GSt r eaner Plugin Writer' s Guide

Richard John Boulton
Erik Walthinsen

GSt reamer Plugin Writer's Guide
by Richard John Boulton and Erik Walthinsen

This material may be distributed only subject to the terms and conditions set forth in the Open Publication License,
v1.0 or later (the latest version is presently available at http:/ /www.opencontent.org/openpub/"
(http:/ /www.opencontent.org/openpub/))

Table of Contents

| IR B3N 0 e R T o Lo o DO 1
L. DO L CAT@? ittt et e s ee e e e seabaa e e e s seabaeae st baesessntes 1

2. Preliminary readingccoocuirciiiiiiccecce e e 1

IL. Basic concepts . eteesasesteesntesnetesteeatesaeserteennseaaestesnaseraaeasesansertesranane 2
B PIUGINS .ottt bbb s 2

4. BLEINOIES ...ttt e e e ettt e et e e ee e e een e e e ete e e seeesaaneaas 3

B BUEERTS ettt ettt ettt st s eae st st e eae ettt e e eaeeaeesbe s eraeenreenres 4

6. Typing and Properties ..ottt 5

7 IMIEEAATA .. ettt e e et e tn e rre e s e aas 6

8. SChedUlING....cucviveviciiiici s 7

9. Chain vs Loop Elements............cccoiiiiiiicicccs e 8

10. AULOPIUGEETS ..o s 9

IIL. Types and Properties . S 10
11. The DaSIC tYPES ... ccveeeiicmccci et s 10

12. Building a simple format fOr teSting.........ceovevvererererrerirecerre e 12

13. A simple MIME type.......cooiiiiniiiciicce s 13

14. TYPe PTOPETHOSveeeeeceeeee et 14

15. Typefind functions and autoplugging..............cccoeeeeiiciin e 15

IV. Building our first plugin.....iiinnineiiemss: 16
16. Constructing the boilerplate...........cccoviiiniiniis 16
Doing it the hard way with GstObject..........ccoouoriiiee, 16

Doing it the easy way with FilterFactory ..., 16

17. Defining an element........cccooi it e 18
GStEIEMENTDELALLS ... ettt seaeas 18
CoONSIUCLOT FUNCHONS .eeeivvei ittt e eas 18
Specifying the pads ... e 19

Attaching fUNCHONS ...c.c.oviueviiceciice e e 19

The chain fUNCHONc.cooeeeei e ettt 19

AddIng argUmMENtscccuicuiiicieeee e s 19

SIENALS ..o 19

18. DefiNing @ tyPeccocueiiiiiicicieei et e 20

19. The plugin_init funCON.c.coiiiiiiee s 21
Registering New tyPeS......ociieiieiiiiieiiieiiii st 21
Registering new element factoriescooreiiiciciecice 21
Registering new autopluggers..........ccoeueieiieiiieiecs e 21

V. Building a simple test application S 22
A I N a1 7= Te) W 22

21. Instantiating the plugins ..o 23

22. Connecting the pIUINScc.cuieiiiciiiiiicinicee s 24

23. Running the pipelineoccvvuimemiciiiciici s 25

VI. Loop-based Elements . 26
24. How scheduling WOTKS ...ttt 26

25. HOW a loOPfUuNne WOTKSc.coiuiiiiiiceece e e 27

26. Adding a 5econd OULPUL.....ccc.iviuimimieceicc e e 28

27. Modifying the test applicationcccccoviiueivniiciniic s 29

VII. Buffers and Metadata.......... . 30
VIII. Sources and Sinks . 30
IX. State management... . 30
X. Checklist cereressnneessneesrnrane 30

Chapter 1. Do | care?

This guide explains how to write new modules for GStreamer. It is relevant to:

» Anyone who wants to add support for new input and output devices, often
called sources and sinks. For example, adding the ability to write to a new video
output system could be done by writing an appropriate sink plugin.

» Anyone who wants to add support for new ways of processing data in
GStreamer, often called filters. For example, a new data format converter could be
created.

» Anyone who wants to extend GStreamer in any way: you need to have an
understanding of how the plugin system works before you can understand the
constraints it places on the rest of the code. And you might be surprised at how
much can be done with plugins.

This guide is not relevant to you if you only want to use the existing functionality of
GStreamer, or use an application which uses GStreamer. You lot can go away. Shoo...
(You might find the GStreamer Application Development Manual helpful though.)

Chapter 2. Preliminar y reading

The reader should be familiar with the basic workings of GSt r eaner . For a gentle
introduction to GStreamer, you may wish to read the GStreamer Application
Development Manual. Since GSt r eaner adheres to the GTK+ programming model,
the reader is also assumed to understand the basics of GTK+.

