wxWindows 2.4.2: A portable C++ and Python GUI toolkit

Julian Smart, Robert Roebling, Vadim Zeitlin, Robin Dunn, et al

September 2003

Contents

Copyright NOLICE ... Xiv
L (oo [T £ o 1
What iS WXWINAOWS? ...ttt e s s e ene e nnne e 1
Why another cross-platform development t0017.........ooiiiiiiiii e 1
WXWINAOWS FEQUIFEMENTS .coieiiiii ittt ettt ettt e e e s st e e e s ame e e e e s anre e e e snrneeesaneneeeaans 3
Availability and location of WXWINAOWSoiiiiiiiii e 3
FAte] (Tl T=To [o =10 =T o £ PR RR 3
Multi-platform development with wxWindowscccooommiiiiiniiccccmnnnnccnnes 5
INCIUAE FIIES.c. ettt e s bt e e s ne e e e e s ant e e e e sanre e e e sanneeeenans 5
] o] = L4 =T PSPPSR 5
(@70] 1110 U L= 1o] [USRS 6
Y= LT 111 PRSP 6
WiINAOWS-SPECITIC fIlES ...eveeei e e 7
Allocating and deleting WxWindows ODJECES........ociiii i 7
ArChiteCtUre dEPENAENCYcci i e e s e e snre e e e saneeeeeeans 8
Conditional COMPIIATION ...coeiiiiiie e 8
(O [T =T TSRO P R URROPRPRIN 9
(=3 o =T Lo | 1T PSPPSR OPPPPPO 10
Utilities and libraries supplied with WXWindOWwscccccmimmmmmmmmmnmnsssnssnnnnnnn 11
Programming Strategies.......ccccurrmmmmmmmmmmmmmmmmmmmmmssmssnnn 13
Strategies for reducing programming ©ITOFSeeicveeerieerrie e 13
Strategies for POrtability..........coo e 13
Strategies for AEDUQGGING ...eeoiuree ittt e e ene e ebe e saeeas 14
Alphabetical class reference ... 16
WXACCEIETATOTENTIY ..ot e e e e s e e s anneee s 16
WXACCEIEIAIOITADIE ...t e e 17
WXACHVATEEVENT ... e e e e s anneee s 20
L0 A o] o PRSP 21
WXATTAY ettt ettt ettt ettt e e sttt e e sttt e e sttt e e st et e £ ae et e a2 n b e et e e a R e et e e aaRE et et e R e et e e annn e e e e e nnree e e nneeen 33
LR G =TS) 4 o TP 45
WXATTPTOVIOET ...ttt e s n e e nen e e nan e e e ene e e naneeennes 50
TR T 1 (o] s 4 F=\ 1[0 010 o] [=o] AP USRS 54
LT g =110 1= o L TP P PP UPPPPPP 58
WXBItMAPBULION ... e e e s e e s nnee s 72

CONTENTS

WXBItMapDataODbJECT......coo i 77
WXBItMAPHANAIET ... et e et e e e e s anneee s 78
LTS0S T4) SRR 82
LTT2d =T (0 =] o SRR 83
WXBIUSNLIST ...t e ettt e e e s bt e e e sab e e e e s annreeeeanneeens 89
WXBUFfEredINDUESTIEAIMot be e 91
WXBUFferedOUIPUISTIIEAM ..o e 91
LTS TU YO0 < To T SRS 92
WXBUSYINTO e e et e et e s e e e e e s annee e s 93
L4 =011 (o o PR SFR 94
WXCalCUlateLayOUIEVENT ..o e 98
L@ = 11T T b= T 3 [SR 99
RO 1T ale P T BT (= A« { PP 105
WXCAIENAAIEVENT ... e e e e e e eaneas 108
L2 LY SRR 109
L] aT=Ted 4= T) PRSP 112
WXCNECKLISTBOX ..ttt ettt e e et e e s et e e e e e e e e nnnee e e e sanes 115
12 oo SRR 117
WXCIASSINTO 1.t e e e e e e e e e nanes 124
12 1= o PR 126
WXCHENIDC ...t e e e e et e e e et e e e e nbee e e e ssee e e e sseeeeaanseeaeeanneeeeennnees 127
WXCHENIDATA ... et e e st e e e et e e e e e e e nn e e e nanes 128
WXClIENIDAtaCONTAINET.......oiiiiiiee e e e e e e 129
1703 [10] o oY= 1o FU ST RTOURRTRI 130
WXCIOSEEVENT ... e e st e e et e e e e abee e e e ennee e e e nnneas 134
(@] o | I oY - T 1= PR 136
112] [T RS RR 145
(2@ o] 01U - - PR 149
WXCOIOUIDAIADASEceiiiiiiiie e 151
10 (O o] (o1 0T B IF-1 oo H PSP R URTUURRURI 152
(@70 T 10T oTe] = o) PR 154
1720702102 = Lo 1 PR 162
WXCOMMANAEVENTeiiiiiiiiie ettt e e e et ee e e s ee e s e s e e e e s nsaeeeennneeeeeennees 164
WXCOMMANAPTOCESSONeiiiiiiiiee ettt e ettt ettt e st e e e sttt e e e s ab e e e ssbe e e s e nbeee e e nbeeeeeanneeeeennnes 169
L7270 o 1o o PR 173
(0o gl Te] = =TT TSRS 177
LT @ 7o 1] =T o 1o o PP 191
WXCONEXTHEID et e et e s et e e e ee e e e snnee e e e snneas 196
WXCONTEXTHEIPBULION ...ttt et e e e raee e saneaan 197
12O 1 o | PR 198

il

CONTENTS

WXCOUNTINGOULPULISIIEAM ...ttt sttt e e rnee e sane e 199
WXCHHICAISECHON ... nane e 200
WXCHtICAISECHIONLOCKETeiiiiiiiee ettt e e e e e e e e rae e e e ennre e e e ennes 202
10 (03510010 1 TP PRR PSRRI 203
100705 To TSP TRROURITRIN 204
WXCUSTOMDATAODJECT. ...ttt ettt e et e e sabe e e bee e saneaan 208
WXDAIADASE ... 211
WXDAtAFOIMAL ... e e 217
WXDAtaINPUESTIEAIM ...ttt et sae e s abe e e anee e saneaans 219
WXDAtAODJECT ... e e nnes 222
WXDataObjeCtCOMPOSIIEeiiiiiiii et 225
D=V e= 10 o] [=To1 6571141 o] (= PSP RSP 226
WXDataOUIPULSTIIEAM ... e 228
WXDIALE. .. e e e e 231
L= Y o1 o - o [PPSR 239
WXDAIETIME. . e e 239
wxDate TimeHOlIdayAUTNOKILYooo e e 267
WXDate TIMEWOIKDAYSeiiiiiiie e e 267
124 o T PP 267
WXDDCOIDALAPT ... e e 297
LT 010 o] = RSSO 297
WXDDCOIFOF ... e 298
WXDBCOIINT ... e 299
LTT2d] 010 o] o a =] oSSR 300
WXDBIAXDET ... e e e et e e e e e e e e nanes 305
1724] o]) PR 306
LT o 1=] PRSP 306
WXDDTADIEINT ... e 342
1124 L PP 343
10O 0] 1o o1 ST U R RUURRTRI 363
WXDEDUGCONIEXE ...t e s e e e e ee e e e ee e e e naneas 363
WXDEbUGSIrEamMBUT ... e 369
LT d BT o T PSP P U PPPPRP 369
WXDIAIUPEVENT ...t e e s et e e et ee e e e snnee e e e eaneas 378
LB =110 o)1, =T F= Vo = PR 379
1T L SRR 383
(T2 T = o T PP 387
DT I = (V7= =T TP OU R TRROPRITRIN 389
1T | = To 1= USRS 391
WXDOCCNIIAFTAME ... e nne e s e 393

il

CONTENTS

WXDOCIMEBNAGET ...ttt e e e e e e e s s e e s e e e e e nbe e e e e annr e e e e ennes 395
WXDOCMDICRIIAFIAME ..o e ne e e 405
WXDOCMDIPArENtFIAME ...t e e e e e e e reeeeaeeeas 407
WXDOCPArENTFIAME...... i 408
LT d B Lo e =T 4 o] o] - L= TR 410
WXDIOCUMENT ..ttt ettt e e e e e e e st e et e e e e e e e e anneeeeeaeaeeaannsneeaaaaaeas 415
LT d =T][£ =T T PRSP 424
WXDIOPFIIESEVENT ... e 428
WXDOPSOUICE ...ttt ettt et e bttt e e et e e e aate e sabe e e ebeeesabeeeanaeesnneaaa 430
LT2d L o] o1 =T e =Y PRSP 433
WXDYNAMICLIDIANY ... e e e e ee e e e eanes 436
WXENCOINGCONVEITE ...ttt sttt et s b e e sae e e s abe e e nnee e saneaaas 437
WXEFASEEVENT ... e 440
WXEVENT ...ttt e e e nne e 441
LT i F= g o 1= SRR 445
L2 o PRSP 452
WXEXPIDAIADASE ... 459
WXL ettt e e e e e e e ettt e e e e e e e e s s eee e e e e e e e eaannnneeeaaaaeas 463
WXFFIIEINPUESIIEAM ..o 467
WXFFIlEOUIPULSTIEAM ... e e e e 468
LT 1151 (Y=o o RS RR 470
WXFIIE et e e e e s a e e e s e e e e b e e e e bee e e e nnee e e e nanes 470
WXFIEDAtAODJECTeeiiiiie e 477
T Rl1 (=T DT 1o o I PSP P PP SPPRPT 478
WXFIEDIOPTAIGEL ... et e st e e e e ee e e e e 482
LR L=Y o 113 (o] o PP 484
WXFIIEINPUESTIIEAM. ...ttt et e e rae e e saneaan 487
WXFIIENGIME ... e e s e e e e snre e s ane e e nnne e 488
WXFIIEOUIPULSTIIEAM ... e 503
WXFIIESIIEAM ... ee e e et e e e e ar e e e e sbee e e e e nseeeeennnreeeennnees 504
WXFTIESYSIEM ..o s e e e s nnne e 505
WXFIlESYSIEMHANGAIET ..o e 507
WX T T YR e e et e e e s e e e e e e e e ab e e e e e annr e e e e eanes 510
WXFIEEIINPUESTIIEAM ..o 514
WXFIRErOUIPULSTIEAM ... e 515
WXFINADIAIOGEVENT ..o e 516
WXFINAREPIACEDALA ..o e 517
Rl ae | RT=T o] F=Tet=1 B IF= 1o o TR PP 519
LT L2 G T T ST Y SRR 520
WXFOCUSEVENT ... e 522

v

CONTENTS

11750 | USRS 522
WXFONTDALA ... e e e e s e e s et e e e e b e e e b e e e e nanes 531
WXFONTDIAIOQ ... eeeeieeeee e e e e e e e s e e e e e e e e e e e e eanes 534
(a1 = T 0 =T= | (o] PSR 536
WX ONTLIST Lo e et e e e st e e e et e e e e b e e e e nnnee e e e nnnes 538
LRIV =T o] 1T PP PP PPRP 539
(L = 4= Y PR 543
L2 1= PRSP 556
1Tl USRS 558
L2 C =T Lo 1= PP 565
LG 1 (] o] =T o PR 569
(TG T=T =T o] I 11 1 o RSP RR 570
G T=T =T oAV A= o F- Lo) PR RR 574
LG I 0= 17 V7= T TR 576
11721 o RS RR 579
LTG0 [O7= 1 1 | PRSP 618
(T C 1110 [O7=111 2o To] | <o 1 (o] PRSP 621
(TG [O7=11 [0 o o7=T =l [(o] RS RR 622
LTG0 [O7=11 | = 1 o PP 622
LG To [O7=11 | To T= 14 =T 1) o PRSP 625
LG To [OF=11 N (U a0l 01T =T 11 (o RS PRR 626
(G0 [OF=1 =3 a4 =L 11 o] PP 627
WXGHAEAIIOrCreat@dEVENT.........ooieee e 627
LRGeS SRR 629
WXGHARANGESEIECIEVENT ... 631
WXGHASIZEEVENT ... et e st e e e ee e e s snnee e e e nneas 634
G T To [O7=111 2T o] | o T=Y gTo [T £ SRR 635
WXGACEIIFIOAtRENAEIEN ... e e e 636
R C T To [OF=1] N (W aa] o1 R =Ta T [T Y R 637
LT [OF=T1 | o T=Ta Lo [T Y SRR 638
WXGHACEIISIINGRENAEIET ... 639
WXGHATADIEBASEeeeeeeeee e e s e 639
LTG0 1572 RSSO 644
(T2 = TS 1Y = o PRSP 646
WXHASNTADIE ...t e e s et e e e ee e e e ennee e e e naneas 650
WXHEIPCONTIOIET ...ttt sttt e e st e e s be e e sae e e sabe e s naeesaneaans 653
WXHeIPCoNtrollerHEIPPIOVIAETccoeiiie e e e 658
WXHEIPDEVENT. ...t e et e e e ee e e e ennee e e e nneas 660
WXHEIDPTOVIAEY ...t e s e e s e e e e e e e e e eanes 661
WXHEMICEI .. e e e e st e e e et e e s e ee e e e enneee e e nnnees 663

CONTENTS

WXHEMICOIOUICEIL......eeeeeeeiee ettt e e e e s e ee e e e enbee e e e enneeaeeennees 668
WXHIMICONTAINEICEIL.....oeiieeeeee e e 669
WXHEMIDCRENUEIET ..ottt ettt e et e e e see e e e b ee e e e e nsaeaeennneeeeennnees 675
WXHEMIEGSYPIINTING ..eeiiieiee e e e 677
WXHEMIFTET .. e snre e s nne e nnne e 680
WXHIMIHEIPCONTIOIET ...ttt ae e sate e e rnee e saneaan 682
WXHEMIHEIPDALA. ... e e e e e sbee e e e e 686
WXHEMIHEIDFTAME ... e e e e e eaneas 688
WXHEMILINKINTO et e e e et e e e e e e e eeeeaaeeeas 692
WXHEMIPAISET ...t e s e e snre e s nnn e e nnnee 693
WXHEMIPTINTOUL ... e 698
WXHEMITAG. ¢ttt e e e e e e e s e e e e e e s e abe e e e e anne e e e e ennes 700
WXHEMITAGHANAIET ... e e enee e e e eanes 704
WXHEMITAGSMOAUIE ... e e sbee e e e eanes 706
WXHIMIWIAGEICEIL ...ttt ae et e rbee e saneaaa 706
WXHEMIWINGOW ... s e e e s e e s nne e e nnne e 707
WXHIMIWINPAISEI ... e nane e 716
WXHIMIWINTAGHANAIET ... 722
WX H T TP et e e e bt e e e s ab e e e s s b e e e e e nb e e e e e nbeeeeeanneeeeennnes 723
170 4[] o TRV OPRRTRIN 724
WXICONBUNGIE ...ttt e et e e e e e e e e e e e e e e e e e e nnnreeeaaaeeas 732
WXICONMIZEEVENT ...t e snre e s ane e e nnne e 733
WXIAIEEVENT ... e e e e 734
L LA F=Te = T PSP PP PPRP 736
(T2 g = Ve =1 F= U o =T PRSP 756
(T2 L= Ve = 0 S PRSI 760
WXINdividualLayoUtCONSIIAINTc..eiiiiiiiii e et 764
WXINIEDIAIOGEVENT ... e e e e e eanes 767
LT d L] o]0 €5 == Ta o PRSP 768
LT AV = o (o | L= SRR 770
WXUOYSHICK et e et e e e st e e e e bt e e e e nb e e e e b ee e e e nanes 772
WXJOYSHCKEVENT ... e e e e e e ennes 779
WXKEYEVENT ... e e e e s e e e e e e e e e e e e e eanes 782
WXLAYOULAIGOITM ... e e e e e eaneas 787
WXLAYOULCONSIFAINTS ..ot e s e e e e e e e e ennes 790
1T = USRS 792
WXLISTBOX ettt 799
WXLISTOR L.t e s e e ne e s e e s nee e nnne e 808
WXLISTEVENT ..ttt e e e e e e e st e e e e e e e e e anseeeeeaaeeeaannnreeeeaaaeas 826
WXLISTEM . ¢ 829

Vi

CONTENTS

WXLISTVIBW . ettt ettt e oo et e e e e e e e e et e e e e e e e e e e e anneeeeeaaeeeaannnneeeaaaaeas 833
WXLOCAIE. ...t 836
12 e Yo PSP PP PPRP 848
172 e Yo [o - 1o PR 855
172 e Yo [T PP 856
WXLOGNUIL ...k e e e e s e e e e e e s e abe e e e e enne e e e e eanes 857
WXLOGPASSTRIOUGN.....coiiiiiie et e e e e e e eanes 858
L0 oo 1] (o =T o TSP USROPRRTRI 859
WXLOGSIIEAM ..ttt e a e bt e bt e e sabe e s anae e saneaaa 859
L e To =Y a1 PP 860
WXLOGWINAOW ..ttt e e e et e e e st e e et e e e e nbee e e eanneeeeennneas 861
LT] gTe | He] o T I PSP PP PPRP 863
WXIMBSK et e s e e e e e 866
WXMAAXIMIZEEVENT.......oi i e e nene e 868
WXMBIOONV .ttt e e e e et e e e st e e e eas b e e e e e steee e e sseee e e sseeeeannsaeaeeanseeaeennnees 869
WXMBCONVFIIE .. sar e s nne e s e 872
WXMBCONVUTET ...t e et e st e e st e s e b e e e e ennee e e e snneas 872
WXMBCONVUTES ...ttt e st e e e et e e e e s e e e e sseeeeennseeeeeanseeeeeennees 873
WXMDICRIHIAFTAME ...t e s nnee e nne e 874
WXMDICHENIWINGAOW ...ttt e ennnee e sene e 877
WXMDIPArENTFIAIME ...t e e e e e e e e e e e e e e e e e nnnreeeeaaeeas 879
WXMEMOIYDIC ... e e e e st e e e e b e e e e nbee e e ennneeeeennneas 886
WXMEMOIrYFSHANAIET ... e e e e 887
WXMEMOIYINPUESTIEAM ..ttt ettt st ae e sabe e e raee e saneaan 889
WXMEMOrYOUIPULSIIEAMcoiiiiiiei et e e e sbee e e e eanes 890
WXIMIBIIU ..t e et e e r et e st e e e e e an e e e s e e e nn e e nnr e e e anneennneeaa 891
WXIVIENUBAT ...ttt e e oo ettt e e e e e e e e et e eeeeeeeeaaaannaeeeeaaeeeaaannsneneaaaaean 904
WXMENUEVENT ...t e s e n e s e s nne e nnne e 913
WXIMENUITEIM ...t s e e en e s e e e ne e e snre e s nnneennneena 915
WXMESSAGEDIAIOT -...eeeeeeiieie et 920
WXMETATIIE. .. s 922
WXMELAFIEDIC ... e 924
WXMIMETYPESMANAGETeeieiieieie et e s s e e e e e e e e 925
WXMINIFIAME ..o e e s e s 928
WXIMOGUIE .t et st e e n e s e e e nne e e snr e e s anneesnneena 931
WXMouseCaptureChangeaEVENToooii ittt saee e 933
WXMOUSEEVENT ... e 934
WXMOVEEVENT ...t e ssre e s nne e e nane e 943
WXMUIIPIECOICEDIAIOG ...ttt sae e sne e 944
WXIVIUEEX ettt ettt ettt e e et e e et e e e s ab e e e e an bt e e e e nbee e e e nbeeeeeanneeeeennnes 945

Vil

CONTENTS

WXIVIUEEXLOCKET ...ttt e e e e e e e ettt e e e e e e e nnaeeeeeaeeeeaannnaeeeaaaaean 947
17241 [0 o = PR 948
1T 0] =1 oo T | USRI 950
WXNOTEDOOKEVENT ... e e e e eaneas 957
WXNOTEDOOKSIZET ... e 959
WXNOTTYEVENT ... e 959
12 @ o] 1= o] PP 961
WXODJECIREDALA ... e e 964
WXOULPULSTIOAM ...ttt ettt e ettt e et e e e raee e s be e e bt e e sateeeneeesaneaans 965
WXPAGESEIUPDIAIOQ ..ttt 967
WXPageSetupDialogDatac.coiiiieiiieei e 968
WXPAINIDC ...ttt e e e et e e e st e e e es b e e e e e abee e e e nnee e e e nbeeeeaanreeeeeannreaeennnees 974
WXPAINTEVENT ... e et e s et e e e ee e e e enbee e e e snnes 975
WXPAIEHE ...t e e e et e e e e e e e e e e nee e e e nanes 976
1T = U = SRR 980
WXPATNLIST ..o e 983
L2 =T o T PRSP 985
1T =T o 1= USRS 992
WXPIOTCUIVE ...ttt e bt e e e s ab e e e st e e e st e e e e nbeeeeennneeeeennnes 994
WXPIOTWINGOW ..ottt e e e e e st e e e et e e e et ee e e e snnee e e e snneas 996
117 o | RS 1000
WXPOSESCHPIDC .. 1001
WXPTEVIEWCANVEASeiiiiiiiie ettt ettt ettt e e s s e e s s bee e e e sbee e e e enreeeeennes 1002
WXPTEVIEWCONTIOIBATiiii ettt e e e erae e e e e nree e e ennees 1003
WXPTEVIEWEFTAME ...t e e s st e e s bee e e e sbeee e e nnes 1004
WXPIINEDATA .. e 1006
WXPIINEDIAIOQG. .-ttt 1012
WXPFINIDIAIOGDALAcei i e 1013
12 2] (= PP 1018
12 10111 5 PSP 1021
WXPTINTOUL. .. e st e e e s ee e e e s bee e e e sbee e e e e neee e e ennes 1021
WXPTINEPIEVIEW ..ttt et e e e s e e e s e e e e ennes 1026
WXPHIVAIEDIOPTAIGEL. .. e 1030
WXPTOCESS ..ttt ettt ettt e bt e e e e bt e e e s b e e e e e bee e e e ebe e e e e s bee e e e ebae e e e aneeeeennnees 1030
WXPTOCESSEVENT ... e e e e s nre e e e nnes 1036
WXPTOGIeSSDIAIOQ . .eeeiiiiiieie et 1037
12) (o T o PP 1039
WXQUANTIZE ...ttt e e e st e e e e e bt e e e e s b ee e e e s bee e e e ebee e e e e nreaeennnees 1041
WXQUEIYCOL ...ttt ettt e e et e et e e et e e e te e e sateesabeeeeaseesabeeenbeeeaareeeraeeanneas 1042
WXQUETYFIEI. ... e enne e s 1045

viii

CONTENTS

WXQUErYLayoULINFOEVENTcc.viiiieiecee et 1047
LR R =T [T0] = o) PRSPPI 1050
(VT2 ¥=Te o] =10 1 (o] o HF PR 1056
WXREAIPOINT. ... e 1058
WXRECOIASEL ... 1059
11T =T o] RS 1072
L2 (=T o = SRR 1077
124 (= To Lo o PP 1081
WXREGIONIEIATON ... e e e e e e e 1086
WXSASNEVENT ... 1088
WXSASNLAYOUIWINGOWeeiiiiiiie e et 1090
WXSASNWINAOW ..ottt ettt e e e e et e e e e ebte e e e s nee e e e esaeeeeennaeeeeennees 1093
WXSCIEENDIC ...t e et e s e e r e s e s ne e nnne s 1098
LS Tee] oT=To 1N = YRR 1099
LR S Too] o =T | | PRSI 1101
LR ST (o] 1] = =T PP TRPPPRP 1103
WXSCIOHEAWINGOW ...t e e e e e nnne s 1110
LS Lol] Y=o SRR 1119
WXSCIOIWINEVENT.......oiii e e 1122
L T= g T= T o] T = SRR 1123
LS L= Y= PSP 1126
WXSIMPIEHEIPPTOVIAET ... e e 1127
WXSINGIEChOICEDIAIOG. .. uteee et e 1127
WXSINGIEINSTANCECNECKET ... et 1130
1S T4 Y SRR 1132
WXSIZEEVENT ... e 1133
L2 T4) GO PSP 1134
(T2 65] o [T PP PRSP 1140
WXSOCKATAIESS ...ttt e et e e e s e e an e e e s e e ene e e anneenneeennnees 1150
WXSOCKEIBASE ... eeiiie ettt e e et e e et e e e e et e e e e e ree e e e enae e e e anreeeeannees 1151
LR T Ted (= (0] =T o | PP PRSP 1168
WXSOCKEIEVENT ... e e e e s 1171
WXSOCKELINPUESTIEAM ...t rar e a e eaee s 1172
WXSOCKETOUIPULSTIEAM ... e 1172
WXSOCKEESEIVET ...ttt e s e e n e s e sn e e e e nne e e nnne s 1173
(T2 ES] o111 =101 1o 1o HO PP R 1175
12 CS] o1 1 1 4 PP 1179
WXSPINEVENT. ... e e e st e e e s bee e e e sbree e e nnes 1182
RS] o] = 1] 1S 1o =TT o T PRSP 1183
WXSPHIEIEVENT...cc e e e 1185

X

CONTENTS

WXSPIHEEIWINGOW ...ttt st e e st e et e e sar e e e nee e saneas 1188
WXSTALICBITMAD .. cee e e s e 1198
LS = 1101 = oGP 1200
WXSTAHCBOXSIZE ... 1202
WXSTALCLINE ..ot e e r e s e e s 1202
WX STAEICTEXE e e e e et e e e et e e e e e nee e e e e nae e e e e nreeeeennees 1204
WXSTAIUSBAY ... e s 1206
LS (0] o1 A= | (o] o 1 U 1211
== Taa] = - U] PSP 1213
WXSTTEAMBUTTEI ... e e 1215
WXStreamToTeXtREAINECION.oi s 1221
L2 S 1410V PR R 1222
WXSTINGBUTTEE <. e s e e e e e e b e e e nnes 1245
WXSTINGOHENTDATAcoi i e e e 1246
L2 (1T | I U S 1247
WXSTINGTOKENIZET ...ttt st s s e e e bee e e e e bee e e e nnes 1249
WXSYSCOloUrChangedEVENL.........oouiiii e e e 1251
WXSYSTEMOPLONS ...ttt e bt e e rbe e e sabe e e be e e sareesbeeesnneas 1252
WXSYSTEMSELINGS ... 1254
L2 QL= o1 1 PRSP 1257
WXTADEVENT. ..ottt e e e e e e e s e e e e e e e e e e nnneeeeaaaeeas 1263
WXTASKBAIICON ...t enne e es 1264
WX TEIMPFIIE .t e e s e e e e s e e e s bee e e e e beee e e ennes 1266
LT Q=D A A £ RSP RRT 1269
WXTEXECE Lt e s e e n e s e e e e nnr e e nne e e nnnees 1271
WX TEXIDATAODIECTeeiii e e 1288
WX TEXIDIOPTAIGELeeeeiieeee e e ab e e e e e e 1290
WX TEXEENTIYDIAIOQ .eveieiieieie e e e e e 1291
WXTEXEFIIE et e e r e s e s e e nne e nnne s 1293
WXTEXHINPUESIIEAM ..ottt e bt e st e e e be e e sab e e sbee e snneas 1299
WX TEXTOULPULSIIEAM ... 1301
WXTEXEVAIAGION ... e 1303
11T I 2 £== Lo U 1306
WXTIITIE 1.ttt e e m e s e e e e et e e me e e s n et e ss e e e s ar e e e ne e e naneeeane e e anreenneeennneen 1314
L2 QL1 =T PP PP 1319
WXTIMEIEVENT ...ttt e e e e e e e s e e e e e e e e e e nnnneeeaaaeeas 1321
WX TIMESPAN ...ttt s et e s e e e n e e s e e ere e e ann e e nne e e nnnees 1322
LI o] d €014 e =Y PP 1329
WX TIDWINAOW ..ttt e s e b e e e ebe e e e anre e e e annes 1331
WXTOGGIEBUIION ... e e e e 1332

CONTENTS

WXTOOIBAL ...ttt e e e e ettt et e e e e e e aee e e e e e e e e e e annteeeeaaeeeaaannnnneeaaaaean 1335
12 e Lo I o PP 1351
LIS i RSP 1352
WXTTEEEVENT. ... e e st e e e 1371
WX TTEEIEMDALA ... i e e e 1374
WXTTEELAYOUL ..o e s e e e e e e snre e e e eanes 1375
WX TTEELAYOUISIOrEd ... e e 1381
WXUPAAIEUIEVENT......oii ettt e e e sb e e e bre e e e ennes 1383
XU R L Lttt e et e ettt et e e e e e e e et e e e e e e e e e e e nneeeeeeaeeaaaannnnneeaaaaean 1386
124211 To F=1 o PP 1389
124 V= U= L | SRR 1391
WXV ANANTDATA ..ottt e e e e e e e e eeeaaae s 1400
WXVIEW .ttt ettt e ettt e e e bt e e e e bt e e e e b bt e e e e b te e e e eabe e e e e eabee e e e eabeeeeeebeeeeeanreeeennnees 1401
WXWAVE ...ttt ettt et e e e e bt e e e e bt e e e e s be e e e e e bee e e e ebee e e e anreeeennnees 1406
WXWWINAOW ..ttt ettt e e e ettt et e e e e e e ae e e e e e e e e e e e aanneeeeeaaeeeaaannnnneeaaaaeas 1407
WXWINAOWDC ...t et e e e et e e e s bee e e e s bee e e e ebae e e e enneeeeeennes 1453
WXWINAOWDISADIE ..o e e e 1454
1T 2= T o SRR 1455
WXWIZAIAEVENT......eeii e e et 1459
WXWIZAIAPAGE .ot st e e e a e e b e e e nnes 1460
WXWiZardPageSimPleeooiieiiiie ettt ettt saee s 1462
WXXIMIRESOUICE ...ttt ettt ettt e et e e s bt e e e e s bt e e e e s bee e e e ebee e e e enneeeeeennes 1464
WXXMIRESOUICEHANAIET ... e 1469
AT o] L] o101 5] 1 =TTy o R PR S 1474
(A o] L] o101 633 [== Ty o H PP 1475
WXZIIDOUIPULSTIIEAM ... 1476
13T €0 T 1477
Alphabetical functions and Macros liSt........cooiieiiiiiiii e 1477
RV L= =10 a1 0 =T {0 1P 1481
Application initialization and termination ..o 1482
Process control fUNCHIONS ...t e e e e 1485
THread fUNCHIONSeiie et e s s e e e s bee e e e e beee e e ennes 1489
FIle TUNCHIONS ...ttt e ettt e e s bt e e e s aee e e e sneeeeesanteeeeean 1490
Network, user and OS fuNCLIONScoooeiiiee 1496
SEHNG FUNCHIONS ..t e e e es 1500
DiIalog FUNCHIONS ..o ettt e e st e e s at e e e s rnee e e e snneeeeeean 1503
LT I (1] o] 1o o <SSR 1513
€101 (=T Y= 1 1] T < PRSPPI 1515
Clipboard fUNCHONS ... e e e e e e e e 1518

X1

CONTENTS

MisCellaneous FUNCLIONScooii it e e e e e e e e 1520
Y (oo Tge [T o ¢ F= o] (o 1= PRSPPI 1528
L I I 10T o7 1o L3PPSR 1529
RESOUICE fUNCHONS......ciiiiieee e 1535
(oo R {0 0o 11 L= PRSPPI 1539
TIME FUNCHIONS ...ttt e e e e e e et e e e e e e e e nnnneeeaaaeeas 1546
Debugging macros and fUNCHONSoii it e e 1548
Environment access fUNCHIONS........c.oo i 1552
{070 0 £=3 - 1 11 (- 1554
Preprocesser symbols defined by WXWINAOWScueiiiiiiiiiiiiiie e 1554
Standard event IdeNtifiers.........ooi i 1556
(Yo7 o L= PRSPPI 1557
Classes by Category ... e 1560
LI 2L A =T = 1572
Notes 0N USING the referenCeoooi i 1572
Writing a wxWindows application: a rough quide..........cceeiiiiiiiiiiee e 1572
WXWindows Hello World SamPIEcooo it 1573
WXWINAOWS SAMPIES ...ttt e e e nre e e e 1576
LA o] o T 1= V= U 1585
Run time class information OVEIVIEW...........coooiiiiiie e 1587
WXSTING OVEIVIEW ...ttt ettt ettt s bt st e e st e e e be e e s abe e enbe e e raseesbeeesnneas 1589
Date and time ClasSeS OVEIVIEW........cocuviiiiiiiieieieee e 1594
Unicode support in WXWINGAOWSocueeiiiiiiiiee ettt e e s nneeeeeean 1598
WXMBCONV ClASSES OVEIVIEWceiiiiiiieeiiieee e ettt e e eitee e ettt e e e ette e e e stae e e e snae e e e snaeeeeenreeeeennees 1601
INterN@tioN@liZAtIONoveeeee s 1604
Writing non-English appliCationsooueieiiiiiiee e 1605
COoNtAINET ClASSES OVEIVIEW.eiiiiiiiieeiiiieeesieee e sttt e e etee e e s saee e e asssaeeeasssaeeessnsaeaeennneeeeeannees 1607
File classes and fuNCHIONS OVEIVIEWcuiiiiiiiiieeiee e e 1608
WXSTIEAIMS OVEIVIEW ...ttt e e n e s e e e e e nnn e nne e e nnne s 1609
WXLOQ ClaSSES OVEIVIEWcoiiiiiiiiiiiiiee ettt e e e e e e e e e 1611
DEDUGQING OVEIVIEWceiiiiiie ettt et e e et e e e s rnt e e e sate e e e saneeeeesaneeeeeaan 1614
WXCONFIQ ClaSSES OVEIVIEWeiiiiiiiiie et e 1616
WXEXDE OVEIVIEW ...ttt ettt e e e e e b e e e e b e e e e ebe e e e e anr e e e e annes 1617
WXFTIESYSIEM .. e e 1620
Event handling OVEIVIEWcoouiiiiiiiiie ettt st e s s e e e sneeeeeean 1622
WINAOW SEYIES .t e e e e e e e e e e e e e e anbre e e e annes 1629
WiNdOW deletion OVEIVIEWcoiiiiiiieiiie et 1629
WXDIAlOG OVEIVIEW.....eiiiieieie ettt ettt e ettt e e e s bee e e e s bee e e e s bee e e e eabeeeeeennes 1632

Xii

CONTENTS

WXV AlIAAIOT OVEIVIEW.....eiiiiiiiieiee ettt e et e e e e e e e e st e e e e e e e e e nnnneeeaaaeeas 1632
CONSIFAINIS OVEIVIEWeiiiiieiiie et e e ene e sne e e nnnees 1635
1 P2= T Y= = USRS 1638
The WXWiINAOWS re€SOUICE SYSTEMiiiiiiiiii it e e e e 1645
XML-based resource SYStEM OVEIVIEWcccueiiiiiiiiieiiiiieeeeieee et e e e e e e 1653
SCIOIING OVEIVIEW ..ttt ettt e st e e e bt e e s be e e be e e sabeeenaeesnneaans 1661
Bitmaps and iCONS OVEIVIEWcoiiiiiiiie ittt e ettt e e s e e e ssneeeeeeans 1662
DeViCe CONTEXT OVEIVIEW.......eiiiiiie et 1665
WXFONT OVEIVIEW ...ttt e et et e e e e e e st e e e e e e e e e e e nnnneeeaaaeeas 1666
FONt €NCOAING OVEIVIEW ...ttt et e st e e s ate e e e s nte e e e saneeeeeeans 1667
WXSPHEErWINAOW OVEIVIEWeiiiiiiiie e e e e 1669
WX TTEECIIT OVEIVIEW ...ciieieie ettt ettt e ettt e e et e e e et e e e e e bte e e e sneeeeeesaeeeeenneeeeeannees 1670
WXLISTCIIT OVEIVIEW ...t 1672
WXIMAQGELIST OVEIVIEW ...ttt et e e e e e e e e bee e e e ennes 1672
ComMMON AIAIOGS OVEIVIEWeeiiiiiiiii ettt ettt et e et e e e be e st e e smbe e e rase e sbeeenneeas 1672
DOCUMENT/VIEW OVEIVIEW......eiiiiiie ettt e e anne e e 1676
TOOIDAN OVEIVIBW ...ttt n e s e e e e anr e e sne e e nnne s 1682
WXGIIA CIASSES OVEIVIEW ...ceiiieiiieeiiiiee e ettt e e e ettee e e ettt e e e et te e e e ette e e e sbae e e s s neeeeeesaeeeeenseeeeeannees 1687
WX TIPPIOVIAEI OVEIVIEWeiiiiiiiii ettt ettt e e e sbee e e e s nee e e e nnes 1688
PrNTING OVEIVIEW ..ottt et e e e s st e e e s nte e e e srneeeeesanreeeenan 1689
MUIITNIEadiNg OVEIVIEW........eiiiiiiiie et e e snne e e sanreeeeaans 1690
Drag and ArOp OVEIVIEWciiiiuiiieeiiieie e eitieee ettt ee ettt e st e e e s et e e e s ssteeeesasteeeesanseeeesanreeeesans 1691
WXDataODJECE OVEIVIEWcoiiiiiiii e e e e e 1693
Database ClaSSES OVEIVIEWuuiiiiiiie ettt e e e e e e e e e e e neeee s 1694
Interprocess COMMUNICATION OVEIVIEWcccoiuiiiiiiiiiee ettt e 1718
WXHTIML OVEIVIEW ...t e e nne e nnne s 1721
WXPYENON OVEIVIEW ...ttt e s e e e ane e e e s 1731
o T O 4 o = 1741
12 C I o o S PP 1741
WXMSW PO ...t b e e s s e e e e bee e e e ebree e e ennes 1741
1201, Ted oo o PPV UPPOTPPPR 1741
(T2 (O IS 72N oo] o PP TRP PP R 1742
1241, L | o T PR 1742
120 G I o To T F TP UPPOTPPPR 1742
3T (= G 1745

Xiii

Chapter 1 Copyright notice

Copyright (c) 1992-2002 Julian Smart, Robert Roebling, Vadim Zeitlin and other
members of the wxWindows team
Portions (c) 1996 Artificial Intelligence Applications Institute

Please also see the wxWindows license files (preamble.txt, Igpl.txt, gpl.txt, license.txt,
licendoc.txt) for conditions of software and documentation use.

wxWindows Library License, Version 3
Copyright (c) 1992-2002 Julian Smart, Robert Roebling, Vadim Zeitlin et al.

Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

WXWINDOWS LIBRARY LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

This library is free software; you can redistribute it and/or modify it under the terms of
the GNU Library General Public License as published by the Free Software Foundation;
either version 2 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Library General Public License for
more details.

You should have received a copy of the GNU Library General Public License along with
this software, usually in a file named COPYING.LIB. If not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.

EXCEPTION NOTICE

1. As a special exception, the copyright holders of this library give permission for
additional uses of the text contained in this release of the library as licensed under the
wxWindows Library License, applying either version 3 of the License, or (at your option)
any later version of the License as published by the copyright holders of version 3 of the
License document.

2. The exception is that you may create binary object code versions of any works using
this library or based on this library, and use, copy, modify, link and distribute such binary
object code files unrestricted under terms of your choice.

3. If you copy code from files distributed under the terms of the GNU General Public

License or the GNU Library General Public License into a copy of this library, as this
license permits, the exception does not apply to the code that you add in this way. To

X1V

COPYRIGHT

avoid misleading anyone as to the status of such modified files, you must delete this
exception notice from such code and/or adjust the licensing conditions notice
accordingly.

4. If you write modifications of your own for this library, it is your choice whether to
permit this exception to apply to your modifications. If you do not wish that, you must
delete the exception notice from such code and/or adjust the licensing conditions notice
accordingly.

GNU Library General Public License, Version 2

Copyright (C) 1991 Free Software Foundation, Inc. 675 Mass Ave, Cambridge, MA
02139, USA

Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

[This is the first released version of the library GPL. It is numbered 2 because it goes
with version 2 of the ordinary GPL.]

Preamble

The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public Licenses are intended to guarantee your
freedom to share and change free software -- to make sure the software is free for all its
users.

This license, the Library General Public License, applies to some specially designated
Free Software Foundation software, and to any other libraries whose authors decide to
use it. You can use it for your libraries, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute
copies of free software (and charge for this service if you wish), that you receive source
code or can get it if you want it, that you can change the software or use pieces of it in
new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these
rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the library, or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you must
give the recipients all the rights that we gave you. You must make sure that they, too,
receive or can get the source code. If you link a program with the library, you must
provide complete object files to the recipients so that they can relink them with the
library, after making changes to the library and recompiling it. And you must show them
these terms so they know their rights.

Our method of protecting your rights has two steps: (1) copyright the library, and (2) offer
you this license which gives you legal permission to copy, distribute and/or modify the
library.

XV

COPYRIGHT

Also, for each distributor's protection, we want to make certain that everyone
understands that there is no warranty for this free library. If the library is modified by
someone else and passed on, we want its recipients to know that what they have is not
the original version, so that any problems introduced by others will not reflect on the
original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that companies distributing free software will individually obtain patent
licenses, thus in effect transforming the program into proprietary software. To prevent
this, we have made it clear that any patent must be licensed for everyone's free use or
not licensed at all.

Most GNU software, including some libraries, is covered by the ordinary GNU General
Public License, which was designed for utility programs. This license, the GNU Library
General Public License, applies to certain designated libraries. This license is quite
different from the ordinary one; be sure to read it in full, and don't assume that anything
in it is the same as in the ordinary license.

The reason we have a separate public license for some libraries is that they blur the
distinction we usually make between modifying or adding to a program and simply using
it. Linking a program with a library, without changing the library, is in some sense simply
using the library, and is analogous to running a utility program or application program.
However, in a textual and legal sense, the linked executable is a combined work, a
derivative of the original library, and the ordinary General Public License treats it as
such.

Because of this blurred distinction, using the ordinary General Public License for libraries
did not effectively promote software sharing, because most developers did not use the
libraries. We concluded that weaker conditions might promote sharing better.

However, unrestricted linking of non-free programs would deprive the users of those
programs of all benefit from the free status of the libraries themselves. This Library
General Public License is intended to permit developers of non-free programs to use
free libraries, while preserving your freedom as a user of such programs to change the
free libraries that are incorporated in them. (We have not seen how to achieve this as
regards changes in header files, but we have achieved it as regards changes in the
actual functions of the Library.) The hope is that this will lead to faster development of
free libraries.

The precise terms and conditions for copying, distribution and modification follow. Pay
close attention to the difference between a "work based on the library" and a "work that
uses the library". The former contains code derived from the library, while the latter only
works together with the library.

Note that it is possible for a library to be covered by the ordinary General Public License
rather than by this special one.

GNU LIBRARY GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

XVvi

COPYRIGHT

0. This License Agreement applies to any software library which contains a notice placed
by the copyright holder or other authorized party saying it may be distributed under the
terms of this Library General Public License (also called "this License"). Each licensee is
addressed as "you".

A "library" means a collection of software functions and/or data prepared so as to be
conveniently linked with application programs (which use some of those functions and
data) to form executables.

The "Library", below, refers to any such software library or work which has been
distributed under these terms. A "work based on the Library" means either the Library or
any derivative work under copyright law: that is to say, a work containing the Library or a
portion of it, either verbatim or with modifications and/or translated straightforwardly into
another language. (Hereinafter, translation is included without limitation in the term
"modification".)

"Source code" for a work means the preferred form of the work for making modifications
to it. For a library, complete source code means all the source code for all modules it
contains, plus any associated interface definition files, plus the scripts used to control
compilation and installation of the library.

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running a program using the Library is not
restricted, and output from such a program is covered only if its contents constitute a
work based on the Library (independent of the use of the Library in a tool for writing it).
Whether that is true depends on what the Library does and what the program that uses
the Library does.

1. You may copy and distribute verbatim copies of the Library's complete source code as
you receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all
the notices that refer to this License and to the absence of any warranty; and distribute a
copy of this License along with the Library.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it, thus forming a
work based on the Library, and copy and distribute such modifications or work under the
terms of Section 1 above, provided that you also meet all of these conditions:

a) The modified work must itself be a software library.

b) You must cause the files modified to carry prominent notices stating that you
changed the files and the date of any change.

¢) You must cause the whole of the work to be licensed at no charge to all third
parties under the terms of this License.

d) If a facility in the modified Library refers to a function or a table of data to be
supplied by an application program that uses the facility, other than as an

XVvil

COPYRIGHT

argument passed when the facility is invoked, then you must make a good faith
effort to ensure that, in the event an application does not supply such function or
table, the facility still operates, and performs whatever part of its purpose remains
meaningful.

(For example, a function in a library to compute square roots has a purpose that is
entirely well-defined independent of the application. Therefore, Subsection 2d
requires that any application-supplied function or table used by this function must
be optional: if the application does not supply it, the square root function must still
compute square roots.)

