Algorithm 9xx, FACTORIZE: an object-oriented
linear system solver for MATLAB

TIMOTHY A. DAVIS
University of Florida

The MATLAB™backslash (x=A\Db) is an elegant and powerful interface to a suite of high-
performance factorization methods for the direct solution of the linear system Axz = b or the
least-squares problem min, ||b — Az||. It is a meta-algorithm that selects the best factorization
method for a particular matrix, whether sparse or dense. However, the simplicity and elegance
of its single-character interface prohibits the reuse of its factorization for subsequent systems.
Furthermore, naive MATLAB users have a tendency to translate mathematical expressions from
linear algebra directly into MATLAB, so that = A~1b becomes the inferior yet all-to-prevalent
x=inv(A)*b. To address these issues, an object-oriented factorize method is presented. Via
simple-to-use operator overloading, solving two linear systems can be written as F=factorize(A);
x=F\b; y=F\c, where A is factorized only once. The selection of the best factorization method
(LU, Cholesky, LDLT, QR, or a complete orthogonal decomposition for rank-deficient matrices)
is hidden from the user. The mathematical expression = A~1b directly translates into the
MATLAB expression x=inverse(A)*b. The latter does not compute the inverse at all, but does
the right thing by factorizing A and solving the corresponding triangular systems.

Categories and Subject Descriptors: G.1.3 [Numerical Analysis|: Numerical Linear Algebra—
linear systems (direct methods), sparse and very large systems; G.4 [Mathematics of Comput-
ing]: Mathematical Software—algorithm analysis, efficiency

General Terms: Algorithms, Experimentation, Performance
Additional Key Words and Phrases: linear systems, least-square problems, matrix factorization,
object-oriented methods

1. INTRODUCTION

MATLAB provides many ways to solve linear systems and least-squares prob-
lems, the most obvious one being x=A\b. This method is powerful and simple
to use, but its factorization cannot be reused to solve multiple linear systems. An
object-oriented programming approach is presented that makes solving systems and
reusing a factorization in MATLAB very easy to do, even for the naive MATLAB
user. Section 2 provides a strong motivation for the factorize method presented
in Section 3. Code availability and concluding remarks are given in Section 4.

Dept. of Computer and Information Science and Engineering, Univ. of Florida, Gainesville, FL,
USA. email: davisQcise.ufl.edu. http://www.cise.ufl.edu/~davis. Portions of this work were
supported by the National Science Foundation, under grants 0620286 and 1115297.

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.

© 20YY ACM 0098-3500/20YY/1200-0001 $5.00

ACM Transactions on Mathematical Software, Vol. V, No. N, M 20YY, Pages 1-9.

2 . T. A. Davis

2. MOTIVATION

The MATLAB backslash is a powerful method, but it has its weaknesses. The many
factorization methods in MATLAB provide an alternative, but these are difficult to
use. The unfortunate prevalence of x=inv(A) *b illustrates yet another motivation
for the object-oriented factorize method.

2.1 The strengths and weaknesses of the MATLAB backslash

The backslash operator (or mldivide, to use its precise name) is a meta-algorithm
that automatically selects an appropriate solver for the matrix A [Gilbert et al.
1992]. If the matrix is diagonal, upper triangular, lower triangular, or a permuta-
tion of a triangular matrix, then it is not factorized at all. If the matrix requires
factorization, backslash selects an LU, Cholesky, LDL”, or QR factorization, de-
pending on the matrix. It sometimes attempts multiple factorizations. For example,
if the matrix is square and symmetric with a zero-free real diagonal, a Cholesky
factorization is attempted. If this fails, an LDLT factorization is used, and if
this fails, backslash falls back to an LU factorization. For rectangular matrices,
QR factorization of A is always performed, resulting in a least-squares solution for
over-determined systems, and a basic solution when A is under-determined.

Backslash is a powerful function but it has three minor drawbacks and a fourth
that is more serious:

(1) There is no way to request a minimum 2-norm solution to an under-determined
system.

(2) There is no special handling for square rank-deficient problems. These should
be solved with a QR factorization, a complete orthogonal decomposition, or
perhaps even a singular value decomposition, so that a least-squares or mini-
mum 2-norm solution could be obtained, depending on the matrix.

