BASH(1) BASH(1)

NAME

bash — GNU Bourne-Again SHell

SYNOPSIS

bash [options] [file]

COPYRIGHT

Bash is Copyright © 1989-2005 by the Free Software Foundation, Inc.

DESCRIPTION

Bash is an sh-compatible command language interpreter that executes commands read from the standard
input or from a file. Bash also incorporates useful features from the Korn and C shells (ksh and csh).

Bash is intended to be a conformant implementation of the Shell and Utilities portion of the IEEE POSIX
specification (IEEE Standard 1003.1). Bash can be configured to be POSIX-conformant by default.

OPTIONS

In addition to the single-character shell options documented in the description of the set builtin command,
bash interprets the following options when it is invoked:

—c string If the —c option is present, then commands are read from string. If there are arguments after
the string, they are assigned to the positional parameters, starting with $0.

=i If the —i option is present, the shell is interactive.

- Make bash act as if it had been invoked as a login shell (see INVOCATION below).

-r If the —r option is present, the shell becomes restricted (see RESTRICTED SHELL below).

-s If the —s option is present, or if no arguments remain after option processing, then commands
are read from the standard input. This option allows the positional parameters to be set when
invoking an interactive shell.

-D A list of all double-quoted strings preceded by $ is printed on the standard output. These are
the strings that are subject to language translation when the current locale is not C or POSIX.
This implies the —n option; no commands will be executed.

[-+]O [shopt_option]
shopt_option is one of the shell options accepted by the shopt builtin (see SHELL BUILTIN
COMMANDS below). If shopt_option is present, —O sets the value of that option; +O unsets
it. 1f shopt_option is not supplied, the names and values of the shell options accepted by shopt
are printed on the standard output. If the invocation option is +O, the output is displayed in a
format that may be reused as input.

- A —— signals the end of options and disables further option processing. Any arguments after
the —— are treated as filenames and arguments. An argument of — is equivalent to ——.

Bash also interprets a number of multi-character options. These options must appear on the command line
before the single-character options to be recognized.

——debugger
Arrange for the debugger profile to be executed before the shell starts. Turns on extended debug-
ging mode (see the description of the extdebug option to the shopt builtin below) and shell func-
tion tracing (see the description of the —o functrace option to the set builtin below).
——dump-po-strings
Equivalent to —D, but the output is in the GNU gettext po (portable object) file format.
——dump-strings
Equivalent to -D.
——help Display a usage message on standard output and exit successfully.
——init-file file
——rcfile file
Execute commands from file instead of the standard personal initialization file “/.bashrc if the
shell is interactive (see INVOCATION below).

——login
Equivalent to —I.

GNU Bash-3.2 2006 September 28 1

BASH(1) BASH(1)

——noediting
Do not use the GNU readline library to read command lines when the shell is interactive.

——noprofile
Do not read either the system-wide startup file /etc/profile or any of the personal initialization files
7.bash_profile, 7.bash_login, or 7/.profile. By default, bash reads these files when it is invoked as
a login shell (see INVOCATION below).

——norc Do not read and execute the personal initialization file 7.bashrc if the shell is interactive. This
option is on by default if the shell is invoked as sh.

——posix
Change the behavior of bash where the default operation differs from the POSIX standard to
match the standard (posix mode).

——restricted
The shell becomes restricted (see RESTRICTED SHELL below).

——verbose
Equivalent to —v.

——version
Show version information for this instance of bash on the standard output and exit successfully.

ARGUMENTS

If arguments remain after option processing, and neither the —c nor the —s option has been supplied, the first
argument is assumed to be the name of a file containing shell commands. If bash is invoked in this fashion,
$0 is set to the name of the file, and the positional parameters are set to the remaining arguments. Bash
reads and executes commands from this file, then exits. Bash’s exit status is the exit status of the last com-
mand executed in the script. If no commands are executed, the exit status is 0. An attempt is first made to
open the file in the current directory, and, if no file is found, then the shell searches the directories in PATH
for the script.

INVOCATION

A login shell is one whose first character of argument zero is a —, or one started with the ——login option.

An interactive shell is one started without non-option arguments and without the —c option whose standard
input and error are both connected to terminals (as determined by isatty(3)), or one started with the —i
option. PS1 is set and $— includes i if bash is interactive, allowing a shell script or a startup file to test this
state.

The following paragraphs describe how bash executes its startup files. If any of the files exist but cannot be
read, bash reports an error. Tildes are expanded in file names as described below under Tilde Expansion
in the EXPANSION section.

When bash is invoked as an interactive login shell, or as a non-interactive shell with the ——login option, it
first reads and executes commands from the file /etc/profile, if that file exists. After reading that file, it
looks for 7.bash_profile, 7.bash_login, and 7.profile, in that order, and reads and executes commands from
the first one that exists and is readable. The ——noprofile option may be used when the shell is started to
inhibit this behavior.

When a login shell exits, bash reads and executes commands from the file 7.bash_logout, if it exists.

