
i

User Manual for Dialog Editor Version 2.1

Julian Smart, Anthemion Software

April 2000

i

Contents

Introduction ...1
Current status ... 1
Future developments .. 1

Commands...2
Dialog editor menu bar ... 2
Command toolbar ... 2
Tool palette ... 3
Resource tree ... 3

Procedures ..4
Running Dialog Editor... 4
Creating a dialog... 4
Using property editors... 4
Saving and loading files.. 5
Working with identifiers... 5
Multi-platform development .. 5
Converting old files ... 5

Change log...7

Bugs ...9

Technical notes ...10
Overview... 10
Resource associations.. 11
What needs to be done for XView and Motif .. 11
Files .. 11

Index...12

ii

Copyright notice

Copyright (c) 2000 Julian Smart, Anthemion Software

Please see the wxWindows licence for conditions of use.

1

Chapter 1 Introduction

The wxWindows Dialog Editor is a tool for creating dialog resource files, in .wxr format. It
differs from wxBuilder in the following respectes:

 1. Scope. It is written for dialog editing only, and is therefore more convenient than

wxBuilder for this purpose.
 2. File format. Dialog editor reads and writes wxWindows resource files (extension

.wxr) and has no independent file format.
 3. Robustness. It is written in a more principled way than wxBuilder, and is less

ambitious.
 4. Ease of use. Windows are edited using the mouse or via consistent property editors,

which provide immediate visual feedback of changed properties.

Dialog Editor 2.0 should be compiled and used with wxWindows 2.0.

CCuurrrreenntt ssttaattuuss

Dialog Editor currently runs under wxMSW and wxGTK. It has yet to be tested under wxMotif.

FFuuttuurree ddeevveellooppmmeennttss

 • Motif compilation.
 • It would be nice to have a dialog browser, showing thumbnails of all dialogs in a

particular directory.
 • Maybe add a menubar editor (from wxBuilder).
 • Maybe convert Windows .rc files.

2

Chapter 2 Commands

DDiiaalloogg eeddiittoorr mmeennuu bbaarr

File menu

New Dialog Creates a new dialog resource.
New Project Creates a new project (clears index and resets project name).
Open... Opens an existing resource file.
Save Saves the current resources.
Save As... Saves the current resources in a named file.
Clear Clears the current resources.
Convert Old Resources... Takes a directory of wxWindows 1.68 dialog resources, and

converts them to wxWindows 2 resources, in a separate directory. See
Converting old files (p. 5).

Exit Exits the program.

Edit menu

Test Dialog Creates the current dialog for test purposes.
Recreate Recreates the currently selected control from the underlying resource. This

may be necessary to regenerate items that cannot be changed dynamically,
and which have got out of sync with the displayed item.

Delete Deletes the currently selected resource.

Help menu

Help Topics Displays on-line help at the contents page.
About Displays an dialog showing the Dialog Editor version and author.

CCoommmmaanndd ttoooollbbaarr

The command toolbar consists of the following tools:

 Clears the project.
 Opens an existing resource file.
 Saves the current resources.
 Aligns the centre of the selected controls horizontally.
 Aligns the top sides of the selected controls horizontally.
 Aligns the bottom sides of the selected controls horizontally.
 Aligns the centre of the selected controls vertically.

CHAPTER 2

3

 Aligns the left sides of the selected controls vertically.
 Aligns the right sides of the selected controls vertically.
 Copies the size of the first selected control to the subsequently selected

control(s).
 Copies the width of the first selected control to the subsequently selected

control(s).
 Copies the height of the first selected control to the subsequently selected

control(s).
 Evenly distributes the space between the selected controls, horizontally.

Note that the controls should be selected in order from left to right.
 Evenly distributes the space between the selected controls, vertically. Note

that the controls should be selected in order from top to bottom.
 Puts the selected control(s) to the front of the display list.
 Puts the selected control(s) to the back of the display list.
 Invokes Dialog Editor help.

TTooooll ppaalleettttee

The tool palette is used to select a type of control to create on the dialog. To create a new
control, select a tool with left-click, then left-click on the dialog. Select the pointer tool to use
left-click for selecting and deselecting items.

RReessoouurrccee ttrreeee

The resource tree shows a list of the dialogs, controls and bitmaps currently loaded in Dialog
Editor. Double-clicking on an item shows the associated resource.