These requirements apply to the modified work as a whole. If identifiable sections of that
work are not derived from the Library, and can be reasonably considered independent
and separate works in themselves, then this License, and its terms, do not apply to
those sections when you distribute them as separate works. But when you distribute the
same sections as part of a whole which is a work based on the Library, the distribution of
the whole must be on the terms of this License, whose permissions for other licensees
extend to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work
written entirely by you; rather, the intent is to exercise the right to control the distribution
of derivative or collective works based on the Library.

In addition, mere aggregation of another work not based on the Library with the Library
(or with a work based on the Library) on a volume of a storage or distribution medium
does not bring the other work under the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public License instead
of this License to a given copy of the Library. To do this, you must alter all the notices
that refer to this License, so that they refer to the ordinary GNU General Public License,
version 2, instead of to this License. (If a newer version than version 2 of the ordinary
GNU General Public License has appeared, then you can specify that version instead if
you wish.) Do not make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the ordinary
GNU General Public License applies to all subsequent copies and derivative works
made from that copy.

This option is useful when you wish to copy part of the code of the Library into a program
that is not a library.

4. You may copy and distribute the Library (or a portion or derivative of it, under Section
2) in object code or executable form under the terms of Sections 1 and 2 above provided
that you accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange.

If distribution of object code is made by offering access to copy from a designated place,
then offering equivalent access to copy the source code from the same place satisfies
the requirement to distribute the source code, even though third parties are not
compelled to copy the source along with the object code.

XViil

COPYRIGHT

5. A program that contains no derivative of any portion of the Library, but is designed to
work with the Library by being compiled or linked with it, is called a "work that uses the

Library". Such a work, in isolation, is not a derivative work of the Library, and therefore

falls outside the scope of this License.

However, linking a "work that uses the Library" with the Library creates an executable
that is a derivative of the Library (because it contains portions of the Library), rather than
a "work that uses the library". The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.

When a "work that uses the Library" uses material from a header file that is part of the
Library, the object code for the work may be a derivative work of the Library even though
the source code is not. Whether this is true is especially significant if the work can be
linked without the Library, or if the work is itself a library. The threshold for this to be true
is not precisely defined by law.

If such an object file uses only numerical parameters, data structure layouts and
accessors, and small macros and small inline functions (ten lines or less in length), then
the use of the object file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the Library will still fall
under Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute the object code
for the work under the terms of Section 6. Any executables containing that work also fall
under Section 6, whether or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also compile or link a "work that uses
the Library" with the Library to produce a work containing portions of the Library, and
distribute that work under terms of your choice, provided that the terms permit
modification of the work for the customer's own use and reverse engineering for
debugging such modifications.

You must give prominent notice with each copy of the work that the Library is used in it
and that the Library and its use are covered by this License. You must supply a copy of
this License. If the work during execution displays copyright notices, you must include
the copyright notice for the Library among them, as well as a reference directing the user
to the copy of this License. Also, you must do one of these things:

a) Accompany the work with the complete corresponding machine-readable source
code for the Library including whatever changes were used in the work (which
must be distributed under Sections 1 and 2 above); and, if the work is an
executable linked with the Library, with the complete machine-readable "work that
uses the Library", as object code and/or source code, so that the user can modify
the Library and then relink to produce a modified executable containing the
modified Library. (It is understood that the user who changes the contents of
definitions files in the Library will not necessarily be able to recompile the
application to use the modified definitions.)

b) Accompany the work with a written offer, valid for at least three years, to give
the same user the materials specified in Subsection 6a, above, for a charge no

X1X

COPYRIGHT

more than the cost of performing this distribution.

c) If distribution of the work is made by offering access to copy from a designated
place, offer equivalent access to copy the above specified materials from the same
place.

d) Verify that the user has already received a copy of these materials or that you
have already sent this user a copy.

For an executable, the required form of the "work that uses the Library" must include any
data and utility programs needed for reproducing the executable from it. However, as a
special exception, the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler, kernel,
and so on) of the operating system on which the executable runs, unless that component
itself accompanies the executable.

It may happen that this requirement contradicts the license restrictions of other
proprietary libraries that do not normally accompany the operating system. Such a
contradiction means you cannot use both them and the Library together in an executable
that you distribute.

7. You may place library facilities that are a work based on the Library side-by-side in a
single library together with other library facilities not covered by this License, and
distribute such a combined library, provided that the separate distribution of the work
based on the Library and of the other library facilities is otherwise permitted, and
provided that you do these two things:

a) Accompany the combined library with a copy of the same work based on the
Library, uncombined with any other library facilities. This must be distributed under
the terms of the Sections above.

b) Give prominent notice with the combined library of the fact that part of it is a
work based on the Library, and explaining where to find the accompanying
uncombined form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute the Library except as
expressly provided under this License. Any attempt otherwise to copy, modify,
sublicense, link with, or distribute the Library is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

9. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Library or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Library (or any work based on the Library), you indicate
your acceptance of this License to do so, and all its terms and conditions for copying,
distributing or modifying the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the Library), the
recipient automatically receives a license from the original licensor to copy, distribute,

XX

COPYRIGHT

link with or modify the Library subject to these terms and conditions. You may not
impose any further restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to this License.

11. If, as a consequence of a court judgment or allegation of patent infringement or for
any other reason (not limited to patent issues), conditions are imposed on you (whether
by court order, agreement or otherwise) that contradict the conditions of this License,
they do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Library at all. For
example, if a patent license would not permit royalty-free redistribution of the Library by
all those who receive copies directly or indirectly through you, then the only way you
could satisfy both it and this License would be to refrain entirely from distribution of the
Library.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply, and the section as a whole
is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property
right claims or to contest validity of any such claims; this section has the sole purpose of
protecting the integrity of the free software distribution system which is implemented by
public license practices. Many people have made generous contributions to the wide
range of software distributed through that system in reliance on consistent application of
that system; it is up to the author/donor to decide if he or she is willing to distribute
software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

12. If the distribution and/or use of the Library is restricted in certain countries either by
patents or by copyrighted interfaces, the original copyright holder who places the Library
under this License may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if written in the body
of this License.

13. The Free Software Foundation may publish revised and/or new versions of the
Library General Public License from time to time. Such new versions will be similar in
spirit to the present version, but may differ in detail to address new problems or
concerns.

Each version is given a distinguishing version number. If the Library specifies a version
number of this License which applies to it and "any later version", you have the option of
following the terms and conditions either of that version or of any later version published
by the Free Software Foundation. If the Library does not specify a license version
number, you may choose any version ever published by the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose
distribution conditions are incompatible with these, write to the author to ask for
permission. For software which is copyrighted by the Free Software Foundation, write to

XX1

COPYRIGHT

the Free Software Foundation; we sometimes make exceptions for this. Our decision will
be guided by the two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY
AND PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD THE LIBRARY
PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY TO OPERATE WITH
ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS
Appendix: How to Apply These Terms to Your New Libraries

If you develop a new library, and you want it to be of the greatest possible use to the
public, we recommend making it free software that everyone can redistribute and
change. You can do so by permitting redistribution under these terms (or, alternatively,
under the terms of the ordinary General Public License).

To apply these terms, attach the following notices to the library. It is safest to attach
them to the start of each source file to most effectively convey the exclusion of warranty;
and each file should have at least the "copyright" line and a pointer to where the full
notice is found.

<one line to give the library's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of

XXil

COPYRIGHT

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.

You should have received a copy of the GNU Library General Public
License along with this library; if not, write to the Free
Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a "copyright disclaimer" for the library, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the
library "Frob' (a library for tweaking knobs) written by James Random
Hacker.

<signature of Ty Coon>, 1 April 1990
Ty Coon, President of Vice

That's all there is to it!

XX1il

Chapter 2 Introduction

What is wxWindows?

wxWindows is a C++ framework providing GUI (Graphical User Interface) and other
facilities on more than one platform. Version 2 currently supports all desktop versions of
MS Windows, Unix with GTK+, Unix with Motif, and MacOS. An OS/2 port is in progress.

wxWindows was originally developed at the Atrtificial Intelligence Applications Institute,
University of Edinburgh, for internal use, and was first made publicly available in 1992.
Version 2 is a vastly improved version written and maintained by Julian Smart, Robert
Roebling, Vadim Zeitlin, Vaclav Slavik and many others.

This manual contains a class reference and topic overviews. For a selection of
wxWindows tutorials, please see the documentation page on the wxWindows web site
(http://www.wxwindows.org).

Please note that in the following, "MS Windows" often refers to all platforms related to
Microsoft Windows, including 16-bit and 32-bit variants, unless otherwise stated. All
trademarks are acknowledged.

Why another cross-platform development tool?

wxWindows was developed to provide a cheap and flexible way to maximize investment
in GUI application development. While a number of commercial class libraries already
existed for cross-platform development, none met all of the following criteria:

low price;

source availability;

simplicity of programming;

support for a wide range of compilers.

el

Since wxWindows was started, several other free or almost-free GUI frameworks have
emerged. However, none has the range of features, flexibility, documentation and the
well-established development team that wxWindows has.

As open source software, wxWindows has benefited from comments, ideas, bug fixes,
enhancements and the sheer enthusiasm of users. This gives wxWindows a certain
advantage over its commercial competitors (and over free libraries without an
independent development team), plus a robustness against the transience of one
individual or company. This openness and availability of source code is especially
important when the future of thousands of lines of application code may depend upon

CHAPTER 2

the longevity of the underlying class library.

Version 2 goes much further than previous versions in terms of generality and features,
allowing applications to be produced that are often indistinguishable from those
produced using single-platform toolkits such as Motif, GTK+ and MFC.

The importance of using a platform-independent class library cannot be overstated,
since GUI application development is very time-consuming, and sustained popularity of
particular GUIs cannot be guaranteed. Code can very quickly become obsolete if it
addresses the wrong platform or audience. wxWindows helps to insulate the
programmer from these winds of change. Although wxWindows may not be suitable for
every application (such as an OLE-intensive program), it provides access to most of the
functionality a GUI program normally requires, plus many extras such as network
programming, PostScript output, and HTML rendering; and it can of course be extended
as needs dictate. As a bonus, it provides a far cleaner and easier programming interface
than the native APls. Programmers may find it worthwhile to use wxWindows even if
they are developing on only one platform.

It is impossible to sum up the functionality of wxWindows in a few paragraphs, but here
are some of the benefits:

e Low cost (free, in fact!)

e You get the source.

e Available on a variety of popular platforms.

e Works with almost all popular C++ compilers and Python.

e Over 50 example programs.

e Over 1000 pages of printable and on-line documentation.

e Includes Tex2RTF, to allow you to produce your own documentation in Windows
Help, HTML and Word RTF formats.

e Simple-to-use, object-oriented API.

e Flexible event system.

e Graphics calls include lines, rounded rectangles, splines, polylines, etc.

e Constraint-based and sizer-based layouts.

e Print/preview and document/view architectures.

e Toolbar, notebook, tree control, advanced list control classes.

e PostScript generation under Unix, normal MS Windows printing on the PC.

e MDI (Multiple Document Interface) support.

e Can be used to create DLLs under Windows, dynamic libraries on Unix.

e Common dialogs for file browsing, printing, colour selection, etc.

e Under MS Windows, support for creating metafiles and copying them to the
clipboard.

e An API for invoking help from applications.

e Ready-to-use HTML window (supporting a subset of HTML).

e Dialog Editor for building dialogs.

e Network support via a family of socket and protocol classes.

e Support for platform independent image processing.

Built-in support for many file formats (BMP, PNG, JPEG, GIF, XPM, PNM, PCX).

CHAPTER 2

wxWindows requirements

To make use of wxWindows, you currently need one of the following setups.
(a) MS-Windows:

1. A 486 or higher PC running MS Windows.

2. A Windows compiler: most are supported, but please see install.txt for
details. Supported compilers include Microsoft Visual C++ 4.0 or higher, Borland
C++, Cygwin, Metrowerks CodeWarrior.

3. Atleast 60 MB of disk space.

(b) Unix:

1. Almost any C++ compiler, including GNU C++ (EGCS 1.1.1 or above).

2. Almost any Unix workstation, and one of: GTK+ 1.2, GTK+ 2.0, Motif 1.2 or
higher, Lesstif.

3. Atleast 60 MB of disk space.

(c) Mac OS/Mac OS X:

A PowerPC Mac running Mac OS 8.6/9.x (eg. Classic) or Mac OS X 10.x.
CodeWarrior 5.3, 6 or 7 for Classic Mac OS.

The Apple Developer Tools (eg. GNU C++) or CodeWarrior 7 for Mac OS X.
At least 60 MB of disk space.

el

Availability and location of wxWindows

wxWindows is available by anonymous FTP and World Wide Web from
ftp://biolpc22.york.ac.uk/pub (ftp://biolpc22.york.ac.uk/pub) and/or
http://www.wxwindows.org (http://www.wxwindows.org).

You can also buy a CD-ROM using the form on the Web site.

Acknowledgements

Thanks are due to AlAI for being willing to release the original version of wxWindows
into the public domain, and to our patient partners.

We would particularly like to thank the following for their contributions to wxWindows,
and the many others who have been involved in the project over the years. Apologies for
any unintentional omissions from this list. Yiorgos Adamopoulos, Jamshid Afshar,

CHAPTER 2

Alejandro Aguilar-Sierra, AlAl, Patrick Albert, Karsten Ballueder, Michael Bedward, Kai
Bendorf, Yura Bidus, Keith Gary Boyce, Chris Breeze, Pete Britton, lan Brown, C.
Buckley, Dmitri Chubraev, Robin Corbet, Cecil Coupe, Andrew Davison, Neil Dudman,
Robin Dunn, Hermann Dunkel, Jos van Eijndhoven, Tom Felici, Thomas Fettig,
Matthew Flatt, Pasquale Foggia, Josep Fortiana, Todd Fries, Dominic Gallagher,
Guillermo Rodriguez Garcia, Wolfram Gloger, Norbert Grotz, Stefan Gunter, Bill Hale,
Patrick Halke, Stefan Hammes, Guillaume Helle, Harco de Hilster, Cord Hockemeyer,
Markus Holzem, Olaf Klein, Leif Jensen, Bart Jourquin, Guilhem Lavaux, Jan Lessner,
Nicholas Liebmann, Torsten Liermann, Per Lindqvist, Thomas Runge, Tatu Mannisto,
Scott Maxwell, Thomas Myers, Oliver Niedung, Stefan Neis, Hernan Otero, lan Perrigo,
Timothy Peters, Giordano Pezzoli, Harri Pasanen, Thomaso Paoletti, Garrett Potts,
Marcel Rasche, Robert Roebling, Dino Scaringella, Jobst Schmalenbach, Arthur Seaton,
Paul Shirley, Vaclav Slavik, Stein Somers, Petr Smilauer, Neil Smith, Kari Systa, Arthur
Tetzlaff-Deas, Jonathan Tonberg, Jyrki Tuomi, David Webster, Janos Vegh, Andrea
Venturoli, Vadim Zeitlin, Xiaokun Zhu, Edward Zimmermann.

'Graphplace', the basis for the wxGraphLayout library, is copyright Dr. Jos T.J. van
Eijndhoven of Eindhoven University of Technology. The code has been used in
wxGraphLayout with his permission.

We also acknowledge the author of XFIG, the excellent Unix drawing tool, from the
source of which we have borrowed some spline drawing code. His copyright is included
below.

XFig2.1 is copyright (c) 1985 by Supoj Sutanthavibul. Permission to use, copy, modify,
distribute, and sell this software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in all copies and that both
that copyright notice and this permission notice appear in supporting documentation, and
that the name of M.I.T. not be used in advertising or publicity pertaining to distribution of
the software without specific, written prior permission. M.I.T. makes no representations
about the suitability of this software for any purpose. It is provided "as is" without
express or implied warranty.

Chapter 3 Multi-platform development with
wxWindows

This chapter describes the practical details of using wxWindows. Please see the file
install.txt for up-to-date installation instructions, and changes.txt for differences between
versions.

Include files

The main include file is "wx/wx . h"; this includes the most commonly used modules of
wxWindows.

To save on compilation time, include only those header files relevant to the source file. If
you are using precompiled headers, you should include the following section before any
other includes:

// For compilers that support precompilation, includes "wx.h".
#include <wx/wxprec.h>

#ifdef _ BORLANDC_ _
#pragma hdrstop
#endif

#ifndef WX_PRECOMP

// Include your minimal set of headers here, or wx.h
#include <wx/wx.h>

#endif

. now your other include files ...

The file "wx/wxprec.h" includes "wx/wx.h". Although this incantation may seem
quirky, it is in fact the end result of a lot of experimentation, and several Windows
compilers to use precompilation (those tested are Microsoft Visual C++, Borland C++
and Watcom C++).

Borland precompilation is largely automatic. Visual C++ requires specification of
"wx/wxprec.h" as the file to use for precompilation. Watcom C++ is automatic apart
from the specification of the .pch file. Watcom C++ is strange in requiring the
precompiled header to be used only for object files compiled in the same directory as
that in which the precompiled header was created. Therefore, the wxWindows Watcom
C++ makefiles go through hoops deleting and recreating a single precompiled header
file for each module, thus preventing an accumulation of many multi-megabyte .pch files.

Libraries

CHAPTER 3

The GTK and Motif ports of wxWindow can create either a static library or a shared
library on most Unix or Unix-like systems. The static library is called libwx_gtk.a and
libwx_motif.a whereas the name of the shared library is dependent on the system it is
created on and the version you are using. The library name for the GTK version of
wxWindows 2.2 on Linux and Solaris will be libwx_gtk-2.2.s0.0.0.0, on HP-UX, it will be
libwx_gtk-2.2.sl, on AlX just libwx_gtk.a etc.

Under Windows, use the library wx.lib (release) or wxd.lib (debug) for stand-alone
Windows applications, or wxdll.lib (wxdlld.lib) for creating DLLs.

Configuration

Options are configurable in the file "wx/xxX/setup.h" where XXX is the required
platform (such as msw, motif, gtk, mac). Some settings are a matter of taste, some help
with platform-specific problems, and others can be set to minimize the size of the library.
Please see the setup.h file and install.txt files for details on configuration.

Under Unix (GTK and Motif) the corresponding setup.h files are generated automatically
when configuring the wxWindows using the "configure" script. When using the RPM
packages for installing wxWindows on Linux, a correct setup.h is shipped in the package
and this must not be changed.

Makefiles

At the moment there is no attempt to make Unix makefiles and PC makefiles compatible,
i.e. one makefile is required for each environment. The Unix ports use a sophisticated
system based on the GNU autoconf tool and this system will create the makefiles as
required on the respective platform. Although the makefiles are not identical in Windows,
Mac and Unix, care has been taken to make them relatively similar so that moving from
one platform to another will be painless.

Sample makefiles for Unix (suffix .unx), MS C++ (suffix .DOS and .NT), Borland C++
(.BCC and .B32) and Symantec C++ (.SC) are included for the library, demos and
utilities.

The controlling makefile for wxWindows is in the MS-Windows directory src/msw for the
different Windows compiler and in the build directory when using the Unix ports. The
build directory can be chosen by the user. It is the directory in which the "configure”
script is run. This can be the normal base directory (by running . /configure there) or
any other directory (e.g. . . /configure after creating a build-directory in the directory
level above the base directory).

Please see the platform-specific install.txt file for further details.

CHAPTER 3

Windows-specific files

wxWindows application compilation under MS Windows requires at least two extra files,
resource and module definition files.

Resource file

The least that must be defined in the Windows resource file (extension RC) is the
following statement:

rcinclude "wx/msw/wx.rc"

which includes essential internal wxWindows definitions. The resource script may also
contain references to icons, cursors, etc., for example:

wxicon icon wx.ico

The icon can then be referenced by name when creating a frame icon. See the MS
Windows SDK documentation.

Note: include wx.rc after any ICON statements so programs that search your executable
for icons (such as the Program Manager) find your application icon first.

Module definition file

A module definition file (extension DEF) is required for 16-bit applications, and looks like

the following:

NAME Hello

DESCRIPTION 'Hello'

EXETYPE WINDOWS

STUB "WINSTUB.EXE'

CODE PRELOAD MOVEABLE DISCARDABLE
DATA PRELOAD MOVEABLE MULTIPLE
HEAPSIZE 1024

STACKSIZE 8192

The only lines which will usually have to be changed per application are NAME and
DESCRIPTION.

Allocating and deleting wxWindows objects

CHAPTER 3

In general, classes derived from wxWindow must dynamically allocated with new and
deleted with delete. If you delete a window, all of its children and descendants will be
automatically deleted, so you don't need to delete these descendants explicitly.

When deleting a frame or dialog, use Destroy rather than delete so that the wxWindows
delayed deletion can take effect. This waits until idle time (when all messages have been
processed) to actually delete the window, to avoid problems associated with the GUI
sending events to deleted windows.

Don't create a window on the stack, because this will interfere with delayed deletion.

If you decide to allocate a C++ array of objects (such as wxBitmap) that may be cleaned
up by wxWindows, make sure you delete the array explicitly before wxWindows has a
chance to do so on exit, since calling delete on array members will cause memory
problems.

wxColour can be created statically: it is not automatically cleaned up and is unlikely to be
shared between other objects; it is lightweight enough for copies to be made.

Beware of deleting objects such as a wxPen or wxBitmap if they are still in use.
Windows is particularly sensitive to this: so make sure you make calls like
wxDC::SetPen(wxNullPen) or wxDC::SelectObject(wxNullBitmap) before deleting a
drawing object that may be in use. Code that doesn't do this will probably work fine on
some platforms, and then fail under Windows.

Architecture dependency

A problem which sometimes arises from writing multi-platform programs is that the basic
C types are not defined the same on all platforms. This holds true for both the length in
bits of the standard types (such as int and long) as well as their byte order, which might
be little endian (typically on Intel computers) or big endian (typically on some Unix
workstations). wxWindows defines types and macros that make it easy to write
architecture independent code. The types are:

wxInt32, wxInt16, wxInt8, wxUint32, wxUint16 = wxWord, wxUint8 = wxByte

where wxInt32 stands for a 32-bit signed integer type etc. You can also check which
architecture the program is compiled on using the wxBYTE_ORDER define which is
either wxBIG_ENDIAN or wxLITTLE_ENDIAN (in the future maybe wxPDP_ENDIAN as
well).

The macros handling bit-swapping with respect to the applications endianness are
described in the Byte order macros (p. 1528) section.

Conditional compilation

CHAPTER 3

One of the purposes of wxWindows is to reduce the need for conditional compilation in
source code, which can be messy and confusing to follow. However, sometimes it is
necessary to incorporate platform-specific features (such as metafile use under MS
Windows). The symbols listed in the file symbols.txt may be used for this purpose,
along with any user-supplied ones.

C++ issues

The following documents some miscellaneous C++ issues.

Templates

wxWindows does not use templates since it is a notoriously unportable feature.

RTTI

wxWindows does not use run-time type information since wxWindows provides its own
run-time type information system, implemented using macros.

Type of NULL

Some compilers (e.g. the native IRIX cc) define NULL to be OL so that no conversion to
pointers is allowed. Because of that, all these occurrences of NULL in the GTK port use
an explicit conversion such as

wxWindow *my_window = (wxWindow*) NULL;

It is recommended to adhere to this in all code using wxWindows as this make the code
(a bit) more portable.

Precompiled headers

Some compilers, such as Borland C++ and Microsoft C++, support precompiled
headers. This can save a great deal of compiling time. The recommended approach is to
precompile "wx.h", using this precompiled header for compiling both wxWindows itself
and any wxWindows applications. For Windows compilers, two dummy source files are
provided (one for normal applications and one for creating DLLs) to allow initial creation
of the precompiled header.

CHAPTER 3

However, there are several downsides to using precompiled headers. One is that to take
advantage of the facility, you often need to include more header files than would
normally be the case. This means that changing a header file will cause more
recompilations (in the case of wxWindows, everything needs to be recompiled since
everything includes "wx.h"!)

A related problem is that for compilers that don't have precompiled headers, including a
lot of header files slows down compilation considerably. For this reason, you will find (in
the common X and Windows parts of the library) conditional compilation that under Unix,
includes a minimal set of headers; and when using Visual C++, includes wx . h. This
should help provide the optimal compilation for each compiler, although it is biased
towards the precompiled headers facility available in Microsoft C++.

File handling

When building an application which may be used under different environments, one
difficulty is coping with documents which may be moved to different directories on other
machines. Saving a file which has pointers to full pathnames is going to be inherently
unportable. One approach is to store filenames on their own, with no directory
information. The application searches through a number of locally defined directories to
find the file. To support this, the class wxPathList makes adding directories and
searching for files easy, and the global function wxFileNameFromPath allows the
application to strip off the filename from the path if the filename must be stored. This has
undesirable ramifications for people who have documents of the same name in different
directories.

As regards the limitations of DOS 8+3 single-case filenames versus unrestricted Unix
filenames, the best solution is to use DOS filenames for your application, and also for
document filenames ifthe user is likely to be switching platforms regularly. Obviously
this latter choice is up to the application user to decide. Some programs (such as YACC
and LEX) generate filenames incompatible with DOS; the best solution here is to have
your Unix makefile rename the generated files to something more compatible before
transferring the source to DOS. Transferring DOS files to Unix is no problem, of course,
apart from EOL conversion for which there should be a utility available (such as
dos2unix).

See also the File Functions section of the reference manual for descriptions of
miscellaneous file handling functions.

10

Chapter 4 Utilities and libraries supplied with
wxWindows

In addition to the core wxWindows library, a number of further libraries and utilities are
supplied with each distribution.

Some are under the 'contrib’ hierarchy which mirrors the structure of the main
wxWindows hierarchy. See also the 'utils' hierarchy. The first place to look for
documentation about these tools and libraries is under the wxWindows 'docs' hierarchy,
for example docs/htmlhelp/f1l.chm.

For other user-contributed packages, please see the Contributions page on the
wxWindows Web site (http://www.wxwindows.org).

Helpview Helpview is a program for displaying wxWindows HTML Help files. In
many cases, you may wish to use the wxWindows HTML Help classes from
within your application, but this provides a handy stand-alone viewer. See
wxHTML Notes (p. 1721) for more details. You can find it in
samples/html/helpview.

Tex2RTF Supplied with wxWindows is a utility called Tex2RTF for converting LaTeX
manuals HTML, MS HTML Help, wxHTML Help, RTF, and Windows Help RTF
formats. Tex2RTF is used for the wxWindows manuals and can be used
independently by authors wishing to create on-line and printed manuals from the
same LaTeX source. Please see the separate documentation for Tex2RTF. You
can find it under utils/tex2rtf.

Helpgen Helpgen takes C++ header files and generates a Tex2RTF-compatible
documentation file for each class it finds, using comments as appropriate. This
is a good way to start a reference for a set of classes.

Dialog Editor Dialog Editor allows interactive construction of dialogs using absolute
positioning, producing WXR output files. This tool is generally deprecated in
favour of sizer-based tools. You can find Dialog Editor in utils/dialoged.

XRC resource system This is the sizer-aware replacement for the WXR resource
system, and uses XML-based resource specifications that can be generated by
tools such as wxDesigner (http://www.roebling.de) and XRC's own
wxrcedit. You can find this in contrib/src/xrc,
contrib/include/wx/xrc, contrib/samples/xrc, and
contrib/utils/wxrcedit. For more information, see the XML-based
resource system overview (p. 1653).

11

CHAPTER 4

Object Graphics Library OGL defines an API for applications that need to display
objects connected by lines. The objects can be moved around and interacted
with. You can find this in contrib/src/ogl, contrib/include/wx/ogl,
and contrib/samples/ogl.

Frame Layout library FL provides sophisticated pane dragging and docking
facilities. You can find this in contrib/src/fl, contrib/include/wx/f1l
and contrib/samples/fl.

Gizmos library Gizmos is a collection of useful widgets and other classes. Classes
include wxLEDNumberCtrl, wxEditableListBox, wxMultiCellCanvas. You can find
this in contrib/src/fl, contrib/include/wx/f1l, and
contrib/samples/fl.

Net library Net is a collection of very simple mail and web related classes. Currently
there is only wxEmail, which makes it easy to send email messages via MAPI on
Windows or sendmail on Unix. You can find this in contrib/src/net and
contrib/include/wx/net.

Animate library Animate allows you to load animated GlIFs and play them on a
window. The library can be extended to use other animation formats. You can
find this in contrib/src/animate, contrib/include/wx/animate, and
contrib/samples/animate.

Canvas library Canvas supports high-level, double-buffered drawing operations
with transformations. You can find this in contrib/src/canvas,
contrib/include/wx/canvas, and contrib/samples/canvas.

MMedia library Mmedia supports a variety of multimedia functionality. The status of
this library is currently unclear. You can find this in contrib/src/mmedia,
contrib/include/wx/mmedia, and contrib/samples/mmedia

Styled Text Control library STC is a wrapper around Scintilla, a syntax-highlighting
text editor. You can find this in contrib/src/stc,
contrib/include/wx/stc, and contrib/samples/stc

Plot Plot is a simple curve plotting library. You can find this in contrib/src/plot,
contrib/include/wx/plot, and contrib/samples/plot.

12

Chapter 5 Programming strategies

This chapter is intended to list strategies that may be useful when writing and debugging
wxWindows programs. If you have any good tips, please submit them for inclusion here.

Strategies for reducing programming errors

Use ASSERT

Although | haven't done this myself within wxWindows, it is good practice to use
ASSERT statements liberally, that check for conditions that should or should not hold,
and print out appropriate error messages. These can be compiled out of a non-
debugging version of wxWindows and your application. Using ASSERT is an example of
'defensive programming': it can alert you to problems later on.

Use wxString in preference to character arrays

Using wxString can be much safer and more convenient than using char *. Again, |
haven't practiced what I'm preaching, but I'm now trying to use wxString wherever
possible. You can reduce the possibility of memory leaks substantially, and it is much
more convenient to use the overloaded operators than functions such as strcmp.
wxString won't add a significant overhead to your program; the overhead is
compensated for by easier manipulation (which means less code).

The same goes for other data types: use classes wherever possible.

Strategies for portability

Use relative positioning or constraints

Don't use absolute panel item positioning if you can avoid it. Different GUIs have very
differently sized panel items. Consider using the constraint system, although this can be
complex to program.

Alternatively, you could use alternative .wrc (wxWindows resource files) on different
platforms, with slightly different dimensions in each. Or space your panel items out to
avoid problems.

13

CHAPTER 5

Use wxWindows resource files

Use .wrc (wxWindows resource files) where possible, because they can be easily
changed independently of source code. Bitmap resources can be set up to load different
kinds of bitmap depending on platform (see the section on resource files).

Strategies for debugging

Positive thinking

It is common to blow up the problem in one's imagination, so that it seems to threaten
weeks, months or even years of work. The problem you face may seem insurmountable:
but almost never is. Once you have been programming for some time, you will be able to
remember similar incidents that threw you into the depths of despair. But remember, you
always solved the problem, somehow!

Perseverance is often the key, even though a seemingly trivial problem can take an
apparently inordinate amount of time to solve. In the end, you will probably wonder why
you worried so much. That's not to say it isn't painful at the time. Try not to worry -- there
are many more important things in life.

Simplify the problem

Reduce the code exhibiting the problem to the smallest program possible that exhibits
the problem. If it is not possible to reduce a large and complex program to a very small
program, then try to ensure your code doesn't hide the problem (you may have
attempted to minimize the problem in some way: but now you want to expose it).

With luck, you can add a small amount of code that causes the program to go from
functioning to non-functioning state. This should give a clue to the problem. In some
cases though, such as memory leaks or wrong deallocation, this can still give totally
spurious results!

Use a debugger

This sounds like facetious advice, but it is surprising how often people don't use a
debugger. Often it is an overhead to install or learn how to use a debugger, but it really
is essential for anything but the most trivial programs.

Use logging functions

14

CHAPTER 5

There is a variety of logging functions that you can use in your program: see Logging
functions (p. 1539).

Using tracing statements may be more convenient than using the debugger in some

circumstances (such as when your debugger doesn't support a lot of debugging code, or
you wish to print a bunch of variables).

Use the wxWindows debugging facilities

You can use wxDebugContext to check for memory leaks and corrupt memory: in fact in
debugging mode, wxWindows will automatically check for memory leaks at the end of
the program if wxWindows is suitably configured. Depending on the operating system
and compiler, more or less specific information about the problem will be logged.

You should also use debug macros (p. 1548) as part of a 'defensive programming'
strategy, scattering wxASSERTSs liberally to test for problems in your code as early as
possible. Forward thinking will save a surprising amount of time in the long run.

See the debugging overview (p. 1614) for further information.

Check Windows debug messages

Under Windows, it is worth running your program with DbgView
(http://www.sysinternals.com) running or some other program that shows
Windows-generated debug messages. It is possible it will show invalid handles being
used. You may have fun seeing what commercial programs cause these normally
hidden errors! Microsoft recommend using the debugging version of Windows, which
shows up even more problems. However, | doubt it is worth the hassle for most
applications. wxWindows is designed to minimize the possibility of such errors, but they
can still happen occasionally, slipping through unnoticed because they are not severe
enough to cause a crash.

Genetic mutation

If we had sophisticated genetic algorithm tools that could be applied to programming, we
could use them. Until then, a common -- if rather irrational -- technique is to just make
arbitrary changes to the code until something different happens. You may have an
intuition why a change will make a difference; otherwise, just try altering the order of
code, comment lines out, anything to get over an impasse. Obviously, this is usually a
last resort.

15

Chapter 6 Alphabetical class reference

wxAcceleratorEntry

An object used by an application wishing to create an accelerator table (p. 17).

Derived from
None
Include files
<wx/accel.h>
See also

wxAcceleratorTable (p. 17), wxWindow::SetAcceleratorTable (p. 1437)

wxAcceleratorEntry::wxAcceleratorEntry

wxAcceleratorEntry()

Default constructor.

wxAcceleratorEntry(int flags, int keyCode, int cmd)

Constructor.

Parameters

flags
One of wxACCEL_ALT, wxACCEL_SHIFT, wxACCEL_CTRL and
wxACCEL_NORMAL. Indicates which modifier key is held down.

keyCode
The keycode to be detected. See Keycodes (p. 1557) for a full list of keycodes.

cmd
The menu or control command identifier.

wxAcceleratorEntry::GetCommand

CHAPTER 6

int GetCommand() const

Returns the command identifier for the accelerator table entry.

wxAcceleratorEntry::GetFlags

int GetFlags() const

Returns the flags for the accelerator table entry.

wxAcceleratorEntry::GetKeyCode

int GetKeyCode() const

Returns the keycode for the accelerator table entry.

wxAcceleratorEntry::Set

void Set(int flags, int keyCode, int cma)

Sets the accelerator entry parameters.

Parameters

flags
One of wxACCEL_ALT, wxACCEL_SHIFT, wxACCEL_CTRL and
wxACCEL_NORMAL. Indicates which modifier key is held down.

keyCode
The keycode to be detected. See Keycodes (p. 1557) for a full list of keycodes.

cmd
The menu or control command identifier.

wxAcceleratorTable

An accelerator table allows the application to specify a table of keyboard shortcuts for
menus or other commands. On Windows, menu or button commands are supported; on
GTK, only menu commands are supported.

The object wxNullAcceleratorTable is defined to be a table with no data, and is the
initial accelerator table for a window.

17

CHAPTER 6

Derived from
wxObject (p. 961)
Include files
<wx/accel.h>

Example

wxAcceleratorEntry entries([4];

entries[0].Set (wxACCEL_CTRL, (int) 'N', ID_NEW_WINDOW) ;
entries[1l].Set (wxACCEL_CTRL, (int) 'X', wxID_EXIT) ;
entries[2].Set (wxACCEL_SHIFT, (int) 'A', ID_ABOUT) ;
entries[3].Set (wxACCEL_NORMAL, WXK_DELETE, wxID_CUT) ;

wxAcceleratorTable accel (4, entries);
frame—->SetAcceleratorTable (accel);

Remarks

An accelerator takes precedence over normal processing and can be a convenient way
to program some event handling. For example, you can use an accelerator table to
enable a dialog with a multi-line text control to accept CTRL-Enter as meaning 'OK' (but
not in GTK at present).

See also

wxAcceleratorEntry (p. 16), wxWindow::SetAcceleratorTable (p. 1437)

wxAcceleratorTable::wxAcceleratorTable

wxAcceleratorTable()

Default constructor.

wxAcceleratorTable(const wxAcceleratorTable& bitmap)
Copy constructor.

wxAcceleratorTable(int n, wxAcceleratorEntry entries[))
Creates from an array of wxAcceleratorEntry (p. 16) objects.
wxAcceleratorTable(const wxString& resource)

Loads the accelerator table from a Windows resource (Windows only).

18

CHAPTER 6

Parameters

n
Number of accelerator entries.

entries
The array of entries.

resource
Name of a Windows accelerator.

wxPython note: The wxPython constructor accepts a list of wxAcceleratorEntry objects,
or 3-tuples consisting of flags, keyCode, and cmd values like you would construct
wxAcceleratorEntry objects with.

wxPerl note: The wxPerl constructor accepts a list of either Wx::AcceleratorEntry

objects or references to 3-element arrays (flags, keyCode, cmd), like the parameters of
Wx::AcceleratorEntry::new.

wxAcceleratorTable::~wxAcceleratorTable

~wxAcceleratorTable()

Destroys the wxAcceleratorTable object.

wxAcceleratorTable::Ok

bool Ok() const

Returns TRUE if the accelerator table is valid.

wxAcceleratorTable::operator =

wxAcceleratorTable& operator =(const wxAcceleratorTable& accel)

Assignment operator. This operator does not copy any data, but instead passes a
pointer to the data in accel and increments a reference counter. It is a fast operation.

Parameters

accel
Accelerator table to assign.

Return value

Returns reference to this object.

19

CHAPTER 6

wxAcceleratorTable::operator ==

bool operator ==(const wxAcceleratorTable& accel)

Equality operator. This operator tests whether the internal data pointers are equal (a fast
test).

Parameters

accel
Accelerator table to compare with

Return value

Returns TRUE if the accelerator tables were effectively equal, FALSE otherwise.

wxAcceleratorTable::operator !=

bool operator !=(const wxAcceleratorTable& accel)

Inequality operator. This operator tests whether the internal data pointers are unequal (a
fast test).

Parameters

accel
Accelerator table to compare with

Return value

Returns TRUE if the accelerator tables were unequal, FALSE otherwise.

wxActivateEvent

An activate event is sent when a window or application is being activated or deactivated.
Derived from

wxEvent (p. 441)
wxObject (p. 961)

Include files

<wx/event.h>

20

CHAPTER 6

Event table macros

To process an activate event, use these event handler macros to direct input to a
member function that takes a wxActivateEvent argument.

EVT_ACTIVATE(func) Process a wxEVT_ACTIVATE event.
EVT_ACTIVATE_APP(func) Process a wxEVT_ACTIVATE_APP event.
Remarks

A top-level window (a dialog or frame) receives an activate event when is being
activated or deactivated. This is indicated visually by the title bar changing colour, and a
subwindow gaining the keyboard focus.

An application is activated or deactivated when one of its frames becomes activated, or
a frame becomes inactivate resulting in all application frames being inactive. (Windows
only)

See also

Event handling overview (p. 1622)

wxActivateEvent::wxActivateEvent

wxActivateEvent(WXTYPE eventType = 0, bool active = TRUE, int id = 0)

Constructor.

wxActivateEvent::m_active

bool m_active

TRUE if the window or application was activated.

wxActivateEvent::GetActive

bool GetActive() const

Returns TRUE if the application or window is being activated, FALSE otherwise.

wxApp

21

CHAPTER 6

The wxApp class represents the application itself. It is used to:

set and get application-wide properties;

implement the windowing system message or event loop;

initiate application processing via wxApp::Oninit (p. 28);

allow default processing of events not handled by other objects in the
application.

You should use the macro IMPLEMENT_APP(appClass) in your application
implementation file to tell wxWindows how to create an instance of your application
class.

Use DECLARE_APP(appClass) in a header file if you want the wxGetApp function
(which returns a reference to your application object) to be visible to other files.

Derived from

wxEvtHandler (p. 445)
wxObject (p. 961)

Include files
<wx/app.h>
See also

wxApp overview (p. 1585)

WXApp::wxApp

void wxApp()

Constructor. Called implicitly with a definition of a wxApp object.

wXxApp::~WxApp

void ~wxApp()

Destructor. Will be called implicitly on program exit if the wxApp object is created on the
stack.

wxApp::argc

int argc

22

CHAPTER 6

Number of command line arguments (after environment-specific processing).

wxApp::argv

char ** argv

Command line arguments (after environment-specific processing).

wxApp::CreateLogTarget

virtual wxLog* CreateLogTarget()

Creates a wxLog class for the application to use for logging errors. The default
implementation returns a new wxLogGui class.

See also

wxLog (p. 848)

wxApp::Dispatch

void Dispatch()
Dispatches the next event in the windowing system event queue.

This can be used for programming event loops, e.g.

while (app.Pending())
Dispatch{();

See also

wxApp::Pending (p. 29)

wxApp::FilterEvent

int FilterEvent(wxEvent& event)

This function is called before processing any event and allows the application to preempt
the processing of some events. If this method returns -1 the event is processed

normally, otherwise either TRUE or FALSE should be returned and the event processing
stops immediately considering that the event had been already processed (for the former
return value) or that it is not going to be processed at all (for the latter one).

23

CHAPTER 6

wxApp::GetAppName

wxString GetAppName() const

Returns the application name.

Remarks

wxWindows sets this to a reasonable default before calling wxApp::Oninit (p. 28), but the

application can reset it at will.

wxApp::GetAuto3D

bool GetAuto3D() const
Returns TRUE if 3D control mode is on, FALSE otherwise.
See also

wxApp::SetAuto3D (p. 30)

wxApp::GetClassName

wxString GetClassName() const

Gets the class name of the application. The class name may be used in a platform
specific manner to refer to the application.

See also

wxApp::SetClassName (p. 31)

wxApp::GetExitOnFrameDelete

bool GetExitOnFrameDelete() const

Returns TRUE if the application will exit when the top-level window is deleted, FALSE
otherwise.

See also
wxApp::SetExitOnFrameDelete (p. 31),
wxApp shutdown overview (p. 1586)

wxApp::GetTopWindow

24

CHAPTER 6

virtual wxWindow * GetTopWindow() const
Returns a pointer to the top window.
Remarks

If the top window hasn't been set using wxApp::SetTopWindow (p. 31), this function will
find the first top-level window (frame or dialog) and return that.

See also

SetTopWindow (p. 31)

wxApp::GetUseBestVisual

bool GetUseBestVisual() const

Returns TRUE if the application will use the best visual on systems that support different
visuals, FALSE otherwise.

See also

SetUseBestVisual (p. 32)

wxApp::GetVendorName

wxString GetVendorName() const

Returns the application's vendor name.

wxApp::ExitMainLoop

void ExitMainLoop()

Call this to explicitly exit the main message (event) loop. You should normally exit the
main loop (and the application) by deleting the top window.

wxApp::Initialized

bool Initialized()

Returns TRUE if the application has been initialized (i.e. if wxApp::Onlinit (p. 28) has
returned successfully). This can be useful for error message routines to determine
which method of output is best for the current state of the program (some windowing
systems may not like dialogs to pop up before the main loop has been entered).

25

CHAPTER 6

wxApp::MainLoop

int MainLoop()

Called by wxWindows on creation of the application. Override this if you wish to provide
your own (environment-dependent) main loop.

Return value

Returns 0 under X, and the wParam of the WM_QUIT message under Windows.

wxApp::OnAssert

void OnAssert(const wxChar *file, int line, const wxChar *cond, const wxChar *msg)

This function is called when an assert failure occurs, i.e. the condition specified in
WXASSERT (p. 1549) macro evaluated to FALSE. It is only called in debug mode (when
__WXDEBUG___is defined) as asserts are not left in the release code at all.

The base class version show the default assert failure dialog box proposing to the user
to stop the program, continue or ignore all subsequent asserts.

Parameters

file
the name of the source file where the assert occured

line
the line number in this file where the assert occured

cond
the condition of the failed assert in string form

msg
the message specified as argument to wxASSERT_MSG (p. 1549) or

wxFAIL_MSG (p. 1550), will be NULL if just wxASSERT (p. 1549) or wxFAIL (p.
1550) was used

wxApp::OnExit

int OnEXxit()

Provide this member function for any processing which needs to be done as the
application is about to exit. OnExit is called after destroying all application windows and
controls, but before wxWindows cleanup.

26

CHAPTER 6

wxApp::OnCmdLineError

bool OnCmdLineError(wxCmdLineParser& parser)

Called when command line parsing fails (i.e. an incorrect command line option was
specified by the user). The default behaviour is to show the program usage text and
abort the program.

Return TRUE to continue normal execution or FALSE to return FALSE from Onlinit (p. 28)
thus terminating the program.

See also

OnInitCmdLine (p. 28)

wxApp::OnCmdLineHelp

bool OnCmdLineHelp(wxCmdLineParser& parser)

Called when the help option (--help) was specified on the command line. The default
behaviour is to show the program usage text and abort the program.

Return TRUE to continue normal execution or FALSE to return FALSE from Onlinit (p. 28)
thus terminating the program.

