The|Cl Programming Language

Tim Long

© 1992-2003 Tim Long
Regular expression portions © 1997-1999 University of Cambridge
Permission granted to reproduce provided copyright notices are preserved.

The ICI Programming Language 1

Chapter 1:

2 ThelCl Programming Language

CHAPTER 1 Introduction 11

CHAPTER 2 A brief tutorial for C programmers 13

Helloworld 13

Program structure 14

Variables and arithmetic 14

Lexicon, syntax and flow control statements 15

Aggregate data types and the nature of objects 15
Making and manipulating aggregates 17
Literal dataitems 17

Other operations and core functions 18
Regular expressions 18

CHAPTER 3 Some sample programs 21

Ackermann’sfunction 21
Array access 22

Count lines/words/characters 22
Echo client/server 23
Exception mechanisms 24
Fibonacci numbers 25

Hash (associative array) access 25
Hashes, part Il 25

Heapsort 26

Helloworld 27

List operations 27

Matrix multiplication 28
Method calls 29

Nested loops 31
Producer/consumer threads 31
Random number generator 32
Regular expression matching 33
Reverse afile 34

Sieve of Eratosthenes 34

Spell checker 35

Statistical moments 35

String concatenation 36

Sum a column of integers 37
Word frequency count 37

The ICl Programming Language 3

Chapter 2:

CHAPTER 4 ICI Language Reference 39

Thelexical analyser 39
An introduction to variables, modules and scope 40
Theparser 41
Expressions 43
Factors 43
An introduction to arrays, setsand structs 44
Built-in literal factors 45
User defined literal factors 47
Primary operators 48
Terms 49
Prefix operators 50
Postfix operators 50
Binary operators 51
Binary operator summary 53

Statements 54
Smple expression statements 54
Compound statements 54
The if statement 55
The while statement 55
The do-while statement 55
The for statement 56
Theforall statement 56
The switch, case, and default statements 57
The break and continue statements 58
Thereturn statement 59
Thetry statement 59
The critsect statement 60
The waitfor statement 60
The null statement 61
Declaration statements 61
Abbreviated function declarations 63
Functions 63

Objects 66
Equality 68
Sructure and set keys 70
Sructure super types 71
An aside on variables and scope 73

Basetypes 73
array - An ordered sequence of objects 74
exec - Athread execution context 74
file- An open filereference 75
float - A double precision floating point number 75
func - Afunction 76
int - Asigned 32 bit integer 76
mem - A reference to raw machine memory 76
method - A binding of a function and a subject object 77
ptr - A reference to a storage location 77
regexp - A compiled regular expression 78
set - An unordered collection of objects 78
string - An ordered sequence of 8 bit characters 79

4 ThelCl Programming Language

CHAPTER 5

CHAPTER 6

struct - An unordered set of mappings 79

Operators 79

Automatic library loading 84

Object-oriented programming in ICl 87

Sub-classes 89

Global methods 92

Taking advantage of dynamic binding 92
Sandard global methods 93

Core language functions and variables 95

Core function summary 95
Core language functions 98

float|int = abs(float|int) 98

angl e = acos(x) 98

mem = all oc(nwords [, wordz]) 98

string = argv[] 98

array = array(any...) 98

float = asin(x) 98

val ue = assign(struct, key, value) 98
angle = atan(x) 99

angle = atan2(y, x) 99

array|struct = build(dims... [, options, content...]) 99
float|struct = cal endar(struct|float) 100
return = call (func [, any...], array| NULL)
float = ceil (x) 101

Change the current working directory to the specified path. 101
close(file) 101

int = cnmp(a, b) 101

any = copy(any) 101

any = any:copy() 101

x = cos(angle) 101

float = cputime([float]) 101

file = currentfile(["raw']) 101

int = debug([int]) 102

del (aggr, key) 102

array = dir([path,] [regexp,] [format]) 103
int = eq(obj1, obj2) 103

int = eof([file]) 103

event| oop() 103

exit([string|lint|NULL]) 104

float = exp(x) 104

array = expl ode(string) 104

fail(string) 104

val ue = fetch(struct, key) 104

value = float(x) 104

float = floor(x) 104

flush([file]) 104

float = frmod(x, y) 104

The ICI Programming Language 5

100

Chapter 2:

file = fopen(nane [, node]) 105
string = getchar([file]) 105

string = getcwd() 105

string = getenv(string) 105

string = getfile([file]) 105

string = getline([file]) 105

string = gettoken([file [, seps]]) 105

array = gettokens([file [, seps [, terms,
[delins]]]]) 106

string = gsub(string, string|regexp,
string) 107

string = inplode(array) 107

struct = include(string [, scope]) 107
value = int(any [, base]) 107

subpart = interval (str_or_array, start [,
I ength]) 107

int = inst|class:isa(any) 108

int = isatom(any) 108

array = keys(struct) 108

any = load(string) 108

fl oat | og(x) 108

float = 0ogl0(x) 108

mem = nen(start, nwords [, wordz]) 108
file = mopen(mem [, node]) 109

int = nels(any) 109

inst = class:new() 109

float = now() 109

nunber = num(x [, base]) 109

scope = parse(source [, scope]) 109
string = parsetoken(file) 110

any = parsevalue(file) 111

string = path[] 111

any = pop(array) 112

file = popen(string, [node]) 112
float = powm(x, y) 112
printf([file,] fm, args...) 112
profile(filenane) 112

any = push(array, any) 113
put(string [, file]) 113
putenv(string) 113

int = rand([seed]) 114

reclaim() 114

re = regexp(string [, int]) 114

re = regexpi(string [, int]) 114
rejectchar(file, str) 114
rejecttoken(file) 114
renove(string) 115

any = rpop(array) 115

any = rpush(array, any) 115
current = scope([replacenent]) 115
int = seek(file, int, int) 115

set = set(any...) 115

func = signal (string|int [, string|func])

116

6 ThelCl Programming Language

CHAPTER 7

string = signan(int)
x = sin(angle) 116
sl eep(num 116

116

array = smash(string [, regexp [, replace...]

[, include_renainder
file = sopen(string
array = sort(array [
string = sprintf(fnt
x = sqgrt(float) 118
string = strbuf([str
string = strcat(stri
string...) 118

string = string(any)

1) 116

[, node]) 117

, func [, arg]]) 117
, args...) 118

ing]) 118
ng [, int] ,
119

struct = struct([super,] key, value...) 119

string = sub(string,
string) 119

string| regexp,

current = super(struct [, replacenent]) 119

int = systen(string)
x = tan(angle) 120

120

exec = thread(callable, args...) 120

string = tochar(int)
int = toint(string)
any = tokenobj (file)
any top(array [,
int = trace(string)
string = typeof (any)
string = version()
array = vstack([int]
wakeup(any) 121
struct = which(key [

Regular expressions

120
120
120
nt]) 120
120
121
121
) 121

, struct]) 122

123

Regular expression syntax 123

Backslash 124
Circumflex and dollar 126
Full stop (period,dot) 127
Square brackets 127
Vertical bar 128

Internal option settings 129
Subpatterns 130
Repetition 130

Back references 132
Assertions 133
Once-only subpatterns 135
Conditional subpatterns 136
Comments 137
Performance 137

Author 138

The ICl Programming Language 7

Chapter 2:

CHAPTER 8 Interfacing with Cand C++ 139

Universal rules and conventions 139
Includefilesand libraries 139
The nature of ICI objects 140
Garbage collection, ici_incref() and ici_decref() 140
The error return convention 140
ICl'sallocation functions 142

Commontasks 142
Writing a simple function that can be called fromICI 142
Calling an ICI function or method fromC 144
Making new ICI primitivetypes 144
Using ICI handle types to interfaceto C/C++ objects 146
Writing and compiling a dynamically loading extension module 149
Referring to ICI stringsfrom C code 150
Accessing ICI array objectsfromC 151
Using ICI independently from multiple threads 152

Summary of ICI’'sCAPI 152

Detailed description of ICI'sC APl 158
ARG 158
ARGS 158
CF_ARG1 158
ICI_BACK_COMPAT VER 159
ICI_DIR SEP 159
ICI_DLL_EXT 159
ICI_NO_OLD_NAMES 159
ICI_OBJ SET_TFNZ 159
ICI_PATH_SEP 160
ICI_VER 160
NARGS 160
hassuper 160
ici_alimit 160
ici_alloc 160
ici_anext 161
ici_argcount 161
ici_argerror 161
ici_array_find_dlot 162
ici_array_gather 162
ici_array_get 162
ici_array_nels 162
ici_array_new 162
ici_array_pop 163
ici_array push 163
ici_array rpop 163
ici_array _rpush 163
ici_assign 163
ici_assign_base 163
ici_assign_cfuncs 164
ici_assign fail 164
ici_assign_super 164
ici_astart 164
ici_atexit 165

8 ThelCl Programming Language

ici_atom 165
ici_atom probe 165
ici_call 165
ici_callv 165
ici_cfunc_ t 166
ici_chkbuf 166
ici_class new 166
ici_cmp_unique 167
ici_copy_simple 167
ici_debug t 167
ici_decref 168
ici_def_cfuncs 168
ici_dont_record_line_nums 168
ici_enter 168
ici_error 169
ici_eval 169
ici_fetch 169
ici_fetch base 169
ici_fetch fail 169
ici_fetch_super 170
ici_file close 170
ici_file new 170
ici_float new 170
ici_float_ret 171
ici_float t 171
ici_free 171
ici_ftype t 171
ici_func 172
ici_funcv 172

ici_get last_errno 172
ici_get last win32_error 173
ici_handle method check 173
ici_handle new 173
ici_handle probe 174
ici_handle t 175
ici_hash_unique 176
ici_incref 176
ici_init 176

ici_int new 177
ici_int ret 177
ici_int t 2177
ici_interface check 177
ici_leave 178
ici_main 178
ici_make_handle member_map 178
ici_mem new 179
ici_method 179
ici_method_check 179
ici_method_new 179
ici_module new 180
ici_nalloc 180
ici_need stdin 180
ici_need stdout 180

The ICl Programming Language 9

Chapter 2:

CHAPTER 9

ici_nfree 180
ici_null 180
ici_null_ret 181
ici_obj_t 181
ici_objname 181
ici_objwsup_t 182
ici_parse 182
ici_parse file 182
ici_parse fname 182
ici_ptr_new 182
ici_register_type 183
ici_rego 183
ici_ret_no_decref 183
ici_ret_with_decref 183
ici_set new 184
ici_sopen 184
ici_srct 184
ici_str_alloc 184
ici_str_buf new 184
ici_str_get_nul_term 185
ici_str need size 185
ici_str new 185
ici_str new _nul_term 185
ici_str ret 185
ici_struct new 186
ici_struct_unassign 186
ici_talloc 186
ici_tfree 186
ici_type t 186
ici_typecheck 189
ici_typeof 190
ici_uninit 190
ici_waitfor 190
ici_wakeup 191
ici_yield 191
Building ICI on various platforms 191
Windows 191
UNIX-like systems 191

How it works 192

Obsol ete features and mistakes

OBSOLETE: Method Calls### 193
event = waitfor(event...) 194
argc 194

Mistakes 194

193

10 ThelCl Programming Language

CHAPTER 1 I ntrOdUCU On

ICl isageneral purpose interpretive programming language that has dynamic typing and flexi-
ble data types with the basic syntax, flow control constructs and operators of C. It isdesigned
for use in many environments, including embedded systems, as an adjunct to other programs, as
atext-based interface to compiled libraries, and as a cross-platform scripting language with
good string-handling capabilities.

The ICI language and source is free for any use but without warranties of any kind.

This document isthe basic reference for the core language and functions. Thereis also an exten-
sive man page that includes details of command line invocation not described here. Additional

documentation is provided in the I Cl source releases. The ICl web site is maintained by Andy
Newman at http://ici.sf.net/

ICI source code is maintained publicly at Sourceforge (http://sf.net/) under the project nameici.
Releases are available there.

This document relates to ICI version 4.1.

Thefollowing people are due much thanksfor their contributions. Andy Newman, Chris Amies,
Luke Kendall, Giordano Pezzali, Philip Hazel, Henry Spencer, Yiorgos Adamopoulos, Gary
Gendel, Alexander Demenshin, Oliver Bock, and Tim Vernum.

The ICI Programming Language 11

http://ici.sf.net/
http://sf.net/

Chapter 1: Introduction

12 ThelCl Programming Language

CHAPTER 2 A brief tutorial for C
programmer's

This chapter isintended as a quick tutorial introduction to ICI for programmers familiar with C
or C++, It does not dwell on formal definitions and exceptions. For precise definitions, see the
next chapter: 1Cl Language Reference. Because ICl’s syntax and flow control constructs are
based on those of C, a C programmer has a particular advantage in learning to use ICI. This
tutorial will take advantage of that and move quickly through areas that are unsuprising to C
programmers.

Thistutorial will also occasionally allude to how things work inside the interpreter as, to a pro-
grammer, this can aid comprehension and give an idea of the implications of using certain con-
structs.

Hello world

The ICI hello world program is simply:
printf("Hello world.\n");

ICI's printf isthe same as C's. You can verify your ICl execution environment by placing that
singlelinein afile (often with a.ici suffix) and running it with:

ici hello.ici

And of course on UNIX like systems you can place:

#!'/usr/ 1 ocal / bin/ici

inthefirst lineto alow direct execution of the file (provided ICl isinstalled in /usr/local).

The ICl Programming Language 13

Chapter 2: A brief tutorial for C programmers

Program structure

AnICI program fileis a sequence of statements. These statements include both executabl e state-
ments as you would expect to find within C functions, and declaration statements as you would
expect to find at the file level of a C program. Thus.

printf("Let's define a function.\n");

static
func()

{
}

printf("Hello fromfunc.\n");

printf("Now let's call it.\n");
func();

Will produce:

Let's define a function.
Now let's call it.
Hello from func.

Variables and arithmetic

Because ICl isadynamically typed language, the nature of avariableis of course different from
those of C. But for typical arithmetic the differencesare invisible. All ICI variables refer to stor-
age that records both the type and data of the variable’s current value . Thus we can say:

X = 1;

which makes x refer to the integer one. Then

X = 1.0;

which updates x to refer to the float one. Then

X = "one’;

which updates x to refer to the string "one".

AsaC programmer, you can consider all ICl variables to be typless pointers to objects that
record both type and value. But because I Cl’s built in operators know thisis the case, they read
and generate the pointed-to values automatically. Thus ordinary arithmetic is unsurprising:

fahr = 100. 0;
celsius = (5.0/ 9.0) * (fahr - 32.0);
printf("% deg. Fis % deg. Qn", fahr, celsius);

works as one would expect. So most of the time you don’t need to consider this at all. All
objectsin ICl are subject to automatic garbage collection, so no explicit freeing is required.

Because ICl variable are dynamically typed, you don’t need to declare them. But ICI supports
hierarchical modularisation and it is often desirable to declare at what scope avariable lives.
Thus we have:

14 ThelCl Programming Language

Lexicon, syntax and flow control statements:

extern xxx; /* xxx is visible to other files. */
static sss; /* sss is visible in this file. */
aut o aaa; /* aaa is visible in the | ocal scope. */

The word static is used in the C sense of the value being persistent. This variable will exist with
persistent value as long as functions in this module are still callable. Extern variables are al'so
persistent, they just have more global scope. Consider:

static
func(arg)

auto |ocal;

| ocal = 10;
for (i =0; i < local; ++i)
printf("%l\n", i * arg);

}

Thisfunction (which is declared static) has an auto variable. Auto variables are, asin C, the var-
iables that spring into existence (on the stack) for the duration of a single execution of afunc-
tion. The function also usesthe variablei. If an undeclared variableis assigned to, it is
implicitly declared auto. That can be dangerous in large programs with many variables of more
global scope that may already exist, so asastylerule, implicit autos are normally kept to one or
two characters, and more global variables should not be.

Auto variables, and their implicit declaration, also work at the filelevel. They have asimilar (in
a sense) semantics. While the fileis being parsed, they exist. But they evaporate afterwards.
They are not visible to functions defined within the file. We used implicit auto variablesin our
fahrenheit to celsius conversion above.

Lexicon, syntax and flow control statements

ICI'slexiconis (basically) the same as C's. Same tokens, comments (including //) and literal
data values. Sorry, no preprocessor.

ICI’s syntax is, wherever possible, the same as C's. Naturally differences arise due to the differ-
ent nature of the environment, as we have seen above.

Aswe have seen, expressionsare asin C. There are of course additional datatypes, literals, and
operators, but these build from the initial C compatible set.

The flow control constructs if-else, while, for, do-while, switch (including case and default),
continue, break and return all have the same basic syntax and semantics as C. But thereisno
goto.

In addition to these classic C statements forms, I Cl has forall, try-onerror, waitfor, and critsect.
But before considering these, we will look at aggregate data types and the nature of objects,
which is the one aspect a C programmer needs to understand before writing effective ICl code.

Aggregate data types and the nature of objects

ICl supports a number of “aggregate” datatypes. Principly:

The ICI Programming Language 15

Chapter 2: A brief tutorial for C programmers

array Simpleordered collections of valuesthat can beindexed by integers.
Thefirst item isat index 0. They can be efficiently pushed and
popped at either end.

struct Mappings from an index (any object) to avalue. Also known as as-

sociative arrays, dictionaries, maps, hashes, etc in other languages.
Adding entries, lookup and deletion are al efficient operationsirre-
spective of the complexity of the objectsinvolved.

set Simple unordered collections of values.

Each of these hold a collection of references to other objects. Thereis a significant distinction
between these aggergate types and the simple types such as int, float, and string. These simple
types have no modifiable internal structure. They are read-only. In fact, when an object of one of
these typesis required (say asthe result of some arithmetic operation) it islooked for in a hash
table of all such objects, and the entry found thereis used. It is created and added if it does not
exist.

Thus we can see that all strings “xyz” in an ICl program are just pointers to the same single
object in memory. The same s true for integers (which are 32 bit signed values) and floats
(which are double precision values). An object that has been resolved to its single unique (read-

only) version is said to be atomi ct
Aggregates, on the other hand, are internally modifiable in-place.

InICl, “indexing” an aggregate is the most primitive way of accessing internal elements. But
we use the term indexing in a more general sense than simple array indexing. For example,
array indexing is unsurprising, so:

a[0] = 3;

setsthe first element of an array a to 3. With a sruct s we might say:

s.val ue = 3;

which setsthe valuefield of the struct to 3. But thisisjust an “indexing” operation on the struct.
In fact it isjust a syntactic variation on:

s["value"] = 3;

Arrays, structs and setsare all objects that support indexing to refer to internal values (i.e. object
references) for read or write. Each varies only in how they are structured internally, and how
they interpret the “key”, or index, applied to them.

» Arraysare growable circular buffers of object references that can only be indexed by inte-
gers, which are interpreted as an offset from the first element.