4

Chapter 3 Procedures

RRuunnnniinngg DDiiaalloogg EEddiittoorr

To run Dialog Editor under Windows, click on the Program Manager or Explorer icon. Under
UNIX, run from the command line.

The main window shows a menu bar, command toolbar, tool palette, resource list, and status
line.

CCrreeaattiinngg aa ddiiaalloogg

To create a new dialog, click on the File: New menu item, or equivalent toolbar button. A
dialog will appear. To put a control on the dialog, left-click on the appropriate palette icon and
then left-click on the dialog. A new item will appear at the place you clicked.

You can edit any control or dialog by control-left clicking. A property editor will appear,
allowing any property to be selected and edited (see Using property editors (p. 4)). You can
also edit items by right-clicking to show a menu, and then selecting Edit properties.

To move a control, drag the item with the left mouse button, or edit the position values in the
property editor. To resize a control, you can either select it by left-clicking and then dragging
on a selection handle, or edit the size values in the property editor.

You can delete items from the right-click menu, or by selecting the item and choosing Edit:
Delete from the menu bar.

UUssiinngg pprrooppeerrttyy eeddiittoorrss

Property editors consist of a list of properties and current values, plus controls at the top of
the editor. If the property is of an appropriate type, you can edit the value directly in the text
field, and confirm or cancel the value using the two buttons to the left of it. If the property has
a predefined range of values, such as labelFontFamily, you can see a list of permissable
values by clicking on the button labelled with an ellipsis symbol (...). This will show a listbox
with possible values and current selection. You may also be able to cycle through values by
double-clicking the value in the listbox.

Properties may have special editors appropriate to the type. Filename properties invoke the
file selector, and properties containing list of user-definable strings use a string editor.

When you change a property value, this value is immediately reflected in the dialog or control.
If the item allows this value to be changed dynamically, the relevant wxWindows function will
be called internally to effect the change. If the value cannot be changed dynamically, the item
will be destroyed and re-created, which means that there will be more flickering associated
with some kinds of property changes than others.

CHAPTER 3

5

SSaavviinngg aanndd llooaaddiinngg ffiilleess

Use File: Save and File: Save as or the equivalent toolbar button to save the current dialog(s)
in a wxWindows resource file (extension .wxr).

The .wxr file can be used directly in a wxWindows program, if wxWindows resources have
been enabled when building the wxWindows library. These files can be loaded dynamically,
or included directly into program source with a #include directive. See the wxWindows user
manual for further details.

WWoorrkkiinngg wwiitthh iiddeennttiiffiieerrss

Dialog Editor keeps track of identifiers in your resources, and reads and writes an include file
of the form name.h where 'name' is the root name of your .wxr file. Dialog Editor knows
about the predefined identifiers such as wxID_OK.

When you create a dialog or control, the identifier is initially generated. When you edit the
identifier via a property editor, you can choose a new name, such as a predefined symbol and
optionally change the integer assigned to the name (assuming it's not a predefined symbol).

When you save the project, the identifier include file is saved as well. Include this file in your
project so that you can refer to controls and dialogs by identifier rather than obscure integers.
Note that the .wxr file itself can only contain integer ids and not the symbols, due to way in
which the resource file is loaded.

MMuullttii--ppllaattffoorrmm ddeevveellooppmmeenntt

.wxr files generated on one environment (e.g. Windows) can be used in another (e.g. GTK).
If you use default fonts and colouring (set useSystemDefaults to True in the dialog
properties) then the dialog fonts and colours will take on the native values, rather than ones
specified in the resource. Without this, colours in the dialog resource may not match system
colours.

Also, set useDialogUnits to True whenever possible since this will cause the dialog to be
created using a scale based on the current system font size, and will result in dialogs that are
portable between screen resolutions as well as platforms.

Because the same control can have different sizes on different GUIs, the user should be
cautious in assuming that one resource file will work for all platforms. It may be better to plan
to conditionally include or load different resource files for different platforms, with spacing
modified to suit each environment. The best thing is to try your dialog resource on several
platforms and see whether tweaking is required for some platforms.

CCoonnvveerrttiinngg oolldd ffiilleess

Dialog Editor can make an attempt at converting dialog resources created with Dialog Editor

CHAPTER 3

6

for wxWindows 1.68. The command is Convert Old Resources... on the File menu.

