
Nettle Manual
For the Nettle Library version 3.4

Niels Möller



This manual is for the Nettle library (version 3.4), a low-level cryptographic library.

Originally written 2001 by Niels Möller, updated 2017.

This manual is placed in the public domain. You may freely copy it, in whole
or in part, with or without modification. Attribution is appreciated, but not
required.



i

Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Copyright . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3 Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

5 Linking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

6 Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

7 Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
7.1 Hash functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

7.1.1 Recommended hash functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
7.1.1.1 SHA256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
7.1.1.2 SHA224 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
7.1.1.3 SHA512 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
7.1.1.4 SHA384 and other variants of SHA512 . . . . . . . . . . . . . . . . . . 11
7.1.1.5 SHA3-224 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
7.1.1.6 SHA3-256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
7.1.1.7 SHA3-384 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
7.1.1.8 SHA3-512 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
7.1.1.9 SHAKE-256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

7.1.2 Legacy hash functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
7.1.2.1 MD5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
7.1.2.2 MD2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
7.1.2.3 MD4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
7.1.2.4 RIPEMD160 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7.1.2.5 SHA1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7.1.2.6 GOSTHASH94 and GOSTHASH94CP . . . . . . . . . . . . . . . . . . 18

7.1.3 The struct nettle_hash abstraction . . . . . . . . . . . . . . . . . . . . 19
7.2 Cipher functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

7.2.1 AES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
7.2.2 ARCFOUR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.2.3 ARCTWO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7.2.4 BLOWFISH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.2.5 Camellia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.2.6 CAST128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.2.7 ChaCha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7.2.7.1 32-bit counter variant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28



ii

7.2.8 DES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.2.9 DES3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.2.10 Salsa20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.2.11 SERPENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.2.12 TWOFISH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.2.13 The struct nettle_cipher abstraction . . . . . . . . . . . . . . . . . 33

7.3 Cipher modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.3.1 Cipher Block Chaining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.3.2 Counter mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.3.3 Cipher Feedback mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.3.4 XEX-based tweaked-codebook mode with ciphertext stealing

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.3.4.1 General (XTS) interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.3.4.2 XTS-AES interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7.4 Authenticated encryption with associated data . . . . . . . . . . . . . . . . 42
7.4.1 EAX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.4.1.1 General EAX interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.4.1.2 EAX helper macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.4.1.3 EAX-AES128 interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7.4.2 Galois counter mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.4.2.1 General GCM interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.4.2.2 GCM helper macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.4.2.3 GCM-AES interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.4.2.4 GCM-Camellia interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.4.3 Counter with CBC-MAC mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.4.3.1 General CCM interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.4.3.2 CCM message interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.4.3.3 CCM-AES interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.4.4 ChaCha-Poly1305 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.4.5 Synthetic Initialization Vector AEAD . . . . . . . . . . . . . . . . . . . . . 56

7.4.5.1 General interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.4.5.2 SIV-CMAC-AES interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.4.6 The struct nettle_aead abstraction . . . . . . . . . . . . . . . . . . . . 57
7.5 Keyed Hash Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.5.1 HMAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.5.2 Concrete HMAC functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7.5.2.1 HMAC-MD5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.5.2.2 HMAC-RIPEMD160 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.5.2.3 HMAC-SHA1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.5.2.4 HMAC-SHA256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.5.2.5 HMAC-SHA512 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.5.3 UMAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.5.4 CMAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.5.5 Poly1305 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.6 Key derivation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.6.1 HKDF: HMAC-based Extract-and-Expand . . . . . . . . . . . . . . . . 66
7.6.2 PBKDF2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.6.3 Concrete PBKDF2 functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68



iii

7.6.3.1 PBKDF2-HMAC-SHA1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.6.3.2 PBKDF2-HMAC-SHA256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.7 Public-key algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.7.1 RSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.7.1.1 Nettle’s RSA support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.7.2 DSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.7.2.1 Nettle’s DSA support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.7.2.2 Old, deprecated, DSA interface . . . . . . . . . . . . . . . . . . . . . . 79

7.7.3 Elliptic curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.7.3.1 Side-channel silence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.7.3.2 ECDSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.7.3.3 GOSTDSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.7.3.4 Curve25519 and Curve448 . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.7.3.5 EdDSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.8 Randomness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.8.1 Yarrow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.9 ASCII encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.10 Miscellaneous functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.11 Compatibility functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

8 Traditional Nettle Soup . . . . . . . . . . . . . . . . . . . . . . . 95

9 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Function and Concept Index . . . . . . . . . . . . . . . . . . . . . 97



Chapter 1: Introduction 1

1 Introduction

Nettle is a cryptographic library that is designed to fit easily in more or less any context:
In crypto toolkits for object-oriented languages (C++, Python, Pike, ...), in applications like
LSH or GNUPG, or even in kernel space. In most contexts, you need more than the basic
cryptographic algorithms, you also need some way to keep track of available algorithms, their
properties and variants. You often have some algorithm selection process, often dictated by
a protocol you want to implement.

And as the requirements of applications differ in subtle and not so subtle ways, an API
that fits one application well can be a pain to use in a different context. And that is why
there are so many different cryptographic libraries around.

Nettle tries to avoid this problem by doing one thing, the low-level crypto stuff, and
providing a simple but general interface to it. In particular, Nettle doesn’t do algorithm
selection. It doesn’t do memory allocation. It doesn’t do any I/O.

The idea is that one can build several application and context specific interfaces on
top of Nettle, and share the code, test cases, benchmarks, documentation, etc. Examples
are the Nettle module for the Pike language, and LSH, which both use an object-oriented
abstraction on top of the library.

This manual explains how to use the Nettle library. It also tries to provide some back-
ground on the cryptography, and advice on how to best put it to use.



Chapter 2: Copyright 2

2 Copyright

Nettle is dual licenced under the GNU General Public License version 2 or later, and the
GNU Lesser General Public License version 3 or later. When using Nettle, you must comply
fully with all conditions of at least one of these licenses. A few of the individual files are
licensed under more permissive terms, or in the public domain. To find the current status
of particular files, you have to read the copyright notices at the top of the files.

This manual is in the public domain. You may freely copy it in whole or in part, e.g.,
into documentation of programs that build on Nettle. Attribution, as well as contribution
of improvements to the text, is of course appreciated, but it is not required.

A list of the supported algorithms, their origins, and exceptions to the above licensing:

AES The implementation of the AES cipher (also known as rijndael) is written by
Rafael Sevilla. Assembler for x86 by Rafael Sevilla and Niels Möller, Sparc
assembler by Niels Möller.

ARCFOUR

The implementation of the ARCFOUR (also known as RC4) cipher is written
by Niels Möller.

ARCTWO

The implementation of the ARCTWO (also known as RC2) cipher is written by
Nikos Mavroyanopoulos and modified by Werner Koch and Simon Josefsson.

BLOWFISH

The implementation of the BLOWFISH cipher is written byWerner Koch, copy-
right owned by the Free Software Foundation. Also hacked by Simon Josefsson
and Niels Möller.

CAMELLIA

The C implementation is by Nippon Telegraph and Telephone Corporation
(NTT), heavily modified by Niels Möller. Assembler for x86 and x86 64 by
Niels Möller.

CAST128 The implementation of the CAST128 cipher is written by Steve Reid. Released
into the public domain.

CHACHA Implemented by Joachim Strömbergson, based on the implementation of
SALSA20 (see below). Assembly for x86 64 by Niels Möller.

DES The implementation of the DES cipher is written by Dana L. How, and released
under the LGPL, version 2 or later.

GOSTHASH94

The C implementation of the GOST94 message digest is written by Aleksey
Kravchenko and was ported from the rhash library by Nikos Mavrogiannopou-
los. It is released under the MIT license.

MD2 The implementation of MD2 is written by Andrew Kuchling, and hacked some
by Andreas Sigfridsson and Niels Möller. Python Cryptography Toolkit license
(essentially public domain).



Chapter 2: Copyright 3

MD4 This is almost the same code as for MD5 below, with modifications by Marcus
Comstedt. Released into the public domain.

MD5 The implementation of the MD5 message digest is written by Colin Plumb. It
has been hacked some more by Andrew Kuchling and Niels Möller. Released
into the public domain.

PBKDF2 The C implementation of PBKDF2 is based on earlier work for Shishi and
GnuTLS by Simon Josefsson.

RIPEMD160

The implementation of RIPEMD160 message digest is based on the code in
libgcrypt, copyright owned by the Free Software Foundation. Ported to Nettle
by Andres Mejia.

SALSA20 The C implementation of SALSA20 is based on D. J. Bernstein’s reference
implementation (in the public domain), adapted to Nettle by Simon Josefsson,
and heavily modified by Niels Möller. Assembly for x86 64 and ARM by Niels
Möller.

SERPENT

The implementation of the SERPENT cipher is based on the code in libgcrypt,
copyright owned by the Free Software Foundation. Adapted to Nettle by Simon
Josefsson and heavily modified by Niels Möller. Assembly for x86 64 by Niels
Möller.

POLY1305

Based on the implementation by Andrew M. (floodyberry), modified by Nikos
Mavrogiannopoulos and Niels Möller. Assembly for x86 64 by Niels Möller.

SHA1 The C implementation of the SHA1 message digest is written by Peter Gut-
mann, and hacked some more by Andrew Kuchling and Niels Möller. Released
into the public domain. Assembler for x86, x86 64 and ARM by Niels Möller,
released under the LGPL.

SHA2 Written by Niels Möller, using Peter Gutmann’s SHA1 code as a model.

SHA3 Written by Niels Möller.

TWOFISH

The implementation of the TWOFISH cipher is written by Ruud de Rooij.

UMAC Written by Niels Möller.

CMAC Written by Nikos Mavrogiannopoulos, Niels Möller, Jeremy Allison, Michael
Adam and Stefan Metzmacher.

RSA Written by Niels Möller. Uses the GMP library for bignum operations.

DSA Written by Niels Möller. Uses the GMP library for bignum operations.

ECDSA Written by Niels Möller. Uses the GMP library for bignum operations. Devel-
opment of Nettle’s ECC support was funded by the .SE Internet Fund.



Chapter 3: Conventions 4

3 Conventions

For each supported algorithm, there is an include file that defines a context struct, a few
constants, and declares functions for operating on the context. The context struct encap-
sulates all information needed by the algorithm, and it can be copied or moved in memory
with no unexpected effects.

For consistency, functions for different algorithms are very similar, but there are some
differences, for instance reflecting if the key setup or encryption function differ for encryp-
tion and decryption, and whether or not key setup can fail. There are also differences
between algorithms that don’t show in function prototypes, but which the application must
nevertheless be aware of. There is no big difference between the functions for stream ciphers
and for block ciphers, although they should be used quite differently by the application.

If your application uses more than one algorithm of the same type, you should probably
create an interface that is tailor-made for your needs, and then write a few lines of glue
code on top of Nettle.

By convention, for an algorithm named foo, the struct tag for the context struct is
foo_ctx, constants and functions uses prefixes like FOO_BLOCK_SIZE (a constant) and foo_

set_key (a function).

In all functions, strings are represented with an explicit length, of type size_t, and a
pointer of type uint8_t * or const uint8_t *. For functions that transform one string
to another, the argument order is length, destination pointer and source pointer. Source
and destination areas are usually of the same length. When they differ, e.g., for ccm_

encrypt_message, the length argument specifies the size of the destination area. Source
and destination pointers may be equal, so that you can process strings in place, but source
and destination areas must not overlap in any other way.

Many of the functions lack return value and can never fail. Those functions which can
fail, return one on success and zero on failure.



Chapter 4: Example 5

4 Example

A simple example program that reads a file from standard input and writes its SHA1 check-
sum on standard output should give the flavor of Nettle.

#include <stdio.h>

#include <stdlib.h>

#include <nettle/sha1.h>

#define BUF_SIZE 1000

static void

display_hex(unsigned length, uint8_t *data)

{

unsigned i;

for (i = 0; i<length; i++)

printf("%02x ", data[i]);

printf("\n");

}

int

main(int argc, char **argv)

{

struct sha1_ctx ctx;

uint8_t buffer[BUF_SIZE];

uint8_t digest[SHA1_DIGEST_SIZE];

sha1_init(&ctx);

for (;;)

{

int done = fread(buffer, 1, sizeof(buffer), stdin);

sha1_update(&ctx, done, buffer);

if (done < sizeof(buffer))

break;

}

if (ferror(stdin))

return EXIT_FAILURE;

sha1_digest(&ctx, SHA1_DIGEST_SIZE, digest);

display_hex(SHA1_DIGEST_SIZE, digest);

return EXIT_SUCCESS;

}



Chapter 4: Example 6

On a typical Unix system, this program can be compiled and linked with the command
line

gcc sha-example.c -o sha-example -lnettle



Chapter 5: Linking 7

5 Linking

Nettle actually consists of two libraries, ‘libnettle’ and ‘libhogweed’. The ‘libhogweed’
library contains those functions of Nettle that uses bignum operations, and depends on
the GMP library. With this division, linking works the same for both static and dynamic
libraries.

If an application uses only the symmetric crypto algorithms of Nettle (i.e., block ciphers,
hash functions, and the like), it’s sufficient to link with -lnettle. If an application also
uses public-key algorithms, the recommended linker flags are -lhogweed -lnettle -lgmp.
If the involved libraries are installed as dynamic libraries, it may be sufficient to link with
just -lhogweed, and the loader will resolve the dependencies automatically.



Chapter 6: Compatibility 8

6 Compatibility

When you write a program using the Nettle library, it’s desirable to have it work together
not only with exactly the same version of Nettle you had at hand, but with other current and
future versions. If a different version of Nettle is used at compile time, i.e., you recompile
it using the header and library files belonging to a different version, we talk about API
compatibility (for Application Programming Interface). If a different version of Nettle isn’t
used until link time, we talk about ABI compatibility (Application Binary Interface) or
binary compatibility. ABI compatibility matters mainly when using dynamic linking with
a shared library. E.g., a user has an executable linking at run-time with ‘libnettle.so’,
and then updates to a later version of the shared library, without updating or recompiling
the executable.

Nettle aims to provide backwards compatibility, i.e., a program written for a particular
version of the Nettle library should usually work fine with later version of the library. Note
that the opposite is not supported: The program should not be expected to work with older
versions of the Nettle library; and ABI breakage can be unobvious. E.g, the later version
may define a new library symbol, and let header files redefine an old API name as an alias
for the new symbol. If the later version ensures that the old symbol is still defined in the
library, this change is backwards compatible: A program compiled using headers from the
older version can be successfully linked with either version of the library. But if you compile
the same program using headers from the later version of the library, and attempt to link
with the older version, you’ll get an undefined reference to the new symbol.

API compatibility is rarely broken; exceptions are noted in the NEWS file. For example,
the key size argument to the function cast128_set_key was dropped in the Nettle-3.0
release, and all programs using that function had to be updated to work with the new
version.

ABI compatibility is broken occasionally. This is also noted in the NEWS file, and
the name of the shared library is updated to prevent accidental run-time linking with the
wrong version. All programs have to be recompiled before they can link with the new
version. Since names are different, multiple versions can be installed on the same system,
with a mix of programs linking to one version or the other.

Under some circumstances, it is possible to have a single program linking dynamically
with two binary incompatible versions of the Nettle library, thanks to the use of symbol
versioning. Consider a program calling functions in both Nettle and GnuTLS. For the direct
dependency on Nettle, the program is linked with a particular version of the Nettle shared
library. GnuTLS uses Nettle internally, but does not expose any Nettle data structures
or the like in its own ABI. In this situation, the GnuTLS shared library may link with
a different version of the Nettle library. Then both versions of the Nettle library will be
loaded into the program’s address space, and each reference to a symbol will be resolved to
the correct version.

Finally, some of Nettle’s symbols are internal. They carry a leading underscore, and are
not declared in installed header files. They can be used for local or experimental purposes,
but programs referring directly to those symbols get neither API nor ABI compatibility,
not even between minor versions.



Chapter 7: Reference 9

7 Reference

This chapter describes all the Nettle functions, grouped by family.

7.1 Hash functions

A cryptographic hash function is a function that takes variable size strings, and maps them
to strings of fixed, short, length. There are naturally lots of collisions, as there are more
possible 1MB files than 20 byte strings. But the function is constructed such that is hard to
find the collisions. More precisely, a cryptographic hash function H should have the following
properties:

One-way Given a hash value H(x) it is hard to find a string x that hashes to that value.

Collision-resistant

It is hard to find two different strings, x and y, such that H(x) = H(y).

Hash functions are useful as building blocks for digital signatures, message authentication
codes, pseudo random generators, association of unique ids to documents, and many other
things.

The most commonly used hash functions are MD5 and SHA1. Unfortunately, both
these fail the collision-resistance requirement; cryptologists have found ways to construct
colliding inputs. The recommended hash functions for new applications are SHA2 (with
main variants SHA256 and SHA512). At the time of this writing (Autumn 2015), SHA3
has recently been standardized, and the new SHA3 and other top SHA3 candidates may
also be reasonable alternatives.

7.1.1 Recommended hash functions

The following hash functions have no known weaknesses, and are suitable for new applica-
tions. The SHA2 family of hash functions were specified by NIST, intended as a replacement
for SHA1.

7.1.1.1 SHA256

SHA256 is a member of the SHA2 family. It outputs hash values of 256 bits, or 32 octets.
Nettle defines SHA256 in ‘<nettle/sha2.h>’.

[Context struct]struct sha256_ctx

[Constant]SHA256_DIGEST_SIZE
The size of a SHA256 digest, i.e. 32.

[Constant]SHA256_BLOCK_SIZE
The internal block size of SHA256. Useful for some special constructions, in particular
HMAC-SHA256.

[Function]void sha256_init (struct sha256 ctx *ctx )
Initialize the SHA256 state.

[Function]void sha256_update (struct sha256 ctx *ctx , size t length , const

uint8 t *data )
Hash some more data.



Chapter 7: Reference 10

[Function]void sha256_digest (struct sha256 ctx *ctx , size t length , uint8 t

*digest )
Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than SHA256_DIGEST_SIZE, in which case only the first length octets
of the digest are written.

This function also resets the context in the same way as sha256_init.

Earlier versions of nettle defined SHA256 in the header file ‘<nettle/sha.h>’, which is
now deprecated, but kept for compatibility.

7.1.1.2 SHA224

SHA224 is a variant of SHA256, with a different initial state, and with the output trun-
cated to 224 bits, or 28 octets. Nettle defines SHA224 in ‘<nettle/sha2.h>’ (and in
‘<nettle/sha.h>’, for backwards compatibility).

[Context struct]struct sha224_ctx

[Constant]SHA224_DIGEST_SIZE
The size of a SHA224 digest, i.e. 28.

[Constant]SHA224_BLOCK_SIZE
The internal block size of SHA224. Useful for some special constructions, in particular
HMAC-SHA224.

[Function]void sha224_init (struct sha224 ctx *ctx )
Initialize the SHA224 state.

[Function]void sha224_update (struct sha224 ctx *ctx , size t length , const

uint8 t *data )
Hash some more data.

[Function]void sha224_digest (struct sha224 ctx *ctx , size t length , uint8 t

*digest )
Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than SHA224_DIGEST_SIZE, in which case only the first length octets
of the digest are written.

This function also resets the context in the same way as sha224_init.

7.1.1.3 SHA512

SHA512 is a larger sibling to SHA256, with a very similar structure but with both the
output and the internal variables of twice the size. The internal variables are 64 bits rather
than 32, making it significantly slower on 32-bit computers. It outputs hash values of 512
bits, or 64 octets. Nettle defines SHA512 in ‘<nettle/sha2.h>’ (and in ‘<nettle/sha.h>’,
for backwards compatibility).

[Context struct]struct sha512_ctx

[Constant]SHA512_DIGEST_SIZE
The size of a SHA512 digest, i.e. 64.



Chapter 7: Reference 11

[Constant]SHA512_BLOCK_SIZE
The internal block size of SHA512, 128. Useful for some special constructions, in
particular HMAC-SHA512.

[Function]void sha512_init (struct sha512 ctx *ctx )
Initialize the SHA512 state.

[Function]void sha512_update (struct sha512 ctx *ctx , size t length , const

uint8 t *data )
Hash some more data.

[Function]void sha512_digest (struct sha512 ctx *ctx , size t length , uint8 t

*digest )
Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than SHA512_DIGEST_SIZE, in which case only the first length octets
of the digest are written.

This function also resets the context in the same way as sha512_init.

7.1.1.4 SHA384 and other variants of SHA512

Several variants of SHA512 have been defined, with a different initial state, and with the
output truncated to shorter length than 512 bits. Naming is a bit confused, these algorithms
are called SHA512-224, SHA512-256 and SHA384, for output sizes of 224, 256 and 384 bits,
respectively. Nettle defines these in ‘<nettle/sha2.h>’ (and in ‘<nettle/sha.h>’, for
backwards compatibility).

[Context struct]struct sha512_224_ctx
[Context struct]struct sha512_256_ctx
[Context struct]struct sha384_ctx

These context structs are all the same as sha512 ctx. They are defined as simple
preprocessor aliases, which may cause some problems if used as identifiers for other
purposes. So avoid doing that.

[Constant]SHA512_224_DIGEST_SIZE
[Constant]SHA512_256_DIGEST_SIZE
[Constant]SHA384_DIGEST_SIZE

The digest size for each variant, i.e., 28, 32, and 48, respectively.

[Constant]SHA512_224_BLOCK_SIZE
[Constant]SHA512_256_BLOCK_SIZE
[Constant]SHA384_BLOCK_SIZE

The internal block size, same as SHA512 BLOCK SIZE, i.e., 128. Useful for some
special constructions, in particular HMAC-SHA384.

[Function]void sha512_224_init (struct sha512 224 ctx *ctx )
[Function]void sha512_256_init (struct sha512 256 ctx *ctx )
[Function]void sha384_init (struct sha384 ctx *ctx )

Initialize the context struct.



Chapter 7: Reference 12

[Function]void sha512_224_update (struct sha512 224 ctx *ctx , size t length ,

const uint8 t *data )
[Function]void sha512_256_update (struct sha512 256 ctx *ctx , size t length ,

const uint8 t *data )
[Function]void sha384_update (struct sha384 ctx *ctx , size t length , const

uint8 t *data )
Hash some more data. These are all aliases for sha512 update, which does the same
thing.

[Function]void sha512_224_digest (struct sha512 224 ctx *ctx , size t length ,

uint8 t *digest )
[Function]void sha512_256_digest (struct sha512 256 ctx *ctx , size t length ,

uint8 t *digest )
[Function]void sha384_digest (struct sha384 ctx *ctx , size t length , uint8 t

*digest )
Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than the specified digest size, in which case only the first length octets
of the digest are written.

These function also reset the context in the same way as the corresponding init
function.

7.1.1.5 SHA3-224

The SHA3 hash functions were specified by NIST in response to weaknesses in SHA1,
and doubts about SHA2 hash functions which structurally are very similar to SHA1.
SHA3 is a result of a competition, where the winner, also known as Keccak, was de-
signed by Guido Bertoni, Joan Daemen, Michaël Peeters and Gilles Van Assche. It is
structurally very different from all widely used earlier hash functions. Like SHA2, there
are several variants, with output sizes of 224, 256, 384 and 512 bits (28, 32, 48 and 64
octets, respectively). In August 2015, it was formally standardized by NIST, as FIPS 202,
http://dx.doi.org/10.6028/NIST.FIPS.202.

Note that the SHA3 implementation in earlier versions of Nettle was based on the spec-
ification at the time Keccak was announced as the winner of the competition, which is
incompatible with the final standard and hence with current versions of Nettle. The
‘nette/sha3.h’ defines a preprocessor symbol NETTLE_SHA3_FIPS202 to indicate confor-
mance with the standard.

[Constant]NETTLE_SHA3_FIPS202
Defined to 1 in Nettle versions supporting FIPS 202. Undefined in earlier versions.

Nettle defines SHA3-224 in ‘<nettle/sha3.h>’.

[Context struct]struct sha3_224_ctx

[Constant]SHA3_224_DIGEST_SIZE
The size of a SHA3 224 digest, i.e., 28.

[Constant]SHA3_224_BLOCK_SIZE
The internal block size of SHA3 224.



Chapter 7: Reference 13

[Function]void sha3_224_init (struct sha3 224 ctx *ctx )
Initialize the SHA3-224 state.

[Function]void sha3_224_update (struct sha3 224 ctx *ctx , size t length , const

uint8 t *data )
Hash some more data.

[Function]void sha3_224_digest (struct sha3 224 ctx *ctx , size t length ,

uint8 t *digest )
Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than SHA3_224_DIGEST_SIZE, in which case only the first length

octets of the digest are written.

This function also resets the context.

7.1.1.6 SHA3-256

This is SHA3 with 256-bit output size, and possibly the most useful of the SHA3 hash
functions.

Nettle defines SHA3-256 in ‘<nettle/sha3.h>’.

[Context struct]struct sha3_256_ctx

[Constant]SHA3_256_DIGEST_SIZE
The size of a SHA3 256 digest, i.e., 32.

[Constant]SHA3_256_BLOCK_SIZE
The internal block size of SHA3 256.

[Function]void sha3_256_init (struct sha3 256 ctx *ctx )
Initialize the SHA3-256 state.

[Function]void sha3_256_update (struct sha3 256 ctx *ctx , size t length , const

uint8 t *data )
Hash some more data.

[Function]void sha3_256_digest (struct sha3 256 ctx *ctx , size t length ,

uint8 t *digest )
Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than SHA3_256_DIGEST_SIZE, in which case only the first length

octets of the digest are written.

This function also resets the context.

7.1.1.7 SHA3-384

This is SHA3 with 384-bit output size.

Nettle defines SHA3-384 in ‘<nettle/sha3.h>’.

[Context struct]struct sha3_384_ctx

[Constant]SHA3_384_DIGEST_SIZE
The size of a SHA3 384 digest, i.e., 48.



Chapter 7: Reference 14

[Constant]SHA3_384_BLOCK_SIZE
The internal block size of SHA3 384.

[Function]void sha3_384_init (struct sha3 384 ctx *ctx )
Initialize the SHA3-384 state.

[Function]void sha3_384_update (struct sha3 384 ctx *ctx , size t length , const

uint8 t *data )
Hash some more data.

[Function]void sha3_384_digest (struct sha3 384 ctx *ctx , size t length ,

uint8 t *digest )
Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than SHA3_384_DIGEST_SIZE, in which case only the first length

octets of the digest are written.

This function also resets the context.

7.1.1.8 SHA3-512

This is SHA3 with 512-bit output size.

Nettle defines SHA3-512 in ‘<nettle/sha3.h>’.

[Context struct]struct sha3_512_ctx

[Constant]SHA3_512_DIGEST_SIZE
The size of a SHA3 512 digest, i.e. 64.

[Constant]SHA3_512_BLOCK_SIZE
The internal block size of SHA3 512.

[Function]void sha3_512_init (struct sha3 512 ctx *ctx )
Initialize the SHA3-512 state.

[Function]void sha3_512_update (struct sha3 512 ctx *ctx , size t length , const

uint8 t *data )
Hash some more data.

[Function]void sha3_512_digest (struct sha3 512 ctx *ctx , size t length ,

uint8 t *digest )
Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than SHA3_512_DIGEST_SIZE, in which case only the first length

octets of the digest are written.

This function also resets the context.

7.1.1.9 SHAKE-256

In addition to those SHA-3 hash functions, Nettle also provides a SHA-3 extendable-output
function (XOF), SHAKE-256. Unlike SHA-3 hash functions, SHAKE can produce an output
digest of any desired length.

To use SHAKE256, the context struct, init and update functions are the same as for
SHA3-256. To get a SHAKE256 digest, the following function is used instead of sha3_256_
digest. For an output size of SHA3_256_DIGEST_SIZE, security is equivalent to SHA3-256



Chapter 7: Reference 15

(but the digest is different). Increasing output size further does not increase security in
terms of collision or preimage resistance. It can be seen as a built in pseudorandomness
generator.

[Function]void sha3_256_shake (struct shake256 ctx *ctx , size t length ,

uint8 t *digest )
Performs final processing and produces a SHAKE256 digest, writing it to digest.
length can be of arbitrary size.

This function also resets the context.

7.1.2 Legacy hash functions

The hash functions in this section all have some known weaknesses, and should be avoided
for new applications. These hash functions are mainly useful for compatibility with old
applications and protocols. Some are still considered safe as building blocks for particu-
lar constructions, e.g., there seems to be no known attacks against HMAC-SHA1 or even
HMAC-MD5. In some important cases, use of a “legacy” hash function does not in itself
make the application insecure; if a known weakness is relevant depends on how the hash
function is used, and on the threat model.

7.1.2.1 MD5

MD5 is a message digest function constructed by Ronald Rivest, and described in RFC

1321. It outputs message digests of 128 bits, or 16 octets. Nettle defines MD5 in
‘<nettle/md5.h>’.

[Context struct]struct md5_ctx

[Constant]MD5_DIGEST_SIZE
The size of an MD5 digest, i.e. 16.

[Constant]MD5_BLOCK_SIZE
The internal block size of MD5. Useful for some special constructions, in particular
HMAC-MD5.

[Function]void md5_init (struct md5 ctx *ctx )
Initialize the MD5 state.

[Function]void md5_update (struct md5 ctx *ctx , size t length , const uint8 t

*data )
Hash some more data.

[Function]void md5_digest (struct md5 ctx *ctx , size t length , uint8 t

*digest )
Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than MD5_DIGEST_SIZE, in which case only the first length octets of
the digest are written.

This function also resets the context in the same way as md5_init.

The normal way to use MD5 is to call the functions in order: First md5_init, then
md5_update zero or more times, and finally md5_digest. After md5_digest, the context is
reset to its initial state, so you can start over calling md5_update to hash new data.

To start over, you can call md5_init at any time.



Chapter 7: Reference 16

7.1.2.2 MD2

MD2 is another hash function of Ronald Rivest’s, described in RFC 1319. It outputs
message digests of 128 bits, or 16 octets. Nettle defines MD2 in ‘<nettle/md2.h>’.

[Context struct]struct md2_ctx

[Constant]MD2_DIGEST_SIZE
The size of an MD2 digest, i.e. 16.

[Constant]MD2_BLOCK_SIZE
The internal block size of MD2.

[Function]void md2_init (struct md2 ctx *ctx )
Initialize the MD2 state.

[Function]void md2_update (struct md2 ctx *ctx , size t length , const uint8 t

*data )
Hash some more data.

[Function]void md2_digest (struct md2 ctx *ctx , size t length , uint8 t

*digest )
Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than MD2_DIGEST_SIZE, in which case only the first length octets of
the digest are written.

This function also resets the context in the same way as md2_init.

