GSt r eaner Application
Development Manual

Wim Taymans

GSt r eanmer Application Development Manual
by Wim Taymans

This material may be distributed only subject to the terms and conditions set forth in the Open Publication License,
v1.0 or later (the latest version is presently available at http:/ /www.opencontent.org/openpub/ (
http:/ /www.opencontent.org/openpub/))

Table of Contents

L. O VI VICWceeeeeceeeerreeeeseeeisanrssseesssseesssssssssstessssesssssassssssssssasssssssssssssssssasssssasssssesssssnsssnsassen 1
B g e Te RE Tar o) o NPT 1
WHhat 1S GSETEAIIIOT? ...ttt e e e e seeeaas 1

ALY/ Lo 4 72X 4 1) o WU 1
Current problems..........coiiiiiiiiiiicce e e 1
Multitude of duplicate code ..o 1

‘One goal’ media players......cceiiiieiciiii s 1

Non unified plugin mechanisSmscccceieeiiveiiicceiinicieisc e 1

Provision for network transparency..........c.oocooeeeceeiiicccisceccce 1

Catch up with the Windows(tm) world...........covvniiiiiiniiiininnnns 2

G T 70 Y- LT TR 3
The design GOals ..o e 3
Clean and powerfull.........cccocuiirieeieiiecieceee e 3

Object oriented ... 3

J OGSy 4 1o 1) (< 3

Allow binary only plugins..........ccceeeiieicinieiniiiicicccceeet e 3

High performance........coeiiiieiis s 3

IL. BaSiC COMCEPLS cuuirruirninnsnsisnsnsisisnisninisnisissssisssisssnssssissisnssisississssisssssssssssssssssssssssessssesasseses 5
O] 0 =5 5/ 1<) 1 TR 5
What 1S @ GStEICINENLoeiieei ittt ettt e s s 5
GStreamer SOUrce elemMentscooceevveeeeeeeeeeee et 5
GStreamer filter elemMENtSccveeeeeiiiieeeeee et 5
GStreamer SiNK €leMEeNtSc.vicveeeeeiciiieieeeee e ceeestee e eeaeeereesteeeraeesaenees 6

Creating a GstElement ... e 6

5. What are PIUZINScoiieieiiiiiciici s 8
L € 5= Yo R 9
Getting pads from an element ..o 9
Useful pad functionsc.ccoeueeieieeieiineceeieieeseiesei e 9

Dynamic padsccocieeiiiiriceeeee e 9

Request pads.......ccciciniiiiiii 10
Capabilities of @ GStPad........ccceceviuiiiiiiceii e, 11
What is @ capability......cccccoiiiioiiiiicccceece e 11

What are properties ... e 12

What are the capabilities used fOr?........ccoooiommieiiiceiiiic 13

Getting the capabilities of a padcoeeurmiiorii 13

7. Connecting CLETTNICIIES et e e e e e 14
B BINIS ettt e et e s s st b e et a b e s s bae et eeeanaree e santeeeaas 15
Creating a bin ..o 15
Adding elements t0 @ binccccoeiiiiiiiieiiecec 16
QT E) 03 4 W o)1 a1 F 16
GhOoStPAdSceeece e e 17

O, BUI OIS e ettt e ettt e e en e et e e e at e e e eeneeaans 19
10. E1OMENT SEATES ..uvieeevee ittt ettt st e e et ee s sae s s aae e s saeesennessnaeeesreneas 20
The different element STALEScoocouie e seeens 20

B TN L6 I S = < 21

BTN TN B)] 7= 1 1 < 21

The PLAYIING SEAtE ... ettt e s e e e eaessaeaeas 21

The PAUSED Statecoeeeiee ettt e s n e ae s sreneas 21

IIL Building an applicationciccininisiiniinsesseissesesssssssesesssssssssssssssssssssssens 23
11. Your first application.cccco e e 23
| 02 1 (o 770) o Ko F O 23
compiling helloWorld.C....covcuiieieiiiiiiiiicii e, 26

[T} el U T3 o) o W 27

T2, MOTE ONL FACEOTIES ...ttt e et e et e e s s eee e ee e e e neeseeneas 28

The problems with the helloworld example.........cooecuriciiciiciiiiiiene, 28
more ON MIME TYPeES.......coriiiiiicieecc e 28
GStreamer tYPeS.......ccucieiieiiiciieee ettt 29
MIME type to id CONVEISION.....cciicriiirereciiiiiec e 30

id tO GSt TYPE CONVEISIONoiiveitieeericeeeeeaeeeeeeee et e e e e eaeeaeas 30

extension t0 id CONVEISIONecoiveiieeiiicceieeetee et 30

id to Gst El enent Fact Or Y CONVEISION ..cveeeeerieereeienrvereesseneeseesneennens 30

id to id path detection ..o, 31

creating elements with the factory ..o, 31
GStreamer basic tyPes.....cocivieiiiici 31

13. AUEOPIUGEING. ..o s 33
Using autoplug@ing.coeucuiiiieiiiiceceeccce e e 33

A complete autoplugging example.........c.cocviniiiininniies 34

14. Your second application.........cccccveiieiinciiiniiiiiiiiies e 35
Autoplugging helloworld ... 35

IV. Advanced GSt r €aMBr CONCEPLS cuuermiuercirireiniecrciicniesessens st ses st s s sessssens 38
BT N 0 =Y Ve F TR 38
16. QUEUES ...oeeeeeeiiceeteeeer et ettt sreeste s st et e e se e e eseesaesaes saestennsensssaseseesrsensesnsesennes 41
B @05 oV Y- Ve £ R 44
Chain-based leImentsuoo it seeeas 44
Loop-based elements............ccceiiiiiiiiiiiniiiii e 44

18. Dynamic Pipelinescococviiuiiimcrciimiictieiiesise s 46
19. TYyPedeteCtion......ccccccuiiiicci e s 50
20. Utility fUNCHOMNS ...covuiet ettt e 52
V. XIMIL 11 GSE I BANMET eeteeeecrreeerissssntesiesssssseesssssssseesssssssasssssssssessssssssasessssssssssssssssssessssssaasans 53
A 1Y D N € S A =T- 101 R T TR RRST 53
Turning GstElements into XML........ccccoiiiiiiniiiiiccceec, 53
Loading a GstElement from an XML filecccoovrrii, 54
Adding custom XML tags into the core XML data.......cccccoorvriiiiciiininnnnns 55

VI APPENAICES cucuniniriririniiiniisiiiensiscsit s b b s aas b s sas sas s s ssns e nsnns 58
22. DEDUGZING ... e 58
Command line OPtionsccccoeieiiiiireieeecec e 58
Adding a custom debug handler.........c.ccocoooiiiiiii, 58

23. PrOGTAIMS. ..ottt et e et et et 59
gstreamer-config...............cooiiiiiiii e 59
gstreamer-register ... 59
gstreamer-launch ... 59
gstreamer-inspect............ocoooiiiiii e 60
gstmediaplay ... 62

24, COMPONENLESvmiiiriceic ettt et s e e 63
GSEPIAY ..o e 63
GstMediaPlay ..., 63
GSEEAIEOT ..ttt et e e e e e s s eee s e e e e e aeeseeneas 63

25. Quotes from the Developers.......cuiiciiiei s 64

List of Figures

4-1. Visualisation Of a SOUTCE ElEIMENL.......cecivviiiuiieiietei ettt sttt e e e s 5
4-2. Visualisation of a filter elementccccuivveiiiiiieeiiei ettt ettt et 5
4-3. Visualisation of a filter element with more than one output pad..........cccccccccec. 6
4-4. Visualisation Of a SINK €lemMeNtcccevviieiiiiiieii ettt st s e e s 6
7-1. Visualisation of three connected elements...........cc.oooeeeeeeeieeeeecceeieeeeeee e 14
8-1. Visualisation of a Gst Bi n element with some elements in it......ccccceeveeevceerreeenenne. 15
8-2. Visualisation of a Gst Bi n element with a ghostpad.........cccoeeieiiiiinn, 17
10-1. The different states of a Gst El enent and the state transitions.........cccccvveueen.... 20
11-1. The Hello world pipeline........ccoveueiiriiciiiciiiieiiie s 25
12-1. The Hello world pipeline with MIME typesccccouuuiiiiiiirieieiiiccisiceeic i 29
T5-T. @ EITCAA ...t e e e e et e e s s e e e e e e e e seneas 38
16-1. a two-threaded decoder with a qUeUe.........cc.cuiiiieiiiiciiiie 41

Chapter 1. Introduction

This chapter gives you an overview of the technologies described in this book.