You need to specify two directories, an input and an output directory. Dialog Editor will do the
following conversions:

 1. wxMultiText becomes a wxTextCtrl with wxTE_MULTILINE style.
 2. wxText becomes a wxTextCtrl.
 3. wxMessage becomes either a wxStaticText or wxStaticBitmap.
 4. wxButton becomes a wxBitmapButton if necessary.
 5. wxGroupBox becomes wxStaticBox.
 6. Controls that no longer have labels, such as wxTextCtrl and wxListBox, have a

separate wxStaticText control created for them at approximately the correct position.
The label's window name becomes ControlName_Label where ControlName is the
name of the control that formerly had the label.

 7. Identifiers are allocated.
 8. Font sizes are reduced to counter the decreased font size now created by

wxWindows for a given point size.
 9. The dialog height is reduced slightly to compensate for the fact that the dialog

caption is no longer included in the size.

7

Chapter 4 Change log

April 22nd, 2000 Version 2.1

 • Various bug fixes.
 • Added buttons for distributing space horizontally and vertically, and for copying width

and height independently.
 • Added 'Convert old resources' facility.

December 31st 1998, Version 2.0

 • wxWindows 2.0 port.
 • Major user interface changes.
 • Allows identifiers to be edited and reads/writes an id header file.

March 15th 1997, Version 1.7

 • Added fix to wx_rprop.cpp to avoid Fafa bitmap buttons growing every time the

button edited.
 • Added fix to wx_resed.cpp, case wxID_EXIT, to clean up properly on exit, avoiding

double deletion of wxBitmap.

May 6th 1996, Version 1.6

 • Added panel editing in addition to dialog box editing.
 • Cured some bugs with changing window styles such as wxUSER_COLOURS and

label position.
 • Now preserves syntax of bitmap resources in wxr files.

March 1996, Version 1.5

 • Changed behaviour of New tool, and changed File menu to include New project and

New dialog items. Behaviour should be more standard now.

March 1st 1996, Version 1.4

 • Items (but not dialogs) can now have duplicate names.
 • Can pass a filename to the program from the command line.
 • Cured bizarre error caused by a Windows combobox sending a fake left-mouse-up

error when losing the focus (switching to another window). This fix will be in
wxWindows 1.66.

 • Rewritten code to use only the new type system, and to take account of of new
window style partitioning (flags for different items may have the same value). Again,
wxWindows 1.66 will have the new style values, to make room for more window
styles.

January 28th 1996, Version 1.2

 • Now starts off in non-user-colour mode under Windows
 • Dragging item drags other selected items
 • wxMessage saves size correctly, if used in conjunction with wxWin 1.66

January 19th 1996, Version 1.1

 • Cured crash bug when quitting dialog window
 • Added Clear menu item

CHAPTER 4

8

 • Added window type name to property window

December 19th 1995, Version 1.0

 • First release.

9

Chapter 5 Bugs

Version 2.0

 • No Motif version yet.
 • Some control properties missing.
 • When dragging a selected item, other selected items should follow (to be consistent

with convention), but don't.
 • No grid.
 • No keyboard shortcuts.
 • No tab ordering.
 • In dialog unit mode, controls will sometimes move slightly when properties are

edited, because translating between units isn't always reversible (rounding errors?).

10

Chapter 6 Technical notes

OOvveerrvviieeww

The dialog editor is written as a library, to be invoked by other programs. As you can see,
dialoged.cc is a very small program which invokes the main window via a
wxResourceManager object. The wxResourceManager object controls the user interface and
other aspects of the dialog editor.

There is wxResourceTable object in wxResourceManager: this contains a list of all the
wxItemResources currently being edited. wxResourceTable and wxItemResource are classes
already in wxWindows, defined in wx_res.h. In order to edit a new dialog box, the dialog is
created, and the existing event handler is temporarily replaced with a new one which defines
editing functionality. This allows existing dialogs - even instances of subclasses of
wxDialogBox - to be edited, the application-specific functionality being temporarily taken over
by the dialog editor.