7.1.2.3 MD4

MD4 is a predecessor of MD5, described in RFC 1320. Like MD5, it is constructed by
Ronald Rivest. It outputs message digests of 128 bits, or 16 octets. Nettle defines MD4
in ‘<nettle/md4.h>’. Use of MD4 is not recommended, but it is sometimes needed for
compatibility with existing applications and protocols.

[Context struct]struct md4_ctx

[Constant]MD4_DIGEST_SIZE
The size of an MD4 digest, i.e. 16.

[Constant]MD4_BLOCK_SIZE
The internal block size of MD4.

[Function]void md4_init (struct md4 ctx *ctx )
Initialize the MD4 state.

[Function]void md4_update (struct md4 ctx *ctx , size t length , const uint8 t

*data )
Hash some more data.

[Function]void md4_digest (struct md4 ctx *ctx , size t length , uint8 t

*digest )
Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than MD4_DIGEST_SIZE, in which case only the first length octets of
the digest are written.

This function also resets the context in the same way as md4_init.



Chapter 7: Reference 17

7.1.2.4 RIPEMD160

RIPEMD160 is a hash function designed by Hans Dobbertin, Antoon Bosselaers, and Bart
Preneel, as a strengthened version of RIPEMD (which, like MD4 and MD5, fails the
collision-resistance requirement). It produces message digests of 160 bits, or 20 octets.
Nettle defined RIPEMD160 in ‘nettle/ripemd160.h’.

[Context struct]struct ripemd160_ctx

[Constant]RIPEMD160_DIGEST_SIZE
The size of a RIPEMD160 digest, i.e. 20.

[Constant]RIPEMD160_BLOCK_SIZE
The internal block size of RIPEMD160.

[Function]void ripemd160_init (struct ripemd160 ctx *ctx )
Initialize the RIPEMD160 state.

[Function]void ripemd160_update (struct ripemd160 ctx *ctx , size t length ,

const uint8 t *data )
Hash some more data.

[Function]void ripemd160_digest (struct ripemd160 ctx *ctx , size t length ,

uint8 t *digest )
Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than RIPEMD160_DIGEST_SIZE, in which case only the first length

octets of the digest are written.

This function also resets the context in the same way as ripemd160_init.

7.1.2.5 SHA1

SHA1 is a hash function specified by NIST (The U.S. National Institute for Standards
and Technology). It outputs hash values of 160 bits, or 20 octets. Nettle defines SHA1 in
‘<nettle/sha1.h>’ (and in ‘<nettle/sha.h>’, for backwards compatibility).

[Context struct]struct sha1_ctx

[Constant]SHA1_DIGEST_SIZE
The size of a SHA1 digest, i.e. 20.

[Constant]SHA1_BLOCK_SIZE
The internal block size of SHA1. Useful for some special constructions, in particular
HMAC-SHA1.

[Function]void sha1_init (struct sha1 ctx *ctx )
Initialize the SHA1 state.

[Function]void sha1_update (struct sha1 ctx *ctx , size t length , const uint8 t

*data )
Hash some more data.



Chapter 7: Reference 18

[Function]void sha1_digest (struct sha1 ctx *ctx , size t length , uint8 t

*digest )
Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than SHA1_DIGEST_SIZE, in which case only the first length octets of
the digest are written.

This function also resets the context in the same way as sha1_init.

7.1.2.6 GOSTHASH94 and GOSTHASH94CP

The GOST94 or GOST R 34.11-94 hash algorithm is a Soviet-era algorithm used in Rus-
sian government standards (see RFC 4357). It outputs message digests of 256 bits, or 32
octets. The standard itself does not fix the S-box used by the hash algorith, so there are two
popular variants (the testing S-box from the standard itself and the S-box defined by Cryp-
toPro company, see RFC 4357). Nettle provides support for the former S-box in the form of
GOSTHASH94 hash algorithm and for the latter in the form of GOSTHASH94CP hash algo-
rithm. Nettle defines GOSTHASH94 and GOSTHASH94CP in ‘<nettle/gosthash94.h>’.

[Context struct]struct gosthash94_ctx

[Constant]GOSTHASH94_DIGEST_SIZE
The size of a GOSTHASH94 digest, i.e. 32.

[Constant]GOSTHASH94_BLOCK_SIZE
The internal block size of GOSTHASH94, i.e., 32.

[Function]void gosthash94_init (struct gosthash94 ctx *ctx )
Initialize the GOSTHASH94 state.

[Function]void gosthash94_update (struct gosthash94 ctx *ctx , size t length ,

const uint8 t *data )
Hash some more data.

[Function]void gosthash94_digest (struct gosthash94 ctx *ctx , size t length ,

uint8 t *digest )
Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than GOSTHASH94_DIGEST_SIZE, in which case only the first length

octets of the digest are written.

This function also resets the context in the same way as gosthash94_init.

[Context struct]struct gosthash94cp_ctx

[Constant]GOSTHASH94CP_DIGEST_SIZE
The size of a GOSTHASH94CP digest, i.e. 32.

[Constant]GOSTHASH94CP_BLOCK_SIZE
The internal block size of GOSTHASH94CP, i.e., 32.

[Function]void gosthash94cp_init (struct gosthash94cp ctx *ctx )
Initialize the GOSTHASH94CP state.

[Function]void gosthash94cp_update (struct gosthash94cp ctx *ctx , size t

length , const uint8 t *data )
Hash some more data.



Chapter 7: Reference 19

[Function]void gosthash94cp_digest (struct gosthash94cp ctx *ctx , size t

length , uint8 t *digest )
Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than GOSTHASH94CP_DIGEST_SIZE, in which case only the first length
octets of the digest are written.

This function also resets the context in the same way as gosthash94cp_init.

7.1.3 The struct nettle_hash abstraction

Nettle includes a struct including information about the supported hash functions. It is
defined in ‘<nettle/nettle-meta.h>’, and is used by Nettle’s implementation of HMAC

(see Section 7.5 [Keyed hash functions], page 58).

[Meta struct]struct nettle_hash name context size digest size block size init

update digest

The last three attributes are function pointers, of types nettle_hash_init_func *,
nettle_hash_update_func *, and nettle_hash_digest_func *. The first argument
to these functions is void * pointer to a context struct, which is of size context_size.

[Constant Struct]struct nettle_hash nettle_md2
[Constant Struct]struct nettle_hash nettle_md4
[Constant Struct]struct nettle_hash nettle_md5
[Constant Struct]struct nettle_hash nettle_ripemd160
[Constant Struct]struct nettle_hash nettle_sha1
[Constant Struct]struct nettle_hash nettle_sha224
[Constant Struct]struct nettle_hash nettle_sha256
[Constant Struct]struct nettle_hash nettle_sha384
[Constant Struct]struct nettle_hash nettle_sha512
[Constant Struct]struct nettle_hash nettle_sha3_256
[Constant Struct]struct nettle_hash nettle_gosthash94
[Constant Struct]struct nettle_hash nettle_gosthash94cp

These are all the hash functions that Nettle implements.

Nettle also exports a list of all these hashes.

[Function]const struct nettle_hash ** nettle_get_hashes (void)
Returns a NULL-terminated list of pointers to supported hash functions. This list
can be used to dynamically enumerate or search the supported algorithms.

[Macro]nettle_hashes
A macro expanding to a call to nettle get hashes, so that one could write, e.g.,
nettle_hashes[0]->name for the name of the first hash function on the list. In
earlier versions, this was not a macro but the actual array of pointers. However,
referring directly to the array makes the array size leak into the ABI in some cases.

7.2 Cipher functions

A cipher is a function that takes a message or plaintext and a secret key and transforms it
to a ciphertext. Given only the ciphertext, but not the key, it should be hard to find the



Chapter 7: Reference 20

plaintext. Given matching pairs of plaintext and ciphertext, it should be hard to find the
key.

There are two main classes of ciphers: Block ciphers and stream ciphers.

A block cipher can process data only in fixed size chunks, called blocks. Typical block
sizes are 8 or 16 octets. To encrypt arbitrary messages, you usually have to pad it to an
integral number of blocks, split it into blocks, and then process each block. The simplest
way is to process one block at a time, independent of each other. That mode of operation
is called ECB, Electronic Code Book mode. However, using ECB is usually a bad idea. For
a start, plaintext blocks that are equal are transformed to ciphertext blocks that are equal;
that leaks information about the plaintext. Usually you should apply the cipher is some
“feedback mode”, CBC (Cipher Block Chaining) and CTR (Counter mode) being two of
of the most popular. See See Section 7.3 [Cipher modes], page 34, for information on how
to apply CBC and CTR with Nettle.

A stream cipher can be used for messages of arbitrary length. A typical stream cipher
is a keyed pseudo-random generator. To encrypt a plaintext message of n octets, you key
the generator, generate n octets of pseudo-random data, and XOR it with the plaintext.
To decrypt, regenerate the same stream using the key, XOR it to the ciphertext, and the
plaintext is recovered.

Caution: The first rule for this kind of cipher is the same as for a One Time Pad: never
ever use the same key twice.

A common misconception is that encryption, by itself, implies authentication. Say that
you and a friend share a secret key, and you receive an encrypted message. You apply the
key, and get a plaintext message that makes sense to you. Can you then be sure that it really
was your friend that wrote the message you’re reading? The answer is no. For example, if
you were using a block cipher in ECB mode, an attacker may pick up the message on its
way, and reorder, delete or repeat some of the blocks. Even if the attacker can’t decrypt
the message, he can change it so that you are not reading the same message as your friend
wrote. If you are using a block cipher in CBC mode rather than ECB, or are using a stream
cipher, the possibilities for this sort of attack are different, but the attacker can still make
predictable changes to the message.

It is recommended to always use an authentication mechanism in addition to encrypting
the messages. Popular choices are Message Authentication Codes like HMAC-SHA1 (see
Section 7.5 [Keyed hash functions], page 58), or digital signatures like RSA.

Some ciphers have so called “weak keys”, keys that results in undesirable structure after
the key setup processing, and should be avoided. In Nettle, most key setup functions have
no return value, but for ciphers with weak keys, the return value indicates whether or not
the given key is weak. For good keys, key setup returns 1, and for weak keys, it returns 0.
When possible, avoid algorithms that have weak keys. There are several good ciphers that
don’t have any weak keys.

To encrypt a message, you first initialize a cipher context for encryption or decryption
with a particular key. You then use the context to process plaintext or ciphertext messages.
The initialization is known as key setup. With Nettle, it is recommended to use each context
struct for only one direction, even if some of the ciphers use a single key setup function that
can be used for both encryption and decryption.



Chapter 7: Reference 21

7.2.1 AES

AES is a block cipher, specified by NIST as a replacement for the older DES standard. The
standard is the result of a competition between cipher designers. The winning design, also
known as RIJNDAEL, was constructed by Joan Daemen and Vincent Rijnmen.

Like all the AES candidates, the winning design uses a block size of 128 bits, or 16 octets,
and three possible key-size, 128, 192 and 256 bits (16, 24 and 32 octets) being the allowed
key sizes. It does not have any weak keys. Nettle defines AES in ‘<nettle/aes.h>’, and
there is one context struct for each key size. (Earlier versions of Nettle used a single context
struct, struct aes_ctx, for all key sizes. This interface kept for backwards compatibility).

[Context struct]struct aes128_ctx
[Context struct]struct aes192_ctx
[Context struct]struct aes256_ctx

[Context struct]struct aes_ctx
Alternative struct, for the old AES interface.

[Constant]AES_BLOCK_SIZE
The AES block-size, 16.

[Constant]AES128_KEY_SIZE
[Constant]AES192_KEY_SIZE
[Constant]AES256_KEY_SIZE
[Constant]AES_MIN_KEY_SIZE
[Constant]AES_MAX_KEY_SIZE

[Constant]AES_KEY_SIZE
Default AES key size, 32.

[Function]void aes128_set_encrypt_key (struct aes128 ctx *ctx , const uint8 t

*key )
[Function]void aes128_set_decrypt_key (struct aes128 ctx *ctx , const uint8 t

*key )
[Function]void aes192_set_encrypt_key (struct aes192 ctx *ctx , const uint8 t

*key )
[Function]void aes192_set_decrypt_key (struct aes192 ctx *ctx , const uint8 t

*key )
[Function]void aes256_set_encrypt_key (struct aes256 ctx *ctx , const uint8 t

*key )
[Function]void aes256_set_decrypt_key (struct aes256 ctx *ctx , const uint8 t

*key )
[Function]void aes_set_encrypt_key (struct aes ctx *ctx , size t length , const

uint8 t *key )
[Function]void aes_set_decrypt_key (struct aes ctx *ctx , size t length , const

uint8 t *key )
Initialize the cipher, for encryption or decryption, respectively.



Chapter 7: Reference 22

[Function]void aes128_invert_key (struct aes128 ctx *dst , const struct

aes128 ctx *src )
[Function]void aes192_invert_key (struct aes192 ctx *dst , const struct

aes192 ctx *src )
[Function]void aes256_invert_key (struct aes256 ctx *dst , const struct

aes256 ctx *src )
[Function]void aes_invert_key (struct aes ctx *dst , const struct aes ctx *src )

Given a context src initialized for encryption, initializes the context struct dst for
decryption, using the same key. If the same context struct is passed for both src and
dst, it is converted in place. These functions are mainly useful for applications which
needs to both encrypt and decrypt using the same key, because calling, e.g., aes128_
set_encrypt_key and aes128_invert_key, is more efficient than calling aes128_

set_encrypt_key and aes128_set_decrypt_key.

[Function]void aes128_encrypt (struct aes128 ctx *ctx , size t length , uint8 t

*dst , const uint8 t *src )
[Function]void aes192_encrypt (struct aes192 ctx *ctx , size t length , uint8 t

*dst , const uint8 t *src )
[Function]void aes256_encrypt (struct aes256 ctx *ctx , size t length , uint8 t

*dst , const uint8 t *src )
[Function]void aes_encrypt (struct aes ctx *ctx , size t length , uint8 t *dst ,

const uint8 t *src )
Encryption function. length must be an integral multiple of the block size. If it is
more than one block, the data is processed in ECB mode. src and dst may be equal,
but they must not overlap in any other way.

[Function]void aes128_decrypt (struct aes128 ctx *ctx , size t length , uint8 t

*dst , const uint8 t *src )
[Function]void aes192_decrypt (struct aes192 ctx *ctx , size t length , uint8 t

*dst , const uint8 t *src )
[Function]void aes256_decrypt (struct aes256 ctx *ctx , size t length , uint8 t

*dst , const uint8 t *src )
[Function]void aes_decrypt (struct aes ctx *ctx , size t length , uint8 t *dst ,

const uint8 t *src )
Analogous to the encryption functions above.

7.2.2 ARCFOUR

ARCFOUR is a stream cipher, also known under the trade marked name RC4, and it
is one of the fastest ciphers around. A problem is that the key setup of ARCFOUR is
quite weak, you should never use keys with structure, keys that are ordinary passwords,
or sequences of keys like “secret:1”, “secret:2”, . . . . If you have keys that don’t look like
random bit strings, and you want to use ARCFOUR, always hash the key before feeding it
to ARCFOUR. Furthermore, the initial bytes of the generated key stream leak information
about the key; for this reason, it is recommended to discard the first 512 bytes of the key
stream.

/* A more robust key setup function for ARCFOUR */

void



Chapter 7: Reference 23

arcfour_set_key_hashed(struct arcfour_ctx *ctx,

size_t length, const uint8_t *key)

{

struct sha256_ctx hash;

uint8_t digest[SHA256_DIGEST_SIZE];

uint8_t buffer[0x200];

sha256_init(&hash);

sha256_update(&hash, length, key);

sha256_digest(&hash, SHA256_DIGEST_SIZE, digest);

arcfour_set_key(ctx, SHA256_DIGEST_SIZE, digest);

arcfour_crypt(ctx, sizeof(buffer), buffer, buffer);

}

Nettle defines ARCFOUR in ‘<nettle/arcfour.h>’.

[Context struct]struct arcfour_ctx

[Constant]ARCFOUR_MIN_KEY_SIZE
Minimum key size, 1.

[Constant]ARCFOUR_MAX_KEY_SIZE
Maximum key size, 256.

[Constant]ARCFOUR_KEY_SIZE
Default ARCFOUR key size, 16.

[Function]void arcfour_set_key (struct arcfour ctx *ctx , size t length , const

uint8 t *key )
Initialize the cipher. The same function is used for both encryption and decryption.

[Function]void arcfour_crypt (struct arcfour ctx *ctx , size t length , uint8 t

*dst , const uint8 t *src )
Encrypt some data. The same function is used for both encryption and decryption.
Unlike the block ciphers, this function modifies the context, so you can split the data
into arbitrary chunks and encrypt them one after another. The result is the same as
if you had called arcfour_crypt only once with all the data.

7.2.3 ARCTWO

ARCTWO (also known as the trade marked name RC2) is a block cipher specified in RFC
2268. Nettle also include a variation of the ARCTWO set key operation that lack one
step, to be compatible with the reverse engineered RC2 cipher description, as described in
a Usenet post to sci.crypt by Peter Gutmann.

ARCTWO uses a block size of 64 bits, and variable key-size ranging from 1 to 128
octets. Besides the key, ARCTWO also has a second parameter to key setup, the number
of effective key bits, ekb. This parameter can be used to artificially reduce the key size.
In practice, ekb is usually set equal to the input key size. Nettle defines ARCTWO in
‘<nettle/arctwo.h>’.



Chapter 7: Reference 24

We do not recommend the use of ARCTWO; the Nettle implementation is provided
primarily for interoperability with existing applications and standards.

[Context struct]struct arctwo_ctx

[Constant]ARCTWO_BLOCK_SIZE
The ARCTWO block-size, 8.

[Constant]ARCTWO_MIN_KEY_SIZE

[Constant]ARCTWO_MAX_KEY_SIZE

[Constant]ARCTWO_KEY_SIZE
Default ARCTWO key size, 8.

[Function]void arctwo_set_key_ekb (struct arctwo ctx *ctx , size t length ,

const uint8 t *key , unsigned ekb )
[Function]void arctwo_set_key (struct arctwo ctx *ctx , size t length , const

uint8 t *key )
[Function]void arctwo_set_key_gutmann (struct arctwo ctx *ctx , size t

length , const uint8 t *key )
Initialize the cipher. The same function is used for both encryption and decryption.
The first function is the most general one, which lets you provide both the variable
size key, and the desired effective key size (in bits). The maximum value for ekb is
1024, and for convenience, ekb = 0 has the same effect as ekb = 1024.

arctwo_set_key(ctx, length, key) is equivalent to arctwo_set_key_ekb(ctx,

length, key, 8*length), and arctwo_set_key_gutmann(ctx, length, key) is
equivalent to arctwo_set_key_ekb(ctx, length, key, 1024)

[Function]void arctwo_encrypt (struct arctwo ctx *ctx , size t length , uint8 t

*dst , const uint8 t *src )
Encryption function. length must be an integral multiple of the block size. If it is
more than one block, the data is processed in ECB mode. src and dst may be equal,
but they must not overlap in any other way.

[Function]void arctwo_decrypt (struct arctwo ctx *ctx , size t length , uint8 t

*dst , const uint8 t *src )
Analogous to arctwo_encrypt

7.2.4 BLOWFISH

BLOWFISH is a block cipher designed by Bruce Schneier. It uses a block size of 64 bits
(8 octets), and a variable key size, up to 448 bits. It has some weak keys. Nettle defines
BLOWFISH in ‘<nettle/blowfish.h>’.

[Context struct]struct blowfish_ctx

[Constant]BLOWFISH_BLOCK_SIZE
The BLOWFISH block-size, 8.

[Constant]BLOWFISH_MIN_KEY_SIZE
Minimum BLOWFISH key size, 8.



Chapter 7: Reference 25

[Constant]BLOWFISH_MAX_KEY_SIZE
Maximum BLOWFISH key size, 56.

[Constant]BLOWFISH_KEY_SIZE
Default BLOWFISH key size, 16.

[Function]int blowfish_set_key (struct blowfish ctx *ctx , size t length , const

uint8 t *key )
Initialize the cipher. The same function is used for both encryption and decryption.
Checks for weak keys, returning 1 for good keys and 0 for weak keys. Applications
that don’t care about weak keys can ignore the return value.

blowfish_encrypt or blowfish_decrypt with a weak key will crash with an assert
violation.

[Function]void blowfish_encrypt (struct blowfish ctx *ctx , size t length ,

uint8 t *dst , const uint8 t *src )
Encryption function. length must be an integral multiple of the block size. If it is
more than one block, the data is processed in ECB mode. src and dst may be equal,
but they must not overlap in any other way.

[Function]void blowfish_decrypt (struct blowfish ctx *ctx , size t length ,

uint8 t *dst , const uint8 t *src )
Analogous to blowfish_encrypt

7.2.5 Camellia

Camellia is a block cipher developed by Mitsubishi and Nippon Telegraph and Telephone
Corporation, described in RFC3713. It is recommended by some Japanese and European
authorities as an alternative to AES, and it is one of the selected algorithms in the New
European Schemes for Signatures, Integrity and Encryption (NESSIE) project. The al-
gorithm is patented. The implementation in Nettle is derived from the implementation
released by NTT under the GNU LGPL (v2.1 or later), and relies on the implicit patent
license of the LGPL. There is also a statement of royalty-free licensing for Camellia at
http://www.ntt.co.jp/news/news01e/0104/010417.html, but this statement has some
limitations which seem problematic for free software.

Camellia uses a the same block size and key sizes as AES: The block size is 128 bits
(16 octets), and the supported key sizes are 128, 192, and 256 bits. The variants with
192 and 256 bit keys are identical, except for the key setup. Nettle defines Camellia in
‘<nettle/camellia.h>’, and there is one context struct for each key size. (Earlier versions
of Nettle used a single context struct, struct camellia_ctx, for all key sizes. This interface
kept for backwards compatibility).

[Context struct]struct camellia128_ctx
[Context struct]struct camellia192_ctx
[Context struct]struct camellia256_ctx

Contexts structs. Actually, camellia192_ctx is an alias for camellia256_ctx.

[Context struct]struct camellia_ctx
Alternative struct, for the old Camellia interface.



Chapter 7: Reference 26

[Constant]CAMELLIA_BLOCK_SIZE
The CAMELLIA block-size, 16.

[Constant]CAMELLIA128_KEY_SIZE
[Constant]CAMELLIA192_KEY_SIZE
[Constant]CAMELLIA256_KEY_SIZE
[Constant]CAMELLIA_MIN_KEY_SIZE
[Constant]CAMELLIA_MAX_KEY_SIZE

[Constant]CAMELLIA_KEY_SIZE
Default CAMELLIA key size, 32.

[Function]void camellia128_set_encrypt_key (struct camellia128 ctx *ctx ,

const uint8 t *key )
[Function]void camellia128_set_decrypt_key (struct camellia128 ctx *ctx ,

const uint8 t *key )
[Function]void camellia192_set_encrypt_key (struct camellia192 ctx *ctx ,

const uint8 t *key )
[Function]void camellia192_set_decrypt_key (struct camellia192 ctx *ctx ,

const uint8 t *key )
[Function]void camellia256_set_encrypt_key (struct camellia256 ctx *ctx ,

const uint8 t *key )
[Function]void camellia256_set_decrypt_key (struct camellia256 ctx *ctx ,

const uint8 t *key )
[Function]void camellia_set_encrypt_key (struct camellia ctx *ctx , size t

length , const uint8 t *key )
[Function]void camellia_set_decrypt_key (struct camellia ctx *ctx , size t

length , const uint8 t *key )
Initialize the cipher, for encryption or decryption, respectively.

[Function]void camellia128_invert_key (struct camellia128 ctx *dst , const

struct camellia128 ctx *src )
[Function]void camellia192_invert_key (struct camellia192 ctx *dst , const

struct camellia192 ctx *src )
[Function]void camellia256_invert_key (struct camellia256 ctx *dst , const

struct camellia256 ctx *src )
[Function]void camellia_invert_key (struct camellia ctx *dst , const struct

camellia ctx *src )
Given a context src initialized for encryption, initializes the context struct dst for
decryption, using the same key. If the same context struct is passed for both src and
dst, it is converted in place. These functions are mainly useful for applications which
needs to both encrypt and decrypt using the same key.

[Function]void camellia128_crypt (struct camellia128 ctx *ctx , size t length ,

uint8 t *dst , const uint8 t *src )
[Function]void camellia192_crypt (struct camellia192 ctx *ctx , size t length ,

uint8 t *dst , const uint8 t *src )
[Function]void camellia256_crypt (struct camellia256 ctx *ctx , size t length ,

uint8 t *dst , const uint8 t *src )



Chapter 7: Reference 27

[Function]void camellia_crypt (struct camellia ctx *ctx , size t length , uint8 t

*dst , const uint8 t *src )
The same function is used for both encryption and decryption. length must be an
integral multiple of the block size. If it is more than one block, the data is processed
in ECB mode. src and dst may be equal, but they must not overlap in any other
way.

7.2.6 CAST128

CAST-128 is a block cipher, specified in RFC 2144. It uses a 64 bit (8 octets) block size, and
a key size of 128 bits. It is possible, but discouraged, to use the same algorithm with shorter
keys. Nettle refers to the variant with variable key size as CAST-5. Keys for CAST-5 are
zero padded to 128 bits, and with very short keys, less than 80 bits, encryption also uses
fewer rounds than CAST128. Nettle defines cast128 in ‘<nettle/cast128.h>’.

[Context struct]struct cast128_ctx

[Constant]CAST128_BLOCK_SIZE
The CAST128 block-size, 8.

[Constant]CAST128_KEY_SIZE
The CAST128 key size, 16.

[Constant]CAST5_MIN_KEY_SIZE
Minimum CAST5 key size, 5.

[Constant]CAST5_MAX_KEY_SIZE
Maximum CAST5 key size, 16. With 16 octets key (128 bits), CAST-5 is the same
as CAST-128.

[Function]void cast128_set_key (struct cast128 ctx *ctx , const uint8 t *key )
Initialize the cipher. The same function is used for both encryption and decryption.

[Function]void cast128_encrypt (struct cast128 ctx *ctx , size t length , uint8 t

*dst , const uint8 t *src )
Encryption function. length must be an integral multiple of the block size. If it is
more than one block, the data is processed in ECB mode. src and dst may be equal,
but they must not overlap in any other way.

[Function]void cast128_decrypt (struct cast128 ctx *ctx , size t length , uint8 t

*dst , const uint8 t *src )
Analogous to cast128_encrypt

[Function]void cast5_set_key (struct cast128 ctx *ctx , size t length , const

uint8 t *key )
Initialize the cipher. This variant of the key setup takes the key size as argument.
The same function is used for both encryption and decryption.



Chapter 7: Reference 28

7.2.7 ChaCha

ChaCha is a variant of the stream cipher Salsa20, also designed by D. J. Bernstein. For
more information on Salsa20, see below. Nettle defines ChaCha in ‘<nettle/chacha.h>’.

[Context struct]struct chacha_ctx

[Constant]CHACHA_KEY_SIZE
ChaCha key size, 32.

[Constant]CHACHA_BLOCK_SIZE
ChaCha block size, 64.

[Constant]CHACHA_NONCE_SIZE
Size of the nonce, 8.

[Constant]CHACHA_COUNTER_SIZE
Size of the counter, 8.

[Function]void chacha_set_key (struct chacha ctx *ctx , const uint8 t *key )
Initialize the cipher. The same function is used for both encryption and decryption.
Before using the cipher, you must also call chacha_set_nonce, see below.

[Function]void chacha_set_nonce (struct chacha ctx *ctx , const uint8 t

*nonce )
Sets the nonce. It is always of size CHACHA_NONCE_SIZE, 8 octets. This function also
initializes the block counter, setting it to zero.

[Function]void chacha_set_counter (struct chacha ctx *ctx , const uint8 t

*counter )
Sets the block counter. It is always of size CHACHA_COUNTER_SIZE, 8 octets. This is
rarely needed since chacha_set_nonce initializes the block counter to zero. When it
is still necessary, this function must be called after chacha_set_nonce.

[Function]void chacha_crypt (struct chacha ctx *ctx , size t length , uint8 t

*dst , const uint8 t *src )
Encrypts or decrypts the data of a message, using ChaCha. When a message is
encrypted using a sequence of calls to chacha_crypt, all but the last call must use a
length that is a multiple of CHACHA_BLOCK_SIZE.

7.2.7.1 32-bit counter variant

While the original paper uses 64-bit counter value, the variant defined in RFC 8439 uses 32-
bit counter value. This variant is particularly useful for see Section 7.4.4 [ChaCha-Poly1305],
page 54 AEAD construction, which supports 12-octet nonces.

[Constant]CHACHA_NONCE96_SIZE
Size of the nonce, 12.

[Constant]CHACHA_COUNTER32_SIZE
Size of the counter, 4.



Chapter 7: Reference 29

[Function]void chacha_set_nonce96 (struct chacha ctx *ctx , const uint8 t

*nonce )
Sets the nonce. This is similar to the above chacha_set_nonce, but the input is
always of size CHACHA_NONCE96_SIZE, 12 octets.

[Function]void chacha_set_counter32 (struct chacha ctx *ctx , const uint8 t

*counter )
Sets the block counter. This is similar to the above chacha_set_counter, but the
input is always of size CHACHA_COUNTER32_SIZE, 4 octets.

[Function]void chacha_crypt32 (struct chacha ctx *ctx , size t length , uint8 t

*dst , const uint8 t *src )
Encrypts or decrypts the data of a message, using ChaCha. This is similar to the
above chacha_crypt, but it assumes the internal counter value is 32-bit long and the
nonce is 96-bit long.

7.2.8 DES

DES is the old Data Encryption Standard, specified by NIST. It uses a block size of 64 bits
(8 octets), and a key size of 56 bits. However, the key bits are distributed over 8 octets,
where the least significant bit of each octet may be used for parity. A common way to use
DES is to generate 8 random octets in some way, then set the least significant bit of each
octet to get odd parity, and initialize DES with the resulting key.

The key size of DES is so small that keys can be found by brute force, using specialized
hardware or lots of ordinary work stations in parallel. One shouldn’t be using plain DES
at all today, if one uses DES at all one should be using “triple DES”, see DES3 below.

DES also has some weak keys. Nettle defines DES in ‘<nettle/des.h>’.

[Context struct]struct des_ctx

[Constant]DES_BLOCK_SIZE
The DES block-size, 8.

[Constant]DES_KEY_SIZE
DES key size, 8.

[Function]int des_set_key (struct des ctx *ctx , const uint8 t *key )
Initialize the cipher. The same function is used for both encryption and decryption.
Parity bits are ignored. Checks for weak keys, returning 1 for good keys and 0 for
weak keys. Applications that don’t care about weak keys can ignore the return value.

