61

Vmax (mass/time) for Michaelis-Menten metabolism is scaled
by multiplication of bdw^0.7

Vmax = sc_Vmax * exp (0.7 * log (LeanBodyWt));

} # End of model scaling

#---
CalcOutputs
The following outputs are only calculated just before values
are saved. They are not calculated with each integration step.
#---

CalcOutputs {

Fraction of TCE metabolized per day

Pct_metabolized = (InhMag ?
Qmet / (1440 * Flow_alv * InhMag * mg_per_l_per_PPM) :
0);

C_exh_ug = C_exh * 1000; # milli to micrograms

} # End of output calculation

62 MCSim User’ Manual

B.4 ‘perc.lsodes.in’

#---
perc.lsodes.in
#
Copyright (c) 1993. Don Maszle, Frederic Bois. All rights reserved.
#
#---

Integrate (Lsodes, 1e-4, 1e-6, 1);

#---
The following is a simulation of one of Dr. Monster’s
exposure experiments described in "Kinetics of Tetracholoroethylene
in Volunteers; Influence of Exposure Concentration and Work Load,"
A.C. Monster, G. Boersma, and H. Steenweg,
Int. Arch. Occup. Environ. Health, v42, 1989, pp303-309
#
The paper documents measurements of levels of TCE in blood and
exhaled air for a group of 6 subjects exposed to
different concentrations of PERC in air.
#
Inhalation is specified as a dose of magnitude InhMag for the
given Exposure time.
#
Inhalation is given in ppm
#---

Simulation {

InhMag = 72; # ppm
Period = 1e10; # Only one dose
Exposure = 240; # 4 hour exposure

measurements before end of exposure and at [5’ 30’] 2hr 18 42 67 91 139 163

Print (C_exh_ug, 239.9 245 270 360 1320 2760 4260 5700 8580 10020);
Print (C_ven, 239.9 360 1320 2760 4260 5700 8580 10020);

}

END.

Concept Index 63

Concept Index

’
’ !=’ operator . 19
’#’ sign . 18
’-’ (hyphen) sign . 19
’:’ sign . 19
’;’ sign . 18
’<’ operator . 19
’<=’ operator . 19
’<>’ operator . 19
’=’ sign . 19
’==’ operator . 19
’>’ operator . 19
’>=’ operator . 19
’?’ sign . 19
’ ’ (underscore) notation . 21

A
Algebraic models . 22
Analyzing simulation output 46
Assignment . 19

B
Beta distribution . 37
BetaRandom() function . 23
Bibliographic references . 51
Binomial distribution . 37
BinomialBetaRandom() function 23
BinomialRandom() function 23
Blank lines . 18

C
CalcOutputs, output section 27
CDFNormal() function . 23
Chi-square distribution . 38
Chi2 distribution . 38
Chi2Random() function . 23
Colon conditional assignment 19
Comments . 18
Common pitfalls . 47
Comparison operators . 19
Complementary error function 23
Conditional assignment . 19
Cumulative density function, Normal 23

D
Data() qualifier, for use in Distrib() 39
Data() specification . 45
Default . 8
Defining models . 17

Density function, Normal . 24
Density() specification . 39
Derivative specification . 26
Differential models . 22
Discrete-time models . 22
Distrib() specification . 37
Distribution, Beta . 37
Distribution, Binomial . 37
Distribution, Chi-square . 38
Distribution, Chi2 . 38
Distribution, Exponential . 38
Distribution, Gamma . 38
Distribution, HalfNormal . 38
Distribution, inverse-gamma 38
Distribution, InvGamma . 38
Distribution, Lognormal . 38
Distribution, Lognormal_v . 38
Distribution, Loguniform . 38
Distribution, Normal . 38
Distribution, Normal_v . 38
Distribution, Piecewise . 38
Distribution, Poisson . 38
Distribution, triangular . 38
Distribution, truncated inverse-gamma 38
Distribution, truncated lognormal 38
Distribution, truncated normal. 38
Distribution, TruncInvGamma 38
Distribution, TruncLogNormal. 38
Distribution, Trunclognormal_v 38
Distribution, TruncNormal . 38
Distribution, Truncnormal_v 38
Distribution, Uniform . 39
Dt() operator . 26
Dynamics section . 26

E
erfc() function . 23
Error function, complementary. 23
Error handling. 46
Euler integrator . 32
Examples . 17, 55
Experiment sections . 40
Experimental design optimization 8
Exponential distribution . 38
ExpRandom() function . 23

F
Function, BetaRandom() . 23
Function, BinomialBetaRandom() 23
Function, BinomialRandom() 23
Function, CDFNormal() . 23
Function, Chi2Random() . 23

