
i

Manual for wxTreeLayout 2.0: a tree layout library for wxWindows

Julian Smart
Anthemion Software

July 1998

i

Contents

1. Introduction ...1

2. Implementation..2

3. wxTreeLayout Class Reference ...3
3.1. wxTreeLayout ..3

3.2. wxStoredTree ..7

References...10

Index...11

1

1. Introduction

This manual describes a tree-drawing class library for wxWindows. It provides layout of simple
trees with one root node, drawn left-to-right, with user-defined spacing between nodes.

wxTreeLayout is an abstract class that must be subclassed. The programmer defines various
member functions which will access whatever data structures are appropriate for the application,
and wxTreeLayout uses these when laying out the tree.

wxStoredTree is a class derived from wxTreeLayout that may be used directly to draw trees on a
canvas. It supplies storage for the nodes, and draws to a device context.

Below is the example tree generated by the program test.cc.

Figure 1: Example tree

2

2. Implementation

The algorithm is due to Gabriel Robins [1], a linear-time algorithm originally implemented in LISP
for AI applications.

The original algorithm has been modified so that both X and Y planes are calculated
simultaneously, increasing efficiency slightly. The basic code is only a page or so long.

3

3. wxTreeLayout Class Reference

3.1. wxTreeLayout

This abstract class is used for drawing a tree. You must derive a new class from this, and define
member functions to access the data that wxTreeLayout needs.

Nodes are identified by long integer identifiers. The derived class communicates the actual tree
structure to wxTreeLayout by defining wxTreeLayout::GetChildren and
wxTreeLayout::GetNodeParent functions.

The application should call DoLayout to do the tree layout. Depending on how the derived class
has been defined, either wxTreeLayout::Draw must be called (for example by the OnPaint
member of a wxScrolledWindow) or the application-defined drawing code should be called as
normal.

For example, if you have an image drawing system already defined, you may want wxTreeLayout
to position existing node images in that system. So you just need a way for wxTreeLayout to set
the node image positions according to the layout algorithm, and the rest will be done by your own
image drawing system.

Derived from

wxObject

wxTreeLayout::wxTreeLayout

 wxTreeLayout()

Constructor.

wxTreeLayout::ActivateNode

void ActivateNode(long id, bool active)

Define this so wxTreeLayout can turn nodes on and off for drawing purposes (not all nodes may
be connected in the tree). See also NodeActive.

wxTreeLayout::CalcLayout

void CalcLayout(long id, int level)

Private function for laying out a branch.

wxTreeLayout::DoLayout

void DoLayout(wxDC& dc, long topNode = -1)

CHAPTER 3

4

Calculates the layout for the tree, optionally specifying the top node.

wxTreeLayout::Draw

void Draw(wxDC& dc)

Call this to let wxTreeLayout draw the tree itself, once the layout has been calculated with
DoLayout.

wxTreeLayout::DrawBranch

void DrawBranch(long from, long to, wxDC& dc)

Defined by wxTreeLayout to draw an arc between two nodes.

wxTreeLayout::DrawBranches

void DrawBranches(wxDC& dc)

Defined by wxTreeLayout to draw the arcs between nodes.

wxTreeLayout::DrawNode

void DrawNode(long id, wxDC& dc)

Defined by wxTreeLayout to draw a node.

wxTreeLayout::DrawNodes

void DrawNodes(wxDC& dc)

Defined by wxTreeLayout to draw the nodes.

wxTreeLayout::GetChildren

void GetChildren(long id, wxList &list)

Must be defined to return the children of node id in the given list of integers.

wxTreeLayout::GetNextNode

long GetNextNode(long id)

Must be defined to return the next node after id, so that wxTreeLayout can iterate through all
relevant nodes. The ordering is not important. The function should return -1 if there are no more
nodes.

CHAPTER 3

5

wxTreeLayout::GetNodeName

wxString GetNodeName(long id) const

May optionally be defined to get a node's name (for example if leaving the drawing to
wxTreeLayout).

wxTreeLayout::GetNodeSize

void GetNodeSize(long id, long* x, long* y) const

Can be defined to indicate a node's size, or left to wxTreeLayout to use the name as an indication
of size.

wxTreeLayout::GetNodeParent

long GetNodeParent(long id) const

Must be defined to return the parent node of id. The function should return -1 if there is no parent.

wxTreeLayout::GetNodeX

long GetNodeX(long id) const

Must be defined to return the current X position of the node. Note that coordinates are assumed
to be at the top-left of the node so some conversion may be necessary for your application.

wxTreeLayout::GetNodeY

long GetNodeY(long id) const

Must be defined to return the current Y position of the node. Note that coordinates are assumed
to be at the top-left of the node so some conversion may be necessary for your application.

wxTreeLayout::GetLeftMargin

long GetLeftMargin() const

Gets the left margin set with SetMargins.

wxTreeLayout::GetOrientation

bool GetOrientation() const

Gets the orientation: TRUE means top-to-bottom, FALSE means left-to-right (the default).

