
Extending Snd with Eval-C and Snd-Rt

Kjetil Matheussen
Norwegian network for Technology, Acoustic and Music. (NOTAM).

Nedre Gate 5,
0551 OSLO,

Norway,
k.s.matheussen@notam02.no

Abstract

This paper presents two domain specific program-
ming environments made for extending Snd: Eval-
C and Snd-Rt. Eval-C and Snd-Rt add another
set of pragmatic and practical solutions for work-
ing with music programming in Snd, from very low
level to very high level, and both in realtime and
non-realtime.

The software synthesizer program “San-Dysth” is
also presented, since its programmed using Snd-Rt.
And finally, Snd/Pd is presented, which makes Snd’s
and Snd-Rt’s features available as a Pure Data (Pd)
external.

Keywords

Music programming, Snd, Programming languages,
Lisp, Pure Data

Software overview

Name Description

Snd A sound editor written by Bill
Schottstaedt.

Snd-ls A distribution of Snd.

CLM A music synthesis and signal
processing package (Common
Lisp Music) written by Bill
Schottstaedth.

Snd-Rt A realtime music program-
ming environment running in-
side Snd.

Eval-C The programming language
large parts of Snd-Rt is writ-
ten in.

San-Dysth A softsynth written in Snd-
Rt.

Snd/Pd Snd running as a Pd external.

Guile An R5RS Scheme interpreter.
A community effort based on
the SCM Scheme implementa-
tion by Aubrey Jaffer.

Language features

Guile Snd-Rt Eval-C

Interpreted x
Compiled x x
Closures x
Nested functions x x
Functions as arguments x x x
Lisp lowlevel macros x x x
Dynamic typing x
Static typing x x
Type inference x
Heap allocation x x
Stack allocation x x
Garbage collection x
Runtime error checking x x1

Can segfault x
Speed 1 9 10
Hard realtime 0 10 5
Soft realtime 5 10 9
C library access 8 8 10
Vector read access 10 10 5
Vector write access 10 0 5
List read access 10 10 5
List write access 10 0 5
Vct read access 10 10 5
Vct write access 10 10 5
Signal bus access 0 10 2
CLM access 10 8 4

1 Snd, Eval-C and Snd-Rt

Eval-C and Snd-Rt are two domain specific
programming environments made for extending
Snd. Eval-C and Snd-Rt are implemented as
lisp low level macros running inside the Guile
Scheme implementation, and Guile again runs
inside the Snd soundeditor. This means that
the three languages, Scheme, Snd-Rt and Eval-
C, can be written and evaluated in the same
source to provide an integrated and interactive
environment. By combining Guile, Snd-Rt and
Eval-C, programmers get three levels of versatil-
ity and execution speed which can all be used in

1Can be turned off, with the consequence of making
Snd-Rt segfaultable and somewhat faster.



the same source files. Snd/Pd, presented later,
is programmed using all three languages.

2 Snd

Figure 1: Snd 9.4, vanilla

Snd is an extendable sound editor made by
Bill Schottstaedt. Here is a quote from the Snd
manual:

Snd is a highly customizable, extensi-
ble program. I’ve tried to bring out
to the extension language nearly ev-
ery portion of Snd, both the signal-
processing functions and much of the
user interface. You can, for example,
add your own menu choices, editing
operations, or graphing alternatives.
Nearly everything in Snd can be set
in an initialization file, loaded at any
time from a text file of program code,
or specified in a saved state file. It can
also be set via inter-process commu-
nication or from stdin from any other
program (CLM and Emacs in particu-
lar), embedded in a keyboard macro,
or typed in the listener.

Virtually everything in Snd can be cus-
tomized via extension languages. Currently,
Snd supports the following implementations
as being extension language: Guile (Scheme),
Gauche (Scheme), Ruby (Ruby) and FTH
(Forth).

Snd also provides features such as interac-
tion with Common Music (CM) and bindings
for CLM, Gtk, Motif, Xlib, OpenGL, etc. Snd
runs in Linux, Freebsd, MacOSx, Solaris, Win-
dows and probably many other Unix dialects.