Chapter 3. Plugins

Extensions to GSt r eaner can be made using a plugin mechanism. This is used
extensively in GSt r eanmer even if only the standard package is being used: a few
very basic functions reside in the core library, and all others are implemented in
plugins.

Plugins are only loaded when needed: a plugin registry is used to store the details of
the plugins so that it is not neccessary to load all plugins to determine which are
needed. This registry needs to be updated whenever a new plugin is added to the
system: see the gstreamer-register utility and the documentation in the GStreamer
Application Development Manual for more details.

User extensions to GSt r eaner can be installed in the main plugin directory, and will
immediately be available for use in applications. gstreamer-register should be run to
update the repository: but the system should work correctly even if it hasn’t been - it
will just take longer to load the correct plugin.

User specific plugin directories and registries will be available in future versions of
GStreaner.

Chapter 4. Elements

Elements are at the core of GSt r eaner . Without elements, GSt r eamer is just a bunch
of pipe fittings with nothing to connect. A large number of elements (filters, sources
and sinks) ship with GSt r eamer , but extra elements can also be written.

An element may be constructed in several different ways, but all must conform to
the same basic rules. A simple filter may be built with the FilterFactory, where the
only code that need be written is the actual filter code. A more complex filter, or a
source or sink, will need to be written out fully for complete access to the features
and performance possible with GSt r eaner .

The implementation of a new element will be contained in a plugin: a single plugin
may contain the implementation of several elements, or just a single one.

Chapter 5. Buffers

Buffers are structures used to pass data between elements. All streams of data are
chopped up into chunks which are stored in buffers. Buffers can be of any size, and
also contain metadata indicating the type of data contained in them. Buffers can be
allocated by various different schemes, and may either be passed on by elements or
unreferenced (and the memory used by the buffer freed).

Chapter 6. Typing and Properties

A type system is used to ensure that the data passed between elements is in a
recognised format, and that the various parameters required to fully specify that
format match up correctly. Each connection that is made between elements has a
specified type. This is related, but different, to the metadata in buffers which
describes the type of data in that particular buffer. See later in this document for
details of the available types.

Chapter 7. Metadata

Chapter 8. Scheduling

Chapter 9. Chain vs Loop Elements

Chapter 10. Autoplug gers

GSt r eaner has an autoplugging mechanism, which enables application writers to
simply specify start and end elements for a path, and the system will then create a
path which links these elements, in accordance with the type information provided
by the elements.

It is possible to devise many different schemes for generating such pathways,
perhaps to optimise based on special criteria, or with some specific constraints. It is
thus possible to define new autoplugging systems, using the plugin system.

Chapter 11. The basic types

This is a list of the basic types used for buffers. For each type, we give the name
("mime type") of the type, the list of properties which are associated with the type,
the meaning of each property, and the purpose of the type.

audio/raw - Unstructured and uncompressed raw audio data.
rate - The sample rate of the data, in samples per second.
channels - The number of channels of audio data.

format - This describes the format in which the audio data is passed. This is a
string for which there are currently two valid values: "int" for integer data and
"float" for floating point data.

law - Valid only if format=int. The law used to describe the data. This is an integer
for which there are three valid values: 0 for linear, 1 for mu law, 2 for A law.

endianness - Valid only if format=int. The order of bytes in a sample. This is a
boolean: 0 means little-endian (ie, bytes are least significant first), 1 means
big-endian (ie, most significant byte first).

signed - Valid only if format=int. Whether the samples are signed or not. This is a
boolean: 0 means unsigned, 1 means signed.

width - Valid only if format=int. The number of bits per sample. This is extremely
likely to be a multiple of 8, but as ever this is up to each element supporting this
format to specify.

depth - Valid only if format=int. The number of bits used per sample. This must be
less than or equal to the width: if less than the width, the low bits are assumed to
be the ones used. For example, width=32, depth=24 means that each sample is
stored in a 32 bit word, but only the low 24 bits are actually used.

layout - Valid only if format=float. A string representing the way in which the
floating point data is represented. For now, the only valid value is gfloat, meaning
that the data is passed as a series of gfloat values.

intercept - Valid only if format=float. A floating point value representing the value
that the signal "centres" on.

slope - Valid only if format=float. A floating point value representing how far the
signal deviates from the intercept. So a slope of 1.0 and an intercept of 0.0 would
mean an audio signal with minimum and maximum values of -1.0 and 1.0. A
slope of 0.5 and intercept of 0.5 would represent values in the range 0.0 to 1.0.