When an interactive shell that is not a login shell is started, bash reads and executes commands from
7.bashrc, if that file exists. This may be inhibited by using the ——norc option. The ——rcfile file option will
force bash to read and execute commands from file instead of 7.bashrc.

When bash is started non-interactively, to run a shell script, for example, it looks for the variable
BASH_ENV in the environment, expands its value if it appears there, and uses the expanded value as the
name of a file to read and execute. Bash behaves as if the following command were executed:

if [-n "S$BASH_ENV"]; then . "$BASH_ENV"; fi

but the value of the PATH variable is not used to search for the file name.

GNU Bash-3.2 2006 September 28 2

BASH(1) BASH(1)

If bash is invoked with the name sh, it tries to mimic the startup behavior of historical versions of sh as
closely as possible, while conforming to the POSIX standard as well. When invoked as an interactive login
shell, or a non-interactive shell with the ——login option, it first attempts to read and execute commands
from /etc/profile and 7.profile, in that order. The ——noprofile option may be used to inhibit this behavior.
When invoked as an interactive shell with the name sh, bash looks for the variable ENV, expands its value
if it is defined, and uses the expanded value as the name of a file to read and execute. Since a shell invoked
as sh does not attempt to read and execute commands from any other startup files, the ——rcfile option has
no effect. A non-interactive shell invoked with the name sh does not attempt to read any other startup files.
When invoked as sh, bash enters posix mode after the startup files are read.

When bash is started in posix mode, as with the ——posix command line option, it follows the POSIX stan-
dard for startup files. In this mode, interactive shells expand the ENV variable and commands are read and
executed from the file whose name is the expanded value. No other startup files are read.

Bash attempts to determine when it is being run by the remote shell daemon, usually rshd. If bash deter-
mines it is being run by rshd, it reads and executes commands from 7.bashrc, if that file exists and is read-
able. It will not do this if invoked as sh. The ——norc option may be used to inhibit this behavior, and the
——rcfile option may be used to force another file to be read, but rshd does not generally invoke the shell
with those options or allow them to be specified.

If the shell is started with the effective user (group) id not equal to the real user (group) id, and the —p
option is not supplied, no startup files are read, shell functions are not inherited from the environment, the
SHELLOPTS variable, if it appears in the environment, is ignored, and the effective user id is set to the real
user id. If the —p option is supplied at invocation, the startup behavior is the same, but the effective user id
is not reset.

DEFINITIONS
The following definitions are used throughout the rest of this document.
blank A space or tab.
word A sequence of characters considered as a single unit by the shell. Also known as a token.
name A word consisting only of alphanumeric characters and underscores, and beginning with an alpha-
betic character or an underscore. Also referred to as an identifier.
metacharacter
A character that, when unquoted, separates words. One of the following:
| & 5 () < > space tab
control operator
A token that performs a control function. It is one of the following symbols:
& && ; 35 () | <newline>

RESERVED WORDS
Reserved words are words that have a special meaning to the shell. The following words are recognized as
reserved when unquoted and either the first word of a simple command (see SHELL GRAMMAR below) or
the third word of a case or for command:

! case do done elif else esac fi for function if in select then until
while { } time [[1]

SHELL GRAMMAR
Simple Commands
A simple command is a sequence of optional variable assignments followed by blank-separated words and
redirections, and terminated by a control operator. The first word specifies the command to be executed,
and is passed as argument zero. The remaining words are passed as arguments to the invoked command.

The return value of a simple command is its exit status, or 128+n if the command is terminated by signal n.

Pipelines
A pipeline is a sequence of one or more commands separated by the character |. The format for a pipeline
is:

[time [-p]] [!] command [| command?2 ...]

GNU Bash-3.2 2006 September 28 3

BASH(1) BASH(1)

The standard output of command is connected via a pipe to the standard input of command2. This connec-
tion is performed before any redirections specified by the command (see REDIRECTION below).

The return status of a pipeline is the exit status of the last command, unless the pipefail option is enabled.
If pipefail is enabled, the pipeline’s return status is the value of the last (rightmost) command to exit with a
non-zero status, or zero if all commands exit successfully. If the reserved word ! precedes a pipeline, the
exit status of that pipeline is the logical negation of the exit status as described above. The shell waits for
all commands in the pipeline to terminate before returning a value.

If the time reserved word precedes a pipeline, the elapsed as well as user and system time consumed by its
execution are reported when the pipeline terminates. The —p option changes the output format to that spec-
ified by POSIX. The TIMEFORMAT variable may be set to a format string that specifies how the timing
information should be displayed; see the description of TIMEFORMAT under Shell Variables below.

Each command in a pipeline is executed as a separate process (i.e., in a subshell).

Lists
A list is a sequence of one or more pipelines separated by one of the operators ;, &, &&, or , and option-
ally terminated by one of ;, &, or <newline>.

Of these list operators, && and have equal precedence, followed by ; and &, which have equal prece-
dence.

A sequence of one or more newlines may appear in a list instead of a semicolon to delimit commands.