(3) Textbook equations from linear algebra often rely on the explicit inverse, A=1.
These expressions do not directly translate into a MATLAB expression using
backslash.

(4) The factorization computed by backslash cannot be reused. All of the ele-
gant power of backslash’s automatic selection of an appropriate solver must be
discarded if the user wishes to reuse the factorization of A.

2.2 The many factorization methods in MATLAB

In spite of these drawbacks, backslash remains a powerful and general-purpose
operator that is adequate for most users’ systems of equations. However, if a
MATLAB code needs to reuse a factorization, it must either duplicate the intricacies
of the backslash selection, or it must resort to using a potentially sub-optimal
factorization technique. Significant expertise on the part of the MATLAB user is
required to obtain the fastest and most memory-efficient technique. Table I lists the
best techniques for just three of the primary factorizations. None of these methods
are trivial or obvious, even to the MATLAB expert.

A sub-optimal but commonly-used method that uses dense LU factorization is
[L,U,P1=1u(A); x=U\(L\(P*b)). For dense unsymmetric matrices, the factor-
ization step uses 50% more memory than the best method in Table I, and its

ACM Transactions on Mathematical Software, Vol. V, No. N, M 20YY.

Object-oriented linear system solver for MATLAB : 3

method sparse? | most efficient code for x=A\b and y=c/A
LU no
[L, U, p] = 1u (A, ’vector’) ;
P = sparse (1:size(A,1), p, 1) ;
opL.LT = true ;
opU.UT = true ;
opUT.UT = true ;
opUT.TRANSA = true ;
opLT.LT = true ;
opLT.TRANSA = true ;
x = linsolve (U, linsolve (L, full (P*b), opL), opU) ;
y = (P’ * linsolve (L, linsolve (U, full (c’), opUT), opLT))’ ;
LU yes For some matrices, [L,U,P,Q,R1=1u(A) is faster, where R is a diagonal scaling
matrix.
[L, U, P, Q] = 1u (A) ;
x=Q* (U\N (L \ (P *Db)) ;
y=(@ x L\ (U \ @ *c’))))’ ;
Cholesky no
[R, g] = chol (4) ; % R is upper triangular
opU.UT = true ;
opUT.UT = true ;
opUT.TRANSA = true ;
x = linsolve (R, linsolve (R, full (b), opUT), opU) ;
y = linsolve (R, linsolve (R, full (c’), opUT), opU)’ ;
Cholesky yes
[L, g, P] = chol (A, ’lower’) ; % L is lower triangular
x=Px*x (L>\ (L\ (P *Db))) ;
y=@E=* L\ @\ (P *c’))) ;
QR no Assuming A has more rows than columns.
[Q R] = qr (4,0) ;
opU.UT = true ;
opUT.UT = true ;
opUT.TRANSA = true ;
x = linsolve (R, Q’ * full (b), opU) ;
y = (Q * linsolve (R, full (c’), opUT))’ ;
% (where y minimizes norm (y*A-b))
QR yes Assuming A has more rows than columns.

size (A,2) ;

sparse (colamd (A), 1:n, 1) ;

qr (A*P, 0) ;

Px (R\ (R \ (P *x (A * D)))) ;

Px R\ R\ (PP x (A * (b - A *x))))) ;

=X + e ;

(computing y to minimize norm (y*A-b) is analogous)

M O X o OB
]

=

Table I. The most efficient MATLAB code for the three primary factorization methods (as of

R2011a).

ACM Transactions on Mathematical Software, Vol. V, No. N, M 20YY.

4 . T. A. Davis

forward /backsolve step is three times slower. This sub-optimal technique does not
exploit the Cholesky or LDLT factorizations. In spite of these drawbacks, this sub-
optimal method can be found in built-in MATLAB (R2011a) functions (md2c and
Q@idss/ss2ss in the System Identification Toolbox, and @umat/inv in the Robust
Control Toolbox, for example).

