wxWindows 2.1.14: A portable C++ and Python GUI toolkit

Julian Smart, Robert Roebling, Vadim Zeitlin, Robin Dunn, et al

March 19th 2000

Contents

(@70] o) Y/ a o] a1 M g Lo] o] =SSR Xiii
[y oo 11 ox 1 [o] o EU PP 1
WHaL iS WXWINAOWS? ... 1
Why another cross-platform development t00I72.........coooiiiiiii i 1
Changes frOM VEISION LXX ...iieiiiiiiiee ettt e e ettt e e e e e e e ettt e e e e e e e eesbbaa e aaeas 2
Changes fromM VEISION 2.0ot e ettt e e e e e e e abba e as 4
WXWINAOWS FEQUITEIMENTS ...ttt ettt e ettt e e e e e e ea bbb e e e e e e e ee ittt e e e eaeaeeenennnns 4
Availability and location of WXWINAOWScouuiuiiiiiiiiiiiiiii e e 4
ACKNOWIBAGMENLS ...t e et e e ettt e e e e e e e e ettt e aaeaeaeeenennnns 5
Multi-platform development with WXWINAOWS............ccooviiiiiiiiiiiiiiiiiiiin 6
INCIUAE fIlES e 6
LIBraries ... 6
L07e] o1 {Te U1 £=11 o] o HA TP 7
MAKETIES ... 7
WINAOWS-SPECITIC IlES ... et eeeeaaaanas 7
Allocating and deleting WXWINdOWS ODJECLSiiiiiiiiiiiiii e 8
ArChiteCtUre dEPENUENCYi ittt e et e e e e e e e ettt e e e e e e eeeeenanas 9
Conditional COMPIIATION.......coiiiiiii e e e et e e e e e e bbb 9
08 RS U T PP PP PP PP PP PPPPPPPPPPPPPP 9
L1 L= o P=T g Lo |1 o To PRSPPI 10
Programming Strat@gIeScooiiiiiiiiiiiie et 12
Strategies for reducing pProgramming ©ITOFSceuuuuuuiiaaeieeeiiii e e eeeeeriia e e aeeearaa s 12
Strategies for POrtability ... 12
Strategies for deBUGGINGoooeiiii e 12
Alphabetical Class referenCe...........ooouuuiiiii i 15
WXACCEIBIAONENTIY ... ettt e e e e e e atbb e e e e aaeenes 15
WXACCEIEIALOI TADIE ... 16
WXACHVALEEVENT ... 19
{120 o] o T TP 20
2N 1 = | T PP 31
N =\ 1] o TSR RURPPPPIIN 42
WXAULOMALIONODJECT. ... et e e et eeaaeeaes 48
2= g =T o TR TURPPPPRIN 52
WXBItMAPHEANAIET ... et e e e e e e e e e bbb e e e e aaeenes 65

CONTENTS

WXBITMAPBULION ... e et ettt e e e e e e ee bbb e e e e e e e e eatbba e e e aeaaaeaes 69
WXBItMAaPDAtAODJECLceeiiiiii et e e et aaaaeae 74
WXBOOIFOIMYAIHALON. ...t e e e e ee bbb eeeaaaenes 75
WXBOOILISTVAITALON ...t e et et e e e e e e e e bbb e e e e aaeenes 75
WXBIOXSIZET ...ttt e ettt e e e e e et e bbb e e e e e e e bbb e aaaaeaes 75
WWXBIIUSKH L. e et oo e ettt e e e e e e et e bbb e e e e e e e e ee bbb e e aaaaeaes 78
WWXBIUSKILIST ...ttt e et ettt e e e e e e et e bbb e e e e e e e e eetbba e e e aaaaaenes 83
WXBUSYCUISOT ...ttt ettt ettt ettt ettt e e e et e e e e et e e e ettt e e e eba e e aeebaaeaenens 85
WXBUSYINTO .. ettt e e et e et et e e e e e e e ee bbb e e e e aaeeae 86
WXBULION L.t e ettt e e et e e e et e e e e et e e e eba e e eeba e eaeneas 87
WXBUFFEredINPUEISTIIEAIMuueiii ettt e e e e e e et e e e aaeeaes 90
WXBUEr@AOULPULSTIEAIM. ettt e e e e e et r e e e e e e ee bbb e e e e eaaeene 90
WXCAICUIAIELAYOULEVENT. ettt e et et e e e e e e eatbb e e e e aaaene 91
T2 (OF= 11T g To F- 1 4 o TSR TURPPPPIIN 93
(O 1= Ted =10 PP RURPPPPIIN 93
WXCNECKLISIBOX ..ottt ettt e e e e e e et e et b e e e e e e e e ee bbb e e e eeaaeenes 95
[0 g [o] (o TR RTSRPPPPRIN 98
WXCTASSINTO .ottt e e e e e e e et e e e e e e e eeabba e e e aaaaaeee 103
11O =T o 1 T PP OOPPPPPRPRR 105
10 [T o] o= o NPT PSPPI 106
WXCIOSEEVENT. ...ttt e ettt e e e e e e e e ettt e e e e e e e e eebbba e e e aaaaaenes 109
112 (@do] o] | TR PSRPPPPIIN 111
[0 (@de] 0111 4 D= | - H TR PSUPPPPIIN 114
WXCOIOUIDALADASEciiiiiiiiii ettt e e e e e ettt e e e e e e e eetbba e e e e aaaaeees 116
112 (@de] (o101 4 D] =1 oo [H PP PSRPPPPIIN 117
[0 (@de]] o o] =Te) QTSR 118
WXCOIMIMANG ..ottt ettt e e e et et ettt e e e e e e e e et bbb e e e e e aeeeesbban e e aaaaaaeees 126
WXCOMMANAEVENT ...ttt e e e et e ettt e e e e e e e eesbba e e e aaaaaeees 127
WXCOMMANAPTOCESSON ...ttt ettt ettt e e et et et e e e e e e e e et bbb e e e e e aaeeesbbn e e aaaaaaeees 132
12 (@do] s [o 1 1Te] o DTSRRI 135
WXCONTIGBASE ...ttt e et ettt e e e e e e e e ettt e e e e e e e e eeabba e e e aaaaaeees 136
112 (@do] 1 (| TSR 150
WXCOUNtINGOULPUESTIAM ...ttt ettt e e e e e e ettt e e e e e e e eeabbaa e e e aaaeaeees 151
WXCHIHICAISECHION ... e et et e e e e e e ee ittt e e e aeaeeees 152
WXCHIICAISECHONLOCKET et a e 153
WXCUSIOMDALAOD]ECT ...ttt e et e et e e e e e e eettb e e aaeaaeees 154
12O U1 =T PP P PP UPPRT 156
WXDALADASE. ... et aeae 160
WXDALAFOIMIAL ...ttt e et e e e et e e e et e e e e aa e e e e aeaeas 166
WXDAEAODJECE ...ttt e ettt e e e e e e e b e e e e e e e et e aaaaaee 169

CONTENTS

WXDataODJECICOMPOSITEuniiieiiiieitit ettt e et et e e e e e e eabbb e e e e e e e eesbba e e e aaaeaeees 172
WXDAtaODJECISIMPIE ... e e et e e e e eeab e eaaaaaeans 173
WXDALAINPUESTIEAIM ...t e et e e e et e e e et e e e e ab e e e eba e eaeenns 175
WXDAtAOULPULISTIIEAM ...ttt e et e et e e e et e e e et e e e e tb e e e ebaaeaeenns 177
WXDALE ...t eae 178
WXDAIETIMIE L. 186
1712 L O PP PRSPPI 191
WXDDECHENT ...ciiiiei ittt e e ekttt e e e e e s s e s bt bbb e e e e e e e s s anbbbbeeaaaaeeaaann 208
WXDDECONNECHON ... 209
WXDD ESEIVETitiiii ettt et e e et e e e een 213
WXDEDUQGCONTIEXE ...ttt e ettt e e e e e e e et bbb e e e e e e e eesbba e e e aaaaaene 214
WXDEDbUQGSTIEaMBUT ... et e e et aaaaeaes 220
WXDIAIOQ -ttt e ettt e e e e e e et aaaaaeae 220
10| TP RSPPPPPIPN 228
{21 B =1 T TR 230
WXDOCCRHIIAFTAME ... 232
Do 1o\ F= g = To [T PP TP PP UPPPTI 234
WXDOCMDICRIAFIAME ... 242
WXDOCMDIPAIrENtFIAME.oviiiiiieiiiieeie e e e enns 244
WXDOCPAIENTFTAME ...ttt e e 246
WXDOCTEMPIALEt e e e et e ettt e e e e e e e eetbba e e e aaaaaeees 247
WXDOCUMEBNT ..ottt e e e e e e e e a e e e e e eeens 252
B = Te [T g F= Lo [PSP UP PP UPPRT 260
WXDIOPFIESEVENL. ...t e ettt e e e e e ee ittt eeaaaaaeees 264
WWXDIOPSOUICE ...ttt e et e ettt e e ettt e e e e ta e e e e et e e e e aa e e aeebaaeeennns 265
D] o] o B 1= 10 1= PSP PRSPPI 267
WXENCOAINGCONVEITET ...ttt ettt e e e et e et e e e e e e e eebbba e e e aaaaaeees 270
WXEFASEEVENT ..o e 273
WXEVENT ... e e 274
WXEVEHANAIET ... 277
{2 o] ST TP PPTTR PP 284
WXEXPIDALADASEot aaaeae 291
1T | = PP PSRRI 294
10 [T PP PSRRI 301
WXFIIEDATAODJECT ...ttt e ettt e e e e e e e bbb e e aaaeee 305
WXFIIEDIAIOQ . .ottt e e e e et e ettt e e e e e e e eeabb e e e aaaaeee 306
12T B do] o = 10 =] TR PSRRI 310
WXFTTEHISTOMY ..t e e et ettt e e e e e e e e eabba e e e e aaaaeees 311
WXFIEINPUESTIIEAIM ...t e ettt e e e e ee et aeaaaaaeees 314
WXFIEOULPULSTIIEAIM ...ttt e e e e et ettt e e e e e e e eetbba e e e aaaaaeees 315

CONTENTS

WXFIIESITEAIM. ... ettt e e e et e ettt e e e e e e e eebbba e e e aaaaaeees 317
WXFFIIRINPUESTIEAIM ...t e et ettt e e e e e e e e bbb e e e e aaaaeees 317
WXFFIEOUIPUESTIEAM ...ttt e et e e et e e e e e e e eebbba e e e e aaaaeees 318
WXFFIIESIIBAM ... ettt e e e ettt e e e e e e e eebbb e e aaaaaeees 319
WXFIleNamELIStValIatoroooi e eeees 320
WXFIIESYSTEIM ...t e e e et et e e e e e e e eeebba e e e aaaaaeees 320
WXFIESYSIEMHANAIET ... et aeeeeees 322
1= Y oL PP PSRRI 325
WXFIEITNPUESTIEAIM ...ttt e et et e e e e e e e e ebbba e e e aaaaaeees 329
WXFIEEIrOULPUESTIEAM ...ttt e e et ettt e e e e e e e eebbba e e e aaaaaeees 330
WXFOCUSEVENT ... ettt e et e e et e e e e e e e e eba e e eeenas 330
120 | PP PPTTR PP 331
WXFONID@LA ...t e et ettt e e e et e e e et e e e e aa e e e eb e aeaeas 338
WX ONTDIAIOQ. ettt e ettt e e e e e et ettt e e e e e e e eebbba e e aaaaaeee 341
WXFONTENUMETALOLc.ee ittt e et e e e et e e e e et e e e eba e eaeenns 342
1o] TP 344
o LY =T o] o1 TP P PP UPPPT 345
o = 10 [T PP PPTTS PP 348
WX Sl e ———— 360
172l 1 = 363
{2 CT= 18 (o [PP P PRSPPI 367
WXGDIODJECT ... ——— 371
WXGLCABNVAS ...ttt ettt e ettt ettt e e e e et e e e e ba e e e e et e e e e eb e aeeba e eaennas 371
WXGENEICVAITALON ...ttt e et et e e e e ee bbb e e e aaaeeees 373
1121 1 o PP PSPPI 375
WXHASNTADIE. ... e ettt e e e et aeaaeees 388
WXHEIDCONIIOIET ...t e et e e e e e e ee ittt e e e aaaaaeees 391
WXHEMICIL ... et e et ettt e e e e e e e eebbba e e e e aeeaeees 395
WXHEIMICOIOUICEIL et e e e e e e e e e aaeees 401
WXHEIMICONTAINEICEIL ... et e e et aaaaaeees 401
WXHEMIDCRENUEIE ...ttt e e e e e et ettt e e e e e e e eeabba e e e aaaaaeees 407
WXHEMIEQSYPIINTING ...t e et et e e e e e e ee bbb aeaaaaaeees 409
WXHEMIFILEE <. et e e ettt e e e e e e eeabba e e e e aaaaeees 412
WXHEIMIHEIPCONIIOIET ... et aeaeeees 413
WXHEMIHEIPDALA. ...t e e et e e e e e e eebbb e e aaaaaeees 417
WXHEIMIHEIDFIAME ... et e e e et aaaaeees 419
WXHEMILINKINTO ... et e e e et eaaaeeees 422
WXHEMIPAISEL ...ttt e e e e e e ettt e e e e e e e eetbba e e e aaaaaeees 423
WXHEMIPTINTOUL ...t e e e ettt e e e e e e ee bbb e e e e e aaaeees 428
10 110 0] I =T PRSPPI 429

CONTENTS

WXHEIMITAGHANAIET ...t e e e e e et aaaaaeees 433
WXHEIMITAGSMOAUIE ... et e e e e e ettt aaaaaeees 434
WXHEIMIWIAQEICEID ...t e e e e e e ettt eaaeaaeees 435
WXHEMIWINGOW ... 436
WXHEIMIWINPAISEE ... 442
WXHIMIWINTAGHANAIETee e e et aaaeeees 448
WUXH T TP ettt e oottt et e e oo s o ekt bbbt e e e e e e e s e abb b bbb e e e e e e s s anbbbbeeeaaaeenaann 449
WXIAIEEVENT ... 450
WWUXICOM L.ttt e e et e e e e et e e e e e e e e e ean 451
T2 E= T = PP TUPPTTR PP 458
WXIMAGEHANAIET ...t e ettt e e e e e ee it eeaaaaaeees 472
o = Vo =] L PP TPSUPPPPIIN 475
WXINAiVIAUAILAYOULCONSIIAINT ...t e e e e ee e e e aeeeees 479
WXINIEDIAIOGEVENT ... ettt e et e ettt e e e e e e e eeabba e e e e aeaaenes 482
WXINPUESTIEEIM ..ot ettt e e et et e e e et e e e e et e e e e rb e e e e eba e eaenens 483
WXINTEGEIFOrMVAlIAALON et e e e e e aeees 485
WXINEEGEILISTVAlIAALON ...ttt e e ettt e e e e e ee bbb e e e aeaaeees 486
WXIPVAQAUIESS ... 486
WWXJOYSTICK .ttt e ettt e et e e e e e e e e et bbb e e e e e e e e eebbba e e e aaaaaeee 488
WXJOYSHCKEVENT ...ttt e e ettt e e e e e e ee bbb e e e e aaaaeees 495
WXKBYEVENT ...ttt e et e e e et e e e et e e e e ab e e e eba e e aeneas 497
WXLAYOULAIGOITNM ...t e e e e e et aeaeeees 500
WXLAYOULCONSLIAINTS ...ttt ettt ettt e e e e e e e e et e e e e e e e eeebbaa e e e aaaaaeee 503
1] PR PSRRI 505
WWXLISTBOX .o 512
WXLISTCHIT <. 520
WXLISTEVENT .. 534
WXLIStOFSIHNGSLISTVAlIALONcciiieiiieie e e e e e e eeees 536
WXLOCAIE ...t 537
1712 oo PSP PPTTS PP 540
T2 e g Lo | o] o o PP PRSPPI 545
WXIMIBISK L. 548
WXMDICHIAFTAME ... 550
WXMDICHENTWINAOW ... 553
WXMDIPAIrENIFIAME......oiiiiiiiiiii e e e e e eens 555
WXMEMOIYDIC ...t ettt et e et et e e e et e e e et e e e e ab e e aeebaaeaenens 562
WXMEMOIYFSHANAIET ... et e e e e e et eaaaaeees 563
WXMEMOIYINPUESTIIEAIM ...ttt e et e e et e e e e e e e et e aeeeas 565
WXMEMOIYOULPULSTIEAIM ... ittt e et e et e e et e e e et e e e e rb e e e et e eaeenns 565
12 L=] o 11 TR PP PP TRPPPPPP 566

CONTENTS

WXIMEBINUBAT ... ettt e e et e e e et e e e et e e e e tb e e e eba e eaeeens 576
Y =T TU] =T o o TP TP PP UPPPT 585
WXMENUENVENT. ...ttt e e et e e e et e e e e ab e e e eba e eeenns 590
WXMESSAGEDIAIOQ ...t a e e e aaeae 592
WXIMETATIIE ... ettt e e e e ettt e e e e e aaeees 593
WXMETATIEDIC ...ttt e e e ettt e e e e e e e e e bbb e e e aaaaeees 594
WXMIMETYPESIMBNAGET ...ttt ettt ettt e et e e et e e e e e e e ea bbb e e e e e aaaeesbba e e aaaaaaeees 596
WXIMIINIFTEIME ..ot e ettt e e e e e e ettt bbb e e e e e e e e eesbba e e e aaaaaenes 599
WXIMIOAUIE ..ottt oo e ettt e e e e e e e e et bbb e e e e e e e e eebbba e e e aaaaaenes 601
WXMOUSEEVENT ... et e et e e et e e e e e e eeeas 604
WXMOVEBEVENT ... ettt e et e e et e e eba e e eeeas 611
WXMUILIPIECNOICEDIAIOQttt e e e e ee et eaeaeaeees 612
Y U= TP PRSPPI 612
WXIMUEEXLOCKET ...ttt e e e e ee it e e e aaaaeees 615
WXNOTEDOOKSIZETttt e e e e ettt eaaaaaeees 616
WXINOOEBBASE ...ttt e ettt e et e e e e e e e e ettt e e e e e e e e eesbba e e e aaaaaenes 617
WXNOLEDOOK. ... et e e e e e et eaaaaeees 618
WXNOTEDOOKEVENL. ...ttt e ettt e e e e e e e eebbba e e e aaaaeees 624
WXINOTITYEVENT. ...t e et ettt e e e e e e e e ettt e e e e e e e e eebbba e e e aaaaaene 626
112 (@] o] =T o TR RSRPPPPIIN 627
WXODJECIREIDALAL. ...ttt e ettt e e e e e e ee et e e e aaaeee 631
WXOULPULSTIEAM ...ttt e ettt e e e et e e ettt e e e e tb e e e e et e e e e sb e e aeebaaeaenens 632
WXPAGESEIUPDIAIOGDALAot eeieieeeiiee ettt e ettt e e e e e e bbb e aaaaeae 633
WXPAGESEIUPDIAIOQceeeitiiiii ettt e ettt e e e e e e bbb aaaaeee 638
WXPAINTDC ... ————— 640
WXP@INTEVENT. ...ttt e ettt e e e e e e e ettt e e e e e e e eebbba e e e aaaeaene 640
WXPAIETEE. ...t ettt e e e e et e et bbb e e e e e e e ebbb e aaaaeae 641
WXPANEL ... ettt e ettt e e e e e e bbb aaaaeae 645
WXPANEITADVIBW ...ttt e e et e e e e e e e ettt e e e aaaaeees 648
WXPAETNLIST ...ttt e e e e et e ettt e e e e e e e bbb aaaaaeae 649
1T ad=T o PSP P PP UPPPTI 651
T o]) ST RSRPPPPIIN 658
WXPIOTCUIVE ...t e ettt e e e e et ettt e e e e e e e eebbba e e e aaaeaeees 660
10 d (o1 VAT T o [0V TR RSRPPPPIIN 662
10 o1 TP PSPPI 665
WXPOSESCHPEIDC ...ttt e ettt e e e e e e e e ettt e e e e e e e eesbba e e e aaeaaeees 666
WXPTEVIEWECANVASciiiiiiiiiie ettt ettt e e e ettt et e e e e e e e e ee bbb e e e e aaeeesbba e e aaaaaaeees 667
WXPTEVIEWCONIIOIBA ...ttt ettt e et ettt e e e e e e ee et e e e aaaaaeees 668
WXPTEVIBWETAIME ...t e ettt e e e e e e eetbb e e aaaaeeees 669
{0 11 011D = - TP RSUPPPPIIN 671

Vi

CONTENTS

WXPIINEDIAIOQ vttt ettt e e e e et ettt e e e e e e e eebbba e e e aaaaaeee 677
WXPHINEDIAIOGDALA ...ttt e et ettt e e e e e e eenb b e e aaaaeees 678
2 1111 (= TR 683
WXPTINTEIDC ... 685
WXPTINEOUL ... 685
WXPTINEPTEVIEW ..o 689
WXPHIVALEDIOPTAIGEL ...ttt e e e e e e et e e e e e e e eeebba e e e aaaaaeees 693
WXPTOCESS ...t e et e e e e ean 693
{0 o To [(=TT B =1 (o Lo RSP 696
WXPTOCESSEVENTottt e e e e e e e e een 698
TR (0] 1= 4 YA TP PP UPPPT 699
WXPTOPErtyFOrMDIAlOQ ...c.evveieiie et e e e e e et aaaaeees 701
WXPTOPEITYFOIMITAIME ...t e et et e e e e e e e e aeeens 702
WXPTOPErtyFOrMPANELee et aaaaeees 703
WXPTOpertyFOrMValIdatorcooiiiiii e a e eeees 703
WXPTOPEITYFOIMVIBW. ...ttt e e e et ettt e e e e e e e eebbba e e e aaaaaeees 704
WXPTOPEITYLISIDIAIOQ ettt e e e ettt e e e e e e ee bbb e e e e aaaeees 707
WXPTOPEIYLISTFIAME ...ttt e e e e ee ittt eaaaaaeees 707
WXPTOPEIMYLISIPANEL ...ttt e e et eaaaaeees 708
WXPTOPEIMYLISTVAITALON ...ttt e e e e et aeaaeees 709
WXPTOPEITYLISIVIBW ...ttt e e ettt e e e e e e e ee bbb e e e e aaaaeees 711
WXPTOPEITY SO ... ettt e e e e e e ettt eaaaaaeees 714
WXPTOPEIMYVAIAALON ...t e e e e e e e aaeees 715
WXPTropertyValidatorREGISIIYccoiiiiiiii et e e aeeaeees 716
WXPTOPEITYVAIUR ...t e ettt e e e e ee bbb eaaaaaeees 717
{0 o] o =T 1Y AV =T PP RSRPPPPIIN 723
WXPTOTOCOL. ..o 725
2@ VL] oY O | BTSRRI 727
WXQUEIYFIEIA ... ettt e e e e e e eeatb e e e e aaaaeees 730
WXQUENYLAYOULINTOEVENT ...t e e e ee et eaeaeeees 732
WXRAAIOBOX ... 734
WXRAIOBULION ... 740
WXREAIFOIMVAIAALON ... 743
WXREAILISTVAIAALON ... 743
WXREAIPOINT ... 743
WXRECT .. et 744
WXRECOITSEL ... 748
10 =Te (o] o E PP RSRPPPPIIN 760
DT o (0] g1 (=T 7= (o] PRSPPI 764
WXSASNEVENT. ... 767

