wxWidgets 2.8.5: A portable C++ and Python GUI
toolkit

Julian Smart, Robert Roebling, Vadim Zeitlin, Robin Dunn, et al

August, 2007



Contents

(0707 0) Y g To 010 1] (o = Xix
1] (o o L8 T3 1o o 1P 1
What IS WXWILQEIS? ...ttt ettt et e et e e e e et e e et e s e e eate s eneeesseesnneeeneennnaeeneens 1
Why another cross-platform development tool? ..........cccviiiie e 1
WXWIAQELS FEOUINEIMENTS ...ttt ettt et e e e e e et e e e ate e e e e eaaes s eaeesaeesaneeerseeneesareens 3
Availability and location of WXWIAQELS.........cccieiiiiiiieiee e e s e ae e 3
ACKNOWIEBAGEIMENTS ...t ettt e e e e et e e e e e s e e etaae s saeesseesaeeeeraeennneenneens 4
Multi-platform development with WXWIdgets .......... oo, 5
o (0T o 1= TSRS 5
o] = 1 (=TSSP SP 5
(O] 170 T8 Tir=1 1o o [ SR 5
= 1] 1= TSRO SPR 6
WiINAOWS-SPECIIC fES ... ei ittt e ate e e eaa e e e e e ereeenaeenneeas 6
Allocating and deleting WXWidgets ODJECES ........c.occuuiiiie e 7
ArChiteCtUre dEPENUENCY ......coiie ettt et et e e e re e et e e s saeesseesee e srseenaesnneens 7
(@] o [1iTeY g T=1 I eToT 0] 71 F= L1 o o PSSR 8
(O 1SS UL U S 8
[ 1 L= T UaTo | 1T T TSSOSO 9
Utilities and libraries supplied with wxWidgets.... .o, 10
Programming StrateQI€S .....uuuiiiiiiiiiiiii i s e e et 12
Strategies for reducing Programming EITOIS .......ccceeevieeiieeiieeeieesieeerreesaeeseesaeesaeesrseesaeesseeenns 12
Strategies for POrtADIlitY ..........cocviiiie e e 12
Strategies for deBUGQING ....coovii ettt e e e re e eraeens 12
] o) = L [T 1] PP 15
Alphabetical Class referenCe.........ccovviiiiiies e 18
WXADOULDIAIOGINTO ... e e e e et e e e e e e e enna e ne s 18
o= (=T o o] =g« YR 21
o= (=T o (o] g 1= L o) =SS 23
WXACCESSIDIE ...ttt e e e e et e e e e a e e ae e ear e e ae e e e e enneeeaneas 25
WXACHVALIEEVENT ...ttt et e ettt e e st e ea b e e e e e easseesaeeesre e saeeaneeenneeenneas 33
2N w 1)Y= (@0 g1 7= 1 =Y ST 34
(TN w 1YL= V=T o | TSSO 38



CONTENTS

(V2N a4 g T o o [P SUTRPTRR 39
(VT2 a4 g P 1To ] [ [ USRS 42
10T A o o PP PUS 45
(2N o TSI I = UL £ SRS 56
N (o] a1 T @ oY = Tt (o SRS 58
(T2 (o] 1AL = o SRS 62
2 (o] g 11 [T o T L] 1 =T U o ST 64
WXATCHIVEIEIALON ...ttt e e et es ettt s s s e e e 66
WXATCHIVENOLIFIET ...ttt e e et b e et sae e s ae e e 68
O (o] g 1A T @ U o T L 5] 1 (=T Vo SR 69
WWXAITAY .ttt e ettt e e et te e e e e s sat e et ee e e e s bt be e e e e s ea st e e eeeaa s e ee s bt e ee e e ea e e beeeee s ea e e beeeeeeeasseeeee e e nnnneas 71
(TN = 1S (1 SRS 83
WXAIEPTOVIAET ...ttt ettt ettt e et s e eb e e ab e ess e st ens e e e et sneesaeeeas 88
WXAUIDOCKAIT ...ttt ettt ettt ettt s ettt e e ae e et sae e sb e eab e emb e ssens e e nbeembesneenaeeeas 93
(VT2 UL = 1o AN o TSRS 97
T2 U 111V F= T = o = ST 99
WXAUINOTEDOOK ...ttt ettt e et e re e esbeea b et e b e et st aeeneeene 105
WXAUIPANEINTO <.t e e et re et ea b e b e s mee e e ae e 110
WXAULOMALONODJECT ... ii it ettt e e e e et e et ae e e e e eae b e e see e ereeenaeeereennneenns 119
L2 (ST 111 4= o TSP SS 123
WXBIEMAPCOMBDOBOX.......ciiiiiiiie et er e e e e e e et e e e sne e eaeeesneeeereeannaeans 135
WXBIMAPBULIION ...ttt e rr et e e e e e st e e s e e e ereeenaeeeeeennneenns 139
WXBIEMAaPDAtaOD]ECT........ccviiiie e et e e saa e e e r e e anee s 145
WXBIMAPHANAIET ..o e et rr e s e e et e e e ear e e e ae e ereennnee e 146
RS 100 ST 7.4~ T SO TSRS 149
2T (U] TSRS 150
WXBIUSKILIST ...ttt ettt ettt bt et e s bt e ee e e s b e eas e b e ens e e st s meesae e b ens 156
WXBUFFEIEADC ...ttt ettt ettt e st e et e e ee e en b e ea b e b s ens e et s abesaeeaeens 157
WXBUFFEFEAPAINTDC ...ttt e st se e se e b eab et e b et e saeenae e 159
WXAULOBUFEredP@INTDC ..ottt ettt se e 160
WXBUFfEredINDUESTIEAIM ... et e e e se e e ear e e e e e sreeanaeeens 161
WXBUFFEredOULPULSTIEAM ..ot et se e e eaa e se e e sreeennaeans 161
WWXBUSYCUISOT .eiittieeittieesteee sttt eesste e ae s st e aesstaee e e steee e e sseeeeseeeeaeseeeeenbeee s e asbaeeeesaaeeeassaesesnnnesesnnnnans 162
WXBUSYINTO <.ttt e e e e ee e et ae s et e e st e e s e e easeeenaeeereennneenns 163
JTL2(= 10 110 o [P P RO P U PPTPP PR 164
WXCalCUIAtELAYOULEVENL ..........eeieeeeee ettt e e e e e ereeennaeens 167
L2 OF= 1L=T o To P-4 TSRS 168
WXCAIENAAIDAIEALLY ...ttt ettt ettt e st e st e seeeb b e eab e bsebe et saeesaeenaeens 174
WXCAIENUAIEVENT ...ttt e st st re e st e st et e e b e et s e aeenaeens 177
12 (=T =] ST P R ST O PO PPTPPOPR 177




CONTENTS

LT 2O 1=Tod {2 ) TSRS 180
WXCNECKLISTBOX ...ttt ettt ettt e et re e s e eab et e bt st ae e ne e 184
12O o (o = TSRS 186
WXCROICEDOOK ...ttt ettt e et e e re e st e ea b et e e b e et s mbesae e e ene 189
WXCTASSINTO .ttt e et eh e st e ea s et enb et s meenae e e 190
L2 (@d0] (o] N [ Tt =T {3 i FE TSRS 192
WXCOIOUPICKEIEVENT. ...ttt et s 194
LT 2O =] o TSRS 195
WXCTIEINED C ...ttt ettt bt a et bt b et s st s ae e et e e eeeeh b e eb s e bt e nbeentesmeesae e b ens 196
2O =] 11 B = - O OSSR 197
WXCHIENIDAACONTAINET ...ttt et se e re e bt e st b e b e s b saeenae e 198
12 (O 1] oY = U o RPN 199
2O 1] o T T= U o W=Dt AV =T o | PSP 202
WXCIOSEEVENT.....ce ettt ettt ettt eh et i ettt st st e s he e eeeeh b e en s e b e enseentesmtesaeeeeens 203
WXCIMALINEPAISEN ...ttt ettt e et re e bt e eab e b s e b e e nte s sbesaeenaeene 205
WXCOIAPSIDIEPANE. ... .ot e e e et e e e e ere e e ae e e ereeanee s 213
WXCOIAPSIDIEPANEEVENL ..ot et ee et esr e s ar e e e e e sreeannaeans 216
112 (@] (o1 TSRS 217
L2 (O1o] [a]U B = - H TSRS 221
WXCOIOUIDALADASE......ceeeuteeieiieete ettt e st se e b e ab b e b e s e saeenae e 223
{201 [0 1N ] DI T= 1 (oo TSP SR 224
2@ o] aqT e Te] 2o ) TSRS 225
L2 (@017 oo 103 1 TSRS 232
{2 (0T a] oTo] =T o 1N ] o OSSR 246
LT 2(@1 0112722 =T Lo T TSRS 249
WXCOMMANAEVENT......ceeiiiiieiiitit ettt ettt s e e be st e st e e seeebe e esseseene et saeesaeenaeens 250
WXCOMMANAP TOCESSO . ....cutiutiiieieesieeeesee et e steeutesseesess s e ste s e e aeaeeebeseeeesseeseerstesaseaaeeneaneesneans 256
L2 (@] o I i o] o TSRS 259
WXCONFIGBASE. ....c.ueectiieie ettt ettt e e e e ete e e ae e st e e s s e e eaeeesbeesaeeeareeanaeeeseensneenns 263
2@ o] a1 T=T o o] o TSRS 277
WXCHIIAFOCUSEVENT ...ttt e e st b e eab b b et e s ae e nae e 281
WXCONEXIMENUEVENL ...t st re e eae e e e e seeennneeene 281
L2001 (=0 1= o PSP 282
WXCONEXIHEIPBUION ...ttt et eae e e e e e ereeeae e e eneennee e 284
L2 (@10 ] 11 1 TSRS 285
WXCONLIOIWINITEIMS ...ttt e e st b e b e bt s nae e 286
WXCOUNTINGOULPULSTIIEAM ....cvveeieeciie ettt tee et e e sr e et ae s e e ests e e s ae e s easeesnneesreesnneeans 293
WXCHITICAISECTION ...ttt e st se e e ra e e st e eab b e ens e et s meesae e ae e 294
WXCHICAI SECHONLOCKET ........iitieieie ettt e sttt a e e b e s s e e 295
WXC SCOMNV ..ttt ettt ettt et ettt e et ekt e et e eh s e e e s be e S st easee e s e ennb e e e ne e e eneennbeeeneannneenns 296




CONTENTS

12 (O U] =T TSP RSP UPPTPPOPR 297
WXCUSIOMDATAODECT ... ..ccviiiiie ettt sr e et e e e e entr e e e seeeeaseesneeesreeannaeans 302
WXDALAFOIMIAL ...ttt ettt et et e e st e e sb e e s e e e ebeeanae e e e e ennnee e 304
WXDAtAGIAMSOCKEL . ... eiiii ettt e ere e sae e et e et ae e e e e eae b ee s e e easseenneeereennneenns 307
WXDATAINPULSTIEAM ...veeiee ettt et e et ee e et ee e ste e e e e st e eesstaee s e state e e ersaeeesnnaesesnnaeeas 308
T2 B T\ =T o] 1= o OSSP SPR 311
WXDAtAVIEWCOIUMIN ..ottt e st st re e bt e ea b be e b e et s e saeenaeens 314
WXDAEAVIBWECTI ...ttt et ettt e st e s he e re e en b e en b e b e e b e et s mtesae e e e ene 317
WXDAAVIBWEVENT ...ttt ettt e st st re e bt e eab e b s e b e et s meesaeenaeene 321
WXDataVieWLIStMOAEINOUFIBT ..o e e 323
WXDALAVIEWIMOEL.......eeeeieeiieee ettt e e st b e eab b b et s see e e sae e 324
WXDAtAVIEWLISIMOAEL. ...t et et e s 325
WXDAtaVieWSOrEdLISIMOUEL. ... ..ottt et 328
WXDAtAVIEWRENAEIET ...ttt ettt et et se e e ae e et et et e b e beeneeeneens 329
WXDAtAVIEWTEXIRENUEIEN ... ettt et et se et be et e e e be e e e sneen 331
WXDataViEeWPTOGIESSRENUEIEN ......ccuvieieeecteiecee ettt et e e e sre e e e e e e ear e e s e e etareesaee e sreeenneeans 331
WXDataVieWTOQQIERENUEIEN .........ciiiie ettt ere e e re e e e e s ear e e s e e e sreeannaeens 332
WXDataVieWBItMaPRENUEIEN ........coivie ettt e e e e sreeeaaeens 332
WXDAtaAVIEWDAIERENUEIET ..ottt et ee et be e bbb eeeeneen 332
WXDAtaVIeWCUSTOMBRENUEIE ......oui ettt sttt se e be et e b e e saeeeesneens 333
WXDataObhjeCICOMPOSILE ......eiviecceeictee et er e e e e e e e se e enr e e e e e sreeennaeans 334
B Y =T @ o] (= Tox 157 4] o] L= PSP 335
WXDATAOUTPUESTIEAIM. ....eiiveie ettt ettt ee et e e st e e st e e e st e e stb e e staae e e staae e e easbeeensnaesesnnaeeennnaees 337
WXDALEEVENT ...ttt st e et e eab e e b e e st e ean e e e e e e e ennn e e e 339
2D = L (=T o (o] (T (O 1 TR SRS 340
WXDAEIESPAN ...eeeiieiie ettt e et e e et e e e et e ee e ese e ee e eteeeeaabaee e e nabte e e eaate e e ertaeeernaaeeerrraeaas 343
2 D= L= N1 1= USRS 348
WXDate TIMEHOIAYAUTNOIILY .....cc.eiiiie e et ere e 375
WXDALETIMEWOIKDAYS ......cveeiiieeieeeiiie ettt e ete et et eeta e e e e e et e e e ste e ee e enas e e s saesnseesneeeareeannaeans 375
12 « TSRS 375
WXDBDCOIDALAPTL ..ottt ettt e st st re e st e eab et s e b et s mnesaeeneens 406
WXDDCOIDES ...ttt ettt h e e st e s he e eheea b e eas e b e e b e et s neenae e ae e 406
L2 (D ] o1 o] | lo ] TSRS 407
WXDBDCOIINT <.ttt e st st e e e e en b e es s et e e b e e nte s mtenaeeaeene 408
WXDBDCONNECTINT ...ttt e e st a b e bt st ae e nne e 409
WXDBIAXDET ...ttt ettt bt e st e s he e ee e e st e ens et e e b e et s neenaeeneens 414
LT 20 o ) TSRS 415
2D o 1= o) [ T TSRS 415
WXDDTADIEINT. ...t et ee et a b bt s see e e 451
WXDBDGHACOINTO ..t e e ettt a bbbt e ae e 451




CONTENTS

WXDDGHATADIEBASE ...ttt e e s b e eab b e bt e e e nne e 453
112 L TSP O PP ORI 456
{2 L L@ 1o o= OSSR 476
WXDDECHENT ...ttt sttt ettt a et st e s e st s e e st e e eeeeabeea s e b e e b e e ntesntesaeeneens 477
2B ] =l @fo] 1 T=Tox i o] o H TP USRR 478
WXDIDESEIVEN ...ttt ettt ettt e ettt st e e et e s ae e ensb e e st e e eeeeenneeeneennnee e 482
L2 B LY T8 To [ @do] ] (= OSSPSR 483
WXDEDUGSIIEAMBUF ... e e e e et e e e e e ere e e ae e e ereennee s 487
LT B L= T8 | =T o AP 488
WXDEDUGREPOMCOMPIESS ...c.uvieiiiiiiie ettt ste e et e e e sre e e e e e e enaeaesaee s easeesaeeeareeanneeans 492
WXDEDUGREPOMPIEVIEW .....oeiiee ettt ettt s e e e e ear e s e e e ereeennaeans 493
WXDEDUGREPOMPIEVIEWST ......ooveiiiie ettt et e e s ear e e e e ereeenaeens 494
WXDEDUGREPOIUPIOAU. ........ooieeeee et et e e sreesnaeens 494
WXDElegateRENEIEINALIVE ........ccoiuieiiee et e er e et e e e e eae e e e e e sreeennaeens 495
T2 1= oo OSSPSR 496
WXDIBIUPEVENT ...ttt et e e et e e ae e s e e et ae e e ae e e st e e s e e e ereeenaeeeneensneenns 505
WXDIAIUPIMBNAGET ... .eeeiee ettt ettt ev et e st e ease e e ae e et e e sseesneeessbeesneeeareeenneesseennneenns 506
12 TSRS 509
T2 B T4 - 1 (o o TSP 513
L2 e Tod =T O3 TSRS 515
L2 I = Y= = O TSRS 518
LT L] o] - YOS 519
L2 |1 a = Vo 1= TSRS 522
WXDOCCHIARTAME ...ttt e st st re e b e s b e b s e b et s neesaeenaeens 525
{0 T TV = g = Vo = PR SURRPUPPRTPRN 527
WXDOCMDICHIIAFTAME ...ttt se et b e sae b e e snee 535
WXDOCMDIPAIENTFIAMIE ......eiiieeieeee ettt ettt se et e e e e ae e e ean e e e e s eneesnnneens 537
WXDOCPAIENTFTAIMIE ...ttt ettt st e bt e st e esb e e e s e e e ere e e e e e neennnee e 538
LT Lo ol =Ty 4] o] = (TSP 540
WXD OCUMENT. ...ttt et a et e e sa et e e s e et e s ab e ee s e absbe e e ennee e e ennee e ennneesernnneeas 545
o = Yo | (g = Vo PR PTUURRPUPPRTRRN 552
WXDIOPFIIESEVENT ...ttt et sae e e er e e e e e e st e e s e e e ereeenaeeeneennneenns 556
o (0] ¢ S0 10 | o = PR PUORRPUPPRTRPN 558
oD (o] ol 1= o 1] PP UURRPUPPRTRRN 561
WXDYNAMICLIDIAIY ...t e e et e e e e ere e e e e e reennnee e 564
WXDYNAMICLIDIaryDELalS .........ueoiieeiie et et e e e ereeenae s 567
Vo= g ToToTo [ aTo [@do T 1Y/=T o (=T SRR 568
WXETASEEVENT.......ceeeee ettt r b e s eaa e e s ensae e eannee s ernnee e 571
WXEVEIT ...ttt ettt et e et e e ke e e e s e e e st ea b e be e b e emsb e e e ne e e eaeeenae e e e e ennnee e 572
2 A F= T o 1= TSRS 575




CONTENTS

L2 1= T TP 583
WXFFIEINPULSIIEAM ...ttt et rr e e s e e et e e s e e e erseene e eneennneeans 588
Gl S 1L @ TN v o0 Aoy i £=T- o PSP 589
2GR 11 (=T o R TSRS 590
121 TSRS 591
{2 L1 @ o o) o PSP T 597
Gl 1= D= =T @ o] 1= o OSSR 598
{21 B IT= 1 oo ISP 599
TRl T=] B (o] o 1 = Vo = OSSR 604
(TRl 1=] o 113 (] YA TSP SR 605
O GRlT= T o LU A (Y= Uy OSSPSR 608
2GR LT A= T T TSRS 609
Gl TT @ U (o 1U ] i 1 =T o o PSP 628
WXFTIEPICKEICI L.ttt e e st ee et a e b e bt s mee e e e e 629
WXFIEDIFPICKEIEVENT ...ttt et e st se e se e bt ea b e b e e b et st sae e ae e 631
WXFTIE STTBAIM ...ttt ettt b e e st e st e e eheem b e eas e bt e b e et s mtesae e e ene 632
L2 GRlTS 1SS (=1 o OSSR 633
WXFIESYSIEMHANAIET ... ettt e e s ere e e ae e e er e e anee s 636
LT L1 I8/ o = TSP 639
O Rl (=T O P RS = T (o] OSSR 643
Rl 1C=T A g oTU L A3 (=T o ISP 646
G C=T L@ N v o U ) Aoy i £=T= o PSSR 647
WXFINADIAIOGEVENT ...ttt e ettt et e e e e e et e e e eaneeeae e e reennnee e 647
R To 1R LT o] FoTot=T B | - PSP 649
G Lo 1R LT o] FoTot=T 1T 1 o o PSP 650
2GR (o3 T [0 T 7.4 ] TSRS 651
WXFOCUSEVENT ...ttt ettt e a et e e st ea e s e st e ensb e e s e e e eae e e e e e e e ennnee e 654
112l o L PSP PYO PP OPR 655
WXFONIDATA. ...ttt re et h e be e st e ea b e s e e e e et e et e eaneennae e e e e ennnee e 667
LT Lo a1 D= 1Yo TSP 670
WXFONTENUMEIALON ...ttt et s e st e st e e eae e e e e e e e ennne e 671
L2 GRlo T i ST R 673
Do a1\ F=T o] 1= PR PP URRRPUPPRTRPN 674
WXFONTPICKEICI T ...ttt e e et re et a bbbt s see e e ae e 678
WXFONTPICKEIEVENT ...ttt e e sttt b e ea bbbt s nae e 680
12 = U0 1= PSP R ST O P UPPTPPPR 681
L2 GRS T 1= PSSR 691
12 Gl I USSP O PO PPRPR PR 694
10T LE o TP RPUSRPSPRPPRPRPN 700
WXGBPOSITION ...ttt ettt ettt e st s he e sb e e st e eas e b e e b e et s atesae e e ens 704