[Function]void des_encrypt (struct des ctx *ctx , size t length , uint8 t *dst ,

const uint8 t *src )
Encryption function. length must be an integral multiple of the block size. If it is
more than one block, the data is processed in ECB mode. src and dst may be equal,
but they must not overlap in any other way.

[Function]void des_decrypt (struct des ctx *ctx , size t length , uint8 t *dst ,

const uint8 t *src )
Analogous to des_encrypt



Chapter 7: Reference 30

[Function]int des_check_parity (size t length , const uint8 t *key );
Checks that the given key has correct, odd, parity. Returns 1 for correct parity, and
0 for bad parity.

[Function]void des_fix_parity (size t length , uint8 t *dst , const uint8 t

*src )
Adjusts the parity bits to match DES’s requirements. You need this function if you
have created a random-looking string by a key agreement protocol, and want to use
it as a DES key. dst and src may be equal.

7.2.9 DES3

The inadequate key size of DES has already been mentioned. One way to increase the key
size is to pipe together several DES boxes with independent keys. It turns out that using
two DES ciphers is not as secure as one might think, even if the key size of the combination
is a respectable 112 bits.

The standard way to increase DES’s key size is to use three DES boxes. The mode of
operation is a little peculiar: the middle DES box is wired in the reverse direction. To
encrypt a block with DES3, you encrypt it using the first 56 bits of the key, then decrypt

it using the middle 56 bits of the key, and finally encrypt it again using the last 56 bits of
the key. This is known as “ede” triple-DES, for “encrypt-decrypt-encrypt”.

The “ede” construction provides some backward compatibility, as you get plain single
DES simply by feeding the same key to all three boxes. That should help keeping down the
gate count, and the price, of hardware circuits implementing both plain DES and DES3.

DES3 has a key size of 168 bits, but just like plain DES, useless parity bits are inserted,
so that keys are represented as 24 octets (192 bits). As a 112 bit key is large enough to make
brute force attacks impractical, some applications uses a “two-key” variant of triple-DES.
In this mode, the same key bits are used for the first and the last DES box in the pipe,
while the middle box is keyed independently. The two-key variant is believed to be secure,
i.e. there are no known attacks significantly better than brute force.

Naturally, it’s simple to implement triple-DES on top of Nettle’s DES functions. Nettle
includes an implementation of three-key “ede” triple-DES, it is defined in the same place
as plain DES, ‘<nettle/des.h>’.

[Context struct]struct des3_ctx

[Constant]DES3_BLOCK_SIZE
The DES3 block-size is the same as DES BLOCK SIZE, 8.

[Constant]DES3_KEY_SIZE
DES key size, 24.

[Function]int des3_set_key (struct des3 ctx *ctx , const uint8 t *key )
Initialize the cipher. The same function is used for both encryption and decryption.
Parity bits are ignored. Checks for weak keys, returning 1 if all three keys are good
keys, and 0 if one or more key is weak. Applications that don’t care about weak keys
can ignore the return value.

For random-looking strings, you can use des_fix_parity to adjust the parity bits before
calling des3_set_key.



Chapter 7: Reference 31

[Function]void des3_encrypt (struct des3 ctx *ctx , size t length , uint8 t *dst ,

const uint8 t *src )
Encryption function. length must be an integral multiple of the block size. If it is
more than one block, the data is processed in ECB mode. src and dst may be equal,
but they must not overlap in any other way.

[Function]void des3_decrypt (struct des3 ctx *ctx , size t length , uint8 t *dst ,

const uint8 t *src )
Analogous to des_encrypt

7.2.10 Salsa20

Salsa20 is a fairly recent stream cipher designed by D. J. Bernstein. It is built on the
observation that a cryptographic hash function can be used for encryption: Form the hash
input from the secret key and a counter, xor the hash output and the first block of the
plaintext, then increment the counter to process the next block (similar to CTR mode, see
see Section 7.3.2 [CTR], page 36). Bernstein defined an encryption algorithm, Snuffle, in
this way to ridicule United States export restrictions which treated hash functions as nice
and harmless, but ciphers as dangerous munitions.

Salsa20 uses the same idea, but with a new specialized hash function to mix key, block
counter, and a couple of constants. It’s also designed for speed; on x86 64, it is currently
the fastest cipher offered by nettle. It uses a block size of 512 bits (64 octets) and there are
two specified key sizes, 128 and 256 bits (16 and 32 octets).

Caution: The hash function used in Salsa20 is not directly applicable for use as a general
hash function. It’s not collision resistant if arbitrary inputs are allowed, and furthermore,
the input and output is of fixed size.

When using Salsa20 to process a message, one specifies both a key and a nonce, the
latter playing a similar rôle to the initialization vector (IV) used with CBC or CTR mode.
One can use the same key for several messages, provided one uses a unique random iv for
each message. The iv is 64 bits (8 octets). The block counter is initialized to zero for each
message, and is also 64 bits (8 octets). Nettle defines Salsa20 in ‘<nettle/salsa20.h>’.

[Context struct]struct salsa20_ctx

[Constant]SALSA20_128_KEY_SIZE
[Constant]SALSA20_256_KEY_SIZE

The two supported key sizes, 16 and 32 octets.

[Constant]SALSA20_KEY_SIZE
Recommended key size, 32.

[Constant]SALSA20_BLOCK_SIZE
Salsa20 block size, 64.

[Constant]SALSA20_NONCE_SIZE
Size of the nonce, 8.

[Function]void salsa20_128_set_key (struct salsa20 ctx *ctx , const uint8 t

*key )
[Function]void salsa20_256_set_key (struct salsa20 ctx *ctx , const uint8 t

*key )



Chapter 7: Reference 32

[Function]void salsa20_set_key (struct salsa20 ctx *ctx , size t length , const

uint8 t *key )
Initialize the cipher. The same function is used for both encryption and decryption.
salsa20_128_set_key and salsa20_128_set_key use a fix key size each, 16 and
32 octets, respectively. The function salsa20_set_key is provided for backwards
compatibility, and the length argument must be either 16 or 32. Before using the
cipher, you must also call salsa20_set_nonce, see below.

[Function]void salsa20_set_nonce (struct salsa20 ctx *ctx , const uint8 t

*nonce )
Sets the nonce. It is always of size SALSA20_NONCE_SIZE, 8 octets. This function also
initializes the block counter, setting it to zero.

[Function]void salsa20_crypt (struct salsa20 ctx *ctx , size t length , uint8 t

*dst , const uint8 t *src )
Encrypts or decrypts the data of a message, using salsa20. When a message is en-
crypted using a sequence of calls to salsa20_crypt, all but the last call must use a
length that is a multiple of SALSA20_BLOCK_SIZE.

The full salsa20 cipher uses 20 rounds of mixing. Variants of Salsa20 with
fewer rounds are possible, and the 12-round variant is specified by eSTREAM, see
http://www.ecrypt.eu.org/stream/finallist.html. Nettle calls this variant
salsa20r12. It uses the same context struct and key setup as the full salsa20 cipher, but
a separate function for encryption and decryption.

[Function]void salsa20r12_crypt (struct salsa20 ctx *ctx , size t length ,

uint8 t *dst , const uint8 t *src )
Encrypts or decrypts the data of a message, using salsa20 reduced to 12 rounds.

7.2.11 SERPENT

SERPENT is one of the AES finalists, designed by Ross Anderson, Eli Biham and Lars
Knudsen. Thus, the interface and properties are similar to AES’. One peculiarity is that it
is quite pointless to use it with anything but the maximum key size, smaller keys are just
padded to larger ones. Nettle defines SERPENT in ‘<nettle/serpent.h>’.

[Context struct]struct serpent_ctx

[Constant]SERPENT_BLOCK_SIZE
The SERPENT block-size, 16.

[Constant]SERPENT_MIN_KEY_SIZE
Minimum SERPENT key size, 16.

[Constant]SERPENT_MAX_KEY_SIZE
Maximum SERPENT key size, 32.

[Constant]SERPENT_KEY_SIZE
Default SERPENT key size, 32.



Chapter 7: Reference 33

[Function]void serpent_set_key (struct serpent ctx *ctx , size t length , const

uint8 t *key )
Initialize the cipher. The same function is used for both encryption and decryption.

[Function]void serpent_encrypt (struct serpent ctx *ctx , size t length , uint8 t

*dst , const uint8 t *src )
Encryption function. length must be an integral multiple of the block size. If it is
more than one block, the data is processed in ECB mode. src and dst may be equal,
but they must not overlap in any other way.

[Function]void serpent_decrypt (struct serpent ctx *ctx , size t length , uint8 t

*dst , const uint8 t *src )
Analogous to serpent_encrypt

7.2.12 TWOFISH

Another AES finalist, this one designed by Bruce Schneier and others. Nettle defines it in
‘<nettle/twofish.h>’.

[Context struct]struct twofish_ctx

[Constant]TWOFISH_BLOCK_SIZE
The TWOFISH block-size, 16.

[Constant]TWOFISH_MIN_KEY_SIZE
Minimum TWOFISH key size, 16.

[Constant]TWOFISH_MAX_KEY_SIZE
Maximum TWOFISH key size, 32.

[Constant]TWOFISH_KEY_SIZE
Default TWOFISH key size, 32.

[Function]void twofish_set_key (struct twofish ctx *ctx , size t length , const

uint8 t *key )
Initialize the cipher. The same function is used for both encryption and decryption.

[Function]void twofish_encrypt (struct twofish ctx *ctx , size t length , uint8 t

*dst , const uint8 t *src )
Encryption function. length must be an integral multiple of the block size. If it is
more than one block, the data is processed in ECB mode. src and dst may be equal,
but they must not overlap in any other way.

[Function]void twofish_decrypt (struct twofish ctx *ctx , size t length , uint8 t

*dst , const uint8 t *src )
Analogous to twofish_encrypt

7.2.13 The struct nettle_cipher abstraction

Nettle includes a struct including information about some of the more regular cipher func-
tions. It can be useful for applications that need a simple way to handle various algorithms.
Nettle defines these structs in ‘<nettle/nettle-meta.h>’.



Chapter 7: Reference 34

[Meta struct]struct nettle_cipher name context size block size key size

set encrypt key set decrypt key encrypt decrypt

The last four attributes are function pointers, of types nettle_set_key_func * and
nettle_cipher_func *. The first argument to these functions is a const void *

pointer to a context struct, which is of size context_size.

[Constant Struct]struct nettle_cipher nettle_aes128
[Constant Struct]struct nettle_cipher nettle_aes192
[Constant Struct]struct nettle_cipher nettle_aes256
[Constant Struct]struct nettle_cipher nettle_arctwo40
[Constant Struct]struct nettle_cipher nettle_arctwo64
[Constant Struct]struct nettle_cipher nettle_arctwo128
[Constant Struct]struct nettle_cipher nettle_arctwo_gutmann128
[Constant Struct]struct nettle_cipher nettle_arcfour128
[Constant Struct]struct nettle_cipher nettle_camellia128
[Constant Struct]struct nettle_cipher nettle_camellia192
[Constant Struct]struct nettle_cipher nettle_camellia256
[Constant Struct]struct nettle_cipher nettle_cast128
[Constant Struct]struct nettle_cipher nettle_serpent128
[Constant Struct]struct nettle_cipher nettle_serpent192
[Constant Struct]struct nettle_cipher nettle_serpent256
[Constant Struct]struct nettle_cipher nettle_twofish128
[Constant Struct]struct nettle_cipher nettle_twofish192
[Constant Struct]struct nettle_cipher nettle_twofish256

Nettle includes such structs for all the regular ciphers, i.e. ones without weak keys or
other oddities.

Nettle also exports a list of all these ciphers without weak keys or other oddities.

[Function]const struct nettle_cipher ** nettle_get_ciphers (void)
Returns a NULL-terminated list of pointers to supported block ciphers. This list can
be used to dynamically enumerate or search the supported algorithms.

[Macro]nettle_ciphers
A macro expanding to a call to nettle get ciphers. In earlier versions, this was not a
macro but the actual array of pointers.

7.3 Cipher modes

Cipher modes of operation specifies the procedure to use when encrypting a message that
is larger than the cipher’s block size. As explained in See Section 7.2 [Cipher functions],
page 19, splitting the message into blocks and processing them independently with the block
cipher (Electronic Code Book mode, ECB), leaks information.

Besides ECB, Nettle provides several other modes of operation: Cipher Block
Chaining (CBC), Counter mode (CTR), Cipher Feedback (CFB and CFB8), XEX-based
tweaked-codebook mode with ciphertext stealing (XTS) and a couple of AEAD modes
(see Section 7.4 [Authenticated encryption], page 42). CBC is widely used, but
there are a few subtle issues of information leakage, see, e.g., SSH CBC vulnerability
(http://www.kb.cert.org/vuls/id/958563). Today, CTR is usually preferred over CBC.



Chapter 7: Reference 35

Modes like CBC, CTR, CFB and CFB8 provide no message authentication, and should
always be used together with a MAC (see Section 7.5 [Keyed hash functions], page 58) or
signature to authenticate the message.

7.3.1 Cipher Block Chaining

When using CBC mode, plaintext blocks are not encrypted independently of each other,
like in Electronic Cook Book mode. Instead, when encrypting a block in CBC mode, the
previous ciphertext block is XORed with the plaintext before it is fed to the block cipher.
When encrypting the first block, a random block called an IV, or Initialization Vector, is
used as the “previous ciphertext block”. The IV should be chosen randomly, but it need
not be kept secret, and can even be transmitted in the clear together with the encrypted
data.

In symbols, if E_k is the encryption function of a block cipher, and IV is the initialization
vector, then n plaintext blocks M_1,. . . M_n are transformed into n ciphertext blocks C_1,. . .
C_n as follows:

C_1 = E_k(IV XOR M_1)

C_2 = E_k(C_1 XOR M_2)

...

C_n = E_k(C_(n-1) XOR M_n)

Nettle’s includes two functions for applying a block cipher in Cipher Block Chaining
(CBC) mode, one for encryption and one for decryption. These functions uses void * to
pass cipher contexts around.

[Function]void cbc_encrypt (const void *ctx , nettle cipher func *f , size t

block_size , uint8 t *iv , size t length , uint8 t *dst , const uint8 t *src )
[Function]void cbc_decrypt (const void *ctx , nettle cipher func *f , size t

block_size , uint8 t *iv , size t length , uint8 t *dst , const uint8 t *src )
Applies the encryption or decryption function f in CBC mode. The final ciphertext
block processed is copied into iv before returning, so that a large message can be
processed by a sequence of calls to cbc_encrypt. The function f is of type

void f (void *ctx, size_t length, uint8_t dst, const uint8_t *src),

and the cbc_encrypt and cbc_decrypt functions pass their argument ctx on to f .

There are also some macros to help use these functions correctly.

[Macro]CBC_CTX (context_type , block_size )
Expands to

{

context_type ctx;

uint8_t iv[block_size];

}

It can be used to define a CBC context struct, either directly,

struct CBC_CTX(struct aes_ctx, AES_BLOCK_SIZE) ctx;

or to give it a struct tag,



Chapter 7: Reference 36

struct aes_cbc_ctx CBC_CTX (struct aes_ctx, AES_BLOCK_SIZE);

[Macro]CBC_SET_IV (ctx , iv )
First argument is a pointer to a context struct as defined by CBC_CTX, and the second
is a pointer to an Initialization Vector (IV) that is copied into that context.

[Macro]CBC_ENCRYPT (ctx , f , length , dst , src )
[Macro]CBC_DECRYPT (ctx , f , length , dst , src )

A simpler way to invoke cbc_encrypt and cbc_decrypt. The first argument is a
pointer to a context struct as defined by CBC_CTX, and the second argument is an
encryption or decryption function following Nettle’s conventions. The last three ar-
guments define the source and destination area for the operation.

These macros use some tricks to make the compiler display a warning if the types of f and
ctx don’t match, e.g. if you try to use an struct aes_ctx context with the des_encrypt

function.

7.3.2 Counter mode

Counter mode (CTR) uses the block cipher as a keyed pseudo-random generator. The
output of the generator is XORed with the data to be encrypted. It can be understood as
a way to transform a block cipher to a stream cipher.

The message is divided into n blocks M_1,. . . M_n, where M_n is of size m which may be
smaller than the block size. Except for the last block, all the message blocks must be of
size equal to the cipher’s block size.

If E_k is the encryption function of a block cipher, IC is the initial counter, then the n

plaintext blocks are transformed into n ciphertext blocks C_1,. . . C_n as follows:

C_1 = E_k(IC) XOR M_1

C_2 = E_k(IC + 1) XOR M_2

...

C_(n-1) = E_k(IC + n - 2) XOR M_(n-1)

C_n = E_k(IC + n - 1) [1..m] XOR M_n

The IC is the initial value for the counter, it plays a similar rôle as the IV for CBC. When
adding, IC + x, IC is interpreted as an integer, in network byte order. For the last block,
E_k(IC + n - 1) [1..m] means that the cipher output is truncated to m bytes.

[Function]void ctr_crypt (const void *ctx , nettle cipher func *f , size t

block_size , uint8 t *ctr , size t length , uint8 t *dst , const uint8 t *src )
Applies the encryption function f in CTR mode. Note that for CTR mode, encryption
and decryption is the same operation, and hence f should always be the encryption
function for the underlying block cipher.

When a message is encrypted using a sequence of calls to ctr_crypt, all but the last
call must use a length that is a multiple of the block size.

Like for CBC, there are also a couple of helper macros.



Chapter 7: Reference 37

[Macro]CTR_CTX (context_type , block_size )
Expands to

{

context_type ctx;

uint8_t ctr[block_size];

}

[Macro]CTR_SET_COUNTER (ctx , iv )
First argument is a pointer to a context struct as defined by CTR_CTX, and the second
is a pointer to an initial counter that is copied into that context.

[Macro]CTR_CRYPT (ctx , f , length , dst , src )
A simpler way to invoke ctr_crypt. The first argument is a pointer to a context struct
as defined by CTR_CTX, and the second argument is an encryption function following
Nettle’s conventions. The last three arguments define the source and destination area
for the operation.

7.3.3 Cipher Feedback mode

Cipher Feedback mode (CFB) and Cipher Feedback 8-bit mode (CFB8) being close relatives
to both CBC mode and CTR mode borrow some characteristics from stream ciphers.

For CFB the message is divided into n blocks M_1,. . . M_n, where M_n is of size m which
may be smaller than the block size. Except for the last block, all the message blocks must
be of size equal to the cipher’s block size.

If E_k is the encryption function of a block cipher, IV is the initialization vector, then
the n plaintext blocks are transformed into n ciphertext blocks C_1,. . . C_n as follows:

C_1 = E_k(IV) XOR M_1

C_2 = E_k(C_1) XOR M_2

...

C_(n-1) = E_k(C_(n - 2)) XOR M_(n-1)

C_n = E_k(C_(n - 1)) [1..m] XOR M_n

Cipher Feedback 8-bit mode (CFB8) transforms block cipher into a stream cipher. The
message is encrypted byte after byte, not requiring any padding.

If E_k is the encryption function of a block cipher, b is E_k block size, IV is the initial-
ization vector, then the n plaintext bytes are transformed into n ciphertext bytes C_1,. . .
C_n as follows:

I_1 = IV

C_1 = E_k(I_1) [1..8] XOR M_1

I_2 = I_1 [9..b] << 8 | C_1

C_2 = E_k(I_2) [1..8] XOR M_2

...

I_(n-1) = I_(n-2) [9..b] << 8 | C_(n-2)

C_(n-1) = E_k(I_(n-1)) [1..8] XOR M_(n-1)



Chapter 7: Reference 38

I_n = I_(n-1) [9..b] << 8 | C_(n-1)

C_n = E_k(I_n) [1..8] XOR M_n

Nettle’s includes functions for applying a block cipher in Cipher Feedback (CFB) and
Cipher Feedback 8-bit (CFB8) modes. These functions uses void * to pass cipher contexts
around.

[Function]void cfb_encrypt (const void *ctx , nettle cipher func *f , size t

block_size , uint8 t *iv , size t length , uint8 t *dst , const uint8 t *src )
[Function]void cfb_decrypt (const void *ctx , nettle cipher func *f , size t

block_size , uint8 t *iv , size t length , uint8 t *dst , const uint8 t *src )
Applies the encryption or decryption function f in CFB mode. The final ciphertext
block processed is copied into iv before returning, so that a large message can be
processed by a sequence of calls to cfb_encrypt. Note that for CFB mode internally
uses encryption only function and hence f should always be the encryption function
for the underlying block cipher.

When a message is encrypted using a sequence of calls to cfb_encrypt, all but the
last call must use a length that is a multiple of the block size.

[Function]void cfb8_encrypt (const void *ctx , nettle cipher func *f , size t

block_size , uint8 t *iv , size t length , uint8 t *dst , const uint8 t *src )
[Function]void cfb8_decrypt (const void *ctx , nettle cipher func *f , size t

block_size , uint8 t *iv , size t length , uint8 t *dst , const uint8 t *src )
Applies the encryption or decryption function f in CFB8 mode. The final IV block
processed is copied into iv before returning, so that a large message can be processed
by a sequence of calls to cfb8_encrypt. Note that for CFB8 mode internally uses
encryption only function and hence f should always be the encryption function for
the underlying block cipher.

Like for CBC, there are also a couple of helper macros.

[Macro]CFB_CTX (context_type , block_size )
Expands to

{

context_type ctx;

uint8_t iv[block_size];

}

[Macro]CFB_SET_IV(ctx, iv )
First argument is a pointer to a context struct as defined by CFB_CTX, and the second
is a pointer to an initialization vector that is copied into that context.

[Macro]CFB_ENCRYPT (ctx , f , length , dst , src )
A simpler way to invoke cfb_encrypt. The first argument is a pointer to a context
struct as defined by CFB_CTX, and the second argument is an encryption function
following Nettle’s conventions. The last three arguments define the source and desti-
nation area for the operation.



Chapter 7: Reference 39

[Macro]CFB_DECRYPT (ctx , f , length , dst , src )
A simpler way to invoke cfb_decrypt. The first argument is a pointer to a context
struct as defined by CFB_CTX, and the second argument is an encryption function
following Nettle’s conventions. The last three arguments define the source and desti-
nation area for the operation.

[Macro]CFB8_CTX (context_type , block_size )
Expands to

{

context_type ctx;

uint8_t iv[block_size];

}

[Macro]CFB8_SET_IV (ctx , iv )
First argument is a pointer to a context struct as defined by CFB8_CTX, and the second
is a pointer to an initialization vector that is copied into that context.

[Macro]CFB8_ENCRYPT (ctx , f , length , dst , src )
A simpler way to invoke cfb8_encrypt. The first argument is a pointer to a context
struct as defined by CFB8_CTX, and the second argument is an encryption function
following Nettle’s conventions. The last three arguments define the source and desti-
nation area for the operation.

[Macro]CFB8_DECRYPT (ctx , f , length , dst , src )
A simpler way to invoke cfb8_decrypt. The first argument is a pointer to a context
struct as defined by CFB8_CTX, and the second argument is an encryption function
following Nettle’s conventions. The last three arguments define the source and desti-
nation area for the operation.

7.3.4 XEX-based tweaked-codebook mode with ciphertext stealing

XEX-based tweaked-codebook mode with ciphertext stealing (XTS) is a block mode like
(CBC) but tweaked to be able to encrypt partial blocks via a technique called ciphertext
stealing, where the last complete block of ciphertext is split and part returned as the last
block and part used as plaintext for the second to last block. This mode is principally used
to encrypt data at rest where it is not possible to store additional metadata or blocks larger
than the plain text. The most common usage is for disk encryption. Due to the fact that
ciphertext expansion is not possible, data is not authenticated. This mode should not be
used where authentication is critical.

The message is divided into n blocks M_1,. . . M_n, where M_n is of size m which may be
smaller than the block size. XTS always uses a fixed blocksize of 128 bit (16 bytes) length.

Unlike other modes, the key is double the size of that for the used cipher mode (for
example 256bit for AES-128 and 512bit for AES-256).

XTS encryption mode operates given:

• A multiplication by a primitive element alpha. MUL a^j here represents the
multiplication, where j is the power of alpha, and the input value is converted
into a 16 bytes array a_0[k], k = 0,1,..,15. The multiplication is calculated as
a_(j+1)[0] = (2(a_j[0] mod 128)) XOR (135 * floor(a_j[15]/128) a_(j+1)[k]



Chapter 7: Reference 40

= (2(a_j[k] mod 128)) XOR (floor(a_j[k-1]/128), k = 1,2,..15 Note that this
operation is practically a 1 bit left shift operation with carry propagating from one
byte to the next, and if the last bit shift results in a carry the decimal value 135 is
XORed into the first byte.

• The encryption key is provided as the Key = K1 | K2, where | denotes string concate-
nation. E_k1 is the encryption function of the block cipher using K1 as the key, and
E_k2 is the same encryption function using K2

• A 128 bit tweak value is provided as input and is denoted as IV

The n plaintext blocks are transformed into n ciphertext blocks C_1,. . . C_n as follows.

For a plaintext length that is a perfect multiple of the XTS block size:

T_1 = E_k2(IV)

C_1 = E_k1(P_1 XOR T_1) XOR T_1

...

T_n = T_(n-1) MUL a

C_n = E_k1(P_n XOR T_n) XOR T_n

For any other plaintext lengths:

T_1 = E_k2(IV)

C_1 = E_k1(P_1 XOR T_1) XOR T_1

...

T_(n-2) = T_(n-3) MUL a

C_(n-2) = E_k1(P_(n-2) XOR T_(n-2)) XOR T_(n-2)

T_(n-1) = T_(n-2) MUL a

CC_(n-1) = E_k1(P_(n-1) XOR T_(n-1)) XOR T_(n-1)

T_n = T_(n-1) MUL a

PP = [1..m]Pn | [m+1..128]CC_(n-1)

C_(n-1) = E_k1(PP XOR T_n) XOR T_n

C_n = [1..m]CC_(n-1)

7.3.4.1 General (XTS) interface.

The two general functions to encrypt and decrypt using the XTS block cipher mode are the
following:



Chapter 7: Reference 41

[Function]void xts_encrypt_message (const void *enc_ctx , const void

*twk_ctx , nettle cipher func *encf , const uint8 t *tweak , size t length ,

uint8 t *dst , const uint8 t *src )
[Function]void xts_decrypt_message (const void *dec_ctx , const void

*twk_ctx , nettle cipher func *decf , nettle cipher func *encf , const uint8 t

*tweak , size t length , uint8 t *dst , const uint8 t *src )
Applies the encryption function encf or the decryption function decf in XTS mode.
At least one block (16 bytes) worth of data must be available therefore specifying a
length less than 16 bytes is illegal.

The functions encf decf are of type

void f (const void *ctx, size_t length, uint8_t *dst, const uint8_t *src),

and the xts_encrypt_message and xts_decrypt_message functions pass their ar-
guments enc ctx, twk ctx and dec ctx to the functions encf , decf as ctx.

7.3.4.2 XTS-AES interface

The AES XTS functions provide an API for using the XTS mode with the AES block ciphers.
The parameters all have the same meaning as the general interface, except that the enc ctx,
dec ctx, twk ctx, encf and decf are replaced with an AES context structure called ctx, and a
appropriate set-key function must be called before using any of the encryption or decryption
functions in this interface.

[Context struct]struct xts_aes128_key
Holds state corresponding to the AES-128 block cipher.

[Context struct]struct xts_aes256_key
Holds state corresponding to the AES-256 block cipher.

[Function]void xts_aes128_set_encrypt_key (struct xts aes128 key *ctx ,

const uint8 t *key )
[Function]void xts_aes256_set_encrypt_key (struct xts aes256 key *ctx ,

const uint8 t *key )
[Function]void xts_aes128_set_decrypt_key (struct xts aes128 key *ctx ,

const uint8 t *key )
[Function]void xts_aes256_set_decrypt_key (struct xts aes256 key *ctx ,

const uint8 t *key )
Initializes the encryption or decryption key for the AES block cipher. The length of
the key must be double the size of the key for the corresponding cipher (256 bits for
AES-128 and 512 bits for AES-256). One of these functions must be called before
any of the other functions.

[Function]void xts_aes128_encrypt_message(struct xts aes128 key *ctx ,

uint8 t *tweak , size t length , uint8 t *dst , const uint8 t *src )
[Function]void xts_aes256_encrypt_message(struct xts aes256 key *ctx ,

uint8 t *tweak , size t length , uint8 t *dst , const uint8 t *src )
[Function]void xts_aes128_decrypt_message(struct xts aes128 key *ctx ,

uint8 t *tweak , size t length , uint8 t *dst , const uint8 t *src )



Chapter 7: Reference 42

[Function]void xts_aes256_decrypt_message(struct xts aes256 key *ctx ,

uint8 t *tweak , size t length , uint8 t *dst , const uint8 t *src )
These are identical to xts_encrypt_message and xts_decrypt_message, except that
enc ctx, dec ctx, twk ctx, encf and decf are replaced by the ctx context structure.

7.4 Authenticated encryption with associated data

Since there are some subtle design choices to be made when combining a block cipher
mode with out authentication with a MAC. In recent years, several constructions that
combine encryption and authentication have been defined. These constructions typically
also have an additional input, the “associated data”, which is authenticated but not included
with the message. A simple example is an implicit message number which is available at
both sender and receiver, and which needs authentication in order to detect deletions or
replay of messages. This family of building blocks are therefore called AEAD, Authenticated
encryption with associated data.

The aim is to provide building blocks that it is easier for designers of protocols and
applications to use correctly. There is also some potential for improved performance, if
encryption and authentication can be done in a single step, although that potential is not
realized for the constructions currently supported by Nettle.

For encryption, the inputs are:

• The key, which can be used for many messages.

• A nonce, which must be unique for each message using the same key.

• Additional associated data to be authenticated, but not included in the message.

• The cleartext message to be encrypted.

The outputs are:

• The ciphertext, of the same size as the cleartext.

• A digest or “authentication tag”.

Decryption works the same, but with cleartext and ciphertext interchanged. All currently
supported AEAD algorithms always use the encryption function of the underlying block
cipher, for both encryption and decryption.

Usually, the authentication tag should be appended at the end of the ciphertext, pro-
ducing an encrypted message which is slightly longer than the cleartext. However, Nettle’s
low level AEAD functions produce the authentication tag as a separate output for both
encryption and decryption.

Both associated data and the message data (cleartext or ciphertext) can be processed
incrementally. In general, all associated data must be processed before the message data,
and all calls but the last one must use a length that is a multiple of the block size, although
some AEAD may implement more liberal conventions. The CCM mode is a bit special in
that it requires the message lengths up front, other AEAD constructions don’t have this
restriction.

The supported AEAD constructions are Galois/Counter mode (GCM), EAX, ChaCha-
Poly1305, and Counter with CBC-MAC (CCM). There are some weaknesses in GCM authenti-
cation, see http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/CWC-GCM/Ferguson2.
CCM and EAX use the same building blocks, but the EAX design is cleaner and avoids a



Chapter 7: Reference 43

couple of inconveniences of CCM. Therefore, EAX seems like a good conservative choice.
The more recent ChaCha-Poly1305 may also be an attractive but more adventurous
alternative, in particular if performance is important.