See also

OnlInitCmdLine (p. 28)

wxApp::OnCmdLineParsed

bool OnCmdLineParsed(wxCmdLineParser& parser)

Called after the command line had been successfully parsed. You may override this
method to test for the values of the various parameters which could be set from the
command line.

Don't forget to call the base class version unless you want to suppress processing of the
standard command line options.

Return TRUE to continue normal execution or FALSE to return FALSE from Onlinit (p. 28)
thus terminating the program.

See also

OnlInitCmdLine (p. 28)

27

CHAPTER 6

wxApp::OnFatalException

void OnFatalException()

This function may be called if something fatal happens: an unhandled exception under
Win32 or a a fatal signal under Unix, for example. However, this will not happen by
default: you have to explicitly call wxHandleFatalExceptions (p. 1483) to enable this.
Generally speaking, this function should only show a message to the user and return.
You may attempt to save unsaved data but this is not guaranteed to work and, in fact,
probably won't.

See also

wxHandleFatalExcetions (p. 1483)

wxApp::Onlnit

bool Onlinit()

This must be provided by the application, and will usually create the application's main
window, optionally calling wxApp::SetTopWindow (p. 31).

Notice that if you want to to use the command line processing provided by wxWindows
you have to call the base class version in the derived class Onlnit().

Return TRUE to continue processing, FALSE to exit the application.

wxApp::OninitCmdLine

void OnlnitCmdLine(wxCmdLineParser& parser)
Called from Oninit (p. 28) and may be used to initialize the parser with the command line

options for this application. The base class versions adds support for a few standard
options only.

wxApp::OnQueryEndSession

void OnQueryEndSession(wxCloseEvent& eveni)

This is an event handler function called when the operating system or GUI session is
about to close down. Typically, an application will try to save unsaved documents at this
point.

If wxCloseEvent::CanVeto (p. 135) returns TRUE, the application is allowed to veto the
shutdown by calling wxCloseEvent::Veto (p. 136). The application might veto the
shutdown after prompting for documents to be saved, and the user has cancelled the

28

CHAPTER 6

save.

Use the EVT_QUERY_END_SESSION event table macro to handle query end session
events.

You should check whether the application is forcing the deletion of the window using
wxCloseEvent::GetForce (p. 135). If this is TRUE, destroy the window using
wxWindow::Destroy (p. 1415). If not, it is up to you whether you respond by destroying
the window.

The default handler calls wxWindow::Close (p. 1412) on the top-level window, and
vetoes the shutdown if Close returns FALSE. This will be sufficient for many
applications.

Remarks

Under X, OnQueryEndSession is called in response to the 'save session' event.

Under Windows, OnQueryEndSession is called in response to the
WM_QUERYENDSESSION message.

See also

wxWindow::Close (p. 1412), wxCloseEvent (p. 134)
wxApp::ProcessMessage

bool ProcessMessage(WXMSG *msg)

Windows-only function for processing a message. This function is called from the main
message loop, checking for windows that may wish to process it. The function returns
TRUE if the message was processed, FALSE otherwise. If you use wxWindows with
another class library with its own message loop, you should make sure that this function
is called to allow wxWindows to receive messages. For example, to allow co-existence
with the Microsoft Foundation Classes, override the PreTranslateMessage function:

// Provide wxWindows message loop compatibility
BOOL CTheApp: :PreTranslateMessage (MSG *msq)
{
if (wxTheApp && wxTheApp->ProcessMessage ((WXMSW *)msqg))
return TRUE;
else
return CWinApp::PreTranslateMessage (msg) ;

wxApp::Pending

bool Pending()
Returns TRUE if unprocessed events are in the window system event queue.

See also

29

CHAPTER 6

wxApp::Dispatch (p. 23)

wxApp::SendldleEvents

bool SendldleEvents()

Sends idle events to all top-level windows.
bool SendldleEvents(wxWindow* win)
Sends idle events to a window and its children.
Remarks

These functions poll the top-level windows, and their children, for idle event processing.
If TRUE is returned, more Onldle processing is requested by one or more window.

See also

wxldleEvent (p. 734)

wxApp::SetAppName

void SetAppName(const wxString& name)

Sets the name of the application. The name may be used in dialogs (for example by the
document/view framework). A default name is set by wxWindows.

See also

wxApp::GetAppName (p. 24)

wxApp::SetAuto3D

void SetAuto3D(const bool auto3D)
Switches automatic 3D controls on or off.
Parameters
auto3D
If TRUE, all controls will be created with 3D appearances unless overridden for a

control or dialog. The default is TRUE

Remarks

30

CHAPTER 6

This has an effect on Windows only.
See also

wxApp::GetAuto3D (p. 24)

wxApp::SetClassName

void SetClassName(const wxString& name)

Sets the class name of the application. This may be used in a platform specific manner
to refer to the application.

See also

wxApp::GetClassName (p. 24)

wxApp::SetExitOnFrameDelete

void SetExitOnFrameDelete(bool flag)

Allows the programmer to specify whether the application will exit when the top-level
frame is deleted.

Parameters

flag
If TRUE (the default), the application will exit when the top-level frame is deleted. If
FALSE, the application will continue to run.

See also

wxApp::GetExitOnFrameDelete (p. 24),
wxApp shutdown overview (p. 1586)

wxApp::SetTopWindow

void SetTopWindow(wxWindow* window)

Sets the 'top' window. You can call this from within wxApp::Onlinit (p. 28) to let
wxWindows know which is the main window. You don't have to set the top window; it is
only a convenience so that (for example) certain dialogs without parents can use a
specific window as the top window. If no top window is specified by the application,
wxWindows just uses the first frame or dialog in its top-level window list, when it needs
to use the top window.

Parameters

31

CHAPTER 6

window
The new top window.

See also

wxApp::GetTopWindow (p. 24), wxApp::Oninit (p. 28)

wxApp::SetVendorName

void SetVendorName(const wxString& name)

Sets the name of application's vendor. The name will be used in registry access. A
default name is set by wxWindows.

See also

wxApp::GetVendorName (p. 25)

wxApp::SetUseBestVisual

void SetUseBestVisual(bool flag)

Allows the programmer to specify whether the application will use the best visual on
systems that support several visual on the same display. This is typically the case under
Solaris and IRIX, where the default visual is only 8-bit whereas certain applications are
supposed to run in TrueColour mode.

Note that this function has to be called in the constructor of the wxApp instance and
won't have any effect when called later on.

This function currently only has effect under GTK.
Parameters
flag

If TRUE, the app will use the best visual.

wxApp::Yield

bool Yield(bool onlylfNeeded = FALSE)

Yields control to pending messages in the windowing system. This can be useful, for
example, when a time-consuming process writes to a text window. Without an
occasional yield, the text window will not be updated properly, and on systems with
cooperative multitasking, such as Windows 3.1 other processes will not respond.

32

CHAPTER 6

Caution should be exercised, however, since yielding may allow the user to perform
actions which are not compatible with the current task. Disabling menu items or whole
menus during processing can avoid unwanted reentrance of code: see ::wxSafeYield (p.
1484) for a better function.

Note that Yield() will not flush the message logs. This is intentional as calling Yield() is
usually done to quickly update the screen and popping up a message box dialog may be
undesirable. If you do wish to flush the log messages immediately (otherwise it will be
done during the next idle loop iteration), call wxLog::FlushActive (p. 853).

Calling Yield() recursively is normally an error and an assert failure is raised in debug
build if such situation is detected. However if the the onlylfNeeded parameter is TRUE,
the method will just silently return FALSE instead.

wxArray

This section describes the so called dynamic arrays. This is a C array-like data structure
i.e. the member access time is constant (and not linear according to the number of
container elements as for linked lists). However, these arrays are dynamic in the sense
that they will automatically allocate more memory if there is not enough of it for adding a
new element. They also perform range checking on the index values but in debug mode
only, so please be sure to compile your application in debug mode to use it (see
debugging overview (p. 1614) for details). So, unlike the arrays in some other
languages, attempt to access an element beyond the arrays bound doesn't automatically
expand the array but provokes an assertion failure instead in debug build and does
nothing (except possibly crashing your program) in the release build.

The array classes were designed to be reasonably efficient, both in terms of run-time
speed and memory consumption and the executable size. The speed of array item
access is, of course, constant (independent of the number of elements) making them
much more efficient than linked lists (wxList (p. 792)). Adding items to the arrays is also
implemented in more or less constant time - but the price is preallocating the memory in
advance. In the memory management (p. 36) section you may find some useful hints
about optimizing wxArray memory usage. As for executable size, all wxArray functions
are inline, so they do not take any space at all.

wxWindows has three different kinds of array. All of them derive from wxBaseArray class
which works with untyped data and can not be used directly. The standard macros
WX_DEFINE_ARRAY(), WX_DEFINE_SORTED_ARRAY() and
WX_DEFINE_OBJARRAY() are used to define a new class deriving from it. The classes
declared will be called in this documentation wxArray, wxSortedArray and wxObjArray
but you should keep in mind that no classes with such names actually exist, each time
you use one of WX_DEFINE_XXXARRAY macro you define a class with a new name. In
fact, these names are "template" names and each usage of one of the macros
mentioned above creates a template specialization for the given element type.

wxArray is suitable for storing integer types and pointers which it does not treat as

33

CHAPTER 6

objects in any way, i.e. the element pointed to by the pointer is not deleted when the
element is removed from the array. It should be noted that all of wxArray's functions are
inline, so it costs strictly nothing to define as many array types as you want (either in
terms of the executable size or the speed) as long as at least one of them is defined and
this is always the case because wxArrays are used by wxWindows internally. This class
has one serious limitation: it can only be used for storing integral types (bool, char, short,
int, long and their unsigned variants) or pointers (of any kind). An attempt to use with
objects of sizeof() greater than sizeof(long) will provoke a runtime assertion failure,
however declaring a wxArray of floats will not (on the machines where sizeof(float) <=
sizeof(long)), yet it will not work, please use wxObjArray for storing floats and doubles
(NB: a more efficient wxArrayDouble class is scheduled for the next release of
wxWindows).

wxSortedArray is a wxArray variant which should be used when searching in the array is
a frequently used operation. It requires you to define an additional function for comparing
two elements of the array element type and always stores its items in the sorted order
(according to this function). Thus, it is Index() (p. 42) function execution time is
O(log(N)) instead of O(N) for the usual arrays but the Add() (p. 41) method is slower: it is
O(log(N)) instead of constant time (neglecting time spent in memory allocation routine).
However, in a usual situation elements are added to an array much less often than
searched inside it, so wxSortedArray may lead to huge performance improvements
compared to wxArray. Finally, it should be noticed that, as wxArray, wxSortedArray can
be only used for storing integral types or pointers.

wxObjArray class treats its elements like "objects". It may delete them when they are
removed from the array (invoking the correct destructor) and copies them using the
objects copy constructor. In order to implement this behaviour the definition of the
wxObjArray arrays is split in two parts: first, you should declare the new wxObjArray
class using WX_DECLARE_OBJARRAY () macro and then you must include the file
defining the implementation of template type: <wx/arrimpl.cpp> and define the array
class with WX_DEFINE_OBJARRAY() macro from a point where the full (as opposed to
'forward') declaration of the array elements class is in scope. As it probably sounds very
complicated here is an example:

#include <wx/dynarray.h>

// we must forward declare the array because it is used inside the class
// declaration

class MyDirectory;

class MyFile;

// this defines two new types: ArrayOfDirectories and ArrayOfFiles which
can be

// now used as shown below

WX_DECLARE_OBJARRAY (MyDirectory, ArrayOfDirectories);
WX_DECLARE_OBJARRAY (MyFile, ArrayOfFiles);

class MyDirectory
{

ArrayOfDirectories m_subdirectories; // all subdirectories
ArrayOfFiles m_files; // all files in this directory
}i

34

CHAPTER 6

// now that we have MyDirectory declaration in scope we may finish the

// definition of ArrayOfDirectories —-- note that this expands into some
C++
// code and so should only be compiled once (i.e., don't put this in the

// header, but into a source file or you will get linking errors)
#include <wx/arrimpl.cpp> // this is a magic incantation which must be
done!

WX_DEFINE_OBJARRAY (ArrayOfDirectories);

// that's all!

It is not as elegant as writing

typedef std::vector<MyDirectory> ArrayOfDirectories;

but is not that complicated and allows the code to be compiled with any, however dumb,
C++ compiler in the world.

Things are much simpler for wxArray and wxSortedArray however: it is enough just to
write

WX_DEFINE_ARRAY (MyDirectory *, ArrayOfDirectories);
WX_DEFINE_SORTED_ARRAY (MyFile *, ArrayOfFiles);

See also:
Container classes overview (p. 1607), wxList (p. 792)
Include files

<wx/dynarray.h> for wxArray and wxSortedArray and additionally <wx/arrimpl.cpp> for
wxObjArray.

Macros for template array definition

To use an array you must first define the array class. This is done with the help of the
macros in this section. The class of array elements must be (at least) forward declared
for WX_DEFINE_ARRAY, WX_DEFINE_SORTED_ARRAY and
WX_DECLARE_OBJARRAY macros and must be fully declared before you use
WX_DEFINE_OBJARRAY macro.

WX_DEFINE_ARRAY (p. 37)
WX_DEFINE_EXPORTED_ARRAY (p. 37)
WX_DEFINE_USER_EXPORTED_ARRAY (p. 37)
WX_DEFINE_SORTED_ARRAY (p. 37)
WX_DEFINE_SORTED_EXPORTED_ARRAY (p. 37)
WX_DEFINE_SORTED _USER_EXPORTED_ARRAY (p. 37)
WX_DECLARE_EXPORTED OBJARRAY (p. 38)
WX_DECLARE_USER_EXPORTED_OBJARRAY (p. 38)

35

CHAPTER 6

WX_DEFINE_OBJARRAY (p. 39)
WX_DEFINE_EXPORTED_OBJARRAY (p. 39)
WX_DEFINE_USER_EXPORTED_OBJARRAY (p. 39)

Constructors and destructors

Array classes are 100% C++ objects and as such they have the appropriate copy
constructors and assignment operators. Copying wxArray just copies the elements but
copying wxObjArray copies the arrays items. However, for memory-efficiency sake,
neither of these classes has virtual destructor. It is not very important for wxArray which
has trivial destructor anyhow, but it does mean that you should avoid deleting
wxObjArray through a wxBaseArray pointer (as you would never use wxBaseArray
anyhow it shouldn't be a problem) and that you should not derive your own classes from
the array classes.

wxArray default constructor (p. 40)

wxArray copy constructors and assignment operators (p. 40)
~wxArray (p. 40)

Memory management

Automatic array memory management is quite trivial: the array starts by preallocating
some minimal amount of memory (defined by WX_ARRAY_DEFAULT_INITIAL_SIZE)
and when further new items exhaust already allocated memory it reallocates it adding
50% of the currently allocated amount, but no more than some maximal number which is
defined by ARRAY_MAXSIZE_INCREMENT constant. Of course, this may lead to some
memory being wasted (ARRAY_MAXSIZE_INCREMENT in the worst case, i.e. 4Kb in
the current implementation), so the Shrink() (p. 44) function is provided to deallocate the
extra memory. The Alloc() (p. 41) function can also be quite useful if you know in
advance how many items you are going to put in the array and will prevent the array
code from reallocating the memory more times than needed.

Alloc (p. 41)
Shrink (p. 44)

Number of elements and simple item access

Functions in this section return the total number of array elements and allow to retrieve
them - possibly using just the C array indexing [] operator which does exactly the same
as Item() (p. 43) method.

Count (p. 41)
GetCount (p. 42)
IsEmpty (p. 43)
Item (p. 43)

Last (p. 43)

36

CHAPTER 6

Adding items

Add (p. 41)
Insert (p. 42)
WX_APPEND_ARRAY (p. 39)

Removing items

WX _CLEAR_ARRAY (p. 39)
Empty (p. 42)

Clear (p. 41)

RemoveAt (p. 44)

Remove (p. 43)

Searching and sorting

Index (p. 42)
Sort (p. 44)

WX_DEFINE_ARRAY

WX_DEFINE_ARRAY(T, name)
WX_DEFINE_EXPORTED_ARRAY(T, name)
WX_DEFINE_USER_EXPORTED_ARRAY/(T, name, exportspec)

This macro defines a new array class named name and containing the elements of type
T. The second form is used when compiling wxWindows as a DLL under Windows and
array needs to be visible outside the DLL. The third is needed for exporting an array
from a user DLL.

Example:

WX_DEFINE_ARRAY (int, wxArrayInt);

class MyClass;
WX_DEFINE_ARRAY (MyClass *, wxArrayOfMyClass);

Note that wxWindows predefines the following standard array classes: wxArrayInt,
wxArrayLong and wxArrayPtrVoid.

WX_DEFINE_SORTED_ARRAY

37

CHAPTER 6

WX_DEFINE_SORTED_ARRAY(T, name)
WX_DEFINE_SORTED_EXPORTED_ARRAY(T, name)
WX_DEFINE_SORTED_USER_EXPORTED_ARRAY(T, name)

This macro defines a new sorted array class named name and containing the elements
of type T. The second form is used when compiling wxWindows as a DLL under
Windows and array needs to be visible outside the DLL. The third is needed for
exporting an array from a user DLL.

Example:

WX_DEFINE_SORTED_ARRAY (int, wxSortedArrayInt);

class MyClass;
WX_DEFINE_SORTED_ARRAY (MyClass *, wxArrayOfMyClass);

You will have to initialize the objects of this class by passing a comparison function to
the array object constructor like this:

int ComparelInts(int nl, int n2)

{

return nl - n2;

}

wxSortedArrayInt sorted(ComparelInts);

int CompareMyClassObjects (MyClass *iteml, MyClass *item2)
{ // sort the items by their address...

return Stricmp (iteml->GetAddress (), item2->GetAddress());
}

wxArrayOfMyClass another (CompareMyClassObjects) ;

WX_DECLARE_OBJARRAY

WX_DECLARE_OBJARRAY(T, name)

WX_DECLARE_EXPORTED_OBJARRAY(T, name)
WX_DECLARE_USER_EXPORTED_OBJARRAY(T, name)

This macro declares a new object array class named name and containing the elements
of type T. The second form is used when compiling wxWindows as a DLL under
Windows and array needs to be visible outside the DLL. The third is needed for

exporting an array from a user DLL.

Example:

class MyClass;
WX_DEFINE_OBJARRAY (MyClass, wxArrayOfMyClass); // note: not "MyClass *"!

38

CHAPTER 6

You must use WX_DEFINE_OBJARRAY() (p. 39) macro to define the array class -
otherwise you would get link errors.

WX_DEFINE_OBJARRAY

WX_DEFINE_OBJARRAY (name)
WX_DEFINE_EXPORTED_OBJARRAY (name)
WX_DEFINE_USER_EXPORTED_OBJARRAY (name)

This macro defines the methods of the array class name not defined by the
WX_DECLARE_OBJARRAY() (p. 38) macro. You must include the file <wx/arrimpl.cpp>
before using this macro and you must have the full declaration of the class of array
elements in scope! If you forget to do the first, the error will be caught by the compiler,
but, unfortunately, many compilers will not give any warnings if you forget to do the
second - but the objects of the class will not be copied correctly and their real destructor
will not be called. The latter two forms are merely aliases of the first to satisfy some
people's sense of symmetry when using the exported declarations.

Example of usage:

// first declare the class!
class MyClass

{
public:
MyClass (const MyClassé&) ;

virtual ~MyClass();
bi

#include <wx/arrimpl.cpp>
WX_DEFINE_OBJARRAY (wxArrayOfMyClass) ;

WX_APPEND_ARRAY

void WX_APPEND_ARRAY(wxArray& array, wxArray& other)

This macro may be used to append all elements of the other array to the array. The two
arrays must be of the same type.

WX_CLEAR_ARRAY

void WX_CLEAR_ARRAY(wxArray& array)

This macro may be used to delete all elements of the array before emptying it. It can not
be used with wxObjArrays - but they will delete their elements anyhow when you call

Empty().

39

CHAPTER 6

Default constructors

wxArray()

wxObjArray()

Default constructor initializes an empty array object.

wxSortedArray(int (*)(T first, T second)compareFunction)

There is no default constructor for wxSortedArray classes - you must initialize it with a
function to use for item comparison. It is a function which is passed two arguments of
type T where T is the array element type and which should return a negative, zero or

positive value according to whether the first element passed to it is less than, equal to or
greater than the second one.

wxArray copy constructor and assignment operator

wxArray(const wxArray& array)

wxSortedArray(const wxSortedArray& array)

wxObjArray(const wxObjArray& array)

wxArray& operator=(const wxArray& array)

wxSortedArray& operator=(const wxSortedArray& array)

wxObjArray& operator=(const wxObjArray& array)

The copy constructors and assignment operators perform a shallow array copy (i.e. they
don't copy the objects pointed to even if the source array contains the items of pointer

type) for wxArray and wxSortedArray and a deep copy (i.e. the array element are copied
too) for wxObjArray.

wxArray::~wxArray

~WxArray()

~wxSortedArray()

~wxObijArray()

The wxObjArray destructor deletes all the items owned by the array. This is not done by

wxArray and wxSortedArray versions - you may use WX_CLEAR_ARRAY (p. 39) macro
for this.

40

CHAPTER 6

wxArray::Add

void Add(T item, size_t copies = 1)
void Add(T *item)
void Add(T &item, size_t copies = 1)

Appends the given number of copies of the item to the array consisting of the elements
of type T.

The first version is used with wxArray and wxSortedArray. The second and the third are
used with wxObjArray. There is an important difference between them: if you give a
pointer to the array, it will take ownership of it, i.e. will delete it when the item is deleted
from the array. If you give a reference to the array, however, the array will make a copy
of the item and will not take ownership of the original item. Once again, it only makes
sense for wxObjArrays because the other array types never take ownership of their
elements. Also note that you cannot append more than one pointer as reusing it would
lead to deleting it twice (or more) and hence to a crash.

You may also use WX_APPEND_ARRAY (p. 39) macro to append all elements of one

array to another one but it is more efficient to use copies parameter and modify the
elements in place later if you plan to append a lot of items.

wxArray::Alloc

void Alloc(size_t count)

Preallocates memory for a given number of array elements. It is worth calling when the
number of items which are going to be added to the array is known in advance because
it will save unneeded memory reallocation. If the array already has enough memory for
the given number of items, nothing happens.

wxArray::Clear

void Clear()

This function does the same as Empty() (p. 42) and additionally frees the memory
allocated to the array.

wxArray::Count

size_t Count() const

Same as GetCount() (p. 42). This function is deprecated - it exists only for compatibility.

41

CHAPTER 6

wxObjArray::Detach

T * Detach(size_t index)

Removes the element from the array, but, unlike, Remove() (p. 43) doesn't delete it. The
function returns the pointer to the removed element.

wxArray::Empty

void Empty()
Empties the array. For wxObjArray classes, this destroys all of the array elements. For

wxArray and wxSortedArray this does nothing except marking the array of being empty -
this function does not free the allocated memory, use Clear() (p. 41) for this.

wxArray::GetCount

size_t GetCount() const

Return the number of items in the array.

wxArray::Index

int Index(T& item, bool searchFromEnd = FALSE)
int Index(T& item)

The first version of the function is for wxArray and wxObjArray, the second is for
wxSortedArray only.

Searches the element in the array, starting from either beginning or the end depending
on the value of searchFromEnd parameter. wxNOT_FOUND is returned if the element is
not found, otherwise the index of the element is returned.

Linear search is used for the wxArray and wxObjArray classes but binary search in the
sorted array is used for wxSortedArray (this is why searchFromEnd parameter doesn't
make sense for it).

NB: even for wxObjArray classes, the operator==() of the elements in the array is not
used by this function. It searches exactly the given element in the array and so will only
succeed if this element had been previously added to the array, but fail even if another,
identical, element is in the array.

wxArray::Insert

42

CHAPTER 6

void Insert(T item, size_t n, size_t copies = 1)

void Insert(T *item, size_t n)

void Insert(T &ifem, size_t n, size_t copies = 1)

Insert the given number of copies of the item into the array before the existing item n -
thus, Insert(something, Ou) will insert an item in such way that it will become the first
array element.

Please see Add() (p. 41) for explanation of the differences between the overloaded

versions of this function.

wxArray::IsEmpty

bool IsEmpty() const

Returns TRUE if the array is empty, FALSE otherwise.

wxArray::ltem

T& Item(size_t index) const

Returns the item at the given position in the array. If index is out of bounds, an assert
failure is raised in the debug builds but nothing special is done in the release build.

The returned value is of type "reference to the array element type" for all of the array
classes.

wxArray::Last

T& Last() const

Returns the last element in the array, i.e. is the same as ltem(GetCount() - 1). An assert
failure is raised in the debug mode if the array is empty.

The returned value is of type "reference to the array element type" for all of the array
classes.

wxArray::Remove

Remove(T item)

Removes an element from the array by value: the first item of the array equal to item is
removed, an assert failure will result from an attempt to remove an item which doesn't

43

CHAPTER 6

exist in the array.

When an element is removed from wxObjArray it is deleted by the array - use Detach()

(p. 42) if you don't want this to happen. On the other hand, when an object is removed
from a wxArray nothing happens - you should delete it manually if required:

T *item = arrayl[n];

delete item;
array.Remove (n)

See also WX_CLEAR_ARRAY (p. 39) macro which deletes all elements of a wxArray
(supposed to contain pointers).

wxArray::RemoveAt

RemoveAt(size_t index, size_t count = 1)

Removes count elements starting at index from the array. When an element is removed
from wxObjArray it is deleted by the array - useDetach() (p. 42) if you don't want this to
happen. On the other hand, when an object is removed from a wxArray nothing happens

- you should delete it manually if required:

T *item = arrayl[n];
delete item;
array.RemoveAt (n)

See also WX_CLEAR_ARRAY (p. 39) macro which deletes all elements of a wxArray
(supposed to contain pointers).

wxArray::Shrink

void Shrink()
Frees all memory unused by the array. If the program knows that no new items will be

added to the array it may call Shrink() to reduce its memory usage. However, if a new
item is added to the array, some extra memory will be allocated again.

wxArray::Sort

void Sort(CMPFUNC<T> compareFunction)

The notation CMPFUNC<T> should be read as if we had the following declaration:

template int CMPFUNC(T *first, T *second);

where T is the type of the array elements. l.e. it is a function returning int which is
passed two arguments of type T *.

Sorts the array using the specified compare function: this function should return a

44

CHAPTER 6

negative, zero or positive value according to whether the first element passed to it is less
than, equal to or greater than the second one.

wxSortedArray doesn't have this function because it is always sorted.

wxArrayString

wxArrayString is an efficient container for storing wxString (p. 1222) objects. It has the
same features as all wxArray (p. 33) classes, i.e. it dynamically expands when new
items are added to it (so it is as easy to use as a linked list), but the access time to the
elements is constant, instead of being linear in number of elements as in the case of
linked lists. It is also very size efficient and doesn't take more space than a C array
wxString[] type (wxArrayString uses its knowledge of internals of wxString class to
achieve this).

This class is used in the same way as other dynamic arrays (p. 33), except that no
WX_DEFINE_ARRAY declaration is needed for it. When a string is added or inserted in
the array, a copy of the string is created, so the original string may be safely deleted
(e.g. if it was a char * pointer the memory it was using can be freed immediately after
this). In general, there is no need to worry about string memory deallocation when using
this class - it will always free the memory it uses itself.

The references returned by ltem (p. 49), Last (p. 49) or operator|] (p. 47) are not
constant, so the array elements may be modified in place like this

array.Last () .MakeUpper () ;

There is also a variant of wxArrayString called wxSortedArrayString which has exactly
the same methods as wxArrayString, but which always keeps the string in it in
(alphabetical) order. wxSortedArrayString uses binary search in its Index (p. 48) function
(instead of linear search for wxArrayString::Index) which makes it much more efficient if
you add strings to the array rarely (because, of course, you have to pay for Index()
efficiency by having Add() be slower) but search for them often. Several methods should
not be used with sorted array (basically, all which break the order of items) which is
mentioned in their description.

Final word: none of the methods of wxArrayString is virtual including its destructor, so
this class should not be used as a base class.

Derived from

Although this is not true strictly speaking, this class may be considered as a
specialization of wxArray (p. 33) class for the wxString member data: it is not
implemented like this, but it does have all of the wxArray functions.

Include files

<wx/string.h>

45

CHAPTER 6

See also

wxArray (p. 33), wxString (p. 1222), wxString overview (p. 1589)

wxArrayString::wxArrayString

wxArrayString()

wxArrayString(const wxArrayString& array)

Default and copy constructors.

Note that when an array is assigned to a sorted array, its contents is automatically
sorted during construction.

wxArrayString::~wxArrayString

~wWxArrayString()

Destructor frees memory occupied by the array strings. For the performance reasons it
is not virtual, so this class should not be derived from.

wxArrayString::operator=

wxArrayString & operator =(const wxArrayString& array)

Assignment operator.

wxArrayString::operator==

bool operator ==(const wxArrayString& array) const

Compares 2 arrays respecting the case. Returns TRUE only if the arrays have the same
number of elements and the same strings in the same order.

wxArrayString::operator!=

bool operator !=(const wxArrayString& array) const

Compares 2 arrays respecting the case. Returns TRUE if the arrays have different
number of elements or if the elements don't match pairwise.

46

CHAPTER 6

wxArrayString::operator|]

wxString& operator[](size_t nindex)

Return the array element at position nindex. An assert failure will result from an attempt
to access an element beyond the end of array in debug mode, but no check is done in
release mode.

This is the operator version of /tem (p. 49) method.

wxArrayString::Add

size_t Add(const wxString& str, size_t copies = 1)

Appends the given number of copies of the new item strto the array and returns the
index of the first new item in the array.

Warning: For sorted arrays, the index of the inserted item will not be, in general, equal
to GetCount() (p. 48) - 1 because the item is inserted at the correct position to keep the
array sorted and not appended.

See also: Insert (p. 48)

wxArrayString::Alloc

void Alloc(size_t nCount)

Preallocates enough memory to store nCount items. This function may be used to
improve array class performance before adding a known number of items consecutively.

See also: Dynamic array memory management (p. 36)

wxArrayString::Clear

void Clear()
Clears the array contents and frees memory.

See also: Empty (p. 48)

wxArrayString::Count

size_t Count() const

Returns the number of items in the array. This function is deprecated and is for

47

CHAPTER 6

backwards compatibility only, please use GetCount (p. 48) instead.

wxArrayString::Empty

void Empty()

Empties the array: after a call to this function GetCount (p. 48) will return 0. However,
this function does not free the memory used by the array and so should be used when
the array is going to be reused for storing other strings. Otherwise, you should use Clear
(p. 47) to empty the array and free memory.

wxArrayString::GetCount

size_t GetCount() const

Returns the number of items in the array.

wxArrayString::Index

int Index(const char * sz, bool bCase = TRUE, bool bFromEnd = FALSE)

Search the element in the array, starting from the beginning ifbFromEnd is FALSE or
from end otherwise. If bCase, comparison is case sensitive (default), otherwise the case
is ignored.

This function uses linear search for wxArrayString and binary search for
wxSortedArrayString, but it ignores the bCase and bFromEnd parameters in the latter
case.

Returns index of the first item matched or wxNOT_FOUND if there is no match.

wxArrayString::Insert

void Insert(const wxString& str, size_t nindex, size_t copies = 1)

Insert the given number of copies of the new element in the array before the position
nindex. Thus, for example, to insert the string in the beginning of the array you would
write

Insert ("foo", 0);
If nindex is equal to GetCount() this function behaves as Add (p. 47).

Warning: this function should not be used with sorted arrays because it could break the
order of items and, for example, subsequent calls to /Index() (p. 48) would then not work!

48

CHAPTER 6

wxArrayString::IsEmpty

IsEmpty()

Returns TRUE if the array is empty, FALSE otherwise. This function returns the same
result as GetCount() == 0 but is probably easier to read.

wxArrayString::ltem

wxString& Item(size_t nindex) const

Return the array element at position nindex. An assert failure will result from an attempt
to access an element beyond the end of array in debug mode, but no check is done in
release mode.

See also operator|] (p. 47) for the operator version.

wxArrayString::Last

Last()

Returns the last element of the array. Attempt to access the last element of an empty
array will result in assert failure in debug build, however no checks are done in release
mode.

wxArrayString::Remove

void Remove(const char * s2)

Removes the first item matching this value. An assert failure is provoked by an attempt
to remove an element which does not exist in debug build.

See also: Index (p. 48)
void Remove(size_t nindex, size_t count = 1)

Removes count items starting at position n/ndex from the array.

wxArrayString::Shrink

void Shrink()

Releases the extra memory allocated by the array. This function is useful to minimize the
array memory consumption.

49

CHAPTER 6

See also: Alloc (p. 47), Dynamic array memory management (p. 36)

wxArrayString::Sort

void Sort(bool reverseOrder = FALSE)

Sorts the array in alphabetical order or in reverse alphabetical order if reverseOrder is
TRUE. The sort is case-sensitive.

Warning: this function should not be used with sorted array because it could break the
order of items and, for example, subsequent calls to /Index() (p. 48) would then not work!

void Sort(CompareFunction compareFunction)

Sorts the array using the specified compareFunction for item
comparison.CompareFunction is defined as a function taking two const wxString&
parameters and returning an int value less than, equal to or greater than 0 if the first
string is less than, equal to or greater than the second one.

Example

The following example sorts strings by their length.

static int CompareStringLen (const wxStringé& first, const wxStringé&
second)

{
return first.length() - second.length();

}

wxArrayString array;

array.Add("one");
array.Add("two");
array.Add ("three");
array.Add ("four");

array.Sort (CompareStringLen) ;

Warning: this function should not be used with sorted array because it could break the
order of items and, for example, subsequent calls to /Index() (p. 48) would then not work!

wxArtProvider

wxArtProvider class is used to customize the look of wxWindows application. When
wxWindows need to display an icon or a bitmap (e.g. in the standard file dialog), it does
not use hard-coded resource but asks wxArtProvider for it instead. This way the users
can plug in own wxArtProvider class and easily replace standard art with his/her own

50

CHAPTER 6

version. It is easy thing to do: all that is needed is to derive a class from wxArtProvider,
override it'sCreateBitmap (p. 52) method and register the provider
withwxArtProvider::PushProvider (p. 54):

class MyProvider : public wxArtProvider
{
protected:
wxBitmap CreateBitmap (const wxArtID& id,
const wxArtClienté& client,
const wxSize size)
{ ...}
i

&%ArtProvider::PushProvider(new MyProvider) ;
There's another way of taking advantage of this class: you can use it in your code and
use platform native icons as provided bywxArtProvider::GetBitmap (p. 53) or

wxArtProvider::Getlcon (p. 53) (NB: this is not yet really possible as of wxWindows 2.3.3,
the set of wxArtProvider bitmaps is too small).

Identifying art resources

Every bitmap is known to wxArtProvider under an unique ID that is used by when
requesting a resource from it. The ID is represented by wxArtID type and can have one
of these predefined values (you can see bitmaps represented by these constants in the
artprov (p. 1577) sample):
e wWxART_ADD_BOOKMARK
wxART_DEL_BOOKMARK
wxART_HELP_SIDE_PANEL
wxART_HELP_SETTINGS
wxART_HELP_BOOK
wxART_HELP_FOLDER
wxART_HELP_PAGE
wxART_GO_BACK
wxART_GO_FORWARD
wxART_GO _UP
wxART_GO_DOWN
wWxART_GO_TO_PARENT
wxART_GO_HOME
wxART_FILE_OPEN
wxART_PRINT
wxART_HELP
wxART_TIP
wxART_REPORT_VIEW
WxART_LIST_VIEW
wxART_NEW_DIR
wxART_FOLDER
wxART_GO_DIR_UP
wxART_EXECUTABLE_FILE
wxART_NORMAL_FILE

51

CHAPTER 6

wWxART_TICK_MARK
wxART_CROSS_MARK
wxART_ERROR
wxART_QUESTION
wxART_WARNING
WxART_INFORMATION

Clients

Client is the entity that calls wxArtProvider's GetBitmap or Getlcon function. It is
represented by wxClientID type and can have one of these values:
e wxART_TOOLBAR

e wxART_MENU

e wxART_FRAME_ICON

e wxART_CMN_DIALOG

e wxART_HELP_BROWSER

e wxART_MESSAGE_BOX

e wWxART_OTHER (used for all requests that don't fit into any of the categories
above)Client ID servers as a hint to wxArtProvider that is supposed to help it to
choose the best looking bitmap. For example it is often desirable to use slightly
different icons in menus and toolbars even though they represent the same
action (e.g. wx_ART_FILE_OPEN). Remember that this is really only a hint for
wxArtProvider -- it is common thatwxArtProvider::GetBitmap (p. 53) returns
identical bitmap for different client values!

See also

See the artprov (p. 1577) sample for an example of wxArtProvider usage.
Derived from

wxObject (p. 961)

Include files

<wx/artprov.h>

wxArtProvider::CreateBitmap

wxBitmap CreateBitmap(const wxArtID& id, const wxArtClient& client, const
wxSize& size)

Derived art provider classes must override this method to create requested art resource.
Note that returned bitmaps are cached by wxArtProvider and it is therefore not
neccessary to optimize CreateBitmap for speed (e.g. you may create wxBitmap objects

52

CHAPTER 6

from XPMs here).
Parameters

id
wxArtID unique identifier of the bitmap.
client

wxArtClient identifier of the client (i.e. who is asking for the bitmap). This only
servers as a hint.

size
Prefered size of the bitmap. The function may return a bitmap of different
dimensions, it will be automatically rescaled to meet client's request.

Note

This is not part of wxArtProvider's public API, usewxArtProvider::GetBitmap (p. 53) or
wxArtProvider::Getlcon (p. 53)to query wxArtProvider for a resource.

wxArtProvider::GetBitmap

static wxBitmap GetBitmap(const wxArtID& id, const wxArtClient& client =
wxART_OTHER, const wxSize& size = wxDefaultSize)

Query registered providers for bitmap with given ID.
Parameters

id
wxArtID unique identifier of the bitmap.

client
wxArtClient identifier of the client (i.e. who is asking for the bitmap).

size
Size of the returned bitmap or wxDefaultsSize if size doesn't matter.

Return value

The bitmap if one of registered providers recognizes the 1D or wxNullBitmap otherwise.

wxArtProvider::Getlcon

static wxlcon Getlcon(const wxArtID& id, const wxArtClient& client =
wxART_OTHER, const wxSize& size = wxDefaultSize)

Same as wxArtProvider::GetBitmap (p. 53), but return a wxlcon object (or wxNulllcon on

53

CHAPTER 6

failure).

wxArtProvider::PopProvider

static bool PopProvider()

Remove latest added provider and delete it.

wxArtProvider::PushProvider

static void PushProvider(wxArtProvider* provider)

Register new art provider (add it to the top of providers stack).

wxArtProvider::RemoveProvider

static bool RemoveProvider(wxArtProvider* provider)

Remove a provider from the stack. The provider must have been added previously and
is not deleted.

wxAutomationObject

The wxAutomationObject class represents an OLE automation object containing a
single data member, an IDispatch pointer. It contains a number of functions that make it
easy to perform automation operations, and set and get properties. The class makes
heavy use of the wxVariant (p. 1391) class.

The usage of these classes is quite close to OLE automation usage in Visual Basic. The
APl is high-level, and the application can specify multiple properties in a single string.

The following example gets the current Excel instance, and if it exists, makes the active
cell bold.

wxAutomationObject excelObiject;
if (excelObject.GetInstance ("Excel.Application"))
excelObject.PutProperty ("ActiveCell.Font.Bold", TRUE);

Note that this class works under Windows only, and currently only for Visual C++.
Derived from

wxObject (p. 961)

54

CHAPTER 6

Include files
<wx/msw/ole/automtn.h>
See also

wxVariant (p. 1391)

wxAutomationObject::wxAutomationObject

wxAutomationObject(WXIDISPATCH* dispatchPtr = NULL)

Constructor, taking an optional IDispatch pointer which will be released when the object
is deleted.

wxAutomationObject::~wxAutomationObject

~wxAutomationObject()

Destructor. If the internal IDispatch pointer is non-null, it will be released.

wxAutomationObject::CallMethod

wxVariant CallMethod(const wxString& method, int noArgs, wxVariant args/]) const
wxVariant CallMethod(const wxString& method, ...) const

Calls an automation method for this object. The first form takes a method name, number
of arguments, and an array of variants. The second form takes a method name and zero
to six constant references to variants. Since the variant class has constructors for the
basic data types, and C++ provides temporary objects automatically, both of the
following lines are syntactically valid:

wxVariant res
wxVariant res

obj.CallMethod ("Sum", wxVariant (l.2), wxVariant (3.4));
obj.CallMethod("Sum", 1.2, 3.4);

Note that method can contain dot-separated property names, to save the application
needing to call GetProperty several times using several temporary objects. For example:

object.CallMethod ("ActiveCell.Font.ShowDialog", "My caption");

55

CHAPTER 6

wxAutomationObject::Createlnstance

bool Createlnstance(const wxString& classl/d) const

Creates a new object based on the class id, returning TRUE if the object was
successfully created, or FALSE if not.

wxAutomationObject::GetDispatchPtr

IDispatch* GetDispatchPtr() const

Gets the IDispatch pointer.

wxAutomationObject::Getlnstance

bool Getlnstance(const wxString& class/d) const

Retrieves the current object associated with a class id, and attaches the IDispatch
pointer to this object. Returns TRUE if a pointer was successfully retrieved, FALSE
otherwise.

Note that this cannot cope with two instances of a given OLE object being active

simultaneously, such as two copies of Excel running. Which object is referenced cannot
currently be specified.

wxAutomationObject::GetObject

bool GetObject(wxAutomationObject&obj const wxString& property, int noArgs = 0,
wxVariant args[] = NULL) const

Retrieves a property from this object, assumed to be a dispatch pointer, and initialises
obj with it. To avoid having to deal with IDispatch pointers directly, use this function in
preference to wxAutomationObject::GetProperty (p. 56) when retrieving objects from
other objects.

Note that an IDispatch pointer is stored as a void* pointer in wxVariant objects.

See also

wxAutomationObject::GetProperty (p. 56)

wxAutomationObject::GetProperty

56

CHAPTER 6

wxVariant GetProperty(const wxString& property, int noArgs, wxVariant args/])
const

wxVariant GetProperty(const wxString& property, ...) const

Gets a property value from this object. The first form takes a property name, number of
arguments, and an array of variants. The second form takes a property name and zero
to six constant references to variants. Since the variant class has constructors for the
basic data types, and C++ provides temporary objects automatically, both of the
following lines are syntactically valid:

wxVariant res
wxVariant res

obj.GetProperty ("Range", wxVariant ("Al"));
obj.GetProperty ("Range", "Al");

Note that property can contain dot-separated property names, to save the application
needing to call GetProperty several times using several temporary objects.

wxAutomationObject::Invoke

bool Invoke(const wxString& member, int action, wxVariant& retValue, int noArgs,
wxVariant args[], const wxVariant* ptrArgs|] = 0) const

This function is a low-level implementation that allows access to the IDispatch Invoke
function. It is not meant to be called directly by the application, but is used by other
convenience functions.

Parameters

member
The member function or property name.

action
Bitlist: may contain DISPATCH_PROPERTYPUT,
DISPATCH_PROPERTYPUTREF, DISPATCH_METHOD.

retValue
Return value (ignored if there is no return value)
noArgs

Number of arguments in args or ptrArgs.

args
If non-null, contains an array of variants.

ptrArgs
If non-null, contains an array of constant pointers to variants.

57

CHAPTER 6

Return value

TRUE if the operation was successful, FALSE otherwise.

Remarks

Two types of argument array are provided, so that when possible pointers are used for

efficiency.

wxAutomationObject::PutProperty

bool PutProperty(const wxString& property, int noArgs, wxVariant args/]) const
bool PutProperty(const wxString& property, ...)

Puts a property value into this object. The first form takes a property name, number of
arguments, and an array of variants. The second form takes a property name and zero
to six constant references to variants. Since the variant class has constructors for the
basic data types, and C++ provides temporary objects automatically, both of the
following lines are syntactically valid:

obj.PutProperty ("Value", wxVariant (23));
obj.PutProperty ("Value", 23);

Note that property can contain dot-separated property names, to save the application
needing to call GetProperty several times using several temporary objects.

wxAutomationObject::SetDispatchPtr

void SetDispatchPtr(WXIDISPATCH* dispatchPtr)

Sets the IDispatch pointer. This function does not check if there is already an IDispatch
pointer.

You may need to cast from IDispatch* to WXIDISPATCH* when calling this function.

wxBitmap

This class encapsulates the concept of a platform-dependent bitmap, either
monochrome or colour.