2.1 Snd-ls

Snd-ls2 is a distribution of Snd.

2Snd-ls stands for Snd-Non Lisper. I accidentally
wrote ls instead of nl in the beginning of the develop-
ment

Figure 2: Snd-ls V0.9.8.3

Snd-ls has enabled various features which are
not by default enabled in vanilla Snd. Snd-ls is
also configured to run Snd-Rt and Eval-C code.

3 Eval-C

Eval-C is a language based on C, but using
S-expressions as its syntax format. Using S-
expressions makes it possible to mix Scheme and
Eval-C in the same source files and easily add
advanced syntactic features to the C language
such as object oriented programming and eval-
uation on the fly to support interactive develop-
ment of programs. Evaluating and re-evaluating
code on the fly makes it very convenient to add
low-level features to Snd and Snd-Rt since its
not necessary to recompile and restart Snd while
developing.

3.1 Some features provided by Eval-C

• Integration of C-code from within Lisp.
Scheme and C-code is mixed in the same
source, and the two languages can interact
directly.

• Direct access to C libraries

• Lisp-macros.

• Generate, compile, link, run and redefine
C-code on the fly in Emacs or other Lisp
programming environments

• Same efficiency as C

• Same low-level features as C

• Extra macros to support features such as
arrays, shared structures, classes, and au-
tomatic wrapping of C library functions.

3.2 Hello world!

(eval-c ""
(run-now
(printf (string "Hello world!\\n"))))



First argument to eval-c contains extra op-
tions sent to the C compiler.

The rest of the arguments are Eval-C code.
Strings containing pure C-code can be used

anywhere in Eval-C code, which is very handy
when writing macros and providing C features.
For example, the above example can also be
written like this:

(eval-c ""

(run-now
"printf(\"Hello World!\\n\")"))

To make an actual null-terminated string for
C, the string special form must be used instead,
as in the first version.
3.3 The Fibonacci function

The simplest Fibonacci function:

(define-c <int> (fib ((<int> n))
(if (< n 2)

(return n)
(return

(+ (fib (− n 1))
(fib (− n 2)))))))

(fib 30)
=> 832040

define-c is a macro transforming its argu-
ments into a call to eval-c. The function fib
above is transformed into:

(eval-c ""

(public
(<int> fib

(lambda ((<int> n))
(if (< n 2)

(return n)
(return (+ (fib (− n 1))

(fib (− n 2)))))))))

When evaluating the above block of code, the
eval-c macro uses gcc or icc to compile and link
the code.

3.4 Structures

The macro define-ec-struct creates structures
which are shared between Eval-C, C and Guile3:

(define-ec-struct <struct name>
<int> one
<float-∗> twos
<char-∗> three
<SCM> scm)

3And hopefully Snd-Rt sometime into to future as
well

By evaluating the above code, a structure
called struct name will be available from guile.
It can be used like this:

(define test (<struct name> :one 1
:twos ’(2)
:three "three"))

(-> test one) => 1

(-> test one 90)
(-> test one) => 90

(-> test twos) => (2.0)

(-> test twos ’(4 5 6))
(-> test twos) => (4.0 5.0 6.0)

(-> test three) => "three"

(-> test three "four")
(-> test three) => "four"

(-> test scm) => #f

(-> test scm (lambda (x) x))
(-> test scm) => #<procedure #f ((x) x)>

(-> test get-size) => 16

(-> test get-c-object)
=> ("A POINTER" 147502592)

(-> test destructor) ;;free it

Modifiers and accessors are available for all
slots. Known slot-types are SCM4, char, int,
float, double and char ∗, and arrays of those. C
modifiers such as unsigned are treated appropri-
ately. There are also functions to add new types
which can be mapped to the known types. Slots
with unknown types keep their names, but are
treated as pointers by Eval-C.

Ec-structs are extremely convenient when
communicating with C programs since they con-
tain actual C structures.

The C object must unfortunately be freed
manually5. This was in the example done by
evaluating (-> test destructor).

4SCM is the Guile datatype, which can hold any type
of Scheme object. However, care must in some situations
be taken using SCM types in ec-structres, since Guile’s
garbage collector doesn’t scan ec-structure objects. The
objects are also kept in the Scheme object though (ie.
the variable test in the example), so usually this should
not be a problem.