If a command is terminated by the control operator &, the shell executes the command in the background in
a subshell. The shell does not wait for the command to finish, and the return status is 0. Commands sepa-
rated by a ; are executed sequentially; the shell waits for each command to terminate in turn. The return
status is the exit status of the last command executed.

The control operators && and denote AND lists and OR lists, respectively. An AND list has the form
commandl && command?2

command? is executed if, and only if, command] returns an exit status of zero.

An OR list has the form

commandl command2

command? is executed if and only if command] returns a non-zero exit status. The return status of AND
and OR lists is the exit status of the last command executed in the list.

Compound Commands
A compound command is one of the following:

(list) list is executed in a subshell environment (see COMMAND EXECUTION ENVIRONMENT below).
Variable assignments and builtin commands that affect the shell’s environment do not remain in
effect after the command completes. The return status is the exit status of list.

{ list; } list is simply executed in the current shell environment. /ist must be terminated with a newline or
semicolon. This is known as a group command. The return status is the exit status of /ist. Note
that unlike the metacharacters (and), { and } are reserved words and must occur where a reserved
word is permitted to be recognized. Since they do not cause a word break, they must be separated
from /ist by whitespace.

((expression))
The expression is evaluated according to the rules described below under ARITHMETIC EVALUA-
TION. If the value of the expression is non-zero, the return status is 0; otherwise the return status
is 1. This is exactly equivalent to let "expression'.

[[expression 1]
Return a status of 0 or 1 depending on the evaluation of the conditional expression expression.
Expressions are composed of the primaries described below under CONDITIONAL EXPRES-
SIONS. Word splitting and pathname expansion are not performed on the words between the [[

GNU Bash-3.2 2006 September 28 4

BASH(1)

BASH(1)

and]]; tilde expansion, parameter and variable expansion, arithmetic expansion, command substi-
tution, process substitution, and quote removal are performed. Conditional operators such as —f
must be unquoted to be recognized as primaries.

When the == and != operators are used, the string to the right of the operator is considered a pat-
tern and matched according to the rules described below under Pattern Matching. If the shell
option nocasematch is enabled, the match is performed without regard to the case of alphabetic
characters. The return value is O if the string matches (==) or does not match (!=) the pattern, and
1 otherwise. Any part of the pattern may be quoted to force it to be matched as a string.

An additional binary operator, =7, is available, with the same precedence as == and !=. When it is
used, the string to the right of the operator is considered an extended regular expression and
matched accordingly (as in regex(3)). The return value is O if the string matches the pattern, and 1
otherwise. If the regular expression is syntactically incorrect, the conditional expression’s return
value is 2. If the shell option nocasematch is enabled, the match is performed without regard to
the case of alphabetic characters. Substrings matched by parenthesized subexpressions within the
regular expression are saved in the array variable BASH_REMATCH. The element of
BASH_REMATCH with index O is the portion of the string matching the entire regular expres-
sion. The element of BASH_REMATCH with index r is the portion of the string matching the
nth parenthesized subexpression.

Expressions may be combined using the following operators, listed in decreasing order of prece-
dence:

(expression)
Returns the value of expression. This may be used to override the normal precedence of
operators.
! expression
True if expression is false.
expressionl && expression2
True if both expressionl and expression2 are true.
expressionl expression2
True if either expressionl or expression2 is true.

The && and operators do not evaluate expression2 if the value of expressionl is sufficient to
determine the return value of the entire conditional expression.

for name [in word] ; do list ; done

The list of words following in is expanded, generating a list of items. The variable name is set to
each element of this list in turn, and list is executed each time. If the in word is omitted, the for
command executes /ist once for each positional parameter that is set (see PARAMETERS below).
The return status is the exit status of the last command that executes. If the expansion of the items
following in results in an empty list, no commands are executed, and the return status is 0.

for ((exprl ; expr2 ; expr3)) ; do list ; done

First, the arithmetic expression expr! is evaluated according to the rules described below under
ARITHMETIC EVALUATION. The arithmetic expression expr2 is then evaluated repeatedly until
it evaluates to zero. Each time expr2 evaluates to a non-zero value, list is executed and the arith-
metic expression expr3 is evaluated. If any expression is omitted, it behaves as if it evaluates to 1.
The return value is the exit status of the last command in /ist that is executed, or false if any of the
expressions is invalid.

select name [in word | ; do list ; done

GNU Bash-3.2

The list of words following in is expanded, generating a list of items. The set of expanded words
is printed on the standard error, each preceded by a number. If the in word is omitted, the posi-
tional parameters are printed (see PARAMETERS below). The PS3 prompt is then displayed and a
line read from the standard input. If the line consists of a number corresponding to one of the dis-
played words, then the value of name is set to that word. If the line is empty, the words and
prompt are displayed again. If EOF is read, the command completes. Any other value read causes

2006 September 28 5

BASH(1)

BASH(1)

name to be set to null. The line read is saved in the variable REPLY. The list is executed after
each selection until a break command is executed. The exit status of select is the exit status of the
last command executed in list, or zero if no commands were executed.