A similar method is used in four of the eight MATLAB ODE solvers, except that
a permutation vector is used instead ([L,U,p]l=1u(A, ’vector’); x=U\(L\b(p)),
when A is dense). This is better, but its forward/backward solve phase still takes
twice the time as the method in Table I. This is also true of condest, which uses
x=U\(L\b). These functions correctly use lu for sparse matrices, allowing for a
fill-reducing permutation. However, they do not use the full power of backslash,
such as using chol or 1d1, which are much faster than lu for symmetric matrices.
Computing condest (A) for a sparse symmetric positive definite matrix A is many
times slower than it could be.

The sptarn function in the MATLAB PDE toolbox is slightly more sophisticated,
but still limited. It relies on its own “backslash mimic,” which uses either chol or
1u, depending on the matrix. However, it constrains 1u with an inferior fill-reducing
permutation, and restricts it to use an older sparse LU [Gilbert and Peierls 1988]
that can be slower than the one relied upon by backslash (UMFPACK, [Davis and
Duff 1999; Davis 2004]). This performance hint appears in help lu.

The ODE solvers bvp4c and bvpbc use lu for a sparse matrix in a way that
prohibits 1u from exploiting any fill-reducing ordering at all. This can be very
inefficient if fill-in is excessive. Like sptarn, these two methods use lu in a style
that prohibits the use of UMFPACK.

The eigs function comes closest to the efficiency of backslash, but it requires a
great deal of code to get it right even though eigs only needs to consider the case
when the matrix is square.

These built-in MATLAB functions use wildly different techniques. Some are
better than others, but none are as fast or as flexible as backslash. What these
functions really need is a “backslash” whose factorization can be easily reused.
Code duplication is also a concern, since the same functionality is duplicated in
many places with differing degrees of success.

2.3 Abusing the MATLAB INV

Even the sub-optimal factorizations discussed in the previous section can be difficult
for the naive MATLAB user to master or use, which contributes to the prevalent
misuse of the MATLAB inv function. Using inv is trivial in MATLAB: S=inv(A)
computes the inverse of A, and x=S#b is a very simple way to use (or reuse) S to
compute x=A\b.

Textbooks refer to the inverse of A in many formulas: = A~'b is the solution to
Az =b,and S = D—BA~1C is a common way to express the Schur complement S,
for example. Although textbook authors do not intend for the reader to compute
the explicit inverse (or they shouldn’t!) the naive user often simply translates these
formulas directly into MATLAB expressions with the inv function.

There are many problems with this naive use of inv, of course. It can be hope-
lessly inaccurate, and for sparse matrices it can be impossible to compute since
inv (A) is typically completely nonzero. MATLAB provides a warning in its M-file

ACM Transactions on Mathematical Software, Vol. V, No. N, M 20YY.

Object-oriented linear system solver for MATLAB : 5

editor that flags the use of x=inv(A)*b, directing the user to use backslash in-
stead. However, the MATLAB editor does not tell the user how to efficiently reuse
a factorization.

Misuse of x=inv(A)*b is very common. A study was recently conducted to de-
termine the 500 most frequently used functions in MATLAB [Davis 2011b]. Every
user-contributed submission on MATLAB Central as of March 2010 was down-
loaded and parsed to determine which built-in functions were used, and how often
they were used in each submission. The inv function was found in 554 of the 9,498
submissions (about 6%), and appeared in a total of 2,407 times in those 554 sub-
missions. This places inv as the 160th most frequently-used function in MATLAB.
There are a few cases where inv can be properly used, such as when specific entries
of the inverse are required. However, a spot check of about a dozen of the 554
submissions that use inv showed that none fell into that category. They were all
misuses of inv.

For comparison, sparse is the 172nd most-used function, and lu is merely the
383rd. The gr function is slightly more common (ranked 355th), whereas chol is
ranked 409th. The inv function is used more frequently than any of these other
functions. Clearly, inv-abuse is a serious and common problem for MATLAB users.

2.4 A gap in MATLAB functionality

To summarize, no method is clearly the best for MATLAB users:

—backslash: simple to use, fast, and accurate, but very slow if you have multiple
linear systems to solve. Its syntax is not as as clear as inv. Consider the Schur
complement, where D — BA~!C translates directly into D-Bxinv(A)*C or the
more esoteric but numerically superior expressions D-B* (A\C) or D-(B/A) *C.