CHAPTER 3

6

wxTreeLayout::GetTopMargin

long GetTopMargin() const

Gets the top margin set with SetMargins.

wxTreeLayout::GetTopNode

long GetTopNode() const

wxTreeLayout calls this to get the top of the tree. Don't redefine this; call SetTopNode instead
before calling DoLayout.

wxTreeLayout::GetXSpacing

long GetXSpacing() const

Gets the horizontal spacing between nodes.

wxTreeLayout::GetYSpacing

long GetYSpacing() const

Gets the vertical spacing between nodes.

wxTreeLayout::Initialize

void Initialize()

Initializes wxTreeLayout. Call from application or overridden Initializeor constructor.

wxTreeLayout::NodeActive

bool NodeActive(long id)

Define this so wxTreeLayout can know which nodes are to be drawn (not all nodes may be
connected in the tree). See also ActivateNode.

wxTreeLayout::SetNodeName

void SetNodeName(long id, const wxString& name)

May optionally be defined to set a node's name.

wxTreeLayout::SetNodeX

CHAPTER 3

7

void SetNodeX(long id, long x)

Must be defined to set the current X position of the node. Note that coordinates are assumed to
be at the top-left of the node so some conversion may be necessary for your application.

wxTreeLayout::SetNodeY

void SetNodeY(long id, long y)

Must be defined to set the current Y position of the node. Note that coordinates are assumed to
be at the top-left of the node so some conversion may be necessary for your application.

wxTreeLayout::SetOrientation

void SetOrientation(bool orientation)

Sets the tree orientation: TRUE means top-to-bottom, FALSE means left-to-right (the default).

wxTreeLayout::SetTopNode

void SetTopNode(long id)

Call this to identify the top of the tree to wxTreeLayout.

wxTreeLayout::SetSpacing

void SetSpacing(long x, long y)

Sets the horizontal and vertical spacing between nodes in the tree.

wxTreeLayout::SetMargins

void SetMargins(long x, long y)

Sets the left and top margins of the whole tree.

3.2. wxStoredTree

wxStoredTree provides storage for node labels, position and client data. It also provides hit-
testing (which node a mouse event occurred on). It is usually a more convenient class to use than
wxTreeLayout.

Derived from

wxTreeLayout (page 3)

CHAPTER 3

8

wxStoredTree::wxStoredTree

 wxStoredTree(int noNodes = 200)

Constructor. Specify the maximum number of nodes to be allocated.

wxStoredTree::AddChild

long AddChild(const wxString& name, const wxString& parent = "")

Adds a child with a given parent, returning the node id.

wxStoredTree::GetClientData

long GetClientData(long id) const

Gets the client data for the given node.

wxStoredTree::GetNode

wxStoredNode* GetNode(long id) const

Returns the wxStoredNode object for the given node id.

wxStoredTree::GetNodeCount

int GetNodeCount() const

Returns the current number of nodes.

wxStoredTree::GetNumNodes

int GetNumNodes() const

Returns the maximum number of nodes.

wxStoredTree::HitTest

wxString HitTest(wxMouseEvent& event, wxDC& dc)

Returns a string with the node name corresponding to the position of the mouse event, or the
empty string if no node was detected.

wxStoredTree::NameToId

long NameToId(const wxString& name)

CHAPTER 3

9

Returns the id for the given node name, or -1 if there was no such node.

wxStoredTree::SetClientData

void SetClientData(long id, long clientData)

Sets client data for the given node.

10

References

[1] Robins, Gabriel. 1987 (September). The ISI grapher: a portable tool for displaying graphs
pictorially (ISI/RS-87-196). Technical report. University of South California.

11

Index

—A—
ActivateNode, 3
AddChild, 8

—C—
CalcLayout, 3

—D—
DoLayout, 3
Draw, 4
DrawBranch, 4
DrawBranches, 4
DrawNode, 4
DrawNodes, 4

—G—
GetChildren, 4
GetClientData, 8
GetLeftMargin, 5
GetNextNode, 4
GetNode, 8
GetNodeCount, 8
GetNodeName, 5
GetNodeParent, 5
GetNodeSize, 5
GetNodeX, 5
GetNodeY, 5
GetNumNodes, 8
GetOrientation, 5
GetTopMargin, 6
GetTopNode, 6
GetXSpacing, 6
GetYSpacing, 6

—H—
HitTest, 8

—I—
Initialize, 6

—N—
NameToId, 8
NodeActive, 6

—S—
SetClientData, 9

SetMargins, 7
SetNodeName, 6
SetNodeX, 7
SetNodeY, 7
SetOrientation, 7
SetSpacing, 7
SetTopNode, 7

—W—
wxStoredTree, 8
wxStoredTree::AddChild, 8
wxStoredTree::GetClientData, 8
wxStoredTree::GetNode, 8
wxStoredTree::GetNodeCount, 8
wxStoredTree::GetNumNodes, 8
wxStoredTree::HitTest, 8
wxStoredTree::NameToId, 8
wxStoredTree::SetClientData, 9
wxStoredTree::wxStoredTree, 8
wxTreeLayout, 3
wxTreeLayout::ActivateNode, 3
wxTreeLayout::CalcLayout, 3
wxTreeLayout::DoLayout, 3
wxTreeLayout::Draw, 4
wxTreeLayout::DrawBranch, 4
wxTreeLayout::DrawBranches, 4
wxTreeLayout::DrawNode, 4
wxTreeLayout::DrawNodes, 4
wxTreeLayout::GetChildren, 4
wxTreeLayout::GetLeftMargin, 5
wxTreeLayout::GetNextNode, 4
wxTreeLayout::GetNodeName, 5
wxTreeLayout::GetNodeParent, 5
wxTreeLayout::GetNodeSize, 5
wxTreeLayout::GetNodeX, 5
wxTreeLayout::GetNodeY, 5
wxTreeLayout::GetOrientation, 5
wxTreeLayout::GetTopMargin, 6
wxTreeLayout::GetTopNode, 6
wxTreeLayout::GetXSpacing, 6
wxTreeLayout::GetYSpacing, 6
wxTreeLayout::Initialize, 6
wxTreeLayout::NodeActive, 6
wxTreeLayout::SetMargins, 7
wxTreeLayout::SetNodeName, 6
wxTreeLayout::SetNodeX, 6
wxTreeLayout::SetNodeY, 7
wxTreeLayout::SetOrientation, 7
wxTreeLayout::SetSpacing, 7
wxTreeLayout::SetTopNode, 7
wxTreeLayout::wxTreeLayout, 3

