
VampirTrace 5.12.2

User Manual



TU Dresden
Center for Information Services and
High Performance Computing (ZIH)
01062 Dresden
Germany

http://www.tu-dresden.de/zih
http://www.tu-dresden.de/zih/vampirtrace

Contact: vampirsupport@zih.tu-dresden.de

ii

http://www.tu-dresden.de/zih
http://www.tu-dresden.de/zih/vampirtrace
mailto:vampirsupport@zih.tu-dresden.de


Contents

Contents

1. Introduction 1

2. Instrumentation 5
2.1. Compiler Wrappers . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2. Instrumentation Types . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3. Automatic Instrumentation . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1. Supported Compilers . . . . . . . . . . . . . . . . . . . . . 8
2.3.2. Notes for Using the GNU, Intel, PathScale, or Open64 Com-

piler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.3. Notes on Instrumentation of Inline Functions . . . . . . . . 9
2.3.4. Instrumentation of Loops with OpenUH Compiler . . . . . . 9

2.4. Manual Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4.1. Using the VampirTrace API . . . . . . . . . . . . . . . . . . 9
2.4.2. Measurement Controls . . . . . . . . . . . . . . . . . . . . . 10

2.5. Source Instrumentation Using PDT/TAU . . . . . . . . . . . . . . . 12
2.6. Binary Instrumentation Using Dyninst . . . . . . . . . . . . . . . . 13

2.6.1. Static Binary Instrumentation . . . . . . . . . . . . . . . . . 13
2.7. Runtime Instrumentation Using VTRun . . . . . . . . . . . . . . . . 14
2.8. Tracing Java Applications Using JVMTI . . . . . . . . . . . . . . . . 14
2.9. Tracing Calls to 3rd-Party Libraries . . . . . . . . . . . . . . . . . . 15

3. Runtime Measurement 17
3.1. Trace File Name and Location . . . . . . . . . . . . . . . . . . . . . 17
3.2. Environment Variables . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3. Influencing Trace Buffer Size . . . . . . . . . . . . . . . . . . . . . 21
3.4. Profiling an Application . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.5. Unification of Local Traces . . . . . . . . . . . . . . . . . . . . . . . 22
3.6. Synchronized Buffer Flush . . . . . . . . . . . . . . . . . . . . . . . 22
3.7. Enhanced Timer Synchronization . . . . . . . . . . . . . . . . . . . 23
3.8. Environment Configuration Using VTSetup . . . . . . . . . . . . . 24

4. Recording Additional Events and Counters 25
4.1. Hardware Performance Counters . . . . . . . . . . . . . . . . . . . 25
4.2. Resource Usage Counters . . . . . . . . . . . . . . . . . . . . . . 26
4.3. Memory Allocation Counter . . . . . . . . . . . . . . . . . . . . . . 26
4.4. CPU ID Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

iii



Contents

4.5. NVIDIA CUDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.6. Pthread API Calls . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.7. Plugin Counter Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.8. I/O Calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.9. fork/system/exec Calls . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.10.MPI Correctness Checking Using UniMCI . . . . . . . . . . . . . . 35
4.11.User-defined Counters . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.12.User-defined Markers . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.13.User-defined Communcation . . . . . . . . . . . . . . . . . . . . . 38

5. Filtering & Grouping 41
5.1. Function Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2. Java Specific Filtering . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.3. Function Grouping . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

A. VampirTrace Installation 45
A.1. Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
A.2. Configure Options . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
A.3. Cross Compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
A.4. Environment Set-Up . . . . . . . . . . . . . . . . . . . . . . . . . . 53
A.5. Notes for Developers . . . . . . . . . . . . . . . . . . . . . . . . . . 54

B. Command Reference 55
B.1. Compiler Wrappers (vtcc,vtcxx,vtf77,vtf90) . . . . . . . . . . . . . . 55
B.2. Local Trace Unifier (vtunify) . . . . . . . . . . . . . . . . . . . . . . 57
B.3. Binary Instrumentor (vtdyn) . . . . . . . . . . . . . . . . . . . . . . 59
B.4. Trace Filter Tool (vtfilter) . . . . . . . . . . . . . . . . . . . . . . . . 60
B.5. Library Wrapper Generator (vtlibwrapgen) . . . . . . . . . . . . . . 62
B.6. Application Execution Wrapper (vtrun) . . . . . . . . . . . . . . . . 64

C. Counter Specifications 67
C.1. PAPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
C.2. CPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
C.3. NEC SX Hardware Performance Counter . . . . . . . . . . . . . . 70
C.4. Resource Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

D. FAQ 73
D.1. Can I use different compilers for VampirTrace and my application? 73
D.2. Why does my application need such a long time for starting? . . . 73
D.3. Fortran file I/O is not accounted properly? . . . . . . . . . . . . . . 74
D.4. There is no *.otf file. What can I do? . . . . . . . . . . . . . . . . . 75
D.5. What limitations are associated with ”on/off” and buffer rewind? . . 75
D.6. VampirTrace warns that it “cannot lock file a.lock”, what’s wrong? . 75
D.7. Can I relocate my VampirTrace installation? . . . . . . . . . . . . . 76

iv



Contents

D.8. What are the byte counts in collective communication records? . . 76
D.9. I get “error: unknown asm constraint letter” . . . . . . . . . . . . . 76
D.10.I have a question that is not answered in this document! . . . . . . 77
D.11.I need support for additional features so I can trace application xyz. 77

This documentation describes how to apply VampirTrace to an application in
order to generate trace files at execution time. This step is called instrumentation.
It furthermore explains how to control the runtime measurement system during
execution (tracing). This also includes performance counter sampling as well as
selective filtering and grouping of functions.

v





1 Introduction

1. Introduction

VampirTrace consists of a tool set and a runtime library for instrumentation and
tracing of software applications. It is particularly tailored to parallel and dis-
tributed High Performance Computing (HPC) applications.

The instrumentation part modifies a given application in order to inject addi-
tional measurement calls during runtime. The tracing part provides the actual
measurement functionality used by the instrumentation calls. By this means, a
variety of detailed performance properties can be collected and recorded dur-
ing runtime. This includes function enter and leave events, MPI communication,
OpenMP events, and performance counters.

After a successful tracing run, VampirTrace writes all collected data to a trace
file in the Open Trace Format (OTF)1. As a result, the information is available for
post-mortem analysis and visualization by various tools. Most notably, Vampir-
Trace provides the input data for the Vampir analysis and visualization tool 2.

VampirTrace is included in Open MPI 1.3 and later versions. If not disabled
explicitly, VampirTrace is built automatically when installing Open MPI 3.

Trace files can quickly become very large, especially with automatic instru-
mentation. Tracing applications for only a few seconds can result in trace files
of several hundred megabytes. To protect users from creating trace files of sev-
eral gigabytes, the default behavior of VampirTrace limits the internal buffer to 32
MB per process. Thus, even for larger scale runs the total trace file size will be
moderate. Please read Section 3.3 on how to remove or change this limit.

VampirTrace supports various Unix and Linux platforms that are common in
HPC nowadays. It is available as open source software under a BSD License.

The following list shows a summary of all instrumentation and tracing features
that VampirTrace offers. Note that not all features are supported on all platforms.

1http://www.tu-dresden.de/zih/otf
2http://www.vampir.eu
3http://www.open-mpi.org/faq/?category=vampirtrace

1

http://www.tu-dresden.de/zih/otf
http://www.vampir.eu
http://www.open-mpi.org/faq/?category=vampirtrace


Tracing of user functions⇒ Chapter 2

• Record function enter and leave events
• Record name and source code location (file name, line)
• Various kinds of instrumentation⇒ Section 2.2

– Automatic with many compilers⇒ Section 2.3
– Manual using VampirTrace API⇒ Section 2.4
– Automatic with tau instrumentor⇒ Section 2.5
– Automatic with Dyninst⇒ Section 2.6

MPI Tracing⇒ Chapter 2

• Record MPI functions
• Record MPI communication: participating processes, transferred bytes,

tag, communicator

OpenMP Tracing⇒ Chapter 2

• OpenMP directives, synchronization, thread idle time
• Also hybrid (MPI and OpenMP) applications are supported

Pthread Tracing

• Trace POSIX thread API calls⇒ Section 4.6
• Also hybrid (MPI and POSIX threads) applications are supported

Java Tracing⇒ Section 2.8

• Record method calls
• Using JVMTI as interface between VampirTrace and Java Applications

3rd-Party Library tracing⇒ Section 2.9

• Trace calls to arbitrary third party libraries
• Generate wrapper for library functions based on library’s header file(s)
• No recompilation of application or library is required

MPI Correctness Checking⇒ Section 4.10

• Record MPI usage errors
• Using UniMCI as interface between VampirTrace and a MPI correctness

checking tool (e.g. Marmot)

2



1 Introduction

User API

• Manual instrumentation of source code regions⇒ Section 2.4
• Measurement controls⇒ Section 2.4.2
• User-defined counters⇒ Section 4.11
• User-defined marker⇒ Section 4.12
• User-defined communication⇒ Section 4.13

Performance Counters⇒ Sections 4.1 and 4.2

• Hardware performance counters using PAPI, CPC, or NEC SX performance
counter
• Resource usage counters using getrusage

Memory Tracing⇒ Section 4.3

• Trace GLIBC memory allocation and free functions
• Record size of currently allocated memory as counter

I/O Tracing⇒ Section 4.8

• Trace LIBC I/O calls
• Record I/O events: file name, transferred bytes

CPU ID Tracing⇒ Section 4.4

• Trace core ID of a CPU on which the calling thread is running
• Record core ID as counter

Fork/System/Exec Tracing⇒ Section 4.9

• Trace applications calling LIBC’s fork, system, or one of the exec functions
• Add forked processes to the trace

Filtering & Grouping⇒ Chapter 5

• Runtime and post-mortem filter (i.e. exclude functions from being recorded
in the trace)
• Runtime grouping (i.e. assign functions to groups for improved analysis)

OTF Output⇒ Chapter 3

• Writes compressed OTF files
• Output as trace file, statistical summary (profile), or both

3





2 Instrumentation

2. Instrumentation
To perform measurements with VampirTrace, the user’s application program
needs to be instrumented, i.e., at specific points of interest (called “events”)
VampirTrace measurement calls have to be activated. As an example, common
events are, amongst others, entering and leaving of functions as well as sending
and receiving of MPI messages.

VampirTrace handles this automatically by default. In order to enable the in-
strumentation of function calls, the user only needs to replace the compiler and
linker commands with VampirTrace’s wrappers, see Section 2.1 below. Vampir-
Trace supports different ways of instrumentation as described in Section 2.2.

2.1. Compiler Wrappers

All the necessary instrumentation of user functions, MPI, and
OpenMP events is handled by VampirTrace’s compiler wrappers (vtcc, vtcxx,
vtf77, and vtf90). In the script used to build the application (e.g. a makefile),
all compile and link commands should be replaced by the VampirTrace compiler
wrapper. The wrappers perform the necessary instrumentation of the program
and link the suitable VampirTrace library. Note that the VampirTrace version in-
cluded in Open MPI 1.3 has additional wrappers (mpicc-vt, mpicxx-vt, mpif77-
vt, and mpif90-vt) which are like the ordinary MPI compiler wrappers (mpicc,
mpicxx, mpif77, and mpif90) with the extension of automatic instrumentation.

The following list shows some examples specific to the parallelization type of
the program:

• Serial programs: Compiling serial codes is the default behavior of the
wrappers. Simply replace the compiler by VampirTrace’s wrapper:

original: gfortran hello.f90 -o hello
with instrumentation: vtf90 hello.f90 -o hello

This will instrument user functions (if supported by the compiler) and link
the VampirTrace library.

• MPI parallel programs: MPI instrumentation is always handled by means
of the PMPI interface, which is part of the MPI standard. This requires
the compiler wrapper to link with an MPI-aware version of the VampirTrace
library. If your MPI implementation uses special MPI compilers (e.g. mpicc,

5



2.1 Compiler Wrappers

mpxlf90), you will need to tell VampirTrace’s wrapper to use this compiler
instead of the serial one:

original: mpicc hello.c -o hello
with instrumentation: vtcc -vt:cc mpicc hello.c -o hello

MPI implementations without own compilers require the user to link the MPI
library manually. In this case, simply replace the compiler by VampirTrace’s
compiler wrapper:

original: icc hello.c -o hello -lmpi
with instrumentation: vtcc hello.c -o hello -lmpi

If you want to instrument MPI events only (this creates smaller trace files
and less overhead) use the option -vt:inst manual to disable auto-
matic instrumentation of user functions (see also Section 2.4).

• Threaded parallel programs: When VampirTrace detects OpenMP or
Pthread flags on the command line, special instrumentation calls are in-
voked. For OpenMP events OPARI is invoked for automatic source code
instrumentation.

original: ifort <-openmp|-pthread> hello.f90
-o hello

with instrumentation: vtf90 <-openmp|-pthread> hello.f90
-o hello

For more information about OPARI read the documentation available in
VampirTrace’s installation directory at: share/vampirtrace/doc/
opari/Readme.html

• Hybrid MPI/Threaded parallel programs: With a combination of the
above mentioned approaches, hybrid applications can be instrumented:

original: mpif90 <-openmp|-pthread> hello.F90
-o hello

with instrumentation: vtf90 -vt:f90 mpif90
<-openmp|-pthread> hello.F90
-o hello

The VampirTrace compiler wrappers automatically try to detect which paral-
lelization method is used by means of the compiler flags (e.g. -lmpi, -openmp
or -pthread) and the compiler command (e.g. mpif90). If the compiler wrap-
per failed to detect this correctly, the instrumentation could be incomplete and
an unsuitable VampirTrace library would be linked to the binary. In this case, you
should tell the compiler wrapper which parallelization method your program uses

6



2 Instrumentation

by using the switches -vt:mpi, -vt:mt, and -vt:hyb for MPI, multithreaded,
and hybrid programs, respectively. Note that these switches do not change the
underlying compiler or compiler flags. Use the option -vt:verbose to see the
command line that the compiler wrapper executes. See Section B.1 for a list of
all compiler wrapper options.

The default settings of the compiler wrappers can be modified in the files
share/vampirtrace/vtcc-wrapper-data.txt (and similar for the other
languages) in the installation directory of VampirTrace. The settings include
compilers, compiler flags, libraries, and instrumentation types. You could for
instance modify the default C compiler from gcc to mpicc by changing the line
compiler=gcc to compiler=mpicc. This may be convenient if you instrument
MPI parallel programs only.