Vil

CONTENTS

WXSASNLAYOUIWINTOW.evveiiieii ettt e e e ettt e e e e e e e eeebba e e e aaaaaeees 769
WXSASNWINAOW ... e et ettt e e e e e e e ettt e e e aaaaeees 772
WXSCIEENDIC ...t et e e et e e ettt e e e et e e e et e e e e an e e e eba e aeanas 776
S Tel (] |17 | TR 777
WXSCIOIWVWINEVENT. ... ettt e e e e ee bbb e e e aaaaeees 782
WXSCIOIEVENT. ...t e ettt e e e e e e e ettt e e e e e e e e eeabba e e e aaaaaenes 784
JV0eS et (o] 1 [=To LVAV/ 1 To [0 1V TR PSPPI 786
WXSINGIECNOICEDIAIOY ...ttt e e e e e e eeatb e e aaaaeees 794
1S 17 TP 796
WXSIZEEVENL. ...t e ettt e e e e et e et bbb e e e e e e e eebbba e e aaaaaeee 797
[0S 1A= TR PSRRI 798
110 eS] o [T SRRSO 803
WWXSOCKAGUIESS ... ettt e ettt e e e e e e e e et bbb e s e e e e e e eesbba e e aaaaaaenes 811
WXSOCKEIBASE ...ttt e et ettt e e e e e e e e et bbb e e e e e e e eebbba e e e aaaaaeee 812
WXSOCKEECTENT ...ttt e e e et ettt e e e e e e e eeabba e e e e aaaaeees 829
WXSOCKEIEVENT ...ttt ettt e e e e e e e ettt e e e e e e e eeatba e e e aaaaaene 831
WXSOCKEESEIVE ...ttt ettt e e e e e e e e ettt e e e e e e e e eeabba e e e aaaaaeees 832
WXSOCKELINPUESTIEAIM ...ttt e e et ettt e e e e e e eebbb e e e aaaaaeees 835
WXSOCKEIOULPUESTIBAM ...ttt ettt e e et e ettt e e e e e e e eebbba e e e aaaeaeees 835
10 eS] o1 1 =101 o] o NPT PSRRI 836
110 eS] o1 @4 1 ¢ TP PSRRI 839
WXSPIEEEIEVENT. ...ttt e e e e e e ettt e e e e e e e eesbba e e e aaaaaeees 842
JV0eS] o] L1 (=T VAV T To [0 TR 844
S] =1 Tod =] 1 T T o J TR 854
[0S] = 1 o] = o) G TP RSUPPPPIIN 856
WXSTATICBOXSIZET ...ttt e ettt e e e e e et e et bbb e e e e e e e e eeebba e e aaaaaaenes 858
[0S] = L (o I 1 PP PSRRI 858
S] = Lol o TR 860
WXSTAEUSBAL ...ttt e et ettt e e e et e e e et e e e e rb e e e eba e aeeeas 862
WXSTOPWALCK ..t e et ettt e e e e e e eeabb e e e aaaaeees 868
WXSTIEAMBASE ... iiiitii ettt ettt ettt e e ettt e e e et e e e e et e e e e sb e aeeba e aeenas 869
WXSTTEAMBUTTEI ... e e ettt e e e e ee ittt eaaaaaeees 871
110 eS] 11 T [T RPN 877
WXSTHNGFOMMVAIITALONvvteiiee et e e et e e e e eeabb e e e aaaaeees 899
1S L[oo | I TP RSRPPPPIIN 900
WXSTHNGLISTVAIAAION ...t e e e e ettt eaaaeeees 901
WXSTINGTOKENIZEN ...t e ettt e e e e e e ee bbb e e e aaaaeees 902
WXSYSCOIOUIChANGEAEVENTttt e e e e ee et e e e e e aaeees 904
WXSYSEEMSEIEINGS ... eieeeitti ettt ettt e e e et e ee bbb e e e e e e e e eetba e e e e e aaaeesbban e e eaaaaaenes 905
WXTADDEADIAIOG ..ot e e et aaaeee 908

viii

CONTENTS

WXTADDEAPANEL..... ..o et a e aeaes 909
O Ir= 1] O] o] 1 o] PP PSRPPPPIIN 910
WXTAIDVIBW ..ottt e et e e e ettt bbb e e e e e e e eeabba e e e aaaaaeees 914
10 Ir=1 o] O 1 PP PSUPPPPIIN 922
= o] Y =T o | TR PSRRI 927
WXTASKBAITCON ...ttt e e e e et ettt e e e e e e e eeebba e e e aaaaaeees 928
WXTC P I . ————— 930
{0 O ol o] o o T=Tex 1 o] o TR 932
WX T CP SBIVEL ...t e e e e et e e e et e e e et e e e eba e eaennas 936
WXTEIMPFIE ... ettt e e e et e et r e e e e e e eeabba e e e aaaaaeees 937
WXTEXECHIT ..o ettt e e e e et ettt b e e e e e e e eebbba e e e aaaaaeee 939
WXTEXIDALAODJECT ...ttt e e e e e ettt e e e e e e e eebbba e e e aaaaeee 952
WX TEXUNPUESTIIEAIMt e et e e et e e et e e e e e e e e eba e aeenns 953
WX TEXEOULPULSTIEAIM ...ttt ettt e et e e ettt e e e et e e e e et e e e e ab e e aeeba e eaennns 955
= =l a1/ B = 1o o PP RRSRPPPPIIN 957
LSy D o] ol =T o =] TSP PPTTR PP 958
WXTEXEVAIIALON ...ttt ettt e e e e e et ettt e e e e e e e eebbba e e e aaaaaeee 959
WXTEXEFIIE ..ot e ettt e e e e e e e e ettt r e e e e e e eesbba e e e aaaaaeee 962
10 1 (=T Lo PP RSRPPPPIIN 968
1 41T PR RSUPPPPIIN 974
141 ST RSUPPPPIIN 980
WXTIMEIEVENT. ...ttt e et et et e e e e e e e e et bbb s e e e e e e e eebbba e e e aaaaaeees 982
O o] (01T [T TR RSRPPPPIIN 983
WXTOOIBAL ...ttt e ettt e e e e e e e e et bbb s e e e e e e e eesbba e e e aaaaanees 984
O (1 1 TP RSUPPPPIIN 999
WXTTEEITEIMDALA ...ttt e e et e e et e e e et e e eaba e aaes 1014
WXTEEEEVENT ...t et e et ettt e e et e e e et e eaeaa e eaes 1015
WXTEEELAYOUL......eeee ettt ettt e e et e e e et e e et et e e e e bt s e e e et e eeenbaaaaes 1017
WXTTEELAYOULSTIONEA. ...ttt ettt e e e e e e ettt e e e e aaaeees 1023
WXUPAAEUIBVENT. ...t e e e ettt e e e e e e e bbb aeaaaaaeees 1025
VXU R L e ————— 1028
2 AVZ= 1o F= 1o] TP TTUUPPPTRIN 1031
DA Z= T A= o | TSP TUUPPPTPIN 1033
WXV AITANTDALA ...ttt e ettt e e e e e et etbb e e e e e e e eesbbb e e aaaaaeees 1041
VUXV BV .ttt oottt e e e etttk e oo e o2 4o e et bbb oo e e e et e e eebba e e e e e e e e ebbba e e e aaaaanes 1042
WXWWBIV .ttt ettt e et e ettt e e e e th e e e e et e e ettt e e e e ba e e e eba e aenr e aae 1046
WXWWINAOW ...ttt e e e e et ettt e e e e e e e e e etbba e e e e e e e eetbbbn e e e aaaaaeees 1048
WXWINAOWDIC ...ttt e ettt e e e e e e e e etbba e e e e e e e eebbba e e e aaaaaeees 1096
WXWINAOWDISADIET ... et e e e eees 1097
WXZIPINPUESTIAM. ...ttt e e e e e et e tbb e s e e e e e e etbbb e e e aaaaaeees 1098

CONTENTS

WXZIIBINPUESTIEAIM ...ttt e e e e ettt e e e e aaaeees 1098
WXZIIDOULPULSTIIEAIM ...ttt e e e e e ettt e e e e e e ebbbb e e aaaaaeees 1099
FUNCHIONS .. e e ettt e e e e e e e e e eeaenna 1100
TRrEAA fUNCLIONS ... ettt e e e e e et e e e e e eeb b 1100
FlE FUNCHIONS ...ttt e e e et et ettt e e e e e e e e eetbba e e e aeaaaeaes 1101
NEIWOTK FUNCHIONS ...t e et e ettt e e e e e e e e eetbba e e e e aaaeeees 1106
USEr identifiCAtIONoeeiiiii ettt e e e e e et e e e aeeaes 1107
SHING FUNCHIONS ... e et et ettt e e e e e e eabb b e e e e e e e eenenannns 1108
DIalog FUNCHIONS ...t ettt r e e e e e e e ettt e e e e e e e e eetbba e e e aaaaeenes 1110
L1 B 100 o T i o] £ PPPTTTTR 1116
e 101 (T RS 1] 0o [TSP 1117
(04 110] oo =170 I {81 [ex 0] o < PRSPPI 1119
MiSCElIANEOUS TUNCLIONS ... ittt e e e e eeabb e e e e aaeeees 1122
1Y F=Tod {0 ST PP TP TUPPPTRPPN 1139
WXWINAOWS reSOUICE fUNCLIONSceuuiiiiiee ettt e e et aaaaeeees 1146
(oo I8 {1 0o 1 o] o < TSP PURPUPPRIN 1150
Debugging macros and fUNCHIONS ...t eeaeeees 1153
KBYCOUES ...ttt ettt e e e e et ettt e et e e e e e ettt b e e e e e e e e ee bbb e e aaaaaaee 1155
ClasSSES DY CAtEQOIYuuiiii i e s 1158
TOPIC OVEIVIEWS ...ttt e e e e e e et ettt e e e e e e e e e e e eaasa e e e eeeaees 1168
Notes 0N USING the FEfEIrENCEuuue et 1168
Writing a wxWindows application: a rough guide................oooiiiiiiiiiiii e 1168
WXWINAOWS "HEIO WOTIA"t e e eeees 1169
WXWINAOWS SAMPIES ...ttt e e ettt e e e e e e bbb a e e aaaaeees 1172
WWXADD OVEIVIBW. ...ttt ettt e ettt ettt e e e e e e e et tbba e s e e e e e e eetbba e e e e aeeeesbban e e aaaaaaenes 1179
Run time class information OVEIVIEWoouuuuiiiii it eeees 1180
WXSTIING OVEIVIEW. ...ttt ettt e e ettt ettt e e e e e e e e eetbba e e e e aeaeesbban e e aaaaaaeees 1182
Unicode support in WXWINAOWSuiiiiiiiiiiii ettt e e e e et e e e eeees 1187
INEErNAtIONANIZATION ...t e e e ettt e e e e e e e abb e e e e e aaaeees 1190
Writing non-English appliCationsoooo oo 1191
COoNLAINET ClASSES OVEIVIEWcevuvuiiieeeii ettt e e et ettt e e e e e e eatbb e e e e e e e eennnannns 1193
File classes and fUNCLONS OVEIVIEWcccooiuuuuiiiieaiie et eaaeeees 1194
WXSTITEAIMS OVEIVIEW ...ttt e ettt e ettt e e e e et ettt bt e s e e e e e e eetbba e e e aaaaeesbban e e aaaaaaeees 1195
WXLOQ ClASSES OVEIVIEW ...ttt e et et ettt e e e e e e e bbb e e aaaaaeees 1196
DEDUQGGING OVEIVIEW ...ttt ettt e e e e e e e ettt e e e e e e e e eetbba e e e aaaaaeaes 1199
WXCONTIQ ClASSES OVEIVIEW ... ittt e e e e e ettt e e e e aaaeees 1202
WWXEXPE OVEIVIEW. ... ittt e ettt e e e e e e e e etbb e s e e e e e e e tbbaa e e e aaaaaeees 1202
WXFIIESYSTEIM ...ttt e et et ettt e e e e e e e ettt e e e aaaaeees 1206

CONTENTS

Event handliNng OVEIVIEWooii et e e e e ee b eeaaaeeees 1207
WINAOW SEYIES ..ttt e e ettt e e e e e e et ettt e e e e e e e eebbbb e e aaaaaenes 1214
WiINAOW deletion OVEIVIEWcoiiiiiiiii ettt e e e e e et e e e aaaeees 1214
WXDIAIOG OVEIVIEW ...ttt ettt e e e e e e eeabb e e e e e e e e etbbba e e e aaaaaeee 1217
WXV AlIHALOT OVEIVIEW ...ttt ettt e e e e e e e ettt e e e e e e e e ettt e e aaaaaeees 1217
CONSITAINTS OVEIVIEW ...ttt e ettt e e e et e e e e e e e e e ettt e s e e e e e e eatbba e e e e eeeeenrnannns 1220
The WXWINAOWS F€SOUICE SYSTEIMoeiiiiiiiieeeee ettt e ettt e e e e e et e e e e eeeb e 1223
SCIOIING OVEIVIBW. ...ttt e e e e e et ettt e e e e e e e eatbba e e e e e e aeennnannns 1230
Bitmaps and ICONS OVEIVIEW........ceuuiuii ettt e ettt e e e e e eetbt e e e e e e e eetbba e e e aaaaeenes 1232
DEVICE CONTEXE OVEIVIBW ...ttt ettt ettt e e e e e e e ettt e e e e e e e e eetbba e e e aaaaaenes 1235
WWXFONE OVEIVIBW ...ttt e ettt e e e e e e e e ettt e e e e e e e e etbbba e e e e aaaaenes 1236
FONt @NCOAING OVEIVIEW ...ttt e et e ettt e e e e e e e eetbba e e e e e aaeenes 1236
WXSPHIEENVINAOW OVEIVIEW.ciiiiiiiiii ettt e e et e e e e e e ebba e e e e aaaeees 1238
WXTTEECIT OVEIVIBW ...ttt e e e et et ettt e e e e e e e e ettt e e aaaaaeees 1239
WXLISTCIIT OVEIVIBW ...ttt ettt e et e ettt e e e e e e e e ettt e e aaaaaeees 1241
WXIMAGELIST OVEIVIEW ...ttt ettt e e e e e e e ettt e e e e e e e e ebbba e e aaaaaene 1241
COoMMON AIBIOGS OVEIVIEW ...t e ettt e ettt e e e e e e e atb b e e e e e e e eeebaannns 1241
DOCUMENT/VIEW OVEIVIBW ...ttt ettt e e e e e e e ettt s e e e e e e e eeabba e e e aaaaaenes 1245
WXTAD ClASSES OVEIVIEW ...ttt e e e e ettt e e e aaaeees 1251
WXTADVIEW OVEIVIBW ...ttt ettt e e et e e ettt e e e e e e e e ettt e e aaaaaeees 1255
TOOIDAI OVEIVIEBW ...ttt e e e e e e et e e e e e e e eabba e e as 1255
WXGHIA ClASSES OVEIVIEW. ... ittt ettt e e e et et ettt e e e e e e e e eebbb e e e aaaaaenes 1261
WXTIPPTOVIAET OVEIVIEW ...ttt e e e et ettt e e e e e e e ettt e e aaaaaeees 1261
PrINTING OVEIVIEW ...ttt e e e et e e ettt e e e e e e e e eetbba e e e e aaaaenes 1262
MUILIENrEAAING OVEIVIEWt e et e e e e eetbb e e e e aaeeees 1263
Drag N DIOP OVEIVIEW.uuuieeeieeetiite e e e e ettt e e e e e e e ettt e e e e e e e eeetbta e e e e e aeeeetbbna e aaaaaaaeees 1264
WXDAtAODJECT OVEIVIEW ...ttt ettt e e e et e e ettt e e e e e e e e ebbba e e e aaaaaeees 1265
Database ClaSSES OVEIVIEW.couuiuiii ettt e e e ettt e e e e e eetbb e e aeaaeeees 1266
Interprocess COMMUNICAtION OVEIVIEW.ccuuuueiiieeeieeeeiiia e e e e ettt e e e e eeabbi e e e aaeeees 1271
WXHTML NOTES ... e e e e e ees 1276
WXHTML QUICK STAIM ...ttt e e e e e e ettt e e e e e e ettt e e aaaaaeees 1276
HTIML PIINEING ©ee ettt e et e ettt e e e e e e e e ettt e e e e e e e e eesbba e e e aaaaaeaes 1277
HEIP FlES FOIMALot e et e e e e e e e tbb e e e e aaaeaes 1277
INPUL FIIEEIS e oottt e e e et et ettt e e e e e e e eeabba e e e aeaaaeees 1279
CellS AN CONLAINEISunieeiiieeeeie e e e e e ettt e e e e e e eatb e e e e e e e eeannannns 1279
Tag HANAIBIS ... e e et e e e e e et 1280
Tags supported DY WXHTML e 1283
Property Sheet ClaSSESoo e 1287
INEFOAUCTION ...t oo et ettt e e e e e et ettt e e e e e e e eeabba e e e eeaaaenes 1287

Xi

CONTENTS

HEAEIS. ... 1289
TOPIC OVEIVIEBWS ...t e ettt ettt e e et et ettt e e e e e e e ettt b e e e e e e e e ee bbb e e e e e e e eeebbaa e e eaeas 1289
ClaSSES DY CAtBYONY ...eniiiee et e et e e e e eaeaaaaas 1297
WXPYENON NOTES ... e e e e e eeanane 1299
Whaat IS WXPYINONT? ...ttt e e e e e e bbb a e e e aaaeees 1299
WHY USE WXPYINONT ...t e e e e et et e e e aaaeees 1299
Other PYtNON GUISeei e e et e e e e eeaaaaans 1300
BUIIING WXPYENON ...ttt e e e e et e e e aeees 1300
USING WXPYENON..... et e e et e e ettt e e e e e e e e eetbba e e e aaaaaeees 1302
wxWindows classes implemented in WXPYIhON ... 1305
Where t0 9O fOr NEIP ... ettt a e e eees 1308
Porting from WXWINAOWS L.XX .ccceiiiiiiiiieeeeeeieeiiiiiiee e e et eeeeeeeaennes 1310
Preparing for VEISION 2.0........coiiiiii et e e e e e et e eaaaeaes 1310
THE NEW EVENT SYSTEIM ... ittt e e e e e et e e e e e e eabbaa e as 1312
ClaSS NIBIAICNYo e et e e e e e eeeaaaaas 1312
(€1 B] le] o] [=Tox (=3P 1313
Dialogs @nd CONLIOISuuuiie ittt e e e e eeabb e e e e aaaeees 1313
Device contexts and PAINTINGccuuuuuiaiiiiiiii et e e e e et e e e e e eesaba e e aaaeeaes 1314
MISCEIIANEOUS.......ccoiiiiiiieee e 1315
Backward COMPatibilitycooiiiiiii e 1316
L@ 18 [od [1] (=] (=T [= PP 1316
RETEIENCES ... ettt e e e e e e eeaenne 1320
L0 [PP PUUPPPPPRRRN 1322

Xii

Copyright notice

(c) 1999 Julian Smart, Robert Roebling, Vadim Zeitlin and other members of the
wxWindows team
Portions (c) 1996 Artificial Intelligence Applications Institute

Please also see the wxWindows licence files (preamble.txt, Igpl.txt, gpl.txt, licence.txt,
licendoc.txt) for conditions of software and documentation use.

wxWindows Library License, Version 3
Copyright (C) 1998 Julian Smart, Robert Roebling, Vadim Zeitlin et al.

Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

WXWINDOWS LIBRARY LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

This library is free software; you can redistribute it and/or modify it under the terms of
the GNU Library General Public License as published by the Free Software Foundation;
either version 2 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY:; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Library General Public License for
more details.

You should have received a copy of the GNU Library General Public License along with
this software, usually in a file named COPYING.LIB. If not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.

EXCEPTION NOTICE

1. As a special exception, the copyright holders of this library give permission for
additional uses of the text contained in this release of the library as licensed under the
wxWindows Library License, applying either version 3 of the License, or (at your option)
any later version of the License as published by the copyright holders of version 3 of the
License document.

2. The exception is that you may create binary object code versions of any works using
this library or based on this library, and use, copy, modify, link and distribute such binary
object code files unrestricted under terms of your choice.

3. If you copy code from files distributed under the terms of the GNU General Public
License or the GNU Library General Public License into a copy of this library, as this
license permits, the exception does not apply to the code that you add in this way. To
avoid misleading anyone as to the status of such modified files, you must delete this
exception notice from such code and/or adjust the licensing conditions notice
accordingly.

Xiii

COPYRIGHT

4. If you write modifications of your own for this library, it is your choice whether to
permit this exception to apply to your modifications. If you do not wish that, you must
delete the exception notice from such code and/or adjust the licensing conditions notice
accordingly.

GNU Library General Public License, Version 2

Copyright (C) 1991 Free Software Foundation, Inc. 675 Mass Ave, Cambridge, MA
02139, USA

Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

[This is the first released version of the library GPL. It is numbered 2 because it goes
with version 2 of the ordinary GPL.]

Preamble

The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public Licenses are intended to guarantee your
freedom to share and change free software -- to make sure the software is free for all its
users.

This license, the Library General Public License, applies to some specially designated
Free Software Foundation software, and to any other libraries whose authors decide to
use it. You can use it for your libraries, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute
copies of free software (and charge for this service if you wish), that you receive source
code or can get it if you want it, that you can change the software or use pieces of it in
new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these
rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the library, or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you must
give the recipients all the rights that we gave you. You must make sure that they, too,
receive or can get the source code. If you link a program with the library, you must
provide complete object files to the recipients so that they can relink them with the
library, after making changes to the library and recompiling it. And you must show them
these terms so they know their rights.

Our method of protecting your rights has two steps: (1) copyright the library, and (2) offer
you this license which gives you legal permission to copy, distribute and/or modify the
library.

Also, for each distributor's protection, we want to make certain that everyone
understands that there is no warranty for this free library. If the library is modified by

Xiv

COPYRIGHT

someone else and passed on, we want its recipients to know that what they have is not
the original version, so that any problems introduced by others will not reflect on the
original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that companies distributing free software will individually obtain patent
licenses, thus in effect transforming the program into proprietary software. To prevent
this, we have made it clear that any patent must be licensed for everyone's free use or
not licensed at all.

Most GNU software, including some libraries, is covered by the ordinary GNU General
Public License, which was designed for utility programs. This license, the GNU Library
General Public License, applies to certain designated libraries. This license is quite
different from the ordinary one; be sure to read it in full, and don't assume that anything
in it is the same as in the ordinary license.

The reason we have a separate public license for some libraries is that they blur the
distinction we usually make between modifying or adding to a program and simply using
it. Linking a program with a library, without changing the library, is in some sense simply
using the library, and is analogous to running a utility program or application program.
However, in a textual and legal sense, the linked executable is a combined work, a
derivative of the original library, and the ordinary General Public License treats it as
such.

Because of this blurred distinction, using the ordinary General Public License for libraries
did not effectively promote software sharing, because most developers did not use the
libraries. We concluded that weaker conditions might promote sharing better.

However, unrestricted linking of non-free programs would deprive the users of those
programs of all benefit from the free status of the libraries themselves. This Library
General Public License is intended to permit developers of non-free programs to use
free libraries, while preserving your freedom as a user of such programs to change the
free libraries that are incorporated in them. (We have not seen how to achieve this as
regards changes in header files, but we have achieved it as regards changes in the
actual functions of the Library.) The hope is that this will lead to faster development of
free libraries.

The precise terms and conditions for copying, distribution and modification follow. Pay
close attention to the difference between a "work based on the library" and a "work that
uses the library". The former contains code derived from the library, while the latter only
works together with the library.

Note that it is possible for a library to be covered by the ordinary General Public License
rather than by this special one.

GNU LIBRARY GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library which contains a notice placed
by the copyright holder or other authorized party saying it may be distributed under the
terms of this Library General Public License (also called "this License"). Each licensee is

XV

COPYRIGHT

addressed as "you".

A "library" means a collection of software functions and/or data prepared so as to be
conveniently linked with application programs (which use some of those functions and
data) to form executables.

The "Library", below, refers to any such software library or work which has been
distributed under these terms. A "work based on the Library" means either the Library or
any derivative work under copyright law: that is to say, a work containing the Library or a
portion of it, either verbatim or with modifications and/or translated straightforwardly into
another language. (Hereinafter, translation is included without limitation in the term
"modification".)

"Source code"” for a work means the preferred form of the work for making modifications
to it. For a library, complete source code means all the source code for all modules it
contains, plus any associated interface definition files, plus the scripts used to control
compilation and installation of the library.

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running a program using the Library is not
restricted, and output from such a program is covered only if its contents constitute a
work based on the Library (independent of the use of the Library in a tool for writing it).
Whether that is true depends on what the Library does and what the program that uses
the Library does.

1. You may copy and distribute verbatim copies of the Library's complete source code as
you receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all
the notices that refer to this License and to the absence of any warranty; and distribute a
copy of this License along with the Library.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it, thus forming a
work based on the Library, and copy and distribute such modifications or work under the
terms of Section 1 above, provided that you also meet all of these conditions:

a) The modified work must itself be a software library.

b) You must cause the files modified to carry prominent notices stating that you
changed the files and the date of any change.

¢) You must cause the whole of the work to be licensed at no charge to all third
parties under the terms of this License.

d) If a facility in the modified Library refers to a function or a table of data to be
supplied by an application program that uses the facility, other than as an
argument passed when the facility is invoked, then you must make a good faith
effort to ensure that, in the event an application does not supply such function or
table, the facility still operates, and performs whatever part of its purpose remains

XVi

COPYRIGHT

meaningful.

(For example, a function in a library to compute square roots has a purpose that is
entirely well-defined independent of the application. Therefore, Subsection 2d
requires that any application-supplied function or table used by this function must
be optional: if the application does not supply it, the square root function must still
compute square roots.)

These requirements apply to the modified work as a whole. If identifiable sections of that
work are not derived from the Library, and can be reasonably considered independent
and separate works in themselves, then this License, and its terms, do not apply to
those sections when you distribute them as separate works. But when you distribute the
same sections as part of a whole which is a work based on the Library, the distribution of
the whole must be on the terms of this License, whose permissions for other licensees
extend to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work
written entirely by you; rather, the intent is to exercise the right to control the distribution
of derivative or collective works based on the Library.