» Structs are hash tables that map one object reference to another. Theindex referenceitself is
the basisfor indexing, not the details of the index object (that is, the indexing operation only
looks at the index as a pointer, not at what it pointsto). But because ints, strings, floats, etc
are aready resolved to unique pointers based on their values, this behaviour isindistinguish-
able from full value hashing and comparison for simple (atomic) types.

1. Thistype of mechanismistypical for dynamically typed interpretive langauges such as I Cl. Although it
is less common to apply it to uniformly for all data types of the language, even numbers.

16 ThelCl Programming Language

Literal data items: Making and manipulating aggregates

» Setsare hash tablesthat merely record the presence or absence of an object in the same man-
ner as structs, but they have no associated value. Although they have an “implicit” value of 1
if the object isin the set.

Arrays, structs and sets all return the special object NULL if the key is not in their current
domain.

M aking and manipulating aggregates
The simplest ways to make aggregates are the functions array(), set() and struct(). For example:
array(1, 2.5, "hello");

set ("bye", 5.5, 9);

a
b
c struct("a", 12, "b", 13);

The struct() function interpretsits arguments pair-wise as key-value pairs. If, after executing the
above code, we do:

printf("a[2] = %\n", a[2]);
if (b[9])

printf("The set b contains 9.\n");
printf("c.a = %\n", c.a);

we will see:

a[2] = hello
The set b contains 9.
c.a =12

Itisequally common to see these functions used to make empty aggregates that are then added
to through further code. For example:

things = array();
while ((thing = get_next_thing()) != NULL)
push(t hings, thing);

Or:

node = struct();
node. nane = nane;
node. left = a;
node. right = b;

Literal data items

ICI supportsin-line literal aggregates. That is, like an initialised structurein C, but instead of
being tied to a variable declaration, they are self-describing, and can be used anywhere. For
example:

[array 1, 2, 3]

isatermin an expression. Just like aliteral string in C:
"Hello world.\n"

The ICl Programming Language 17

Chapter 2: A brief tutorial for C programmers

the compiler builds the data structure in memory somewhere and the term evaluates to a refer-
ence to it. Examples of array, set, and struct literals are:

a = [array 1, 2.5, "hello"];
b = [set "bye", 5.5, 9];
C = [struct a =12, b = 13];

Arrays and sets have syntax almost identical to the run-time functions that create the same
types. But structs have a more convinient syntax for the commonest activity; associating values
with named keys.

Be careful not to confuse literals with the run-time functions of the same name. Confusion often
arises because at the file level where a statement is parsed, then immediately executed, there
isn't much effective difference. But in aloop or function there is a very big difference.

Other operations and core functions

Common to all dynamically typed interpreted languages, execution speed is very different from
fully compiled statically typed languages. Achieving useful performance relies heavily on the
use of operations and functions that perform the “inner loops” of a program, but are fully com-
piled and carefully optimised.

ICl isno exception to this principle. So it iswiseto be aware of the full repertoire of operations,
core functions, and extension modules available. However, in this brief tutorial we won't
attempt to enumerate all such features. They are listed in subsegquent chapters, and a skim
through Operatorsin the ICI Language Reference chapter, the Core language functions, chap-
ter, and Some extension modules is recommended. Having said that, afew of the commonest
non-C features and idioms are worth illustrating here.

Regular expressions

Regular expressions are “simple” (atomic) typesinICl, just likeints, floats and strings. A literal
regular expression is delimited by # characters (like astring is delimited by " characters). For

example:
while ((line = getline()) != NULL)
{
if (line ~ #Mabc#)
printf("%\n", line);
}

will print all lines starting with abc. The ~ operator isread as“ matches” and !~isread as

“ doesn't match” . Other operators exist which extract sub-matches. Regular expressions can be
very useful for avoiding character-by-character operations on text. They are avery efficient way
of matching and breaking up text.

For example, one of my first resorts in dealing with some new regular text fileisto load the
entire file, use afunction called smash() to break it up into lexical units based on regular expres-
sions, then rearrange the result into the data | want. Consider doing thisto load a“CSV” file
(Comma Separated Fields - each line is comma separated fields, each field optionally sur-
rounded by double quotes).

/*
* Smash the file into fields and separators. Each

18 ThelCl Programming Language

Other operations and core functions: Regular expressions

* seperator is either a"," or a "\n". Fields are
* either plain or quoted, but the quotes
* are renoved. Notice the regular expression is
* broken into two parts for clarity.
*/
csv = smash
(
getfile(f), [* The file. */
LN "\n])" ([~\n]*)")# [* ... or ",]
#([,\n])#, /[* then , or \n */
"\ 20\ 3, /* For each.. */
"\\ 4" /* ..push these*/
)
/*
*

Re-build the linear array into an array of arrays
* based on the "\n" seperators.

*/

a = array(aa = array());

while (nels(csv) > 0)

{
push(aa, rpop(csv));
if (rpop(csv) == "\n")
push(a, (aa = array()));
}

The ICl Programming Language 19

Chapter 2: A brief tutorial for C programmers

20 ThelCl Programming Language

CHAPTER 3 Some sanple programs

This chapter contains a small collection of very simple sample programs. These programs are
not random. They are based on the set of simple language benchmark tests used in The Great
Computer Language Shootout by Doug Bagley (http://www.bagley.org/~doug/shootout/) and
The Great Win32 Computer Language Shootout by Aldo Calpini (http://dada.perl.it/shootout/).
These programs have been chosen because at those sites you can view programs written to
exactly the same specification in aimost any programming language you are likely to know.

The specification of this benchmark suite demands that some of the programs are implemented
the same way as they are implemented in the other languages. Others are merely required to do
the same thing.

Many of the tests take a single optional command-line argument being the integer number of
times some loop is to be repeated. Thisistypically obtained in each program with aline like:

n =argv[l] ? int(argv[l1]) : 1;
Some tests expect input data, which is generally read from standard input. See the sites men-
tioned above for further details.

No comment will be made on code that should be unsurprising to someone who knows C.

Ackermann’s function

Thistest must be implemented in the same recursive manner in al languages. It is designed to
stress recursion by computing Ack(3, N) for various (small) N.

static
Ack(M N)
{

}

return M? (Ack(M- 1, N? Ack(M N- 1) : 1)) : N+ 1;

n:=argv[1l] ? int(argv[1]) : 1;

The ICI Programming Language 21

http://www.bagley.org/~doug/shootout/
http://dada.perl.it/shootout/

Chapter 3: Some sample programs

printf("Ack(3,%): %\n", n, Ack(3, n));

Array access

Thistest must be implemented in the same way in al languages. It must first build an array full
of integers, then repeatedly add them to a second array, with each loop running backwards
through the array.

Notice the use of the build() function to make the first array. The "i" argument to build() causes
the content to be auto-incrementing integers, the 1 is the start value.

The second call to build() makes an array of size n with each element initialised to 0. The "c"
argument means “apply the initialiser(s) cyclicaly to leaf elements of the built data’.

n =argv[l] ? int(argv[l1]) : 1;
X = build(n, "i", 1);
y = build(n, "c", 0);
for (k = 0; k < 1000; ++k)
{

for (i =n- 1; i >=0; --i)
} y[i] += x[i];

printf("%l %\n", y[O0], y[n - 1]);

Count lines’'words/characters

Thistest must count lines, words and characters from standard input and must do the same thing
asthe versionsin other languages. However, it is not allowed to read the whole input at once,
but must limit its read to no more than 4K bytes. Thereis no easy way to do this ICI except by
reading lines.

Notice the use of the smash() function to get the words of each line. smash() is the most com-
mon method of breaking up strings. The \S+ pattern matches one or more non-whitespace char-
acters. If we really wanted the words, the last argument to the smash() call would have been
"\\&" (meaning append the matched portion to the array being built). However, we only want to
count the words, so we just push empty strings. This saves the cost of actually extracting and
creating the string.

The nels() function returns the number of elementsin an array or string (or anything else).

nl = nw=nc = 0;
while (I = getline())
{
++nl ;
nc += nels(l) + 1;
nw += nel s(smash(l, # S+#, ""));

}
printf("%l % %\n", nl, nw, nc);

22 ThelCl Programming Language

Echo client/server:

Echo client/server

For this test, each language is required to do the same thing. The specification says it should
fork achild process that repeatedly sends a message to the parent (server), which echoesit back
to the child (client), which checksit is correct. Because fork() is only available in versions of
ICI running on UNIX-like systems (in the sys module), we actually use athread here.

Thistest uses the ICI net module, which provides sockets-based networking primitives (it is
documented separately).

Notice the use of waitfor to wait for the child thread to finish. The status field of the child thread
will be "active" until the echo_client function returns (or fails). The thread object istself is
waited on. A wakeup is automatically done on any thread object on thread termnation.

Notice also that the iteration count n isimplicitly created by simple assignment, but data is
explicitly declared static. Implicit variable are always created in the innermost scope. At thefile
parse level thereisalocal “auto” scope which exists and isvisible only at the file parse level,
just asthe “auto” variables of afunction only exist and are visible within an invocation of a
function. The nisn’t visible to the running function echo_client and doesn’t need to be. How-
ever data does need to be. The static declaration of data givesit a sufficiently outer scope to be
visible inside the running function echo_client. (The function is also running in a separate
thread, but that doesn’t change the scoping at all.)

Finally, notice the use of the := operator to assign to sock in echo_client. Thisisthe commonest
way of introducing new local (auto) variablesin afunction. The := operator forces the assign-
ment to be in the most-local scope, even if avariable of the same name already existed in an
outer scope.

n =argv[l1l] ? int(argv[1l]) : 1;

static data = "Hello there sailor\n";

static

echo_client(n, port)

{
sock := net.connect(net.socket("tcp/ip"), port);
for (i :=0; i <n; ++i)
{

net . send(sock, data);
if ((ans := net.recv(sock, nels(data))) != data)
fail(sprintf("received \"%\", expected \"%\"",
ans, data));

}

net . cl ose(sock);

}

ssock = net.listen(net.bind(net.socket("tcp/ip"), 0));
client = thread(echo_client, n, net.getportno(ssock));
csock = net.accept (ssock);

t =0;
while (str = net.recv(csock, nels(data)))
{

net. send(csock, str);
t += nel s(str);

}

wai tfor(client.status != "active"; client)

printf("server processed % bytes\n", t);

The ICl Programming Language 23

Chapter 3: Some sample programs

Exception mechanisms

For this test, each language is required to implement it the same way. The outer loop calls
hi_function() which callslo_function() which calls blowup(). The blowup() function throwstwo

types of exceptions, one of which must be caught by lo_function() and the other by

hi_function().

ICI cannot selectively catch exceptions, so inlo_function() we must catch and re-throw the
exception that is not for us. ICl exceptions are very simple, just being astring. They really are
intended just for errors, not as a general programming mechanism. (Although they are reasona-

bly efficient.)

N =argv[1l] ? int(argv[l]) : 1;

static H
static LO

0;
0;

static
bl owmup(n)

fail(n &1 2 "low : "hi");:
}

static
| o_function(n)
{
try
bl owup(n);
onerror
{
if (error !~ #l ow#)
fail (error);

++LQ
}
}
static
hi _function(n)
{
try
| o_function(n);
onerror
++Hl ;
}
static
some_functi on(n)
{
try
hi _function(n);
onerror
fail (error + " -- we shouldn't get
}

here");

24 ThelCl Programming Language

Fibonaccinumbers:

while (N
some_function(N--);

printf("Exceptions: H =% / LO=%\n", H, LO;

Fibonacci numbers

In this test each language is required to compute a fibonacci number by the same recursive
method.

static
fib(n)
{

}
printf("%l\n", fib(argv[1l] ? int(argv[l]) : 1));

returnn<2?1: fib(n- 2) +fib(n - 1);

Hash (associative array) access

All languages must implement this test the same way. We store the integers from 1..N in an
array indexed by the hex string of the integer, then access it with decimal strings. Only some of
the decimal strings will strike values we stored under the hex string keys, we must print how

many.
Notice that the “struct” is | Cl’s associative array type (a.k.a. hash, map, dict, etc).
n =argv[l] ? int(argv[l1]) : 1;
X = struct();

for (i =1, i <= n; ++i)
X[sprintf("w", i)] =1i;
c =0
for (i =n; i >0; --i)
c += x[string(i)] !'= NULL;

printf("%l\n", c);

Hashes, part |1

Thisislikethe above, but isn’'t swamped by the time to make strings. The strings are made first,
then used repeatedly.

Notice the use of the forall statement in the main loop. This could have been a for loop with
some variable stepping from 0 to 10000. However, when looping over all the elements of an
aggregate, aforall loop is generally clearer and faster. Notice that in this case there are two loop
variables, v, the values in the aggregate, and k, the key (i.e. index) you would use to find that
value.

The ICI Programming Language 25

Chapter 3: Some sample programs

n =argv[l] ? int(argv[l1]) : 1;

hl = struct();
for (i = 0; i < 10000; ++i)
hi[sprintf("foo_ %", i)] =1i;

h2 = struct();
for (i =0; i < n; ++i)
{

forall (v, k in hl)

if (h2[k] == NULL)
h2[k] = O;
h2[k] += v;

}

printf("% % % 9%\ n", hi["foo_1"], hi["foo_9999"],
h2["foo_1"], h2["foo_9999"]):

Heapsort

In thistest each language is required to implement an in-place heapsort in the same way. Notice
again the explicit declaration of some variables static to make them visible inside functions.
Also notice the declaration of last as static inside the gen_random() function. Thisis almost
completely pointless, asit gets exactly the same visibility as the ones declared outside the func-

tion.
static | M= 139968;
static | A = 3877;
static | C = 29573;
static
gen_r andon{ max)
{

static last = 42;

return max * (last = (last * 1A+ 10 %IM / IM;

}
static
heapsort(n, ra)
{
ir =n;
I =(n > 1) + 1;
for (;;)
if (I > 1)
{

rra =ra[--1];

}

26 ThelCl Programming Language

Helloworld:

el se

{
rra =rafir];
rafir] = ra[1];
if (--ir == 1)

{
ra[1l] = rra;
return;
}
}
i =1;
j =1 << 1
while (j <=1ir)
{
if (j <ir & ra[j] < ra[j+1])
++j ;
if (rra<ralj])
{
raf[i] =ra[j];
j += (| :j);
}
el se
{
j =ir + 1;
}
}
raf[i] = rra;

N =argv[1l] ? int(argv[1l]) : 1;

ary = array();

for (i =0; i <= N ++i)
ary[i] = gen_randon(1l.0);

heapsort (N, ary);

printf("% 10f\n", ary[N]);

Hello world

Couldn’t get much simpler than this. We use put() which is raw unformatted output, unlike
printf() (which would have worked just as well).

put ("hello world\n");

List operations

All languages must implement this test the same way. In short, using a native data structure,
make alist of integers from 1 through 10000, then copy it, then item by item transfer the head

The ICI Programming Language 27

Chapter 3: Some sample programs

item to the end of anew list, then item by item transfer the end item of that list to the end of a
new list, then reverse the new list.

For this test we use arrays, which can be efficiently pushed and popped at both ends. Notice the
use of build() again to make the array of integers. Thereis no built-in reverse functionin ICl, so
it is done manually. Notice the use of the swap operator, <=>, in the reversal code.

NUM = argv[1l] ? int(argv[1]) : 1;

static SIZE = 10000;

static

test_lists()

{
il := build(Slzg, "i", 1);
li2 := copy(lil);
113 := array();

whil e(nel s(1i2))
push(li3, rpop(li?2));

while (nels(li3))
push(li2, pop(li3));

n:=SIZE/ 2,

for (i :=0; i < n; ++i)
lid[i] <=>1lil[SIZE - i - 1];
if (1i1[0] '=SIZE || lil!=1i2)
return O;

return nels(lil);

}

for (i =0; i < NUM ++i)
result = test _lists();
printf("%l\n", result);

Matrix multiplication

In this test each language is required to multiply two 30 x 30 matrices.

Asit happens, the required data in the matricies are the numbers from 1 to 30 in row-column
order. We can use the build() function to easily make these. Thisisagood illustration of the way
the build function separates the structure being built, from the generation of the content used to
fill leaf elements. Thisisasimple two-dimensional array, but more complex data structures can
be built, also including nested structures.

Note that there are no true multi-dimensional arraysin ICl. Each matrix is asingle 30 element
array of 30 element sub-arrays.

The actual matrix multiplication might be most naturally done by three nested for loops over the
array dimensions. However, forall loops have been used here because they turned out to be
dlightly faster. The two outer forall loops loop over the sub-arrays (columns) and the leaf values
within them of the output matrix. Thisis abit artificial in the middle loop because the loop var-
iable val is not used. The inner-most loop foralls over one of the columns of the first input
matrix, while it steps along the rows of the second matrix.

static

28 ThelCl Programming Language

Method calls:

mmul t (rows, cols, nil, n2, nB)

forall (col, i in nmB)
{
mli = nl[i];
forall (val, j in col)
{
val = 0;

forall (mlik, k in nili)
val += mlik * n2[K][j];
col[j] = val;

}

}
}
S| ZE : = 30;
n:=argv[1l] ? int(argv[1]) : 1;
mL := build(SIzE, SIZE, "i", 1);
n2 := build(SIzE, SIZE, "i", 1);
mm : = bui l d(SI ZE, Sl ZE);
for (i =0; i < n; ++i)

mmul t (Sl ZE, SIZE, ml, m2, m;
printf("% % % %\ n", mio0][0], mi{2][3], m{3][2],
m{ 4] [4]);

Method calls

Each language is required to implement thistest in the same way. In short, we must make aclass
Toggle with a state member, and a sub-class NthToggle with additional count and count_max
members. Toggle has an acivate() method that flips the state. But NthToggl€e's overridden acti-
vate() does an extraflip every count_max calls.

Instances of classes, and classes themselves, are just structs. They are in scope when executing
methods. So note below in the activate() methods we can simply refer to state, count, and
count_max, rather than this.state (which would also work). However, the only way to call a
method is with the : or :* operators, and they require an object on the left, so you have to use
this when you call another method in your own class, even though the function itself is directly
visiblein your current scope.

An imporant thing to note here is the explicit calls to super-class functions with, for example,
this:new(). In general, the : operator is used to reference afunction of an object and make a cal-
lable method, asin toggle: activate(). The :* operator is used (in methods) to reference a func-
tionin asuper class, as opposed to calling yourself again (or even worse, a sub-class function of
the same name).

