
QE-modes User’s Guide (v.6.0)

Contents

1 Introduction 1

2 Terms of use 1

3 Installation 1
3.1 Installing the QE-modes package . 2
3.2 Editing the user-init-file file . 2

4 Usage 4
4.1 Available modes defined by qe-modes . 4
4.2 Commands . 4
4.3 Auto-completion mechanism . 5
4.4 Controlling indentation . 6
4.5 Note to Vi users . 6

1 Introduction

This guide covers the usage of QE-modes package (version 6.0): an open-source collection of
Emacs major-modes for making the editing of Quantum ESPRESSO (QE) input files some-
what easier and more comfortable with Emacs editor. The package provides syntax highlighting
(see Figure 1), basic auto-indentation, and several utility commands.

2 Terms of use

QE-modes is free software, released under the GNU General Public License. See:
http://www.gnu.org/licenses/old-licenses/gpl-2.0.txt, or the file License in the
Quantum ESPRESSO distribution.

The QE-modes package was originally written by Anton Kokalj. The imple-
mentation of QE-modes was made possible by several useful and helpful resources
that are gratefully acknowledged, in particular: Mode Tutorial of Scott Andrew
Borton (https://www.emacswiki.org/emacs/ModeTutorial (for indentation code), De-
rived Mode and Sample Mode pages (https://www.emacswiki.org/emacs/DerivedMode,

1

https://www.emacswiki.org/emacs/SampleMode) as well as the very useful resources of Xah
Lee (http://ergoemacs.org/emacs/elisp syntax coloring.html). Last but not the least
Sebastijan Peljhan is acknowledged for his work on xsf-mode that inspired the idea of writing
the QE-modes.

Figure 1: A pw.x input file opened with pw-mode in Emacs. Note the highlighted elements:
namelists and their variables (blue and brown), cards and their flags (purple and green), com-
ments (red), string and logical variable values (burgundy and cyan, respectively). Note that
mistyped variable (i.e. ibrv instead of ibrav) is not highlighted.

3 Installation

The installation of QE-modes package consists of two parts: (i) installing the package itself and
(ii) informing Emacs about it by editing the user-init-file (typically $HOME/.emacs).

3.1 Installing the QE-modes package

Once the QE-modes-6.0.tar.gz archive is unpacked and you are located in its root directory,
the installation is trivial. Simply copy the whole qe-modes subdirectory to appropriate place.
To facilitate this copying on Unix-like operating systems, one can use:

2

./install.sh

which will install the package in the qe-modes subdirectory of the $HOME/.emacs.d/ directory.
If you prefer to install it into other directory, then use:

prefix=where-to-install ./install.sh

which will install the package in the qe-modes subdirectory of where-to-install directory.

3.2 Editing the user-init-file file

An example snippet of user-init-file for QE-modes is provided by the qe-modes.emacs file
in the package root directory and the text below explains it. In particular, to use the installed
QE-modes in Emacs, add the following to your user-init-file (e.g. $HOME/.emacs):

;; make sure package is visible to emacs (if needed)

(add-to-list 'load-path "/full/path/name/of /qe-modes")

;; load the package

(require 'qe-modes)

where /full/path/name/of is the directory where the qe-modes are installed (either the
$HOME/.emacs.d/ or the above where-to-install).

Furthermore, we can specify some filename patterns so that Emacs will automatically rec-
ognize from the filename if it is some variant of the Quantum ESPRESSO input file. Say
that we use the .in extension for the Quantum ESPRESSO input files in general and more
specifically, the pw., scf., relax., and vc-relax. prefixes for the pw.x input files and neb.,
ph., and pp. prefixes for the neb.x, ph.x, and pp.x input files. These filename recognitions
can be achieved by:

;; automatically open the *.in files with generic QE mode

(add-to-list 'auto-mode-alist '("\\.in\\'" . qe-mode))

;; automatically open the pw*.in, scf*.in, relax*in, vc-relax*.in files

;; with pw.x mode

(add-to-list 'auto-mode-alist '("pw.*\\.in\\'" . pw-mode))

(add-to-list 'auto-mode-alist '("scf.*\\.in\\'" . pw-mode))

(add-to-list 'auto-mode-alist '("relax.*\\.in\\'" . pw-mode))

(add-to-list 'auto-mode-alist '("vc-relax.*\\.in\\'" . pw-mode))

;; automatically open the neb*.in files with neb.x mode

(add-to-list 'auto-mode-alist '("neb.*\\.in\\'" . neb-mode))

;; automatically open the ph*.in files with ph.x mode

(add-to-list 'auto-mode-alist '("ph.*\\.in\\'" . ph-mode))

;; automatically open the pp*.in files with pp.x mode

(add-to-list 'auto-mode-alist '("pp.*\\.in\\'" . pp-mode))

3

Beware that the more general *.in pattern for the generic qe-mode1 should be specified first
or else any *.in file will be recognized as generic QE input file.