case word in [[(] pattern [| pattern] ...) list ;;] ... esac

A case command first expands word, and tries to match it against each pattern in turn, using the
same matching rules as for pathname expansion (see Pathname Expansion below). The word is
expanded using tilde expansion, parameter and variable expansion, arithmetic substitution, com-
mand substitution, process substitution and quote removal. Each pattern examined is expanded
using tilde expansion, parameter and variable expansion, arithmetic substitution, command substi-
tution, and process substitution. If the shell option nocasematch is enabled, the match is per-
formed without regard to the case of alphabetic characters. When a match is found, the corre-
sponding list is executed. After the first match, no subsequent matches are attempted. The exit
status is zero if no pattern matches. Otherwise, it is the exit status of the last command executed in
list.

if list; then list; [elif list; then list; | ... [else list;]| fi

The if list is executed. If its exit status is zero, the then [list is executed. Otherwise, each elif list
is executed in turn, and if its exit status is zero, the corresponding then [ist is executed and the
command completes. Otherwise, the else /ist is executed, if present. The exit status is the exit sta-
tus of the last command executed, or zero if no condition tested true.

while /ist; do list; done
until /ist; do list; done

The while command continuously executes the do list as long as the last command in list returns
an exit status of zero. The until command is identical to the while command, except that the test
is negated; the do /ist is executed as long as the last command in /ist returns a non-zero exit status.
The exit status of the while and until commands is the exit status of the last do list command
executed, or zero if none was executed.

Shell Function Definitions
A shell function is an object that is called like a simple command and executes a compound command with
a new set of positional parameters. Shell functions are declared as follows:

[function]| name () compound—command [redirection]

COMMENTS

This defines a function named name. The reserved word function is optional. If the function
reserved word is supplied, the parentheses are optional. The body of the function is the compound
command compound—command (see Compound Commands above). That command is usually a
list of commands between { and }, but may be any command listed under Compound Commands
above. compound—command is executed whenever name is specified as the name of a simple
command. Any redirections (see REDIRECTION below) specified when a function is defined are
performed when the function is executed. The exit status of a function definition is zero unless a
syntax error occurs or a readonly function with the same name already exists. When executed, the
exit status of a function is the exit status of the last command executed in the body. (See FUNC-
TIONS below.)

In a non-interactive shell, or an interactive shell in which the interactive_comments option to the shopt
builtin is enabled (see SHELL BUILTIN COMMANDS below), a word beginning with # causes that word
and all remaining characters on that line to be ignored. An interactive shell without the interactive_com-
ments option enabled does not allow comments. The interactive_comments option is on by default in
interactive shells.

QUOTING

Quoting is used to remove the special meaning of certain characters or words to the shell. Quoting can be
used to disable special treatment for special characters, to prevent reserved words from being recognized as
such, and to prevent parameter expansion.

Each of the metacharacters listed above under DEFINITIONS has special meaning to the shell and must be

GNU Bash-3.2

2006 September 28 6

BASH(1) BASH(1)

quoted if it is to represent itself.

When the command history expansion facilities are being used (see HISTORY EXPANSION below), the
history expansion character, usually !, must be quoted to prevent history expansion.

There are three quoting mechanisms: the escape character, single quotes, and double quotes.

A non-quoted backslash (\) is the escape character. It preserves the literal value of the next character that
follows, with the exception of <newline>. If a \<newline> pair appears, and the backslash is not itself
quoted, the \<newline> is treated as a line continuation (that is, it is removed from the input stream and
effectively ignored).

Enclosing characters in single quotes preserves the literal value of each character within the quotes. A sin-
gle quote may not occur between single quotes, even when preceded by a backslash.

Enclosing characters in double quotes preserves the literal value of all characters within the quotes, with the
exception of $, ¢, \, and, when history expansion is enabled, !. The characters $ and ¢ retain their special
meaning within double quotes. The backslash retains its special meaning only when followed by one of the
following characters: $, ¢, "', \, or <newline>. A double quote may be quoted within double quotes by pre-
ceding it with a backslash. If enabled, history expansion will be performed unless an ! appearing in double
quotes is escaped using a backslash. The backslash preceding the ! is not removed.

The special parameters * and @ have special meaning when in double quotes (see PARAMETERS below).

Words of the form $'string' are treated specially. The word expands to string, with backslash-escaped char-
acters replaced as specified by the ANSI C standard. Backslash escape sequences, if present, are decoded

as follows:
\a alert (bell)
\b backspace
\e an escape character
\f form feed
\n new line
\r carriage return
\t horizontal tab
\v vertical tab
\ backslash
\' single quote

\nnn the eight-bit character whose value is the octal value nnn (one to three digits)
\xHH the eight-bit character whose value is the hexadecimal value HH (one or two hex digits)
\cx a control-x character

The expanded result is single-quoted, as if the dollar sign had not been present.

A double-quoted string preceded by a dollar sign ($) will cause the string to be translated according to the
current locale. If the current locale is C or POSIX, the dollar sign is ignored. If the string is translated and
replaced, the replacement is double-quoted.