Vi



CONTENTS

T 2(C1 235 7A=T 1= 4 o DO TSRS 705
{0 CE =1 o 1= o PP UURRSPRPPRTRPN 707
{2 (T (@] o= o TSP 708
T2 CC =T g LT ol B {03 1 TSRS 709
WXGENEMCVAIIHALON ...ttt s et a bbbt e ae e nae e 713
WXGLCBNVAS ...ttt ettt ettt et eea s et e abe e et e ea b ee e st e enss e e s e e emneennae e s e e ennnee e 715
WWXGLCONTEXE ...ttt ettt ettt ettt et et eea s e e abe e s et ea b s ess e ensb e e s e e eaneennneeeneennnee e 719
WXGTAPNICSBIUSH ...ttt ettt e re e e e e st e e e ear e e e ae e e reennnee e 720
2T =Y o] a1 [ods @0 1 1= TSSO 721
WXGTAPNICSFONT ... e e rr e e s e e e st e e s e e e ereeeae e ereennneeans 726
2T =Y o] a1 [od ] 1Y = L1 TSP 726
2T =Y o] a1 (o2 @ ] o] [=Tox RPN 728
WXGTAPNICSPA ... e et e e et e e e e e reenn e 729
2T =Y o] a1 [od] ==Y o TSP 732
2T =Y o] a1 [odsT R (=T g To (=T = RS 732
125G o PSRRI 734
L2 1o (01 11 TSRS 768
2T g o] ST= Vo 5] 4= S SPRSSR 771
T 2C 1o [OF=111 270 o] | =lo 1 (oY TSRS 774
[ 2C] 1o [OF=11 [ o (ot=1 o 1o S TSRS 775
L2 C 1o (01111 o 1o ST 776
T2 C o [OF=11 | o o1 o 1 (o T G TSRS 778
WXGTIACEINUMBEIEILON ......citieiee ettt s e e e e 779
L2 C 1o [OF =1 =3 o 1 (o] SO TSRS 780
WXGAEAItOrCreateadBEVENT .......oiee ettt ettt e s 780
L2 CT 1o | AV =T o | TSRS 782
WXGHORANGESEIECIEVENL. ...ttt et e sr e e ear e e e e e sreeennaeans 785
WXGTIASIZEEVENT. ...ttt ettt e st st e e re e st e ea b et e e b e et s meesaeeneens 787
WXGTIACEIIBOOIRENUEIE ...ttt sttt se e et et eb bbb b e e sneen 789
WXGTIACEIIFIOAtRENAEIEN ...ttt ettt ee e 789
WXGTIACEINUMBEIRENUEIET ...ttt ettt e sae e 790
2 C 1o (011112 a=T o To [=T T TSRS 791
e g o [OF=1 I3 g T o R =TT (= (= TR SRUSR 792
WXGTIATADIEBASE ... ceeieeeeeeieet ettt ettt e st st re e st e eab e b e e b e et s mbesaeenaeens 792
L2 10 5] 74~ ST 796
LT = ] 1Y = o OSSR 798
L2 G F= L] S T= L SO TSRS 802
WXHBSINTADIE ...t e ettt ea bbbt s see e e ne e 806
{2 L= oL@ o] g o] | 1= SRS 809
WXHEIPCONIOIEIHEIPPIOVIAET ...ttt et e e ere e nae s 814

vii



CONTENTS

LT L= o Y=Y o | PSP R 815
{0 L= T o o (01 o =T TSP S 817
WXHEMICEIL. ...ttt e et e bt e st e eas et e enb e et s meesaeeaeene 819
WXHEIMICOIOUICEIL ...t e e ettt st 824
WXHEIMICONTAINETCEIN ...ttt s 825
WXHEIMIDCRENUEIEL ...ttt ettt e st s e re e b e e ea b e be e b e et s mtesaeenaeens 831
WXHIMIEASYPIINTING ..t rr e e e ea e e e e ere e e e e e e e ennnee e 833
L2 G 10 Y| T = TSRS 837
WXHIMIHEIPCONIIOHET ...t et r e e e e er e e e e e e ereennee s 838
WXHIMIHEIPDALA. .....c.eiieee e e e rr e s e et e st e e ere e e ae e e ereennneenns 842
WXHIMIHEIPDIAIOG ...ttt et e e e e et e e e e ereeeae e e neennnee e 844
WXHIMIHEIPFTAME ...t et st e e et e st e e ereeeae e e e e ennnee e 845
WXHIMIHEIPWINAOW ...ttt e e e eat e e e e e ere e e e e e neennnee e 847
WXHIMIMOGAIHEID <.ttt e e e e ere e e e e e e e enanee e 850
WXHEMILINKINTO . ettt e 851
WXHEMILISTBOX ...ttt sttt et ettt e sttt eea e e st e ea s e b e ens e et smeesaeeneene 852
ST aa] o1 1= L ] IS £ T P 855
WXHEMIPAISEL ...ttt ettt b e s st e s bt e raeembeeas e b e enseentesmeesaeeaeens 858
WXHEMIPTINTOUL ...ttt e st e a et e st e bt s e i e e 863
1T L I Vo O SPRSSP 865
WXHIMITAGHANAIET ...ttt e e et et e e ereeanee s 868
WXHIMITAGSMOUUIE ...t e e e s e et e e e e ereeeae e e ereennnee e 870
WXHIMIWIAGEICEI ...ttt e et e s e e e ere e e e e e reennnee e 870
WXHEMIWINGOW. ...ttt e st st e e re e st e ea b et e e b et s e saeene e 871
WXHEIMILINKEVENT. ...ttt e e et s bbb ee e nne e 881
WXHEIMICEIEVENT ...ttt e et re e st e s b e bt s e saeeae e 882
WXHEMIWINPAISET ..ottt ettt e et re e st e st et e e b e et s e saeeneens 883
WXHIMIWINTAGHANAIET ...t e e e sr e e e e e e ereeennaeans 888
WXHT TP Lttt ettt et e e ae e ekt e e e st e s e e ea b e e e e b e enab e et e e eeeennneeeneennneenns 889
JT0 G Y7 1= ] 1 TSP SR 890
WXHYPEIINKEVENL. ..ottt s rr e e e e st e s e e eat e e e ae e ereennnee e 893
112 (o] ] o OO PTO PR UPPRPPOPR 894
WXICONBUNGIE ...ttt e e st a et a et e bt s e ae e nae e 901
L2 (o] o] Mo Tox L1 e o PO TSRS 902
e e] g14 =T Y= o | TSRS 902
WXIAIEEVENT ...ttt ettt ettt bbb st s bt e eeeea b e eas e b s enbeente s mtesaeeaeens 903
100 =T = PP RP U SPPPRPPRPRPN 905
g = To =T = T Lo |1 OSSP 929
LT = Yo = I ] OSSR SP 933
WXINAiVIdUAILAYOUTCONSIIAINT .......eoiiiieieec et e e e err e e e e sreesnaeens 938

viii



CONTENTS

WXINIEDIAIOGEVENL . ...ttt er e e e e st et eeat e e e ae e ereensneeans 940
WXINPUESTIBAM ..eeeieieiee sttt st ee et e e et ee e e rte e e eaae e e e ese e eeenbsee s e asbaeeeetaaeeeessaeeesnnaesernnnnans 941
L2 = To [0 [ (ST TSRS 944
2LV 2= Lo (o £ TSRS 946
L2 1) 4o SR S 947
LT L0} Ay Ao S V=T o | O SPRSP 953
WXKBYEVENT ...ttt ettt e et e e et e e et e e e ete et e e sae e eeenbeeee s esbae e e ebaaeeeastaeeesnnaesernnaneas 956
(VL2 =\ (o 1U ] VAN [ T 112 o OSSR 961
TN (o 10 (O 0] g 1 1 = 1 £SO SPR 964
L 2] S PSSRSO 966
Moves part of the list into another list, starting from first and ending at last if

SPECITFIEA.WXLISTDOOK ..o et sr et e rr e e ennes 973
L2120 ) TSRS 974
LT 2] (O3 PSSRSO 980
L2 1A =Y o TSRS 999
L2 11 =] o TP RR SR 1002
WXLISEIEMUALLE <.ttt et e s he e sbeenb e eab e s e e b e e b eneesaeenas 1006
WWXLISEVIBWW ...ttt ettt et ee etk et et e se e ebeenb e enses s enneenbesneesneenas 1008
L2 Lo 1= PR SR 1010
17170 ( o T RSP SPTPPRPP 1018
172 o o {4 4 - V1o SO SPST 1025
1TL2 o o T USSP 1026
WXLOGNUI ..ottt e e e e e e te e e sreeentae e steeensaeeseeersaeanneeereeennnas 1027
WXLOGPASSTIIOUQGN ...ttt ettt e e et e e e s ra e e e ae e e ereente e e nneenneean 1028
(T2 oo 1] (o = o OSSP 1028
T2 (e To 1Y 11T o ST SPT PSP 1029
T2 e o IS (O 1 PSS 1029
1TL2 o o V4T o (o Y PSP PT 1030
1710 (e Vo o g o TSP SPT PRSP 1032
WWXIMIBISK ..ttt ettt e e e h e eh e st eh b st et e e e a b e ae e eh e e eh e enb e ehs e bt e b e ente e neenneenas 1035
WXMAXIMIZEEVENT ...ttt ettt e st se e bt e esb e se e b e b eneesaeennas 1037
WXIVIBCONV. ...ttt ettt et ettt et e st e st e e she e e n e e s ebe e e s be e s e e enbeesnneeseneennnas 1038
WXMBCONVIIIE ...ttt e et se e eab e eas s e e bt e e s e e nnas 1042
WXIMBCONVUTET ...ttt et ettt ettt eabe e s e e ses s e s e e e eneannee e eneesnneeas 1043
WXIMBCONVUTES ...ttt ettt et et e st e sas s e e be e s ereanee e eneeenneean 1044
WXIMBCONVUTELG ...ttt sttt et et e st e e see e e e e e e s e enne e e neeenneeas 1045
WXIMBCONVUTEESZ ...ttt ettt ettt et ea et e e sen e e e e e s s e enne e e neeenneean 1046
WXMDICRITAFTAME....... ettt e e st se e eb b enb s e b e st s e e enas 1046
WXMDICHENTWINAOW ...ttt se e bbb e e 1049
WXIMID IPAIr@NTFTAIME ... ittt sttt ettt eae et et e este e e e sen e e e e e e aneenseeeeneeenneean 1051
VT2, (= To 1= @3 (TP RR RS 1058




CONTENTS

WXMEAIBEVENT ...ttt ee ettt et et se e e st enb e eas e b e ebe et entesaeennas 1065
WXMEMOIYBUTTET ... et s er e e e a e et e e eabae s e e e ereeennas 1066
WXMEIMOIYD C ...ttt et e et e e st e e st e e e e e e e et e e e e e e e e e e aneeaeeeattaeeesteeesesaaaneernnens 1068
WXMEMOIYFSHANAIET ..ottt e e e s e e sae e st e e naae e eneeenneean 1070
WXMEM OTYINPUESTIEAM ....veiee ettt sttt et e e e e e e ste e s staee s e staee e e ssbaesesssaeeesnsaeeesnnees 1072
WXMEM OTYOULPUISTITEAIM ....eeiei ettt sttt e st ee e st ee s saa e s e staee s e staeesesnsaeeesnsaeeennnens 1073
VWUXIMIBIMU ..ottt ettt ettt et eht et e £ ee e et e £ e e e ehs e e Rt e e eee e ambe e e ebeeanseees e e nneeane e e eneeennnas 1074
WWXIVIEIUBAAL ...ttt ettt ettt ee et et ea e st e e eee e e mbe e s ebe e e s be e s e e b e e sae e e enneennnas 1087
WXIMIEIUEVENT ...ttt et ettt e e e e et et e e eae e e ns e s ee e e e bee e s e e enneesneeeseneennnas 1097
oY =T LU 1 (=T o o OSSP TSP TP PTRPR 1099
QY =TS T =] B IT= T OSSR 1105
WXMELATIE ... e e e bt ae bt b et e e e nas 1107
WXMELATIEDIC ...ttt b e s bt nb e ab e be e b e e b enee s e e nnas 1108
WXMIMETYPESIMBNAGET ... .eeiteeiieeettieie e e et e stae e seeeta e et e e eteessaeeseeessaesteestssassaeessseenseeeanesnneeas 1109
WXIMINTFFAIME <.ttt ettt et et se e sb e enb e enbeneebe e b smtesaeennas 1113
WXIMIFTOPDIC ...ttt sttt a e eb et s st e st e e et s it e ee e e ebeenb e easen e e b e enteeneesneennas 1115
WXIMOTUIE ...ttt et a ettt et sae e sbeenb e eases e e bt e nbesaeesaeennas 1115
WXMouseCaptureChangeAEVENT .........ccooiiiie et sre e et eeennaeas 1117
WXMOUSECAPTUIELOSIEVENT ... eeeeiiieie ettt sttt ettt et e e st e s e srbae e saabae e ennneas 1118
WXIMOUSEEVENT ...ttt ettt e ee et be e s ee e e bbb e e eab e e s e e e enneennnas 1119
WXIMIOVEEVENT ...ttt ettt et e h et e e sae e s ee e e et s en e e enb e e e e e e eeneennnas 1128
Y VT 1T e o 1ot =Y 1 =1 (o T SO ST 1128
VWUXIMIUTE X . ettt ettt st eht et e+ ee ekt e £ e e ea £ e st e e eh e £ e mb e e eh e e b ee e s e e enneesneeeennennnnas 1130
WXIMUEEXLOCKET ...ttt ettt ee ettt et et s ae e se e enb e eabeneene et et sneeneas 1133
1T 2N (o o =PTSRS 1134
WXNOEEIOOK ...t e e e bt e nb e ae s e b e e s e s e e nnas 1135
WXNOEDOOKEVENT ...t e e et s b et s 1143
WXNOLEDOOKSIZET ...ttt e e ettt s b e s 1145
T2 N 0141377 V=T o | SO PST 1146
12O ] o TT= o] OSSP 1147
WXODJECIREDALA .......eeeie et s rr et er e et e e e era e nnas 1151
WXOWNEIDIAWNCOMBDOBOX ......cuiieieeie ettt ettt st eae e st ese e ese b s sae e ae e s 1151
{0 (@ U1 o0 6] 1 == o PSPPSR 1155
= (e[S IST=T (T o] BT 1o o OSSR 1157
WXPageSetupDialogData. ..........coiiiiiieiee et e er et e e ennaean 1159
WXPAINID C ...ttt st st a e ee et s st e st e e et et e se e e ebeenb e ens e s e enbeenbeenbeeneennas 1163
WXPAINTEVENT ...ttt e e bt e st e eae s e e be et st saeennas 1164
WXPAIETEE ...ttt ettt eh et s et e e et st e s et e ebeenb e ene e s e e be e st e nte s e e nas 1166
WXPANEL ...ttt et a e eh et a e a e bt e e et e e et bt ent e ens e neenn e n b e e e nas 1169
= TSV o] (o | =g Y BIT= 1 oo SRS 1172




CONTENTS

WXPAENLIST ...ttt ettt e e se e e b e e nb e eas e s e e b e e b e nee e e nas 1173
WWXPBIN ettt ettt e et e e n e e e R ee e e an et e e e an e ee e anneee e arneeas 1175
WXPEINLISE ...ttt ettt s bbb et e e s he e ebeenb e enseneenbeenbe et saeenas 1181
WXPICKEIBASE ...ttt ettt ea ettt et st sae e sbeenb e essess e b e et sneesaeennas 1183
WXPIAFOIMINTO. ...t e e bbb s s 1185
WXPOINT ..ttt sttt e h e eh e st es s st et e e a b e ae e ehe e eheenb e ehsenseenbeentesneeeneenas 1193
WXPOSISCHPIDC ...ttt ettt e e s e e e sre e e aaae s eseeeseeesteeeataesneeeereeenneas 1194
WXPOWETEVENT. ...ttt ettt e e sae e be e s ee e e e b ee e s e e enbeesne e e eneeennnas 1195
WXPTEVIEWECAINVAS ...ttt st st sttt e et est st e b e e et et e sae e st e eb b e ensessenseenaesneesneenaas 1196
WXPTEVIEWCONTIIOIBAL.. ...ttt e et e ebe e es bbb et s ae e 1197
R G (=Y TSN = T = F TP RR 1198
T2 G 1011 - - TP RRRRRR 1200
(T2 a4 ] 1 =1 (o o OSSR 1206
WXPTINIDIAIOGDALA. ... .cccie ettt ere et ae s er e e aae e e e e eataeeeeesreeennnas 1207
L2 101 (= PSRRI 1211
L2 101 (=T 5 TP 1213
L2 101 (o 10 | PSRRI 1214
WXPTINIPTEVIEW ...ttt ettt ee ettt et e se e e sb e enb e enb e seenb e et snbesaeennas 1221
WWXPTOCESS ...ttt ettt ettt ettt et e e ehe et e e ee e et e e e e e ea ke e e Rt e e eee e embe e e eb e e e nbee e s e e enbeeaneeeenneennnas 1224
WXPTOCESSEVENT.....ceeiieie ettt et ee et et b e e rr e e eab e e s e e e eeneennnas 1229
T G (o Yo T=TTS 1 (oo SRS 1230
G (oY o L= Y AS] g 11T 117 o o OSSO 1232
1T 2 0] (o Tt o ] TP 1235
(2O LU = T 174 = OSSR 1237
WXQUETrYLAYOULINFOEVENT ........veeee ettt et et e e e e e enneean 1238
L2 (o 1o = o ) PSRRI 1240
T2 E: (o 10T =10 1 o] o [T TP 1249
WXREAIPOINT....ci ettt ettt et st e s he e sbeeab e eas e s s enbe et enbesaeennas 1251
12 G L= o] SO TSP PP PR P PTRPR 1252
WXRECUISIONGUANT. ...ttt ea ettt et et se e e se e ebb e enseseene e b e neesaeennas 1258
WXRECUISIONGUAIAFIAQ ......veeiviecie ettt et e e e e et e e nae e e eeenneean 1259
L0 T | = SR SP PSP 1260
(T2 =T o (o SO S 1264
T2 R Yo (0T 0] 1 (=T = o 1 OSSO SPSP 1269
WXREGKBY ..ottt ettt et e st e e s et e e s e e e e et et ee et et e e ae e e ee e abtee e e nteee e e nteeeeereaeeenraeens 1271
WXRENAEIEINALIVE .......eeieeiieiie ettt e st st et e ab e enb s e e b e b s e saeeenas 1275
TGt o L=T =T Y =T €= (o] o HO TP 1280
WXRICT @XEAE <.ttt ettt et st se e e sb e enb e enb e ne e s e e eneesaeennas 1281
WXRICAT @XEBUTEI ... et e e 1298
WxRichTextCharacterStyleDefinition ..o e 1315

