
Jumpshot-4 Users Guide

Anthony Chan,1 David Ashton,2 Rusty Lusk,3 William Gropp4

Mathematics and Computer Science Division, Argonne National Laboratory

November 10, 2011

1chan@mcs.anl.gov
2ashton@mcs.anl.gov
3lusk@mcs.anl.gov
4gropp@mcs.anl.gov



Acknowledgments

We thank Dave Wootton of IBM Poughkeepsie for his valuable suggestions and comments during the
development of this tool. This work has been supported in part through the Center for Astrophysical
Thermonuclear Flashes at the University of Chicago by the U.S. Department of Energy under contract
B532820. This work was also supported by the Mathematical, Information, and Computational
Sciences Division subprogram of the O�ce of Advanced Scienti�c Computing Research, O�ce of
Science, U.S. Department of Energy, under Contract W-31-109-ENG-38.

1



Contents

1 Introduction 4

2 Data Model 5

2.1 Understanding the Drawable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Understanding the Preview Drawable . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Understanding the Preview State Display . . . . . . . . . . . . . . . . . . . . . 11

3 Graphical User Interface 15

3.1 Main Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Log�le Convertor Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Legend Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Timeline Zoomable Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4.1 Zoomable and Scrollable Canvas . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4.1.1 Dragged Zoom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4.1.2 Instant Zoom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4.1.3 Grasp and Scroll . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4.1.4 Information Dialog Box . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4.2 Toolbar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4.3 Y-Axis Label Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4.4 Row Adjustment Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 Histogram Zoomable Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5.1 Summary States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5.2 Summary Arrows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.6 Preference Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2



CONTENTS CONTENTS

4 Special Features 46

4.1 Search and Scan Facility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Tuning of the Timeline Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 Estimation of MPI Communication Overhead . . . . . . . . . . . . . . . . . . . . . . 50

4.4 Performance Analysis of Threaded MPI Application . . . . . . . . . . . . . . . . . . . 52

4.4.1 Test program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3



Chapter 1

Introduction

Jumpshot-4 is a visualization program for the log�le format, SLOG-2, which provides a hierarchical
structure to store a large number of drawable objects in a scalable and e�cient way for visualization.
SLOG-2's new scalable log�le format allows the display program to provide functionalities never
before possible. Level-of-detail support through preview drawables provides high-level abstraction
of the details without reading huge amounts of data into the graphical display engine. Jumpshot-4
allows seamless scrolling from the beginning to the end of the log�le at any zoom level. In addition,
new functionalities are available, such as dragged-zoom, grasp and scroll, instant zoom in/out, easy
vertical expansion of timelines, and cut and paste of timelines. A new search-and-scan facility is
provided in order to locate hard-to-�nd objects in a very large log�le. Also, the histogram module
based on user-selected duration provides a convenient and graphical way to analyze the statistics
of a log�le (e.g., it enables easy detection of load imbalance among timelines). The new legend
table makes manipulation of the di�erent categories of objects easy. The new viewer also provides
an integrated log�le convertor for all known SLOG-2 convertible trace formats, including CLOG,
CLOG-2, RLOG, and UTE, and it conforms to the standard look and feel expected by most users.

4



Chapter 2

Data Model

2.1 Understanding the Drawable

The main visual component in the SLOG-2 visualization program, Jumpshot-4, is the timeline canvas,
which is zoomable and scrollable in both the horizontal and vertical axes. The timeline canvas can
be thought of as a timeline vs time coordinate system. Each point on the canvas is identi�ed
by two numbers: a timestamp and a timeline ID. The graphical objects contained in the SLOG-2
�le are drawn on the canvas. These objects are called drawables. There are two kinds of drawable
objects:primitive and composite drawables. The primitive drawables are the simplest drawables
and are considered to be basic elements of the SLOG-2 �le. They are categorized based on their
topological structures. Currently, three topologies are supported in SLOG-2:state, arrow, and event.
Both state and arrow are drawables identi�ed by two points in the timeline canvas, that is, a pair
of (timestamp, timeline ID) coordinates. State's start timeline ID is the same as its �nal timeline
ID, but arrow's start and �nal timeline IDs may be di�erent. Event consists of only one point in the
timeline canvas; that is, it has only one timestamp and one timeline ID. The composite drawable is
more complicated and is constructed by a collection of primitive drawables.1 In order to centralize the
properties of drawables, all the displayable attributes of a drawableare stored in its corresponding
Category object (e.g., color, legend name, topology, and other shared description of a drawable).
Both the category and drawable de�nitions are stored in the SLOG-2 �le. These de�nitions are
interpreted and displayed by the display program, Jumpshot-4.

One of the distinct features of Jumpshot is that it uses nested states to show the relationship of
functions in the call stack; that is, the nested states correspond to the nested subroutine calls. The
current implementation of the SLOG-2 format stores some of the state nesting information to optimize
the performance of the visualization program.

2.2 Understanding the Preview Drawable

The preview drawable is created as a result of renormalization of the SLOG-2 format. The renormal-
ized object provides a high-level description of what is going on within the (timeline vs time) region
where the preview object spans. The preview drawable is designed to amalgamate real drawables
of the same topological type, for example, a preview state is a "state amalgamates only" object.

1In general, the composite drawable can be seen as composed of other simpler composite drawables.

5



2.2. UNDERSTANDING THE PREVIEW DRAWABLE CHAPTER 2. DATA MODEL

Hence, a preview drawable is always a primitive drawable in the renormalization scheme. There
are currently three di�erent types of preview drawables: Preview_State, Preview_Arrow, and Pre-
view_Event. Therefore, one preview drawable is for each supported topology of primitive drawable.
Up to three preview categories can appear in the Legend window of the display program (see Figure
3.6. The Legend window contains a table of legends that are basically a visual representation of the
category objects mentioned earlier. Each legend provides an interface to the user-modi�able part of
the corresponding category that is relevant to the display program.

Figures 2.1 to 2.5 illustrate the visual transition from the preview drawable to its detailed content
of the �rst �ve processes of a 16-process MPI slog2 �le when zooming in on the timeline canvas.
The sequence of �gures is generated by zooming in on a marked region in each successive �gure in
sequence. The marked region is shaded and is bounded by a pair of white lines. A magnifying glass
with a plus sign in the center is the cursor that marks the ends of the zoom region. Figure 2.1 is
a typical timeline canvas, in which most of the real drawables are still buried inside their preview
drawables. In the �gure are preview arrows, preview states in the front, and some long-running real
states in the back.

Figure 2.1: Typical zoomed-out view of preview states and arrows. The region marked by a pair of
white lines and the zoom-plus cursor is zoomed into (i.e., enlarged) in the next �gure.

Each thick yellow line is a preview arrow, which represents a collection of arrows between its two
ending timelines. The start and �nal timestamps of the preview arrow are the extremes of all real
arrows amalgamated inside the preview object. Notice that the beginning or ending timestamp of a
preview arrow does not necessarily mean that there is any arrow starting and ending at that time; it
indicates simply that there are arrows starting or ending within these two times and between the two
marked timelines. The thickness of the preview arrow denotes the number of real arrows represented
by the preview object. Because of the limitation on the available thickness that a preview arrow can
have, the thickness of the preview object is set equal to the order of magnitude of the number of real

6



2.2. UNDERSTANDING THE PREVIEW DRAWABLE CHAPTER 2. DATA MODEL

objects amalgamated. That is, the same thickness in two di�erent preview arrows does not mean
that they contain exactly the same number of real arrows; rather, it means that the numbers of real
arrows contained in the preview objects are within the same order of magnitude, that is, within a
constant multiplicative factor as de�ned by PREVIEW_ARROW_LOG_BASE in the Preference
window shown in Figure 3.28 and in Table 3.20. Di�erent thickness in preview arrows indicates more
than one multiple of the constant factor di�erence in the number of real arrows between the preview
objects.

The rectangle that has horizontal strips of colors is the preview state. The di�erent colors inside a
preview state represent the various categories of real states that are amalgamated within the time
range of the preview state. Depending on the PREVIEW_STATE_DISPLAY value selected in
the pulldown menu at the top of the left side of the y-axis label,2 the distribution and the heights
of the strips can be changed dramatically. One of the display options for the preview state is
CumulativeInclusionRatio. With this option, the strips are arranged in order of decreasing height
(somewhat like a small, cumulative histogram). The tallest strip at the bottom of the preview state
corresponds to the category of states that contribute the longest total duration in the speci�ed time
range inclusively,that is, disregarding the nesting state order. This visual representation tells which
state categories can be within the span of the preview state and which state category contributes the
most statistically to the speci�ed time range, so that the user can decide where to zoom in to �nd
out more details. In a sense, the preview states provide a global, coarse-grained summary of what is
going on, without losing as many details as with the preview in the older version of Jumpshot. For
example, the new preview states retain timeline ID information, which may enable early detection of
load-balancing problems before zooming in to see all the real states.

Figure 2.2 shows a zoomed-in view of the region marked by the pair of white lines in Figure 2.1. In
Figure 2.2, some of the preview arrows have disappeared and have been replaced by real arrows (i.e.,
the white arrows). Also, some of the stripped preview states have split into several small preview
states of identical color (i.e., the white and gray states) to show more detailed distribution. Another
important feature of the preview state becomes apparent in the �gures: Preview states are properly
nested within real states. In the most expanded y-axis label view, the preview state is always on top
of the other nested states;3that is, states that enclose the preview state are always real states. A
good visual example is shown in Figure 2.2, where all the white, turquoise, and gray preview states4

are sitting on top of the long orange and dark royal-blue states. This con�guration indicates that
the white, turquoise, and gray real states are all nested inside the long-running orange and dark
royal-blue states.

Figure 2.3 is a zoomed-in view of the region marked by the pair of white lines in Figure 2.2. Comparing
these two �gures, we see that all the preview drawables have been replaced by real drawables. Each
white preview state is replaced by hundreds of white real states. The same is true for the gray preview
states to the rightof the turquoise states.5 The preview arrows all have been replaced by real arrows.

2In the Preference window, as shown in Figure 3.28 and in Table 3.20, there is also a PREVIEW_STATE_DISPLAY
variable. The variable determines the initial PREVIEW_STATE_DISPLAY used when the Timeline window is �rst
made visible.