2.2. Instrumentation Types

The wrapper option -vt:inst <insttype> specifies the instrumentation
type to be used. The following values for <insttype> are possible:

• compinst
Fully-automatic instrumentation by the compiler (⇒ Section 2.3)

• manual
Manual instrumentation by using VampirTrace’s API (⇒ Section 2.4)
(needs source-code modifications)

• tauinst
Fully-automatic instrumentation by the tau instrumentator (⇒ Section 2.5)

• dyninst
Binary-instrumentation with Dyninst (⇒ Section 2.6)

To determine which instrumentation type will be used by default and which
instrumentation types are available on your system have a look at the entry
inst avail in the wrapper’s configuration file (e.g. share/vampirtrace/
vtcc-wrapper-data.txt in the installation directory of VampirTrace for the
C compiler wrapper).

See Section B.1 or type vtcc -vt:help for other options that can be passed
to VampirTrace’s compiler wrapper.

2.3. Automatic Instrumentation

Automatic instrumentation is the most convenient method to instrument your pro-
gram. If available, simply use the compiler wrappers without any parameters,
e.g.:

7



2.3 Automatic Instrumentation

% vtf90 hello.f90 -o hello

2.3.1. Supported Compilers

VampirTrace supports following compilers for automatic instrumentation:

• GNU (i.e. gcc, g++, gfortran, g95)

• Intel version ≥10.0 (i.e. icc, icpc, ifort)

• PathScale version ≥3.1 (i.e. pathcc, pathCC, pathf90)

• Portland Group (PGI) (i.e. pgcc, pgCC, pgf90, pgf77)

• SUN Fortran 90 (i.e. cc, CC, f90)

• IBM (i.e. xlcc, xlCC, xlf90)

• NEC SX (i.e. sxcc, sxc++, sxf90)

• Open64 (i.e. opencc, openCC, openf90)

• OpenUH version ≥4.0 (i.e. uhcc, uhCC, uhf90)

2.3.2. Notes for Using the GNU, Intel, PathScale, or Open64
Compiler

For these compilers the command nm is required to get symbol information of
the running application executable. For example on Linux systems, this program
is a part of the GNU Binutils, which is downloadable from http://www.gnu.
org/software/binutils. To get the application executable for nm during
runtime, VampirTrace uses the /proc file system. As /proc is not present on
all operating systems, automatic symbol information might not be available. In
this case, it is necessary to set the environment variable VT APPPATH to the
pathname of the application executable to get symbols resolved via nm.

Should any problems emerge to get symbol information automatically, then the
environment variable VT GNU NMFILE can be set to a symbol list file, which is
created with the command nm, like:

% nm hello > hello.nm

To get the source code line for the application functions use nm -l on Linux
systems. VampirTrace will include this information into the trace. Note that the
output format of nm must be written in BSD-style. See the manual page of nm to
obtain help for dealing with the output format setting.

8

http://www.gnu.org/software/binutils
http://www.gnu.org/software/binutils


2 Instrumentation

2.3.3. Notes on Instrumentation of Inline Functions

Compilers behave differently when they automatically instrument inlined func-
tions. The GNU and Intel ≥10.0 compilers instrument all functions by default
when they are used with VampirTrace. They therefore switch off inlining com-
pletely, disregarding the optimization level chosen. One can prevent these par-
ticular functions from being instrumented by appending the following attribute to
function declarations, hence making them able to be inlined (this works only for
C/C++):

__attribute__ ((__no_instrument_function__))

The PGI and IBM compilers prefer inlining over instrumentation when com-
piling with enabled inlining. Thus, one needs to disable inlining to enable the
instrumentation of inline functions and vice versa.

The bottom line is that a function cannot be inlined and instrumented at the
same time. For more information on how to inline functions read your compiler’s
manual.

2.3.4. Instrumentation of Loops with OpenUH Compiler

The OpenUH compiler provides the possibility of instrumenting loops in addition
to functions. To use this functionality add the compiler flag -OPT:instr loop.
In this case loops induce additional events including the type of loop (e.g. for,
while, or do) and the source code location.

2.4. Manual Instrumentation

2.4.1. Using the VampirTrace API

The VT USER START, VT USER END calls can be used to instrument any user-
defined sequence of statements.

Fortran:
#include "vt_user.inc"
VT_USER_START(’name’)
...
VT_USER_END(’name’)

C:
#include "vt_user.h"
VT_USER_START("name");
...
VT_USER_END("name");

9



2.4 Manual Instrumentation

If a block has several exit points (as it is often the case for functions), all exit
points have to be instrumented with VT USER END, too.

For C++ it is simpler as is demonstrated in the following example. Only entry
points into a scope need to be marked. The exit points are detected automatically
when C++ deletes scope-local variables.

C++:
#include "vt_user.h"
{

VT_TRACER("name");
...

}

The instrumented sources have to be compiled with -DVTRACE for all three
languages, otherwise the VT * calls are ignored. Note that Fortran source files
instrumented this way have to be preprocessed, too.

In addition, you can combine this particular instrumentation type with all other
types. In such a way, all user functions can be instrumented by a compiler while
special source code regions (e.g. loops) can be instrumented by VT’s API.

Use VT’s compiler wrapper (described above) for compiling and linking the
instrumented source code, such as:

• combined with automatic compiler instrumentation:

% vtcc -DVTRACE hello.c -o hello

• without compiler instrumentation:

% vtcc -vt:inst manual -DVTRACE hello.c -o hello

Note that you can also use the option -vt:inst manual with non-instru-
mented sources. Binaries created in this manner only contain MPI and OpenMP
instrumentation, which might be desirable in some cases.

2.4.2. Measurement Controls

Switching tracing on/off: In addition to instrumenting arbitrary blocks of code,
one can use the VT ON/ VT OFF instrumentation calls to start and stop the record-
ing of events. These constructs can be used to stop recording of events for a part
of the application and later resume recording. For example, as is demonstrated
in the following C/C++ code snippet, one could not collect trace events during
the initialization phase of an application and turn on tracing for the computation
part.

10



2 Instrumentation

int main() {
...
VT_OFF();
initialize();
VT_ON();
compute();
...

}

Furthermore the ”on/off” functionality can be used to control the tracing behavior
of VampirTrace and allows to trace only parts of interests. Therefore the amount
of trace data can be reduced essentially. To check whether if tracing is enabled
or not use the call VT IS ON.

For further information about limitations have a look at the FAQ D.5.

Trace buffer rewind: An alternative to the ”on/off” functionality is the buffer
rewind approach. It is useful when the program should decide dynamically after
a specific code section (i.e. a time step or iteration) if this section has been
interesting (i.e. anomalous/slow behavior) and should be recorded to the trace
file. The key difference to ”on/off” is that you do not need to know a priori if a
section should be recorded.

Use the instrumentation call VT SET REWIND MARK at the beginning of a (pos-
sibly not interesting) code section. Later, you can decide to rewind the trace
buffer to the mark with the call VT REWIND. All recorded trace data between the
mark and the rewind call will be dropped. Note, that only one mark can be set at
a time. The last call to VT SET REWIND MARK will be considered when rewinding
the trace buffer. This simplified Fortran code example sketches how the rewind
approach can be used:

do step=1,number_of_time_steps
VT_SET_REWIND_MARK()
call compute_time_step(step)
if(finished_as_expected) VT_REWIND()

end do

Refer to FAQ D.5 for limitations associated with this method.

Intermediate buffer flush: In addition to an automated buffer flush when the
buffer is filled, it is possible to flush the buffer at any point of the application. This
way you can guarantee that after a manual buffer flush there will be a sequence
of the program with no automatic buffer flush interrupting. To flush the buffer you
can use the call VT BUFFER FLUSH.

11



2.5 Source Instrumentation Using PDT/TAU

Intermediate time synchronisation: VampirTrace provides several mecha-
nisms for timer synchronization (⇒ Section 3.7). In addition it is also possi-
ble to initiate a timer synchronization at any point of the application by calling
VT TIMESYNC. Please note that the user has to ensure that all processes are
actual at a synchronized point in the program (e.g. at a barrier). To use this call
make sure that the enhanced timer synchronization is activated (set the environ-
ment variable VT ETIMESYNC⇒ Section 3.2).

Intermediate counter update: VampirTrace provides the functionality to col-
lect the values of arbitrary hardware counters. Chosen counter values are au-
tomatically recorded whenever an event occurs. Sometimes (e.g. within a long-
lasting function) it is desirable to get the counter values at an arbitrary point
within the program. To record the counter values at any given point you can call
VT UPDATE COUNTER.

Note: For all three languages the instrumented sources have to be compiled
with -DVTRACE. Otherwise the VT * calls are ignored.
In addition, if the sources contains further VampirTrace API calls and only the
calls for measurement controls shall be disabled, then the sources have to be
compiled with -DVTRACE NO CONTROL, too.

2.5. Source Instrumentation Using PDT/TAU

TAU instrumentation combines the advantages of compiler and manual instru-
mentation and has further advantages. Like compiler instrumentation it works
automatically, like on manual instrumentation you have a filtered set of events,
this is especially recommended for C++, because STL-constructor calls are sup-
pressed. Unlike with compiler instrumentation you get an optimized binary – this
solves the issue described in Section 2.3.3. In the simpliest case you just run
the compiler wrappers with -vt:inst tauinst option:

% vtcc -vt:inst tauinst hello.c -o hello

There is a known issue with the TAU instrumentation in the⇒ FAQ D.9

Requirements for TAU instrumentation: To work with TAU instrumenation
you need the Program Database Toolkit. You have to make sure, to have cparse
and tau instrumentor in your $PATH. The PDToolkit can be downloaded from
http://www.cs.uoregon.edu/research/pdt/home.php.

Include/Exclude Lists: tau instrumentor provides a mechanism to include
and exclude files or functions from instrumenation. The lists are deposed

12

http://www.cs.uoregon.edu/research/pdt/home.php


2 Instrumentation

in a single file, that is announced to tau instrumentor via the option
-f <filename>. This file contains up to four lists which begin with
BEGIN[ FILE] <INCLUDE|EXCLUDE> LIST. The names in between may con-
tain wildcards as “?”, “*’, and “#”, each entry gets a new line. The lists end with
END[ FILE] <INCLUDE|EXCLUDE> LIST. For further information on selective
profiling have a look at the TAU documentation 1. To announce the file through
the compiler wrapper use the option -vt:tau:

% vtcc -vt:inst tauinst hello.c -o hello \
-vt:tau ’-f <filename>’

2.6. Binary Instrumentation Using Dyninst

The option -vt:inst dyninst is used with the compiler wrapper to instru-
ment the application during runtime (binary instrumentation), by using Dyninst 2.
Recompiling is not necessary for this kind of instrumentation, but relinking:

% vtf90 -vt:inst dyninst hello.o -o hello

The compiler wrapper dynamically links the library libvt-dynatt.so to the
application. This library attaches the mutator -program vtdyn during runtime
which invokes the instrumentation by using Dyninst.

To prevent certain functions from being instrumented you can use the runtime
function filtering as explained in Section 5.1. All additional overhead, due to
instrumentation of these functions, will be removed.

VampirTrace also allows binary instrumentation of functions located in shared
libraries. For this to work a colon-separated list of shared library names has to
be given in the environment variable VT DYN SHLIBS:

VT_DYN_SHLIBS=libsupport.so:libmath.so

2.6.1. Static Binary Instrumentation

In order to avoid the overhead introduced by Dyninst during runtime, the tool
vtdyn can be used for binary instrumentation before application launch. To ac-
complish this, the -o or --output switch can be used to specify the output bi-
nary. Note that the application must be linked to the corresponding VampirTrace
library.

1http://www.cs.uoregon.edu/Research/tau/docs/newguide/bk05ch02.html#
d0e3770

2http://www.dyninst.org

13

http://www.cs.uoregon.edu/Research/tau/docs/newguide/bk05ch02.html#d0e3770
http://www.cs.uoregon.edu/Research/tau/docs/newguide/bk05ch02.html#d0e3770
http://www.dyninst.org


2.7 Runtime Instrumentation Using VTRun

Example To apply binary instrumentation to the executable a.out the follow-
ing command is nescessary:

% vtdyn -o dyninst_a.out ./a.out

2.7. Runtime Instrumentation Using VTRun

Besides the already described instrumentation at compile-time, VampirTrace also
supports runtime instrumention using the vtrun command. Prepending the ac-
tual call to the application will transparently add instrumentation support and
launch the application. This includes support function instrumentation by Dyninst
(Section 2.6) as well as MPI communication tracing. In order to enable instru-
mentation for user functions the user has to specify the --dyninst command
line switch.

Example In order to add tracing support to an already existing executable, only
a small change to the startup command has to be made. Assuming the usual
way of calling the application looks like:

% mpirun -np 4 ./a.out

By putting the call to vtrun directly before the actual application call, instru-
mention support will be enabled at runtime:

% mpirun -np 4 vtrun ./a.out

For more information about the tool vtrun see Section B.6.

2.8. Tracing Java Applications Using JVMTI

In addition to C, C++, and Fortran, VampirTrace is capable of tracing Java appli-
cations. This is accomplished by means of the Java Virtual Machine Tool Inter-
face (JVMTI) which is part of JDK versions 5 and later. If VampirTrace was built
with Java tracing support, the library libvt-java.so can be used as follows to
trace any Java program:

% java -agentlib:vt-java ...

Or more easier, by replacing the usal Java application launcher java by the
command vtjava:

% vtjava ...

When tracing Java applications, you probably want to filter out dispensable
function calls. Please have a look at Sections 5.1 and 5.2 to learn about different
ways for excluding parts of the application from tracing.

14



2 Instrumentation

2.9. Tracing Calls to 3rd-Party Libraries

VampirTrace is also capable to trace calls to third party libraries, which come with
at least one C header file even without the library’s source code. If VampirTrace
was built with support for library tracing (the CTool library 3 is required), the tool
vtlibwrapgen can be used to generate a wrapper library to intercept each
call to the actual library functions. This wrapper library can be linked to the
application or used in combination with the LD PRELOAD mechanism provided
by Linux. The generation of a wrapper library is done using the vtlibwrapgen
command and consists of two steps. The first step generates a C source file,
providing the wrapped functions of the library header file:

% vtlibwrapgen -g SDL -o SDLwrap.c /usr/include/SDL/*.h

This generates the source file SDLwrap.c that contains wrapper-functions for
all library functions found in the header-files located in /usr/include/SDL/ and
instructs VampirTrace to assign these functions to the new group SDL.