In addition, mere aggregation of another work not based on the Library with the Library
(or with a work based on the Library) on a volume of a storage or distribution medium
does not bring the other work under the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public License instead
of this License to a given copy of the Library. To do this, you must alter all the notices
that refer to this License, so that they refer to the ordinary GNU General Public License,
version 2, instead of to this License. (If a newer version than version 2 of the ordinary
GNU General Public License has appeared, then you can specify that version instead if
you wish.) Do not make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the ordinary
GNU General Public License applies to all subsequent copies and derivative works
made from that copy.

This option is useful when you wish to copy part of the code of the Library into a program
that is not a library.

4. You may copy and distribute the Library (or a portion or derivative of it, under Section
2) in object code or executable form under the terms of Sections 1 and 2 above provided
that you accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange.

If distribution of object code is made by offering access to copy from a designated place,
then offering equivalent access to copy the source code from the same place satisfies
the requirement to distribute the source code, even though third parties are not
compelled to copy the source along with the object code.

5. A program that contains no derivative of any portion of the Library, but is designed to
work with the Library by being compiled or linked with it, is called a "work that uses the

XVil

COPYRIGHT

Library". Such a work, in isolation, is not a derivative work of the Library, and therefore
falls outside the scope of this License.

However, linking a "work that uses the Library" with the Library creates an executable
that is a derivative of the Library (because it contains portions of the Library), rather than
a "work that uses the library". The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.

When a "work that uses the Library" uses material from a header file that is part of the
Library, the object code for the work may be a derivative work of the Library even though
the source code is not. Whether this is true is especially significant if the work can be
linked without the Library, or if the work is itself a library. The threshold for this to be true
is not precisely defined by law.

If such an object file uses only numerical parameters, data structure layouts and
accessors, and small macros and small inline functions (ten lines or less in length), then
the use of the object file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the Library will still fall
under Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute the object code
for the work under the terms of Section 6. Any executables containing that work also fall
under Section 6, whether or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also compile or link a "work that uses
the Library" with the Library to produce a work containing portions of the Library, and
distribute that work under terms of your choice, provided that the terms permit
modification of the work for the customer's own use and reverse engineering for
debugging such modifications.

You must give prominent notice with each copy of the work that the Library is used in it
and that the Library and its use are covered by this License. You must supply a copy of
this License. If the work during execution displays copyright notices, you must include
the copyright notice for the Library among them, as well as a reference directing the user
to the copy of this License. Also, you must do one of these things:

a) Accompany the work with the complete corresponding machine-readable source
code for the Library including whatever changes were used in the work (which
must be distributed under Sections 1 and 2 above); and, if the work is an
executable linked with the Library, with the complete machine-readable "work that
uses the Library", as object code and/or source code, so that the user can modify
the Library and then relink to produce a modified executable containing the
modified Library. (It is understood that the user who changes the contents of
definitions files in the Library will not necessarily be able to recompile the
application to use the modified definitions.)

b) Accompany the work with a written offer, valid for at least three years, to give
the same user the materials specified in Subsection 6a, above, for a charge no
more than the cost of performing this distribution.

c) If distribution of the work is made by offering access to copy from a designated

Xvili

COPYRIGHT

place, offer equivalent access to copy the above specified materials from the same
place.

d) Verify that the user has already received a copy of these materials or that you
have already sent this user a copy.

For an executable, the required form of the "work that uses the Library" must include any
data and utility programs needed for reproducing the executable from it. However, as a
special exception, the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler, kernel,
and so on) of the operating system on which the executable runs, unless that component
itself accompanies the executable.

It may happen that this requirement contradicts the license restrictions of other
proprietary libraries that do not normally accompany the operating system. Such a
contradiction means you cannot use both them and the Library together in an executable
that you distribute.

7. You may place library facilities that are a work based on the Library side-by-side in a
single library together with other library facilities not covered by this License, and
distribute such a combined library, provided that the separate distribution of the work
based on the Library and of the other library facilities is otherwise permitted, and
provided that you do these two things:

a) Accompany the combined library with a copy of the same work based on the
Library, uncombined with any other library facilities. This must be distributed under
the terms of the Sections above.

b) Give prominent notice with the combined library of the fact that part of it is a
work based on the Library, and explaining where to find the accompanying
uncombined form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute the Library except as
expressly provided under this License. Any attempt otherwise to copy, modify,
sublicense, link with, or distribute the Library is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

9. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Library or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Library (or any work based on the Library), you indicate
your acceptance of this License to do so, and all its terms and conditions for copying,
distributing or modifying the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the Library), the
recipient automatically receives a license from the original licensor to copy, distribute,
link with or modify the Library subject to these terms and conditions. You may not
impose any further restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to this License.

XiX

COPYRIGHT

11. If, as a consequence of a court judgment or allegation of patent infringement or for
any other reason (not limited to patent issues), conditions are imposed on you (whether
by court order, agreement or otherwise) that contradict the conditions of this License,
they do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Library at all. For
example, if a patent license would not permit royalty-free redistribution of the Library by
all those who receive copies directly or indirectly through you, then the only way you
could satisfy both it and this License would be to refrain entirely from distribution of the
Library.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply, and the section as a whole
is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property
right claims or to contest validity of any such claims; this section has the sole purpose of
protecting the integrity of the free software distribution system which is implemented by
public license practices. Many people have made generous contributions to the wide
range of software distributed through that system in reliance on consistent application of
that system; it is up to the author/donor to decide if he or she is willing to distribute
software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

12. If the distribution and/or use of the Library is restricted in certain countries either by
patents or by copyrighted interfaces, the original copyright holder who places the Library
under this License may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if written in the body
of this License.

13. The Free Software Foundation may publish revised and/or new versions of the
Library General Public License from time to time. Such new versions will be similar in
spirit to the present version, but may differ in detail to address new problems or
concerns.

Each version is given a distinguishing version number. If the Library specifies a version
number of this License which applies to it and "any later version”, you have the option of
following the terms and conditions either of that version or of any later version published
by the Free Software Foundation. If the Library does not specify a license version
number, you may choose any version ever published by the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose
distribution conditions are incompatible with these, write to the author to ask for
permission. For software which is copyrighted by the Free Software Foundation, write to
the Free Software Foundation; we sometimes make exceptions for this. Our decision will
be guided by the two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally.

XX

COPYRIGHT

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY
AND PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD THE LIBRARY
PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY TO OPERATE WITH
ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS
Appendix: How to Apply These Terms to Your New Libraries

If you develop a new library, and you want it to be of the greatest possible use to the
public, we recommend making it free software that everyone can redistribute and
change. You can do so by permitting redistribution under these terms (or, alternatively,
under the terms of the ordinary General Public License).

To apply these terms, attach the following notices to the library. It is safest to attach
them to the start of each source file to most effectively convey the exclusion of warranty;
and each file should have at least the "copyright" line and a pointer to where the full
notice is found.

<one line to give the library's nane and a brief idea of what it does.>
Copyright (C <year> <nane of author>

This library is free software; you can redistribute it and/or
modify it under the terns of the GNU Li brary General Public

Li cense as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any |ater version.

This library is distributed in the hope that it will be useful,
but W THOUT ANY WARRANTY; wi thout even the inplied warranty of
MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE. See the G\U
Li brary General Public License for nore details.

XXi

COPYRIGHT

You shoul d have received a copy of the GNU Library General Public
Li cense along with this library; if not, wite to the Free
Sof tware Foundation, Inc., 675 Mass Ave, Canbridge, MA 02139, USA

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a "copyright disclaimer" for the library, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclains all copyright interest in the
library "Frob' (a library for tweaking knobs) witten by Janes Random
Hacker .

<signature of Ty Coon>, 1 April 1990
Ty Coon, President of Vice

That's all there is to it!

XXil

Introduction
What is wxWindows?

wxWindows is a C++ framework providing GUI (Graphical User Interface) and other
facilities on more than one platform. Version 2 currently supports MS Windows (16-bit,
Windows 95 and Windows NT), Unix with GTK+, Unix with Motif, and Mac. An OS/2 port
is in progress.

wxWindows was originally developed at the Artificial Intelligence Applications Institute,
University of Edinburgh, for internal use, and was first made publicly available in 1993.
Version 2 is a vastly improved version written and maintained by Julian Smart, Robert
Roebling, Vadim Zeitlin and many others.

This manual discusses wxWindows in the context of multi-platform development.

Please note that in the following, "MS Windows" often refers to all platforms related to
Microsoft Windows, including 16-bit and 32-bit variants, unless otherwise stated. All
trademarks are acknowledged.

Why another cross-platform development tool?

wxWindows was developed to provide a cheap and flexible way to maximize investment
in GUI application development. While a number of commercial class libraries already
existed for cross-platform development, none met all of the following criteria:

low price;

source availability;

simplicity of programming;

support for a wide range of compilers.

PoONPE

Since wxWindows was started, several other free or almost-free GUI frameworks have
emerged. However, none has the range of features, flexibility, documentation and the
well-established development team that wxWindows has.

As open source software, wxWindows has benefited from comments, ideas, bug fixes,
enhancements and the sheer enthusiasm of users. This gives wxWindows a certain
advantage over its commercial competitors (and over free libraries without an
independent development team), plus a robustness against the transience of one
individual or company. This openness and availability of source code is especially
important when the future of thousands of lines of application code may depend upon
the longevity of the underlying class library.

Version 2 goes much further than previous versions in terms of generality and features,
allowing applications to be produced that are often indistinguishable from those
produced using single-platform toolkits such as Motif, GTK+ and MFC.

The importance of using a platform-independent class library cannot be overstated,
since GUI application development is very time-consuming, and sustained popularity of
particular GUIs cannot be guaranteed. Code can very quickly become obsolete if it

CHAPTER 2

addresses the wrong platform or audience. wxWindows helps to insulate the
programmer from these winds of change. Although wxWindows may not be suitable for
every application (such as an OLE-intensive program), it provides access to most of the
functionality a GUI program normally requires, plus many extras such as network
programming, PostScript output, and HTML rendering; and it can of course be extended
as needs dictate. As a bonus, it provides a far cleaner and easier programming
interface than the native APIs. Programmers may find it worthwhile to use wxWindows
even if they are developing on only one platform.

It is impossible to sum up the functionality of wxWindows in a few paragraphs, but here
are some of the benefits:

Low cost (free, in fact!)

You get the source.

Available on a variety of popular platforms.

Works with almost all popular C++ compilers and Python.
Over 50 example programs.

Over 1000 pages of printable and on-line documentation.

Includes Tex2RTF, to allow you to produce your own documentation in Windows
Help, HTML and Word RTF formats.

Simple-to-use, object-oriented API.

Flexible event system.

Graphics calls include lines, rounded rectangles, splines, polylines, etc.
Constraint-based and sizer-based layouting.

Print/preview and document/view architectures.

Toolbar, notebook, tree control, advanced list control classes.

PostScript generation under Unix, normal MS Windows printing on the PC.

MDI (Multiple Document Interface) support.

Can be used to create DLLs under Windows, dynamic libraries on Unix.
Common dialogs for file browsing, printing, colour selection, etc.

Under MS Windows, support for creating metafiles and copying them to the
clipboard.

An API for invoking help from applications.

Ready-to-use HTML window (supporting a subset of HTML).

Dialog Editor for building dialogs.

Network support via a family of socket and protocol classes.

Support for platform independent image procesing.

Built-in support for many file formats (BMP, PNG, JPEG, GIF, XPM, PNM, PCX).

Changes from version 1.xx
These are a few of the major differences between versions 1.xx and 2.0.
Removals:

XView is no longer supported;

all controls (panel items) no longer have labels attached to them;

wxForm has been removed;

wxCanvasDC, wxPanelDC removed (replaced by wxClientDC, wxWindowDC,

CHAPTER 2

wxPaintDC which can be used for any window);
wxMultiText, wxTextWindow, wxText removed and replaced by wxTextCtrl;
classes no longer divided into generic and platform-specific parts, for efficiency.

Additions and changes:

class hierarchy changed, and restrictions about subwindow nesting lifted;
header files reorganised to conform to normal C++ standards;

classes less dependent on each another, to reduce executable size;
wxString used instead of char* wherever possible;

the number of separate but mandatory utilities reduced;

the event system has been overhauled, with virtual functions and callbacks
being replaced with MFC-like event tables;

new controls, such as wxTreeCtrl, wxListCtrl, wxSpinButton;

less inconsistency about what events can be handled, so for example mouse
clicks or key presses on controls can now be intercepted;

the status bar is now a separate class, wxStatusBar, and is implemented in
generic wxWindows code;

some renaming of controls for greater consistency;

wxBitmap has the notion of bitmap handlers to allow for extension to new
formats without ifdefing;

new dialogs: wxPageSetupDialog, wxFileDialog, wxDirDialog,
wxMessageDialog, wxSingleChoiceDialog, wxTextEntryDialog;

GDI objects are reference-counted and are now passed to most functions by
reference, making memory management far easier;

wxSystemSettings class allows querying for various system-wide properties
such as dialog font, colours, user interface element sizes, and so on;

better platform look and feel conformance;

toolbar functionality now separated out into a family of classes with the same
API;

device contexts are no longer accessed using wxWindow::GetDC - they are
created temporarily with the window as an argument;

events from sliders and scrollbars can be handled more flexibly;

the handling of window close events has been changed in line with the new
event system;

the concept of validator has been added to allow much easier coding of the
relationship between controls and application data;

the documentation has been revised, with more cross-referencing.

Platform-specific changes:

The Windows header file (windows.h) is no longer included by wxWindows
headers;

wx.dll supported under Visual C++;

the full range of Windows 95 window decorations are supported, such as modal
frame borders;

MDI classes brought out of wxFrame into separate classes, and made more
flexible.

CHAPTER 2

Changes from version 2.0
These are a few of the differences between versions 2.0 and 2.2.

Removals:

GTK 1.0 no longer supported.

Additions and changes:

Corrected many classes to conform better to documented behaviour.
Added handlers for more image formats (Now GIF, JPEG, PCX, BMP, XPM,
PNG, PNM).

Improved support for socket and network functions.

Support for different national font encodings.

Sizer based layout system.

HTML widget and help system.

Added some controls (e.g. wxSpinCtrl) and supplemented many.
Many optical improvements to GTK port.

Support for menu accelerators in GTK port.

Enhanced and improved support for scrolling, including child windows.
Complete rewrite of clipboard and drag'n'drop classes.

Improved support for ODBC databases.

Improved tab traversal in dialogs.

wxWindows requirements

To make use of wxWindows, you currently need one or both of the following setups.
(a) PC:

1. A 486 or higher PC running MS Windows.

2. A Windows compiler: most are supported, but please see i nstal | . t xt for
details. Supported compilers include Microsoft Visual C++ 4.0 or higher, Borland
C++, Cygwin, Metrowerks CodeWatrrior.

3. Atleast 60 MB of disk space.

(b) Unix:
1. Almost any C++ compiler, including GNU C++ (EGCS 1.1.1 or above).

2. Almost any Unix workstation, and one of: GTK+ 1.2, Motif 1.2 or higher, Lesstif.
3. Atleast 60 MB of disk space.

Availability and location of wxWindows
wxWindows is available by anonymous FTP and World Wide Web from

ftp://lwww.remstar.com/pub/wxwin (f t p: / / www. r enst ar . com pub/ wxwi n) and/or
http://mww.wxwindows.org (ht t p: / / www. wxwi ndows. or g).

CHAPTER 2

You can also buy a CD-ROM using the form on the Web site, or by contacting:

Julian Smart

12 North Street West
Uppingham

Rutland

LE15 9SG
julian.smart@ukonline.co.uk

Acknowledgments

Thanks are due to AlAI for being willing to release the original version of wxWindows
into the public domain, and to our patient partners.

We would particularly like to thank the following for their contributions to wxWindows,
and the many others who have been involved in the project over the years. Apologies for
any unintentional omissions from this list. Yiorgos Adamopoulos, Jamshid Afshar,
Alejandro Aguilar-Sierra, AlAl, Patrick Albert, Karsten Ballueder, Michael Bedward, Kai
Bendorf, Yura Bidus, Keith Gary Boyce, Chris Breeze, Pete Britton, lan Brown, C.
Buckley, Dmitri Chubraev, Robin Corbet, Cecil Coupe, Andrew Davison, Neil Dudman,
Robin Dunn, Hermann Dunkel, Jos van Eijndhoven, Tom Felici, Thomas Fettig,
Matthew Flatt, Pasquale Foggia, Josep Fortiana, Todd Fries, Dominic Gallagher,
Guillermo Rodriguez Garcia, Wolfram Gloger, Norbert Grotz, Stefan Gunter, Bill Hale,
Patrick Halke, Stefan Hammes, Guillaume Helle, Harco de Hilster, Cord Hockemeyer,
Markus Holzem, Olaf Klein, Leif Jensen, Bart Jourquin, Guilhem Lavaux, Jan Lessner,
Nicholas Liebmann, Torsten Liermann, Per Lindgvist, Thomas Runge, Tatu Mannisto,
Scott Maxwell, Thomas Myers, Oliver Niedung, Stefan Neis, Hernan Otero, lan Perrigo,
Timothy Peters, Giordano Pezzoli, Harri Pasanen, Thomaso Paoletti, Garrett Potts,
Marcel Rasche, Robert Roebling, Dino Scaringella, Jobst Schmalenbach, Arthur Seaton,
Paul Shirley, Vaclav Slavik, Stein Somers, Petr Smilauer, Neil Smith, Kari Syst&, Arthur
Tetzlaff-Deas, Jonathan Tonberg, Jyrki Tuomi, David Webster, Janos Vegh, Andrea
Venturoli, Vadim Zeitlin, Xiaokun Zhu, Edward Zimmermann.

‘Graphplace’, the basis for the wxGraphLayout library, is copyright Dr. Jos T.J. van
Eijndhoven of Eindhoven University of Technology. The code has been used in
wxGraphLayout with his permission.

We also acknowledge the author of XFIG, the excellent Unix drawing tool, from the
source of which we have borrowed some spline drawing code. His copyright is included
below.

XFig2.1 is copyright (c) 1985 by Supoj Sutanthavibul. Permission to use, copy, modify,
distribute, and sell this software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in all copies and that both
that copyright notice and this permission notice appear in supporting documentation, and
that the name of M.L.T. not be used in advertising or publicity pertaining to distribution of
the software without specific, written prior permission. M.I.T. makes no representations
about the suitability of this software for any purpose. It is provided "as is" without
express or implied warranty.

Multi-platform development with wxWindows

This chapter describes the practical details of using wxWindows. Please see the file
install.txt for up-to-date installation instructions, and changes.txt for differences between
versions.

Include files

The main include file is " wx/ wx. h"; this includes the most commonly used modules of
wxWindows.

To save on compilation time, include only those header files relevant to the source file. If
you are using precompiled headers, you should include the following section before any
other includes:

/1 For conpilers that support preconpilation, includes "wx.h"
#i ncl ude <wx/wxprec. h>

#i fdef __ BORLANDC _
#pragma hdr st op
#endi f

#i f ndef WK_PRECOWP

/1 1nclude your mnimal set of headers here, or wx.h
#i ncl ude <wx/wx. h>

#endi f

now your other include files ...

The file " wx/ wxpr ec. h" includes " wx/ wx. h" . Although this incantation may seem
quirky, it is in fact the end result of a lot of experimentation, and several Windows
compilers to use precompilation (those tested are Microsoft Visual C++, Borland C++
and Watcom C++).

Borland precompilation is largely automatic. Visual C++ requires specification of

"wx/ wxprec. h" as the file to use for precompilation. Watcom C++ is automatic apart
from the specification of the .pch file. Watcom C++ is strange in requiring the
precompiled header to be used only for object files compiled in the same directory as
that in which the precompiled header was created. Therefore, the wxWindows Watcom
C++ makefiles go through hoops deleting and recreating a single precompiled header
file for each module, thus preventing an accumulation of many multi-megabyte .pch files.

Libraries

The GTK and Motif ports of wxWindow can create either a static library or a shared
library on most Unix or Unix-like systems. The static library is called libwx_gtk.a and
libwx_motif.a whereas the name of the shared library is dependent on the system it is
created on and the version you are using. The library name for the GTK version of
wxWindows 2.2 on Linux and Solaris will be libwx_gtk-2.2.50.0.0.0, on HP-UX, it will be
libwx_gtk-2.2.sl, on AIX just libwx_gtk.a etc.

Under Windows, use the library wx.lib (release) or wxd.lib (debug) for stand-alone

CHAPTER 3

Windows applications, or wxdll.lib (wxdlld.lib) for creating DLLSs.
Configuration

Options are configurable in the file " wx/ XXX/ set up. h" where XXX is the required
platform (such as msw, motif, gtk, mac). Some settings are a matter of taste, some help
with platform-specific problems, and others can be set to minimize the size of the library.
Please see the setup.h file and i nst al | . t xt files for details on configuration.

Under Unix (GTK and Motif) the corresponding setup.h files are generated automatically
when configuring the wxWindows using the "configure" script. When using the RPM
packages for installing wxWindows on Linux, a correct setup.h is shipped in the package
and this must not be changed.

Makefiles

At the moment there is no attempt to make Unix makefiles and PC makefiles compatible,
i.e. one makefile is required for each environment. The Unix ports use a sophisticated
system based on the GNU autoconf tool and this system will create the makefiles as
required on the respective platform. Although the makefiles are not identical in Windows,
Mac and Unix, care has been taken to make them relatively similar so that moving from
one platform to another will be painless.

Sample makefiles for Unix (suffix .unx), MS C++ (suffix .DOS and .NT), Borland C++
(.BCC and .B32) and Symantec C++ (.SC) are included for the library, demos and
utilities.

The controlling makefile for wxWindows is in the MS-Windows directory sr ¢/ nswfor the
different Windows compiler and in the build directory when using the Unix ports. The
build directory can be chosen by the user. It is the directory in which the "configure"
script is run. This can be the normal base directory (by running . / conf i gur e there) or
any other directory (e.g. . . / conf i gur e after creating a build-directory in the directory
level above the base directory).

Please see the platform-specifici nst al | . t xt file for further details.
Windows-specific files

wxWindows application compilation under MS Windows requires at least two extra files,
resource and module definition files.

Resource file

The least that must be defined in the Windows resource file (extension RC) is the
following statement:

rci ncl ude "wx/ nsw wx. rc"

which includes essential internal wxWindows definitions. The resource script may also

CHAPTER 3

contain references to icons, cursors, etc., for example:

WXi con i con WX.ico

The icon can then be referenced by name when creating a frame icon. See the MS
Windows SDK documentation.

Note: include wx.rc after any ICON statements so programs that search your executable
for icons (such as the Program Manager) find your application icon first.

Module definition file

A module definition file (extension DEF) is required for 16-bit applications, and looks like
the following:

NAVE Hell o

DESCRI PTION 'Hello

EXETYPE W NDOWNG

STUB "W NSTUB. EXE'

CODE PRELOAD MOVEABLE DI SCARDABLE
DATA PRELOAD MOVEABLE MJLTI PLE
HEAPSI ZE 1024

STACKSI ZE 8192

The only lines which will usually have to be changed per application are NAME and
DESCRIPTION.

Allocating and deleting wxWindows objects

In general, classes derived from wxWindow must dynamically allocated with new and
deleted with delete. If you delete a window, all of its children and descendants will be
automatically deleted, so you don't need to delete these descendants explicitly.

When deleting a frame or dialog, use Destroy rather than delete so that the wxWindows
delayed deletion can take effect. This waits until idle time (when all messages have been
processed) to actually delete the window, to avoid problems associated with the GUI
sending events to deleted windows.

Don't create a window on the stack, because this will interfere with delayed deletion.

If you decide to allocate a C++ array of objects (such as wxBitmap) that may be cleaned
up by wxwWindows, make sure you delete the array explicitly before wxWindows has a
chance to do so on exit, since calling delete on array members will cause memory
problems.

wxColour can be created statically: it is not automatically cleaned up and is unlikely to be
shared between other objects; it is lightweight enough for copies to be made.

Beware of deleting objects such as a wxPen or wxBitmap if they are still in use.
Windows is particularly sensitive to this: so make sure you make calls like

CHAPTER 3

wxDC::SetPen(wxNullPen) or wxDC::SelectObject(wxNullBitmap) before deleting a
drawing object that may be in use. Code that doesn't do this will probably work fine on
some platforms, and then fail under Windows.