Notice that new() isa*“class’ method, while activate() is an “instance” method. There is no dis-
tinction in their declaration, it isjust what they do that makesit so.

static Toggle = [class

new(start_state)

{
t :=this:*new);

The ICl Programming Language 29

Chapter 3: Some sample programs

t.state := start_state;
return t;
}
activate()
{
state = Istate;
return this;
}
val ue()
{
return state;
}

1
static NthToggle = [class: Toggl e,

new(start_state, count_nax)

{
t := this:*new(start_state);
t.count _max := count_max;
t.counter := 0;
return t;
}
activate()
{
this:Mactivate();
i f (++counter >= count_nmax)
{
state = !state;
counter = 0O;
}
return this;
}

1
n:=argv[1l] ? int(argv[1]) : 1;

toggl e : = Toggl e: new(1);

for (i =0; i < n; ++i)

val = toggle:activate():value();
printf(val ? "true\n" : "false\n");
ntoggl e : = Nt hToggl e: new(val, 3);
for (i =0; i < n; ++i)

val = ntoggl e:activate():value();
printf(val ? "true\n" : "false\n");

30 ThelCl Programming Language

Nested loops:

Nested |oops

Each language is required to implement this the same way. Thisisavery simple test, but here
are two methods. Thefirst is dightly faster.

n:=argv[1l] ? int(argv[1]) : 1;
X .= 0;
z := build(n, "i");

forall (a in z)
forall (b in z)
forall (c in z)
forall (din z)
forall (e in z)
forall (f in z)
++X:

printf("%l\n", x);

The following is probably more natural.

n:=argv[1l] ? int(argv[1]) : 1;

X .= 0;

for (a=n; a--;)

for (b =n; b--;)
for (¢ =n; c--;)
for (d =n; d--;)
for (e = n; e--;)
for (f = n; f--;)
+4X;

printf("%l\n", x);

Producer/consumer threads

Each language must implement this test in the same way. In this test two threads share the com-
mon data variable, which the producer uses to pass successive integers to the consumer. Access
to the shared data variable is gated with aflag count.

Thistest illustrates the use of waitfor and wakeup(). Notice that waitfor has an expression that it
waitsto betrue, and a second arbitrary object that is“waited” on. That is, if the expressionis not
true, it suspends execution until that object is “woken up”, then it re-eval uates the expression.
We have used the string "count change" as the object to wait on because it is clear, and, as
strings are atomic, it will be the same string object wherever it is written. Everything in await-
for statement isindivisible except the wait it does on the object. This includes the compound
statement that it executes at completion when the condition is finally met.

Finally, note the method of waiting for each thread to finish. The thread object returned by
thread() is woken up automatically when athe thread finishes. The status field of the thread
object revealsits state.

static n = argv[1] ? int(argv[l1]) : 1,
static count = O;

static consuned
static produced
static data = 0;

0;
0;

The ICl Programming Language 31

Chapter 3: Some sample programs

static
producer ()
{
for (i :=1; i <= n; ++i)
{
wai tfor (count == 0; "count change")
{
data = i;
count = 1;
wakeup("count change");
}
++pr oduced,;
}
}
static
consurer ()
{
do
{
wai tfor (count !'= 0; "count change")
{
i = data;
count = 0;
wakeup("count change");
}
++consuned;
} while (i = n);
}
p := thread(producer);
¢ := thread(consuner);
wai tfor (p.status !'= "active"; p)
waitfor (c.status !'= "active"; c)
printf("%l %\ n", produced, consumned);

Random number generator

Each language is required to implement this test the same way. The random number generator is
exactly specified and is the same one used in the heapsort test above. The specification says we
should use symbolic constants (and have maximum performance).

Notice the use of the $ pseudo-operator which we use to evaluate the symbolic names at parse-
time (i.e. compile time). This gives the same run-time behaviour asif the numbers had been
typed in directly, for aslight performance improvement. The $ operator can be used to evaluate
any expression at “compiletime”. Like $sgrt(2.0).

static | M= 139968;

32 ThelCl Programming Language

Regular expression matching:

static | A = 3877;
static | C = 29573;
static |last = 42;

static
gen_r andon{ max)
{
return max * (last := (last * $IA + $I1C) %$IM / $IM
}
n =argv[l] ? int(argv[l]) : 1;
while (--n)

gen_r andon{100. 0) ;
printf("%9f\n", gen_randon(100.0));

Regular expression matching

Each language is required to implement this test the same way. A file of lines, some of which
contain phone numbers, isloaded into an array of strings. Then they are repeatedly matched
against aregular expression and the components of any phone number extracted. Matching
numbers are printed in anormalised form on the last iteration.

Notice the use of gettokens() to read al the input as an array of lines. The functions gettokens()
and gettoken() are one of the commonest and most efficient waysto read text files. The other is
to read the entire file with getfile() and then break it up with smash(). Thisis also reasonably
efficient as long as you don’'t mind reading the file all at once.

Notice both the operator ~~~ and the literal compiled regular expression enclosed in # charac-
ters. The ~~~ operator matches and extracts the matched sub-expressions. Notice that the regu-
lar expression was too long for one line, and so was broken in two. Both strings and regular
expression literals can be broken up in thisway (like string literalsin C).

n:=argv[1l] ? int(argv[1]) : 1;

|ines = gettokens(stdin, "\n', "");
j =0;
while (n--)
{
forall (I in lines)
{
a =1 ~—~#[MNd(]*(2:\((\d\vdvd)\) | (\didid)) #
#(\d\d\d)[-]1(\d\d\id\d)(?:\D 9$)#;
if (n ==0 & a)
printf("%: (%%) %-%\n", ++, a[0], a[l],
a[2], a[3]);
}
}

The ICl Programming Language 33

Chapter 3: Some sample programs

Reverse afile

In this test, each language is required to do the same thing — reverse lines from standard input
to standard output.

Notice the use of smash() to break the whole fileinto an array of lines. The call to smash()
repeatedly matches the regular expression against the input file. The string "\\&" instructs it to
push each matched portion onto the new array it will return. The smash() function is often the
first step in text parsing. Its tokenising ability is limited only by the complexity of the regular
expression you need to write.

f = smash(getfile(), #["\n]*\n#, "\\&");

whil e (nels(f))

put (pop(f));

Below isan alternative version that is slightly faster because it avoi ds the many oneline callsto
put(). Instead it builds a new array with the elementsin reverse, then uses implode() to concate-
nate all the stringsin that array into asingle string for output.

f = smash(getfile(), #["\n]*\n# "\\&");

r array();
forall (I in f)
rpush(r, 1);

put (i npl ode(r));

Seve of Eratosthenes

Each languageis required to implement thistest the same way. Notice again the use of build() to
build theinitial sieve flags as an array of 1s.

n:=argv[1l] ? int(argv[1]) : 1;

while (n--)
{
count := O;
flags := buil d(8193, "c", 1);
for (i :=2; i <= 8192; ++i)
{
if (flags[i])
{
for (k :=1i +i; k <=8192; k +=1i)
flags[k] = O;
++count ;
}
}
}

printf("Count: %\ n", count);

34 ThelCl Programming Language

Spellchecker:

Soell checker

Each language is required to implement this test the same way. In short, load a dictionary of
words, then read words, one per line, from stdin, and print the ones that aren’t in the dictionary.

Notice the use of a set to storethewordsin. A set issimply an unordered collection (hash table)
of objects where the only thing you are interested in is whether an object isin the set or not.
Compared with, say, a struct where there is also an associated value.

dict := set();
forall (win gettokens(fopen("Usr.Dict.Wrds"), "\n", ""))
dict[w =1,
while (w = getline())
{
if (!dict[w)
printf("%\n", w;
}

Satistical moments

For this test, each language is required to do the same thing. In short, we must read numbers
from standard input, then compute a bunch of statistics on them in double precision.

ICI's“float” typeis always double precision. Overal this code is unremarkable. Note the use of
sort() to sort thelist and find the median. Here it is used with adefault comparison function, but
an explicit comparison function can be given.

sum : = 0.0;
nunms = array();
forall (f in gettokens(stdin, "\n", ""))
{
push(nums, f = float(f));
sum += f;

}

n := nel s(nuns);
nean := sum/ n;

deviation := 0.0;
average_deviation := 0.0;
standard_devi ation := 0.0;
variance := 0.0;

skew : = 0.
kurtosis :

noi

0. 0;

forall (numin nuns)

{
devi ation = num - nean;
aver age_devi ati on += abs(devi ation);
variance += (t := deviation * deviation);
skew += (t *= devi ation);
kurtosis += (t *= deviation);

The ICI Programming Language 35

Chapter 3: Some sample programs

}

average_deviation /= n;

variance /= (n - 1);

standard_devi ati on = sqrt(variance);

if (variance > 0.0)

{

skew /= n * variance * standard_devi ati on;
kurtosis = kurtosis / (n * variance * variance) - 3.0;

}

sort (nuns);
md:=n/ 2

if (n %2 == 0)

median = (nums[m d] + nums[mid - 1])/2;
el se

medi an = nuns[md];
printf("n: %\ n", n);
printf("medi an: % \n", median);
printf("mean: % \n", mean);

printf("average _deviation: %\n", average_deviation);
printf("standard_deviation: %\n", standard_deviation);

printf("variance: % \n", variance);
printf("skew %\n", skew);
printf("kurtosis: %\n", kurtosis);

Sring concatenation

Each language is required to implement this test the same way. In short, start with an empty
string, then, n times, append the string "hello\n".

Thisillustrates the use of non-atomic (mutable) stringsin ICI. Strings are amost invariably
atomic (immutable) objectsin ICI. Their use as variable namesis based on this. However muta-
ble strings can be created with the strbuf() function. These can be modified by assigning to indi-
vidual characters and grown by appending, asis done here, with the strcat() function. (Note that
anon-atomic string will not access the same element of a struct as an atomic string of the same
value. They must be eq to access the same element, not just equal asin the == operator.)

n:=argv[1l] ? int(argv[1]) : 1;
s := strbuf();
for (i =0; i <n; ++i)

strcat(s, "hello\n");
printf("%l\n", nels(s));

Non-atomic (mutable) strings are important for the efficiency of operations like this. The fol-

lowing implementation of this test uses ordinary atomic strings. But this method will be O(n?),
and given thisis normally run with 40,000 iterations, the performance will be very bad:

n:=argv[1l] ? int(argv[1]) : 1;
s =""
for (i =0; i <n; ++i)

36 ThelCl Programming Language

Sum acolumn of integers:

s += "hello\n"; /* Don't do this for large n */
printf("%l\n", nels(s));

In the above version, each time the += is done, a new string is formed.

Sum a column of integers

Each language is required to implement this test the same way. In short, use built-in line-ori-
ented 1/0 to sum a column of integersin constant space.

The only aspect of note hereisthe int() function to convert the string to an integer. The float()
and string() functions allow similar simple conversions.

count := 0;

while (I = getline())
count +=int(l);

printf("%l\n", count);

Word frequency count

For this test, each language is required to do the same thing. In short, from standard input,
extract all the words, convert them to lowercase, and count their frequency. The program should
run in constant space (i.e. not read the whole file at once). The output is lines of counts and
words sorted in descending order.

This test shows that | Cl has no built-in transliteration function.

The main loop is unremarkable. The smash() function is used to get words from each line. We
only call our tolower () function when there are upper-case letters in the word for efficiency.

The tolower () function itself shows the commonest way of dealing with a string at the character
level. That is, first of all explode() it into an array of integers, then manipulate the array or make
anew one (which can be a mixture of integer character codes and strings) then implode() the
array back into an atomic string. Notice the use of $ to evaluate the sub-expression once only
when the statement is parsed.

The program finishes by pushing the output lines onto an array. The forall over the counts struct
will produce output in (pseudo) random order. The array is then sorted with sort(). However the
default comparison function won't do because the result must be descending. We don’t bother to
declare a separate named function for this, but just put an unnamed function literal in-line as an
argument. We could have declared anamed function in the normal manner and placed it's name
as the second argument to sort() with the same effect.

static counts = struct()

static

t ol owner (s)

{
s = expl ode(s);
forall (c, i in s)
{

if (c >>'A & c <='27")

The ICl Programming Language 37

Chapter 3: Some sample programs

s[i] +=$("a - "A);

}
return inplode(s);
}
while (I = getline())
{
forall (win smash(l, # w+#, "\\&"))
{
if (w~ #AZ]#)
w = tol owner (w);
if (counts[w] == NULL)
counts[w = 1;
el se
++count s[w ;
}
}

out = array();
forall (c, win counts)

push(out, sprintf("%d\t%\n", c, w);
sort(out, [func(a, b){returna >b ? -1: a < b;}]);
put (i npl ode(out));

38 ThelCl Programming Language

CHAPTER 4 |Cl Language Reference

The ICl interpreter's execution engine calls on the parser to read and compile a statement from
an input stream. The parser in turns calls on the lexical analyser to read tokens. Upon return
from the parser the execution engine executes the compiled statement. When the statement has
finished execution, the execution engine repeats the sequence.

Thelexical analyser

The ICl lexical analyser breaks the input stream into tokens, optionally separated by white-
space (which includes comments as described below). The next token is always the longest
string of following characters which could possibly be atoken. The following are tokens:

/ I= 3 @ () { }

, ~ ~~ ~~= = [] .

* *= % % n N= + +=
++ - -= -- -> > >= >>
>>= < <= <=> << <<= = ==
! = 1~ & && &= I
| = ; ? : D= A

The following are also tokens:

e The character ' (single quote) followed by a single character (other than anewline) or asin-
gle backslash character sequence (described below), followed by another single quote. This
token isacharacter-code. A single quote followed by other than the above sequence will
result in an error.

» The character " (double quote) followed by any sequence of characters (other than a
newline) and backslash character sequences, up to another double quote character. This
token isastring.

The ICl Programming Language 39

Chapter 4: ICl Language Reference

A backslash character sequence is any of the following:

\n newline (ASCII Ox0A)

\ t tab (ASCII 0x09)

\v vertical tab (ASCII 0x0B)
\b back space (ASCII 0x08)

\r carriage return (ASCI1 0x0D)
\ f form feed (ASCII 0x0C)

\a audible bell (ASCII 0x07)
\e escape (ASCII 0x1B)

\\ backslash (ASCII 0x5C)

\’ single quote (ASCII 0x27)

\ double quote (ASCII 0x22)
\? question mark (ASCII 0x3F)
\cx control-x

\ xx. . the character with hex code x...

\n the character with octal code n. (1, 2 or 3 octal
digits)

Consecutive string-literal s, separated only by white-space, are concatenated to form asingle
string-literal.

» The character '# followed by any sequence of characters except a newline, then another '#:.
Thistoken isaregular-expression literal. A first regular-expression literal followed by con-
secutive regular-expression literals and/or string literal s separated only by white space are
concatendated to form a single regular-expression literal.

» Any upper or lower case letter, any digit, or '_' (underscore) followed by any number of the
same (or other characters which may be involved in afloating point number while that isa
valid interpretation). A token of thisform may be one of three things:

If it can be interpreted as an integer, it is an integer-number.
Otherwise, if it can be interpreted as a floating point number, it is a floating-point-number.
Otherwise, it isan identifier.

Notice that keywords are not recognised directly by the lexical analyser. Instead, certain identi-
fiers are recognised in context by the parser as described below.

There are two forms of comments (which are white-space). One starts with the characters/ *
and continue until the next */ . The other starts with the characters/ / and continues until the
next end of line. Also, lines which start with a# character are ignored (thisis not regarded as a
comment, but asaprovision for preprocessors). Lines may be terminated with linefeed, carriage
return or carrage return plus linefeed.

An introduction to variables, modules and scope

Variables are simple identifiers which have a value associated with them. They arein them-
selves typel ess, depending on the type of the value currently assigned to them.

Theterm modulein ICl refersto acollection of functions, declarations and code which share the
same variables. Typically each sourcefileisamodule, but not necessarily.

40 ThelCl Programming Language

: The parser

In ICI, modules may be nested in a hierarchical fashion. Within a module, variables can be
declared as either static or extern. When avariable is declared as static it is visible to code
defined in the module of its definition, and to code defined in sub-modules of that one. Thisis
termed the scope of the variable.

When avariable is defined as extern it is declared static in the parent module. Thus the parent
module and all sub-modules of the parent module have that variable in their scope. Variables of
this type, whether originally declared extern or static, will be henceforward referred to as static
variables.

Static variables are persistent variables. That isthey remain in existence even when execution
completely leaves their scope, despite not being visible to any executing code. They are visible
again when code flow again enters their scope.

The scoping of static variablesis strictly governed by the nesting of the modules, not by the
flow of execution. For example. Suppose two neighbouring modules (call them module A and
modul e B) each define avariable called theVariable. When some codein module A callsa
function defined in module B and that function refersto theVariable; it is referring to the ver-
sion of theVariable defined in module B, not the one defined in module A.

Variablesin sub scopes hide variables of the same name defined in outer scopes.

The second type of variable in ICI is the automatic, or auto, variable. Automatic variables are
not persistent. They last only aslong as amodule is being parsed or afunction is being exe-
cuted. For instance, each time afunction is entered a copy is made of the auto variables which
were declared in the function. This group of variables generally only persists during the execu-
tion of the function; once the function returns they are discarded.

The par ser

The parser uses the lexical analyser to read a source input stream. The parser also has reference
to the variable-scope within which this source is being parsed, so that it may define variables.

When encountering a variable definition, the parser will define variables within the current
scope. When encountering normal executable code at the outermost level, the parser returns its
compiled form to the execution engine for execution.

For some constructs the parser will in turn recursively call upon the execution engine to evalu-
ate a sub-construct within a statement.

The following sections will work through the syntax of ICl with explanations and examples.
Occasionaly constructs will be used ahead of their full explanation. Their intent should be
obvious.

The following notation is used in the syntax in these sections.

bold The bold text isliteral ASCII text.

italic Theitalic text is a construct further described el sewhere.
[xxx] The xxx is optionally present.

XXX... The xxx may be present zero or more times.

(xxx | yyy) Either xxx or yyy may be present.

As noted previously there are no reserved words recoginsed by the lexical anaylyser, but certain
identifierswill be recognised by the parser in certain syntactic positions (as seen below). While

The ICl Programming Language 41

Chapter 4: ICl Language Reference

theseidentifiers are not otherwise restricted, special action may need to be taken if they are used
as simple variable names. They probably should be avoided. The completelistis:

NULL auto break case
continue critsect default do

ese extern for forall

if in onerror return
static switch try waitfor
while

We now turn our attention to the syntax itself.

Firstly consider the basic statement which isthe unit of operation of the parser. As stated earlier
the execution engine will call on the parser to parse one top-level statement at atime. We split
the syntax of a statement into two categories (purely for semantic clarity):

statement executable-statement
declaration

That is, astatement is either an executable-statement or adeclaration. Wewill first consider the
executable-statement.

These are statements that, at the top-level of parsing, can be translated into code which can be
returned to the execution engine. Thisis by far the largest category of statements:

executabl e-statement
expression ;
compound-statement
if (expression) statement
if (expression) statement else statement
while (expression) statement
do statement while (expression) ;
for ([expression] ; [expression] ; [expression]) statement
forall (expression|[, expression] in expression) statement
switch (expression) compound-statement
case parser-eval uated-expression :
default :
break ;
continue;
return [expression] ;
try statement onerror statement
waitfor (expression ; expressiion) statement
critsect statement

These are the basic executable statement types. Many of these involve expressions, so before
examining each statement in turn we will examine the expression.