3Only in a slog2 �le that has multiple ViewMaps and where timelines can be collapsed, that is, AIX's UTE generated
slog2 �le, can a preview state be nested with other preview states in a collapsed y-axis label view.

4When a preview state contains only real states of one single category, it may appear like a real state in the timeline
canvas. The only sure way to tell the di�erence is to bring up the Drawable Info Box by right clicking on the state.

5In order to speed the graphics performance of the display program, an aggressive algorithm has been used to
eliminate drawing states that are closely packed together within the nearest neighboring pixels. Together with the fact

7



2.2. UNDERSTANDING THE PREVIEW DRAWABLE CHAPTER 2. DATA MODEL

Figure 2.2: Zoomed-in view of Figure 2.1.

Figure 2.3: Zoomed-in view of Figure 2.2.

8



2.2. UNDERSTANDING THE PREVIEW DRAWABLE CHAPTER 2. DATA MODEL

The region marked by the white lines in Figure 2.2 provides a good description of what is going on
in Figure 2.3, but at the same time it reduces the number of drawables drawn on the canvas by a
factor of 100. Another way of seeing this bene�t is to �nd out the exact number of real drawables
amalgamated by the preview objects within the zoomed-in region. This can be achieved by right
clicking on the preview drawable. The result is shown in Figure 3.17.

Figure 2.4: Zoomed-in view of Figure 2.3.

Further zooming in on the region marked by the white lines in Figure 2.3 enlarges the real drawables
that are displayed in the �gure. The enlarged view is shown in Figure 2.4. The densely packed states
and arrows become more distinguishable. Another zooming in around the white lines marked region
in Figure 2.4 enlarges the real drawables into easily separable objects, as shown in Figure 2.5.

that the number of pixels available is less than the number of nonoverlap states in the region, the number of the real
states may sometimes not appear as numerous as the Drawable Info Box of the preview state indicates. In that case,
a further zoom-in will be needed to con�rm the case, as shown in Fig. 2.4.

9



2.2. UNDERSTANDING THE PREVIEW DRAWABLE CHAPTER 2. DATA MODEL

Figure 2.5: Zoomed-in view of Figure 2.4.

10



2.2. UNDERSTANDING THE PREVIEW DRAWABLE CHAPTER 2. DATA MODEL

2.2.1 Understanding the Preview State Display

So far only one of the representations of the preview state, CumulativeInclusionRatio, has been used
to illustrate the concept and representation of the preview state. Jumpshot-4 actually uses several
di�erent representations of the preview state. All these representations are based on two ratios stored
in the SLOG-2 �le: inclusion ratio and exclusion ratio6. The inclusion ratio is computed without
taking into account the nesting order of the states. States that either are nested inside or enclose
other states contribute equally to the inclusion ratio. The result is that the sum of all inclusion ratios
from all state categories in a preview state could easily be larger than 1. On the other hand, the
exclusion ratio is speci�cally computed to exclude the overlap of the nested state from the enclosing
state. Therefore the sum of exclusion ratios of all state categories in a preview state is guaranteed
to be less than or equal to 1.

The motivation for computing these two ratios is to satisfy two opposite needs of the preview state.
The MPI application developer who has put a lot of user-de�ned states in a SLOG-2 �le, through
either MPE or AIX's PCT utility, is likely to be interested in the pro�ling information of the user-
de�ned states that enclose MPI states and other user-de�ned states. In this case, the inclusion ratio
will be useful. The inclusion ratios of user-de�ned states usually dominate all state inclusion ratios,
including those of MPI states. Therefore, the inclusion ratio highlights the outermost enclosing states,
even at a high preview level. On the other hand, the MPI implementor or the person interested in
the low-level MPI networking overhead is likely to be interested in the pro�ling information of MPI
and its internal calls. The exclusion ratio will come in handy here. Exclusion ratios for the innermost
nested states (i.e., MPI states) tend to dominate all state exclusion ratios. So the exclusion ratio
highlights the innermost nested states at a very high preview level.

Figure 2.6: Zoomed-in view of some nested states where the duration of the orange state is 1.0 sec,
the duration of the navy-blue state is 0.8 sec, and the sum of durations for the two yellow states is
0.5 sec.

Figure 2.6 shows a typical zoomed-in view of some nested states. In this view, the yellow states are
deeply nested in the navy-blue state, which is in turn nested in the orange state. The pair of green
lines mark the region where a preview state is being created.

6The exclusion ratio computed in SLOG-2 is less than or equal to what it should be. This artifact is due to the fact
that preview state is used in the determination of exclusion region. The nesting level of preview state is approximate
by construction. This approximate nature of the preview state may exclude more region in the enclosing state than
what the appropriate shares of its enclosed states should be. Nevertheless, even with this limitation, the innermost
state's exclusion ratio is still correct.

11



2.2. UNDERSTANDING THE PREVIEW DRAWABLE CHAPTER 2. DATA MODEL

Icon Description Duration Inclusion Ratio Exclusion Ratio

Innermost Nested State 0.5 sec 50% 50%

Intermediate Nested State 0.8 sec 80% 30%

Outermost Enclosing State 1.0 sec 100% 20%

Table 2.2: Contributions of real states to a preview state of duration 1.0 sec as marked by the pair
of green lines in Figure 2.6.

The inclusion and exclusion ratios are computed for the region marked by the pair of green lines and
are shown in Table 2.2. As the table shows, the most dominant state among all inclusion ratios is
the orange outermost state, but the most dominant state among all exclusion ratios is the yellow
innermost state, which is the least dominant state in inclusion ratios. One obvious observation is
that the inclusion and exclusion ratios of the innermost state category are the same.

Figure 2.7: Di�erent preview state displays of the zoomed-in view of the Figure 2.6. Start-
ing from the top, the �rst one is theCumulativeInclusionRatio view, the second one is the Over-
lapInclusionRatio view, the third one is the CumulativeExclusionRatio view, and the last one is
theOverlapExclusionRatio view.

With the data computed in Table 2.2, various di�erent preview displays can be drawn and are shown
in Figure 2.7. All colored strips inside the preview state will be drawn proportional to the height of

12



2.2. UNDERSTANDING THE PREVIEW DRAWABLE CHAPTER 2. DATA MODEL

the preview state. For instance, if the ratio of the category for the strip is 0.9, the corresponding
colored strip will occupy 90% of the preview state's height. This statement is true for all preview
state displays except CumulativeInclusionRatio, which may have its total sum of ratios in excess of
1.0, especially when the slog2 �le is highly nested. First consider the CumulativeInclusionRatio and
CumulativeExclusionRatio views (i.e., the �rst and the third ones from the top in the �gure). Notice
that yellow state is the least important in the top CumulativeInclusionRatio view but becomes the
most signi�cant in the third CumulativeExclusionRatio view. Since the sum of all inclusion ratios
is larger than 1 (in this case, the sum is 2.3), the CumulativeInclusionRatio view reweights all
ratios to �ll up the preview box. Strictly speaking, the CumulativeInclusionRatio view cannot be
used to compare di�erent preview states because of the arbitrary rescaling.7 If one is interested in
comparing inclusion ratios across di�erent preview states, the OverlapInclusionRatio view can be used
instead. This view draws all inclusion ratios proportional to the height of the preview state but in
an overlapping way, that is, in order of decreasing inclusion ratios, and stacks one on top of the other
(somewhat like a nested state). The overlap view of exclusion ratios is the OverlapExclusionRatio
view, shown at the bottom of Figure 2.7. The OverlapExclusionRatio view draws exclusion ratios
exactly the same way as does the OverlapInclusionRatio. In general, an overlap view cannot �ll up
the full height of the preview state. This is apparent in the OverlapExclusionRatio view in Figure 2.7,
where the white bordered box indicates the full height of the preview state. The white bordered box
is necessary in comparing the ratios across di�erent preview states with respect to the preview states'
duration. The white bordered box can sometimes be confusing, however, because whatever is in the
back of the preview state can show through the empty space within the white bordered box. In that
case, the bordered box can be turned o� by selecting Empty in the PREVIEW_STATE_BORDER
in the Preference window.

For the sake of comparison and continuity with our preview discussion, the CumulativeExclusionRatio
view of Figures 2.1 and 2.2 are shown in Figures 2.8 and 2.9, respectively. The CumulativeExclusion-
Ratio view provides an extra dimension of information compared with its inclusion ratio counterpart,
at the expense of being a bit more complicated visually.

7Usually, neighoring preview states in the CumulativeInclusionRatio view have a similar total sum of inclusion
ratios. Hence, one can compare adjacent preview states. But we note that the total sum of inclusion ratios between
nearby preview states can change dramatically without any visual indication. When in doubt, one should right click
on the preview state to get the Drawable Info Box and con�rm the ratios.

13



2.2. UNDERSTANDING THE PREVIEW DRAWABLE CHAPTER 2. DATA MODEL

Figure 2.8: CumulativeExclusionRatio view of Figure 2.1.

Figure 2.9: CumulativeExclusionRatio view of Figure 2.2; also, a zoomed-in shot of Figure 2.8.

14



Chapter 3

Graphical User Interface

3.1 Main Window

Figure 3.1: Main control window of Jumpshot-4.

The �rst window that pops up when invoking Jumpshot-4 is called the Main window, as shown
in Figure 3.1. The buttons shown in the toolbar are shortcuts to the submenu items in the top
menu bar. The function of each of these buttons is listed in Table 3.2. Two text �elds display crucial
information about the log�le being processed. The text �eld entitled LogName displays the pathname
of the log�le being processed. The pulldown menu entitled ViewMap lists all the available ViewMaps
in the SLOG-2 �le. The CLOG1, older CLOG-22 and RLOG-converted3 SLOG-2 �les contain one
ViewMap, called the Identity Map. The recent CLOG-2 and IBM's UTE trace-converted SLOG-2 �le
contains multiple ViewMaps, e.g. a CLOG-2 log�le generated from a multi-threaded MPI program
contains the Process-Thread and Communicator-Thread ViewMaps besides the Identity Map.