Architecture dependency

A problem which sometimes arises from writing multi-platform programs is that the basic
C types are not defiend the same on all platforms. This holds true for both the length in
bits of the standard types (such as int and long) as well as their byte order, which might
be little endian (typically on Intel computers) or big endian (typically on some Unix
workstations). wxWindows defines types and macros that make it easy to write
architecture independent code. The types are:

wxInt32, wxInt16, wxInt8, wxUint32, wxUint16 = wxWord, wxUint8 = wxByte

where wxInt32 stands for a 32-bit signed integer type etc. You can also check which
architecture the program is compiled on using the wxBYTE_ORDER define which is
either wxBIG_ENDIAN or wxLITTLE_ENDIAN (in the future maybe wxPDP_ENDIAN as
well).

The macros handling bit-swapping with respect to the applications endianness are
described in the Macros (p. 1139) section.

Conditional compilation

One of the purposes of wxWindows is to reduce the need for conditional compilation in
source code, which can be messy and confusing to follow. However, sometimes it is
necessary to incorporate platform-specific features (such as metafile use under MS
Windows). The symbols listed in the file synbol s. t xt may be used for this purpose,
along with any user-supplied ones.

C++ issues

The following documents some miscellaneous C++ issues.

Templates

wxWindows does not use templates since it is a notoriously unportable feature.

RTTI

wxWindows does not use run-time type information since wxWindows provides its own
run-time type information system, implemented using macros.

Type of NULL

Some compilers (e.g. the native IRIX cc) define NULL to be OL so that no conversion to

CHAPTER 3

pointers is allowed. Because of that, all these occurences of NULL in the GTK port use
an explicit conversion such as

wxW ndow *ny_wi ndow = (wxW ndow*) NULL;

It is recommended to adhere to this in all code using wxWindows as this make the code
(a bit) more portable.

Precompiled headers

Some compilers, such as Borland C++ and Microsoft C++, support precompiled
headers. This can save a great deal of compiling time. The recommended approach is to
precompile " wx. h" , using this precompiled header for compiling both wxWindows itself
and any wxWindows applications. For Windows compilers, two dummy source files are
provided (one for normal applications and one for creating DLLS) to allow initial creation
of the precompiled header.

However, there are several downsides to using precompiled headers. One is that to take
advantage of the facility, you often need to include more header files than would
normally be the case. This means that changing a header file will cause more
recompilations (in the case of wxWindows, everything needs to be recompiled since
everything includes " wx. h" 1)

A related problem is that for compilers that don't have precompiled headers, including a
lot of header files slows down compilation considerably. For this reason, you will find (in
the common X and Windows parts of the library) conditional compilation that under Unix,
includes a minimal set of headers; and when using Visual C++, includes wx. h. This
should help provide the optimal compilation for each compiler, although it is biassed
towards the precompiled headers facility available in Microsoft C++.

File handling

When building an application which may be used under different environments, one
difficulty is coping with documents which may be moved to different directories on other
machines. Saving a file which has pointers to full pathnames is going to be inherently
unportable. One approach is to store filenames on their own, with no directory
information. The application searches through a number of locally defined directories to
find the file. To support this, the class wxPathList makes adding directories and
searching for files easy, and the global function wxFileNameFromPath allows the
application to strip off the filename from the path if the filename must be stored. This has
undesirable ramifications for people who have documents of the same name in different
directories.

As regards the limitations of DOS 8+3 single-case filenames versus unrestricted Unix
filenames, the best solution is to use DOS filenames for your application, and also for
document filenames if the user is likely to be switching platforms regularly. Obviously
this latter choice is up to the application user to decide. Some programs (such as YACC

10

CHAPTER 3

and LEX) generate filenames incompatible with DOS; the best solution here is to have
your Unix makefile rename the generated files to something more compatible before
transferring the source to DOS. Transferring DOS files to Unix is no problem, of course,
apart from EOL conversion for which there should be a utility available (such as
dos2unix).

See also the File Functions section of the reference manual for descriptions of
miscellaneous file handling functions.

11

Programming strategies

This chapter is intended to list strategies that may be useful when writing and debugging
wxWindows programs. If you have any good tips, please submit them for inclusion here.

Strategies for reducing programming errors

Use ASSERT

Although | haven't done this myself within wxWindows, it is good practice to use
ASSERT statements liberally, that check for conditions that should or should not hold,
and print out appropriate error messages. These can be compiled out of a non-
debugging version of wxWindows and your application. Using ASSERT is an example of
‘defensive programming': it can alert you to problems later on.

Use wxString in preference to character arrays

Using wxString can be much safer and more convenient than using char *. Again, |
haven't practised what I'm preaching, but I'm now trying to use wxString wherever
possible. You can reduce the possibility of memory leaks substantially, and it's much
more convenient to use the overloaded operators than functions such as strcmp.
wxString won't add a significant overhead to your program; the overhead is
compensated for by easier manipulation (which means less code).

The same goes for other data types: use classes wherever possible.

Strategies for portability

Use relative positioning or constraints

Don't use absolute panel item positioning if you can avoid it. Different GUIs have very
differently sized panel items. Consider using the constraint system, although this can be
complex to program.

Alternatively, you could use alternative .wrc (wxWindows resource files) on different

platforms, with slightly different dimensions in each. Or space your panel items out to
avoid problems.

Use wxWindows resource files
Use .wrc (wxWindows resource files) where possible, because they can be easily
changed independently of source code. Bitmap resources can be set up to load different

kinds of bitmap depending on platform (see the section on resource files).

Strategies for debugging

12

CHAPTER 4

Positive thinking

It's common to blow up the problem in one's imagination, so that it seems to threaten
weeks, months or even years of work. The problem you face may seem insurmountable:
but almost never is. Once you have been programming for some time, you will be able to
remember similar incidents that threw you into the depths of despair. But remember, you
always solved the problem, somehow!

Perseverance is often the key, even though a seemingly trivial problem can take an
apparently inordinate amount of time to solve. In the end, you will probably wonder why
you worried so much. That's not to say it isn't painful at the time. Try not to worry -- there
are many more important things in life.

Simplify the problem

Reduce the code exhibiting the problem to the smallest program possible that exhibits
the problem. If it is not possible to reduce a large and complex program to a very small
program, then try to ensure your code doesn't hide the problem (you may have
attempted to minimize the problem in some way: but now you want to expose it).

With luck, you can add a small amount of code that causes the program to go from
functioning to non-functioning state. This should give a clue to the problem. In some
cases though, such as memory leaks or wrong deallocation, this can still give totally
spurious results!

Use a debugger

This sounds like facetious advice, but it's surprising how often people don't use a
debugger. Often it's an overhead to install or learn how to use a debugger, but it really is
essential for anything but the most trivial programs.

Use logging functions

There is a variety of logging functions that you can use in your program: see Logging
functions (p. 1150).

Using tracing statements may be more convenient than using the debugger in some
circumstances (such as when your debugger doesn't support a lot of debugging code, or
you wish to print a bunch of variables).

Use the wxWindows debugging facilities
You can use wxDebugContext to check for memory leaks and corrupt memory: in fact in

debugging mode, wxWindows will automatically check for memory leaks at the end of
the program if wxWindows is suitably configured. Depending on the operating system

13

CHAPTER 4

and compiler, more or less specific information about the problem will be logged.

You should also use debug macros (p. 1153) as part of a ‘defensive programming'
strategy, scattering WxASSERTS liberally to test for problems in your code as early as
possible. Forward thinking will save a surprising amount of time in the long run.

See the debugging overview (p. 1199) for further information.

Check Windows debug messages

Under Windows, it's worth running your program with DbgView

(http://ww. sysi nt ernal s. com running or some other program that shows
Windows-generated debug messages. It's possible it'll show invalid handles being used.
You may have fun seeing what commercial programs cause these normally hidden
errors! Microsoft recommend using the debugging version of Windows, which shows up
even more problems. However, | doubt it's worth the hassle for most applications.
wxWindows is designed to minimize the possibility of such errors, but they can still
happen occasionally, slipping through unnoticed because they are not severe enough to
cause a crash.

Genetic mutation

If we had sophisticated genetic algorithm tools that could be applied to programming, we
could use them. Until then, a common -- if rather irrational -- technique is to just make
arbitrary changes to the code until something different happens. You may have an
intuition why a change will make a difference; otherwise, just try altering the order of
code, comment lines out, anything to get over an impasse. Obviously, this is usually a
last resort.

14

Alphabetical class reference

wxAcceleratorEntry

An object used by an application wishing to create an accelerator table (p. 16).
Derived from

None

Include files

<wx/accel.h>

See also

wxAcceleratorTable (p. 16), wxWindow::SetAcceleratorTable (p. 1084)

wxAcceleratorEntry::wxAcceleratorEntry

wxAcceleratorEntry()

Default constructor.

wxAcceleratorEntry(int flags, int keyCode, int cmd)

Constructor.

Parameters

flags
One of wxACCEL_ALT, wxACCEL_SHIFT, wxACCEL_CTRL and
WXACCEL_NORMAL. Indicates which maodifier key is held down.

keyCode
The keycode to be detected. See Keycodes (p. 1155) for a full list of keycodes.

cmd

The menu or control command identifier.
wxAcceleratoreEntry::GetCommand
int GetCommand() const

Returns the command identifier for the accelerator table entry.

15

CHAPTER 5

wxAcceleratorEntry::GetFlags
int GetFlags() const

Returns the flags for the accelerator table entry.

wxAcceleratoreEntry::GetKeyCode
int GetKeyCode() const

Returns the keycode for the accelerator table entry.

wxAcceleratorEntry::Set

void Set(int flags, int keyCode, int cmd)

Sets the accelerator entry parameters.

Parameters

flags
One of wxACCEL_ALT, wxACCEL_SHIFT, wxACCEL_CTRL and
WXACCEL_NORMAL. Indicates which modifier key is held down.

keyCode
The keycode to be detected. See Keycodes (p. 1155) for a full list of keycodes.

cmd
The menu or control command identifier.

wxAcceleratorTable
An accelerator table allows the application to specify a table of keyboard shortcuts for
menus or other commands. On Windows, menu or button commands are supported; on

GTK, only menu commands are supported.

The object wxNullAcceleratorTable is defined to be a table with no data, and is the
initial accelerator table for a window.

Derived from
wxObject (p. 627)
Include files

<wx/accel.h>

16

CHAPTER 5

Example

wxAccel eratorEntry entries[4];

entries[0].Set (WwACCEL_CTRL, (int) 'N, | D_NEW W NDOW ;
entries[1].Set (WwACCEL_CTRL, (int) 'X, wxl D EXIT);
entries[2].Set (WwACCEL_SHI FT, (int) 'A', | D_ABQUT) ;
entries[3]. Set (WxACCEL_NORVAL, WKK_DELETE, wx| D_CUT) ;

wxAccel er at or Tabl e accel (4, entries);
franme- >Set Accel er at or Tabl e(accel) ;

Remarks

An accelerator takes precedence over normal processing and can be a convenient way
to program some event handling. For example, you can use an accelerator table to
enable a dialog with a multi-line text control to accept CTRL-Enter as meaning 'OK' (but
not in GTK at present).

See also

wxAcceleratorEntry (p. 15), wxWindow::SetAcceleratorTable (p. 1084)

wxAcceleratorTable::wxAcceleratorTable
wxAcceleratorTable()

Default constructor.

wxAcceleratorTable(const wxAcceleratorTable& bitmap)

Copy constructor.

wxAcceleratorTable(int n, wxAcceleratorEntry entries][])

Creates from an array of wxAcceleratorEntry (p. 15) objects.
wxAcceleratorTable(const wxString& resource)

Loads the accelerator table from a Windows resource (Windows only).

Parameters

Number of accelerator entries.

entries
The array of entries.

17

CHAPTER 5

resource
Name of a Windows accelerator.

wxPython note: The wxPython constructor accepts a list of wxAcceleratorEntry objects,
or 3-tuples consisting of flags, keyCode, and cmd values like you would construct
wxAcceleratorEntry objects with.

wxAcceleratorTable::~wxAcceleratorTable

~wxAcceleratorTable()

Destroys the wxAcceleratorTable object.

wxAcceleratorTable::Ok
bool Ok() const

Returns TRUE if the accelerator table is valid.

wxAcceleratorTable::operator =
wxAcceleratorTable& operator =(const wxAcceleratorTable& accel)

Assignment operator. This operator does not copy any data, but instead passes a
pointer to the data in accel and increments a reference counter. It is a fast operation.

Parameters

accel
Accelerator table to assign.

Return value

Returns reference to this object.

wxAcceleratorTable::operator ==
bool operator ==(const wxAcceleratorTable& accel)

Equality operator. This operator tests whether the internal data pointers are equal (a fast
test).

Parameters

accel

18

CHAPTER 5

Accelerator table to compare with
Return value

Returns TRUE if the accelerator tables were effectively equal, FALSE otherwise.

wxAcceleratorTable::operator !=
bool operator !=(const wxAcceleratorTable& accel)

Inequality operator. This operator tests whether the internal data pointers are unequal (a
fast test).

Parameters

accel
Accelerator table to compare with

Return value

Returns TRUE if the accelerator tables were unequal, FALSE otherwise.
wxActivateEvent

An activate event is sent when a window or application is being activated or deactivated.
Derived from

wxEvent (p. 274)
wxObiject (p. 627)

Include files
<wx/event.h>
Event table macros

To process an activate event, use these event handler macros to direct input to a
member function that takes a wxActivateEvent argument.

EVT_ACTIVATE(func) Process a wxEVT_ACTIVATE event.
EVT_ACTIVATE_APP(func) Process a wxEVT_ACTIVATE_APP event.
Remarks

A top-level window (a dialog or frame) receives an activate event when is being
activated or deactivated. This is indicated visually by the title bar changing colour, and a
subwindow gaining the keyboard focus.

19

CHAPTER 5

An application is activated or deactivated when one of its frames becomes activated, or
a frame becomes inactivate resulting in all application frames being inactive. (Windows

only)

See also

wxWindow::OnActivate (p. 1068), wxApp::OnActivate (p. 24), Event handling overview
(p. 1207)

wxActivateEvent::wxActivateEvent
wxActivateEvent(WXTYPE eventType = 0, bool active = TRUE, int id = 0)

Constructor.

wxActivateEvent::m_active
bool m_active

TRUE if the window or application was activated.

wxActivateEvent::GetActive

bool GetActive() const

Returns TRUE if the application or window is being activated, FALSE otherwise.
WXApp

The wxApp class represents the application itself. It is used to:

set and get application-wide properties;

implement the windowing system message or event loop;

initiate application processing via wxApp::Onlinit (p. 26);

allow default processing of events not handled by other objects in the
application.

You should use the macro IMPLEMENT_APP(appClass) in your application
implementation file to tell wxWindows how to create an instance of your application
class.

Use DECLARE_APP(appClass) in a header file if you want the wxGetApp function
(which returns a reference to your application object) to be visible to other files.

Derived from

20

CHAPTER 5

wxEvtHandler (p. 277)
wxObiject (p. 627)

Include files
<wx/app.h>
See also

WXApp overview (p. 1179)

WXAppP::WXAPpP

void wxApp()

Constructor. Called implicitly with a definition of a wxApp object.

The argument is a language identifier; this is an experimental feature and will be
expanded and documented in future versions.

WXApPP::~WXApPP

void ~wxApp()

Destructor. Will be called implicitly on program exit if the wxApp object is created on the
stack.

WXApp::argc

int argc

Number of command line arguments (after environment-specific processing).

WXApp::argv
char ** argv

Command line arguments (after environment-specific processing).

WxApp::CreateLogTarget

virtual wxLog* CreateLogTarget()

21

CHAPTER 5

Creates a wxLog class for the application to use for logging errors. The default
implementation returns a new wxLogGui class.

See also

wxLog (p. 540)

WxApp::Dispatch
void Dispatch()
Dispatches the next event in the windowing system event queue.

This can be used for programming event loops, e.g.

whi l e (app. Pendi ng())
Di spatch();

See also

wxApp::Pending (p. 28)

WxApp::GetAppName

wxString GetAppName() const

Returns the application name.

Remarks

wxWindows sets this to a reasonable default before calling wxApp::Onlnit (p. 26), but the
application can reset it at will.

WxApp::GetAuto3D

bool GetAuto3D() const

Returns TRUE if 3D control mode is on, FALSE otherwise.

See also

wxApp::SetAuto3D (p. 29)

WxApp::GetClassName

wxString GetClassName() const

22

CHAPTER 5

Gets the class name of the application. The class name may be used in a platform
specific manner to refer to the application.

See also

wxApp::SetClassName (p. 29)

WXApp::GetExitOnFrameDelete
bool GetExitFrameOnDelete() const

Returns TRUE if the application will exit when the top-level window is deleted, FALSE
otherwise.

See also

wxApp::SetExitOnFrameDelete (p. 29)

WxApp::GetTopWindow
wxWindow * GetTopWindow() const
Returns a pointer to the top window.
Remarks

If the top window hasn't been set using wxApp::SetTopWindow (p. 30), this function will
find the first top-level window (frame or dialog) and return that.

See also

SetTopWindow (p. 30)

WxApp::GetUseBestVisual
bool GetUseBestVisual() const

Returns TRUE if the application will use the best visual on systems that support different
visuals, FALSE otherwise.

See also

SetUseBestVisual (p. 31)

WxApp::GetVendorName

23

CHAPTER 5

wxString GetVendorName() const

Returns the application's vendor name.

WxApp::ExitMainLoop

void ExitMainLoop()

Call this to explicitly exit the main message (event) loop. You should normally exit the
main loop (and the application) by deleting the top window.

WxApp::Initialized

bool Initialized()

Returns TRUE if the application has been initialized (i.e. if wxApp::Oninit (p. 26) has
returned successfully). This can be useful for error message routines to determine
which method of output is best for the current state of the program (some windowing
systems may not like dialogs to pop up before the main loop has been entered).
WXxApp::MainLoop

int MainLoop()

Called by wxWindows on creation of the application. Override this if you wish to provide
your own (environment-dependent) main loop.

Return value

Returns 0 under X, and the wParam of the WM_QUIT message under Windows.

WXxApp::OnActivate
void OnActivate(wxActivateEvent& event)

Provide this member function to know whether the application is being activated or
deactivated (Windows only).

See also

wxWindow::OnActivate (p. 1068), wxActivateEvent (p. 19)

WXAppP::OnExit

24

CHAPTER 5

int OnExit()

Provide this member function for any processing which needs to be done as the
application is about to exit.

WxApp::OnCharHook

void OnCharHook(wxKeyEvent& event)

This event handler function is called (under Windows only) to allow the window to
intercept keyboard events before they are processed by child windows.

Parameters

event
The keypress event.

Remarks
Use the wxEVT_CHAR_HOOK macro in your event table.

If you use this member, you can selectively consume keypress events by calling
wxEvent::Skip (p. 277) for characters the application is not interested in.

See also

wxKeyEvent (p. 497), wxWindow::OnChar (p. 1069), wxWindow::OnCharHook (p. 1069),
wxDialog::OnCharHook (p. 224)

WXxApp::OnFatalException

void OnFatalException()

This function may be called if something fatal happens: an unhandled exception under
Win32 or a a fatal signal under Unix, for example. However, this will not happen by
default: you have to explicitly call wxHandleFatalExceptions (p. 1132) to enable this.
Generally speaking, this function should only show a message to the user and return.
You may attempt to save unsaved data but this is not guaranteed to work and, in fact,
probably won't.

See also

wxHandleFatalExcetions (p. 1132)

WXxApp::Onidle

25

CHAPTER 5

void Onldle(wxldleEvent& event)

Override this member function for any processing which needs to be done when the
application is idle. You should call wxApp::Onldle from your own function, since this
forwards Onldle events to windows and also performs garbage collection for windows
whose destruction has been delayed.

wxWindows' strategy for Onldle processing is as follows. After pending user interface
events for an application have all been processed, wxWindows sends an Onldle event to
the application object. wxApp::Onldle itself sends an Onldle event to each application
window, allowing windows to do idle processing such as updating their appearance. If
either wxApp::Onldle or a window Onldle function requested more time, by caling
wxldleEvent::RequestMore (p. 451), wxWindows will send another Onldle event to the
application object. This will occur in a loop until either a user event is found to be
pending, or Onldle requests no more time. Then all pending user events are processed
until the system goes idle again, when Onldle is called, and so on.

See also

wxWindow::Onldle (p. 1074), wxldleEvent (p. 450), wxWindow::SendldleEvents (p. 28)

WXApp::OnEndSession

void OnEndSession(wxCloseEvent& event)

This is an event handler function called when the operating system or GUI session is
about to close down. The application has a chance to silently save information, and can
optionally close itself.

Use the EVT_END_SESSION event table macro to handle query end session events.

The default handler calls wxWindow::Close (p. 1053) with a TRUE argument (forcing the
application to close itself silently).

Remarks
Under X, OnEndSession is called in response to the 'die’ event.

Under Windows, OnEndSession is called in response to the WM_ENDSESSION
message.

See also

wxWindow::Close (p. 1053), wxWindow::OnCloseWindow (p. 1071), wxCloseEvent (p.
109), wxApp::OnQueryEndSession (p. 27)

WXAppP::Onlinit

bool Oninit()

26

CHAPTER 5

This must be provided by the application, and will usually create the application's main
window, optionally calling wxApp::SetTopWindow (p. 30).

Return TRUE to continue processing, FALSE to exit the application.

WXAppP::OnQueryEndSession

void OnQueryEndSession(wxCloseEvent& event)

This is an event handler function called when the operating system or GUI session is
about to close down. Typically, an application will try to save unsaved documents at this
point.

If wxCloseEvent::CanVeto (p. 109) returns TRUE, the application is allowed to veto the
shutdown by calling wxCloseEvent::Veto (p. 110). The application might veto the
shutdown after prompting for documents to be saved, and the user has cancelled the
save.

Use the EVT_QUERY_END_SESSION event table macro to handle query end session
events.

You should check whether the application is forcing the deletion of the window using
wxCloseEvent::GetForce (p. 110). If this is TRUE, destroy the window using
wxWindow::Destroy (p. 1055). If not, it is up to you whether you respond by destroying
the window.

The default handler calls wxWindow::Close (p. 1053) on the top-level window, and
vetoes the shutdown if Close returns FALSE. This will be sufficient for many
applications.

Remarks

Under X, OnQueryEndSession is called in response to the 'save session' event.

Under Windows, OnQueryEndSession is called in response to the
WM_QUERYENDSESSION message.

See also

wxWindow::Close (p. 1053), wxWindow::OnCloseWindow (p. 1071), wxCloseEvent (p.
109), wxApp::OnEndSession (p. 26)

WXApp::ProcessMessage

bool ProcessMessage(MSG *msg)

Windows-only function for processing a message. This function is called from the main
message loop, checking for windows that may wish to process it. The function returns

27

CHAPTER 5

TRUE if the message was processed, FALSE otherwise. If you use wxWindows with
another class library with its own message loop, you should make sure that this function
is called to allow wxWindows to receive messages. For example, to allow co-existance
with the Microsoft Foundation Classes, override the PreTranslateMessage function:

/1 Provide wxW ndows nessage | oop conpatibility
BOOL CTheApp: : PreTransl at eMessage(M5G *nsQ)

if (wxTheApp && wxTheApp- >Pr ocessMessage(nsg))
return TRUE;

el se
return CW nApp: : PreTransl at eMessage(nsg) ;

WxApp::Pending

bool Pending()

Returns TRUE if unprocessed events are in the window system event queue.
See also

wxApp::Dispatch (p. 22)

WxApp::SendldleEvents

bool SendldleEvents()

Sends idle events to all top-level windows.
bool SendldleEvents(wxWindow* win)
Sends idle events to a window and its children.
Remarks

These functions poll the top-level windows, and their children, for idle event processing.
If TRUE is returned, more Onldle processing is requested by one or more window.

See also

wxApp::Onldle (p. 25), wxWindow::Onldle (p. 1074), wxldleEvent (p. 450)

WxApp::SetAppName
void SetAppName(const wxString& name)

Sets the name of the application. The name may be used in dialogs (for example by the

28

CHAPTER 5

document/view framework). A default name is set by wxWindows.
See also

WxApp::GetAppName (p. 22)

WxApp::SetAuto3D

void SetAuto3D(const bool auto3D)

Switches automatic 3D controls on or off.

Parameters

auto3D
If TRUE, all controls will be created with 3D appearances unless overridden for a
control or dialog. The default is TRUE

Remarks

This has an effect on Windows only.

See also

WxApp::GetAuto3D (p. 22)

WxApp::SetClassName
void SetClassName(const wxString& name)

Sets the class name of the application. This may be used in a platform specific manner
to refer to the application.

See also

wxApp::GetClassName (p. 22)

WXApp::SetExitOnFrameDelete
void SetExitOnFrameDelete(bool flag)

Allows the programmer to specify whether the application will exit when the top-level
frame is deleted.