—LU, QR, Cholesky, and LDLT: fast and accurate, but very difficult to use.
You will need to pull out your linear algebra textbook [Golub and Van Loan 1989)
and be prepared to do some benchmarking to find the most efficient method.
This author wrote the sparse versions of three of these functions (LU, QR, and
Cholesky [Chen et al. 2008; Davis 2004; 2011a]) and even he has trouble re-
membering the best way to use them via MATLAB. What is worse is that new
versions of MATLAB often result in different optimal methods for using these
factorizations, as new factorization methods appear. This occurred most recently
with the introduction of the sparse LDLT in 2008 (MA57 [Duff 2004]) and the
new sparse multifrontal QR factorization [Davis 2011a] in 2009.

—inv: The statement x=inv (A) *b is easy to write, but should always be avoided.
It is commonly misused by MATLAB users.

3. FACTORIZE: AN OBJECT-ORIENTED LINEAR SYSTEM SOLVER

The solution to this problem is to encapsulate the full suite of linear system solvers
in MATLARB into a single object-oriented solver called factorize. This object also
extends backslash by improving how rank-deficient systems are handled, incorpo-
rating a complete orthogonal decomposition, and (optionally, at user discretion)
the singular value decomposition.

ACM Transactions on Mathematical Software, Vol. V, No. N, M 20YY.

6 . T. A. Davis

3.1 An overview of the FACTORIZE method

The object-oriented design of the factorize method makes it extremely easy to
use for the MATLAB end-user, via operator overloading. Below are a few examples
of its use.

F = factorize (A) ; % returns a factorization object

x = F\b ; % same as x=A\b, but only doing the forward/backsolve

y = F\c ; % same as y=A\c, reusing the factorization of A

x = b/F ; % same as x=b/A, but only doing the forward/backsolve

z = F’\d ; % reuses the factors to solve the transposed system

S = inverse (F) ; % just sets a flag, otherwise the S is the same as F

X = S*xb ; % same as x=F\b

c =18 (1:3,2:3) ; % returns entries from inv(A), doesn’t compute all inv(A)
c = condest (F) ; % same as condest(A), but reuses the factorization

Consider the complexity of the best dense LU factorization in the first row of
Table I, and the sub-optimal method used in ode15i ([L,U,pl=1u(A, ’vector’);
x=U\(L\b(p))). The method F=factorize(A); x=F\b is just as fast as the best
method in Table I, yet far easier to use than either of these alternatives.

The inverse function allows for a direct translation of the many textbook math-
ematical expressions that use A~'. For example, = A~'b can be elegantly written
as x=inverse (A)*b. This statement does not compute the inverse, but does the
right thing by factorizing A and solving the linear system using that factoriza-
tion. Likewise, the mathematical equation D — BA~'C for the Schur complement
translates directly into D-B*inverse (A) *C, which is both easy to read and compu-
tationally efficient.

3.2 Implementation of the FACTORIZE method

The factorization object F is constructed via an M-file that mimics the backslash
operator, using all of Table I and several other techniques. If the matrix is rectan-
gular, a QR factorization of A or A’ is computed, whichever is tall and thin. This
allows F\b to return a minimum 2-norm solution for under-determined systems,
rather than the basic solution found by x=A\b. Both result in a low residual, but
a minimum 2-norm is unique if A has full rank and thus sometimes preferable to a
basic solution.

The next step is the same as backslash. Namely, if the matrix is square, sym-
metric, with an all-real nonzero diagonal, chol is attempted. If this fails, or if the
condition on the diagonal does not hold, 1d1 is used. If these conditions do not
hold, or if chol and 1d1 fail, 1u is used.

If any of these solvers report that A is rank-deficient (or nearly so), backslash sim-
ply reports a warning and returns whatever result it found. With luck, the approx-
imate rank-detection of qr allows it find a basic solution to the under-determined
system, but backslash does not attempt this if the matrix is square.

The factorize method uses a more reliable technique for rank-deficient matrices,
namely, a complete orthogonal decomposition (COD) [Golub and Van Loan 1989).
If A has rank r, the COD is URV = A, where R is r-by-r, upper triangular,
and well-conditioned if the rank of A is well-defined. The matrices U and V are
orthogonal. Suppose A is m-by-n with m > n. For the dense case, if A has full
rank, V' is a permutation matrix arising from column 2-norm pivoting. In the sparse

ACM Transactions on Mathematical Software, Vol. V, No. N, M 20YY.