Derived from

58

CHAPTER 6

wxGDIObject (p. 569)
wxObject (p. 961)

Include file
<wx/bitmap.h>
Predefined objects
Objects:
wxNullBitmap

See also

wxBitmap overview (p. 1662),supported bitmap file formats (p. 1663),wxDC::Blit (p.
344),wxlcon (p. 724), wxCursor (p. 204), wxBitmap (p. 58),wxMemoryDC (p. 886)

wxBitmap::wxBitmap

wxBitmap()

Default constructor.

wxBitmap(const wxBitmap& bitmap)

Copy constructor.

wxBitmap(void* data, int type, int width, int height, int depth = -1)

Creates a bitmap from the given data which is interpreted in platform-dependent
manner.

wxBitmap(const char bits/], int width, int height
int depth = 1)

Creates a bitmap from an array of bits.

You should only use this function for monochrome bitmaps (depth 1) in portable
programs: in this case the bits parameter should contain an XBM image.

For other bit depths, the behaviour is platform dependent: under Windows, the data is
passed without any changes to the underlying CreateBitmap () API. Under other
platforms, only monochrome bitmaps may be created using this constructor and
wxImage (p. 736) should be used for creating colour bitmaps from static data.

wxBitmap(int width, int height, int depth = -1)

59

CHAPTER 6

Creates a new bitmap. A depth of -1 indicates the depth of the current screen or visual.
Some platforms only support 1 for monochrome and -1 for the current colour setting.

wxBitmap(const char** bits)

Creates a bitmap from XPM data.

wxBitmap(const wxString& name, long type)

Loads a bitmap from a file or resource.

wxBitmap(const wxlmage& img, int depth = -1)

Creates bitmap object from the image. This has to be done to actually display an image
as you cannot draw an image directly on a window. The resulting bitmap will use the
provided colour depth (or that of the current system if depth is -1) which entails that a
colour reduction has to take place.

When in 8-bit mode (PseudoColour mode), the GTK port will use a color cube created
on program start-up to look up colors. This ensures a very fast conversion, but the image
quality won't be perfect (and could be better for photo images using more sophisticated
dithering algorithms).

On Windows, if there is a palette present (set with SetPalette), it will be used when

creating the wxBitmap (most useful in 8-bit display mode). On other platforms, the
palette is currently ignored.

Parameters
bits
Specifies an array of pixel values.
width
Specifies the width of the bitmap.
height
Specifies the height of the bitmap.
depth
Specifies the depth of the bitmap. If this is omitted, the display depth of the screen
is used.
name

This can refer to a resource name under MS Windows, or a filename under MS
Windows and X. Its meaning is determined by the type parameter.

type
May be one of the following:

wxBITMAP_TYPE_BMP Load a Windows bitmap file.

60

CHAPTER 6

wxBITMAP_TYPE_BMP_RESOURCELoad a Windows bitmap from the resource
database.

wxBITMAP_TYPE_GIF Load a GIF bitmap file.

wxBITMAP_TYPE_XBM Load an X bitmap file.

wxBITMAP_TYPE_XPM Load an XPM bitmap file.
wxBITMAP_TYPE_RESOURCE Load a Windows resource name.

The validity of these flags depends on the platform and wxWindows configuration.
If all possible wxWindows settings are used, the Windows platform supports BMP
file, BMP resource, XPM data, and XPM. Under wxGTK, the available formats are
BMP file, XPM data, XPM file, and PNG file. Under wxMotif, the available formats
are XBM data, XBM file, XPM data, XPM file.

In addition, wxBitmap can read all formats that wxImage (p. 736) can, which
currently include wxBITMAP_TYPE_JPEG, wxBITMAP_TYPE_TIF,
wxBITMAP_TYPE_PNG, wxBITMAP_TYPE_GIF, wxBITMAP_TYPE_PCX, and
wxBITMAP_TYPE_PNM. Of course, you must have wxlmage handlers loaded.

img
Platform-independent wxImage object.

Remarks

The first form constructs a bitmap object with no data; an assignment or another
member function such as Create or LoadFile must be called subsequently.

The second and third forms provide copy constructors. Note that these do not copy the
bitmap data, but instead a pointer to the data, keeping a reference count. They are
therefore very efficient operations.

The fourth form constructs a bitmap from data whose type and value depends on the
value of the type argument.

The fifth form constructs a (usually monochrome) bitmap from an array of pixel values,
under both X and Windows.

The sixth form constructs a new bitmap.

The seventh form constructs a bitmap from pixmap (XPM) data, if wxWindows has been
configured to incorporate this feature.

To use this constructor, you must first include an XPM file. For example, assuming that
the file mybitmap . xpm contains an XPM array of character pointers called mybitmap:

#include "mybitmap.xpmn"

61

CHAPTER 6

wxBitmap *bitmap = new wxBitmap (mybitmap);

The eighth form constructs a bitmap from a file or resource. name can refer to a
resource name under MS Windows, or a filename under MS Windows and X.

Under Windows, type defaults to wxBITMAP_TYPE_BMP_RESOURCE. Under X, type
defaults to wxBITMAP_TYPE_XPM.

See also

wxBitmap::LoadFile (p. 67)

wxPython note: Constructors supported by wxPython are:

wxBitmap(name, flag) Loads a bitmap from a file

wxEmptyBitmap(width, height, depth = -1) Creates an empty bitmap
with the given specifications

wxBitmapFromXPMData(listOfStrings) Create a bitmap from a
Python list of strings whose contents are XPM
data.

wxBitmapFromBits(bits, width, height, depth=-1) Create a bitmap from
an array of bits contained in a string.

wxBitmapFromimage(image, depth=-1) Convert a wxImage to a
wxBitmap.

wxPerl note: Constructors supported by wxPerl are:

e::Bitmap->new(width, height, depth = -1)

::Bitmap->new(name, type)
::Bitmap->new(icon)
::Bitmap->newFromBits(bits, width, height, depth = 1)

::Bitmap->newFromXPM(data)

wxBitmap::~wxBitmap

~wxBitmap()

Destroys the wxBitmap object and possibly the underlying bitmap data. Because
reference counting is used, the bitmap may not actually be destroyed at this point - only

62

CHAPTER 6

when the reference count is zero will the data be deleted.

If the application omits to delete the bitmap explicitly, the bitmap will be destroyed
automatically by wxWindows when the application exits.

Do not delete a bitmap that is selected into a memory device context.

wxBitmap::AddHandler

static void AddHandler(wxBitmapHandler* handler)

Adds a handler to the end of the static list of format handlers.

handler
A new bitmap format handler object. There is usually only one instance of a given
handler class in an application session.

See also

wxBitmapHandler (p. 78)

wxBitmap::CleanUpHandlers

static void CleanUpHandlers|()
Deletes all bitmap handlers.

This function is called by wxWindows on exit.

wxBitmap::ConvertTolmage

wximage ConvertTolmage()

Creates an image from a platform-dependent bitmap. This preserves mask information
so that bitmaps and images can be converted back and forth without loss in that respect.

wxBitmap::CopyFromicon

bool CopyFromlcon(const wxlcon& icon)

Creates the bitmap from an icon.

wxBitmap::Create

virtual bool Create(int width, int height, int depth = -1)

63

CHAPTER 6

Creates a fresh bitmap. If the final argument is omitted, the display depth of the screen is
used.

virtual bool Create(void* data, int type, int width, int height, int depth = -1)
Creates a bitmap from the given data, which can be of arbitrary type.
Parameters

width
The width of the bitmap in pixels.

height
The height of the bitmap in pixels.

depth
The depth of the bitmap in pixels. If this is -1, the screen depth is used.

data
Data whose type depends on the value of type.

type
A bitmap type identifier - see wxBitmap::wxBitmap (p. 59) for a list of possible
values.

Return value

TRUE if the call succeeded, FALSE otherwise.

Remarks

The first form works on all platforms. The portability of the second form depends on the
type of data.

See also

wxBitmap::wxBitmap (p. 59)

wxBitmap::FindHandler

static wxBitmapHandler* FindHandler(const wxString& name)

Finds the handler with the given name.

static wxBitmapHandler* FindHandler(const wxString& extension, long bitmapType)
Finds the handler associated with the given extension and type.

static wxBitmapHandler* FindHandler(long bitmapType)

64

CHAPTER 6

Finds the handler associated with the given bitmap type.

name
The handler name.

extension
The file extension, such as "omp".

bitmapType
The bitmap type, such as wxBITMAP_TYPE_BMP.

Return value
A pointer to the handler if found, NULL otherwise.
See also

wxBitmapHandler (p. 78)

wxBitmap::GetDepth

int GetDepth() const

Gets the colour depth of the bitmap. A value of 1 indicates a monochrome bitmap.

wxBitmap::GetHandlers

static wxList& GetHandlers()
Returns the static list of bitmap format handlers.
See also

wxBitmapHandler (p. 78)

wxBitmap::GetHeight

int GetHeight() const

Gets the height of the bitmap in pixels.

wxBitmap::GetPalette

wxPalette* GetPalette() const

65

CHAPTER 6

Gets the associated palette (if any) which may have been loaded from a file or set for the
bitmap.

See also

wxPalette (p. 976)

wxBitmap::GetMask

wxMask* GetMask() const

Gets the associated mask (if any) which may have been loaded from a file or set for the
bitmap.

See also

wxBitmap::SetMask (p. 70), wxMask (p. 866)

wxBitmap::GetWidth

int GetWidth() const
Gets the width of the bitmap in pixels.
See also

wxBitmap::GetHeight (p. 65)

wxBitmap::GetSubBitmap

wxBitmap GetSubBitmap(const wxRect&rect) const

Returns a sub bitmap of the current one as long as the rect belongs entirely to the
bitmap. This function preserves bit depth and mask information.

wxBitmap::InitStandardHandlers

static void InitStandardHandlers()

Adds the standard bitmap format handlers, which, depending on wxWindows
configuration, can be handlers for Windows bitmap, Windows bitmap resource, and
XPM.

This function is called by wxWindows on startup.

See also

66

CHAPTER 6

wxBitmapHandler (p. 78)

wxBitmap::InsertHandler

static void InsertHandler(wxBitmapHandler* handler)

Adds a handler at the start of the static list of format handlers.

handler
A new bitmap format handler object. There is usually only one instance of a given
handler class in an application session.

See also

wxBitmapHandler (p. 78)

wxBitmap::LoadFile

bool LoadFile(const wxString& name, long type)
Loads a bitmap from a file or resource.
Parameters

name

Either a filename or a Windows resource name. The meaning of name is
determined by the type parameter.

type
One of the following values:

wxBITMAP_TYPE_BMP Load a Windows bitmap file.

wxBITMAP_TYPE_BMP_RESOURCE Load a Windows bitmap from the
resource database.

wxBITMAP_TYPE_GIF Load a GIF bitmap file.

wxBITMAP_TYPE_XBM Load an X bitmap file.

wxBITMAP_TYPE_XPM Load an XPM bitmap file.

The validity of these flags depends on the platform and wxWindows configuration.
In addition, wxBitmap can read all formats that wx/mage (p. 736) can

(WwxBITMAP_TYPE_JPEG, wxBITMAP_TYPE_PNG, wxBITMAP_TYPE_GIF,
wxBITMAP_TYPE_PCX, wxBITMAP_TYPE_PNM). (Of course you must have

67

CHAPTER 6

wxImage handlers loaded.)
Return value
TRUE if the operation succeeded, FALSE otherwise.
Remarks
A palette may be associated with the bitmap if one exists (especially for colour Windows
bitmaps), and if the code supports it. You can check if one has been created by using
the GetPalette (p. 65) member.

See also

wxBitmap::SaveFile (p. 68)

wxBitmap::Ok

bool Ok() const

Returns TRUE if bitmap data is present.

wxBitmap::RemoveHandler

static bool RemoveHandler(const wxString& name)
Finds the handler with the given name, and removes it. The handler is not deleted.

name
The handler name.

Return value
TRUE if the handler was found and removed, FALSE otherwise.
See also

wxBitmapHandler (p. 78)

wxBitmap::SaveFile

bool SaveFile(const wxString& name, int type, wxPalette* palette = NULL)
Saves a bitmap in the named file.

Parameters

68

CHAPTER 6

name
A filename. The meaning of name is determined by the type parameter.

type
One of the following values:
wxBITMAP_TYPE_BMP Save a Windows bitmap file.
wxBITMAP_TYPE_GIF Save a GIF bitmap file.
wxBITMAP_TYPE_XBM Save an X bitmap file.
wxBITMAP_TYPE_XPM Save an XPM bitmap file.
The validity of these flags depends on the platform and wxWindows configuration.
In addition, wxBitmap can save all formats that wx/image (p. 736) can
(WxBITMAP_TYPE_JPEG, wxBITMAP_TYPE_PNG). (Of course you must have
wxlmage handlers loaded.)

palette

An optional palette used for saving the bitmap.
Return value

TRUE if the operation succeeded, FALSE otherwise.

Remarks

Depending on how wxWindows has been configured, not all formats may be available.
See also

wxBitmap::LoadFile (p. 67)

wxBitmap::SetDepth

void SetDepth(int depth)
Sets the depth member (does not affect the bitmap data).
Parameters
depth
Bitmap depth.

wxBitmap::SetHeight

void SetHeight(int height)

69

CHAPTER 6

Sets the height member (does not affect the bitmap data).
Parameters
height

Bitmap height in pixels.

wxBitmap::SetMask

void SetMask(wxMask* mask)
Sets the mask for this bitmap.

Remarks

The bitmap object owns the mask once this has been called.

See also

wxBitmap::GetMask (p. 66), wxMask (p. 866)

wxBitmap::SetPalette

void SetPalette(const wxPalette& palette)
Sets the associated palette.
Parameters

palette
The palette to set.

See also

wxPalette (p. 976)

wxBitmap::SetWidth

void SetWidth(int width)
Sets the width member (does not affect the bitmap data).
Parameters

width
Bitmap width in pixels.

70

CHAPTER 6

wxBitmap::operator =

wxBitmap& operator =(const wxBitmap& bitmap)

Assignment operator. This operator does not copy any data, but instead passes a
pointer to the data in bitmap and increments a reference counter. It is a fast operation.

Parameters

bitmap
Bitmap to assign.

Return value

Returns 'this' object.

wxBitmap::operator ==

bool operator ==(const wxBitmap& bitmap)

Equality operator. This operator tests whether the internal data pointers are equal (a fast
test).

Parameters

bitmap
Bitmap to compare with 'this'

Return value

Returns TRUE if the bitmaps were effectively equal, FALSE otherwise.

wxBitmap::operator !=

bool operator !=(const wxBitmap& bitmap)

Inequality operator. This operator tests whether the internal data pointers are unequal (a
fast test).

Parameters

bitmap
Bitmap to compare with 'this'

Return value

71

CHAPTER 6

Returns TRUE if the bitmaps were unequal, FALSE otherwise.

wxBitmapButton

A bitmap button is a control that contains a bitmap. It may be placed on a dialog box (p.
369) or panel (p. 980), or indeed almost any other window.

Derived from

wxButton (p. 94)
wxControl (p. 198)
wxWindow (p. 1407)
wxEvtHandler (p. 445)
wxObject (p. 961)

Include files

<wx/bmpbuttn.h>

Remarks

A bitmap button can be supplied with a single bitmap, and wxWindows will draw all

button states using this bitmap. If the application needs more control, additional bitmaps

for the selected state, unpressed focused state, and greyed-out state may be supplied.

Window styles

wxBU_AUTODRAW If this is specified, the button will be drawn automatically
using the label bitmap only, providing a 3D-look border. If

this style is not specified, the button will be drawn without
borders and using all provided bitmaps. WIN32 only.

wxBU_LEFT Left-justifies the bitmap label. WIN32 only.

wxBU_TOP Aligns the bitmap label to the top of the button. WIN32
only.

wxBU_RIGHT Right-justifies the bitmap label. WIN32 only.

wxBU_BOTTOM Aligns the bitmap label to the bottom of the button. WIN32
only.

See also window styles overview (p. 1629).
Event handling
EVT_BUTTON(id, func) Process a

wxEVT_COMMAND_BUTTON_CLICKED
event, when the button is clicked.

72

CHAPTER 6

See also

wxButton (p. 94)

wxBitmapButton::wxBitmapButton

wxBitmapButton()

Default constructor.

wxBitmapButton(wxWindow* parent, wxWindowlID id, const wxBitmap& bitmap,
const wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long
style = wxBU_AUTODRAW, const wxValidator& validator = wxDefaultValidator, const
wxString& name = "button”)

Constructor, creating and showing a button.

Parameters

parent
Parent window. Must not be NULL.

id
Button identifier. A value of -1 indicates a default value.

bitmap
Bitmap to be displayed.

pos
Button position.

size
Button size. If the default size (-1, -1) is specified then the button is sized
appropriately for the bitmap.

style
Window style. See wxBitmapButton (p. 72).

validator
Window validator.

name
Window name.

Remarks

The bitmap parameter is normally the only bitmap you need to provide, and wxWindows

73

CHAPTER 6

will draw the button correctly in its different states. If you want more control, call any of
the functions wxBitmapButton::SetBitmapSelected (p. 76),
wxBitmapButton::SetBitmapFocus (p. 76), wxBitmapButton::SetBitmapDisabled (p. 75).
Note that the bitmap passed is smaller than the actual button created.

See also

wxBitmapButton::Create (p. 74), wxValidator (p. 1389)

wxBitmapButton::~wxBitmapButton

~wxBitmapButton()

Destructor, destroying the button.

wxBitmapButton::Create

bool Create(wxWindow* parent, wxWindowlID id, const wxBitmap& bitmap, const
wxPoint& pos, const wxSize& size = wxDefaultSize, long style = 0, const
wxValidator& validator, const wxString& name = "button")

Button creation function for two-step creation. For more details, see
wxBitmapButton::wxBitmapButton (p. 73).

wxBitmapButton::GetBitmapDisabled

wxBitmap& GetBitmapDisabled() const
Returns the bitmap for the disabled state.
Return value

A reference to the disabled state bitmap.
See also

wxBitmapButton::SetBitmapDisabled (p. 75)

wxBitmapButton::GetBitmapFocus

wxBitmap& GetBitmapFocus() const
Returns the bitmap for the focused state.

Return value

74

CHAPTER 6

A reference to the focused state bitmap.
See also

wxBitmapButton::SetBitmapFocus (p. 76)

wxBitmapButton::GetBitmapLabel

wxBitmap& GetBitmapLabel() const

Returns the label bitmap (the one passed to the constructor).
Return value

A reference to the button's label bitmap.

See also

wxBitmapButton::SetBitmapLabel (p. 76)

wxBitmapButton::GetBitmapSelected

wxBitmap& GetBitmapSelected() const
Returns the bitmap for the selected state.
Return value

A reference to the selected state bitmap.
See also

wxBitmapButton::SetBitmapSelected (p. 76)

wxBitmapButton::SetBitmapDisabled

void SetBitmapDisabled(const wxBitmap& bitmap)
Sets the bitmap for the disabled button appearance.
Parameters

bitmap
The bitmap to set.

See also

75

CHAPTER 6

wxBitmapButton::GetBitmapDisabled (p. 74), wxBitmapButton::SetBitmapLabel (p. 76),
wxBitmapButton::SetBitmapSelected (p. 76), wxBitmapButton::SetBitmapFocus (p. 76)

wxBitmapButton::SetBitmapFocus

void SetBitmapFocus(const wxBitmap& bitmap)
Sets the bitmap for the button appearance when it has the keyboard focus.
Parameters

bitmap
The bitmap to set.

See also
wxBitmapButton::GetBitmapFocus (p. 74), wxBitmapButton::SetBitmapLabel (p. 76),

wxBitmapButton::SetBitmapSelected (p. 76), wxBitmapButton::SetBitmapDisabled (p.
75)

wxBitmapButton::SetBitmapLabel

void SetBitmapLabel(const wxBitmap& bitmap)
Sets the bitmap label for the button.
Parameters

bitmap
The bitmap label to set.

Remarks

This is the bitmap used for the unselected state, and for all other states if no other
bitmaps are provided.

See also

wxBitmapButton::GetBitmapLabel (p. 75)

wxBitmapButton::SetBitmapSelected

void SetBitmapSelected(const wxBitmap& bitmap)

Sets the bitmap for the selected (depressed) button appearance.

76

CHAPTER 6

Parameters

bitmap
The bitmap to set.

See also

wxBitmapButton::GetBitmapSelected (p. 75), wxBitmapButton::SetBitmapLabel (p. 76),
wxBitmapButton::SetBitmapFocus (p. 76), wxBitmapButton::SetBitmapDisabled (p. 75)

wxBitmapDataObiject

wxBitmapDataObject is a specialization of wxDataObject for bitmap data. It can be used
without change to paste data into the wxClipboard (p. 130) or a wxDropSource (p. 430).
A user may wish to derive a new class from this class for providing a bitmap on-demand
in order to minimize memory consumption when offering data in several formats, such as
a bitmap and GIF.

wxPython note: If you wish to create a derived wxBitmapDataObiject class in wxPython
you should derive the class from wxPyBitmapDataObject in order to get Python-aware
capabilities for the various virtual methods.

Virtual functions to override

This class may be used as is, but GetBitmap (p. 78) may be overridden to increase
efficiency.

Derived from

wxDataObjectSimple (p. 226)
wxDataObject (p. 222)

Include files

<wx/dataobj.h>

See also

Clipboard and drag and drop overview (p. 1691), wxDataObject (p. 222),
wxDataObjectSimple (p. 226), wxFileDataObject (p. 477), wxTextDataObject (p. 1288),
wxDataObject (p. 222)

wxBitmapDataObject(const wxBitmap& bitmap = wxNullBitmap)

Constructor, optionally passing a bitmap (otherwise use SetBitmap (p. 78) later).

77

CHAPTER 6

wxBitmapDataObiject::GetBitmap

virtual wxBitmap GetBitmap() const
Returns the bitmap associated with the data object. You may wish to override this

method when offering data on-demand, but this is not required by wxWindows' internals.
Use this method to get data in bitmap form from the wxClipboard (p. 130).

wxBitmapDataObiject::SetBitmap

virtual void SetBitmap(const wxBitmap& bitmap)

Sets the bitmap associated with the data object. This method is called when the data
object receives data. Usually there will be no reason to override this function.

wxBitmapHandler

Overview (p. 1662)

This is the base class for implementing bitmap file loading/saving, and bitmap creation
from data. It is used within wxBitmap and is not normally seen by the application.

If you wish to extend the capabilities of wxBitmap, derive a class from wxBitmapHandler
and add the handler using wxBitmap::AddHandler (p. 63) in your application initialisation.

Derived from
wxObject (p. 961)
Include files
<wx/bitmap.h>
See also

wxBitmap (p. 58), wxlcon (p. 724), wxCursor (p. 204)

wxBitmapHandler::wxBitmapHandler

wxBitmapHandiler()

Default constructor. In your own default constructor, initialise the members m_name,
m_extension and m_type.

78

CHAPTER 6

wxBitmapHandler::~wxBitmapHandler

~wxBitmapHandiler()

Destroys the wxBitmapHandler object.

wxBitmapHandler::Create

virtual bool Create(wxBitmap* bitmap, void* data, int type, int width, int height, int
depth = -1)

Creates a bitmap from the given data, which can be of arbitrary type. The wxBitmap
object bitmap is manipulated by this function.

Parameters

bitmap
The wxBitmap object.

width
The width of the bitmap in pixels.

height
The height of the bitmap in pixels.

depth
The depth of the bitmap in pixels. If this is -1, the screen depth is used.

data
Data whose type depends on the value of type.

type
A bitmap type identifier - see wxBitmapHandler::wxBitmapHandler (p. 59) for a list
of possible values.

Return value

TRUE if the call succeeded, FALSE otherwise (the default).

wxBitmapHandler::GetName

wxString GetName() const

Gets the name of this handler.

79

CHAPTER 6

wxBitmapHandler::GetExtension

wxString GetExtension() const

Gets the file extension associated with this handler.

wxBitmapHandler::GetType

long GetType() const

Gets the bitmap type associated with this handler.

wxBitmapHandler::LoadFile

bool LoadFile(wxBitmap* bitmap, const wxString& name, long type)
Loads a bitmap from a file or resource, putting the resulting data into bitmap.
Parameters

bitmap
The bitmap object which is to be affected by this operation.

name

Either a filename or a Windows resource name. The meaning of name is
determined by the type parameter.

type
See wxBitmap::wxBitmap (p. 59) for values this can take.

Return value

TRUE if the operation succeeded, FALSE otherwise.
See also

wxBitmap::LoadFile (p. 67)

wxBitmap::SaveFile (p. 68)
wxBitmapHandler::SaveFile (p. 80)

wxBitmapHandler::SaveFile

bool SaveFile(wxBitmap* bitmap, const wxString& name, int type, wxPalette* palette
= NULL)

Saves a bitmap in the named file.

80

CHAPTER 6

Parameters

bitmap
The bitmap object which is to be affected by this operation.

name
A filename. The meaning of name is determined by the type parameter.

type
See wxBitmap::wxBitmap (p. 59) for values this can take.

palette
An optional palette used for saving the bitmap.

Return value

TRUE if the operation succeeded, FALSE otherwise.
See also

wxBitmap::LoadFile (p. 67)

wxBitmap::SaveFile (p. 68)
wxBitmapHandler::LoadFile (p. 80)

wxBitmapHandler::SetName

void SetName(const wxString& name)
Sets the handler name.

Parameters

name

Handler name.

wxBitmapHandler::SetExtension

void SetExtension(const wxString& extension)
Sets the handler extension.

Parameters

extension

Handler extension.

wxBitmapHandler::SetType

81

CHAPTER 6

void SetType(long type)
Sets the handler type.
Parameters

name
Handler type.

wxBoxSizer

The basic idea behind a box sizer is that windows will most often be laid out in rather
simple basic geometry, typically in a row or a column or several hierarchies of either.

For more information, please see Programming with wxBoxSizer (p. 1642).
Derived from

wxSizer (p. 1134)
wxObject (p. 961)

See also

wxSizer (p. 1134), Sizer overview (p. 1638)

wxBoxSizer::wxBoxSizer

wxBoxSizer(int orient)

Constructor for a wxBoxSizer. orient may be either of wx\VERTICAL or wxHORIZONTAL
for creating either a column sizer or a row sizer.

wxBoxSizer::RecalcSizes

void RecalcSizes()
Implements the calculation of a box sizer's dimensions and then sets the size of its its

children (calling wxWindow::SetSize (p. 1446) if the child is a window). It is used
internally only and must not be called by the user. Documented for information.

wxBoxSizer::CalcMin

wxSize CalcMin()

82

CHAPTER 6

Implements the calculation of a box sizer's minimal. It is used internally only and must
not be called by the user. Documented for information.

wxBoxSizer::GetOrientation

int GetOrientation()

Returns the orientation of the box sizer, either wxVERTICAL or wxHORIZONTAL.

wxBrush

A brush is a drawing tool for filling in areas. It is used for painting the background of
rectangles, ellipses, etc. It has a colour and a style.

Derived from

wxGDIObject (p. 569)
wxObject (p. 961)

Include files
<wx/brush.h>
Predefined objects
Objects:
wxNullBrush
Pointers:

wxBLUE_BRUSH
wxGREEN_BRUSH
wxWHITE_BRUSH
wxBLACK_BRUSH
wxGREY_BRUSH
wxMEDIUM_GREY_BRUSH
wxLIGHT_GREY_BRUSH
wxTRANSPARENT_BRUSH
wxCYAN_BRUSH
wxRED_BRUSH

Remarks

On a monochrome display, wxWindows shows all brushes as white unless the colour is

83

CHAPTER 6

really black.

Do not initialize objects on the stack before the program commences, since other
required structures may not have been set up yet. Instead, define global pointers to
objects and create them in wxApp::Onlnit (p. 28) or when required.

An application may wish to create brushes with different characteristics dynamically, and
there is the consequent danger that a large number of duplicate brushes will be created.
Therefore an application may wish to get a pointer to a brush by using the global list of
brushes wxTheBrushList, and calling the member function FindOrCreateBrush.

wxBrush uses a reference counting system, so assignments between brushes are very
cheap. You can therefore use actual wxBrush objects instead of pointers without
efficiency problems. Once one wxBrush object changes its data it will create its own
brush data internally so that other brushes, which previously shared the data using the
reference counting, are not affected.

See also

wxBrushList (p. 89), wxDC (p. 343), wxDC::SetBrush (p. 360)

wxBrush::wxBrush

wxBrush()

Default constructor. The brush will be uninitialised, and wxBrush::Ok (p. 86) will return
FALSE.

wxBrush(const wxColour& colour, int style)

Constructs a brush from a colour object and style.

wxBrush(const wxString& colourName, int style)

Constructs a brush from a colour name and style.

wxBrush(const wxBitmap& stippleBitmap)

Constructs a stippled brush using a bitmap.

wxBrush(const wxBrush& brush)

Copy constructor. This uses reference counting so is a cheap operation.
Parameters

colour
Colour object.

84

CHAPTER 6

colourName
Colour name. The name will be looked up in the colour database.

style
One of:
WXTRANSPARENT Transparent (no fill).
wxSOLID Solid.
wxBDIAGONAL_HATCH Backward diagonal hatch.
wxCROSSDIAG_HATCH Cross-diagonal hatch.
wxFDIAGONAL_HATCH Forward diagonal hatch.
wxCROSS HATCH Cross hatch.
wxHORIZONTAL_HATCH Horizontal hatch.
wxVERTICAL_HATCH Vertical hatch.

brush

Pointer or reference to a brush to copy.

stippleBitmap
A bitmap to use for stippling.

Remarks
If a stipple brush is created, the brush style will be set to wxSTIPPLE.
See also

wxBrushList (p. 89), wxColour (p. 145), wxColourDatabase (p. 151)

wxBrush::~wxBrush

void ~wxBrush()
Destructor.
Remarks

The destructor may not delete the underlying brush object of the native windowing
system, since wxBrush uses a reference counting system for efficiency.

Although all remaining brushes are deleted when the application exits, the application
should try to clean up all brushes itself. This is because wxWindows cannot know if a
pointer to the brush object is stored in an application data structure, and there is a risk of
double deletion.

wxBrush::GetColour

85

CHAPTER 6

wxColour& GetColour() const
Returns a reference to the brush colour.
See also

wxBrush::SetColour (p. 87)

wxBrush::GetStipple

wxBitmap * GetStipple() const

Gets a pointer to the stipple bitmap. If the brush does not have a wxSTIPPLE style, this
bitmap may be non-NULL but uninitialised (wxBitmap::Ok (p. 68) returns FALSE).

See also

wxBrush::SetStipple (p. 87)

wxBrush::GetStyle

int GetStyle() const

Returns the brush style, one of:

WXTRANSPARENT Transparent (no fill).
wxSOLID Solid.
wxBDIAGONAL_HATCH Backward diagonal hatch.
wxCROSSDIAG_HATCH Cross-diagonal hatch.
wxFDIAGONAL_HATCH Forward diagonal hatch.
wxCROSS HATCH Cross hatch.
wxHORIZONTAL_HATCH Horizontal hatch.
wxVERTICAL_HATCH Vertical hatch.
wxSTIPPLE Stippled using a bitmap.
wxSTIPPLE_MASK_OPAQUE Stippled using a bitmap's mask.
See also

wxBrush::SetStyle (p. 88), wxBrush::SetColour (p. 87), wxBrush::SetStipple (p. 87)

wxBrush::0k

bool Ok() const

Returns TRUE if the brush is initialised. It will return FALSE if the default constructor has

86

CHAPTER 6

been used (for example, the brush is a member of a class, or NULL has been assigned
to it).

wxBrush::SetColour

void SetColour(wxColour& colour)

Sets the brush colour using a reference to a colour object.

void SetColour(const wxString& colourName)

Sets the brush colour using a colour name from the colour database.

void SetColour(const unsigned char red, const unsigned char green, const
unsigned char blue)

Sets the brush colour using red, green and blue values.
See also

wxBrush::GetColour (p. 85)

wxBrush::SetStipple

void SetStipple(const wxBitmap& bitmap)
Sets the stipple bitmap.
Parameters

bitmap
The bitmap to use for stippling.

Remarks

The style will be set to wxSTIPPLE, unless the bitmap has a mask associated to it, in
which case the style will be set to wxSTIPPLE_MASK_OPAQUE.

If the wxSTIPPLE variant is used, the bitmap will be used to fill out the area to be drawn.
If the wxSTIPPLE_MASK_OPAQUE is used, the current text foreground and text
background determine what colours are used for displaying and the bits in the mask
(which is a mono-bitmap actually) determine where to draw what.

Note that under Windows 95, only 8x8 pixel large stipple bitmaps are supported,
Windows 98 and NT as well as GTK support arbitrary bitmaps.

See also

87

CHAPTER 6

wxBitmap (p. 58)

wxBrush::SetStyle

void SetStyle(int style)

Sets the brush style.

style
One of:
WXTRANSPARENT Transparent (no fill).
wxSOLID Solid.
wxBDIAGONAL_HATCH Backward diagonal hatch.
wxCROSSDIAG_HATCH Cross-diagonal hatch.
wxFDIAGONAL_HATCH Forward diagonal hatch.
wxCROSS_HATCH Cross hatch.
wxHORIZONTAL_HATCH Horizontal hatch.
wxVERTICAL_HATCH Vertical hatch.
wxSTIPPLE Stippled using a bitmap.
wxSTIPPLE_MASK_OPAQUE Stippled using a bitmap's mask.

See also

wxBrush::GetStyle (p. 86)

wxBrush::operator =

wxBrush& operator =(const wxBrush& brush)

Assignment operator, using reference counting. Returns a reference to 'this'.

wxBrush::operator ==

bool operator ==(const wxBrush& brush)
Equality operator. Two brushes are equal if they contain pointers to the same underlying

brush data. It does not compare each attribute, so two independently-created brushes
using the same parameters will fail the test.

wxBrush::operator !=

bool operator !=(const wxBrush& brush)

Inequality operator. Two brushes are not equal if they contain pointers to different

88

CHAPTER 6

underlying brush data. It does not compare each attribute.

wxBrushList

A brush list is a list containing all brushes which have been created.
Derived from

wxList (p. 792)
wxObject (p. 961)

Include files
<wx/gdicmn.h>
Remarks

There is only one instance of this class: wxTheBrushList. Use this object to search for
a previously created brush of the desired type and create it if not already found. In some
windowing systems, the brush may be a scarce resource, so it can pay to reuse old
resources if possible. When an application finishes, all brushes will be deleted and their
resources freed, eliminating the possibility of ‘'memory leaks'. However, it is best not to
rely on this automatic cleanup because it can lead to double deletion in some
circumstances.

There are two mechanisms in recent versions of wxWindows which make the brush list
less useful than it once was. Under Windows, scarce resources are cleaned up internally
if they are not being used. Also, a referencing counting mechanism applied to all GDI
objects means that some sharing of underlying resources is possible. You don't have to
keep track of pointers, working out when it is safe delete a brush, because the
referencing counting does it for you. For example, you can set a brush in a device
context, and then immediately delete the brush you passed, because the brush is
'copied'.

So you may find it easier to ignore the brush list, and instead create and copy brushes
as you see fit. If your Windows resource meter suggests your application is using too
many resources, you can resort to using GDI lists to share objects explicitly.

The only compelling use for the brush list is for wxWindows to keep track of brushes in
order to clean them up on exit. It is also kept for backward compatibility with earlier
versions of wxWindows.

See also

wxBrush (p. 83)

89

CHAPTER 6

wxBrushList::wxBrushList

void wxBrushList()

Constructor. The application should not construct its own brush list: use the object
pointer wxTheBrushlList.

wxBrushList::AddBrush

void AddBrush(wxBrush *brush)

Used internally by wxWindows to add a brush to the list.

wxBrushList::FindOrCreateBrush

wxBrush * FindOrCreateBrush(const wxColour& colour, int style)

Finds a brush with the specified attributes and returns it, else creates a new brush, adds
it to the brush list, and returns it.

wxBrush * FindOrCreateBrush(const wxString& colourName, int style)

Finds a brush with the specified attributes and returns it, else creates a new brush, adds
it to the brush list, and returns it.

Finds a brush of the given specification, or creates one and adds it to the list.
Parameters

colour
Colour object.

colourName
Colour name, which should be in the colour database.

style
Brush style. See wxBrush::SetStyle (p. 88) for a list of styles.

wxBrushList::RemoveBrush

void RemoveBrush(wxBrush *brush)

Used by wxWindows to remove a brush from the list.

90

CHAPTER 6

wxBufferedinputStream

This stream acts as a cache. It caches the bytes read from the specified input stream
(See wxFilterinputStream (p. 514)). It uses wxStreamBuffer and sets the default in-buffer
size to 1024 bytes. This class may not be used without some other stream to read the
data from (such as a file stream or a memory stream).

Derived from

wxFilterInputStream (p. 514)

Include files

<wx/stream.h>

See also

wxStreamBuffer (p. 1215), wxInputStream (p. 768),wxBufferedOutputStream (p. 91)

wxBufferedOutputStream

This stream acts as a cache. It caches the bytes to be written to the specified output
stream (See wxFilterOutputStream (p. 515)). The data is only written when the cache is
full, when the buffered stream is destroyed or when calling SeekO().

This class may not be used without some other stream to write the data to (such as a file
stream or a memory stream).

Derived from
wxFilterOutputStream (p. 515)
Include files

<wx/stream.h>

See also

wxStreamBuffer (p. 1215), wxOutputStream (p. 965)

wxBufferedOutputStream::wxBufferedOutputStream

91

CHAPTER 6

wxBufferedOutputStream(const wxOutputStream& parent)

Creates a buffered stream using a buffer of a default size of 1024 bytes for cashing the
stream parent.

wxBufferedOutputStream::~wxBufferedOutputStream

~wxBufferedOutputStream()

Destructor. Calls Sync() and destroys the internal buffer.

wxBufferedOutputStream::SeekO

off_t SeekO(off_t pos, wxSeekMode mode)

Calls Sync() and changes the stream position.

wxBufferedOutputStream::Sync

void Sync()

Flushes the buffer and calls Sync() on the parent stream.

wxBusyCursor

This class makes it easy to tell your user that the program is temporarily busy. Just
create a wxBusyCursor object on the stack, and within the current scope, the hourglass
will be shown.

For example:

wxBusyCursor wait;

for (int 1 = 0; 1 < 100000; i++)
DoACalculation () ;

It works by calling wxBeginBusyCursor (p. 1503) in the constructor, and
wxEndBusyCursor (p. 1505) in the destructor.

Derived from
None

Include files

92

CHAPTER 6

<wx/utils.h>

See also

wxBeginBusyCursor (p. 1503), wxEndBusyCursor (p. 1505), wxWindowDisabler (p.
1454)

wxBusyCursor::wxBusyCursor

wxBusyCursor(wxCursor* cursor = wxHOURGLASS_CURSOR)

Constructs a busy cursor object, calling wxBeginBusyCursor (p. 1503).

wxBusyCursor::~wxBusyCursor

~wxBusyCursor()

Destroys the busy cursor object, calling wxEndBusyCursor (p. 1505).

wxBusylnfo

This class makes it easy to tell your user that the program is temporarily busy. Just
create a wxBusylInfo object on the stack, and within the current scope, a message
window will be shown.

For example:

wxBusyInfo wait ("Please wait, working...");

for (int 1 = 0; 1 < 100000; i++)
{

}

DoACalculation () ;

It works by creating a window in the constructor, and deleting it in the destructor.

You may also want to call wxTheApp->Yield() to refresh the window periodically (in case
it had been obscured by other windows, for example) like this:

wxWindowDisabler disableAll;
wxBusyInfo wait ("Please wait, working...");
for (int i = 0; i < 100000; i++)

{
DoACalculation () ;

93

CHAPTER 6

if (!'(1i % 1000))
wxTheApp->Yield() ;
}

but take care to not cause undesirable reentrancies when doing it (see wxApp::Yield()
(p. 32) for more details). The simplest way to do it is to use wxWindowDisabler (p. 1454)
class as illustrated in the above example.

Derived from

None

Include files

<wx/busyinfo.h>

wxBusyinfo::wxBusylnfo

wxBusylnfo(const wxString& msg, wxParent “parent = NULL)
Constructs a busy info window as child of parent and displays msgin it.
NB: If parentis not NULL you must ensure that it is not closed while the busy info is

shown.

wxBusyinfo::~wxBusylnfo

~wxBusylnfo()

Hides and closes the window containing the information text.

wxButton

A button is a control that contains a text string, and is one of the commonest elements of

a GUI. It may be placed on a dialog box (p. 369) or panel (p. 980), or indeed almost any
other window.

Derived from

wxControl (p. 198)
wxWindow (p. 1407)
wxEvtHandler (p. 445)
wxObject (p. 961)

94

CHAPTER 6

Include files
<wx/button.h>

Window styles

wxBU_LEFT Left-justifies the label. WIN32 only.

wxBU_TOP Aligns the label to the top of the button. WIN32 only.
wxBU_RIGHT Right-justifies the bitmap label. WIN32 only.
wxBU_BOTTOM Aligns the label to the bottom of the button. WIN32 only.
wxBU_EXACTFIT Creates the button as small as possible instead of making

it of the standard size (which is the default behaviour).

See also window styles overview (p. 1629).

Event handling

EVT_BUTTON(id, func) Process a
wxEVT_COMMAND_BUTTON_CLICKED
event, when the button is clicked.

See also

wxBitmapButton (p. 72)

wxButton::wxButton

wxButton()

Default constructor.

wxButton(wxWindow* parent, wxWindowlID id, const wxString& /abel, const
wxPoint& pos, const wxSize& size = wxDefaultSize, long style = 0, const
wxValidator& validator, const wxString& name = "button")

Constructor, creating and showing a button.

Parameters

parent
Parent window. Must not be NULL.

id
Button identifier. A value of -1 indicates a default value.

95

CHAPTER 6

label
Text to be displayed on the button.

pos
Button position.

size
Button size. If the default size (-1, -1) is specified then the button is sized
appropriately for the text.

style
Window style. See wxButton (p. 94).

validator
Window validator.

name
Window name.

See also

wxButton::Create (p. 96), wxValidator (p. 1389)

wxButton::~wxButton

~wxButton()

Destructor, destroying the button.

wxButton::Create

bool Create(wxWindow* parent, wxWindowlID id, const wxString& /abel, const
wxPoint& pos, const wxSize& size = wxDefaultSize, long style = 0, const
wxValidator& validator, const wxString& name = "button")

Button creation function for two-step creation. For more details, see wxButton::wxButton
(p- 95).

wxButton::GetLabel

wxString GetLabel() const
Returns the string label for the button.
Return value

The button's label.

96

CHAPTER 6

See also

wxButton::SetLabel (p. 97)

wxButton::GetDefaultSize

wxSize GetDefaultSize()
Returns the default size for the buttons. It is advised to make all the dialog buttons of the

same size and this function allows to retrieve the (platform and current font dependent
size) which should be the best suited for this.

wxButton::SetDefault

void SetDefault()

This sets the button to be the default item for the panel or dialog box.

Remarks

Under Windows, only dialog box buttons respond to this function. As normal under
Windows and Motif, pressing return causes the default button to be depressed when the
return key is pressed. See also wxWindow::SetFocus (p. 1442) which sets the keyboard
focus for windows and text panel items, and wxPanel::SetDefaultitem (p. 983).

Note that under Motif, calling this function immediately after creation of a button and
before the creation of other buttons will cause misalignment of the row of buttons, since
default buttons are larger. To get around this, call SetDefault after you have created a
row of buttons: wxWindows will then set the size of all buttons currently on the panel to
the same size.

wxButton::SetLabel

void SetLabel(const wxString& /abel)
Sets the string label for the button.
Parameters

label
The label to set.

See also

wxButton::GetLabel (p. 96)

97

CHAPTER 6

wxCalculateLayoutEvent

This event is sent by wxLayoutAlgorithm (p. 787) to calculate the amount of the
remaining client area that the window should occupy.

Derived from

wxEvent (p. 441)
wxObject (p. 961)

Include files

<wx/laywin.h>

Event table macros

EVT_CALCULATE_LAYOUT(func) Process a wxEVT _CALCULATE_LAYOUT
event, which asks the window to take a 'bite’
out of a rectangle provided by the algorithm.

See also

wxQueryLayoutinfoEvent (p. 1047), wxSashLayoutWindow (p. 1090),
wxLayoutAlgorithm (p. 787).

wxCalculateLayoutEvent::wxCalculateLayoutEvent

wxCalculateLayoutEvent(wxWindowlID id = 0)

Constructor.

wxCalculateLayoutEvent::GetFlags

int GetFlags() const

Returns the flags associated with this event. Not currently used.

wxCalculateLayoutEvent::GetRect

wxRect GetRect() const

Before the event handler is entered, returns the remaining parent client area that the

98

CHAPTER 6

window could occupy. When the event handler returns, this should contain the remaining
parent client rectangle, after the event handler has subtracted the area that its window
occupies.

wxCalculateLayoutEvent::SetFlags

void SetFlags(int flags)

Sets the flags associated with this event. Not currently used.

wxCalculateLayoutEvent::SetRect

void SetRect(const wxRect& rect)

Call this to specify the new remaining parent client area, after the space occupied by the
window has been subtracted.

wxCalendarCtrl

The calendar control allows the user to pick a date interactively. For this, it displays a
window containing several parts: the control to pick the month and the year at the top
(either or both of them may be disabled) and a month area below them which shows all
the days in the month. The user can move the current selection using the keyboard and
select the date (generating EVT_CALENDAR event) by pressing <Return> or double
clicking it.