For those who are fans of regular-expressions, the above four lines for pw-mode can be
expressed by the following one-liner:

(add-to-list 'auto-mode-alist '("\\(pw\\|scf\\|\\(?:vc-\\)?relax\\).*\\.in\\'" . pw-mode))

Once the package is installed according to the above instructions, we are ready to use it.
Let us, for the sake of example, open an existing pw.x input file whose name does not match
the above specified filename pattern for the pw-mode. In such cases we can load the mode with
M-x pw-mode command and we will get the content of the file highlighted as in Figure 1.

4 Usage

4.1 Available modes defined by qe-modes

The QE-modes package contains a generic qe-mode and the following specific modes: pw-mode,
neb-mode, cp-mode, ph-mode, ld1-mode, and pp-mode. The difference between them is only in
the extent of the syntax highlighting and auto-indentation. Namely, these modes recognize and
highlight namelists (and their variables) and cards (and their options/flags) that they know
about. The generic qe-mode is aware of all of them for all those Quantum ESPRESSO
programs that have explicit documentation in the form of INPUT_PROG .html files (where PROG
typically stands for the uppercase name of the program). In contrast, a given specific mode is
aware only of namelists, variables, cards, and options of the corresponding program.

4.2 Commands

The QE-modes package provides the following commands:

• M-X mode -mode

toggles the respective mode, where mode is one of qe, pw, neb, cp, ph, ld1, or pp

• M-x indent-region or C-M-\
indents region according to qe-modes rules, i.e., namelist and card names are left aligned
to the first column, while their content is indented by qe-indent spaces to the right (see
Figure 1; default value of qe-indent is 3)

• M-x prog -insert-template

inserts a respective input file template (see Figure 2; this command may not be defined
for all the prog s).

• M-x prog-NAMELIST

inserts a blank namelist section named NAMELIST

• M-x prog-CARD

inserts a blank card section named CARD

1Please note the difference between qe-modes and qe-mode: the first implies the whole package, whereas the
second means the generic QE mode, which is only one among the available modes in the qe-modes package.

4

Figure 2: The result of executing the M-x pp-insert-template command, which insert a
template for the pp.x input file into the current buffer.

• M-x prog-variable

inserts a namelist variable named variable

The above italicized words have the following meaning:

• prog stands for the lowercase name of respective program without the .x suffix (i.e. it is
the lowercase variant of the PROG in the respective INPUT PROG .html filename)

• NAMELIST is the uppercase name for a given Fortran namelist

• CARD is the uppercase name for a given card

• variable is the lowercase name for a given namelist’ variable

Note that in the above commands the spelling of namelist and card names (NAMELIST and
CARD) are intentionally made uppercase as to differentiate them from the names of variables
which are intentionally made lowercase.2

2Note that in Quantum ESPRESSO the namelist and variable names are case-insensitive, while card names
are case-sensitive.

5

4.3 Auto-completion mechanism

It may at first seem that the above described commands are not a big deal. But given that
Quantum ESPRESSO contains hundreds of variables it is difficult to remember the precise
spelling for all of them. It is here where these commands becomes useful due to Emacs auto-
completion mechanism. For example, typing a space or tab after M-x pw-C prints all the
namelists and cards that starts with letter “C”, i.e.:

Possible completions are:

pw-CELL pw-CELL_PARAMETERS

pw-CONSTRAINTS pw-CONTROL

whereas typing a space or tab after M-x pw-c prints all the pw.x variables that starts with
letter “c”, i.e.:

Possible completions are:

pw-c pw-calculation

pw-cell_dofree pw-cell_dynamics

pw-cell_factor pw-celldm

pw-constrained_magnetization pw-conv_thr

pw-conv_thr_init pw-conv_thr_multi

pw-cosab pw-cosac

pw-cosbc

From this list we can see that there is only one variable that starts with “ca”, hence typing M-x

pw-ca[space][return], where [space][return] stands for space and return keys, prints at
the point position of the current buffer:

calculation = ''

4.4 Controlling indentation

The basic indentation offset in qe-modes is 3. It is controlled by qe-indent variable. Hence if
you want to change it, add the following into your user-init-file (e.g. $HOME/.emacs):

(setq qe-indent myOffset)

where myOffset is the integer value of the offset of your choice. For no indentation, set the
qe-indent to 0 (this implies that auto-indentation will make all lines non-indented).

To disable the auto-indentation for a given mode (are you really sure you want to do this),
add the following into your user-init-file:

(add-hook 'mode -mode (lambda () (setq indent-line-function 'indent-relative)))

where mode is qe, pw, neb, cp, ph, ld1, or pp.

4.5 Note to Vi users

A simple way to get a QE-modes aware Vi-compatible editor is to use the Evil package – an
extensible vi layer for Emacs (https://bitbucket.org/lyro/evil/wiki/Home). With the
Evil mode enabled, Emacs will behave like the Vi editor, but with the QE-modes support.

6

	Introduction
	Terms of use
	Installation
	Installing the QE-modes package
	Editing the user-init-file file

	Usage
	Available modes defined by qe-modes
	Commands
	Auto-completion mechanism
	Controlling indentation
	Note to Vi users