Parameters

flag

29

CHAPTER 5

If TRUE (the default), the application will exit when the top-level frame is deleted. If
FALSE, the application will continue to run.
WXApp::SetTopWindow
void SetTopWindow(wxWindow* window)
Sets the 'top' window. You can call this from within wxApp::Oninit (p. 26) to let
wxWindows know which is the main window. You don't have to set the top window; it's
only a convenience so that (for example) certain dialogs without parents can use a
specific window as the top window. If no top window is specified by the application,
wxWindows just uses the first frame or dialog in its top-level window list, when it needs
to use the top window.

Parameters

window
The new top window.

See also

WxApp::GetTopWindow (p. 23), wxApp::Onlnit (p. 26)

WxApp::SetVendorName
void SetVendorName(const wxString& name)

Sets the name of application's vendor. The name will be used in registry access. A
default name is set by wxWindows.

See also

wxApp::GetVendorName (p. 23)

WxApp::GetStdicon

virtual wxlcon GetStdlcon(int which) const

Returns the icons used by wxWindows internally, e.g. the ones used for message
boxes. This function is used internally and can be overridden by the user to change the
default icons.

Parameters

which
One of the wxICON_XXX specifies which icon to return.

30

CHAPTER 5

See wxMessageBox (p. 1114) for a list of icon identifiers.

WXApp::SetUseBestVisual
void SetUseBestVisual(bool flag)

Allows the programmer to specify whether the application will use the best visual on
systems that support several visual on the same display. This is typically the case under
Solaris and IRIX, where the default visual is only 8-bit whereas certain appications are
supposed to run in TrueColour mode.

Note that this function has to be called in the constructor of the wxApp instance and
won't have any effect when called later on.

This function currently only has effect under GTK.
Parameters

flag
If TRUE, the app will use the best visual.

WXArray

This section describes the so called dynamic arrays. This is a C array-like data structure
i.e. the member access time is constant (and not linear according to the number of
container elements as for linked lists). However, these arrays are dynamic in the sense
that they will automatically allocate more memory if there is not enough of it for adding a
new element. They also perform range checking on the index values but in debug mode
only, so please be sure to compile your application in debug mode to use it (see
debugging overview (p. 1199) for details). So, unlike the arrays in some other
languages, attempt to access an element beyond the arrays bound doesn't automatically
expand the array but provokes an assertion failure instead in debug build and does
nothing (except possibly crashing your program) in the release build.

The array classes were designed to be reasonably efficient, both in terms of run-time
speed and memory consumption and the executable size. The speed of array item
access is, of course, constant (independent of the number of elements) making them
much more efficient than linked lists (wxList (p. 505)). Adding items to the arrays is also
implemented in more or less constant time - but the price is preallocating the memory in
advance. In the memory management (p. 34) section you may find some useful hints
about optimizing wxArray memory usage. As for executable size, all wxArray functions
are inline, so they do not take any space at all.

wxWindows has three different kinds of array. All of them derive from wxBaseArray class
which works with untyped data and can not be used directly. The standard macros
WX_DEFINE_ARRAY(), WX_DEFINE_SORTED_ARRAY() and
WX_DEFINE_OBJARRAY() are used to define a new class deriving from it. The classes
declared will be called in this documentation wxArray, wxSortedArray and wxObjArray
but you should keep in mind that no classes with such names actually exist, each time

31

CHAPTER 5

you use one of WX_DEFINE_XXXARRAY macro you define a class with a new name. In
fact, these names are "template" names and each usage of one of the macros
mentioned above creates a template specialization for the given element type.

wxArray is suitable for storing integer types and pointers which it does not treat as
objects in any way, i.e. the element pointed to by the pointer is not deleted when the
element is removed from the array. It should be noted that all of wxArray's functions are
inline, so it costs strictly nothing to define as many array types as you want (either in
terms of the executable size or the speed) as long as at least one of them is defined and
this is always the case because wxArrays are used by wxWindows internally. This class
has one serious limitation: it can only be used for storing integral types (bool, char, short,
int, long and their unsigned variants) or pointers (of any kind). An attempt to use with
objects of sizeof() greater than sizeof(long) will provoke a runtime assertion failure,
however declaring a wxArray of floats will not (on the machines where sizeof(float) <=
sizeof(long)), yet it will not work, please use wxObjArray for storing floats and doubles
(NB: a more efficient wxArrayDouble class is scheduled for the next release of
wxWindows).

wxSortedArray is a wxArray variant which should be used when searching in the array is
a frequently used operation. It requires you to define an additional function for comparing
two elements of the array element type and always stores its items in the sorted order
(according to this function). Thus, it's Index() (p. 40) function execution time is O(log(N))
instead ofO(N) for the usual arrays but the Add() (p. 38) method is slower: it is O(log(N))
instead of constant time (neglecting time spent in memory allocation routine). However,
in a usual situation elements are added to an array much less often than searched inside
it, so wxSortedArray may lead to huge performance improvements compared to
wxArray. Finally, it should be noticed that, as wxArray, wxSortedArray can be only used
for storing integral types or pointers.

wxObjArray class treats its elements like "objects". It may delete them when they are
removed from the array (invoking the correct destructor) and copies them using the
objects copy constructor. In order to implement this behaviour the definition of the
wxObjArray arrays is split in two parts: first, you should declare the new wxObjArray
class using WX_DECLARE_OBJARRAY() macro and then you must include the file
defining the implementation of template type: <wx/arrimpl.cpp> and define the array
class with WX_DEFINE_OBJARRAY() macro from a point where the full (as opposed to
‘forward’) declaration of the array elements class is in scope. As it probably sounds very
complicated here is an example:

#i ncl ude <wx/dynarray. h>

/1 we must forward declare the array because it's used inside the class
/1 declaration

class MyDirectory;

cl ass MyFil e;

/1 this defines two new types: ArrayOfDirectories and ArrayO Fil es
whi ch can be

/1 now used as shown bel ow

WK_DECLARE_OBJARRAY(MyDirectory, ArrayOfDirectories);
WK_DECLARE_OBJARRAY(MYFi | e, ArrayO Fil es);

32

CHAPTER 5

class MyDirectory

{

ArrayOFrDirectories msubdirectories; // all subdirectories
ArrayOrFil es mfiles; /1 all files in this directory

/1 now that we have MyDirectory declaration in scope we may finish the
/! definition of ArrayODirectories -- note that this expands into sone
C++

/1 code and so should only be conpiled once (i.e., don't put this in

t he

/1 header, but into a source file or you will get linkin errors)
#include <wx/arrinpl.cpp>// this is a magic incantation which nust be
done!

WK_DEFI NE_OBJARRAY(ArrayOrDi rectori es);

/1 that's all!
Itis not as elegant as writing

typedef std::vector<MyDirectory> ArrayO Directories;

but is not that complicated and allows the code to be compiled with any, however dumb,
C++ compiler in the world.

Things are much simpler for wxArray and wxSortedArray however: it is enough just to
write

WK_DEFI NE_ARRAY(M/Di rectory *, ArrayOfrDirectories);
WK_DEFI NE_SORTED_ARRAY(MW/File *, ArrayOFiles);

See also:
Container classes overview (p. 1193), wxList (p. 505)
Include files

<wx/dynarray.h> for wxArray and wxSortedArray and additionally <wx/arrimpl.cpp> for
wxObjArray.

Macros for template array definition

To use an array you must first define the array class. This is done with the help of the
macros in this section. The class of array elements must be (at least) forward declared
for WX_DEFINE_ARRAY, WX_DEFINE_SORTED_ARRAY and
WX_DECLARE_OBJARRAY macros and must be fully declared before you use
WX_DEFINE_OBJARRAY macro.

33

CHAPTER 5

WX_DEFINE_ARRAY (p. 35)
WX_DEFINE_EXPORTED_ARRAY (p. 35)
WX_DEFINE_SORTED_ARRAY (p. 35)
WX_DEFINE_SORTED_EXPORTED_ARRAY (p. 35)
WX_DECLARE_EXPORTED_OBJARRAY (p. 36)
WX_DEFINE_OBJARRAY (p. 37)

Constructors and destructors

Array classes are 100% C++ objects and as such they have the appropriate copy
constructors and assignment operators. Copying wxArray just copies the elements but
copying wxObjArray copies the arrays items. However, for memory-efficiency sake,
neither of these classes has virtual destructor. It is not very important for wxArray which
has trivial destructor anyhow, but it does mean that you should avoid deleting
wxObjArray through a wxBaseArray pointer (as you would never use wxBaseArray
anyhow it shouldn't be a problem) and that you should not derive your own classes from
the array classes.

wxArray default constructor (p. 37)
wxArray copy constructors and assignment operators (p. 38)
~wxArray (p. 38)

Memory management

Automatic array memory management is quite trivial: the array starts by preallocating
some minimal amount of memory (defined by WX_ARRAY_DEFAULT_INITIAL_SIZE)
and when further new items exhaust already allocated memory it reallocates it adding
50% of the currently allocated amount, but no more than some maximal number which is
defined by ARRAY_MAXSIZE_INCREMENT constant. Of course, this may lead to some
memory being wasted (ARRAY_MAXSIZE_INCREMENT in the worst case, i.e. 4Kb in
the current implementation), so the Shrink() (p. 42) function is provided to unallocate the
extra memory. The Alloc() (p. 39) function can also be quite useful if you know in
advance how many items you are going to put in the array and will prevent the array
code from reallocating the memory more times than needed.

Alloc (p. 39)
Shrink (p. 42)

Number of elements and simple item access

Functions in this section return the total number of array elements and allow to retrieve
them - possibly using just the C array indexing [] operator which does exactly the same
as Item() (p. 41) method.

Count (p. 39)
GetCount (p. 40)

CHAPTER 5

ISEmpty (p. 41)
Item (p. 41)
Last (p. 41)

Adding items

Add (p. 38)
Insert (p. 40)
WX_APPEND_ARRAY (p. 37)

Removing items
WX_CLEAR_ARRAY (p. 37)
Empty (p. 39)

Clear (p. 39)

RemoveAt (p. 42)
Remove (p. 41)

Searching and sorting

Index (p. 40)
Sort (p. 42)

WX_DEFINE_ARRAY

WX_DEFINE_ARRAY(T, name)

WX_DEFINE_EXPORTED_ARRAY(T, name)

This macro defines a new array class named name and containing the elements of type
T. The second form is used when compiling DLL under Windows and array needs to be
visible outside the DLL. Example:

WK_DEFI NE_ARRAY(i nt, wxArraylnt):

cl ass Myd ass;
WK_DEFI NE_ARRAY(MW/O ass *, wxArrayOf Myd ass);

Note that wxWindows predefines the following standard array classes: wxArrayint,
wxArrayLong and wxArrayPtrVoid.
WX_DEFINE_SORTED_ARRAY

WX_DEFINE_SORTED_ARRAY(T, name)

35

CHAPTER 5

WX_DEFINE_SORTED_EXPORTED_ARRAY(T, name)

This macro defines a new sorted array class named name and containing the elements
of type T. The second form is used when compiling DLL under Windows and array
needs to be visible outside the DLL.

Example:
WK_DEFI NE_SORTED ARRAY(int, wxSortedArraylnt):

cl ass Myd ass;
WK_DEFI NE_SORTED_ARRAY(MW/ ass *, wxArrayOf Myd ass);

You will have to initialize the objects of this class by passing a comparaison function to
the array object constructor like this:

int Conparelnts(int nl, int n2)
{

}

wxSort edArrayl nt sorted(Conparelnts);

return nl - n2;

i nt ConpareM/C assObj ects(MyC ass *itenl, M/Class *iten?)
/] sort the itenms by their address...

return Stricnp(itenl->CGet Address(), itenR->CGetAddress());
}

WXAr raytf MyCl ass anot her (Conpar eMyd assObj ect s) ;

WX _DECLARE_OBJARRAY

WX_DECLARE_OBJARRAY(T, name)

WX_DECLARE_EXPORTED_OBJARRAY(T, name)

This macro declares a new object array class named name and containing the elements
of type T. The second form is used when compiling DLL under Windows and array

needs to be visible outside the DLL.

Example:

cl ass Myd ass;
WK_DEFI NE_OBJARRAY(MyCl ass, wxArrayOf Myd ass); // note: not "M/C ass

wn]

You must use WX_DEFINE_OBJARRAY() (p. 37) macro to define the array class -
otherwise you would get link errors.

36

CHAPTER 5

WX_DEFINE_OBJARRAY
WX_DEFINE_OBJARRAY (name)

This macro defines the methods of the array class name not defined by the
WX_DECLARE_OBJARRAY() (p- 36) macro. You must include the file <wx/arrimpl.cpp>
before using this macro and you must have the full declaration of the class of array
elements in scope! If you forget to do the first, the error will be caught by the compiler,
but, unfortunately, many compilers will not give any warnings if you forget to do the
second - but the objects of the class will not be copied correctly and their real destructor
will not be called.

Example of usage:

/|l first declare the cl ass!
cl ass Myd ass

{

publi c:
MyCl ass(const Myd assé&);
virtual ~Wyd ass();

3

#i ncl ude <wx/arrinmpl.cpp>

WK_DEFI NE_OBJARRAY(WxAr r ayOf Myd ass) ;

WX_APPEND_ARRAY

void WX_APPEND_ARRAY (wxArray& array, wxArray& other)

This macro may be used to append all elements of the other array to the array. The two
arrays must be of the same type.

WX_CLEAR_ARRAY

void WX_CLEAR_ARRAY (wxArray& array)

This macro may be used to delete all elements of the array before emptying it. It can not
be used with wxObjArrays - but they will delete their elements anyhow when you call

Empty().
Default constructors
wxArray()

wxObjArray()

37

CHAPTER 5

Default constructor initializes an empty array object.

wxSortedArray(int (*)(T first, T second)compareFunction)

There is no default constructor for wxSortedArray classes - you must initialize it with a
function to use for item comparaison. It is a function which is passed two arguments of
type T where T is the array element type and which should return a negative, zero or
positive value according to whether the first element passed to it is less than, equal to or
greater than the second one.

WxArray copy constructor and assignment operator

wxArray(const wxArray& array)

wxSortedArray(const wxSortedArray& array)

wxObjArray(const wxObjArray& array)

wxArray& operator=(const wxArray& array)

wxSortedArray& operator=(const wxSortedArray& array)

wxObjArray& operator=(const wxObjArray& array)

The copy constructors and assignment operators perform a shallow array copy (i.e. they
don't copy the objects pointed to even if the source array contains the items of pointer
type) for wxArray and wxSortedArray and a deep copy (i.e. the array element are copied
too) for wxObjArray.

WXArray::~wxArray

~wxArray()

~wxSortedArray()

~wxObjArray()

The wxObjArray destructor deletes all the items owned by the array. This is not done by
wxArray and wxSortedArray versions - you may use WX_CLEAR_ARRAY (p. 37) macro
for this.

wxArray::Add

void Add(T item)

void Add(T *item)

38

CHAPTER 5

void Add(T &item)

Appends a new element to the array (where T is the type of the array elements.)

The first version is used with wxArray and wxSortedArray. The second and the third are
used with wxObjArray. There is an important difference between them: if you give a
pointer to the array, it will take ownership of it, i.e. will delete it when the item is deleted
from the array. If you give a reference to the array, however, the array will make a copy
of the item and will not take ownership of the original item. Once again, it only makes
sense for wxObjArrays because the other array types never take ownership of their
elements.

You may also use WX_APPEND_ARRAY (p. 37) macro to append all elements of one
array to another one.

wxArray::Alloc

void Alloc(size_t count)

Preallocates memory for a given number of array elements. It is worth calling when the
number of items which are going to be added to the array is known in advance because
it will save unneeded memory reallocation. If the array already has enough memory for
the given number of items, nothing happens.

wxArray::Clear

void Clear()

This function does the same as Empty() (p. 39) and additionally frees the memory
allocated to the array.

wxArray::Count

size_t Count() const

Same as GetCount() (p. 40). This function is deprecated - it exists only for compatibility.

wxObjArray::Detach
T * Detach(size_t index)
Removes the element from the array, but, unlike, Remove() (p. 41) doesn't delete it. The

function returns the pointer to the removed element.

WxArray::Empty

39

CHAPTER 5

void Empty()

Empties the array. For wxObjArray classes, this destroys all of the array elements. For
wxArray and wxSortedArray this does nothing except marking the array of being empty -
this function does not free the allocated memory, use Clear() (p. 39) for this.
wxArray::GetCount

size_t GetCount() const

Return the number of items in the array.

wxArray::Index
int Index(T& item, bool searchFromEnd = FALSE)
int Index(T& item)

The first version of the function is for wxArray and wxObjArray, the second is for
wxSortedArray only.

Searches the element in the array, starting from either beginning or the end depending
on the value of searchFromEnd parameter. wxNOT_FOUND is returned if the element is
not found, otherwise the index of the element is returned.

Linear search is used for the wxArray and wxObjArray classes but binary search in the
sorted array is used for wxSortedArray (this is why searchFromEnd parameter doesn't
make sense for it).

NB: even for wxObjArray classes, the operator==() of the elements in the array is not
used by this function. It searches exactly the given element in the array and so will only
succeed if this element had been previously added to the array, but fail even if another,
identical, element is in the array.

WxArray::Insert

void Insert(T item, size_t n)

void Insert(T *item, size_t n)

void Insert(T &item, size_t n)

Insert a new item into the array before the item n - thus, Insert(something, Ou) will insert
an item in such way that it will become the first array element.

Please see Add() (p. 38) for explanation of the differences between the overloaded

40

CHAPTER 5

versions of this function.

WxArray::IsEmpty
bool IsEmpty() const

Returns TRUE if the array is empty, FALSE otherwise.

WxArray::ltem
T& Item(size_t index) const

Returns the item at the given position in the array. If index is out of bounds, an assert
failure is raised in the debug builds but nothing special is done in the release build.

The returned value is of type "reference to the array element type" for all of the array
classes.

WxArray::Last
T& Last() const

Returns the last element in the array, i.e. is the same as Item(GetCount() - 1). An assert
failure is raised in the debug mode if the array is empty.

The returned value is of type "reference to the array element type" for all of the array
classes.

WxArray::Remove
Remove(T item)

Removes the element from the array either by value: the first item of the array equal to
item is removed, an assert failure will result from an attempt to remove an item which
doesn't exist in the array.

When an element is removed from wxObjArray it is deleted by the array - use Detach()
(p- 39) if you don't want this to happen. On the other hand, when an object is removed
from a wxArray nothing happens - you should delete the it manually if required:

T *item= array[n];
delete item
array. Remove(n)

See also WX_CLEAR_ARRAY (p. 37) macro which deletes all elements of a wxArray
(supposed to contain pointers).

41

CHAPTER 5

WxArray::RemoveAt
RemoveAt(size_t index)

Removes the element from the array either by index. When an element is removed from
wxObijArray it is deleted by the array - use Detach() (p. 39) if you don't want this to
happen. On the other hand, when an object is removed from a wxArray nothing happens
- you should delete the it manually if required:

T *item= array[n];

delete item
array. RenmoveAt (n)

See also WX_CLEAR_ARRAY (p. 37) macro which deletes all elements of a wxArray
(supposed to contain pointers).

wxArray::Shrink
void Shrink()
Frees all memory unused by the array. If the program knows that no new items will be

added to the array it may call Shrink() to reduce its memory usage. However, if a new
item is added to the array, some extra memory will be allocated again.

WxATrray::Sort

void Sort(CMPFUNC<T> compareFunction)

The notation CMPFUNC<T> should be read as if we had the following declaration:
tenplate int CGWFUNC(T *first, T *second);

where T is the type of the array elements. l.e. it is a function returning int which is
passed two arguments of type T *.

Sorts the array using the specified compare function: this function should return a
negative, zero or positive value according to whether the first element passed to it is less
than, equal to or greater than the second one.

wxSortedArray doesn't have this function because it is always sorted.
WxArrayString

wxArrayString is an efficient container for storing wxString (p. 877) objects. It has the
same features as all wxArray (p. 31) classes, i.e. it dynamically expands when new
items are added to it (so it is as easy to use as a linked list), but the access time to the
elements is constant, instead of being linear in number of elements as in the case of
linked lists. It is also very size efficient and doesn't take more space than a C array

42

CHAPTER 5

wxString[] type (wxArrayString uses its knowledge of internals of wxString class to
achieve this).

This class is used in the same way as other dynamic arrays (p. 31), except that no
WX_DEFINE_ARRAY declaration is needed for it. When a string is added or inserted in
the array, a copy of the string is created, so the original string may be safely deleted
(e.g. ifitwas a char * pointer the memory it was using can be freed immediately after
this). In general, there is no need to worry about string memory deallocation when using
this class - it will always free the memory it uses itself.

The references returned by Item (p. 46), Last (p. 46) or operator([] (p. 44) are not
constant, so the array elements may be modified in place like this

array. Last (). MakeUpper();
There is also a varian of wxArrayString called wxSortedArrayString which has exactly
the same methods as wxArrayString, but which always keeps the string in it in
(alphabetical) order. wxSortedArrayString uses binary search in its Index (p. 45) function
(insteadf of linear search for wxArrayString::Index) which makes it much more efficient if
you add strings to the array rarely (because, of course, you have to pay for Index()
efficiency by having Add() be slower) but search for them often. Several methods should
not be used with sorted array (basicly, all which break the order of items) which is
mentioned in their description.

Final word: none of the methods of wxArrayString is virtual including its destructor, so
this class should not be used as a base class.

Derived from

Although this is not true strictly speaking, this class may be considered as a
specialization of wxArray (p. 31) class for the wxString member data: it is not
implemented like this, but it does have all of the wxArray functions.

Include files

<wx/string.h>

See also

wxArray (p. 31), wxString (p. 877), wxString overview (p. 1182)

WxArrayString::wxArrayString
wxArrayString()
wxArrayString(const wxArrayString& array)

Default and copy constructors.

43

CHAPTER 5

Note that when an array is assigned to a sorted array, its contents is automatically
sorted during construction.

WxATrrayString::~wxArrayString

~wxArrayString()

Destructor frees memory occupied by the array strings. For the performance reasons it
is not virtual, so this class should not be derived from.

WxArrayString::operator=

wxArrayString & operator =(const wxArrayString& array)

Assignment operator.

WxArrayString::operator(]

wxString& operator[](size_t nindex)

Return the array element at position nindex. An assert failure will result from an attempt
to access an element beyond the end of array in debug mode, but no check is done in

release mode.

This is the operator version of Item (p. 46) method.

wxArrayString::Add

size_t Add(const wxString& str)

Appends a new item to the array and return the index of th new item in the array.
Warning: For sorted arrays, the index of the inserted item will not be, in general, equal
to GetCount() (p. 45) - 1 because the item is inserted at the correct position to keep the

array sorted and not appended.

See also: Insert (p. 46)

wxArrayString::Alloc
void Alloc(size_t nCount)

Preallocates enough memory to store nCount items. This function may be used to
improve array class performance before adding a known number of items consecutively.

CHAPTER 5

See also: Dynamic array memory management (p. 34)

wxArrayString::Clear
void Clear()
Clears the array contents and frees memory.

See also: Empty (p. 45)

wxArrayString::Count

size_t Count() const

Returns the number of items in the array. This function is deprecated and is for
backwards compatibility only, please use GetCount (p. 45) instead.
WxArrayString::Empty

void Empty()

Empties the array: after a call to this function GetCount (p. 45) will return 0. However,
this function does not free the memory used by the array and so should be used when
the array is going to be reused for storing other strings. Otherwise, you should use Clear
(p. 45) to empty the array and free memory.

wxArrayString::GetCount

size_t GetCount() const

Returns the number of items in the array.

WxArrayString::Index
int Index(const char * sz, bool bCase = TRUE, bool bFromEnd = FALSE)

Search the element in the array, starting from the beginning ifbFromEnd is FALSE or
from end otherwise. If bCase, comparison is case sensitive (default), otherwise the case
is ignored.

This function uses linear search for wxArrayString and binary search for
wxSortedArrayString, but it ignores the bCase and bFromEnd parameters in the latter
case.

45

CHAPTER 5

Returns index of the first item matched or wxNOT_FOUND if there is no match.

wxArrayString::Insert
void Insert(const wxString& str, size_t nindex)

Insert a new element in the array before the position nindex. Thus, for example, to insert
the string in the beginning of the array you would write

Insert("foo", 0);

If nindex is equal to GetCount() + 1 this function behaves as Add (p. 44).

Warning: this function should not be used with sorted arrays because it could break the
order of items and, for example, subsequent calls to Index() (p. 45) would then not work!
WxArrayString::ISEmpty

ISEmpty()

Returns TRUE if the array is empty, FALSE otherwise. This function returns the same
result as GetCount() == 0 but is probably easier to read.

WxATrrayString::ltem

wxString& Item(size_t nindex) const

Return the array element at position nindex. An assert failure will result from an attempt
to access an element beyond the end of array in debug mode, but no check is done in

release mode.

