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1 Introduction

Epsilon.x is a post processing code of PWSCF . Start-
ing from DFT eigenvalues and eigenvectors, epsilon.x
provides the real and imaginary parts of the dielectric
tensor or the joint density of states, it works both in
serial and parallel mode, also pool parallelization is
supported. As all the others post processing codes,
epsilon.x must run with the same number of proces-
sors of the previews parallel PW runs, to avoid this
constrain set the variable WF COLLECT=.TRUE.
in pw.x input file. Epsilon.x doesn’t support the re-
duction of the k-points grid into the unreducible Bril-
louin zone, so the previous PW runs must be per-
formed with a uniform k-points grid and all k-points
weights must be equal to each other, i.e. in the k-
points card the k-points coordinates must be given
manually in crystal or alat or bohr, but not with the
automatic option. Also the auto-symmetrization of
k-points grid can produce a non uniform distribu-
tion of k-points weights, in order to avoid this PW’s
behavior the variable NOSYM must be set .TRUE.
disabling auto-symmetrization.

2 Input file

When executed, epsilon.x reads an input file from
standard input, this file contains two Fortran
namelists (value associated to each variable is the de-
fault one):

&inputpp
outdir=’./’
prefix=’pwscf’
calculation=’eps’

/
&energy_grid

smeartype=’gauss’
intersmear=0.136d0
intrasmear=0.0d0
wmax=30.0d0
wmin=0.0d0
nw=600
shift=0.0d0

/

the first two characters are the location and name of
the output files from the previous PW runs. calcula-
tion select the kind of calculation to be performed by
epsilon.x, actually the following calculation are im-
plemented:

• eps: dielectric tensor calculation, in addition
to the standard output the code produces the
four files epsr.dat, epsi.dat, eels.dat and ieps.dat.
The first two contain the real and imaginary
parts of the dielectric tensor diagonal compo-
nents ε1α,α

(ω) e ε2α,α
(ω), as a function of fre-

quency (in eV). The third file contains the elec-
tron energy loss spectrum calculated from the di-
agonal elements of dielectric tensor and the last
one contains the diagonal components of dielec-
tric tensor calculated on the imaginary axe of
frequency (via London transformation) εα,α(iω).
If the PW calculations have been performed in
collinear spin mode the previous files contain the
sum of spin up and spin down contribution, other
files with prefix u- or d- are created containing
the same quantities for spin up or spin down sep-
arately.

• jdos: joint density of state calculation, in addi-
tion to the standard output the code produces
the file jdos.dat, containing the joint density of
state (in eV−1) as a function of frequency (in
eV). If the PW calculations have been performed
in collinear spin mode, jdos.dat contains sepa-
rately the spin up and spin down joind donsity
of states.

• offdiag : calculation of diagonal and off-diagonal
components of dielectric tensor. In addition to
the standard output the code produces one file
for each component of the dielectric tensor (i.e.
epsxy.dat), each file contains real and imaginary
part of the tensor component.

• occ: calculation of occupation factors and its
first derivative, results are written on occupa-
tions.dat. In metallic systems it is highly racco-
manded to permorm this calculation before eny-
thing else. Plotting this file it is easy to see if
the chosen broadening parameter and k points
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number are enough to have a good sampling of
the fermi surface.

smeartype select the kind of broadening for the plot of
joint density of state, it can be both gauss or lorentz
for a Gaussian or Lorentzian broadening. intersmear
is the broadening parameter (in eV) for the interband
contribution, it will be the Gaussian or Lorentzian
broadening parameter in the case of joint density of
state calculation or the Drude-Lorentz broadening
parameter for the dielectric tensor calculation. in-
trasmear is the broadening parameter for the intra-
band, i.e. metal Drude like term (again in eV), the in-
traband contribution is calculated only if a Gaussian
broadening or tetrahedron method it’s been applied
in PW calculations. The desired functions will be cal-
culated in a frequency interval

[
-wmax,wmax

]
and nw

is the number of points of the frequency mesh, wmax
is expected to be in eV. Finally shift is the number
of eV for an optional rigid shift of the imaginary part
of the dielectric function.