5Either using a general garbage collector for C, such
as the one made by Hans Boehm, or use a Guile SMOB
around the structures, would solve this problem. How-
ever, freeing ec-structures manually hasn’t been a big
issue yet.



4 Snd-Rt

Snd-Rt, or the RT extension for Snd, consists of
two parts:

The RT Engine - An engine for doing real-
time signal processing.

The RT Compiler - A compiler for a Scheme-
like programming language to generate
realtime-safe code understood by the RT
Engine.

The entire realtime engine and large parts of
the compiler for Snd-Rt is written in Eval-C.
Nothing in the realtime engine or the RT lan-
guage is written directly in C. Wrapper func-
tions for libjack and liblrdf are created auto-
matically using Eval-C as well.

4.1 The Fibonacci function

(define-rt2 (fib n)
(if (< n 2)

n
(+ (fib (− n 1))

(fib (− n 2)))))

(fib 30)
=> 832040.0

4.2 A sound

(let ((osc (make-oscil)))
(<rt-play> 0 3

(lambda ()
(out (∗ 0.8

(oscil osc))))))

To run the example above, paste the 5 lines
into the terminal Snd-ls was started. After that,
a 440Hz pure tone should be played for exactly
three seconds.
4.3 The RT Engine

The main purpose of the RT Engine is to receive
<realtime> objects created by the RT Com-
piler, and provide ways to control exactly when
to run those objects.

The API for doing this is hidden from the
user, and is accessed by instead calling methods
provided by the <realtime> class.

4.3.1 RT Engine features

• Hard Realtime safe

• Jack and Pd driver

• Realtime scheduler with a properly made
priority queue to ensure a stable CPU load
when adding and removing realtime objects
to and from the engine.

• <realtime> objects are started and
stopped in realtime without sound
glitches.

• Buses can be rerouted in realtime without
sound glitches.

• Frame-accurate timing and scheduling

• Protection mechanism to avoid locking up
the computer if using too much CPU.

• Controlled entirely from Scheme using
Guile, and, to a certain degree, from inside
the realtime objects themselves

4.4 The RT Compiler

The RT compiler works by first translating the
Scheme-like input-code into Eval-C code, and
then calling eval-c to create machine code.

The RT compiler translates in several stages,
which includes macro expansion, lambda lifting,
name mangling, type inference, syntax check-
ing, etc.

4.4.1 RT Compiler features

• Compilation of simple Lisp functions into
machine code.

• Generation of hard realtime safe code.6

• The compiled code should ideally be close
to C in efficiency.

4.5 The RT programming language

The Snd-Rt programming language (RT) is co-
incidentally quite similar to the Lisp dialect
PreScheme [1]. But while PreScheme is a gen-
eral programming language standing on its own
feet, RT is a domain specific language special-
ized for music, sound and realtime use running
inside the Guile Scheme interpreter.

The RT language is designed to be a prag-
matic language. It is not always as fast as C,
and it is not as practical and feature rich as
Scheme or Common Lisp, but it fits nicely in
between and can provide almost-as-fast-as-C of
usually-high-level-enough code.

The RT language is mostly imperative, but
since it also has fairly good support for higher
level functions, the programmer is often not re-
stricted to one programming paradigm, but has
the choice between coding semi-functionally or
imperatively.

6Unless the RT code contains non-realtime safe func-
tions such as printf.



4.5.1 RT programming language
features

• Ladspa

• Alsa midi

• Lisp Macros

• Automatic read access to Guile numbers,
lists, vectors and numbers. (seamless inte-
gration)

• Automatic read- and write access to VCTs7

• Guile has read- and write access to all of
RT’s variables

• Most of CLM [2] is provided as well as
many functions provided by Snd, Sndlib
and Guile.