See also operator[] (p. 44) for the operator version.

wxArrayString::Last

Last()

Returns the last element of the array. Attempt to access the last element of an empty
array will result in assert failure in debug build, however no checks are done in release
mode.

wxArrayString::Remove (by value)

void Remove(const char * sz)

46

CHAPTER 5

Removes the first item matching this value. An assert failure is provoked by an attempt
to remove an element which does not exist in debug build.

See also: Index (p. 45), Remove (p. 47)

wxArrayString::Remove (by index)
void Remove(size_t nindex)
Removes the item at given position.

See also: Remove (p. 46)

wxArrayString::Shrink
void Shrink()

Releases the extra memory allocated by the array. This function is useful to minimize the
array memory consumption.

See also: Alloc (p. 44), Dynamic array memory management (p. 34)

wxArrayString::Sort (alphabetically)
void Sort(bool reverseOrder = FALSE)

Sorts the array in alphabetical order or in reverse alphabetical order if reverseOrder is
TRUE.

Warning: this function should not be used with sorted array because it could break the
order of items and, for example, subsequent calls to Index() (p. 45) would then not work!

See also: Sort (p. 47)

wxArrayString::Sort (user defined)

void Sort(CompareFunction compareFunction)

Sorts the array using the specified compareFunction for item
comparison.CompareFunction is defined as a function taking two const wxString&
parameters and returning an int value less than, equal to or greater than O if the first
string is less than, equal to or greater than the second one.

Example

The following example sorts strings by their length.

a7

CHAPTER 5

static int ConpareStringLen(const wxString& first, const wxString&
second)

{
}

return first.length() - second.|ength();

WXArrayString array,
array. Add("one");
array. Add("two");
array. Add("three");
array. Add("four");

array. Sort (ConpareStringlLen);

Warning: this function should not be used with sorted array because it could break the
order of items and, for example, subsequent calls to Index() (p. 45) would then not work!

See also: Sort (p. 47)

wxAutomationObject

The wxAutomationObiject class represents an OLE automation object containing a
single data member, an IDispatch pointer. It contains a number of functions that make it
easy to perform automation operations, and set and get properties. The class makes
heavy use of the wxVariant (p. 1033) class.

The usage of these classes is quite close to OLE automation usage in Visual Basic. The
APl is high-level, and the application can specify multiple properties in a single string.

The following example gets the current Excel instance, and if it exists, makes the active
cell bold.

wxAut omat i onCbj ect excel Qbj ect ;
i f (excel Object.CGetlnstance("Excel . Application"))
excel oj ect . Put Property("ActiveCell.Font.Bold", TRUE);

Note that this class works under Windows only, and currently only for Visual C++.
Derived from

wxObiject (p. 627)

Include files

<wx/msw/ole/automtn.h>

See also

48

CHAPTER 5

wxVariant (p. 1033)

wxAutomationObject::wxAutomationObject
wxAutomationObject(WXIDISPATCH* dispatchPtr = NULL)

Constructor, taking an optional IDispatch pointer which will be released when the object
is deleted.

wxAutomationObject::~wxAutomationObject

~wxAutomationObject()

Destructor. If the internal IDispatch pointer is non-null, it will be released.

wxAutomationObject::CallMethod
wxVariant CallMethod(const wxString& method, int noArgs, wxVariant args[]) const
wxVariant CallMethod(const wxString& method, ...) const

Calls an automation method for this object. The first form takes a method name, number
of arguments, and an array of variants. The second form takes a method name and zero
to six constant references to variants. Since the variant class has constructors for the
basic data types, and C++ provides temporary objects automatically, both of the
following lines are syntactically valid:

wxVariant res = obj.Call Method("Suni, wxVariant(1l.2),
wxVari ant (3.4));
wxVari ant res

obj . Cal | Met hod("Sumt, 1.2, 3.4);

Note that method can contain dot-separated property names, to save the application
needing to call GetProperty several times using several temporary objects. For example:

obj ect. Cal | Met hod(" Acti veCel I . Font. ShowDi al og", "My caption");

wxAutomationObject::Createlnstance

bool Createlnstance(const wxString& classld) const

49

CHAPTER 5

Creates a new object based on the class id, returning TRUE if the object was
successfully created, or FALSE if not.
wxAutomationObject::GetDispatchPtr

IDispatch* GetDispatchPtr() const

Gets the IDispatch pointer.

wxAutomationObject::Getinstance

bool Getinstance(const wxString& classld) const

Retrieves the current object associated with a class id, and attaches the IDispatch
pointer to this object. Returns TRUE if a pointer was succesfully retrieved, FALSE
otherwise.

Note that this cannot cope with two instances of a given OLE object being active
simultaneously, such as two copies of Excel running. Which object is referenced cannot
currently be specified.

wxAutomationObject::GetObject

bool GetObject(wxAutomationObject&obj const wxString& property, int noArgs = 0,
wxVariant args[] = NULL) const

Retrieves a property from this object, assumed to be a dispatch pointer, and initialises
obj with it. To avoid having to deal with IDispatch pointers directly, use this function in
preference to wxAutomationObject::GetProperty (p. 50) when retrieving objects from
other objects.

Note that an IDispatch pointer is stored as a void* pointer in wxVariant objects.

See also

wxAutomationObject::GetProperty (p. 50)

wxAutomationObject::GetProperty

wxVariant GetProperty(const wxString& property, int noArgs, wxVariant argsl])
const

wxVariant GetProperty(const wxString& property, ...) const

Gets a property value from this object. The first form takes a property name, number of

50

CHAPTER 5

arguments, and an array of variants. The second form takes a property name and zero
to six constant references to variants. Since the variant class has constructors for the
basic data types, and C++ provides temporary objects automatically, both of the
following lines are syntactically valid:

wxVari ant res
wxVari ant res

obj . Get Property("Range", wxVariant("Al"));
obj . Get Property("Range", "Al1");

Note that property can contain dot-separated property names, to save the application
needing to call GetProperty several times using several temporary objects.

wxAutomationObject::Invoke

bool Invoke(const wxString& member, int action, wxVariant& retValue, int noArgs,
wxVariant args[], const wxVariant* ptrArgs[] = 0) const

This function is a low-level implementation that allows access to the IDispatch Invoke
function. It is not meant to be called directly by the application, but is used by other
convenience functions.

Parameters

member
The member function or property name.

action
Bitlist: may contain DISPATCH_PROPERTYPUT,
DISPATCH_PROPERTYPUTREF, DISPATCH_METHOD.
retValue
Return value (ignored if there is no return value)
NoArgs

Number of arguments in args or ptrArgs.

args
If non-null, contains an array of variants.

ptrArgs
If non-null, contains an array of constant pointers to variants.

Return value
TRUE if the operation was successful, FALSE otherwise.

Remarks

51

CHAPTER 5

Two types of argument array are provided, so that when possible pointers are used for
efficiency.

wxAutomationObject::PutProperty

bool PutProperty(const wxString& property, int noArgs, wxVariant args[]) const
bool PutProperty(const wxString& property, ...)

Puts a property value into this object. The first form takes a property name, number of
arguments, and an array of variants. The second form takes a property name and zero
to six constant references to variants. Since the variant class has constructors for the

basic data types, and C++ provides temporary objects automatically, both of the
following lines are syntactically valid:

obj . Put Property("Val ue", wxVariant(23));
obj . Put Property("Val ue", 23);

Note that property can contain dot-separated property names, to save the application
needing to call GetProperty several times using several temporary objects.
wxAutomationObject::SetDispatchPtr

void SetDispatchPtr(WXIDISPATCH* dispatchPtr)

Sets the IDispatch pointer. This function does not check if there is already an IDispatch
pointer.

You may need to cast from IDispatch* to WXIDISPATCH* when calling this function.
wxBitmap

This class encapsulates the concept of a platform-dependent bitmap, either
monochrome or colour.

Derived from

wxGDIObject (p. 371)
wxObiject (p. 627)

Include files
<wx/bitmap.h>

Predefined objects

52

CHAPTER 5

Objects:
wxNullBitmap
See also

wxBitmap overview (p. 1232),supported bitmap file formats (p. 1233),wxDC::Blit (p.
192),wxlcon (p. 451), wxCursor (p. 156), wxBitmap (p. 52),wxMemoryDC (p. 562)

wxBitmap::wxBitmap

wxBitmap()

Default constructor.

wxBitmap(const wxBitmap& bitmap)

Copy constructor.

wxBitmap(void* data, int type, int width, int height, int depth = -1)

Creates a bitmap from the given data which is interpreted in platform-dependent
manner.

wxBitmap(const char bits[], int width, int height
int depth = 1)

Creates a bitmap from an array of bits.

You should only use this function for monochrome bitmaps (depth 1) in portable
programs: in this case the bits parameter should contain an XBM image.

For other bit depths, the behaviour is platform dependent: under Windows, the data is
passed withotu any changes to the underlying Cr eat eBi t map() API. Under other
platforms, only monochrome bitmaps may be created using this constructor and
wxIlmage (p. 458) should be used for creating colour bitmaps from static data.
wxBitmap(int width, int height, int depth = -1)

Creates a new bitmap. A depth of -1 indicates the depth of the current screen or visual.
Some platforms only support 1 for monochrome and -1 for the current colour setting.

wxBitmap(const char** bits)
Creates a bitmap from XPM data.

wxBitmap(const wxString& name, long type)

53

CHAPTER 5

Loads a bitmap from a file or resource.
Parameters

bits
Specifies an array of pixel values.

width
Specifies the width of the bitmap.

height
Specifies the height of the bitmap.

depth
Specifies the depth of the bitmap. If this is omitted, the display depth of the screen
is used.

name
This can refer to a resource name under MS Windows, or a filename under MS
Windows and X. Its meaning is determined by the type parameter.

type
May be one of the following:

wWxBITMAP_TYPE_BMP Load a Windows bitmap file.

wWxBITMAP_TYPE_BMP_RESOURCE Load a Windows bitmap from the
resource database.

WxBITMAP_TYPE_GIF Load a GIF bitmap file.

WxBITMAP_TYPE_XBM Load an X bitmap file.

WXxBITMAP_TYPE_XPM Load an XPM bitmap file.
wWxBITMAP_TYPE_RESOURCE Load a Windows resource name.

The validity of these flags depends on the platform and wxWindows configuration.
If all possible wxWindows settings are used, the Windows platform supports BMP
file, BMP resource, XPM data, and XPM. Under wxGTK, the available formats are
BMP file, XPM data, XPM file, and PNG file. Under wxMotif, the available formats
are XBM data, XBM file, XPM data, XPM file.

In addition, wxBitmap can read all formats that wximage (p. 458) can, which
currently include wxBITMAP_TYPE_JPEG, wxBITMAP_TYPE_TIF,
WXBITMAP_TYPE_PNG, wxBITMAP_TYPE_GIF, wxBITMAP_TYPE_PCX, and
WxBITMAP_TYPE_PNM. Of course, you must have wxlmage handlers loaded.

Remarks

CHAPTER 5

The first form constructs a bitmap object with no data; an assignment or another
member function such as Create or LoadFile must be called subsequently.

The second and third forms provide copy constructors. Note that these do not copy the
bitmap data, but instead a pointer to the data, keeping a reference count. They are
therefore very efficient operations.

The fourth form constructs a bitmap from data whose type and value depends on the
value of the type argument.

The fifth form constructs a (usually monochrome) bitmap from an array of pixel values,
under both X and Windows.

The sixth form constructs a new bitmap.

The seventh form constructs a bitmap from pixmap (XPM) data, if wxWindows has been
configured to incorporate this feature.

To use this constructor, you must first include an XPM file. For example, assuming that
the file mybi t map. xpmcontains an XPM array of character pointers called mybitmap:

#i ncl ude "nybit map. xpnt

wxBi t map *bitmap = new wxBi t map(nybi t map) ;

The eighth form constructs a bitmap from a file or resource. name can refer to a
resource name under MS Windows, or a filename under MS Windows and X.

Under Windows, type defaults to wxBITMAP_TYPE_BMP_RESOURCE. Under X, type
defaults to wxBITMAP_TYPE_XPM.

See also
wxBitmap::LoadFile (p. 60)
wxPython note: Constructors supported by wxPython are:
wxBitmap(name, flag) Loads a bitmap from a file
wxBitmapFromData(data, type, width, height, depth=1) Creates a
bitmap from the given data, which can be of
arbitrary type.
wxNoRefBitmap(name, flag) This one won't own the reference, so
Python won't call the destructor, this is good for
toolbars and such where the parent will

manage the bitmap.

wxEmptyBitmap(width, height, depth = -1) Creates an empty bitmap

55

CHAPTER 5

with the given specifications

wxBitmap::~wxBitmap

~wxBitmap()

Destroys the wxBitmap object and possibly the underlying bitmap data. Because
reference counting is used, the bitmap may not actually be destroyed at this point - only

when the reference count is zero will the data be deleted.

If the application omits to delete the bitmap explicitly, the bitmap will be destroyed
automatically by wxWindows when the application exits.

Do not delete a bitmap that is selected into a memory device context.

wxBitmap::AddHandler

static void AddHandler(wxBitmapHandler* handler)

Adds a handler to the end of the static list of format handlers.

handler
A new bitmap format handler object. There is usually only one instance of a given
handler class in an application session.

See also

wxBitmapHandler (p. 65)

wxBitmap::CleanUpHandlers
static void CleanUpHandlers()
Deletes all bitmap handlers.

This function is called by wxWindows on exit.

wxBitmap::Create
virtual bool Create(int width, int height, int depth = -1)

Creates a fresh bitmap. If the final argument is omitted, the display depth of the screen is
used.

virtual bool Create(void* data, int type, int width, int height, int depth = -1)

56

CHAPTER 5

Creates a bitmap from the given data, which can be of arbitrary type.
Parameters

width
The width of the bitmap in pixels.

height
The height of the bitmap in pixels.

depth
The depth of the bitmap in pixels. If this is -1, the screen depth is used.

data
Data whose type depends on the value of type.

type
A bitmap type identifier - see wxBitmap::wxBitmap (p. 53) for a list of possible
values.

Return value

TRUE if the call succeeded, FALSE otherwise.

Remarks

The first form works on all platforms. The portability of the second form depends on the
type of data.

See also

wxBitmap::wxBitmap (p. 53)

wxBitmap::FindHandler

static wxBitmapHandler* FindHandler(const wxString& name)

Finds the handler with the given name.

static wxBitmapHandler* FindHandler(const wxString& extension, long bitmapType)
Finds the handler associated with the given extension and type.

static wxBitmapHandler* FindHandler(long bitmapType)

Finds the handler associated with the given bitmap type.

name
The handler name.

57

CHAPTER 5

extension
The file extension, such as "bmp".

bitmapType
The bitmap type, such as wxBITMAP_TYPE_BMP.

Return value
A pointer to the handler if found, NULL otherwise.
See also

wxBitmapHandler (p. 65)

wxBitmap::GetDepth
int GetDepth() const

Gets the colour depth of the bitmap. A value of 1 indicates a monochrome bitmap.

wxBitmap::GetHandlers

static wxList& GetHandlers()

Returns the static list of bitmap format handlers.
See also

wxBitmapHandler (p. 65)

wxBitmap::GetHeight
int GetHeight() const

Gets the height of the bitmap in pixels.

wxBitmap::GetPalette
wxPalette* GetPalette() const

Gets the associated palette (if any) which may have been loaded from a file or set for the
bitmap.

See also

58

CHAPTER 5

wxPalette (p. 641)

wxBitmap::GetMask
wxMask* GetMask() const

Gets the associated mask (if any) which may have been loaded from a file or set for the
bitmap.

See also

wxBitmap::SetMask (p. 63), wxMask (p. 548)

wxBitmap::GetWidth

int GetWidth() const

Gets the width of the bitmap in pixels.
See also

wxBitmap::GetHeight (p. 58)

wxBitmap::GetSubBitmap

wxBitmap GetSubBitmap(const wxRect&rect) const

Returns a sub bitmap of the current one as long as the rect belongs entirely to the
bitmap. This function preserves bit depth and mask information.
wxBitmap::InitStandardHandlers

static void InitStandardHandlers()

Adds the standard bitmap format handlers, which, depending on wxWindows
configuration, can be handlers for Windows bitmap, Windows bitmap resource, and
XPM.

This function is called by wxWindows on startup.

See also

wxBitmapHandler (p. 65)

wxBitmap::InsertHandler

59

CHAPTER 5

static void InsertHandler(wxBitmapHandler* handler)

Adds a handler at the start of the static list of format handlers.

handler
A new bitmap format handler object. There is usually only one instance of a given
handler class in an application session.

See also

wxBitmapHandler (p. 65)

wxBitmap::LoadFile

bool LoadFile(const wxString& name, long type)
Loads a bitmap from a file or resource.
Parameters

name

Either a filename or a Windows resource name. The meaning of name is
determined by the type parameter.

type
One of the following values:

wWxBITMAP_TYPE_BMP Load a Windows bitmap file.

wWxBITMAP_TYPE_BMP_RESOURCE Load a Windows bitmap from the
resource database.

WxBITMAP_TYPE_GIF Load a GIF bitmap file.

WXxBITMAP_TYPE_XBM Load an X bitmap file.

WXBITMAP_TYPE_XPM Load an XPM bitmap file.

The validity of these flags depends on the platform and wxWindows configuration.
In addition, wxBitmap can read all formats that wximage (p. 458) can
(WxBITMAP_TYPE_JPEG, wxBITMAP_TYPE_PNG, wxBITMAP_TYPE_GIF,
WXBITMAP_TYPE_PCX, wxBITMAP_TYPE_PNM). (Of course you must have
wxIimage handlers loaded.)

Return value

TRUE if the operation succeeded, FALSE otherwise.

60

CHAPTER 5

Remarks

A palette may be associated with the bitmap if one exists (especially for colour Windows
bitmaps), and if the code supports it. You can check if one has been created by using
the GetPalette (p. 58) member.

See also

wxBitmap::SaveFile (p. 61)

wxBitmap::Ok
bool Ok() const

Returns TRUE if bitmap data is present.

wxBitmap::RemoveHandler
static bool RemoveHandler(const wxString& name)
Finds the handler with the given name, and removes it. The handler is not deleted.

name
The handler name.

Return value
TRUE if the handler was found and removed, FALSE otherwise.
See also

wxBitmapHandler (p. 65)

wxBitmap::SaveFile

bool SaveFile(const wxString& name, int type, wxPalette* palette = NULL)
Saves a bitmap in the named file.

Parameters

name
A filename. The meaning of name is determined by the type parameter.

type
One of the following values:

61

CHAPTER 5

wWxBITMAP_TYPE_BMP Save a Windows bitmap file.
WxBITMAP_TYPE_GIF Save a GIF bitmap file.
WXBITMAP_TYPE_XBM Save an X bitmap file.
WXBITMAP_TYPE_XPM Save an XPM bitmap file.
The validity of these flags depends on the platform and wxWindows configuration.
In addition, wxBitmap can save all formats that wximage (p. 458) can
(WxBITMAP_TYPE_JPEG, wxBITMAP_TYPE_PNG). (Of course you must have
wxIimage handlers loaded.)

palette
An optional palette used for saving the bitmap.

Return value

TRUE if the operation succeeded, FALSE otherwise.

Remarks

Depending on how wxWindows has been configured, not all formats may be available.

See also

wxBitmap::LoadFile (p. 60)

wxBitmap::SetDepth
void SetDepth(int depth)
Sets the depth member (does not affect the bitmap data).
Parameters
depth
Bitmap depth.
wxBitmap::SetHeight
void SetHeight(int height)
Sets the height member (does not affect the bitmap data).
Parameters

height
Bitmap height in pixels.

62

CHAPTER 5

wxBitmap::SetMask

void SetMask(wxMask* mask)

Sets the mask for this bitmap.

Remarks

The bitmap object owns the mask once this has been called.
See also

wxBitmap::GetMask (p. 59), wxMask (p. 548)

wxBitmap::SetOk
void SetOk(int isOk)
Sets the validity member (does not affect the bitmap data).
Parameters
isOk
Validity flag.
wxBitmap::SetPalette
void SetPalette(wxPalette* palette)
Sets the associated palette: it will be deleted in the wxBitmap destructor, so if you do not
\(Ijvsgtg Jo be deleted automatically, reset the palette to NULL before the bitmap is

Parameters

palette
The palette to set.

Remarks
The bitmap object owns the palette once this has been called.
See also

wxPalette (p. 641)

63

CHAPTER 5

wxBitmap::SetWidth
void SetWidth(int width)
Sets the width member (does not affect the bitmap data).
Parameters
width
Bitmap width in pixels.
wxBitmap::operator =
wxBitmap& operator =(const wxBitmap& bitmap)

Assignment operator. This operator does not copy any data, but instead passes a
pointer to the data in bitmap and increments a reference counter. It is a fast operation.

Parameters

bitmap
Bitmap to assign.

Return value

Returns 'this' object.

wxBitmap::operator ==
bool operator ==(const wxBitmap& bitmap)

Equality operator. This operator tests whether the internal data pointers are equal (a fast
test).

Parameters

bitmap
Bitmap to compare with 'this’

Return value

Returns TRUE if the bitmaps were effectively equal, FALSE otherwise.

wxBitmap::operator =

bool operator !=(const wxBitmapé& bitmap)

CHAPTER 5

Inequality operator. This operator tests whether the internal data pointers are unequal (a
fast test).

Parameters

bitmap
Bitmap to compare with 'this’

Return value

Returns TRUE if the bitmaps were unequal, FALSE otherwise.
wxBitmapHandler

Overview (p. 1232)

This is the base class for implementing bitmap file loading/saving, and bitmap creation
from data. It is used within wxBitmap and is not normally seen by the application.

If you wish to extend the capabilities of wxBitmap, derive a class from wxBitmapHandler
and add the handler using wxBitmap::AddHandler (p. 56) in your application initialisation.

Derived from
wxObject (p. 627)
Include files
<wx/bitmap.h>
See also

wxBitmap (p. 52), wxlcon (p. 451), wxCursor (p. 156)

wxBitmapHandler::wxBitmapHandler

wxBitmapHandler()

Default constructor. In your own default constructor, initialise the members m_name,
m_extension and m_type.

wxBitmapHandler::~wxBitmapHandler

~wxBitmapHandler()

65

CHAPTER 5

Destroys the wxBitmapHandler object.

wxBitmapHandler::Create

virtual bool Create(wxBitmap* bitmap, void* data, int type, int width, int height, int
depth =-1)

Creates a bitmap from the given data, which can be of arbitrary type. The wxBitmap
object bitmap is manipulated by this function.

Parameters

bitmap
The wxBitmap object.

width
The width of the bitmap in pixels.

height
The height of the bitmap in pixels.

depth
The depth of the bitmap in pixels. If this is -1, the screen depth is used.

data
Data whose type depends on the value of type.

type
A bitmap type identifier - see wxBitmapHandler::wxBitmapHandler (p. 53) for a list
of possible values.

Return value

TRUE if the call succeeded, FALSE otherwise (the default).

wxBitmapHandler::GetName
wxString GetName() const

Gets the name of this handler.

wxBitmapHandler::GetExtension
wxString GetExtension() const

Gets the file extension associated with this handler.

66

CHAPTER 5

wxBitmapHandler::GetType
long GetType() const

Gets the bitmap type associated with this handler.

wxBitmapHandler::LoadFile

bool LoadFile(wxBitmap* bitmap, const wxString& name, long type)
Loads a bitmap from a file or resource, putting the resulting data into bitmap.
Parameters

bitmap
The bitmap object which is to be affected by this operation.

name

Either a filename or a Windows resource name. The meaning of name is
determined by the type parameter.

type
See wxBitmap::wxBitmap (p. 53) for values this can take.

Return value

TRUE if the operation succeeded, FALSE otherwise.
See also

wxBitmap::LoadFile (p. 60)

wxBitmap::SaveFile (p. 61)
wxBitmapHandler::SaveFile (p. 67)

wxBitmapHandler::SaveFile

bool SaveFile(wxBitmap* bitmap, const wxString& name, int type, wxPalette* palette
= NULL)

Saves a bitmap in the named file.
Parameters

bitmap
The bitmap object which is to be affected by this operation.

name

67

CHAPTER 5

A filename. The meaning of name is determined by the type parameter.

type
See wxBitmap::wxBitmap (p. 53) for values this can take.

palette
An optional palette used for saving the bitmap.

Return value
TRUE if the operation succeeded, FALSE otherwise.
See also
wxBitmap::LoadFile (p. 60)
wxBitmap::SaveFile (p. 61)
wxBitmapHandler::LoadFile (p. 67)
wxBitmapHandler::SetName
void SetName(const wxString& name)
Sets the handler name.
Parameters
name

Handler name.
wxBitmapHandler::SetExtension
void SetExtension(const wxString& extension)
Sets the handler extension.
Parameters
extension

Handler extension.
wxBitmapHandler::SetType
void SetType(long type)
Sets the handler type.