Xi



CONTENTS

WXRICT @XECHIT ...ttt e e e sb e ab e as e s e b e st s e e nnas 1315
WXRICNTEXEEVENT ...t e st e s b e s 1346
WXRIChT @XEFIEHANAIET ... et e e s 1350
WXRIChTextFOrmattingDialog .........cc.ueeiieeeiieiie et e e st eeeaneean 1353
WXRIchTextFormattingDialogFactOry ...........ooceeiiiiiiiecee e e 1356
WXRIChTextHeaderFOOtErDALA..........ccoiie ettt s 1358
WXRIChT@XEHTMLHANAIET ...t sttt s 1362
WXRIChT extListStyleDefiNitioN ........cc.viiiee e e e 1364
wxRichTextParagraphStyleDefinition ...........cccooviiiiiiiiee e 1367
WXRICAT EXEPIINTING vttt ere e s er e e e na e e sr e e b ae s e e e ereeennas 1367
WXRIChT@XEPTINTOUL ..ottt st b e s s 1371
WXRICATEXERANGE ...t et e e e e ere e et ae s er e e n e e ereeenbaesneeereeenneas 1373
WXRIChT eXtStyleDEfINItION ....cuvieee e e eeaneean 1375
WXRIChT eXtStYIE COMBOCH ... .eoiie e et e e e e e enneean 1377
WXRICAT @XESTYIELISIBOX ...c..veeiie ettt e e e e et e e st e e e ae e e ereenae e enneenneean 1378
WXRICAT @XESTYIELISICI ... e er e e aae e e e ennaean 1381
WXRIChTextStyleOrganiSerDialog ........ccccciueieeiieeciiiecee ettt st e eenneeas 1383
WXRICAT EXESTYIESRNEEL ... e s e e e e enneeas 1386
WXRIChT@XEXMLHANAIET ...ttt sttt e e e 1390
WXSASNEVENT. ...ttt a ettt et st se e e sb e enb e eab e b e e ne et e e e nnas 1392
WXSASHLAYOUIWINUOW........c.eiiie ettt s st e e sae e et e e nnae e e e e enneean 1394
WXSASNWINAOW ...ttt e st st se e st e en b e s e e b e e b st saeeneas 1397
(TS odo] 1Yo F AN 4 = | OSSP 1401
(T2 oo} o 1Yo | 1 SO ST 1403
(T2 Todo] o 1Yo [ I 1= = 1 USSP 1406
WXSCIEEINDIC ...ttt ettt ettt ettt e e et ea bt e s st e e eeeeenbe e s ebeeensee e s e e enbeesneeeenneennnas 1406
WXSCIOIBA ...ttt ettt sttt ee et s et b e be et st e se e e ebeenb e enseneebeeneesnbesneennas 1408
WXSCIOIEAWINTUOW ..ottt e se e se e bt enb s e e s e b st s e e nnas 1414
WXSCIOIEVENT ...ttt ettt e e s he e sbeenb e eabeneenbe et sneesaeennas 1423
WXSCTOIWWINEVENT ...ttt e e st se et eab s e e b b et s e e nnas 1425
T2 ST 1= ] oY= TSRS 1427
WXSEECUISOIEVENT ...ttt ettt ettt e e see e e s et e e bbb e e eabee s e e e seeeennnas 1429
2 ST A= ST TSP PP PR PTRPR 1430
WXSIMPIEHEIPPTOVIAET ...ttt et s st e e rae e et e e nae e e e e enneean 1432
TR ST V(o] o[ 1 PR TRR R R 1432
Indicates whether the cancel button is visible.wxSingleChoiceDialog.........cccccceecveeverennen. 1435
WXSINGIEINSIANCECNECKET ... vi et st e e e e e enneean 1437
L2 TSRS 1440
WXSTZEEVENT ...ttt et et se e bt enb e enb e s e e s e e b e ntesaeennas 1443
L2 T PR RRRRRR 1444

Xii



CONTENTS

2] v4=1 1 = To [ SO S 1454
TR S TrA=T 41 (=10 o TP URRRRR 1457
LT 2 1o 1= TP 1461
WXSOCKAGAIESS ... ettt st a e ee ettt e be et et e sae e st e enb e eabeneebeenteeneesaeeneas 1470
WXSOCKEEBASE ...ttt et st se e et ee et es st s e e et et e se e e st e enb e eabeneenbeenbeenbesaeennas 1471
RS aTed = (O =T o | ST 1487
WXSOCKETEVENT. ...ttt st ee ettt et et ee e e st e enb e easene e b e et et sneennas 1489
WXSOCKEINPULSTIIEAM ...t et e et re e e ae e e sreeaae e eneeenneean 1490
WXSOCKEtOULPULSIIEAM ......eeeieiecee ettt et e e e e e e e e sre e e e e e ereenae e enneenneenn 1491
WXSOCKEESEIVET ...ttt ettt ea e eb et s e b e e et et e sae e st e enb e aabeseenseeneeeaeesneennas 1491
172 Lo 10 oo [PPSR 1493
WXSPINBUION. ... e e s e e e ere e e nte e s eteeenaeerte e ntaesaneeereeennnes 1495
172 11 1 5 SO PST 1499
WXSPINEVENT.....oeeeceee ettt e e e e s e e e ste e e aae e s eteeesaeesteeeasaesneeeereeennnas 1502
2] 0= ] ST (T o SO S 1503
TS o1 L L= V=T o | SO S 1504
T2 S] o 1n C=Y T Vo [ 1 OSSP 1507
WXSPHErRENAEIPAIAMS... ..ottt ettt e e e et s e e s re e e sae e saeeennae e enneenneean 1517
WXSTACKFTAIME. ...ttt ettt et se e st e eab e enb e ne e b e et e ntesaeennas 1518
WXSTACKWAIKET ...ttt e e e et ab s e b st s nnas 1520
WXSTANAAIAPALNS ... e e ettt b e s e 1521
TS = Tod =11 =T o FR OSSP 1526
T2 = Lo =To ) TP RR RS 1529
T2 = LT =10 ) ST 7.4~ T G PR URR 1531
WXSTATICLINE ...ttt ettt ettt e et st e ee e e sbeenb e ens e seenbeeneeenbesneenas 1531
T2 = Lol = AP RR R 1533
WWXSTATUSBAL ...ttt ettt et ettt et et e st e e she e e nbe e s ebe e e bee e s e e enbeeaneeeeneeennnas 1535
WXSTADIAIOGBULIONSIZET .....eeeiie ettt et e e e sae e et e e aae e e eeenneean 1540
LTS (0T 01T A = (o o TSROSO 1542
WXSTTEAMIBEASE ......eeicetieee ettt sttt ettt e e she e e a e e s ae e e e bee s s e e eabe e s e e e sneeennnas 1543
WXSTTEAMBUITEI ...t e e et b st s 1545
WXSTIreaMTOTEXIREAINECION. ... ettt ettt s 1551
1126 4 T SO 1552
TS T TR Te ] =101 1= SO 1578
WXSHINGBUEILENGN.... oo e e ere e 1579
S I Te [ 11T a1 | = VSO 1580
S g TaTe ] (g o 10T 653 =Ty o OSSR 1581
WXSHINGOULPULSIIEAIM......iiiie ettt e e e e e s te e sree e e ae e e sreeneeeenneenneens 1581
S (Lo ) =] 4174~ SO 1582
)Y ] oTo] 1 ad (o 1T I IT-1 oo [T OR S 1585

Xiii



CONTENTS

WXSYSCOIOUIChaNGEAEVENL......c.eecviiecee ettt et sr e e nnte e e eeenneean 1588
2SS (11 L@ o] i o] o =SOSR 1589
ST CCL IS L= 11TV OSSP 1592
I T (O F= TXT = Tod (] YOS PT 1597
LT DS I= L =11 Y2 TSRO SPT PP 1598
WXT A INPUESTI A ...eiieeieseiee ettt ee e e e et e e e e e e e e e s s e e e e s e e eesestseeeestaeesesbaaeeasanens 1601
D I: O 0] 101U ] 8] (== 1 o PSPPI 1603
L= 151 (7= U [0 o HO TP URR R 1605
LTI = O =T o | S TP 1608
WXTCPCONNECHION ...ttt ettt ettt st st ae e e b e s e e ebs e enbennb e seenaeebe e e ens 1609
WXTCPSEIVET ...ttt ettt ettt et e et e st e e eee e e nbee s ee e e e bee e s e e eabeesneeeeeneennnas 1613
LT I=T 0] o1 1 =SOSR 1614
WXTEMPFIEOULPULSIIEAM ....c..vi ittt e e et e et e e eate e e e e enneean 1616
VWX T EXEATIT ..ttt ettt ettt st ea et e e et e et et e ea e e e st e e eee e enb e e ebeeansee s s e e eabeesneeeenneennnas 1617
WXTEXEATITEX ..ottt ettt e e et ettt e see e e abe e s ebe e e see e s e et e e sae e e eeneennnas 1622
LX) (L3 (TP 1632
QI DT = 1@ oY= o PSP ST 1652
D D o] o 1= o 1] TSP SP PSP 1653
I =T 114/ D= 1o o SO PT 1654
WWXT @XEFIIE ...ttt et a ettt et et e s et e ebeenb e eases e enbeenbesatesneenas 1656
WXT EXEUNPUESTIEAM ...ttt ettt e s e et e e e st e e e eeeee e e sbaaeessaeeesereaaeeernnens 1661
D (@ LU 1 o LU 6] 1 €= 7= o RSP PUPP 1664
LY AV 2= UlTo F= (o] PR RRSR 1666
L2 11 £=T= Lo TP 1669
I L E=T= Lo [T | 1= SO 1677
L2 1 1= ST RRRRRR 1679
T 1T YT o | TP URRRR 1681
LI T= S o - o OSSP 1682
LTI 0 d 001/ (o 1= SO 1688
LTI 9L To (o SO 1689
WXTOQQIEBUON. .....ciiiieie ettt ettt e et e s e e e sre e e b ae e es e e e saeeeteensaesnneeereeenneas 1691
WXT OOIBAT ...ttt ettt ettt eh et a ekt e b e e et st e she e ebeenb e easensenseenaesabesaeenas 1693
WXT OOIDOOK. ...ttt ettt e e ea e ee et s s e bt e e et st e se e e ebeenb e easeseebeenbesnbesneennas 1710
LTL2 I o Lo I o USRI 1710
WXTOPLEVEIWINGOW ..ottt et et e e e eaa e e e e sra e e e ae e e sreenaeeenneenneean 1711
LT (L] o To o TP RR RS 1720
WXTTEEDOOKEVENT ...ttt ettt e e st se e bt enb e ne e b e b st saeennas 1725
L2 (=1=1 O £ TP 1727
T CCL=Y 1= 41 (o PR RRRR 1746
WXTTEEEVENT. ..ottt ettt e et e s e et ear et e s s ar b ee s e s s e e s e s s ee s ennseeeenneeas 1747

Xiv



CONTENTS

WXTTEEREMDALA ...ttt ettt et se et et e e b e b e e eab e e s e e e seneennnas 1750
WXUPAALEUIEVENT ...ttt ettt et e e et e et ae s en e e aae et e e entaesnneesneeennnas 1751
WXUR Lttt ettt ettt et et e st s e st es e s e eteeaeeeee0eebe e s tentente s ensenseeseeeeeteeneeneaneas 1755
VXU R ¢ttt ettt et ettt e e ettt ea bt e e he e s eee e nbe e eb e e e nnee e s e e eaneenne e e eneeennnas 1762
WXURLDAAODJECT.......coii ettt ettt e e e ere e e aae s er e e aee e sreeentaesnneeereeenneas 1765
T2V L1 To F= o PR RRRSR 1765
L2V A= Ly | PSSR RRSR 1767
WXVAIANTIDEALA ...ttt ettt ee ettt et st se e e sb e enb e eas e s e ense et sntesaeennas 1776
WWUXVIBWW ¢t ettt e et et e st eee e e oo e eheea b £ es b £ s e b e et e a b e Rt e eh e e eheenb e ehsenseenneeneeeneenaeenas 1778
WXV LISEBOX ...ttt ettt ettt sttt he e eb et es st e st e e et et e ee e e eb e enb e ensen e e b e entesnbesneennas 1782
T2V AS 1o o] 1 L= AV To (oL PSSR 1789
WXMVINTOW. ...ttt ettt sttt a e ee et es st e s et et s e e s he e ebeenb e ensensenseentesntesaeennas 1794
WXWINAOWUPAAIELOCKET ...ttt ettt et s te e st e e aae e eraeesnte e e e e enneean 1851
WXWINAOWCTEAIEEVENT. ...ttt et se e sb e bbbt s be e s 1852
WXWINAOWDC ...ttt sttt ae ettt e e et et e s ae e seeemb e eas e neense et eatesneennas 1852
WXWINAOWDESITOYEVENT......coiiiiie ettt e s et e et e e nte e e eeenneean 1853
WXWINAOWDISADIET ...t e et e eb bbb e s 1854
T2k 74 1o PSSR 1854
WXWIZAIAEVENT. ...ttt ettt ee ettt et et ese e e st e enb e eas e seenbeenbeeneesaeennas 1860
A= o | 2= Vo 1= TS OSSR 1861
= o | 2= o T 1] 0 ] o) SRS 1863
WXXMIDOCUIMENT ...ttt ettt e e et et e e seeeb b e esseneene et entesneennas 1864
WIXOKXIMIINOGE. .. et ee ettt et st ee e e sbeenb e ess e s e b e e nte s ntesaeennas 1868
(T2 0 L 0T 0= SO ST 1874
WXXIMIRESOUICE ....eei ittt st se e ea et ettt s e b et et et e sae e st e enbeenbensenseenbesatesaeennas 1875
WXXMIRESOUICEHANTIET ...t et e e e e 1880
WXZIPCIASSFACIONY ... .oeiiie ettt et e e ere e e e s et e e e naae e ereeeabaeseeeereeennnas 1885
(T2 o] =g 1 USSR 1885
(IO o] [g] o101 653 =T n OSSP 1891
(T2 o] L] 111 1= OSSR 1893
T2 oL@ W 1 18] 6] (=T Lo [OOSR 1894
WXZIDINPUESTIEAIM ..ot e e s et e e e naae e st e e eabaesee e ereeennnas 1896
WXZIIDOULPULISTIEAM ..ttt e e e e eaa e s te e s re s e e ae e s ereeaae e e neeenneean 1897
LU T4 1[0 1P 1900
Alphabetical functions and Macros ISt .........ccceoviiiiiiiie e e 1900
V22T 6T o] o 0 0 F= o] £ LTRSS 1905
Application initialization and termMiNAtioN ..............ccouiiiiee i 1906
Process CONtrol fUNCHIONS .......c.oioiiieie et et e sre e sreenneens 1910
THRrEAd FUNCHONS......ei ettt et et sb e e seeesseseennennneas 1914

XV



CONTENTS

FlE FUNCHIONS ...ttt e et eb e bbbt et s e e se e e e e eree e 1916
Network, user and OS fUNCLONS .......co.oiiiiiiiii ettt e see e sreenneens 1922
R 1T I {8 o3 (1) o 1 OSSR 1926
[T 1oL I {1 1o 10 3 = OSSP 1931
MALH FUNCHIONS ...t ettt eb et e a ettt ese e e e e eree e 1941
LT I (0703 0] o =SOSR PSTUP ORI 1941
[ 101 (=T G SY= x 1] o 1TSS 1944
(@111 o o= Tyo I {11 o] 110 o 1SS 1946
MiISCEIIANEOUS FUNCHIONS. ...ttt et b et et se e e e e eneenes 1948
23V I T o (=T 0 0= (ol (o OSSR 1960
RTTIFUNCHONS ...ttt e e ee e ee e eb et e s e b e et et saeese e e neeeree e 1961
[0 I8 (1] (o3 170 o 1SS 1968
THMIE FUNCLIONS ...t ettt eb etttk et e e st et e e e e eb e e sreensaneennennnens 1974
Debugging macros and fUNCLIONS .........cueiiie it 1976
ENvironment aCCeSS FUNCHIONS .......c.ooiiiiiiiiie ettt e e s sre e 1980
L0001 1= 101 T PP 1982
Preprocessor symbols defined by WXWIAQELS .......coceeiiiiiie e 1982
Standard eVent IdENTFIErS. ... ..o e e e s ere e eeas 1987
[ Yoo Lo [T OSSR 1990
[N V1Y, [ To 11 =T £ OSSP 1992
[z TaTo T = o L= o [=T g1 1) 1= OSSR 1993
] (0o [ (=] 41 TSR PRROPURRRRP 2001
(O 1= TS oS o)V o= 1 (=0 (0] 3 V2SS 2004
TOPIC OVEIVIEWS ...ttt e e e te e i e e e eeae it e s e e e ae et e e e eeeeaanneneeeeeenen s 2022
NOtes 0N USING the FEfEIENCE ........vee et e e 2023
Writing a wxWidgets application: a rough guide ..........ccocovveiee e e 2024
WXWidgets Hello WOorld SAmMPIE.........o ettt e 2025
WXWIAQELS SAMPIES ...t s er e et ae e st e e eabae s e e e eraeennas 2027
WXAP OVEIVIEW ...t e ettt e et etee e se e e eta e s e e e eteeeaae e e e easseeaseaesaeeensaesasesenseeeseeensaesneeeenneennees 2037
WiINAOW SIZING OVEIVIEW .....couuvieiie ettt ettt e e ettt et e et e e te e st eeaaaesteesaas e saeesaeeeneesenneenneens 2039
Runtime class information (aka RTTI) OVEIVIEW ........cccveiiieiciie e 2041
REFEIENCE COUNTING .....viiiie ettt e e et e e e s e e e sre e e s abe e steesnsaeeneeenneenneas 2043
WXSHING OVEIVIEW ...t e ettt e et e tee e se e e et e s e e e ete e e sae e e e eassaesseeesaeeensaesasesenseeeasaeensaesneeeaneeennens 2044
BUFEI ClASSES OVEIVIEW ...ttt ettt e sttt ebe ettt st se e seeeneenes 2049
Date and time ClaSSES OVEIVIEW ......ccoueeuiiiuiiiiitiee st see e ree st s et esbe e seeseeesreenneens 2049
Unicode support in WXWIAQETS ........oiiueeiieiiie ettt e et se e st aae s sr e e sr e e ennaeeanas 2053
WXMBCONVY ClASSES OVEIVIEW ...ttt ettt sttt st eseesae s e s enae e e s 2056
INtErNALIONALIZATION ...t e e ettt s s ae e 2059

XVi



CONTENTS

Writing non-English appliCatioNS..........cceoieiiie e 2060
CONtAINET CIASSES OVEIVIEW. ......ciiiiitiiieietietirie ettt seeeteeebe et sb st e beeseeseeeseeseeesreenneans 2063
File classes and fUNCHONS OVEIVIEW .........c..oiuiiiiiieiie ettt s see e sre e 2064
WXSTIEAMS OVEIVIEW .....ceteeutiatieiee et e st e seeeaeeete et ess s e s e e eabe et e see e seeebe e anseneenssenaeentesneennas 2064
WXLOQ ClASSES OVEIVIEBW ......eeiuiieiieceiiieiee et te et e e e et e te e et eesne e e te e sraeeeae e e sreanteeenneenneenn 2066
DEDUQGGING OVEIVIEW ...ttt ettt ettt e e e er e e et e et e e saa e e sae e e ete e sabe e sreeeasaeeneeerseenneas 2069
WXCONTIG CIASSES OVEIVIEW .....vveiieceiiieiee ettt ettt ev e e e et e e s e e sra e eaae e eaeeennaeeenneenneean 2071
2GRl TSI S (=] o SO 2072
Event handling OVEIVIEW........couii ittt ettt e e sae e eaae e sr e e eanaeennas 2074
CH+ EXCEPLIONS OVEIVIEW ....eeiceiiiiee ettt ettt st e et e et et e et e e s e e e sreeenbe e s e seestessseenssaeannaeans 2085
WINAOW SEYIES.....eeeceieee ettt ettt e e at e s e e e ete e e ntae s staeenaeeseeersaesneeesreeenneas 2086
WiINAOW AEIETION OVEIVIEW ...ttt ettt ene e eb bt ae e e s 2086
WXDIAIOG OVEIVIEW ..ottt ettt ettt et e s e e e ere e e nte e s aseeesaeeareeentaesnneeereeenneas 2089
WXVAIAALOT OVEIVIEW ...ttt ettt eee ettt et st se e e e et b ens s e s e e b e saeennas 2089
CONSLIAINTS OVEIVIBW. ...ttt ettt ettt se e eie e s e e bt es b e estesaeesbe e et e saeeseeebsanseennennnens 2091
SUZEE OVEBIVIBW ...ttt ettt et et e et e ehe e eh e ea bt en b e e s beeh bt et e emeesbeesseebeenneennennnens 2095
XML-based reSoUrce SYSIEIM OVEIVIEW. .......ccuueiieecriiiieeeteeeitieeseeeaseeseesreeesae s saeessneeesneenneeas 2103
Yo (o] 1TaTo o )V/T o/ 1= A R 2112
Bitmaps and iCONS OVEIVIEW.........c..coiueeiieeciie e cteectee e et e e e ere et sae e sraeeaae s saeeenaessreeeaneesanas 2114
DEVICE CONEXE OVEIVIBW ...ttt ettt sttt e e ree et e st eeseeeseenseebbe s et e saeereeeeeesreenneans 2117
WX ONT OVEIVIEW....... vttt sttt ee etttk et st s ae e st e enb e ens e s e e bt e b e b saeennas 2118
FONt €@NCOAING OVEIVIEW........viiiiie ettt ettt e e e er e e eatae s nae e staeenae e saeeeneeesneeenneenaeas 2119
WXSPHEENWINAOW OVEIVIEW ... .eeiieceiiieie ettt eve e e st e s e e sraeesae e ereeennteeenneenneean 2120
WXTTEECIT OVEIVIEW ...ttt ettt ettt et et se e se e bt e enbeseene e e et s e e nnas 2122
WXLISTCEIT OVEIVIBW ...ttt et st se e ettt eab s e b e saeeenas 2123
WXIMAGELIST OVEIVIEW......ccoiiiieie ettt ettt e e e eaa e e e e sre s e e ae e e sreenaeeenneenneean 2123
WXBOOKCIT OVEIVIEW. ...ttt ettt e e se e se e eb e eab e ne s et st s ne e 2124
CommMON IAIOGS OVEIVIEW .....ccvviiiee ettt ettt e e s e e e e e e s st e e s nnte s sreennsaesnneeens 2125
DOCUMENTVIEBW OVEIVIEW ...ttt ettt sttt reeeee e st eess e ss b e e st e seeereeseeesreanneans 2128
TOOIDAI OVEIVIBW ...ttt e ettt eb st e st s e b e e e mbe e re e et e ebeeereenseneenneennens 2135
WXGTIA CIASSES OVEIVIEW ......oiiiiiiie ettt st et se e sttt s e ae e s 2140
WXTIPPTOVIAEI OVEIVIEW......eiiieie ettt ettt e e et e et e e sae e e ae e e ereente s enneennaean 2141
PrINTING OVEIVIEW ..ottt ettt e er et e e e e e re e e sae e e eae e e s abe e sreeensaeenneeerneenneas 2142
Printing under UNIX (GTKH) oottt re e et se e sre e e aae s ere e e nae s sneeenneeennas 2146
MUILItNrEAAING OVEIVIEW ...ttt et e er e e et s e e e re e e e e sreeeaae e sreeenneeeaeas 2146
Drag and Arop OVEIVIEW. ........coiuieciieiie et eite st et e s e et e e e ea e e eaaaeste e steeesae e saesesaeesresenneeaneas 2147
WXDAtaODJECT OVEIVIEW .......eiiiiecee ettt et st e e e sae e e sr e e nnte e e neennaean 2148
Databhase ClaSSES OVEIVIEW .......ccccoiiiiiieuiieieiitie ettt re ettt se bt e seeeneeseeesreenneens 2149
Interprocess COMMUNICALION OVEIVIEW ........ccceeiieeeiirieieeeteeeiieeeeeetaeesieesareesae e seeesaae e s eeenneean 2172
WXHTIML OVEIVIEW ...ttt ettt e sttt e et sbeeb e et sb et e et e b e e ens 2176