What is GStreamer?

GStreamer is a framework for creating streaming media applications. The
fundamental design comes from the video pipeline at Oregon Graduate Institute, as
well as some ideas from DirectShow.

GStreamer’s development framework makes it possible to write any streaming
multimedia application. The framework includes several components to build a full
featured media player capable of playing MPEG1, MPEG2, AVI, MP3, WAV, AL, ...

GStreamer, however, is much more than just another media player. Its main
advantages are that the pluggable components also make it possible to write a full
flegded video or audio editing application.

The framework is based on plug-ins that will provide the various codec and other
functionality. The plugins can be connected and arranged in a pipeline. This
pipeline defines the flow of the data. Pipelines can also be edited with a GUI editor
and saved as XML so that pipeline libraries can be made with a minimum of effort.

This book is about GStreamer from a developer’s point of view; it describes how to
write a GStreamer application using the GStreamer libraries and tools.

Chapter 2. Motiv ation

Linux has historically lagged behind other operating systems in the multimedia
arena. Microsoft’'s Windows[tm] and Apple’s MacOS[tm] both have strong support
for multimedia devices, multimedia content creation, playback, and realtime
processing. Linux, on the other hand, has a poorly integrated collection of
multimedia utilities and applications available, which can hardly compete with the
professional level of software available for MS Windows and MacOS.

Current problems

We descibe the typical problems in todays media handling on Linux.

Multitude of duplicate code

The Linux user who wishes to hear a sound file must hunt through their collection of
sound file players in order to play the tens of sound file formats in wide use today.
Most of these players basically reimplement the same code over and over again.

The Linux developer who wishes to embed a video clip in their application must
use crude hacks to run an external video player. There is no library available that a
developer can use to create a custom media player.

'One goal’ media players

Your typical MPEG player was designed to play MPEG video and audio. Most of
these players have implemented a complete infrastructure focused on achieving
their only goal: playback. No provisions were made to add filters or special effects
to the video or audio data.

If I wanted to convert an MPEG2 video stream into an AVI file, my best option
would be to take all of the MPEG2 decoding algorithms out of the player and
duplicate them into my own AVI encoder. These algorithms cannot easily be shared
accross applications.

Non unified plugin mechanisms

Your typical media player might have a plugin for different media types. Two media
players will typically implement their own plugin mechanism so that the codecs
cannot be easily exchanged.

The lack of a unified plugin mechanism also seriously hinders the creation of binary
only codecs. No company is willing to port their code to all the different plugin
mechanisms.

While GStreamer also uses it own plugin system it offers a very rich framework for
the plugin.

Chapter 2. Motivation

Provision for network transparenc y

No infrastructure is present to allow network transparent media handling. A
distributed MPEG encoder will typically duplicate the same encoder algorithms
found in a non-distributed encoder.

No provisions have been made for emerging technologies such as the GNOME
object embedding using BONOBO.

Catch up with the Windo ws(tm) world

We need solid media handling if we want to see Linux succeed on the desktop.

We must clear the road for commercially backed codecs and multimedia
applications so that Linux can become an option for doing multimedia.

Chapter 3. Goals

GStreamer was designed to provide a solution to the current Linux media problems.

The design goals

We descibe what we try to achieve with GStreamer.

Clean and powerfull

GStreamer wants to provide a clean interface to:

» The application programmer who wants to build a media pipeline. The
programmer can use an extensive set of powerfull tools to create media pipelines
without writing a single line of code. Performing complex media manipulations
becomes very easy.

» The plugin programmer. Plugin programmers are provided a clean and simple
API to create self contained plugins. An extensive debugging and tracing
mechanism has been integrated. GStreamer also comes with an extensive set of
real-life plugins that serve as an example too.

Object oriented

Adhere as much as possible to the GTK+ object model. A programmer familiar with
GTK+ will be confortable with GStreamer.

GStreamer uses the mechanism of signals and object arguments.

All objects can be queried at runtime for their various properties and capabilities.

Extensib le
All GStreamer Objects can be extended using the GTK+ inheritance methods.

All plugins are loaded dynamically and can be extended and upgraded
independently.

Allow binary only plugins

plugins are shared libraries that are loaded at runtime. since all the properties of the
plugin can be set using the GtkObject arguments, there is no need to have any
header files installed for the plugins.

Special care has been taking into making the plugin completely self contained. This
is in the operations, specification of the capabilities of the plugin and properties.

Chapter 3. Goals

High performance
High performance is obtained by:

» Using glib g mem_chunk where possible to minimize dynamic memory
allocation.

+ Connections between plugins are extremely light-weight. Data can travel the
pipeline with minimal overhead.

+ Provide a mechanism to directly work on the target memory. A plugin can for
example directly write to the X servers shared mem. Buffers can also point to
arbitrary memory like kernel memory.

+ Refcounting and copy on write to minimize the amount of memcpy. Subbufers to
efficiently split the data in a buffer.

+ DPipelines can be constructed using cothreads to minimize the threading overhead.
Cothreads are a simple user-space method for switching between subtasks.

» HW acceleration is possible by writing a specialized plugin.

» Uses a plugin registry with the specifications of the plugins so that the plugin
loading can be delayed until the plugin is actually used.

Chapter 4. GstElement

What

The most important object in GSt r eamer for the application programmer is the
Gst El ement object.

is a GstElement

The GstElement is the basic building block for the media pipeline. All the different
components you are going to use are derived from this GstElement. This means that
a lot of functions you are going to use operate on this object.

You will see that those elements have pads. These are the elements connections with
the "outside’ world. Depending on the number and direction of the pads, we can see
three types of elements: source, filter and sink element.

These three types are all the same GstElement object, they just differ in how the
pads are.

GStreamer sour ce elements

This element will generate data that will be used by the pipeline. It is typically a file
or an audio source.

Below you see how we will visualize the element. We always draw a src pad to the
right of the element.

element_name

src

Figure 4-1. Visualisation of a source element

Source elements do not accept data, they only generate data. You can see this in the
figure because it only has a src pad. A src pad can only generate buffers.

GStreamer filter elements

Filter elements both have an input and an output pad. They operate on data they
receive in the sink pad and send the result to the src pad.

Examples of a filter element might include: an MPEG decoder, volume filter,...

Filters may also contain any number of input pads and output pads. For example, a
video mixer might have to input pads (the images of the two different video
streams) and one output pad.

Chapter 4. GstElement

element_name

sink ‘ ‘ src

Figure 4-2. Visualisation of a filter element

The above figure shows the visualisation of a filter element. This element has one
sink pad (input) and one src (output) pad. Sink pads are drawn on the left of the
element.

element_name

video

sink
audio

Figure 4-3. Visualisation of a filter element with more than one output pad

The above figure shows the visualisation of a filter element with more than one
output pad. An example of such a filter is the AVI splitter. This element will parse
the input data and extracts the audio and video data. Most of these filters
dynamically send out a signal when a new pad is created so that the application
programmer can connect an arbitrary element to the newly created pad.

GStreamer sink elements

This element accepts data but will not generate any new data. A sink element is
typically a file on disk, a soundcard, a display,... It is presented as below:

element_name

sink

Figure 4-4. Visualisation of a sink element

Chapter 4. GstElement

Creating a GstElement

GstElements are created from factories. To create an element, one has to get access
the a Gst El ement Fact or y using a unique factoryname.