Parameters

68

CHAPTER 5

name
Handler type.

wxBitmapButton

A bitmap button is a control that contains a bitmap. It may be placed on a dialog box (p.
220) or panel (p. 645), or indeed almost any other window.

Derived from

wxButton (p. 87)

wxControl (p. 150)

wxWindow (p. 1048)

wxEvtHandler (p. 277)

wxObject (p. 627)

Include files

<wx/bmpbuttn.h>

Remarks

A bitmap button can be supplied with a single bitmap, and wxWindows will draw all

button states using this bitmap. If the application needs more control, additional bitmaps

for the selected state, unpressed focussed state, and greyed-out state may be supplied.

Window styles

wxBU_AUTODRAW If this is specified, the button will be drawn automatically
using the label bitmap only, providing a 3D-look border. If
this style is not specified, the button will be drawn without
borders and using all provided bitmaps.

See also window styles overview (p. 1214).

Event handling

EVT_BUTTON(id, func) Process a

wWXEVT_COMMAND_BUTTON_CLICKED
event, when the button is clicked.

See also

wxButton (p. 87)

69

CHAPTER 5

wxBitmapButton::wxBitmapButton

wxBitmapButton()

Default constructor.

wxBitmapButton(wxWindow* parent, wxWindowID id, const wxBitmap& bitmap,
const wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long
style = wxBU_AUTODRAW, const wxValidator& validator = wxDefaultValidator, const
wxString& name = "button")

Constructor, creating and showing a button.

Parameters

parent
Parent window. Must not be NULL.
id
Button identifier. A value of -1 indicates a default value.

bitmap
Bitmap to be displayed.

pos
Button position.

size
Button size. If the default size (-1, -1) is specified then the button is sized
appropriately for the bitmap.

style
Window style. See wxBitmapButton (p. 69).

validator
Window validator.

name
Window name.

Remarks

The bitmap parameter is normally the only bitmap you need to provide, and wxWindows
will draw the button correctly in its different states. If you want more control, call any of
the functions wxBitmapButton::SetBitmapSelected (p. 73),
wxBitmapButton::SetBitmapFocus (p. 72), wxBitmapButton::SetBitmapDisabled (p. 72).

Note that the bitmap passed is smaller than the actual button created.

See also

70

CHAPTER 5

wxBitmapButton::Create (p. 71), wxValidator (p. 1031)

wxBitmapButton::~wxBitmapButton
~wxBitmapButton()

Destructor, destroying the button.

wxBitmapButton::Create

bool Create(wxWindow* parent, wxWindowlID id, const wxBitmapé& bitmap, const
wxPoint& pos, const wxSize& size = wxDefaultSize, long style = 0, const
wxValidator& validator, const wxString& name = "button")

Button creation function for two-step creation. For more details, see
wxBitmapButton::wxBitmapButton (p. 70).
wxBitmapButton::GetBitmapDisabled

wxBitmap& GetBitmapLabel() const

Returns the bitmap for the disabled state.

Return value

A reference to the disabled state bitmap.

See also

wxBitmapButton::SetBitmapDisabled (p. 72)

wxBitmapButton::GetBitmapFocus
wxBitmap& GetBitmapFocus() const
Returns the bitmap for the focussed state.
Return value

A reference to the focussed state bitmap.
See also

wxBitmapButton::SetBitmapFocus (p. 72)

71

CHAPTER 5

wxBitmapButton::GetBitmapLabel

wxBitmap& GetBitmapLabel() const

Returns the label bitmap (the one passed to the constructor).

Return value
A reference to the button's label bitmap.
See also

wxBitmapButton::SetBitmapLabel (p. 73)

wxBitmapButton::GetBitmapSelected
wxBitmap& GetBitmapSelected() const
Returns the bitmap for the selected state.
Return value

A reference to the selected state bitmap.
See also

wxBitmapButton::SetBitmapSelected (p. 73)

wxBitmapButton::SetBitmapDisabled

void SetBitmapDisabled(const wxBitmapé& bitmap)
Sets the bitmap for the disabled button appearance.
Parameters

bitmap
The bitmap to set.

See also

wxBitmapButton::GetBitmapDisabled (p. 71), wxBitmapButton::SetBitmapLabel (p. 73),
wxBitmapButton::SetBitmapSelected (p. 73), wxBitmapButton::SetBitmapFocus (p. 72)

wxBitmapButton::SetBitmapFocus

void SetBitmapFocus(const wxBitmapé& bitmap)

72

CHAPTER 5

Sets the bitmap for the button appearance when it has the keyboard focus.
Parameters

bitmap
The bitmap to set.

See also

wxBitmapButton::GetBitmapFocus (p. 71), wxBitmapButton::SetBitmapLabel (p. 73),
wxBitmapButton::SetBitmapSelected (p. 73), wxBitmapButton::SetBitmapDisabled (p.
72)

wxBitmapButton::SetBitmapLabel

void SetBitmapLabel(const wxBitmapé& bitmap)

Sets the bitmap label for the button.

Parameters

bitmap
The bitmap label to set.

Remarks

This is the bitmap used for the unselected state, and for all other states if no other
bitmaps are provided.

See also

wxBitmapButton::GetBitmapLabel (p. 72)

wxBitmapButton::SetBitmapSelected

void SetBitmapSelected(const wxBitmapé& bitmap)

Sets the bitmap for the selected (depressed) button appearance.
Parameters

bitmap
The bitmap to set.

See also

wxBitmapButton::GetBitmapSelected (p. 72), wxBitmapButton::SetBitmapLabel (p. 73),
wxBitmapButton::SetBitmapFocus (p. 72), wxBitmapButton::SetBitmapDisabled (p. 72)

73

CHAPTER 5

wxBitmapDataObject

wxBitmapDataObiject is a specialization of wxDataObject for bitmap data. It can be used
without change to paste data into the wxClipboard (p. 106) or a wxDropSource (p. 265).
A user may wish to derive a new class from this class for providing a bitmap on-demand
in order to minimize memory consumption when offering data in several formats, such as
a bitmap and GIF.

wxPython note: If you wish to create a derived wxBitmapDataObiject class in wxPython
you should derive the class from wxPyBitmapDataObject in order to get Python-aware
capabilities for the various virtual methods.

Virtual functions to override

This class may be used as is, but GetBitmap (p. 74) may be overridden to increase
efficiency.

Derived from

wxDataObjectSimple (p. 173)
wxDataObject (p. 169)

Include files

<wx/dataobj.h>

See also

Clipboard and drag and drop overview (p. 1264), wxDataObject (p. 169),
wxDataObjectSimple (p. 173), wxFileDataObject (p. 305), wxTextDataObject (p. 952),
wxDataObject (p. 169)

wxBitmapDataObject(const wxBitmap& bitmap = wxNullBitmap)

Constructor, optionally passing a bitmap (otherwise use SetBitmap (p. 74) later).

wxBitmapDataObject::GetBitmap

virtual wxBitmap GetBitmap() const

Returns the bitmap associated with the data object. You may wish to override this
method when offering data on-demand, but this is not required by wxWindows' internals.
Use this method to get data in bitmap form from the wxClipboard (p. 106).

wxBitmapDataObject::SetBitmap

virtual void SetBitmap(const wxBitmap& bitmap)

74

CHAPTER 5

Sets the bitmap associated with the data object. This method is called when the data
object receives data. Usually there will be no reason to override this function.

wxBoolFormValidator

This class validates a boolean value for a form view (p. 704). The associated control
must be a wxCheckBox.

See also

Property validator classes (p. 1297)

wxBoolFormValidator::wxBoolFormValidator

void wxBoolFormValidator(long flags=0)

Constructor.

wxBoolListValidator

This class validates a boolean value for a property list view (p. 711).
See also

Validator classes (p. 1297)

wxBoolListValidator::wxBoolListValidator
void wxBoolListValidator(long flags=0)
Constructor.

wxBoxSizer

The basic idea behind a box sizer is that windows will most often be laid out in rather
simple basic geomerty, typically in a row or a column or several hierachies of either.

As an exmaple, we will construct a dialog that will contain a text field at the top and two
buttons at the bottom. This can be seen as a top-hierarchy column with the text at the
top and buttons at the bottom and a low-hierchary row with an OK button to the left and
a Cancel button to the right. In many cases (particulary dialogs under Unix and normal
frames) the main window will be resizable by the user and this change of size will have
to get propagated to its children. In our case, we want the text area to grow with the

75

CHAPTER 5

dialog, whereas the button shall have a fixed size. In addition, there will be a thin border
around all controls to make the dialog look nice and - to make matter worse - the buttons
shall be centred as the width of the dialog changes.

It is the unique feature of a box sizer, that it can grow in both directions (height and
width) but can distribute its growth in the main direction (horizontal for a row)
unevenlyamong its children. In our example case, the vertical sizer is supposed to
propagate all its height changes to only the text area, not to the button area. This is
determined by the option parameter when adding a window (or another sizer) to a sizer.
Itis interpreted as a weight factor, i.e. it can be zero, indicating that the window may not
be resized at all, or above zero. If several windows have a value above zero, the value is
interpreted relative to the sum of all weight factors of the sizer, so when adding two
windows with a value of 1, they will both get resized equally much and each half as
much as the sizer owning them. Then what do we do when a column sizer changes its
width? This behaviour is controlled by flags (the second parameter of the Add()
function): Zero or no flag indicates that the window will preserve it's original size,
WXGROW flag (same as wxEXPAND) forces the window to grow with the sizer, and
WXSHAPED flag tells the window to change it's size proportionally, preserving original
aspect ratio. When wxGROW flag is not used, the item can be aligned within available
space. WXALIGN_LEFT, wxALIGN_TOP, wxALIGN_RIGHT, wxALIGN_BOTTOM,
WXALIGN_CENTER_HORIZONTAL and wxALIGN_CENTER_VERTICAL do what they
say. WXALIGN_CENTRE (same as wxALIGN_CENTER) is defined as
(WXALIGN_CENTER_HORIZONTAL | wxALIGN_CENTER_VERTICAL). Default
alignment is wxALIGN_LEFT | wxALIGN_TOP.

As mentioned above, any window belonging to a sizer may have border, and it can be
specified which of the four sides may have this border, using the wxTOP, wxLEFT,
WXRIGHT and wxBOTTOM constants or wxALL for all directions (and you may also use
WXNORTH, wxWEST etc instead). These flags can be used in combintaion with the
alignement flags above as the second paramter of the Add() method using the binary or
operator |. The sizer of the border also must be made known, and it is the third
parameter in the Add() method. This means, that the entire behaviour of a sizer and its
children can be controlled by the three parameters of the Add() method.

/1 we want to get a dialog that is stretchabl e because it
/!l has a text ctrl at the top and two buttons at the bottom

MyDi al og: : MyDi al og(wxFrame *parent, wxWndow D id, const wxString
&itle)

wxDi al og(parent, id, title, wxDefaultPosition, wxDefaultSize,
wxDl ALOG STYLE | wxRESI ZE_BORDER)
{

wxBoxSi zer *topsizer = new wxBoxSi zer (wxVERTI CAL);

/] create text ctrl with mninal size 100x60
t opsi zer - >Add(

new wxTextCtrl (this, -1, "My text.", wxDefaultPosition,
wxSi ze(100, 60), WXTE_MULTI LI NE),

1, /1 make vertically stretchable

WXEXPAND | /1 make horizontally stretchable

WXALL, /1 and make border all around

10); /1 set border width to 10

76

CHAPTER 5

wxBoxSi zer *button_sizer = new wxBoxSi zer (wxHORI ZONTAL)
button_si zer - >Add(
new wxButton(this, wxlD OK "K'),

0, /1 make horizontally unstretchable
WXALL, /1 make border all around (inplicit top alignnent)
10); /1 set border width to 10

button_si zer - >Add(
new wxButton(this, wxlD CANCEL, "Cancel"),

0, /1 make horizontally unstretchable
WXALL, /1 make border all around (inplicit top alignnent)
10); /1 set border width to 10

t opsi zer - >Add(
button_si zer,
0, /1 make vertically unstretchable
WXALI GN_CENTER); // no border and centre horizontally

Set Aut oLayout (TRUE); /1 tell dialog to use sizer

Set Si zer (topsizer); /] actually set the sizer

topsizer->Fit(this); /] set size to mninmmsize as
cal cul ated by the sizer

topsi zer->Set Si zeHi nts(this); /1 set size hints to honour m ni num
si ze

}

Derived from

wxSizer (p. 798)

wxObject (p. 627)

wxBoxSizer::wxBoxSizer

wxBoxSizer(int orient)

Constructor for a wxBoxSizer. orient may be either of wx\VERTICAL or wxHORIZONTAL
for creating either a column sizer or a row sizer.

wxBoxSizer::RecalcSizes

void RecalcSizes()

Implements the calculation of a box sizer's dimensions and then sets the size of its its
children (calling wxWindow::SetSize (p. 1091) if the child is a window). It is used
internally only and must not be called by the user. Documented for information.
wxBoxSizer::CalcMin

wxSize CalcMin()

77

CHAPTER 5

Implements the calculation of a box sizer's minimal. It is used internally only and must
not be called by the user. Documented for information.

wxBoxSizer::GetOrientation

int GetOrientation()

Returns the orientation of the box sizer, either wxVERTICAL or wxHORIZONTAL.
wxBrush

A brush is a drawing tool for filling in areas. It is used for painting the background of
rectangles, ellipses, etc. It has a colour and a style.

Derived from

wxGDIObject (p. 371)
wxObiject (p. 627)

Include files
<wx/brush.h>
Predefined objects
Objects:
wxNullBrush
Pointers:

wxBLUE_BRUSH
WXGREEN_BRUSH
WXWHITE_BRUSH
WXBLACK_BRUSH
WXGREY_BRUSH
wWxXMEDIUM_GREY_BRUSH
WXLIGHT_GREY_BRUSH
WXTRANSPARENT_BRUSH
wWXCYAN_BRUSH
wWXRED_BRUSH

Remarks

On a monochrome display, wxWindows shows all brushes as white unless the colour is
really black.

Do not initialize objects on the stack before the program commences, since other
required structures may not have been set up yet. Instead, define global pointers to

78

CHAPTER 5

objects and create them in wxApp::Onlnit (p. 26) or when required.

An application may wish to create brushes with different characteristics dynamically, and
there is the consequent danger that a large number of duplicate brushes will be created.
Therefore an application may wish to get a pointer to a brush by using the global list of
brushes wxTheBrushList, and calling the member function FindOrCreateBrush.
wxBrush uses a reference counting system, so assignments between brushes are very
cheap. You can therefore use actual wxBrush objects instead of pointers without
efficiency problems. Once one wxBrush object changes its data it will create its own
brush data internally so that other brushes, which previously shared the data using the
reference counting, are not affected.

See also

wxBrushList (p. 83), wxDC (p. 191), wxDC::SetBrush (p. 205)

wxBrush::wxBrush
wxBrush()

Default constructor. The brush will be uninitialised, and wxBrush::Ok (p. 81) will return
FALSE.

wxBrush(const wxColour& colour, int style)

Constructs a brush from a colour object and style.

wxBrush(const wxString& colourName, int style)

Constructs a brush from a colour name and style.

wxBrush(const wxBitmap& stippleBitmap)

Constructs a stippled brush using a bitmap.

wxBrush(const wxBrushé& brush)

Copy constructor. This uses reference counting so is a cheap operation.
Parameters

colour
Colour object.

colourName
Colour name. The name will be looked up in the colour database.

79

CHAPTER 5

style
One of:
WXTRANSPARENT Transparent (no fill).
wxSOLID Solid.
wxBDIAGONAL_HATCH Backward diagonal hatch.
WXCROSSDIAG_HATCH Cross-diagonal hatch.
wWxFDIAGONAL_HATCH Forward diagonal hatch.
WXCROSS_HATCH Cross hatch.
WxXHORIZONTAL_HATCH Horizontal hatch.
WXVERTICAL_HATCH Vertical hatch.

brush

Pointer or reference to a brush to copy.

stippleBitmap
A bitmap to use for stippling.

Remarks
If a stipple brush is created, the brush style will be set to wxSTIPPLE.
See also

wxBrushList (p. 83), wxColour (p. 111), wxColourDatabase (p. 116)

wxBrush::~wxBrush
void ~wxBrush()
Destructor.

Remarks

The destructor may not delete the underlying brush object of the native windowing
system, since wxBrush uses a reference counting system for efficiency.

Although all remaining brushes are deleted when the application exits, the application
should try to clean up all brushes itself. This is because wxWindows cannot know if a
pointer to the brush object is stored in an application data structure, and there is a risk of
double deletion.

wxBrush::GetColour

wxColour& GetColour() const

Returns a reference to the brush colour.

80

CHAPTER 5

See also

wxBrush::SetColour (p. 81)

wxBrush::GetStipple
wxBitmap * GetStipple() const

Gets a pointer to the stipple bitmap. If the brush does not have a wxSTIPPLE style, this
bitmap may be non-NULL but uninitialised (wxBitmap::Ok (p. 61) returns FALSE).

See also

wxBrush::SetStipple (p. 82)

wxBrush::GetStyle
int GetStyle() const

Returns the brush style, one of:

WXTRANSPARENT Transparent (no fill).
wxSOLID Solid.
wxBDIAGONAL_HATCH Backward diagonal hatch.
WXCROSSDIAG_HATCH Cross-diagonal hatch.
wWxFDIAGONAL_HATCH Forward diagonal hatch.
WxXCROSS_HATCH Cross hatch.
WXHORIZONTAL_HATCH Horizontal hatch.
WXVERTICAL_HATCH Vertical hatch.
WXSTIPPLE Stippled using a bitmap.
WXSTIPPLE_MASK_OPAQUE Stippled using a bitmap's mask.
See also

wxBrush::SetStyle (p. 82), wxBrush::SetColour (p. 81), wxBrush::SetStipple (p. 82)

wxBrush::Ok
bool Ok() const
Returns TRUE if the brush is initialised. It will return FALSE if the default constructor has

been used (for example, the brush is a member of a class, or NULL has been assigned
to it).

wxBrush::SetColour

81

CHAPTER 5

void SetColour(wxColour& colour)

Sets the brush colour using a reference to a colour object.

void SetColour(const wxString& colourName)

Sets the brush colour using a colour name from the colour database.

void SetColour(const unsigned char red, const unsigned char green, const
unsigned char blue)

Sets the brush colour using red, green and blue values.
See also

wxBrush::GetColour (p. 80)

wxBrush::SetStipple

void SetStipple(const wxBitmapé& bitmap)
Sets the stipple bitmap.

Parameters

bitmap
The bitmap to use for stippling.

Remarks

The style will be set to wxSTIPPLE, unless the bitmap has a mask associated to it, in
which case the style will be set to wxSTIPPLE_MASK_OPAQUE.

If the wxSTIPPLE variant is used, the bitmap will be used to fill out the area to be drawn.
If the wxSTIPPLE_MASK_OPAQUE is used, the current text foreground and text
background determine what colours are used for displaying and the bits in the mask
(which is a mono-bitmap actually) determine where to draw what.

Note that under Windows 95, only 8x8 pixel large stipple bitmaps are supported,
Windows 98 and NT as well as GTK support arbitrary bitmaps.

See also

wxBitmap (p. 52)

wxBrush::SetStyle

void SetStyle(int style)

82

CHAPTER 5

Sets the brush style.

style
One of:
WXTRANSPARENT Transparent (no fill).
wxSOLID Solid.
wxBDIAGONAL_HATCH Backward diagonal hatch.
WXCROSSDIAG_HATCH Cross-diagonal hatch.
wWxFDIAGONAL_HATCH Forward diagonal hatch.
WXCROSS_HATCH Cross hatch.
WxXHORIZONTAL_ HATCH Horizontal hatch.
WXVERTICAL_HATCH Vertical hatch.
WXSTIPPLE Stippled using a bitmap.
WXSTIPPLE_MASK_OPAQUE Stippled using a bitmap's mask.

See also

wxBrush::GetStyle (p. 81)

wxBrush::operator =
wxBrushé& operator =(const wxBrush& brush)

Assignment operator, using reference counting. Returns a reference to 'this'.

wxBrush::operator ==

bool operator ==(const wxBrushé& brush)

Equality operator. Two brushes are equal if they contain pointers to the same underlying
brush data. It does not compare each attribute, so two independently-created brushes
using the same parameters will fail the test.

wxBrush::operator !=

bool operator !=(const wxBrush& brush)

Inequality operator. Two brushes are not equal if they contain pointers to different
underlying brush data. It does not compare each attribute.

wxBrushList

A brush list is a list containing all brushes which have been created.

83

CHAPTER 5

Derived from

wxList (p. 505)
wxObject (p. 627)

Include files
<wx/gdicmn.h>
Remarks

There is only one instance of this class: wxTheBrushList. Use this object to search for
a previously created brush of the desired type and create it if not already found. In some
windowing systems, the brush may be a scarce resource, so it can pay to reuse old
resources if possible. When an application finishes, all brushes will be deleted and their
resources freed, eliminating the possibility of 'memory leaks'. However, it is best not to
rely on this automatic cleanup because it can lead to double deletion in some
circumstances.

There are two mechanisms in recent versions of wxWindows which make the brush list
less useful than it once was. Under Windows, scarce resources are cleaned up internally
if they are not being used. Also, a referencing counting mechanism applied to all GDI
objects means that some sharing of underlying resources is possible. You don't have to
keep track of pointers, working out when it is safe delete a brush, because the
referencing counting does it for you. For example, you can set a brush in a device
context, and then immediately delete the brush you passed, because the brush is
‘copied'.

So you may find it easier to ignore the brush list, and instead create and copy brushes
as you see fit. If your Windows resource meter suggests your application is using too
many resources, you can resort to using GDI lists to share objects explicitly.

The only compelling use for the brush list is for wxWindows to keep track of brushes in
order to clean them up on exit. It is also kept for backward compatibility with earlier
versions of wxWindows.

See also

wxBrush (p. 78)

wxBrushList::wxBrushList
void wxBrushList()

Constructor. The application should not construct its own brush list: use the object
pointer wxTheBrushList.

CHAPTER 5

wxBrushList::AddBrush
void AddBrush(wxBrush *brush)

Used internally by wxWindows to add a brush to the list.

wxBrushList::FindOrCreateBrush
wxBrush * FindOrCreateBrush(const wxColour& colour, int style)

Finds a brush with the specified attributes and returns it, else creates a new brush, adds
it to the brush list, and returns it.

wxBrush * FindOrCreateBrush(const wxString& colourName, int style)

Finds a brush with the specified attributes and returns it, else creates a new brush, adds
it to the brush list, and returns it.

Finds a brush of the given specification, or creates one and adds it to the list.
Parameters

colour
Colour object.

colourName
Colour name, which should be in the colour database.

swie Brush style. See wxBrush::SetStyle (p. 82) for a list of styles.
wxBrushList::RemoveBrush

void RemoveBrush(wxBrush *brush)

Used by wxWindows to remove a brush from the list.

wxBusyCursor

This class makes it easy to tell your user that the program is temporarily busy. Just
create a wxBusyCursor object on the stack, and within the current scope, the hourglass

will be shown.

For example:
wxBusyCur sor wait;

for (int i = 0; i < 100000; i ++)
DoACal cul ation();

85

CHAPTER 5

It works by calling wxBeginBusyCursor (p. 1122) in the constructor, and
wxEndBusyCursor (p. 1125) in the destructor.

Derived from
None
Include files
<wx/utils.h>
See also

wxBeginBusyCursor (p. 1122), wxEndBusyCursor (p. 1125), wxWindowDisabler (p.
1097)

wxBusyCursor::wxBusyCursor
wxBusyCursor(wxCursor* cursor = wxHOURGLASS_CURSOR)

Constructs a busy cursor object, calling wxBeginBusyCursor (p. 1122).

wxBusyCursor::~wxBusyCursor

~wxBusyCursor()

Destroys the busy cursor object, calling wxEndBusyCursor (p. 1125).
wxBusylnfo

This class makes it easy to tell your user that the program is temporarily busy. Just

create a wxBusylInfo object on the stack, and within the current scope, a message
window will be shown.

For example:
wxBusyl nfo wait("Pl ease wait, working...");
for (int i = 0; i < 100000; i ++)

DoACal cul ation();
It works by creating a window in the constructor, and deleting it in the destructor.
Derived from

None

86

CHAPTER 5

Include files

<wx/busyinfo.h>

wxBusyInfo::wxBusylnfo

wxBusylInfo(const wxString& msg)

Constructs a busy info object, displays msg.

wxButton

A button is a control that contains a text string, and is one of the commonest elements of

a GUL. It may be placed on a dialog box (p. 220) or panel (p. 645), or indeed almost any

other window.