For example: 16 bit integer, unsigned, linear, monophonic, big-endian, 44100KHz
audio would be represented by "for-
mat=int,Jaw=0,endianness=1,signed=0,width=16,depth=16,rate=44100,channels=1"
and floating point, using gfloat’s, in the range -1.0 to 1.0, 8000KHz stereo audio
would be represented by
"format=float,layout=gfloat,intercept=0.0,slope=1.0,rate=8000,channels=2"

audio/mp3 - Audio data compressed using the mp3 encoding scheme.

framed - This is a boolean. If true (1), each buffer contains exactly one frame. If
false (0), frames and buffers do not (necessarily) match up. If the data is not
framed, the values of some of the properties will not be available, but others will
be assumed to be constant throughout the file, or may be found in other ways.

10

Chapter 11. The basic types

layer - The compression scheme layer used to compress the data. This is an
integer, and can currently have the value 1, 2 or 3.

bitrate - The bitrate, in kilobits per second. For VBR (variable bitrate) mp3 data,
this is the average bitrate.

channels - The number of channels of audio data present. This could theoretically
be any integer greater than 0, but in practice will be either 1 or 2.

joint-stereo - Boolean. If true, channels must not be zero. If true, this implies that
stereo data is stored as a combined signal and the difference between the signals,
rather than as two entirely separate signals.

There are many other properties relevant for audio/mp3 data: these may be added
to this specification at a later date.

audio/x-0gg - Audio data compressed using the Ogg Vorbis encoding scheme.
There are currently no parameters defined for this type. FIXME.

video/raw - Raw video data.

fourcc - A FOURCC code identifying the format in which this data is stored.
FOURCC (Four Character Code) is a simple system to allow unambiguous
identification of a video datastream format. See

http:/ /www.webartz.com/fourcc/

width - The number of pixels wide that each video frame is.

height - The number of pixels high that each video frame is.

video/mpeg - Video data compressed using an mpeg encoding scheme.
mpeguversion

systemstream

video/avi - Video data compressed using the AVI encoding scheme. There are
currently no parameters defined for this type. FIXME.

11

Chapter 12. Building a simple format for
testing

12

Chapter 13. A simple MIME type

13

Chapter 14. Type properties

14

Chapter 15. Typefind functions and
autoplug ging

15

Chapter 16. Constructing the boilerplate

The first thing to do when making a new element is to specify some basic details
about it: what its name is, who wrote it, what version number it is, etc. We also need
to define an object to represent the element and to store the data the element needs. I
shall refer to these details collectively as the boilerplate.

Doing it the hard way with GstObject

The standard way of defining the boilerplate is simply to write some code, and fill in
some structures. The easiest way to do this is to copy an example and modify
according to your needs.

First we will examine the code you would be likely to place in a header file
(although since the interface to the code is entirely defined by the pluging system,
and doesn’t depend on reading a header file, this is not crucial.) The code here can
be found in exanpl es/ pl ugi ns/ exanpl e. h

/* Definition of structure storing data for this elenent. */
typedef struct _GstExanpl e Gst Exanpl e;

struct _GstExanple {
Gst El enent el enent;

Gst Pad *si nkpad, *sr cpad;

gint8 active;

H

/* Standard definition defining a class for this elenent. */
typedef struct _GstExanpl ed ass Gst Exanpl ed ass;
struct _Gst Exanpl ed ass {

Gst El enent O ass parent _cl ass;

h

/* Standard macros for defining types for this element. */
#defi ne GST_TYPE_EXAMPLE \

(gst _exanpl e_get _type())
#defi ne GST_EXAMPLE(obj) \

(GTK_CHECK_CAST((obj), GST_TYPE_EXAMPLE, Gst Exanpl €))
#defi ne GST_EXAMPLE_CLASS(kl ass) \

(GTK_CHECK_CLASS_CAST((kl ass), GST_TYPE_EXAMPLE, Gst Exanpl €))
#define GST_IS EXAMPLE(obj) \

(GTK_CHECK_TYPE((obj), GST_TYPE_EXAMPLE))
#define GST_| S EXAMPLE_CLASS(obj) \

(GTK_CHECK_CLASS_TYPE((k! ass), GST_TYPE_EXANMPLE))

/* Standard function returning type information. */
& kType gst_exanpl e_get _type(void);

16

Chapter 16. Constructing the boilerplate

Doing it the easy way with FilterF actory

A plan for the future is to create a FilterFactory, to make the process of making a
new filter a simple process of specifying a few details, and writing a small amount
of code to perform the actual data processing.

Unfortunately, this hasn’t yet been implemented. It is also likely that when it is, it
will not be possible to cover all the possibilities available by writing the boilerplate
yourself, so some plugins will always need to be manually registered.

As a rough outline of what is planned: the FilterFactory will take a list of appropriate
function pointers, and data structures to define a filter. With a reasonable measure of
preprocessor magic, the plugin writer will then simply need to provide definitions
of the functions and data structures desired, and a name for the filter, and then call a
macro from within plugin_init() which will register the new filter. All the fluff that
goes into the definition of a filter will thus be hidden from view.