PARAMETERS
A parameter is an entity that stores values. It can be a name, a number, or one of the special characters
listed below under Special Parameters. A variable is a parameter denoted by a name. A variable has a
value and zero or more attributes. Attributes are assigned using the declare builtin command (see declare
below in SHELL BUILTIN COMMANDS).

A parameter is set if it has been assigned a value. The null string is a valid value. Once a variable is set, it
may be unset only by using the unset builtin command (see SHELL BUILTIN COMMANDS below).

A variable may be assigned to by a statement of the form
name=[value]

If value is not given, the variable is assigned the null string. All values undergo tilde expansion, parameter
and variable expansion, command substitution, arithmetic expansion, and quote removal (see EXPANSION
below). If the variable has its integer attribute set, then value is evaluated as an arithmetic expression even

GNU Bash-3.2 2006 September 28 7

BASH(1) BASH(1)

if the $((...)) expansion is not used (see Arithmetic Expansion below). Word splitting is not performed,
with the exception of "$@" as explained below under Special Parameters. Pathname expansion is not
performed. Assignment statements may also appear as arguments to the alias, declare, typeset, export,
readonly, and local builtin commands.

In the context where an assignment statement is assigning a value to a shell variable or array index, the +=
operator can be used to append to or add to the variable’s previous value. When += is applied to a variable
for which the integer attribute has been set, value is evaluated as an arithmetic expression and added to the
variable’s current value, which is also evaluated. When += is applied to an array variable using compound
assignment (see Arrays below), the variable’s value is not unset (as it is when using =), and new values are
appended to the array beginning at one greater than the array’s maximum index. When applied to a string-
valued variable, value is expanded and appended to the variable’s value.

Positional Parameters
A positional parameter is a parameter denoted by one or more digits, other than the single digit 0. Posi-
tional parameters are assigned from the shell’s arguments when it is invoked, and may be reassigned using
the set builtin command. Positional parameters may not be assigned to with assignment statements. The
positional parameters are temporarily replaced when a shell function is executed (see FUNCTIONS below).

When a positional parameter consisting of more than a single digit is expanded, it must be enclosed in
braces (see EXPANSION below).

Special Parameters

The shell treats several parameters specially. These parameters may only be referenced; assignment to

them is not allowed.

* Expands to the positional parameters, starting from one. When the expansion occurs within dou-
ble quotes, it expands to a single word with the value of each parameter separated by the first char-
acter of the IFS special variable. That is, "$*" is equivalent to "$1c$2c...", where c is the first char-
acter of the value of the IFS variable. If IFS is unset, the parameters are separated by spaces. If
IFS is null, the parameters are joined without intervening separators.

@ Expands to the positional parameters, starting from one. When the expansion occurs within dou-
ble quotes, each parameter expands to a separate word. That is, "$@" is equivalent to "$1" "$2" ...
If the double-quoted expansion occurs within a word, the expansion of the first parameter is joined
with the beginning part of the original word, and the expansion of the last parameter is joined with
the last part of the original word. When there are no positional parameters, "$@" and $@ expand
to nothing (i.e., they are removed).

Expands to the number of positional parameters in decimal.

? Expands to the status of the most recently executed foreground pipeline.

- Expands to the current option flags as specified upon invocation, by the set builtin command, or
those set by the shell itself (such as the —i option).

$ Expands to the process ID of the shell. In a () subshell, it expands to the process ID of the current
shell, not the subshell.

! Expands to the process ID of the most recently executed background (asynchronous) command.

0 Expands to the name of the shell or shell script. This is set at shell initialization. If bash is

invoked with a file of commands, $0 is set to the name of that file. If bash is started with the —c
option, then $0 is set to the first argument after the string to be executed, if one is present. Other-
wise, it is set to the file name used to invoke bash, as given by argument zero.

At shell startup, set to the absolute pathname used to invoke the shell or shell script being executed
as passed in the environment or argument list. Subsequently, expands to the last argument to the
previous command, after expansion. Also set to the full pathname used to invoke each command
executed and placed in the environment exported to that command. When checking mail, this
parameter holds the name of the mail file currently being checked.

Shell Variables
The following variables are set by the shell:

BASH Expands to the full file name used to invoke this instance of bash.

GNU Bash-3.2 2006 September 28 8

BASH(1)

BASH(1)

BASH_ARGC

An array variable whose values are the number of parameters in each frame of the current bash
execution call stack. The number of parameters to the current subroutine (shell function or script
executed with . or source) is at the top of the stack. When a subroutine is executed, the number of
parameters passed is pushed onto BASH_ARGC. The shell sets BASH_ARGC only when in
extended debugging mode (see the description of the extdebug option to the shopt builtin below)

BASH_ARGV

An array variable containing all of the parameters in the current bash execution call stack. The
final parameter of the last subroutine call is at the top of the stack; the first parameter of the initial
call is at the bottom. When a subroutine is executed, the parameters supplied are pushed onto
BASH_ARGYV. The shell sets BASH_ARGYV only when in extended debugging mode (see the
description of the extdebug option to the shopt builtin below)

BASH_COMMAND

The command currently being executed or about to be executed, unless the shell is executing a
command as the result of a trap, in which case it is the command executing at the time of the trap.