42 ThelCl Programming Language

Expressions: Factors

Expressions

We will examine expressions by starting with the most primitive elements of expressions and
working back up to thetop level.

Factors

The lowest level building block of an expressions is the factor:

factor integer-number
character-code
floating-point-number

string
regular-expression
identifier

NULL

(‘expression)

[array expression-list]

[set expression-list]

[struct[(:|=) expression,] assignment-list]
[class[(: | =) expression,] assignment-list]
[func function-body]

[module[(: | =) expression,] statement...]

[identifier user-data...]

The constructs integer-number, character-code, floating-point-number, string, and regular-
expression are primitive lexical elements (described above). Each is converted to itsinternal
form and is an object of typeint, int, float, string, or regexp respectively.

A factor which is an identifier isavariable reference. But its exact meaning depends upon its
context within the whole expression. Variablesin expressions can either be placed so that their
value is being looked up, such asin:

a+1

Or they can be placed so that their value is being set, such asin:

a=1

Or they can be placed so that their value is being both looked up and set, asin:

a+=1

Only certain types of expression elements can have their value set. A variable isthe simplest
example of these. Any expression element which can have its value set istermed an Ivalue
because it can appear on the left hand side of an assignment (which is the simplest expression
construct which requires an Ivalue). Consider the following two expressions:

1 /* VARONG */
a

2
2 [* K */

The ICI Programming Language 43

Chapter 4: ICl Language Reference

Thefirst isillegal because an integer is not an lvalue, the second is legal because a variable ref-
erenceis an Ivalue. Certain expression elements, such as assignment, require an operand to be
an lvalue. The parser checksthis.

The next factor in thelist aboveisNULL. The keyword NULL stands for the value NULL
which isthe general undefined value. It hasits own type, NULL. Variableswhich have no
explicit initialisation have an initial value of NULL. Itsother useswill become obvious later in
this document.

Next isthe construct (expression). The brackets serve merely to make the expression within the
bracket act as a simple factor and are used for grouping, as in ordinary mathematics.

Finally we have the constructs surrounded by square brackets. These are textual descriptions of
other dataitems; typically known as literals. For example the factor:

[array 5, 6, 7]

isan array of three items, that is, theintegers 5, 6 and 7. Each of these square bracketed con-

structsis atextual description of adatatype named by thefirst identifier after the starting square
bracket. Six data types are built-in, with other cases handled by user defined code. An explana-
tion most of the built-in literal forms first requires an explanation of the fundamental aggregate

types.

An introduction to arrays, sets and structs

There are three fundamental aggregate typesin ICl: arrays, sets, and structs. Certain properties
are shared by all of these (and other types aswill be seen later). The most basic property is that
they are each collections of other values. The next isthat they may be "indexed" to reference
values within them. For example, consider the code fragment:

[array 5, 6, 7];
a[0];

a =
i =
Thefirst line assigns the variable aan array of three elements. The second line assigns the vari-
ablei the value currently stored at the first element of the array. The suffixing of an expression
element by an expression in square brackets is the operation of "indexing", or referring to a sub-
element of an aggregate, and will be explained in more detail below.

Notice that the first element of the array hasindex zero. Thisisafundamental property of ICl
arrays.

The next ICI aggregate we will examineisthe set. Setsare unordered collections of values. Ele-
ments "in" the set are used as indicies when working with the set, and the values looked up and
assigned are interpreted as a booleans. Consider the following code fragment:

s = [set 200, 300, "a string"];
if (s[200])
printf("200 is in the set\n");
if (s[400])
printf("400 is in the set\n");
if (s["a string"])
printf("\"a string\" is in the set\n");
s[200] = O;
if (s[200])
printf("200 is in the set\n");

When run, thiswill print:

44 ThelCl Programming Language

Expressions: Built-in literal factors

200 is in the set
"a string" is in the set

Notice that there was no second printing of 200 isin the set" because it was removed from the
set on the third last line by assigning zero to it.

Now consider structs. Structs are unordered collections of values indexed by any values. Other
properties of structs will be discussed later. Thetypical indicies of structs are strings. For this
reason notational shortcuts exist for indexing structures by simple strings. Also, because each
element of astruct isactually an index and value pair, the syntax of a struct literal is dightly dif-
ferent from the arrays and sets seen above. Consider the following code fragment:

S = [struct a = 123, b = 456, xxx = "a string"];
printf("s[\"a\"] = %\n", s["a"]);

printf("s.a = %\n", s.a);

printf("s.xxx =\"%\"\n", s.xxX);

Will print:
s["a"] = 123
s.a = 123
S.Xxx = "a string"

Notice that on the second line the structure was indexed by the string "a", but that the assign-
ment on line 1 in the struct literal did not have quotes around the a. Thisis part of the notational
shortcut which will be discussed further, below. Also notice the use of s.ain place of §"a"] on
line 3. Thisisasimilar shortcut, also discussed below.

Built-in literal factors

The built-in literals factors, which in summary are:

[array expression-list]

[set expression-list]

[struct[(:|=) expression,] assignment-list]
[class[(: | =) expression,] assignment-list]
[module[(:|=) expression,] statement...]

[func function-body]

involve three further constructs, the expression-list, which is a comma separated list of expres-
sions; the assignment-list, which is a comma separated list of assignments; and the function-
body, which is the argument list and code body of afunction. The syntax of the first of theseis:

expression-list empty
expression| ,]
expression , expression-list

The expression-list isfairly simple. The construct empty is used to indicate that the whole list
may be absent. Noticethe optional comma after the last expression. Thisisdesignedto alow a
more consistent formatting when the elements are line based, and simpler output from program-
matically produced code. For example:

[array

The ICI Programming Language 45

Chapter 4: ICl Language Reference

"This is the first elenent",
"This is the second el ement",
"This is the third elenent",

]

The assignment list has similar features:

assignment-list empty
assignment [,]
assignment , assignment-list

assignment struct-key
struct-key = expression
struct-key function-body

struct-key identifier
(‘expression)

Each assignment is either an assignment to a simpleidentifier or an assignment to afull expres-
sionin brackets. The assignment to an identifier is merely a notational abbreviation for an
assignment to astring. The following two struct literals are equivalent:

[struct abc = 4]
[struct ("abc") = 4]

The syntax of a function-body is:

function-body (identifier-list) compound-statement
identifier-list empty
identifier [,]

identifier , identifier-list

That is, anidentifier-list is an optional comma separated list of identifiers with an optional trail-
ing comma. Literal functions are rare in most programs; functions are normally named and
defined with a special declaration form which will be seen in more detail below. The following
two code fragments are equivalent; the first is the abbreviated notation:

static fred(a, b){return a + b;}

and:

static fred = [func (a, b){return a + b;}];

The meaning of functions will be discussed in more detail below.
Aggregatesin general, and literal aggregatesin particular, are fully nestable:

[array
[struct a =1, ¢ = 2],
[set "a", 1.2, 3],
"a string",

46 ThelCl Programming Language

Expressions: User defined literal factors

Note that aggregate literals are entirely evaluated by the parser. That is, each expressioniseval-
uated and reduced to a particular value, these values are then used to build an object of the
required type. For example:

[struct a = sin(0.5), b = cos(0.5)]

Causes the functions sin and cos to be called during the parsing process and the result assigned
to the keysa and b in the struct being constructed. It ispossible to refer to variables which may

bein existence while such aliteral isbeing parsedl.

This ends our consideration of the lowest level element of an expression, the factor.

User defined literal factors

User defined litera factors, which have the form:
[identifier user-data]

provide a mechanism for user supplied code to gain control of the parse-stream in order to inter-
pret acustom syntax and return, presumably, a custom dataitem. Theidentifier isinterpreted as
avariable and its value determined (auto-loading extension modules as necessary). The valueis
used to determine a parser function. If the valueis callable, it is the parser function, elseit is
indexed by the string parser to find the parser function.

In any case, the parser function is called with a single argument, being a special file object
layerd on top of the interpreter’sinternal parser. Any normal file reading functions may be used
to read thisfile (such as getchar (), gettoken() and others), as well as a set of special functions
that use the interpretersinternal lexical analyser and parser. These functions are par setoken(),
and parservalue(), and the associated functions rejecttoken(), rejectchar () and tokenobj(). They
are described in detail in the chapter on core language functions. After reading the user data, the
user parser function must leave the parse stream ready to read the closing square bracket token,
and return the object that represents the literal value.

By using either raw character-level reading (with getchar and ilk), token oriented reading (with
parsetoken), or whole expression level reading (with parsevalue) the user code can interpret
either a completely custom syntax, a sytax built from the pre-exiting token types, a syntax that
includes arbitrary expressions, or some combination thereof.

For example, consider a function to interpret a complex number literal:

static

crpl x(f)

{
c := struct();
c.r := parseval ue(f);
if (parsetoken(f) !'=",")

fail ("comma expected");

c.i := parseval ue(f);
return c;

1. Literal aggregates are analogousto literal stringsin K&R C. And likewise they have the property that
modifications to the literal during program execution are persistent. If the flow of control returnsto the
original use of the literal after it has been modified, it does not magically restoreto its original value.

The ICl Programming Language 47

Chapter 4: ICl Language Reference

After defining this function we can use literals such as:

x =[cnplx 3.0 + 1, 2];

Primary operators
A simple factor may be adorned with a sequence of primary-operations to form a primary-
expression. That is:

primary-expression factor primary-operation...

primary-operation [expression |
index-operator identifier
index-operator (expression)

index-operator Any of:
>N

Thefirst primary-operation (above) we have already seen. It isthe operation of "indexing"
which can be applied to aggregate types. For example, if xxxis an array:

xxx[10]

refers to the element of xxx at index 10. The parser does not impose any type restrictions
(because typing is dynamic), although numerous type restrictions apply at execution time (for
instance, arrays may only be indexed by integers, and floating point numbers are not able to be
indexed at all).

Of the other index operators, . identifier, isanotational abbreviation of [" identifier"], asseen
previously. The bracketed form isagain just a notational variation. Thus the following are all
equivalent:

xxx["aaa"]

XXX. aaa

XxX. ("aaa")
And the following are also equivalent to each other:

xxx[1 + 2]

XxX. (1 + 2)
Note that factors may be suffixed by any number of primary-operations. The only restrictionis
that the types must be right during execution. Thus:

xxx[123] . aaa[10]

islegal.
The two constructs

-> jdentifier
-> (‘expression)

48 ThelCl Programming Language

Expressions: Terms

are again notational variations. In general, constructs of the form:

primary-expression -> identifier
primary-expression -> (expression)

are re-written as:

(* primary-expresion) . identifier
(* primary-expression) . (expression)
The unary operator * used here is the indirection operator, its meaning is discussed | ater.

Theindex operators: and :” index the primary expression to discover afunction — the result of
the operation is a callable method. These operators and methods are discussed in more detail
below.

The last of the primary-operations:
(‘expression-list)

isthe call operation. Although, as usual, no type checking is performed by the parser; at execu-
tiontime thething it is applied to must be callable (for example, a function or method object).
For example:

my_function(l, 2, "a string")

and

xxx. array_of funcs[10]()
are both function calls. Function calls will be discussed in more detail bel ow.

This concludes the examination of a primary-expression.

Terms

Primary-expressions are combined with prefix and postfix unary operators to make terms:

term [prefix-operator...] primary-expression [postfix-operator... |
prefix- Any of:
operator

*& -+l ~++--@ %

postfix-operator ~ Any of:
++ --

That is, atermis a primary-expression surrounded on both sides by any number of prefix and
postfix operators. Postfix operators bind more tightly than prefix operators. Both types bind
right-to-left when concatenated together. That is: -Ix isthe same as-(!x). Asinall expression
compilation, no type checking is performed by the parser, because types are an execution-time
consideration.

The ICl Programming Language 49

Chapter 4: ICl Language Reference

Some of these operators touch on subjects not yet explained and so will be dealt with in detail in
later sections. But in summary:

Prefix operators

* Indirection; applied to a pointer, givestarget of the pointer.
& Address of; applied to any Ivalue, gives a pointer to it.
- Negation; gives negative of any arithmetic value.
+ Positive; no real effect.
! Logical not; applied to 0 or NULL, gives 1, else givesO.
~ Bit-wise complement.
++ Pre-increment; increments an lvalue and gives new value.
-- Pre-decrement; decrements an lvalue and gives new value.
@ Atomic form of; gives the (unique) read-only version of any value.
$ Immediate evaluation; see below.

Postfix operators

++ Post-increment; increments an lvalue and gives old value.
-- Post-increment; decrements an lvalue and gives old value.

One of these operators, $, is only a pseudo-operator. It actually hasits effect entirely at parse
time. The $ operator causes its subject expression to be evaluated immediately by the parser
and the result of that eval uation substituted inits place. Thisis used to speed later execution, to
protect against later scope or variable changes, and to construct constant values which are better
made with running code than literal constants. For example, an expression involving the square
root of two could be written as:

X =y + 1.414213562373095;

Or it could be written more clearly, and with less chance of error, as:

X =y +sqrt(2.0);

But this construct will call the square root function each time the expression is evaluated. If the
expression iswritten as:

X =y + $sqrt(2.0);

The sguare root function will be called just once, by the parser, and will be equivalent to the first
form.

When the parser eval uates the subject of a$ operator it recursively invokes the execution engine
to perform the evaluation. Asaresult there is no restriction on the activity which can be per-
formed by the subject expression. It may reference variables, call functions or even read files.
But it isimportant to remember that it iscalled at parsetime. Any variables referenced will be
immediately interrogated for their current value. Automatic variables of any expression which
is contained in afunction will not be available, because the function itself has not yet been
invoked; in fact it is clearly not yet even fully parsed.

50 ThelClI Programming Language

Expressions: Binary operators

The $ operator as used above increased speed and readability. Another common useisto avoid
later re-definitions of avariable. For instance:

($printf)("Hello world\n");

Will use the printf function which was defined at the time the statement was parsed, eveniif itis
latter re-defined to be some other function. It isalso dightly faster, but the differenceis small
when only asimple variable look-up isinvolved. Notice the bracketing which has been used to
bind the $ to the word printf. Function calls are primary operations so the $ would have other-
wise referred to the whole function call asit did in the first example.

This concludes our examination of aterm (remember that the full meaning of other prefix and
postfix operators will be discussed in later sections).

Binary operators

We will now turn to the top level of expressions where terms are combined with binary opera-
tors:

expression term

expression infix-operator expression
infix- Any of:
operator

@
* | %

>> <<
< > <= >=

= = 4= = *= [= Op= >>= <<= &= N= = ~= <=>

That is, an expression can be asimple term, or two expressions separated by an infix-operator.
The ambiguity amongst expressions built from several binary-operator separated expressionsis
resolved by assigning each operator a precedence and also applying rules for order of binding

amongst equal precedence level 32. The lines of binary operators in the syntax rules above sum-
marise their precedence. Operators on higher lines have higher precedence than those on lower
lines. Thus 1+2*3isthe same as 1+(2* 3). Operators which share a line have the same prece-
dence. All operators except those on the second last line group left-to-right. Those on the sec-
ond last line (the assignment operators) group right-to-left. Thus

2. The precedences and rules are identical to those of C.

The ICI Programming Language 51

Chapter 4: ICl Language Reference

a*bl/ c
is the same as:

(a* b))/ c
But:

a=b+=c
is the same as:

a (b += ¢)

Aswith unary operators, the full meaning of each will be discussed in alater section. Butin
summary:

52 ThelCl Programming Language

Expressions: Binary operator summary

Binary operator summary

@ Form pointer

* Multiplication, Set intersection

/ Division
% Modulus

+ Addition, Set union

- Subtraction, Set difference
>> Right shift (shift to lower significance)
<< Left shift (shift to higher significance)

< Logical test for less than, Proper subset

> Logical test for greater than, Proper superset
<= Logical test for less than or equal to, Subset
>= Logical test for greater than or equal to, Superset
== Logical test for equality