3 Joint density of states

The joint density of state is defined has:

n(ω) =
∑

σ

∑
n∈V

∑
n′∈C

Ω
(2π)3

∫
d3kδ(Ek,n′−Ek,n−~ω)

or alternatively:

n(ω) =
∑

n

∑
n′

Ω
(2π)3

∫
d3kδ(Ek,n′ − Ek,n − ~ω)...

(1)
...f(Ek,n)[2− f(Ek,n′)]/2

or finally:

n(ω) =
∑
n∈V

∑
n′∈C

Ω
(2π)3

∫
d3kδ(Ek,n′ − Ek,n − ~ω)...

(2)
...[f(Ek,n)− f(Ek,n′)]

were σ is the spin component, Ω is the volume of the
lattice cell, n and n′ belong respectively to the va-
lence and conduction bands, Ek,n are the eigenvalues

of the Hamiltonian and f(Ek,n) is the Fermi distribu-
tion function that account for the occupation of the
bands. In the last two notation the sum over spin val-
ues is included into Fermi function whose normaliza-
tion is two instead of one. The Dirac Delta function
it’s numerically implemented by means of Lorentzian
or Gaussian functions normalized to one:

L(ω) =
Γ

π
[
(Ek,n′ − Ek,n − ~ω)2 + Γ2

] (3)

G(ω) =
1

Γ
√
π
e(Ek,n′−Ek,n−~ω)2/Γ2

(4)

Γ is the broadening parameter from the input file.
The implemented formula is obtained substituting
the Dirac Delta function in (2) by (3) or (4) and sub-
stituting Ω

(2π)3

∫
d3k by a simple sun over k-points.

Integrating analytically (2) one obtains:∑
k

∑
n

∑
n′

[f(Ek,n)− f(Ek,n′)] (5)

so a division by this quantity is needed to renormalize
to one the joint density of state, the standard output
file contains a convergence check on this renormaliz-
zazion. Note that in the case of joint density of state
the two kinds of broadening (3) and (4) are exactly
equivalent.

4 Dielectric tensor

The imaginary part of the dielectric tensor ε2α,β
(ω)

can be viewed as a response function that comes from
a perturbation theory with adiabatic turning on:

εα,β(ω) = 1 +
4πe2

ΩNkm2

∑
n,n′

∑
k

M̂α,β

(Ek,n′ − Ek,n)2
...

...

{
f(Ek,n)

Ek,n′ − Ek,n + ~ω + i~Γ
+ ...

...
f(Ek,n)

Ek,n′ − Ek,n − ~ω − i~Γ

}
(6)

where Γ is the adiabatic parameter and, for the total
energy conservation it must tend to zero. This is the
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way in which the Dirac Delta function appears and
this means that every excited state has an infinite
lifetime, i.e. is stationary.

ε2α,β
(ω) =

4πe2

ΩNkm2

∑
n,n′

∑
k

M̂α,βf(Ek,n)
(Ek,n′ − Ek,n)2

...

...

[
δ(Ek,n′ −Ek,n +~ω)+ δ(Ek,n′ −Ek,n−~ω)

]
(7)

This situation is unphysical because the interaction
with electromagnetic field (even in the absence of
photons, i.e. spontaneous emission) gives an intrinsic
broadening to all exited states, the lifetime is finite
and Γ must be greater than zero. In the limit of small
but non vanishing Γ the dielectric tensor turns into
the Drude-Lorentz one:

ε2α,β
(ω) =

4πe2

ΩNkm2

∑
n,k

df(Ek,n)
dEk,n

ηωM̂α,β

ω4 + η2ω2
+ ...