Object-oriented linear system solver for MATLAB . 7

case for a full-rank A, V is the fill-reduction permutation. If A is rank-deficient
this first QR factorization leaves R in upper trapezoidal form, so it is followed
by another factorization that places it in upper triangular form, and the second
orthogonal factor is multiplied into V' to obtain the decomposition URV = A. If
A has more columns than rows (m < n), this algorithm is applied to A7, and the
results transposed and permuted to obtain URV = A with R upper triangular.

If A is a matrix, S=inverse(A) is the same as F=factorize(A) followed by
S=inverse(F). A factorization F is computed, and then S is merely flagged as
being a factorization of the inverse, swapping the roles of the \ and * operators.
The factorizations F and S are otherwise identical. When Sxb is computed, the
code computes A\b using the previously computed factorization of A.

3.3 The advantages of operator overloading

Operator overloading is a very useful technique for extending a previous code to
handle new kinds of computations. For example, selecting a good factorization
should be done in one place, and then reused in other codes that need a factoriza-
tion. These other codes should not care how it is done or even which factorization
is used. A prime example is the MATLAB normest1 function, which condest relies
upon to compute an estimate of the 1-norm condition number, ||A||1||A7!]|;.

The statement c=normest1(A) computes the estimate of ||A||; by relying only
on two computations with the matrix A: y=A*x and y=A’*x. If isa(A, ’double’)
is true, then normest1 simply performs y=A*x and y=A’*x, treating A as a matrix.
Otherwise, it treats A as an operator and calls the function handle A to perform
these two computations. condest uses this to compute an estimate of ||A71]|;.

However, consider the computation S=inverse(A); z=normesti1(S). The com-
putation in normest1 uses S*x and S’ *x rather than calling S as a function handle,
since isa(S,’double’) is true for the factorization object S. Since operator
overloading for S*b computes A\b by reusing the factorization, and since S’*b
becomes A’\b, these computations do the right thing, without computing the in-
verse. normestl is oblivious that is it being adapted for use by an object-oriented
approach. The function handle feature of normest1 is not needed for an object.

Thus, the MATLAB expression norm(A,1)*normestl(inverse(A)) computes
an estimate of x1(A) = ||A]|1]|A~}||; without any changes to the built-in normest1.
The expression is faster than condest (A) and yet it looks just like the mathematical
definition, a strong indication that an object-oriented style of handling factoriza-
tions and implicit inverses is a powerful technique for writing code that is both fast
and easy to read.

The new method is yet more efficient if the factorization needs to be reused
outside the condest computation. Suppose the user wants to compute x=A\b;
s=condest (A) (the built-in functions ode15s and ode23t in MATLAB are two ex-
amples). The matrix is factorized twice, which is wasteful. Instead, this can be
written as F=factorize(A); x=F\b; s=condest (F), which computes the factor-
ization only once. For large square unsymmetric matrices, the total time is cut in
half. If A is a dense symmetric positive definite matrix, the time is cut by nearly
a factor of 3, because condest (A) uses an LU factorization, whereas condest (F)
reuses the Cholesky factorization computed by F=factorize(A).

ACM Transactions on Mathematical Software, Vol. V, No. N, M 20YY.

8 . T. A. Davis

3.4 Using alternative factorizations

A second string argument to the factorize function tells it to use a specific method
or strategy rather than the default, which is to mimic backslash. The options are
’1u’, ’qr’, ’chol’, ’cod’, ’1d1l’, and ’svd’, or a modification of the default
backslash strategy (’symmetric’ and ’unsymmetric’, which speed up the back-
slash tests by skipping the test for symmetry). There is no mechanism for providing
these hints to backslash.

3.5 Using the singular value decomposition

The built-in functions norm, cond, rank, null, orth, and pinv all rely upon the
SVD. They each compute the SVD, use it, and then discard it. The SVD is ex-
tremely costly to compute and should not be so lightly discarded. Suppose a user
wishes to compute the following. The SVD is computed seven times.