XVii



CONTENTS

WXRIChT@XECHT OVEIVIEW ...ttt sttt s 2185
WXAUL OVEIVIBW ...ttt ettt eae ettt ettt et et et e s ae e st e enb e eas e st e b e et smtesaeeneas 2194
ENVIFONMENT VAIADIES ...t ettt st e s ene e 2195
WXPYINON OVEIVIEW ...ttt ettt ettt e s e e e ere e e e e s er e e aae e st e e ntaesnneeereeenneas 2195
Syntax of the builtin regular expression lIrary ... 2207
Archive fOrmats SUCH @S ZIP ....vveiiiciiiiie ettt et e e nnae e e e enneean 2220
Backward COMPAatiDIlity ..........coocieiiiiie et e era s 2227
Platform details ...........oiiiiiiii s i 2231
1110 I I G o0 ] TSR PSPPI 2231
1100 S TAT A o o SR SPTP PP 2231
111001, F= T o Lo SRS PSPPSR 2240
(T2 o= 1 L@ IS o1 o SO ST 2240
1110 @ S 722 1o | ST SPRP PSP 2241
1717001, [©7 I o o ¢ SRR PSP 2241
171700 & I o o USROS PTRP PSP 2241
100 L= 2243

Xviii



Copyright notice

Copyright (c) 1992-2006 Julian Smart, Robert Roebling, Vadim Zeitlin and other members
of the wxWidgets team
Portions (c) 1996 Aurtificial Intelligence Applications Institute

Please also see the wxWindows license files (preamble.txt, Igpl.txt, gpl.txt, licence.txt,
licendoc.txt) for conditions of software and documentation use. Note that we use the old
name wxWindows in the license, pending recognition of the new name by OSI.

wxWindows Library License, Version 3.1

Copyright (c) 1998-2005 Julian Smart, Robert Roebling et al

Everyone is permitted to copy and distribute verbatim copies of this licence document, but
changing it is not allowed.

WXWINDOWS LIBRARY LICENCE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

This library is free software; you can redistribute it and/or modify it under the terms of the
GNU Library General Public Licence as published by the Free Software Foundation; either
version 2 of the Licence, or (at your option) any later version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY:; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Library General Public Licence for more
details.

You should have received a copy of the GNU Library General Public Licence along with
this software, usually in a file named COPYING.LIB. If not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.

EXCEPTION NOTICE

1. As a special exception, the copyright holders of this library give permission for additional
uses of the text contained in this release of the library as licenced under the wxWindows
Library Licence, applying either version 3.1 of the Licence, or (at your option) any later
version of the Licence as published by the copyright holders of version 3.1 of the Licence
document.

2. The exception is that you may use, copy, link, modify and distribute under your own
terms, binary object code versions of works based on the Library.

3. If you copy code from files distributed under the terms of the GNU General Public
Licence or the GNU Library General Public Licence into a copy of this library, as this
licence permits, the exception does not apply to the code that you add in this way. To
avoid misleading anyone as to the status of such modified files, you must delete this
exception notice from such code and/or adjust the licensing conditions notice accordingly.

XX



COPYRIGHT

4. If you write modifications of your own for this library, it is your choice whether to permit
this exception to apply to your modifications. If you do not wish that, you must delete the
exception notice from such code and/or adjust the licensing conditions notice accordingly.

GNU Library General Public License, Version 2

Copyright (C) 1991 Free Software Foundation, Inc. 675 Mass Ave, Cambridge, MA 02139,
USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

[This is the first released version of the library GPL. It is numbered 2 because it goes with
version 2 of the ordinary GPL.]

Preamble

The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public Licenses are intended to guarantee your
freedom to share and change free software -- to make sure the software is free for all its
users.

This license, the Library General Public License, applies to some specially designated
Free Software Foundation software, and to any other libraries whose authors decide to
use it. You can use it for your libraries, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for this service if you wish), that you receive source code or
can get it if you want it, that you can change the software or use pieces of it in new free
programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these
rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the library, or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you must
give the recipients all the rights that we gave you. You must make sure that they, too,
receive or can get the source code. If you link a program with the library, you must provide
complete object files to the recipients so that they can relink them with the library, after
making changes to the library and recompiling it. And you must show them these terms so
they know their rights.

Our method of protecting your rights has two steps: (1) copyright the library, and (2) offer
you this license which gives you legal permission to copy, distribute and/or modify the
library.

Also, for each distributor's protection, we want to make certain that everyone understands
that there is no warranty for this free library. If the library is modified by someone else and
passed on, we want its recipients to know that what they have is not the original version,
so that any problems introduced by others will not reflect on the original authors'
reputations.

XX



COPYRIGHT

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that companies distributing free software will individually obtain patent licenses,
thus in effect transforming the program into proprietary software. To prevent this, we have
made it clear that any patent must be licensed for everyone's free use or not licensed at
all.

Most GNU software, including some libraries, is covered by the ordinary GNU General
Public License, which was designed for utility programs. This license, the GNU Library
General Public License, applies to certain designated libraries. This license is quite
different from the ordinary one; be sure to read it in full, and don't assume that anything in
it is the same as in the ordinary license.

The reason we have a separate public license for some libraries is that they blur the
distinction we usually make between modifying or adding to a program and simply using it.
Linking a program with a library, without changing the library, is in some sense simply
using the library, and is analogous to running a utility program or application program.
However, in a textual and legal sense, the linked executable is a combined work, a
derivative of the original library, and the ordinary General Public License treats it as such.

Because of this blurred distinction, using the ordinary General Public License for libraries
did not effectively promote software sharing, because most developers did not use the
libraries. We concluded that weaker conditions might promote sharing better.

However, unrestricted linking of non-free programs would deprive the users of those
programs of all benefit from the free status of the libraries themselves. This Library
General Public License is intended to permit developers of non-free programs to use free
libraries, while preserving your freedom as a user of such programs to change the free
libraries that are incorporated in them. (We have not seen how to achieve this as regards
changes in header files, but we have achieved it as regards changes in the actual
functions of the Library.) The hope is that this will lead to faster development of free
libraries.

The precise terms and conditions for copying, distribution and modification follow. Pay
close attention to the difference between a "work based on the library" and a "work that
uses the library". The former contains code derived from the library, while the latter only
works together with the library.

Note that it is possible for a library to be covered by the ordinary General Public License
rather than by this special one.

GNU LIBRARY GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library which contains a notice placed
by the copyright holder or other authorized party saying it may be distributed under the
terms of this Library General Public License (also called "this License"). Each licensee is
addressed as "you".

A "library" means a collection of software functions and/or data prepared so as to be
conveniently linked with application programs (which use some of those functions and
data) to form executables.

The "Library", below, refers to any such software library or work which has been

XXi



COPYRIGHT

distributed under these terms. A "work based on the Library" means either the Library or
any derivative work under copyright law: that is to say, a work containing the Library or a
portion of it, either verbatim or with modifications and/or translated straightforwardly into
another language. (Hereinafter, translation is included without limitation in the term
"modification".)

"Source code" for a work means the preferred form of the work for making modifications to
it. For a library, complete source code means all the source code for all modules it
contains, plus any associated interface definition files, plus the scripts used to control
compilation and installation of the library.

Activities other than copying, distribution and modification are not covered by this License;
they are outside its scope. The act of running a program using the Library is not restricted,
and output from such a program is covered only if its contents constitute a work based on
the Library (independent of the use of the Library in a tool for writing it). Whether that is

true depends on what the Library does and what the program that uses the Library does.

1. You may copy and distribute verbatim copies of the Library's complete source code as
you receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all
the notices that refer to this License and to the absence of any warranty; and distribute a
copy of this License along with the Library.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it, thus forming a
work based on the Library, and copy and distribute such modifications or work under the
terms of Section 1 above, provided that you also meet all of these conditions:

a) The modified work must itself be a software library.

b) You must cause the files modified to carry prominent notices stating that you
changed the files and the date of any change.

¢) You must cause the whole of the work to be licensed at no charge to all third
parties under the terms of this License.

d) If a facility in the modified Library refers to a function or a table of data to be
supplied by an application program that uses the facility, other than as an argument
passed when the facility is invoked, then you must make a good faith effort to ensure
that, in the event an application does not supply such function or table, the facility
still operates, and performs whatever part of its purpose remains meaningful.

(For example, a function in a library to compute square roots has a purpose that is
entirely well-defined independent of the application. Therefore, Subsection 2d
requires that any application-supplied function or table used by this function must be
optional: if the application does not supply it, the square root function must still
compute square roots.)

These requirements apply to the modified work as a whole. If identifiable sections of that
work are not derived from the Library, and can be reasonably considered independent and
separate works in themselves, then this License, and its terms, do not apply to those

XXii



COPYRIGHT

sections when you distribute them as separate works. But when you distribute the same
sections as part of a whole which is a work based on the Library, the distribution of the
whole must be on the terms of this License, whose permissions for other licensees extend
to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written
entirely by you; rather, the intent is to exercise the right to control the distribution of
derivative or collective works based on the Library.

In addition, mere aggregation of another work not based on the Library with the Library (or
with a work based on the Library) on a volume of a storage or distribution medium does not
bring the other work under the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public License instead of
this License to a given copy of the Library. To do this, you must alter all the notices that
refer to this License, so that they refer to the ordinary GNU General Public License,
version 2, instead of to this License. (If a newer version than version 2 of the ordinary GNU
General Public License has appeared, then you can specify that version instead if you
wish.) Do not make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the ordinary
GNU General Public License applies to all subsequent copies and derivative works made
from that copy.

This option is useful when you wish to copy part of the code of the Library into a program
that is not a library.

4. You may copy and distribute the Library (or a portion or derivative of it, under Section 2)
in object code or executable form under the terms of Sections 1 and 2 above provided that
you accompany it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange.

If distribution of object code is made by offering access to copy from a designated place,
then offering equivalent access to copy the source code from the same place satisfies the
requirement to distribute the source code, even though third parties are not compelled to
copy the source along with the object code.

5. A program that contains no derivative of any portion of the Library, but is designed to
work with the Library by being compiled or linked with it, is called a "work that uses the
Library". Such a work, in isolation, is not a derivative work of the Library, and therefore falls
outside the scope of this License.

However, linking a "work that uses the Library" with the Library creates an executable that
is a derivative of the Library (because it contains portions of the Library), rather than a
"work that uses the library". The executable is therefore covered by this License. Section 6
states terms for distribution of such executables.

When a "work that uses the Library" uses material from a header file that is part of the
Library, the object code for the work may be a derivative work of the Library even though
the source code is not. Whether this is true is especially significant if the work can be
linked without the Library, or if the work is itself a library. The threshold for this to be true is
not precisely defined by law.

xXiii



COPYRIGHT

If such an object file uses only numerical parameters, data structure layouts and
accessors, and small macros and small inline functions (ten lines or less in length), then
the use of the object file is unrestricted, regardless of whether it is legally a derivative work.
(Executables containing this object code plus portions of the Library will still fall under
Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute the object code for
the work under the terms of Section 6. Any executables containing that work also fall
under Section 6, whether or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also compile or link a "work that uses
the Library" with the Library to produce a work containing portions of the Library, and
distribute that work under terms of your choice, provided that the terms permit modification
of the work for the customer's own use and reverse engineering for debugging such
modifications.

You must give prominent notice with each copy of the work that the Library is used in it and
that the Library and its use are covered by this License. You must supply a copy of this
License. If the work during execution displays copyright notices, you must include the
copyright notice for the Library among them, as well as a reference directing the user to
the copy of this License. Also, you must do one of these things:

a) Accompany the work with the complete corresponding machine-readable source
code for the Library including whatever changes were used in the work (which must
be distributed under Sections 1 and 2 above); and, if the work is an executable
linked with the Library, with the complete machine-readable "work that uses the
Library", as object code and/or source code, so that the user can modify the Library
and then relink to produce a modified executable containing the modified Library. (It
is understood that the user who changes the contents of definitions files in the
Library will not necessarily be able to recompile the application to use the modified
definitions.)

b) Accompany the work with a written offer, valid for at least three years, to give the
same user the materials specified in Subsection 6a, above, for a charge no more
than the cost of performing this distribution.

c) If distribution of the work is made by offering access to copy from a designated
place, offer equivalent access to copy the above specified materials from the same
place.

d) Verify that the user has already received a copy of these materials or that you
have already sent this user a copy.

For an executable, the required form of the "work that uses the Library" must include any
data and utility programs needed for reproducing the executable from it. However, as a
special exception, the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler, kernel,
and so on) of the operating system on which the executable runs, unless that component
itself accompanies the executable.

It may happen that this requirement contradicts the license restrictions of other proprietary
libraries that do not normally accompany the operating system. Such a contradiction
means you cannot use both them and the Library together in an executable that you

XXV



COPYRIGHT

distribute.

7. You may place library facilities that are a work based on the Library side-by-side in a
single library together with other library facilities not covered by this License, and distribute
such a combined library, provided that the separate distribution of the work based on the
Library and of the other library facilities is otherwise permitted, and provided that you do
these two things:

a) Accompany the combined library with a copy of the same work based on the
Library, uncombined with any other library facilities. This must be distributed under
the terms of the Sections above.

b) Give prominent notice with the combined library of the fact that part of it is a work
based on the Library, and explaining where to find the accompanying uncombined
form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute the Library except as
expressly provided under this License. Any attempt otherwise to copy, modify, sublicense,
link with, or distribute the Library is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

9. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Library or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Library (or any work based on the Library), you indicate your
acceptance of this License to do so, and all its terms and conditions for copying,
distributing or modifying the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the Library), the recipient
automatically receives a license from the original licensor to copy, distribute, link with or
modify the Library subject to these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein. You are not responsible
for enforcing compliance by third parties to this License.

11. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they do
not excuse you from the conditions of this License. If you cannot distribute so as to satisfy
simultaneously your obligations under this License and any other pertinent obligations,
then as a consequence you may not distribute the Library at all. For example, if a patent
license would not permit royalty-free redistribution of the Library by all those who receive
copies directly or indirectly through you, then the only way you could satisfy both it and this
License would be to refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply, and the section as a whole is
intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property
right claims or to contest validity of any such claims; this section has the sole purpose of
protecting the integrity of the free software distribution system which is implemented by

XXV



COPYRIGHT

public license practices. Many people have made generous contributions to the wide
range of software distributed through that system in reliance on consistent application of
that system; it is up to the author/donor to decide if he or she is willing to distribute
software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of
the rest of this License.

12. If the distribution and/or use of the Library is restricted in certain countries either by

patents or by copyrighted interfaces, the original copyright holder who places the Library
under this License may add an explicit geographical distribution limitation excluding those
countries, so that distribution is permitted only in or among countries not thus excluded. In
such case, this License incorporates the limitation as if written in the body of this License.

13. The Free Software Foundation may publish revised and/or new versions of the Library
General Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library specifies a version
number of this License which applies to it and "any later version"”, you have the option of
following the terms and conditions either of that version or of any later version published
by the Free Software Foundation. If the Library does not specify a license version number,
you may choose any version ever published by the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose
distribution conditions are incompatible with these, write to the author to ask for
permission. For software which is copyrighted by the Free Software Foundation, write to
the Free Software Foundation; we sometimes make exceptions for this. Our decision will
be guided by the two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY
AND PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD THE LIBRARY
PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE
TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE
THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES
OR A FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE),

XXVI



COPYRIGHT

EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS
Appendix: How to Apply These Terms to Your New Libr  aries

If you develop a new library, and you want it to be of the greatest possible use to the public,
we recommend making it free software that everyone can redistribute and change. You
can do so by permitting redistribution under these terms (or, alternatively, under the terms
of the ordinary General Public License).

To apply these terms, attach the following notices to the library. It is safest to attach them
to the start of each source file to most effectively convey the exclusion of warranty; and
each file should have at least the "copyright" line and a pointer to where the full notice is
found.

<onelinetogivethelibrary'snameandabriefid eaofwhatitdoes.>
Copyright (C) <year> <name of author>

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library Genera | Public
License as published by the Free Software Foundatio n; either
version 2 of the License, or (at your option) any | ater version.
This library is distributed in the hope that it wil | be useful,
but WITHOUT ANY WARRANTY:; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the GNU
Library General Public License for more details.

You should have received a copy of the GNU Library General Public
License along with this library; if not, write to t he Free
Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your school, if any, to
sign a "copyright disclaimer"” for the library, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright inte rest in the
library "Frob’ (alibraryfortweaking knobs) writt enbyJamesRandom
Hacker.

<signature of Ty Coon>, 1 April 1990
Ty Coon, President of Vice

That's all there is to it!

XXVi



Introduction

What is wxWidgets?

wxWidgets is a C++ framework providing GUI (Graphical User Interface) and other
facilities on more than one platform. Version 2 currently supports all desktop versions of
MS Windows, Unix with GTK+, Unix with Motif, and MacOS. An OS/2 port is in progress.

wxWidgets was originally developed at the Atrtificial Intelligence Applications Institute,
University of Edinburgh, for internal use, and was first made publicly available in 1992.
Version 2 is a vastly improved version written and maintained by Julian Smart, Robert
Roebling, Vadim Zeitlin, Vaclav Slavik and many others.

This manual contains a class reference and topic overviews. For a selection of wxWidgets
tutorials, please see the documentation page on the wxWidgets web site
(http://vww.wxwidgets.org ).

Please note that in the following, "MS Windows" often refers to all platforms related to
Microsoft Windows, including 16-bit and 32-bit variants, unless otherwise stated. Al
trademarks are acknowledged.

Why another cross-platform development tool?

wxWidgets was developed to provide a cheap and flexible way to maximize investment in
GUI application development. While a number of commercial class libraries already
existed for cross-platform development, none met all of the following criteria:

1. low price;

2. source availability;

3. simplicity of programming;

4. support for a wide range of compilers.

Since wxWidgets was started, several other free or almost-free GUI frameworks have
emerged. However, none has the range of features, flexibility, documentation and the
well-established development team that wxWidgets has.

As open source software, wxWidgets has benefited from comments, ideas, bug fixes,
enhancements and the sheer enthusiasm of users. This gives wxWidgets a certain
advantage over its commercial competitors (and over free libraries without an independent
development team), plus a robustness against the transience of one individual or
company. This openness and availability of source code is especially important when the
future of thousands of lines of application code may depend upon the longevity of the
underlying class library.

Version 2 goes much further than previous versions in terms of generality and features,
allowing applications to be produced that are often indistinguishable from those produced



CHAPTER 2

using single-platform toolkits such as Motif, GTK+ and MFC.

The importance of using a platform-independent class library cannot be overstated, since
GUI application development is very time-consuming, and sustained popularity of
particular GUIs cannot be guaranteed. Code can very quickly become obsolete if it
addresses the wrong platform or audience. wxWidgets helps to insulate the programmer
from these winds of change. Although wxWidgets may not be suitable for every application
(such as an OLE-intensive program), it provides access to most of the functionality a GUI
program normally requires, plus many extras such as network programming, PostScript
output, and HTML rendering; and it can of course be extended as needs dictate. As a
bonus, it provides a far cleaner and easier programming interface than the native APIs.
Programmers may find it worthwhile to use wxWidgets even if they are developing on only
one platform.

It is impossible to sum up the functionality of wxWidgets in a few paragraphs, but here are
some of the benefits:

* Low cost (free, in fact!)

* You get the source.

» Available on a variety of popular platforms.