I= Logical test for inequality

~ Logical test for regular expression match

I~ Logical test for regular expression non-match
~~ Regular expression sub-string extraction

~~~ Regular expression multiple sub-string extraction

& Bit-wiseand

A Bit-wise exclusive or

| Bit-wiseor

& & Logical and

|| Logical or

. Choice separator (must be right hand subject of ? operator)
?  Choice (right hand expression must use : operator)

= Assignment
:= Assignment to most local scope or context
+= Addto
-= Subtract from
*=  Multiply by
/= Divide by

%= Modulus by
>>= Right shift by
<<= Léft shift by
= And by

A= Exclusive or by

|= Orby
~~= Replace by regular expression extraction
<=> Swap values

,  Multiple expression separator

This concludes our consideration of expressions.

The ICI Programming Language 53



Chapter 4: ICl Language Reference

Satements

We will now move on to each of the executable statement typesin turn.

Simple expression statements

The simple expression statement:
expression ;

Isjust an expression followed by a semicolon. Actually, the semicolon is optional where the
expression is followed by either aclosing curly brace or end-of-file.

The parser trandates the expression to its executable form. Upon execution the expression is
evaluated and the result discarded. Typically the expression will have some side-effect such as
assignment, or make a function call which has a side-effect, but there is no explicit requirement
that it do so. Typical expression statements are:

printf("Hello world.\n");
X =y + z,;
++i ;
Note that an expression statement which could have no side-effects other than producing an
error may be completely discarded and have no code generated for it.

Compound statements

The compound statement has the form:

{ statement... }

That is, a compound statement is a series of any number of statements surrounded by curly
braces. Apart from causing all the sub-statements within the compound statement to be treated
as a syntactic unit, it has no effect. Thus:

printf("Line 1\n");
{
printf("Line 2\n");
printf("Line 3\n");
}
printf("Line 4\n");

When run, will produce:

Line 1
Line 2
Line 3
Line 4

Note that the parser will not return control to the execution engine until all of atop-level com-
pound statement has been parsed. Thisistruein genera for all other statement types.

54 TheIClI Programming Language



Statements: The if statement

Theif statement

The if statement has two forms:

if (expression) statement
if (expression) statement else statement

The parser converts both to an internal form. Upon execution, the expression is evaluated. If
the expression evaluates to anything other than O (integer zero) or NULL, the following state-
ment is executed; otherwiseitisnot. Inthefirst form thisis all that happens, in the second
form, if the expression evaluated to 0 or NULL the statement following the else is executed,;
otherwise it is not.

Theinterpretation of both 0 and NULL asfalse, and anything else astrue, is common to all log-
ical operationsin ICl. Thereis no specia boolean type.

The ambiguity introduced by multiple if statements with an lesser number of else clausesis
resolved by binding else clauses with their closest possibleif. Thus:

if (a) if (b) dox(); else doy();

If equivalent to:
if (a)
if (b)
dox();
el se
doy();
}

Thewhile statement

The while statement has the form:
while ( expression ) statement

The parser convertsit to an internal form. Upon execution aloop is established. Within the
loop the expression is evaluated, and if it isfalse (O or NULL) the loop isterminated and flow of
control continues after the while statement. But if the expression evaluatesto true (not 0 and not
NULL) the statement is executed and then flow of control moves back to the start of the loop
where the test is performed again (although other statements, as seen below, can be used to
modify this natural flow of control).

The do-while statement

The do-while statement has the following form:
do statement while ( expression) ;

The parser convertsit to an internal form. Upon execution aloop is established. Within the
loop the statement is executed. Then the expression is evaluated and if it evaluatesto true, flow
of control resumes at the start of the loop. Otherwise the loop isterminated and flow of control
resumes after the do-while statement.

The ICI Programming Language 55



Chapter 4: ICl Language Reference

Thefor statement
The for statement has the form:

for ([ expression]; [ expression]; [ expression] ) statement

The parser convertsit to an internal form. Upon execution the first expression is evaluated (if
present). Then, aloop isestablished. Within the loop: If the second expression is present, it is
evaluated and if it isfalsethe loop isterminated. Next the statement is executed. Finally, the
third expression isevaluated (if present) and flow of control resumes at the start of the loop. For
example:

for (i =0; i < 4; ++i)
printf("Line %\n", i);

When run will produce:

Line O
Line 1
Line 2
Line 3

Theforall statement
The forall statement has the form:

forall (expression[ ,expression] in expression ) statement

The parser convertsit to an internal form. In doing so the first and second expressions are
required to be lvalues (that is, capable of being assigned to). Upon execution the first expres-
sionisevaluated and that storage location is noted. If the second expression is present the same
isdonefor it. Thethird expression isthen evaluated and the result noted; it must evaluate to an
array, aset, astruct, astring, or NULL; we will call thisthe aggregate. If thisisNULL, the
forall statement isfinished and flow of control continues after the statement; otherwise, aloop
is established.

Within the loop, an element is selected from the noted aggregate. The value of that element is
assigned to the location given by the first expression. If the second expression was present, it is
assigned the key used to access that element. Then the statement is executed. Finally, flow of
control resumes at the start of the loop.

Each arrival at the start of the loop will select a different element from the aggregate. If no as
yet unselected elements are | eft, the loop terminates. The order of selection is predictable for
arrays and strings, namely first to last. But for structs and setsit is unpredictable. Also, while
changing the values of the structure members is acceptable, adding or deleting keys, or adding
or deleting set elements during the loop will have an unpredictable effect on the progress of the
loop.

Asan example:

forall (colour in [array "red", "green", "blue"])
printf("%\n", colour);

when run will produce:

red
green
bl ue

56 ThelCl Programming Language



Statements: The switch, case, and default statements

And:

forall (value, key in [struct a =1, b =2, ¢ = 3])
printf("% = %\ n", key, value);

when run will produce (possibly in some other order):

c =3
a=1
b =2

Note in particular the interpretation of the value and key for a set. For consistency with the
access method and the behavior of structs and arrays, the values are al 1 and the elements are
regarded as the keys, thus:

forall (value, key in [set "a", "b", "c"])
printf("% = %l\n", key, value);

when run will produce:

c =1
a=1
b=1

But asaspecial case, when the second expression is omitted, thefirst is set to each "key" in turn,
that is, the elements of the set. Thus:

forall (elenent in [set "a", "b", "c"])
printf("%\n", elenent);
when run will produce:

c

a

b
When aforall loop is applied to astring (which is not atrue aggregate), the " sub-elements” will
be successive one character sub-strings.

Note that although the sequence of choice of elementsfrom a set or struct is at first examination
unpredictable, it will be the same in a second forall loop applied without the structure or set
being modified in the interim.

The switch, case, and default statements
These statements have the forms;

switch (‘expression ) compound-statement
case expression :
default :

The parser converts the switch statement to an internal form. Asit is parsing the compound
statement, it notes any case and default statementsit finds at the top level of the compound
statement. When a case statement is parsed the expression is evaluated immediately by the
parser. Asnoted previoudly for parser evaluated expressions, it may perform arbitrary actions,
but it isimportant to be aware that it is resolved to a particular value just once by the parser. As

The ICI Programming Language 57



Chapter 4: ICl Language Reference

the case and default statements are seen their position and the associated expressions are noted
inatable.

Upon execution, the switch statement's expression is evaluated. This value islooked up in the
table created by the parser. If amatching case statement is found, flow of control immediately
moves to immediately after that case statement. |If there is a default statement, flow of control
immediately movesto just after that. If thereisno matching case and no default statement, flow
of control continues just after the entire switch statement.

For example:

switch ("a string")
{
case "another string":
printf("Not this one.\n");
case 2:
printf("Not this one either.\n");
case "a string":
printf("This one.\n");
defaul t:
printf("And this one too.\n");

}

When run will produce:

Thi s one.
And this one too.

Note that the case and default statements, apart from the part they play in the construction of the
look-up table, do not influence the executable code of the compound statement. Notice that
once flow of control had transferred to the third case statement above, it continued through the
default statement asif it had not been present. This behavior can be modified by the break state-
ment described bel ow.

It should be noted that the "match” used to look-up the switch expression against the case
expressions is the same as that used for structure element look-up. That is, to match, the switch
expression must evaluate to the same object as the case expression. The meaning of thiswill be
made clear in alater section.

The break and continue statements
The break and continue statements have the form:

break ;
continue;

The parser converts these to an internal form. Upon execution of a break statement the execu-
tion engine will cause the nearest enclosing loop (awhile, do, for or forall) or switch statement
within the same scope to terminate. Flow of control will resume immediately after the affected
statement. Note that a break statement without a surrounding loop or switch in the same func-
tion or moduleisillegal.

Upon execution of a continue statement the execution engine will cause the nearest enclosing
loop to move to the next iteration. For while and do loops this means the test. For for loopsit
means the step, then the test. For forall loops it means the next element of the aggregate.

58 ThelCl Programming Language



Statements: The return statement

Thereturn statement

The return statement has the form:
return [ expression] ;

The parser convertsthisto aninternal form. Upon execution, the execution engine evaluatesthe
expression if itis present. If it isnot, the value NULL is substituted. Then the current function
terminates with that value as its apparent value in any expression it isembedded in. Itisan
error for there to be no enclosing function.

Thetry statement
The try statement has the form:

try statement onerror statement

The parser convertsthisto aninternal form. Upon execution, the first statement is executed. If
this statement executes normally flow continues after the try statement; the second statement is
ignored. But if an error occurs during the execution of the first statement control is passed
immediately to the second statement.

Note that "during the execution” appliesto any depth of function calls, even to other modules or
the parsing of sub-modules. When an error occurs both the parser and execution engine unwind
as necessary until an error catcher (that is, atry statement) is found.

Errors can occur almost anywhere and for avariety of reasons. They can be explicitly generated
with the fail function (described below), they can be generated as a side-effect of execution
(such as division by zero), and they can be generated by the parser due to syntax or semantic
errorsin the parsed source. For whatever reason an error is generated, amessage (astring) is
always associated with it.

When any otherwise uncaught error occurs during the execution of the first statement, two
things are done;

» Firdtly, the string associated with the failure is assigned to the variable error. The assign-
ment is made asif by a simple assignment statement within the scope of the try statement.

» Secondly, flow of control is passed to the statement following the onerror keyword.

Once the second statement finishes execution, flow of control continues asif the whole try state-
ment had executed normally.

For example:

static
div(a, b)
{
try
return a / b;
onerror
return O;

printf(" 2

("4 / %\ n", div(4,
printf("4/ 0

%\ n", div(4, O

N
~— —

When run will print;

The ICl Programming Language 59



Chapter 4: ICl Language Reference

2

4 /
4 / 0

2
0
The handling of errors which are not caught by any try statement isimplementation dependent.

A typical action isto prepend the file and line number on which the error occurred to the error
string, print this, and exit.

The critsect statement
The critsect, or “critical section”, statement has the form:

critsect statement

The parser convertsthisto aninternal form. Upon execution, the statement is executed indivis-
ibly with respect to other threads. Thus:

critsect x = x + 1;

will increment x by 1, even if another thread is doing similar increments. Without the use of the
critsect statement we could encounter a situation where both threads read the current value of x
(say 2) at the same time, then both added 1 and stored the result 3, rather than one thread incre-
menting the value to 3, then the other to 4.

Theindivisibility bestowed by a critsect statement applies aslong as the code it dominatesis
executing, including all functions that code calls. Even operations that block (such as the wait-
for statement) will be affected. The indivisibility will be revoked once the critsect statement
completes, either through completing normally, or through an error being thrown by the code it
is dominating.

The waitfor statement
The waitfor statement has the form:

waitfor ( expression ; expression ) statement

The parser convertsthisto an internal form. Upon execution, a critical section is established
that extends for the entire scope of the waitfor statement (except for the special exception
explained below). Within the scope of this critical section, the waitfor statement repeatedly
evaluates the first expression until it istrue (that is, neither 0 nor NULL). Once the first expres-
sion evaluates to true, control passes to the statement (still within the scope of the critical sec-
tion). After executing statement the critical section isreleased and the waitfor statement is
finished.

However, each time the first expression evalutes to afalse value, the second expression is evalu-
ated and the object that it evaluates to is noted. Then, indivisibly, the current thread sleeps wait-
ing for that object to be signaled (by a call to the wakeup() function), and the critical section is
suppressed (thus allowing other thread to run). The thread will remain asleep until it is woken
up by acall to wakeup() with the given object as an argument. Each time this occurs, the critical
section is again enforced and the process repeats with the evaluation and testing of the first
expression. While the thread is asleep it consumes no significant CPU time.

The waitfor statement isthe basic method of inter-thread communication and control in ICI. Itis
typically used to gate control of some datathat is passing from one thread to another. For exam-
ple, suppose jobsisan array that is shared between two processes. In one thread we might write:

wai tfor (nels(jobs) > 0; jobs)
j ob = rpop(jobs);

60 ThelCl Programming Language



Statements: The null statement

/*
* Process job...
*/

While in a second thread that is generating jobs we might write:

push(j obs, new job);
wakeup(j obs);

In this example, the list object jobs is the object we are using to wait on and wakeup, but any
object can be used. One technique isto use acommonly agreed string (strings being intrinsically
atomic, will naturally be the same object without any explicit commonality between the
threads). In some circumstances it may be necessary to apply a critsect to the access to the
shared data (jobs in this example) in the thread doing the waking up.

It isvery important to only perform the call to wakeup() after the condition that allows rel ease of
the wait has been established. To illustrate, suppose we had written:

wakeup(j obs); /* WWRONG */
enqueue(j obs, new_j ob); /* WWRONG */

In this case the waiting thread may have run between the two statements, evaluated the test to
false, and gone to sleep again, possibly never to wake.

Similarly, the waitfor condition must be atrue reflection of a condition that implies a wakeup
will occur, at some stage, on the object being waited on. Do not assume that because the thread
has woken up, the wakeup has been for the expected reason. For example, it would be wrong to
write:

wait _once = 0;
wai tfor (wait_once++; jobs) /* WRONG */
j obs = dequeue(j obs);

Thenull statement

The null statement has the form:

The parser may convert thisto an internal form. Upon execution it will do nothing.

Declar ation statements

There are two types of declaration statements:

declaration storage-class declaration-list ;
storage-classidentifier function-body

storage-class extern
static
auto

Thefirst isthe general case while the second is an abbreviated form for function definitions.
Declaration statements are syntactically equal to any other statement, but their effect is made
entirely at parsetime. They act as null statementsto the execution engine. There are no restric-
tion on where they may occur, but their effect is a by-product of their parsing, not of any execu-
tion.

The ICl Programming Language 61



Chapter 4: ICl Language Reference

. . . 3
Declaration statements must start with one of the storage-class keywords listed above . Con-
sidering the general case first, we next have a declaration-list.

declaration-list identifier [ = expression |
declaration-list , identifier [ = expression |

That is, acomma separated list of identifiers, each with an optional initialisation, terminated by
asemicolon. For example:

static a, b =2, ¢ =Jarray 1, 2, 3];

The storage class keyword establishes which scope the variablesin the list are established in, as
discussed earlier. Notethat declaring the same identifier at different scope levelsis permissible
and that they are different variables.

A declaration with no initialisation first checksif the variable already exists at the given scope.
If it does, it isleft unmodified. In particular, any valueit currently hasisundisturbed. If it does
not exist it is established and is given the value NULL.

A declaration with an initialisation establishes the variable in the given scope and givesit the
given value even if it already exists and even if it has some other value.

Notethat initial values are parser evaluated expressions. That isthey are evaluated immediately
by the parser, but may take arbitrary actions apart from that. For example:

static
fi bonacci (n)
{
if (n<=1)

return 1,
return fibonacci(n - 1) + fibonacci(n - 2);

}

static fibl0 = fibonacci (10);
The declaration of fib10 callsafunction. But that function has already been defined so thiswill
work.

Note that the scope of a static variable is (normally) the entire moduleit is parsed in. For exam-
ple:

static
func()

{
}

printf("%\n", aStatic);

static aStatic = "The value of a static.";

when run will print:

The val ue of a static.

3. Notethat, unlike C, function definitions must be prefixed by a storage class. As executable code may
occur anywhere, thisis required to distinguish them from afunction call.

62 ThelCl Programming Language



Statements: Abbreviated function declarations

That is, despite being declared within afunction, the declaration of aatic has the same effect
asif it had been declared outside the function. Also notice that the function has not been called.
The act of parsing the function caused the declaration to take effect.

The behavior of extern variables has already been discussed, that is, they are declared as static
in the parent module. The behavior of auto variables, and in particular their initialisation, will
be discussed in alater section.

Abbreviated function declar ations
As seen above there are two forms of declaration. The second:

storage-classidentifier function-body

is a shorthand for:

storage-classidentifier = [ func function-body ] ;

and isthe normal way to declare ssimple functions. Examples of this have been seen above.

Functions

Aswith most ICI constructs there are two parts to understanding functions; how they are parsed
and how they execute.

When afunction is parsed four things are noted:

» the names and positions of the formal parameters;

» the names and initiaisation of auto variables;

» thestatic scope or classin which the function is declared;
» thecode generated by the statements in the function.

The formal parameters (that is, the identifiersin the bracket enclosed list just before the com-
pound statement) are actually implicit auto variable declarations. Each of the identifiersis
declared as an auto variable without an initialisation, but in addition, its name and position in
thelist is noted.

Upon execution (that is, upon afunction call), the following takes place:

» Theauto variables, as noted by the parser, along with any initialisations, are copied as a
group. This copy formsthe auto variables of thisinvocation.

» Any actual parameters (that is, expressions provided by the caller) are matched positionally
with the formal parameter names, and the val ue of those expressions are assigned to the auto
variables of those names.

» |If there were more actual parameters than formal parameters, and there is an auto variable
called vargs, the remaining argument values are formed into an array which is assigned to
vargs.

» If thisisamethod call (see below) the auto variable thisis set to the subject object of the
call, and the auto variable classis set to the class (if any).

» Thevariable-scope is set such that the auto variables are the inner-most scope.

» Successive outer scopes are set to the static scope, or, if thisis amethod call, the class noted
when the function was parsed.

» Theflow of control isdiverted to the code generated by parsing the function.

The ICl Programming Language 63



Chapter 4: ICl Language Reference

A return statement executed within the function will cause the function to return to the caller
and act as though its value were the expression given in the return statement. If no expression
was given in the return statement, or if execution fell through the bottom of the function, the
apparent return valueisNULL. Inany event, upon return the scope is restored to that of the
caler. All internal referencesto the group of automatic variables are lost (although as will be
seen later explicit program references may cause them to remain active).

Simple functions have been seen in earlier examples. We will now consider further issues.

It isvery important to note that the parser generates a prototype set of auto variables which are

copied, along with their initial values, when the functioniscalled. The value which an auto var-
iableisinitialised with isaparser evaluated expression just like any other initialisation. Itisnot