64 MCSim User’ Manual

Function, erfc() . 23
Function, ExpRandom() . 23
Function, GammaRandom() . 23
Function, GetSeed() . 23
Function, GGammaRandom() . 23
Function, input . 19
Function, InvGGammaRandom() 23
Function, lnDFNormal() . 24
Function, lnGamma() . 24
Function, LogNormalRandom() 24
Function, LogUniformRandom() 24
Function, NDoses() . 25, 31
Function, NormalRandom() . 24
Function, PerDose() . 24, 31
Function, PerExp() . 25, 31
Function, PiecewiseRandom() 24
Function, PoissonRandom() 24
Function, SetSeed() . 24
Function, special . 19
Function, Spikes() . 25, 31
Function, TruncInvGGammaRandom() 24
Function, TruncLogNormalRandom() 24
Function, TruncNormalRandom() 24
Function, UniformRandom() 24
Functions, input . 24, 31
Functions, special . 23

G
Gamma distribution . 38
Gamma function . 24
GammaRandom() function . 23
General input file syntax . 31
GetSeed() function . 23
GGammaRandom() function . 23
Global specifications . 31

H
HalfNormal distribution . 38

I
Initialize, initialization section, 25
Input functions . 19, 24, 31
Input variables . 21
Installation . 11
Integrate() specification . 32
Integration routine, Euler . 32
Integration routine, Lsodes 32
Integration variable . 26
Inverse-gamma distribution 38
InvGamma distribution . 38
InvGGammaRandom() function 23

K
Keywords list . 53

L
Level sections . 44

License . 1

Likelihood() specification 39

lnDFNormal() function . 24

lnGamma() function . 24

Logical tests . 19

Lognormal distribution . 38

LogNormal_v distribution . 38

LogNormalRandom() function 24

LogUniform distribution . 38

LogUniformRandom() function 24

Lsodes integrator . 32

M
Major changes in versions 5.0.0 8

makemcsim script . 17

Markov-chain Monte Carlo simulations 8, 33

MCMC simulations . 8, 33

MCMC() specification . 33

mod syntax . 18

mod usage . 17

Model definition files . 17

Model types . 22

Models, algebraic . 22

Models, differential . 22

Models, discrete-time . 22

Models, statistical . 42

Monte Carlo simulations 8, 33

MonteCarlo() specification 33

N
NDoses() function . 25, 31

Normal cumulative density function 23

Normal density function . 24

Normal distribution . 38

Normal_v distribution . 38

NormalRandom() function . 24

O
OptimalDesign() specification 9, 36

Output specification . 27

Output variables . 21

OutputFile() specification 32

Overview . 7

Concept Index 65

P
Parameter declaration . 21
Parameter scaling . 25
PerDose() function . 24, 31
PerExp() function . 25, 31
Piecewise distribution . 38
PiecewiseRandom() function 24
Pitfalls . 47
Poisson distribution . 38
PoissonRandom() function . 24
Prediction() qualifier, for use in Distrib() . . . 39
Print() specification . 41
PrintStep() specification . 42

Q
Qualifier, Data() . 39
Qualifier, Prediction() . 39

R
Random number, beta . 23
Random number, binomial 23
Random number, binomial-beta 23
Random number, Chi-squared 23
Random number, exponential 23
Random number, gamma . 23
Random number, general-gamma 23
Random number, inverse-gamma 23
Random number, lognormal 24
Random number, loguniform 24
Random number, normal . 24
Random number, piecewise 24
Random number, Poisson . 24
Random number, truncated inverse-gamma 24
Random number, truncated lognormal 24
Random number, truncated normal 24
Random number, uniform . 24
Random seed, reading its value 23
Random seed, setting its value 24
Reserved keywords . 53
Running simulations . 29

S
Scale, scaling section . 25
Semi-colon . 18
SetPoints simulations . 8
SetPoints() specification . 35
SetSeed() function . 24
Setting-up statistical models 42
Setting-up structural models 17
SimType() specification . 40
Simulation definition files . 29
Simulation file, syntax . 30
Simulation sections . 40
Software license . 1

Special functions . 19, 23
Specification, Data() . 45
Specification, Density() . 39
Specification, Distrib() . 37
Specification, Integrate() 32
Specification, Likelihood() 39
Specification, MCMC() . 33
Specification, MonteCarlo() 33
Specification, OptimalDesign() 36
Specification, OutputFile() 32
Specification, Print() . 41
Specification, PrintStep() 42
Specification, SetPoints() 35
Specification, SimType() . 40
Specification, StartTime() 41
Specifications, global . 31
Specifying simulations . 29
Spikes() function . 25, 31
Square brackets . 19
StartTime() specification . 41
State variables . 21
Statistical models . 42
Structural models . 17, 22
Style . 27
Syntax for mod . 18
Syntax of simulation files . 30