The generated wrapper source file can be edited in order to add manual in-
strumentation or alter attributes of the library wrapper. A detailed description can
be found in the generated source file or in the header file vt libwrap.h which
can be found in the include directory of VampirTrace.

To adapt the library instrumentation it is possible to pass a filter file to the gen-
eration process. The rules are like these for normal VampirTrace instrumenta-
tion (see Section 5.1), where only 0 (exclude functions) and -1 (generally include
functions) are allowed.

The second step is to compile the generated source file:

% vtlibwrapgen --build --shared -o libSDLwrap SDLwrap.c

This builds the shared library libSDLwrap.so which can be linked to the
application or preloaded by using the environment variable LD PRELOAD:

% LD_PRELOAD=$PWD/libSDLwrap.so <executable>

For more information about the tool vtlibwrapgen see Section B.5.

3http://sourceforge.net/projects/ctool

15

http://sourceforge.net/projects/ctool




3 Runtime Measurement

3. Runtime Measurement
Running a VampirTrace instrumented application should normally result in an
OTF trace file in the current working directory where the application was exe-
cuted. If a problem occurs, set the environment variable VT VERBOSE to 2 before
executing the instrumented application in order to see control messages of the
VampirTrace runtime system which might help tracking down the problem.

The internal buffer of VampirTrace is limited to 32 MB per process. Use the
environment variables VT BUFFER SIZE and VT MAX FLUSHES to increase this
limit. Section 3.3 contains further information on how to influence trace file size.

3.1. Trace File Name and Location

The default name of the trace file depends on the operating system where the
application is run. On Linux, MacOS and Sun Solaris the trace file will be named
like the application, e.g. hello.otf for the executable hello. For other sys-
tems, the default name is a.otf. Optionally, the trace file name can be defined
manually by setting the environment variable VT FILE PREFIX to the desired
name. The suffix .otf will be added automatically.

To prevent overwriting of trace files by repetitive program runs, one can enable
unique trace file naming by setting VT FILE UNIQUE to yes. In this case, Vam-
pirTrace adds a unique number to the file names as soon as a second trace file
with the same name is created. A *.lock file is used to count up the number of
trace files in a directory. Be aware that VampirTrace potentially overwrites an ex-
isting trace file if you delete this lock file. The default value of VT FILE UNIQUE
is no. You can also set this variable to a number greater than zero, which will be
added to the trace file name. This way you can manually control the unique file
naming.

The default location of the final trace file is the working directory at application
start time. If the trace file shall be stored in another place, use VT PFORM GDIR
as described in Section 3.2 to change the location of the trace file.

3.2. Environment Variables

The following environment variables can be used to control the measurement of
a VampirTrace instrumented executable:

17



3.2 Environment Variables

Variable Purpose Default

Global Settings

VT APPPATH Path to the application executable.
⇒ Section 2.3.2

–

VT BUFFER SIZE Size of internal event trace buffer. This is the
place where event records are stored, before be-
ing written to OTF.
⇒ Section 3.3

32M

VT CLEAN Remove temporary trace files? yes
VT COMPRESSION Write compressed trace files? yes
VT COMPRESSION BSIZE Size of the compression buffer in OTF. OTF default
VT FILE PREFIX Prefix used for trace filenames. ⇒Sect. 3.1
VT FILE UNIQUE Enable unique trace file naming? Set to yes, no,

or a numerical ID.
⇒ Section 3.1

no

VT MAX FLUSHES Maximum number of buffer flushes.
⇒ Section 3.3

1

VT MAX THREADS Maximum number of threads per process that
VampirTrace reserves resources for.

65536

VT OTF BUFFER SIZE Size of internal OTF buffer. This buffer contains
OTF-encoded trace data that is written to file at
once.

OTF default

VT PFORM GDIR Name of global directory to store final trace file
in.

./

VT PFORM LDIR Name of node-local directory which can be used
to store temporary trace files.

/tmp/

VT THREAD BUFFER SIZE Size of internal event trace buffer for threads.
If not defined, the size is set to 10% of
VT BUFFER SIZE.
⇒ Section 3.3

0

VT UNIFY Unify local trace files afterwards? yes
VT VERBOSE Level of VampirTrace related information mes-

sages: Quiet (0), Critical (1), Information (2)
1

Optional Features

VT CPUIDTRACE Enable tracing of core ID of a CPU?
⇒ Section 4.4

no

VT ETIMESYNC Enable enhanced timer synchronization?
⇒ Section 3.7

no

18



3 Runtime Measurement

Variable Purpose Default
VT ETIMESYNC INTV Interval between two successive synchronization

phases in s.
120

VT IOLIB PATHNAME Provides an alternative library to use for LIBC I/O
calls. ⇒ Section 4.8

–

VT IOTRACE Enable tracing of application I/O calls?
⇒ Section 4.8

no

VT LIBCTRACE Enable tracing of fork/system/exec calls?
⇒ Section 4.9 calls

yes

VT MEMTRACE Enable memory allocation counter?
⇒ Section 4.3

no

VT MODE Colon-separated list of VampirTrace modes:
Tracing (TRACE), Profiling (STAT).
⇒ Section 3.4

TRACE

VT MPICHECK Enable MPI correctness checking via UniMCI? no
VT MPICHECK ERREXIT Force trace write and application exit if an MPI

usage error is detected?
no

VT MPITRACE Enable tracing of MPI events? yes
VT OMPTRACE Enable tracing of OpenMP events instrumented

by OPARI?
yes

VT PTHREAD REUSE Reuse IDs of terminated Pthreads? yes
VT STAT INTV Length of interval in ms for writing the next pro-

filing record
0

VT STAT PROPS Colon-separated list of event types that shall be
recorded in profiling mode: Functions (FUNC),
Messages (MSG), Collective Ops. (COLLOP) or
all of them (ALL)
⇒ Section 3.4

ALL

VT SYNC FLUSH Enable synchronized buffer flush?
⇒ Section 3.6

no

VT SYNC FLUSH LEVEL Minimum buffer fill level for synchronized buffer
flush in percent.

80

Counters

VT METRICS Specify counter metrics to be recorded with trace
events as a colon/VT METRICS SEP-separated
list of names.
⇒ Section 4.1

–

VT METRICS SEP Separator string between counter specifications
in VT METRICS.

:

19



3.2 Environment Variables

Variable Purpose Default
VT RUSAGE Colon-separated list of resource usage counters

which shall be recorded.
⇒ Section 4.2

–

VT RUSAGE INTV Sample interval for recording resource usage
counters in ms.

100

VT PLUGIN CNTR METRICS Colon-separated list of plugin counter metrics
which shall be recorded.
⇒ Section 4.7

–

Filtering, Grouping

VT DYN SHLIBS Colon-separated list of shared libraries for
Dyninst instrumentation.
⇒ Section 2.6

–

VT DYN IGNORE NODBG Disable instrumentation of functions which have
no debug information?

no

VT DYN DETACH Detach Dyninst mutator-program vtdyn from
application process?

yes

VT FILTER SPEC Name of function/region filter file.
⇒ Section 5.1

–

VT GROUPS SPEC Name of function grouping file.
⇒ Section 5.3

–

VT JAVA FILTER SPEC Name of Java specific filter file.
⇒ Section 5.2

–

VT GROUP CLASSES Create a group for each Java class automati-
cally?

yes

VT ONOFF CHECK STACK BALANCE Check stack level balance when switching trac-
ing on/off.
⇒ Section 2.4.2

yes

VT MAX STACK DEPTH Maximum number of stack level to be traced.
(0 = unlimited)

0

Symbol List

VT GNU NM Command to list symbols from object files.
⇒ Section 2.3

nm

VT GNU NMFILE Name of file with symbol list information.
⇒ Section 2.3

–

The variables VT PFORM GDIR, VT PFORM LDIR, VT FILE PREFIX may con-
tain (sub)strings of the form $XYZ or ${XYZ} where XYZ is the name of another

20



3 Runtime Measurement

environment variable. Evaluation of the environment variable is done at mea-
surement runtime.

When you use these environment variables, make sure that they have the
same value for all processes of your application on all nodes of your cluster.
Some cluster environments do not automatically transfer your environment when
executing parts of your job on remote nodes of the cluster, and you may need to
explicitly set and export them in batch job submission scripts.

3.3. Influencing Trace Buffer Size

The default values of the environment variables VT BUFFER SIZE and
VT MAX FLUSHES limit the internal buffer of VampirTrace to 32 MB per process
and the number of times that the buffer is flushed to 1, respectively. Events that
are to be recorded after the limit has been reached are no longer written into the
trace file. The environment variables apply to every process of a parallel appli-
cation, meaning that applications with n processes will typically create trace files
n times the size of a serial application.

To remove the limit and get a complete trace of an application, set
VT MAX FLUSHES to 0. This causes VampirTrace to always write the buffer to
disk when it is full. To change the size of the buffer, use the environment variable
VT BUFFER SIZE. The optimal value for this variable depends on the application
which is to be traced. Setting a small value will increase the memory available
to the application, but will trigger frequent buffer flushes by VampirTrace. These
buffer flushes can significantly change the behavior of the application. On the
other hand, setting a large value, like 2G, will minimize buffer flushes by Vam-
pirTrace, but decrease the memory available to the application. If not enough
memory is available to hold the VampirTrace buffer and the application data,
parts of the application may be swapped to disk, leading to a significant change
in the behavior of the application.

In multi-threaded applications a single buffer cannot be shared across a pro-
cess and the associated threads for performance reasons. Thus independent
buffers are created for every process and thread, at which the process buffer size
is 70% and the thread buffer size is 10% of the value set in VT BUFFER SIZE.
The buffer size of processes and threads can be explicitly specified setting the
environment variable VT THREAD BUFFER SIZE, which defines the buffer size
of a thread, whereas the buffer size of a process is then defined by the value of
VT BUFFER SIZE.

Note that you can decrease the size of trace files significantly by using the
runtime function filtering as explained in Section 5.1.

21



3.4 Profiling an Application

3.4. Profiling an Application

Profiling an application collects aggregated information about certain events dur-
ing a program run, whereas tracing records information about individual events.
Profiling can therefore be used to get a summary of the program activity and to
detect events that are called very often. The profiling information can also be
used to generate filter rules to reduce the trace file size (⇒ Section 5.1).

To profile an application set the variable VT MODE to STAT. Setting VT MODE to
STAT:TRACE tells VampirTrace to perform tracing and profiling at the same time.
By setting the variable VT STAT PROPS the user can influence whether functions,
messages, and/or collective operations shall be profiled. See Section 3.2 for
information about these environment variables.

3.5. Unification of Local Traces

After a run of an instrumented application the traces of the single processes need
to be unified in terms of timestamps and event IDs. In most cases, this happens
automatically. If the environment variable VT UNIFY is set to no or under certain
circumstances it is necessary to perform unification of local traces manually. To
do this, use the following command:

% vtunify <prefix>

If VampirTrace was built with support for OpenMP and/or MPI, it is possible to
speedup the unification of local traces significantly. To distribute the unification
on multible processes the MPI parallel version vtunify-mpi can be used as
follow:

% mpirun -np <nranks> vtunify-mpi <prefix>

Furthermore, both tools vtunify and vtunify-mpi are capable to open ad-
ditional OpenMP threads for unification. The number of threads can be specified
by the OMP NUM THREADS environment variable.

3.6. Synchronized Buffer Flush

When tracing an application, VampirTrace temporarily stores the recorded events
in a trace buffer. Typically, if a buffer of a process or thread has reached its maxi-
mum fill level, the buffer has to be flushed and other processes or threads maybe
have to wait for this process or thread. This will result in an asynchronous run-
time behavior.
To avoid this problem, VampirTrace provides a buffer flush in a synchronized

22



3 Runtime Measurement

manner. That means, if one buffer has reached its minimum buffer fill level
VT SYNC FLUSH LEVEL (⇒ Section 3.2), all buffers will be flushed. This buffer
flush is only available at appropriate points in the program flow. Currently, Vam-
pirTrace makes use of all MPI collective functions associated with
MPI COMM WORLD. Use the environment variable VT SYNC FLUSH to enable syn-
chronized buffer flush.

3.7. Enhanced Timer Synchronization

Especially on cluster environments, where each process has its own local timer,
tracing relies on precisely synchronized timers. Therefore, VampirTrace pro-
vides several mechanisms for timer synchronization. The default synchroniza-
tion scheme is a linear synchronization at the very begin and the very end of a
trace run with a master-slave communication pattern.
However, this way of synchronization can become to imprecise for long trace
runs. Therefore, we recommend the usage of the enhanced timer synchroniza-
tion scheme of VampirTrace. This scheme inserts additional synchronization
phases at appropriate points in the program flow. Currently, VampirTrace makes
use of all MPI collective functions associated with MPI COMM WORLD.
To enable this synchronization scheme, a LAPACK library with C wrapper sup-
port has to be provided for VampirTrace and the environment variable
VT ETIMESYNC (⇒ Section 3.2) has to be set before the tracing.
The length of the interval between two successive synchronization phases can
be adjusted with VT ETIMESYNC INTV.
The following LAPACK libraries provide a C-LAPACK API that can be used by
VampirTrace for the enhanced timer synchronization:

• CLAPACK 1

• AMD ACML

• IBM ESSL

• Intel MKL

• SUN Performance Library

Note: Systems equipped with a global timer do not need timer synchronization.

Note: It is recommended to combine enhanced timer synchronization and syn-
chronized buffer flush.

1www.netlib.org/clapack

23

www.netlib.org/clapack


3.8 Environment Configuration Using VTSetup

Note: Be aware that the asynchronous behavior of the application will be dis-
turbed since VampirTrace makes use of asynchronous MPI collective functions
for timer synchronization and synchronized buffer flush.
Only make use of these approaches, if your application does not rely on an
asynchronous behavior! Otherwise, keep this fact in mind during the process of
performance analysis.

3.8. Environment Configuration Using VTSetup

In order to ease the process of configuring the runtime environment, the graphi-
cal tool vtsetup has been added to the VampirTrace toolset. With the help of a
graphical user interface, required environment variables can be configured. The
following option categories can be managed:

• General Trace Settings: Configre the name of the executable as well as
the trace filename and set the trace buffer size.

• Optional Trace Features: Activate optional trace features, e.g. I/O tracing
and tracing of memory usage.