BASH_EXECUTION_STRING

The command argument to the —c invocation option.

BASH_LINENO

An array variable whose members are the line numbers in source files corresponding to each mem-
ber of FUNCNAME. ${BASH_LINENO[S$i]} is the line number in the source file where
${FUNCNAMEIS$ifP]} was called. The corresponding source file name s
${BASH_SOURCE[$i]}. Use LINENO to obtain the current line number.

BASH_REMATCH

An array variable whose members are assigned by the =" binary operator to the [[conditional com-
mand. The element with index O is the portion of the string matching the entire regular expression.
The element with index n is the portion of the string matching the nth parenthesized subexpres-
sion. This variable is read-only.

BASH_SOURCE

An array variable whose members are the source filenames corresponding to the elements in the
FUNCNAME array variable.

BASH_SUBSHELL

Incremented by one each time a subshell or subshell environment is spawned. The initial value is
0

BASH_VERSINFO

A readonly array variable whose members hold version information for this instance of bash. The
values assigned to the array members are as follows:

BASH_VERSINFO[0] The major version number (the release).
BASH_VERSINFO[1] The minor version number (the version).
BASH_VERSINFOI[2] The patch level.

BASH_VERSINFOI[3] The build version.
BASH_VERSINFO[4] The release status (e.g., betal).
BASH_VERSINFOI[5] The value of MACHTYPE.

BASH_VERSION

Expands to a string describing the version of this instance of bash.

COMP_CWORD

An index into ${COMP_WORDS} of the word containing the current cursor position. This vari-
able is available only in shell functions invoked by the programmable completion facilities (see
Programmable Completion below).

COMP_LINE

GNU Bash-3.2

The current command line. This variable is available only in shell functions and external com-
mands invoked by the programmable completion facilities (see Programmable Completion
below).

2006 September 28 9

BASH(1) BASH(1)

COMP_POINT
The index of the current cursor position relative to the beginning of the current command. If the
current cursor position is at the end of the current command, the value of this variable is equal to
${#COMP_LINE}. This variable is available only in shell functions and external commands
invoked by the programmable completion facilities (see Programmable Completion below).

COMP_WORDBREAKS
The set of characters that the Readline library treats as word separators when performing word
completion. If COMP_WORDBREAKS is unset, it loses its special properties, even if it is subse-
quently reset.

COMP_WORDS
An array variable (see Arrays below) consisting of the individual words in the current command
line. The words are split on shell metacharacters as the shell parser would separate them. This
variable is available only in shell functions invoked by the programmable completion facilities (see
Programmable Completion below).

DIRSTACK
An array variable (see Arrays below) containing the current contents of the directory stack.
Directories appear in the stack in the order they are displayed by the dirs builtin. Assigning to
members of this array variable may be used to modify directories already in the stack, but the
pushd and popd builtins must be used to add and remove directories. Assignment to this variable
will not change the current directory. If DIRSTACK is unset, it loses its special properties, even if
it is subsequently reset.

EUID Expands to the effective user ID of the current user, initialized at shell startup. This variable is
readonly.

FUNCNAME
An array variable containing the names of all shell functions currently in the execution call stack.
The element with index O is the name of any currently-executing shell function. The bottom-most
element is "main". This variable exists only when a shell function is executing. Assignments to
FUNCNAME have no effect and return an error status. If FUNCNAME is unset, it loses its special
properties, even if it is subsequently reset.

GROUPS
An array variable containing the list of groups of which the current user is a member. Assign-
ments to GROUPS have no effect and return an error status. If GROUPS is unset, it loses its spe-
cial properties, even if it is subsequently reset.

HISTCMD
The history number, or index in the history list, of the current command. If HISTCMD is unset, it
loses its special properties, even if it is subsequently reset.

HOSTNAME
Automatically set to the name of the current host.

HOSTTYPE
Automatically set to a string that uniquely describes the type of machine on which bash is execut-
ing. The default is system-dependent.

LINENO
Each time this parameter is referenced, the shell substitutes a decimal number representing the
current sequential line number (starting with 1) within a script or function. When not in a script or
function, the value substituted is not guaranteed to be meaningful. If LINENO is unset, it loses its
special properties, even if it is subsequently reset.

MACHTYPE
Automatically set to a string that fully describes the system type on which bash is executing, in
the standard GNU cpu-company-system format. The default is system-dependent.

GNU Bash-3.2 2006 September 28 10

BASH(1) BASH(1)

OLDPWD
The previous working directory as set by the cd command.

OPTARG
The value of the last option argument processed by the getopts builtin command (see SHELL
BUILTIN COMMANDS below).

OPTIND
The index of the next argument to be processed by the getopts builtin command (see SHELL
BUILTIN COMMANDS below).