3.2 Log�le Convertor Window

If a non-slog2 �le is selected in the Main window, the Log�le Convertor, as shown in Figure 3.2, will
be invoked to prompt user to convert the �le to SLOG-2 format readable by this viewer. Currently,
�ve convertors are supported: CLOG �> SLOG-2, CLOG-2 �> SLOG-2, RLOG �> SLOG-2, UTE
�> SLOG-2 and TXT �> SLOG-2. The convertor is generally selected based on the input �le's
�le extension. If the wrong �le convertor is selected, the user can correct it through the pale-blue

1A low-overhead native trace format from MPE.
2A low-overheaed native trace foramt from MPE-2
3An internal MPICH2 pro�ling format

15



3.2. LOGFILE CONVERTOR WINDOW CHAPTER 3. GRAPHICAL USER INTERFACE

Icon Description Function

File Selection display a File Chooser dialog to select log�le to be processed

Log�le Conversion invoke the Log�le Convertor to convert non-slog2 �le to slog2 format

Show Legend Window display the Legend window of the selected log�le if it is hidden

Show Timeline Window display the Timeline window of the selected log�le if it is hidden

Edit Preferences display the Preference window that adjusts Jumpshot's properties

Show Users Manual show the Users Manual of this program

Show FAQs show the FAQs of this program

Table 3.2: Functions of the toolbar buttons

Figure 3.2: Log�le Convertor window allowing conversion of supported trace �le format to SLOG-2
format.

16



3.2. LOGFILE CONVERTOR WINDOW CHAPTER 3. GRAPHICAL USER INTERFACE

pulldown menu located at the top of the window. The Log�le Convertor window can also be invoked
by directly clicking on the Log�le Conversion button shown in the Table 3.2. The text �eld of the
Output File Name usually displays the default slog2 �lename recommended by the convertor based
on the text �eld in the Input File Speci�cation. If the text �eld does not display the default name as
expected, hitting return key in the Input File Speci�cation �eld will force an update of the Output
File Name �eld with the default name. The Log�le Convertor has �ve major functions, each is
associated with a button in the lower panel of the window. They are listed in Table 3.4.

Icon Description Function

Convert Start the log�le conversion of the selected convertor

Stop Stop the ongoing log�le conversion of the selected convertor

Usage Print the usage information of the selected convertor

Cancel Close the window without doing anything

OK Display the last converted SLOG-2 �le and close the window

Table 3.4: Major functions in the Log�le Convertor window.

Since the Log�le Convertor launches a separate Java process to do the log�le conversion, it requires
certain parameters to launch the process correctly. All the parameters needed by any log�le convertor
are supplied through a panel hidden by a splitter in the convertor window. The splitter has a divider
that can be lifted up to display all the parameters used to launch the Java process, as in Figure 3.4.
On the rare occasion that the default parameters are not correct, the text �elds can be modi�ed to
re�ect the situation.

The log�le conversion process is started by hitting the Convert button. The standard output and
error streams of the process are piped to the text area located in the middle of the window as the
process is running. The Output File Size �eld displays the current size of the slog2 �le as it is being
generated. Also, the progress bar will be incremented to show the current ratio of the output to
input �le size, as in Figure 3.4. During the conversion, only the Stop button is enabled for the case
that user wants to stop the ongoing conversion.

If the log�le conversion fails, the error message will be printed in the text area for diagnosis or a
bug report. As shown in Figure 3.5, the OK button is enabled only when the log�le conversion is
terminated normally and the STOP button has not been clicked during the conversion.

If OK button is clicked, the last converted slog2 �le will be used for the subsequent visualization. If
Cancel button is clicked, the Log�le Convertor dialog will be closed and the control is returned to
the Main window as if the Convertor dialog has never been invoked.

17



3.2. LOGFILE CONVERTOR WINDOW CHAPTER 3. GRAPHICAL USER INTERFACE

Figure 3.3: Hidden parameters panel of the Log�le Convertor.

Figure 3.4: Log�le conversion in progress.

18



3.2. LOGFILE CONVERTOR WINDOW CHAPTER 3. GRAPHICAL USER INTERFACE

Figure 3.5: The OK button is enabled when the log�le conversion �nishes normally, i.e with exit
status 0.

19



3.3. LEGEND WINDOW CHAPTER 3. GRAPHICAL USER INTERFACE

3.3 Legend Window

As soon as a SLOG-2 �le is selected in the Main window and is ready for visualization, the Legend
window like the one shown in Figure 3.6 will be displayed. All the features that are going to be
discussed in the Legend window a�ect both the Timeline and the Histogram windows.

The Legend window contains mainly a seven-column legend table. The seven columns are labeled
Topo, Name, V, S, count, incl and excl as in Table 3.6.

Icon Description Left Mouse Click on
Column Cell

Right Mouse Click on
Column Cell or Left Mouse
Click on Column Title

Topology Pick new Color (Figure 3.7) None

Name Edit Name String Sort Order Menu
(Figure 3.8(a))

Visibility Check or Uncheck Checkbox Operations Menu
(Figure 3.9)

Searchability Check or Uncheck Checkbox Operations Menu
(Figure 3.9)

Count Non-editable Number Sort Order
Menu(Figure3.8(b))

Inclusion Ratio Non-editable Number Sort Order
Menu(Figure3.8(b))

Exclusion Ratio Non-editable Number Sort Order
Menu(Figure3.8(b))

Table 3.6: Operations on the Legend window's columns.

Table 3.6 also lists out all de�ned mouse operations that are provided in each column. The operations
are (1) left mouse clicking on the column title icon and on the column cell and (2) right mouse clicking
in any column cell.

Figure 3.7 is the Color Chooser dialog that will pop up when one of the icon buttons in column Topo
is pressed. The color editor provides three ways of choosing a new color. After selecting a new color
from the dialog, the new color will be used to update the icon button. The update won't be carried
out in the timeline canvas automatically; an explicit screen redraw is needed.

Figure 3.8(a) shows the popup dialog box either when the title icon of column Name is pressed or
when the right mouse button is clicked somewhere in the column. Altogether, there are six di�erent
alphabetical sort orders as shown in the �gure and they are summarized in Table 3.8. Fig 3.8(b)
shows the popup dialog box for the column count, incl or excl is pressed or when the right mouse
button is clicked somewhere in the column. The popup dialog box contains a menu which will be
described later in Table 3.10.

The �rst four are various combinations of alphabetical and case-sensitive order; for example, z...a
Z...A refers to a reverse-case-sensitive alphabetical ordering. The second-to-last order in the list is
called the Creation Order, which refers to the order in which categories are stored in the slog2 �le
when they are being created. The four alphabetical orderings have two hidden sort orders. One is

20



3.3. LEGEND WINDOW CHAPTER 3. GRAPHICAL USER INTERFACE

(a) Legend Window's initial view (b) Fully extended Legend window that shows statistics
sumary

Figure 3.6: Typical Legend window when a slog2 �le is �rst loaded into Jumpshot-4. The Legend
window can be expanded to reveal the hidden statistics, count, inclusion ratio and exclusion ratio of
each category of drawables, stored in the 5th, 6th and 7th columns of the window.

21



3.3. LEGEND WINDOW CHAPTER 3. GRAPHICAL USER INTERFACE

Figure 3.7: Color Chooser Dialog for column Category Topology

(a) Sort Order menu for Name (b) Sort Order menu for count, inclusion and exclusion
ratios

Figure 3.8: Sort Order operation menu for the column Name, count, incl and excl in the Legend
window.

22



3.3. LEGEND WINDOW CHAPTER 3. GRAPHICAL USER INTERFACE

Ordering Description

A...Z a...z case-sensitive alphabetical ordering
z...a Z...A reverse-case-sensitive alphabetical ordering
Aa...Zz case-insensitive alphabetical ordering
zZ...aA reverse-case-insensitive alphabetical ordering
Creation category storage ordering in the slog2 �le

Reverse Creation reverse of Creation order

Table 3.8: Description of the alphabetical Sort Order operation menu for column Name in the Legend
window.

called Preview Order, which puts the preview drawable category before all the real drawable categories
of the same topology. The other is Topo Order, which refers to topological ordering (i.e., arrow is
ahead of state). The Preview and Topo sort orders can be turned on or o� through the Preference
window in Table 3.26.

Ordering Description

9 ... 1 Decreasing numerical ordering
1 ... 9 Increasing numerical ordering

Table 3.10: Description of the numerical Sort Order operation menu for columns count, incl and excl
in the Legend window

Table 3.10 shows the only two orderings allowed for all numerical entries in the Legend window.

Figure 3.9: Checkbox Operation menu for column Category Visibility and Searchability

Figure 3.9 shows a popup dialog box when the title icon of column V (Visibility) or S (Searchability)
is pressed or when the right mouse button is clicked somewhere in either column. The rule of
selection in the legend table follows the standard practice of other graphical user interfaces as in
Table 3.12. Together with these standard selection rules, the operations provided in the checkbox
operation menu allow easy enabling and disabling of visibility as well as searchability checkboxes.
With the help of continuous selection of the category rows in the legend table and the various sort
orderings, users can easily make a huge number of categories disappear in the Timeline or Histogram
window. For instance, in CLOG converted SLOG-2 �le where upper-case names always refer to MPI
names, in CLOG2 converted SLOG-2 �le where all MPI states will be pre�xed with MPI_, the

23



3.3. LEGEND WINDOW CHAPTER 3. GRAPHICAL USER INTERFACE

case-sensitive alphabetical ordering allows all MPI names to be put before all user-de�ned categories.
With continuous mouse selection, the user can easily toggle the visibility of user-de�ned states in the
Timeline or Histogram window. Also, every element in the column Name can be edited. This feature
allows the user to correct undesirable category names set during log�le creation and even facilitates
sorting of the names for selection purposes.

Left Mouse Operation Action

Click
Click on an object deselects any existing selection and

selects the object.

Control-Click
Control-click on an object toggles its selection without

a�ecting the selection of any other objects

Shift-Click
Shift-click on an object extends the selection from the
most recently selected object to the current object.

Dragging

Dragging (that is, moving the mouse while holding down
left mouse button) through a range of text deselects
any existing selection and selects the range of text.

Table 3.12: Standard selection rules.

Note: Any change done in the Legend window that alters the appearance of drawables will not
be automatically updated in the Timeline canvas until the CanvasReDraw button in the Timeline
window is pressed.