• Counters: Activate PAPI counter and resource usage counter.

• Filtering and Grouping: Guided setup of filters and function group defini-
tions.

Furthermore, the user is granted more fine-grained control by activating the
Advanced View button. The configuration can be saved to an XML file. After
successfull configuration, the application can be launched directly or a script can
be generated for manual execution.

24



4 Recording Additional Events and Counters

4. Recording Additional Events
and Counters

4.1. Hardware Performance Counters

If VampirTrace has been built with hardware counter support (⇒ Appendix A),
it is capable of recording hardware counter information as part of the event
records. To request the measurement of certain counters, the user is required to
set the environment variable VT METRICS. The variable should contain a colon-
separated list of counter names or a predefined platform-specific group.

The user can leave the environment variable unset to indicate that no counters
are requested. If any of the requested counters are not recognized or the full
list of counters cannot be recorded due to hardware resource limits, program
execution will be aborted with an error message.

PAPI Hardware Performance Counters

If the PAPI library is used to access hardware performance counters, metric
names can be any PAPI preset names or PAPI native counter names. For exam-
ple, set

VT_METRICS=PAPI_FP_OPS:PAPI_L2_TCM:!CPU_TEMP1

to record the number of floating point instructions and level 2 cache misses (PAPI
preset counters), cpu temperature from the lm sensors component. The leading
exclamation mark let CPU TEMP1 be interpreted as absolute value counter. See
Section C.1 for a full list of PAPI preset counters.

CPC Hardware Performance Counters

On Sun Solaris operating systems VampirTrace can make use of the CPC perfor-
mance counter library to query the processor’s hardware performance counters.
The counters which are actually available on your platform can be queried with
the tool vtcpcavail. The listed names can then be used within VT METRICS
to tell VampirTrace which counters to record.

25



4.2 Resource Usage Counters

NEC SX Hardware Performance Counters

On NEC SX machines VampirTrace uses special register calls to query the pro-
cessor’s hardware counters. Use VT METRICS to specify the counters that have
to be recorded. See Section C.3 for a full list of NEC SX hardware performance
counters.

4.2. Resource Usage Counters

The Unix system call getrusage provides information about consumed re-
sources and operating system events of processes such as user/system time,
received signals, and context switches.

If VampirTrace has been built with resource usage support, it is able to record
this information as performance counters to the trace. You can enable tracing of
specific resource counters by setting the environment variable VT RUSAGE to a
colon-separated list of counter names, as specified in Section C.4. For example,
set

VT_RUSAGE=ru_stime:ru_majflt

to record the system time consumed by each process and the number of page
faults. Alternatively, one can set this variable to the value all to enable recording
of all 16 resource usage counters. Note that not all counters are supported by all
Unix operating systems. Linux 2.6 kernels, for example, support only resource
information for six of them. See Section C.4 and the manual page of getrusage
for details.

The resource usage counters are not recorded at every event. They are
only read if 100 ms have passed since the last sampling. The interval can be
changed by setting VT RUSAGE INTV to the number of desired milliseconds.
Setting VT RUSAGE INTV to zero leads to sampling resource usage counters
at every event, which may introduce a large runtime overhead. Note that in
most cases the operating system does not update the resource usage informa-
tion at the same high frequency as the hardware performance counters. Setting
VT RUSAGE INTV to a value less than 10 ms does usually not improve the gran-
ularity.

Be aware that, when using the resource usage counters for multi-threaded
programs, the information displayed is valid for the whole process and not for
each single thread.

4.3. Memory Allocation Counter

The GNU LIBC implementation provides a special hook mechanism that al-
lows intercepting all calls to memory allocation and free functions (e.g. malloc,

26



4 Recording Additional Events and Counters

realloc, free). This is independent from compilation or source code access,
but relies on the underlying system library.

If VampirTrace has been built with memory-tracing support (⇒ Appendix A),
VampirTrace is capable of recording memory allocation information as part of
the event records. To request the measurement of the application’s allocated
memory, the user must set the environment variable VT MEMTRACE to yes.

Note: This approach to get memory allocation information requires changing
internal function pointers in a non-thread-safe way, so VampirTrace currently
does not support memory tracing for thread-able programs, e.g., programs par-
allelized with OpenMP or Pthreads!

4.4. CPU ID Counter

The GNU LIBC implementation provides a function to determine the core id of a
CPU on which the calling thread is running. VampirTrace uses this functionality
to record the current core identifier as counter. This feature can be activated by
setting the environment variable VT CPUIDTRACE to yes.

Note: To use this feature you need the GNU LIBC implementation at least in
version 2.6.

4.5. NVIDIA CUDA

When tracing CUDA applications, only user events and functions are recorded,
which are automatically or manually instrumented. CUDA API functions will not
be traced by default. To enable tracing of CUDA runtime and driver API func-
tions and asynchronous CUDA device activities (like kernel execution and asyn-
chronous memory copies) build VampirTrace with CUDA support and set the
following environment variable:

export VT CUDATRACE=[yes|1|2|3|4|no]

Option CUDA API GPU Activity CUDA Version =
yes, 1 runtime X 2.3

2 driver X 4.1
3 runtime & driver X 4.1
4 - X 4.1

no, 0 - - -

Since CUDA Toolkit 4.1 the CUDA Profiling and Tool Interface (CUPTI) allows
capturing of CUDA device activities. Therewith new tracing abilities (see table

27



4.5 NVIDIA CUDA

above) are available. VampirTrace trace has currently two methods to trace the
CUDA runtime API and corresponding GPU activities: traditional library wrapping
with CUDA events or CUPTI. Several features are just implemented in the library
wrapping approach, whereas the CUPTI measurement brings new possibilities
and occasionally more accuracy.

There are additional feature switches implemented as environment variables to
customize CUDA tracing (yes=1, no=0, the default is bold):

VT CUDATRACE CUPTI=[yes|no]
Use CUPTI for CUDA tracing instead of CUDA runtime API wrapper.

VT CUDATRACE KERNEL=[yes|no|2]
Tracing of CUDA kernels is enabled/disabled. With ’2’ additional kernel
counters are captured. (CUPTI tracing only)

VT CUDATRACE IDLE=[yes|no]
Show the GPU compute idle time on first used CUDA stream, if set to yes.

VT CUDATRACE MEMCPY=[yes|no]
Tracing of CUDA memory copies is enabled/disabled. For CUDA tracing via
library wrapper this will only have effect on asynchronous memory copies.

VT CUDATRACE SYNC=[0|1|2|3] (CUDA runtime API wrapper only)

Controls how VampirTrace handles synchronizing CUDA API calls, espe-
cially cudaMemcpy and cudaThreadSynchronize. At level 0 only the CUDA
calls will be executed, messages will be displayed from the beginning to the
end of the cudaMemcpy, regardless how long the cudaMemcpy call has to
wait for a kernel until the actual data transfer starts. At level 1 the cu-
daMemcpy will be split into an additional synchronization and the actual
data transfer in order to monitor the data transfer correctly. The additional
synchronization does not affect the program execution significantly and will
not be shown in the trace. At level 2 the additional synchronization will be
exposed to the user. This allows a better view on the application execution,
showing how much time is actually spent waiting for a kernel to complete
during synchronization. Level 3 will further use the synchronization to flush
the internal task buffer and perform a timer synchronization between GPU
and host. This introduces a minimal overhead but increases timer precision
and prevents flushes elsewhere in the trace.

VT CUPTI METRICS (CUDA runtime API wrapper only)

Capture CUDA CUPTI counters. Metrics are separated by default with ”:“
or user specified by VT METRICS SEP.
Example: VT CUPTI METRICS=local store:local load

VT CUPTI SAMPLING=[yes|no] (CUDA runtime API wrapper only)

Poll for CUPTI counter values during kernel execution, if set to yes.

28



4 Recording Additional Events and Counters

VT GPUTRACE MEMUSAGE=[yes|no|2]
Record GPU memory usage as counter “gpu mem usage“, if set to yes.
Print missing cudaFree() calls to stderr, if set to ’2’.

VT GPUTRACE ERROR=[yes|no] (CUDA runtime API wrapper only)

Print out an error message and exit the program, if a function call to a GPU
library does not return successfully. The default is just a warning message
without program exit.

VT GPUTRACE DEBUG=[yes|no] (CUDA runtime API wrapper only)

Do not cleanup all GPU resources (profiling events, contexts, event groups),
as they might have been already implicitly cleaned up by the GPU runtime.

Every CUDA stream, which is executed on a cuda-capable device and used
during program execution, creates an own thread. “CUDA-Threads” can contain
communication and kernel events and have the following notation:

CUDA[device:stream] process:thread

Due to an issue with CUPTI, the device is not always properly shown. The CUDA
stream number is increasing, beginning with the default stream ’1’. The stream
number provided by CUPTI might not be evenly increasing. Only streams with
traceable information will be written.
As kernels and asynchronous memory copies are executed asynchronously on
the CUDA device, information about these activities will be buffered until a syn-
chronizing CUDA API function call or the program exits. Every used CUDA de-
vice and its corresponding host thread has an own buffer (8192 bytes by default),
when CUDA tracing is done via the CUDA runtime API wrapper. When using
CUDA tracing via CUPTI every CUDA context creation initiates the allocation of
an own buffer (65536 bytes by default). The buffer size can be specified in bytes
with the environment variable VT CUDATRACE BUFFER SIZE.
Several new region groups have been introduced:

CUDART API CUDA runtime API calls
CUDRV API CUDA driver API calls
CUDA SYNC CUDA synchronization
CUDA KERNEL CUDA kernels/functions can only appear on

“CUDA-Threads”
CUDA IDLE GPU compute idle time – the CUDA device does not

run any kernel currently (shown in first used stream
of the device)

VT CUDA Measurement overhead (write CUDA events, check
current device, etc.)

29



4.5 NVIDIA CUDA

Tracing CUDA Runtime API via CUPTI

Using CUPTI to trace the CUDA runtime API and GPU activities needs the envi-
ronment variable VT CUDATRACE CUPTI to be set to yes. By default, the library
wrapper will be used. If both tracing methods are configured during the Vam-
pirTrace build process, the CUDA runtime library should be preloaded to reduce
tracing overhead (LD PRELOAD=libcudart.so). Otherwise the library wrap-
per intercepts every CUDA runtime API call and makes a short but unnecessary
check, whether it is enabled.

CUPTI prior to version 1.0 (CUDA 4.0) has no native support for tracing of GPU
activities, which therefore will be synchronized directly after their asynchronous
call to retrieve their runtime. Filtered kernels will not be recorded and their exe-
cution time not marked as idle, if GPU idle time tracing is enabled. The CUPTI
tracing method does not support peer-to-peer memory copies.

CUDA Runtime API Wrapper Particularities

To ensure measurement of correct data rates for synchronous CUDA memory
copies, the VampirTrace CUDA runtime library wrapper inserts a CUDA synchro-
nization before. Otherwise the CUDA memory copy call would do the synchro-
nization and it was not possible to get correct transfer rates.

Until CUDA Toolkit 4.1 and Developer Drivers for Linux 285.05.32 the usage of
CUDA events between asynchronous tasks serializes their on-device execution.
This seems to be a bug, which has already been reported to NVIDIA. As Vam-
pirTrace uses CUDA events for time measurement and asynchronous tasks may
overlap (depends on the CUDA device capability), there might be a sensible im-
pact on the program flow.

Counter via CUDA API

If VT GPUTRACE MEMUSAGE is enabled, cudaMalloc and cudaFree functions will
be tracked to write the GPU memory usage counter gpu mem usage. This
counter does not need space in the CUDA buffer. The counter values will be
directly written to the default CUDA stream ’1’. This stream will be created, if it
does not exist and does not have to contain any other CUDA device activities. If
the environment variable is set to 2, missing cudaFree() calls will be printed to
stderr.

With kernel tracing enabled there are three counters, which provide informa-
tion about the kernel’s grid, block and thread composition: blocks per grid,
threads per block, threads per kernel. With CUPTI tracing additional
kernel counters are available: static and dynamic shared memory, total local
memory and registers per thread (VT CUDATRACE KERNEL=2).

30



4 Recording Additional Events and Counters

CUDA Performance Counters via CUPTI Events
(CUDA runtime API wrapper only!)

To capture performance counters in CUDA applications, CUPTI events can be
specified with the environment variable VT CUPTI METRICS. Counters are sepa-
rated by default with ”:“ or user specified by VT METRICS SEP. The CUPTI User’s
Guide – Event Reference provides information about the available counters. Al-
ternatively set VT CUPTI METRICS=help to show a list of available counters
(help long to print the counter description as well).

Compile and Link CUDA applications

Use the VampirTrace compiler wrapper vtnvcc instead of nvcc to compile the
CUDA application, which does automatic source code instrumentation.

GCC4.3 and OpenMP:
Use the flags -vt:opari -nodecl -Xcompiler=-fopenmp with vtnvcc to
compile the OpenMP CUDA application.

CUDA 3.1:
The CUDA runtime library 3.1 creates a conflict with zlib. A workaround is to re-
place all gcc/g++ calls with the VampirTrace compiler wrappers (vtcc/vtc++)
and pass the following additional flags to nvcc for compilation of the kernels:

-I$VT_INSTALL_PATH/include/vampirtrace
-L$VT_INSTALL_PATH/lib
-Xcompiler=-g,-finstrument-functions,-pthread
-lvt -lotf -lcudart -lz -ldl -lm

$VT INSTALL PATH is the path to the VampirTrace installation directory. It is not necessary to
specify the VampirTrace include and library path, if it is installed in the default directory.

This uses automatic compiler instrumentation (-finstrument-functions)
and the standard VampirTrace library. Replace the -lvt with -lvt-mt for multi-
threaded, -lvt-mpi for MPI and -lvt-hyb for multithreaded MPI applications.
In this case the CUDA runtime library is linked before the zlib.
If the application is linked with gcc/g++, the linking command has to ensure,
that the respective VampirTrace library is linked before the CUDA runtime library
libcudart.so (check e.g. with “ldd executable”). Using the VampirTrace com-
piler wrappers (vtcc/vtc++) for linking is the easiest way to ensure correct
linking of the VampirTrace library.
With the library tracing mechanism described in section 2.9, it is possible to trace
CUDA applications without recompiling or relinking. There are only events writ-
ten for Runtime API calls, kernels and communication between host and device.