The following code example is used to get a factory that can be used to create the
mpg123 element, an mp3 decoder.

Gst El enent Factory *factory;

factory = gst_elenmentfactory_find ("npgl23");

Once you have the handle to the elementfactory, you can create a real element with
the following code fragment:

Gst El enent *el enment;

el enent = gst_el enentfactory_create (factory, "decoder");

gst_elementfactory_create () will use the elementfactory to create an element with
the given name. The name of the element is something you can use later on to
lookup the element in a bin, for example.

A simple shortcut exists for creating an element from a factory. The following
example creates an element, named "decoder" from the elementfactory named
"mpg123". This convenient function is most widly used to create an element.

Gst El enent *el enment;

el enent = gst_el enentfactory_nake ("nmpgl23", "decoder");

An element can be destroyed with:

Gst El enent *el enent;

gst _el enent _destroy (el enent);

Chapter 5. What are Plugins

A plugin is a shared library that contains at least one of the following items:

e one or more elementfactories
 one or more typedefinitions
+ one or more autopluggers

The plugins have one simple method: plugin_init () where all the elementfactories
are created and the typedefinitions are registered.

the plugins are maintained in the plugin system. Optionally, the typedefinitions and
the elementfactories can be saved into an XML representation so that the plugin
system does not have to load all available plugins in order to know their definition.

The basic plugin structure has the following fields:

struct _GstPlugin {

gchar *nane; /* name of the plugin */

gchar *I| ongnane; /* 1ong nane of plugin */

gchar *filenaneg; /* filenane it cane from*/

GLi st *types; /* list of types provided */

gi nt nuntypes;

Qi st *el enents; /* list of elements provided */

gi nt nunel enent s;

GLi st *aut opl uggers; /* list of autopluggers provided */
gi nt numaut opl uggers;

gbool ean | oaded; /* if the pluginis in nenmory */

You can query a GList of available plugins with:
GLi st *pl ugi ns;
plugins = gst_plugin_get _list ();

while (plugins) {
GstPlugin *plugin = (GstPlugin *)plugins- >data;

g_print ("plugin: 9%\n", gst_plugin_get_name (plugin));

plugins = g_list_next (plugins);

Chapter 6. GstPad

As we have seen in the previous chapter (GstElement), the pads are the elements
connections with the outside world.

The specific type of media that the element can handle will be exposed by the pads.
The description of this media type is done with capabilities (Gst Caps)

Getting pads from an element

Once you have created an element, you can get one of its pads with:
Gst Pad *srcpad,;

srcbéd = gst_el ement _get _pad (el enent, "src");

This function will get the pad named "src" from the given element.

Alternatively, you can also request a GList of pads from the element. The following
code example will print the names of all the pads of an element.

GLi st *pads;

padé. = gst _el enent _get _pad_list (el enent);
whil e (pads) {
Gst Pad *pad = GST_PAD (pads->data);

g_print ("pad nane %\ n", gst_pad_get_nanme (pad));

pads = g_list_next (pads);

Useful pad functions

You can get the name of a pad with gst_pad_get_name () and set its name with
get_pad_set_name();

gst_pad_get_direction (GstPad *pad) can be used to query if the pad is a sink or a
src pad. Remember a src pad is a pad that can output data and a sink pad is one that
accepts data.

You can get the parent of the pad, this is the element that this pad belongs to, with
get_pad_set_parent(GstPad *pad). This function will return a pointer to a GstObject.

Dynamic pads

Some elements might not have their pads when they are created. This can, for
example, happen with an MPEG2 system demuxer. The demuxer will create its pads
at runtime when it detects the different elementary streams in the MPEG2 system
stream.

Chapter 6. GstPad

Running gst r eaner - i nspect npeg2par se will show that the element has only one
pad: a sink pad called "sink’. The other pads are "dormant” as you can see in the
padtemplates from the "Exists: Sometimes’ property. Depending on the type of
MPEG?2 file you play, the pads are created. We will see that this is very important
when you are going to create dynamic pipelines later on in this manual.

You can attach a signal to an element to inform you when the element has created a
new pad from one of its padtemplates. The following piece of code is an example of
how to do this:

static void
pad_connect _func (GstEl enent *parser, GstPad *pad, GstEl enent *pipeline)

{

g_print("***** 3 new pad % was created\n", gst_pad_get_ nane(pad));
gst _el ement _set _state (pipeline, GST_STATE_PAUSED);

if (strncrmp (gst_pad_get_nane (pad), "private_stream1.0", 18) == 0) {
/1 set up an AC3 decoder pipeline

}).connect pad to the AC3 decoder pipeline

}

gst _el ement _set _state (GST_ELEMENT (audi o_t hread), GST_STATE_READY);
}
i nt
mai n(int argc, char *argv[])

{
Gst El enent *pi pel i ne;

Gst El enent *npeg2par ser;
/1 create pipeline and do sonething usefull

npeg2parser = gst_el ementfactory_make ("npeg2parse", "npeg2parse");
gt k_signal _connect (GIK_OBJECT (npeg2parser), "new pad", pad_connect_func, pipelin

/1 start the pipeline
gst _el ement _set _state (GST_ELEMENT (pipeline), GST_STATE_PLAYI NG ;

Note: You need to set the pipeline to READY or NULL if you want to change it.

Request pads

An element can also have request pads. These pads are not created automatically
but are only created on demand. This is very usefull for muxers, aggregators and tee
elements.

The tee element, for example, has one input pad and a request padtemplate for the
output pads. Whenever an element wants to get an output pad from the tee element,
it has to request the pad.

10

Chapter 6. GstPad

The following piece of code can be used to get a pad from the tee element. After the
pad has been requested, it can be used to connect another element to it.

Gst Pad *pad;
el ement = gst_el enentfactory_nake ("tee", "element");

pad = gst_el ement _request_pad_by_name (el enent, "src%");
g_print ("new pad %\n", gst_pad_get_nanme (pad));

The gst_element_request_pad_by_name method can be used to get a pad from the
element based on the name_template of the padtemplate.

It is also possible to request a pad that is compatible with another padtemplate. This
is very usefull if you want to connect an element to a muxer element and you need
to request a pad that is compatible. The gst_element_request_compatible_pad is
used to request a compatible pad, as is shown in the next example.

Gsi .PédTerrpI ate *tenpl;
Gst Pad *pad;

el éﬁént = gst_elenentfactory_nake ("tee", "elenent");
nmp3parse = gst_el enentfactory_nake ("np3parse", "np3parse");

templ = gst_el ement _get _padt enpl at e_by_nanme (np3parse, "sink");

pad = gst_el ement _request_conpati bl e_pad (el ement, tenpl);
g_print ("new pad %\n", gst_pad_get_nanme (pad));

Capabilities of a GstPad

Since the pads play a very important role in how the element is viewed by the
outside world, a mechanism is implemented to describe the pad by using
capabilities.

We will briefly describe what capabilities are, enough for you to get a basic
understanding of the concepts. You will find more information on how to create
capabilities in the filter-writer-guide.

What is a capability

A capability is attached to a pad in order to describe what type of media the pad can
handle.

A capability is named and consists of a MIME type and a set of properties. Its data
structure is:

struct _GstCaps {
gchar *nane; /* the name of this caps */

guintl6 id; /* type id (mgjor type) */

11

Chapter 6. GstPad

Gst Props *properties; /* properties for this capability */
3

Below is a dump of the capabilities of the element mpgl23, as shown by
gstreamer-inspect. You can see two pads: sink and src. Both pads have capability
information attached to them.

The sink pad (input pad) is called ‘sink” and takes data of MIME type "audio/mp3’.
It also has three properties: layer, bitrate and framed.

The src pad (output pad) is called ’src” and outputs data of MIME type "audio/raw’.
It also has four properties: format, depth, rate and channels.