Derived from

wxControl (p. 150)

wxWindow (p. 1048)

wxEvtHandler (p. 277)

wxObiject (p. 627)

Include files

<wx/button.h>

Window styles

There are no special styles for wxButton.

See also window styles overview (p. 1214).

Event handling

EVT_BUTTON(id, func) Process a
wWXEVT_COMMAND_BUTTON_CLICKED
event, when the button is clicked.

See also

wxBitmapButton (p. 69)

87

CHAPTER 5

wxButton::wxButton

wxButton()

Default constructor.

wxButton(wxWindow* parent, wxWindowID id, const wxString& label, const
wxPoint& pos, const wxSize& size = wxDefaultSize, long style = 0, const
wxValidator& validator, const wxString& name = "button")

Constructor, creating and showing a button.

Parameters

parent
Parent window. Must not be NULL.

id
Button identifier. A value of -1 indicates a default value.

label
Text to be displayed on the button.

pos
Button position.

size
Button size. If the default size (-1, -1) is specified then the button is sized
appropriately for the text.

style
Window style. See wxButton (p. 87).

validator
Window validator.

name
Window name.

See also

wxButton::Create (p. 89), wxValidator (p. 1031)

wxButton::~wxButton
~wxButton()

Destructor, destroying the button.

88

CHAPTER 5

wxButton::Create

bool Create(wxWindow* parent, wxWindowID id, const wxString& label, const
wxPoint& pos, const wxSize& size = wxDefaultSize, long style = 0, const
wxValidator& validator, const wxString& name = "button")

Button creation function for two-step creation. For more details, see wxButton::wxButton
(p- 88).

wxButton::GetLabel

wxString GetLabel() const

Returns the string label for the button.

Return value

The button's label.

See also

wxButton::SetLabel (p. 90)

wxButton::GetDefaultSize
wxSize GetDefaultSize()
Returns the default size for the buttons. It is advised to make all the dialog buttons of the

same size and this function allows to retrieve the (platform and current font dependent
size) which should be the best suited for this.

wxButton::SetDefault

void SetDefault()

This sets the button to be the default item for the panel or dialog box.

Remarks

Under Windows, only dialog box buttons respond to this function. As normal under
Windows and Motif, pressing return causes the default button to be depressed when the
return key is pressed. See also wxWindow::SetFocus (p. 1088) which sets the keyboard
focus for windows and text panel items, and wxPanel::SetDefaultltem (p. 648).

Note that under Motif, calling this function immediately after creation of a button and

before the creation of other buttons will cause misalignment of the row of buttons, since
default buttons are larger. To get around this, call SetDefault after you have created a

89

CHAPTER 5

row of buttons: wxWindows will then set the size of all buttons currently on the panel to
the same size.

wxButton::SetLabel

void SetLabel(const wxString& label)

Sets the string label for the button.

Parameters

label
The label to set.

See also

wxButton::GetLabel (p. 89)

wxBufferedinputStream

This stream acts as a cache. It caches the bytes read from the specified input stream
(See wxFilterInputStream (p. 329)). It uses wxStreamBuffer and sets the default in-buffer
size to 1024 bytes. This class may not be used without some other stream to read the
data from (such as a file stream or a memory stream).

Derived from

wxFilterinputStream (p. 329)

Include files

<wx/stream.h>

See also

wxStreamBuffer (p. 871), wxInputStream (p. 483),wxBufferedOutputStream (p. 90)
wxBufferedOutputStream

This stream acts as a cache. It caches the bytes to be written to the specified output
stream (See wxFilterOutputStream (p. 330)). The data is only written when the cache is

full, when the buffered stream is destroyed or when calling SeekO().

This class may not be used without some other stream to write the data to (such as a file
stream or a memory stream).

Derived from

wxFilterOutputStream (p. 330)

90

CHAPTER 5

Include files
<wx/stream.h>
See also

wxStreamBuffer (p. 871), wxOutputStream (p. 632)

wxBufferedOutputStream::wxBufferedOutputStream
wxBufferedOutputStream(const wxOutputStream& parent)

Creates a buffered stream using a buffer of a default size of 1024 bytes for cashing the
stream parent.

wxBufferedOutputStream::~wxBufferedOutputStream
~wxBufferedOutputStream()

Destructor. Calls Sync() and destroys the internal buffer.

wxBufferedOutputStream::SeekO
off_t SeekO(off_t pos, wxSeekMode mode)

Calls Sync() and changes the stream position.

wxBufferedOutputStream::Sync

void Sync()

Flushes the buffer and calls Sync() on the parent stream.
wxCalculateLayoutEvent

This event is sent by wxLayoutAlgorithm (p. 500) to calculate the amount of the
remaining client area that the window should occupy.

Derived from

wxEvent (p. 274)
wxObiject (p. 627)

91

CHAPTER 5

Include files

<wx/laywin.h>

Event table macros

EVT_CALCULATE_LAYOUT(func) Process a wxEVT_CALCULATE_LAYOUT

event, which asks the window to take a 'bite’
out of a rectangle provided by the algorithm.

See also

wxQueryLayoutinfoEvent (p. 732), wxSashLayoutWindow (p. 769), wxLayoutAlgorithm
(p. 500).

wxCalculateLayoutEvent::wxCalculateLayoutEvent
wxCalculateLayoutEvent(wxWindowlID id = 0)

Constructor.

wxCalculateLayoutEvent::GetFlags
int GetFlags() const

Returns the flags associated with this event. Not currently used.

wxCalculateLayoutEvent::GetRect

wxRect GetRect() const

Before the event handler is entered, returns the remaining parent client area that the
window could occupy. When the event handler returns, this should contain the remaining
parent client rectangle, after the event handler has subtracted the area that its window
occupies.

wxCalculateLayoutEvent::SetFlags

void SetFlags(int flags)

Sets the flags associated with this event. Not currently used.

92

CHAPTER 5

wxCalculateLayoutEvent::SetRect
void SetRect(const wxRect& rect)

Call this to specify the new remaining parent client area, after the space occupied by the
window has been subtracted.

wxCalendarCtrl

The calendar control allows the user to pick a date interactively.
Include files

<wx/calctrl.h>

See also:

Calendar sample (p. 1172)

wxCheckBox

A checkbox is a labelled box which is either on (checkmark is visible) or off (no
checkmark).

Derived from

wxControl (p. 150)

wxWindow (p. 1048)

wxEvtHandler (p. 277)

wxObject (p. 627)

Include files

<wx/checkbox.h>

Window styles

There are no special styles for wxCheckBox.
See also window styles overview (p. 1214).
Event handling

EVT_CHECKBOX(id, func) Process a

wxEVT_COMMAND_CHECKBOX_ CLICKED
event, when the checkbox is clicked.

See also

93

CHAPTER 5

wxRadioButton (p. 740), wxCommandEvent (p. 127)

wxCheckBox::wxCheckBox

wxCheckBox()

Default constructor.

wxCheckBox(wxWindow* parent, wxWindowID id, const wxString& label, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
0, const wxValidator& val, const wxString& name = "checkBox")

Constructor, creating and showing a checkbox.

Parameters

parent
Parent window. Must not be NULL.

id
Checkbox identifier. A value of -1 indicates a default value.
label
Text to be displayed next to the checkbox.
pos
Checkbox position. If the position (-1, -1) is specified then a default position is
chosen.
size
Checkbox size. If the default size (-1, -1) is specified then a default size is chosen.
style
Window style. See wxCheckBox (p. 93).
validator
Window validator.
name
Window name.
See also

wxCheckBox::Create (p. 95), wxValidator (p. 1031)

wxCheckBox::~wxCheckBox

94

CHAPTER 5

~wxCheckBox()

Destructor, destroying the checkbox.

wxCheckBox::Create

bool Create(wxWindow* parent, wxWindowID id, const wxString& label, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
0, const wxValidator& val, const wxString& name = "checkBox")

Creates the checkbox for two-step construction. See wxCheckBox::wxCheckBox (p. 94)
for details.

wxCheckBox::GetValue

bool GetValue() const

Gets the state of the checkbox.

Return value

Returns TRUE if it is checked, FALSE otherwise.

wxCheckBox::SetValue
void SetValue(const bool state)

Sets the checkbox to the given state. This does not cause a
WXEVT_COMMAND_CHECKBOX_CLICKED event to get emitted.

Parameters

state
If TRUE, the check is on, otherwise it is off.

wxCheckListBox
A checklistbox is like a listbox, but allows items to be checked or unchecked.

This class is currently implemented under Windows and GTK. When using this class
under Windows wxWindows must be compiled with USE_OWNER_DRAWN set to 1.

Only the new functions for this class are documented; see also wxListBox (p. 512).
Derived from

wxListBox (p. 512)

95

CHAPTER 5

wxControl (p. 150)

wxWindow (p. 1048)

wxEvtHandler (p. 277)

wxObject (p. 627)

Include files

<wx/checklst.h>

Window styles

See wxListBox (p. 512).

Event handling

EVT_CHECKLISTBOX(id, func) Process a
WXEVT_COMMAND_CHECKLISTBOX_TOGG
LE event, when an item in the check list box is
checked or unchecked.

See also

wxListBox (p. 512), wxChoice (p. 98), wxComboBox (p. 118), wxListCtrl (p. 520),
wxCommandEvent (p. 127)

wxCheckListBox::wxCheckListBox

wxCheckListBox()

Default constructor.

wxCheckListBox(wxWindow* parent, wxWindowlID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, int n, const wxString
choices[] = NULL, long style = 0, const wxValidator& validator = wxDefaultValidator,
const wxString& name = "listBox")

Constructor, creating and showing a list box.

Parameters

parent
Parent window. Must not be NULL.

id
Window identifier. A value of -1 indicates a default value.

pos

96

CHAPTER 5

Window position.

size

Window size. If the default size (-1, -1) is specified then the window is sized

appropriately.
n

Number of strings with which to initialise the control.
choices

An array of strings with which to initialise the control.
style

Window style. See wxCheckListBox (p. 95).
validator

Window validator.
name

Window name.

wxPython note: The wxCheckListBox constructor in wxPython reduces the nand
choi ces arguments are to a single argument, which is a list of strings.

wxCheckListBox::~wxCheckListBox
void ~wxCheckListBox()

Destructor, destroying the list box.

wxCheckListBox::Check

void Check(int item, bool check = TRUE)
Checks the given item.

Parameters

item
Index of item to check.

check
TRUE if the item is to be checked, FALSE otherwise.

wxCheckListBox::IsChecked

bool IsChecked(int item) const

97

CHAPTER 5

Returns TRUE if the given item is checked, FALSE otherwise.
Parameters

item
Index of item whose check status is to be returned.

wxChoice

A choice item is used to select one of a list of strings. Unlike a listbox, only the selection
is visible until the user pulls down the menu of choices.

Derived from

wxControl (p. 150)

wxWindow (p. 1048)

wxEvtHandler (p. 277)

wxObject (p. 627)

Include files

<wx/choice.h>

Window styles

There are no special styles for wxChoice.

See also window styles overview (p. 1214).

Event handling

EVT_CHOICE(id, func) Process a
WXEVT_COMMAND_CHOICE_SELECTED
event, when an item on the list is selected.

See also

wxListBox (p. 512), wxComboBox (p. 118), wxCommandEvent (p. 127)

wxChoice::wxChoice
wxChoice()
Default constructor.

wxChoice(wxWindow *parent, wxWindowlID id, const wxPoint& pos, const wxSize&

98

CHAPTER 5

size, int n, const wxString choices|[], long style = 0, const wxValidator& validator =
wxDefaultValidator, const wxString& name = "choice")

Constructor, creating and showing a choice.
Parameters

parent
Parent window. Must not be NULL.

id
Window identifier. A value of -1 indicates a default value.

pos
Window position.

size
Window size. If the default size (-1, -1) is specified then the choice is sized
appropriately.
Number of strings with which to initialise the choice control.

choices
An array of strings with which to initialise the choice control.

style
Window style. See wxChoice (p. 98).

validator
Window validator.

name
Window name.

See also

wxChoice::Create (p. 100), wxValidator (p. 1031)

wxPython note: The wxChoice constructor in wxPython reduces the nand choi ces
arguments are to a single argument, which is a list of strings.
wxChoice::~wxChoice

~wxChoice()

Destructor, destroying the choice item.

99

CHAPTER 5

wxChoice::Append

void Append(const wxString& item)

Adds the item to the end of the choice control.

void Append(const wxString& item, void* clientData)

Adds the item to the end of the combobox, associating the given data with the item.
Parameters

item
String to add.

clientData

Client data to associate with the item.
wxChoice::Clear
void Clear()

Clears the strings from the choice item.

wxChoice::Create

bool Create(wxWindow *parent, wxWindowID id, const wxPoint& pos, const
wxSize& size, int n, const wxString choices|[], long style = 0, const wxString& name
= "choice")

Creates the choice for two-step construction. See wxChoice::wxChoice (p. 98).

wxChoice::FindString

int FindString(const wxString& string) const
Finds a choice matching the given string.
Parameters

string
String to find.

Return value

Returns the position if found, or -1 if not found.

100

CHAPTER 5

wxChoice::GetColumns

int GetColumns() const

Gets the number of columns in this choice item.
Remarks

This is implemented for Motif only.

wxChoice::GetClientData

void* GetClientData(int n) const

Returns a pointer to the client data associated with the given item (if any).
Parameters

n
An item, starting from zero.

Return value

A pointer to the client data, or NULL if the item was not found.

wxChoice::GetSelection
int GetSelection() const

Gets the id (position) of the selected string, or -1 if there is no selection.

wxChoice::GetString

wxString GetString(int n) const
Returns the string at the given position.
Parameters

n
The zero-based position.

Return value

The string at the given position, or the empty string if n is invalid.

101

CHAPTER 5

wxChoice::GetStringSelection

wxString GetStringSelection() const

Gets the selected string, or the empty string if no string is selected.

wxChoice::Number
int Number() const

Returns the number of strings in the choice control.

wxChoice::SetClientData

void SetClientData(int n, void* data)

Associates the given client data pointer with the given item.
Parameters

n
The zero-based item.

data
The client data.
wxChoice::SetColumns
void SetColumns(int n = 1)
Sets the number of columns in this choice item.

Parameters

Number of columns.
Remarks

This is implemented for Motif only.

wxChoice::SetSelection

void SetSelection(int n)

102

CHAPTER 5

Sets the choice by passing the desired string position. This does not cause a
WXEVT_COMMAND_CHOICE_SELECTED event to get emitted.

Parameters

n
The string position to select, starting from zero.

See also

wxChoice::SetStringSelection (p. 103)

wxChoice::SetStringSelection
void SetStringSelection(const wxString& string)

Sets the choice by passing the desired string. This does not cause a
WXEVT_COMMAND_CHOICE_SELECTED event to get emitted.

Parameters

string
The string to select.

See also

wxChoice::SetSelection (p. 102)

wxClassInfo

This class stores meta-information about classes. Instances of this class are not
generally defined directly by an application, but indirectly through use of macros such as
DECLARE_DYNAMIC_CLASS and IMPLEMENT_DYNAMIC_CLASS.

Derived from

No parent class.

Include files

<wx/object.h>

See also

Overview (p. 1181), wxObject (p. 627)

103

CHAPTER 5

wxClassInfo::wxClassInfo

wxClassiInfo(char* className, char* baseClassl, char* baseClass2, int size,
wxObjectConstructorFn fn)

Constructs a wxClassInfo object. The supplied macros implicitly construct objects of this
class, so there is no need to create such objects explicitly in an application.
wxClassinfo::CreateObject

wxObject* CreateObject()

Creates an object of the appropriate kind. Returns NULL if the class has not been
declared dynamically createable (typically, it's an abstract class).
wxClassiInfo::FindClass

static wxClassInfo * FindClass(char* name)

Finds the wxClassInfo object for a class of the given string name.

wxClassInfo::GetBaseClassNamel
char* GetBaseClassNamel() const

Returns the name of the first base class (NULL if none).

wxClassiInfo::GetBaseClassName2
char* GetBaseClassName2() const

Returns the name of the second base class (NULL if none).

wxClassInfo::GetClassName
char * GetClassName() const

Returns the string form of the class name.

wxClassinfo::GetSize
int GetSize() const

Returns the size of the class.

104

CHAPTER 5

wxClassInfo::InitializeClasses

static void InitializeClasses()

Initializes pointers in the wxClassInfo objects for fast execution of IsKindOf. Called in
base wxWindows library initialization.

wxClassInfo::IsKindOf

bool IsKindOf(wxClassInfo* info)

Returns TRUE if this class is a kind of (inherits from) the given class.

wxClientDC

A wxClientDC must be constructed if an application wishes to paint on the client area of
a window from outside an OnPaint event. This should normally be constructed as a
temporary stack object; don't store a wxClientDC object.

To draw on a window from within OnPaint, construct a wxPaintDC (p. 640) object.

To draw on the whole window including decorations, construct a wxWindowDC (p. 1096)
object (Windows only).

Derived from

wxWindowDC (p. 1096)
wxDC (p. 191)

Include files
<wx/dcclient.h>
See also

wxDC (p. 191), wxMemoryDC (p. 562), wxPaintDC (p. 640), wxWindowDC (p. 1096),
wxScreenDC (p. 776)

wxClientDC::wxClientDC
wxClientDC(wxWindow* window)

Constructor. Pass a pointer to the window on which you wish to paint.

105

CHAPTER 5

wxClipboard

A class for manipulating the clipboard. Note that this is not compatible with the clipboard
class from wxWindows 1.xx, which has the same name but a different implementation.

To use the clipboard, you call member functions of the global wxTheClipboard object.
See also the wxDataObject overview (p. 1265) for further information.

Call wxClipboard::Open (p. 108) to get ownership of the clipboard. If this operation
returns TRUE, you now own the clipboard. Call wxClipboard::SetData (p. 108) to put
data on the clipboard, or wxClipboard::GetData (p. 107) to retrieve data from the
clipboard. Call wxClipboard::Close (p. 107) to close the clipboard and relinquish
ownership. You should keep the clipboard open only momentarily.

For example:

/!l Wite sone text to the clipboard
if (wxThed i pboar d->0Open())

{
/1 This data objects are held by the clipboard,
/! so do not delete themin the app.
wxThed i pboar d- >Set Dat a(new wxText Dat aCbj ect (" Some text"));
wxThed i pboar d- >Cl ose() ;
}

/] Read sone text
if (wxThed i pboar d->0Open())

i f (wxThed i pboar d->I sSupported(wxDF_TEXT))

{
wxText Dat aCbj ect dat a;

wxThed i pboar d- >Get Data(data);
wxMessageBox(data. Get Text());

}
wxThed i pboar d- >Cl ose() ;
}

Derived from
wxObject (p. 627)
Include files
<wx/clipbrd.h>
See also

Drag and drop overview (p. 1264), wxDataObject (p. 169)

106

CHAPTER 5

wxClipboard::wxClipboard
wxClipboard()

Constructor.

wxClipboard::~wxClipboard
~wxClipboard()

Destructor.

wxClipboard::AddData
bool AddData(wxDataObject* data)

Call this function to add the data object to the clipboard. You may call this function
repeatedly after having cleared the clipboard using wxClipboard::Clear (p. 107).

After this function has been called, the clipboard owns the data, so do not delete the
data explicitly.

See also

wxClipboard::SetData (p. 108)

wxClipboard::Clear
void Clear()

Clears the global clipboard object and the system's clipboard if possible.

wxClipboard::Close

bool Close()

Call this function to close the clipboard, having opened it with wxClipboard::Open (p.
108).

wxClipboard::GetData

bool GetData(wxDataObject& data)

Call this function to fill data with data on the clipboard, if available in the required format.
Returns TRUE on success.

107

CHAPTER 5

wxClipboard::IsOpened
bool IsOpened() const

Returns TRUE if the clipboard has been opened.

wxClipboard::IsSupported
bool IsSupported(const wxDataFormat& format)

Returns TRUE if the format of the given data object is available on the clipboard.

wxClipboard::Open
bool Open()

Call this function to open the clipboard before calling wxClipboard::SetData (p. 108) and
wxClipboard::GetData (p. 107).

Call wxClipboard::Close (p. 107) when you have finished with the clipboard. You should
keep the clipboard open for only a very short time.

Returns TRUE on success. This should be tested (as in the sample shown above).

wxClipboard::SetData
bool SetData(wxDataObject* data)

Call this function to set the data object to the clipboard. This function will clear all
previous contents in the clipboard, so calling it several times does not make any sense.

After this function has been called, the clipboard owns the data, so do not delete the
data explicitly.

See also

wxClipboard::AddData (p. 107)

wxClipboard::UsePrimarySelection
void UsePrimarySelection(bool primary = TRUE)

On platforms supporting it (currently only GTK), selects the so called PRIMARY
SELECTION as the clipboard as opposed to the normal clipboard, if primary is TRUE.

108

CHAPTER 5

wxCloseEvent

This event class contains information about window and session close events.
Derived from

wxEvent (p. 274)

Include files

<wx/event.h>

Event table macros

To process a close event, use these event handler macros to direct input to member
functions that take a wxCloseEvent argument.

EVT_CLOSE(func) Process a close event, supplying the member
function. This event applies to wxFrame and
wxDialog classes.

EVT_QUERY_END_SESSION(func) Process a query end session event, supplying
the member function. This event applies to
WXApp only.

EVT_END_SESSION(func) Process an end session event, supplying the
member function. This event applies to wxApp
only.

See also
wxWindow::OnCloseWindow (p. 1071), wxWindow::Close (p. 1053),

WxApp::OnQueryEndSession (p. 27), wxApp::OnEndSession (p. 26), Window deletion
overview (p. 1214)

wxCloseEvent::wxCloseEvent
wxCloseEvent(WXTYPE commandEventType = 0, intid = 0)

Constructor.

wxCloseEvent::CanVeto
bool CanVeto()

Returns TRUE if you can veto a system shutdown or a window close event. Vetoing a

109

CHAPTER 5

window close event is not possible if the calling code wishes to force the application to
exit, and so this function must be called to check this.
wxCloseEvent::GetLoggingOff

bool GetLoggingOff() const

Returns TRUE if the user is logging off.

wxCloseEvent::GetSessionEnding
bool GetSessionEnding() const

Returns TRUE if the session is ending.

wxCloseEvent::GetForce

bool GetForce() const

Returns TRUE if the application wishes to force the window to close. This will shortly be
obsolete, replaced by CanVeto.

wxCloseEvent::SetCanVeto

void SetCanVeto(bool canVeto)

Sets the 'can veto' flag.

wxCloseEvent::SetForce
void SetForce(bool force) const

Sets the 'force' flag.

wxCloseEvent::SetLoggingOff
void SetLoggingOff(bool loggingOff) const

Sets the 'logging off' flag.

wxCloseEvent::Veto

void Veto(bool veto = TRUE)

110

CHAPTER 5

Call this from your event handler to veto a system shutdown or to signal to the calling
application that a window close did not happen.

You can only veto a shutdown if wxCloseEvent::CanVeto (p. 109) returns TRUE.

wxColour

A colour is an object representing a combination of Red, Green, and Blue (RGB)
intensity values, and is used to determine drawing colours. See the entry for
wxColourDatabase (p. 116) for how a pointer to a predefined, named colour may be
returned instead of creating a new colour.

Valid RGB values are in the range 0 to 255.

Derived from

wxObject (p. 627)

Include files

<wx/colour.h>

Predefined objects

Objects:

wxNullColour

Pointers:

WxBLACK

WXWHITE

WXRED

wxBLUE

WXGREEN

WXCYAN

WXLIGHT_GREY

See also

wxColourDatabase (p. 116), wxPen (p. 651), wxBrush (p. 78), wxColourDialog (p. 117)

wxColour::wxColour
wxColour()

Default constructor.

111

CHAPTER 5

wxColour(const unsigned char red, const unsigned char green, const unsigned
char blue)

Constructs a colour from red, green and blue values.

wxColour(const wxString& colourNname)

Constructs a colour object using a colour name listed in wxTheColourDatabase.
wxColour(const wxColouré& colour)

Copy constructor.

Parameters

red
The red value.

green
The green value.

blue
The blue value.

colourName
The colour name.

colour
The colour to copy.

See also
wxColourDatabase (p. 116)
wxPython note: Constructors supported by wxPython are:

wxColour(red=0, green=0, blue=0)
wxNamedColour(name)

wxColour::Blue
unsigned char Blue() const

Returns the blue intensity.

wxColour::GetPixel

112

CHAPTER 5

long GetPixel() const

Returns a pixel value which is platform-dependent. On Windows, a COLORREF is
returned. On X, an allocated pixel value is returned.

-1 is returned if the pixel is invalid (on X, unallocated).

wxColour::Green
unsigned char Green() const

Returns the green intensity.

wxColour::0Ok

bool Ok() const

Returns TRUE if the colour object is valid (the colour has been initialised with RGB
values).

wxColour::Red

unsigned char Red() const

Returns the red int