7.4.1 EAX

The EAX mode is an AEAD mode which combines CTR mode encryption, See Section 7.3.2
[CTR], page 36, with a message authentication based on CBC, See Section 7.3.1 [CBC],
page 35. The implementation in Nettle is restricted to ciphers with a block size of 128 bits
(16 octets). EAX was defined as a reaction to the CCM mode, See Section 7.4.3 [CCM],
page 50, which uses the same primitives but has some undesirable and inelegant properties.

EAX supports arbitrary nonce size; it’s even possible to use an empty nonce in case only
a single message is encrypted for each key.

Nettle’s support for EAX consists of a low-level general interface, some convenience
macros, and specific functions for EAX using AES-128 as the underlying cipher. These
interfaces are defined in ‘<nettle/eax.h>’

7.4.1.1 General EAX interface

[Context struct]struct eax_key
EAX state which depends only on the key, but not on the nonce or the message.

[Context struct]struct eax_ctx
Holds state corresponding to a particular message.

[Constant]EAX_BLOCK_SIZE
EAX’s block size, 16.

[Constant]EAX_DIGEST_SIZE
Size of the EAX digest, also 16.

[Function]void eax_set_key (struct eax key *key , const void *cipher ,

nettle cipher func *f )
Initializes key . cipher gives a context struct for the underlying cipher, which must
have been previously initialized for encryption, and f is the encryption function.

[Function]void eax_set_nonce (struct eax ctx *eax , const struct eax key *key ,

const void *cipher , nettle cipher func *f , size t nonce_length , const

uint8 t *nonce )
Initializes ctx for processing a new message, using the given nonce.

[Function]void eax_update (struct eax ctx *eax , const struct eax key *key , const

void *cipher , nettle cipher func *f , size t data_length , const uint8 t

*data )
Process associated data for authentication. All but the last call for each message
must use a length that is a multiple of the block size. Unlike many other AEAD

constructions, for EAX it’s not necessary to complete the processing of all associated
data before encrypting or decrypting the message data.



Chapter 7: Reference 44

[Function]void eax_encrypt (struct eax ctx *eax , const struct eax key *key ,

const void *cipher , nettle cipher func *f , size t length , uint8 t *dst , const

uint8 t *src )
[Function]void eax_decrypt (struct eax ctx *eax , const struct eax key *key ,

const void *cipher , nettle cipher func *f , size t length , uint8 t *dst , const

uint8 t *src )
Encrypts or decrypts the data of a message. cipher is the context struct for the
underlying cipher and f is the encryption function. All but the last call for each
message must use a length that is a multiple of the block size.

[Function]void eax_digest (struct eax ctx *eax , const struct eax key *key , const

void *cipher , nettle cipher func *f , size t length , uint8 t *digest );
Extracts the message digest (also known “authentication tag”). This is the final
operation when processing a message. If length is smaller than EAX_DIGEST_SIZE,
only the first length octets of the digest are written.

7.4.1.2 EAX helper macros

The following macros are defined.

[Macro]EAX_CTX (context_type )
This defines an all-in-one context struct, including the context of the underlying cipher
and all EAX state. It expands to

{

struct eax_key key;

struct eax_ctx eax;

context_type cipher;

}

For all these macros, ctx, is a context struct as defined by EAX_CTX, and encrypt is the
encryption function of the underlying cipher.

[Macro]EAX_SET_KEY (ctx , set_key , encrypt , key )
set key is the function for setting the encryption key for the underlying cipher, and
key is the key.

[Macro]EAX_SET_NONCE (ctx , encrypt , length , nonce )
Sets the nonce to be used for the message.

[Macro]EAX_UPDATE (ctx , encrypt , length , data )
Process associated data for authentication.

[Macro]EAX_ENCRYPT (ctx , encrypt , length , dst , src )
[Macro]EAX_DECRYPT (ctx , encrypt , length , dst , src )

Process message data for encryption or decryption.

[Macro]EAX_DIGEST (ctx , encrypt , length , digest )
Extract the authentication tag for the message.



Chapter 7: Reference 45

7.4.1.3 EAX-AES128 interface

The following functions implement EAX using AES-128 as the underlying cipher.

[Context struct]struct eax_aes128_ctx
The context struct, defined using EAX_CTX.

[Function]void eax_aes128_set_key (struct eax aes128 ctx *ctx , const uint8 t

*key )
Initializes ctx using the given key.

[Function]void eax_aes128_set_nonce (struct eax aes128 ctx *ctx , size t

length , const uint8 t *iv )
Initializes the per-message state, using the given nonce.

[Function]void eax_aes128_update (struct eax aes128 ctx *ctx , size t length ,

const uint8 t *data )
Process associated data for authentication. All but the last call for each message must

use a length that is a multiple of the block size.

[Function]void eax_aes128_encrypt (struct eax aes128 ctx *ctx , size t length ,

uint8 t *dst , const uint8 t *src )
[Function]void eax_aes128_decrypt (struct eax aes128 ctx *ctx , size t length ,

uint8 t *dst , const uint8 t *src )
Encrypts or decrypts the data of a message. All but the last call for each message
must use a length that is a multiple of the block size.

[Function]void eax_aes128_digest (struct eax aes128 ctx *ctx , size t length ,

uint8 t *digest );
Extracts the message digest (also known “authentication tag”). This is the final
operation when processing a message. If length is smaller than EAX_DIGEST_SIZE,
only the first length octets of the digest are written.

7.4.2 Galois counter mode

Galois counter mode is an AEAD constructions combining counter mode with message
authentication based on universal hashing. The main objective of the design is to
provide high performance for hardware implementations, where other popular MAC

algorithms (see Section 7.5 [Keyed hash functions], page 58) become a bottleneck for
high-speed hardware implementations. It was proposed by David A. McGrew and John
Viega in 2005, and recommended by NIST in 2007, NIST Special Publication 800-38D
(http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf). It is
constructed on top of a block cipher which must have a block size of 128 bits.

The authentication in GCM has some known weaknesses, see http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/CWC-G
In particular, don’t use GCM with short authentication tags.

Nettle’s support for GCM consists of a low-level general interface, some convenience
macros, and specific functions for GCM using AES or Camellia as the underlying cipher.
These interfaces are defined in ‘<nettle/gcm.h>’



Chapter 7: Reference 46

7.4.2.1 General GCM interface

[Context struct]struct gcm_key
Message independent hash sub-key, and related tables.

[Context struct]struct gcm_ctx
Holds state corresponding to a particular message.

[Constant]GCM_BLOCK_SIZE
GCM’s block size, 16.

[Constant]GCM_DIGEST_SIZE
Size of the GCM digest, also 16.

[Constant]GCM_IV_SIZE
Recommended size of the IV, 12. Arbitrary sizes are allowed.

[Function]void gcm_set_key (struct gcm key *key , const void *cipher ,

nettle cipher func *f )
Initializes key . cipher gives a context struct for the underlying cipher, which must
have been previously initialized for encryption, and f is the encryption function.

[Function]void gcm_set_iv (struct gcm ctx *ctx , const struct gcm key *key ,

size t length , const uint8 t *iv )
Initializes ctx using the given IV. The key argument is actually needed only if length
differs from GCM_IV_SIZE.

[Function]void gcm_update (struct gcm ctx *ctx , const struct gcm key *key ,

size t length , const uint8 t *data )
Provides associated data to be authenticated. If used, must be called before gcm_

encrypt or gcm_decrypt. All but the last call for each message must use a length
that is a multiple of the block size.

[Function]void gcm_encrypt (struct gcm ctx *ctx , const struct gcm key *key ,

const void *cipher , nettle cipher func *f , size t length , uint8 t *dst , const

uint8 t *src )
[Function]void gcm_decrypt (struct gcm ctx *ctx , const struct gcm key *key ,

const void *cipher , nettle cipher func *f , size t length , uint8 t *dst , const

uint8 t *src )
Encrypts or decrypts the data of a message. cipher is the context struct for the
underlying cipher and f is the encryption function. All but the last call for each
message must use a length that is a multiple of the block size.

[Function]void gcm_digest (struct gcm ctx *ctx , const struct gcm key *key ,

const void *cipher , nettle cipher func *f , size t length , uint8 t *digest )
Extracts the message digest (also known “authentication tag”). This is the final
operation when processing a message. It’s strongly recommended that length is GCM_
DIGEST_SIZE, but if you provide a smaller value, only the first length octets of the
digest are written.



Chapter 7: Reference 47

To encrypt a message using GCM, first initialize a context for the underlying block cipher
with a key to use for encryption. Then call the above functions in the following order: gcm_
set_key, gcm_set_iv, gcm_update, gcm_encrypt, gcm_digest. The decryption procedure
is analogous, just calling gcm_decrypt instead of gcm_encrypt (note that GCM decryption
still uses the encryption function of the underlying block cipher). To process a new message,
using the same key, call gcm_set_iv with a new iv.

7.4.2.2 GCM helper macros

The following macros are defined.

[Macro]GCM_CTX (context_type )
This defines an all-in-one context struct, including the context of the underlying
cipher, the hash sub-key, and the per-message state. It expands to

{

struct gcm_key key;

struct gcm_ctx gcm;

context_type cipher;

}

Example use:

struct gcm_aes128_ctx GCM_CTX(struct aes128_ctx);

The following macros operate on context structs of this form.

[Macro]GCM_SET_KEY (ctx , set_key , encrypt , key )
First argument, ctx, is a context struct as defined by GCM_CTX. set key and en-

crypt are functions for setting the encryption key and for encrypting data using the
underlying cipher.

[Macro]GCM_SET_IV (ctx , length , data )
First argument is a context struct as defined by GCM_CTX. length and data give the
initialization vector (IV).

[Macro]GCM_UPDATE (ctx , length , data )
Simpler way to call gcm_update. First argument is a context struct as defined by
GCM_CTX

[Macro]GCM_ENCRYPT (ctx , encrypt , length , dst , src )
[Macro]GCM_DECRYPT (ctx , encrypt , length , dst , src )
[Macro]GCM_DIGEST (ctx , encrypt , length , digest )

Simpler way to call gcm_encrypt, gcm_decrypt or gcm_digest. First argument is a
context struct as defined by GCM_CTX. Second argument, encrypt, is the encryption
function of the underlying cipher.

7.4.2.3 GCM-AES interface

The following functions implement the common case of GCM using AES as the underlying
cipher. The variants with a specific AES flavor are recommended, while the fucntinos using
struct gcm_aes_ctx are kept for compatibility with older versiosn of Nettle.



Chapter 7: Reference 48

[Context struct]struct gcm_aes128_ctx
[Context struct]struct gcm_aes192_ctx
[Context struct]struct gcm_aes256_ctx

Context structs, defined using GCM_CTX.

[Context struct]struct gcm_aes_ctx
Alternative context struct, using the old AES interface.

[Function]void gcm_aes128_set_key (struct gcm aes128 ctx *ctx , const uint8 t

*key )
[Function]void gcm_aes192_set_key (struct gcm aes192 ctx *ctx , const uint8 t

*key )
[Function]void gcm_aes256_set_key (struct gcm aes256 ctx *ctx , const uint8 t

*key )
Initializes ctx using the given key.

[Function]void gcm_aes_set_key (struct gcm aes ctx *ctx , size t length , const

uint8 t *key )
Corresponding function, using the old AES interface. All valid AES key sizes can be
used.

[Function]void gcm_aes128_set_iv (struct gcm aes128 ctx *ctx , size t length ,

const uint8 t *iv )
[Function]void gcm_aes192_set_iv (struct gcm aes192 ctx *ctx , size t length ,

const uint8 t *iv )
[Function]void gcm_aes256_set_iv (struct gcm aes256 ctx *ctx , size t length ,

const uint8 t *iv )
[Function]void gcm_aes_set_iv (struct gcm aes ctx *ctx , size t length , const

uint8 t *iv )
Initializes the per-message state, using the given IV.

[Function]void gcm_aes128_update (struct gcm aes128 ctx *ctx , size t length ,

const uint8 t *data )
[Function]void gcm_aes192_update (struct gcm aes192 ctx *ctx , size t length ,

const uint8 t *data )
[Function]void gcm_aes256_update (struct gcm aes256 ctx *ctx , size t length ,

const uint8 t *data )
[Function]void gcm_aes_update (struct gcm aes ctx *ctx , size t length , const

uint8 t *data )
Provides associated data to be authenticated. If used, must be called before gcm_

aes_encrypt or gcm_aes_decrypt. All but the last call for each message must use a
length that is a multiple of the block size.

[Function]void gcm_aes128_encrypt (struct gcm aes128 ctx *ctx , size t

length , uint8 t *dst , const uint8 t *src )
[Function]void gcm_aes192_encrypt (struct gcm aes192 ctx *ctx , size t

length , uint8 t *dst , const uint8 t *src )
[Function]void gcm_aes256_encrypt (struct gcm aes256 ctx *ctx , size t

length , uint8 t *dst , const uint8 t *src )



Chapter 7: Reference 49

[Function]void gcm_aes_encrypt (struct gcm aes ctx *ctx , size t length ,

uint8 t *dst , const uint8 t *src )
[Function]void gcm_aes128_decrypt (struct gcm aes128 ctx *ctx , size t

length , uint8 t *dst , const uint8 t *src )
[Function]void gcm_aes192_decrypt (struct gcm aes192 ctx *ctx , size t

length , uint8 t *dst , const uint8 t *src )
[Function]void gcm_aes256_decrypt (struct gcm aes256 ctx *ctx , size t

length , uint8 t *dst , const uint8 t *src )
[Function]void gcm_aes_decrypt (struct gcm aes ctx *ctx , size t length ,

uint8 t *dst , const uint8 t *src )
Encrypts or decrypts the data of a message. All but the last call for each message
must use a length that is a multiple of the block size.

[Function]void gcm_aes128_digest (struct gcm aes128 ctx *ctx , size t length ,

uint8 t *digest )
[Function]void gcm_aes192_digest (struct gcm aes192 ctx *ctx , size t length ,

uint8 t *digest )
[Function]void gcm_aes256_digest (struct gcm aes256 ctx *ctx , size t length ,

uint8 t *digest )
[Function]void gcm_aes_digest (struct gcm aes ctx *ctx , size t length , uint8 t

*digest )
Extracts the message digest (also known “authentication tag”). This is the final
operation when processing a message. It’s strongly recommended that length is GCM_
DIGEST_SIZE, but if you provide a smaller value, only the first length octets of the
digest are written.

7.4.2.4 GCM-Camellia interface

The following functions implement the case of GCM using Camellia as the underlying cipher.

[Context struct]struct gcm_camellia128_ctx
[Context struct]struct gcm_camellia256_ctx

Context structs, defined using GCM_CTX.

[Function]void gcm_camellia128_set_key (struct gcm camellia128 ctx *ctx ,

const uint8 t *key )
[Function]void gcm_camellia256_set_key (struct gcm camellia256 ctx *ctx ,

const uint8 t *key )
Initializes ctx using the given key.

[Function]void gcm_camellia128_set_iv (struct gcm camellia128 ctx *ctx ,

size t length , const uint8 t *iv )
[Function]void gcm_camellia256_set_iv (struct gcm camellia256 ctx *ctx ,

size t length , const uint8 t *iv )
Initializes the per-message state, using the given IV.



Chapter 7: Reference 50

[Function]void gcm_camellia128_update (struct gcm camellia128 ctx *ctx ,

size t length , const uint8 t *data )
[Function]void gcm_camellia256_update (struct gcm camellia256 ctx *ctx ,

size t length , const uint8 t *data )
Provides associated data to be authenticated. If used, must be called before gcm_

camellia_encrypt or gcm_camellia_decrypt. All but the last call for each message
must use a length that is a multiple of the block size.

[Function]void gcm_camellia128_encrypt (struct gcm camellia128 ctx *ctx ,

size t length , uint8 t *dst , const uint8 t *src )
[Function]void gcm_camellia256_encrypt (struct gcm camellia256 ctx *ctx ,

size t length , uint8 t *dst , const uint8 t *src )
[Function]void gcm_camellia128_decrypt (struct gcm camellia128 ctx *ctx ,

size t length , uint8 t *dst , const uint8 t *src )
[Function]void gcm_camellia256_decrypt (struct gcm camellia256 ctx *ctx ,

size t length , uint8 t *dst , const uint8 t *src )
Encrypts or decrypts the data of a message. All but the last call for each message
must use a length that is a multiple of the block size.

[Function]void gcm_camellia128_digest (struct gcm camellia128 ctx *ctx ,

size t length , uint8 t *digest )
[Function]void gcm_camellia192_digest (struct gcm camellia192 ctx *ctx ,

size t length , uint8 t *digest )
[Function]void gcm_camellia256_digest (struct gcm camellia256 ctx *ctx ,

size t length , uint8 t *digest )
[Function]void gcm_camellia_digest (struct gcm camellia ctx *ctx , size t

length , uint8 t *digest )
Extracts the message digest (also known “authentication tag”). This is the final
operation when processing a message. It’s strongly recommended that length is GCM_
DIGEST_SIZE, but if you provide a smaller value, only the first length octets of the
digest are written.

7.4.3 Counter with CBC-MAC mode

CCM mode is a combination of counter mode with message authentication based on
cipher block chaining, the same building blocks as EAX, see Section 7.4.1 [EAX],
page 43. It is constructed on top of a block cipher which must have a block size
of 128 bits. CCM mode is recommended by NIST in NIST Special Publication
800-38C (http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_
updated-July20_2007.pdf). Nettle’s support for CCM consists of a low-level general
interface, a message encryption and authentication interface, and specific functions
for CCM using AES as the underlying block cipher. These interfaces are defined in
‘<nettle/ccm.h>’.

In CCM, the length of the message must be known before processing. The maximum
message size depends on the size of the nonce, since the message size is encoded in a field
which must fit in a single block, together with the nonce and a flag byte. E.g., with a nonce
size of 12 octets, there are three octets left for encoding the message length, the maximum
message length is 224− 1 octets.



Chapter 7: Reference 51

CCM mode encryption operates as follows:

• The nonce and message length are concatenated to create B_0 = flags | nonce |

mlength

• The authenticated data and plaintext is formatted into the string B = L(adata) |

adata | padding | plaintext | padding with padding being the shortest string of
zero bytes such that the length of the string is a multiple of the block size, and L(adata)

is an encoding of the length of adata.

• The string B is separated into blocks B_1 ... B_n

• The authentication tag T is calculated as T=0, for i=0 to n, do T = E_k(B_i XOR T)

• An initial counter is then initialized from the nonce to create IC = flags | nonce |

padding, where padding is the shortest string of zero bytes such that IC is exactly one
block in length.

• The authentication tag is encrypted using using CTR mode: MAC = E_k(IC) XOR T

• The plaintext is then encrypted using CTR mode with an initial counter of IC+1.

CCM mode decryption operates similarly, except that the ciphertext and MAC are first
decrypted using CTR mode to retrieve the plaintext and authentication tag. The au-
thentication tag can then be recalculated from the authenticated data and plaintext, and
compared to the value in the message to check for authenticity.

7.4.3.1 General CCM interface

For all of the functions in the CCM interface, cipher is the context struct for the underlying
cipher and f is the encryption function. The cipher’s encryption key must be set before
calling any of the CCM functions. The cipher’s decryption function and key are never used.

[Context struct]struct ccm_ctx
Holds state corresponding to a particular message.

[Constant]CCM_BLOCK_SIZE
CCM’s block size, 16.

[Constant]CCM_DIGEST_SIZE
Size of the CCM digest, 16.

[Constant]CCM_MIN_NONCE_SIZE
[Constant]CCM_MAX_NONCE_SIZE

The the minimum and maximum sizes for an CCM nonce, 7 and 14, respectively.

[Macro]CCM_MAX_MSG_SIZE (nonce_size )
The largest allowed plaintext length, when using CCM with a nonce of the given size.

[Function]void ccm_set_nonce (struct ccm ctx *ctx , const void *cipher ,

nettle cipher func *f , size t noncelen , const uint8 t *nonce , size t

authlen , size t msglen , size t taglen )
Initializes ctx using the given nonce and the sizes of the authenticated data, message,
and MAC to be processed.



Chapter 7: Reference 52

[Function]void ccm_update (struct ccm ctx *ctx , const void *cipher ,

nettle cipher func *f , size t length , const uint8 t *data )
Provides associated data to be authenticated. Must be called after ccm_set_nonce,
and before ccm_encrypt, ccm_decrypt, or ccm_digest.

[Function]void ccm_encrypt (struct ccm ctx *ctx , const void *cipher ,

nettle cipher func *f , size t length , uint8 t *dst , const uint8 t *src )
[Function]void ccm_decrypt (struct ccm ctx *ctx , const void *cipher ,

nettle cipher func *f , size t length , uint8 t *dst , const uint8 t *src )
Encrypts or decrypts the message data. Must be called after ccm_set_nonce and
before ccm_digest. All but the last call for each message must use a length that is
a multiple of the block size.

[Function]void ccm_digest (struct ccm ctx *ctx , const void *cipher ,

nettle cipher func *f , size t length , uint8 t *digest )
Extracts the message digest (also known “authentication tag”). This is the final
operation when processing a message. length is usually equal to the taglen parameter
supplied to ccm_set_nonce, but if you provide a smaller value, only the first length
octets of the digest are written.

To encrypt a message using the general CCM interface, set the message nonce and length
using ccm_set_nonce and then call ccm_update to generate the digest of any authenticated
data. After all of the authenticated data has been digested use ccm_encrypt to encrypt the
plaintext. Finally, use ccm_digest to return the encrypted MAC.

To decrypt a message, use ccm_set_nonce and ccm_update the same as you would for
encryption, and then call ccm_decrypt to decrypt the ciphertext. After decrypting the
ciphertext ccm_digest will return the encrypted MAC which should be identical to the
MAC in the received message.

7.4.3.2 CCM message interface

The CCM message fuctions provides a simple interface that will perform authentication and
message encryption in a single function call. The length of the cleartext is given by mlength

and the length of the ciphertext is given by clength, always exactly tlength bytes longer
than the corresponding plaintext. The length argument passed to a function is always the
size for the result, clength for the encryption functions, and mlength for the decryption
functions.

[Function]void ccm_encrypt_message (void *cipher , nettle cipher func *f ,

size t nlength , const uint8 t *nonce , size t alength , const uint8 t *adata ,

size t tlength , size t clength , uint8 t *dst , const uint8 t *src )
Computes the message digest from the adata and src parameters, encrypts the plain-
text from src, appends the encrypted MAC to ciphertext and outputs it to dst.

[Function]int ccm_decrypt_message (void *cipher , nettle cipher func *f , size t

nlength , const uint8 t *nonce , size t alength , const uint8 t *adata , size t

tlength , size t mlength , uint8 t *dst , const uint8 t *src )
Decrypts the ciphertext from src, outputs the plaintext to dst, recalculates the MAC

from adata and the plaintext, and compares it to the final tlength bytes of src. If the



Chapter 7: Reference 53

values of the received and calculated MACs are equal, this will return 1 indicating a
valid and authenticated message. Otherwise, this function will return zero.

7.4.3.3 CCM-AES interface

The AES CCM functions provide an API for using CCM mode with the AES block ciphers.
The parameters all have the same meaning as the general and message interfaces, except
that the cipher, f , and ctx parameters are replaced with an AES context structure, and a
set-key function must be called before using any of the other functions in this interface.

[Context struct]struct ccm_aes128_ctx
Holds state corresponding to a particular message encrypted using the AES-128 block
cipher.

[Context struct]struct ccm_aes192_ctx
Holds state corresponding to a particular message encrypted using the AES-192 block
cipher.

[Context struct]struct ccm_aes256_ctx
Holds state corresponding to a particular message encrypted using the AES-256 block
cipher.

[Function]void ccm_aes128_set_key (struct ccm aes128 ctx *ctx , const uint8 t

*key )
[Function]void ccm_aes192_set_key (struct ccm aes192 ctx *ctx , const uint8 t

*key )
[Function]void ccm_aes256_set_key (struct ccm aes256 ctx *ctx , const uint8 t

*key )
Initializes the encryption key for the AES block cipher. One of these functions must
be called before any of the other functions in the AES CCM interface.

[Function]void ccm_aes128_set_nonce (struct ccm aes128 ctx *ctx , size t

noncelen , const uint8 t *nonce , size t authlen , size t msglen , size t

taglen )
[Function]void ccm_aes192_set_nonce (struct ccm aes192 ctx *ctx , size t

noncelen , const uint8 t *nonce , size t authlen , size t msglen , size t

taglen )
[Function]void ccm_aes256_set_nonce (struct ccm aes256 ctx *ctx , size t

noncelen , const uint8 t *nonce , size t authlen , size t msglen , size t

taglen )
These are identical to ccm_set_nonce, except that cipher, f , and ctx are replaced
with a context structure.

[Function]void ccm_aes128_update (struct ccm aes128 ctx *ctx , size t length ,

const uint8 t *data )
[Function]void ccm_aes192_update (struct ccm aes192 ctx *ctx , size t length ,

const uint8 t *data )
[Function]void ccm_aes256_update (struct ccm aes256 ctx *ctx , size t length ,

const uint8 t *data )
These are identical to ccm_set_update, except that cipher, f , and ctx are replaced
with a context structure.



Chapter 7: Reference 54

[Function]void ccm_aes128_encrypt (struct ccm aes128 ctx *ctx , size t

length , uint8 t *dst , const uint8 t *src )
[Function]void ccm_aes192_encrypt (struct ccm aes192 ctx *ctx , size t

length , uint8 t *dst , const uint8 t *src )
[Function]void ccm_aes256_encrypt (struct ccm aes256 ctx *ctx , size t

length , uint8 t *dst , const uint8 t *src )
[Function]void ccm_aes128_decrypt (struct ccm aes128 ctx *ctx , size t

length , uint8 t *dst , const uint8 t *src )
[Function]void ccm_aes192_decrypt (struct ccm aes192 ctx *ctx , size t

length , uint8 t *dst , const uint8 t *src )
[Function]void ccm_aes256_decrypt (struct ccm aes256 ctx *ctx , size t

length , uint8 t *dst , const uint8 t *src )
These are identical to ccm_set_encrypt and ccm_set_decrypt, except that cipher,
f , and ctx are replaced with a context structure.

[Function]void ccm_aes128_digest (struct ccm aes128 ctx *ctx , size t length ,

uint8 t *digest )
[Function]void ccm_aes192_digest (struct ccm aes192 ctx *ctx , size t length ,

uint8 t *digest )
[Function]void ccm_aes256_digest (struct ccm aes256 ctx *ctx , size t length ,

uint8 t *digest )
These are identical to ccm_set_digest, except that cipher, f , and ctx are replaced
with a context structure.

[Function]void ccm_aes128_encrypt_message (struct ccm aes128 ctx *ctx ,

size t nlength , const uint8 t *nonce , size t alength , const uint8 t *adata ,

size t tlength , size t clength , uint8 t *dst , const uint8 t *src )
[Function]void ccm_aes192_encrypt_message (struct ccm aes192 ctx *ctx ,

size t nlength , const uint8 t *nonce , size t alength , const uint8 t *adata ,

size t tlength , size t clength , uint8 t *dst , const uint8 t *src )
[Function]void ccm_aes256_encrypt_message (struct ccm aes256 ctx *ctx ,

size t nlength , const uint8 t *nonce , size t alength , const uint8 t *adata ,

size t tlength , size t clength , uint8 t *dst , const uint8 t *src )
[Function]int ccm_aes128_decrypt_message (struct ccm aes128 ctx *ctx , size t

nlength , const uint8 t *nonce , size t alength , const uint8 t *adata , size t

tlength , size t mlength , uint8 t *dst , const uint8 t *src )
[Function]int ccm_aes192_decrypt_message (struct ccm aes192 ctx *ctx , size t

nlength , const uint8 t *nonce , size t alength , const uint8 t *adata , size t

tlength , size t mlength , uint8 t *dst , const uint8 t *src )
[Function]int ccm_aes192_decrypt_message (struct ccm aes256 ctx *ctx , size t

nlength , const uint8 t *nonce , size t alength , const uint8 t *adata , size t

tlength , size t mlength , uint8 t *dst , const uint8 t *src )
These are identical to ccm_encrypt_message and ccm_decrypt_message except that
cipher and f are replaced with a context structure.

7.4.4 ChaCha-Poly1305

ChaCha-Poly1305 is a combination of the ChaCha stream cipher and the poly1305 message
authentication code (see Section 7.5.5 [Poly1305], page 65). It originates from the NaCl



Chapter 7: Reference 55

cryptographic library by D. J. Bernstein et al, which defines a similar construction but with
Salsa20 instead of ChaCha.

Nettle’s implementation of ChaCha-Poly1305 follows RFC 8439, where the ChaCha ci-
pher is initialized with a 12-byte nonce and a 4-byte block counter. This allows up to 256
gigabytes of data to be encrypted using the same key and nonce.

For ChaCha-Poly1305, the ChaCha cipher is initialized with a key, of 256 bits, and a
per-message nonce. The first block of the key stream (counter all zero) is set aside for
the authentication subkeys. Of this 64-octet block, the first 16 octets specify the poly1305
evaluation point, and the next 16 bytes specify the value to add in for the final digest.
The final 32 bytes of this block are unused. Note that unlike poly1305-aes, the evaluation
point depends on the nonce. This is preferable, because it leaks less information in case the
attacker for some reason is lucky enough to forge a valid authentication tag, and observe
(from the receiver’s behaviour) that the forgery succeeded.

The ChaCha key stream, starting with counter value 1, is then used to encrypt
the message. For authentication, poly1305 is applied to the concatenation of the
associated data, the cryptotext, and the lengths of the associated data and the message,
each a 64-bit number (eight octets, little-endian). Nettle defines ChaCha-Poly1305 in
‘<nettle/chacha-poly1305.h>’.

[Constant]CHACHA_POLY1305_BLOCK_SIZE
Same as the ChaCha block size, 64.

[Constant]CHACHA_POLY1305_KEY_SIZE
ChaCha-Poly1305 key size, 32.

[Constant]CHACHA_POLY1305_NONCE_SIZE
ChaCha-Poly1305 nonce size, 12.

[Constant]CHACHA_POLY1305_DIGEST_SIZE
Digest size, 16.

[Context struct]struct chacha_poly1305_ctx

[Function]void chacha_poly1305_set_key (struct chacha poly1305 ctx *ctx ,

const uint8 t *key )
Initializes ctx using the given key. Before using the context, you must also call
chacha_poly1305_set_nonce, see below.

[Function]void chacha_poly1305_set_nonce (struct chacha poly1305 ctx *ctx ,

const uint8 t *nonce )
Initializes the per-message state, using the given nonce.