Pads:
SINK: ' sink’
”.C.apabilities:
" mpgl23_sink’:

M ME type: 'audi o/ mp3’:
layer: Integer range: 1 - 3
bitrate: Integer range: 8 - 320
framed: Bool ean: TRUE

SRC. ’'src’

Capabilities:
' nmpgl23_src’:
M ME type: 'audio/raw :
format: Integer: 16
depth: Integer: 16
rate: Integer range: 11025 - 48000
channel s: List:
Integer: 1
I nteger: 2

What are properties

Properties are used to describe extra information for the capabilities. The properties
basically exist of a key (a string) and a value. There are different possibile value
types that can be used:

» Aninteger value: the property has this exact value.

« Aninteger range value. The property denotes a range of possible values. In the
case of the mpg123 element: the src pad has a property rate that can go from 11025
to 48000.

A boolean value.

a fourcc value: this is a value that is commonly used to describe an encoding for
video, as used be the AVI specification.

A list value: the property can take any value from a list.

A float value: the property has this exact floating point value.

A float range value: denotes a range of possible floating point values.

A string value.

12

Chapter 6. GstPad

What are the capabilities used for?

Capabilities describe in great detail the type of media that is handled by the pads.
They are mostly used for:

+ Autoplugging: automatically finding plugins for a set of capabilities

» Compatibility detection: when two pads are connected, GSt r eaner can verify if
the two pads are talking about the same media types.

Getting the capabilities of a pad

A pad can have a GList of capabilities attached to it. You can get the capabilities list
with:

GLi st *caps;
capél = gst _pad_get _caps_list (pad);
g_print ("pad nane %\n", gst_pad_get_nanme (pad));

while (caps) {
Gst Caps *cap = (GstCaps *) caps->data;

g_print (" Capability name %, M ME type\n", gst_caps_get_nanme (cap),
gst _caps_get_minme (cap));

caps = g_list_next (caps);

13

Chapter 7. Connecting elements

You can connect the different pads of elements together so that the elements form a
chain.

elementl element2 element3

src sink‘ ‘ src sink

Figure 7-1. Visualisation of three connected elements

By connecting these three elements, we have created a very simple pipeline. The
effect of this will be that the output of the source element (element1) will be used as
input for the filter element (element2). The filter element will do something with the
data and send the result to the final sink element (element3).

Imagine the above graph as a simple mpeg audio decoder. The source element is a
disk source, the filter element is the mpeg decoder and the sink element is your
audiocard. We will use this simple graph to construct an mpeg player later in this
manual.

You can connect two pads with:
Gst Pad *srcpad, *sinkpad;

srcpad = gst_el enent _get _pad (el enentl, "src");
sinpad = gst_el enent _get _pad (el enent2, "sink");

/1 connect them
gst _pad_connect (srcpad, sinkpad);

//. and di sconnect them
gst _pad_di sconnect (srcpad, sinkpad);

A convenient shortcut for the above code is done with the gst_element_connect ()
function:

/1 connect them
gst _el enent _connect (elenentl, "src", elenent2, "sink");

//. and di sconnect them

gst _el enent _di sconnect (elenentl, "src", elenent2, "sink");

You can query if a pad is connected with GST_PAD_IS_CONNECTED (pad).
To query for the Gst Pad this srcpad is connected to, use gst_pad_get_peer (srcpad).

14

Chapter 8. Bins

A Bin is a container element. You can add elements to a bin. Since a bin is an
Gst El enent itself, it can also be added to another bin.

Bins allow you to combine connected elements into one logical element. You do not
deal with the individual elements anymore but with just one element, the bin. We
will see that this is extremely powerfull when you are going to construct complex
pipelines since it allows you to break up the pipeline in smaller chunks.

The bin will also manage the elements contained in it. It will figure out how the data
will flow in the bin and generate an optimal plan for that data flow. Plan generation
is one of the most complicated procedures in GStreamer.

bin

elementl element2 element3

src sink ‘ ‘ src " sink

Figure 8-1. Visualisation of a Gst Bi n element with some elements in it

There are two standard bins available to the GStreamer programmer:

» A pipeline (Gst Pi pel i ne). Which is a generic container you will use most of the
time.

» A thread (Gst Thr ead). All the elements in the thread bin will run in a separate
thread. You will have to use this bin if you carfully have to synchronize audio and
video for example. You will learn more about threads in..

Creating a bin

You create a bin with a specified name ‘'mybin” with:
Gst El enent *bi n;

gst _bin_new ("nybin");
A thread can be created with:

Gst El enent *t hread;

gst _thread_new ("nythread");

15

Chapter 8. Bins

Pipelines are created with gst_pipeline_new ("name");

Adding elements to a bin

Elements are added to a bin with the following code sample:

Gst El enent *el enment ;
Gst El enent *bi n;

bin = gst_bin_new ("nybin");
el ement = gst_el enentfactory_nake ("nmpgl23", "decoder");

gst _bin_add (GST_BIN (bin), elenent);

Bins and threads can be added to other bins too. This allows you to create nested
bins.

To get an element from the bin you can use:
Gst El ement *el enent ;

el ement = gst_bin_get_by name (GST_BIN (bin), "decoder");

You can see that the name of the element becomes very handy for retrieving the
element from an bin by using the elements name. gst_bin_get_by_name () will
recursively search nested bins.

To get a list of elements in a bin, use:
GLi st *el enents;
el ements = gst_bin_get _list (GST_BIN (bin));

while (el ements) ({
Gst El enent *el ement = GST_ELEMENT (el enents- >data);

g_print ("element in bin: %\n", gst_elenment_get_nanme (el enent));

elements = g_list_next (elenments);

}

To remove an element from a bin use:
Gst El enent *el enent ;

gst_bin_renove (GST_BIN (bin), elenent);

16

Chapter 8. Bins

Custom bins

The application programmer can create custom bins packed with elements to
perform a specific task. This allow you to write an MPEG audio decoder with just
the follwing lines of code:

/1 create the np3pl ayer el enent

Gst El enent *np3pl ayer = gst_el enentfactory_nake("np3pl ayer”, "nmp3pl ayer");
/1 set the source np3 audio file

gt k_obj ect _set (GTK_OBJECT(np3pl ayer), "location", "helloworld. 3", NULL);
/1 start playback

gst _el ement _set _st at e(GST_ELEMENT(np3pl ayer), GST_STATE_PLAYI NG ;

/) ' bause pl ayback
gst _el ement _set _st at e(GST_ELEMENT(np3pl ayer), GST_STATE_PAUSED) ;

/) ' ét op
gst _el ement _set _stat e(GST_ELEMENT(np3pl ayer), GST_STATE_NULL) ;

Custom bins can be created with a plugin or an XML description. You will find more
information about creating custom bin in the Filter-Writers-Guide.

Ghostpads

You can see from figure ... how a bin has no pads of its own. This is where
Ghostpads come into play.

A ghostpad is a pad from some element in the bin that has been promoted to the
bin. This way, the bin also has a pad. The bin becomes just another element with a
pad and you can then use the bin just like any other element. This is a very
important feature for creating custom bins.

bin

elementl element2 element3

- sink ‘ ‘ src sink ‘ ‘ src " sink

sink -

Figure 8-2. Visualisation of a Gst Bi n element with a ghostpad

Above is a representation of a ghostpad. the sinkpad of element one is now also a
pad of the bin.