T
Tests, logical . 19
Triangular distribution . 38
Truncated Inverse-gamma distribution 38
Truncated lognormal distribution 38
Truncated normal distribution 38
TruncInvGamma distribution 38
TruncInvGGammaRandom() function 24
TruncLogNormal distribution. 38
TruncLogNormal_v distribution 38
TruncLogNormalRandom() function 24
TruncNormal distribution . 38
TruncNormal_v distribution 38
TruncNormalRandom() function 24

U
Underscore syntax for vectors 21
Uniform distribution . 39
UniformRandom() function . 24

V
Variable names . 18
Vectorization . 20
Vectors . 19

W
Working Through an Example 15

X
xmcsim . 9, 49

66 MCSim User’ Manual

i

Table of Contents

1 Software License . 1
1.1 PREAMBLE . 1
1.2 TERMS AND CONDITIONS FOR COPYING,

DISTRIBUTION AND MODIFICATION 2

2 Overview . 7
2.1 General procedure . 7
2.2 Types of simulations . 8
2.3 Major changes introduced with version 5.0.0 8

3 Installation . 11
3.1 System requirements . 11
3.2 Distribution . 11
3.3 Machine-specific installation. 12

3.3.1 Unix/Linux operating systems 12
3.3.2 Other operating systems . 12

4 Working Through an Example 15

5 Setting-up Structural Models 17
5.1 Using mod to preprocess model description files 17
5.2 Using makemcsim to fully process model files 17
5.3 Syntax of the model description file . 18

5.3.1 General syntax . 18
5.3.2 Global variable declarations . 21
5.3.3 Model types . 22
5.3.4 Special functions . 23
5.3.5 Input functions . 24
5.3.6 Model initialization . 25
5.3.7 Dynamics section . 26
5.3.8 Output calculations . 27
5.3.9 Comments on style . 27

6 Running Simulations . 29
6.1 Using the compiled program . 29
6.2 Syntax of the simulation definition file 30

6.2.1 General input file syntax . 31
6.2.2 Input functions (revisited) . 31
6.2.3 Global specifications . 31

OutputFile() specification . 32
Integrate() specification . 32

ii MCSim User’ Manual

MonteCarlo() specification . 33
MCMC() specification . 33
SetPoints() specification . 35
OptimalDesign() specification 36
Distrib() specification . 37
SimType() specification . 40

6.2.4 Specifying basic conditions to simulate 40
Simulation sections . 40
StartTime() specification . 41
Print() specification . 41
PrintStep() specification . 42

6.2.5 Setting-up statistical models . 42
Level sections . 44
Data() specification . 45

6.3 Analyzing simulation output . 46
6.4 Error handling . 46

7 Common Pitfalls. 47

8 XMCSim . 49

Bibliographic References . 51

Appendix A Keywords List 53

Appendix B Examples . 55
B.1 ‘linear.model’ . 55
B.2 ‘1cpt.model’: A sample model description file 55
B.3 ‘perc.model’: A sample model description file 57
B.4 ‘perc.lsodes.in’. 62

Concept Index . 63

	Software License
	PREAMBLE
	TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

	Overview
	General procedure
	Types of simulations
	Major changes introduced with version 5.0.0

	Installation
	System requirements
	Distribution
	Machine-specific installation
	Unix/Linux operating systems
	Other operating systems

	Working Through an Example
	Setting-up Structural Models
	Using mod to preprocess model description files
	Using makemcsim to fully process model files
	Syntax of the model description file
	General syntax
	Global variable declarations
	Model types
	Special functions
	Input functions
	Model initialization
	Dynamics section
	Output calculations
	Comments on style

	Running Simulations
	Using the compiled program
	Syntax of the simulation definition file
	General input file syntax
	Input functions (revisited)
	Global specifications
	OutputFile() specification
	Integrate() specification

	MonteCarlo() specification
	MCMC() specification

	SetPoints() specification
	OptimalDesign() specification
	Distrib() specification
	SimType() specification
	Specifying basic conditions to simulate
	Simulation sections
	StartTime() specification
	Print() specification
	PrintStep() specification
	Setting-up statistical models
	Level sections
	Data() specification
	Analyzing simulation output
	Error handling
	Common Pitfalls
	XMCSim
	Bibliographic References
	Keywords List
	Examples
	linear.model
	1cpt.model: A sample model description file
	perc.model: A sample model description file
	perc.lsodes.in

	Concept Index