It has advanced possibilities for the customization of its display. All global settings (such
as colours and fonts used) can, of course, be changed. But also, the display style for
each day in the month can be set independently using wxCalendarDateAttr (p. 105)
class.

An item without custom attributes is drawn with the default colours and font and without
border, but setting custom attributes with SetAttr (p. 104) allows to modify its
appearance. Just create a custom attribute object and set it for the day you want to be
displayed specially (note that the control will take ownership of the pointer, i.e. it will
delete it itself). A day may be marked as being a holiday, even if it is not recognized as
one by wxDateTime (p. 1598) using SetHoliday (p. 107) method.

As the attributes are specified for each day, they may change when the month is
changed, so you will often want to update them in EVT_CALENDAR_MONTH event
handler.

Derived from

wxControl (p. 198)

99

CHAPTER 6

wxWindow (p. 1407)

wxEvtHandler (p. 445)

wxObject (p. 961)

Include files

<wx/calctrl.h>

Window styles

wxCAL_SUNDAY_FIRST Show Sunday as the first day in the week
wxCAL_MONDAY_FIRST Show Monday as the first day in the week
wxCAL_SHOW_HOLIDAYS Highlight holidays in the calendar
wxCAL_NO_YEAR_CHANGE Disable the year changing

wxCAL_NO_MONTH_CHANGE Disable the month (and, implicitly, the year)
changing

wxCAL_SHOW_SURROUNDING_WEEKS Show the neighbouring weeks in the
previous and next months

wxCAL_SEQUENTIAL_MONTH_SELECTION Use alternative, more compact, style
for the month and year selection controls.

The default calendar style is wxCAI_SHOW_HOLIDAYS.

Event table macros

To process input from a calendar control, use these event handler macros to direct input
to member functions that take a wxCalendarEvent (p. 108) argument.

EVT_CALENDAR(id, func) A day was double clicked in the calendar.
EVT_CALENDAR_SEL_CHANGED(id, func) The selected date changed.
EVT_CALENDAR_DAY(id, func) The selected day changed.
EVT_CALENDAR_MONTH(id, func) The selected month changed.
EVT_CALENDAR_YEAR(id, func) The selected year changed.
EVT_CALENDAR_WEEKDAY_CLICKED(id, func) User clicked on the week day

header

Note that changing the selected date will result in either of EVT_CALENDAR_DAY, MONTH
or YEAR events and EVT_CALENDAR_SEL_CHANGED one.

100

CHAPTER 6

Constants

The following are the possible return values for HitTest (p. 105) method:

enum wxCalendarHitTestResult

{

wxCAL_HITTEST_ NOWHERE, // outside of anything
wxCAL_HITTEST_HEADER, // on the header (weekdays)
wxCAL_HITTEST_DAY // on a day in the calendar
}
See also

Calendar sample (p. 1577)
wxCalendarDateAttr (p. 105)
wxCalendarEvent (p. 108)

wxCalendarCitrl::wxCalendarCtrl

wxCalendarCitrl()

Default constructor, use Create (p. 101) after it.

wxCalendarCitrl::wxCalendarCtrl

wxCalendarCtrl(wxWindow* parent, wxWindowlID id, const wxDateTime& date =
wxDefaultDate Time, const wxPoint& pos = wxDefaultPosition, const wxSize& size =
wxDefaultSize, long style = wxCAL_SHOW_HOLIDAYS, const wxString& name =
wxCalendarNameStr)

Does the same as Create (p. 101) method.

wxCalendarCitrl::Create

bool Create(wxWindow* parent, wxWindowID id, const wxDateTime& date =
wxDefaultDate Time, const wxPoint& pos = wxDefaultPosition, const wxSize& size =
wxDefaultSize, long style = wxCAL_SHOW_HOLIDAYS, const wxString& name =
wxCalendarNameStr)

Creates the control. See wxWindow (p. 1408) for the meaning of the parameters and the
control overview for the possible styles.

101

CHAPTER 6

wxCalendarCtrl::~wxCalendarCtrl

~wxCalendarCtrl()

Destroys the control.

wxCalendarCtrl::SetDate

void SetDate(const wxDateTime& date)

Sets the current date.

wxCalendarCtrl::GetDate

const wxDateTime& GetDate() const

Gets the currently selected date.

wxCalendarCtrl::EnableYearChange

void EnableYearChange(bool enable = TRUE)

This function should be used instead of changing wxCAL_NO_YEAR_ CHANGEstyle bit
directly. It allows or disallows the user to change the year interactively.

wxCalendarCtrl::EnableMonthChange

void EnableMonthChange(bool enable = TRUE)
This function should be used instead of changing wxCAT_NO_MONTH_CHANGE style bit.

It allows or disallows the user to change the month interactively. Note that if the month
can not be changed, the year can not be changed neither.

wxCalendarCtrl::EnableHolidayDisplay

void EnableHolidayDisplay(bool display = TRUE)

This function should be used instead of changing wxCAL_SHOW_HOLIDAYSstyle bit
directly. It enables or disables the special highlighting of the holidays.

wxCalendarCirl::SetHeaderColours

void SetHeaderColours(const wxColour& colFg, const wxColour& colBg)

102

CHAPTER 6

Set the colours used for painting the weekdays at the top of the control.

wxCalendarCtrl::GetHeaderColourFg

const wxColour& GetHeaderColourFg() const
Gets the foreground colour of the header part of the calendar window.
See also

SetHeaderColours (p. 102)

wxCalendarCtrl::GetHeaderColourBg

const wxColour& GetHeaderColourBg() const
Gets the background colour of the header part of the calendar window.
See also

SetHeaderColours (p. 102)

wxCalendarCitrl::SetHighlightColours

void SetHighlightColours(const wxColour& colFg, const wxColour& colBg)

Set the colours to be used for highlighting the currently selected date.

wxCalendarCtrl::GetHighlightColourFg

const wxColour& GetHighlightColourFg() const
Gets the foreground highlight colour.
See also

SetHighlightColours (p. 103)

wxCalendarCtrl::GetHighlightColourBg

const wxColour& GetHighlightColourBg() const

Gets the background highlight colour.

103

CHAPTER 6

See also

SetHighlightColours (p. 103)

wxCalendarCtrl::SetHolidayColours

void SetHolidayColours(const wxColour& colfg, const wxColour& colBg)

Sets the colours to be used for the holidays highlighting (only used if the window style
includes wxCAL_SHOW_HOLIDAYS flag).

wxCalendarCtrl::GetHolidayColourFg

const wxColour& GetHolidayColourFg() const

Return the foreground colour currently used for holiday highlighting.

See also

SetHolidayColours (p. 104)

wxCalendarCtrl::GetHolidayColourBg

const wxColour& GetHolidayColourBg() const

Return the background colour currently used for holiday highlighting.

See also

SetHolidayColours (p. 104)

wxCalendarCtrl::GetAttr

wxCalendarDateAttr * GetAttr(size_t day) const
Returns the attribute for the given date (should be in the range 1...31).

The returned pointer may be NULL.

wxCalendarCtrl::SetAttr

void SetAttr(size_t day, wxCalendarDateAttr* attr)

Associates the attribute with the specified date (in the range 1...31).

104

CHAPTER 6

If the pointer is NULL, the items attribute is cleared.

wxCalendarCtrl::SetHoliday

void SetHoliday(size_t day)

Marks the specified day as being a holiday in the current month.

wxCalendarCtrl::ResetAttr

void ResetAttr(size_t day)

Clears any attributes associated with the given day (in the range1...31).

wxCalendarCtrl::HitTest

wxCalendarHitTestResult HitTest(const wxPoint& pos, wxDateTime* date = NULL,
wxDateTime::WeekDay* wd = NULL)

Returns one of wxCAIL_HITTEST_XXX constants (p. 99) and fills either date or wd
pointer with the corresponding value depending on the hit test code.

wxCalendarDateAttr

wxCalendarDateAttr is a custom attributes for a calendar date. The objects of this class
are used with wxCalendarCtrl (p. 99).

Derived from
No base class
Constants

Here are the possible kinds of borders which may be used to decorate a date:

enum wxCalendarDateBorder

{

wxCAL_BORDER_NONE, // no border (default)
wxCAL_BORDER_SQUARE, // a rectangular border
wxCAL_BORDER_ROUND // a round border

}

See also

wxCalendarCtrl (p. 99)

105

CHAPTER 6

wxCalendarDateAttr::wxCalendarDateAttr

wxCalendarDateAttr()

wxCalendarDateAttr(const wxColour& colText, const wxColour& colBack =
wxNullColour, const wxColour& colBorder = wxNullColour, const wxFont& font =
wxNullFont, wxCalendarDateBorder border = wxCAL_BORDER NONE)

wxCalendarDateAttr(wxCalendarDateBorder border, const wxColour& colBorder =
wxNullColour)

The constructors.

wxCalendarDateAttr::SetTextColour

void SetTextColour(const wxColour& col/Text)

Sets the text (foreground) colour to use.

wxCalendarDateAttr::SetBackgroundColour

void SetBackgroundColour(const wxColour& colBack)

Sets the text background colour to use.

wxCalendarDateAttr::SetBorderColour

void SetBorderColour(const wxColour& col)

Sets the border colour to use.

wxCalendarDateAttr::SetFont

void SetFont(const wxFont& font)

Sets the font to use.

wxCalendarDateAttr::SetBorder

void SetBorder(wxCalendarDateBorder border)

106

CHAPTER 6

Sets the border kind (p. 105)

wxCalendarDateAttr::SetHoliday

void SetHoliday(bool holiday)

Display the date with this attribute as a holiday.

wxCalendarDateAttr::HasTextColour

bool HasTextColour() const

Returns TRUE if this item has a non default text foreground colour.

wxCalendarDateAttr::HasBackgroundColour

bool HasBackgroundColour() const

Returns TRUE if this attribute specifies a non default text background colour.

wxCalendarDateAttr::HasBorderColour

bool HasBorderColour() const

Returns TRUE if this attribute specifies a non default border colour.

wxCalendarDateAttr::HasFont

bool HasFont() const

Returns TRUE if this attribute specifies a non default font.

wxCalendarDateAttr::HasBorder

bool HasBorder() const

Returns TRUE if this attribute specifies a non default (i.e. any) border.

wxCalendarDateAttr::IsHoliday

bool IsHoliday() const

107

CHAPTER 6

Returns TRUE if this attribute specifies that this item should be displayed as a holiday.

wxCalendarDateAttr::GetTextColour

const wxColour& GetTextColour() const

Returns the text colour to use for the item with this attribute.

wxCalendarDateAttr::GetBackgroundColour

const wxColour& GetBackgroundColour() const

Returns the background colour to use for the item with this attribute.

wxCalendarDateAttr::GetBorderColour

const wxColour& GetBorderColour() const

Returns the border colour to use for the item with this attribute.

wxCalendarDateAttr::GetFont

const wxFont& GetFont() const

Returns the font to use for the item with this attribute.

wxCalendarDateAttr::GetBorder

wxCalendarDateBorder GetBorder() const

Returns the border (p. 105) to use for the item with this attribute.

wxCalendarEvent

The wxCalendarEvent class is used together with wxCalendarCtrl (p. 99).
See also

wxCalendarCitrl (p. 99)

108

CHAPTER 6

wxCalendarEvent::GetDate

wxcalendareventgetdate
const wxDateTime& GetDate() const
Returns the date. This function may be called for all event types except

EVT_CALENDAR_WEEKDAY CLICKED one for which it doesn't make sense.

wxCalendarEvent::GetWeekDay

wxcalendareventgetweekday
wxDateTime::WeekDay GetWeekDay() const

Returns the week day on which the user clicked in EVT_CALENDAR_WEEKDAY_CLICKED
handler. It doesn't make sense to call this function in other handlers.

wxCaret

A caret is a blinking cursor showing the position where the typed text will appear. The
text controls usually have a caret but wxCaret class also allows to use a caret in other
windows.

Currently, the caret appears as a rectangle of the given size. In the future, it will be
possible to specify a bitmap to be used for the caret shape.

A caret is always associated with a window and the current caret can be retrieved using
wxWindow::GetCaret (p. 1419). The same caret can't be reused in two different
windows.

Derived from

No base class

Include files

<wx/caret.h>

Data structures

109

CHAPTER 6

wxCaret::wxCaret

wxCaret()

Default constructor: you must use one of Create() functions later.
wxCaret(wxWindow* window, int width, int height)

wxCaret(wxWindowBase* window, const wxSize& size)

Create the caret of given (in pixels) width and height and associates it with the given

window.

wxCaret::Create

bool Create(wxWindowBase* window, int width, int height)
bool Create(wxWindowBase* window, const wxSize& size)
Create the caret of given (in pixels) width and height and associates it with the given

window (same as constructor).

wxCaret::GetBlinkTime

static int GetBlinkTime()
Returns the blink time which is measured in milliseconds and is the time elapsed

between 2 inversions of the caret (blink time of the caret is the same for all carets, so
this functions is static).

wxCaret::GetPosition

void GetPosition(int* x, int* y) const

wxPoint GetPosition() const

Get the caret position (in pixels).

wxPerl note: In wxPerl there are two methods instead of a single overloaded method:
GetPosition() Returns a Wx::Point

GetPositionXY() Returns a 2-element list (x, vy)

110

CHAPTER 6

wxCaret::GetSize

void GetSize(int* width, int* height) const
wxSize GetSize() const
Get the caret size.

wxPerl note: In wxPerl there are two methods instead of a single overloaded method:

GetSize() Returns a Wx::Size
GetSizeWH() Returns a 2-element list (width,
height)

wxCaret::GetWindow

wxWindow* GetWindow() const

Get the window the caret is associated with.

wxCaret::Hide

void Hide()

Same as wxCaret::Show(FALSE) (p. 112).

wxCaret::IsOk

bool IsOk() const

Returns TRUE if the caret was created successfully.

wxCaret::IsVisible

bool IsVisible() const
Returns TRUE if the caret is visible and FALSE if it is permanently hidden (if it is is

blinking and not shown currently but will be after the next blink, this method still returns
TRUE).

wxCaret::Move

void Move(int x, int y)

111

CHAPTER 6

void Move(const wxPoint& pi)

Move the caret to given position (in logical coordinates).

wxCaret::SetBlinkTime

static void SetBlinkTime(int milliseconds)
Sets the blink time for all the carets.
Remarks

Under Windows, this function will change the blink time for all carets permanently (until
the next time it is called), even for the carets in other applications.

See also

GetBlinkTime (p. 110)

wxCaret::SetSize

void SetSize(int width, int height)
void SetSize(const wxSize& size)

Changes the size of the caret.

wxCaret::Show

void Show(bool show = TRUE)

Shows or hides the caret. Notice that if the caret was hidden N times, it must be shown
N times as well to reappear on the screen.

wxCheckBox

A checkbox is a labelled box which is either on (checkmark is visible) or off (no
checkmark).

Derived from

wxControl (p. 198)
wxWindow (p. 1407)

112

CHAPTER 6

wxEvtHandler (p. 445)
wxObject (p. 961)

Include files

<wx/checkbox.h>

Window styles

There are no special styles for wxCheckBox.

See also window styles overview (p. 1629).

Event handling

EVT_CHECKBOX(id, func) Process a
wxEVT_COMMAND_CHECKBOX_CLICKED
event, when the checkbox is clicked.

See also

wxRadioButton (p. 1056), wxCommandEvent (p. 164)

wxCheckBox::wxCheckBox

wxCheckBox()

Default constructor.

wxCheckBox(wxWindow* parent, wxWindowlID id, const wxString& /abel, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
0, const wxValidator& val, const wxString& name = "checkBox")

Constructor, creating and showing a checkbox.

Parameters

parent
Parent window. Must not be NULL.

id
Checkbox identifier. A value of -1 indicates a default value.

label
Text to be displayed next to the checkbox.

pos

113

CHAPTER 6

Checkbox position. If the position (-1, -1) is specified then a default position is
chosen.

size
Checkbox size. If the default size (-1, -1) is specified then a default size is chosen.

style
Window style. See wxCheckBox (p. 112).

validator
Window validator.

name
Window name.

See also

wxCheckBox::Create (p. 114), wxValidator (p. 1389)

wxCheckBox::~wxCheckBox

~wxCheckBox()

Destructor, destroying the checkbox.

wxCheckBox::Create

bool Create(wxWindow* parent, wxWindowlID id, const wxString& /abel, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
0, const wxValidator& val, const wxString& name = "checkBox")

Creates the checkbox for two-step construction. See wxCheckBox::wxCheckBox (p.
113) for details.

wxCheckBox::GetValue

bool GetValue() const
Gets the state of the checkbox.
Return value

Returns TRUE if it is checked, FALSE otherwise.

wxCheckBox::IsChecked

114

CHAPTER 6

bool IsChecked() const

This is just a maybe more readable synonym for GetValue (p. 114): just as the latter, it
returns TRUE if the checkbox is checked and FALSE otherwise.

wxCheckBox::SetValue

void SetValue(const bool state)

Sets the checkbox to the given state. This does not cause a
wxEVT_COMMAND_CHECKBOX_CLICKED event to get emitted.

Parameters

state
If TRUE, the check is on, otherwise it is off.

wxCheckListBox

A checklistbox is like a listbox, but allows items to be checked or unchecked.

This class is currently implemented under Windows and GTK. When using this class
under Windows wxWindows must be compiled with USE_OWNER_DRAWN set to 1.

Only the new functions for this class are documented; see also wxListBox (p. 799).
Derived from
wxListBox (p. 799)
wxControl (p. 198)
wxWindow (p. 1407)
wxEvtHandler (p. 445)
wxObject (p. 961)
Include files
<wx/checklst.h>
Window styles

See wxListBox (p. 799).
Event handling

EVT_CHECKLISTBOX(id, func) Process a
wxEVT_COMMAND_CHECKLISTBOX_TOGG

115

CHAPTER 6

LE event, when an item in the check list box is
checked or unchecked.

See also

wxListBox (p. 799), wxChoice (p. 117), wxComboBox (p. 154), wxListCtrl (p. 808),
wxCommandEvent (p. 164)

wxCheckListBox::wxCheckListBox

wxCheckListBox()

Default constructor.

wxCheckListBox(wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, int n, const wxString
choices[] = NULL, long style = 0, const wxValidator& validator = wxDefaultValidator,
const wxString& name = "listBox")

Constructor, creating and showing a list box.

Parameters

parent
Parent window. Must not be NULL.

id
Window identifier. A value of -1 indicates a default value.
pos
Window position.
size
Window size. If the default size (-1, -1) is specified then the window is sized
appropriately.
n
Number of strings with which to initialise the control.
choices
An array of strings with which to initialise the control.
style
Window style. See wxCheckListBox (p. 115).
validator

Window validator.

116

CHAPTER 6

name
Window name.

wxPython note: The wxCheckListBox constructor in wxPython reduces the nand
choices arguments are to a single argument, which is a list of strings.

wxPerl note: In wxPerl there is just an array reference in place of nand choices.

wxCheckListBox::~wxCheckListBox

void ~wxCheckListBox()

Destructor, destroying the list box.

wxCheckListBox::Check

void Check(int item, bool check = TRUE)

Checks the given item. Note that calling this method doesn't result in
wxEVT_COMMAND_CHECKLISTBOX_TOGGLE being emitted.

Parameters

item
Index of item to check.

check
TRUE if the item is to be checked, FALSE otherwise.

wxCheckListBox::IsChecked

bool IsChecked(int item) const
Returns TRUE if the given item is checked, FALSE otherwise.
Parameters

item
Index of item whose check status is to be returned.

wxChoice

A choice item is used to select one of a list of strings. Unlike a listbox, only the selection

117

CHAPTER 6

is visible until the user pulls down the menu of choices.

Derived from

wxControl (p. 198)

wxWindow (p. 1407)

wxEvtHandler (p. 445)

wxObject (p. 961)

Include files

<wx/choice.h>

Window styles

There are no special styles for wxChoice.

See also window styles overview (p. 1629).

Event handling

EVT_CHOICE(id, func) Process a
wxEVT_COMMAND_CHOICE_SELECTED
event, when an item on the list is selected.

See also

wxListBox (p. 799), wxComboBox (p. 154), wxCommandEvent (p. 164)

wxChoice::wxChoice

wxChoice()

Default constructor.

wxChoice(wxWindow *parent, wxWindowlID id, const wxPoint& pos, const wxSize&
size, int n, const wxString choices/], long style = 0, const wxValidator& validator =
wxDefaultValidator, const wxString& name = "choice")

Constructor, creating and showing a choice.

Parameters

parent
Parent window. Must not be NULL.

id

118

CHAPTER 6

Window identifier. A value of -1 indicates a default value.

pos
Window position.

size
Window size. If the default size (-1, -1) is specified then the choice is sized
appropriately.
Number of strings with which to initialise the choice control.

choices
An array of strings with which to initialise the choice control.

style
Window style. See wxChoice (p. 117).

validator
Window validator.

name
Window name.

See also
wxChoice::Create (p. 120), wxValidator (p. 1389)

wxPython note: The wxChoice constructor in wxPython reduces the nand choices
arguments are to a single argument, which is a list of strings.

wxPerl note: In wxPerl there is just an array reference in place of nand choices.

wxChoice::~wxChoice

~wxChoice()

Destructor, destroying the choice item.

wxChoice::Append

void Append(const wxString& item)
Adds the item to the end of the choice control.
void Append(const wxString& item, void* clientData)

Adds the item to the end of the combobox, associating the given data with the item.

119

CHAPTER 6

Parameters

item
String to add.

clientData
Client data to associate with the item.

wxChoice::Clear

void Clear()

Clears the strings from the choice item.

wxChoice::Create

bool Create(wxWindow *parent, wxWindowlID id, const wxPoint& pos, const
wxSize& size, int n, const wxString choices[], long style = 0, const wxString& name
= "choice")

Creates the choice for two-step construction. See wxChoice::wxChoice (p. 118).

wxChoice::Delete

void Delete(int n)

Deletes the item with the given index from the control.
Parameters

n

The item to delete.

wxChoice::FindString

int FindString(const wxString& string) const
Finds a choice matching the given string.
Parameters

string
String to find.

Return value

120

CHAPTER 6

Returns the position if found, or -1 if not found.

wxChoice::GetColumns

int GetColumns() const
Gets the number of columns in this choice item.
Remarks

This is implemented for Motif only.

wxChoice::GetClientData

void* GetClientData(int n) const

Returns a pointer to the client data associated with the given item (if any).

Parameters

n
An item, starting from zero.

Return value

A pointer to the client data, or NULL if the item was not found.

wxChoice::GetCount

int GetCount() const

Returns the number of items in the choice.

wxChoice::GetSelection

int GetSelection() const

Gets the id (position) of the selected string, or -1 if there is no selection.

wxChoice::GetString

wxString GetString(int n) const

Returns the string at the given position.

121

CHAPTER 6

Parameters

n
The zero-based position.

Return value

The string at the given position, or the empty string if nis invalid.

wxChoice::GetStringSelection

wxString GetStringSelection() const

Gets the selected string, or the empty string if no string is selected.

wxChoice::Number

int Number() const
Obsolescence note: This method is obsolete and was replaced with GetCount (p. 121),
please use the new method in the new code. This method is only available if wxWindows

was compiled with WXWIN_COMPATIBILITY_2_2 defined and will disappear completely
in future versions.

Returns the number of strings in the choice control.

wxChoice::SetClientData

void SetClientData(int n, void* data)
Associates the given client data pointer with the given item.
Parameters

n
The zero-based item.

data
The client data.

wxChoice::SetColumns

void SetColumns(int n = 1)

Sets the number of columns in this choice item.

122

CHAPTER 6

Parameters

n
Number of columns.

Remarks

This is implemented for Motif only.

wxChoice::SetSelection

void SetSelection(int n)

Sets the choice by passing the desired string position. This does not cause a
wxEVT_COMMAND_CHOICE_SELECTED event to get emitted.

Parameters

n
The string position to select, starting from zero.

See also

wxChoice::SetString

void SetString(int n, const wxString& texi)
Replaces the specified string in the control with another one.
Parameters

n
The zero-based index of the string to replace

text
The new value for this item

NB: This method is currently not implemented in wxGTK.

wxChoice::SetStringSelection (p. 123)

wxChoice::SetStringSelection

void SetStringSelection(const wxString& string)

Sets the choice by passing the desired string. This does not cause a

123

CHAPTER 6

wxEVT_COMMAND_CHOICE_SELECTED event to get emitted.

Parameters

string
The string to select.

See also

wxChoice::SetSelection (p. 123)

wxClassinfo

This class stores meta-information about classes. Instances of this class are not
generally defined directly by an application, but indirectly through use of macros such as
DECLARE_DYNAMIC CLASS and IMPLEMENT _DYNAMIC_ CLASS.

Derived from

No parent class.

Include files

<wx/object.h>

See also

Overview (p. 1588), wxObject (p. 961)

wxClassiInfo::wxClassiInfo

wxClassinfo(char* className, char* baseClass1, char* baseClass2, int size,
wxObjectConstructorFn fn)

Constructs a wxClassInfo object. The supplied macros implicitly construct objects of this
class, so there is no need to create such objects explicitly in an application.

wxClassinfo::CreateObject

wxObject* CreateObiject|()

Creates an object of the appropriate kind. Returns NULL if the class has not been
declared dynamically creatable (typically, it is an abstract class).

124

CHAPTER 6

wxClassiInfo::FindClass

static wxClassinfo * FindClass(char* name)

Finds the wxClassInfo object for a class of the given string name.

wxClassinfo::GetBaseClassName1i

char* GetBaseClassName1() const

Returns the name of the first base class (NULL if none).

wxClassinfo::GetBaseClassName2

char* GetBaseClassName2() const

Returns the name of the second base class (NULL if none).

wxClassinfo::GetClassName

char * GetClassName() const

Returns the string form of the class name.

wxClassinfo::GetSize

int GetSize() const

Returns the size of the class.

wxClassiInfo::InitializeClasses

static void InitializeClasses|()

Initializes pointers in the wxClassInfo objects for fast execution of IsKindOf. Called in

base wxWindows library initialization.

wxClassinfo::IsKindOf

bool IsKindOf(wxClassInfo* info)

125

CHAPTER 6

Returns TRUE if this class is a kind of (inherits from) the given class.

wxClient

A wxClient object represents the client part of a client-server DDE-like (Dynamic Data
Exchange) conversation. The actual DDE-based implementation using wxDDEClient is
available on Windows only, but a platform-independent, socket-based version of this API
is available using wxTCPClient, which has the same API.

To create a client which can communicate with a suitable server, you need to derive a
class from wxConnection and another from wxClient. The custom wxConnection class
will intercept communications in a 'conversation' with a server, and the custom wxClient
is required so that a user-overriddenwxClient::OnMakeConnection (p. 127) member can
return a wxConnection of the required class, when a connection is made. Look at the
IPC sample and the Interprocess communications overview (p. 1718) for an example of
how to do this.

Derived from

wxClientBase
wxObject (p. 961)

Include files
<wx/ipc.h>
See also

wxServer (p. 1126), wxConnection (p. 191), Interprocess communications overview (p.
1718)

wxClient::wxClient

wxClient()

Constructs a client object.

wxClient::MakeConnection

wxConnectionBase * MakeConnection(const wxString& host, const wxString&
service, const wxString& fopic)

Tries to make a connection with a server by host (machine name under UNIX - use

126

CHAPTER 6

'localhost' for same machine; ignored when using native DDE in Windows), service
name and topic string. If the server allows a connection, a wxConnection object will be
returned. The type of wxConnection returned can be altered by overriding the
wxClient::OnMakeConnection (p. 127) member to return your own derived connection
object.

Under Unix, the service name may be either an integer port identifier in which case an
Internet domain socket will be used for the communications, or a valid file name (which
shouldn't exist and will be deleted afterwards) in which case a Unix domain socket is
created.

SECURITY NOTE: Using Internet domain sockets if extremely insecure for IPC as there
is absolutely no access control for them, use Unix domain sockets whenever possible!

wxClient::OnMakeConnection

wxConnectionBase * OnMakeConnection()

Called by wxClient::MakeConnection (p. 126), by default this simply returns a new
wxConnection object. Override this method to return a wxConnection descendant
customised for the application.

The advantage of deriving your own connection class is that it will enable you to

intercept messages initiated by the server, such as wxConnection::OnAdvise (p. 193).
You may also want to store application-specific data in instances of the new class.

wxClient::ValidHost

bool ValidHost(const wxString& host)

Returns TRUE if this is a valid host name, FALSE otherwise. This always returns TRUE
under MS Windows.

wxClientDC

A wxClientDC must be constructed if an application wishes to paint on the client area of
a window from outside an OnPaint event. This should normally be constructed as a
temporary stack object; don't store a wxClientDC object.

To draw on a window from within OnPaint, construct a wxPaintDC (p. 974) object.

To draw on the whole window including decorations, construct a wxWindowDC (p. 1453)
object (Windows only).

Derived from

127

CHAPTER 6

wxWindowDC (p. 1453)
wxDC (p. 343)

Include files
<wx/dcclient.h>
See also

wxDC (p. 343), wxMemoryDC (p. 886), wxPaintDC (p. 974), wxWindowDC (p. 1453),
wxScreenDC (p. 1098)

wxClientDC::wxClientDC

wxClientDC(wxWindow* window)

Constructor. Pass a pointer to the window on which you wish to paint.

wxClientData

All classes deriving from wxEvtHandler (p. 445)(such as all controls and wxApp (p. 21))
can hold arbitrary data which is here referred to as "client data". This is useful e.g. for
scripting languages which need to handle shadow objects for most of wxWindows'
classes and which store a handle to such a shadow class as client data in that class.
This data can either be of type void - in which case the datacontainer does not take care
of freeing the data again or it is of type wxClientData or its derivates. In that case the
container (e.g. a control) will free the memory itself later. Note that you must not assign
both void data and data derived from the wxClientData class to a container.

Some controls can hold various items and these controls can additionally hold client data
for each item. This is the case forwxChoice (p. 117), wxComboBox (p. 154)and
wxListBox (p. 799). wxTreeCtrl (p. 1352)has a specialized class wxTreeltemData (p.
1374)for each item in the tree.

If you want to add client data to your own classes, you may use the mix-in class
wxClientDataContainer (p. 129).

Include files
<wx/cIntdata.h>

See also

128

CHAPTER 6

wxEvtHandler (p. 445), wxTreeltemData (p. 1374),wxStringClientData (p. 1246),
wxClientDataContainer (p. 129)

wxClientData::wxClientData

wxClientData()

Constructor.

wxClientData::~wxClientData

~wxClientData()

Virtual destructor.

wxClientDataContainer

This class is a mixin that provides storage and management of "client data." This data
can either be of type void - in which case the datacontainer does not take care of freeing
the data again or it is of type wxClientData or its derivates. In that case the container will
free the memory itself later. Note that you must not assign both void data and data
derived from the wxClientData class to a container.

NOTE: This functionality is currently duplicated in wxEvtHandler in order to avoid having
more than one vtable in that class heirachy.

See also

wxEvtHandler (p. 445), wxClientData (p. 128)
Derived from

No base class

Include files

<clntdata.h>

Data structures

129

CHAPTER 6

wxClientDataContainer::wxClientDataContainer

wxClientDataContainer()

wxClientDataContainer::~wxClientDataContainer

~wxClientDataContainer()

wxClientDataContainer::GetClientData

void* GetClientData() const

Get the untyped client data.

wxClientDataContainer::GetClientObject

wxClientData* GetClientObject() const

Get a pointer to the client data object.

wxClientDataContainer::SetClientData

void SetClientData(void* data)

Set the untyped client data.

wxClientDataContainer::SetClientObject

void SetClientObject(wxClientData* data)

Set the client data object. Any previous object will be deleted.

wxClipboard

A class for manipulating the clipboard. Note that this is not compatible with the clipboard
class from wxWindows 1.xx, which has the same name but a different implementation.

To use the clipboard, you call member functions of the global wxTheClipboard object.

See also the wxDataObject overview (p. 1693) for further information.

130

CHAPTER 6

Call wxClipboard::Open (p. 133) to get ownership of the clipboard. If this operation
returns TRUE, you now own the clipboard. Call wxClipboard::SetData (p. 133) to put
data on the clipboard, or wxClipboard::GetData (p. 132) to retrieve data from the
clipboard. Call wxClipboard::Close (p. 132) to close the clipboard and relinquish
ownership. You should keep the clipboard open only momentarily.

For example:

// Write some text to the clipboard
if (wxTheClipboard->Open())

{
// This data objects are held by the clipboard,

// so do not delete them in the app.
wxTheClipboard->SetData (new wxTextDataObject ("Some text"));
wxTheClipboard->Close () ;

}

// Read some text
if (wxTheClipboard->Open())

{
if (wxTheClipboard->IsSupported(wxDF_TEXT))

{
wxTextDataObject data;
wxTheClipboard->GetData (data);
wxMessageBox (data.GetText ());

}
wxTheClipboard->Close () ;

}

Derived from
wxObject (p. 961)
Include files
<wx/clipbrd.h>
See also

Drag and drop overview (p. 1691), wxDataObject (p. 222)

wxClipboard::wxClipboard

wxClipboard()

Constructor.

wxClipboard::~wxClipboard

~wxClipboard()

131

CHAPTER 6

Destructor.

wxClipboard::AddData

bool AddData(wxDataObject* data)

Call this function to add the data object to the clipboard. You may call this function
repeatedly after having cleared the clipboard using wxClipboard::Clear (p. 132).

After this function has been called, the clipboard owns the data, so do not delete the
data explicitly.

See also

wxClipboard::SetData (p. 133)

wxClipboard::Clear

void Clear()

Clears the global clipboard object and the system's clipboard if possible.

wxClipboard::Close

bool Close()

Call this function to close the clipboard, having opened it with wxClipboard::Open (p.
133).

wxClipboard::Flush

bool Flush()

Flushes the clipboard: this means that the data which is currently on clipboard will stay
available even after the application exits (possibly eating memory), otherwise the
clipboard will be emptied on exit. Returns FALSE if the operation is unsuccesful for any
reason.

wxClipboard::GetData

bool GetData(wxDataObject& data)

Call this function to fill data with data on the clipboard, if available in the required format.
Returns TRUE on success.

132

CHAPTER 6

wxClipboard::IsOpened

bool IsOpened() const

Returns TRUE if the clipboard has been opened.

wxClipboard::IsSupported

bool IsSupported(const wxDataFormat& format)

Returns TRUE if the format of the given data object is available on the clipboard.

wxClipboard::Open

bool Open()

Call this function to open the clipboard before calling wxClipboard::SetData (p. 133) and
wxClipboard::GetData (p. 132).

Call wxClipboard::Close (p. 132) when you have finished with the clipboard. You should
keep the clipboard open for only a very short time.

Returns TRUE on success. This should be tested (as in the sample shown above).

wxClipboard::SetData

bool SetData(wxDataObject* data)

Call this function to set the data object to the clipboard. This function will clear all
previous contents in the clipboard, so calling it several times does not make any sense.

After this function has been called, the clipboard owns the data, so do not delete the
data explicitly.

See also

wxClipboard::AddData (p. 132)

wxClipboard::UsePrimarySelection

void UsePrimarySelection(bool primary = TRUE)

On platforms supporting it (currently only GTK), selects the so called PRIMARY
SELECTION as the clipboard as opposed to the normal clipboard, if primary is TRUE.

133

CHAPTER 6

wxCloseEvent

This event class contains information about window and session close events.

The handler function for EVT_CLOSE is called when the user has tried to close a a
frame or dialog box using the window manager (X) or system menu (Windows). It is
called via the wxWindow::Close (p. 1412) function, so that the application can also
invoke the handler programmatically.

You should check whether the application is forcing the deletion of the window using
wxCloseEvent::CanVeto (p. 135). If this is FALSE, you must destroy the window using
wxWindow::Destroy (p. 1415). If the return value is TRUE, it is up to you whether you
respond by destroying the window.

If you don't destroy the window, you should call wxCloseEvent::Veto (p. 136) to let the
calling code know that you did not destroy the window. This allows the wxWindow::Close
(p. 1412) function to return TRUE or FALSE depending on whether the close instruction
was honoured or not.

Derived from
wxEvent (p. 441)
Include files
<wx/event.h>

Event table macros

To process a close event, use these event handler macros to direct input to member
functions that take a wxCloseEvent argument.

EVT_CLOSE(func) Process a close event, supplying the member
function. This event applies to wxFrame and
wxDialog classes.

EVT_QUERY_END_SESSION(func) Process a query end session event, supplying
the member function. This event applies to
wxApp only.

EVT_END_SESSION(func) Process an end session event, supplying the
member function. This event applies to wxApp
only.

See also

wxWindow::Close (p. 1412), wxApp::OnQueryEndSession (p. 28), Window deletion

134

CHAPTER 6

overview (p. 1629)

wxCloseEvent::wxCloseEvent

wxCloseEvent(WXTYPE commandEventType = 0, int id = 0)

Constructor.

wxCloseEvent::CanVeto

bool CanVeto()
Returns TRUE if you can veto a system shutdown or a window close event. Vetoing a

window close event is not possible if the calling code wishes to force the application to
exit, and so this function must be called to check this.

wxCloseEvent::GetLoggingOff

bool GetLoggingOff() const

Returns TRUE if the user is logging off.

wxCloseEvent::GetSessionEnding

bool GetSessionEnding() const

Returns TRUE if the session is ending.

wxCloseEvent::GetForce

bool GetForce() const

Returns TRUE if the application wishes to force the window to close. This will shortly be
obsolete, replaced by CanVeto.

wxCloseEvent::SetCanVeto

void SetCanVeto(bool canVeto)

Sets the 'can veto' flag.

135

CHAPTER 6

wxCloseEvent::SetForce

void SetForce(bool force) const

Sets the 'force' flag.

wxCloseEvent::SetLoggingOff

void SetLoggingOff(bool loggingOff) const

Sets the 'logging off' flag.

wxCloseEvent::Veto

void Veto(bool veto = TRUE)

Call this from your event handler to veto a system shutdown or to signal to the calling
application that a window close did not happen.

You can only veto a shutdown if wxCloseEvent::CanVeto (p. 135) returns TRUE.

wxCmdLineParser

wxCmdLineParser is a class for parsing command line.
It has the following features:

distinguishes options, switches and parameters; allows option grouping

allows both short and long options

automatically generates the usage message from the command line description
does type checks on the options values (number, date, ...).

el

To use it you should follow these steps:

1. construct (p. 138) an object of this class giving it the command line to parse and
optionally its description or use Addxxx () functions later

2. callrarse()

3. use Found () to retrieve the results

In the documentation below the following terminology is used:
switch This is a boolean option which can be given or

not, but which doesn't have any value. We use
the word switch to distinguish such boolean

136

CHAPTER 6

options from more generic options like those
described below. For example, —v might be a
switch meaning "enable verbose mode".
option Option for us here is something which comes
with a value 0 unlike a switch. For example, -
o:filename might be an option which allows
to specify the name of the output file.
parameter This is a required program argument.

Derived from
No base class
Include files
<wx/cmdline.h>
Constants

The structure wxCmdLineEntryDesc is used to describe the one command line switch,
option or parameter. An array of such structures should be passed to SetDesc() (p. 143).
Also, the meanings of parameters of the Addxxx () functions are the same as of the
corresponding fields in this structure:

struct wxCmdLineEntryDesc

{
wxCmdLineEntryType kind;
const wxChar *shortName;
const wxChar *longName;
const wxChar *description;
wxCmdLineParamType type;
int flags;

}i

The type of a command line entity is in the kind field and may be one of the following
constants:

enum wxCmdLineEntryType
{
wxCMD_LINE_SWITCH,
wxCMD_LINE_OPTION,
wxCMD_LINE_PARAM,
wxCMD_LINE_NONE // use this to terminate the list

The field shortName is the usual, short, name of the switch or the option.1ongName is
the corresponding long name or NULL if the option has no long name. Both of these
fields are unused for the parameters. Both the short and long option names can contain
only letters, digits and the underscores.

137

CHAPTER 6

description is used by the Usage() (p. 144) method to construct a help message
explaining the syntax of the program.

The possible values of type which specifies the type of the value accepted by an option
or parameter are:

enum wxCmdLineParamType

{
wxCMD_LINE_VAL_STRING, // default
wxCMD_LINE_VAL_NUMBER,
wxCMD_LINE_VAL_DATE,
wxCMD_LINE_VAL_NONE

Finally, the f1ags field is a combination of the following bit masks:

enum
{
wxCMD_LINE_OPTION_MANDATORY
wxCMD_LINE_PARAM OPTIONAL
wxCMD_LINE_PARAM MULTIPLE
wxCMD_LINE_OPTION_HELP
wxCMD_LINE_NEEDS_SEPARATOR
value

}

0x01, // this option must be given
0x02, // the parameter may be omitted
0x04, // the parameter may be repeated
0x08, // this option is a help request
0x10, // must have sep before the

Notice that by default (i.e. if flags are just 0), options are optional (sic) and each call to
AddParam() (p. 144) allows one more parameter - this may be changed by giving non-
default flags to it, i.e. use wxCMD_LINE_OPTION_MANDATORY to require that the option
is given and wxCMD_LINE_PARAM_OPTIONAL to make a parameter optional. Also,
wxCMD_LINE_PARAM_MULTIPLE may be specified if the programs accepts a variable
number of parameters - but it only can be given for the last parameter in the command
line description. If you use this flag, you will probably need to use GetParamCount (p.
145) to retrieve the number of parameters effectively specified after calling Parse (p.
144).

The last flag wxCMD_LINE_NEEDS_SEPARATOR can be specified to require a separator
(either a colon, an equal sign or white space) between the option name and its value. By
default, no separator is required.

See also

wxApp::argc (p. 22) and wxApp::argv (p. 23)
console sample

Construction

138

CHAPTER 6

Before Parse (p. 144) can be called, the command line parser object must have the
command line to parse and also the rules saying which switches, options and
parameters are valid - this is called command line description in what follows.

You have complete freedom of choice as to when specify the required information, the
only restriction is that it must be done before calling Parse (p. 144).

To specify the command line to parse you may use either one of constructors accepting
it (wxCmdLineParser(argc, argv) (p. 140) or wxCmdLineParser (p. 141) usually) or, if
you use the default constructor (p. 140), you can do it later by calling SetCmdLine (p.
141).

The same holds for command line description: it can be specified either in the
constructor (without command line (p. 140) or together with it (p. 141)) or constructed
later using either SetDesc (p. 143) or combination of AddSwitch (p. 143), AddOption (p.
143) and AddParam (p. 144) methods.

Using constructors or SetDesc (p. 143) uses a (usually const static) table containing
the command line description. If you want to decide which options to accept during the
run-time, using one of the Addxxx () functions above might be preferable.

Customization

wxCmdLineParser has several global options which may be changed by the application.
All of the functions described in this section should be called before Parse (p. 144).

First global option is the support for long (also known as GNU-style) options. The long
options are the ones which start with two dashes ("--") and look like this: ——verbose,
i.e. they generally are complete words and not some abbreviations of them. As long
options are used by more and more applications, they are enabled by default, but may
be disabled with DisableLongOptions (p. 142).

Another global option is the set of characters which may be used to start an option
(otherwise, the word on the command line is assumed to be a parameter). Under Unix,
'—' is always used, but Windows has at least two common choices for this: '-' and
'/ '. Some programs also use '+'. The default is to use what suits most the current
platform, but may be changed with SetSwitchChars (p. 142) method.

Finally, SetLogo (p. 142) can be used to show some application-specific text before the
explanation given by Usage (p. 144) function.

Parsing command line

After the command line description was constructed and the desired options were set,
you can finally call Parse (p. 144) method. It returns 0 if the command line was correct
and was parsed, -1 if the help option was specified (this is a separate case as, normally,
the program will terminate after this) or a positive number if there was an error during the

139

CHAPTER 6

command line parsing.

In the latter case, the appropriate error message and usage information are logged by
wxCmdLineParser itself using the standard wxWindows logging functions.

Getting results

After calling Parse (p. 144) (and if it returned 0), you may access the results of parsing
using one of overloaded Found () methods.

For a simple switch, you will simply call Found (p. 144) to determine if the switch was
given or not, for an option or a parameter, you will call a version of Found () which also
returns the associated value in the provided variable. All Found () functions return
TRUE if the switch or option were found in the command line or FALSE if they were not
specified.

wxCmdLineParser::wxCmdLineParser

wxCmdLineParser()

Default constructor. You must use SetCmdLine (p. 141) later.

wxCmdLineParser::wxCmdLineParser

wxCmdLineParser(int argc, char** argv)

Constructor specifies the command line to parse. This is the traditional (Unix) command
line format. The parameters argc and argv have the same meaning as for main ()
function.

wxCmdLineParser::wxCmdLineParser

wxCmdLineParser(const wxString& cmdline)

Constructor specifies the command line to parse in Windows format. The parameter
cmdline has the same meaning as the corresponding parameter of WinMain ().

wxCmdLineParser::wxCmdLineParser

wxCmdLineParser(const wxCmdLineEntryDesc* desc)

Same as wxCmdLineParser (p. 140), but also specifies the command line description (p.
143).