24



3.4. TIMELINE ZOOMABLE WINDOW CHAPTER 3. GRAPHICAL USER INTERFACE

3.4 Timeline Zoomable Window

Figure 3.10: Initial display of the Timeline window of a 514 MB 16-process slog2 �le with default
preview resolution.

Most of the advanced features in the SLOG-2 viewer are provided through a zoomable window.
Jumpshot-4 has two zoomable windows: Timeline and Histogram. Figure 3.10 is the initial display
of the Timeline window of a half-gigabyte 16-timeline slog2 �le. The zoomable window consists of
several concealable and removable components. In the center of the window is the zoomable and
scrollable canvas. For the Timeline window, the center canvas is called the timeline canvas. Directly
on top of the zoomable canvas is the time display panel. On top of the display panel is the removable
toolbar. To the left of the canvas is the concealable y-axis label panel. To the right of the canvas is the
concealable row adjustment panel. At the bottom of the canvas is the time ruler canvas. Both the
y-axis label and the row adjustment panels can be put out of sight by clicking the tabs in the dividers
or dragging the dividers to the side of the window. The top toolbar can be dragged out of the window
or be repositioned in the other three sides of the window. A bare-minimal zoomable window can
be obtained by removing the toolbar and hiding the left and right panels. An almost-bare-minimal
Timeline window looks like the one shown in Figure 2.1.

25



3.4. TIMELINE ZOOMABLE WINDOW CHAPTER 3. GRAPHICAL USER INTERFACE

3.4.1 Zoomable and Scrollable Canvas

When a big slog2 �le like the one shown in Figure 3.10is viewed, the whole timeline canvas is �lled
with preview drawables. Although it provides a reasonable description at a high level,4 it is hard
to know the details. Hence, a well-designed zoomable and scrollable user interface (ZSUI) of the
timeline canvas becomes necessary to help the viewer locate events of interest. The ZSUI of the
timeline canvas includes many parts and operations. The most handy ones are dragged zoom, grasp
and scroll and instant zoom in and out. All these features are supported by the zoomable and
scrollable canvas. There are two such canvases in the Timeline window: timeline canvas and time
ruler canvas. In these canvases, left mouse clicking can be alternated in two di�erent modes by a
pair of toggled buttons as shown in Figures 3.11 and 3.12. They are called zoom and hand modes.
Each canvas in the Timeline window has its own set of toggled buttons that determine its left mouse
click behavior. The timeline canvas's toggled buttons are located above the canvas at the end of the
time display panel. The time ruler's toggled buttons are located at the bottom of row adjustment
panel, next to the end of the ruler. By default, the timeline canvas is in zoom mode, and the time
ruler canvas is in hand mode, so the user can do zooming when the cursor is in the timeline canvas
and can scroll easily by simply moving the cursor over the ruler canvas. Also, the scrolling can be
done by simply dragging on the scrollbar's knob, clicking the end buttons and in the space between
the knob and scrollbar's end buttons.

Figure 3.11: Canvas's left mouse click is in zoom mode.

Figure 3.12: Canvas's left mouse click is in hand mode.

3.4.1.1 Dragged Zoom

Figure 3.13: Zoom-plus cursor that indicates the left mouse clicking is ready for zooming in.

Dragged zoom is active only when the left mouse click is in zoom mode, that is, when the magnifying
glass button is pressed in the toggled buttons as in Figure 3.11. In zoom mode, the cursor within
the canvas will appear like a magnifying glass with a plus sign in the center, as in Figure 3.13. It
is called the zoom-plus cursor. The dragged zoom operation is initialized by pressing the left mouse
button at the beginning of the zoomed-in region; a white line will then appear. As soon as dragging
is detected, another white line will appear to mark the current ending of the zoomed-in region. The
region that is marked by the pair of white lines is lightly shaded, as shown in Figure 2.4. The process

4Reasonable description here means that the user can still get a vague sense of where the long or frequent drawables
are.

26



3.4. TIMELINE ZOOMABLE WINDOW CHAPTER 3. GRAPHICAL USER INTERFACE

can be canceled by hitting the ESC key during dragging. Once the left mouse button is released,
zooming will be carried out, and the Timeline window will then be updated as in Figure 2.5. The time
display panel is updated with the latest time-related information of the zoomed-in region. Notice
that zooming as well as scrolling can be achieved by explicitly editing the text �elds in the time
display panel.

3.4.1.2 Instant Zoom

Figure 3.14: Zoom-minus cursor that indicates the left mouse clicking is ready for zooming out.

While the canvas is still in zoom mode, instant zoom is enabled by default. Instant zoom allows
zooming in at the point of left mouse clicking by a factor of 1/2; that is, the region centered at the
point of left clicking will be magni�ed by a factor of 2. Also, the zoom focus time in the time display
panel will be updated with the time where left clicking on the canvas is detected. In the process,
the cursor remainsa zoom-plus cursor. Shift-click, on the other hand, will do the opposite. While
the shift key is held down, the cursor will be changed to a zoom-minus cursor as in Figure 3.14, to
indicate zooming out is the action associated with left clicking. The zoom factor is 2 in this case.

3.4.1.3 Grasp and Scroll

Figure 3.15: Open-hand cursor indicates that the left mouse click is ready to grasp and scroll.

Figure 3.16: Closed-hand cursor indicates that the left mouse click is scrolling.

Grasp and Scroll is active only when the left mouse click is in hand mode, that is, when the open-
hand button is pressed as in Figure 3.12. The cursor in hand mode is an open hand as in Figure
3.15. As soon as left mouse button is pressed down, the cursor turns to a closed hand, as in Figure
3.16. It indicates the canvas will move in the same direction that the cursor moves as long as the left
mouse button remains pressed. The grasp and scroll mode in the time ruler canvas can move only
horizontally, but the grasp and scroll mode in the timeline canvas allows movement both vertically
and horizontally.

3.4.1.4 Information Dialog Box

To be complete, Jumpshot-4 provides a way to tell user exactly what is being displayed. This feature
is particularly important when there are many preview drawables. Following standard user interface
practice, Jumpshot-4 uses right mouse clicking as an interface for the user to tell Jumpshot-4 for

27



3.4. TIMELINE ZOOMABLE WINDOW CHAPTER 3. GRAPHICAL USER INTERFACE

what object more information is needed. In general, the user can inquire anywhere on the canvas
(timeline or time ruler canvases) by right mouse clicking. An information dialog box will pop up
accordingly to tell the user more about the object being clicked on. There are three di�erent types
of information dialogs: Drawable Info Box, Duration Info Box, and Time Info Box. All these info
boxes remain in memory as long as they are not closed, even if the canvas has been scrolled past or
zoomed into. One of the uses of the info boxes is to serve as time markers in between zooming and
scrolling.

Drawable Info Box The Drawable Info Box is a popup dialog box that provides detailed infor-
mation about the drawable object that is being clicked on. There are two di�erent kinds of Drawable
Info Box: one for preview drawable and one for real drawable.

Drawable Info Box for Preview Drawable Right mouse clicking on two of the preview states in
the timeline canvas shown in Figure 2.9 will pop up two Drawable Info Boxes for the preview states.
They are displayed in Figure 3.17. The popup Info Box's upper-left-hand corner will be positioned
at exactly where right mouse click is detected, and a green line with a upper and lower 3D triangular
markers will appear on the canvas to indicate what time has been clicked, in case the dialog box
is moved from its original popup location. The clicked preview state will also be highlighted by
a 3D rectangular box. To illustrate what information is presented by the Drawable Info Box, we
take the highlighted Drawable Info Box in Figure 3.17 as an example. The Drawable Info Box for
the preview state contains a pink label �Preview State�, and the icon inside the dialog box shows
the color and shape of the drawable. Below the icon is a big text area that prints all the detailed
statistical information about this preview state. There are six timestamps in the text area: maximum
duration, minimum starttime, maximum endtime, average duration, average starttime, and average
endtime. Here �[0]� refers to starting point, and �[1]� refers to the ending point. The three �average�
timestamps are averaged over all the real drawables represented by this preview drawable. Besides
timestamps, the info box also tells the�Number of Real Drawables� represented by the preview object.
In this case, 136 real states are amalgamated by the pure white preview state. Also, the text area
lists all the categories of real drawables amalgamated and their ratios of the total duration of all real
drawables to the duration of the preview states. In this case, there is only one category of real states
in the preview state, so the 136 states are all PACKs. The sum of the durations of all PACKs is
about half of the duration of the preview state, as indicated by �ratio=0.5021433�.

Another Drawable Info Box, shown in Figure 3.17, corresponds to the preview state that has four
di�erent strips of colors: yellow, royal blue, white, and purple. Right mouse clicking at the yellow
strip pops up a Drawable Info Box with a yellow state icon with label BARRIER. As shown in the
�gure, this preview state amalgamated four categories of real states: ALLREDUCE, PACK, SSEND,
and BARRIER; the statistically most signi�cant one is BARRIER. It proportionally and exclusively
occupies 55% of the length of the preview state. Hence the BARRIER strip is the tallest of all the
color strips shown in the preview state. Clicking on a di�erent color strip in the same preview state
will pop up a drawable info box with a di�erently labeled icon, but the contents of the text area
remains the same. In general, not every category listed in the text area is visible in the preview state
display. Of the four categories mentioned in the text area, only three are visible noticeably in the
�gure given the limited pixel height available to the preview state. The least signi�cant category
ALLREDUCE is barely visible. But the limitation can be improved by selecting another display
option for the preview state in the Preference window that does not rely on the category ratio5. As

5That is, by setting the PREVIEW_STATE_DISPLAY pulldown menu in the Timeline window or Preference

28



3.4. TIMELINE ZOOMABLE WINDOW CHAPTER 3. GRAPHICAL USER INTERFACE

Figure 3.17: Drawable Info Box for Preview State

29



3.4. TIMELINE ZOOMABLE WINDOW CHAPTER 3. GRAPHICAL USER INTERFACE

indicated, there are 58 real drawables in the preview state, but no information is provided about how
many real drawables are in each real category.

Figure 3.18: Drawable Info Box for real state and arrow. The Drawable Info Box for the arrow
shows the message size, 1600 bytes, and tag ID, 454.