31



4.5 NVIDIA CUDA

Tracing the NVIDIA CUDA SDK 3.x and 4.x

To get some example traces, replace the compiler commands in the common
Makefile include file (common/common.mk) with the corresponding VampirTrace
compiler wrappers (⇒2.1) for automatic instrumentation:

# Compilers
NVCC := vtnvcc
CXX := vtc++
CC := vtcc
LINK := vtc++ #-vt:mt

Use the compiler switches for MPI, multi-threaded and hybrid programs, if nec-
essary (e.g. the CUDA SDK example simpleMultiGPU is a multi-threaded
program, which needs to be linked with a multi-threaded VampirTrace library –
uncomment the compiler switch in the linker command to use the multi-threaded
VampirTrace library).

Multi-threaded CUDA applications

If threads are used to invoke asynchronous CUDA tasks, make sure to call a
synchronizing CUDA function to get the tasks flushed before the thread exits.
Otherwise tasks may not be flushed and will be missing in the trace file.

Note:
For 32-bit systems VampirTrace has to be configured with the 32-bit version of
CUDA runtime library. If the link test fails, use the following configure option
(⇒A.2):

--with-cuda-lib-dir=$CUDA_INSTALL_PATH/lib

Since CUDA toolkit version 4.1 the 64-bit CUPTI library is located in the lib64
directory of CUPTI. If the link test fails, use the following configure option (⇒A.2):

--with-cupti-lib-dir=$CUDA_INSTALL_PATH/extras/CUPTI/lib64

VampirTrace CUDA support has been successfully tested with CUDA toolkit ver-
sion 3.x, 4.0 and 4.1.

32



4 Recording Additional Events and Counters

4.6. Pthread API Calls

When tracing applications with Pthreads, only user events and functions are
recorded which are automatically or manually instrumented. Pthread API func-
tions will not be traced by default.
To enable tracing of all C-Pthread API functions include the header vt user.h
and compile the instrumented sources with -DVTRACE PTHREAD.

C/C++:
#include "vt_user.h"

% vtcc -DVTRACE PTHREAD hello.c -o hello

Note: Currently, Pthread instrumentation is only available for C/C++.

4.7. Plugin Counter Metrics

Plugin Counter add additional metrics to VampirTrace. They highly depend on
the plugins, which are installed on your system. Every plugin should provide
a README, which should be checked for available metrics. Once you have
downloaded and compiled a plugin, copy the resulting library to a folder, which
is part of your LD LIBRARY PATH. To enable the tracing of a specific metric, you
should set the environment variable VT PLUGIN CNTR METRICS. It is set in the
following manner

export VT_PLUGIN_CNTR_METRICS=<library_name>_<event_name>

If you have for example a library named libKswEvents.so with the event
page faults, the you can set it with

export VT_PLUGIN_CNTR_METRICS=KswEvents_page_faults

Visit http://www.tu-dresden.de/zih/vampirtrace/plugin_counter
for documentation and examples.

Note: Multiple events can be concatenated by using colons.

4.8. I/O Calls

Calls to functions which reside in external libraries can be intercepted by imple-
menting identical functions and linking them before the external library. Such

33

http://www.tu-dresden.de/zih/vampirtrace/plugin_counter


4.9 fork/system/exec Calls

“wrapper functions” can record the parameters and return values of the library
functions.

If VampirTrace has been built with I/O tracing support, it uses this technique
for recording calls to I/O functions of the standard C library, which are executed
by the application. The following functions are intercepted by VampirTrace:

close creat creat64 dup
dup2 fclose fcntl fdopen
fgetc fgets flockfile fopen
fopen64 fprintf fputc fputs
fread fscanf fseek fseeko
fseeko64 fsetpos fsetpos64 ftrylockfile
funlockfile fwrite getc gets
lockf lseek lseek64 open
open64 pread pread64 putc
puts pwrite pwrite64 read
readv rewind unlink write
writev

The gathered information will be saved as I/O event records in the trace file.
This feature has to be activated for each tracing run by setting the environment
variable VT IOTRACE to yes.

This works for both dynamically and statically linked executables. Note that
when linking statically, a warning like the following may be issued: Using ’dlopen’
in statically linked applications requires at runtime the shared libraries from the
glibc version used for linking. This is ok as long as the mentioned libraries are
available for running the application.

If you’d like to experiment with some other I/O library, set the environment
variable VT IOLIB PATHNAME to the alternative one. Beware that this library
must provide all I/O functions mentioned above otherwise VampirTrace will abort.

4.9. fork/system/exec Calls

If VampirTrace has been built with LIBC trace support (⇒ Appendix A), it is capa-
ble of tracing programs which call functions from the LIBC exec family (execl,
execlp, execle, execv, execvp, execve), system, and fork. VampirTrace
records the call of the LIBC function to the trace. This feature works for sequen-
tial (i.e. no MPI or threaded parallelization) programs only. It works for both
dynamically and statically linked executables. Note that when linking statically, a
warning like the following may be issued: Using ’dlopen’ in statically linked ap-
plications requires at runtime the shared libraries from the glibc version used for
linking. This is ok as long as the mentioned libraries are available for running the
application.

34



4 Recording Additional Events and Counters

When VampirTrace detects a call of an exec function, the current trace file
is closed before executing the new program. If the executed program is also
instrumented with VampirTrace, it will create a different trace file. Note that Vam-
pirTrace aborts if the exec function returns unsuccessfully.

Calling fork in an instrumented program creates an additional process in the
same trace file.

4.10. MPI Correctness Checking Using UniMCI

VampirTrace supports the recording of MPI correctness events, e.g., usage of in-
valid MPI requests. This is implemented by using the Universal MPI Correctness
Interface (UniMCI), which provides an interface between tools like VampirTrace
and existing runtime MPI correctness checking tools. Correctness events are
stored as markers in the trace file and are visualized by Vampir.

If VampirTrace is built with UniMCI support, the user only has to enable MPI
correctness checking. This is done by merely setting the environment variable
VT MPICHECK to yes. Further, if your application crashes due to an MPI error
you should set VT MPICHECK ERREXIT to yes. This environmental variable
forces VampirTrace to write its trace to disk and exit afterwards. As a result, the
trace with the detected error is stored before the application might crash.

To install VampirTrace with correctness checking support it is necessary to
have UniMCI installed on your system. UniMCI in turn requires you to have a
supported MPI correctness checking tool installed, currently only the tool Marmot
is known to have UniMCI support. So all in all you should use the following order
to install with correctness checking support:

1. Marmot
(see http://www.hlrs.de/organization/av/amt/research/marmot)

2. UniMCI
(see http://www.tu-dresden.de/zih/unimci)

3. VampirTrace
(see http://www.tu-dresden.de/zih/vampirtrace)

Information on how to install Marmot and UniMCI is given in their respec-
tive manuals. VampirTrace will automatically detect an UniMCI installation if the
unimci-config tool is in path.

4.11. User-defined Counters

In addition to the manual instrumentation (⇒ Section 2.4), the VampirTrace API
provides instrumentation calls which allow recording of program variable values

35

http://www.hlrs.de/organization/av/amt/research/marmot
http://www.tu-dresden.de/zih/unimci
http://www.tu-dresden.de/zih/vampirtrace


4.11 User-defined Counters

(e.g. iteration counts, calculation results, ...) or any other numerical quantity. A
user-defined counter is identified by its name, the counter group it belongs to, the
type of its value (integer or floating-point) and the unit that the value is quoted
(e.g. “GFlop/sec”).

The VT COUNT GROUP DEF and VT COUNT DEF instrumentation calls can be
used to define counter groups and counters:

Fortran:
#include "vt_user.inc"
integer :: id, gid
VT_COUNT_GROUP_DEF(’name’, gid)
VT_COUNT_DEF(’name’, ’unit’, type, gid, id)

C/C++:
#include "vt_user.h"
unsigned int id, gid;
gid = VT_COUNT_GROUP_DEF("name");
id = VT_COUNT_DEF("name", "unit", type, gid);

The definition of a counter group is optional. If no special counter group is de-
sired, the default group “User” can be used. In this case, set the parameter gid
of VT COUNT DEF() to VT COUNT DEFGROUP.

The third parameter type of VT COUNT DEF specifies the data type of the
counter value. To record a value for any of the defined counters the correspond-
ing instrumentation call VT COUNT * VAL must be invoked.

Fortran:
Type Count call Data type
VT COUNT TYPE INTEGER VT COUNT INTEGER VAL integer (4 byte)
VT COUNT TYPE INTEGER8 VT COUNT INTEGER8 VAL integer (8 byte)
VT COUNT TYPE REAL VT COUNT REAL VAL real
VT COUNT TYPE DOUBLE VT COUNT DOUBLE VAL double precision

C/C++:
Type Count call Data type
VT COUNT TYPE SIGNED VT COUNT SIGNED VAL signed int (max. 64-bit)
VT COUNT TYPE UNSIGNED VT COUNT UNSIGNED VAL unsigned int (max. 64-bit)
VT COUNT TYPE FLOAT VT COUNT FLOAT VAL float
VT COUNT TYPE DOUBLE VT COUNT DOUBLE VAL double

The following example records the loop index i:

Fortran:

36



4 Recording Additional Events and Counters

#include "vt_user.inc"

program main
integer :: i, cid, cgid

VT_COUNT_GROUP_DEF(’loopindex’, cgid)
VT_COUNT_DEF(’i’, ’#’, VT_COUNT_TYPE_INTEGER, cgid, cid)

do i=1,100
VT_COUNT_INTEGER_VAL(cid, i)

end do

end program main

C/C++:

#include "vt_user.h"

int main() {
unsigned int i, cid, cgid;

cgid = VT_COUNT_GROUP_DEF(’loopindex’);
cid = VT_COUNT_DEF("i", "#", VT_COUNT_TYPE_UNSIGNED,

cgid);

for( i = 1; i <= 100; i++ ) {
VT_COUNT_UNSIGNED_VAL(cid, i);

}

return 0;
}

For all three languages the instrumented sources have to be compiled with
-DVTRACE. Otherwise the VT * calls are ignored.

Optionally, if the sources contain further VampirTrace API calls and only the
calls for user-defined counters shall be disabled, then the sources have to be
compiled with -DVTRACE NO COUNT in addition to -DVTRACE .

4.12. User-defined Markers

In addition to the manual instrumentation (⇒ Section 2.4), the VampirTrace API
provides instrumentation calls which allow recording of special user information,
which can be used to better identify parts of interest. A user-defined marker is
identified by its name and type.

37



4.13 User-defined Communcation

Fortran:
#include "vt_user.inc"
integer :: mid
VT_MARKER_DEF(’name’, type, mid)
VT_MARKER(mid, ’text’)

C/C++:
#include "vt_user.h"
unsigned int mid;
mid = VT_MARKER_DEF("name",type);
VT_MARKER(mid, "text");

Types for Fortran/C/C++:
VT_MARKER_TYPE_ERROR
VT_MARKER_TYPE_WARNING
VT_MARKER_TYPE_HINT

For all three languages the instrumented sources have to be compiled with
-DVTRACE. Otherwise the VT * calls are ignored.

Optionally, if the sources contain further VampirTrace API calls and only the
calls for user-defined markers shall be disabled, then the sources have to be
compiled with -DVTRACE NO MARKER in addition to -DVTRACE .

4.13. User-defined Communcation

In addition to the manual instrumentation (⇒ Section 2.4), the VampirTrace API
provides instrumentation calls which allow recording of special user information,
which can be used to better identify parts of interest. A user-defined commu-
nication operation is defined by a communicator and a tag. The default com-
municator is VT COMM WORLD. Additionally, a user-defined communicator can be
created using VT COMM DEF:

Fortran:
#include "vt_user.inc"
integer :: cid
VT_COMM_DEF(’name’, cid)

C/C++:
#include "vt_user.h"
unsigned cid;
cid = VT_COMM_DEF("name", cid);

Using VT SEND and VT RECV the user can insert send and receive events into
the trace:

38



4 Recording Additional Events and Counters

C/C++:
int rank, size;
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);

if( rank == 0 )
{

for ( int i = 1; i < size; i++ )
{

VT_SEND(VT_COMM_WORLD,i,100);
}

}else
{

VT_RECV(VT_COMM_WORLD,rank,100);
}

The calls are similar for Fortran.
As can be seen, the arguments to VT SEND and VT RECV are a communicator,

a tag and the size of the message. The tag is required in order to identify both
ends of a user-defined communication. Therefore it has to be globally unique
for a given communicator and cannot be reused within a single communicator.
Messages with duplicated tags will not be visible in the final trace.

For all three languages the instrumented sources have to be compiled with
-DVTRACE. Otherwise the VT * calls are ignored. Optionally, if the sources con-
tain further VampirTrace API calls and only the calls for user-defined markers
shall be disabled, then the sources have to be compiled with -DVTRACE NO MSG
in addition to -DVTRACE .

39





5 Filtering & Grouping

5. Filtering & Grouping

5.1. Function Filtering

By default, all calls of instrumented functions will be traced, so that the result-
ing trace files can easily become very large. In order to decrease the size of a
trace, VampirTrace allows the specification of filter directives before running an
instrumented application. The user can decide on how often an instrumented
function(group) shall be recorded to a trace file. To use a filter, the environment
variable VT FILTER SPEC needs to be defined. It should contain the path and
name of a file with filter directives specified as follows:

<function> -- <limit> [R] or <groups> -- <limit> [R] G

functions, groups semicolon-separated list of functions/groups
(can contain wildcards)

limit assigned call limit
0 = don’t record functions/groups
-1 = unlimited

G attribute for filtering function groups
R attribute for recursive filtering; don’t record callees

if function’s call limit is reached

Example:

add;sub;mul;div -- 1000
MATH -- 500 G

* -- 3000000

These filter directives cause that the functions add, sub, mul, and div will be
recorded at most 1000 times. All the functions of the group MATH at most 500
and the remaining functions (*) at most 3000000 times.

Besides creating filter files manually, you can also use the vtfilter tool
to generate them automatically. This tool reads a provided trace and decides
whether a function should be filtered or not, based on the evaluation of certain
parameters. For more information see Section B.4.

41



5.2 Java Specific Filtering

Rank Specific Filtering

An experimental extension allows rank specific filtering. Use @ clauses to restrict
all following filters to the given ranks. The rank selection must be given as a list
of <from> - <to> pairs or single values. Note that all rank specific rules are
only effective after MPI Init because the ranks are unknown before. The optional
argument -- OFF disables the given ranks completely, regardless of following
filter rules.