140

CHAPTER 6

wxCmdLineParser::wxCmdLineParser

wxCmdLineParser(const wxCmdLineEntryDesc* desc, int argc, char** argv)

Same as wxCmdLineParser (p. 140), but also specifies the command line description (p.
143).

wxCmdLineParser::wxCmdLineParser

wxCmdLineParser(const wxCmdLineEntryDesc* desc, const wxString& cmadline)

Same as wxCmdLineParser (p. 140), but also specifies the command line description (p.
143).

wxCmdLineParser::ConvertStringToArgs

static wxArrayString ConvertStringToArgs(const wxChar *cmdline)
Breaks down the string containing the full command line in words. The words are

separated by whitespace. The quotes can be used in the input string to quote the white
space and the back slashes can be used to quote the quotes.

wxCmdLineParser::SetCmdLine

void SetCmdLine(int argc, char** argv)
Set command line to parse after using one of the constructors which don't do it.
See also

wxCmdLineParser (p. 140)

wxCmdLineParser::SetCmdLine

void SetCmdLine(const wxString& cmdline)
Set command line to parse after using one of the constructors which don't do it.
See also

wxCmadLineParser (p. 140)

141

CHAPTER 6

wxCmdLineParser::~wxCmdLineParser

~wxCmdLineParser()
Frees resources allocated by the object.

NB: destructor is not virtual, don't use this class polymorphically.

wxCmdLineParser::SetSwitchChars

void SetSwitchChars(const wxString& switchChars)

switchChars contains all characters with which an option or switch may start. Default is
m—m for Unix, "—/" for Windows.

wxCmdLineParser::EnableLongOptions

void EnableLongOptions(bool enable = TRUE)
Enable or disable support for the long options.

As long options are not (yet) POSIX-compliant, this option allows to disable them.

See also

Customization (p. 139) and AreLongOptionsEnabled (p. 142)

wxCmdLineParser::DisableLongOptions

void DisableLongOptions()

Identical to EnableLongOptions(FALSE) (p. 142).

wxCmdLineParser::AreLongOptionsEnabled

bool AreLongOptionsEnabled()

Returns TRUE if long options are enabled, otherwise FALSE.

See also

EnableLongOptions (p. 142)

wxCmdLineParser::SetLogo

142

CHAPTER 6

void SetLogo(const wxString& /0go)

logo is some extra text which will be shown by Usage (p. 144) method.

wxCmdLineParser::SetDesc

void SetDesc(const wxCmdLineEntryDesc* desc)
Construct the command line description
Take the command line description from the wxCMD_LINE_NONE terminated table.

Example of usage:

static const wxCmdLineEntryDesc cmdLineDesc[] =

{

{ wxCMD_LINE_SWITCH, "v", "verbose", "be verbose" },

{ wxCMD_LINE_SWITCH, "g", "quiet", "be quiet" 1},

{ wxCMD_LINE_OPTION, "o", "output", "output file" 1},

{ wxCMD_LINE_OPTION, "i", "input", "input dir" },

{ wxCMD_LINE_OPTION, "s", "size", "output block size",

wxCMD_LINE_VAL_NUMBER 1},
{ wxCMD_LINE_OPTION, "d", "date", "output file date",
wxCMD_LINE_VAL_DATE 1},

{ wxCMD_LINE_PARAM, NULL, NULL, "input file",
wxCMD_LINE_VAL_STRING, wxCMD_LINE_PARAM MULTIPLE },

{ wxCMD_LINE_NONE }
}i

wxCmdLineParser parser;

parser.SetDesc (cmdLineDesc) ;

wxCmdLineParser::AddSwitch

void AddSwitch(const wxString& name, const wxString& /Ing = wxEmptyString,
const wxString& desc = wxEmptyString, int flags = 0)

Add a switch name with an optional long name Ing (no long name if it is empty, which is
default), description desc and flags flags to the command line description.

wxCmdLineParser::AddOption

void AddOption(const wxString& name, const wxString& /Ing = wxEmptyString,
const wxString& desc = wxEmptyString, wxCmdLineParamType type =
wxCMD_LINE_VAL_STRING, int flags = 0)

143

CHAPTER 6

Add an option name with an optional long name Ing (no long name if it is empty, which is
default) taking a value of the given type (string by default) to the command line
description.

wxCmdLineParser::AddParam

void AddParam(const wxString& desc = wxEmptyString, wxCmdLineParamType
type = wxCMD_LINE_VAL_STRING, int flags = 0)

Add a parameter of the given type to the command line description.

wxCmdLineParser::Parse

int Parse(bool giveUsage = TRUE)

Parse the command line, return 0 if ok, -1 if "-h" or "--help" option was encountered
and the help message was given or a positive value if a syntax error occured.

Parameters

giveUsage
If TRUE (default), the usage message is given if a syntax error was encountered
while parsing the command line or if help was requested. If FALSE, only error
messages about possible syntax errors are given, use Usage (p. 144) to show the
usage message from the caller if needed.

wxCmdLineParser::Usage

void Usage()

Give the standard usage message describing all program options. It will use the options
and parameters descriptions specified earlier, so the resulting message will not be
helpful to the user unless the descriptions were indeed specified.

See also

SetLogo (p. 142)

wxCmdLineParser::Found

bool Found(const wxString& name) const

Returns TRUE if the given switch was found, FALSE otherwise.

wxCmdLineParser::Found

144

CHAPTER 6

bool Found(const wxString& name, wxString* value) const

Returns TRUE if an option taking a string value was found and stores the value in the
provided pointer (which should not be NULL).

wxCmdLineParser::Found

bool Found(const wxString& name, long* value) const

Returns TRUE if an option taking an integer value was found and stores the value in the
provided pointer (which should not be NULL).

wxCmdLineParser::Found

bool Found(const wxString& name, wxDateTime* value) const

Returns TRUE if an option taking a date value was found and stores the value in the
provided pointer (which should not be NULL).

wxCmdLineParser::GetParamCount

size_t GetParamCount() const

Returns the number of parameters found. This function makes sense mosily if you had
used wxCMD_LINE_PARAM MULTIPLE flag.

wxCmdLineParser::GetParam

wxString GetParam(size_t n = Ou) const
Returns the value of Nth parameter (as string only for now).
See also

GetParamCount (p. 145)

wxColour

A colour is an object representing a combination of Red, Green, and Blue (RGB)
intensity values, and is used to determine drawing colours. See the entry for
wxColourDatabase (p. 151) for how a pointer to a predefined, named colour may be

145

CHAPTER 6

returned instead of creating a new colour.
Valid RGB values are in the range 0 to 255.
You can retrieve the current system font settings with wxSystemSettings (p. 1254).
Derived from

wxObject (p. 961)

Include files

<wx/colour.h>

Predefined objects

Objects:

wxNullColour

Pointers:

wxBLACK

wxWHITE

wxRED

wxBLUE

wxGREEN

wxCYAN

wxLIGHT_GREY

See also

wxColourDatabase (p. 151), wxPen (p. 985), wxBrush (p. 83), wxColourDialog (p. 152),
wxSystemSettings (p. 1254)

wxColour::wxColour

wxColour()
Default constructor.

wxColour(const unsigned char red, const unsigned char green, const unsigned
char blue)

Constructs a colour from red, green and blue values.

wxColour(const wxString& colourNname)

146

CHAPTER 6

Constructs a colour object using a colour name listed in wxTheColourDatabase.
wxColour(const wxColour& colour)

Copy constructor.

Parameters

red
The red value.

green
The green value.

blue
The blue value.

colourName
The colour name.

colour
The colour to copy.

See also
wxColourDatabase (p. 151)
wxPython note: Constructors supported by wxPython are:

wxColour(red=0, green=0, blue=0)
wxNamedColour(name)

wxColour::Blue

unsigned char Blue() const

Returns the blue intensity.

wxColour::GetPixel

long GetPixel() const

Returns a pixel value which is platform-dependent. On Windows, a COLORREF is
returned. On X, an allocated pixel value is returned.

-1 is returned if the pixel is invalid (on X, unallocated).

147

CHAPTER 6

wxColour::Green

unsigned char Green() const

Returns the green intensity.

wxColour::0k

bool Ok() const

Returns TRUE if the colour object is valid (the colour has been initialised with RGB
values).

wxColour::Red

unsigned char Red() const

Returns the red intensity.

wxColour::Set

void Set(const unsigned char red, const unsigned char green, const unsigned char
blue)

Sets the RGB intensity values.

wxColour::operator =

wxColour& operator =(const wxColour& colour)

Assignment operator, taking another colour object.

wxColour& operator =(const wxString& colourName)

Assignment operator, using a colour name to be found in the colour database.
See also

wxColourDatabase (p. 151)

wxColour::operator ==

bool operator ==(const wxColour& colour)

148

CHAPTER 6

Tests the equality of two colours by comparing individual red, green blue colours.

wxColour::operator !=

bool operator !=(const wxColour& colour)

Tests the inequality of two colours by comparing individual red, green blue colours.

wxColourData

This class holds a variety of information related to colour dialogs.
Derived from

wxObject (p. 961)

Include files

<wx/cmndata.h>

See also

wxColour (p. 145), wxColourDialog (p. 152), wxColourDialog overview (p. 1672)

wxColourData::wxColourData

wxColourData()

Constructor. Initializes the custom colours to white, the data colour setting to black, and
the choose full setting to TRUE.

wxColourData::~wxColourData

~wxColourData()

Destructor.

wxColourData::GetChooseFull

149

CHAPTER 6

bool GetChooseFull() const

Under Windows, determines whether the Windows colour dialog will display the full
dialog with custom colour selection controls. Has no meaning under other platforms.

The default value is TRUE.

wxColourData::GetColour

wxColour& GetColour() const
Gets the current colour associated with the colour dialog.

The default colour is black.

wxColourData::GetCustomColour

wxColour& GetCustomColour(int /) const

Gets the tth custom colour associated with the colour dialog. i should be an integer
between 0 and 15.

The default custom colours are all white.

wxColourData::SetChooseFull

void SetChooseFull(const bool flag)

Under Windows, tells the Windows colour dialog to display the full dialog with custom
colour selection controls. Under other platforms, has no effect.

The default value is TRUE.

wxColourData::SetColour

void SetColour(const wxColour& colour)
Sets the default colour for the colour dialog.

The default colour is black.

wxColourData::SetCustomColour

void SetCustomColour(int /, const wxColour& colour)

150

CHAPTER 6

Sets the th custom colour for the colour dialog. i should be an integer between 0 and 15.

The default custom colours are all white.

wxColourData::operator =

void operator =(const wxColourData& data)

Assignment operator for the colour data.

wxColourDatabase

wxWindows maintains a database of standard RGB colours for a predefined set of
named colours (such as "BLACK", "LIGHT GREY"). The application may add to this set
if desired by using Append. There is only one instance of this class:
wxTheColourDatabase.

Derived from

wxList (p. 792)
wxObject (p. 961)

Include files

<wx/gdicmn.h>

Remarks

The colours in the standard database are as follows:

AQUAMARINE, BLACK, BLUE, BLUE VIOLET, BROWN, CADET BLUE, CORAL,
CORNFLOWER BLUE, CYAN, DARK GREY, DARK GREEN, DARK OLIVE GREEN,
DARK ORCHID, DARK SLATE BLUE, DARK SLATE GREY DARK TURQUOISE, DIM
GREY, FIREBRICK, FOREST GREEN, GOLD, GOLDENROD, GREY, GREEN, GREEN
YELLOW, INDIAN RED, KHAKI, LIGHT BLUE, LIGHT GREY, LIGHT STEEL BLUE,
LIME GREEN, MAGENTA, MAROON, MEDIUM AQUAMARINE, MEDIUM BLUE,
MEDIUM FOREST GREEN, MEDIUM GOLDENROD, MEDIUM ORCHID, MEDIUM
SEA GREEN, MEDIUM SLATE BLUE, MEDIUM SPRING GREEN, MEDIUM
TURQUOISE, MEDIUM VIOLET RED, MIDNIGHT BLUE, NAVY, ORANGE, ORANGE
RED, ORCHID, PALE GREEN, PINK, PLUM, PURPLE, RED, SALMON, SEA GREEN,
SIENNA, SKY BLUE, SLATE BLUE, SPRING GREEN, STEEL BLUE, TAN, THISTLE,
TURQUOISE, VIOLET, VIOLET RED, WHEAT, WHITE, YELLOW, YELLOW GREEN.

See also

wxColour (p. 145)

151

CHAPTER 6

wxColourDatabase::wxColourDatabase

wxColourDatabase()

Constructs the colour database.

wxColourDatabase::FindColour

wxColour* FindColour(const wxString& colourName)

Finds a colour given the name. Returns NULL if not found.

wxColourDatabase::FindName

wxString FindName(const wxColour& colour) const

Finds a colour name given the colour. Returns NULL if not found.

wxColourDatabase::Initialize

void Initialize()

Initializes the database with a number of stock colours. Called by wxWindows on start-
up.

wxColourDialog

This class represents the colour chooser dialog.

Derived from
wxDialog (p. 369)
wxWindow (p. 1407)
wxEvtHandler (p. 445)
wxObject (p. 961)
Include files

<wx/colordlg.h>

152

CHAPTER 6

See also

wxColourDialog Overview (p. 1672),
wxColour (p. 145),

wxColourData (p. 149),
wxGetColourFromUser (p. 1506)

wxColourDialog::wxColourDialog

wxColourDialog(wxWindow* parent, wxColourData* data = NULL)

Constructor. Pass a parent window, and optionally a pointer to a block of colour data,
which will be copied to the colour dialog's colour data.

See also

wxColourData (p. 149)

wxColourDialog::~wxColourDialog

~wxColourDialog()

Destructor.

wxColourDialog::Create

bool Create(wxWindow* parent, wxColourData* data = NULL)

Same as constructor (p. 153).

wxColourDialog::GetColourData

wxColourData& GetColourData()

Returns the colour data (p. 149) associated with the colour dialog.

wxColourDialog::ShowModal

int ShowModal()

Shows the dialog, returning wxID_OK if the user pressed OK, and wxOK_CANCEL
otherwise.

153

CHAPTER 6

wxComboBox

A combobox is like a combination of an edit control and a listbox. It can be displayed as
static list with editable or read-only text field; or a drop-down list with text field; or a drop-
down list without a text field.

A combobox permits a single selection only. Combobox items are numbered from zero.
Derived from

wxControl (p. 198)

wxWindow (p. 1407)

wxEvtHandler (p. 445)

wxObject (p. 961)

Include files

<wx/combobox.h>

Window styles

wxCB_SIMPLE Creates a combobox with a permanently
displayed list. Windows only.

wxCB_DROPDOWN Creates a combobox with a drop-down list.

wxCB_READONLY Same as wxCB_DROPDOWN but only the

strings specified as the combobox choices can
be selected, it is impossible to select (even
from a program) a string which is not in the
choices list.

wxCB_SORT Sorts the entries in the list alphabetically.

See also window styles overview (p. 1629).
Event handling
EVT_COMBOBOX(id, func) Process a

wxEVT_COMMAND_COMBOBOX_SELECTE
D event, when an item on the list is selected.

EVT_TEXT_ENTER(id, func) Process a wxEVT_COMMAND_TEXT_ENTER
event, when return is pressed in the combobox.
EVT_TEXT(id, func) Process a

wxEVT_COMMAND_TEXT_UPDATED event,
when the combobox text changes.

154

CHAPTER 6

See also

wxListBox (p. 799), wxTextCtrl (p. 1271), wxChoice (p. 117), wxCommandEvent (p. 164)

wxComboBox::wxComboBox

wxComboBox()

Default constructor.

wxComboBox(wxWindow* parent, wxWindowlID id, const wxString& value = ",
const wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, int n,
const wxString choices[], long style = 0, const wxValidator& validator =

wxDefaultValidator, const wxString& name = "comboBox")
Constructor, creating and showing a combobox.
Parameters

parent
Parent window. Must not be NULL.

id
Window identifier. A value of -1 indicates a default value.
value
Initial selection string. An empty string indicates no selection.
pos
Window position.
size
Window size. If the default size (-1, -1) is specified then the window is sized
appropriately.
n
Number of strings with which to initialise the control.
choices
An array of strings with which to initialise the control.
style
Window style. See wxComboBox (p. 154).
validator
Window validator.
name

155

CHAPTER 6

Window name.
See also
wxComboBox::Create (p. 156), wxValidator (p. 1389)

wxPython note: The wxComboBox constructor in wxPython reduces the nand
choices arguments are to a single argument, which is a list of strings.

wxPerl note: In wxPerl there is just an array reference in place of nand choices.

wxComboBox::~wxComboBox

~wxComboBox()

Destructor, destroying the combobox.

wxComboBox::Append

void Append(const wxString& item)

Adds the item to the end of the combobox.

void Append(const wxString& item, void* clientData)

Adds the item to the end of the combobox, associating the given data with the item.
Parameters

item
The string to add.

clientData
Client data to associate with the item.

wxComboBox::Clear

void Clear()

Clears all strings from the combobox.

wxComboBox::Create

bool Create(wxWindow* parent, wxWindowlID id, const wxString& value = ", const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, int n, const
wxString choices][], long style = 0, const wxValidator& validator = wxDefaultValidator,

156

CHAPTER 6

const wxString& name = "comboBox")

Creates the combobox for two-step construction. Derived classes should call or replace
this function. See wxComboBox::wxComboBox (p. 155) for further detalils.

wxComboBox::Copy

void Copy()

Copies the selected text to the clipboard.

wxComboBox::Cut

void Cut()

Copies the selected text to the clipboard and removes the selection.

wxComboBox::Delete

void Delete(int n)

Deletes an item from the combobox.
Parameters

n

The item to delete, starting from zero.

wxComboBox::FindString

int FindString(const wxString& string)
Finds a choice matching the given string.
Parameters

string
The item to find.

Return value

The position if found, or -1 if not found.

wxComboBox::GetClientData

157

CHAPTER 6

void* GetClientData(int n) const
Returns a pointer to the client data associated with the given item (if any).
Parameters

n
An item, starting from zero.

Return value

A pointer to the client data, or NULL if the item was not found.

wxComboBox::GetCount

int GetCount() const

Returns the number of items in the combobox.

wxComboBox::GetinsertionPoint

long GetinsertionPoint() const

Returns the insertion point for the combobox's text field.

wxComboBox::GetLastPosition

long GetlLastPosition() const

Returns the last position in the combobox text field.

wxComboBox::GetSelection

int GetSelection() const

Gets the position of the selected string, or -1 if there is no selection.

wxComboBox::GetString

wxString GetString(int n) const
Returns the string at position n.

Parameters

158

CHAPTER 6

The item position, starting from zero.
Return value

The string if the item is found, otherwise the empty string.

wxComboBox::GetStringSelection

wxString GetStringSelection() const

Gets the selected string.

wxComboBox::GetValue

wxString GetValue() const

Returns the current value in the combobox text field.

wxComboBox::Number

int Number() const

Obsolescence note: This method is obsolete and was replaced with GetCount (p. 158),
please use the new method in the new code. This method is only available if wxWindows
was compiled with WXWIN_COMPATIBILITY_2_2 defined and will disappear completely

in future versions.

Returns the number of items in the combobox list.

wxComboBox::Paste

void Paste()

Pastes text from the clipboard to the text field.

wxComboBox::Replace

void Replace(long from, long to, const wxString& texi)

Replaces the text between two positions with the given text, in the combobox text field.

Parameters

from

159

CHAPTER 6

The first position.

to
The second position.

text
The text to insert.

wxComboBox::Remove

void Remove(long from, long to)
Removes the text between the two positions in the combobox text field.
Parameters

from
The first position.

to
The last position.

wxComboBox::SetClientData

void SetClientData(int n, void* data)
Associates the given client data pointer with the given item.
Parameters

n
The zero-based item.

data
The client data.

wxComboBox::SetinsertionPoint

void SetlnsertionPoint(long pos)
Sets the insertion point in the combobox text field.
Parameters

pos
The new insertion point.

160

CHAPTER 6

wxComboBox::SetinsertionPointEnd

void SetInsertionPointEnd()

Sets the insertion point at the end of the combobox text field.

wxComboBox::SetSelection

void SetSelection(int n)

Selects the given item in the combobox list. This does not cause a
wxEVT_COMMAND_COMBOBOX_SELECTED event to get emitted.

void SetSelection(long from, long to)
Selects the text between the two positions, in the combobox text field.
Parameters

n
The zero-based item to select.

from
The first position.

to
The second position.

wxPython note: The second form of this method is called setMark in wxPython.

wxComboBox::SetString

void SetString(int n, const wxString& texi)
Replaces the specified string in the control with another one.
Parameters

n
The zero-based index of the string to replace

text
The new value for this item

NB: This method is currently not implemented in wxGTK.

161

CHAPTER 6

wxComboBox::SetValue

void SetValue(const wxString& fext)
Sets the text for the combobox text field.

NB: For a combobox with wxCB_READONLY style the string must be in the combobox
choices list, otherwise the call to SetValue() is ignored.

Parameters

text
The text to set.

wxCommand

wxCommand is a base class for modelling an application command, which is an action
usually performed by selecting a menu item, pressing a toolbar button or any other
means provided by the application to change the data or view.

Derived from

wxObject (p. 961)

Include files

<wx/cmdproc.h>

See also

Overview (p. 1680)

wxCommand::wxCommand

wxCommand(bool canUndo = FALSE, const wxString& name = NULL)

Constructor. wxCommand is an abstract class, so you will need to derive a new class
and call this constructor from your own constructor.

canUndo tells the command processor whether this command is undo-able. You can
achieve the same functionality by overriding the CanUndo member function (if for
example the criteria for undoability is context-dependent).

name must be supplied for the command processor to display the command name in the

162

CHAPTER 6

application's edit menu.

wxCommand::~wxCommand

~wxCommand()

Destructor.

wxCommand::CanUndo

bool CanUndo()

Returns TRUE if the command can be undone, FALSE otherwise.

wxCommand::Do

bool Do()

Override this member function to execute the appropriate action when called. Return
TRUE to indicate that the action has taken place, FALSE otherwise. Returning FALSE
will indicate to the command processor that the action is not undoable and should not be
added to the command history.

wxCommand::GetName

wxString GetName()

Returns the command name.

wxCommand::Undo

bool Undo()

Override this member function to un-execute a previous Do. Return TRUE to indicate
that the action has taken place, FALSE otherwise. Returning FALSE will indicate to the
command processor that the action is not redoable and no change should be made to
the command history.

How you implement this command is totally application dependent, but typical strategies
include:

e Perform an inverse operation on the last modified piece of data in the document.
When redone, a copy of data stored in command is pasted back or some
operation reapplied. This relies on the fact that you know the ordering of Undos;
the user can never Undo at an arbitrary position in the command history.

163

CHAPTER 6

e Restore the entire document state (perhaps using document transactioning).
Potentially very inefficient, but possibly easier to code if the user interface and
data are complex, and an 'inverse execute' operation is hard to write.

The docview sample uses the first method, to remove or restore segments in the
drawing.

wxCommandEvent

This event class contains information about command events, which originate from a
variety of simple controls. More complex controls, such as wxTreeCtrl (p. 1352), have
separate command event classes.

Derived from
wxEvent (p. 441)
Include files
<wx/event.h>

Event table macros

To process a menu command event, use these event handler macros to direct input to
member functions that take a wxCommandEvent argument.

EVT_COMMAND(id, event, func) Process a command, supplying the window
identifier, command event identifier, and
member function.

EVT_COMMAND_RANGE(id1, id2, event, func) Process a command for a range of
window identifiers, supplying the minimum and
maximum window identifiers, command event
identifier, and member function.

EVT_BUTTON(id, func) Process a
wxEVT_COMMAND_BUTTON_CLICKED
command, which is generated by a wxButton
control.

EVT_CHECKBOX(id, func) Process a
wxEVT_COMMAND_CHECKBOX_CLICKED
command, which is generated by a
wxCheckBox control.

EVT_CHOICE(id, func) Process a
wxEVT_COMMAND_CHOICE_SELECTED
command, which is generated by a wxChoice
control.

EVT_LISTBOX(id, func) Process a
wxEVT_COMMAND_LISTBOX_SELECTED

164

CHAPTER 6

EVT_LISTBOX_DCLICK(id, func)

EVT_TEXT(id, func)

EVT_TEXT_ENTER(id, func)

EVT_TEXT_MAXLEN(id, func)

EVT_MENU(id, func)

EVT_MENU_RANGE(id1, id2, func)

EVT_CONTEXT_MENU(func)

EVT_SLIDER(id, func)

EVT_RADIOBOX(id, func)

EVT_RADIOBUTTON(id, func)

EVT_SCROLLBAR(id, func)

command, which is generated by a wxListBox
control.

Process a
wxEVT_COMMAND_LISTBOX_DOUBLECLIC
KED command, which is generated by a
wxListBox control.

Process a
wxEVT_COMMAND_TEXT_UPDATED
command, which is generated by a wxTextCtrl
control.

Process a wxEVT_COMMAND_TEXT_ENTER
command, which is generated by a wxTextCtrl
control. Note that you must use
wxTE_PROCESS_ENTER flag when creating
the control if you want it to generate such
events.

Process a
wxEVT_COMMAND_TEXT_MAXLEN
command, which is generated by a wxTextCtrl
control when the user tries to enter more
characters into it than the limit previously set
with SetMaxLength (p. 1285).

Process a
wxEVT_COMMAND_MENU_SELECTED
command, which is generated by a menu item.
Process a
wxEVT_COMMAND_MENU_RANGE
command, which is generated by a range of
menu items.

Process the event generated when the user
has requested a popup menu to appear by
pressing a special keyboard key (under
Windows) or by right clicking the mouse.
Process a
wxEVT_COMMAND_SLIDER_UPDATED
command, which is generated by a wxSlider
control.

Process a
wxEVT_COMMAND_RADIOBOX_SELECTED
command, which is generated by a
wxRadioBox control.

Process a
wxEVT_COMMAND_RADIOBUTTON_SELEC
TED command, which is generated by a
wxRadioButton control.

Process a
wxEVT_COMMAND_SCROLLBAR_UPDATED
command, which is generated by a wxScrollBar
control. This is provided for compatibility only;
more specific scrollbar event macros should be
used instead (see wxScrollEvent (p. 1119)).

165

CHAPTER 6

EVT_COMBOBOX(id, func) Process a
wxEVT_COMMAND_COMBOBOX_SELECTE
D command, which is generated by a
wxComboBox control.

EVT_TOOL(id, func) Process a
wxEVT_COMMAND_TOOL_CLICKED event (a
synonym for
wxEVT_COMMAND_MENU_SELECTED).
Pass the id of the tool.

EVT_TOOL_RANGE(id1, id2, func) Process a
wxEVT_COMMAND_TOOL_CLICKED event
for a range id identifiers. Pass the ids of the
tools.

EVT_TOOL_RCLICKED(id, func) Process a
wxEVT_COMMAND_TOOL_RCLICKED event.
Pass the id of the tool.

EVT_TOOL_RCLICKED_RANGE(id1, id2, func) Process a
wxEVT_COMMAND_TOOL_RCLICKED event
for a range of ids. Pass the ids of the tools.

EVT_TOOL_ENTER(id, func) Process a wxEVT_COMMAND_TOOL_ENTER
event. Pass the id of the toolbar itself. The
value of wxCommandEvent::GetSelection is
the tool id, or -1 if the mouse cursor has moved
off a tool.

EVT_COMMAND_LEFT_CLICK(id, func) Process a
wxEVT_COMMAND_LEFT_CLICK command,
which is generated by a control (Windows 95
and NT only).

EVT_COMMAND_LEFT_DCLICK(id, func) Process a
wxEVT_COMMAND_LEFT_DCLICK
command, which is generated by a control
(Windows 95 and NT only).

EVT_COMMAND_RIGHT_CLICK(id, func) Process a
wxEVT_COMMAND_RIGHT_CLICK
command, which is generated by a control
(Windows 95 and NT only).

EVT_COMMAND_SET_FOCUS(id, func) Process a
wxEVT_COMMAND_SET FOCUS command,
which is generated by a control (Windows 95
and NT only).

EVT_COMMAND_KILL_FOCUS(id, func) Process a
wxEVT_COMMAND_KILL _FOCUS command,
which is generated by a control (Windows 95
and NT only).

EVT_COMMAND_ENTER(id, func) Process a wxEVT_COMMAND_ENTER
command, which is generated by a control.

166

CHAPTER 6

wxCommandEvent::m_clientData

void* m_clientData

Contains a pointer to client data for listboxes and choices, if the event was a selection.
Beware, this is not implemented anyway...

wxCommandEvent::m_commandint

int m_commandint
Contains an integer identifier corresponding to a listbox, choice or radiobox selection

(only if the event was a selection, not a deselection), or a boolean value representing the
value of a checkbox.

wxCommandEvent::m_commandString

char* m_commandString

Contains a string corresponding to a listbox or choice selection.

wxCommandEvent::m_extraLong

long m_extralLong

Extra information. If the event comes from a listbox selection, it is a boolean determining
whether the event was a selection (TRUE) or a deselection (FALSE). A listbox
deselection only occurs for multiple-selection boxes, and in this case the index and
string values are indeterminate and the listbox must be examined by the application.

wxCommandEvent::wxCommandEvent

wxCommandEvent(WXTYPE commandEventType = 0, int id = 0)

Constructor.

wxCommandEvent::Checked

bool Checked() const

Deprecated, use IsChecked (p. 168) instead.

wxCommandEvent::GetClientData

167

CHAPTER 6

void* GetClientData()

Returns client data pointer for a listbox or choice selection event (not valid for a
deselection).

wxCommandEvent::GetExtraLong

long GetExtralLong()

Returns the m_extraLong member.

wxCommandEvent::Getint

int Getint()

Returns the m_commandint member.

wxCommandEvent::GetSelection

int GetSelection()

Returns item index for a listbox or choice selection event (not valid for a deselection).

wxCommandEvent::GetString

char* GetString()

Returns item string for a listbox or choice selection event (not valid for a deselection).

wxCommandEvent::IsChecked

bool IsChecked() const

This method can be used with checkbox and menu events: for the checkboxes, the
method returns TRUE for a selection event and FALSE for a deselection one. For the
menu events, this method indicates if the menu item just has become checked or
unchecked (and thus only makes sense for checkable menu items).

wxCommandEvent::IsSelection

bool IsSelection()

168

CHAPTER 6

For a listbox or choice event, returns TRUE if it is a selection, FALSE if it is a

deselection.

wxCommandEvent::SetClientData

void SetClientData(void* clientData)

Sets the client data for this event.

wxCommandEvent::SetExtraLong

void SetExtraLong(int extraLong)

Sets the m_extraLong member.

wxCommandEvent::Setint

void SetInt(int intCommand)

Sets the m_commandInt member.

wxCommandEvent::SetString

void SetString(char* string)

Sets the m_commandString member.

wxCommandProcessor

wxCommandProcessor is a class that maintains a history of wxCommands, with
undo/redo functionality built-in. Derive a new class from this if you want different

behaviour.
Derived from
wxObject (p. 961)
Include files
<wx/cmdproc.h>

See also

169

CHAPTER 6

wxCommandProcessor overview (p. 1681), wxCommand (p. 162)

wxCommandProcessor::wxCommandProcessor

wxCommandProcessor(int maxCommands = -1)
Constructor.
maxCommands may be set to a positive integer to limit the number of commands stored

to it, otherwise (and by default) the list of commands can grow arbitrarily.

wxCommandProcessor::~wxCommandProcessor

~wxCommandProcessor()

Destructor.

wxCommandProcessor::CanUndo

virtual bool CanUndo()

Returns TRUE if the currently-active command can be undone, FALSE otherwise.

wxCommandProcessor::ClearCommands

virtual void ClearCommands()

Deletes all the commands in the list and sets the current command pointer to NULL.

wxCommandProcessor::Redo

virtual bool Redo()

Executes (redoes) the current command (the command that has just been undone if
any).

wxCommandProcessor::GetCommands

wxList& GetCommands() const

170

CHAPTER 6

Returns the list of commands.

wxCommandProcessor::GetMaxCommands

int GetMaxCommands() const

Returns the maximum number of commands that the command processor stores.

wxCommandProcessor::GetEditMenu

wxMenu* GetEditMenu() const

Returns the edit menu associated with the command processor.

wxCommandProcessor::GetRedoAccelerator

const wxString& GetRedoAccelerator() const

Returns the string that will be appended to the Redo menu item.

wxCommandProcessor::GetRedoMenuLabel

wxString GetRedoMenuLabel() const

Returns the string that will be shown for the redo menu item.

wxCommandProcessor::GetUndoAccelerator

const wxString& GetUndoAccelerator() const

Returns the string that will be appended to the Undo menu item.

wxCommandProcessor::GetUndoMenuLabel

wxString GetUndoMenuLabel() const

Returns the string that will be shown for the undo menu item.

wxCommandProcessor::Initialize

virtual void Initialize()

171

CHAPTER 6

Initializes the command processor, setting the current command to the last in the list (if
any), and updating the edit menu (if one has been specified).

wxCommandProcessor::SetEditMenu

void SetEditMenu(wxMenu* menu)

Tells the command processor to update the Undo and Redo items on this menu as
appropriate. Set this to NULL if the menu is about to be destroyed and command
operations may still be performed, or the command processor may try to access an
invalid pointer.

wxCommandProcessor::SetMenuStrings

void SetMenuStrings()

Sets the menu labels according to the currently set menu and the current command
state.

wxCommandProcessor::SetRedoAccelerator

void SetRedoAccelerator(const wxString&accel)

Sets the string that will be appended to the Redo menu item.

wxCommandProcessor::SetUndoAccelerator

void SetUndoAccelerator(const wxString&accel)

Sets the string that will be appended to the Undo menu item.

wxCommandProcessor::Submit

virtual bool Submit(wxCommand *command, bool storelt = TRUE)

Submits a new command to the command processor. The command processor calls
wxCommand::Do to execute the command; if it succeeds, the command is stored in the
history list, and the associated edit menu (if any) updated appropriately. If it fails, the
command is deleted immediately. Once Submit has been called, the passed command
should not be deleted directly by the application.

storelt indicates whether the successful command should be stored in the history list.

172

CHAPTER 6

wxCommandProcessor::Undo

virtual bool Undo()

Undoes the command just executed.

wxCondition

wxCondition variables correspond to pthread conditions or to Win32 event objects. They
may be used in a multithreaded application to wait until the given condition becomes true
which happens when the condition becomes signaled.

For example, if a worker thread is doing some long task and another thread has to wait
until it is finished, the latter thread will wait on the condition object and the worker thread
will signal it on exit (this example is not perfect because in this particular case it would
be much better to just Wait() (p. 1313) for the worker thread, but if there are several
worker threads it already makes much more sense).

Note that a call to Signal() (p. 175) may happen before the other thread calls Wait() (p.
176) and, just as with the pthread conditions, the signal is then lost and so if you want to
be sure to get it you must use a mutex together with the condition variable.

Example

This example shows how a main thread may launch a worker thread which starts
running and then waits until the main thread signals it to continue:

class MySignallingThread : public wxThread
{

public:
MySignallingThread (wxMutex *mutex, wxCondition *condition)
{
m_mutex = mutex;
m_condition = condition;
Create () ;

}
virtual ExitCode Entry ()
{

. do our job ...

// tell the other(s) thread(s) that we're about to terminate: we

must

// lock the mutex first or we might signal the condition before
the

// waiting threads start waiting on it!

wxMutexLocker lock (m_mutex);

m_condition.Broadcast (); // same as Signal () here —-- one waiter
only

return 0O;

173

CHAPTER 6

private:
wxCondition *m_condition;
wxMutex *m_mutex;

}i

int main ()
{
wxMutex mutex;
wxCondition condition (mutex);

// the mutex should be initially locked
mutex.Lock () ;

// create and run the thread but notice that it won't be able to

// exit (and signal its exit) before we unlock the mutex below

MySignallingThread *thread = new MySignallingThread (&mutex,
&condition) ;

thread->Run() ;

// wait for the thread termination: Wait () atomically unlocks the
mutex

// which allows the thread to continue and starts waiting

condition.Wait () ;

// now we can exit
return 0O;

}

Of course, here it would be much better to simply use a joinable thread and call
wx Thread::Wait (p. 1313) on it, but this example does illustrate the importance of
properly locking the mutex when using wxCondition.

Constants

The following return codes are returned by wxCondition member functions:

enum wxCondError

{

wxCOND_NO_ERROR = 0, // successful completion

wxCOND_INVALID, // object hasn't been initialized
successfully

wxCOND_TIMEOUT, // WaitTimeout () has timed out

wxCOND_MISC_ERROR // some other error

i

Derived from
None.
Include files
<wx/thread.h>
See also

wxThread (p. 1306), wxMutex (p. 945)

174

CHAPTER 6

wxCondition::wxCondition

wxCondition(wxMutex& mutex)

Default and only constructor. The mutex must be locked by the caller before calling Wait
(p. 176) function.

Use IsOk (p. 175) to check if the object was successfully intiialized.

wxCondition::~wxCondition

~wxCondition()

Destroys the wxCondition object. The destructor is not virtual so this class should not be
used polymorphically.

wxCondition::Broadcast

void Broadcast()

Broadcasts to all waiting threads, waking all of them up. Note that this method may be
called whether the mutex associated with this condition is locked or not.

See also

wxCondition::Signal (p. 175)

wxCondition::IsOk

bool IsOk() const

Returns TRUE if the object had been initialized successfully, FALSE if an error occured.

wxCondition::Signal

void Signal()

Signals the object waking up at most one thread. If several threads are waiting on the
same condition, the exact thread which is woken up is undefined. If no threads are
waiting, the signal is lost and the condition would have to be signalled again to wake up
any thread which may start waiting on it later.

175

CHAPTER 6

Note that this method may be called whether the mutex associated with this condition is
locked or not.

See also

wxCondition::Broadcast (p. 175)

wxCondition::Wait

wxCondError Wait()

Waits until the condition is signalled.

This method atomically releases the lock on the mutex associated with this condition
(this is why it must be locked prior to calling Wait) and puts the thread to sleep until
Signal (p. 175) or Broadcast (p. 175) is called.

Note that even if Signal (p. 175) had been called before Wait without waking up any
thread, the thread would still wait for another one and so it is important to ensure that the
condition will be signalled after Wait or the thread may sleep forever.

Return value

Returns wxCOND_NO_ERROR 0N success, another value if an error occured.

See also

WaitTimeout (p. 176)

wxCondition::WaitTimeout

wxCondError Wait(unsigned long milliseconds)
Waits until the condition is signalled or the timeout has elapsed.

This method is identical to Wait (p. 176) except that it returns, with the return code of
wxCOND_TIMEOUT as soon as the given timeout expires.

Parameters

milliseconds
Timeout in milliseconds

Return value

Returns wxCOND_NO_ERROR if the condition was signalled, wxCOND_TIMEOUT if the
timeout elapsed ebfore this happened or another error code from wxCondError enum.

176

CHAPTER 6

wxConfigBase

wxConfigBase class defines the basic interface of all config classes. It can not be used
by itself (it is an abstract base class) and you will always use one of its derivations:
wxIniConfig, wxFileConfig, wxRegConfig or any other.

However, usually you don't even need to know the precise nature of the class you're
working with but you would just use the wxConfigBase methods. This allows you to write
the same code regardless of whether you're working with the registry under Win32 or
text-based config files under Unix (or even Windows 3.1 .INI files if you're really
unlucky). To make writing the portable code even easier, wxWindows provides a typedef
wxConfig which is mapped onto the native wxConfigBase implementation on the given
platform: i.e. wxRegConfig under Win32, wxIniConfig under Win16 and wxFileConfig
otherwise.

See config overview (p. 1616) for the descriptions of all features of this class.

It is highly recommended to use static functions Get() and/or Set(), so please have a
look at them. (p. 178)

Derived from

No base class

Include files

<wx/config.h> (to let wxWindows choose a wxConfig class for your platform)
<wx/confbase.h> (base config class)

<wx/fileconf.h> (wxFileConfig class)

<wx/msw/regconf.h> (wxRegConfig class)

<wx/msw/iniconf.h> (wxIniConfig class)

Example

Here is how you would typically use this class:

// using wxConfig instead of writing wxFileConfig or wxRegConfig

enhances
// portability of the code
wxConfig *config = new wxConfig ("MyAppName") ;

wxString str;

if (config->Read("LastPrompt", &str)) {
// last prompt was found in the config file/registry and its value
is now
// in str
}
else {

// no last prompt...
}

177

CHAPTER 6

// another example: using default values and the full path instead of
just

// key name: if the key is not found , the value 17 is returned

long value = config->Read("/LastRun/CalculatedValues/MaxValue", 17);

// at the end of the program we would save everything back
config->Write ("LastPrompt", str);
config->Write ("/LastRun/CalculatedvValues/MaxValue", value);

// the changes will be written back automatically
delete config;

This basic example, of course, doesn't show all wxConfig features, such as enumerating,
testing for existence and deleting the entries and groups of entries in the config file, its
abilities to automatically store the default values or expand the environment variables on
the fly. However, the main idea is that using this class is easy and that it should normally
do what you expect it to.

NB: in the documentation of this class, the words "config file" also mean "registry hive"

for wxRegConfig and, generally speaking, might mean any physical storage where a
wxConfigBase-derived class stores its data.

Static functions

These functions deal with the "default" config object. Although its usage is not at all
mandatory it may be convenient to use a global config object instead of creating and
deleting the local config objects each time you need one (especially because creating a
wxFileConfig object might be a time consuming operation). In this case, you may create
this global config object in the very start of the program and Set() it as the default. Then,
from anywhere in your program, you may access it using the Get() function. Note that
wxWindows will delete this config object for you during the program shutdown (from
wxApp::OnExit (p. 26) to be precise) but you can also do it yourself earlier if needed.

As it happens, you may even further simplify the procedure described above: you may
forget about calling Set(). When Get() is called and there is no current object, it will
create one using Create() function. To disable this behaviour DontCreateOnDemand() is
provided.

Note: You should use either Set() or Get() because wxWindows library itself would take
advantage of it and could save various information in it. For example wxFontMapper (p.
539) or Unix version of wxFileDialog (p. 478) have ability to use wxConfig class.

Set (p. 190)

Get (p. 185)

Create (p. 184)
DontCreateOnDemand (p. 184)

178

CHAPTER 6

Constructor and destructor

wxConfigBase (p. 183)
~wxConfigBase (p. 184)

Path management

As explained in config overview (p. 1616), the config classes support a file system-like
hierarchy of keys (files) and groups (directories). As in the file system case, to specify a
key in the config class you must use a path to it. Config classes also support the notion
of the current group, which makes it possible to use the relative paths. To clarify all this,
here is an example (it is only for the sake of demonstration, it doesn't do anything
sensible!):

wxConfig *config = new wxConfig ("FooBarApp");

// right now the current path is '/'
conf->Write ("RootEntry", 1);

// go to some other place: if the group(s) don't exist, they will be
created
conf->SetPath ("/Group/Subgroup") ;

// create an entry in subgroup
conf->Write ("SubgroupEntry", 3);

// '..' is understood

conf->Write ("../GroupEntry", 2);

conf->SetPath("..");

wxASSERT (conf->Read ("Subgroup/SubgroupEntry", 01) ==) ;

// use absolute path: it is allowed, too
wxASSERT (conf->Read ("/RootEntry", 01) ==) ;

Warning: it is probably a good idea to always restore the path to its old value on function
exit:

void foo (wxConfigBase *config)

{
wxString strOldPath = config->GetPath();
config->SetPath ("/Foo/Data") ;

config->SetPath (strOldPath);
}

because otherwise the assert in the following example will surely fail (we suppose here
that foo() function is the same as above except that it doesn't save and restore the path):

void bar (wxConfigBase *config)

{
config->Write ("Test", 17);

foo (confiqg);

179

CHAPTER 6

// we're reading "/Foo/Data/Test" here! -1 will probably be
returned...
wxASSERT (config->Read("Test", -1) == 17);
}

Finally, the path separator in wxConfigBase and derived classes is always /', regardless
of the platform (i.e. it is not \\' under Windows).

SetPath (p. 190)
GetPath (p. 187)

Enumeration

The functions in this section allow to enumerate all entries and groups in the config file.
All functions here return FALSE when there are no more items.

You must pass the same index to GetNext and GetFirst (don't modify it). Please note
that it is not the index of the current item (you will have some great surprises with
wxRegConfig if you assume this) and you shouldn't even look at it: it is just a "cookie"
which stores the state of the enumeration. It can't be stored inside the class because it
would prevent you from running several enumerations simultaneously, that's why you
must pass it explicitly.