[Function]void chacha_poly1305_update (struct chacha poly1305 ctx *ctx ,

size t length , const uint8 t *data )
Process associated data for authentication.



Chapter 7: Reference 56

[Function]void chacha_poly1305_encrypt (struct chacha poly1305 ctx *ctx ,

size t length , uint8 t *dst , const uint8 t *src )
[Function]void chacha_poly1305_decrypt (struct chacha poly1305 ctx *ctx ,

size t length , uint8 t *dst , const uint8 t *src )
Encrypts or decrypts the data of a message. All but the last call for each message
must use a length that is a multiple of the block size.

[Function]void chacha_poly1305_digest (struct chacha poly1305 ctx *ctx ,

size t length , uint8 t *digest )
Extracts the message digest (also known “authentication tag”). This is the final
operation when processing a message. If length is smaller than CHACHA_POLY1305_

DIGEST_SIZE, only the first length octets of the digest are written.

7.4.5 Synthetic Initialization Vector AEAD

SIV-CMAC mode is a combination of counter mode with message authentication based on
CMAC. Unlike other counter AEAD modes, it provides protection against accidental nonce
misuse, making it a good choice for stateless-servers that cannot ensure nonce uniqueness.
It is constructed on top of a block cipher which must have a block size of 128 bits. Nettle’s
support for SIV-CMAC consists of a message encryption and authentication interface, for
SIV-CMAC using AES as the underlying block cipher. When a nonce is re-used with this
mode, message authenticity is retained however an attacker can determine whether the
same plaintext was protected with the two messages sharing the nonce. These interfaces
are defined in ‘<nettle/siv-cmac.h>’.

Unlike other AEAD mode in SIV-CMAC the initialization vector serves as the tag. That
means that in the generated ciphertext the tag precedes the ciphertext.

Note also, that the SIV-CMAC algorithm, as specified in RFC 5297, introduces the notion
of authenticated data which consist of multiple components. For example with SIV-CMAC

the authentication tag of data X followed by Y, is different than the concatenated data X

|| Y. The interfaces described below follow the AEAD paradigm and do not allow access
to this feature and also require the use of a non-empty nonce. In the terminology of the
RFC, the input to the S2V function is always a vector of three elements, where S1 is the
authenticated data, S2 is the nonce, and S3 is the plaintext.

7.4.5.1 General interface

[Constant]SIV_BLOCK_SIZE
SIV-CMAC’s block size, 16.

[Constant]SIV_DIGEST_SIZE
Size of the SIV-CMAC digest or initialization vector, 16.

[Constant]SIV_MIN_NONCE_SIZE
The the minimum size for an SIV-CMAC nonce, 1.

7.4.5.2 SIV-CMAC-AES interface

The AES SIV-CMAC functions provide an API for using SIV-CMAC mode with the AES

block ciphers. The parameters all have the same meaning as the general and message
interfaces, except that the cipher, f , and ctx parameters are replaced with an AES context



Chapter 7: Reference 57

structure, and a set-key function must be called before using any of the other functions in
this interface.

[Context struct]struct siv_cmac_aes128_ctx
Holds state corresponding to a particular message encrypted using the AES-128 block
cipher.

[Context struct]struct siv_cmac_aes256_ctx
Holds state corresponding to a particular message encrypted using the AES-256 block
cipher.

[Function]void siv_cmac_aes128_set_key (struct siv cmac aes128 ctx *ctx ,

const uint8 t *key )
[Function]void siv_cmac_aes256_set_key (struct siv cmac aes256 ctx *ctx ,

const uint8 t *key )
Initializes the encryption key for the AES block cipher. One of these functions must
be called before any of the other functions in the AES SIV-CMAC interface.

[Function]void siv_cmac_aes128_encrypt_message (struct siv cmac aes128 ctx

*ctx , size t nlength , const uint8 t *nonce , size t alength , const uint8 t

*adata , size t clength , uint8 t *dst , const uint8 t *src )
[Function]void siv_cmac_aes256_encrypt_message (struct siv cmac aes256 ctx

*ctx , size t nlength , const uint8 t *nonce , size t alength , const uint8 t

*adata , size t clength , uint8 t *dst , const uint8 t *src )
Computes the message digest from the adata and src parameters, encrypts the plain-
text from src, prepends the initialization vector to the ciphertext and outputs it to
dst. The clength variable must be equal to the length of src plus SIV_DIGEST_SIZE.

[Function]int siv_cmac_aes128_decrypt_message (struct siv cmac aes128 ctx

*ctx , size t nlength , const uint8 t *nonce , size t alength , const uint8 t

*adata , size t mlength , uint8 t *dst , const uint8 t *src )
[Function]int siv_cmac_aes256_decrypt_message (struct siv cmac aes128 ctx

*ctx , size t nlength , const uint8 t *nonce , size t alength , const uint8 t

*adata , size t mlength , uint8 t *dst , const uint8 t *src )
Decrypts the ciphertext from src, outputs the plaintext to dst, recalculates the ini-
tialization vector from adata and the plaintext. If the values of the received and
calculated initialization vector are equal, this will return 1 indicating a valid and
authenticated message. Otherwise, this function will return zero.

7.4.6 The struct nettle_aead abstraction

Nettle includes a struct including information about the supported hash functions. It is
defined in ‘<nettle/nettle-meta.h>’.

[Meta struct]struct nettle_aead name context size block size key size nonce size

digest size set encrypt key set decrypt key set nonce update encrypt decrypt

digest

The last seven attributes are function pointers.



Chapter 7: Reference 58

[Constant Struct]struct nettle_aead nettle_gcm_aes128
[Constant Struct]struct nettle_aead nettle_gcm_aes192
[Constant Struct]struct nettle_aead nettle_gcm_aes256
[Constant Struct]struct nettle_aead nettle_gcm_camellia128
[Constant Struct]struct nettle_aead nettle_gcm_camellia256
[Constant Struct]struct nettle_aead nettle_eax_aes128
[Constant Struct]struct nettle_aead nettle_chacha_poly1305

These are most of the AEAD constructions that Nettle implements. Note that CCM

is missing; it requirement that the message size is specified in advance makes it
incompatible with the nettle_aead abstraction.

Nettle also exports a list of all these constructions.

[Function]const struct nettle_aead ** nettle_get_aeads (void)
Returns a NULL-terminated list of pointers to supported algorithms.This list can be
used to dynamically enumerate or search the supported algorithms.

[Macro]nettle_aeads
A macro expanding to a call to nettle get aeads. In earlier versions, this was not a
macro but the actual array of pointers.

7.5 Keyed Hash Functions

A keyed hash function, or Message Authentication Code (MAC) is a function that takes a
key and a message, and produces fixed size MAC. It should be hard to compute a message
and a matching MAC without knowledge of the key. It should also be hard to compute the
key given only messages and corresponding MACs.

Keyed hash functions are useful primarily for message authentication, when Alice and
Bob shares a secret: The sender, Alice, computes the MAC and attaches it to the message.
The receiver, Bob, also computes the MAC of the message, using the same key, and compares
that to Alice’s value. If they match, Bob can be assured that the message has not been
modified on its way from Alice.

However, unlike digital signatures, this assurance is not transferable. Bob can’t show
the message and the MAC to a third party and prove that Alice sent that message. Not
even if he gives away the key to the third party. The reason is that the same key is used on
both sides, and anyone knowing the key can create a correct MAC for any message. If Bob
believes that only he and Alice knows the key, and he knows that he didn’t attach a MAC

to a particular message, he knows it must be Alice who did it. However, the third party
can’t distinguish between a MAC created by Alice and one created by Bob.

Keyed hash functions are typically a lot faster than digital signatures as well.

7.5.1 HMAC

One can build keyed hash functions from ordinary hash functions. Older constructions
simply concatenate secret key and message and hashes that, but such constructions have
weaknesses. A better construction is HMAC, described in RFC 2104.

For an underlying hash function H, with digest size l and internal block size b, HMAC-

H is constructed as follows: From a given key k, two distinct subkeys k_i and k_o are



Chapter 7: Reference 59

constructed, both of length b. The HMAC-H of a message m is then computed as H(k_o |

H(k_i | m)), where | denotes string concatenation.

HMAC keys can be of any length, but it is recommended to use keys of length l, the
digest size of the underlying hash function H. Keys that are longer than b are shortened to
length l by hashing with H, so arbitrarily long keys aren’t very useful.

Nettle’s HMAC functions are defined in ‘<nettle/hmac.h>’. There are abstract functions
that use a pointer to a struct nettle_hash to represent the underlying hash function and
void * pointers that point to three different context structs for that hash function. There are
also concrete functions for HMAC-MD5, HMAC-RIPEMD160 HMAC-SHA1, HMAC-SHA256,
and HMAC-SHA512. First, the abstract functions:

[Function]void hmac_set_key (void *outer , void *inner , void *state , const

struct nettle hash *H , size t length , const uint8 t *key )
Initializes the three context structs from the key. The outer and inner contexts
corresponds to the subkeys k_o and k_i. state is used for hashing the message, and
is initialized as a copy of the inner context.

[Function]void hmac_update (void *state , const struct nettle hash *H , size t

length , const uint8 t *data )
This function is called zero or more times to process the message. Actually,
hmac_update(state, H, length, data) is equivalent to H->update(state,

length, data), so if you wish you can use the ordinary update function of the
underlying hash function instead.

[Function]void hmac_digest (const void *outer , const void *inner , void

*state , const struct nettle hash *H , size t length , uint8 t *digest )
Extracts the MAC of the message, writing it to digest. outer and inner are not
modified. length is usually equal to H->digest_size, but if you provide a smaller
value, only the first length octets of the MAC are written.

This function also resets the state context so that you can start over processing a new
message (with the same key).

Like for CBC, there are some macros to help use these functions correctly.

[Macro]HMAC_CTX (type )
Expands to

{

type outer;

type inner;

type state;

}

It can be used to define a HMAC context struct, either directly,

struct HMAC_CTX(struct md5_ctx) ctx;

or to give it a struct tag,

struct hmac_md5_ctx HMAC_CTX (struct md5_ctx);



Chapter 7: Reference 60

[Macro]HMAC_SET_KEY (ctx , H , length , key )
ctx is a pointer to a context struct as defined by HMAC_CTX, H is a pointer to a const

struct nettle_hash describing the underlying hash function (so it must match the
type of the components of ctx). The last two arguments specify the secret key.

[Macro]HMAC_DIGEST (ctx , H , length , digest )
ctx is a pointer to a context struct as defined by HMAC_CTX, H is a pointer to a
const struct nettle_hash describing the underlying hash function. The last two
arguments specify where the digest is written.

Note that there is no HMAC_UPDATE macro; simply call hmac_update function directly, or
the update function of the underlying hash function.

7.5.2 Concrete HMAC functions

Now we come to the specialized HMAC functions, which are easier to use than the general
HMAC functions.

7.5.2.1 HMAC-MD5

[Context struct]struct hmac_md5_ctx

[Function]void hmac_md5_set_key (struct hmac md5 ctx *ctx , size t

key_length , const uint8 t *key )
Initializes the context with the key.

[Function]void hmac_md5_update (struct hmac md5 ctx *ctx , size t length ,

const uint8 t *data )
Process some more data.

[Function]void hmac_md5_digest (struct hmac md5 ctx *ctx , size t length ,

uint8 t *digest )
Extracts theMAC, writing it to digest. lengthmay be smaller than MD5_DIGEST_SIZE,
in which case only the first length octets of the MAC are written.

This function also resets the context for processing new messages, with the same key.

7.5.2.2 HMAC-RIPEMD160

[Context struct]struct hmac_ripemd160_ctx

[Function]void hmac_ripemd160_set_key (struct hmac ripemd160 ctx *ctx ,

size t key_length , const uint8 t *key )
Initializes the context with the key.

[Function]void hmac_ripemd160_update (struct hmac ripemd160 ctx *ctx , size t

length , const uint8 t *data )
Process some more data.

[Function]void hmac_ripemd160_digest (struct hmac ripemd160 ctx *ctx , size t

length , uint8 t *digest )
Extracts the MAC, writing it to digest. length may be smaller than RIPEMD160_

DIGEST_SIZE, in which case only the first length octets of the MAC are written.

This function also resets the context for processing new messages, with the same key.



Chapter 7: Reference 61

7.5.2.3 HMAC-SHA1

[Context struct]struct hmac_sha1_ctx

[Function]void hmac_sha1_set_key (struct hmac sha1 ctx *ctx , size t

key_length , const uint8 t *key )
Initializes the context with the key.

[Function]void hmac_sha1_update (struct hmac sha1 ctx *ctx , size t length ,

const uint8 t *data )
Process some more data.

[Function]void hmac_sha1_digest (struct hmac sha1 ctx *ctx , size t length ,

uint8 t *digest )
Extracts the MAC, writing it to digest. length may be smaller than SHA1_DIGEST_

SIZE, in which case only the first length octets of the MAC are written.

This function also resets the context for processing new messages, with the same key.

7.5.2.4 HMAC-SHA256

[Context struct]struct hmac_sha256_ctx

[Function]void hmac_sha256_set_key (struct hmac sha256 ctx *ctx , size t

key_length , const uint8 t *key )
Initializes the context with the key.

[Function]void hmac_sha256_update (struct hmac sha256 ctx *ctx , size t

length , const uint8 t *data )
Process some more data.

[Function]void hmac_sha256_digest (struct hmac sha256 ctx *ctx , size t

length , uint8 t *digest )
Extracts the MAC, writing it to digest. length may be smaller than SHA256_DIGEST_

SIZE, in which case only the first length octets of the MAC are written.

This function also resets the context for processing new messages, with the same key.

7.5.2.5 HMAC-SHA512

[Context struct]struct hmac_sha512_ctx

[Function]void hmac_sha512_set_key (struct hmac sha512 ctx *ctx , size t

key_length , const uint8 t *key )
Initializes the context with the key.

[Function]void hmac_sha512_update (struct hmac sha512 ctx *ctx , size t

length , const uint8 t *data )
Process some more data.

[Function]void hmac_sha512_digest (struct hmac sha512 ctx *ctx , size t

length , uint8 t *digest )
Extracts the MAC, writing it to digest. length may be smaller than SHA512_DIGEST_

SIZE, in which case only the first length octets of the MAC are written.

This function also resets the context for processing new messages, with the same key.



Chapter 7: Reference 62

7.5.3 UMAC

UMAC is a message authentication code based on universal hashing, and designed for high
performance on modern processors (in contrast to GCM, See Section 7.4.2 [GCM], page 45,
which is designed primarily for hardware performance). On processors with good integer
multiplication performance, it can be 10 times faster than SHA256 and SHA512. UMAC is
specified in RFC 4418.

The secret key is always 128 bits (16 octets). The key is used as an encryption key for
the AES block cipher. This cipher is used in counter mode to generate various internal
subkeys needed in UMAC. Messages are of arbitrary size, and for each message, UMAC also
needs a unique nonce. Nonce values must not be reused for two messages with the same
key, but they need not be kept secret.

The nonce must be at least one octet, and at most 16; nonces shorter than 16 octets
are zero-padded. Nettle’s implementation of UMAC increments the nonce automatically
for each message, so explicitly setting the nonce for each message is optional. This auto-
increment uses network byte order and it takes the length of the nonce into account. E.g.,
if the initial nonce is “abc” (3 octets), this value is zero-padded to 16 octets for the first
message. For the next message, the nonce is incremented to “abd”, and this incremented
value is zero-padded to 16 octets.

UMAC is defined in four variants, for different output sizes: 32 bits (4 octets), 64 bits
(8 octets), 96 bits (12 octets) and 128 bits (16 octets), corresponding to different trade-offs
between speed and security. Using a shorter output size sometimes (but not always!) gives
the same result as using a longer output size and truncating the result. So it is important to
use the right variant. For consistency with other hash and MAC functions, Nettle’s _digest
functions for UMAC accept a length parameter so that the output can be truncated to any
desired size, but it is recommended to stick to the specified output size and select the umac

variant corresponding to the desired size.

The internal block size of UMAC is 1024 octets, and it also generates more than 1024
bytes of subkeys. This makes the size of the context struct quite a bit larger than other
hash functions and MAC algorithms in Nettle.

Nettle defines UMAC in ‘<nettle/umac.h>’.

[Context struct]struct umac32_ctx
[Context struct]struct umac64_ctx
[Context struct]struct umac96_ctx
[Context struct]struct umac128_ctx

Each UMAC variant uses its own context struct.

[Constant]UMAC_KEY_SIZE
The UMAC key size, 16.

[Constant]UMAC_MIN_NONCE_SIZE
[Constant]UMAC_MAX_NONCE_SIZE

The the minimum and maximum sizes for an UMAC nonce, 1 and 16, respectively.

[Constant]UMAC32_DIGEST_SIZE
The size of an UMAC32 digest, 4.



Chapter 7: Reference 63

[Constant]UMAC64_DIGEST_SIZE
The size of an UMAC64 digest, 8.

[Constant]UMAC96_DIGEST_SIZE
The size of an UMAC96 digest, 12.

[Constant]UMAC128_DIGEST_SIZE
The size of an UMAC128 digest, 16.

[Constant]UMAC_BLOCK_SIZE
The internal block size of UMAC.

[Function]void umac32_set_key (struct umac32 ctx *ctx , const uint8 t *key )
[Function]void umac64_set_key (struct umac64 ctx *ctx , const uint8 t *key )
[Function]void umac96_set_key (struct umac96 ctx *ctx , const uint8 t *key )
[Function]void umac128_set_key (struct umac128 ctx *ctx , const uint8 t *key )

These functions initialize the UMAC context struct. They also initialize the nonce to
zero (with length 16, for auto-increment).

[Function]void umac32_set_nonce (struct umac32 ctx *ctx , size t length , const

uint8 t *nonce )
[Function]void umac64_set_nonce (struct umac64 ctx *ctx , size t length , const

uint8 t *nonce )
[Function]void umac96_set_nonce (struct umac96 ctx *ctx , size t length , const

uint8 t *nonce )
[Function]void umac128_set_nonce (struct umac128 ctx *ctx , size t length ,

const uint8 t *nonce )
Sets the nonce to be used for the next message. In general, nonces should be set before
processing of the message. This is not strictly required for UMAC (the nonce only
affects the final processing generating the digest), but it is nevertheless recommended
that this function is called before the first _update call for the message.

[Function]void umac32_update (struct umac32 ctx *ctx , size t length , const

uint8 t *data )
[Function]void umac64_update (struct umac64 ctx *ctx , size t length , const

uint8 t *data )
[Function]void umac96_update (struct umac96 ctx *ctx , size t length , const

uint8 t *data )
[Function]void umac128_update (struct umac128 ctx *ctx , size t length , const

uint8 t *data )
These functions are called zero or more times to process the message.

[Function]void umac32_digest (struct umac32 ctx *ctx , size t length , uint8 t

*digest )
[Function]void umac64_digest (struct umac64 ctx *ctx , size t length , uint8 t

*digest )
[Function]void umac96_digest (struct umac96 ctx *ctx , size t length , uint8 t

*digest )



Chapter 7: Reference 64

[Function]void umac128_digest (struct umac128 ctx *ctx , size t length ,

uint8 t *digest )
Extracts the MAC of the message, writing it to digest. length is usually equal to the
specified output size, but if you provide a smaller value, only the first length octets
of the MAC are written. These functions reset the context for processing of a new
message with the same key. The nonce is incremented as described above, the new
value is used unless you call the _set_nonce function explicitly for each message.

7.5.4 CMAC

CMAC is a message authentication code based on CBC encryption mode. It is
suitable for systems where block ciphers are preferrable and perform better than
hash functions. CMAC-128 is specified in RFC4493. The block size is always
128 bits (16 octets). CMAC-64 is specified by NIST Special Publication 800-38B
(https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38B.pdf).
The block size is always 64 bits (8 octets).

Nettle provides helper functions for CMAC-128 with the AES block cipher and for CMAC-

64 with the Tripple-DES block cipher.

Nettle defines CMAC in ‘<nettle/cmac.h>’.

[Context struct]struct cmac_aes128_ctx
[Context struct]struct cmac_aes256_ctx

[Constant]CMAC128_DIGEST_SIZE
The size of an CMAC-128 digest, 16.

[Function]void cmac_aes128_set_key (struct cmac aes128 ctx *ctx , const

uint8 t *key )
This function initializes the CMAC context struct for AES-128.

[Function]void cmac_aes128_update (struct cmac aes128 ctx *ctx , size t

length , const uint8 t *data )
This function is called zero or more times to process the message.

[Function]void cmac_aes128_digest (struct cmac aes128 ctx *ctx , size t

length , uint8 t *digest )
Extracts the MAC of the message, writing it to digest. length is usually equal to the
specified output size, but if you provide a smaller value, only the first length octets
of the MAC are written. This function resets the context for processing of a new
message with the same key.

[Function]void cmac_aes256_set_key (struct cmac aes256 ctx *ctx , const

uint8 t *key )
This function initializes the CMAC context struct for AES-256.

[Function]void cmac_aes256_update (struct cmac aes256 ctx *ctx , size t

length , const uint8 t *data )
This function is called zero or more times to process the message.



Chapter 7: Reference 65

[Function]void cmac_aes256_digest (struct cmac aes256 ctx *ctx , size t

length , uint8 t *digest )
Extracts the MAC of the message, writing it to digest. length is usually equal to the
specified output size, but if you provide a smaller value, only the first length octets
of the MAC are written. This function resets the context for processing of a new
message with the same key.

[Context struct]struct cmac_des3_ctx

[Constant]CMAC64_DIGEST_SIZE
The size of an CMAC-64 digest, 8.

[Function]void cmac_des3_set_key (struct cmac des3 ctx *ctx , const uint8 t

*key )
This function initializes the CMAC context struct for Tripple-DES.

[Function]void cmac_des3_update (struct cmac des3 ctx *ctx ,size t length ,

const uint8 t *data )
This function is called zero or more times to process the message.

[Function]void cmac_des3_digest (struct cmac des3 ctx *ctx , size t length ,

uint8 t *digest )
Extracts the MAC of the message, writing it to digest. length is usually equal to the
specified output size, but if you provide a smaller value, only the first length octets
of the MAC are written. This function resets the context for processing of a new
message with the same key.

7.5.5 Poly1305

Poly1305-AES is a message authentication code designed by D. J. Bernstein. It treats the
message as a polynomial modulo the prime number 2130− 5.

The key, 256 bits, consists of two parts, where the first half is an AES-128 key, and the
second half specifies the point where the polynomial is evaluated. Of the latter half, 22 bits
are set to zero, to enable high-performance implementation, leaving 106 bits for specifying
an evaluation point r. For each message, one must also provide a 128-bit nonce. The nonce
is encrypted using the AES key, and that’s the only thing AES is used for.

The message is split into 128-bit chunks (with final chunk possibly being shorter), each
read as a little-endian integer. Each chunk has a one-bit appended at the high end. The
resulting integers are treated as polynomial coefficients modulo 2130−5, and the polynomial
is evaluated at the point r. Finally, this value is reduced modulo 2128, and added (also
modulo 2128) to the encrypted nonce, to produce an 128-bit authenticator for the message.
See http://cr.yp.to/mac/poly1305-20050329.pdf for further details.

Clearly, variants using a different cipher than AES could be defined. Another variant is
the ChaCha-Poly1305 AEAD construction (see Section 7.4.4 [ChaCha-Poly1305], page 54).
Nettle defines Poly1305-AES in ‘nettle/poly1305.h’.

[Constant]POLY1305_AES_KEY_SIZE
Key size, 32 octets.



Chapter 7: Reference 66

[Constant]POLY1305_AES_DIGEST_SIZE
Size of the digest or “authenticator”, 16 octets.

[Constant]POLY1305_AES_NONCE_SIZE
Nonce size, 16 octets.

[Context struct]struct poly1305_aes_ctx
The poly1305-aes context struct.

[Function]void poly1305_aes_set_key (struct poly1305 aes ctx *ctx , const

uint8 t *key )
Initialize the context struct. Also sets the nonce to zero.

[Function]void poly1305_aes_set_nonce (struct poly1305 aes ctx *ctx , const

uint8 t *nonce )
Sets the nonce. Calling this function is optional, since the nonce is incremented
automatically for each message.

[Function]void poly1305_aes_update (struct poly1305 aes ctx *ctx , size t

length , const uint8 t *data )
Process more data.

[Function]void poly1305_aes_digest (struct poly1305 aes ctx *ctx , size t

length , uint8 t *digest )
Extracts the digest. If length is smaller than POLY1305_AES_DIGEST_SIZE, only the
first length octets are written. Also increments the nonce, and prepares the context
for processing a new message.

7.6 Key derivation Functions

A key derivation function (KDF) is a function that from a given symmetric key derives
other symmetric keys. A sub-class of KDFs is the password-based key derivation functions

(PBKDFs), which take as input a password or passphrase, and its purpose is typically to
strengthen it and protect against certain pre-computation attacks by using salting and
expensive computation.

7.6.1 HKDF: HMAC-based Extract-and-Expand

HKDF is a key derivation function used as a building block of higher-level protocols like
TLS 1.3. It is a derivation function based on HMAC described in RFC 5869, and is split
into two logical modules, called ’extract’ and ’expand’. The extract module takes an initial
secret and a random salt to "extract" a fixed-length pseudorandom key (PRK). The second
stage takes as input the previous PRK and some informational data (e.g., text) and expands
them into multiple keys.

Nettle’s HKDF functions are defined in ‘<nettle/hkdf.h>’. There are two abstract
functions for the extract and expand operations that operate on any HMAC implemented
via the nettle_hash_update_func, and nettle_hash_digest_func interfaces.



Chapter 7: Reference 67

[Function]void hkdf_extract (void *mac ctx, nettle hash update func *update,

nettle hash digest func *digest, size t digest size,size t secret size, const

uint8 t *secret, uint8 t *dst)
Extract a Pseudorandom Key (PRK) from a secret and a salt according to HKDF.
The HMAC must have been initialized, with its key being the salt for the Extract
operation. This function will call the update and digest functions passing the mac ctx

context parameter as an argument in order to compute digest of size digest size.
Inputs are the secret secret of length secret length. The output length is fixed to
digest size octets, thus the output buffer dst must have room for at least digest size

octets.

[Function]void hkdf_expand (void *mac ctx, nettle hash update func *update,

nettle hash digest func *digest, size t digest size, size t info size, const uint8 t

*info, size t length, uint8 t *dst)
Expand a Pseudorandom Key (PRK) to an arbitrary size according to HKDF. The
HMAC must have been initialized, with its key being the PRK from the Extract
operation. This function will call the update and digest functions passing the mac ctx

context parameter as an argument in order to compute digest of size digest size.
Inputs are the info info of length info length, and the desired derived output length
length. The output buffer is dst which must have room for at least length octets.

7.6.2 PBKDF2

The most well known PBKDF is the PKCS #5 PBKDF2 described in RFC 2898 which uses a
pseudo-random function such as HMAC-SHA1.

Nettle’s PBKDF2 functions are defined in ‘<nettle/pbkdf2.h>’. There is an abstract
function that operate on any PRF implemented via the nettle_hash_update_func,
nettle_hash_digest_func interfaces. There is also helper macros and concrete functions
PBKDF2-HMAC-SHA1 and PBKDF2-HMAC-SHA256. First, the abstract function:

[Function]void pbkdf2 (void *mac ctx, nettle hash update func *update,

nettle hash digest func *digest, size t digest size, unsigned iterations, size t

salt length, const uint8 t *salt, size t length, uint8 t *dst)
Derive symmetric key from a password according to PKCS #5 PBKDF2. The PRF
is assumed to have been initialized and this function will call the update and digest

functions passing the mac ctx context parameter as an argument in order to compute
digest of size digest size. Inputs are the salt salt of length salt length, the iteration
counter iterations (> 0), and the desired derived output length length. The output
buffer is dst which must have room for at least length octets.

Like for CBC and HMAC, there is a macro to help use the function correctly.

[Macro]PBKDF2 (ctx , update , digest , digest_size , iterations ,
salt_length , salt , length , dst )

ctx is a pointer to a context struct passed to the update and digest functions (of
the types nettle_hash_update_func and nettle_hash_digest_func respectively)
to implement the underlying PRF with digest size of digest size. Inputs are the
salt salt of length salt length, the iteration counter iterations (> 0), and the desired
derived output length length. The output buffer is dst which must have room for at
least length octets.



Chapter 7: Reference 68

7.6.3 Concrete PBKDF2 functions

Now we come to the specialized PBKDF2 functions, which are easier to use than the general
PBKDF2 function.

7.6.3.1 PBKDF2-HMAC-SHA1

[Function]void pbkdf2_hmac_sha1 (size t key_length , const uint8 t *key ,

unsigned iterations , size t salt_length , const uint8 t *salt , size t

length , uint8 t *dst )
PBKDF2 with HMAC-SHA1. Derive length bytes of key into buffer dst using the
password key of length key length and salt salt of length salt length, with iteration
counter iterations (> 0). The output buffer is dst which must have room for at least
length octets.

7.6.3.2 PBKDF2-HMAC-SHA256

[Function]void pbkdf2_hmac_sha256 (size t key_length , const uint8 t *key ,

unsigned iterations , size t salt_length , const uint8 t *salt , size t

length , uint8 t *dst )
PBKDF2 with HMAC-SHA256. Derive length bytes of key into buffer dst using the
password key of length key length and salt salt of length salt length, with iteration
counter iterations (> 0). The output buffer is dst which must have room for at least
length octets.

7.7 Public-key algorithms

Nettle uses GMP, the GNU bignum library, for all calculations with large numbers. In order
to use the public-key features of Nettle, you must install GMP, at least version 3.0, before
compiling Nettle, and you need to link your programs with -lhogweed -lnettle -lgmp.

The concept of Public-key encryption and digital signatures was discovered by Whitfield
Diffie and Martin E. Hellman and described in a paper 1976. In traditional, “symmetric”,
cryptography, sender and receiver share the same keys, and these keys must be distributed
in a secure way. And if there are many users or entities that need to communicate, each
pair needs a shared secret key known by nobody else.

Public-key cryptography uses trapdoor one-way functions. A one-way function is a
function F such that it is easy to compute the value F(x) for any x, but given a value y, it
is hard to compute a corresponding x such that y = F(x). Two examples are cryptographic
hash functions, and exponentiation in certain groups.

A trapdoor one-way function is a function F that is one-way, unless one knows some
secret information about F. If one knows the secret, it is easy to compute both F and it’s
inverse. If this sounds strange, look at the RSA example below.

Two important uses for one-way functions with trapdoors are public-key encryption, and
digital signatures. The public-key encryption functions in Nettle are not yet documented;
the rest of this chapter is about digital signatures.