...+
8πe2

ΩNkm2

∑
n 6=n′

∑
k

M̂α,β

Ek,n′ − Ek,n
...

...
Γωf(Ek,n)[

(ωk,n′ − ωk,n)2 − ω2
]2 + Γ2ω2

(8)

while the real part comes from the Kramers-Kronig
transformation:

ε1α,β
(ω) = 1 +

2
π

∞∫
0

ω′ε2α,β
(ω′)

ω′2 − ω2
dω′ (9)

ε1α,β
(ω) = 1− 4πe2

ΩNkm2

∑
n,k

df(Ek,n)
dEk,n

ω2M̂α,β

ω4 + η2ω2
+ ...

...+
8πe2

ΩNkm2

∑
n 6=n′

∑
k

M̂α,β

Ek,n′ − Ek,n
...

...

[
(ωk,n′ − ωk,n)2 − ω2

]
f(Ek,n)[

(ωk,n′ − ωk,n)2 − ω2
]2 + Γ2ω2

(10)

finally the complex dielectric function is:

εα,β(ω) = 1− 4πe2

ΩNkm2

∑
n,k

df(Ek,n)
dEk,n

M̂α,β

ω2 + iηω
+ ...

...+
8πe2

ΩNkm2

∑
n′ 6=n

∑
k

M̂α,β

(Ek,n′ − Ek,n)
...

...
f(Ek,n)

(ωk,n′ − ωk,n)2 + ω2 + iΓω
Γ and η are respectively intersmear and intrasmear.
The squared matrix elements are defined as follow:

M̂α,β = 〈uk,n′ |p̂α|uk,n〉〈uk,n|p̂†β |uk,n′〉 (11)

∝ u?
k,n′(r)

d

dxα
uk,n(r)u?

k,n(r)
d

dxβ
uk,n′(r) (12)

the double index reveals the tensorial nature of ε2(ω),
while |uk,n〉 is a factor of the single particle Bloch
function obtained by the PW’s DFT calculation. In
all the cases illustrated above the non-local contri-
bution due to the pseudopotential is neglected, actu-
ally the correction to the matrix element that take
into account the non-local part of the Hamiltonian
it’s not implemented. From the previews definition
of the imaginary part of the dielectric function it is
easy to see that even the local-field contributions are
not implemented.
PW works on a plane wave set so the Bloch functions
of the matrix element (11) are decomposed as follow:

|ψk,n〉 = eiG·ruk,n =
1√
V

∑
G

an,k,Ge
i(k+G)·r (13)

and consequently:

M̂α,β =
( ∑

G

a?
n,k,Gan′,k,GGα

)( ∑
G

a?
n,k,Gan′,k,GGβ

)
(14)

defined in this way the matrix element accounts only
for interband transitions, i.e. vertical transition in
which the electron momentum k is conserved (op-
tical approximation). In standard optics the intra-
band transitions give a neglectable contribution due
to the very low momentum transfered by the incom-
ing/outcoming photon.
Operating a London transformation upon ε2α,β

(ω),
it’s possible to obtain the whole dielectric tensor cal-
culated on the imaginary frequency axe εα,β(iω).

εα,β(iω) = 1 +
2
π

∞∫
0

ω′ε2α,β
(ω′)

ω′2 + ω2
dω′ (15)
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The LOSS spectrum is proportional to the imaginary
of the inverse dielectric tensor, that is:

Imm

{
1

εα,β(ω)

}
=

ε2α,β
(ω)

ε21α,β
(ω) + ε22α,β

(ω)
(16)

this quantity provides a useful check of the dielectric
tensor calculation because it reaches its maximum at
the bulk plasmon frequency Ωp, where the real and
imaginary parts cross their paths at higher frequency.
The same quantity (in eV) is numerically evaluated
using the following sum rule:

∞∫
0

ωε2α,β
(ω)dω =

π

2
Ωp (17)

The result of this calculation is printed in the stan-
dard output file.
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