Ghostpads can actually be added to all Gst El enent s and not just Gst Bi ns. Use the
following code example to add a ghostpad to a bin:

Gst El enent *bi n;
Gst El enent *el enent ;

17

Chapter 8. Bins

el ement = gst_el enentfactory_create ("npgl23", "decoder");
bin = gst_bin_new ("nybin");

gst _bin_add (GST_BIN (bin), elenent);

gst _el ement _add_ghost _pad (bin, gst_elenment_get_pad (el ement, "sink"));

In the above example, the bin now also has a pad: the pad called "sink” of the given
element. We can now, for example, connect the srcpad of a disksrc to the bin with:

Gst El enent *di sksrc;
di sksrc = gst_el enentfactory_create ("disksrc", "disk_reader");

gst _el ement _connect (disksrc, "src", bin, "sink");

18

Chapter 9. Buffers

Buffers contain the data that will flow through the pipeline you have created. A
source element will typically create a new buffer and pass it through the pad to the
next element in the chain. When using the GStreamer infrastructure to create a
media pipeline you will not have to deal with buffers yourself; the elements will do
that for you.

The most important information in the buffer is:

« A pointer to a piece of memory.
+ The size of the memory.

» A refcount that indicates how many elements are using this buffer. This refcount
will be used to destroy the buffer when no element is having a reference to it.

GStreamer provides functions to create custom buffer create/destroy algorithms,
called a Gst Buf f er Pool . This makes it possible to efficiently allocate and destroy
buffer memory. It also makes it possible to exchange memory between elements by
passing the Gst Buf f er Pool . A video element can, for example, create a custom
buffer allocation algorithm that creates buffers with XSHM as the buffer memory.
An element can use this algorithm to create and fill the buffer with data.

The simple case is that a buffer is created, memory allocated, data put in it, and
passed to the next filter. That filter reads the data, does something (like creating a
new buffer and decoding into it), and unreferences the buffer. This causes the data
to be freed and the buffer to be destroyed. A typical MPEG audio decoder works
like this.

A more complex case is when the filter modifies the data in place. It does so and
simply passes on the buffer to the next element. This is just as easy to deal with. An
element that works in place has to be carefull when the buffer is used in more than
one element; a copy on write has to made in this situation.

19

Chapter 10. Element states

One you have created a pipeline packed with elements, nothing will happen yet.
This is where the different states come into play.

The diff erent element states

All elements can be in one of the following four states:

» NULL: this is the default state all elements are in when they are created and are
doing nothing.

+ READY: An element is ready to start doing something.
PLAYING: The element is doing something.
PAUSED: The element is paused for a period of time.

All elements start with the NULL state. The elements will go throught the following
state changes:

Figure 10-1. The different states of a Gst El enent and the state transitions

The state of an element can be changed with the following code:
Gst El enent *bi n;
/1 create a bin, put elenents in it and connect them

gst _el ement _set _state (bin, GST_STATE_PLAYI NG ;

You can set the following states to an element:

20

Chapter 10. Element states

GST_STATE_NONETReENDEMNGN is in the desired state.
GST_STATE_NULLReset the state of an element.

GST_STATE_READX¥ill make the element ready to start processing data.
GST_STATE_PLAYINGNSs there really is data flowing through the graph.

GST_STATE_PAUSEEIporary stops the data flow.

The NULL state

When you created the pipeline all of the elements will be in the NULL state. There is
nothing spectacular about the NULL state.

Note: Don't forget to reset the pipeline to the NULL state when you are not going to use
it anymore. This will allow the elements to free the resources they might use.

The READY state

You will start the pipeline by first setting it to the READY state. This will allow the
pipeline and all the elements contained in it to prepare themselves for the actions
they are about to perform.

The typical actions that an element will perform in the READY state might be to
open a file or an audio device. Some more complex elements might have a non
trivial action to perform in the READY state such as connecting to a media server
using a CORBA connection.

Note: You can also go from the NULL to PLAYING state directly without going through
the READY state. this is a shortcut, the framework will internally go through the READY
state for you.

The PLAYING state

A Pipeline that is in the READY state can be started by setting it to the PLAYING
state. At that time data will start to flow all the way through the pipeline.

21

Chapter 10. Element states

The PAUSED state

A pipeline that is playing can be set to the PAUSED state. This will temporarily stop
all data flowing through the pipeline.

You can resume the data flow by setting the pipeline back to the PLAYING state.

Note: The PAUSED state is available for temporarily freezing the pipeline. Elements will
typically not free their resources in the PAUSED state. Use the NULL state if you want to
stop the data flow permanantly.

The pipeline has to be in the PAUSED or NULL state if you want to insert or modify
an element in the pipeline. We will cover dynamic pipeline behaviour in ...

22

Chapter 11. Your first application

This chapter describes the most rudimentary aspects of a GSt r eamer application,
including initializing the libraries, creating elements, packing them into a pipeline
and playing, pause and stop the pipeline.

Hello world

We will create a simple first application. In fact it will be a complete MP3 player,
using standard GSt r eamer components. The player will read from a file that is given
as the first argument of the program.

#i ncl ude <gst/gst.h>

int
main (int argc, char *argv[])
{

Gst El enent *bin, *disksrc, *parse, *decoder, *audiosink;
gst_init(&argc, &argv);

if (argc '=2) {
g_print ("usage: % <filename>n", argv[0]);
exit (-1);

/* create a new bin to hold the el enents */
bin = gst_bin_new ("bin");

/* create a disk reader */
di sksrc = gst_el enentfactory_nake ("disksrc", "disk_source");
gt k_obj ect _set (GIK_OBJECT (disksrc),"location", argv[1], NULL);

/* nowit's time to get the parser */
parse = gst_el enentfactory_nake ("np3parse", "parse");
decoder = gst_el enentfactory_nake ("nmpgl23", "decoder");

/* and an audi o sink */
audi osi nk = gst_el ementfactory_make ("audiosink", "play_audio");

/* add objects to the main pipeline */
gst _bin_add (GST_BIN (bin), disksrc);
gst _bin_add (GST_BIN (bin), parse);

gst _bin_add (GST_BIN (bin), decoder);
gst _bin_add (GST_BIN (bin), audiosink);

/* connect src to sink */
gst _pad_connect (gst_el ement_get_pad (di sksrc, "src"),
gst _el ement _get _pad (parse, "sink"));
gst _pad_connect (gst_el ement_get_pad (parse, "src"),
gst _el ement _get _pad (decoder, "sink"));
gst _pad_connect (gst_el ement_get_pad (decoder, "src"),
gst _el ement _get _pad (audi osi nk, "sink"));

/* start playing */
gst _el ement _set _state (bin, GST_STATE_PLAYI NG ;

while (gst_bin_iterate (GST_BIN (bin)));

23

Chapter 11. Your first application

/* stop the bin */
gst _el ement _set _state (bin, GST_STATE_NULL);

gst _obj ect _destroy (GST_OBJECT (audi osink));
gst _obj ect _destroy (GST_OBJECT (parse));

gst _obj ect _destroy (GST_OBJECT (decoder));
gst _obj ect _destroy (GST_OBJECT (disksrc));
gst _obj ect _destroy (GST_OBJECT (bin));

exit (0);

Let’s go through this example step by step.
The first thing you have to do is to include the standard GSt r eamer headers and
initialize the framework.

#i ncl ude <gst/gst.h>

int
main (int argc, char *argv[])

{
'g.si_i nit(&argc, &argv);

We are going to create 4 elements and one bin. Since all objects are in fact elements,
we can define them as:

Gst El ement *bin, *disksrc, *parse, *decoder, *audi osink;

Next, we are going to create an empty bin. As you have seen in the basic
introduction, this bin will hold and manage all the elements we are going to stuff
into it.

/* create a new bin to hold the el enents */
bin = gst_bin_new ("bin");

We use the standard constructor for a bin: gst_bin_new ("name”).

We then create a disk source element. The disk source element is able to read from a
file. We use the standard GTK+ argument mechanism to set a property of the
element: the file to read from.

/* create a disk reader */

di sksrc = gst_el enentfactory_nake ("disksrc", "disk_source");
gt k_obj ect _set (GIK_OBJECT (disksrc),"location", argv[1], NULL);

24

Chapter 11. Your first application

Note: You can check if the disksrc = NULL to verify the creation of the disk source
element.