To use a digital signature algorithm, one must first create a key-pair: A public key and
a corresponding private key. The private key is used to sign messages, while the public key
is used for verifying that that signatures and messages match. Some care must be taken



Chapter 7: Reference 69

when distributing the public key; it need not be kept secret, but if a bad guy is able to
replace it (in transit, or in some user’s list of known public keys), bad things may happen.

There are two operations one can do with the keys. The signature operation takes a
message and a private key, and creates a signature for the message. A signature is some
string of bits, usually at most a few thousand bits or a few hundred octets. Unlike paper-
and-ink signatures, the digital signature depends on the message, so one can’t cut it out of
context and glue it to a different message.

The verification operation takes a public key, a message, and a string that is claimed to
be a signature on the message, and returns true or false. If it returns true, that means that
the three input values matched, and the verifier can be sure that someone went through
with the signature operation on that very message, and that the “someone” also knows the
private key corresponding to the public key.

The desired properties of a digital signature algorithm are as follows: Given the public
key and pairs of messages and valid signatures on them, it should be hard to compute
the private key, and it should also be hard to create a new message and signature that is
accepted by the verification operation.

Besides signing meaningful messages, digital signatures can be used for authorization.
A server can be configured with a public key, such that any client that connects to the
service is given a random nonce message. If the server gets a reply with a correct signature
matching the nonce message and the configured public key, the client is granted access. So
the configuration of the server can be understood as “grant access to whoever knows the
private key corresponding to this particular public key, and to no others”.

7.7.1 RSA

The RSA algorithm was the first practical digital signature algorithm that was constructed.
It was described 1978 in a paper by Ronald Rivest, Adi Shamir and L.M. Adleman, and
the technique was also patented in the USA in 1983. The patent expired on September 20,
2000, and since that day, RSA can be used freely, even in the USA.

It’s remarkably simple to describe the trapdoor function behind RSA. The “one-way”-
function used is

F(x) = x^e mod n

I.e. raise x to the e’th power, while discarding all multiples of n. The pair of numbers
n and e is the public key. e can be quite small, even e = 3 has been used, although slightly
larger numbers are recommended. n should be about 2000 bits or larger.

If n is large enough, and properly chosen, the inverse of F, the computation of e’th roots
modulo n, is very difficult. But, where’s the trapdoor?

Let’s first look at how RSA key-pairs are generated. First n is chosen as the product of
two large prime numbers p and q of roughly the same size (so if n is 2000 bits, p and q are
about 1000 bits each). One also computes the number phi = (p-1)(q-1), in mathematical
speak, phi is the order of the multiplicative group of integers modulo n.

Next, e is chosen. It must have no factors in common with phi (in particular, it must
be odd), but can otherwise be chosen more or less randomly. e = 65537 is a popular choice,
because it makes raising to the e’th power particularly efficient, and being prime, it usually
has no factors common with phi.



Chapter 7: Reference 70

Finally, a number d, d < n is computed such that e d mod phi = 1. It can be shown that
such a number exists (this is why e and phi must have no common factors), and that for
all x,

(x^e)^d mod n = x^(ed) mod n = (x^d)^e mod n = x

Using Euclid’s algorithm, d can be computed quite easily from phi and e. But it is still
hard to get d without knowing phi, which depends on the factorization of n.

So d is the trapdoor, if we know d and y = F(x), we can recover x as y^d mod n. d is
also the private half of the RSA key-pair.

The most common signature operation for RSA is defined in PKCS#1, a specification
by RSA Laboratories. The message to be signed is first hashed using a cryptographic hash
function, e.g. MD5 or SHA1. Next, some padding, the ASN.1 “Algorithm Identifier” for the
hash function, and the message digest itself, are concatenated and converted to a number
x. The signature is computed from x and the private key as s = x^d mod n1. The signature,
s is a number of about the same size of n, and it usually encoded as a sequence of octets,
most significant octet first.

The verification operation is straight-forward, x is computed from the message in the
same way as above. Then s^e mod n is computed, the operation returns true if and only if
the result equals x.

The RSA algorithm can also be used for encryption. RSA encryption uses the public
key (n,e) to compute the ciphertext m^e mod n. The PKCS#1 padding scheme will use at
least 8 random and non-zero octets, using m of the form [00 02 padding 00 plaintext].
It is required that m < n, and therefor the plaintext must be smaller than the octet size of
the modulo n, with some margin.

To decrypt the message, one needs the private key to compute m = c^e mod n followed
by checking and removing the padding.

7.7.1.1 Nettle’s RSA support

Nettle represents RSA keys using two structures that contain large numbers (of type mpz_t).

[Context struct]rsa_public_key size n e

size is the size, in octets, of the modulo, and is used internally. n and e is the public
key.

[Context struct]rsa_private_key size d p q a b c

size is the size, in octets, of the modulo, and is used internally. d is the secret
exponent, but it is not actually used when signing. Instead, the factors p and q, and
the parameters a, b and c are used. They are computed from p, q and e such that a
e mod (p - 1) = 1, b e mod (q - 1) = 1, c q mod p = 1.

Before use, these structs must be initialized by calling one of

[Function]void rsa_public_key_init (struct rsa public key *pub )
[Function]void rsa_private_key_init (struct rsa private key *key )

Calls mpz_init on all numbers in the key struct.

1 Actually, the computation is not done like this, it is done more efficiently using p, q and the Chinese
remainder theorem (CRT). But the result is the same.



Chapter 7: Reference 71

and when finished with them, the space for the numbers must be deallocated by calling
one of

[Function]void rsa_public_key_clear (struct rsa public key *pub )
[Function]void rsa_private_key_clear (struct rsa private key *key )

Calls mpz_clear on all numbers in the key struct.

In general, Nettle’s RSA functions deviates from Nettle’s “no memory allocation”-policy.
Space for all the numbers, both in the key structs above, and temporaries, are allocated
dynamically. For information on how to customize allocation, see See Section “GMP Allo-
cation” in GMP Manual.

When you have assigned values to the attributes of a key, you must call

[Function]int rsa_public_key_prepare (struct rsa public key *pub )
[Function]int rsa_private_key_prepare (struct rsa private key *key )

Computes the octet size of the key (stored in the size attribute, and may also do
other basic sanity checks. Returns one if successful, or zero if the key can’t be used,
for instance if the modulo is smaller than the minimum size needed for RSA operations
specified by PKCS#1.

For each operation using the private key, there are two variants, e.g., rsa_sha256_sign
and rsa_sha256_sign_tr. The former function is older, and it should be avoided, because
it provides no defenses against side-channel attacks. The latter function use randomized
RSA blinding, which defends against timing attacks using chosen-ciphertext, and it also
checks the correctness of the private key computation using the public key, which defends
against software or hardware errors which could leak the private key.

Before signing or verifying a message, you first hash it with the appropriate hash function.
You pass the hash function’s context struct to the RSA signature function, and it will extract
the message digest and do the rest of the work. There are also alternative functions that
take the hash digest as argument.

There is currently no support for using SHA224 or SHA384 with RSA signatures, since
there’s no gain in either computation time nor message size compared to using SHA256 and
SHA512, respectively.

Creating an RSA signature is done with one of the following functions:

[Function]int rsa_md5_sign_tr(const struct rsa public key *pub , const struct

rsa private key *key , void *random_ctx , nettle random func *random ,

struct md5 ctx *hash , mpz t signature )
[Function]int rsa_sha1_sign_tr(const struct rsa public key *pub , const struct

rsa private key *key , void *random_ctx , nettle random func *random ,

struct sha1 ctx *hash , mpz t signature )
[Function]int rsa_sha256_sign_tr(const struct rsa public key *pub , const

struct rsa private key *key , void *random_ctx , nettle random func

*random , struct sha256 ctx *hash , mpz t signature )
[Function]int rsa_sha512_sign_tr(const struct rsa public key *pub , const

struct rsa private key *key , void *random_ctx , nettle random func

*random , struct sha512 ctx *hash , mpz t signature )
The signature is stored in signature (which must have been mpz_init’ed earlier). The
hash context is reset so that it can be used for new messages. The random ctx and



Chapter 7: Reference 72

random pointers are used to generate the RSA blinding. Returns one on success, or
zero on failure. Signing fails if an error in the computation was detected, or if the key
is too small for the given hash size, e.g., it’s not possible to create a signature using
SHA512 and a 512-bit RSA key.

[Function]int rsa_md5_sign_digest_tr(const struct rsa public key *pub ,

const struct rsa private key *key , void *random_ctx , nettle random func

*random , const uint8 t *digest , mpz t signature )
[Function]int rsa_sha1_sign_digest_tr(const struct rsa public key *pub ,

const struct rsa private key *key , void *random_ctx , nettle random func

*random , const uint8 t *digest , mpz t signature )
[Function]int rsa_sha256_sign_digest_tr(const struct rsa public key *pub ,

const struct rsa private key *key , void *random_ctx , nettle random func

*random , const uint8 t *digest , mpz t signature )
[Function]int rsa_sha512_sign_digest_tr(const struct rsa public key *pub ,

const struct rsa private key *key , void *random_ctx , nettle random func

*random , const uint8 t *digest , mpz t signature )
Creates a signature from the given hash digest. digest should point to a digest of size
MD5_DIGEST_SIZE, SHA1_DIGEST_SIZE, SHA256_DIGEST_SIZE, or SHA512_DIGEST_

SIZErespectively. The signature is stored in signature (which must have been mpz_

init:ed earlier). Returns one on success, or zero on failure.

[Function]int rsa_pkcs1_sign_tr(const struct rsa public key *pub , const

struct rsa private key *key , void *random_ctx , nettle random func

*random , size t length , const uint8 t *digest_info , mpz t signature )
Similar to the above _sign_digest_tr functions, but the input is not the plain hash
digest, but a PKCS#1 “DigestInfo”, an ASN.1 DER-encoding of the digest together
with an object identifier for the used hash algorithm.

[Function]int rsa_md5_sign (const struct rsa private key *key , struct md5 ctx

*hash , mpz t signature )
[Function]int rsa_sha1_sign (const struct rsa private key *key , struct sha1 ctx

*hash , mpz t signature )
[Function]int rsa_sha256_sign (const struct rsa private key *key , struct

sha256 ctx *hash , mpz t signature )
[Function]int rsa_sha512_sign (const struct rsa private key *key , struct

sha512 ctx *hash , mpz t signature )
The signature is stored in signature (which must have been mpz_init’ed earlier). The
hash context is reset so that it can be used for new messages. Returns one on success,
or zero on failure. Signing fails if the key is too small for the given hash size, e.g., it’s
not possible to create a signature using SHA512 and a 512-bit RSA key.

[Function]int rsa_md5_sign_digest (const struct rsa private key *key , const

uint8 t *digest , mpz t signature )
[Function]int rsa_sha1_sign_digest (const struct rsa private key *key , const

uint8 t *digest , mpz t signature );
[Function]int rsa_sha256_sign_digest (const struct rsa private key *key , const

uint8 t *digest , mpz t signature );



Chapter 7: Reference 73

[Function]int rsa_sha512_sign_digest (const struct rsa private key *key , const

uint8 t *digest , mpz t signature );
Creates a signature from the given hash digest; otherwise analoguous to the above
signing functions. digest should point to a digest of size MD5_DIGEST_SIZE, SHA1_
DIGEST_SIZE, SHA256_DIGEST_SIZE, or SHA512_DIGEST_SIZE, respectively. The sig-
nature is stored in signature (which must have been mpz_init:ed earlier). Returns
one on success, or zero on failure.

[Function]int rsa_pkcs1_sign(const struct rsa private key *key , size t

length , const uint8 t *digest_info , mpz t s )
Similar to the above sign digest functions, but the input is not the plain hash digest,
but a PKCS#1 “DigestInfo”, an ASN.1 DER-encoding of the digest together with an
object identifier for the used hash algorithm.

Verifying an RSA signature is done with one of the following functions:

[Function]int rsa_md5_verify (const struct rsa public key *key , struct md5 ctx

*hash , const mpz t signature )
[Function]int rsa_sha1_verify (const struct rsa public key *key , struct sha1 ctx

*hash , const mpz t signature )
[Function]int rsa_sha256_verify (const struct rsa public key *key , struct

sha256 ctx *hash , const mpz t signature )
[Function]int rsa_sha512_verify (const struct rsa public key *key , struct

sha512 ctx *hash , const mpz t signature )
Returns 1 if the signature is valid, or 0 if it isn’t. In either case, the hash context is
reset so that it can be used for new messages.

[Function]int rsa_md5_verify_digest (const struct rsa public key *key , const

uint8 t *digest , const mpz t signature )
[Function]int rsa_sha1_verify_digest (const struct rsa public key *key , const

uint8 t *digest , const mpz t signature )
[Function]int rsa_sha256_verify_digest (const struct rsa public key *key ,

const uint8 t *digest , const mpz t signature )
[Function]int rsa_sha512_verify_digest (const struct rsa public key *key ,

const uint8 t *digest , const mpz t signature )
Returns 1 if the signature is valid, or 0 if it isn’t. digest should point to a digest of size
MD5_DIGEST_SIZE, SHA1_DIGEST_SIZE, SHA256_DIGEST_SIZE, or SHA512_DIGEST_

SIZE respectively.

[Function]int rsa_pkcs1_verify(const struct rsa public key *key , size t

length , const uint8 t *digest_info , const mpz t signature )
Similar to the above verify digest functions, but the input is not the plain hash
digest, but a PKCS#1 “DigestInfo”, and ASN.1 DER-encoding of the digest together
with an object identifier for the used hash algorithm.

While the above functions for the RSA signature operations use the PKCS#1 padding
scheme, Nettle also provides the variants based on the PSS padding scheme, specified in RFC

3447. These variants take advantage of a randomly choosen salt value, which could enhance
the security by causing output to be different for equivalent inputs. However, assuming the



Chapter 7: Reference 74

same security level as inverting the RSA algorithm, a longer salt value does not always mean
a better security http://www.iacr.org/archive/eurocrypt2002/23320268/coron.pdf.
The typical choices of the length are between 0 and the digest size of the underlying hash
function.

Creating an RSA signature with the PSS padding scheme is done with one of the following
functions:

[Function]int rsa_pss_sha256_sign_digest_tr(const struct rsa public key

*pub , const struct rsa private key *key , void *random_ctx ,

nettle random func *random , size t salt_length , const uint8 t *salt ,

const uint8 t *digest , mpz t signature )
[Function]int rsa_pss_sha384_sign_digest_tr(const struct rsa public key

*pub , const struct rsa private key *key , void *random_ctx ,

nettle random func *random , size t salt_length , const uint8 t *salt ,

const uint8 t *digest , mpz t signature )
[Function]int rsa_pss_sha512_sign_digest_tr(const struct rsa public key

*pub , const struct rsa private key *key , void *random_ctx ,

nettle random func *random , size t salt_length , const uint8 t *salt ,

const uint8 t *digest , mpz t signature )
Creates a signature using the PSS padding scheme. salt should point to a salt string
of size salt length. digest should point to a digest of size SHA256_DIGEST_SIZE,
SHA384_DIGEST_SIZE, or SHA512_DIGEST_SIZErespectively. The signature is stored
in signature (which must have been mpz_init:ed earlier). Returns one on success, or
zero on failure.

Verifying an RSA signature with the PSS padding scheme is done with one of the fol-
lowing functions:

[Function]int rsa_pss_sha256_verify_digest (const struct rsa public key

*key , size t salt_length , const uint8 t *digest , const mpz t signature )
[Function]int rsa_pss_sha384_verify_digest (const struct rsa public key

*key , size t salt_length , const uint8 t *digest , const mpz t signature )
[Function]int rsa_pss_sha512_verify_digest (const struct rsa public key

*key , size t salt_length , const uint8 t *digest , const mpz t signature )
Returns 1 if the signature is valid, or 0 if it isn’t. digest should point to a digest of size
SHA256_DIGEST_SIZE, SHA384_DIGEST_SIZE, or SHA512_DIGEST_SIZE respectively.

The following function is used to encrypt a clear text message using RSA.

[Function]int rsa_encrypt (const struct rsa public key *key , void *random_ctx ,

nettle random func *random , size t length , const uint8 t *cleartext ,

mpz t ciphertext )
Returns 1 on success, 0 on failure. If the message is too long then this will lead to a
failure.

The following function is used to decrypt a cipher text message using RSA.



Chapter 7: Reference 75

[Function]int rsa_decrypt (const struct rsa private key *key , size t *length ,

uint8 t *cleartext , const mpz t ciphertext )
Returns 1 on success, 0 on failure. Causes of failure include decryption failing or the
resulting message being to large. The message buffer pointed to by cleartext must
be of size *length. After decryption, *length will be updated with the size of the
message.

There is also a timing resistant version of decryption that utilizes randomized RSA
blinding.

[Function]int rsa_decrypt_tr (const struct rsa public key *pub , const struct

rsa private key *key , void *random_ctx , nettle random func *random , size t

*length , uint8 t *message , const mpz t ciphertext )
Returns 1 on success, 0 on failure.

If you need to use the RSA trapdoor, the private key, in a way that isn’t supported by
the above functions Nettle also includes a function that computes x^d mod n and nothing
more, using the CRT optimization.

[Function]int rsa_compute_root_tr(const struct rsa public key *pub , const

struct rsa private key *key , void *random_ctx , nettle random func

*random , mpz t x , const mpz t m )
Computes x = m^d. Returns one on success, or zero if a failure in the computation
was detected.

[Function]void rsa_compute_root (struct rsa private key *key , mpz t x , const

mpz t m )
Computes x = m^d.

At last, how do you create new keys?

[Function]int rsa_generate_keypair (struct rsa public key *pub , struct

rsa private key *key , void *random_ctx , nettle random func random , void

*progress_ctx , nettle progress func progress , unsigned n_size , unsigned

e_size );
There are lots of parameters. pub and key is where the resulting key pair is stored.
The structs should be initialized, but you don’t need to call rsa_public_key_prepare
or rsa_private_key_prepare after key generation.

random ctx and random is a randomness generator. random(random_ctx, length,

dst) should generate length random octets and store them at dst. For advice, see
See Section 7.8 [Randomness], page 87.

progress and progress ctx can be used to get callbacks during the key generation
process, in order to uphold an illusion of progress. progress can be NULL, in that
case there are no callbacks.

size n is the desired size of the modulo, in bits. If size e is non-zero, it is the desired
size of the public exponent and a random exponent of that size is selected. But if
e size is zero, it is assumed that the caller has already chosen a value for e, and
stored it in pub. Returns one on success, and zero on failure. The function can fail
for example if if n size is too small, or if e size is zero and pub->e is an even number.



Chapter 7: Reference 76

7.7.2 DSA

The DSA digital signature algorithm is more complex than RSA. It was specified during the
early 1990s, and in 1994 NIST published FIPS 186 which is the authoritative specification.
Sometimes DSA is referred to using the acronym DSS, for Digital Signature Standard. The
most recent revision of the specification, FIPS186-3, was issued in 2009, and it adds support
for larger hash functions than sha1.

For DSA, the underlying mathematical problem is the computation of discrete logarithms.
The public key consists of a large prime p, a small prime q which is a factor of p-1, a number
g which generates a subgroup of order q modulo p, and an element y in that subgroup.

In the original DSA, the size of q is fixed to 160 bits, to match with the SHA1 hash
algorithm. The size of p is in principle unlimited, but the standard specifies only nine
specific sizes: 512 + l*64, where l is between 0 and 8. Thus, the maximum size of p is 1024
bits, and sizes less than 1024 bits are considered obsolete and not secure.

The subgroup requirement means that if you compute

g^t mod p

for all possible integers t, you will get precisely q distinct values.

The private key is a secret exponent x, such that

g^x = y mod p

In mathematical speak, x is the discrete logarithm of y mod p, with respect to the
generator g. The size of x will also be about the same size as q. The security of the DSA

algorithm relies on the difficulty of the discrete logarithm problem. Current algorithms to
compute discrete logarithms in this setting, and hence crack DSA, are of two types. The
first type works directly in the (multiplicative) group of integers mod p. The best known
algorithm of this type is the Number Field Sieve, and it’s complexity is similar to the
complexity of factoring numbers of the same size as p. The other type works in the smaller
q-sized subgroup generated by g, which has a more difficult group structure. One good
algorithm is Pollard-rho, which has complexity sqrt(q).

The important point is that security depends on the size of both p and q, and they should
be chosen so that the difficulty of both discrete logarithm methods are comparable. Today,
the security margin of the original DSA may be uncomfortably small. Using a p of 1024 bits
implies that cracking using the number field sieve is expected to take about the same time
as factoring a 1024-bit RSA modulo, and using a q of size 160 bits implies that cracking
using Pollard-rho will take roughly 2^80 group operations. With the size of q fixed, tied to
the SHA1 digest size, it may be tempting to increase the size of p to, say, 4096 bits. This
will provide excellent resistance against attacks like the number field sieve which works in
the large group. But it will do very little to defend against Pollard-rho attacking the small
subgroup; the attacker is slowed down at most by a single factor of 10 due to the more
expensive group operation. And the attacker will surely choose the latter attack.

The signature generation algorithm is randomized; in order to create a DSA signature,
you need a good source for random numbers (see Section 7.8 [Randomness], page 87). Let
us describe the common case of a 160-bit q.

To create a signature, one starts with the hash digest of the message, h, which is a 160
bit number, and a random number k, 0<k<q, also 160 bits. Next, one computes



Chapter 7: Reference 77

r = (g^k mod p) mod q

s = k^-1 (h + x r) mod q

The signature is the pair (r, s), two 160 bit numbers. Note the two different mod
operations when computing r, and the use of the secret exponent x.

To verify a signature, one first checks that 0 < r,s < q, and then one computes back-
wards,

w = s^-1 mod q

v = (g^(w h) y^(w r) mod p) mod q

The signature is valid if v = r. This works out because w = s^-1 mod q = k (h + x r)^-1

mod q, so that

g^(w h) y^(w r) = g^(w h) (g^x)^(w r) = g^(w (h + x r)) = g^k

When reducing mod q this yields r. Note that when verifying a signature, we don’t
know either k or x: those numbers are secret.

If you can choose between RSA and DSA, which one is best? Both are believed to be
secure. DSA gained popularity in the late 1990s, as a patent free alternative to RSA. Now
that the RSA patents have expired, there’s no compelling reason to want to use DSA. Today,
the original DSA key size does not provide a large security margin, and it should probably
be phased out together with RSA keys of 1024 bits. Using the revised DSA algorithm with
a larger hash function, in particular, SHA256, a 256-bit q, and p of size 2048 bits or more,
should provide for a more comfortable security margin, but these variants are not yet in
wide use.

DSA signatures are smaller than RSA signatures, which is important for some specialized
applications.

From a practical point of view, DSA’s need for a good randomness source is a serious
disadvantage. If you ever use the same k (and r) for two different message, you leak your
private key.

7.7.2.1 Nettle’s DSA support

Like for RSA, Nettle represents DSA keys using two structures, containing values of type
mpz_t. For information on how to customize allocation, see See Section “GMP Allocation”
in GMP Manual. Nettle’s DSA interface is defined in ‘<nettle/dsa.h>’.

A DSA group is represented using the following struct.

[Context struct]dsa_params p q g

Parameters of the DSA group.

[Function]void dsa_params_init (struct dsa params *params )
Calls mpz_init on all numbers in the struct.

[Function]void dsa_params_clear (struct dsa params *paramsparams)
Calls mpz_clear on all numbers in the struct.

[Function]int dsa_generate_params (struct dsa params *params , void

*random_ctx , nettle random func *random , void *progress_ctx ,

nettle progress func *progress , unsigned p_bits , unsigned q_bits )
Generates parameters of a new group. The params struct should be initialized before
you call this function.



Chapter 7: Reference 78

random ctx and random is a randomness generator. random(random_ctx, length,

dst) should generate length random octets and store them at dst. For advice, see
See Section 7.8 [Randomness], page 87.

progress and progress ctx can be used to get callbacks during the key generation
process, in order to uphold an illusion of progress. progress can be NULL, in that
case there are no callbacks.

p bits and q bits are the desired sizes of p and q. To generate keys that conform
to the original DSA standard, you must use q_bits = 160 and select p bits of the
form p_bits = 512 + l*64, for 0 <= l <= 8, where the smaller sizes are no longer
recommended, so you should most likely stick to p_bits = 1024. Non-standard sizes
are possible, in particular p_bits larger than 1024, although DSA implementations
can not in general be expected to support such keys. Also note that using very large
p bits, with q bits fixed at 160, doesn’t make much sense, because the security is also
limited by the size of the smaller prime. To generate DSA keys for use with SHA256,
use q_bits = 256 and, e.g., p_bits = 2048.

Returns one on success, and zero on failure. The function will fail if q bits is too
small, or too close to p bits.

Signatures are represented using the structure below.

[Context struct]dsa_signature r s

[Function]void dsa_signature_init (struct dsa signature *signature )
[Function]void dsa_signature_clear (struct dsa signature *signature )

You must call dsa_signature_init before creating or using a signature, and call
dsa_signature_clear when you are finished with it.

Keys are represented as bignums, of type mpz_t. A public key represents a group element,
and is of the same size as p, while a private key is an exponent, of the same size as q.

[Function]int dsa_sign (const struct dsa params *params , const mpz t x , void

*random_ctx , nettle random func *random , size t digest_size , const

uint8 t *digest , struct dsa signature *signature )
Creates a signature from the given hash digest, using the private key x. random ctx

and random is a randomness generator. random(random_ctx, length, dst) should
generate length random octets and store them at dst. For advice, see See Section 7.8
[Randomness], page 87. Returns one on success, or zero on failure. Signing can fail
only if the key is invalid, so that inversion modulo q fails.

[Function]int dsa_verify (const struct dsa params *params , const mpz t y ,

size t digest_size , const uint8 t *digest , const struct dsa signature

*signature )
Verifies a signature, using the public key y. Returns 1 if the signature is valid,
otherwise 0.

To generate a keypair, first generate a DSA group using dsa_generate_params. A
keypair in this group is then created using



Chapter 7: Reference 79

[Function]void dsa_generate_keypair (const struct dsa params *params , mpz t

pub , mpz t key , void *random_ctx , nettle random func *random )
Generates a new keypair, using the group params. The public key is stored in pub,
and the private key in key . Both variables must be initialized using mpz_init before
this call.

random ctx and random is a randomness generator. random(random_ctx, length,

dst) should generate length random octets and store them at dst. For advice, see
See Section 7.8 [Randomness], page 87.

7.7.2.2 Old, deprecated, DSA interface

Versions before nettle-3.0 used a different interface for DSA signatures, where the group
parameters and the public key was packed together as struct dsa_public_key. Most of
this interface is kept for backwards compatibility, and declared in ‘nettle/dsa-compat.h’.
Below is the old documentation. The old and new interface use distinct names and don’t
confict, with one exception: The key generation function. The ‘nettle/dsa-compat.h’ re-
defines dsa_generate_keypair as an alias for dsa_compat_generate_keypair, compatible
with the old interface and documented below.

The old DSA functions are very similar to the corresponding RSA functions, but there
are a few differences pointed out below. For a start, there are no functions corresponding
to rsa_public_key_prepare and rsa_private_key_prepare.

[Context struct]dsa_public_key p q g y

The public parameters described above.

[Context struct]dsa_private_key x

The private key x.

Before use, these structs must be initialized by calling one of

[Function]void dsa_public_key_init (struct dsa public key *pub )
[Function]void dsa_private_key_init (struct dsa private key *key )

Calls mpz_init on all numbers in the key struct.

When finished with them, the space for the numbers must be deallocated by calling one
of

[Function]void dsa_public_key_clear (struct dsa public key *pub )
[Function]void dsa_private_key_clear (struct dsa private key *key )

Calls mpz_clear on all numbers in the key struct.

Signatures are represented using struct dsa_signature, described earlier.

For signing, you need to provide both the public and the private key (unlike RSA,
where the private key struct includes all information needed for signing), and a source for
random numbers. Signatures can use the SHA1 or the SHA256 hash function, although the
implementation of DSA with SHA256 should be considered somewhat experimental due to
lack of official test vectors and interoperability testing.



Chapter 7: Reference 80

[Function]int dsa_sha1_sign (const struct dsa public key *pub , const struct

dsa private key *key , void *random_ctx , nettle random func random , struct

sha1 ctx *hash , struct dsa signature *signature )
[Function]int dsa_sha1_sign_digest (const struct dsa public key *pub , const

struct dsa private key *key , void *random_ctx , nettle random func random ,

const uint8 t *digest , struct dsa signature *signature )
[Function]int dsa_sha256_sign (const struct dsa public key *pub , const struct

dsa private key *key , void *random_ctx , nettle random func random , struct

sha256 ctx *hash , struct dsa signature *signature )
[Function]int dsa_sha256_sign_digest (const struct dsa public key *pub , const

struct dsa private key *key , void *random_ctx , nettle random func random ,

const uint8 t *digest , struct dsa signature *signature )
Creates a signature from the given hash context or digest. random ctx and ran-

dom is a randomness generator. random(random_ctx, length, dst) should gener-
ate length random octets and store them at dst. For advice, see See Section 7.8
[Randomness], page 87. Returns one on success, or zero on failure. Signing fails if
the key size and the hash size don’t match.

Verifying signatures is a little easier, since no randomness generator is needed. The
functions are

[Function]int dsa_sha1_verify (const struct dsa public key *key , struct

sha1 ctx *hash , const struct dsa signature *signature )
[Function]int dsa_sha1_verify_digest (const struct dsa public key *key , const

uint8 t *digest , const struct dsa signature *signature )
[Function]int dsa_sha256_verify (const struct dsa public key *key , struct

sha256 ctx *hash , const struct dsa signature *signature )
[Function]int dsa_sha256_verify_digest (const struct dsa public key *key ,

const uint8 t *digest , const struct dsa signature *signature )
Verifies a signature. Returns 1 if the signature is valid, otherwise 0.

Key generation uses mostly the same parameters as the corresponding RSA function.

[Function]int dsa_compat_generate_keypair (struct dsa public key *pub ,

struct dsa private key *key , void *random_ctx , nettle random func random ,

void *progress_ctx , nettle progress func progress , unsigned p_bits ,

unsigned q_bits )
pub and key is where the resulting key pair is stored. The structs should be initialized
before you call this function.

random ctx and random is a randomness generator. random(random_ctx, length,

dst) should generate length random octets and store them at dst. For advice, see
See Section 7.8 [Randomness], page 87.

progress and progress ctx can be used to get callbacks during the key generation
process, in order to uphold an illusion of progress. progress can be NULL, in that
case there are no callbacks.

p bits and q bits are the desired sizes of p and q. See dsa_generate_keypair for
details.



Chapter 7: Reference 81

7.7.3 Elliptic curves

For cryptographic purposes, an elliptic curve is a mathematical group of points, and com-
puting logarithms in this group is computationally difficult problem. Nettle uses additive
notation for elliptic curve groups. If P and Q are two points, and k is an integer, the point
sum, P + Q, and the multiple kP can be computed efficiently, but given only two points
P and Q, finding an integer k such that Q = kP is the elliptic curve discrete logarithm
problem.