• Static typing and type inference

• The types for numeric variables can be
specified for optimization

• Runtime error checking and crash insur-
ance

• Buses

• Realtime-safe ring-buffers between Guile
and RT

• Lisp structures. Accessible from, and using
the same syntax as, both Guile and RT.8

• Access to external libraries can easily be
added on the fly by using Eval-C

4.6 No control rate

A liberating feature of CLM and Snd-Rt is that
there is no control rate, and that every sound
frame is automatically exposed to the program-
mer. Pd, for example, generates 64 frames at
each control rate tick, while CLM generates only
one.

This creates a simpler interface for the user,
and removes the need to create generators in
a different language, usually C or C++. The
downside is that its harder to make the signal
processing algorithms run fast this way, espe-
cially for interpreters.

Exposing every sound frame to the program-
mer is also more powerful. For example, a new
type of filter can perhaps be made in Pd by us-
ing the z∼ external or similar mechanisms, but

7Vct is Snd’s data type for holding arrays of sound
data. It is similar in functionality to Scheme’s vector
type, but vct’s can only contain sounds, and are opti-
mized to do so.

8Not the same kind of structure as ec-structures

chances are that it is easier to write an exter-
nal in C instead. However, in CLM, doing this
kind of operation is both an easy and a straight
forward task for a programmer. An example
of such a generator is the San Dysth softsynth
described in the next section.

4.7 Why a compiler?

Most other music programming languages, like
PD, CSound and the SuperCollider server, are
interpreters since the speed of the language con-
trolling the MusicV graph doesn’t matter that
much.

In those languages, the generators process
blocks of audio samples, and most of the CPU is
therefore spent inside those generators and not
in the language controlling the graph.

However, in CLM, most of the time is of-
ten spent in the language controlling the graph,
and therefore the difference in speed between
interpreting and running compiled code is quite
significant.9 This is especially important when
generating sound in realtime, since we don’t
want to hear interruptions in the sound.

4.8 Dynamic memory allocation

Some important features are missing from the
RT programming language, such as functions to
dynamically allocate memory on the heap for
creating lists and closures. In practice, these
features will probably not very often be used
since its more natural to create lists in Guile
instead of Snd-Rt, ie. preallocating the required
lists. And so far, I have not had any use for
closures.

However, since it hasn’t been possible to cre-
ate lists or closures in Snd-Rt so far, I can not
be entirely sure its not very useful either.

5 San Dysth

San Dysth is a standalone realtime soft-synth
written in Snd using the Snd-Rt language.

San Dysth has controls to generate various
kinds of sounds in between white noise and pure
tones. It also provides controllers to disturb the
generated sound by using a ”period counter” to
extend the variety of the generated output.

Common usage for San Dysth is organ-like
sound, organic-like sound, alien-like sounds,
water-like sounds, and various kinds of noise.
Noise artists could find this softsynth most use-
ful.

9If we assume that compiled code runs faster than
interpreted code, which has been a common observation.



Figure 3: San Dysth

San Dysth’s synthesis technique works by us-
ing a set of rules which change state for each
sample:

;; This function provides the main synthesis
;; routine for San-dysth. The function
;; returns one sample per call.
;;
(define-rt (san-dysth-dsp direction)

(cond ((<= val −1)
(set! inc-addval #t))

((>= val 1)
(set! inc-addval #f))

((> addval max-add-val)
(set! periodcounter period)
(set! inc-addval #f))

((< addval (− max-add-val))
(set! periodcounter period)
(set! inc-addval #t))

((= 0 (inc! periodcounter −1))
(set! periodcounter period)
(set! inc-addval (not inc-addval))))

(define drunk-change
(random max-drunk-change))

(set! addval
(filter das-filter

(if inc-addval
drunk-change
(− drunk-change))))

(inc! val addval)))))))))

;; The following block creates and plays a
;; realtime object. The variables max-add-val,
;; max-drunk-change, period, das-filter, vol and
;; rate are parameters which later can be adjusted
;; by the user. Notice the use of dynamic scoping
;; when Snd-Rt use variables created by Guile.
;;
(let∗ ((val 0)

(addval 0)
(max-add-val 0.01)
(max-drunk-change 0.00005)
(period 400)
(periodcounter period)
(inc-addval #f)
(sr (make-src :srate 0 :width 20))
(rate 10)
(vol 20)
(das-filter (make-filter

4
(vct 1 −0.474 −0.723 −0.426)
(vct 1 0.698 0 0))))

(<rt-play>

(lambda ()
(out (∗ vol

(src sr rate san-dysth-dsp))))))

6 Snd/Pd

Snd can be configured to work as a Pd external.