Drawable Info Box for Real Drawable Similarly for real drawables, the Drawable Info Box can
be brought up by right mouse clicking on the real drawables. In Figure 3.18, Drawable Info Boxes
for a real arrow and a real state are shown. The Drawable Info Box for the arrow is created by
clicking anywhere within the vicinity of the arrow body.6 The info box shows the starttime, start
timeline ID, endtime, and ending timeline ID, as well as some extra information implemented by
the native format. In this example, the extra information is the message size carried by the speci�c
arrow. The message size is 1600 bytes. Both the clicked arrow and state are highlighted by 3D raised
border7. The highlighted border is used to tell where clicked drawable is when viewport has been
scrolled far away from the original clicked location. Also, there are a set of three navigation buttons
at the bottom of the Drawable Info Box that navigate the viewport back to the starting or ending
positions of the drawable as well as a home button that brings the viewport back to original clicked
position of the drawable. The navigation buttons are meant to ease the task of identifying the very
long drawable(relative to the viewport) in a busy log�le with large number of timelines.

window to the FitMostLegends message, as listed in Table 3.20 .
6The vicinity width can be adjusted by modifying the parameter CLICK_RADIUS_TO_LINE in the Preference

window as listed in Table 3.18 The default is 3 pixels.
7The display properties of the hightlighted border for arrow, state and event can be adjusted through Preference

Panel as de�ned in Table 3.22.

30



3.4. TIMELINE ZOOMABLE WINDOW CHAPTER 3. GRAPHICAL USER INTERFACE

Figure 3.19: Duration Info Box shows the duration, starttime, and endtime of a time region marked
by a pair of green lines.

Duration Info Box The Duration Info Box is created by right dragging in the timeline canvas or
the time ruler canvas to mark a region in time. The dragged region will be marked by a pair of green
lines and is lightly shaded as well. The Duration Info Box can serve a marker to facilitate the process
of zooming in and out. The information provided by Duration Info Box can also be used to compare
di�erent durations or to measure the total duration of a collection of subroutine calls. For instance,
in Figure 3.19, the Duration Info Box marks all consecutive green states on the �fth timelines. The
Duration Info Box says the total duration of the nine green states is about 1.77 msec.

Time Info Box Time Info Box is created by right clicking in the empty space in either the timeline
or the time ruler canvas, as in Figure 3.20. This Info Box is usually used as a marker for a single
event in time.

3.4.2 Toolbar

The buttons in the toolbar of the Timeline window provide various basic services to the Timeline
window. Table 3.14 contains the list of functionalities of the buttons found in the toolbar.

3.4.3 Y-Axis Label Panel

The concealable left panel in Timeline window is called the y-axis label panel. It contains a tree-like
representation for the y-axis label for the timelines. For a SLOG-2 �le convertible from CLOG,
CLOG-2 or RLOG with the default viewmap, the typical y-axis label panel looks like that shown
in Figure 3.21. Together with the toolbar's label buttons (e.g., LabelMark and LabelMove) and
standard mouse selection methods listed in Table 3.12, labels can be rearranged easily to create a
more easily understood timeline canvas. For the multiple-viewmaps SLOG-2 �le from IBM's UTE
trace environment, the LabelExpand and LabelCollapse buttons will come in handy to expand and
collapse the label tree by one whole level. In order to minimize unnecessary redraw of the timeline
canvas, the synchronization between the label panel and the timeline canvas is carried out passively;
that is, the user needs to press the CanvasReDraw button in the toolbar to update the Timeline
window with the changes from the label panel.

3.4.4 Row Adjustment Panel

The concealable right panel in the Timeline window contains the row adjustment panel, which is used
to determine the row adjustment scheme. There are two di�erent modes in the row adjustment panel:
row count mode and row height mode. These two modes can be selected by the pulldown menu at
the top of the panel. The row count mode attempts to keep the number of timelines constant, as
indicated in the row count text �eld when the Timeline window resizes. On the other hand, the row
height mode �xes the height of each timeline as indicated by the row height text �eld. Currently, the
height of the timeline can be adjusted up to the height of the timeline canvas; in that case the row
count text �eld shows the number 1.8 The maximum number of timelines that can be displayed is

8If the slog2 �le contains numerous timelines, increasing the row height will increase the size of the images managed
by Jumpshot-4. This action may cause the Java Virtual Machine to exhaust all its memory if the virtual machine is
not set to have enough memory when Jumpshot-4 is started or if there isn't enough physical memory in the machine
that Jumpshot-4 runs on.

31



3.4. TIMELINE ZOOMABLE WINDOW CHAPTER 3. GRAPHICAL USER INTERFACE

Icon Description Shortcut Function

Up Alt-UP Scroll upward by half a screen

Down Alt-DOWN Scroll downward by half of a screen

LabelMark none Mark the timeline(s)

LabelMove none Move the marked timeline(s)

LabelDelete none Delete the marked timeline(s)

LabelExpand Alt-E

Expand the y-axis tree label by 1 level. Useful in
Process-Thread or Communicator-Thread view
to expand each process timeline into multiple
thread timelines in multi-threaded slog2 �le.

LabelCollapse Alt-C
Collapse the y-axis tree label by 1 level. Useful
in collapsing multiple thread timelines into single

process timeline.

Backward Alt-LEFT Scroll Backward by half a screen

Forward Alt-RIGHT Scroll Forward by half a screen

ZoomUndo Alt-U Undo the previous zoom operation

ZoomOut Alt-O Zoom Out by 1 level in time

ZoomHome Alt-H Reset zoom to the initial resolution in time

ZoomIn Alt-I Zoom In by 1 level in time

ZoomRedo Alt-R Redo the previous zoom operation

SearchBackward Alt-B Search backward in time

SeachInitialize Alt-S
Search initialization from last popup InfoBox's

time

SearchForward Alt-F Search forward in time

CanvasReDraw Alt-D
Redraw canvas to synchronize changes from

Preference/Legend window or y-axis label panel.

Print none Print the Timeline window

Exit none Exit the Timeline window

Table 3.14: Toolbar functionalities.

32



3.5. HISTOGRAM ZOOMABLE WINDOW CHAPTER 3. GRAPHICAL USER INTERFACE

Figure 3.20: Time Info Box displays the time of where it pops up.

set to the total number of rows represented by the whole y-axis label tree9. For a multiple-viewmaps
slog2 �le, the y-axis label tree can be expanded or collapsed. This could change the maximum number
of rows in the row count slider after the user hits the CanvasReDraw button. Together with window
resize, the row adjustment panel allows the user to magnify or shrink the height of the timeline as
desired.

3.5 Histogram Zoomable Window

The Histogram window is created by clicking the statistics button located in the middle of Duration
Info Box, shown in Figure 3.19. In Figure 3.23, the Histogram window is created for the whole
duration of the timeline canvas in Figure 3.10, that is, the same duration as the complete slog2 �le.
In general, the total duration of the histogram canvas is the same as the duration marked by the
Duration Info Box, so that the Histogram window functions like a graphical display of statistical
summary of the duration of interest. For instance, it is obvious from Figure 3.23 that the yellow
state (MPI_Barrier in this case) cumulatively takes up the most time. This is especially true in the
last timeline.

Since the Histogram window is also a zoomable window like the Timeline window, a lot of the features
described in Section 3.4.1 for the Timeline window are available for the Histogram window as well, for
example, dragged-zoom, grasp and scroll, instant zoom in/out, easy vertical expansion of timeline,
and cut and paste of timelines. If some state categories or timelines need to be made invisible in the
Histogram window, one can disable the corresponding categories in the Legend window's column V

9Hence the row height cannot be adjusted all the way to zero.

33



3.5. HISTOGRAM ZOOMABLE WINDOW CHAPTER 3. GRAPHICAL USER INTERFACE

Figure 3.21: Simple one-level y-axis label tree. The blue highlighted labels are those that
have been selected. The pulldown menu at the top of panel indicates the value in PRE-
VIEW_STATE_DISPLAY in the Preference window.

34



3.5. HISTOGRAM ZOOMABLE WINDOW CHAPTER 3. GRAPHICAL USER INTERFACE

(a) Row
Count
mode

(b) Row
Height
mode

Figure 3.22: Row Adjustment Panel determines the Timeline window's resize scheme. When one of
the mode sliders or text �elds is adjusted, the other three components will be adjusted simultaneously.

35



3.5. HISTOGRAM ZOOMABLE WINDOW CHAPTER 3. GRAPHICAL USER INTERFACE

Figure 3.23: Histogram window of the whole duration shown in Figure 3.10.

36



3.5. HISTOGRAM ZOOMABLE WINDOW CHAPTER 3. GRAPHICAL USER INTERFACE

or S or selected corresponding timelines in the Histogram window. The process is just like that for
the Timeline window.

Only summary objects can be displayed in the Histogram window. Summary objects are similar to
preview objects discussed earlier. However, whereas Preview objects are created during the log�le
creation stage and cannot be modi�ed during visualization, Summary objects are created dynamically
during visualization, that is, during creation of a Duration Info Box, so they can be modi�ed easily
by the user. There are two di�erent kinds of summary objects: summary state and summary arrow.
There is only one summary state per timeline and one summary arrow for each ordered pair of
timelines.10 Currently three di�erent views are available in the Histogram window: States Only,
Arrows Only, and All. In the States Only view, only summary states are displayed. In the Arrows
Only view, only summary arrows are displayed. In the All view, both summary states and arrows
are displayed.

3.5.1 Summary States

Figure 3.24: Summary state info boxes of the Histogram window.

Since summary states are created through the statistics of real and preview states, summary states
the inherit properties of preview states, that is, inclusion and exclusion ratios. Hence, di�erent rep-
resentations of summary state are formed based on the PREVIEW_STATE_DISPLAY discussed
in Section 2.2.1. Di�erent representations of summary states can be selected through the SUM-
MARY_STATE_DISPLAY pulldown menu located at the top of the left panel in the histogram
window or through a similar variable de�ned in the Preference window and in Table 3.24. Figure
3.23 is actually a CumulativeExclusionRatio view. Since the most time-consuming timeline is the last
one, we will zoom in on the last three timelines and use them to discuss the visual representation of
summary state. Figure 3.24 shows the last three timelines of Figure 3.23. Each summary state has

10An ordered pair of timelines means that the timeline pair (1,2) is di�erent from the pair (2,1).