evaluated on function entry. But on function entry the value the parser determined is used to ini-
tialisethe variable. For example:

static nyvar = 100;

static

myFunc()
{

auto anAuto = nyVar;

printf("%l\n", anAuto);
anAuto = 500;

}

myFunc() ;
myVar = 200;

myFunc() ;

When run will print:

100
100

Notice that the initial value of anAuto was computed just once, changing myVar before the sec-
ond call did not affect it. Also note that changing anAuto during the function did not affect its
subsequent re-initialisation on the next invocation.

As stated above, formal parameters are actually uninitialised auto variables. Because of the
behaviour of variable declarationsit is possible to explicitly declare an auto variable aswell as
includeit in the formal parameter list. In addition, such an explicit declaration may have an ini-
tialisation. In thiscase, the explicit initialisation will be effective when there is no actual
parameter to overrideit. For example:

static
print(nmsg, file)
{

auto file = stdout; /* Default value. */

fprintf(file, "%\n", nsQ);
}

print("Hello world");
print("Hello world", stderr);

64 ThelCl Programming Language



Statements: Functions

In thefirst call to the function print there is no second actual parameter. In this case the explicit
initialisation of the auto variable file (which is the second formal parameter) will have its effect
unmolested. But in the second call to print a second argument isgiven. In this case thisvalue
will over-write the explicit initialisation given to the argument and cause the output to go to
stderr.

Asindicated above there is amechanism to capture additional actual parameterswhich were not
mentioned in the formal parameter list. Consider the following example:

static

sun()
{

aut o vargs;
auto total = O;
auto arg;

forall (arg in vargs)
total += arg;
return total;

}

printf("1+2+3 = %\ n", sum(1l, 2, 3));
printf("1+2+3+4 = %@\ n", sum(1l, 2, 3, 4));

Which when run will produce:

14243 = 6
1+2+43+4 = 10

In this example the unmatched actual parameters were formed into an array and assigned to the
auto variable vargs, aname which is recognised specialy by the function call mechanism.

And also consider the following example where a default initialisation to vargsis made. In the
following example the function call is used to invoke a function with an array of actual parame-
ters, the function array is used to form an array at run-time, and addition is used to concatenate
arrays, al these features will be further explained in later sections:

static
debug(fnt)

auto fm = "Reached here.\n";
auto vargs = [array];

call (fprintf, array(stderr, fmt) + vargs);
}

debug();
debug("Done that.\n");
debug("Result = %, total = %.\n", 123, 456);

When run will print:

Reached here.
Done t hat.
Result = 123, total = 456.

The ICI Programming Language 65



Chapter 4: ICl Language Reference

In the first call to debug no arguments are given and both explicit initialisations take effect. In
the second call the first argument is given, but the initialisation of vargs still takes effect. Butin
the third call there are unmatched actual parameters, so these are formed into an array and
assigned to vargs, overriding its explicit initialisation.

Objects

Up till now few exact statements about the nature of values and data have been made. We will
now examine values in more detail. Consider the following code fragment:

static x;
static vy;

X

[array 1, 2, 3, 4];
y .

X!

After execution of this code the variable x refersto an array. The assignment of x to y causesy
to refer to the same array. Diagrammatically:

X e| 1 2 3 4

If the assignment;
y[1] = 200;

is performed, theresult is:

X >| 1 200 3 4

We say that x and y refer to the same object. Now consider the following code fragment:
static x;
static vy;

X
y

[array 1, 2, 3, 4];
[array 1, 2, 3, 4];

Diagrammatically:

In this case, x and y refer to different objects, despite that fact they are equal.

66 ThelCl Programming Language



Objects: Functions

Now consider one of the unary operators which was only briefly mentioned in the sections
above. The @ operator returns aread-only version of the sub-expression it is applied to. Con-
sider the following statement:

y = @;

After this has been executed the result could be represented diagrammatically as:

1 2 3 4

1 2 3 4

-
\ ead-only
1 2 3 4

The middle array now has no reference to it and the memory associated with it will be collected
by the interpreter's standard garbage collection mechanism. Now consider the following state-
ment:

X = @,;

Thisissimilar to the previous statement, except that thistime x is replaced by aread-only ver-
sion of itsold value. But the result of this operationis:

— 1 2 3 4
md-nnly
1 2 3 4

Notice that x now refersto the same read-only array that y refersto. Thisisafundamental prop-
erty of the @ operator. It returns the unique read-only version of its argument value. Such read-
only objects are referred to as atomic objects. The array which x used to refer to was non-
atomic, but the array it refersto now isan atomic array. Aggregate types such asarrays, setsand
structs are generally non-atomic, but atomic versions can be obtained (as seen above). But most
other types, such asintegers, floats, and (normally) strings are intrinsically atomic. That is, no
matter how a number, say 10, is generated, it will be the same object as every other number 10
in the interpreter. For-instance, consider the following example:

X
y

"ab" + "cdefg";
"abcde" + "fg";

After thisis executed the situation can be represented diagrammatically as:

—_—

>>" abcdef g"

It isimportant to understand when objects are the same object, when they are different and the
effects this has.

The ICl Programming Language 67



Chapter 4: ICl Language Reference

Equality
We saw above how two apparently identical arrays were each distinct objects. But these two
arrays were equal in the sense of the equality testing operator ==. If two values are the same

object they are said to be eq4, and thereisafunction of that name to test for this condition. Two
objects are equal (that is==) if:

» they are the same object (i.e. eq); or
 they are both arithmetic (int and float) and have equivalent numeric values; or
» they are aggregates of the same type and all the sub-elements are the same objects (i.e. eq).

This definition of equality isthe basis for resolving the merging of aggregates into unique read-
only (atomic) versions. Two aggregates will resolve to the same atomic object if they are equal.
That is, they must contain exactly the same objects as sub-elements, not just equal objects. For

example:
static x = [array 1, [array 2, 3], 4, 5];
static y = [array 1, [array 2, 3], 4, 5];

Could be represented diagrammatically as:

X L 1

y > 1 4 5

Now, if the following statements were executed:

X = @,;
y = @,

4.Asin LISP.

68 ThelCl Programming Language



Objects: Equality

The result could be represented diagrammatically as:

d-onlv
0-0nty

X 1

_nn!y |
y >Feadl 4 5

That is, both x and y refer to new read-only objects, but they refer to different read-only objects
because they have an element which is not the same object. The simple integers are the same
objects because integers are intrinsically atomic objects. But the two sub-arrays are distinct
objects. Being equal was not sufficient. The top-level arrays needed to have exactly the same
objects as contents to make x and y end up referring to the same read-only array. In contrast to
this consider the following similar situation:;

static z = [array 2, 3];
static x = [array 1, z, 4, 5];
static y = [array 1, z, 4, 5];

This could be represented diagrammatically as:

X L 1

y > 1 4 5

Now, if the following statements were executed:

@;
@;

X
y

The result could be represented diagrammatically as:

X _—

md-nnly
>> 1 | 4 5
y —

The ICl Programming Language 69



Chapter 4: ICl Language Reference

In this case both x and y refer to the same read-only array because the original arrays where
equal, that is, all their elements were the same objects. Notice that one of the elementsis still a
writeable array. The read-only property isonly referring to the top level array. The sub-array
can be changed, but the reference to it from the top level array can not. Thus:

x[1][0] = 200;

will result in:

X ] ead-only
> 1 | 4 5
y

200 3

whereas the statement:
x[ 1] = 200;

will just result in an error.

Structure and set keys

Any object, not just a string, can be used as akey in a structure. For instance:

static x = [struct];
static z = [array 10, 11];
x["abc"] = 1;

X[ 56] = 2;

x[z] = 3;

Could be represented diagrammatically as:

/ 10 11

X — T ® "abc" 56

And the assignment:
x[z] = 300;
would replace the 3 in the above diagram with 300. But the assignment:

X[[array 10, 11]] = 300;

would result in anew element being added to the structure because the array given in the above
statement is a different object from the one which zrefersto.

Similarly, elements of sets may be any objects.

70 ThelCl Programming Language



Objects: Structure super types

Indexing structures by complex aggregatesis as efficient as indexing by intrinsically atomic
types such as strings and integers.

Sructure super types

Up till now structures have been described as simple lookup tables which map a key, or index,
toavalue. But astructure may have associated with it a super structure.

The function super can be used to discover the current super of a struct and to set a new super.
With just one argument it returns the current super of that struct, with a second argument it also
replaces the super by that value.

When akey isbeing looked-up in a structure for reading, and it is not found and there is a super
struct, the key is further looked for in the super struct, if it isfound there its value from that
struct isreturned. If it isnot found it will be looked for in the next super struct etc. If no struc-
turesin the super chain contain the key, the special value NULL isreturned.

When akey is being looked up in a structure for writing, it will similarly be searched for in the
super chain. If it isfound in awriteable structure the value in the structure in which it was
found will be set to the new value. If it was never found, it will be added along with the given
value to the very first struct, that is, the structure at the base, or root, of the super chain.

Consider the following example:

static theSuper = [struct a =1, b =2, ¢ = 3];
static theStruct = [struct x = 100, y = 200];

super (theStruct, theSuper);

After this statement the situation could be represented diagrammatically as:

"a" "b" "c"
3

2
A

t heSt r uct ——»> X
100 200

then if the following statements were executed:

theStruct.a = 123;
theStruct.x = 456;
theStruct.z = 789;

The ICl Programming Language 71



Chapter 4: ICl Language Reference

the situation could be diagrammatically represented as:

1] au n b" 1] 1]

123 2

A
t heSt ruct > X" "y" z”
456 200 789

If asuper struct is not writeable (that is, it is atomic) values will not be written in it and will
lodge in the base structure instead. Thus consider what happens if we replace the super struc-
ture in the previous example by its read-only version:

super (theStruct,

@ heSuper) ;

The situation could now be represented diagrammatically as:

Read-only
"a" " b" non
123 >
A
t heStruct > "X "y" man
456 200 789

If the assignment statement:

theStruct.a += 10;

were executed, the value of the element a will first be read from the super structure, this value
will then have ten added to it, and the result will be written back into the base structure; because
the super structureisread-only and cannot be modified. The finally situation can be represented
diagrammatically as:

Read-only
T b o
A
t heSt r uct — " a" " X" " y" " Zu
133 456 200 789

Note that many structs may share the same super struct. Thusasingle read-only super struct
can be used hold initial values; saving explicit initialisations and storage space.

72 ThelCl Programming Language



Base types: An aside on variables and scope

The function assigh may be used to set avalue in a struct explicitly, without reference to any
super structs; and the function fetch may be used to read a value from a struct explicitly, without
reference to any super structs.

Within a struct-literal a colon prefixed expression after the struct identifier is used as the super
struct. For example, the declarations used in the previous example could be written as:

static theSuper = [struct a =1, b =2, ¢ = 3];
static theStruct = [struct:theSuper, x = 100, y = 200];

An aside on variables and scope

Now that structs and their super have been described a more precise statement about variables
and scope can be made.

ICl variables are entriesin ordinary structs. At all times, the execution context holds areference
to a struct that is the current scope for the lookup of simple variables. An un-adorned identifier
in an expression isjust an implicit reference to an element of the current scope structure. The
inheritance and name hiding of the variable scope mechanism is a product of the super chain.

During both module parsing and function execution, the auto variables are the entriesin the base
structure. The super of thisis the struct containing the static variables. The next super struct
contains the externs, and successive super structs are successive outer Scopes.

Auto, static and extern declarations make explicit assignments to the appropriate structure.

The function scope can be used to obtain the current scope structure; and to set it (use with
care).

But there is adifference in the handling of undefined entries. Whereas normal 1ookup of unde-
fined entries in a structure produces a default value of NULL, the implicit lookup of undefined
variablestriggers an attempt to dynamically load alibrary to define the variable (see Undefined
variables and dynamic loading below), and failing that, produce an error (“%s undefined”).

Base types

ICl supports a base set of standard datatypes. Eachisidentified by asimple name. In summary
these are:

array An ordered sequence of objects.

exec A thread execution context.

file An open file reference.

float A double precision floating point number.
func A function.

int A signed 32 hit integer.

list An ordered set of objects.

mem References to raw machine memory.
method A binding of a function and a subject object.
ptr A reference to a storage location.

regexp A compiled regular expression.

The ICl Programming Language 73



Chapter 4: ICl Language Reference

set An unordered collection of objects.
string An ordered sequence of 8 bit characters.
struct An unordered set of mappings from one object to another.

Many of these base types have been alluded to in previous sections. The following sections
describe each type in more detail.

It should be noted that indexing and calling are the only operations that are an intrinsic property
of each base type. Other behaviours of base types are a product of operators and functions that
perform their various functions when supplied with operands of particular types. For this reason
the following descriptionstypically describe what data an instance of each base type holds, what
happens when it isindexed or called, and may briefly mention the functions and operators that
are highly relevant to the type. See following sections on operators and core functions for a
complete picture.

In the following text, the word “efficient” typically meansin constant time or memory, although
occasional internal housekeeping may occur.

array - An ordered sequence of objects

An array is acontiguous (in memory) block of object references. The first object is referred to
with index zero, subsequent elements of the block are referenced by successive integers. The
index must always be an integer, el se the indexing operation will fail. Reading at indicies not in
the block resultsin a NULL value. Writing at negative indicies fails, while writing at indicies
beyond the current end of the block silently extends the block, and NULL fillsthe span between
the old end and the newly written element. The function nels() can be used to reveal the number
of elements currently in the array (which is also theindex of thefirst element beyond the current
length of the array).

Arrays offer the most memory-efficient method of storing collections of objects.® The functions
push(), pop(), rpush(), rpop() and top() are of note. They allow arraysto be used as efficient

stacks and queues. They are al of constant order ti me®. Most other functions and operations on
arrays are O(n). For example, array additionis O(n + m) where n and m are the lengths of the
two arrays.

The rpush() and rpop() functions push and pop items from the front of the array (that is, near
index zero). But the first item is always considered to be at index zero. Pushing and popping
items on the front of an array effectively changes the index of al the itemsin the array.

See also the functions array() to create an array at run-time, and the parse-time in-line literal
form of arrays[array ...]. The function sort() can be used to sort the elements of an array.

ICl arrays form the fundamental basis for operand, execution and scope stacksin the ICl inter-
nal execution engine, aswell as the storage of compiled code. Although the latter is not visible
to the ICI programmer.

exec - A thread execution context

An exec object holds the execution context for athread of exection and isreturned by the
thread() function.

5. On 32 bit machines, the raw per-element overhead istypically 4 bytes; although there is often slop at
the end of the block to alow efficient growth.

6. Arraysareinternally implemented as growable circular buffers.

74 ThelCl Programming Language



Base types: file - An open file reference

Exec objects can be indexed by:
status Which yields a string, either "active", "finished" or "failed".

result Beforethethread hasfinished, thisfield readsasNULL. Once, or if,
the top level function returns, this field yields the value returned
from that function. If the thread failed with an uncaught error, ac-
cessing the result field will cause the thread accessing it to inherit
that error asif it had just occured.

file- An open filereference

A file object is areference and interface to some lower level file-like object. Most commonly a
real file supported by the operating system, but not necessarilly so. The actual file object holdsa
reference to the basic file object, and references to its primitive access methods and operations.
Those primitive methods are directly represented by the intrinsic ICI functions: close(), eof(),
flush(), getchar(), put(), and seek(). In addition, the functions getline(), getfile(), gettoken(), and
gettokens() efficiently build on these to read higher level constructs than simple bytes from a
file. These functions can greatly increase the efficiency of file parsing over explicit per-charac-
ter operations. The function printf() provides efficient formatted output to files.

File objects are generally created by “open” functions; such as the archetypal fopen() function
that opens or creates a host operating system file. Also note the sopen() function that allows an
ICI string object to be opened as afile. The variables stdin, stdout, and stderr are generally cre-
ated in the outer-most scope at interpreter startup and refer to the associated files of the current
process. Also, various functions, such as printf(), will, if no explicit file argument is supplied,
use the current val ue of the appropriate variable. These functions do this by looking up the name
in the current scope, so it is possible to locally override their default file usage.

Files can not be indexed or called.

Note that an unreferenced file object will, eventually, be collected by the ICl interpreter’s gar-
bage collector, at which point it will be closed (if it is not already closed). But the indeterminate
timming of garbage collections makes it inadvisable to rely on this mechanism to closefiles. In
general, files should be explicitly closed to release lower level resources at a deterministic time.
A fileobject is il avalid object after it has been closed, except no 1/0 operationswill work on
it any more.

File objects can be indexed for reading by some names to discover information for diagnostics.
Specifically:
name A name that was associated with the file object when it was created.
Generally the name of thefile.

line The current line number which parseing has reached. The file must
be one of the special fileslayered on top of ICI’s parser, asreturned
by currentfile() or passed to aparser function in auser-parsed literal
factor (See“ User defined literal factors’ on page 47).

(Thereis currently a paucity of functions to support reading and writing binary files. This will
be corrected in future revisions. The sys extension module does provide some support. TML)

float - A double precision floating point number

A float holds a double precision floating point number (in the local machine's native format).
Floats are intrinsically atomic, based on their value (that is, all floats with a particular value are

The ICI Programming Language 75



Chapter 4: ICl Language Reference

references to the same memory location). Floats can not be indexed or called and their utility is
entirely based on the operators and functions that accept and return them.

func - A function

A function holds a reference to executable code, and a name suitable for diagnostics. In reality
there are two types of function objects: functions that reference native machine code, and func-
tions that reference interpreted ICl code. But they are both called “func”.

Function objects that link to interpreted I Cl code also hold the names of the formal parameters
and a prototype of the local scope structure that will be copied and used each time the function
isinvoked.

Function objects are intrinsically atomic based on the identity of all their components. The ICl
parser also makes code atomic so in theory equal functionswill be identical objects, but in prac-
tice such items as source file line information embedded in executable code frustrate this.

Function objects can, of course, be called. The semantics of this operation has been described
above. Function objects are al so the basis of methods in classes, the difference merely existing
in their preparation by the parser, and the semantics of calling through a method.

Function objects can be indexed by some specific names to discover some of the internal ele-
ments. Specifically:

name Returns aname that has been assigned to the function. In the case of
the “abbreviated function declaration” described above, it will be
the identifier associated with the function. In the case of anin-line
function literal, it will be the name _funcname . In the case of a
function implemented in native machine code, it will be an author
assigned name.

autos Returnsthe (atomic) prototype auto scope struct of thisfunction, or
NULL for functionsimplemented in native machine code. The super
of thisstruct reveal sthe static scope of thisfunction (the parsed class
for a method).

args Returnsthe (atomic) array of formal parameter names, or NULL for
functions implemented in native machine code.

int - A signed 32 bit integer

Anint hold a32 bit signd integer (in the local machine's native format). Intsareintrinsically
atomic based on their value (that is, al ints with a particular value are references to the same
memory location). Ints can not be indexed or called and their utility is entirely based on the
operators and functions that accept and return them.

mem - A reference to raw machine memory

A mem object references byte- or word-structured native machine memory. The mem object