*  Works with almost all popular C++ compilers and Python.
e Over 50 example programs.

e Over 1000 pages of printable and on-line documentation.

* Includes Tex2RTF, to allow you to produce your own documentation in Windows
Help, HTML and Word RTF formats.

»  Simple-to-use, object-oriented API.

*  Flexible event system.

e  Graphics calls include lines, rounded rectangles, splines, polylines, etc.

» Constraint-based and sizer-based layouts.

»  Print/preview and document/view architectures.

* Toolbar, notebook, tree control, advanced list control classes.

»  PostScript generation under Unix, normal MS Windows printing on the PC.
MDI (Multiple Document Interface) support.

e Can be used to create DLLs under Windows, dynamic libraries on Unix.

«  Common dialogs for file browsing, printing, colour selection, etc.

* Under MS Windows, support for creating metafiles and copying them to the
clipboard.




CHAPTER 2

» An API for invoking help from applications.

* Ready-to-use HTML window (supporting a subset of HTML).
*  Network support via a family of socket and protocol classes.
e Support for platform independent image processing.

. Built-in support for many file formats (BMP, PNG, JPEG, GIF, XPM, PNM, PCX).

wxWidgets requirements

To make use of wxWidgets, you currently need one of the following setups.
(a) MS-Windows:
1. A 32-bit or 64-bit PC running MS Windows.

2. A Windows compiler: MS Visual C++ (embedded Visual C++ for wxWInCE port),
Borland C++, Watcom C++, Cygwin, MinGW, Metrowerks CodeWarrior, Digital
Mars C++. See install.txt for details about compiler version supported.

3. Atleast 100 MB of disk space for source tree and additional space for libraries
and application building (depends on compiler and build settings).

(b) Unix:
1. Almost any C++ compiler, including GNU C++ (EGCS 1.1.1 or above).

2. Almost any Unix workstation, and one of: GTK+ 1.2, GTK+ 2.0, Motif 1.2 or higher,
Lesstif. If using the wxX11 port, no such widget set is required.

3. Atleast 100 MB of disk space for source tree and additional space for libraries
and application building (depends on compiler and build settings).

(c) Mac OS/Mac OS X:
1. A PowerPC Mac running Mac OS 8.6/9.x (eg. Classic) or Mac OS X 10.x.
2. CodeWarrior 5.3, 6 or 7 for Classic Mac OS.

3. The Apple Developer Tools (eg. GNU C++), CodeWarrior 7 or above for Mac OS
X.

4. Atleast 100 MB of disk space for source tree and additional space for libraries

and application building (depends on compiler and build settings).

Availability and location of wxWidgets

wxWidgets is available by anonymous FTP and World Wide Web from
ftp://biolpc22.york.ac.uk/pub (ftp://biolpc22.york.ac.uk/pub ) and/or
http://iwww.wxwidgets.org (http://www.wxwidgets.org ).




CHAPTER 2

You can also buy a CD-ROM using the form on the Web site.

Acknowledgements

Thanks are due to AlAl for being willing to release the original version of wxWidgets into
the public domain, and to our patient partners.

We would particularly like to thank the following for their contributions to wxWidgets, and
the many others who have been involved in the project over the years. Apologies for any
unintentional omissions from this list. Yiorgos Adamopoulos, Jamshid Afshar, Alejandro
Aguilar-Sierra, AlAl, Patrick Albert, Karsten Ballueder, Mattia Barbon, Michael Bedward,
Kai Bendorf, Yura Bidus, Keith Gary Boyce, Chris Breeze, Pete Britton, lan Brown, C.
Buckley, Marco Cavallini, Dmitri Chubraev, Robin Corbet, Cecil Coupe, Stefan Csomor,
Andrew Davison, Gilles Depeyrot, Neil Dudman, Robin Dunn, Hermann Dunkel, Jos van
Eijndhoven, Chris Elliott, David Elliott, Tom Felici, Thomas Fettig, Matthew Flatt,
Pasquale Foggia, Josep Fortiana, Todd Fries, Dominic Gallagher, Guillermo Rodriguez
Garcia, Wolfram Gloger, Norbert Grotz, Stefan Gunter, Bill Hale, Patrick Halke, Stefan
Hammes, Guillaume Helle, Harco de Hilster, Kevin Hock, Cord Hockemeyer, Markus
Holzem, Olaf Klein, Leif Jensen, Bart Jourquin, Guilhem Lavaux, Ron Lee, Jan Lessner,
Nicholas Liebmann, Torsten Liermann, Per Lindqvist, Thomas Runge, Tatu Mannisto,
Scott Maxwell, Thomas Myers, Oliver Niedung, Stefan Neis, Ryan Norton, Hernan Otero,
lan Perrigo, Timothy Peters, Giordano Pezzoli, Harri Pasanen, Thomaso Paoletti, Garrett
Potts, Marcel Rasche, Robert Roebling, Dino Scaringella, Jobst Schmalenbach, Arthur
Seaton, Paul Shirley, Wlodzimierz 'ABX' Skiba, Vaclav Slavik, Julian Smart, Stein Somers,
Petr Smilauer, Neil Smith, Kari Systa, George Tasker, Arthur Tetzlaff-Deas, Jonathan
Tonberg, Jyrki Tuomi, Janos Vegh, Andrea Venturoli, David Webster, Otto Wyss, Vadim
Zeitlin, Xiaokun Zhu, Edward Zimmermann.

'‘Graphplace’, the basis for the wxGraphLayout library, is copyright Dr. Jos T.J. van
Eijndhoven of Eindhoven University of Technology. The code has been used in
wxGraphLayout with his permission.

We also acknowledge the author of XFIG, the excellent Unix drawing tool, from the source
of which we have borrowed some spline drawing code. His copyright is included below.

XFig2.1 is copyright (c) 1985 by Supoj Sutanthavibul. Permission to use, copy, modify,
distribute, and sell this software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in all copies and that both that
copyright notice and this permission notice appear in supporting documentation, and that
the name of M.1.T. not be used in advertising or publicity pertaining to distribution of the
software without specific, written prior permission. M.1.T. makes no representations about
the suitability of this software for any purpose. It is provided "as is" without express or
implied warranty.




Multi-platform development with wxWidgets

This chapter describes the practical details of using wxWidgets. Please see the file
install.txt for up-to-date installation instructions, and changes.txt for differences between
versions.

Include files

The main include file is "wx/wx.h" ; this includes the most commonly used modules of
wxWidgets.

To save on compilation time, include only those header files relevant to the source file. If
you are using precompiled headers, you should include the following section before any
other includes:

/I For compilers that support precompilation, inclu des "wx.h".
#include <wx/wxprec.h>

#ifdef _ BORLANDC__
#pragma hdrstop
#endif

#ifndef WX_PRECOMP

/I Include your minimal set of headers here, or wx. h
#include <wx/wx.h>

#endif

... how your other include files ...

The file "wx/wxprec.h" includes "wx/wx.h" . Although this incantation may seem
quirky, it is in fact the end result of a lot of experimentation, and several Windows
compilers to use precompilation which is largely automatic for compilers with necessary
support. Currently it is used for Visual C++ (including embedded Visual C++), Borland C++,
Open Watcom C++, Digital Mars C++ and newer versions of GCC. Some compilers might
need extra work from the application developer to set the build environment up as
necessary for the support.

Libraries
Most ports of wxWidgets can create either a static library or a shared library. wxWidgets

can also be built in multilib and monolithic variants. See the libraries list (p. 15) for more
information on these.

Configuration

When using project files and makefiles directly to build wxWidgets, options are
configurable in the file "wx/XXX/setup.h" where XXX is the required platform (such as



CHAPTER 3

msw, motif, gtk, mac). Some settings are a matter of taste, some help with
platform-specific problems, and others can be set to minimize the size of the library.
Please see the setup.h file and install.txt files for details on configuration.

When using the 'configure' script to configure wxWidgets (on Unix and other platforms
where configure is available), the corresponding setup.h files are generated automatically
along with suitable makefiles. When using the RPM packages for installing wxWidgets on
Linux, a correct setup.h is shipped in the package and this must not be changed.

Makefiles

On Microsoft Windows, wxWidgets has a different set of makefiles for each compiler,
because each compiler's 'make' tool is slightly different. Popular Windows compilers that
we cater for, and the corresponding makefile extensions, include: Microsoft Visual C++
(.vc), Borland C++ (.bcc), OpenWatcom C++ (\wat) and MinGW/Cygwin (.gcc). Makefiles
are provided for the wxWidgets library itself, samples, demos, and utilities.

On Linux, Mac and OS/2, you use the 'configure' command to generate the necessary
makefiles. You should also use this method when building with MinGW/Cygwin on
Windows.

We also provide project files for some compilers, such as Microsoft VC++. However, we
recommend using makefiles to build the wxWidgets library itself, because makefiles can
be more powerful and less manual intervention is required.

On Windows using a compiler other than MinGW/Cygwin, you would build the wxWidgets
library from the build/msw directory which contains the relevant makefiles.

On Windows using MinGW/Cygwin, and on Unix, MacOS X and OS/2, you invoke
‘configure’ (found in the top-level of the wxWidgets source hierarchy), from within a
suitable empty directory for containing makefiles, object files and libraries.

For details on using makefiles, configure, and project files, please see docs/xxx/install.txt
in your distribution, where xxx is the platform of interest, such as msw, gtk, x11, mac.

Windows-specific files

wxWidgets application compilation under MS Windows requires at least one extra file: a
resource file.

Resource file

The least that must be defined in the Windows resource file (extension RC) is the following
statement:

#include "wx/msw/wx.rc"

which includes essential internal wxWidgets definitions. The resource script may also
contain references to icons, cursors, etc., for example:




CHAPTER 3

wxicon icon wx.ico

The icon can then be referenced by name when creating a frame icon. See the MS
Windows SDK documentation.

Note: include wx.rc after any ICON statements so programs that search your executable
for icons (such as the Program Manager) find your application icon first.

Allocating and deleting wxWidgets objects

In general, classes derived from wxWindow must dynamically allocated with new and
deleted with delete. If you delete a window, all of its children and descendants will be
automatically deleted, so you don't need to delete these descendants explicitly.

When deleting a frame or dialog, use Destroy rather than delete so that the wxWidgets
delayed deletion can take effect. This waits until idle time (when all messages have been
processed) to actually delete the window, to avoid problems associated with the GUI
sending events to deleted windows.

Don't create a window on the stack, because this will interfere with delayed deletion.

If you decide to allocate a C++ array of objects (such as wxBitmap) that may be cleaned
up by wxWidgets, make sure you delete the array explicitly before wxWidgets has a
chance to do so on exit, since calling delete on array members will cause memory
problems.

wxColour can be created statically: it is not automatically cleaned up and is unlikely to be
shared between other objects; it is lightweight enough for copies to be made.

Beware of deleting objects such as a wxPen or wxBitmap if they are still in use. Windows
is particularly sensitive to this: so make sure you make calls like
wxDC::SetPen(wxNullPen) or wxDC::SelectObject(wxNullBitmap) before deleting a
drawing object that may be in use. Code that doesn't do this will probably work fine on
some platforms, and then fail under Windows.

Architecture dependency

A problem which sometimes arises from writing multi-platform programs is that the basic C
types are not defined the same on all platforms. This holds true for both the length in bits of
the standard types (such as int and long) as well as their byte order, which might be little
endian (typically on Intel computers) or big endian (typically on some Unix workstations).
wxWidgets defines types and macros that make it easy to write architecture independent
code. The types are:

wxInt32, wxIntl6, wxInt8, wxUint32, wxUint16 = wxWord, wxUint8 = wxByte

where wxInt32 stands for a 32-bit signed integer type etc. You can also check which
architecture the program is compiled on using the wxBYTE_ORDER define which is either
wxBIG_ENDIAN or wxLITTLE_ENDIAN (in the future maybe wxPDP_ENDIAN as well).

The macros handling bit-swapping with respect to the applications endianness are




CHAPTER 3

described in the Byte order macros (p. 1960) section.

Conditional compilation

One of the purposes of wxWidgets is to reduce the need for conditional compilation in
source code, which can be messy and confusing to follow. However, sometimes it is
necessary to incorporate platform-specific features (such as metafile use under MS
Windows). The symbols listed in the file symbols.txt may be used for this purpose,
along with any user-supplied ones.

C++ issues

The following documents some miscellaneous C++ issues.

Templates

wxWidgets does not use templates (except for some advanced features that are switched
off by default) since it is a notoriously unportable feature.

RTTI

wxWidgets does not use C++ run-time type information since wxWidgets provides its own
run-time type information system, implemented using macros.

Type of NULL

Some compilers (e.g. the native IRIX cc) define NULL to be OL so that no conversion to
pointers is allowed. Because of that, all these occurrences of NULL in the GTK+ port use
an explicit conversion such as

wxWindow *my_window = (wxWindow*) NULL,;

It is recommended to adhere to this in all code using wxWidgets as this make the code (a
bit) more portable.

Precompiled headers

Some compilers, such as Borland C++ and Microsoft C++, support precompiled headers.
This can save a great deal of compiling time. The recommended approach is to
precompile "wx.h" , using this precompiled header for compiling both wxWidgets itself
and any wxWidgets applications. For Windows compilers, two dummy source files are
provided (one for normal applications and one for creating DLLS) to allow initial creation of
the precompiled header.

However, there are several downsides to using precompiled headers. One is that to take
advantage of the facility, you often need to include more header files than would normally
be the case. This means that changing a header file will cause more recompilations (in the
case of wxWidgets, everything needs to be recompiled since everything includes




CHAPTER 3

"wx.h" 1)

A related problem is that for compilers that don't have precompiled headers, including a lot
of header files slows down compilation considerably. For this reason, you will find (in the
common X and Windows parts of the library) conditional compilation that under Unix,
includes a minimal set of headers; and when using Visual C++, includes wx.h . This
should help provide the optimal compilation for each compiler, although it is biased
towards the precompiled headers facility available in Microsoft C++.

File handling

When building an application which may be used under different environments, one
difficulty is coping with documents which may be moved to different directories on other
machines. Saving a file which has pointers to full pathnames is going to be inherently
unportable. One approach is to store filenames on their own, with no directory information.
The application searches through a number of locally defined directories to find the file. To
support this, the class wxPathList makes adding directories and searching for files easy,
and the global function wxFileNameFromPath allows the application to strip off the
filename from the path if the flename must be stored. This has undesirable ramifications
for people who have documents of the same name in different directories.

As regards the limitations of DOS 8+3 single-case filenames versus unrestricted Unix
filenames, the best solution is to use DOS filenames for your application, and also for
document filenames if the user is likely to be switching platforms regularly. Obviously this
latter choice is up to the application user to decide. Some programs (such as YACC and
LEX) generate filenames incompatible with DOS; the best solution here is to have your
Unix makefile rename the generated files to something more compatible before
transferring the source to DOS. Transferring DOS files to Unix is no problem, of course,
apart from EOL conversion for which there should be a utility available (such as dos2unix).

See also the File Functions section of the reference manual for descriptions of
miscellaneous file handling functions.




Utilities and libraries supplied with wxWidgets

In addition to the core wxWidgets library, a number of further libraries and utilities are
supplied with each distribution.

Some are under the 'contrib' hierarchy which mirrors the structure of the main wxWidgets
hierarchy. See also the 'utils' hierarchy. The first place to look for documentation about
these tools and libraries is under the wxWidgets 'docs' hierarchy, for example
docs/htmlhelp/fl.chm

For other user-contributed packages, please see the Contributions page on the
wxWidgets Web site (http://www.wxwidgets.org ).

Helpview Helpview is a program for displaying wxWidgets HTML Help files. In many
cases, you may wish to use the wxWidgets HTML Help classes from within your
application, but this provides a handy stand-alone viewer. See wxHTML Notes (p.
2176) for more details. You can find it in samples/html/helpview

Tex2RTF Supplied with wxWidgets is a utility called Tex2RTF for converting LaTeX
manuals HTML, MS HTML Help, wxHTML Help, RTF, and Windows Help RTF
formats. Tex2RTF is used for the wxWidgets manuals and can be used
independently by authors wishing to create on-line and printed manuals from the
same LaTeX source. Please see the separate documentation for Tex2RTF. You
can find it under utils/tex2rtf

Helpgen Helpgen takes C++ header files and generates a Tex2RTF-compatible
documentation file for each class it finds, using comments as appropriate. This is
a good way to start a reference for a set of classes. Helpgen can be found in
utils/HelpGen

Emulator Xnest-based display emulator for X11-based PDA applications. On some
systems, the Xnest window does not synchronise with the 'skin' window. This
program can be found in utils/femulator

XRC resource system This is the sizer-aware resource system, and uses
XML-based resource specifications that can be generated by tools such as
wxDesigner (http://www.roebling.de ). You can find this in src/xrc
include/wx/xrc , samples/xrc . For more information, see the XML-based
resource system overview (p. 2103).

Object Graphics Library  OGL defines an API for applications that need to display
objects connected by lines. The objects can be moved around and interacted with.
You can find this in contrib/src/ogl , contrib/include/wx/ogl| ,and
contrib/samples/og|

Frame Layout library  FL provides sophisticated pane dragging and docking facilities.
You can find this in contrib/src/fl , contrib/include/wx/fl ,and
contrib/samples/fl

Gizmos library Gizmos is a collection of useful widgets and other classes. Classes

10



CHAPTER 4

include wxLEDNumberCtrl, wxEditableListBox, wxMultiCellCanvas. You can find
this in contrib/src/gizmos , contrib/include/wx/gizmos ,and
contrib/samples/gizmos

Net library Net is a collection of very simple mail and web related classes. Currently
there is only wxEmail, which makes it easy to send email messages via MAPI on
Windows or sendmail on Unix. You can find this in contrib/src/net and

contrib/include/wx/net

Animate library  Animate allows you to load animated GlFs and play them on a
window. The library can be extended to use other animation formats. You can find
this in contrib/src/animate , contrib/include/wx/animate , and
contrib/samples/animate

MMedia library Mmedia supports a variety of multimedia functionality. The status of
this library is currently unclear. You can find this in contrib/src/mmedia ,
contrib/include/wx/mmedia , and contrib/samples/mmedia

Styled Text Control library  STC is a wrapper around Scintilla, a syntax-highlighting
text editor. You can find this in contrib/src/stc ,
contrib/include/wx/stc , and contrib/samples/stc

Plot Plot is a simple curve plotting library. You can find this in contrib/src/plot ,
contrib/include/wx/plot , and contrib/samples/plot

11



Programming strategies

This chapter is intended to list strategies that may be useful when writing and debugging
wxWidgets programs. If you have any good tips, please submit them for inclusion here.

Strategies for reducing programming errors

Use ASSERT

Although | haven't done this myself within wxWidgets, it is good practice to use ASSERT
statements liberally, that check for conditions that should or should not hold, and print out
appropriate error messages. These can be compiled out of a non-debugging version of
wxWidgets and your application. Using ASSERT is an example of 'defensive
programming': it can alert you to problems later on.

Use wxString in preference to character arrays

Using wxString can be much safer and more convenient than using wxChar *. Again, |
haven't practiced what I'm preaching, but I'm now trying to use wxString wherever possible.
You can reduce the possibility of memory leaks substantially, and it is much more
convenient to use the overloaded operators than functions such as strcmp. wxString won't
add a significant overhead to your program; the overhead is compensated for by easier
manipulation (which means less code).

The same goes for other data types: use classes wherever possible.

Strategies for portability

Use relative positioning or constraints
Don't use absolute panel item positioning if you can avoid it. Different GUIs have very

differently sized panel items. Consider using the constraint system, although this can be
complex to program.

Alternatively, you could use alternative .wrc (wxWidgets resource files) on different
platforms, with slightly different dimensions in each. Or space your panel items out to
avoid problems.

Use wxWidgets resource files

Use .xrc (wxWidgets resource files) where possible, because they can be easily changed
independently of source code.

Strategies for debugging

12



CHAPTER 5

Positive thinking

It is common to blow up the problem in one's imagination, so that it seems to threaten
weeks, months or even years of work. The problem you face may seem insurmountable:
but almost never is. Once you have been programming for some time, you will be able to
remember similar incidents that threw you into the depths of despair. But remember, you
always solved the problem, somehow!

Perseverance is often the key, even though a seemingly trivial problem can take an
apparently inordinate amount of time to solve. In the end, you will probably wonder why
you worried so much. That's not to say it isn't painful at the time. Try not to worry -- there
are many more important things in life.

Simplify the problem

Reduce the code exhibiting the problem to the smallest program possible that exhibits the
problem. If it is not possible to reduce a large and complex program to a very small
program, then try to ensure your code doesn't hide the problem (you may have attempted
to minimize the problem in some way: but now you want to expose it).

With luck, you can add a small amount of code that causes the program to go from
functioning to non-functioning state. This should give a clue to the problem. In some cases
though, such as memory leaks or wrong deallocation, this can still give totally spurious
results!

Use a debugger

This sounds like facetious advice, but it is surprising how often people don't use a
debugger. Often it is an overhead to install or learn how to use a debugger, but it really is
essential for anything but the most trivial programs.