In order to edit the properties of a dialog box or item, a property list editor is invoked. This
uses the property classes from utils/wxprop. In order to map between properties and the
actual window API, such as SetSize and GetSize, a 'proxy' class called wxPropertyInfo has
been defined, with a subclass for each class of wxWindows window to be edited. This class
defines the main members SetProperty, GetProperty, GetPropertyNames, which transform
the normal API into 'property' terms.

Properties are mostly extracted directly from the window being edited. This is in contrast with
wxBuilder, where everything is stored in a set of parallel data structures, and windows
'properties' only only set. However, there are exceptions to this rule in the dialog editor. There
is in fact a set of parallel objects, the wxItemResource objects which can be seen listed in the
main Dialog Editor window as a dialog is built up. These usually parallel the properties in the
windows, but occasionally this is not possible. For example, all dialog boxes being edited
must be modeless: or the user would not be able to access other windows. However, the user
must be able to specify that when used in an application, that dialog box will be modal. In this
case, the value in the wxItemResource will not match that in the actual dialog box.

There is a major problem with taking values directly from the windows: this information
sometimes does not match what went in. In Motif and XView, size values returned are not the
same as those given. This causes speedy 'degeneration' of window properties. Under
Windows, properties are almost always consistent. The other platforms will need to be
catered for by relying more on the wxItemResource objects, and not taking size information
directly from windows.

Dynamic setting versus recreation

The property editor scheme relies on being able to set window properties dynamically: the
user changes a value, and the window changes immediately to reflect the new value.
Unfortunately, not all properties can be changed dynamically in wxWindows; for example, in
Motif, the label position must be given at panel item creation time, because the way the
widgets are laid out depend on the label position. The label position cannot then be changed
without deleting and recreating the item.

Hence the dialog editor takes two approaches: where values are dynamically settable, this is
done. Where they are not, the item is deleted and recreated, after all existing values have

CHAPTER 6

11

been transferred into the parallel wxItemResource object. Therefore in wx_rprop.cc, some of
the SetProperty implementations have one or more call to RecreateWindowFromResource.

RReessoouurrccee aassssoocciiaattiioonnss

wxItemResource objects (containing information about panel items and dialogs) are not visual
objects. However, they need to be associated with the visual objects when the latter are
created for editing purposes. Therefore there is a hash table called resourceAssociations in
wxResourceManager. When a window is created, the resource pointer and window pointer
are associated via the hash table. When the window is deleted, the association is removed.
Children of a dialog are associated with child wxItemResource objects by calling
wxFindWindowByName with the wxItemResource name.

WWhhaatt nneeeeddss ttoo bbee ddoonnee ffoorr XXVViieeww aanndd MMoottiiff

The following areas need attention before Dialog Editor will run properly on these platforms.

 1. For XView, the property editor needs to be made a modeless, not modal dialog,

which has implications for flow of control in wxPropertyInfo::Edit.
 2. Properties which do not return the same value they are set to, such as width and

height, need to be stored directly in wxItemResource and not transferred from
window to wxItemResource in wxWindowPropertyInfo::InstantiateResource.

 3. Properties which cannot be dynamically set in XView or Motif need to have the item
recreated (e.g. labelOrientation).

FFiilleess

The Dialog Editor source files are as follows:

 • wx_rprop.h, wx_rprop.cc: handle property setting and getting through the 'proxy'

wxPropertyInfo classes and using the property list editor from utils/wxprop.
 • wx_resed.h, wx_resed.cc: the main implementation, in particular the

wxResourceManager class.
 • wx_reswr.cc: resource writing code.
 • wx_repal.cc: the dialog editor palette implementation.
 • dialoged.h, dialoged.cc: small 'stub' for invoking the user interface via a

wxResourceManager object.

12

Chapter 7 Index

—D—
Dynamic setting versus recreation, 9

—E—
Edit menu, 2

—F—
File menu, 2

—H—
Help menu, 2

	Introduction
	Current status
	Future developments

	Commands
	Dialog editor menu bar
	File menu
	Edit menu
	Help menu

	Command toolbar
	Tool palette
	Resource tree

	Procedures
	Running Dialog Editor
	Creating a dialog
	Using property editors
	Saving and loading files
	Working with identifiers
	Multi-platform development
	Converting old files

	Change log
	Bugs
	Technical notes
	Overview
	Dynamic setting versus recreation

	Resource associations
	What needs to be done for XView and Motif
	Files

	Index