We now create the MP3 decoder element. GSt r eaner requires you to put a parser in
front of the decoder. This parser will cut the raw data from the disk source into MP3
frames suitable for the decoder. In the advanced concepts chapter we will see how
this can be avoided.

/* nowit's time to get the parser */
parse = gst_el enentfactory_nake ("np3parse", "parse");
decoder = gst_el enentfactory_nake ("nmpgl23", "decoder");

gst_elementfactory_make() takes two arguments: a string that will identify the
element you need and a second argument: how you want to name the element. The
name of the element is something you can choose yourself and might be used to
retrieve the element from a bin.

Finally we create our audio sink element. This element will be able to playback the
audio using OSS.

/* and an audio sink */
audi osi nk = gst_el ementfactory_make ("audiosink", "play_audio");

We then add the elements to the bin.

/* add objects to the main pipeline */
gst _bin_add (GST_BIN (bin), disksrc);
gst _bin_add (GST_BIN (bin), parse);

gst _bin_add (GST_BIN (bin), decoder);
gst _bin_add (GST_BIN (bin), audiosink);

We connect the different pads of the elements together like this:

/* connect src to sink */
gst _pad_connect (gst_el ement_get_pad (di sksrc, "src"),
gst _el ement _get _pad (parse, "sink"));
gst _pad_connect (gst_el ement_get _pad (parse, "src"),
gst _el ement _get _pad (decoder, "sink"));
gst _pad_connect (gst_el enment_get pad (decoder, "src"),
gst _el ement _get _pad (audi osi nk, "sink"));

We now have a created a complete pipeline. We can visualise the pipeline as follows:

25

Chapter 11. Your first application

bin

disk_source parse decoder play_audio

src sink‘ ‘ src sink‘ ‘ src sink

Figure 11-1. The Hello world pipeline

Everything is now set up to start the streaming. We use the following statements to
change the state of the bin:

[* start playing */
gst _el ement _set _state (bin, GST_STATE_PLAYI NG ;

Note: GStreaner will take care of the READY state for you when going from NULL to
PLAYING.

Since we do not use threads, nothing will happen yet. We manually have to call
gst_bin_iterate() to execute one iteration of the bin.

while (gst_bin_iterate (GST_BIN (bin)));
The gst_bin_iterate() function will return TRUE as long as something interesting

happended inside the bin. When the end-of-file has been reached the _iterate
function will return FALSE and we can end the loop.

/* stop the bin */

gst _el ement _set _state (bin, GST_STATE_NULL);
gst _obj ect _destroy (GST_OBJECT (audi osink));
gst _obj ect _destroy (GST_OBJECT (decoder));
gst _obj ect _destroy (GST_OBJECT (disksrc));
gst _obj ect _destroy (GST_OBJECT (bin));

exit (0);

Note: don't forget to set the state of the bin to NULL. This will free all of the resources
held by the elements.

compiling hello world.c

To compile the helloworld example, use:

26

Chapter 11. Your first application

gcc -Wall ‘gstreaner-config --cflags --libs* helloworld.c \
-0 helloworld

This uses the program gstreamer-config, which comes with GSt r earrer . This
program "knows" what compiler switches are needed to compile programs that use
GSt r eaner . gstreamer-config --cflags will output a list of include directories for the
compiler to look in, and gstreamer-config --libs will output the list of libraries for the
compiler to link with and the directories to find them in.

You can run the example with (substitute helloworld.mp3 with you favorite MP3
file):

./helloworld hell oworld. np3

conc lusion

This concludes our first example. As you see, setting up a pipeline is very lowlevel
but powerfull. You will later in this manual how you can create a custom MP3
element with a more high level APL

It should be clear from the example that we can very easily replace the disksrc
element with an httpsrc, giving you instant network streaming. An element could
be build to handle icecast connections, for example.

We can also choose to use another type of sink instead of the audiosink. We could
use a disksink to write the raw samples to a file, for example. It should also be clear
that inserting filters, like a stereo effect, into the pipeline is not that hard to do. The
most important thing is that you can reuse allready existing elements.

27

Chapter 12. More on factories

The small application we created in the previous chapter used the concept of a
factory to create the elements. In this chapter we will show you how to use the
factory concepts to create elements based on what they do instead of how they are
called.

We will first explain the concepts involved before we move on to the reworked
helloworld example using autoplugging.

The problems with the hello world example

more

If we take a look at how the elements were created in the previous example we used
a rather crude mechanism:

);"nowit’s tine to get the parser */
parse = gst_el enentfactory_nake("np3parse", "parse");
decoder = gst_el enentfactory_nake("nmpgl23", "decoder");

While this mechanism is quite effective it also has some big problems: The elements
are created based on their name. Indeed, we create an element mpg123 by explicitly
stating the mpg123 elements name. Our little program therefore always uses the
mpgl123 decoder element to decode the MP3 audio stream, even if there are 3 other
MP3 decoders in the system. We will see how we can use a more general way to
create an MP3 decoder element.

We have to introduce the concept of MIME types and capabilities added to the
source and sink pads.

on MIME Types

GStreamer uses MIME types to indentify the different types of data that can be
handled by the elements. They are the high level mechanisms to make sure that
everyone is talking about the right kind of data.

A MIME (Multipurpose Internet Mail Extension) types are a set of string that denote
a certain type of data. examples include:

 audio/raw : raw audio samples
+ audio/mpeg : mpeg audio

» video/mpeg : mpeg video

An element must associate a MIME type to its source and sink pads when it is
loaded into the system. GStreamer knows about the different elements and what
type of data they expect and emit. This allows for very dynamic and extensible
element creation as we will see.

As we have seen in the previous chapter, the MIME types are added to the
Capability structure of a pad.

28

Chapter 12. More on factories

In our helloworld example the elements we constructed would have the following
MIME types associated with their source and sink pads:

bin

disk_source parse decoder play_audio

src sink ‘ ‘ src sink ‘ ‘ src sink

.) .
I I I
. .

| | |
I I I
T T T
| | |
| | |
I

I}

audio/mpeg | audio/mpeg

? 4 .
’ audio/mpeg audio/raw

audio/raw

Figure 12-1. The Hello world pipeline with MIME types

We will see how you can create an element based on the MIME types of its source
and sink pads. This way the end-user will have the ability to choose his/her favorite
audio/mpeg decoder without you even having to care about it.

The typing of the source and sink pads also makes it possible to "autoplug’ a
pipeline. We will have the ability to say: "construct me a pipeline that does an
audio/mpeg to audio/raw conversion".

Note: The basic GStreamer library does not try to solve all of your autoplug problems. It
leaves the hard decisions to the application programmer, where they belong.

GStreamer types

GStreamer assigns a unique number to all registered MIME types. GStreamer also
keeps a reference to a function that can be used to determine if a given buffer is of
the given MIME type.

There is also an association between a MIME type and a file extension.

The type information is maintained in a list of Gst Type. The definition of a Gst Type
is like:

t ypedef Gst Caps (*Gst TypeFi ndFunc) (GstBuffer *buf, gpointer *priv);
typedef struct _Gst Type Gst Type;

struct _GstType {

guint16 id; /* type id (assigned) */
gchar *m ne; /* MM type */
gchar *exts; /* space-delimted |ist of extensions */

Gst TypeFi ndFunc typefindfunc; /* typefind function */

29

Chapter 12. More on factories

All operations on Gst Type occur via their gui nt 16 i d numbers, with Gst Type
structure private to the GStreamer library.

MIME type to id conversion
We can obtain the id for a given MIME type with the following piece of code:

guint16 id;

id = gst_type_find_by_m me("audi o/ npeg");

This function will return 0 if the type was not known.

id to Gst Type conversion

We can obtain the Gst Type for a given id with the following piece of code:
Gst Type *type;

type = gst_type_find_by_id(id);

This function will return NULL if the id was associated with any known Gst Type

extension to id conversion

We can obtain the id for a given file extension with the following piece of code:
guintl6 id;

id = gst_type_find_by ext(".nmp3");

This function will return 0 if the extension was not known.

id to Gst El enent Fact ory conversion

When we have obtained a given type id using one of the above methods, we can
obtain a list of all the elements that operate on this MIME type or extension.