Having said all this, enumerating the config entries/groups is very simple:

wxArrayString aNames;

// enumeration variables
wxString str;
long dummy;

// first enum all entries
bool bCont = config->GetFirstEntry(str, dummy);
while (bCont) {

aNames.Add (str) ;

bCont = GetConfig()->GetNextEntry (str, dummy);
}

. we have all entry names in aNames...
// now all groups...
bCont = GetConfig()->GetFirstGroup (str, dummy);
while (bCont) {

aNames.Add (str) ;

bCont = GetConfig()->GetNextGroup (str, dummy);
}

. we have all group (and entry) names in aNames...

There are also functions to get the number of entries/subgroups without actually
enumerating them, but you will probably never need them.

GetFirstGroup (p. 186)

180

CHAPTER 6

GetNextGroup (p. 186)
GetFirstEntry (p. 186)
GetNextEntry (p. 186)
GetNumberOfEntries (p. 187)
GetNumberOfGroups (p. 187)

Tests of existence

HasGroup (p. 187)
HasEntry (p. 187)
Exists (p. 185)
GetEntryType (p. 185)

Miscellaneous functions

GetAppName (p. 185)
GetVendorName (p. 187)
SetUmask (p. 191)

Key access

These function are the core of wxConfigBase class: they allow you to read and write
config file data. All Read function take a default value which will be returned if the
specified key is not found in the config file.

Currently, only two types of data are supported: string and long (but it might change in
the near future). To work with other types: for int or bool you can work with function
taking/returning long and just use the casts. Better yet, just use long for all variables
which you're going to save in the config file: chances are that sizeof (bool) ==
sizeof (int) == sizeof (long) anyhow on your system. For float, double and, in
general, any other type you'd have to translate them to/from string representation and
use string functions.

Try not to read long values into string variables and vice versa: although it just might
work with wxFileConfig, you will get a system error with wxRegConfig because in the
Windows registry the different types of entries are indeed used.

Final remark: the szKey parameter for all these functions can contain an arbitrary path
(either relative or absolute), not just the key name.

Read (p. 188)

Write (p. 191)
Flush (p. 185)

Rename entries/groups

181

CHAPTER 6

The functions in this section allow to rename entries or subgroups of the current group.
They will return FALSE on error. typically because either the entry/group with the original
name doesn't exist, because the entry/group with the new name already exists or
because the function is not supported in this wxConfig implementation.

RenameEntry (p. 189)
RenameGroup (p. 190)

Delete entries/groups

The functions in this section delete entries and/or groups of entries from the config file.
DeleteAll() is especially useful if you want to erase all traces of your program presence:
for example, when you uninstall it.

DeleteEntry (p. 184)

DeleteGroup (p. 184)
DeleteAll (p. 184)

Options

Some aspects of wxConfigBase behaviour can be changed during run-time. The first of
them is the expansion of environment variables in the string values read from the config
file: for example, if you have the following in your config file:

config file for my program
UserData = $HOME/data

the following syntax is valud only under Windows
UserData = %$windir%\\data.dat

the call to config->Read ("UserData") will return something
like" /home/zeitlin/data™ if you're lucky enough to run a Linux system ;-)

Although this feature is very useful, it may be annoying if you read a value which
containts '$' or '%' symbols (% is used for environment variables expansion under
Windows) which are not used for environment variable expansion. In this situation you
may call SetExpandEnvVars(FALSE) just before reading this value and
SetExpandEnvVars(TRUE) just after. Another solution would be to prefix the offending
symbols with a backslash.

The following functions control this option:

IsExpandingEnvVars (p. 187)
SetExpandEnvVars (p. 190)
SetRecordDefaults (p. 190)
IsRecordingDefaults (p. 188)

182

CHAPTER 6

wxConfigBase::wxConfigBase

wxConfigBase(const wxString& appName = wxEmptyString, const wxString&
vendorName = wxEmptyString, const wxString& localFilename = wxEmptyString,
const wxString& globalFilename = wxEmptyString, long style = 0)

This is the default and only constructor of the wxConfigBase class, and derived classes.
Parameters

appName
The application name. If this is empty, the class will normally use
wxApp::GetAppName (p. 24) to set it. The application name is used in the registry
key on Windows, and can be used to deduce the local filename parameter if that is
missing.

vendorName
The vendor name. If this is empty, it is assumed that no vendor name is wanted, if
this is optional for the current config class. The vendor name is appended to the
application name for wxRegConfig.

localFilename
Some config classes require a local filename. If this is not present, but required,
the application name will be used instead.

globalFilename
Some config classes require a global filename. If this is not present, but required,
the application name will be used instead.

style
Can be one of wxCONFIG_USE_LOCAL_FILE and
wxCONFIG_USE_GLOBAL_FILE. The style interpretation depends on the config
class and is ignored by some. For wxFileConfig, these styles determine whether a
local or global config file is created or used. If the flag is present but the parameter
is empty, the parameter will be set to a default. If the parameter is present but the
style flag not, the relevant flag will be added to the style. For wxFileConfig you can
also add wxCONFIG_USE_RELATIVE_PATH by logically or'ing it to either of the
_FILE options to tell wxFileConfig to use relative instead of absolute paths. For
wxFileConfig, you can also add wxCONFIG_USE_NO_ESCAPE_CHARACTERS
which will turn off character escaping for the values of entries stored in the config
file: for example a foo key with some backslash characters will be stored as
foo=C:\mydir instead of the usual storage of foo=C:\\mydir.

The wxCONFIG_USE_NO_ESCAPE_CHARACTERS style can be helpful if your
config file must be read or written to by a non-wxWindows program (which might
not understand the escape characters). Note, however, that if
wxCONFIG_USE_NO_ESCAPE_CHARACTERS style is used, it is is now your
application's responsibility to ensure that there is no newline or other illegal
characters in a value, before writing that value to the file.

183

CHAPTER 6

Remarks

By default, environment variable expansion is on and recording defaults is off.

wxConfigBase::~wxConfigBase

~wxConfigBase()

Empty but ensures that dtor of all derived classes is virtual.

wxConfigBase::Create

static wxConfigBase * Create()

Create a new config object: this function will create the "best" implementation of
wxConfig available for the current platform, see comments near the definition of
wxCONFIG_WIN32_NATIVE for details. It returns the created object and also sets it as
the current one.

wxConfigBase::DontCreateOnDemand

void DontCreateOnDemand()
Calling this function will prevent Get() from automatically creating a new config object if

the current one is NULL. It might be useful to call it near the program end to prevent new
config object "accidental" creation.

wxConfigBase::DeleteAll

bool DeleteAll()

Delete the whole underlying object (disk file, registry key, ...). Primarly for use by
desinstallation routine.

wxConfigBase::DeleteEntry

bool DeleteEntry(const wxString& key, bool bDeleteGrouplfEmpty = TRUE)

Deletes the specified entry and the group it belongs to if it was the last key in it and the
second parameter is true.

wxConfigBase::DeleteGroup

184

CHAPTER 6

bool DeleteGroup(const wxString& key)

Delete the group (with all subgroups)

wxConfigBase::Exists

bool Exists(wxString& strName) const

returns TRUE if either a group or an entry with a given name exists

wxConfigBase::Flush

bool Flush(bool bCurrentOnly = FALSE)

permanently writes all changes (otherwise, they're only written from object's destructor)

wxConfigBase::Get

static wxConfigBase * Get(bool CreateOnDemand = TRUE)

Get the current config object. If there is no current object andCreateOnDemand is
TRUE, creates one (using Create) unless DontCreateOnDemand was called previously.

wxConfigBase::GetAppName

wxString GetAppName() const

Returns the application name.

wxConfigBase::GetEntryType

enum wxConfigBase::EntryType GetEntryType(const wxString& name) const

Returns the type of the given entry or Unknown if the entry doesn't exist. This function
should be used to decide which version of Read() should be used because some of
wxConfig implementations will complain about type mismatch otherwise: e.g., an attempt
to read a string value from an integer key with wxRegConfig will fail.

The result is an element of enum EntryType:

enum EntryType
{
Unknown,
String,
Boolean,
Integer,

185

CHAPTER 6

Float
}i

wxConfigBase::GetFirstGroup

bool GetFirstGroup(wxString& str, long& index) const

Gets the first group.

wxPython note: The wxPython version of this method returns a 3-tuple consisting of the
continue flag, the value string, and the index for the next call.

wxPerl note: In wxPerl this method takes no arguments and returns a 3-element list (
continue, str, index).

wxConfigBase::GetFirstEntry

bool GetFirstEntry(wxString& str, long& index) const

Gets the first entry.

wxPython note: The wxPython version of this method returns a 3-tuple consisting of the
continue flag, the value string, and the index for the next call.

wxPerl note: In wxPerl this method takes no arguments and returns a 3-element list (
continue, str, index).

wxConfigBase::GetNextGroup

bool GetNextGroup(wxString& str, long& index) const

Gets the next group.

wxPython note: The wxPython version of this method returns a 3-tuple consisting of the
continue flag, the value string, and the index for the next call.

wxPerl note: In wxPerl this method only takes the index parameter and returns a 3-
element list (continue, str, index).

wxConfigBase::GetNextEntry

bool GetNextEntry(wxString& str, long& index) const

Gets the next entry.

wxPython note: The wxPython version of this method returns a 3-tuple consisting of the

186

CHAPTER 6

continue flag, the value string, and the index for the next call.

wxPerl note: In wxPerl this method only takes the index parameter and returns a 3-
element list (continue, str, index).

wxConfigBase::GetNumberOfEntries

uint GetNumberOfEntries(bool bRecursive = FALSE) const

wxConfigBase::GetNumberOfGroups

uint GetNumberOfGroups(bool bRecursive = FALSE) const

Get number of entries/subgroups in the current group, with or without its subgroups.

wxConfigBase::GetPath

const wxString& GetPath() const

Retrieve the current path (always as absolute path).

wxConfigBase::GetVendorName

wxString GetVendorName() const

Returns the vendor name.

wxConfigBase::HasEntry

bool HasEntry(wxString& strName) const

returns TRUE if the entry by this name exists

wxConfigBase::HasGroup

bool HasGroup(const wxString& strName) const

returns TRUE if the group by this name exists

wxConfigBase::IsExpandingEnvVars

bool IsExpandingEnvVars() const

187

CHAPTER 6

Returns TRUE if we are expanding environment variables in key values.

wxConfigBase::IsRecordingDefaults

bool IsRecordingDefaults() const

Returns TRUE if we are writing defaults back to the config file.

wxConfigBase::Read

bool Read(const wxString& key, wxString* str) const

Read a string from the key, returning TRUE if the value was read. If the key was not
found, stris not changed.

bool Read(const wxString& key, wxString* str, const wxString& defaultVal) const
Read a string from the key. The default value is returned if the key was not found.
Returns TRUE if value was really read, FALSE if the default was used.

wxString Read(const wxString& key, const wxString& defaultVal) const

Another version of Read(), returning the string value directly.

bool Read(const wxString& key, long* /) const

Reads a long value, returning TRUE if the value was found. If the value was not found, /
is not changed.

bool Read(const wxString& key, long* /long defaultVal) const

Reads a long value, returning TRUE if the value was found. If the value was not found,
defaultVal is used instead.

long Read(const wxString& key, long defaultVal) const

Reads a long value from the key and returns it. defaultVal is returned if the key is not
found.

NB: writing

conf->Read ("key", 0);

won't work because the call is ambiguous: compiler can not choose between twoRead

188

CHAPTER 6

functions. Instead, write:

conf->Read ("key", 01);

bool Read(const wxString& key, double* d) const

Reads a double value, returning TRUE if the value was found. If the value was not
found, dis not changed.

bool Read(const wxString& key, double* d, double defaultVal) const

Reads a double value, returning TRUE if the value was found. If the value was not
found, defaultVal is used instead.

bool Read(const wxString& key, bool* b) const

Reads a bool value, returning TRUE if the value was found. If the value was not found, b
is not changed.

bool Read(const wxString& key, bool* d,bool defaultVal) const

Reads a bool value, returning TRUE if the value was found. If the value was not found,
defaultVal is used instead.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

Read(key, default="") Returns a string.
Readint(key, default=0) Returns an int.
ReadFloat(key, default=0.0) Returns a floating point number.

wxPerl note: In place of a single overloaded method, wxPerl uses:

Read(key, default="") Returns a string

ReadlInt(key, default=0) Returns an integer
ReadFloat(key, default=0.0) Returns a floating point number
ReadBool(key, default=0) Returns a boolean

wxConfigBase::RenameEntry

bool RenameEntry(const wxString& oldName, const wxString& newName)

Renames an entry in the current group. The entries names (both the old and the new
one) shouldn't contain backslashes, i.e. only simple names and not arbitrary paths are
accepted by this function.

189

CHAPTER 6

Returns FALSE if the oldName doesn't exist or if newName already exists.

wxConfigBase::RenameGroup

bool RenameGroup(const wxString& oldName, const wxString& newName)
Renames a subgroup of the current group. The subgroup names (both the old and the
new one) shouldn't contain backslashes, i.e. only simple names and not arbitrary paths
are accepted by this function.

Returns FALSE if the oldName doesn't exist or if newName already exists.

wxConfigBase::Set

static wxConfigBase * Set(wxConfigBase *pConfig)

Sets the config object as the current one, returns the pointer to the previous current
object (both the parameter and returned value may be NULL)

wxConfigBase::SetExpandEnvVars

void SetExpandEnvVars (bool bDolt = TRUE)

Determine whether we wish to expand environment variables in key values.

wxConfigBase::SetPath

void SetPath(const wxString& strPath)

Set current path: if the first character is /', it is the absolute path, otherwise it is a relative
path. '.."is supported. If the strPath doesn't exist it is created.

wxConfigBase::SetRecordDefaults

void SetRecordDefaults(bool bDolt = TRUE)

Sets whether defaults are recorded to the config file whenever an attempt to read read
the value which is not present in it is done.

If on (default is off) all default values for the settings used by the program are written
back to the config file. This allows the user to see what config options may be changed
and is probably useful only for wxFileConfig.

190

CHAPTER 6

wxConfigBase::SetUmask

void SetUmask(int mode)

NB: this function is not in the base wxConfigBase class but is only implemented in
wxFileConfig. Moreover, this function is Unix-specific and doesn't do anything on other
platforms.

SetUmask() allows to set the mode to be used for the config file creation. For example,

to create a config file which is not readable by other users (useful if it stores some
sensitive information, such as passwords), you should do SetUmask (0077).

wxConfigBase::Write

bool Write(const wxString& key, const wxString& value)

bool Write(const wxString& key, long value)

bool Write(const wxString& key, double value)

bool Write(const wxString& key, bool value)

These functions write the specified value to the config file and return TRUE on success.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

Write(key, value) Writes a string.
Writelnt(key, value) Writes an int.
WriteFloat(key, value) Writes a floating point number.

wxPerl note: In place of a single overloaded method, wxPerl uses:

Write(key, value) Writes a string

Writelnt(key, value) Writes an integer
WriteFloat(key, value) Writes a floating point number
WriteBool(key, value) Writes a boolean

wxConnection

A wxConnection object represents the connection between a client and a server. It is
created by making a connection using a wxClient (p. 126) object, or by the acceptance
of a connection by a wxServer (p. 1126) object. The bulk of a DDE-like (Dynamic Data
Exchange) conversation is controlled by calling members in a wxConnection object or
by overriding its members. The actual DDE-based implementation using

191

CHAPTER 6

wxDDEConnection is available on Windows only, but a platform-independent, socket-
based version of this APl is available using wxTCPConnection, which has the same API.

An application should normally derive a new connection class from wxConnection, in
order to override the communication event handlers to do something interesting.

Derived from

wxConnectionBase
wxObject (p. 961)

Include files

<wx/ipc.h>

Types

wxIPCFormat is defined as follows:

enum wxIPCFormat

{
wxIPC_INVALID =
wxIPC_TEXT =
wxIPC_BITMAP =
wxIPC_METAFILE =
wxIPC_SYLK =
wxIPC_DIF =
wxIPC_TIFF =
wxIPC_OEMTEXT
wxIPC_DIB =
wxIPC_PALETTE
wxIPC_PENDATA
wxIPC_RIFF =
wxIPC_WAVE =
wxIPC_UNICODETEXT
wxIPC_ENHMETAFILE
wxIPC_FILENAME =
wxIPC_LOCALE =
wxIPC_PRIVATE =

}i

/* CF_TEXT */
/* CF_BITMAP */
/* CF_METAFILEPICT */

/* CF_OEMTEXT */
/* CF_DIB */

N N N SN S S SN N~

OWoOoJoyurd W EFE O

~

, /* CF_HDROP */

el e e
U WN O
<

[\
o

See also

wxClient (p. 126), wxServer (p. 1126),Interprocess communications overview (p. 1718)

wxConnection::wxConnection

wxConnection()
wxConnection(char* buffer, int size)

Constructs a connection object. If no user-defined connection object is to be derived

192

CHAPTER 6

from wxConnection, then the constructor should not be called directly, since the default
connection object will be provided on requesting (or accepting) a connection. However, if
the user defines his or her own derived connection object,
thewxServer::OnAcceptConnection (p. 1127) and/or wxClient::OnMakeConnection (p.
127) members should be replaced by functions which construct the new connection
object.

If the arguments of the wxConnection constructor are void then the wxConnection object
manages its own connection buffer, allocating memory as needed. A programmer-
supplied buffer cannot be increased if necessary, and the program will assert if it is not
large enough. The programmer-supplied buffer is included mainly for backwards
compatibility.

wxConnection::Advise

bool Advise(const wxString& item, char* data, int size = -1, wxIPCFormat format =
wxCF_TEXT)

Called by the server application to advise the client of a change in the data associated

with the given item. Causes the client connection's wxConnection::OnAdvise (p. 193)
member to be called. Returns TRUE if successful.

wxConnection::Execute

bool Execute(char* data, int size = -1, wxIPCFormat format = wxCF_TEXT)

Called by the client application to execute a command on the server. Can also be used
to transfer arbitrary data to the server (similar to wxConnection::Poke (p. 195) in that
respect). Causes the server connection's wxConnection::OnExecute (p. 194) member to
be called. Returns TRUE if successful.

wxConnection::Disconnect

bool Disconnect()

Called by the client or server application to disconnect from the other program; it causes
the wxConnection::OnDisconnect (p. 194) message to be sent to the corresponding
connection object in the other program. Returns TRUE if successful or already
disconnected. The application that calls Disconnect must explicitly delete its side of the
connection.

wxConnection::OnAdvise

virtual bool OnAdvise(const wxString& topic, const wxString& item, char* data, int
size, wxIPCFormat format)

193

CHAPTER 6

Message sent to the client application when the server notifies it of a change in the data
associated with the given item, usingAadvise (p. 193).

wxConnection::OnDisconnect

virtual bool OnDisconnect()

Message sent to the client or server application when the other application notifies it to
end the connection. The default behaviour is to delete the connection object and return
true, so applications should generally override OnDisconnect(finally calling the inherited
method as well) so that they know the connection object is no longer available.

wxConnection::OnExecute

virtual bool OnExecute(const wxString& fopic, char* data, int size, wxIPCFormat
format)

Message sent to the server application when the client notifies it to execute the given
data, using Execute (p. 193). Note that there is no item associated with this message.

wxConnection::OnPoke

virtual bool OnPoke(const wxString& fopic, const wxString& item, char* data, int
size, wxIPCFormat format)

Message sent to the server application when the client notifies it to accept the given
data.

wxConnection::OnRequest

virtual char* OnRequest(const wxString& topic, const wxString& item, int *size,
wxIPCFormat format)

Message sent to the server application when the client calls wxConnection::Request (p.
195). The server's OnRequest (p. 194) method should respond by returning a character
string, or NULL to indicate no data, and setting *size. The character string must of
course persist after the call returns.

wxConnection::OnStartAdvise

virtual bool OnStartAdvise(const wxString& topic, const wxString& item)

Message sent to the server application by the client, when the client wishes to start an
'advise loop' for the given topic and item. The server can refuse to participate by
returning FALSE.

194

CHAPTER 6

wxConnection::OnStopAdvise

virtual bool OnStopAdvise(const wxString& topic, const wxString& item)
Message sent to the server application by the client, when the client wishes to stop an

‘advise loop' for the given topic and item. The server can refuse to stop the advise loop
by returning FALSE, although this doesn't have much meaning in practice.

wxConnection::Poke

bool Poke(const wxString& item, char* data, int size = -1, wxIPCFormat format =
wxCF_TEXT)

Called by the client application to poke data into the server. Can be used to transfer
arbitrary data to the server. Causes the server connection's wxConnection::OnPoke (p.
194) member to be called. If size is -1 the size is computed from the string length of
data.

Returns TRUE if successful.

wxConnection::Request

char* Request(const wxString& item, int *size, wxIPCFormat format = wxIPC_TEXT)
Called by the client application to request data from the server. Causes the server
connection's wxConnection::OnRequest (p. 194) member to be called. Size may be
NULL or a pointer to a variable to receive the size of the requested item.

Returns a character string (actually a pointer to the connection's buffer) if successful,
NULL otherwise. This buffer does not need to be deleted.

wxConnection::StartAdvise

bool StartAdvise(const wxString& item)
Called by the client application to ask if an advise loop can be started with the server.

Causes the server connection's wxConnection::OnStartAdvise (p. 194) member to be
called. Returns TRUE if the server okays it, FALSE otherwise.

wxConnection::StopAdvise

bool StopAdvise(const wxString& item)

Called by the client application to ask if an advise loop can be stopped. Causes the

195

CHAPTER 6

server connection's wxConnection::OnStopAdvise (p. 195) member to be called.
Returns TRUE if the server okays it, FALSE otherwise.

wxContextHelp

This class changes the cursor to a query and puts the application into a 'context-
sensitive help mode'. When the user left-clicks on a window within the specified window,
a wxEVT_HELP event is sent to that control, and the application may respond to it by
popping up some help.

For example:
wxContextHelp contextHelp (myWindow) ;
There are a couple of ways to invoke this behaviour implicitly:

e Use the wxDIALOG_EX_CONTEXTHELP style for a dialog (Windows only).
This will put a question mark in the titlebar, and Windows will put the application
into context-sensitive help mode automatically, with further programming.

e Create a wxContextHelpButton (p. 197), whose predefined behaviour is to
create a context help object. Normally you will write your application so that this
button is only added to a dialog for non-Windows platforms (use
wxDIALOG_EX_CONTEXTHELP on Windows).

Derived from
wxObject (p. 961)
Include files
<wx/cshelp.h>

See also

wxHelpEvent (p. 660), wxHelpController (p. 653), wxContextHelpButton (p. 197)

wxContextHelp::wxContextHelp

wxContextHelp(wxWindow* window = NULL, bool doNow = TRUE)

Constructs a context help object, calling BeginContextHelp (p. 197) if doNow is TRUE
(the default).

If window is NULL, the top window is used.

196

CHAPTER 6

wxContextHelp::~wxContextHelp

~wxContextHelp()

Destroys the context help object.

wxContextHelp::BeginContextHelp

bool BeginContextHelp(wxWindow* window = NULL)

Puts the application into context-sensitive help mode. window is the window which will
be used to catch events; if NULL, the top window will be used.

Returns TRUE if the application was successfully put into context-sensitive help mode.
This function only returns when the event loop has finished.

wxContextHelp::EndContextHelp

bool EndContextHelp()

Ends context-sensitive help mode. Not normally called by the application.

wxContextHelpButton

Instances of this class may be used to add a question mark button that when pressed,
puts the application into context-help mode. It does this by creating a wxContextHelp (p.
196) object which itself generates a wxEVT_HELP event when the user clicks on a
window.

On Windows, you may add a question-mark icon to a dialog by use of the
wxDIALOG_EX_CONTEXTHELP extra style, but on other platforms you will have to add
a button explicitly, usually next to OK, Cancel or similar buttons.

Derived from

wxBitmapButton (p. 72)
wxButton (p. 94)
wxControl (p. 198)
wxWindow (p. 1407)
wxEvtHandler (p. 445)
wxObject (p. 961)

Include files

197

CHAPTER 6

<wx/cshelp.h>
See also

wxBitmapButton (p. 72), wxContextHelp (p. 196)

wxContextHelpButton::wxContextHelpButton

wxContextHelpButton()

Default constructor.

wxContextHelpButton(wxWindow* parent, wxWindowlID id =
wxID_CONTEXT_HELP, const wxPoint& pos = wxDefaultPosition, const wxSize&
size = wxDefaultSize, long style = wxBU_AUTODRAW)

Constructor, creating and showing a context help button.

Parameters

parent
Parent window. Must not be NULL.

id
Button identifier. Defaults to wxID_CONTEXT_HELP.
pos
Button position.
size
Button size. If the default size (-1, -1) is specified then the button is sized
appropriately for the question mark bitmap.
style
Window style.
Remarks

Normally you need pass only the parent window to the constructor, and use the defaults
for the remaining parameters.

wxControl

198

CHAPTER 6

This is the base class for a control or 'widget'.

A control is generally a small window which processes user input and/or displays one or
more item of data.

Derived from
wxWindow (p. 1407)
wxEvtHandler (p. 445)
wxObject (p. 961)
Include files
<wx/control.h>

See also

wxValidator (p. 1389)

wxControl::Command

void Command(wxCommandEvent& event)

Simulates the effect of the user issuing a command to the item. See wxCommandEvent
(p. 164).

wxControl::GetLabel

wxString& GetLabel()

Returns the control's text.

wxControl::SetLabel

void SetLabel(const wxString& /abel)

Sets the item's text.

wxCountingOutputStream

wxCountingOutputStream is a specialized output stream which does not write any data
anyway, instead it counts how many bytes would get written if this were a normal

199

CHAPTER 6

stream. This can sometimes be useful or required if some data gets serialized to a
stream or compressed by using stream compression and thus the final size of the
stream cannot be known other than pretending to write the stream. One case where the
resulting size would have to be known is if the data has to be written to a piece of
memory and the memory has to be allocated before writing to it (which is probably
always the case when writing to a memory stream).

Derived from

wxQutputStream (p. 965)wxStreamBase (p. 1213)

Include files

<wx/stream.h>

wxCountingOutputStream::wxCountingOutputStream

wxCountingOutputStream()

Creates a wxCountingOutputStream object.

wxCountingOutputStream::~wxCountingOutputStream

~wxCountingOutputStream()

Destructor.

wxCountingOutputStream::GetSize

size_t GetSize() const

Returns the current size of the stream.

wxCriticalSection

A critical section object is used for exactly the same purpose as mutexes (p. 945). The
only difference is that under Windows platform critical sections are only visible inside
one process, while mutexes may be shared between processes, so using critical
sections is slightly more efficient. The terminology is also slightly different: mutex may be
locked (or acquired) and unlocked (or released) while critical section is entered and left
by the program.

200

CHAPTER 6

Finally, you should try to use wxCriticalSectionLocker (p. 202) class whenever possible
instead of directly using wxCriticalSection for the same reasons wxMutexLocker (p. 947)
is preferrable to wxMutex (p. 945) - please see wxMutex for an example.

Derived from

None.

Include files

<wx/thread.h>

See also

wxThread (p. 1306), wxCondition (p. 173), wxMutexLocker (p. 947), wxCriticalSection (p.
200)

wxCriticalSection::wxCriticalSection

wxCriticalSection()

Default constructor initializes critical section object.

wxCriticalSection::~wxCriticalSection

~wxCriticalSection()

Destructor frees the resources.

wxCriticalSection::Enter

void Enter()
Enter the critical section (same as locking a mutex). There is no error return for this

function. After entering the critical section protecting some global data the thread running
in critical section may safely use/modify it.

wxCriticalSection::Leave

void Leave()

Leave the critical section allowing other threads use the global data protected by it.
There is no error return for this function.

201

CHAPTER 6

wxCriticalSectionLocker

This is a small helper class to be used with wxCriticalSection (p. 200) objects. A
wxCriticalSectionLocker enters the critical section in the constructor and leaves it in the
destructor making it much more difficult to forget to leave a critical section (which, in
general, will lead to serious and difficult to debug problems).

Example of using it:

void Set Foo()
{

// gs_critSect is some (global) critical section guarding access to
the

// object "foo"
wxCriticalSectionLocker locker (gs_critSect);

if (...0)
{
// do something

return;

}

// do something else

return;

}

Without wxCriticalSectionLocker, you would need to remember to manually leave the
critical section before each return.

Derived from
None.
Include files
<wx/thread.h>
See also

wxCriticalSection (p. 200), wxMutexLocker (p. 947)

wxCriticalSectionLocker::wxCriticalSectionLocker

wxCriticalSectionLocker(wxCriticalSection& criticalsection)

Constructs a wxCriticalSectionLocker object associated with givencriticalsection and

202

CHAPTER 6

enters it.

wxCriticalSectionLocker::~wxCriticalSectionLocker

~wxCriticalSectionLocker()

Destructor leaves the critical section.

wxCSConv

This class converts between any character sets and Unicode. It has one predefined
instance, wxConvLocal, for the default user character set.

Derived from
wxMBConv (p. 869)
Include files
<wx/strconv.h>
See also

wxMBConv (p. 869), wxEncodingConverter (p. 437), wxMBConv classes overview (p.
1601)

wxCSConv::wxCSConv

wxCSConv(const wxChar* charset)

Constructor. Specify the name of the character set you want to convert from/to.

wxCSConv::~wxCSConv

~wxCSConv()

Destructor.

wxCSConv::LoadNow

203

CHAPTER 6

void LoadNow()

If the conversion tables needs to be loaded from disk, this method will do so. Otherwise,
they will be loaded when any of the conversion methods are called.

wxCSConv::MB2WC

size_t MB2WC(wchar_t* buf, const char* psz, size_t n) const

Converts from the selected character set to Unicode. Returns the size of the destination
buffer.

wxCSConv::WC2MB

size_t WC2MB(char* buf, const wchar_t* psz, size_t n) const

Converts from Unicode to the selected character set. Returns the size of the destination
buffer.

wxCursor

A cursor is a small bitmap usually used for denoting where the mouse pointer is, with a
picture that might indicate the interpretation of a mouse click. As with icons, cursors in X
and MS Windows are created in a different manner. Therefore, separate cursors will be
created for the different environments. Platform-specific methods for creating a
wxCursor object are catered for, and this is an occasion where conditional compilation
will probably be required (see wxlcon (p. 724) for an example).

A single cursor object may be used in many windows (any subwindow type). The
wxWindows convention is to set the cursor for a window, as in X, rather than to set it
globally as in MS Windows, although a global ::wxSetCursor (p. 1515) is also available
for MS Windows use.

Derived from

wxBitmap (p. 58)

wxGDIObject (p. 569)

wxObject (p. 961)

Include files

<wx/cursor.h>

Predefined objects

204

CHAPTER 6

Objects:

wxNullCursor

Pointers:

wxSTANDARD_ CURSOR
wxHOURGLASS CURSOR
wxCROSS CURSOR

See also

wxBitmap (p. 58), wxlcon (p. 724), wxWindow::SetCursor (p. 1439), ::wxSetCursor (p.
1515)

wxCursor::wxCursor

wxCursor()
Default constructor.

wxCursor(const char bits[], int width, int height, int hotSpotX=-1, int hotSpotY=-1,
const char maskBits[]=NULL)

Constructs a cursor by passing an array of bits (Motif and Xt only). maskBits is used only
under Motif.

If either hotSpotX or hotSpotY is -1, the hotspot will be the centre of the cursor image
(Motif only).

wxCursor(const wxString& cursorName, long type, int hotSpotX=0, int hotSpotY=0)
Constructs a cursor by passing a string resource name or filename.

hotSpotX and hotSpotY are currently only used under Windows when loading from an
icon file, to specify the cursor hotspot relative to the top left of the image.

wxCursor(int cursorld)

Constructs a cursor using a cursor identifier.

wxCursor(const wximage& image)

Constructs a cursor from a wxlmage. The cursor is monochrome, colors with the RGB
elements all greater than 127 will be foreground, colors less than this background. The

mask (if any) will be used as transparent.

In MSW the foreground will be white and the background black. The cursor is resized to

205

CHAPTER 6

32x32 In GTK, the two most frequent colors will be used for foreground and background.
The cursor will be displayed at the size of the image.

wxCursor(const wxCursor& cursor)
Copy constructor. This uses reference counting so is a cheap operation.
Parameters

bits
An array of bits.

maskBits
Bits for a mask bitmap.

width
Cursor width.
height
Cursor height.
hotSpotX
Hotspot x coordinate.
hotSpotY
Hotspot y coordinate.
type
Icon type to load. Under Moitif, type defaults to wxBITMAP_TYPE_XBM. Under
Windows, it defaults to wxBITMAP_TYPE_CUR_RESOURCE.
Under X, the permitted cursor types are:
wxBITMAP_TYPE_XBM Load an X bitmap file.
Under Windows, the permitted types are:
wxBITMAP_TYPE_CUR Load a cursor from a .cur cursor file (only if
USE_RESOURCE_LOADING_IN_MSW is
enabled in setup.h).
wxBITMAP_TYPE_CUR_RESOURCE Load a Windows resource (as
specified in the .rc file).
wxBITMAP_TYPE_ICO Load a cursor from a .ico icon file (only if
USE_RESOURCE_LOADING_IN_MSW is
enabled in setup.h). Specify hotSpotX and
hotSpotY.
cursorld

A stock cursor identifier. May be one of:

206

CHAPTER 6

wxCURSOR_ARROW A standard arrow cursor.

wWxCURSOR_RIGHT_ARROW A standard arrow cursor pointing to the right.

wxCURSOR_BLANK Transparent cursor.

wxCURSOR_BULLSEYE Bullseye cursor.

wxCURSOR_CHAR Rectangular character cursor.

wxCURSOR_CROSS A cross cursor.

wxCURSOR_HAND A hand cursor.

wxCURSOR_IBEAM An |-beam cursor (vertical line).

wxCURSOR_LEFT_BUTTON Represents a mouse with the left button
depressed.

wxCURSOR_MAGNIFIER A magnifier icon.

wxCURSOR_MIDDLE_BUTTON Represents a mouse with the middle button
depressed.

wxCURSOR_NO_ENTRY A no-entry sign cursor.

wxCURSOR_PAINT_BRUSH A paintbrush cursor.

wxCURSOR_PENCIL A pencil cursor.

wxCURSOR_POINT_LEFT A cursor that points left.

wxCURSOR_POINT_RIGHT A cursor that points right.
wxCURSOR_QUESTION_ARROW An arrow and question mark.
wxCURSOR_RIGHT _BUTTON Represents a mouse with the right button

depressed.
wxCURSOR_SIZENESW A sizing cursor pointing NE-SW.
wxCURSOR_SIZENS A sizing cursor pointing N-S.
wxCURSOR_SIZENWSE A sizing cursor pointing NW-SE.
wxCURSOR_SIZEWE A sizing cursor pointing W-E.
wxCURSOR_SIZING A general sizing cursor.
wxCURSOR_SPRAYCAN A spraycan cursor.
wxCURSOR_WAIT A wait cursor.
wxCURSOR_WATCH A watch cursor.
wxCURSOR_ARROWWAIT A cursor with both an arrow and an hourglass,

(windows.)

Note that not all cursors are available on all platforms.

cursor
Pointer or reference to a cursor to copy.

wxPython note: Constructors supported by wxPython are:
wxCursor(name, flags, hotSpotX=0, hotSpotY=0) Constructs a cursor
from a filename
wxStockCursor(id) Constructs a stock cursor
wxPerl note: Constructors supported by wxPerl are:
e::Cursor->new(name, type, hotSpotX = 0, hotSpotY =0)

e::Cursor->new(id)
e::Cursor->new(image)

207

CHAPTER 6

e::Cursor->newData(bits, width, height, hotSpotX = -1, hotSpotY = -1, maskBits = 0)

wxCursor::~wxCursor

~wxCursor()
Destroys the cursor. A cursor can be reused for more than one window, and does not

get destroyed when the window is destroyed. wxWindows destroys all cursors on
application exit, although it is best to clean them up explicitly.

wxCursor::0k

bool Ok() const

Returns TRUE if cursor data is present.

wxCursor::operator =

wxCursor& operator =(const wxCursor& cursor)

Assignment operator, using reference counting. Returns a reference to 'this'.

wxCursor::operator ==

bool operator ==(const wxCursor& cursor)
Equality operator. Two cursors are equal if they contain pointers to the same underlying

cursor data. It does not compare each attribute, so two independently-created cursors
using the same parameters will fail the test.

wxCursor::operator !=

bool operator !=(const wxCursor& cursor)

Inequality operator. Two cursors are not equal if they contain pointers to different
underlying cursor data. It does not compare each attribute.

wxCustomDataObject

wxCustomDataObject is a specialization of wxDataObjectSimple (p. 226) for some
application-specific data in arbitrary (either custom or one of the standard ones). The

208

CHAPTER 6

only restriction is that it is supposed that this data can be copied bitwise (i.e. with
memcpy ()), SO it would be a bad idea to make it contain a C++ object (though C struct is
fine).

By default, wxCustomDataObject stores the data inside in a buffer. To put the data into
the buffer you may use either SetData (p. 210) or TakeData (p. 210) depending on
whether you want the object to make a copy of data or not.

If you already store the data in another place, it may be more convenient and efficient to
provide the data on-demand which is possible too if you override the virtual functions
mentioned below.

Virtual functions to override

This class may be used as is, but if you don't want store the data inside the object but
provide it on demand instead, you should override GetSize (p. 210), GetData (p. 210)
and SetData (p. 210) (or may be only the first two or only the last one if you only allow
reading/writing the data)

Derived from

wxDataObjectSimple (p. 226)
wxDataObject (p. 222)

Include files
<wx/dataobj.h>
See also

wxDataObject (p. 222)

wxCustomDataObject::wxCustomDataObject

wxCustomDataObject(const wxDataFormat& format = wxFormatinvalid)

The constructor accepts a format argument which specifies the (single) format supported
by this object. If it isn't set here, SetFormat (p. 228) should be used.

wxCustomDataObject::~wxCustomDataObject

~wxCustomDataObiject()

The destructor will free the data hold by the object. Notice that although it calls a virtual
Free() (p. 210) function, the base class version will always be called (C++ doesn't allow
calling virtual functions from constructors or destructors), so if you override Free (), you

209

CHAPTER 6

should override the destructor in your class as well (which would probably just call the
derived class' version of Free ()).

wxCustomDataObiject::Alloc

virtual void * Alloc(size_t size)

This function is called to allocate size bytes of memory from SetData(). The default
version just uses the operator new.

wxCustomDataObject::Free

wxPython note: This method expects a string in wxPython. You can pass nearly any
object by pickling it first.

virtual void Free()
This function is called when the data is freed, you may override it to anything you want

(or may be nothing at all). The default version calls operator delete[] on the data.

wxCustomDataObject::GetSize

virtual size_t GetSize() const

Returns the data size in bytes.

wxCustomDataObject::GetData

virtual void * GetData() const

Returns a pointer to the data.

wxCustomDataObject::SetData

virtual void SetData(size_t size, const void *data)

Set the data. The data object will make an internal copy.

wxCustomDataObject::TakeData

virtual void TakeData(size_t size, const void “data)

Like SetData (p. 210), but doesn't copy the data - instead the object takes ownership of

210

CHAPTER 6

the pointer.

wxDatabase

Every database object represents an ODBC connection. The connection may be closed
and reopened.

Derived from

wxObject (p. 961)

Include files

<wx/odbc.h>

See also

wxDatabase overview (p. 1714), wxRecordSet (p. 1059)

A much more robust and feature-rich set of ODBC classes is now available and
recommended for use in place of the wxDatabase class.

See details of these classes in:wxDb (p. 267), wxDbTable (p. 306)

wxDatabase::wxDatabase

wxDatabase()

Constructor. The constructor of the first wxDatabase instance of an application initializes
the ODBC manager.

wxDatabase::~wxDatabase

~wxDatabase()
Destructor. Resets and destroys any associated wxRecordSet instances.

The destructor of the last wxDatabase instance will deinitialize the ODBC manager.

wxDatabase::BeginTrans

bool BeginTrans()

211

CHAPTER 6

Not implemented.

wxDatabase::Cancel

void Cancel()

Not implemented.

wxDatabase::CanTransact

bool CanTransact|()

Not implemented.

wxDatabase::CanUpdate

bool CanUpdate()

Not implemented.

wxDatabase::Close

bool Close()

Resets the statement handles of any associated wxRecordSet objects, and disconnects

from the current data source.

wxDatabase::CommitTrans

bool CommitTrans()

Commits previous transactions. Not implemented.

wxDatabase::ErrorOccured

bool ErrorOccured|)

Returns TRUE if the last action caused an error.

wxDatabase::ErrorSnapshot

212

CHAPTER 6

void ErrorSnapshot(HSTMT statement = SQL_NULL_HSTMT)
This function will be called whenever an ODBC error occured. It stores the error related

information returned by ODBC. If a statement handle of the concerning ODBC action is
available it should be passed to the function.

wxDatabase::GetDatabaseName

wxString GetDatabaseName()

Returns the name of the database associated with the current connection.

wxDatabase::GetDataSource

wxString GetDataSource()

Returns the name of the connected data source.

wxDatabase::GetErrorClass

wxString GetErrorClass()
Returns the error class of the last error. The error class consists of five characters where

the first two characters contain the class and the other three characters contain the
subclass of the ODBC error. See ODBC documentation for further details.

wxDatabase::GetErrorCode

wxRETCODE GetErrorCode()

Returns the error code of the last ODBC function call. This will be one of:

SQL_ERROR General error.

SQL_INVALID_HANDLE An invalid handle was passed to an ODBC function.
SQL_NEED_DATA ODBC expected some data.
SQL_NO_DATA_FOUND No data was found by this ODBC call.
SQL_SUCCESS The call was successful.

SQL_SUCCESS_WITH_INFO The call was successful, but further information can
be obtained from the ODBC manager.

wxDatabase::GetErrorMessage

wxString GetErrorMessage()

213

CHAPTER 6

Returns the last error message returned by the ODBC manager.

wxDatabase::GetErrorNumber

long GetErrorNumber ()

Returns the last native error. A native error is an ODBC driver dependent error number.

wxDatabase::GetHDBC

HDBC GetHDBC()

Returns the current ODBC database handle.

wxDatabase::GetHENV

HENV GetHENV()

Returns the ODBC environment handle.

wxDatabase::GetInfo

bool Getinfo(long infoType, long *buf)
bool Getinfo(long infoType, const wxString& buf, int bufSize=-1)

Returns requested information. The return value is TRUE if successful, FALSE
otherwise.

infoType is an ODBC identifier specifying the type of information to be returned.

bufis a character or long integer pointer to storage which must be allocated by the
application, and which will contain the information if the function is successful.

bufSize is the size of the character buffer. A value of -1 indicates that the size should be
computed by the GetInfo function.

wxDatabase::GetPassword

wxString GetPassword()

Returns the password of the current user.

214

CHAPTER 6

wxDatabase::GetUsername

wxString GetUsername()

Returns the current username.

wxDatabase::GetODBCVersionFloat

float GetODBCVersionFloat(bool implementation=TRUE)
Returns the version of ODBC in floating point format, e.g. 2.50.

implementation should be TRUE to get the DLL version, or FALSE to get the version
defined in the sql.h header file.

This function can return the value 0.0 if the header version number is not defined (for
early versions of ODBC).

wxDatabase::GetODBCVersionString

wxString GetODBCVersionString(bool implementation=TRUE)
Returns the version of ODBC in string format, e.g. "02.50".

implementation should be TRUE to get the DLL version, or FALSE to get the version
defined in the sql.h header file.

This function can return the value "00.00" if the header version number is not defined
(for early versions of ODBC).

wxDatabase::InWaitForDataSource

bool InWaitForDataSource()

Not implemented.

wxDatabase::IsOpen

bool IsOpen()

Returns TRUE if a connection is open.

wxDatabase::Open

215

CHAPTER 6

bool Open(const wxString& datasource, bool exclusive = FALSE, bool readOnly =
TRUE, const wxString& username = "ODBC", const wxString& password = ")

Connect to a data source. datasource contains the name of the ODBC data source. The

parameters exclusive and readOnly are not used.

wxDatabase::OnSetOptions

void OnSetOptions(wxRecordSet *recordSet)

Not implemented.

wxDatabase::OnWaitForDataSource

void OnWaitForDataSource(bool stillExecuting)

Not implemented.

wxDatabase::RollbackTrans

bool RollbackTrans()

Sends a rollback to the ODBC driver. Not implemented.

wxDatabase::SetDataSource

void SetDataSource(const wxString& s)

Sets the name of the data source. Not implemented.

wxDatabase::SetLoginTimeout

void SetLoginTimeout(long seconds)

Sets the time to wait for an user login. Not implemented.

wxDatabase::SetPassword

void SetPassword(const wxString& s)

Sets the password of the current user. Not implemented.