37



3.5. HISTOGRAM ZOOMABLE WINDOW CHAPTER 3. GRAPHICAL USER INTERFACE

a gray bordered box. Right mouse clicking at the bordered box pops up the Summary Info Box for
the whole summary state. The info box lists the total number of real states it contains and detailed
information of what state categories it contains. In the �gure, the summary info boxes at timeline 15
and 13 show that the timeline 15 summary state contains about 148,006 real states and the timeline
13 summary state has about 859,613 real states; that is, timeline 13 has 5.8 times the number of real
states than that of timeline 15 within the same duration. Each summary state also displays the ratios
of the total duration of each member state category to the duration of the canvas as colored boxes
inside the gray bordered box. Right clicking on any of the colored boxes will display a summary
info box that indicates the color and name of category and the corresponding ratio for the duration;
see, for example, the highlighted summary info box in the Figure 3.24. The remaining duration at
the end of each timeline is unaccounted for. In this particular log�le, the remaining time could be
thought of as being used for computation.

Figure 3.25: OverlapInclusionRatio view of Figure 3.24.

Switching the SUMMARY_STATE_DISPLAY pulldown menu in the Histogram window in the �gure
to OverlapInclusionRatio redraws the histogram canvas. The histogram canvas now looks like the one
shown in Figure 3.25. Since the sum of all inclusion ratios is greater than 1.0, theCumulativeInclusionRatio
view is not provided in the Histogram window.11 All the member categories of the summary states in
theOverlapInclusionRatio view are drawn from the beginning of the histogram canvas and are nested
one inside the others in decreasing inclusion ratio order, so the largest inclusion ratios are easily
noticeable. To see the smallest ratios, one needs to zoom in around the beginning of the canvas.
In Figure 3.25, the largest inclusion ratios in the three visible timelines are all royal blue and take
up about the same amount of time. The second largest ratios are all orange colored and smallest
in the timeline 15. Therefore, the OverlapInclusionRatio is good for comparing member category
contribution among di�erent timelines.

38



3.5. HISTOGRAM ZOOMABLE WINDOW CHAPTER 3. GRAPHICAL USER INTERFACE

Figure 3.26: Arrows Only view of the Figure 3.23.

3.5.2 Summary Arrows

Figure 3.26 is the Arrows Only view of the histogram window shown in Figure 3.23. There is a
summary arrow per ordered pair of timelines. The duration of each summary arrow is the total
duration of all real arrows taking place between the ordered pair of timelines within the duration of
the canvas. Notice that the duration of summary arrow may be longer than that of the canvas.

Figure 3.27: Arrow Summary Info Box of Figure 3.26.

Right mouse clicking at the summary arrow will display a Summary Info Box for the arrow as in the

11The view cannot be drawn within same duration as marked in the timeline window.

39



3.6. PREFERENCE WINDOW CHAPTER 3. GRAPHICAL USER INTERFACE

Figure 3.27. The info box lists the total number of real arrows and the ratio of the total duration of
all real arrows to the duration of canvas. Together with the info box, the summary arrow provides a
way to tell which ordered pair of timelines communicates the most.

3.6 Preference Window

As shown in Figure 3.28, the Preference window adjusts the various display properties of the visual-
ization program. The parameters and their de�nitions are listed in Tables 3.16, 3.18, 3.20, 3.22 3.24
, and 3.26.

Parameter Values Description

Y_AXIS_ROOT_LABEL any text Label for the root node of the y-axis tree label in
the left panel.

INIT_SLOG2_LEVEL_READ +ve integer The number of slog2 levels being read into mem-
ory when the Timeline window is initialized, the
integer a�ects the zooming and scrolling perfor-
mance exponentially (in an asymptotic sense).

AUTO_WINDOWS_LOCATION true, false Whether to let Jumpshot-4 automatically set win-
dows placement

SCREEN_HEIGHT_RATIO 0.0 ... 1.0 Ratio of the initial timeline canvas height to the
screen height

TIME_SCROLL_UNIT_RATIO 0.0 ... 1.0 Unit increment of the horizontal scrollbar in the
fraction of timeline canvas's width.

Table 3.16: Parameters for the section of Zoomable Window Reinitialization in the Preference window.

40



3.6. PREFERENCE WINDOW CHAPTER 3. GRAPHICAL USER INTERFACE

Figure 3.28: Preference window showing the PREVIEW_STATE_DISPLAY.

41



3.6. PREFERENCE WINDOW CHAPTER 3. GRAPHICAL USER INTERFACE

Parameter Values Description

Y_AXIS_ROOT_VISIBLE true, false Whether to show the top of the y-axis tree-styled
directory label.

ACTIVE_REFRESH false Whether to let Jumpshot-4 actively update the
timeline canvas.

BACKGROUND_COLOR Black,
DarkGray,
Gray,

LightGray,
White

Background color of the timeline canvas

STATE_HEIGHT_FACTOR 0.0 ... 1.0 Ratio of the outermost rectangle height to row
height. The larger the factor is, the larger the
outermost rectangle will be with respect to the
row height.

NESTING_HEIGHT_FACTOR 0.0 ... 1.0 The gap ratio between successive nesting rectan-
gles. The larger the factor is, the smaller the gap
will be.

ARROW_ANTIALIASING default, on, o� Whether to draw arrow with anti-aliasing lines.
Turning this on will slow down the canvas drawing
by a factor of 3.

MIN_WIDTH_TO_DRAG integer Minimum width in pixels to be considered a
dragged operation.

CLICK_RADIUS_TO_LINE integer Radius in pixels for a click to be considered on the
arrow.

LEFTCLICK_INSTANT_ZOOM true, false Whether to zoom in immediately after left mouse
click on canvas.

Table 3.18: Parameters for the section of All Zoomable Windows in the Preference window, where
integers are assumed to be positive.

42



3.6. PREFERENCE WINDOW CHAPTER 3. GRAPHICAL USER INTERFACE

Parameter Values Description

STATE_BORDER ColorRaised, ColorLowered,
WhiteRaised,

WhiteLowered, WhitePlain,
Empty

Border style of real states.

ARROW_HEAD_LENGTH integer Length of the arrow head in
pixels.

ARROW_HEAD_WIDTH integer Width of the arrow head's
base in pixels(Even num-
ber).

EVENT_BASE_WIDTH integer Width of the event triangle's
base in pixels

PREVIEW_STATE_DISPLAY FitMostLegends,
OverlapInclusionRatio,

CumulativeInclusionRatio,
OverlapExclusionRatio,

CumulativeExclusionRatio,
BaseAlignedCumulativeEx-

clusionRatio

Display option of Preview
state when Timeline window
starts up.

PREVIEW_STATE_BORDER ColorRaised, ColorLowered,
ColorXOR, WhiteRaised,
WhiteLowered, WhitePlain,

Empty

Border style of preview
state.

PREVIEW_STATE_BORDER_WIDTH integer The empty border insets'
width in pixels for the Pre-
view state.

PREVIEW_STATE_BORDER_HEIGHT integer The empty border insets'
height in pixels for the Pre-
view state.

PREVIEW_STATE_LEGEND_HEIGHT integer Minimum height of the leg-
end division (category strip)
in pixels inside THICK-
NESS the Preview state

PREVIEW_ARROW_LOG_BASE integer The logarithmic base of the
number of real arrows amal-
gamated in preview arrow.
This determines the Preview
arrow's width.

Table 3.20: Parameters for the section of Timeline Zoomable Window in the Preference window, all
integers are assumed to be positive.

43



3.6. PREFERENCE WINDOW CHAPTER 3. GRAPHICAL USER INTERFACE

Parameter Values Description
HIGHLIGHT_CLICKED_OBJECT true, false Whether the clicked drawables should be

highlighted.
POINTER_ON_CLICKED_OBJECT true, false Whether pointers are used to locate the

ends of clicked drawable.
MARKER_STATE_STAYS_ON_TOP true, false Whether the clicked or searched STATE

is shown on top of the nested stack, states
that are on top of the clicked state will be

hidden.
MARKER_POINTER_MIN_LENGTH integer Minimum Length of the Pointer marker's

arrow in pixels
MARKER_POINTER_MAX_LENGTH integer Maximum Length of the Pointer marker's

arrow in pixels
MARKER_STATE_BORDER_WIDTH integer Border width in pixels of the STATE

highlight marker.
MARKER_ARROW_BORDER_WIDTH integer Border width in pixels of the ARROW

highlight marker.
MARKER_LINE_BORDER_WIDTH integer Border width in pixels of the PREVIEW

ARROW highlight marker.
MARKER_EVENT_BORDER_WIDTH integer Border width in pixels of the EVENT

highlight marker

Table 3.22: Parameters for the section of Timeline Zoomable Window in the Preference window, all
integers are assumed to be positive.

Parameter Values Description

HISTOGRAM_ZERO_ORIGIN true, false Whether the time ruler is in duration,
i.e. starts with 0.0 seconds.

SUMMARY_STATE_BORDER ColorRaised,
ColorLowered,
ColorXOR,
WhiteRaised,
WhiteLowered,

WhitePlain, Empty

Border style of summary state when
Histogram window starts up.

SUMMARY_ARROW_LOG_BASE integer The logarithmic base of the number of
real arrows amalgamated in summary
arrow. Hence, this determines the sum-
mary arrow's thickness.

Table 3.24: Parameters for the section of Histogram Zoomable Window in the Preference window.

44



3.6. PREFERENCE WINDOW CHAPTER 3. GRAPHICAL USER INTERFACE

Parameter Values Description

LEGEND_PREVIEW_ORDER true, false Whether to arrange the legends with a hid-
den preview order.

LEGEND_TOPOLOGY_ORDER true, false Whether to arrange the legends with a hid-
den topology order.

Table 3.26: Parameters for the section of theLegend window in the Preference window.