Obtain a list of all the elements that use this id as source with:
CList *list;

list = gst_type_gst_srcs(id);

Obtain a list of all the elements that use this id as sink with:
Qist *list;

list = gst_type_gst_sinks(id);

30

Chapter 12. More on factories

When you have a list of elements, you can simply take the first element of the list to
obtain an appropriate element.

Note: As you can see, there might be a multitude of elements that are able to operate on
video/raw types. some might include:

« an MP3 audio encoder.
» an audio sink.

« an audio resampler.

» aspectrum filter.

Depending on the application, you might want to use a different element. This is why
GStreamer leaves that decision up to the application programmer.

id to id path detection

You can obtain a GLi st of elements that will transform the source id into the
destination id.

Qist *list;
list = gst_type_gst_sink_to_src(sourceid, sinkid);

This piece of code will give you the elements needed to construct a path from
sourceid to sinkid. This function is mainly used in autoplugging the pipeline.

creating elements with the factory

In the previous section we described how you could obtain an element factory using
MIME types. One the factory has been obtained, you can create an element using:

Gst El enent Factory *factory;
Gst El enent *el enment ;

/1 obtain the factory
factory ..

el ement = gst_el enentfactory_create(factory, "nane");

This way, you do not have to create elements by name which allows the end-user to
select the elements he/she prefers for the given MIME types.

GStreamer basic types

GStreamer only has two builtin types:

31

Chapter 12. More on factories

+ audio/raw : raw audio samples
« video/raw and image/raw : raw video data

All other MIME types are maintained by the plugin elements.

32

Chapter 13. Autoplug ging

GSt r eaner provides an API to automatically construct complex pipelinebased on
source and destination capabilities. This feature is very usefull if you want to
convert type X to type Y but don’t care about the plugins needed to accomplish this
task. The autoplugger will consult the plugin repository, select and connect the
elements needed for the conversion.

The autoplugger API is implemented in an abstract class. Autoplugger
implementations reside in plugins and are therefore optional and can be optimized
for a specific task. Two types of autopluggers exist: renderer ones and non renderer
ones. the renderer autopluggers will not have any src pads while the non renderer
ones do. The renderer autopluggers are mainly used for media playback while the
non renderer ones are used for arbitrary format conversion.

Using autoplug ging

You first need to create a suitable autoplugger with gst_autoplugfactory_make().
The name of the autoplugger must be one of the registered autopluggers..

A list of all available autopluggers can be obtained with
gst_autoplugfactory_get_list().

If the autoplugger supports the RENDERER API, use gst_autoplug_to_renderers()
call to create a bin that connects the src caps to the specified render elements. You
can then add the bin to a pipeline and run it.

Gst Aut opl ug *aut opl ug;
Gst El enent *el enent ;
Gst El enment *si nk;

/* create a static autoplugger */
aut opl ug = gst_aut opl ugfactory_make ("staticrender");

/* create an osssink */
sink = gst_el enentfactory_make ("osssink", "our_sink");

/* create an el enent that can play audi o/ mp3 through osssink */
el enent = gst_autoplug_to_renderers (autoplug,
gst _caps_new (
"si nk_audi o_caps",
"audi o/ mp3",
NULL
),
si nk,
NULL) ;

/* add the element to a bin and connect the sink pad */

If the autoplugger supports the CAPS API, use the gst_autoplug_to_caps() function
to connect the src caps to the destination caps. The created bin will have src and sink
pads compatible with the provided caps.

Gst Aut opl ug *aut opl ug;
Gst El enent *el enent;

33

Chapter 13. Autoplugging

/* create a static autoplugger */
aut opl ug = gst_autoplugfactory_make ("static");

/* create an el enent that converts audi o/ np3 to audio/raw */
el enent = gst_autopl ug_t o_caps (autopl ug,
gst _caps_new (
"si nk_audi o_caps",
"audi o/ mp3",
NULL
),
gst _caps_new (
"src_audi o_caps",
"audi o/ raw',
NULL

)
NULL) ;

/* add the element to a bin and connect the src/sink pads */

A complete autoplug ging example

We will create and explain how a complete media player can be built with the
autoplugger.

34

Chapter 14. Your second application

In the previous chapter we created a first version of the helloworld application. We
then explained a better way of creating the elements using factories identified by
MIME types.

In this chapter we will introduce you to autoplugging. Using the MIME types of the
elements GSt r eaner can automatically create a pipeline for you.

Autoplug ging hello world

We will create a second version of the helloworld application using autoplugging.
Its source code is considerably easier to write and it can also handle many more data

types.

#i ncl ude <gst/gst.h>
static gbool ean pl ayi ng;

/* eos will be called when the src elenent has an end of stream */
voi d
eos (GstSrc *src)

g_print ("have eos, quitting\n");

pl ayi ng = FALSE;

i nt

main (int argc, char *argv[])

{
Gst El enent *di sksrc, *audi osi nk;
Gst El enent *pi pel i ne;

if (argc '=2) {
g_print ("usage: % <filename>\n", argv[0]);
exit (-1);

}

gst_init (&argc, &argv);

/* create a new bin to hold the el enents */
pi pel i ne = gst_pipeline_new ("pipeline");

/* create a disk reader */
di sksrc = gst_el enentfactory_nake ("disksrc", "disk_source");
gt k_obj ect _set (GIK_OBJECT (disksrc), "location", argv[1], NULL);
gt k_si gnal _connect (GIK_OBJECT (disksrc), "eos",
GTK_SI GNAL_FUNC (eos), NULL);

/* and an audio sink */
audi osi nk = gst_el ementfactory_nake ("audiosi nk", "play_audio");

/* add objects to the main pipeline */
gst _pi pel i ne_add_src (GST_PI PELI NE (pi peline), disksrc);
gst _pi pel i ne_add_si nk (GST_PI PELI NE (pi peline), audiosink);

if (!gst_pipeline_autoplug (GST_PIPELINE (pipeline))) {
g_print ("unable to handle streamn");

35

Chapter 14. Your second application

exit (-1);

/* start playing */
gst _el ement _set _state (GST_ELEMENT (pipeline), GST_STATE_PLAYI NG ;

pl ayi ng = TRUE;

while (playing) {
gst_bin_iterate (GST_BIN (pipeline));
}

/* stop the bin */
gst _el ement _set _state (GST_ELEMENT (pipeline), GST_STATE_NULL);

gst _pi pel i ne_destroy (pipeline);

exit (0);

First of all, we do not use any mpg123 or mp3parse element in this example. In fact,
we only specify a source element and a sink element and add them to a pipeline.

The most interesting change however is the following;:

|f (!gst_pipeline_autoplug (pipeline)) {
g_print ("unable to handle streamn");
exit (-1);

}

This piece of code does all the magic.

+ The pipeline will try to connect the src and the sink element.

« Since the source has no type, a typedetection will be started on the source
element.

» The best set of elements that connect the MIME type of the source element to the
MIME type of the sink are found.

+ The elements are added to the pipeline and their pads are connected.

After this autoplugging, the pipeline is ready to play. Remember that this pipeline
will be able to playback all of the media types for which an appropriate plugin
exists since the autoplugging is all done using MIME types.

If you really want, you can use the GSteamer components to do the autoplugging
yourself. We will cover this topic in the dynamic pipeline chapter.

To compile the helloworld2 example, use:

gcc -Wall ‘gstreaner-config --cflags --1ibs* helloworld2.c \
-0 hel | owor | d2

36

Chapter 14. Your second application

You can run the example with (substitute helloworld.mp3 with you favorite MP3
file):

./ hell oworl d2 hel |l oworl d. np3

You can also try to use an AVI or MPEG file as its input. Using autoplugging,

Gst r eaner will automatically figure out how to handle the stream. Remember that
only the audio part will be played because we have only added an audiosink to the
pipeline.