Ideally, we will come up with a way for various FilterFactory-provided functions to
be overridden, to the point where you can construct almost the most complex stuff
with it, it just saves typing.

Of course, the filter factory can be used to create sources and sinks too: simply create
a filter with only source or sink pads.

You may be thinking that this should really be called an ElementFactory. Well, we
agree, but there is already something else justifiably ealled an ElementFactory (this
is the thing which actually makes instances of elements). There is also already
something called a PluginFactory. We just have too many factories and not enough
words. And since this isn’t yet written, it doesn’t get priority for claiming a name.

17

Chapter 17. Defining an element

A new element is defined by creating an element factory. This is a structure
containing all the information needed to create an instance of the element. Creating
a factory requires two things: a type for the element to be created (this was defined
in the boilerplate above: FIXME - reorganise), and a GstElementDetails structure,
which contains some general information about the element to be created.

GstElementDetails

The GstElementDetails structure gives a heirarchical type for the element, a
human-readable description of the element, as well as author and version data. The
entries are:

« A long, english, name for the element.

 The type of the element, as a heirarchy. The heirarchy is defined by specifying the
top level category, followed by a "/", followed by the next level category, etc. The
type should be defined according to the guidelines elsewhere in this document.
(FIXME: write the guidelines, and give a better reference to them)

A brief description of the purpose of the element.

+ The version number of the element. For elements in the main GStreamer source
code, this will often simply be VERSION, which is a macro defined to be the
version number of the current GStreamer version. The only requirement,
however, is that the version number should increase monotonically.

Version numbers should be stored in major.minor.patch form: ie, 3 (decimal)

"o

numbers, separated by ".

» The name of the author of the element, optionally followed by a contact email
address in angle brackets.

+ The copyright details for the element.

For example:

static GstEl enentDetails exanple_details = {
"An exanpl e plugin",
" Exanpl e/ Fi r st Exanpl e",
"Shows the basic structure of a plugin",
VERSI ON,
"your name <your.name@our.isp>",
"(C 2001,

Constructor functions

Each element has two functions which are used for construction of an element.
These are the _class_init() function, which is used to initialise the class (specifying
what signals and arguments the class has and setting up global state), and the _init()
function, which is used to initialise a specific instance of the class.

18

Specifying the pads

Attac hing functions

The chain function

Adding arguments

Define arguments in enum.

Signals

Define signals in enum.

Chapter 17. Defining an element

19

Chapter 18. Defining a type

A new type is defined by creating an type factory. This is a structure containing all
the information needed to create an instance of the type.

20

Chapter 19. The plugin_init function

Once we have written code defining all the parts of the plugin, we need to write the
plugin_init() function. This is a special function, which is called as soon as the
plugin is loaded, and must return a pointer to a newly allocated GstPlugin
structure. This structure contains the details of all the facilities provided by the
plugin, and is the mechanism by which the definitions are made available to the rest
of the GSt r eaner system. Helper functions are provided to help fill the structure: for
future compatability it is recommended that these functions are used, as
documented below, rather than attempting to access the structure directly.

Note that the information returned by the plugin_init() function will be cached in a
central registry. For this reason, it is important that the same information is always
returned by the function: for example, it must not make element factories available
based on runtime conditions. If an element can only work in certain conditions (for
example, if the soundcard is not being used by some other process) this must be
reflected by the element being unable to enter the READY state if unavailable, rather
than the plugin attempting to deny existence of the plugin.

Registering new types

voi d gst_pl ugi n_add_t ype(Gst Pl ugi n *pl ugi n,
Gst TypeFactory *factory);

Registering new element factories

voi d gst_pl ugin_add_factory(GstPlugin *plugin,
Gst El enent Factory *factory);

Multiple element factories can be provided by a single plugin: all it needs to do is
call gst_plugin_add_factory() for each element factory it wishes to provide.

Registering new autoplug gers

voi d gst_pl ugi n_add_aut opl ugger (Gst Pl ugi n *pl ugi n,
Gst Aut opl ugFactory *factory);

21

Chapter 20. Initialization

22

Chapter 21. Instantiating the plugins

(NOTE: we really should have a debugging Sink)

23

Chapter 22. Connecting the plugins

24

Chapter 23. Running the pipeline

25

Chapter 24. How scheduling works

aka pushing and pulling

26

Chapter 25. How a loopfunc works

aka pulling and pushing

27

Chapter 26. Adding a second output

Identity is now a tee

28

Chapter 27. Modifying the test application

29

Anatomy of a Buffer Refcounts and mutability Metadata How Properties work efficiently
Metadata mutability (FIXME: this is an unsolved problem) Writing a source Pull vs loop based
Region pulling (NOTE: somewhere explain how filters use this) Writing a sink Gee, that was
easy What are states? Mangaging filter state Things to check when writing a filter Things to
check when writing a source or sink