6.1 FM synthesis example

Figure 4: Snd/Pd doing FM synthesis

The file pd-fm.scm used in figure 4 looks like
this:

(let ((amp 0.6)
(mc-ratio 2)
(index 4)
(freq 300))

(define fm
(make-oscil (∗ freq mc-ratio)

:initial-phase (/ 3.14159 2.0)))
(define carrier (make-oscil freq))
(define fm index (∗ (hz->radians freq)

mc-ratio



index))
(define instrument

(<rt-play>

(lambda ()
(out 0 (∗ amp

(oscil carrier
(∗ fm index

(oscil fm)))))))))
(pd-inlet 0 ’mc-ratio

(lambda (val)
(set! mc-ratio val)))

(pd-inlet 0 ’Fm-Frequency
(lambda (val)

(set! (mus-frequency fm)
(∗ mc-ratio val))))

(pd-inlet 0 ’Carrier-Frequency
(lambda (val)

(set! (mus-frequency carrier)
val)))

(pd-inlet 0 ’Index
(lambda (val)

(set! (-> instrument fm index)
(∗ (hz->radians freq)

mc-ratio
val))))

(pd-inlet 0 ’Amplitude
(lambda (val)

(set! (-> instrument amp)
val))))

6.2 Threading

When Snd runs as a Pd external, it also runs
in its own dedicated thread. This ensures
that Guile’s garbage collector doesn’t interrupt
sound processing. Communication between Pd
and Snd happens by sending messages back and
forth on two ringbuffer. Snd-Rt’s signal process-
ing thread, on the other hand, runs directly in
Pd’s main thread, like all other signal process-
ing code in Pd.

6.3 Interactive development

The Snd external also uses Snd’s code to read
Scheme code from stdin. This makes it possible
to do interactive development inside a Lisp envi-
ronment like Emacs by starting Pd as a Scheme
sub-process. The external also uses Snd’s code
to properly catch errors and display relevant
error messages, making debugging very conve-
nient.

6.4 API for data processing

Below is a brief description of all functions pro-
vided for the Snd/Pd interface. A more com-
plete description is available in the Snd manual.

(pd-inlet inlet-num type func)
func is a function which is called when the
object receives a message to inlet number
inlet-num of type type. Common values for
type are ’float, ’list and ’bang.

(pd-outlet outlet-num arg0 arg1 . . . )
Sends one or more values to outlet outlet-
num. The arguments can be of any type.

(pd-bind symbol func)
Pd messages sent to symbol arrive at the
func function.

(pd-unbind symbol)
Stop receiving messages sent to symbol.

(pd-send symbol arg0 arg1 . . . )
Sends one or more values to receivers for
symbol. symbol can either be a scheme sym-
bol or a pd symbol.

(pd-get-symbol symbol)
Returns the pd symbol for the scheme sym-
bol symbol. pd-send works faster when a pd
symbol is used instead of a scheme symbol.

(pd-set-destroy-func thunk)
thunk is called before the object is de-
stroyed or reloaded.

6.5 API for signal processing

The API for doing signal processing is simple:
(in 0) is by default mapped to inlet 1, (in 1) is
mapped to inlet 2, and so on. (out 0) is by de-
fault mapped to outlet 1, (out 1) is by mapped
to outlet 2, and so on.

7 Future work / Soft realtime using
Guile

There are situations where its more convenient
to start new RT instances based on input either
from a graphical user interface, midi messages
or OSC messages, rather than to start many
RT instances in advance and then let those in-
stances handle input.

Too much resources may also be used when
forced to start many new RT instances in
advance, instead of only starting them when
needed.