[U,S,V] = svd (A) ;

nrm = norm (A) ;

= cond (A) ;

rank (A) ;

null (A) ;
s

orth (A)
pinv (A)
C*xb ;

M QB N R O

Code that relies upon the factorization object is listed below. It is nearly
identical and remarkably simple, but it computes the SVD just once. For large
matrices, it is close to 6 times faster than the non-object-oriented code listed above.

F = factorize (A, ’svd’) ;

[U,s,V] = svd (F) ; % retrieve the factorization from F
nrm = norm (F) ;
¢ = cond (F) ;
r = rank (F) ;
Z = null (F) ;
Q = orth (F) ;
C = pinv (F) ;
x = Cxb ;
4. SUMMARY

The factorize method and the factorization object it creates allow for simple
code that can be more elegant than the code it replaces (consider the normest1 ex-
ample, or the Schur complement). Code that relies on the factorization object is
faster for large matrices even if the factorization is not reused, since (like backslash)
it selects among a wide range of factorization methods, rather than choosing among
a few (consider condest). Code performance also increases if the factorization can
be reused. The inverse method based on the factorization object is far superior
to the much-abused inv, while being just as simple to use.

Judging from how MATLAB experts exploit the many factorization methods in
MATLAB (in built-in functions written by The MathWorks™), wrapping the best
methods into an easy-to-use factorization object is a powerful way to encourage
the use of most efficient factorization methods in MATLAB.

ACM Transactions on Mathematical Software, Vol. V, No. N, M 20YY.

Object-oriented linear system solver for MATLAB . 9

In addition to its availability as Algorithm 9xx of the ACM, the factorize
package is available on MATLAB Central,’ where it was selected as a “Pick of
the Week” by The MathWorks, Inc. [Doke 2009]. The code includes a thorough
demo that illustrates how to use the object and some of the theory behind solving
different kinds of linear systems and least-squares problems via direct factorizations.
A complete test suite is included that tests every line of code for accuracy, error-
handling, and performance.

REFERENCES

CHEN, Y., Davis, T. A., HAGER, W. W., AND RAJAMANICKAM, S. 2008. Algorithm 887:
CHOLMOD, supernodal sparse cholesky factorization and update/downdate. ACM Trans.
Math. Softw. 85, 3, 1-14.

Davis, T. A. 2004. A column pre-ordering strategy for the unsymmetric-pattern multifrontal
method. ACM Trans. Math. Softw. 30, 2, 165-195.

Davis, T. A. 2011a. Algorithm 9xx: SuiteSparseQR, a multifrontal multithreaded sparse QR
factorization package. ACM Trans. Math. Softw.. to appear.

Davis, T. A. 2011b. MATLAB Primer, 8th ed. Chapman & Hall/CRC Press, Boca Raton.

Davis, T. A. AND DuFF, I. S. 1999. A combined unifrontal/multifrontal method for unsymmetric
sparse matrices. ACM Trans. Math. Softw. 25, 1, 1-19.

DOKE, J. 2009. Pick of the week: Don’t let that INV go past your eyes; to solve that system
FACTORIZE. http://blogs.mathworks.com/pick/2009/06/26/dont-let-that-inv-go-past-your-
eyes-to-solve-that-system-factorize/.

Durr, 1. S. 2004. MA57—a code for the solution of sparse symmetric definite and indefinite
systems. ACM Trans. Math. Softw. 30, 2, 118-144.

GILBERT, J. R., MOLER, C., AND SCHREIBER, R. 1992. Sparse matrices in MATLAB: design and
implementation. SIAM J. Matriz Anal. Appl. 18, 1, 333-356.

GILBERT, J. R. AND PEIERLS, T. 1988. Sparse partial pivoting in time proportional to arithmetic
operations. SIAM J. Sci. Statist. Comput. 9, 862-874.

GoruB, G. H. AND VAN LoaN, C. 1989. Matriz Computations, 2nd ed. Baltimore, Maryland:
Johns Hopkins Press.

Received Month Year; revised Month Year; accepted Month Year

Thttp://www.mathworks.com /matlabcentral /fileexchange,/24119

ACM Transactions on Mathematical Software, Vol. V, No. N, M 20YY.