OSTYPE
Automatically set to a string that describes the operating system on which bash is executing. The
default is system-dependent.

PIPESTATUS
An array variable (see Arrays below) containing a list of exit status values from the processes in
the most-recently-executed foreground pipeline (which may contain only a single command).

PPID The process ID of the shell’s parent. This variable is readonly.
PWD The current working directory as set by the cd command.

RANDOM
Each time this parameter is referenced, a random integer between 0 and 32767 is generated. The
sequence of random numbers may be initialized by assigning a value to RANDOM. If RANDOM is
unset, it loses its special properties, even if it is subsequently reset.

REPLY
Set to the line of input read by the read builtin command when no arguments are supplied.

SECONDS
Each time this parameter is referenced, the number of seconds since shell invocation is returned.
If a value is assigned to SECONDS, the value returned upon subsequent references is the number
of seconds since the assignment plus the value assigned. If SECONDS is unset, it loses its special
properties, even if it is subsequently reset.

SHELLOPTS
A colon-separated list of enabled shell options. Each word in the list is a valid argument for the
—o option to the set builtin command (see SHELL BUILTIN COMMANDS below). The options
appearing in SHELLOPTS are those reported as on by set —o. If this variable is in the environment
when bash starts up, each shell option in the list will be enabled before reading any startup files.
This variable is read-only.

SHLVL
Incremented by one each time an instance of bash is started.

UID Expands to the user ID of the current user, initialized at shell startup. This variable is readonly.

The following variables are used by the shell. In some cases, bash assigns a default value to a variable;
these cases are noted below.

BASH_ENV
If this parameter is set when bash is executing a shell script, its value is interpreted as a filename
containing commands to initialize the shell, as in 7.bashrc. The value of BASH_ENYV is subjected
to parameter expansion, command substitution, and arithmetic expansion before being interpreted
as a file name. PATH is not used to search for the resultant file name.

CDPATH
The search path for the ed command. This is a colon-separated list of directories in which the
shell looks for destination directories specified by the ed command. A sample value is
".:7:/usr".

GNU Bash-3.2 2006 September 28 11

BASH(1) BASH(1)

COLUMNS
Used by the select builtin command to determine the terminal width when printing selection lists.
Automatically set upon receipt of a SIGWINCH.

COMPREPLY
An array variable from which bash reads the possible completions generated by a shell function
invoked by the programmable completion facility (see Programmable Completion below).

EMACS
If bash finds this variable in the environment when the shell starts with value t, it assumes that the
shell is running in an emacs shell buffer and disables line editing.

FCEDIT
The default editor for the fec builtin command.

FIGNORE
A colon-separated list of suffixes to ignore when performing filename completion (see READLINE
below). A filename whose suffix matches one of the entries in FIGNORE is excluded from the list
of matched filenames. A sample valueis ".o:"".

GLOBIGNORE
A colon-separated list of patterns defining the set of filenames to be ignored by pathname expan-
sion. If a filename matched by a pathname expansion pattern also matches one of the patterns in
GLOBIGNORE, it is removed from the list of matches.

HISTCONTROL
A colon-separated list of values controlling how commands are saved on the history list. If the list
of values includes ignorespace, lines which begin with a space character are not saved in the his-
tory list. A value of ignoredups causes lines matching the previous history entry to not be saved.
A value of ignoreboth is shorthand for ignorespace and ignoredups. A value of erasedups causes
all previous lines matching the current line to be removed from the history list before that line is
saved. Any value not in the above list is ignored. If HISTCONTROL is unset, or does not
include a valid value, all lines read by the shell parser are saved on the history list, subject to the
value of HISTIGNORE. The second and subsequent lines of a multi-line compound command
are not tested, and are added to the history regardless of the value of HISTCONTROL.

HISTFILE
The name of the file in which command history is saved (see HISTORY below). The default value
is 7.bash_history. If unset, the command history is not saved when an interactive shell exits.

HISTFILESIZE
The maximum number of lines contained in the history file. When this variable is assigned a
value, the history file is truncated, if necessary, by removing the oldest entries, to contain no more
than that number of lines. The default value is 500. The history file is also truncated to this size
after writing it when an interactive shell exits.

HISTIGNORE
A colon-separated list of patterns used to decide which command lines should be saved on the his-
tory list. Each pattern is anchored at the beginning of the line and must match the complete line
(no implicit “*’ is appended). Each pattern is tested against the line after the checks specified by
HISTCONTROL are applied. In addition to the normal shell pattern matching characters, ‘&’
matches the previous history line. ‘&’ may be escaped using a backslash; the backslash is
removed before attempting a match. The second and subsequent lines of a multi-line compound
command are not tested, and are added to the history regardless of the value of HISTIGNORE.

HISTSIZE
The number of commands to remember in the command history (see HISTORY below). The
default value is 500.

HISTTIMEFORMAT
If this variable is set and not null, its value is used as a format string for strftime(3) to print the
time stamp associated with each history entry displayed by the history builtin. If this variable is
set, time stamps are written to the history file so they may be preserved across shell sessions.