@ 35 - 42 -- OFF
@ 4 - 10, 20 - 29, 34
foo;bar -- 2000

* -- 0

The example defines two limits for the ranks 4 - 10, 20 - 29, and 34. The first
line disables the ranks 35 - 42 completely.

Attention: The rank specific rules are activated later than usual at MPI Init,
because the ranks are not available earlier. The special MPI routines MPI Init,
MPI Init thread, and MPI Initialized cannot be filtered in this way.

5.2. Java Specific Filtering

For Java tracing there are additional possibilities of filtering. Firstly, there is a de-
fault filter applied. The rules can be found in the filter file <vt-install>/etc/
vt-java-default-filter.spec . Secondly, user-defined filters can be ap-
plied additionally by setting VT JAVA FILTER SPEC to a file containing the rules.

The syntax of the filter rules is as follows:

<method|thread> <include|exclude> <filter string[;fs]...>

Filtering can be done on thread names and method names, defined by the first
parameter. The second parameter determines whether the matching item shall
be included for tracing or excluded from it. Multiple filter strings on a line have to
be separated by ; and may contain occurences of * for wildcard matching.

The user-supplied filter rules will be applied before the default filter and the
first match counts so it is possible to include items that would be excluded by the
default filter otherwise.

5.3. Function Grouping

VampirTrace allows assigning functions/regions to a group. Groups can, for in-
stance, be highlighted by different colors in Vampir displays. The following stan-
dard groups are created by VampirTrace:

42



5 Filtering & Grouping

Group name Contained functions/regions
MPI MPI functions
OMP OpenMP API function calls
OMP SYNC OpenMP barriers
OMP PREG OpenMP parallel regions
Pthreads Pthread API function calls
MEM Memory allocation functions (⇒ Section 4.3)
I/O I/O functions (⇒ Section 4.8)
LIBC LIBC fork/system/exec functions (⇒ Section 4.9)
Application remaining instrumented functions and source code regions

Additionally, you can create your own groups, e.g., to better distinguish differ-
ent phases of an application. To use function/region grouping set the environ-
ment variable VT GROUPS SPEC to the path of a file which contains the group
assignments specified as follows:

<group>=<functions>

group group name
functions semicolon-seperated list of functions

(can contain wildcards)
Example:

MATH=add;sub;mul;div
USER=app_*

These group assignments associate the functions add, sub, mul, and div
with group “MATH”, and all functions with the prefix app are associated with
group “USER”.

43





A VampirTrace Installation

A. VampirTrace Installation

A.1. Basics

Building VampirTrace is typically a combination of running configure and
make. Execute the following commands to install VampirTrace from the direc-
tory at the top of the tree:

% ./configure --prefix=/where/to/install
[...lots of output...]
% make all install

If you need special access for installing, you can execute make all as a user
with write permissions in the build tree and a separate make install as a user
with write permissions to the install tree.

However, for more details, also read the following instructions. Sometimes it
might be necessary to provide ./configure with options, e.g., specifications
of paths or compilers.

VampirTrace comes with example programs written in C, C++, and Fortran.
They can be used to test different instrumentation types of the VampirTrace in-
stallation. You can find them in the directory examples of the VampirTrace pack-
age.

Note that you should compile VampirTrace with the same compiler you use for
the application to trace, see D.1 .

A.2. Configure Options

Compilers and Options

Some systems require unusual options for compiling or linking which the
configure script does not know. Run ./configure --help for details on
some of the pertinent environment variables.

You can pass initial values for configuration parameters to configure by set-
ting variables in the command line or in the environment. Here is an example:

% ./configure CC=c89 CFLAGS=-O2 LIBS=-lposix

45



A.2 Configure Options

Installation Names

By default, make install will install the package’s files in /usr/local/bin,
/usr/local/include, etc. You can specify an installation prefix other than
/usr/local by giving configure the option --prefix=PATH.

Optional Features

This a summary of the most important optional features. For a full list of all
available features run ./configure --help.

--enable-compinst=TYPE
enable support for compiler instrumentation, e.g. gnu,pgi,pgi9,sun
default: automatically by configure. Note: Use pgi9 for PGI compiler ver-
sion 9.0 or higher.

--enable-dyninst
enable support for Dyninst instrumentation, default: enable if found by con-
figure. Note: Requires Dyninst 1 version 6.1 or higher!

--enable-dyninst-attlib
build shared library which attaches Dyninst to the running application, de-
fault: enable if Dyninst found by configure and system supports shared
libraries

--enable-tauinst
enable support for automatic source code instrumentation by using TAU,
default: enable if found by configure. Note: Requires PDToolkit 2 or TAU 3!

--enable-memtrace
enable memory tracing support, default: enable if found by configure

--enable-cpuidtrace
enable CPU ID tracing support, default: enable if found by configure

--enable-libtrace=LIST
enable library tracing support (gen,libc,io), default: automatically by config-
ure

--enable-rutrace
enable resource usage tracing support, default: enable if found by config-
ure

1http://www.dyninst.org
2http://www.cs.uoregon.edu/research/pdt/home.php
3http://tau.uoregon.edu

46

http://www.dyninst.org
http://www.cs.uoregon.edu/research/pdt/home.php
http://tau.uoregon.edu


A VampirTrace Installation

--enable-metrics=TYPE
enable support for hardware performance counter (papi,cpc,necsx),
default: automatically by configure

--enable-zlib
enable ZLIB trace compression support, default: enable if found by config-
ure

--enable-mpi
enable MPI support, default: enable if MPI found by configure

--enable-fmpi-lib
build the MPI Fortran support library, in case your system does not have
a MPI Fortran library. default: enable if no MPI Fortran library found by
configure

--enable-fmpi-handle-convert
do convert MPI handles, default: enable if MPI conversion functions found
by configure

--enable-mpi2-thread
enable MPI-2 Thread support, default: enable if found by configure

--enable-mpi2-1sided
enable MPI-2 One-Sided Communication support, default: enable if found
by configure

--enable-mpi2-extcoll
enable MPI-2 Extended Collective Operation support, default: enable if
found by configure

--enable-mpi2-io
enable MPI-2 I/O support, default: enable if found configure

--enable-mpicheck
enable support for Universal MPI Correctness Interface (UniMCI), default:
enable if unimci-config found by configure

--enable-etimesync
enable enhanced timer synchronization support, default: enable if
C-LAPACK found by configure

--enable-threads=LIST
enable support for threads (pthread, omp), default: automatically by con-
figure

--enable-java
enable Java support, default: enable if JVMTI found by configure

47



A.2 Configure Options

--enable-cupti
enable support for tracing CUDA via CUPTI, default: enable if found by
configure

--enable-cudawrap
enable support for tracing CUDA via library wrapping, default: enable if
found by configure

Important Optional Packages

This a summary of the most important optional features. For a full list of all
available features run ./configure --help.

--with-platform=PLATFORM
configure for given platform (altix,bgl,bgp,crayt3e,crayx1,crayxt,
ibm,linux,macos,necsx,origin,sicortex,sun,generic), default:
automatically by configure

--with-bitmode=32|64
specify bit mode

--with-options=FILE
load options from FILE, default: configure searches for a config file in con-
fig/defaults based on given platform and bitmode

--with-local-tmp-dir=DIR
give the path for node-local temporary directory to store local traces to,
default: /tmp

If you would like to use an external version of OTF library, set:

--with-extern-otf
use external OTF library, default: not set

--with-extern-otf-dir=OTFDIR
give the path for OTF, default: /usr

--with-otf-flags=FLAGS
pass FLAGS to the OTF distribution configuration (only for internal OTF
version)

--with-otf-lib=OTFLIB
use given otf lib, default: -lotf -lz

If the supplied OTF library was built without zlib support then OTFLIB will be set
to -lotf.

48



A VampirTrace Installation

--with-dyninst-dir=DYNIDIR
give the path for DYNINST, default: /usr

--with-dyninst-inc-dir=DYNIINCDIR
give the path for Dyninst-include files, default: DYNIDIR/include

--with-dyninst-lib-dir=DYNILIBDIR
give the path for Dyninst-libraries, default: DYNIDIR/lib

--with-dyninst-lib=DYNILIB
use given Dyninst lib, default: -ldyninstAPI

--with-tau-instrumentor=TAUINSTUMENTOR
give the command for the TAU instrumentor, default: tau instrumentor

--with-pdt-cparse=PDTCPARSE
give the command for PDT C source code parser, default: cparse

--with-pdt-cxxparse=PDTCXXPARSE
give the command for PDT C++ source code parser, default: cxxparse

--with-pdt-fparse=PDTFPARSE
give the command for PDT Fortran source code parser, default: f95parse,
f90parse, or gfparse

--with-papi-dir=PAPIDIR
give the path for PAPI, default: /usr

--with-cpc-dir=CPCDIR
give the path for CPC, default: /usr

If you have not specified the environment variable MPICC (MPI compiler com-
mand) use the following options to set the location of your MPI installation:

--with-mpi-dir=MPIDIR
give the path for MPI, default: /usr/

--with-mpi-inc-dir=MPIINCDIR
give the path for MPI-include files,
default: MPIDIR/include/

--with-mpi-lib-dir=MPILIBDIR
give the path for MPI-libraries, default: MPIDIR/lib/

--with-mpi-lib
use given mpi lib

--with-pmpi-lib
use given pmpi lib

49



A.2 Configure Options

If your system does not have an MPI Fortran library set --enable-fmpi-lib
(see above), otherwise set:

--with-fmpi-lib
use given fmpi lib

Use the following options to specify your MPI-implementation

--with-hpmpi
set MPI-libs for HP MPI

--with-intelmpi
set MPI-libs for Intel MPI

--with-intelmpi2
set MPI-libs for Intel MPI2

--with-lam
set MPI-libs for LAM/MPI

--with-mpibgl
set MPI-libs for IBM BG/L

--with-mpibgp
set MPI-libs for IBM BG/P

--with-mpich
set MPI-libs for MPICH

--with-mpich2
set MPI-libs for MPICH2

--with-mvapich
set MPI-libs for MVAPICH

--with-mvapich2
set MPI-libs for MVAPICH2

--with-mpisx
set MPI-libs for NEC MPI/SX

--with-mpisx-ew
set MPI-libs for NEC MPI/SX with 8 Byte Fortran Integer

--with-openmpi
set MPI-libs for Open MPI

--with-sgimpt
set MPI-libs for SGI MPT

50



A VampirTrace Installation

--with-sunmpi
set MPI-libs for SUN MPI

--with-sunmpi-mt
set MPI-libs for SUN MPI-MT

To enable enhanced timer synchronization a LAPACK library with C wrapper
support is needed:

--with-clapack-dir=LAPACKDIR
set the path for CLAPACK, default: /usr

--with-clapack-lib
set CLAPACK-libs, default: -lclapack -lcblas -lf2c

--with-clapack-acml
set CLAPACK-libs for ACML

--with-clapack-essl
set CLAPACK-libs for ESSL

--with-clapack-mkl
set CLAPACK-libs for MKL

--with-clapack-sunperf
set CLAPACK-libs for SUN Performance Library

To enable Java support the JVM Tool Interface (JVMTI) version 1.0 or higher is
required:

--with-jvmti-dir=JVMTIDIR
give the path for JVMTI, default: $JAVA HOME

--with-jvmti-inc-dir=JVMTIINCDIR
give the path for JVMTI-include files, default: JVMTI/include

To enable support for generating wrapper for 3th-Party libraries the C code parser
CTool 4 is needed:

--with-ctool-dir=CTOOLDIR
give the path for CTool, default: /usr

--with-ctool-inc-dir=CTOOLINCDIR
give the path for CTool-include files, default: CTOOLDIR/include

--with-ctool-lib-dir=CTOOLLIBDIR
give the path for CTool-libraries, default: CTOOLDIR/lib

4http://sourceforge.net/projects/ctool

51

http://sourceforge.net/projects/ctool


A.3 Cross Compilation

--with-ctool-lib=CTOOLLIB
use given CTool lib, default: automatically by configure

To enable support for CUDA API wrapping, the CUDA-Toolkit install path is
needed:

--with-cuda-dir=CUDATKDIR
give the path for CUDA Toolkit, default: /usr/local/cuda

--with-cuda-inc-dir=CUDATKINCDIR
give the path for CUDA Toolkit-include files, default: CUDATKDIR/include

--with-cuda-lib-dir=CUDATKLIBDIR
give the path for CUDA Toolkit-libraries, default: CUDATKDIR/lib64

--with-cudart-lib=CUDARTLIB
use given cudart lib, default: -lcudart

--with-cudart-shlib=CUDARTSHLIB
give the pathname for the shared CUDA runtime library, default: automati-
cally by configure

To enable support for CUPTI features, the CUPTI install path is needed:

--with-cupti-dir=CUPTIDIR
give the path for CUPTI, default: /usr

--with-cupti-inc-dir=CUPTIINCDIR
give the path for CUPTI-include files, default: CUPTIDIR/include

--with-cupti-lib-dir=CUPTILIBDIR
give the path for CUPTI-libraries, default: CUPTIDIR/lib

--with-cupti-lib=CUPTILIB
use given cupti lib, default: -lcupti

A.3. Cross Compilation

Building VampirTrace on cross compilation platforms needs some special at-
tention. The compiler wrappers, OPARI, and the Library Wrapper Generator
are built for the front-end (build system) whereas the the VampirTrace libraries,
vtdyn, vtunify, and vtfilter are built for the back-end (host system). Some
configure options which are of interest for cross compilation are shown below:

• Set CC, CXX, F77, and FC to the cross compilers installed on the front-end.

52



A VampirTrace Installation

• Set CC FOR BUILD and CXX FOR BUILD to the native compilers of the
front-end.

• Set --host= to the output of config.guess on the back-end.

• Set --with-cross-prefix= to a prefix which will be prepended to the
executables of the compiler wrappers and OPARI (default: “cross-”)

• Maybe you also need to set additional commands and flags for the back-
end (e.g. RANLIB, AR, MPICC, CXXFLAGS).