Nettle supports standard curves which are all of the form y2 = x3
− 3x + b (mod p),

i.e., the points have coordinates (x, y), both considered as integers modulo a specified prime
p. Curves are represented as a struct ecc_curve. It also supports curve25519, which
uses a different form of curve. Supported curves are declared in ‘<nettle/ecc-curve.h>’,
e.g., call nettle_get_secp_256r1 for a standardized curve using the 256-bit prime p =
2256 − 2224 + 2192 + 296 − 1. The contents of these structs is not visible to nettle users. The
“bitsize of the curve” is used as a shorthand for the bitsize of the curve’s prime p, e.g., 256
bits for the SECP 256R1 curve.

7.7.3.1 Side-channel silence

Nettle’s implementation of the elliptic curve operations is intended to be side-channel silent.
The side-channel attacks considered are:

• Timing attacks If the timing of operations depends on secret values, an attacker inter-
acting with your system can measure the response time, and infer information about
your secrets, e.g., a private signature key.

• Attacks using memory caches Assume you have some secret data on a multi-user system,
and that this data is properly protected so that other users get no direct access to it. If
you have a process operating on the secret data, and this process does memory accesses
depending on the data, e.g, an internal lookup table in some cryptographic algorithm,
an attacker running a separate process on the same system may use behavior of internal
CPU caches to get information about your secrets. This type of attack can even cross
virtual machine boundaries.

Nettle’s ECC implementation is designed to be side-channel silent, and not leak any
information to these attacks. Timing and memory accesses depend only on the size of
the input data and its location in memory, not on the actual data bits. This implies a
performance penalty in several of the building blocks.

7.7.3.2 ECDSA

ECDSA is a variant of the DSA digital signature scheme (see Section 7.7.2 [DSA], page 76),
which works over an elliptic curve group rather than over a (subgroup of) integers modulo
p. Like DSA, creating a signature requires a unique random nonce (repeating the nonce
with two different messages reveals the private key, and any leak or bias in the generation
of the nonce also leaks information about the key).

Unlike DSA, signatures are in general not tied to any particular hash function or even
hash size. Any hash function can be used, and the hash value is truncated or padded as
needed to get a size matching the curve being used. It is recommended to use a strong
cryptographic hash function with digest size close to the bit size of the curve, e.g., SHA256
is a reasonable choice when using ECDSA signature over the curve secp256r1. A protocol



Chapter 7: Reference 82

or application using ECDSA has to specify which curve and which hash function to use, or
provide some mechanism for negotiating.

Nettle defines ECDSA in ‘<nettle/ecdsa.h>’. We first need to define the data types
used to represent public and private keys.

[struct]struct ecc_point
Represents a point on an elliptic curve. In particular, it is used to represent an
ECDSA public key.

[Function]void ecc_point_init (struct ecc point *p , const struct ecc curve *ecc )
Initializes p to represent points on the given curve ecc. Allocates storage for the
coordinates, using the same allocation functions as GMP.

[Function]void ecc_point_clear (struct ecc point *p )
Deallocate storage.

[Function]int ecc_point_set (struct ecc point *p , const mpz t x , const mpz t y )
Check that the given coordinates represent a point on the curve. If so, the coordi-
nates are copied and converted to internal representation, and the function returns
1. Otherwise, it returns 0. Currently, the infinity point (or zero point, with additive
notation) is not allowed.

[Function]void ecc_point_get (const struct ecc point *p , mpz t x , mpz t y )
Extracts the coordinate of the point p. The output parameters x or y may be NULL
if the caller doesn’t want that coordinate.

[struct]struct ecc_scalar
Represents an integer in the range 0 < x < grouporder, where the “group order”
refers to the order of an ECC group. In particular, it is used to represent an ECDSA
private key.

[Function]void ecc_scalar_init (struct ecc scalar *s , const struct ecc curve

*ecc )
Initializes s to represent a scalar suitable for the given curve ecc. Allocates storage
using the same allocation functions as GMP.

[Function]void ecc_scalar_clear (struct ecc scalar *s )
Deallocate storage.

[Function]int ecc_scalar_set (struct ecc scalar *s , const mpz t z )
Check that z is in the correct range. If so, copies the value to s and returns 1,
otherwise returns 0.

[Function]void ecc_scalar_get (const struct ecc scalar *s , mpz t z )
Extracts the scalar, in GMP mpz_t representation.

To create and verify ECDSA signatures, the following functions are used.



Chapter 7: Reference 83

[Function]void ecdsa_sign (const struct ecc scalar *key , void *random_ctx ,

nettle random func *random , size t digest_length , const uint8 t *digest ,

struct dsa signature *signature )
Uses the private key key to create a signature on digest. random ctx and random is a
randomness generator. random(random_ctx, length, dst) should generate length

random octets and store them at dst. The signature is stored in signature, in the
same was as for plain DSA.

[Function]int ecdsa_verify (const struct ecc point *pub , size t length , const

uint8 t *digest , const struct dsa signature *signature )
Uses the public key pub to verify that signature is a valid signature for the message
digest digest (of length octets). Returns 1 if the signature is valid, otherwise 0.

Finally, generating a new ECDSA key pair:

[Function]void ecdsa_generate_keypair (struct ecc point *pub , struct

ecc scalar *key , void *random_ctx , nettle random func *random );
pub and key is where the resulting key pair is stored. The structs should be initialized,
for the desired ECC curve, before you call this function.

random ctx and random is a randomness generator. random(random_ctx, length,

dst) should generate length random octets and store them at dst. For advice, see
See Section 7.8 [Randomness], page 87.

7.7.3.3 GOSTDSA

GOSTDSA (GOST R 34.10-2001, GOST R 34.10-2012) is a variant of the DSA (see Sec-
tion 7.7.2 [DSA], page 76) and ECDSA (see Section 7.7.3.2 [ECDSA], page 81) digital signa-
ture schemes, which works over an elliptic curve group. Original documents are written in
Russian. English translations are provided in RFC 5832 and RFC 7091. While technically
nothing stops one from using GOSTDSA over any curve, it is defined only over several 256
and 512-bit curves. Like DSA and ECDSA, creating a signature requires a unique random
nonce (repeating the nonce with two different messages reveals the private key, and any
leak or bias in the generation of the nonce also leaks information about the key).

GOST R 34.10-2001 was defined to use GOST R 34.11-94 hash function (GOSTHASH94
and GOSTHASH94CP, RFC 5831). GOST R 34.10-2012 is defined to use GOST R 34.11-
2012 hash function (Streebog, RFC 6986) of corresponding size (256 or 512) depending on
curve size.

Nettle defines GOSTDSA in ‘<nettle/gostdsa.h>’. GOSTDSA reuses ECDSA data
types (struct ecc_point, struct ecc_scalar) to represent public and private keys. Also
to generate a new GOSTDSA key pair one has to use ecdsa_generate_keypair() function.

To create and verify GOSTDSA signatures, the following functions are used.

[Function]void gostdsa_sign (const struct ecc scalar *key , void *random_ctx ,

nettle random func *random , size t digest_length , const uint8 t *digest ,

struct dsa signature *signature )
Uses the private key key to create a signature on digest. random ctx and random is a
randomness generator. random(random_ctx, length, dst) should generate length

random octets and store them at dst. The signature is stored in signature, in the
same was as for plain DSA.



Chapter 7: Reference 84

[Function]int gostdsa_verify (const struct ecc point *pub , size t length , const

uint8 t *digest , const struct dsa signature *signature )
Uses the public key pub to verify that signature is a valid signature for the message
digest digest (of length octets). Returns 1 if the signature is valid, otherwise 0.

For historical reason several curve IDs (OIDs) may correspond to a single curve/generator
combination. Following list defines correspondence between nettle’s view on curves and
actual identifiers defined in RFC 4357 and RFC 7836.

[Function]const struct ecc_curve nettle_get_gost_gc256b(void)
Returns curve corresponding to following identifiers:

• id-GostR3410-2001-CryptoPro-A-ParamSet (RFC 4357)

• id-GostR3410-2001-CryptoPro-XchA-ParamSet (RFC 4357)

• id-tc26-gost-3410-12-256-paramSetB

[Function]const struct ecc_curve nettle_get_gost_gc512a(void)
Returns curve corresponding to following identifiers:

• id-tc26-gost-3410-12-512-paramSetA (RFC 7836)

7.7.3.4 Curve25519 and Curve448

Curve25519 is an elliptic curve of Montgomery type, y2 = x3+486662x2+x (mod p), with
p = 2255−19. Montgomery curves have the advantage of simple and efficient point addition
based on the x-coordinate only. This particular curve was proposed by D. J. Bernstein in
2006, for fast Diffie-Hellman key exchange, and is also described in RFC 7748. The group
generator is defined by x = 9 (there are actually two points with x = 9, differing by the
sign of the y-coordinate, but that doesn’t matter for the curve25519 operations which work
with the x-coordinate only).

The curve25519 functions are defined as operations on octet strings, representing 255-bit
scalars or x-coordinates, in little-endian byte order. The most significant input bit, i.e, the
most significant bit of the last octet, is always ignored.

For scalars, in addition, the least significant three bits are ignored, and treated as zero,
and the second most significant bit is ignored too, and treated as one. Then the scalar
input string always represents 8 times a number in the range 2251 <= s < 2252.

Of all the possible input strings, only about half correspond to x-coordinates of points on
curve25519, i.e., a value x for which the the curve equation can be solved for y. The other
half correspond to points on a related “twist curve”. The function curve25519_mul uses a
Montgomery ladder for the scalar multiplication, as suggested in the curve25519 literature,
and required by RFC 7748. The output is therefore well defined for all possible inputs, no
matter if the input string represents a valid point on the curve or not.

Note that the curve25519 implementation in earlier versions of Nettle deviates
slightly from RFC 7748, in that bit 255 of the x coordinate of the point input to
curve25519 mul was not ignored. The ‘nette/curve25519.h’ defines a preprocessor
symbol NETTLE_CURVE25519_RFC7748 to indicate conformance with the standard.

Nettle defines Curve 25519 in ‘<nettle/curve25519.h>’.

[Constant]NETTLE_CURVE25519_RFC7748
Defined to 1 in Nettle versions conforming to RFC 7748. Undefined in earlier versions.



Chapter 7: Reference 85

[Constant]CURVE25519_SIZE
The size of the strings representing curve25519 points and scalars, 32.

[Function]void curve25519_mul_g (uint8 t *q , const uint8 t *n )
Computes Q = NG, where G is the group generator and N is an integer. The input
argument n and the output argument q use a little-endian representation of the scalar
and the x-coordinate, respectively. They are both of size CURVE25519_SIZE.

This function is intended to be compatible with the function crypto_scalar_mult_

base in the NaCl library.

[Function]void curve25519_mul (uint8 t *q , const uint8 t *n , const uint8 t *p )
Computes Q = NP , where P is an input point and N is an integer. The input
arguments n and p and the output argument q use a little-endian representation of
the scalar and the x-coordinates, respectively. They are all of size CURVE25519_SIZE.

This function is intended to be compatible with the function crypto_scalar_mult

in the NaCl library.

Similarly, Nettle also implements Curve448, an elliptic curve of Montgomery type, y2 =
x3 +156326x2 + x (mod p), with p = 2448− 2224− 1. This particular curve was proposed
by Mike Hamburg in 2015, for fast Diffie-Hellman key exchange, and is also described in
RFC 7748.

Nettle defines Curve 448 in ‘<nettle/curve448.h>’.

[Constant]CURVE448_SIZE
The octet length of the strings representing curve448 points and scalars, 56.

[Function]void curve448_mul_g (uint8 t *q , const uint8 t *n )
Computes Q = NG, where G is the group generator and N is an integer. The input
argument n and the output argument q use a little-endian representation of the scalar
and the x-coordinate, respectively. They are both of size CURVE448_SIZE.

This function is intended to be compatible with the function crypto_scalar_mult_

base in the NaCl library.

[Function]void curve448_mul (uint8 t *q , const uint8 t *n , const uint8 t *p )
Computes Q = NP , where P is an input point and N is an integer. The input
arguments n and p and the output argument q use a little-endian representation of
the scalar and the x-coordinates, respectively. They are all of size CURVE448_SIZE.

This function is intended to be compatible with the function crypto_scalar_mult

in the NaCl library.

7.7.3.5 EdDSA

EdDSA is a signature scheme proposed by D. J. Bernstein et al. in 2011. It is defined
using a “Twisted Edwards curve”, of the form −x2+ y2 = 1+dx2y2. The specific signature
scheme Ed25519 uses a curve which is equivalent to curve25519: The two groups used differ
only by a simple change of coordinates, so that the discrete logarithm problem is of equal
difficulty in both groups.

Unlike other signature schemes in Nettle, the input to the EdDSA sign and verify func-
tions is the possibly large message itself, not a hash digest. EdDSA is a variant of Schnorr



Chapter 7: Reference 86

signatures, where the message is hashed together with other data during the signature pro-
cess, providing resilience to hash-collisions: A successful attack finding collisions in the hash
function does not automatically translate into an attack to forge signatures. EdDSA also
avoids the use of a randomness source by generating the needed signature nonce from a
hash of the private key and the message, which means that the message is actually hashed
twice when creating a signature. If signing huge messages, it is possible to hash the message
first and pass the short message digest as input to the sign and verify functions, however,
the resilience to hash collision is then lost.

[Constant]ED25519_KEY_SIZE
The size of a private or public Ed25519 key, 32 octets.

[Constant]ED25519_SIGNATURE_SIZE
The size of an Ed25519 signature, 64 octets.

[Function]void ed25519_sha512_public_key (uint8 t *pub , const uint8 t

*priv )
Computes the public key corresponding to the given private key. Both input and
output are of size ED25519_KEY_SIZE.

[Function]void ed25519_sha512_sign (const uint8 t *pub , const uint8 t *priv ,

size t length , const uint8 t *msg , uint8 t *signature )
Signs a message using the provided key pair.

[Function]int ed25519_sha512_verify (const uint8 t *pub , size t length , const

uint8 t *msg , const uint8 t *signature )
Verifies a message using the provided public key. Returns 1 if the signature is valid,
otherwise 0.

Nettle also provides Ed448, an EdDSA signature scheme based on an Edwards curve
equivalent to curve448.

[Constant]ED448_KEY_SIZE
The size of a private or public Ed448 key, 57 octets.

[Constant]ED448_SIGNATURE_SIZE
The size of an Ed448 signature, 114 octets.

[Function]void ed448_shake256_public_key (uint8 t *pub , const uint8 t

*priv )
Computes the public key corresponding to the given private key. Both input and
output are of size ED448_KEY_SIZE.

[Function]void ed448_shake256_sign (const uint8 t *pub , const uint8 t *priv ,

size t length , const uint8 t *msg , uint8 t *signature )
Signs a message using the provided key pair.

[Function]int ed448_shake256_verify (const uint8 t *pub , size t length , const

uint8 t *msg , const uint8 t *signature )
Verifies a message using the provided public key. Returns 1 if the signature is valid,
otherwise 0.



Chapter 7: Reference 87

7.8 Randomness

A crucial ingredient in many cryptographic contexts is randomness: Let p be a random
prime, choose a random initialization vector iv, a random key k and a random exponent
e, etc. In the theories, it is assumed that you have plenty of randomness around. If this
assumption is not true in practice, systems that are otherwise perfectly secure, can be
broken. Randomness has often turned out to be the weakest link in the chain.

In non-cryptographic applications, such as games as well as scientific simulation, a good
randomness generator usually means a generator that has good statistical properties, and is
seeded by some simple function of things like the current time, process id, and host name.

However, such a generator is inadequate for cryptography, for at least two reasons:

• It’s too easy for an attacker to guess the initial seed. Even if it will take some 2^32
tries before he guesses right, that’s far too easy. For example, if the process id is 16
bits, the resolution of “current time” is one second, and the attacker knows what day
the generator was seeded, there are only about 2^32 possibilities to try if all possible
values for the process id and time-of-day are tried.

• The generator output reveals too much. By observing only a small segment of the
generator’s output, its internal state can be recovered, and from there, all previous
output and all future output can be computed by the attacker.

A randomness generator that is used for cryptographic purposes must have better prop-
erties. Let’s first look at the seeding, as the issues here are mostly independent of the
rest of the generator. The initial state of the generator (its seed) must be unguessable
by the attacker. So what’s unguessable? It depends on what the attacker already knows.
The concept used in information theory to reason about such things is called “entropy”,
or “conditional entropy” (not to be confused with the thermodynamic concept with the
same name). A reasonable requirement is that the seed contains a conditional entropy of
at least some 80-100 bits. This property can be explained as follows: Allow the attacker
to ask n yes-no-questions, of his own choice, about the seed. If the attacker, using this
question-and-answer session, as well as any other information he knows about the seeding
process, still can’t guess the seed correctly, then the conditional entropy is more than n bits.

Let’s look at an example. Say information about timing of received network packets
is used in the seeding process. If there is some random network traffic going on, this will
contribute some bits of entropy or “unguessability” to the seed. However, if the attacker can
listen in to the local network, or if all but a small number of the packets were transmitted by
machines that the attacker can monitor, this additional information makes the seed easier
for the attacker to figure out. Even if the information is exactly the same, the conditional
entropy, or unguessability, is smaller for an attacker that knows some of it already before
the hypothetical question-and-answer session.

Seeding of good generators is usually based on several sources. The key point here is that
the amount of unguessability that each source contributes, depends on who the attacker is.
Some sources that have been used are:

High resolution timing of i/o activities
Such as completed blocks from spinning hard disks, network packets, etc. Get-
ting access to such information is quite system dependent, and not all systems
include suitable hardware. If available, it’s one of the better randomness source
one can find in a digital, mostly predictable, computer.



Chapter 7: Reference 88

User activity
Timing and contents of user interaction events is another popular source that is
available for interactive programs (even if I suspect that it is sometimes used in
order to make the user feel good, not because the quality of the input is needed
or used properly). Obviously, not available when a machine is unattended. Also
beware of networks: User interaction that happens across a long serial cable,
TELNET session, or even SSH session may be visible to an attacker, in full or
partially.

Audio input
Any room, or even a microphone input that’s left unconnected, is a source of
some random background noise, which can be fed into the seeding process.

Specialized hardware
Hardware devices with the sole purpose of generating random data have been
designed. They range from radioactive samples with an attached Geiger
counter, to amplification of the inherent noise in electronic components such
as diodes and resistors, to low-frequency sampling of chaotic systems. Hashing
successive images of a Lava lamp is a spectacular example of the latter type.

Secret information
Secret information, such as user passwords or keys, or private files stored on
disk, can provide some unguessability. A problem is that if the information
is revealed at a later time, the unguessability vanishes. Another problem is
that this kind of information tends to be fairly constant, so if you rely on it
and seed your generator regularly, you risk constructing almost similar seeds or
even constructing the same seed more than once.

For all practical sources, it’s difficult but important to provide a reliable lower bound
on the amount of unguessability that it provides. Two important points are to make sure
that the attacker can’t observe your sources (so if you like the Lava lamp idea, remember
that you have to get your own lamp, and not put it by a window or anywhere else where
strangers can see it), and that hardware failures are detected. What if the bulb in the Lava
lamp, which you keep locked into a cupboard following the above advice, breaks after a few
months?

So let’s assume that we have been able to find an unguessable seed, which contains at
least 80 bits of conditional entropy, relative to all attackers that we care about (typically,
we must at the very least assume that no attacker has root privileges on our machine).

How do we generate output from this seed, and how much can we get? Some generators
(notably the Linux ‘/dev/random’ generator) tries to estimate available entropy and restrict
the amount of output. The goal is that if you read 128 bits from ‘/dev/random’, you
should get 128 “truly random” bits. This is a property that is useful in some specialized
circumstances, for instance when generating key material for a one time pad, or when
working with unconditional blinding, but in most cases, it doesn’t matter much. For most
application, there’s no limit on the amount of useful “random” data that we can generate
from a small seed; what matters is that the seed is unguessable and that the generator has
good cryptographic properties.



Chapter 7: Reference 89

At the heart of all generators lies its internal state. Future output is determined by
the internal state alone. Let’s call it the generator’s key. The key is initialized from the
unguessable seed. Important properties of a generator are:

Key-hiding

An attacker observing the output should not be able to recover the generator’s
key.

Independence of outputs

Observing some of the output should not help the attacker to guess previous or
future output.

Forward secrecy

Even if an attacker compromises the generator’s key, he should not be able to
guess the generator output before the key compromise.

Recovery from key compromise

If an attacker compromises the generator’s key, he can compute all future out-
put. This is inevitable if the generator is seeded only once, at startup. However,
the generator can provide a reseeding mechanism, to achieve recovery from key
compromise. More precisely: If the attacker compromises the key at a particu-
lar time t_1, there is another later time t_2, such that if the attacker observes
all output generated between t_1 and t_2, he still can’t guess what output is
generated after t_2.

Nettle includes one randomness generator that is believed to have all the above proper-
ties, and two simpler ones.

ARCFOUR, like any stream cipher, can be used as a randomness generator. Its output
should be of reasonable quality, if the seed is hashed properly before it is used with arcfour_

set_key. There’s no single natural way to reseed it, but if you need reseeding, you should
be using Yarrow instead.

The “lagged Fibonacci” generator in ‘<nettle/knuth-lfib.h>’ is a fast generator with
good statistical properties, but is not for cryptographic use, and therefore not documented
here. It is included mostly because the Nettle test suite needs to generate some test data
from a small seed.

The recommended generator to use is Yarrow, described below.

7.8.1 Yarrow

Yarrow is a family of pseudo-randomness generators, designed for cryptographic use, by
John Kelsey, Bruce Schneier and Niels Ferguson. Yarrow-160 is described in a paper at
http://www.counterpane.com/yarrow.html, and it uses SHA1 and triple-DES, and has a
160-bit internal state. Nettle implements Yarrow-256, which is similar, but uses SHA256

and AES to get an internal state of 256 bits.

Yarrow was an almost finished project, the paper mentioned above is the closest thing
to a specification for it, but some smaller details are left out. There is no official reference
implementation or test cases. This section includes an overview of Yarrow, but for the
details of Yarrow-256, as implemented by Nettle, you have to consult the source code.
Maybe a complete specification can be written later.



Chapter 7: Reference 90

Yarrow can use many sources (at least two are needed for proper reseeding), and two
randomness “pools”, referred to as the “slow pool” and the “fast pool”. Input from the
sources is fed alternatingly into the two pools. When one of the sources has contributed 100
bits of entropy to the fast pool, a “fast reseed” happens and the fast pool is mixed into the
internal state. When at least two of the sources have contributed at least 160 bits each to
the slow pool, a “slow reseed” takes place. The contents of both pools are mixed into the
internal state. These procedures should ensure that the generator will eventually recover
after a key compromise.

The output is generated by using AES to encrypt a counter, using the generator’s current
key. After each request for output, another 256 bits are generated which replace the key.
This ensures forward secrecy.

Yarrow can also use a seed file to save state across restarts. Yarrow is seeded by either
feeding it the contents of the previous seed file, or feeding it input from its sources until a
slow reseed happens.

Nettle defines Yarrow-256 in ‘<nettle/yarrow.h>’.

[Context struct]struct yarrow256_ctx

[Context struct]struct yarrow_source
Information about a single source.

[Constant]YARROW256_SEED_FILE_SIZE
Recommended size of the Yarrow-256 seed file.

[Function]void yarrow256_init (struct yarrow256 ctx *ctx , unsigned nsources ,

struct yarrow source *sources )
Initializes the yarrow context, and its nsources sources. It’s possible to call it with
nsources=0 and sources=NULL, if you don’t need the update features.

[Function]void yarrow256_seed (struct yarrow256 ctx *ctx , size t length ,

uint8 t *seed_file )
Seeds Yarrow-256 from a previous seed file. length should be at least YARROW256_

SEED_FILE_SIZE, but it can be larger.

The generator will trust you that the seed file data really is unguessable. After calling
this function, you must overwrite the old seed file with newly generated data from
yarrow256_random. If it’s possible for several processes to read the seed file at about
the same time, access must be coordinated using some locking mechanism.

[Function]int yarrow256_update (struct yarrow256 ctx *ctx , unsigned source ,

unsigned entropy , size t length , const uint8 t *data )
Updates the generator with data from source SOURCE (an index that must be smaller
than the number of sources). entropy is your estimated lower bound for the entropy
in the data, measured in bits. Calling update with zero entropy is always safe, no
matter if the data is random or not.

Returns 1 if a reseed happened, in which case an application using a seed file may
want to generate new seed data with yarrow256_random and overwrite the seed file.
Otherwise, the function returns 0.



Chapter 7: Reference 91

[Function]void yarrow256_random (struct yarrow256 ctx *ctx , size t length ,

uint8 t *dst )
Generates length octets of output. The generator must be seeded before you call this
function.

If you don’t need forward secrecy, e.g. if you need non-secret randomness for ini-
tialization vectors or padding, you can gain some efficiency by buffering, calling this
function for reasonably large blocks of data, say 100-1000 octets at a time.

[Function]int yarrow256_is_seeded (struct yarrow256 ctx *ctx )
Returns 1 if the generator is seeded and ready to generate output, otherwise 0.

[Function]unsigned yarrow256_needed_sources (struct yarrow256 ctx *ctx )
Returns the number of sources that must reach the threshold before a slow reseed
will happen. Useful primarily when the generator is unseeded.

[Function]void yarrow256_fast_reseed (struct yarrow256 ctx *ctx )
[Function]void yarrow256_slow_reseed (struct yarrow256 ctx *ctx )

Causes a fast or slow reseed to take place immediately, regardless of the current
entropy estimates of the two pools. Use with care.

Nettle includes an entropy estimator for one kind of input source: User keyboard input.

[Context struct]struct yarrow_key_event_ctx
Information about recent key events.

[Function]void yarrow_key_event_init (struct yarrow key event ctx *ctx )
Initializes the context.

[Function]unsigned yarrow_key_event_estimate (struct yarrow key event ctx

*ctx , unsigned key , unsigned time )
key is the id of the key (ASCII value, hardware key code, X keysym, . . . , it doesn’t
matter), and time is the timestamp of the event. The time must be given in units
matching the resolution by which you read the clock. If you read the clock with mi-
crosecond precision, time should be provided in units of microseconds. But if you use
gettimeofday on a typical Unix system where the clock ticks 10 or so microseconds
at a time, time should be given in units of 10 microseconds.

Returns an entropy estimate, in bits, suitable for calling yarrow256_update. Usually,
0, 1 or 2 bits.

7.9 ASCII encoding

Encryption will transform your data from text into binary format, and that may be a
problem if, for example, you want to send the data as if it was plain text in an email, or
store it along with descriptive text in a file. You may then use an encoding from binary to
text: each binary byte is translated into a number of bytes of plain text.

A base-N encoding of data is one representation of data that only uses N different symbols
(instead of the 256 possible values of a byte).

The base64 encoding will always use alphanumeric (upper and lower case) characters
and the ’+’, ’/’ and ’=’ symbols to represent the data. Four output characters are generated



Chapter 7: Reference 92

for each three bytes of input. In case the length of the input is not a multiple of three,
padding characters are added at the end. There’s also a “URL safe” variant, which is useful
for encoding binary data into URLs and filenames. See RFC 4648.

The base16 encoding, also known as “hexadecimal”, uses the decimal digits and the
letters from A to F. Two hexadecimal digits are generated for each input byte.

Nettle supports both base64 and base16 encoding and decoding.

Encoding and decoding uses a context struct to maintain its state (with the exception
of base16 encoding, which doesn’t need any). To encode or decode the data, first initialize
the context, then call the update function as many times as necessary, and complete the
operation by calling the final function.

The following functions can be used to perform base64 encoding and decoding. They
are defined in ‘<nettle/base64.h>’.

[Context struct]struct base64_encode_ctx

[Function]void base64_encode_init (struct base64 encode ctx *ctx )
[Function]void base64url_encode_init (struct base64 encode ctx *ctx )

Initializes a base64 context. This is necessary before starting an encoding
session. base64_encode_init selects the standard base64 alphabet, while
base64url_encode_init selects the URL safe alphabet.

[Function]size_t base64_encode_single (struct base64 encode ctx *ctx ,

uint8 t *dst , uint8 t src )
Encodes a single byte. Returns amount of output (always 1 or 2).

[Macro]BASE64_ENCODE_LENGTH (length )
The maximum number of output bytes when passing length input bytes to base64_

encode_update.

[Function]size_t base64_encode_update (struct base64 encode ctx *ctx ,

uint8 t *dst , size t length , const uint8 t *src )
After ctx is initialized, this function may be called to encode length bytes from src.
The result will be placed in dst, and the return value will be the number of bytes gen-
erated. Note that dst must be at least of size BASE64 ENCODE LENGTH(length).

[Constant]BASE64_ENCODE_FINAL_LENGTH
The maximum amount of output from base64_encode_final.

[Function]size_t base64_encode_final (struct base64 encode ctx *ctx , uint8 t

*dst )
After calling base64 encode update one or more times, this function should be called
to generate the final output bytes, including any needed paddding. The return value
is the number of output bytes generated.

[Context struct]struct base64_decode_ctx

[Function]void base64_decode_init (struct base64 decode ctx *ctx )
[Function]void base64url_decode_init (struct base64 decode ctx *ctx )

Initializes a base64 decoding context. This is necessary before starting a decoding ses-
sion. base64_decode_init selects the standard base64 alphabet, while base64url_

decode_init selects the URL safe alphabet.



Chapter 7: Reference 93

[Function]int base64_decode_single (struct base64 decode ctx *ctx , uint8 t

*dst , uint8 t src )
Decodes a single byte (src) and stores the result in dst. Returns amount of output
(0 or 1), or -1 on errors.

[Macro]BASE64_DECODE_LENGTH (length )
The maximum number of output bytes when passing length input bytes to base64_

decode_update.

[Function]void base64_decode_update (struct base64 decode ctx *ctx , size t

*dst_length , uint8 t *dst , size t src_length , const uint8 t *src )
After ctx is initialized, this function may be called to decode src length bytes from src.
dst should point to an area of size at least BASE64 DECODE LENGTH(src length).
The amount of data generated is returned in *dst length. Returns 1 on success and
0 on error.

[Function]int base64_decode_final (struct base64 decode ctx *ctx )
Check that final padding is correct. Returns 1 on success, and 0 on error.

Similarly to the base64 functions, the following functions perform base16 encoding, and
are defined in ‘<nettle/base16.h>’. Note that there is no encoding context necessary for
doing base16 encoding.

[Function]void base16_encode_single (uint8 t *dst , uint8 t src )
Encodes a single byte. Always stores two digits in dst[0] and dst[1].