hol ds the base address of a region of raw machine memory, the word-size it is to be accessed
with (1, 2 or 4 bytes per word), and the number of words that can be accessed.

The base address identifies the first word, and this can be accessed (as an integer) at index zero.
Successive integers indicies reference successive words, up to the limit. Reading outside the
bounds returns NUL L, writing outside the bounds causes an error. Words are read and written in
the native machine format (endienessin particular). One and two byte words are read as
unsigned quantities. When writing, non-zero bits above the word size are simply discarded.

76 ThelCl Programming Language



Base types: method - A binding of a function and a subject object

Mem abjects can be used for simple, but dense, unstructured data storage. But they are most
commonly used in interfaces to native machine code or hardware. The functions mem() and
alloc() can be used to create mem objects. Although mem(), which allows access to arbitrary
native machine addresses, may be disallowed in some systems. The function alloc() allocates
memory for the mem object to refer to which is freed when the mem object is garbage collected.

Mem objects are intrinsically atomic, based on the address, word size and number of elements.

method - A binding of a function and a subject object

A method holds areference to a callable object, and a subject object. The subject object istypi-
cally astruct of some class (that is, its super is the class). The callable object istypically afunc-
tion of the class or one of its super classes.

Method objects can be called, the semantics of which are described above.

Method objects can be indexed to discover their internal elements. Specifically:

subject Returns the subject object of the method. Thisistypically a struct.
callable Returns the callable object of the method. Thisistypically afunc-
tion.

Method objects are created by the : operator, typically preparatory to the invocation of a class
function. But in most situations the parser will generate a special type of shortcut function invo-
cation to avoid the run-time creation of an ephemeral method object. So in practice method
objects are quiet rare.

ptr - A referenceto a storage location

Pointers are references to storage locations. Storage locations are the elements of anything
which can beindexed. That is, array elements, set elements, struct elements and others. Varia-
bles (which are just struct elements) can be pointed to.

Pointers hold two objects, one is the object pointed into, the other is the key used to access the
location in question.

The & operator is used to obtain a pointer to alocation. Thusif the following were executed:

static x;

static y = [array 1, 2, 3];
static pl = &x;

static p2 = &[1];

The variable p1 would be a pointer to x and the variable p2 would be a pointer to the second ele-
ment of y. Reference to the object a pointer points to can be obtained with the * operator. Thus
if the following were executed:

*pl = 123;

*p2 = 456;

printf("x = 9%, y[1] = %@\n", x, y[1]);
the output would be:

x = 123, y[1] = 456

The generation of apointer does not affect the location being pointed to. In fact the location
may not even exist yet. When a pointer is referenced the same operation takes place asif the

The ICl Programming Language 77



Chapter 4: ICl Language Reference

location was referenced explicitly. Thus a search down the super chain of a struct may occur, or
an array may be extended to include the index being written to, etc.

In addition to simple indirection (that isthe * operator), pointers may be indexed. But the index
values must be an integer, and the key stored as part of the pointer must also be an integer.
When a pointer isindexed, the index is added to the key which is stored as part of the pointer,
the sum forms the actual index to use when referencing the aggregate recorded by the pointer.
For instance, continuing the example above:

p2[1] = 789;
would set the last element of the array to 789, because the pointer currently references element

1, and thegivenindex is1, and 1 + 1 is 2 which isthe last element. Theindex arithmetic pro-
vided by pointers will work with any types, as long as the indicies are integers, thus:

static s = [struct (20) =1, (30) =2, (40) = 3];
static p = &s[30];

p[-10] = -1;

p[0] = -2

p[10] = -3;

Would replace each of the elements in the struct s by their negative value.

Pointers can be called, but thisis an obsolete facility and may be removed in future versions.

regexp - A compiled regular expression

A regexp object holds aregular expression and its compiled form. Regular expressions describe
text patterns against which actual text can be matched to discover if the actual text matches the
pattern. They can also be used to extract sub-strings of the actual text based on the pattern
matching. For more details on the syntax and semantics of regular expressions, see the chapter
on the subject below.

Regular expressions are created by the regexp() and regexpi() functions, and by the parser from
regular expression literals (that is, #...#). Text can be matched against regular expressions by the

operators ~, !~, ~~, and ~~~, and by the functions sub(), gsub() and smash().
Regular expressions can be indexed by two specific names:
pattern Returns the original pattern as a string.
option Returnsan integer bit mask of the options applied in making thereg-

ular expression.

Regular expressions are intrinsically atomic, based on the identity of the original pattern.

set - An unordered collection of objects

A setisan unordered collection of object references. Any single object can either bein agiven
set, or not in the set. It can not be in the set multiple times. Adding and removing objects from
setsis an efficient constant time operation, and each distinct object in the set imposes a small

fixed memory cost (both access speed and memory cost is dlightly higher than the per element
cost of an array). The type and complexity of an object being added or removed from a set has

no effect on the efficiency of the operation.’

Sets can be used in different ways. In some circumstances they are used simply as unordered
aggregates of other objects. In other circumstances they are used more as algebraic sets to

78 ThelCl Programming Language



Operators: string - An ordered sequence of 8 bit characters

record which objects have a certain property. In this regard they can be particularly useful
because objects can be noted as having a particular property without modifying the internal's of
the object at all.

string - An ordered sequence of 8 bit characters

A string holds an ordered sequence of 8 hit characters. Almost all string operations produce
atomic (read-only) strings (that is, al strings with a particular value are references to the same
memory location). Strings can be indexed by an int (read only) to reveal a one-character sub-
string, or an empty string if negative or beyond the end of the string. Most of the utility of
strings derive from the functions and operators that can be applied to them.

Strings are one of the commonest structure keys. Variables are identified by strings (thereis no
separate “name” or “variable” typein ICl).

Non-atomic (i.e. mutable) strings can be produced by the strbuf() function, and extended with
the strcat() function. Integer character codes can be assigned to particular characters of non-
atomic strings by integer (base 0) index. Assigning to a character beyond the end of the string
will extend the string as necessary with space filling. Note that a mutable string is a distinct
object from an atomic versions of equal value, and so doesn’t access the same element when
used as a struct index.

struct - An unordered set of mappings

A struct is an unordered set of mappings. That is, a struct records object references that are
regarded as keys and for each such key, a corresponding value, which is also an object refer-
ence.® A struct also records asuper struct, which is areference to a subsequent struct. The
details of structure indexing are described above. See “ Structure and set keys’ on page 70.
Structures form the fundamental basis for variables and scoping in ICI.

Adding, removing and looking up objectsin a struct is an efficient constant time operation
(although is O(n) with respect to searches up the super chain). The type and complexity of an
object being added or removed from a set has no effect on the efficiency of the operation.

Operators

The following table details each of the unary and binary operatorswith al of the types they may
be applied to. Within the first column the standard type names are used to stand for operands of
that type, along with any to mean any type and numto mean anint or afloat. In general, where
anint and afloat are combined in an arithmetic operation, theint isfirst converted to afloat and
then the operation is performed.

The following table isin precedence order.

* ptr

7. Setsareimplemented as hash tables of object references; object references are native machine pointers.
Actual memory requirementsis typically 4 bytes per entry, plus an additiona overall overhead of from
50% to 25%.

8. Structs are implemented as hash tables of object references, with each entry recording a val ue associ-
ated with the key. Actual memory requirementsistypically 8 bytes per entry, plus an additional overall
overhead of from 50% to 25%.

The ICl Programming Language 79



Chapter 4: ICl Language Reference

- hum

+any

I any

~int

++any

__any

$any

any++

any--

anyl @ any2

numl * num2

setl * set2

Indirection: the result references the thing the pointer pointsto. The
resultisan lvalue.

Addressof: theresult isapointer to any. If any isan Ivalue the point-
er references that storage location. If any isnot an Ivalue but isa
term other than a bracketed non-term, as described in the syntax
above, aone element array containing any will be fabricated and a
pointer to that storage location returned. For example:

p = &l;

setsp to beapointer to thefirst element of an un-named array, which
currently contains the number 1.

Negation: returns the negation of num. The result is the same type
as the argument. The result is not an Ivalue.

Has no effect except the result is not an Ivalue.

Logical negation: if any isO (integer) or NULL, 1isreturned, else0
is returned.

Bit-wise complement: the bit-wise complement of int is returned.

Pre-increment: equivalent to ( any += 1) . any must be an Ivalue
and obey the restrictions of the binary + operator. See + below.

Pre-decrement: equivalentto ( any - = 1) . any must bean Ivalue
and obey the restrictions of the binary - operator. See- below.

Atomic form of: returnsthe unique, read-only form of any. If any is
already atomic, it isreturned immediately. Otherwise an atomic
form of any isfound or generated and returned; thisis of execution
time order equal to the number of elementsin any. Seethe section
on objects above for more explanation.

Immediate evaluation: recognised by the parser. The sub-expres-
sionany isimmediately evaluated by invocation of the execution en-
gine. Theresult of the evaluation is substituted directly for this
expression term by the parser.

Post-increment: notesthe value of any, then performsthe equivalent
of (any += 1), except any isonly evaluated once, and finally returns
the original noted value. any must be an lvalue and obey the restric-
tions of the binary + operator. See + below.

Post-increment: notesthe value of any, then performsthe equivalent
of (any -= 1), except any isonly evaluated once, and finally returns
the original noted value. any must be an lvalue and obey the restric-
tions of the binary - operator. See - below.

Form pointer: returns a pointer object formed from itsoperandswith
the pointer’ s aggregate being set from any1 and the pointer’ s key
from any2.

Multiplication: returnsthe product of the two numbers, if both nums
areints, the result isint, else the result is float.

Set intersection: returns a set that contains all elements that appear
in both set1 and set2.

80 ThelClI Programming Language



Operators: struct - An unordered set of mappings

numl / num2

intl % int2

numl + num?2

ptr +int

int + ptr
stringl + string2

arrayl + array2

structl + struct2

satl + sat2

numl - num2

setl - set2

ptrl- ptr2

intl >> int2

Division: returnstheresult of dividing numl by num2. If both num-
bersareintstheresultisint, elsetheresult isfloat. If num2 iszero
the error division by O is generated, or division by 0.0 if the result
would have been afloat.

Modulus: returns the remainder of dividing intl by int2. If int2is
zero the error modulus by O is generated.

Addition: returns the sum of numl and num2. If both numbers are
ints theresult isint, else the result is float.

Pointer addition: ptr must point to an element of anindexabl e object
whose index isan int. Returns a new pointer which pointsto an el-
ement of the same aggregate which has the index which is the sum
of ptr'sindex and int. The arguments may be in any order.

As above.

String concatenation: returns the string which is the concatenation
of the characters of stringl then string2. The execution time order
is proportional to the total length of the result.

Array concatenation: returns anew array which isthe concatenation
of the elements from arrayl then array2. The execution time order
is proportional to the total length of the result. Note the difference
between the following:

a += [array 1];
push(a, 1);

Inthefirst case aisreplaced by a newly formed array which isthe
original array with one element added. But in the second case the
push function (see below) appends an element to the array a refers
to, without making anew array. The second caseis much faster, but
modifies an existing array.

Structure concatenation: returns a new struct which is a copy of
structl, with all the elements of struct2 assigned into it. Obeysthe
semantics of copying and assignment discussed in other sections
with regard to super structs. The execution time order isproportion-
al to the sum of the lengths of the two arguments.

Set union: returns anew set which contains al the elements from
both sets. The execution time order isproportional to the sum of the
lengths of the two arguments.

Subtraction: returns the result of subtracting num2 from numl. If
both numbers are ints the result isint, else the result isfloat.

Set subtraction: returns anew set which containsall the elements of
setl, less the elements of set2. The execution time order is propor-
tional to the sum of the lengths of the two arguments.

Pointer subtraction: ptr1 and ptr2 must point to elements of index-
ableobjectswhoseindexsareints. Returnsanint whichistheindex
of ptrllesstheindex of ptr2.

Right shift: returns the result of right shifting int1 by int2. Equiva-
lent to division by 2**int2. intl isinterpreted as a signed quantity.

The ICl Programming Language 81



Chapter 4: ICl Language Reference

intl << int2

numl < num2

setl < set2

stringl < string2

ptrl< ptr2

anyl == any
anyl!=any?
string ~ regexp
string !~ regexp
string ~~ regexp

string ~~~ regexp

intl & int2
intl” int2
intl | int2
anyl & & any2

Left shift: returnsthe result of left shifting int1 by int2. Equivalent
to multiplication by 2**int2.

Numeric test for less than: returns 1 if numl isless than num2, else
0.

Test for proper subset: returns 1 if setl contains only elements that
arein set2 but isnot equal toit, else 0.

Lexical test for lessthan: returns 1 if stringl islexically less than
string2, else 0.

Pointer test for less than: ptrl and ptr2 must point to elements of
indexable objectswhoseindiciesareints. Returns1if ptr1 pointsto
an element with alesser index than ptr2, else 0.

The >, <= and >= operators work in the same fashion as <, above.

For sets > tests for one set being a proper superset of the other (that
isone set can contain only those elements contained in the other set
but cannot be equal to the other set). The <= and >= operatorstest

for sub- or super-sets.

Equality test: returns 1if anyl isequal to any2, else 0. Two objects
are equal when: they arethe same object; or they are both arithmetic
(int and float) and have equivalent numeric values; or they are ag-
gregates of the same type and all the sub-elements are the same ob-
jects.

Inequality test: returns 1if anyl is not equal to any2, else 0. See
above.

Logical test for regular expression match: returns 1 if string can be
matched by regexp, else 0. The arguments may be in any order.

Logical test for regular expression non-match: returns 1if string can
not be matched by regexp, else 0. The arguments may bein any or-
der.

Regular expression sub-string extraction: returns the sub-string of
string which is matched by the first bracket enclosed portion of
regexp, or NULL if there is no match or regexp does not contain a
(...) portion. The arguments may bein any order. For example, a
"basename” operation can be performed with:

argv[ 0] ~~= #(["]*) $#;
Regular expression multiple sub-string extraction: returns an array
of the sub-strings of string which are matched by the (...) enclosed

portions of regexp, or NULL if there is no match. The arguments
may bein any order.

Bit-wise and: returns the bit-wise and of intl and int2.
Bit-exclusive or: returns the bit-wise exclusive or of intl and int2.

Bit-wise or: returns the bit-wise or of intl and int2.

82 ThelCl Programming Language



Operators: struct - An unordered set of mappings

Logical and: evaluatesthe expression which determinesanyl, if this
evaluatesto false (i.e. 0 or NUL L), that false valueisreturned, else
any? isevaluated and returned . Note that if any1 does not evaluate
to atrue value, the expression which determines any2 is never eval-
uated.

Thus, in a sequence of & & operations, such as:
X =this() & that() && the_other();

the first sub-expression that evaluatesto afalse value causes afalse
return and the remainder are not evaluated at all. If al are true, the
last sub-expression is returned.

anyl || any2 Logical or: evaluates the expression which determines anyl, if this
evaluatesto atruevalue (i.e. avalue other than 0 or NULL), that val-
ueisreturned, else any? is eval uated and returned. Note that if anyl
does not evaluate to a false value, the expression which determines
any? is never evaluated.

Thus, in a sequence of || operations, such as:
x =this() || that() || the_other();

the first element that evaluatesto atrue valueis returned and the re-
mainder are not evaluated at all.

anyl ? any2 : any3 Choice: if anyl isneither 0 or NULL (i.e. true), the expression
which determines any?2 is evaluated and returned, else the expres-
sion which determines any3 is evaluated and returned. Only one of
any?2 and any3 are evaluated. The result may be an Ivalueif the re-
turned expressionis. Thus:

flag ? a : b = value

isalegal expression and will assign valueto either a or b depending
on the state of flag.

anyl = any?2 Assignment: assigns any2 to anyl. anyl must be an lvalue. The be-
havior of assignment is a consequence of aggregate access asdis-
cussed in earlier sections. In short, an lvalue (in this case anyl) can
always be resolved into an aggregate and an index into the aggre-
gate. Assignment setsthe element of the aggregate identified by the
index to any2. The returned result of the whole assignment isany1,
after the assignment has been performed.

Theresult is an lvalue, thus:

++(a = b)

will assign b to a and then increment a by 1.

Note that assignment operators (this and following ones) associate
right to left, unlike all other binary operators, thus:

9. Notethat thisis different from C where the result is always completely resolved toaO or 1. Use!! to
force a0/1 value from a generic true/false. Note that in ICI versions 4.0.3 and before an early return
alwaysreduced to O or 1.

The ICl Programming Language 83



Chapter 4: ICl Language Reference

a=b+=c¢c -=4d

Will subtract d from c, then add the result to b, then assign the final

valueto a.

+= -= *= [ = U >>= <<= :/\:|:~~:
Compound assignments: All these operators are defined by the re-
writing rule:

anyl op= any2

isequivalent to:

anyl = anyl op any2

except that anyl isnot eval uated twice. Type restrictions and the be-
havior for op will follow the rules given with that binary operator
above. The result will be an Ivalue (as a consequence of = above).
There are no further restrictions. Thus:

a = "Hello";
a += " world.\n";

will result in the variable a referring to the string:

"Hell o world.\n".

anyl <=> any2 Swap: swaps the current values of anyl and any2. Both operands
must be Ivalues. Theresult is anyl after the swap, and is an Ivalue,
asin other assignment operators. Also like other assignment opera-
tors, associativity isright to left, thus:

a<=>b <=>c¢ <=>d

rotates the values of a, b and c towards d and bringsd's original val-
ue back to a.

anyl, any2 Sequential evaluation: evaluates anyl, then any2. Theresult isany2
and isan Ivalueif any? is. Note that in situations where comma has
meaning at the top level of parsing an expression (such as in func-
tion call arguments), expression parsing precedence starts at one
level below the comma, and a commawill not be recognised as an
operator. Surround the expression with bracketsto avoid thisif nec-
essary.

Automatic library loading

During execution, should the ICI execution engine fail to find avariable it is attempting to read
within the current scope, it will attempt to load alibrary based on the name of that variablein
attempt to get it defined. Such alibrary may be a host-specific dynamically loaded native
machine code library, an ICI module, or both.

In attempting to load an 1CI module, afile name of the form:

i cidvar.ici

84 ThelCl Programming Language



Operators: Automatic library loading

is considered, where var is the as yet undefined variable name. Thisfileis searched for on the
current search path, which isindicated by the current value of the path variablein the current
scope (an array of directory names). If found, a new extern, static and auto scope is established
and the new extern scope struct is assigned to var in the outermost writable scope available.
That outermost writable scope also forms the super of the new extern scope. The module isthen
parsed with the given scope, after which the variable lookup is repeated. In normal practice this
will mean that the loaded modul e has an outer scope holding all the normal ICI primitivesand a
new empty extern scope. The intent of this mechanism isthat the loaded modul e should define
all its published functions in its extern scope. References by an invoking program to functions
and other objects of the loaded module would always be made explicitly through the var which
references the module. For example, a program might contain the fragment:

query = cgi.decode_query();
cgi.start_page("Query results");

where “cgi” is undefined, but the file ici4cgi.ici exists on the search path and includes function
definitions such as:

extern
decode_query()

{
}

extern
start _page(title)
{

}

Upon first encountering the variable cgi in the code fragment the module ici4cgi.ici will be
parsed and its extern scope assigned to the new variable cgi in the outermost scope of the pro-
gram (that is, the most global scope). The lookup of the variable cgi is then repeated, thistime
finding the structure which contains the function decode_query. The second use, and all subse-
guent use, of the variable cgi will be satisfied immediately from the already |oaded module.

In attempting to load a host-specific dynamically loaded native machine code library, afile
name of the form:

i ci 4var . ext