Use logging functions

There is a variety of logging functions that you can use in your program: see Logging
functions (p. 1968).

Using tracing statements may be more convenient than using the debugger in some
circumstances (such as when your debugger doesn't support a lot of debugging code, or
you wish to print a bunch of variables).

Use the wxWidgets debugging facilities

You can use wxDebugContext to check for memory leaks and corrupt memory: in fact in
debugging mode, wxWidgets will automatically check for memory leaks at the end of the
program if wxWidgets is suitably configured. Depending on the operating system and
compiler, more or less specific information about the problem will be logged.

You should also use debug macros (p. 1976) as part of a 'defensive programming'
strategy, scattering wxASSERTS liberally to test for problems in your code as early as
possible. Forward thinking will save a surprising amount of time in the long run.

13



CHAPTER 5

See the debugging overview (p. 2069) for further information.

14



Libraries list

Starting from version 2.5.0 wxWidgets can be built either as a single large library (this is
called the monolithic build) or as several smaller libraries (multilib build). Multilib build is
the default.

wxWidgets library is divided into libraries briefly described below. This diagram show
dependencies between them:

—

wiBasg &€= = = = = = = =
P = A < o ! _|
|
! I I - — o WML

— > | A A
1 - —»| wxlCore - — : __ 4 wxODBC : 1

wiMedia j= ! :
! | AN AA 1 | !
! Lol I 1? !
| |wxcl | = | 1 - = wxhet I I 1
I — I 1 I I :

I I | | I
l | | !
WML = = Jwxadvanced — : .
tA A A ! '
| : | ) - = = o wxDbGrid b = a !
I I I !
I : 1 I | !
1 : 1 b e WKHRC b = = = m - e e = = = i !
1 _— o o ——— - 1
, I
: 1 |
T WHEQA | = = = = = = = 1

WXAUI

This contains the Advanced User Interface docking library.
wxBase

Every wxWidgets application must link against this library. It contains mandatory classes
that any wxWidgets code depends on (e.g. wxString (p. 1552)) and portability classes that
abstract differences between platforms. wxBase can be used to develop console mode
applications, it does not require any GUI libraries or running X Window System on Unix.

wxNet
Classes for network access:

» wxSocket classes (wxSocketClient (p. 1487), wxSocketServer (p. 1491) and
related classes)

15



CHAPTER 6

*  wxSocketOutputStream (p. 1491) and wxSocketinputStream (p. 1490)

» sockets-based IPC classes (WxTCPServer (p. 482), wxTCPClient (p. 477) and
wXTCPConnection (p. 478))

«  WXURL (p. 1762)

» wxlInternetFSHandler (a wxFileSystem handler (p. 2072)) Requires wxBase.
wxRichText
This contains generic rich text control functionality.
WxXML

This library contains simple classes for parsing XML documents. Note that their API will
change in the future and backward compatibility will not be preserved. Use of this library in
your applications is not recommended, it is only meant for use by XML resources system.
Future versions of wxWidgets will contain new XML handling classes with DOM-like API.
Requires wxBase.

wxCore

Basic GUI classes such as GDI classes or controls are in this library. All wxWidgets GUI
applications must link against this library, only console mode applications don't.

wxAdvanced

Advanced or rarely used GUI classes:
*  wxBufferedDC
e wxCalendarCtrl (p. 168)
*  wxGrid classes (p. 2140)
* wxJoystick (p. 947)
e wxLayoutAlgorithm (p. 961)
* wxSplashScreen (p. 1503)
* wxTaskBarlcon (p. 1605)
 wxSound (p. 1493)
wxWizard (p. 1854)
* wxSashLayoutWindow (p. 1394)
* wxSashWindow (p. 1397)

Requires wxCore and wxBase.

16



CHAPTER 6

wxMedia

Miscellaneous classes related to multimedia. Currently this library only contains
wxMediaCtrl (p. 1058) but more classes will be added in the future.

Requires wxCore and wxBase.

wxGL

This library contains wxGLCanvas (p. 715) class for integrating OpenGL library with
wxWidgets. Unlike all others, this library is not part of the monolithic library, it is always
built as separate library. Requires wxCore and wxBase.

wxHTML

Simple HTML renderer and other HTML rendering classes (p. 2176) are contained in this
library, as well as wxHtmIHelpController (p. 838), wxBestHelpController (p. 809) and
wxHtmlListBox (p. 852). Requires wxCore and wxBase.

wxODBC
Database classes (p. 2149). Requires wxBase.
WXQA

This is the library containing extra classes for quality assurance. Currently it only contains
wxDebugReport (p. 488) and related classes, but more will be added to it in the future.

Requires wxCore, wxBase and wxXML.
wxDbGrid

wxDbGridTableBase (p. 453) class which combines wxGrid (p. 734) and wxDbTable (p.
415). Requires wxODBC and wxAdvanced.

WXXRC

This library contains wxXmlIResource (p. 1875) class that provides access to XML
resource files in XRC format. Requires wxXML, wxCore, wxAdvanced and wxHTML.

17



Alphabetical class reference

wxAboutDialoginfo

wxAboutDialoglnfo contains information shown in the standard Aboutdialog displayed by
the wxAboutBox() (p. 1931) function.

This class contains the general information about the program, such as its name, version,
copyright and so on, as well as lists of the program developers, documentation writers,
artists and translators. The simple properties from the former group are represented as a
string with the exception of the program icon and the program web site, while the lists from
the latter group are stored as wxArrayString (p. 83) and can be either set entirely at once
using SetDevelopers (p. 20) and similar functions or built one by one using AddDeveloper
(p. 19) etc.

Please also notice that while all the main platforms have the native implementation of the
about dialog, they are often more limited than the generic version provided by wxWidgets
and so the generic version is used if wxAboutDialoginfo has any fields not supported by
the native version. Currently GTK+ version supports all the possible fields natively but
MSW and Mac versions don't support URLS, licence text nor custom icons in the about
dialog and if either of those is used, wxAboutBox() (p. 1931) will automatically use the
generic version so you should avoid specifying these fields to achieve more native look
and feel.

Derived from
No base class
Include files

<wx/aboutdlg.h>

wxAboutDialoglnfo::wxAboutDialoginfo

wxAboutDialoginfo ()

Default constructor leaves all fields are initially uninitialized, in general you should call at
least SetVersion (p. 21), SetCopyright (p. 19) and SetDescription (p. 20).

wxAboutDialogInfo::AddArtist

void AddArtist (const wxString& artist)
Adds an artist name to be shown in the program credits.

See also

18



CHAPTER 7

SetArtists (p. 19)

wxAboutDialoglnfo::AddDeveloper

void AddDeveloper (const wxString& developer)
Adds a developer name to be shown in the program credits.
See also

SetDevelopers (p. 20)

wxAboutDialogInfo::AddDocWriter

void AddDocWriter (const wxString& docwriter)
Adds a documentation writer name to be shown in the program credits.
See also

SetDocWriters (p. 20)

wxAboutDialoglnfo::AddTranslator

void AddTranslator (constwxString& translator)

Adds a translator name to be shown in the program credits. Notice that if no translator
names are specified explicitely, wxAboutBox() (p. 1931) will try to use the translation of
the string translator-credits from the currently used message catalog -- this can be
used to show just the name of the translator of the program in the current language.

See also

SetTranslators (p. 21)

wxAboutDialogInfo::SetArtists

void SetArtists (const wxArrayString&  artists)
Sets the the list of artists to be shown in the program credits.
See also

AddArtist (p. 18)

wxAboutDialoglnfo::SetCopyright

void SetCopyright (const wxString& copyright)

Set the short string containing the program copyright information. Notice that any
occurrences of "(C)" in copyright will be replaced by the copyright symbol (circled C)
automatically, which means that you can avoid using this symbol in the program source

19



CHAPTER 7

code which can be problematic,

wxAboutDialoglnfo::SetDescription

void SetDescription (const wxString& desc)

Set brief, but possibly multiline, description of the program.

wxAboutDialoginfo::SetDevelopers

void SetDevelopers (const wxArrayString& developers)
Set the list of developers of the program.
See also

AddDeveloper (p. 19)

wxAboutDialoginfo::SetDocWriters

void SetDocWriters (const wxArrayString& docwriters)
Set the list of documentation writers.
See also

AddDocWriter (p. 19)

wxAboutDialoglnfo::Setlcon

void Setlcon (const wxlcon& icon)

Set the icon to be shown in the dialog. By default the icon of the main frame will be shown
if the native about dialog supports custom icons. If it doesn't but a valid icon is specified
using this method, the generic about dialog is used instead so you should avoid calling this
function for maximally native look and feel.

wxAboutDialoglnfo::SetLicence

void SetlLicence (const wxString& licence)
Set the long, multiline string containing the text of the program licence.

Only GTK+ version supports showing the licence text in the native about dialog currently
so the generic version will be used under all the other platforms if this method is called. To
preserve the native look and feel it is advised that you do not call this method but provide
a separate menu item in the "Help" menu for displaying the text of your program licence.

wxAboutDialoglnfo::SetLicense

void SetlLicense (const wxString& licence)

20



CHAPTER 7

This is the same as SetLicence (p. 20).

wxAboutDialoglnfo::SetName

void SetName (const wxString& name)

Set the name of the program. If this method is not called, the string returned by
WxApp::GetAppName() (p. 47) will be shown in the dialog.

wxAboutDialoglnfo::SetTranslators

void SetTranslators (const wxArrayString& translators)

Set the list of translators. Please see AddTranslator (p. 19) for additional discussion.

wxAboutDialogInfo::SetVersion

void SetVersion (const wxString& version)

Set the version of the program. The version is in free format, i.e. not necessarily in the
x.y.z form but it shouldn't contain the "version" word.

wxAboutDialoginfo::SetWebSite

void SetWebSite (const wxString& url, const wxString& desc = wxEmptyString)
Set the web site for the program and its description (which defaults to URL itself if empty).

Please notice that only GTK+ version currently supports showing the link in the native
about dialog so if this method is called, the generic version will be used under all the other
platforms.

wxAcceleratorEntry

An object used by an application wishing to create an accelerator table (p. 23).
Derived from

None

Include files

<wx/accel.h>

See also

wxAcceleratorTable (p. 23), wxWindow::SetAcceleratorTable (p. 1832)

wxAcceleratorEntry::wxAcceleratorEntry

21



CHAPTER 7

wxAcceleratorEntry ()

Default constructor.

wxAcceleratorEntry (int flags, int keyCode, int cmd)
Constructor.

Parameters

flags

One of WxACCEL_ALT, wxACCEL_SHIFT, wxACCEL_CTRL and
WXACCEL_NORMAL. Indicates which modifier key is held down.

keyCode
The keycode to be detected. See Keycodes (p. 1990) for a full list of keycodes.
cmd

The menu or control command identifier.

wxAcceleratorEntry::GetCommand

int GetCommand () const

Returns the command identifier for the accelerator table entry.

wxAcceleratorEntry::GetFlags

int GetFlags () const

Returns the flags for the accelerator table entry.

wxAcceleratorEntry::GetKeyCode

int GetKeyCode () const

Returns the keycode for the accelerator table entry.

wxAcceleratorEntry::Set

void Set(int flags, int keyCode, int cmd)
Sets the accelerator entry parameters.
Parameters

flags

One of WxACCEL_ALT, wxACCEL_SHIFT, wxACCEL_CTRL and
WXACCEL_NORMAL. Indicates which modifier key is held down.

22



CHAPTER 7

keyCode
The keycode to be detected. See Keycodes (p. 1990) for a full list of keycodes.
cmd

The menu or control command identifier.

wxAcceleratorTable

An accelerator table allows the application to specify a table of keyboard shortcuts for
menus or other commands. On Windows, menu or button commands are supported; on
GTK, only menu commands are supported.

The object wxNullAcceleratorTable s defined to be a table with no data, and is the initial
accelerator table for a window.

Derived from
wxObiject (p. 1147)
Include files
<wx/accel.h>
Predefined objects
Objects:

wxNullAcceleratorTable

Example
wxAcceleratorEntry entries[4];
entries[0].Set(wxACCEL_CTRL, (int)'N, ID_N EW_WINDOW);
entries[1].Set(wxACCEL_CTRL, (int)'X', wxID _EXIT);
entries[2].Set(WxACCEL_SHIFT, (int) 'A', ID_A BOUT);
entries[3].Set(WwxACCEL_NORMAL, WXK_DELETE, wx ID_CUT);

wxAcceleratorTable accel(4, entries);
frame->SetAcceleratorTable(accel);

Remarks

An accelerator takes precedence over normal processing and can be a convenient way to
program some event handling. For example, you can use an accelerator table to enable a
dialog with a multi-line text control to accept CTRL-Enter as meaning 'OK' (but not in
GTK+ at present).

See also

wxAcceleratorEntry (p. 21), wxWindow::SetAcceleratorTable (p. 1832)

23



CHAPTER 7

wxAcceleratorTable::wxAcceleratorTable

wxAcceleratorTable ()
Default constructor.
wxAcceleratorTable (const wxAcceleratorTable& bitmap)
Copy constructor, uses reference counting (p. 2043).
wxAcceleratorTable (int n, wxAcceleratorEntry entries[])
Creates from an array of wxAcceleratorEntry (p. 21) objects.
wxAcceleratorTable (const wxString& resource)
Loads the accelerator table from a Windows resource (Windows only).
Parameters
n

Number of accelerator entries.
entries

The array of entries.
resource

Name of a Windows accelerator.

wxPython note: The wxPython constructor accepts a list of wxAcceleratorEntry objects,
or 3-tuples consisting of flags, keyCode, and cmd values like you would construct
wxAcceleratorEntry objects with.

wxPerl note: The wxPerl constructor accepts a list of either Wx::AcceleratorEntry objects
or references to 3-element arrays ( flags, keyCode, cmd ), like the parameters of
Wx::AcceleratorEntry::new.

wxAcceleratorTable::~wxAcceleratorTable

~wxAcceleratorTable ()

Destroys the wxAcceleratorTable object. See reference-counted object destruction (p.
2043) for more info.

wxAcceleratorTable::IsOk

bool I1sOk() const

Returns true if the accelerator table is valid.

24



CHAPTER 7

wxAcceleratorTable::operator =

wxAcceleratorTable& operator = (const wxAcceleratorTable& accel)
Assignment operator, using reference counting (p. 2043).
Parameters
accel
Accelerator table to assign.
Return value

Returns a reference to this object.

wxAccessible

The wxAccessible class allows wxWidgets applications, and wxWidgets itself, to return
extended information about user interface elements to client applications such as screen
readers. This is the main way in which wxWidgets implements accessibility features.

At present, only Microsoft Active Accessibility is supported by this class.

To use this class, derive from wxAccessible, implement appropriate functions, and
associate an object of the class with a window using wxWindow::SetAccessible (p. 1832).

All functions return an indication of success, failure, or not implemented using values of
the wxAccStatus enum type.

If you return wxACC_NOT_IMPLEMENTED from any function, the system will try to
implement the appropriate functionality. However this will not work with all functions.

Most functions work with an object id, which can be zero to refer to 'this' Ul element, or
greater than zero to refer to the nth child element. This allows you to specify elements that
don't have a corresponding wxWindow or wxAccessible; for example, the sash of a splitter
window.

For details on the semantics of functions and types, please refer to the Microsoft Active
Accessibility 1.2 documentation.

This class is compiled into wxWidgets only if the wxUSE_ACCESSIBILITY setup symbol
is setto 1.

Derived from
wxObiject (p. 1147)
Include files
<wx/access.h>

Data structures

25



CHAPTER 7

Functions return a wxAccStatus error code, which may be one of the following:

typedef enum

{

WXACC_FAIL, /I The function failed
WXACC_FALSE, /I The function returned false
WXACC_OK, /I The function complete d successfully
WXACC_NOT_IMPLEMENTED, // The function is not i mplemented
WXACC_NOT_SUPPORTED // The function is not s upported

} wxAccStatus

Directions of navigation are represented by the following:

typedef enum

{
WXNAVDIR_DOWN,
WXNAVDIR_FIRSTCHILD,
WXNAVDIR_LASTCHILD,
WXNAVDIR_LEFT,
WXNAVDIR_NEXT,
wxNAVDIR_PREVIOUS,
WXNAVDIR_RIGHT,
wxNAVDIR_UP

} wxNavDir

The role of a user interface element is represented by the following type:

typedef enum {
WXROLE_NONE,
WXROLE_SYSTEM_ALERT,
WXROLE_SYSTEM_ANIMATION,
WXROLE_SYSTEM_APPLICATION,
WXROLE_SYSTEM_BORDER,
WXROLE_SYSTEM_BUTTONDROPDOWN,
WXROLE_SYSTEM_BUTTONDROPDOWNGRID,
WXROLE_SYSTEM_BUTTONMENU,
WXROLE_SYSTEM_CARET,
WXROLE_SYSTEM_CELL,
WXROLE_SYSTEM_CHARACTER,
WXROLE_SYSTEM_CHART,
WXROLE_SYSTEM_CHECKBUTTON,
WXROLE_SYSTEM_CLIENT,
WXROLE_SYSTEM_CLOCK,
WXROLE_SYSTEM_COLUMN,
WXROLE_SYSTEM_COLUMNHEADER,
WXROLE_SYSTEM_COMBOBOX,
WXROLE_SYSTEM_CURSOR,
WXROLE_SYSTEM_DIAGRAM,
WXROLE_SYSTEM_DIAL,
WXROLE_SYSTEM_DIALOG,
WXROLE_SYSTEM_DOCUMENT,
WXROLE_SYSTEM_DROPLIST,

26



CHAPTER 7

WXROLE_SYSTEM_EQUATION,
WXROLE_SYSTEM_GRAPHIC,
WXROLE_SYSTEM_GRIP,
WXROLE_SYSTEM_GROUPING,
WXROLE_SYSTEM_HELPBALLOON,
WXROLE_SYSTEM_HOTKEYFIELD,
WXROLE_SYSTEM_INDICATOR,
WXROLE_SYSTEM_LINK,
WXROLE_SYSTEM_LIST,
WXROLE_SYSTEM_LISTITEM,
WXROLE_SYSTEM_MENUBAR,
WXROLE_SYSTEM_MENUITEM,
WXROLE_SYSTEM_MENUPOPUP,
WXROLE_SYSTEM_OUTLINE,
WXROLE_SYSTEM_OUTLINEITEM,
WXROLE_SYSTEM_PAGETAB,
WXROLE_SYSTEM_PAGETABLIST,
WXROLE_SYSTEM_PANE,
WXROLE_SYSTEM_PROGRESSBAR,
WXROLE_SYSTEM_PROPERTYPAGE,
WXROLE_SYSTEM_PUSHBUTTON,
WXROLE_SYSTEM_RADIOBUTTON,
WXROLE_SYSTEM_ROW,
WXROLE_SYSTEM_ROWHEADER,
WXROLE_SYSTEM_SCROLLBAR,
WXROLE_SYSTEM_SEPARATOR,
WXROLE_SYSTEM_SLIDER,
WXROLE_SYSTEM_SOUND,
WXROLE_SYSTEM_SPINBUTTON,
WXROLE_SYSTEM_STATICTEXT,
WXROLE_SYSTEM_STATUSBAR,
WXROLE_SYSTEM_TABLE,
WXROLE_SYSTEM_TEXT,
WXROLE_SYSTEM_TITLEBAR,
WXROLE_SYSTEM_TOOLBAR,
WXROLE_SYSTEM_TOOLTIP,
WXROLE_SYSTEM_WHITESPACE,
WXROLE_SYSTEM_WINDOW

} wxAccRole

Objects are represented by the following type:

typedef enum {

wxOBJID_WINDOW = 0x00000000,
wxOBJID_SYSMENU = OXFFFFFFFF,
wxOBJID_TITLEBAR = OXxFFFFFFFE,
wxOBJID_MENU =  OxFFFFFFFD,
wxOBJID_CLIENT = OxFFFFFFFC,
wxOBJID_VSCROLL = OxFFFFFFFB,
wxOBJID_HSCROLL = OxFFFFFFFA,
wxOBJID_SIZEGRIP = OXFFFFFFF9,
wxOBJID_CARET = OxFFFFFFF8,
wxOBJID_CURSOR = OxFFFFFFF7,
wxOBJID_ALERT =  OxFFFFFFF6,
wxOBJID_SOUND =  OxFFFFFFF5

27



CHAPTER 7

} wxAccObject

Selection actions are identified by this type:

typedef enum

{
WXACC_SEL_NONE =0,
WXACC_SEL_TAKEFOCUS =1,
WXACC_SEL_TAKESELECTION =2,
WXACC_SEL_EXTENDSELECTION =4,
WXACC_SEL_ADDSELECTION =8,
WXACC_SEL_REMOVESELECTION =16

} wxAccSelectionFlags

States are represented by the following:

#define wxACC_STATE_SYSTEM_ALERT HIGH  0x00000 001
#define wxACC_STATE_SYSTEM_ALERT_MEDIUM  0x00000 002
#define wxACC_STATE_SYSTEM_ALERT_LOW  0x00000 004

#define wxACC_STATE_SYSTEM_ANIMATED 0x00000 008
#define wxACC_STATE_SYSTEM_BUSY 0x00000 010
#define wxACC_STATE_SYSTEM_CHECKED 0x00000 020
#define wxACC_STATE_SYSTEM_COLLAPSED  0x00000 040
#define wxACC_STATE_SYSTEM_DEFAULT 0x00000 080
#define wxACC_STATE_SYSTEM_EXPANDED 0x00000 100
#define wxACC_STATE_SYSTEM_EXTSELECTABLE 0x00000 200
#define wxACC_STATE_SYSTEM_FLOATING 0x00000 400
#define wxACC_STATE_SYSTEM_FOCUSABLE  0x00000 800
#define wxACC_STATE_SYSTEM_FOCUSED 0x00001 000
#define wxACC_STATE_SYSTEM_HOTTRACKED  0x00002 000
#define wxACC_STATE_SYSTEM_INVISIBLE  0x00004 000
#define wxACC_STATE_SYSTEM_MARQUEED 0x00008 000
#define wxACC_STATE_SYSTEM_MIXED 0x00010 000

#define wxACC_STATE_SYSTEM_MULTISELECTABLE 0x00020 000
#define wxACC_STATE_SYSTEM_OFFSCREEN  0x00040 000

#define wxACC_STATE_SYSTEM_PRESSED 0x00080 000
#define wxACC_STATE_SYSTEM_PROTECTED  0x00100 000
#define wxACC_STATE_SYSTEM_READONLY 0x00200 000
#define wxACC_STATE_SYSTEM_SELECTABLE  0x00400 000
#define wxACC_STATE_SYSTEM_SELECTED 0x00800 000

#define wxACC_STATE_SYSTEM_SELFVOICING  0x01000 000
#define wxACC_STATE_SYSTEM_UNAVAILABLE ~ 0x02000 000

Event identifiers that can be sent via wxAccessible::NotifyEvent (p. 32) are as follows:

#define wxACC_EVENT_SYSTEM_SOUND 0x000
#define wxACC_EVENT_SYSTEM_ALERT 0x000
#define wxACC_EVENT_SYSTEM_FOREGROUND 0x000
#define wxACC_EVENT_SYSTEM_MENUSTART 0x000
#define wxACC_EVENT_SYSTEM_MENUEND 0x000

O wWNBE

28



CHAPTER 7

#define wxACC_EVENT_SYSTEM_MENUPOPUPSTART 0x000 6
#define wxACC_EVENT_SYSTEM_MENUPOPUPEND 0x000 7
#define wxACC_EVENT_SYSTEM_CAPTURESTART 0x000 8
#define wxACC_EVENT_SYSTEM_CAPTUREEND 0x000 9
#define wxACC_EVENT_SYSTEM_MOVESIZESTART  0x000 A
#define wxACC_EVENT_SYSTEM_MOVESIZEEND 0x000 B
#define wxACC_EVENT_SYSTEM_CONTEXTHELPSTART 0x000 C
#define wxACC_EVENT_SYSTEM_CONTEXTHELPEND 0x000 D

#define wxACC_EVENT_SYSTEM_DRAGDROPSTART  0x000 E
#define wxACC_EVENT_SYSTEM_DRAGDROPEND  0x000 F
#define wxACC_EVENT_SYSTEM_DIALOGSTART  0x001 0
#define wxACC_EVENT_SYSTEM_DIALOGEND 0x001 1
#define wxACC_EVENT_SYSTEM_SCROLLINGSTART 0x001 2
#define wxACC_EVENT_SYSTEM_SCROLLINGEND ~ 0x001 3
#define wxACC_EVENT_SYSTEM_SWITCHSTART ~ 0x001 4
#define wxACC_EVENT_SYSTEM_SWITCHEND 0x001 5
#define wxACC_EVENT_SYSTEM_MINIMIZESTART ~ 0x001 6
#define wxACC_EVENT_SYSTEM_MINIMIZEEND  0x001 7
#define wxACC_EVENT_OBJECT_CREATE 0 x8000
#define wxACC_EVENT_OBJECT_DESTROY 0 x8001
#define wxACC_EVENT_OBJECT_SHOW 0 x8002
#define wxACC_EVENT_OBJECT_HIDE 0 x8003
#define wxACC_EVENT_OBJECT_REORDER 0 x8004
#define wxACC_EVENT_OBJECT_FOCUS 0 x8005
#define wxACC_EVENT_OBJECT_SELECTION 0 x8006
#define wxACC_EVENT_OBJECT_SELECTIONADD 0 x8007

#define wxACC_EVENT_OBJECT_SELECTIONREMOVE 0 x8008
#define wxACC_EVENT_OBJECT_SELECTIONWITHIN 0 x8009

#define wxACC_EVENT_OBJECT_STATECHANGE 0 x800A
#define wxACC_EVENT_OBJECT_LOCATIONCHANGE 0 x800B
#define wxACC_EVENT_OBJECT_NAMECHANGE 0 x800C
#define wxACC_EVENT_OBJECT_DESCRIPTIONCHANGE 0 x800D
#define wxACC_EVENT_OBJECT_VALUECHANGE 0 x800E
#define wxACC_EVENT_OBJECT_PARENTCHANGE 0 x800F
#define wxACC_EVENT_OBJECT_HELPCHANGE 0 x8010

#define wxACC_EVENT_OBJECT_DEFACTIONCHANGE 0 x8011
#define wxACC_EVENT_OBJECT_ACCELERATORCHANGE 0 x8012

wxAccessible::wxAccessible

wxAccessible (wxWindow* win = NULL)

Constructor, taking an optional window. The object can be associated with a window later.

wxAccessible::~wxAccessible

~wxAccessible ()

Destructor.

29



CHAPTER 7

wxAccessible::DoDefaultAction

virtual wxAccStatus DoDefaultAction (int childld)

Performs the default action for the object. childld is 0 (the action for this object) or greater
than 0 (the action for a child). Return wxACC_NOT_SUPPORTED if there is no default
action for this window (e.g. an edit control).

wxAccessible::GetChild

virtual wxAccStatus  GetChild (int childld, wxAccessible** child)

Gets the specified child (starting from 1). If child is NULL and the return value is
WXACC_OK, this means that the child is a simple element and not an accessible object.

wxAccessible::GetChildCount

virtual wxAccStatus GetChildCount (int* childCount)

Returns the number of children in childCount.

wxAccessible::GetDefaultAction

virtual wxAccStatus GetDefaultAction (int childld, wxString* actionName)

Gets the default action for this object (0) or a child (greater than 0). Return wxACC_OK
even if there is no action. actionName is the action, or the empty string if there is no action.
The retrieved string describes the action that is performed on an object, not what the
object does as a result. For example, a toolbar button that prints a document has a default
action of "Press" rather than "Prints the current document.”

wxAccessible::GetDescription

virtual wxAccStatus GetDescription (int childld, wxString* description)

Returns the description for this object or a child.

wxAccessible::GetFocus

virtual wxAccStatus GetFocus (int* childld, wxAccessible** child)

Gets the window with the keyboard focus. If childld is 0 and child is NULL, no object in this
subhierarchy has the focus. If this object has the focus, child should be 'this'.

wxAccessible::GetHelpText

virtual wxAccStatus GetHelpText (int childld, wxString* helpText)

Returns help text for this object or a child, similar to tooltip text.

30



CHAPTER 7

wxAccessible::GetKeyboardShortcut

virtual wxAccStatus GetKeyboardShortcut (int childld, wxString* shortcut)

Returns the keyboard shortcut for this object or child. Return e.g. ALT+K.

wxAccessible::GetLocation

virtual wxAccStatus GetLocation (wxRect& rect, int elementld)

Returns the rectangle for this object (id is 0) or a child element (id is greater than 0).rect is
in screen coordinates.

wxAccessible::GetName

virtual wxAccStatus GetName (int childld, wxString* name)

Gets the name of the specified object.

wxAccessible::GetParent

virtual wxAccStatus GetParent (wxAccessible** parent)

Returns the parent of this object, or NULL.

wxAccessible::GetRole

virtual wxAccStatus GetRole (int childld, wxAccRole* role)

Returns a role constant describing this object. See wxAccessible (p. 25) for a list of these
roles.

wxAccessible::GetSelections
virtual wxAccStatus GetSelections (wxVariant* selections)
Gets a variant representing the selected children of this object.
Acceptable values are:

. a null variant (IsNull() returns TRUE)

. a list variant (GetType() == wxT("list"))

. an integer representing the selected child element, or 0 if this object is selected
(GetType() == wxT("long"))

e a"void* pointer to a wxAccessible child object

wxAccessible::GetState

31



CHAPTER 7

virtual wxAccStatus GetState (int childld, long* state)

Returns a state constant. See wxAccessible (p. 25) for a list of these states.

wxAccessible::GetValue

virtual wxAccStatus GetValue (int childld, wxString* strValue)

Returns a localized string representing the value for the object or child.

wxAccessible::GetWindow

wxWindow* GetWindow ()

Returns the window associated with this object.

wxAccessible::HitTest

virtual wxAccStatus  HitTest (const wxPoint& pt, int* childld, wxAccessible**
childObject)

Returns a status value and object id to indicate whether the given point was on this or a
child object. Can return either a child object, or an integer representing the child element,
starting from 1.

pt is in screen coordinates.
wxAccessible::Navigate

virtual wxAccStatus Navigate (wxNavDir navDir, int fromld, int* told, wxAccessible**
toObject)

Navigates from fromld to told/toObiject.
wxAccessible::NotifyEvent

virtual static void NotifyEvent (int eventType, wxWindow* window, wxAccObject
objectType, int objectType)

Allows the application to send an event when something changes in an accessible object.
wxAccessible::Select

virtual wxAccStatus  Select(int childld, wxAccSelectionFlags selectFlags)

Selects the object or child. See wxAccessible (p. 25) for a list of the selection actions.
wxAccessible::SetWindow

void SetWindow (wxWindow* window)

32



CHAPTER 7

Sets the window associated with this object.

wxActivateEvent

An activate event is sent when a window or application is being activated or deactivated.
Derived from

wxEvent (p. 572)
wxObiject (p. 1147)

Include files
<wx/event.h>
Event table macros

To process an activate event, use these event handler macros to direct input to a member
function that takes a wxActivateEvent argument.

EVT_ACTIVATE(func) Process a WxEVT_ACTIVATE event.
EVT_ACTIVATE_APP(func) Process a WxEVT_ACTIVATE_APP event.
EVT_HIBERNATE(func) Process a hibernate event, supplying the

member function. This event applies to wxApp
only, and only on Windows SmartPhone and
PocketPC. It is generated when the system is
low on memory; the application should free up
as much memory as possible, and restore full
working state when it receives a
WXEVT_ACTIVATE or
WXEVT_ACTIVATE_APP event.

Remarks

A top-level window (a dialog or frame) receives an activate event when it is being activated
or deactivated. This is indicated visually by the title bar changing colour, and a subwindow
gaining the keyboard focus.

An application is activated or deactivated when one of its frames becomes activated, or a
frame becomes inactivated resulting in all application frames being inactive.

Please note that usually you should call event.Skip() (p. 575) in your handlers for these
events as not doing so can result in strange effects.

See also

Event handling overview (p. 2074), wxApp::IsActive (p. 49)

wxActivateEvent::wxActivateEvent

33



CHAPTER 7

wxActivateEvent (WXTYPE eventType = 0, bool active = true, int id = 0)

Constructor.

wxActivateEvent::GetActive

bool GetActive () const

Returns true if the application or window is being activated, false otherwise.

wxActiveXContainer

wxActiveXContainer is a host for an activex control on Windows (and as such is a
platform-specific class). Note that the HWND that the class contains is the actual HWND
of the activex control so using dynamic events and connecting to wxEVT_SIZE, for
example, will recieve the actual size message sent to the control.

It is somewhat similar to the ATL class CAxWindow in operation.

The size of the activex control's content is generally gauranteed to be that of the client size
of the parent of this wxActiveXContainer.

You can also process activex events through wxEVT_ACTIVEX or the corresponding
message map macro EVT_ACTIVEX.

See also
wxActiveXEvent (p. 38)
Derived from
wxControl (p. 285)
Include files
<wx/mswj/ole/activex.h>
Example

This is an example of how to use the Adobe Acrobat Reader ActiveX control to read PDF
files (requires Acrobat Reader 4 and up). Controls like this are typically found and dumped
from OLEVIEW.exe that is distributed with Microsoft Visual C++. This example also
demonstrates how to create a backend for wxMediaCtrl (p. 1058).

[[+++++++++ -+
++++++H+++++

I

/l wxPDFMediaBackend

I

i

http://partners.adobe.com/public/developer/en/acrob at/sdk/pdffiac/
IACOverview.pdf

[[+++++++++++++H++H +++++++++++++++

34



CHAPTER 7

+++++++++HH++

#include "wx/mediactrl.h" /I wxMediaBackendCo mmonBase
#include "wx/msw/ole/activex.h" // wxActiveXContain er

#include "wx/msw/ole/automtn.h" // wxAutomationObje ct

const IID DIID__DPdf =
{OxCAB8A9781,0x280D,0x11CF,{0xA2,0x4D,0x44,0x45,0x53 ,0x54,0x00,0x00

const IID DIID__DPdfEvents =
{OxCAB8A9782,0x280D,0x11CF,{0xA2,0x4D,0x44,0x45,0x53 ,0x54,0x00,0x00
1

const CLSID CLSID_Pdf =
{OxCAB8A9780,0x280D,0x11CF,{0xA2,0x4D,0x44,0x45,0x53 ,0x54,0x00,0x00

I

class WXDLLIMPEXP_MEDIA wxPDFMediaBackend : public
wxMediaBackendCommonBase

public:
wxPDFMediaBackend() : m_pAX(NULL) {}
virtual ~wxPDFMediaBackend()

if(m_pAX)
{
m_pAX->DissociateHandle();
delete m_pAX;
}
virtual bool CreateControl(wxControl* ctrl, wxW indow* parent,
wxWindowID id,
const wxPoint& pos,
const wxSize& size,
long style,
const wxValida tor& validator,
const wxString & name)

{
IDispatch* pDispatch;
if( ::CoCreatelnstance(CLSID_Pdf, NULL,
CLSCTX_INPROC_SER VER,
DIID__DPdf,
(void**)&pDispatch) 1= 0)
return false;

m_PDF.SetDispatchPtr(pDispatch);//wxAutom ationObjectwill
release itself
if (!ctrl->wxControl::Create(parent, id, p 0s, size,
(style & ~wxBORDER_ MASK) |

WXxBORDER_NONE,
validator, name) )
return false;

m_ctrl = wxStaticCast(ctrl, wxMediaCtrl);
m_pAX = new wxActiveXContainer(ctrl,
DIID__DPdf,
pDispatch);

35



CHAPTER 7

wxPDFMediaBackend::ShowPlayerControls(WwxMEDIACTRLPL AYERCONTROLS_NO
NE);
return true;

}

virtual bool Play()
{

return true;

virtual bool Pause()

{

return true;
}
virtual bool Stop()

return true;

}

virtual bool Load(const wxString& fileName)

{
if(m_PDF.CallMethod(wxT("LoadFile"), fileNa me).GetBool())

m_PDF.CallMethod(wxT ("setCurrentPage"),
wxVariant((long)0));

NotifyMovieLoaded(); // initial refresh

wxSizeEvent event;

m_pAX->0nSize(event);

return true;

}

return false;

virtual bool Load(const wxURI& location)

{
return m_PDF.CallMethod(wxT("LoadFile"),

location.BuildUnescapedURI()).GetBool();

}

virtual bool Load(const wxURI& WXUNUSED(locatio n),
const wxURI& WXUNUSED(proxy))

{

return false;

}

virtual wxMediaState GetState()

{
return wxMEDIASTATE_STOPPED;

}

virtual bool SetPosition(wxLongLong where)

m_PDF.CallMethod(wxT("setCurrentPage"),
wxVariant((long)where.GetValue()));
return true;

}

virtual wxLongLong GetPosition()

36



CHAPTER 7

{

return O;

}

virtual wxLongLong GetDuration()

{

return O;

}

virtual void Move(int WXUNUSED(x), int WXUNUSED

int WXUNUSED(w), int WXUNUSED

{
}

wxSize GetVideoSize() const

{

return wxDefaultSize;

}

virtual double GetPlaybackRate()
{

return O;
virtual bool SetPlaybackRate(double)
{ return false;
}
virtual double GetVolume()
return O;

virtual bool SetVolume(double)

return false;

}

virtual bool ShowPlayerControls(wxMediaCtrIPlay

flags)

if(flags)
{

m_PDF.CallMethod(wxT ("setShowToolbar"),
m_PDF.CallMethod(wxT ("setShowScrollbars

}

else

m_PDF.CallMethod(wxT ("setShowToolbar"),
m_PDF.CallMethod(wxT ("setShowScrollbars
}

return true;

}

wxActiveXContainer* m_pAX;
wxAutomationObject m_PDF;

DECLARE_DYNAMIC_CLASS(wxPDFMediaBackend)

V),
(h))

erControls

true);
"), true);

false);
"), false);

37



CHAPTER 7

IMPLEMENT_DYNAMIC_CLASS(wxPDFMediaBackend, wxMediaB ackend);

Put this in one of your existant source files and then create a wxMediaCtrl with//[this]

is the parent window, "myfile.pdf" is the PDF file to open
wxMediaCtrlI* mymediactrl = new wxMediaCtrl(this, wx T("myfile.pdf"),
wxID_ANY,

wxDefaul tPosition,

wxSize(300,300),
Oy
wxT("wxPDFMediaBackend"));

wxActiveXContainer::wxActiveXContainer

wxActiveXContainer ( wxWindow* parent, REFIID iid, IUnknown*
punk, )

Creates this activex container.
parent
parent of this control. Must not be NULL.
id
COM I1ID of pUnk to query. Must be a valid interface to an activex control.
pUnk

Interface of activex control

wxActiveXEvent

An event class for handling activex events passed fromwxActiveXContainer (p. 34).
ActiveX events are basically a function call with the parameters passed through an array
of wxVariants along with a return value that is a wxVariant itself. What type the parameters
or return value are depends on the context (i.e. what the .idl specifies).

Note that unlike the third party wxActiveX function names are not supported.
Derived from

wxCommandEvent (p. 250)

Include files

<wx/mswj/ole/activex.h>

Event table macros

EVT_ACTIVEX(func) Sent when the activex control hosted by

38



CHAPTER 7

wxActiveXContainer (p. 34)recieves an activex
event.

wxActiveXEvent::ParamCount

size_t ParamCount () const

Obtains the number of parameters passed through the activex event.

wxActiveXEvent::ParamType

wxString ParamType (size_t idx) const

Obtains the param type of the param number idx specifies as a string.

wxActiveXEvent::ParamName

wxString ParamName (size_t idx) const

Obtains the param name of the param number idx specifies as a string.

wxActiveXEvent::operator|]

wxVariant& operator[] (size_t idx)

Obtains the actual parameter value specified by idx.

wxActiveXEvent::GetDispatchid

DISPID GetDispatchld (int idx) const

Returns the dispatch id of this activex event. This is the numeric value from the .idl file
specified by the id().

wxAnimation

This class encapsulates the concept of a platform-dependent animation. An animation is a
sequence of frames of the same size. Sound is not supported by wxAnimation.

Derived from

wxGDIObject (p. 708)
wxObiject (p. 1147)

Include files
<wx/animate.h>

Predefined objects

39



CHAPTER 7

Objects:
wxNullAnimation
See also

wxAnimationCtrl (p. 43)

wxAnimation::wxAnimation

wxAnimation ()

Default constructor.

wxAnimation (const wxAnimation& anim)

Copy constructor, uses reference counting (p. 2043).

wxAnimation (const wxString& name, wxAnimationType type =
WXANIMATION_TYPE_ANY)

Loads an animation from a file.
name
The name of the file to load.
type
See LoadFile (p. 41) for more info.
wxAnimation::~wxAnimation

~wxAnimation ()

Destructor. See reference-counted object destruction (p. 2043) for more info.

wxAnimation::GetDelay

int GetDelay (unsigned int i) const

Returns the delay for the i-th frame in milliseconds. If -1 is returned the frame is to be

displayed forever.

wxAnimation::GetFrameCount

unsigned int GetFrameCount () const

Returns the number of frames for this animation.

40



CHAPTER 7

wxAnimation::GetFrame

wximage GetFrame (unsigned int i) const

Returns the i-th frame as a wximage (p. 905).

wxAnimation::GetSize

wxSize GetSize () const

Returns the size of the animation.

wxAnimation::IsOk
bool I1sOk() const

Returns true if animation data is present.

wxAnimation::Load

bool Load (wxInputStreamé& stream, wxAnimationType type =
WXANIMATION_TYPE_ANY)

Loads an animation from the given stream.