216

CHAPTER 6

wxDatabase::SetSynchronousMode

void SetSynchronousMode(bool synchronous)

Toggles between synchronous and asynchronous mode. Currently only synchronous
mode is supported, so this function has no effect.

wxDatabase::SetQueryTimeout

void SetQueryTimeout(long seconds)

Sets the time to wait for a response to a query. Not implemented.

wxDatabase::SetUsername

void SetUsername(const wxString& s)

Sets the name of the current user. Not implemented.

wxDataFormat

A wxDataFormat is an encapsulation of a platform-specific format handle which is used
by the system for the clipboard and drag and drop operations. The applications are
usually only interested in, for example, pasting data from the clipboard only if the data is
in a format the program understands and a data format is something which uniquely
identifies this format.

On the system level, a data format is usually just a number (CLIPFORMATUNder
Windows or At om under X11, for example) and the standard formats are, indeed, just
numbers which can be implicitly converted to wxDataFormat. The standard formats are:

wxDF_INVALID An invalid format - used as default argument for functions
taking a wxDataFormat argument sometimes

wxDF_TEXT Text format (wxString)

wxDF_BITMAP A bitmap (wxBitmap)

wxDF_METAFILE A metafile (wxMetafile, Windows only)
wxDF_FILENAME A list of filenames

wxDF_HTML An HTML string. This is only valid when passed to

wxSetClipboardData when compiled with Visual C++ in
non-Unicode mode

217

CHAPTER 6

As mentioned above, these standard formats may be passed to any function taking
wxDataFormat argument because wxDataFormat has an implicit conversion from them
(or, to be precise from the type wxDataFormat : : NativeFormat which is the type
used by the underlying platform for data formats).

Aside the standard formats, the application may also use custom formats which are
identified by their names (strings) and not numeric identifiers. Although internally custom
format must be created (or registered) first, you shouldn't care about it because it is done
automatically the first time the wxDataFormat object corresponding to a given format
name is created. The only implication of this is that you should avoid having global
wxDataFormat objects with non-default constructor because their constructors are
executed before the program has time to perform all necessary initialisations and so an
attempt to do clipboard format registration at this time will usually lead to a crash!
Virtual functions to override

None

Derived from

None

See also

Clipboard and drag and drop overview (p. 1691), DnD sample (p. 1578), wxDataObject
(p. 222)

wxDataFormat::wxDataFormat

wxDataFormat(NativeFormat format = wxDF_INVALID)

Constructs a data format object for one of the standard data formats or an empty data
object (use SetType (p. 219) or Setld (p. 219) later in this case)

wxPerl note: In wxPerl this function is named newNative.

wxDataFormat::wxDataFormat

wxDataFormat(const wxChar *format)
Constructs a data format object for a custom format identified by its name format.

wxPerl note: In wxPerl this function is named newUser.

218

CHAPTER 6

wxDataFormat::operator ==

bool operator ==(const wxDataFormat& format) const

Returns TRUE if the formats are equal.

wxDataFormat::operator !=

bool operator !=(const wxDataFormat& format) const

Returns TRUE if the formats are different.

wxDataFormat::Getld

wxString Getld() const

Returns the name of a custom format (this function will fail for a standard format).

wxDataFormat::GetType

NativeFormat GetType() const

Returns the platform-specific number identifying the format.

wxDataFormat::Setld

void Setld(const wxChar *format)

Sets the format to be the custom format identified by the given name.

wxDataFormat::SetType

void SetType(NativeFormat format)

Sets the format to the given value, which should be one of wxDF_XXX constants.

wxDatalnputStream

This class provides functions that read binary data types in a portable way. Data can be
read in either big-endian or little-endian format, little-endian being the default on all

219

CHAPTER 6

architectures.

If you want to read data from text files (or streams) use wxTextInputStream (p. 1299)
instead.

The >> operator is overloaded and you can use this class like a standard C++ iostream.
Note, however, that the arguments are the fixed size types wxUint32, wxInt32 etc and on
a typical 32-bit computer, none of these match to the "long" type (wxInt32 is defined as
signed int on 32-bit architectures) so that you cannot use long. To avoid problems (here
and elsewhere), make use of the wxInt32, wxUint32, etc types.

For example:

wxFileInputStream input ("mytext.dat");
wxDataInputStream store(input);
wxUint8 il;

float £2;

wxString line;

store >> il; // read a 8 bit integer.
store >> 11 >> f2; // read a 8 bit integer followed by float.
store >> line; // read a text line

See also wxDataOutputStream (p. 228).
Derived from

None

Include files

<wx/datstrm.h>

wxDatalnputStream::wxDatalnputStream

wxDatalnputStream(wxInputStream& stream)
wxDatalnputStream(wxInputStream& stream, wxMBConv& conv = wxMBConvUTF8)

Constructs a datastream object from an input stream. Only read methods will be
available. The second form is only available in Unicode build of wxWindows.

Parameters

Stream
The input stream.

conv
Charset conversion object object used to decode strings in Unicode mode (see

220

CHAPTER 6

wxDatalnputStream::ReadString (p. 222)documentation for detailed description).
Note that you must not destroyconv before you destroy this wxDatalnputStream
instance!

wxDatalnputStream::~wxDatalnputStream

~wxDatalnputStream()

Destroys the wxDatalnputStream object.

wxDatalnputStream::BigEndianOrdered

void BigEndianOrdered(bool be order)

If be_orderis TRUE, all data will be read in big-endian order, such as written by
programs on a big endian architecture (e.g. Sparc) or written by Java-Streams (which
always use big-endian order).

wxDatalnputStream::Read8

wxUint8 Read8()

Reads a single byte from the stream.

wxDatalnputStream::Read16

wxUint16 Read16()

Reads a 16 bit unsigned integer from the stream.

wxDatalnputStream::Read32

wxUint32 Read32()

Reads a 32 bit unsigned integer from the stream.

wxDatalnputStream::Read64

wxUint64 Read64()

Reads a 64 bit unsigned integer from the stream.

wxDatalnputStream::ReadDouble

221

CHAPTER 6

double ReadDouble()

Reads a double (IEEE encoded) from the stream.

wxDatalnputStream::ReadString

wxString ReadString()

Reads a string from a stream. Actually, this function first reads a long integer specifying
the length of the string (without the last null character) and then reads the string.

In Unicode build of wxWindows, the fuction first reads multibyte (char*) string from the
stream and then converts it to Unicode using the convobject passed to constructor and
returns the result as wxString. You are responsible for using the same convertor as
when writing the stream.

See also wxDataOutputStream::WriteString (p. 230).

wxDataObject

A wxDataObject represents data that can be copied to or from the clipboard, or dragged
and dropped. The important thing about wxDataObject is that this is a 'smart' piece of
data unlike usual 'dumb' data containers such as memory buffers or files. Being 'smart'
here means that the data object itself should know what data formats it supports and
how to render itself in each of supported formats.

A supported format, incidentally, is exactly the format in which the data can be requested
from a data object or from which the data object may be set. In the general case, an
object may support different formats on 'input’ and 'output’, i.e. it may be able to render
itself in a given format but not be created from data on this format or vice versa.
wxDataObject defines an enumeration type

enum Direction
{
Get
Set

0x01, // format is supported by GetDataHere ()
0x02 // format is supported by SetData ()

}i

which allows to distinguish between them. See wxDataFormat (p. 217) documentation
for more about formats.

Not surprisingly, being 'smart' comes at a price of added complexity. This is reasonable
for the situations when you really need to support multiple formats, but may be annoying
if you only want to do something simple like cut and paste text.

To provide a solution for both cases, wxWindows has two predefined classes which
derive from wxDataObject: wxDataObjectSimple (p. 226) and wxDataObjectComposite

222

CHAPTER 6

(p. 225). wxDataObjectSimple (p. 226) is the simplest wxDataObject possible and only
holds data in a single format (such as HTML or text) and wxDataObjectComposite (p.
225) is the simplest way to implement wxDataObject which does support multiple
formats because it achievs this by simply holding several wxDataObjectSimple objects.

So, you have several solutions when you need a wxDataObject class (and you need one
as soon as you want to transfer data via the clipboard or drag and drop):

1. Use one of the built-in classes You may use wxTextDataObject,
wxBitmapDataObject or wxFileDataObject in the simplest
cases when you only need to support one format and your
data is either text, bitmap or list of files.

2. Use wxDataObjectSimple Deriving from wxDataObjectSimple is the simplest
solution for custom data - you will only support one format
and so probably won't be able to communicate with other
programs, but data transfer will work in your program (or
between different copies of it).

3. Use wxDataObjectComposite This is a simple but powerful solution which allows
you to support any number of formats (either standard or
custom if you combine it with the previous solution).

4. Use wxDataObiject directly This is the solution for maximal flexibility and
efficiency, but it is also is the most difficult to implement.

Please note that the easiest way to use drag and drop and the clipboard with multiple
formats is by using wxDataObjectComposite, but it is not the most efficient one as each
wxDataObjectSimple would contain the whole data in its respective formats. Now
imagine that you want to paste 200 pages of text in your proprietary format, as well as
Word, RTF, HTML, Unicode and plain text to the clipboard and even today's computers
are in trouble. For this case, you will have to derive from wxDataObject directly and
make it enumerate its formats and provide the data in the requested format on demand.

Note that neither the GTK data transfer mechanisms for the clipboard and drag and
drop, nor the OLE data transfer copy any data until another application actually requests
the data. This is in contrast to the 'feel' offered to the user of a program who would
normally think that the data resides in the clipboard after having pressed 'Copy' - in
reality it is only declared to be available.

There are several predefined data object classes derived from wxDataObjectSimple:
wxFileDataObject (p. 477), wxTextDataObject (p. 1288) and wxBitmapDataObject (p.
77) which can be used without change.

You may also derive your own data object classes from wxCustomDataObject (p. 208)
for user-defined types. The format of user-defined data is given as mime-type string
literal, such as "application/word" or "image/png". These strings are used as they are
under Unix (so far only GTK) to identify a format and are translated into their Windows
equivalent under Win32 (using the OLE IDataObject for data exchange to and from the
clipboard and for drag and drop). Note that the format string translation under Windows

223

CHAPTER 6

is not yet finished.

wxPython note: At this time this class is not directly usable from wxPython. Derive a
class from wxPyDataObjectSimple (p. 226) instead.

wxPerl note: This class is not currently usable from wxPerl; you may use
Wx::PIDataObjectSimple (p. 226) instead.

Virtual functions to override

Each class derived directly from wxDataObject must override and implement all of its
functions which are pure virtual in the base class.

The data objects which only render their data or only set it (i.e. work in only one
direction), should return 0 from GetFormatCount (p. 225).

Derived from

None

Include files

<wx/dataobj.h>

See also

Clipboard and drag and drop overview (p. 1691), DnD sample (p. 1578),
wxFileDataObject (p. 477), wxTextDataObject (p. 1288), wxBitmapDataObject (p. 77),

wxCustomDataObject (p. 208), wxDropTarget (p. 433), wxDropSource (p. 430),
wxTextDropTarget (p. 1290), wxFileDropTarget (p. 482)

wxDataObject::wxDataObject

wxDataObject|()

Constructor.

wxDataObject::~wxDataObject

~wxDataObject()

Destructor.

wxDataObject::GetAllIFormats

224

CHAPTER 6

virtual void GetAllFormats(wxDataFormat *formats, Direction dir = Get) const

Copy all supported formats in the given direction to the array pointed to by formats.
There is enough space for GetFormatCount(dir) formats in it.

wxPerl note: In wxPerl this method only takes the dir parameter. In scalar context it
returns the first format, in list context it returns a list containing all the supported formats.

wxDataObject::GetDataHere

virtual bool GetDataHere(const wxDataFormat& format, void *buf) const

The method will write the data of the format format in the buffer buf and return TRUE on
success, FALSE on failure.

wxDataObject::GetDataSize

virtual size_t GetDataSize(const wxDataFormat& format) const

Returns the data size of the given format format.

wxDataObject::GetFormatCount

virtual size_t GetFormatCount(Direction dir = Gef) const

Returns the number of available formats for rendering or setting the data.

wxDataObject::GetPreferredFormat

virtual wxDataFormat GetPreferredFormat(Direction dir = Getf) const

Returns the preferred format for either rendering the data (if dir is Get, its default value)
or for setting it. Usually this will be the native format of the wxDataObject.

wxDataObject::SetData

virtual bool SetData(const wxDataFormat& format, size_t len, const void *buf)
Set the data in the format format of the length len provided in the buffer buf.

Returns TRUE on success, FALSE on failure.

wxDataObjectComposite

225

CHAPTER 6

wxDataObjectComposite is the simplest wxDataObject (p. 222) derivation which may be
sued to support multiple formats. It contains several wxDataObjectSimple (p. 226)
objects and supports any format supported by at least one of them. Only one of these
data objects ispreferred (the first one if not explicitly changed by using the second
parameter of Add (p. 226)) and its format determines the preferred format of the
composite data object as well.

See wxDataObject (p. 222) documentation for the reasons why you might prefer to use
wxDataObject directly instead of wxDataObjectComposite for efficiency reasons.

Virtual functions to override

None, this class should be used directly.

Derived from

wxDataObject (p. 222)

Include files

<wx/dataobj.h>

See also

Clipboard and drag and drop overview (p. 1691), wxDataObject (p. 222),

wxDataObjectSimple (p. 226), wxFileDataObject (p. 477), wxTextDataObject (p. 1288),
wxBitmapDataObject (p. 77)

wxDataObjectComposite::wxDataObjectComposite

wxDataObjectComposite()

The default constructor.

wxDataObjectComposite::Add

void Add(wxDataObjectSimple “dataObject, bool preferred = FALSE)

Adds the dataObject to the list of supported objects and it becomes the preferred object
if preferredis TRUE.

wxDataObjectSimple

226

CHAPTER 6

This is the simplest possible implementation of the wxDataObject (p. 222) class. The
data object of (a class derived from) this class only supports one format, so the number
of virtual functions to be implemented is reduced.

Notice that this is still an abstract base class and cannot be used but should be derived
from.

wxPython note: If you wish to create a derived wxDataObjectSimple class in wxPython
you should derive the class from wxPyDataObjectSimple in order to get Python-aware
capabilities for the various virtual methods.

wxPerl note: In wxPerl, you need to derive your data object class from
Wx::PIDataObjectSimple.

Virtual functions to override

The objects supporting rendering the data must override GetDataSize (p. 228) and
GetDataHere (p. 228) while the objects which may be set must override SetData (p.
228). Of course, the objects supporting both operations must override all three methods.
Derived from

wxDataObject (p. 222)

Include files

<wx/dataobj.h>

See also

Clipboard and drag and drop overview (p. 1691), DnD sample (p. 1578),
wxFileDataObject (p. 477), wxTextDataObject (p. 1288), wxBitmapDataObject (p. 77)

wxDataObjectSimple::wxDataObjectSimple

wxDataObjectSimple(const wxDataFormat& format = wxFormatinvalid)

Constructor accepts the supported format (none by default) which may also be set later
with SetFormat (p. 228).

wxDataObjectSimple::GetFormat

const wxDataFormat& GetFormat() const

Returns the (one and only one) format supported by this object. It is supposed that the

227

CHAPTER 6

format is supported in both directions.

wxDataObjectSimple::SetFormat

void SetFormat(const wxDataFormat& format)

Sets the supported format.

wxDataObjectSimple::GetDataSize

virtual size_t GetDataSize() const

Gets the size of our data. Must be implemented in the derived class if the object
supports rendering its data.

wxDataObjectSimple::GetDataHere

virtual bool GetDataHere(void “buf) const

Copy the data to the buffer, return TRUE on success. Must be implemented in the
derived class if the object supports rendering its data.

wxPython note: When implementing this method in wxPython, no additional parameters
are required and the data should be returned from the method as a string.

wxDataObjectSimple::SetData

virtual bool SetData(size_t /en, const void “buf)

Copy the data from the buffer, return TRUE on success. Must be implemented in the
derived class if the object supports setting its data.

wxPython note: When implementing this method in wxPython, the data comes as a
single string parameter rather than the two shown here.

wxDataOutputStream

This class provides functions that write binary data types in a portable way. Data can be
written in either big-endian or little-endian format, little-endian being the default on all
architectures.

If you want to write data to text files (or streams) use wxTextOutputStream (p. 1301)

228

CHAPTER 6

instead.

The << operator is overloaded and you can use this class like a standard C++ iostream.
See wxDatalnputStream (p. 219) for its usage and caveats.

See also wxDatalnputStream (p. 219).
Derived from

None

wxDataOutputStream::wxDataOutputStream

wxDataOutputStream(wxOutputStream& stream)

wxDataOutputStream(wxOutputStream& stream, wxMBConv& conv =
wxMBConvUTF8)

Constructs a datastream object from an output stream. Only write methods will be
available. The second form is only available in Unicode build of wxWindows.

Parameters

Stream
The output stream.

conv
Charset conversion object object used to encoding Unicode strings before writing
them to the stream in Unicode mode (see wxDataOutputStream::WriteString (p.
230)documentation for detailed description). Note that you must not destroyconv
before you destroy this wxDataOutputStream instance! It is recommended to use

default value (UTF-8).

wxDataOutputStream::~wxDataOutputStream

~wxDataOutputStream()

Destroys the wxDataOutputStream object.

wxDataOutputStream::BigEndianOrdered

void BigEndianOrdered(bool be_order)

If be_orderis TRUE, all data will be written in big-endian order, e.g. for reading on a
Sparc or from Java-Streams (which always use big-endian order), otherwise data will be

229

CHAPTER 6

written in little-endian order.
wxDataOutputStream::Write8

void Write8(wxUint8 /8)

Writes the single byte i8 to the stream.

wxDataOutputStream::Write16

void Write16(wxUint16 /16)

Writes the 16 bit unsigned integer /16 to the stream.

wxDataOutputStream::Write32

void Write32(wxUint32 i32)

Writes the 32 bit unsigned integer i32 to the stream.

wxDataOutputStream::Write64

void Write64(wxUint64 i64)

Writes the 64 bit unsigned integer i64 to the stream.

wxDataOutputStream::WriteDouble

void WriteDouble(double /)

Writes the double fto the stream using the IEEE format.

wxDataOutputStream::WriteString

void WriteString(const wxString&string)

Writes string to the stream. Actually, this method writes the size of the string before

writing string itself.

In ANSI build of wxWindows, the string is written to the stream in exactly same way it is
represented in memory. In Unicode build, however, the string is first converted to
multibyte representation with conv object passed to stream's constructor (consequently,
ANSI application can read data written by Unicode application, as long as they agree on
encoding) and this representation is written to the stream. UTF-8 is used by default.

230

CHAPTER 6

wxDate

A class for manipulating dates.

NOTE: this class is retained only for compatibility, and has been replaced by
wxDateTime (p. 239). wxDate may be withdrawn in future versions of wxWindows.

Derived from
wxObject (p. 961)
Include files
<wx/date.h>

See also

wxTime (p. 1314)

wxDate::wxDate

wxDate()

Default constructor.

wxDate(const wxDate& date)

Copy constructor.

wxDate(int month, int day, int year)

Constructor taking month, day and year.

wxDate(long julian)

Constructor taking an integer representing the Julian date. This is the number of days
since 1st January 4713 B.C., so to convert from the number of days since 1st January
1901, construct a date for 1/1/1901, and add the number of days.

wxDate(const wxString& dateString)

Constructor taking a string representing a date. This must be either the string TODAY, or
of the form MM/DD/YYYY or MM-DD-YYYY. For example:

wxDate date("11/26/1966");

231

CHAPTER 6

Parameters

date
Date to copy.

month
Month: a number between 1 and 12.

day
Day: a number between 1 and 31.

year
Year, such as 1995, 2005.

wxDate::~wxDate

void ~wxDate()

Destructor.

wxDate::AddMonths

wxDate& AddMonths(int months=1)

Adds the given number of months to the date, returning a reference to 'this'.

wxDate::AddWeeks

wxDate& AddWeeks(int weeks=1)

Adds the given number of weeks to the date, returning a reference to 'this'".

wxDate::AddYears

wxDate& AddYears(int years=1)

Adds the given number of months to the date, returning a reference to 'this'.

wxDate::FormatDate

wxString FormatDate(int fype=-1) const
Formats the date according to type if not -1, or according to the current display type if -1.

Parameters

232

CHAPTER 6

type
-1 or one of:
wxDAY Format day only.
wxMONTH Format month only.
wxMDY Format MONTH, DAY, YEAR.
wxFULL Format day, month and year in US style:
DAYOFWEEK, MONTH, DAY, YEAR.
wxEUROPEAN Format day, month and year in European style: DAY,

MONTH, YEAR.

wxDate::GetDay

int GetDay() const

Returns the numeric day (in the range 1 to 31).

wxDate::GetDayOfWeek

int GetDayOfWeek() const

Returns the integer day of the week (in the range 1 to 7).

wxDate::GetDayOfWeekName

wxString GetDayOfWeekName() const

Returns the name of the day of week.

wxDate::GetDayOfYear

long GetDayOfYear() const

Returns the day of the year (from 1 to 365).

wxDate::GetDaysInMonth

int GetDaysInMonth() const

Returns the number of days in the month (in the range 1 to 31).

233

CHAPTER 6

wxDate::GetFirstDayOfMonth

int GetFirstDayOfMonth() const

Returns the day of week that is first in the month (in the range 1 to 7).

wxDate::GetJulianDate

long GetJulianDate() const

Returns the Julian date.

wxDate::GetMonth

int GetMonth() const

Returns the month number (in the range 1 to 12).

wxDate::GetMonthEnd

wxDate GetMonthEnd()

Returns the date representing the last day of the month.

wxDate::GetMonthName

wxString GetMonthName() const

Returns the name of the month. Do not delete the returned storage.

wxDate::GetMonthStart

wxDate GetMonthStart() const

Returns the date representing the first day of the month.

wxDate::GetWeekOfMonth

int GetWeekOfMonth() const

Returns the week of month (in the range 1 to 6).

234

CHAPTER 6

wxDate::GetWeekOfYear

int GetWeekOfYear() const

Returns the week of year (in the range 1 to 52).

wxDate::GetYear

int GetYear() const

Returns the year as an integer (such as '1995").

wxDate::GetYearEnd

wxDate GetYearEnd() const

Returns the date representing the last day of the year.

wxDate::GetYearStart

wxDate GetYearStart() const

Returns the date representing the first day of the year.

wxDate::IsLeapYear

bool IsLeapYear() const

Returns TRUE if the year of this date is a leap year.

wxDate::Set

wxDate& Set()

Sets the date to current system date, returning a reference to 'this'.

wxDate& Set(long julian)

Sets the date to the given Julian date, returning a reference to 'this'.

wxDate& Set(int month, int day, int year)

Sets the date to the given date, returning a reference to 'this'.

235

CHAPTER 6

month is a number from 1 to 12.
day is a number from 1 to 31.

yearis a year, such as 1995, 2005.

wxDate::SetFormat

void SetFormat(int format)

Sets the current format type.

Parameters
format
-1 or one of:
wxDAY Format day only.
wxMONTH Format month only.
wxMDY Format MONTH, DAY, YEAR.
wxFULL Format day, month and year in US style:
DAYOFWEEK, MONTH, DAY, YEAR.
wxEUROPEAN Format day, month and year in European style: DAY,
MONTH, YEAR.

wxDate::SetOption

int SetOption(int option, const bool enable=TRUE)
Enables or disables an option for formatting.
Parameters

option
May be one of:

wxNO_CENTURY The century is not formatted.

wxDATE_ABBR Month and day names are abbreviated to 3
characters when formatting.

wxDate::operator wxString

operator wxString()

Conversion operator, to convert wxDate to wxString by calling FormatDate.

236

CHAPTER 6

wxDate::operator +

wxDate operator +(long /)
wxDate operator +(int J)

Adds an integer number of days to the date, returning a date.

wxDate::operator -

wxDate operator -(long /)

wxDate operator -(int /)

Subtracts an integer number of days from the date, returning a date.
long operator -(const wxDate& date)

Subtracts one date from another, return the number of intervening days.

wxDate::operator +=

wxDate& operator +=(long /)

Postfix operator: adds an integer number of days to the date, returning a reference to
'this' date.

wxDate::operator -=

wxDate& operator -=(long /)

Postfix operator: subtracts an integer number of days from the date, returning a
reference to 'this' date.

wxDate::operator ++

wxDate& operator ++()

Increments the date (postfix or prefix).

wxDate::operator --

237

CHAPTER 6

wxDate& operator --()

Decrements the date (postfix or prefix).

wxDate::operator <

friend bool operator <(const wxDate& date?, const wxDate& date?2)

Function to compare two dates, returning TRUE if date1 is earlier than date2.

wxDate::operator <=

friend bool operator <=(const wxDate& date1, const wxDate& date?2)

Function to compare two dates, returning TRUE if date? is earlier than or equal to date2.

wxDate::operator >

friend bool operator >(const wxDate& date?, const wxDate& date?2)

Function to compare two dates, returning TRUE if date1 is later than date2.

wxDate::operator >=

friend bool operator >=(const wxDate& date1, const wxDate& date?2)

Function to compare two dates, returning TRUE if date1 is later than or equal to date2.

wxDate::operator ==

friend bool operator ==(const wxDate& date1, const wxDate& date?2)

Function to compare two dates, returning TRUE if date1 is equal to date2.

wxDate::operator !=

friend bool operator !=(const wxDate& date1, const wxDate& date?2)

Function to compare two dates, returning TRUE if date? is not equal to date2.

wxDate::operator <<

238

CHAPTER 6

friend ostream& operator <<(ostream& os, const wxDate& date)

Function to output a wxDate to an ostream.

wxDateSpan

The documentation for this section has not yet been written.

wxDateTime

wxDateTime class represents an absolute moment in the time.
Types

The type wxDateTime_t is typedefed as unsigned short and is used to contain the
number of years, hours, minutes, seconds and milliseconds.

Constants

Global constant wxDefaultDateTime and synonym for it wxInvalidDateTime are
defined. This constant will be different from any valid wxDateTime object.

All the following constants are defined inside wxDateTime class (i.e., to refer to them you
should prepend their names with wxDateTime: :).

Time zone symbolic names:

enum TZ

{
// the time in the current time zone
Local,

// zones from GMT (= Greenwhich Mean Time): they're guaranteed
to be

// consequent numbers, so writing something like “GMTO + offset'
is

// safe 1f abs(offset) <= 12

// underscore stands for minus

GMT_12, GMT_11, GMT_10, GMT_9, GMT_8, GMT_7,

GMT_6, GMT_5, GMT_4, GMT_3, GMT_2, GMT_1,

GMTO,

GMT1, GMT2, GMT3, GMT4, GMT5, GMT6,

GMT7, GMT8, GMT9, GMT10, GMT1l1l, GMT1l2,

// Note that GMT12 and GMT_12 are not the same: there is a
difference

// of exactly one day between them

239

CHAPTER 6

// some symbolic names for TZ

// Europe

WET = GMTO,

WEST = GMT1,
Time

CET = GMT1,

CEST = GMT2,
Time

EET = GMT2,

EEST = GMT3,
Time

MSK = GMT3,

MSD = GMT4,

// US and Canada

AST = GMT_A4,

ADT = GMT_3,

EST = GMT_5,

EDT = GMT_4,
Time

CST = GMT_6,

CDT = GMT_5,
Time

MST = GMT_7,

MDT = GMT_6,
Time

PST = GMT_S8,

PDT = GMT_7,
Time

HST = GMT_10,

AKST = GMT_9,

AKDT = GMT_S38,
Time

// Australia

A_WST = GMTS,

A_CST = GMT12 + 1,
(+9.5)

A_EST = GMT10,

A_ESST = GMT11,

// Universal Coordinated Time
name

// for GMT
UTC = GMTO
}i

//
//
//
//

//
//

//
//

//
//

//
//
//

//
//

//
//

Western Europe Time
Western Europe Summer

Central Europe Time
Central Europe Summer

Eastern Europe Time
Eastern Europe Summer

Moscow Time
Moscow Summer Time

Atlantic Standard Time
Atlantic Daylight Time
Eastern Standard Time
Eastern Daylight Saving

Central Standard Time
Central Daylight Saving

Mountain Standard Time
Mountain Daylight Saving

Pacific Standard Time
Pacific Daylight Saving

Hawaiian Standard Time
Alaska Standard Time
Alaska Daylight Saving

Western Standard Time
Central Standard Time

Eastern Standard Time
Eastern Summer Time

the new and politically correct

Month names: Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec and
Inv_Month for an invalid.month value are the values of wxDateTime: :Monthenum.

Likewise, Sun, Mon, Tue, Wed, Thu, Fri, Sat, and Inv_WeekDay are the values

inwxDateTime: :WeekDay enum.

Finally, Inv_Year is defined to be an invalid value for year parameter.

GetMonthName() (p. 248) andGetWeekDayName (p. 248) functions use the followign

flags:

enum NameFlags

240

CHAPTER 6

0x01, // return full name
0x02 // return abbreviated name

Name_Full
Name_Abbr

}i

Several functions accept an extra parameter specifying the calendar to use (although
most of them only support now the Gregorian calendar). This parameters is one of the
following values:

enum Calendar

{

Gregorian, // calendar currently in use in Western countries
Julian // calendar in use since —-45 until the 1582 (or
later)
}i

Date calculations often depend on the country and wxDateTime allows to set the country
whose conventions should be used using SetCountry (p. 249). It takes one of the
following values as parameter:

enum Country

{
Country_Unknown, // no special information for this country
Country_Default, // set the default country with SetCountry ()
method
// or use the default country with any other

Country_WesternEurope_Start,

Country_EEC = Country_WesternEurope_Start,
France,

Germany,

UK,

Country_WesternEurope_End = UK,

Russia,

USA
}i

Different parts of the world use different conventions for the week start. In some
countries, the week starts on Sunday, while in others -- on Monday. The ISO standard
doesn't address this issue, so we support both conventions in the functions whose result
depends on it (GetWeekOfYear (p. 256) and GetWeekOfMonth (p. 256)).

The desired behvaiour may be specified by giving one of the following constants as
argument to these functions:

enum WeekFlags

{

Default_First, // Sunday_First for US, Monday_First for the
rest

Monday_First, // week starts with a Monday

Sunday_First // week starts with a Sunday

}i
Derived from

No base class

241

CHAPTER 6

Include files
<wx/datetime.h>
See also

Date classes overview (p. 1594), wxTimeSpan (p. 1322), wxDateSpan (p. 239),
wxCalendarCtrl (p. 99)

Static functions

For convenience, all static functions are collected here. These functions either set or
return the static variables of wxDateSpan (the country), return the current moment, year,
month or number of days in it, or do some general calendar-related actions.

Please note that although several function accept an extra Calendamparameter, it is
currently ignored as only the Gregorian calendar is supported. Future versions will
support other calendars.

wxPython note: These methods are standalone functions named
wxDateTime_<StaticMethodName> in wxPython.

SetCountry (p. 249)

GetCountry (p. 247)
IsWestEuropeanCountry (p. 249)
GetCurrentYear (p. 247)
ConvertYearToBC (p. 246)
GetCurrentMonth (p. 247)
IsLeapYear (p. 249)
GetCentury (p. 247)
GetNumberOfDays (p. 248)
GetNumberOfDays (p. 248)
GetMonthName (p. 248)
GetWeekDayName (p. 248)
GetAmPmStrings (p. 246)
IsDSTApplicable (p. 249)
GetBeginDST (p. 247)
GetEndDST (p. 248)

Now (p. 249)

UNow (p. 250)

Today (p. 250)

Constructors, assignment operators and setters

Constructors and various set () methods are collected here. If you construct a date

242

CHAPTER 6

object from separate values for day, month and year, you should use IsValid (p. 254)
method to check that the values were correct as constructors can not return an error
code.

wxDateTime() (p. 250)

wxDateTime(time_t) (p. 250)

wxDateTime(struct tm) (p. 251)

wxDateTime(double jdn) (p. 251)

wxDateTime(h, m, s, ms) (p. 251)

wxDateTime(day, mon, year, h, m, s, ms) (p. 251)

SetToCurrent (p. 251)

Set(time_t) (p. 252)

Set(struct tm) (p. 252)

Set(double jdn) (p. 252)

Set(h, m, s, ms) (p. 252)

Set(day, mon, year, h, m, s, ms) (p. 252)

SetFromDOS(unsigned long ddt) (p. 257)

ResetTime (p. 253)

SetYear (p. 253)

SetMonth (p. 253)

SetDay (p. 252)

SetHour (p. 253)

SetMinute (p. 253)

SetSecond (p. 253)

SetMillisecond (p. 254)

operator=(time_t) (p. 254)

operator=(struct tm) (p. 254)
Accessors

Here are the trivial accessors. Other functions, which might have to perform some more
complicated calculations to find the answer are under the Calendar calculations (p. 245)
section.

IsValid (p. 254)

GetTicks (p. 254)
GetYear (p. 254)
GetMonth (p. 255)
GetDay (p. 255)
GetWeekDay (p. 255)
GetHour (p. 255)
GetMinute (p. 255)
GetSecond (p. 255)
GetMillisecond (p. 255)
GetDayOfYear (p. 256)
GetWeekOfYear (p. 256)
GetWeekOfMonth (p. 256)
GetYearDay (p. 265)
IsWorkDay (p. 256)
IsGregorianDate (p. 256)
GetAsDOS (p. 257)

243

CHAPTER 6

Date comparison

There are several function to allow date comparison. To supplement them, a few global
operators >, < etc taking wxDateTime are defined.

IsEqualTo (p. 257)
IsEarlierThan (p. 257)
IsLaterThan (p. 257)
IsStrictlyBetween (p. 257)
IsBetween (p. 258)
IsSameDate (p. 258)
IsSameTime (p. 258)
IsEqualUpTo (p. 258)

Date arithmetics

These functions carry out arithmetics (p. 1596) on the wxDateTime objects. As explained
in the overview, either wxTimeSpan or wxDateSpan may be added to wxDateTime,
hence all functions are overloaded to accept both arguments.

Also, both add () and subtract () have both const and non-const version. The first
one returns a new obejct which represents the sum/difference of the original one with the
argument while the second form modifies the object to which it is applied. The operators
-= and += are defined to be equivalent to the second forms of these functions.

Add(wxTimeSpan) (p. 258)

Add(wxDateSpan) (p. 259)

Subtract(wxTimeSpan) (p. 258)
Subtract(wxDateSpan) (p. 259)
Subtract(wxDateTime) (p. 259)
oparator+=(wxTimeSpan) (p. 25
oparator+=(wxDateSpan) (p. 259)
oparator-=(wxTimeSpan) (p. 258)
oparator-=(wxDateSpan) (p. 259)

8)

Sooo

Parsing and formatting dates

These functions convert wxDateTime obejcts to and from text. The conversions to text
are mostly trivial: you can either do it using the default date and time representations for
the current locale (FormatDate (p. 261) and FormatTime (p. 261)), using the
international standard representation defined by ISO 8601 (Format/SODate (p. 262) and
FormatISOTime (p. 262)) or by specifying any format at all and using Format (p. 261)
directly.

The conversions from text are more interesting, as there are much more possibilities to
care about. The simplest cases can be taken care of with ParseFormat (p. 260) which
can parse any date in the given (rigid) format. ParseRfc822Date (p. 259) is another

244

CHAPTER 6

function for parsing dates in predefined format -- the one of RFC 822 which (still...)
defines the format of email messages on the Internet. This format can not be described
with strptime (3) -like format strings used by Format (p. 261), hence the need for a
separate function.

But the most interesting functions are ParseTime (p. 261), ParseDate (p. 261) and
ParseDateTime (p. 260). They try to parse the date ans time (or only one of them) in
'free' format, i.e. allow them to be specified in any of possible ways. These functions will
usually be used to parse the (interactive) user input which is not bound to be in any
predefined format. As an example, ParseDateTime (p. 260) can parse the strings such
as "tomorrow", "March first" and even "next Sunday".

ParseRfc822Date (p. 259)
ParseFormat (p. 260)
ParseDateTime (p. 260)
ParseDate (p. 261)
ParseTime (p. 261)
Format (p. 261)
FormatDate (p. 261)
FormatTime (p. 261)
FormatISODate (p. 262)
FormatISOTime (p. 262)

Calendar calculations

The functions in this section perform the basic calendar calculations, mostly related to
the week days. They allow to find the given week day in the week with given number
(either in the month or in the year) and so on.

All (non-const) functions in this section don't modify the time part of the wxDateTime --
they only work with the date part of it.

SetToWeekDayInSameWeek (p. 262)
GetWeekDayInSameWeek (p. 262)
SetToNextWeekDay (p. 262)
GetNextWeekDay (p. 263)
SetToPrevWeekDay (p. 263)
GetPrevWeekDay (p. 263)
SetToWeekDay (p. 263)
GetWeekDay (p. 263)
SetTolLastWeekDay (p. 263)
GetLastWeekDay (p. 264)
SetToTheWeek (p. 264)

GetWeek (p. 264)
SetTolLastMonthDay (p. 264)
GetLastMonthDay (p. 264)
SetToYearDay (p. 265)
GetYearDay (p. 265)

245

CHAPTER 6

Astronomical/historical functions

Some degree of support for the date units used in astronomy and/or history is provided.
You can construct a wxDateTime object from aJDN (p. 252) and you may also get its
JDN,MJUD (p. 265) orRata Die number (p. 266) from it.

wxDate Time(double jdn) (p. 251)
Set(double jdn) (p. 252)
GetJulianDayNumber (p. 265)
GetJDN (p. 265)
GetModifiedJulianDayNumber (p. 265)
GetMJD (p. 266)

GetRataDie (p. 266)

Time zone and DST support

Please see the time zone overview (p. 1597) for more information about time zones.
ormally, these functions should be rarely used.

ToTimezone (p. 266)
MakeTimezone (p. 266)
ToGMT (p. 266)
MakeGMT (p. 266)
GetBeginDST (p. 247)
GetEndDST (p. 248)
IsDST (p. 267)

wxDateTime::ConvertYearToBC

static int ConvertYearToBC(int year)

Converts the year in absolute notation (i.e. a number which can be negative, positive or
zero) to the year in BC/AD notation. For the positive years, nothing is done, but the year
0 is year 1 BC and so for other years there is a difference of 1.

This function should be used like this:

wxDateTime dt (...);

int y = dt.GetYear();

printf ("The year is %d%s", wxDateTime::ConvertYearToBC(y), y > 0 ?
"AD" . "BC") ;

wxDateTime::GetAmPmStrings

static void GetAmPmStrings(wxString *am, wxString *pm)

246

CHAPTER 6

Returns the translations of the strings 2M and PM used for time formatting for the current
locale. Either of the pointers may be NULL if the corresponding value is not needed.

wxDateTime::GetBeginDST

static wxDateTime GetBeginDST(int year = Inv_Year, Country country =
Country_Defaul)

Get the beginning of DST for the given country in the given year (current one by default).
This function suffers from limitations described inDST overview (p. 1597).

See also

GetEndDST (p. 248)

wxDateTime::GetCountry

static Country GetCountry()

Returns the current default country. The default country is used for DST calculations, for
example.

See also

SetCountry (p. 249)

wxDateTime::GetCurrentYear

static int GetCurrentYear(Calendar cal = Gregorian)

Get the current year in given calendar (only Gregorian is currently supported).

wxDateTime::GetCurrentMonth

static Month GetCurrentMonth(Calendar cal = Gregorian)

Get the current month in given calendar (only Gregorian is currently supported).

wxDateTime::GetCentury

static int GetCentury(int year = Inv_Year)

Get the current century, i.e. first two digits of the year, in given calendar (only Gregorian
is currently supported).

247

CHAPTER 6

wxDateTime::GetEndDST

static wxDateTime GetEndDST(int year = Inv_Year, Country country =
Country_Defaul)

Returns the end of DST for the given country in the given year (current one by default).

See also

GetBeginDST (p. 247)

wxDateTime::GetMonthName

static wxString GetMonthName(Month month, NameFlags flags = Name_Full)

Gets the full (default) or abbreviated (specify Name_Abbr name of the given month.

See also

GetWeekDayName (p. 248)

wxDateTime::GetNumberOfDays

static wxDateTime_t GetNumberOfDays(int year, Calendar cal = Gregorian)

static wxDateTime_t GetNumberOfDays(Month month, int year = Inv_Year, Calendar
cal = Gregorian)

Returns the number of days in the given year or in the given month of the year.
The only supported value for cal parameter is currently Gregorian.
wxPython note: These two methods are named GetNumberOfDaysInYearand

GetNumberOfDaysInMonth in wxPython.

wxDateTime::GetWeekDayName

static wxString GetWeekDayName(WeekDay weekday, NameFlags flags =
Name_Full)

Gets the full (default) or abbreviated (specify Name_Abbr name of the given week day.

See also

GetMonthName (p. 248)

248

CHAPTER 6

wxDateTime::IsLeapYear

static bool IsLeapYear(int year = Inv_Year, Calendar cal = Gregorian)
Returns TRUE if the yearis a leap one in the specified calendar.

This functions supports Gregorian and Julian calendars.

wxDateTime::IsWestEuropeanCountry

static bool IsWestEuropeanCountry(Country country = Country Default)
This function returns TRUE if the specified (or default) country is one of Western

European ones. It is used internally by wxDateTime to determine the DST convention
and date and time formatting rules.

wxDateTime::IsDSTApplicable

static bool IsDSTApplicable(int year = Inv_Year, Country country = Country _Default)

Returns TRUE if DST was used n the given year (the current one by default) in the given
country.

wxDateTime::Now

static wxDateTime Now()

Returns the object corresponding to the current time.

Example:
wxDateTime now = wxDateTime: :Now () ;
printf ("Current time in Paris:\t%s\n", now.Format ("%c",

wxDateTime: :CET) .c_str());

Note that this function is accurate up to second: wxDateTime::UNow (p. 250) should be
used for better precision (but it is less efficient and might not be available on all
platforms).

See also

Today (p. 250)

wxDateTime::SetCountry

249

CHAPTER 6

static void SetCountry(Country country)

Sets the country to use by default. This setting influences the DST calculations, date
formatting and other things.

The possible values for country parameter are enumerated inwxDateTime constants
section (p. 239).

See also

GetCountry (p. 247)

wxDateTime::Today

static wxDateTime Today()

Returns the object corresponding to the midnight of the current day (i.e. the same as
Now() (p. 249), but the time part is set to 0).

See also

Now (p. 249)

wxDateTime::UNow

static wxDateTime UNow()

Returns the object corresponding to the current time including the milliseconds if a
function to get time with such precision is available on the current platform (supported
under most Unices and Win32).

See also

Now (p. 249)

wxDateTime::wxDateTime

wxDateTime()

Default constructor. Use one of set () functions to initialize the object later.

wxDateTime::wxDateTime

wxDateTime& wxDateTime(time_t timet)

Same as Set (p. 250).

250

CHAPTER 6

wxPython note: This constructor is named wxDateTimeFromTimeT in wxPython.

wxDateTime::wxDateTime

wxDateTime& wxDateTime(const struct tm& im)
Same as Set (p. 251)

wxPython note: Unsupported.

wxDateTime::wxDateTime

wxDateTime& wxDateTime(double jdn)
Same as Set (p. 251)

wxPython note: This constructor is named wxDateTimeFromJDN in wxPython.

wxDateTime::wxDateTime

wxDateTime& wxDateTime(wxDateTime_t hour, wxDateTime_t minute = 0,
wxDateTime_t second = 0, wxDateTime_t millisec = 0)

Same as Set (p. 251)

wxPython note: This constructor is named wxDateTimeFromHMS in wxPython.

wxDateTime::wxDateTime

wxDateTime& wxDateTime(wxDateTime_t day, Month month = Inv_Month, int
Inv_Year, wxDateTime_t hour = 0, wxDateTime_t minute = 0, wxDateTime_t second =
0, wxDateTime_t millisec = 0)

Same as Set (p. 252)

wxPython note: This constructor is named wxDateTimeFromDMY in wxPython.

wxDateTime::SetToCurrent

wxDateTime& SetToCurrent()

Sets the date and time of to the current values. Same as assigning the result of Now()
(p. 249) to this object.

251

CHAPTER 6

wxDateTime::Set

wxDateTime& Set(time_t timet)
Constructs the object from timet value holding the number of seconds since Jan 1, 1970.

wxPython note: This method is named SetTimeT in wxPython.

wxDateTime::Set

wxDateTime& Set(const struct tm& tm)
Sets the date and time from the broken down representation in the standardtm structure.

wxPython note: Unsupported.

wxDateTime::Set

wxDateTime& Set(double jadn)

Sets the date from the so-called Julian Day Number.

By definition, the Julian Day Number, usually abbreviated as JDN, of a particular instant
is the fractional number of days since 12 hours Universal Coordinated Time (Greenwich

mean noon) on January 1 of the year -4712 in the Julian proleptic calendar.

wxPython note: This method is named set JDN in wxPython.

wxDateTime::Set

wxDateTime& Set(wxDateTime_t hour, wxDateTime_t minute = 0, wxDateTime_t
second = 0, wxDateTime_t millisec = 0)

Sets the date to be equal to Today (p. 250) and the time from supplied parameters.

wxPython note: This method is named setHMS in wxPython.

wxDateTime::Set

wxDateTime& Set(wxDateTime_t day, Month month = Inv_Month, int year = Inv_