is considered, where var isthe as yet undefined variable name and ext is the normal host exten-
sion for such libraries (typically .dIl for Windows and .so for UNIX like systems). The 4 isthe
major |Cl version number. Thisfileis searched for on the current host specific search path. If
found thefile is loaded into the ICI interpreter’s address space using the local host's dynamic
library loading mechanism. An initialisation function in the loaded library may return an ICl
object (see below). Should an object be returned, it is assigned to var in the outermost writable
scope available. Further, should the returned variable be a structure, additional loading of an ICI
coded module (that is, icidvar.ici as described above) is allowed and the returned struct forms
the structure for externsin that |oad.

The ICI Programming Language 85



Chapter 4: ICl Language Reference

86 ThelCl Programming Language



CHAPTER 5 ObJ &t'orl mtm
programming inICl

In object-oriented ICI programs, “objects’ are structs that have specific properties. Thisisabit
confusing because | have been using the term “ object” to refer to any ICl primitive type. Thisis
historical. To avoid further confusion | will use “class’ and “instance” explicitly instead of
“object” when talking about object-oriented techniques.

ICl supports object-oriented programming by building on the properties of structsto implement
scoping in the same way that vanilla function calls do. The principal feature that supports
object-oriented programming in ICl is calls to methods as opposed to calls to functions. Con-
trasting the two:

» acdl toafunction causes an implicit switch to the scope of the function for the duration of
the call, whereas

» acdl to amethod causes an implicit switch to the scope of the instance and its class for the
duration of the call.

A method isa primitive ICl object that is a pairing of a subject object (the instance), and afunc-
tion.

Consider the following simple fragment which creates a class:

extern an_extern = 1;
static a_static = 2;

static a_class =

[cl ass
a_func(arg)
{
this.value := arg + 1;
return value + 2;
}

The ICl Programming Language 87



Chapter 5: Object-oriented programming in ICI

After executing this code, a_class will refer to anew struct which is unremarkable except that
its super has been automatically set to the static scope. Diagramatically:

y

a_func . a_class |a_static an_extern
supe! 2 Sl-lpg 1
class statics externs

We can create an instance of the class by invoking the new method on the class. For example:

an_i nst

a_cl ass: new);

The new method is a class method that exists in the global scope, so all classes effectively

inherit it from there.

The new instance is, again, a struct that it unremarkable except that its super has been set to the
class. In this simple example there are, asyet, no instance variables. So the instance is an empty
struct. Diagramatically:

5

a_func

supg

instance

a_cl ass

an_i nst

a static

class

2

T8

We are now in a position to invoke the a_func method on our new instance with, say:

X = an_inst:a_func(3);

an_extern

1

externs

The transfer of control into the function creates a struct for auto variables as usual, but rather
than making the super of this struct the static scope the function was defined in, it is set to the

88 ThelClI Programming Language




. Sub-classes

instance that is the subject of this method call. Also, the local variables this and class are set
automatically. Diagramatically, just after the first line of code in the function is executed:

arg this cl ass
3 . .
autos
\ val ue
4
instance \\Q

a_func

class \
a_cl ass an_inst |a_static

2

statics \

an_extern

1

externs

After execution, x will be 6. Notice the use of the : = operator and the explicit use of thisto
force the creation of value in the instance. Otherwise it would have implicitly appeared asa
local variable. Thisis, of course, only required when the instance variable doesn't already exist.

Theinstance isanormal struct. Thus we can reference the value instance variable with:
an_inst.val ue

Note that the instance has the class and outer scopes in its super chain. Thus we can also refer

to:

an_inst.a func
an_inst.a static
an_inst.an_extern

Sub-classes

Sub-classes are class structs that have another class as their super. The following example illus-
trates a number of aspects of sub-classing:

static sub_class = [class:a_class
a_class _variable = 0,

new( hane)

{
0 = this:*new();
0. hane : = nane;

The ICl Programming Language 89



Chapter 5: Object-oriented programming in ICI

o.a_count := 0;
return o;

}

a_func()

{
this:”a _func();
++a_count;

}

l;

After parsing we have a variable sub_class whoes super isa_class. Diagramatically:

sub_cl ass a_cl ass
class class statics externs

To make a new instance of the sub-class we would execute:

subcl ass_inst = sub_class: new("a nane");

The new function was defined in the sub-class, overiding the global new function. In this case
new is aclass function that expects to be called on the class itself, not an instance of the class.
Thereis nothing that distinguishes class functions from ones that operate on an instance, except
their operation and documentation.

To complete its operation, the new function coded here needs to call the new of the super-class.
Todothisit usesthe: ~ operator which forms amethod, but using the super of the current value
of the class variable. There isn’t actually a new coded in the super-class, but it will find the glo-
bal new.

To work with sub-classes and overidden functionsit isimportant to understand how the thisand
class variables are set in method calls.

Consider the call:

subcl ass_inst:a_func();

90 ThelClI Programming Language



. Sub-classes

Before the first line of code is executed, the scope will ook like this:

cl ass this

subcl ass_i nst

' autos \ :
N

(AN sub_cl ass

instance :
LN
o =

a_cl ass
class \ V

class

statics

externs

The class variable has been set by the method call mechanism to the class of the function being
called. Functions being parsed within the scope of a class definition record their class, so it was
not the super of the instance that set the class variable, but the class recorded by the function.

Thefirst thing the sub-class a_func function doesis call the same function in its super-class.
Upon arrival in that function, the scope will look like:

cl ass this

subcl ass_i nst

autos :
R

RN sub_cl ass

instance :
Y

a_cl ass

class

statics

externs

In short, the class variable is always the class of the function, irrespective of any sub-classing

the instance may be derived from (or any funny business done by changing the super of the
instance).

The ICl Programming Language 91



Chapter 5: Object-oriented programming in ICI

Finally, note that class variables can simply be included in the class definition (as shown by
a class variablein the example). They exist in the class and have no effect on any instance.

Global methods

As has been seen, the static scope present when a class is defined forms the super for the class.
In effect, the outer scopes can be considered outer classes. Functions defined in those scopes
may, if appropriately coded, be class functions for these hypothetical top-level classes. For
example, we could define a default debug method that we expect some classes to override:

extern
dunp()
{
forall (k, v in this)
printf("%=%, ", string(k), v);
printf("\n");

}

This function would be available to all instances of al classes. The class of such afunctionis
the scope it was defined in.

Taking advantage of dynamic binding

All name binding is dynamic in ICl. Thisleadsto a number of common constructs that are wor-
thy of highlighting, because they are not seen in statically bound languages such as C++.

The commonest of these is polymorphic functions that work equally well with any object
instance that falls within the scope of their definition, irrespective of its class. We saw asimple
example of this above with the dump function. That function had no prerequisites on the object
it was applied to. But in real applicationsit is more common to define functions that state they
will do blah, providing the instance they are applied to has fields called whatever, that can be
interpreted in such-and-such away. For example:

/*
* Return the distance across the diagonal of the

* boundi g box for any object that support a boundi ng
* box recorded as xmn, xmax, ymn, ymax.

*/
extern
bbox_di agonal ()
{

dx = xmax - Xxmn;

dy = ymax - ymn;

return sqrt(dx * dx + dy * dy);
}
/*
* ow the boundi ng box of the object to ensure it
* will account for a r radian rotation of any object
* contained within the original bounding box. The
* boundi ng box is assuned to be recorded in xmn,
* xmax, ymin, ymx.
*/
extern

92 ThelCl Programming Language



: Standard global methods

bbox_grow for_rotation(r)

{
}

ICl does not support multiple inheritance as such. But it is common and useful to use composite
classes and/or global methods that provide the same effect.

Sandard global methods

The standard global methods availableto all ICl instances or classes are summarised below. See
the chapter on core language functions for detailed descriptions of each:

i nst: copy() Returnsacopy of inst as per the copy function. May be appliedto an
instance or aclass.

inst:isa(class) Returnslifinstisorisderivedfrom class, else 0. May be applied
to an instance or aclass.

cl ass: new() Returns a new instance of class.

i nst: respondst o( nane)
Returns 1 if inst supports afunction called name, else 0. May be ap-
plied to an instance or a class.

The ICI Programming Language 93



Chapter 5: Object-oriented programming in ICI

94 ThelClI Programming Language



CHAPTER 6

Corelanguagefunctions
and variables

Core function summary

The following list summarises the standard functions. Following thisis a detailed descriptions

of each of them.

float|int = abs(float]|int)

float = acos(nunber)
mem = alloc(int [, int])

string = argv[]

array = array(any...)

float = asi n(numnber)
any = assign(struct, any, any)

float = atan(nunber)

float = atan2(nunber, nunber)

array|struct = build(dims... [, options, content...])

float|struct

= cal endar (struct|fl oat)

any = call (func [, arg...], args)
float = ceil (nunber)
chdir(string)
close(file)
int = cnp(a, b)
any = copy(any)
any = any: copy()
float = cos(nunber)
float = cputine([foat])
file = currentfile([string])
int = debug([int])
del (aggr, any)
array = dir([path], [, regexp] [, format])
int = eof(file)

The ICI Programming Language 95



Chapter 6: Core language functions and variables

fl oat
array

any
fl oat
fl oat

i nt
fl oat

eq(any, any)
event | oop()
exit([int]string| NULL])
exp( nunmber)

expl ode(string)

fail (string)

fetch(struct, any)

= fl oat (any)
= fl oor (numnber)
= flush([file])

= fnmod( nunber,

file =
= getchar([file])
= getcwd()

= getenv(string)
= getfile([file])
= getline([file])

string
string
string
string
string
string
array
string
string
struct
i nt
string|array
i nt

i nt
array
any

f1 oat
fl oat
nmem
file

i nt

i nst
f1 oat
int]float
struct
string
any
string
any

fl oat

= gettoken([file|string [,string]])
= gettokens([file|string [,string [,string]]])
= gsub(string,

nunber)
fopen(string [, string])

regexp, string)

= i npl ode(array)

= include(string [,
= int(any [,
= interval (string|array,

struct])
int])
int [,

= inst|class:isa()
= i sat omany)

= keys(struct)

= | oad(string)

= | og( nunber)

= 1 0g10( number)

men(int, int [,int])
nmopen(string [, string])

= nel s(any)
= class:new...)

= now()

= nun(string|int|float [,
= parse(file|string [

int])
struct])

= parsetoken(file)
= parseval ue(file)
= path[]

= pop(array)

file =

popen(string [, string])
pow( nunber, numnber)
printf([file,] string |
profile(fil enane)

96 ThelCl Programming Language

any. ..



Corefunction summary:

any

i nt

regexp
regexp

i nt
any

struct

i nt

set

string| func
string

f1 oat

array
file
array
string
f1 oat
string
string
string
struct
string
struct
i nt

fl oat
exec
string
i nt
any
any

i nt
string
string
array

struct

push(array,
put (string [

putenv(string [,

rand([int])
reclai m)

any)
, file])
string])

regexp(string)

regexpi (stri
rej ect char (f
rejecttoken(

ng)
ile)
file)

renove(string)

renane(string
= inst|class:r
= rpop(array)

rpush(array,

string)
espondst o(string)

any)

= scope([struct])
= seek(file, i
= set(any...)
= signal (int]|string [,
= signam(int)
= si n(nunber)

nt, int)

func|string])

sl eep( nunber)

= smash(string [,
sopen(string [,
= sort(array,

= sprintf(stri
= sqrt (nunber)
= strbuf ([stri
= strcat(string [,
= string(any)

= struct (any,

= sub(string,

= super (struct
= systen(string)
= tan(nunber)
= thread(callable [,
= tochar (int)
= toint(string)
= t okenobj (fi

= top(array [,
= trace(string)
= typeof (any)

= version()

= vstack([int]

wakeup(any)
whi ch(key [,

regexp [, string...] [, int]]);
string])

func [, arg])
ng [, any...])

ng])

int] , string...)

any...)
regexp, string)
[, struct])

args...])

e)
int])

)

struct])

The ICl Programming Language 97



Chapter 6: Core language functions and variables

Core language functions

float|int = abs(float]|int)

Returns the absolute value of its argument. Theresult isan int if the argument isanint, afloat if
itisafloat.

angl e = acos(x)

Returns the arc cosine of xin the range 0 to pi.

mem = al l oc(nwords [, wordz])

Returns a new mem object referring to nwords (an int) of newly alocated and cleared memory.
Each word is either 1, 2, or 4 bytes as specified by wordz (an int, default 1). Indexing of mem
objects performs the obvious operations, and thus pointers work too.

string = argv[]

An array of strings containing the command line arguments set at interpreter start-up. The first
element is the name of the ICl program and subsequent elements are the arguments passed to
that program.

On Windows platforms ICI performs wildcard expansion in the traditional MS-DOS fashion.
Arguments containing wildcard meta-characters, ‘? and ‘*’, may be protected by enclosing
them in single or double quotes. On UNIX-like systems, the operating environment is expected
to handle this.

array = array(any...)
Returns an array formed from all the arguments. For example;

array()

will return a new empty array; and

array(1, 2, "a string")

will return anew array with three elements, 1, 2, and "the string".

Thisisthe run-time equivalent of the array literal. Thus the following two expressions are
equivalent:

$array(1, 2, "a string")

[array 1, 2, "a string"]

float = asin(x)

Returnsthe arc sine of x in the range -pi/2 to pi/2.

val ue = assign(struct, key, val ue)
Setsthe element of struct identified by key to value, ignoring any super struct. Returns value.

98 ThelCl Programming Language



Core language functions: angl e = at an(x)

angl e = atan(x)

Returns the arc tangent of x in the range -pi/2 to pi/2.

angle = atan2(y, Xx)

Returns the angle from the origin to the rectangular coordinates x, y (floats) in the range -pi to
pi.

array|struct = build(dins... [, options, content...])

Build allows construction of aregular data structure such as a multi-dimensional array or an
array of structures. dims... is a sequence of dimension specifications. For example:

bui | d(20, 10);

returnsa 20 x 10 array of NULLs (that is, an array of 20 arrays, each of size 10).
Each dimension specification is either:

anint causing an array of that many elementsto be made and have every
element set through recursive application on subsequent dimen-
sions, or

an array causing a struct with the elements of the array as keysto be made
and each value set through recursive application on subsequent di-
mensions.

So, for example:
build(10, [array "x", "y"], 2)

Returns an array of ten structures, each with fieldsx and y. Each field is set to an array of length
2.

If options and content... are supplied, they may be used to supply initialising data to the leaf
fields of the data structure rather than the default NULL. Optionsis a string, which may be:

c" Cyclical. The content is used and assigned cyclically to leaf items.

r Restart. The content is used and assigned cyclicly, but the content
list is also restarted from the first item on the commencement of
each bottom level aggregate.

Last repeats. The content is used and assigned in sequence to |eaf
items, but once it is exhausted, the last content item is used repeat-
edly for subsequent leaf items.

Arrays. Each of the content items must be an array. Content istaken
firstly from thefirst element of each array in turn, then from the sec-
ond element of each in turn etc. If any array istoo short, NULL is
used asthe vaue.

Integer increment. The content is incrementing integer values. The
first content value, if given isthe start value, default 0. The second
content value, if given, isthe step, default 1.

So, for example, supposing names_array is an array of names of some sort:

bui l d(names_array, [array "count", "sum'], "c", 0, 0.0)

The ICl Programming Language 99



Chapter 6: Core language functions and variables

will return a struct which, when indexed by a name in names_array reveals a struct with fields
count and sum initialised to 0 and 0.0 respectively.

Also:
build(50, "i", 1, 2)

will return an array filled with the odd integers from 1 to 99.
Finally, if namesisan array of names of some sort and valuesis a corresponding array of values:

bui I d(nel s(nanmes), [array "nane", "value"], "a", nanes, val ues)

will transpose them into an array of structs, each with a name and value field.

float|struct = calendar(struct]|float)

Converts between calendar time and arithmetic time. An arithmetic timeis expressed as a
signed float time in seconds since 0:00, 1st Jan 2000 UTC. The calendar time is expressed as a
structure with fields revealing the local (including current daylight saving adjustment) calendar
date and time. Fieldsin the calendar structure are;

second The float number of seconds after the minute.
minute The int number of minutes after the hour.
hour The int number of hours since midnight.

day The day of the month (1..31).

month The int month number, Janis 0.

year Theint year.

wday The day since Sunday (0..6)

yday Days since 1st Jan.

When converting from alocal calendar time to an arithmetic time, the fields second, minute,
hour, day, month, year are used. They need not be restricted to their nomal ranges.

return = call (func [, any...], array| NULL)

Calls the function func with the arguments any... plus arguments taken from the array. If array
isNULL itisignored, else it must be an array. Returns the return value of the function.

This s often used to pass on an unknown argument list. For example:

static
db()

{

aut o vargs;

i f (debug)
return call (printf, stderr, vargs);

100 ThelCl Programming Language



Core language functions: fl oat = ceil (x)

float = ceil (x)

Returns [x7] (the smallest integral value greater than or equal to X) as afloat, where xisa
number (int or float).

chdi r ( pat h)

Change the current working directory to the specified path.

close(file)

Close the given file, releasing low level system resources. After this operation thefile object is
still avalid object, but 1/0 operationson it will fail. (File object that are lost and collected by the
garbage collector will be closed. But due to the indeterminate timming of this, it is preferable to
close them explicitly.)

On some files and systems this may block, but will alow thread switching while blocked.

int = cmp(a, b)

Returns-1, 0 or 1 depending if a< b, a== b, or a> b. The operands may be any type for which
the < and > operators are defined. Thisis the default comparison function for sort().

any = copy(any)

Returns a copy of an object. That is, an object that is distinct (not eq) but of equal value (==),
unless the object is intrinsically atomic or unique (in which case the original object is returned).

any = any: copy()
The method form of copy(). Otherwise as above.

X = cos(angl e)

Returns the cosine of angle (afloat interpreted in radians).

float = cputime([float])

Returns the accumulated CPU time of the current process in seconds. The precision and accu-
racy is system dependent.

If float is supplied it specifies anew origin, relative to the value being returned, from which sub-
sequent calls are measured. Mostly commonly the value 0.0 is used here.

file = currentfile(["raw'])

Returns afile associated with the innermost parsing context, or NULL if there is no module
being parsed. By default currentfile() returns a new file object that gives“ cooked” access that
layers on top of the parser’s access to the file. This maintains line number tracking and normal-
ises differing newline conventions to single newline characters even for binary files. Such afile
issutiable to calls to parsetoken(). If the string " r aw' is given as an argument, the underlying
filethat is being parsed is returned directly, by-passing such operations.

The ICl Programming Language 101



Chapter 6: Core language functions and variables

This function can be used to include data in a program source file which is out-of-band with
respect to the normal parse stream. But to do thisit is necessary to know up to what character in
the file in question the parser has consumed.

In general: after having parsed any simple statement the parser will have consumed up to and
including the terminating semicolon, and no more. Also, after having parsed a compound state-
ment the parser will have consumed up to and including the terminating close brace and no
more. For example:

static help = gettokens(currentfile(), "", "!")[0]

;This is the text of the hel p message.

It follows exactly after the ; because
that is exactly up to where the parser

wi Il have consumed. We are using the
gettokens() function (as described bel ow)

to read the text.
!

static otherVariable = "etc...";

In the examples shown above, the default cooked mode is used so that line numbers are tracked
and stay in sync for subsequence diagnostics. If the raw mode was used the parser would never
see the data read out-of-band and would not realise how many lines have been skipped, thus
giving inaccurate reports of line numbers on errors later in the file.

This function can also be used to parse the rest of afile within an error catcher. For example:

try
parse(currentfile(), scope())
onerror
printf("That didn't work, but never mnd.\n");

static this = that;
etc();

The functions parse and scope are described below.

int = debug([int])
Returns the current debug status, and, if anint is supplied as an argument, set it to that value.
When debugging is enabled, certain events such as each new source line, each function call and

return, and errors, are passed to any active debugger. Debuggers are typically dynamically
loaded extension modules that register themselves with the interpreter through an internal API.

del (aggr, key)

Deletes an element of aggr, which must be a struct, a set or an array, as identified by key. Any
super structs areignored. For structs and setsthisis an efficient operation. For arraysit is O(n)
where n isthe length from the index key, to the nearest end of the array (that is, either the begin-
ning of the end). If key is not a current element of aggr there is no effect and no error. Returns
NULL.

For example:

102 ThelCl Programming Language



Core language functions: array = dir([path,] [regexp,] [format])

static s = [struct a =1, b =2, ¢ = 3];
static v, k;
forall (v, k in s)
printf("%=%\n", k, v);
del (s, "b");
printf("\n");
forall (v, k in s)
printf("%=%\n", k, v);

When run would produce (possibly in some other order):

array = dir([path,] [regexp,] [format])

Read directory named in path (a string, defaulting to ".", the 