./ hell oworl d2 nmynovi e. npeg

37

Chapter 15. Threads

GStreamer has support for multithreading throught the use of the Gst Thr ead object.
This object is in fact a special Gst Bi n that will become a thread when started.

To construct a new thread you will perform something like:
Gst El enent *my_t hread;
/1 create the thread object
ny_thread = gst_thread_new ("nmy_thread");
g_return_if _fail (audio_thread !'= NULL);
/1 add sone plugins
gst _bin_add (GST_BIN (ny_thread), GST_ELEMENT (funky_src));
gst _bin_add (GST_BIN (ny_thread), GST_ELEMENT (cool _effect));
/1 connect the elements here...

Il start playing
gst _el ement _set _state (GST_ELEMENT (ny_thread), GST_STATE_PLAYI NG ;

The above program will create a thread with two elements in it. As soon as it is set
to the PLAYING state, the thread will start to iterate.

Note: A thread should normally contain a source element. Most often, the thread is fed
with data from a queue.

A thread will be visualised as below

thread

disk_source parse decoder play_audio

src sink‘ ‘ src sink‘ ‘ src sink

Figure 15-1. a thread

As an example we show the helloworld program using a thread.

#i ncl ude <gst/gst.h>

/* eos will be called when the src el ement has an end of stream*/
\églsd(Gst Src *src, gpointer data)

Gst Thread *thread = GST_THREAD (dat a);

38

Chapter 15. Threads

g_print ("have eos, quitting\n");

/* stop the bin */
gst _el ement _set _state (GST_ELEMENT (thread), GST_STATE NULL);

gst_main_quit ();

}

int

main (int argc, char *argv[])

{
Gst El enent *di sksrc, *audi osi nk;
Gst El enent *pi pel i ne;
Gst El enent *t hread;

if (argc !'=2) {
g_print ("usage: % <filename>\n", argv[0]);
exit (-1);

}

gst_init (&argc, &argv);

/* create a new thread to hold the elenents */
thread = gst_thread_new ("thread");
g_assert (thread != NULL);

/* create a new bin to hold the el enents */
pi pel i ne = gst_pi peline_new ("pipeline");
g_assert (pipeline !'= NULL);

/* create a disk reader */
di sksrc = gst_el enentfactory_nake ("disksrc", "disk_source");
g_assert (disksrc !'= NULL);
gt k_obj ect _set (GIK_OBJECT (disksrc), "location", argv[1], NULL);
gt k_si gnal _connect (GIK_OBJECT (disksrc), "eos",

GTK_SI GNAL_FUNC (eos), thread);

/* and an audi o sink */
audi osi nk = gst_el ementfactory_make ("audiosink", "play_audio");
g_assert (audiosink !'= NULL);

/* add objects to the main pipeline */
gst _bin_add (GST_BIN (pipeline), disksrc);
gst _bin_add (GST_BIN (pipeline), audiosink);

/* automatically setup the pipeline */

if (!gst_pipeline_autoplug (GST_PIPELINE (pipeline))) {
g_print ("unable to handle streamn");
exit (-1);

/* renpove the source elenent fromthe pipeline */

gst _bin_renove (GST_BIN (pipeline), disksrc);

/* insert the source element in the thread, renenber a thread needs at
| east one source or connection el ement */

gst_bin_add (GST_BIN (thread), disksrc);

/* add the pipeline to the thread too */
gst _bin_add (GST_BIN (thread), GST_ELEMENT (pipeline));

[* start playing */
gst _el ement _set _state (GST_ELEMENT (thread), GST_STATE PLAYI NG ;

39

Chapter 15. Threads

/* do whatever you want here, the thread will be playing */

gst_nain ();
gst _pi peline_destroy (thread);

exit (0);

40

Chapter 16. Queues

A Gst Queue is a filter element. Queues can be used to connect two elements in such
way that the data can be buffered.

A buffer that is sinked to a Queue will not automatically be pushed to the next
connected element but will be buffered. It will be pushed to the next element as
soon as a gst_pad_pull () is called on the queues srcpad.

Queues are mostly used in conjunction with a Gst Thr ead to provide an external
connection for the thread elements. You could have one thread feeding buffers into a
Gst Queue and another thread repeadedly calling gst_pad_pull () on the queue to
feed its internal elements.

Below is a figure of a two-threaded decoder. We have one thread (the main
execution thread) reading the data from a file, and another thread decoding the data.

thread
disk_source parse decoder play_audio
queue
src sink ‘ ‘ src sink ‘ ‘ src sink

Figure 16-1. a two-threaded decoder with a queue

The standard GSt r eaner queue implementation has some properties that can be
changed using the gtk_objet_set () method. To set the maximum number of buffers
that can be queued to 30, do:

gt k_obj ect _set (GIK_OBJECT (queue), "max_level™, 30, NULL);

The following mp3 player shows you how to create the above pipeline using a
thread and a queue.

#i ncl ude <stdlib. h>
#i ncl ude <gst/gst.h>

gbool ean pl ayi ng;
/*.eos will be called when the src el ement has an end of stream */
\églsd(Gst El enent *el enent, gpointer data)
g_print ("have eos, quitting\n");
pl ayi ng = FALSE;
int

main (int argc, char *argv[])

{

41

Chapter 16. Queues

Gst El enent *di sksrc, *audi osi nk, *queue, *parse, *decode;
Gst El enent *bi n;
Gst El enent *t hread,;

gst_init (&argc, &rgv);

if (argc !'=2) {
g_print ("usage: % <filename>\n", argv[0]);
exit (-1);

/* create a new thread to hold the elenents */
thread = gst_thread_new ("thread");
g_assert (thread != NULL);

/* create a new bin to hold the elenents */
bin = gst_bin_new ("bin");
g_assert (bin !'= NULL);

/* create a disk reader */
di sksrc = gst_el enentfactory_nake ("disksrc", "disk_source");
g_assert (disksrc !'= NULL);

gt k_obj ect _set (GIK_OBJECT (disksrc), "location", argv[1], NULL);

gt k_si gnal _connect (GIK_OBJECT (disksrc), "eos",
GTK_SI GNAL_FUNC (eos), thread);

queue = gst_el ementfactory_make ("queue", "queue");

/* and an audi o sink */

audi osi nk = gst_el ementfactory_make ("audiosink", "play_audio");

g_assert (audiosink !'= NULL);

parse = gst_el enentfactory_nake ("np3parse", "parse");
decode = gst_elenmentfactory_make ("npgl23", "decode");

/* add objects to the main bin */
gst _bin_add (GST_BIN (bin), disksrc);
gst _bin_add (GST_BIN (bin), queue);

gst_bin_add (GST_BIN (thread), parse);
gst _bin_add (GST_BIN (thread), decode);
gst _bin_add (GST_BIN (thread), audiosink);

gst _pad_connect (gst_el ement_get _pad (di sksrc,"src"),
gst _el ement _get _pad (queue, "sink"));

gst _pad_connect (gst_el ement_get _pad (queue, "src"),

gst _el ement _get _pad (parse, "sink"));
gst _pad_connect (gst_el ement_get_pad (parse, "src"),

gst _el ement _get _pad (decode, "sink"));
gst _pad_connect (gst_el ement_get_pad (decode, "src"),

gst _el ement _get _pad (audi osi nk, "sink"));

gst _bin_add (GST_BIN (bin), thread);

/* make it ready */

gst _el ement _set _state (GST_ELEMENT (bin), GST_STATE READY);
[* start playing */

gst _el ement _set _state (GST_ELEMENT (bin), GST_STATE PLAYI NG ;
pl ayi ng = TRUE;

while (playing) {

42

Chapter 16. Queues

gst_bin_iterate (GST_BIN (bin));
}