45



Chapter 4

Special Features

4.1 Search and Scan Facility

The level-of-detail support provided in SLOG-2 and Jumpshot-4's timeline window tends to help
locate states that either are longer in time or occur very frequently. States that are short and occur
rarely in a big log�le are di�cult to locate without a special tool. User can easily spot the rarest
states from looking at column count in the Legend window as in Figure 3.6. In Jumpshot-4, a search
and scan facility is provided to facilitate this goal. There are three search criteria: search time,
searchable timeline IDs, and searchable categories.

1. Search time is the time that search starts. It is marked by a yellow line called the search cursor.
There are two di�erent ways of setting the search cursor. When the timeline canvas is in hand
mode, as described in Figure 3.12 of Section 3.4.1, left mouse clicking will set the search cursor.
The other way can be done in either hand or zoom mode. First, one pops up an information
dialog box of any kind, using right mouse clicking; then one presses the SearchInitialize button
in the toolbar to replace the green line by the yellow search cursor. When more than one
information dialog box is shown, the information dialog box shown last will have its green line
used to initialize the search cursor. When the Timeline window �rst starts up, the search cursor
is set at the starttime of the log�le.

2. Searchable timeline IDs are the timelines that the search will operate on; only states on the
marked timelines will be returned by the search facility. These marked timelines can be selected
by clicking on their timeline IDs on y-axis label panel with rules described in Table 3.12. When
nothing is selected, all timelines are searchable.

3. Searchable categories are categories that have their searchable checkboxes enabled as in Figure
3.9. Only a drawable with a searchable category can be returned by the search facility. By
default, all categories in the Legend window are searchable.

After any needed search criteria have been set, the search operation can be carried out by pressing
either the SearchForeward or SearchBackward buttons shown in Table 3.14. As shown in Figure
4.1, the search facility returns a searched state that is marked by a transparent 1box with a 3D

1The transparency of the 3D raised box can be made opaque by selecting the SEARCHED_OBJECT_ON_TOP
true.

46



4.1. SEARCH AND SCAN FACILITY CHAPTER 4. SPECIAL FEATURES

Figure 4.1: Search of state eos in preview stage. The returned state is a preview state containing
state eos as shown in the Search Box and Drawable Info Box.

47



4.1. SEARCH AND SCAN FACILITY CHAPTER 4. SPECIAL FEATURES

raised border and whose starttime is marked by a yellow search cursor and an upper and a lower
3D arrowhead. The upper 3D arrow's color matches that of the returned state. In the �gure, the
returned state is a preview state, so the upper 3D arrow is gray, as shown in the Legend window.
Accompanied with the 3D raised bordered box is a popup Search Box that shows the details of the
preview state, like the Drawable Info Box in Figure 3.17. Since the search in the �gure is looking for
state eos, a Drawable Info Box is shown to indicate that the returned 3D bordered box does contain
category eos graphically. In order to locate the real state eos, a dragged zoom is performed around
the 3D raised bordered box; the result is shown in Figure 4.2. In the �gure, the real eos is located
in the middle of the original 3D bordered box, and it is pointed to by the Drawable Info Box.

Figure 4.2: Dragged zoom performed around the 3D raised bordered box in Figure 4.1 shows the
real state eos.

In general, when one is searching in a big slog2 �le, all preview categories should be set searchable;
otherwise, searching for real drawables may not return anything because at the lower zoom level
there may be no real drawables of the categories of interest. Only the preview drawable contains the
categories of interest. Also, the search facility is carried out for the drawables that are in the physical
memory. On rare occasions, drawables in the memory may have been exhausted for searching before
the end of the log�le has been reached; thus, the user may need to advance the search by scrolling
forward or backward to read in more drawables and to restart the search. For a very big log�le, the

48



4.2. TUNING OF THE TIMELINE WINDOW CHAPTER 4. SPECIAL FEATURES

search process of a real state may require repeated operations of search and dragged zoom before the
real state can be found. This process will be automated in a later version of Jumpshot-4.

4.2 Tuning of the Timeline Window

Figure 4.3: Initial Timeline window with �ner preview resolution.

One of the major improvements in the new Jumpshot and SLOG-2 is the scalability in terms of visu-
alization performance. As shown in Figure 3.10, 14 bands of preview states cover the whole canvas
in the initial Timeline window. By incrementing the parameter INIT_SLOG2_LEVEL_READ by
1 in the Preference window as in Table 3.16, the initial Timeline window is redisplayed, as shown
in Figure 4.3. The new Timeline window has 27 bands of preview states instead of 14. The in-
creased preview resolution o�ers a more detailed description of the log�le but at the expense of
graphical performance because every increment of INIT_SLOG2_LEVEL_READ roughly doubles
the number of drawables to be iterated during every zooming or scrolling.2 The biggest demand
of graphical performance occurs when zooming to the level of only pure real drawables from the
lower zoom level. The value of INIT_SLOG2_LEVEL_READ should be chosen so that Jump-
shot does not appear to be too slow during the zooming to the pure real drawable level. For a

2It is true for a binary tree.

49



4.3. ESTIMATION OF MPI COMMUNICATION OVERHEADCHAPTER 4. SPECIAL FEATURES

fast graphics system, INIT_SLOG2_LEVEL_READ should be set higher than the default value
4 (e.g., 5) so that more information is present during each view. Slow graphics system should set
INIT_SLOG2_LEVEL_READ lower (e.g., 3).

Another parameter that signi�cantly a�ects the graphical performance is ARROW_ANTIALIASING
in the Preference window. Setting the parameters to ON will force Jumpshot to draw all arrows
including preview arrows with anti-aliasing lines. This proves to be an expensive graphical operation.3

Except when a high-quality picture is needed, for example during screen capture for a picture or when
anti-aliasing lines are drawn with graphics hardware support, turning on ARROW_ANTIALIASING
is not recommended.

4.3 Estimation of MPI Communication Overhead

Figure 4.4: Graphical MPI overhead pro�ling through the use of the BaseAlignedCumulativeExclu-
sionRatio view of Timeline window in Figure 3.10.

Most MPI application developers want to know about the overhead of MPI calls in their programs.
Essentially, they want to know what the communication overheadis in their parallel programs. New
SLOG-2 viewer provides a graphical answer to this question for most MPI pro�ling systems. In

3A typical timeline canvas with arrows will draw roughly a factor 3 slower with anti-aliasing on.

50



4.3. ESTIMATION OF MPI COMMUNICATION OVERHEADCHAPTER 4. SPECIAL FEATURES

MPE pro�ling systems, MPI states are alway nested deeper than the user-de�ned states. Therefore,
disabling the user-de�ned states and arrows in the CumulativeExclusionRatio mode in the Timeline
window still leaves all MPI exclusion ratios intact, without distorting the collective meaning of ex-
clusion ratios. Figure 4.4 shows a CumulativeExclusionRatio view in BaseAligned mode that looks
like a two-dimensional projection of a three-dimensional histogram for a timeline vs time coordinate
system. The base aligned feature is for easy comparison of preview states' heights. From the �gure,
we know that the yellow state (i.e., MPI_Barrier) takes the most time in the program; we also know
when and where MPI_Barrier consumes the most time. The combination of disabling user-de�ned
states and using the BaseAlignedCumulativeExclusionRatio Timeline view provides a powerful and
convenient way to estimate MPI communication overhead. Together with the zoomable capability of
the Timeline window, the user can easily zoom in to identify the time and location of the bottleneck
that causes the biggest communication overhead. For an overall estimate of MPI overhead, a His-
togram window over the whole duration of the timeline canvas can be obtained, as shown in Figure
4.5. The empty region in each timeline is assumed to be for user computation.

Figure 4.5: Overall MPI overhead histogram for Figure 4.4.

51



4.4. PERFORMANCE ANALYSIS OF THREADED MPI APPLICATIONCHAPTER 4. SPECIAL FEATURES

4.4 Performance Analysis of Threaded MPI Application

The goal of this section is to provide an example how Jumpshot's ViewMap can be used to study the
performance of threaded MPI applications. Let's say we are interested to �nd out the performance
of di�erent MPI implementations in a threaded environment. We will use a simple mult-threaded
MPI program to see if there is any preformance di�erence. The test program, pthread_sendrecv.c,
used here �rst creates multiple threads in each process. Each spawned thread then duplicates the
MPI_COMM_WORLD to form a ring, i.e. each thread sends a message to its next rank and receives
a message from its previous rank within same duplicated MPI_COMM_WORLD to form a ring.
The program is shown at the end of the document. MPE is built with �enable-threadlogging4 and
�disable-safePMPI5. The most accessible MPI implementations with MPI_THREAD_MULTIPLE
support are MPICH2 and OpenMPI. We will use the latest stable release of MPICH2, 1.0.5p4, and
OpenMPI, 1.2.3 for this demonstration. Since OpenMPI has the option to enable progress thread in
additional to the standard thread support, we will build 2 di�erent versions of OpenMPIs for this
little experiment. The experiment will be performed on 4 AMD64 nodes running Linux Ubuntu 7.04,
each node consists of 4 cores and the test program will be running with 1 to 6 extra threads to see
if the oversubscribing has any e�ect on the send and receive performance.

Table 4.2 shows the total duration of the 4-process run with various numbers of child threads. The
data shows that as the number of child threads increases, so is the total runtime. For MPICH2,
the runtime increase is modest for each additional thread. For OpenMPI+progress_thread, the
performance isn't as good as MPICH2 but it is still reasonable as the number of threads increases.
However for OpenMPI without progress thread support, the runtime increases drastically as there
are 3 child threads or more. The situation becomes very bad as the node becomes oversubscribed,
i.e. when there are 5 or more child threads. Now we are going to use MPE logging and Jumpshot to
�nd out what happens.

child thread count MPICH2 OpenMPI+progress_thread OpenMPI

1 0.025299 0.029545 0.029230
2 0.026213 0.030872 0.032966 4.7
3 0.028916 0.038964 0.050484 4.8
4 0.030145 0.045354 0.054791 4.9
5 0.031977 0.058039 0.149200 4.10
6 0.034462 0.058505 0.193399 4.11

Table 4.2: The total runtime (in second) of the 4-process run of pthread_sendrecv with various
number of child threads in di�erent MPI implementations. The 2nd column header, MPICH2: refers
to MPICH2-1.0.5p4 built with default sock channel which has MPI_THREAD_MULTIPLE support.
The 3rd column header, OpenMPI+progress_thread, refers to OpenMPI-1.2.3 con�gured with �
enable-mpi-threads and �enable-progress-threads. The 4th column, OpenMPI, refers to OpenMPI-
1.2.3 built with �enable-mpi-threads which enables the MPI_THREAD_MULTIPLE support.