To schedule RT instances instantly, which in
this case means that scheduling an event takes
less time than Just Noticable Difference (JND),
Guile needs to support soft realtime. By inter-
preting studies by Mäki-Patola and Hämäläinen
on continuous sound instruments without tac-
tile feedback. [3], and Adelstein, Begault, An-



derson and Wenze [4] on haptic-audio asyn-
chronity, two studies which measure two very
different kinds of JNDs, it seems probable that
a JND of less than 20-30ms might be sufficient
for almost all situations. But its not unlikely
that more than 20-30ms could be tolerant for
most kind of use as well.

Soft realtime is also needed to do proper in-
teractive data handling when running Snd as a
Pd external.

A large problem for Guile to support soft
realtime is Guile’s garbage collector. Guile’s
garbage collector seems to stall scheduling of
RT-objects for as much as 100-500ms10 now and
then.

Preliminary tests using Han-Wen Nienhuys
and Ludovic Courtès’ experimental patches for
Guile to let Guile use Hans Boehms garbage col-
lector (HBGC) [5], and further let Guile receive
midi to schedule appropriate RT objects in re-
altime, has shown promising results.11 But this
needs more testing.

So far I have unfortunately not succeeded
running Guile with the HBGC in incremental
mode. Running the HBGC in incremental mode
could make Guile able to guarantee soft real-
time performance.12 I have not yet investegated
reasons for the failure though, just observed it
crashing.

In addition, patches to at least let Guile do
realtime safe memory allocations might be nec-
essary for Guile to run using SCHED FIFO or
SCHED RR [6] realtime priority without risk-
ing priority inversion.

Simply turning off the garbage collector is
not an option, especially since memory usage
in Guile tends to surpass the size of physical
memory surprisingly quickly.

Using a different Scheme implementation
other than Guile is also an alternative.
RScheme [7] is currently the only known larger
scheme implementation who has, or at least ear-
lier claimed to have, realtime support. It might
be worth investigating the possibility of using
RScheme as an extension language for Snd.

But for now, the safe option is to receive ex-
ternal input, such as MIDI, in Snd-Rt, and not

10I have not measured the garbage collector latency,
but sometime it feels like around 500ms on my machine.

11http://lists.gnu.org/archive/html/guile-devel/2007-
06/msg00002.html

12Hans Boehm has indicated on a mailing list post-
ing that a garbage collection time of 20-50ms could be
achievable in incremental mode. http://gcc.gnu.org/
ml/java/2006-04/msg00072.html

in Guile, although both options are available.

8 Acknowledgements

This work has partly been funded by the Art
Council Norway, Intravision Group13 and No-
tam.

Thanks to the following persons for support
and help on this work: Chris Chaffe, Alexander
Refsum Jensenius, Bjarne Kvinnesland, Jose
Rio-Pareja, Jøran Rudi, Bill Shottstaedt, Siren
Tjøtta, Anders Vinjar and Sook Young Won.

Web links
CLM http://ccrma.stanford.edu/software/clm/

Common Music http://commonmusic.sourceforge.net/doc/cm.html

Pd http://crca.ucsd.edu/∼msp/software.html
Guile http://www.gnu.org/software/guile/guile.html

HBGC http://www.hpl.hp.com/personal/Hans\ Boehm/gc/

San-Dysth http://www.notam02.no/∼kjetism/sandysth/
Snd http://ccrma.stanford.edu/software/snd/

Snd-Rt http://www.notam02.no/arkiv/doc/snd-rt/

References

[1] R. Kelsey. Pre-scheme: A scheme dialect for
systems programming, 1997.

[2] William Shottstaedt. Machine tongues xvii:
Clm: Music v meets common lisp. Computer
Music Journal, 18(2):30–37, 1994.

[3] T Mäki-Patola and P Hämäläinen. Latency
tolerance for gesture controlled continuous
sound instrument without tactile feedback,
2004.

[4] Bernard D. Adelstein, Durand R. Begault,
Mark R. Anderson, and Elizabeth M. Wen-
zel. Sensitivity to haptic-audio asynchrony,
2003.

[5] H.-J. Boehm. A garbage collector for c and
c++.
http://www.hpl.hp.com/personal/Hans Boehm/

gc/.

[6] M. Harbour. Real-time posix: an overview,
1993.

[7] Donovan Kolbly. Rscheme, 1997.

13For the Windows port