GNU Bash-3.2 2006 September 28 12

BASH(1) BASH(1)

HOME
The home directory of the current user; the default argument for the cd builtin command. The
value of this variable is also used when performing tilde expansion.

HOSTFILE
Contains the name of a file in the same format as /etc/hosts that should be read when the shell
needs to complete a hostname. The list of possible hostname completions may be changed while
the shell is running; the next time hostname completion is attempted after the value is changed,
bash adds the contents of the new file to the existing list. If HOSTFILE is set, but has no value,
bash attempts to read /etc/hosts to obtain the list of possible hostname completions. When
HOSTFILE is unset, the hostname list is cleared.

IFS The Internal Field Separator that is used for word splitting after expansion and to split lines into
words with the read builtin command. The default value is “<space><tab><newline>".
IGNOREEOF

Controls the action of an interactive shell on receipt of an EOF character as the sole input. If set,
the value is the number of consecutive EOF characters which must be typed as the first characters
on an input line before bash exits. If the variable exists but does not have a numeric value, or has
no value, the default value is 10. If it does not exist, EOF signifies the end of input to the shell.

INPUTRC
The filename for the readline startup file, overriding the default of 7.inputrc (see READLINE
below).

LANG Used to determine the locale category for any category not specifically selected with a variable
starting with LC_.

LC_ALL
This variable overrides the value of LANG and any other LC_ variable specifying a locale cate-
gory.

LC_COLLATE
This variable determines the collation order used when sorting the results of pathname expansion,
and determines the behavior of range expressions, equivalence classes, and collating sequences
within pathname expansion and pattern matching.

LC_CTYPE
This variable determines the interpretation of characters and the behavior of character classes
within pathname expansion and pattern matching.

LC_MESSAGES
This variable determines the locale used to translate double-quoted strings preceded by a $.

LC_NUMERIC
This variable determines the locale category used for number formatting.

LINES Used by the select builtin command to determine the column length for printing selection lists.
Automatically set upon receipt of a SIGWINCH.

MAIL If this parameter is set to a file name and the MAILPATH variable is not set, bash informs the user
of the arrival of mail in the specified file.

MAILCHECK
Specifies how often (in seconds) bash checks for mail. The default is 60 seconds. When it is time
to check for mail, the shell does so before displaying the primary prompt. If this variable is unset,
or set to a value that is not a number greater than or equal to zero, the shell disables mail checking.

MAILPATH
A colon-separated list of file names to be checked for mail. The message to be printed when mail
arrives in a particular file may be specified by separating the file name from the message with a
‘2. When used in the text of the message, $_ expands to the name of the current mailfile. Exam-
ple:
MAILPATH-='/var/mail/bfox?"You have mail":/shell-mail?"$_ has mail!""
Bash supplies a default value for this variable, but the location of the user mail files that it uses is
system dependent (e.g., /var/mail/$USER).

GNU Bash-3.2 2006 September 28 13

BASH(1)

BASH(1)

OPTERR

PATH

If set to the value 1, bash displays error messages generated by the getopts builtin command (see
SHELL BUILTIN COMMANDS below). OPTERR is initialized to 1 each time the shell is invoked
or a shell script is executed.

The search path for commands. It is a colon-separated list of directories in which the shell looks
for commands (see COMMAND EXECUTION below). A zero-length (null) directory name in the
value of PATH indicates the current directory. A null directory name may appear as two adjacent
colons, or as an initial or trailing colon. The default path is system-dependent, and is set by the
administrator who installs bash. A common value is
/usr/gnu/bin:/usr/local/bin:/usr/ucb:/bin:/usr/bin.

POSIXLY_CORRECT

If this variable is in the environment when bash starts, the shell enters posix mode before reading
the startup files, as if the ——posix invocation option had been supplied. If it is set while the shell is
running, bash enables posix mode, as if the command set -o posix had been executed.

PROMPT_COMMAND

PS1

PS2

PS3

PS4

SHELL

If set, the value is executed as a command prior to issuing each primary prompt.

The value of this parameter is expanded (see PROMPTING below) and used as the primary prompt
string. The default value is “\s—\v\$ ”.

The value of this parameter is expanded as with PS1 and used as the secondary prompt string. The
default is “> .

The value of this parameter is used as the prompt for the select command (see SHELL GRAM-
MAR above).

The value of this parameter is expanded as with PS1 and the value is printed before each com-
mand bash displays during an execution trace. The first character of PS4 is replicated multiple
times, as necessary, to indicate multiple levels of indirection. The defaultis “+ ”

The full pathname to the shell is kept in this environment variable. If it is not set when the shell
starts, bash assigns to it the full pathname of the current user’s login shell.

TIMEFORMAT

The value of this parameter is used as a format string specifying how the timing information for
pipelines prefixed with the time reserved word should be displayed. The % character introduces
an escape sequence that is expanded to a time value or other information. The escape sequences
and their meanings are a