4�enable-threadlogging enables MPE to build a thread-safe MPI logging library which is implemented by using a
global mutex over MPE logging library which is not thread-safe yet.

5MPE by defaults does �enable-safePMPI to protect the logging code from doing circular logging in unknown MPI
implementation where MPI calls are implementated with other MPI calls. Basically, �enable-safePMPI disables the
logging before making PMPI call and then re-enables logging when the PMPI call is returned. Using �disable-safePMPI
in MPE eliminiates this layer of protection but allows lowest possible logging overhead.

52



4.4. PERFORMANCE ANALYSIS OF THREADED MPI APPLICATIONCHAPTER 4. SPECIAL FEATURES

The problematic data in the last column of Table 4.2 are being analyzed with two Jumpshot viewmaps
for each run. They are shown in Figures 4.7, 4.8,4.9,4.10 and 4.11. The legend for these pictures are
shown in Figure4.6.

Figure 4.6: The legend table of all the pthread_sendrecv runs.

The extra viewmaps provided in MPE logging are:

1) Process-Thread view: where each thread timeline is shown nested under the process timeline it
belongs to. Since we are only running 4 processes, only 4 process timelines here.

2) Communicator-Thread view: where each thread is shown nested within the communicator timeline.
Since we are runing with 2 to 6 child threads where a duplicated MPI_COMM_WORLD is created
for each thread, so we expect to see 3 to 7 major communicator timelines. MPI_COMM_WORLD
is always labeled as 0 in CLOG2 converted SLOG-2 �le and other duplicated MPI_Comm is labeled
with other integer depends on the order of when it is being created.

When the timeline window of the process-thread view �rst shows up, only process timelines are visible,
i.e. all the thread timelines are nested within the process timeline. User needs to use the Y-axis

LabelExpand button or Alt-E to expand each process timeline to reveal the thread timeline.

Similarly, user can use the Y-axis LabelCollapse button or Alt-C to collapse the thread timeline

53



4.4. PERFORMANCE ANALYSIS OF THREADED MPI APPLICATIONCHAPTER 4. SPECIAL FEATURES

back to their corresponding process timeline. Similarly for the communicator-thread view, the Y-axis
LabelExpand and LabelCollapse buttons should be used to expand and collapse the communicator
timelines.

Figures 4.8, 4.9, 4.10 and 4.11 clearly demonstrate that there is some kind of communication
progress problem in OpenMPI when used without progress thread. Without alternating between
communicator-thread and process-thread views, it would be di�cult to identify the existence of a
progress engine problem.

4.4.1 Test program

The following is the test program, pthread_sendrecv.c, used in the previous experiment.

/*

(C) 2007 by Argonne National Laboratory.

See COPYRIGHT in top-level directory.

*/

#include "mpi.h"

#include <stdio.h>

#include <pthread.h>

#include <stdlib.h>

#include <string.h>

#define BUFLEN 512

#define NTIMES 100

#define MAX_THREADS 10

/*

Concurrent send and recv by multiple threads on each process.

*/

void *thd_sendrecv( void * );

void *thd_sendrecv( void *comm_ptr )

{

MPI_Comm comm;

int my_rank, num_procs, next, buffer_size, namelen, idx;

char buffer[BUFLEN], processor_name[MPI_MAX_PROCESSOR_NAME];

MPI_Status status;

comm = *(MPI_Comm *) comm_ptr;

MPI_Comm_size( comm, &num_procs );

MPI_Comm_rank( comm, &my_rank );

MPI_Get_processor_name( processor_name, &namelen );

fprintf( stderr, "Process %d on %s\n", my_rank, processor_name );

strcpy( buffer, "hello there" );

buffer_size = strlen(buffer)+1;

54



4.4. PERFORMANCE ANALYSIS OF THREADED MPI APPLICATIONCHAPTER 4. SPECIAL FEATURES

(a) process-thread view

(b) communicator-thread view

Figure 4.7: OpenMPI without progress thread: 2 child threads per process. As shown in both the
Process-Thread view and Communicator-Thread views here, everything performs as expected.

55



4.4. PERFORMANCE ANALYSIS OF THREADED MPI APPLICATIONCHAPTER 4. SPECIAL FEATURES

(a) process-thread view

(b) communicator-thread view

Figure 4.8: OpenMPI without progress thread: 3 child threads per process where there are 3
MPI_Comm_dup() calls in the master thread 0. As shown in the expanded Process-Thread view,
the 3rd MPI_Comm_dup() call takes signi�cantly longer than the �rst two MPI_Comm_dup().
The expanded Communicator-Thread view also suggests that the delayed 3rd MPI_Comm_dup() is
blocking MPI point-to-point communication in the �rst two duplicated MPI_COMM_WORLD. As
soon as the delayed MPI_Comm_dup() exits, the MPI point-to-point communication is restored.

56



4.4. PERFORMANCE ANALYSIS OF THREADED MPI APPLICATIONCHAPTER 4. SPECIAL FEATURES

(a) process-thread view

(b) communicator-thread view

Figure 4.9: OpenMPI without progress thread: 4 child threads per process. Similar to Fig. 4.8, the
3rd MPI_Comm_dup() is delayed but not the 4th MPI_Comm_dup(). The interference between
the delayed 3rd MPI_Comm_dup() and the other dup MPI_COMM_WORLD seen in Fig. 4.8 is
not observed here. So the communication in �rst two dup MPI_COMM_WORLD �nishes much
earlier than the communication in the last two communicators.

57



4.4. PERFORMANCE ANALYSIS OF THREADED MPI APPLICATIONCHAPTER 4. SPECIAL FEATURES

(a) process-thread view

(b) communicator-thread view

Figure 4.10: OpenMPI without progress thread: 5 child threads per process. Again, the last
MPI_Comm_dup() takes longer than previous MPI_Comm_dup()s in �nishing up. The feature
that we observed in Fig. 4.8 that the delayed MPI_Comm_dup() is blocking other communicator's
communication occurs here. However, even long after all MPI_Comm_dup() are done, there are
many regions in the communicator-thread view that MPI communication is not progressing, i.e. some
kind of temporary deadlock in the MPI progress engine may be happening here.

58



4.4. PERFORMANCE ANALYSIS OF THREADED MPI APPLICATIONCHAPTER 4. SPECIAL FEATURES

(a) process-thread view

(b) communicator-thread view

Figure 4.11: OpenMPI without progress thread: 6 child threads per process. This is very similar to
Fig. 4.10.

59



4.4. PERFORMANCE ANALYSIS OF THREADED MPI APPLICATIONCHAPTER 4. SPECIAL FEATURES

if ( my_rank == num_procs-1 )

next = 0;

else

next = my_rank+1;

for ( idx = 0; idx < NTIMES; idx++ ) {

if (my_rank == 0) {

MPI_Send(buffer, buffer_size, MPI_CHAR, next, 99, comm);

MPI_Send(buffer, buffer_size, MPI_CHAR, MPI_PROC_NULL, 299, comm);

MPI_Recv(buffer, BUFLEN, MPI_CHAR, MPI_ANY_SOURCE, 99,

comm, &status);

}

else {

MPI_Recv(buffer, BUFLEN, MPI_CHAR, MPI_ANY_SOURCE, 99,

comm, &status);

MPI_Recv(buffer, BUFLEN, MPI_CHAR, MPI_PROC_NULL, 299,

comm, &status);

MPI_Send(buffer, buffer_size, MPI_CHAR, next, 99, comm);

}

/* MPI_Barrier(comm); */

}

pthread_exit( NULL );

return 0;

}

int main( int argc,char *argv[] )

{

MPI_Comm comm[ MAX_THREADS ];

pthread_t thd_id[ MAX_THREADS ];

int my_rank, ii, provided;

int num_threads;

MPI_Init_thread( &argc, &argv, MPI_THREAD_MULTIPLE, &provided );

if ( provided != MPI_THREAD_MULTIPLE ) {

printf( "Aborting, MPI_THREAD_MULTIPLE is needed...\n" );

MPI_Abort( MPI_COMM_WORLD, 1 );

}

MPI_Comm_rank( MPI_COMM_WORLD, &my_rank );

if ( my_rank == 0 ) {

if (argc != 2) {

printf( "Error: %s num_threads\n", argv[0] );

MPI_Abort( MPI_COMM_WORLD, 1 );

}

60



4.4. PERFORMANCE ANALYSIS OF THREADED MPI APPLICATIONCHAPTER 4. SPECIAL FEATURES

num_threads = atoi( argv[1] );

MPI_Bcast( &num_threads, 1, MPI_INT, 0, MPI_COMM_WORLD );

}

else

MPI_Bcast( &num_threads, 1, MPI_INT, 0, MPI_COMM_WORLD );

MPI_Barrier( MPI_COMM_WORLD );

for ( ii=0; ii < num_threads; ii++ ) {

MPI_Comm_dup( MPI_COMM_WORLD, &comm[ii] );

pthread_create( &thd_id[ii], NULL, thd_sendrecv, (void *) &comm[ii] );

}

for ( ii=0; ii < num_threads; ii++ )

pthread_join( thd_id[ii], NULL );

MPI_Finalize();

return 0;

}

61


	Introduction
	Data Model
	Understanding the Drawable
	Understanding the Preview Drawable
	Understanding the Preview State Display


	Graphical User Interface
	Main Window
	Logfile Convertor Window
	Legend Window
	Timeline Zoomable Window
	Zoomable and Scrollable Canvas
	Dragged Zoom
	Instant Zoom
	Grasp and Scroll
	Information Dialog Box

	Toolbar
	Y-Axis Label Panel
	Row Adjustment Panel

	Histogram Zoomable Window
	Summary States
	Summary Arrows

	Preference Window

	Special Features
	Search and Scan Facility
	Tuning of the Timeline Window
	Estimation of MPI Communication Overhead
	Performance Analysis of Threaded MPI Application
	Test program