Examples:
BlueGene/P:

% ./configure --host=powerpc64-ibm-linux-gnu

Cray XK6:

% ./configure --host=x86_64-cray-linux-gnu
CC_FOR_BUILD=craycc
CXX_FOR_BUILD=crayc++

NEC SX6:

% ./configure --host=sx6-nec-superux14.1

A.4. Environment Set-Up

Add the bin subdirectory of the installation directory to your $PATH environment
variable. To use VampirTrace with Dyninst, you will also need to add the lib
subdirectory to your LD LIBRARY PATH environment variable:

for csh and tcsh:

> setenv PATH <vt-install>/bin:$PATH
> setenv LD_LIBRARY_PATH <vt-install>/lib:$LD_LIBRARY_PATH

for bash and sh:

% export PATH=<vt-install>/bin:$PATH
% export LD_LIBRARY_PATH=<vt-install>/lib:$LD_LIBRARY_PATH

53



A.5 Notes for Developers

A.5. Notes for Developers

Build from SVN

If you have checked out a developer’s copy of VampirTrace (i.e. checked out
from CVS), you should first run:

% ./bootstrap [--otf-package <package>]
[--version <version>]

Note that GNU Autoconf ≥2.60 and GNU Automake ≥1.9.6 are required. You
can download them from http://www.gnu.org/software/autoconf and
http://www.gnu.org/software/automake.

54

http://www.gnu.org/software/autoconf
http://www.gnu.org/software/automake


B Command Reference

B. Command Reference

B.1. Compiler Wrappers (vtcc,vtcxx,vtf77,vtf90)

vtcc,vtcxx,vtf77,vtf90 - compiler wrappers for C, C++,
Fortran 77, Fortran 90

Syntax: vt<cc|cxx|f77|f90> [options] ...

options:
-vt:help Show this help message.
-vt:version Show VampirTrace version.
-vt:<cc|cxx|f77|f90> <cmd>

Set the underlying compiler command.

-vt:inst <insttype> Set the instrumentation type.

possible values:

compinst fully-automatic by compiler
manual manual by using VampirTrace’s API
dyninst binary by using Dyninst (www.dyninst.org)
tauinst automatic source code instrumentation by

using PDT/TAU

-vt:opari <!args> Set options for OPARI command. (see
share/vampirtrace/doc/opari/Readme.html)

-vt:opari-rcfile <file>
Set pathname of the OPARI resource file.
(default: opari.rc)

-vt:opari-table <file>
Set pathname of the OPARI runtime table file.
(default: opari.tab.c)

-vt:noopari Disable instrumentation of OpenMP contructs
by OPARI.

-vt:<seq|mpi|mt|hyb>

55



B.1 Compiler Wrappers (vtcc,vtcxx,vtf77,vtf90)

Enforce application’s parallelization type.
It’s only necessary if it could not be determined
automatically based on underlying compiler and flags.
seq = sequential
mpi = parallel (uses MPI)
mt = parallel (uses OpenMP/POSIX threads)
hyb = hybrid parallel (MPI + Threads)
(default: automatically)

-vt:tau <!args> Set options for the TAU instrumentor
command.

-vt:pdt <!args> Set options for the PDT parse command.

-vt:preprocess Preprocess the source files before parsing
by OPARI and/or PDT.

-vt:cpp <cmd> Set C preprocessor command.

-vt:cppflags <[!]flags>
Set/add flags for the C preprocessor.

-vt:verbose Enable verbose mode.

-vt:show[me] Do not invoke the underlying compiler.
Instead, show the command line that would be
executed to compile and link the program.

-vt:showme-compile Do not invoke the underlying compiler.
Instead, show the compiler flags that would be
supplied to the compiler.

-vt:showme-link Do not invoke the underlying compiler.
Instead, show the linker flags that would be
supplied to the compiler.

See the man page for your underlying compiler for other
options that can be passed through ’vt<cc|cxx|f77|f90>’.

Environment variables:
VT_INST Equivalent to ’-vt:inst’
VT_CC Equivalent to ’-vt:cc ’
VT_CXX Equivalent to ’-vt:cxx ’
VT_F77 Equivalent to ’-vt:f77’
VT_F90 Equivalent to ’-vt:f90’
VT_CFLAGS C compiler flags

56



B Command Reference

VT_CXXFLAGS C++ compiler flags
VT_F77FLAGS Fortran 77 compiler flags
VT_FCFLAGS Fortran 90 compiler flags
VT_LDFLAGS Linker flags
VT_LIBS Libraries to pass to the linker

The corresponding command line options overwrite the
environment variables setting.

Examples:
automatically instrumentation by compiler:

vtcc -vt:cc gcc -vt:inst compinst -c foo.c -o foo.o
vtcc -vt:cc gcc -vt:inst compinst -c bar.c -o bar.o
vtcc -vt:cc gcc -vt:inst compinst foo.o bar.o -o foo

manually instrumentation by using VT’s API:

vtf90 -vt:inst manual foobar.F90 -o foobar -DVTRACE

IMPORTANT: Fortran source files instrumented by VT’s API
have to be preprocessed by CPP.

B.2. Local Trace Unifier (vtunify)

vtunify[-mpi] - local trace unifier for VampirTrace.

Syntax: vtunify[-mpi] <input trace prefix> [options]

options:
-h, --help Show this help message.

-V, --version Show VampirTrace version.

-o PREFIX Prefix of output trace filename.

-f FILE Function profile output filename.
(default=PREFIX.prof.txt)

-k, --keeplocal Don’t remove input trace files.

-p, --progress Show progress.

-v, --verbose Increase output verbosity.
(can be used more than once)

57



B.2 Local Trace Unifier (vtunify)

-q, --quiet Enable quiet mode.
(only emergency output)

--stats Unify only summarized information (*.stats), no events

--nocompress Don’t compress output trace files.

--nomsgmatch Don’t match messages.

--droprecvs Drop message receive events, if msg. matching
is enabled.

58



B Command Reference

B.3. Binary Instrumentor (vtdyn)

vtdyn - binary instrumentor (Dyninst mutator) for VampirTrace.

Syntax: vtdyn [options] <executable> [arguments ...]

options:
-h, --help Show this help message.

-V, --version Show VampirTrace version.

-v, --verbose Increase output verbosity.
(can be used more than once)

-q, --quiet Enable quiet mode.
(only emergency output)

-o, --output FILE Rewrite instrumented executable to specified pathname.

-s, --shlibs SHLIBS[,...]
Comma-separated list of shared libraries which shall
also be instrumented.

-f, --filter FILE Pathname of input filter file.

--ignore-nodbg Don’t instrument functions which have no debug
information.

59



B.4 Trace Filter Tool (vtfilter)

B.4. Trace Filter Tool (vtfilter)

vtfilter[-mpi] - filter tool for VampirTrace.

Syntax:
Generate a filter file:

vtfilter[-mpi] --gen [gen-options] <input trace file>

Filter a trace using an already existing filter file:
vtfilter[-mpi] [--filt] [filt-options]

--filter=<input filter file> <input trace file>

options:
--gen Generate a filter file.

See ’gen-options’ below for valid options.

--filt Filter a trace using an already existing
filter file. (default)
See ’filt-options’ below for valid options.

-h, --help Show this help message.

-V, --version Show VampirTrace version.

-p, --progress Show progress.

-v, --verbose Increase output verbosity.
(can be used more than once)

gen-options:
-o, --output=FILE Pathname of output filter file.

-r, --reduce=N Reduce the trace size to N percent of the
original size. The program relies on the
fact that the major part of the trace are
function calls. The approximation of size
will get worse with a rising percentage of
communication and other non function
calling or performance counter records.

-l, --limit=N Limit the number of calls for filtered
function to N.
(default: 0)

-s, --stats Prints out the desired and the expected
percentage of file size.

60



B Command Reference

-e, --exclude=FUNC[;FUNC;...]
Exclude certain functions from filtering.
A function name may contain wildcards.

--exclude-file=FILE Pathname of file containing a list of
functions to be excluded from filtering.

-i, --include=FUNC[;FUNC;...]
Force to include certain functions into
the filter. A function name may contain
wildcards.

--include-file=FILE Pathname of file containing a list of
functions to be included into the filter.

--include-callees Automatically include callees of included
functions as well into the filter.

filt-options:
-o, --output=FILE Pathname of output trace file.

-f, --filter=FILE Pathname of input filter file.

-s, --max-streams=N Maximum number of output streams.
(default: 0)

vtfilter: Set this to 0 to get the same number of
output streams as input streams.

vtfilter-mpi: Set this to 0 to get the same number of
output streams as MPI processes used, but
at least the number of input streams.

--max-file-handles=N
Maximum number of files that are allowed
to be open simultaneously.
(default: 256)

--nocompress Don’t compress output trace files.

61



B.5 Library Wrapper Generator (vtlibwrapgen)

B.5. Library Wrapper Generator (vtlibwrapgen)

vtlibwrapgen - library wrapper generator for VampirTrace.

Syntax:
Generate a library wrapper source file:

vtlibwrapgen [gen-options] <input header file>
[input header file...]

Build a wrapper library from a generated source file:
vtlibwrapgen --build [build-options]

<input lib. wrapper source file>

options:
--gen Generate a library wrapper source file.

This is the default behavior. See
’gen-options’ below for valid options.

--build Build a wrapper library from a generated
source file. See ’build-options’ below
for valid options.

-h, --help Show this help message.

-V, --version Show VampirTrace version.

-q, --quiet Enable quiet mode.
(only emergency output)

-v, --verbose Increase output verbosity.
(can be used more than once)

gen-options:
-o, --output=FILE Pathname of output wrapper source file.

(default: wrap.c)

-l, --shlib=SHLIB Pathname of shared library that contains
the actual library functions.
(can be used more then once)

-f, --filter=FILE Pathname of input filter file.

-g, --group=NAME Separate function group name for wrapped
functions.

-s, --sysheader=FILE

62



B Command Reference

Header file to be included additionally.

--nocpp Don’t use preprocessor.

--keepcppfile Don’t remove preprocessed header files.

--cpp=CPP C preprocessor command
(default: gcc -E)

--cppflags=CPPFLAGS
C preprocessor flags, e.g.
-I<include dir>

--cppdir=DIR Change to this preprocessing directory.

environment variables:
VT_CPP C preprocessor command

(equivalent to ’--cpp’)
VT_CPPFLAGS C preprocessor flags

(equivalent to ’--cppflags’)

build-options:
-o, --output=PREFIX

Prefix of output wrapper library.
(default: libwrap)

--shared Do only build shared wrapper library.

--static Do only build static wrapper library.

--libtool=LT Libtool command

--cc=CC C compiler command (default: gcc)

--cflags=CFLAGS C compiler flags

--ld=LD linker command (default: CC)

--ldflags=LDFLAGS linker flags, e.g. -L<lib dir>
(default: CFLAGS)

--libs=LIBS libraries to pass to the linker,
e.g. -l<library>

environment variables:
VT_CC C compiler command

63



B.6 Application Execution Wrapper (vtrun)

(equivalent to ’--cc’)
VT_CFLAGS C compiler flags

(equivalent to ’--cflags’)
VT_LD linker command

(equivalent to ’--ld’)
VT_LDFLAGS linker flags

(equivalent to ’--ldflags’)
VT_LIBS libraries to pass to the linker

(equivalent to ’--libs’)

examples:
Generating wrapper library ’libm_wrap’ for the Math library
’libm.so’:

vtlibwrapgen -l libm.so -g MATH -o mwrap.c \
/usr/include/math.h
vtlibwrapgen --build -o libm_wrap mwrap.c
export LD_PRELOAD=$PWD/libm_wrap.so:libvt.so

B.6. Application Execution Wrapper (vtrun)

vtrun - application execution wrapper for VampirTrace.

Syntax: vtrun [options] <executable> [arguments]

options:
-h, --help Show this help message.

-V, --version Show VampirTrace version.

-v, --verbose Increase output verbosity.
(can be used more than once)

-q, --quiet Enable quiet mode.
(only emergency output)

-<seq|mpi|mt|hyb> Set application’s parallelization type.
It’s only necessary if it could not
be determined automatically.
seq = sequential
mpi = parallel (uses MPI)
mt = parallel (uses OpenMP/POSIX threads)
hyb = hybrid parallel (MPI + Threads)
(default: automatically)

64



B Command Reference

--fortran Set application’s language to Fortran.
It’s only necessary for MPI-applications
and if it could not be determined
automatically.

--dyninst Instrument user functions by Dyninst.

--extra-libs=LIBS Extra libraries to preload.

example:
original:

mpirun -np 4 ./a.out
with VampirTrace:

mpirun -np 4 vtrun ./a.out

65





C Counter Specifications

C. Counter Specifications

C.1. PAPI

Available counter names can be queried with the PAPI commands papi avail
and papi native avail. Depending on the hardware there are limitations
in the combination of different counters. To check whether your choice works
properly, use the command papi event chooser.

PAPI_L[1|2|3]_[D|I|T]C[M|H|A|R|W]
Level 1/2/3 data/instruction/total cache
misses/hits/accesses/reads/writes

PAPI_L[1|2|3]_[LD|ST]M
Level 1/2/3 load/store misses

PAPI_CA_SNP Requests for a snoop
PAPI_CA_SHR Requests for exclusive access to shared cache line
PAPI_CA_CLN Requests for exclusive access to clean cache line
PAPI_CA_INV Requests for cache line invalidation
PAPI_CA_ITV Requests for cache line intervention

PAPI_BRU_IDL Cycles branch units are idle
PAPI_FXU_IDL Cycles integer units are idle
PAPI_FPU_IDL Cycles floating point units are idle
PAPI_LSU_IDL Cycles load/store units are idle

PAPI_TLB_DM Data translation lookaside buffer misses
PAPI_TLB_IM Instruction translation lookaside buffer misses
PAPI_TLB_TL Total translation lookaside buffer misses

PAPI_BTAC_M Branch target address cache misses
PAPI_PRF_DM Data prefetch cache misses
PAPI_TLB_SD Translation lookaside buffer shootdowns

PAPI_CSR_FAL Failed store conditional instructions
PAPI_CSR_SUC Successful store conditional instructions
PAPI_CSR_TOT Total store conditional instructions

PAPI_MEM_SCY Cycles Stalled Waiting for memory accesses

67



C.1 PAPI

PAPI_MEM_RCY Cycles Stalled Waiting for memory Reads
PAPI_MEM_WCY Cycles Stalled Waiting for memory writes

PAPI_STL_ICY Cycles with no instruction issue
PAPI_FUL_ICY Cycles with maximum instruction issue
PAPI_STL_CCY Cycles with no instructions completed
PAPI_FUL_CCY Cycles with maximum instructions completed

PAPI_BR_UCN Unconditional branch instructions
PAPI_BR_CN Conditional branch instructions
PAPI_BR_TKN Conditional branch instructions taken
PAPI_BR_NTK Conditional branch instructions not taken
PAPI_BR_MSP Conditional branch instructions mispredicted
PAPI_BR_PRC Conditional branch instructions correctly

predicted

PAPI_FMA_INS FMA instructions completed
PAPI_TOT_IIS Instructions issued
PAPI_TOT_INS Instructions completed
PAPI_INT_INS Integer instructions
PAPI_FP_INS Floating point instructions
PAPI_LD_INS Load instructions
PAPI_SR_INS Store instructions
PAPI_BR_INS Branch instructions
PAPI_VEC_INS Vector/SIMD instructions
PAPI_LST_INS Load/store instructions completed
PAPI_SYC_INS Synchronization instructions completed
PAPI_FML_INS Floating point multiply instructions
PAPI_FAD_INS Floating point add instructions
PAPI_FDV_INS Floating point divide instructions
PAPI_FSQ_INS Floating point square root instructions
PAPI_FNV_INS Floating point inverse instructions

PAPI_RES_STL Cycles stalled on any resource
PAPI_FP_STAL Cycles the FP unit(s) are stalled

PAPI_FP_OPS Floating point operations
PAPI_TOT_CYC Total cycles
PAPI_HW_INT Hardware interrupts

68



C Counter Specifications

C.2. CPC

Available counter names can be queried with the VampirTrace tool vtcpcavail.
In addition to the counter names, it shows how many performance counters can
be queried at a time. See below for a sample output.

