
How to implement new constraints into
Quantum ESPRESSO

Carlo Sbraccia

July 17, 2011

The two basic ingredients that are required to implement a new type of
constraint into the Quantum ESPRESSO distribution are:

• the analytical expression for the constraint σ({R3N}) (it must be a
function of the ionic coordinates {R3N} only);

• the analytical expression for the gradients of the constraint ∇Ri
σ({R3N})

with respect to the ionic coordinates.

Given these expressions one has simply to follow what has already been done
for the standard constraint types.1 No detailed knowledge of the algorithm
used to impose the constraints (SHAKE) is necessary since the implemen-
tation is designed to work for any possible kind of constraint, provided it
is defined by an analytical expression. In the following I describe the three
basic steps that are strictly necessary to implement a new constraint type.

One first has to modify the routine that reads the CONSTRAINTS input card
(this input card contains the parameters specified at run-time by the user to
define the constraint). The name of this routine is card constraints() and
it is located in the module Modules/read cards.f90. Note the maximum
allowed number of input parameters used to define a single constraint is 6;
if the new constraint type requires additional input parameters one has to

1At present the constraint types implemented in Quantum ESPRESSO are:

• coordination numbers;

• distances;

• planar angles (linear angles included);

• torsional angles.

1



modify the dimension of the array constr inp(:,:) defined in the mod-
ule Modules/input parameters.f90. All the other arrays are dynamically
allocated.

Then one has to copy the input arrays into the internal ones (this is au-
tomatically done and should not not require any additional tuning) and to
initialise the target value of each constraint (the target corresponds to the
initial value of σi({R3N

0 }; this is the quantity that is kept constant during
the simulation). All this is done in the routine init constraint() which
is located in the module Modules/constraints module.f90. One has to
define the new variables that are needed to calculate the value of the con-
straint (possibly recicling those that are already there) and then implement
the equation defining the constraint (following what is done for the other
constraint types).

The last step consists in the implementation of the constraint’s gradient
∇σ({R3N}). This is done in the routine constraint grad() located in the
module Modules/constraints module.f90. Again one has to define the
new variables and implement the equations that define both the constraint
violation and the constraint gradients (respectively stored in g and dg(:,:)).
This is done for a single constraint σi (identified by the input variable index)
since the routine is externally called by other drivers as many times as the
number of constraints. Note that for each constraint the sum of the gradients
must be zero:

∑
i ∇Ri

σ({R3N}) = 0. This is usually imposed by defining
one of the gradients to be equal to minus the sum of all the others.

Finally, one should not forget to test the new constraint on both PWscf
and CP by monitoring the energy conservation and, of course, the conserva-
tion of the constraint itself.

2