[Macro]BASE16_ENCODE_LENGTH (length )
The number of output bytes when passing length input bytes to base16_encode_

update.

[Function]void base16_encode_update (uint8 t *dst , size t length , const

uint8 t *src )
Always stores BASE16 ENCODE LENGTH(length) digits in dst.

[Context struct]struct base16_decode_ctx

[Function]void base16_decode_init (struct base16 decode ctx *ctx )
Initializes a base16 decoding context. This is necessary before starting a decoding
session.

[Function]int base16_decode_single (struct base16 decode ctx *ctx , uint8 t

*dst , uint8 t src )
Decodes a single byte from src into dst. Returns amount of output (0 or 1), or -1 on
errors.

[Macro]BASE16_DECODE_LENGTH (length )
The maximum number of output bytes when passing length input bytes to base16_

decode_update.



Chapter 7: Reference 94

[Function]int base16_decode_update (struct base16 decode ctx *ctx , size t

*dst_length , uint8 t *dst , size t src_length , const uint8 t *src )
After ctx is initialized, this function may be called to decode src length bytes from src.
dst should point to an area of size at least BASE16 DECODE LENGTH(src length).
The amount of data generated is returned in *dst length. Returns 1 on success and
0 on error.

[Function]int base16_decode_final (struct base16 decode ctx *ctx )
Checks that the end of data is correct (i.e., an even number of hexadecimal digits
have been seen). Returns 1 on success, and 0 on error.

7.10 Miscellaneous functions

[Function]void * memxor (void *dst , const void *src , size t n )
XORs the source area on top of the destination area. The interface doesn’t follow
the Nettle conventions, because it is intended to be similar to the ANSI-C memcpy

function.

[Function]void * memxor3 (void *dst , const void *a , const void *b , size t n )
Like memxor, but takes two source areas and separate destination area.

[Function]int memeql_sec (const void *a , const void *b , size t n )
Side-channel silent comparison of the n bytes at a and b. I.e., instructions executed
and memory accesses are identical no matter where the areas differ, see Section 7.7.3.1
[Side-channel silence], page 81. Return non-zero if the areas are equal, and zero if
they differ.

These functions are declared in ‘<nettle/memops.h>’. For compatibility with earlier
versions of Nettle, memxor and memxor3 are also declared in ‘<nettle/memxor.h>’.

7.11 Compatibility functions

For convenience, Nettle includes alternative interfaces to some algorithms, for compatibility
with some other popular crypto toolkits. These are not fully documented here; refer to the
source or to the documentation for the original implementation.

MD5 is defined in [RFC 1321], which includes a reference implementation. Nettle defines
a compatible interface to MD5 in ‘<nettle/md5-compat.h>’. This file defines the typedef
MD5_CTX, and declares the functions MD5Init, MD5Update and MD5Final.



Chapter 8: Traditional Nettle Soup 95

8 Traditional Nettle Soup

For the serious nettle hacker, here is a recipe for nettle soup. 4 servings.

1 liter fresh nettles (urtica dioica)

2 tablespoons butter

3 tablespoons flour

1 liter stock (meat or vegetable)

1/2 teaspoon salt

a tad white pepper

some cream or milk

Gather 1 liter fresh nettles. Use gloves! Small, tender shoots are preferable but the tops
of larger nettles can also be used.

Rinse the nettles very well. Boil them for 10 minutes in lightly salted water. Strain the
nettles and save the water. Hack the nettles. Melt the butter and mix in the flour. Dilute
with stock and the nettle-water you saved earlier. Add the hacked nettles. If you wish you
can add some milk or cream at this stage. Bring to a boil and let boil for a few minutes.
Season with salt and pepper.

Serve with boiled egg-halves.



Chapter 9: Installation 96

9 Installation

Nettle uses autoconf. To build it, unpack the source and run

./configure

make

make check

make install

to install it under the default prefix, ‘/usr/local’. Using GNU make is strongly recom-
mended. By default, both static and shared libraries are built and installed.

To get a list of configure options, use ./configure --help. Some of the more interesting
are:

‘--enable-fat’
Include multiple versions of certain functions in the library, and select the ones
to use at run-time, depending on available processor features. Supported for
ARM and x86 64.

‘--enable-mini-gmp’
Use the smaller and slower “mini-gmp” implementation of the bignum functions
needed for public-key cryptography, instead of the real GNU GMP library. This
option is intended primarily for smaller embedded systems. Note that builds
using mini-gmp are not binary compatible with regular builds of Nettle, and
more likely to leak side-channel information.

‘--disable-shared’
Omit building the shared libraries.

‘--disable-dependency-tracking’
Disable the automatic dependency tracking. You will likely need this option to
be able to build with BSD make.



Function and Concept Index 97

Function and Concept Index

3
3DES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

A
ABI compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
AEAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
aes_decrypt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
aes_encrypt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
aes_invert_key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
aes_set_decrypt_key . . . . . . . . . . . . . . . . . . . . . . . . . 21
aes_set_encrypt_key . . . . . . . . . . . . . . . . . . . . . . . . . 21
aes128_decrypt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
aes128_encrypt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
aes128_invert_key . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
aes128_set_decrypt_key . . . . . . . . . . . . . . . . . . . . . . 21
aes128_set_encrypt_key . . . . . . . . . . . . . . . . . . . . . . 21
aes192_decrypt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
aes192_encrypt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
aes192_invert_key . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
aes192_set_decrypt_key . . . . . . . . . . . . . . . . . . . . . . 21
aes192_set_encrypt_key . . . . . . . . . . . . . . . . . . . . . . 21
aes256_decrypt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
aes256_encrypt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
aes256_invert_key . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
aes256_set_decrypt_key . . . . . . . . . . . . . . . . . . . . . . 21
aes256_set_encrypt_key . . . . . . . . . . . . . . . . . . . . . . 21
AES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
API compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Arcfour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
arcfour_crypt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
arcfour_set_key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Arctwo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
arctwo_decrypt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
arctwo_encrypt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
arctwo_set_key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
arctwo_set_key_ekb . . . . . . . . . . . . . . . . . . . . . . . . . . 24
arctwo_set_key_gutmann . . . . . . . . . . . . . . . . . . . . . . 24
Authenticated encryption . . . . . . . . . . . . . . . . . . . . . . 42

B
base16_decode_final . . . . . . . . . . . . . . . . . . . . . . . . . 94
base16_decode_init . . . . . . . . . . . . . . . . . . . . . . . . . . 93
base16_decode_single . . . . . . . . . . . . . . . . . . . . . . . . 93
base16_decode_update . . . . . . . . . . . . . . . . . . . . . . . . 94
base16_encode_single . . . . . . . . . . . . . . . . . . . . . . . . 93
base16_encode_update . . . . . . . . . . . . . . . . . . . . . . . . 93
base64_decode_final . . . . . . . . . . . . . . . . . . . . . . . . . 93
base64_decode_init . . . . . . . . . . . . . . . . . . . . . . . . . . 92
base64_decode_single . . . . . . . . . . . . . . . . . . . . . . . . 93
base64_decode_update . . . . . . . . . . . . . . . . . . . . . . . . 93
base64_encode_final . . . . . . . . . . . . . . . . . . . . . . . . . 92
base64_encode_init . . . . . . . . . . . . . . . . . . . . . . . . . . 92

base64_encode_single . . . . . . . . . . . . . . . . . . . . . . . . 92
base64_encode_update . . . . . . . . . . . . . . . . . . . . . . . . 92
base64url_decode_init . . . . . . . . . . . . . . . . . . . . . . . 92
base64url_encode_init . . . . . . . . . . . . . . . . . . . . . . . 92
BASE16_DECODE_LENGTH . . . . . . . . . . . . . . . . . . . . . . . . 93
BASE16_ENCODE_LENGTH . . . . . . . . . . . . . . . . . . . . . . . . 93
BASE64_DECODE_LENGTH . . . . . . . . . . . . . . . . . . . . . . . . 93
BASE64_ENCODE_LENGTH . . . . . . . . . . . . . . . . . . . . . . . . 92
Binary compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Block Cipher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Blowfish . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
blowfish_decrypt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
blowfish_encrypt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
blowfish_set_key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

C
Camellia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
camellia_crypt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
camellia_invert_key . . . . . . . . . . . . . . . . . . . . . . . . . 26
camellia_set_decrypt_key . . . . . . . . . . . . . . . . . . . 26
camellia_set_encrypt_key . . . . . . . . . . . . . . . . . . . 26
camellia128_crypt . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
camellia128_invert_key . . . . . . . . . . . . . . . . . . . . . . 26
camellia128_set_decrypt_key . . . . . . . . . . . . . . . . 26
camellia128_set_encrypt_key . . . . . . . . . . . . . . . . 26
camellia192_crypt . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
camellia192_invert_key . . . . . . . . . . . . . . . . . . . . . . 26
camellia192_set_decrypt_key . . . . . . . . . . . . . . . . 26
camellia192_set_encrypt_key . . . . . . . . . . . . . . . . 26
camellia256_crypt . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
camellia256_invert_key . . . . . . . . . . . . . . . . . . . . . . 26
camellia256_set_decrypt_key . . . . . . . . . . . . . . . . 26
camellia256_set_encrypt_key . . . . . . . . . . . . . . . . 26
cast128_decrypt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
cast128_encrypt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
cast128_set_key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
cast5_set_key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
CAST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
cbc_decrypt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
cbc_encrypt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
CBC Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
CBC_CTX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
CBC_DECRYPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
CBC_ENCRYPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
CBC_SET_IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
ccm_aes128_decrypt . . . . . . . . . . . . . . . . . . . . . . . . . . 54
ccm_aes128_decrypt_message . . . . . . . . . . . . . . . . . 54
ccm_aes128_digest . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
ccm_aes128_encrypt . . . . . . . . . . . . . . . . . . . . . . . . . . 54
ccm_aes128_encrypt_message . . . . . . . . . . . . . . . . . 54
ccm_aes128_set_key . . . . . . . . . . . . . . . . . . . . . . . . . . 53
ccm_aes128_set_nonce . . . . . . . . . . . . . . . . . . . . . . . . 53
ccm_aes128_update . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53



Function and Concept Index 98

ccm_aes192_decrypt . . . . . . . . . . . . . . . . . . . . . . . . . . 54
ccm_aes192_decrypt_message . . . . . . . . . . . . . . . . . 54
ccm_aes192_digest . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
ccm_aes192_encrypt . . . . . . . . . . . . . . . . . . . . . . . . . . 54
ccm_aes192_encrypt_message . . . . . . . . . . . . . . . . . 54
ccm_aes192_set_key . . . . . . . . . . . . . . . . . . . . . . . . . . 53
ccm_aes192_set_nonce . . . . . . . . . . . . . . . . . . . . . . . . 53
ccm_aes192_update . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
ccm_aes256_decrypt . . . . . . . . . . . . . . . . . . . . . . . . . . 54
ccm_aes256_digest . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
ccm_aes256_encrypt . . . . . . . . . . . . . . . . . . . . . . . . . . 54
ccm_aes256_encrypt_message . . . . . . . . . . . . . . . . . 54
ccm_aes256_set_key . . . . . . . . . . . . . . . . . . . . . . . . . . 53
ccm_aes256_set_nonce . . . . . . . . . . . . . . . . . . . . . . . . 53
ccm_aes256_update . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
ccm_decrypt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
ccm_decrypt_message . . . . . . . . . . . . . . . . . . . . . . . . . 52
ccm_digest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
ccm_encrypt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
ccm_encrypt_message . . . . . . . . . . . . . . . . . . . . . . . . . 52
ccm_set_nonce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
ccm_update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
CCM Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
CCM_MAX_MSG_SIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
cfb_decrypt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
cfb_encrypt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
cfb8_decrypt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
cfb8_encrypt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
CFB Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
CFB_CTX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
CFB_DECRYPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
CFB_ENCRYPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
CFB_SET_IV(ctx, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
CFB8 Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
CFB8_CTX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
CFB8_DECRYPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
CFB8_ENCRYPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
CFB8_SET_IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
ChaCha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
chacha_crypt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
chacha_crypt32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
chacha_poly1305_decrypt . . . . . . . . . . . . . . . . . . . . . 56
chacha_poly1305_digest . . . . . . . . . . . . . . . . . . . . . . 56
chacha_poly1305_encrypt . . . . . . . . . . . . . . . . . . . . . 56
chacha_poly1305_set_key . . . . . . . . . . . . . . . . . . . . . 55
chacha_poly1305_set_nonce . . . . . . . . . . . . . . . . . . 55
chacha_poly1305_update . . . . . . . . . . . . . . . . . . . . . . 55
chacha_set_counter . . . . . . . . . . . . . . . . . . . . . . . . . . 28
chacha_set_counter32 . . . . . . . . . . . . . . . . . . . . . . . . 29
chacha_set_key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
chacha_set_nonce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
chacha_set_nonce96 . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Cipher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Cipher Block Chaining . . . . . . . . . . . . . . . . . . . . . . . . . 35
Cipher Feedback 8-bit Mode . . . . . . . . . . . . . . . . . . . 37
Cipher Feedback Mode . . . . . . . . . . . . . . . . . . . . . . . . 37
cmac_aes128_digest . . . . . . . . . . . . . . . . . . . . . . . . . . 64
cmac_aes128_set_key . . . . . . . . . . . . . . . . . . . . . . . . . 64

cmac_aes128_update . . . . . . . . . . . . . . . . . . . . . . . . . . 64
cmac_aes256_digest . . . . . . . . . . . . . . . . . . . . . . . . . . 65
cmac_aes256_set_key . . . . . . . . . . . . . . . . . . . . . . . . . 64
cmac_aes256_update . . . . . . . . . . . . . . . . . . . . . . . . . . 64
cmac_des3_digest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
cmac_des3_set_key . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
cmac_des3_update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
CMAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
CMAC-128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
CMAC-64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Collision-resistant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Conditional entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Counter Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Counter with CBC-MAC Mode . . . . . . . . . . . . . . . . 50
ctr_crypt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
CTR Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
CTR_CRYPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
CTR_CTX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
CTR_SET_COUNTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Curve 25519 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Curve 448 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
curve25519_mul . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
curve25519_mul_g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
curve448_mul . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
curve448_mul_g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

D
des_check_parity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
des_decrypt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
des_encrypt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
des_fix_parity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
des_set_key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
des3_decrypt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
des3_encrypt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
des3_set_key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
DES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
DES3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
dsa_compat_generate_keypair . . . . . . . . . . . . . . . . 80
dsa_generate_keypair . . . . . . . . . . . . . . . . . . . . . . . . 79
dsa_generate_params . . . . . . . . . . . . . . . . . . . . . . . . . 77
dsa_params_clear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
dsa_params_init . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
dsa_private_key_clear . . . . . . . . . . . . . . . . . . . . . . . 79
dsa_private_key_init . . . . . . . . . . . . . . . . . . . . . . . . 79
dsa_public_key_clear . . . . . . . . . . . . . . . . . . . . . . . . 79
dsa_public_key_init . . . . . . . . . . . . . . . . . . . . . . . . . 79
dsa_sha1_sign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
dsa_sha1_sign_digest . . . . . . . . . . . . . . . . . . . . . . . . 80
dsa_sha1_verify . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
dsa_sha1_verify_digest . . . . . . . . . . . . . . . . . . . . . . 80
dsa_sha256_sign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
dsa_sha256_sign_digest . . . . . . . . . . . . . . . . . . . . . . 80
dsa_sha256_verify . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
dsa_sha256_verify_digest . . . . . . . . . . . . . . . . . . . 80
dsa_sign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
dsa_signature_clear . . . . . . . . . . . . . . . . . . . . . . . . . 78
dsa_signature_init . . . . . . . . . . . . . . . . . . . . . . . . . . 78



Function and Concept Index 99

dsa_verify . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

E
eax_aes128_decrypt . . . . . . . . . . . . . . . . . . . . . . . . . . 45
eax_aes128_digest . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
eax_aes128_encrypt . . . . . . . . . . . . . . . . . . . . . . . . . . 45
eax_aes128_set_key . . . . . . . . . . . . . . . . . . . . . . . . . . 45
eax_aes128_set_nonce . . . . . . . . . . . . . . . . . . . . . . . . 45
eax_aes128_update . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
eax_decrypt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
eax_digest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
eax_encrypt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
eax_set_key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
eax_set_nonce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
eax_update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
EAX_CTX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
EAX_DECRYPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
EAX_DIGEST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
EAX_ENCRYPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
EAX_SET_KEY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
EAX_SET_NONCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
EAX_UPDATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
ecc_point_clear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
ecc_point_get . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
ecc_point_init . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
ecc_point_set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
ecc_scalar_clear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
ecc_scalar_get . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
ecc_scalar_init . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
ecc_scalar_set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
ecdsa_generate_keypair . . . . . . . . . . . . . . . . . . . . . . 83
ecdsa_sign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
ecdsa_verify . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
ed25519_sha512_public_key . . . . . . . . . . . . . . . . . . 86
ed25519_sha512_sign . . . . . . . . . . . . . . . . . . . . . . . . . 86
ed25519_sha512_verify . . . . . . . . . . . . . . . . . . . . . . . 86
ed448_shake256_public_key . . . . . . . . . . . . . . . . . . 86
ed448_shake256_sign . . . . . . . . . . . . . . . . . . . . . . . . . 86
ed448_shake256_verify . . . . . . . . . . . . . . . . . . . . . . . 86
eddsa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

G
Galois Counter Mode . . . . . . . . . . . . . . . . . . . . . . . . . . 45
gcm_aes_decrypt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
gcm_aes_digest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
gcm_aes_encrypt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
gcm_aes_set_iv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
gcm_aes_set_key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
gcm_aes_update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
gcm_aes128_decrypt . . . . . . . . . . . . . . . . . . . . . . . . . . 49
gcm_aes128_digest . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
gcm_aes128_encrypt . . . . . . . . . . . . . . . . . . . . . . . . . . 48
gcm_aes128_set_iv . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
gcm_aes128_set_key . . . . . . . . . . . . . . . . . . . . . . . . . . 48
gcm_aes128_update . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

gcm_aes192_decrypt . . . . . . . . . . . . . . . . . . . . . . . . . . 49
gcm_aes192_digest . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
gcm_aes192_encrypt . . . . . . . . . . . . . . . . . . . . . . . . . . 48
gcm_aes192_set_iv . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
gcm_aes192_set_key . . . . . . . . . . . . . . . . . . . . . . . . . . 48
gcm_aes192_update . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
gcm_aes256_decrypt . . . . . . . . . . . . . . . . . . . . . . . . . . 49
gcm_aes256_digest . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
gcm_aes256_encrypt . . . . . . . . . . . . . . . . . . . . . . . . . . 48
gcm_aes256_set_iv . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
gcm_aes256_set_key . . . . . . . . . . . . . . . . . . . . . . . . . . 48
gcm_aes256_update . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
gcm_camellia_digest . . . . . . . . . . . . . . . . . . . . . . . . . 50
gcm_camellia128_decrypt . . . . . . . . . . . . . . . . . . . . . 50
gcm_camellia128_digest . . . . . . . . . . . . . . . . . . . . . . 50
gcm_camellia128_encrypt . . . . . . . . . . . . . . . . . . . . . 50
gcm_camellia128_set_iv . . . . . . . . . . . . . . . . . . . . . . 49
gcm_camellia128_set_key . . . . . . . . . . . . . . . . . . . . . 49
gcm_camellia128_update . . . . . . . . . . . . . . . . . . . . . . 50
gcm_camellia192_digest . . . . . . . . . . . . . . . . . . . . . . 50
gcm_camellia256_decrypt . . . . . . . . . . . . . . . . . . . . . 50
gcm_camellia256_digest . . . . . . . . . . . . . . . . . . . . . . 50
gcm_camellia256_encrypt . . . . . . . . . . . . . . . . . . . . . 50
gcm_camellia256_set_iv . . . . . . . . . . . . . . . . . . . . . . 49
gcm_camellia256_set_key . . . . . . . . . . . . . . . . . . . . . 49
gcm_camellia256_update . . . . . . . . . . . . . . . . . . . . . . 50
gcm_decrypt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
gcm_digest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
gcm_encrypt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
gcm_set_iv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
gcm_set_key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
gcm_update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
GCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
GCM_CTX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
GCM_DECRYPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
GCM_DIGEST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
GCM_ENCRYPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
GCM_SET_IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
GCM_SET_KEY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
GCM_UPDATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
GOST DSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
GOST hash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
gostdsa_sign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
gostdsa_verify . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
gosthash94_digest . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
gosthash94_init . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
gosthash94_update . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
gosthash94cp_digest . . . . . . . . . . . . . . . . . . . . . . . . . 19
gosthash94cp_init . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
gosthash94cp_update . . . . . . . . . . . . . . . . . . . . . . . . . 18

H
Hash function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
hkdf_expand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
hkdf_extract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
HKDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
hmac_digest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59



Function and Concept Index 100

hmac_md5_digest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
hmac_md5_set_key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
hmac_md5_update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
hmac_ripemd160_digest . . . . . . . . . . . . . . . . . . . . . . . 60
hmac_ripemd160_set_key . . . . . . . . . . . . . . . . . . . . . . 60
hmac_ripemd160_update . . . . . . . . . . . . . . . . . . . . . . . 60
hmac_set_key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
hmac_sha1_digest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
hmac_sha1_set_key . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
hmac_sha1_update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
hmac_sha256_digest . . . . . . . . . . . . . . . . . . . . . . . . . . 61
hmac_sha256_set_key . . . . . . . . . . . . . . . . . . . . . . . . . 61
hmac_sha256_update . . . . . . . . . . . . . . . . . . . . . . . . . . 61
hmac_sha512_digest . . . . . . . . . . . . . . . . . . . . . . . . . . 61
hmac_sha512_set_key . . . . . . . . . . . . . . . . . . . . . . . . . 61
hmac_sha512_update . . . . . . . . . . . . . . . . . . . . . . . . . . 61
hmac_update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
HMAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
HMAC_CTX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
HMAC_DIGEST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
HMAC_SET_KEY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

K
KDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Key Derivation Function . . . . . . . . . . . . . . . . . . . . . . . 66
Keyed Hash Function . . . . . . . . . . . . . . . . . . . . . . . . . . 58

M
MAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
md2_digest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
md2_init . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
md2_update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
md4_digest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
md4_init . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
md4_update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
md5_digest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
md5_init . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
md5_update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
memeql_sec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
memxor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
memxor3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Message Authentication Code . . . . . . . . . . . . . . . . . . 58

N
nettle aead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
nettle_aeads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
nettle cipher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
nettle_ciphers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
nettle_get_aeads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
nettle_get_ciphers . . . . . . . . . . . . . . . . . . . . . . . . . . 34
nettle_get_gost_gc256b(void) . . . . . . . . . . . . . . . 84
nettle_get_gost_gc512a(void) . . . . . . . . . . . . . . . 84
nettle_get_hashes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
nettle hash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
nettle_hashes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

O
One-way . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
One-way function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

P
Password Based Key Derivation Function . . . . . . 67
pbkdf2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
pbkdf2_hmac_sha1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
pbkdf2_hmac_sha256 . . . . . . . . . . . . . . . . . . . . . . . . . . 68
PBKDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
PBKDF2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
PKCS #5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
poly1305_aes_digest . . . . . . . . . . . . . . . . . . . . . . . . . 66
poly1305_aes_set_key . . . . . . . . . . . . . . . . . . . . . . . . 66
poly1305_aes_set_nonce . . . . . . . . . . . . . . . . . . . . . . 66
poly1305_aes_update . . . . . . . . . . . . . . . . . . . . . . . . . 66
Public Key Cryptography . . . . . . . . . . . . . . . . . . . . . . 68

R
Randomness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
RC2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
RC4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
ripemd160_digest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
ripemd160_init . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
ripemd160_update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
rsa_compute_root . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
rsa_compute_root_tr(const . . . . . . . . . . . . . . . . . . 75
rsa_decrypt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
rsa_decrypt_tr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
rsa_encrypt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
rsa_generate_keypair . . . . . . . . . . . . . . . . . . . . . . . . 75
rsa_md5_sign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
rsa_md5_sign_digest . . . . . . . . . . . . . . . . . . . . . . . . . 72
rsa_md5_sign_digest_tr(const . . . . . . . . . . . . . . . 72
rsa_md5_sign_tr(const . . . . . . . . . . . . . . . . . . . . . . . 71
rsa_md5_verify . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
rsa_md5_verify_digest . . . . . . . . . . . . . . . . . . . . . . . 73
rsa_pkcs1_sign(const . . . . . . . . . . . . . . . . . . . . . . . . 73
rsa_pkcs1_sign_tr(const . . . . . . . . . . . . . . . . . . . . . 72
rsa_pkcs1_verify(const . . . . . . . . . . . . . . . . . . . . . . 73
rsa_private_key_clear . . . . . . . . . . . . . . . . . . . . . . . 71
rsa_private_key_init . . . . . . . . . . . . . . . . . . . . . . . . 70
rsa_private_key_prepare . . . . . . . . . . . . . . . . . . . . . 71
rsa_pss_sha256_sign_digest_tr(const . . . . . . . 74
rsa_pss_sha256_verify_digest . . . . . . . . . . . . . . . 74
rsa_pss_sha384_sign_digest_tr(const . . . . . . . 74
rsa_pss_sha384_verify_digest . . . . . . . . . . . . . . . 74
rsa_pss_sha512_sign_digest_tr(const . . . . . . . 74
rsa_pss_sha512_verify_digest . . . . . . . . . . . . . . . 74
rsa_public_key_clear . . . . . . . . . . . . . . . . . . . . . . . . 71
rsa_public_key_init . . . . . . . . . . . . . . . . . . . . . . . . . 70
rsa_public_key_prepare . . . . . . . . . . . . . . . . . . . . . . 71
rsa_sha1_sign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
rsa_sha1_sign_digest . . . . . . . . . . . . . . . . . . . . . . . . 72
rsa_sha1_sign_digest_tr(const . . . . . . . . . . . . . . 72
rsa_sha1_sign_tr(const . . . . . . . . . . . . . . . . . . . . . . 71



Function and Concept Index 101

rsa_sha1_verify . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
rsa_sha1_verify_digest . . . . . . . . . . . . . . . . . . . . . . 73
rsa_sha256_sign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
rsa_sha256_sign_digest . . . . . . . . . . . . . . . . . . . . . . 72
rsa_sha256_sign_digest_tr(const . . . . . . . . . . . 72
rsa_sha256_sign_tr(const . . . . . . . . . . . . . . . . . . . 71
rsa_sha256_verify . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
rsa_sha256_verify_digest . . . . . . . . . . . . . . . . . . . 73
rsa_sha512_sign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
rsa_sha512_sign_digest . . . . . . . . . . . . . . . . . . . . . . 72
rsa_sha512_sign_digest_tr(const . . . . . . . . . . . 72
rsa_sha512_sign_tr(const . . . . . . . . . . . . . . . . . . . 71
rsa_sha512_verify . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
rsa_sha512_verify_digest . . . . . . . . . . . . . . . . . . . 73

S
Salsa20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
salsa20_128_set_key . . . . . . . . . . . . . . . . . . . . . . . . . 31
salsa20_256_set_key . . . . . . . . . . . . . . . . . . . . . . . . . 31
salsa20_crypt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
salsa20_set_key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
salsa20_set_nonce . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
salsa20r12_crypt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Serpent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
serpent_decrypt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
serpent_encrypt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
serpent_set_key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
sha1_digest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
sha1_init . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
sha1_update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
sha224_digest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
sha224_init . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
sha224_update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
sha256_digest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
sha256_init . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
sha256_update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
sha3_224_digest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
sha3_224_init . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
sha3_224_update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
sha3_256_digest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
sha3_256_init . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
sha3_256_shake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
sha3_256_update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
sha3_384_digest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
sha3_384_init . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
sha3_384_update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
sha3_512_digest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
sha3_512_init . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
sha3_512_update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
sha384_digest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
sha384_init . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
sha384_update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
sha512_224_digest . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
sha512_224_init . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
sha512_224_update . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
sha512_256_digest . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
sha512_256_init . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

sha512_256_update . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
sha512_digest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
sha512_init . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
sha512_update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
SHA3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
SHAKE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Side-channel attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
siv_cmac_aes128_decrypt_message . . . . . . . . . . . 57
siv_cmac_aes128_encrypt_message . . . . . . . . . . . 57
siv_cmac_aes128_set_key . . . . . . . . . . . . . . . . . . . . . 57
siv_cmac_aes256_decrypt_message . . . . . . . . . . . 57
siv_cmac_aes256_encrypt_message . . . . . . . . . . . 57
siv_cmac_aes256_set_key . . . . . . . . . . . . . . . . . . . . . 57
SIV mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
SIV-CMAC mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Stream Cipher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

T
Triple-DES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Twofish . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
twofish_decrypt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
twofish_encrypt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
twofish_set_key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

U
umac128_digest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
umac128_set_key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
umac128_set_nonce . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
umac128_update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
umac32_digest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
umac32_set_key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
umac32_set_nonce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
umac32_update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
umac64_digest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
umac64_set_key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
umac64_set_nonce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
umac64_update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
umac96_digest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
umac96_set_key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
umac96_set_nonce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
umac96_update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
UMAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

X
XEX-based tweaked-codebook mode with

ciphertext stealing . . . . . . . . . . . . . . . . . . . . . . . . 39
xts_aes128_decrypt_message(struct . . . . . . . . . 41
xts_aes128_encrypt_message(struct . . . . . . . . . 41
xts_aes128_set_decrypt_key . . . . . . . . . . . . . . . . . 41
xts_aes128_set_encrypt_key . . . . . . . . . . . . . . . . . 41
xts_aes256_decrypt_message(struct . . . . . . . . . 41
xts_aes256_encrypt_message(struct . . . . . . . . . 41
xts_aes256_set_decrypt_key . . . . . . . . . . . . . . . . . 41
xts_aes256_set_encrypt_key . . . . . . . . . . . . . . . . . 41
xts_decrypt_message . . . . . . . . . . . . . . . . . . . . . . . . . 41



Function and Concept Index 102

xts_encrypt_message . . . . . . . . . . . . . . . . . . . . . . . . . 41
XTS Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Y
yarrow_key_event_estimate . . . . . . . . . . . . . . . . . . 91
yarrow_key_event_init . . . . . . . . . . . . . . . . . . . . . . . 91
yarrow256_fast_reseed . . . . . . . . . . . . . . . . . . . . . . . 91

yarrow256_init . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

yarrow256_is_seeded . . . . . . . . . . . . . . . . . . . . . . . . . 91

yarrow256_needed_sources . . . . . . . . . . . . . . . . . . . 91

yarrow256_random . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

yarrow256_seed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

yarrow256_slow_reseed . . . . . . . . . . . . . . . . . . . . . . . 91

yarrow256_update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90