% ./vtcpcavail
CPU performance counter interface: UltraSPARC T2
Number of concurrently readable performance counters
on the CPU: 2

Available events:
AES_busy_cycle
AES_op
Atomics
Br_completed
Br_taken
CPU_ifetch_to_PCX
CPU_ld_to_PCX
CPU_st_to_PCX
CRC_MPA_cksum
CRC_TCPIP_cksum
DC_miss
DES_3DES_busy_cycle
DES_3DES_op
DTLB_HWTW_miss_L2
DTLB_HWTW_ref_L2
DTLB_miss
IC_miss
ITLB_HWTW_miss_L2
ITLB_HWTW_ref_L2
ITLB_miss
Idle_strands
Instr_FGU_arithmetic
Instr_cnt
Instr_ld
Instr_other
Instr_st
Instr_sw
L2_dmiss_ld
L2_imiss
MA_busy_cycle
MA_op
MD5_SHA-1_SHA-256_busy_cycle
MD5_SHA-1_SHA-256_op
MMU_ld_to_PCX
RC4_busy_cycle

69



C.3 NEC SX Hardware Performance Counter

RC4_op
Stream_ld_to_PCX
Stream_st_to_PCX
TLB_miss

See the "UltraSPARC T2 User’s Manual" for descriptions of these
events. Documentation for Sun processors can be found at:
http://www.sun.com/processors/manuals

C.3. NEC SX Hardware Performance Counter

This is a list of all supported hardware performance counters for NEC SX ma-
chines.

SX_CTR_STM System timer reg
SX_CTR_USRCC User clock counter
SX_CTR_EX Execution counter
SX_CTR_VX Vector execution counter
SX_CTR_VE Vector element counter
SX_CTR_VECC Vector execution clock counter
SX_CTR_VAREC Vector arithmetic execution clock counter
SX_CTR_VLDEC Vector load execution clock counter
SX_CTR_FPEC Floating point data execution counter
SX_CTR_BCCC Bank conflict clock counter
SX_CTR_ICMCC Instruction cache miss clock counter
SX_CTR_OCMCC Operand cache miss clock counter
SX_CTR_IPHCC Instruction pipeline hold clock counter
SX_CTR_MNCCC Memory network conflict clock counter
SX_CTR_SRACC Shared resource access clock counter
SX_CTR_BREC Branch execution counter
SX_CTR_BPFC Branch prediction failure counter

70



C Counter Specifications

C.4. Resource Usage

The list of resource usage counters can also be found in the manual page of
getrusage. Note that, depending on the operating system, not all fields may
be maintained. The fields supported by the Linux 2.6 kernel are shown in the
table.

Name Unit Linux Description
ru utime ms x Total amount of user time used.
ru stime ms x Total amount of system time used.
ru maxrss kB Maximum resident set size.
ru ixrss kB × s Integral shared memory size (text segment)

over the runtime.
ru idrss kB × s Integral data segment memory used over the

runtime.
ru isrss kB × s Integral stack memory used over the run-

time.
ru minflt # x Number of soft page faults (i.e. those ser-

viced by reclaiming a page from the list of
pages awaiting reallocation).

ru majflt # x Number of hard page faults (i.e. those that
required I/O).

ru nswap # Number of times a process was swapped out
of physical memory.

ru inblock # Number of input operations via the file sys-
tem. Note: This and ru oublock do not in-
clude operations with the cache.

ru oublock # Number of output operations via the file sys-
tem.

ru msgsnd # Number of IPC messages sent.
ru msgrcv # Number of IPC messages received.
ru nsignals # Number of signals delivered.
ru nvcsw # x Number of voluntary context switches, i.e.

because the process gave up the processor
before it had to (usually to wait for some re-
source to be available).

ru nivcsw # x Number of involuntary context switches, i.e.
a higher priority process became runnable or
the current process used up its time slice.

71





D FAQ

D. FAQ

D.1. Can I use different compilers for VampirTrace
and my application?

There are several limitations which make this generally a bad idea:

• Using different compilers when tracing OpenMP applications does not work.

• Both compilers should have the same naming style for Fortran symbols
(i.e. uppercase/lowercase, appending underscores) when tracing Fortran
MPI applications.

• VampirTrace must be built to support the instrumentation type of the com-
piler you use for the application.

For example, the combination of a GCC compiled VampirTrace with an Intel com-
piled application will work except for OpenMP. But to avoid any trouble it is ad-
visable to compile both VampirTrace and the application with the same compiler.

D.2. Why does my application need such a long
time for starting?

If subroutines have been instrumented with automatic instrumentation by GNU,
Intel, PathScale, or Open64 compilers, VampirTrace needs to look-up the func-
tion names and their source code line before program start. In certain cases,
this may take very long. To accelerate this process prepare a file with sym-
bol information using the command nm as explained in Section 2.3 and set
VT GNU NMFILE to the pathname of this file. This method prevents VampirTrace
from getting the function names from the binary.

73



D.3 Fortran file I/O is not accounted properly?

D.3. Why do I see multiple I/O operations for a
single (un)formatted file read/write from my
Fortran application?

VampirTrace does not implement any tracing at the Fortran language level. There-
fore it is unaware of any I/O function calls done by Fortran applications.

However, if you enable I/O tracing using VT IOTRACE, VampirTrace records
all calls to LIBC’s I/O functions. As Fortran uses the LIBC interface for executing
its I/O operations, these function calls will be part of the trace. Depending on
your Fortran compiler, a single Fortran file read/write operation may be split into
several LIBC read calls which you will then see in your trace.

Beware that this may lead you to the (wrong) conclusion that your application
spends time between the LIBC I/O calls inside the user function that contains the
Fortran I/O call, especially when doing formatted I/O (see Figure D.1). It is rather
the Fortran I/O subsystem which does all the formatting of the data that is eating
your cpu cycles. But as this layer is unknown to VampirTrace, it cannot be shown
and the time is accounted to the next higher function in the call stack - the user
function.

Figure D.1.: This trace of a Fortran application shows many isolated I/O oper-
ations and much time accounted to the MAIN function. Yet only a
single formatted I/O write operation is issued in the code. As Vam-
pirTrace is not able to trace the Fortran I/O layer, it looks like the
application itself uses cpu time between the traced LIBC I/O opera-
tions, which does not reflect the actual happenings.

74



D FAQ

D.4. The application has run to completion, but
there is no *.otf file. What can I do?

The absence of an *.otf file usually means that the trace was not unified. This
is the case on certain platforms, e.g. when using DYNINST or when the local
traces are not available when the application ends and VampirTrace performs
trace unification.

In those cases, a *.uctl file can be found in the directory of the trace file and
the user needs to perform trace unification manually. See Sections 3.5 and B.2
to learn more about using vtunify.

D.5. What limitations are associated with ”on/off”
and buffer rewind?

Starting and stopping tracing by using the VT ON/VT OFF calls as well as the
buffer rewind method are considered advanced usage of VampirTrace and should
be performed with care. When restarting the recording of events, the call stack of
the application has to have the same depth as when the recording was stopped.
The same applies for the rewind call, which has to be at the same stack level as
the rewind mark. If this is not the case, an error message will be printed during
runtime and VampirTrace will abort execution. A safe method is to call VT OFF
and VT ON in the same function.

It is allowed to use ”on/off” in a section between a rewind mark and a buffer
rewind call. But it is not allowed to call VT SET REWIND MARK or VT REWIND
during a section deactivated by the ”on/off” functionality.

Buffer flushes interfere with the rewind method: If the trace buffer is flushed
after the call to VT SET REWIND MARK, the mark is removed and a subsequent
call to VT REWIND will not work and issue a warning message.

In addition, stopping or rewinding tracing while waiting for MPI messages can
cause those MPI messages not to be recorded in the trace. This can cause
problems when analyzing the OTF trace afterwards, e.g., with Vampir.

D.6. VampirTrace warns that it “cannot lock file
a.lock”, what’s wrong?

For unique naming of multiple trace files in the same directory, a file *.lock
is created and locked for exclusive access if VT FILE UNIQUE is set to yes
(⇒ Section 3.1). Some file systems do not implement file locking. In this case,
VampirTrace still tries to name the trace files uniquely, but this may fail in certain

75



D.7 Can I relocate my VampirTrace installation?

cases. Alternatively, you can manually control the unique file naming by setting
VT FILE UNIQUE to a different numerical ID for each program run.

D.7. Can I relocate my VampirTrace installation
without rebuilding from source?

VampirTrace hard-codes some directory paths in its executables and libraries
based on installation paths specified by the configure script. However, it’s
possible to move an existing VampirTrace installation to another location and use
it without rebuild from source. Therefore it’s necessary to set the environment
variable VT PREFIX to the new installation prefix before using VampirTrace’s
Compiler Wrappers (⇒ Section 2.1) or launching an instrumented application.
For example:

./configure --prefix=/opt/vampirtrace
make install
mv /opt/vampirtrace $HOME/vampirtrace
export VT_PREFIX=$HOME/vampirtrace

D.8. What are the byte counts in collective
communication records?

The byte counts in collective communication records changed with version 5.10.
From 5.10 on, the byte counts of collective communication records show the

bytes per rank given to the MPI call or returned by the MPI call. This is the MPI
API perspective. It is next to impossible to find out how many bytes are actually
sent or received during a collective operation by any other MPI implementation.

In the past (until VampirTrace version 5.9), the byte count in collective oper-
ation records was defined differently. It used a simple and naive hypothetical
implementation of collectives based on point-to-point messages and derived the
byte counts from that. This might have been more confusing than helpful and
was therefore changed.

Thanks to Eugene Loh for pointing this out!

D.9. I get “error: unknown asm constraint letter”

It is a known issue with the tau instrumentor that it doesn’t support inline assem-
bler code. At the moment there is no other solution than using another kind of
instrumentation like compiler instrumenation (⇒ Section 2.3) or manual instru-
menation (⇒ Section 2.4).

76



D FAQ

D.10. I have a question that is not answered in this
document!

You may contact us at vampirsupport@zih.tu-dresden.de for support on installing
and using VampirTrace.

D.11. I need support for additional features so I can
trace application xyz.

Suggestions are always welcome (contact: vampirsupport@zih.tu-dresden.de)
but there is a chance that we can not implement all your wishes as our resources
are limited.

Anyways, the source code of VampirTrace is open to everybody so you may
implement support for new stuff yourself. If you provide us with your additions
afterwards we will consider merging them into the official VampirTrace package.

77

mailto:vampirsupport@zih.tu-dresden.de
mailto:vampirsupport@zih.tu-dresden.de

	Introduction
	Instrumentation
	Compiler Wrappers
	Instrumentation Types
	Automatic Instrumentation
	Supported Compilers
	Notes for Using the GNU, Intel, PathScale, or Open64 Compiler
	Notes on Instrumentation of Inline Functions
	Instrumentation of Loops with OpenUH Compiler

	Manual Instrumentation
	Using the VampirTrace API
	Measurement Controls

	Source Instrumentation Using PDT/TAU
	Binary Instrumentation Using Dyninst
	Static Binary Instrumentation

	Runtime Instrumentation Using VTRun
	Tracing Java Applications Using JVMTI
	Tracing Calls to 3rd-Party Libraries

	Runtime Measurement
	Trace File Name and Location
	Environment Variables
	Influencing Trace Buffer Size
	Profiling an Application
	Unification of Local Traces
	Synchronized Buffer Flush
	Enhanced Timer Synchronization
	Environment Configuration Using VTSetup

	Recording Additional Events and Counters
	Hardware Performance Counters
	Resource Usage Counters
	Memory Allocation Counter
	CPU ID Counter
	NVIDIA CUDA
	Pthread API Calls
	Plugin Counter Metrics
	I/O Calls
	fork/system/exec Calls
	MPI Correctness Checking Using UniMCI
	User-defined Counters
	User-defined Markers
	User-defined Communcation

	Filtering & Grouping
	Function Filtering
	Java Specific Filtering
	Function Grouping

	VampirTrace Installation
	Basics
	Configure Options
	Cross Compilation
	Environment Set-Up
	Notes for Developers

	Command Reference
	Compiler Wrappers (vtcc,vtcxx,vtf77,vtf90)
	Local Trace Unifier (vtunify)
	Binary Instrumentor (vtdyn)
	Trace Filter Tool (vtfilter)
	Library Wrapper Generator (vtlibwrapgen)
	Application Execution Wrapper (vtrun)

	Counter Specifications
	PAPI
	CPC
	NEC SX Hardware Performance Counter
	Resource Usage

	FAQ
	Can I use different compilers for VampirTrace and my application?
	Why does my application need such a long time for starting?
	Fortran file I/O is not accounted properly?
	There is no *.otf file. What can I do?
	What limitations are associated with "on/off" and buffer rewind?
	VampirTrace warns that it ``cannot lock file a.lock'', what's wrong?
	Can I relocate my VampirTrace installation?
	What are the byte counts in collective communication records?
	I get ``error: unknown asm constraint letter''
	I have a question that is not answered in this document!
	I need support for additional features so I can trace application xyz.