Parameters

stream
The stream to use to load the animation.

type
One of the following values:
WXANIMATION_TYPE_GIF Load an animated GIF file.
WXANIMATION_TYPE_ANI Load an ANl file.

WXANIMATION_TYPE_ANY Try to autodetect the filetype.

Return value

true if the operation succeeded, false otherwise.

wxAnimation::LoadFile

bool LoadFile (const wxString& name, wxAnimationType type =

WXANIMATION_TYPE_ANY)

Loads an animation from a file.

41



CHAPTER 7

Parameters

name
A filename.

type
One of the following values:
WXANIMATION_TYPE_GIF Load an animated GIF file.
WXANIMATION_TYPE_ANI Load an ANl file.

WXANIMATION_TYPE_ANY Try to autodetect the filetype.

Return value

true if the operation succeeded, false otherwise.

wxAnimation::operator =

wxAnimation& operator = (const wxAnimation& brush)

Assignment operator, using reference counting (p. 2043).

wxAnimationCitrl

This is a static control which displays an animation. wxAnimationCtrl APl is simple as
possible and won't give you full control on the animation; if you need it then use
wxMediaCtrl (p. 1058).

This control is useful to display a (small) animation while doing a long task (e.g. a
"throbber").

It is only available if wxUSE_ANIMATIONCTRIis set to 1 (the default).
Derived from

wxControl (p. 285)
wxWindow (p. 1794)
wxEvtHandler (p. 575)
wxObiject (p. 1147)

Include files
<wx/animate.h>
Window styles

WXAC_DEFAULT_STYLE The default style: wxNO_BORDER.

42



CHAPTER 7

WXAC_NO_AUTORESIZE By default, the control will adjust its size to exactly fit to the
size of the animation when SetAnimation (p. 44)is called. If
this style flag is given, the control will not change its size

See also

wxAnimation (p. 39)

wxAnimationCtrl::wxAnimationCtrl

wxAnimationCtrl (wxWindow * parent, wxWindowlID id, const wxAnimation& anim,
const wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long
style = wxAC_DEFAULT_STYLE, const wxString& name = "animationctrl")

Initializes the object and calls Create (p. 43) with all the parameters.

wxAnimationCtrl::Create

bool Create (wxWindow * parent, wxWindowID id, const wxAnimation& anim, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
WXAC_DEFAULT_STYLE, const wxString& name = "animationctrl")

Parameters
parent

Parent window, must be non-NULL

The identifier for the control.
anim

The initial animation shown in the control.
pos

Initial position.
size

Initial size.
style

The window style, see wxAC_* flags.
name

Control name.

43



CHAPTER 7

After control creation you must explicitely call Play (p. 44)to start to play the animation.
Until that function won't be called, the first frame of the animation is displayed.

Return value

true if the control was successfully created or false if creation failed.

wxAnimationCtrl::GetAnimation

wxAnimation GetAnimation () const

Returns the animation associated with this control.

wxAnimationCtrl::GetlnactiveBitmap

wxBitmap GetlnactiveBitmap () const

Returns the inactive bitmap shown in this control when the; see SetlnactiveBitmap (p. 45)
for more info.

wxAnimationCitrl::IsPlaying

bool IsPlaying () const

Returns true if the animation is being played.

wxAnimationCtrl::LoadFile

bool LoadFile (const wxString & file, wxAnimationType animType =
WXANIMATION_TYPE_ANY)

Loads the animation from the given file and calls SetAnimation (p. 44). See
wxAnimation::LoadFile (p. 41) for more info.

wxAnimationCtrl::Play

bool Play ()

Starts playing the animation. The animation is always played in loop mode (unless the last
frame of the animation has an infinite delay time) and always start from the first frame
(even if you stopped (p. 45) it while some other frame was displayed).

wxAnimationCtrl::SetAnimation

void SetAnimation (const wxAnimation & anim)

Sets the animation to play in this control. If the previous animation is being played, it's
Stopped (p. 45).

Until Play (p. 44) isn't called, a static image, the first frame of the given animation or the
background colour will be shown (see SetlnactiveBitmap (p. 45) for more info).




CHAPTER 7

wxAnimationCitrl::SetlnactiveBitmap

void SetlnactiveBitmap (const wxBitmap& bmp)

Sets the bitmap to show on the control when it's not playing an animation. If you set as
inactive bitmap wxNullBitmap  (which is the default), then the first frame of the animation
is instead shown when the control is inactive; in this case, if there's no valid animation
associated with the control (see SetAnimation (p. 44)), then the background colour of the
window is shown.

If the control is not playing the animation, the given bitmap will be immediately shown,
otherwise it will be shown as soon as Stop (p. 45)is called.

Note that the inactive bitmap, if smaller than the control's size, will be centered in the
control; if bigger, it will be stretched to fit it.

wxAnimationCtrl::Stop

void Stop ()

Stops playing the animation. The control will show the first frame of the animation, a
custom static image or the window's background colour as specified by the last
SetlnactiveBitmap (p. 45) call.

WXApPP

The wxApp class represents the application itself. It is used to:
e set and get application-wide properties;
* implement the windowing system message or event loop;
e initiate application processing via wxApp::Onlnit (p. 52);
» allow default processing of events not handled by other objects in the application.

You should use the macro IMPLEMENT _APP(appClass) in your application
implementation file to tell wxWidgets how to create an instance of your application class.

Use DECLARE_APP(appClass) in a header file if you want the wxGetApp function (which
returns a reference to your application object) to be visible to other files.

Derived from

wxEvtHandler (p. 575)
wxObiject (p. 1147)

Include files
<wx/app.h>

See also

45



CHAPTER 7

WXApp overview (p. 2037)

WXApPP::WXApPp

WXAPP ()

Constructor. Called implicitly with a definition of a wxApp object.
WXApPP::~WXAppP

virtual ~wxApp ()

Destructor. Will be called implicitly on program exit if the wxApp object is created on the
stack.

WXApp::argc
int argc

Number of command line arguments (after environment-specific processing).

WXApp::argv
wxChar ** argv

Command line arguments (after environment-specific processing).

wxApp::CreateLogTarget

virtual wxLog* CreateLogTarget ()

Creates a wxLog class for the application to use for logging errors. The default
implementation returns a new wxLogGui class.

See also

wxLog (p. 1018)

wxApp::CreateTraits

virtual wxAppTraits * CreateTraits ()
Creates the wxAppTraits (p. 56) object when GetTraits (p. 48)needs it for the first time.
See also

wxAppTraits (p. 56)

wxApp::Dispatch

46



CHAPTER 7

virtual void Dispatch ()
Dispatches the next event in the windowing system event queue.

This can be used for programming event loops, e.g.

while (app.Pending())
Dispatch();

See also

wxApp::Pending (p. 53)

WxApp::ExitMainLoop
virtual void ExitMainLoop ()

Call this to explicitly exit the main message (event) loop. You should normally exit the main
loop (and the application) by deleting the top window.

wxApp::FilterEvent

int FilterEvent (wxEvent& event)

This function is called before processing any event and allows the application to preempt
the processing of some events. If this method returns -1 the event is processed normally,
otherwise either true or false should be returned and the event processing stops
immediately considering that the event had been already processed (for the former return
value) or that it is not going to be processed at all (for the latter one).

WXApp::GetAppName

wxString GetAppName () const
Returns the application name.
Remarks

wxWidgets sets this to a reasonable default before calling wxApp::Onlnit (p. 52), but the
application can reset it at will.

wxApp::GetClassName

wxString GetClassName () const

Gets the class name of the application. The class name may be used in a platform specific
manner to refer to the application.

See also

WxApp::SetClassName (p. 54)

47



CHAPTER 7

WXApp::GetExitOnFrameDelete

bool GetExitOnFrameDelete () const

Returns true if the application will exit when the top-level window is deleted, false
otherwise.

See also

WXApp::SetExitOnFrameDelete (p. 54),
wxApp shutdown overview (p. 2038)

WXxApp::Getinstance

static wxAppConsole * Getlnstance ()

Returns the one and only global application object. Usually wxTheApp is usead instead.
See also

WxApp::Setinstance (p. 54)

wxApp::GetTopWindow

virtual wxWindow * GetTopWindow () const
Returns a pointer to the top window.
Remarks

If the top window hasn't been set using wxApp::SetTopWindow (p. 55), this function will
find the first top-level window (frame or dialog) and return that.

See also

SetTopWindow (p. 55)

WxApp::GetTraits

WxAppTraits * GetTraits ()

Returns a pointer to the wxAppTraits (p. 56) object for the application. If you want to
customize the wxAppTraits (p. 56) object, you must override theCreateTraits (p. 46)
function.

wxApp::GetUseBestVisual

bool GetUseBestVisual () const

Returns true if the application will use the best visual on systems that support different
visuals, false otherwise.

48



CHAPTER 7

See also

SetUseBestVisual (p. 55)

wxApp::GetVendorName

wxString GetVendorName () const

Returns the application's vendor name.

WXApp::IsActive
bool IsActive () const

Returns true if the application is active, i.e. if one of its windows is currently in the
foreground. If this function returns false and you need to attract users attention to the
application, you may use wxTopLevelWindow::RequestUserAttention (p. 1715) to do it.

WxApp::IsMainLoopRunning
static bool IsMainLoopRunning ()

Returns true if the main event loop is currently running, i.e. if the application is inside
OnRun (p. 52).

This can be useful to test whether the events can be dispatched. For example, if this
function returns false , non-blocking sockets cannot be used because the events from
them would never be processed.

WxApp::MainLoop
virtual int MainLoop ()

Called by wxWidgets on creation of the application. Override this if you wish to provide
your own (environment-dependent) main loop.

Return value

Returns 0 under X, and the wParam of the WM_QUIT message under Windows.

WxApp::OnAssertFailure

void OnAssertFailure (const wxChar *file, int line, const wxChar *func, const wxChar
*cond, const wxChar *msg)

This function is called when an assert failure occurs, i.e. the condition specified in
WXASSERT (p. 1977) macro evaluated to false . Itis only called in debug mode (when
__ WXDEBUG __is defined) as asserts are not left in the release code at all.

The base class version shows the default assert failure dialog box proposing to the user to
stop the program, continue or ignore all subsequent asserts.

49



CHAPTER 7

Parameters
file

the name of the source file where the assert occurred
line

the line number in this file where the assert occurred
func

the name of the function where the assert occurred, may be empty if the compiler
doesn't support C99  FUNCTION___

cond
the condition of the failed assert in text form
msg

the message specified as argument to WxASSERT_MSG (p. 1977) or wxFAIL_MSG
(p. 1978), will be NULL if just WXASSERT (p. 1977) or wxFAIL (p. 1978) was used

WXApp::OnCmdLineError

bool OnCmdLineError (wxCmdLineParser& parser)

Called when command line parsing fails (i.e. an incorrect command line option was
specified by the user). The default behaviour is to show the program usage text and abort
the program.

Return true to continue normal execution or false to return false  from Onlnit (p. 52)
thus terminating the program.

See also

OnInitCmdLine (p. 52)

wxApp::OnCmdLineHelp

bool OnCmdLineHelp (wxCmdLineParser& parser)

Called when the help option (--help ) was specified on the command line. The default
behaviour is to show the program usage text and abort the program.

Return true to continue normal execution or false to return false from Onlnit (p. 52)
thus terminating the program.

See also

OnInitCmdLine (p. 52)

50



CHAPTER 7

wxApp::OnCmdLineParsed

bool OnCmdLineParsed (wxCmdLineParser& parser)

Called after the command line had been successfully parsed. You may override this
method to test for the values of the various parameters which could be set from the
command line.

Don't forget to call the base class version unless you want to suppress processing of the
standard command line options.

Return true to continue normal execution or false to return false from Onlnit (p. 52)
thus terminating the program.

See also

OnInitCmdLine (p. 52)

wxApp::OnExceptioninMainLoop

virtual bool OnExceptioninMainLoop ()

This function is called if an unhandled exception occurs inside the main application event
loop. It can return true to ignore the exception and to continue running the loop or false
to exit the loop and terminate the program. In the latter case it can also use C++ throw
keyword to rethrow the current exception.

The default behaviour of this function is the latter in all ports except under Windows where
a dialog is shown to the user which allows him to choose between the different options.
You may override this function in your class to do something more appropriate.

Finally note that if the exception is rethrown from here, it can be caught in
OnUnhandledException (p. 52).

WXAppP::OnExit
virtual int  OnExit ()

Override this member function for any processing which needs to be done as the
application is about to exit. OnExit is called after destroying all application windows and
controls, but before wxWidgets cleanup. Note that it is not called at all if Onlnit (p. 52)
failed.

The return value of this function is currently ignored, return the same value as returned by
the base class method if you override it.

wxApp::OnFatalException

void OnFatalException ()

This function may be called if something fatal happens: an unhandled exception under
Win32 or a a fatal signal under Unix, for example. However, this will not happen by default:

51



CHAPTER 7

you have to explicitly call wxHandleFatalExceptions (p. 1908) to enable this.

Generally speaking, this function should only show a message to the user and return. You
may attempt to save unsaved data but this is not guaranteed to work and, in fact, probably
won't.

See also

wxHandleFatalExceptions (p. 1908)

WXAppP::Onlinit
bool Oninit ()

This must be provided by the application, and will usually create the application's main
window, optionally calling wxApp::SetTopWindow (p. 55). You may use OnExit (p. 51) to
clean up anything initialized here, provided that the function returns true .

Notice that if you want to to use the command line processing provided by wxWidgets you
have to call the base class version in the derived class Onlnit().

Return true to continue processing, false to exit the application immediately.

WXApPpP::OninitCmdLine

void OnInitCmdLine (wxCmdLineParser& parser)

Called from Onlnit (p. 52) and may be used to initialize the parser with the command line
options for this application. The base class versions adds support for a few standard
options only.

WXApp::OnRun

virtual int OnRun ()

This virtual function is where the execution of a program written in wxWidgets starts. The
default implementation just enters the main loop and starts handling the events until it
terminates, either because ExitMainLoop (p. 47) has been explicitly called or because the
last frame has been deleted and GetExitOnFrameDelete (p. 48) flag is true (this is the
default).

The return value of this function becomes the exit code of the program, so it should return
0 in case of successful termination.

wxApp::OnUnhandledException

virtual void OnUnhandledException ()

This function is called when an unhandled C++ exception occurs inside OnRun() (p. 52)
(the exceptions which occur during the program startup and shutdown might not be caught
at all). Note that the exception type is lost by now, so if you want to really handle the

52



CHAPTER 7

exception you should override OnRun() (p. 52) and put a try/catch clause around the call
to the base class version there.

WXApp::ProcessMessage

bool ProcessMessage (WXMSG *msq)

Windows-only function for processing a message. This function is called from the main
message loop, checking for windows that may wish to process it. The function returns true
if the message was processed, false otherwise. If you use wxWidgets with another class
library with its own message loop, you should make sure that this function is called to allow
wxWidgets to receive messages. For example, to allow co-existence with the Microsoft
Foundation Classes, override the PreTranslateMessage function:

I/l Provide wxWidgets message loop compatibility
BOOL CTheApp::PreTranslateMessage(MSG *msg)

if (WxTheApp && wxTheApp->ProcessMessage((WXMSW * )msg))
return true;

else
return CWinApp::PreTranslateMessage(msg);
}

wxApp::Pending

virtual bool Pending ()

Returns true if unprocessed events are in the window system event queue.
See also

wxApp::Dispatch (p. 46)

wxApp::SendldleEvents

bool SendldleEvents (wxWindow* win, wxldleEvent& event)

Sends idle events to a window and its children.

Please note that this function is internal to wxWidgets and shouldn't be used by user code.
Remarks

These functions poll the top-level windows, and their children, for idle event processing. If
true is returned, more Onldle processing is requested by one or more window.

See also

wxldleEvent (p. 903)

WXApp::SetAppName

53



CHAPTER 7

void SetAppName (const wxString& name)

Sets the name of the application. The name may be used in dialogs (for example by the
documentiview framework). A default name is set by wxWidgets.

See also

WxApp::GetAppName (p. 47)

wxApp::SetClassName

void SetClassName (const wxString& name)

Sets the class name of the application. This may be used in a platform specific manner to
refer to the application.

See also

wxApp::GetClassName (p. 47)

WXApp::SetExitOnFrameDelete

void SetExitOnFrameDelete (bool flag)

Allows the programmer to specify whether the application will exit when the top-level
frame is deleted.

Parameters
flag

If true (the default), the application will exit when the top-level frame is deleted. If
false, the application will continue to run.

See also

WXxApp::GetExitOnFrameDelete (p. 48),
wxApp shutdown overview (p. 2038)

WXApp::Setinstance

static void SetInstance (wxAppConsole* app)

Allows external code to modify global wxTheApp, but you should really know what you're
doing if you call it.

Parameters
app
Replacement for the global application object.

See also

54



CHAPTER 7

WxApp::Getinstance (p. 48)

wWXxApp::SetTopWindow

void SetTopWindow (wxWindow* window)

Sets the 'top' window. You can call this from within wxApp::Oninit (p. 52) to let wxWidgets
know which is the main window. You don't have to set the top window; it is only a
convenience so that (for example) certain dialogs without parents can use a specific
window as the top window. If no top window is specified by the application, wxWidgets just
uses the first frame or dialog in its top-level window list, when it needs to use the top
window.

Parameters
window

The new top window.
See also

WxApp::GetTopWindow (p. 48), wxApp::Onlnit (p. 52)

wxApp::SetVendorName

void SetVendorName (const wxString& name)

Sets the name of application's vendor. The name will be used in registry access. A default
name is set by wxWidgets.

See also

WxApp::GetVendorName (p. 49)

wxApp::SetUseBestVisual
void SetUseBestVisual (bool flag, bool forceTrueColour = false)

Allows the programmer to specify whether the application will use the best visual on
systems that support several visual on the same display. This is typically the case under
Solaris and IRIX, where the default visual is only 8-bit whereas certain applications are
supposed to run in TrueColour mode.

If forceTrueColour is true then the application will try to force using a TrueColour visual
and abort the app if none is found.

Note that this function has to be called in the constructor of the wxApp instance and won't
have any effect when called later on.

This function currently only has effect under GTK.

Parameters

55



CHAPTER 7

flag

If true, the app will use the best visual.

wxApp::HandleEvent

virtual void HandleEvent (wxEvtHandler *handler, wxEventFunction func, wxEvent&
event) const

This function simply invokes the given method func of the specified event handler handler
with the event as parameter. It exists solely to allow to catch the C++ exceptions which
could be thrown by all event handlers in the application in one place: if you want to do this,
override this function in your wxApp-derived class and add try/catch clause(s) to it.

wxApp::Yield
bool Yield (bool onlylfNeeded = false)

Yields control to pending messages in the windowing system. This can be useful, for
example, when a time-consuming process writes to a text window. Without an occasional
yield, the text window will not be updated properly, and on systems with cooperative
multitasking, such as Windows 3.1 other processes will not respond.

Caution should be exercised, however, since yielding may allow the user to perform
actions which are not compatible with the current task. Disabling menu items or whole
menus during processing can avoid unwanted reentrance of code: see ::wxSafeYield (p.
1909) for a better function.

Note that Yield() will not flush the message logs. This is intentional as calling Yield() is
usually done to quickly update the screen and popping up a message box dialog may be
undesirable. If you do wish to flush the log messages immediately (otherwise it will be
done during the next idle loop iteration), call wxLog::FlushActive (p. 1023).

Calling Yield() recursively is normally an error and an assert failure is raised in debug build
if such situation is detected. However if the onlylfNeeded parameter is true , the method
will just silently return false instead.

wxAppTraits

The wxAppTraits class defines various configurable aspects of a wxApp (p. 45). You can
access it using wxApp::GetTraits (p. 48) function and you can create your own
wxAppTraits (p. 56) overriding thewxApp::CreateTraits (p. 46) function.

By default, wxWidgets creates a wxConsoleAppTraits object for console applications
(i.e. those applications linked against wxBase library only - see theLibraries list (p. 15)
page) and a wxGUIAppTraits  object for GUI applications.

Derived from

None

56



CHAPTER 7

Include files
<wx/apptrait.h>
See also

WXxApp overview (p. 2037), wxApp (p. 45)

wxAppTraits::CreateFontMapper

virtual wxFontMapper * CreateFontMapper ()

Creates the global font mapper object used for encodings/charset mapping.

wxAppTraits::CreateLogTarget

virtual wxLog * CreateLogTarget ()

Creates the default log target for the application.

wxAppTraits::CreateMessageOutput

virtual wxMessageOutput * CreateMessageOutput ()

Creates the global object used for printing out messages.

wxAppTraits::CreateRenderer

virtual wxRendererNative * CreateRenderer ()

Returns the renderer to use for drawing the generic controls (return value may be NULLn
which case the default renderer for the current platform is used); this is used in GUI mode
only and always returns NULL in console.

NOTE: returned pointer will be deleted by the caller.

wxAppTraits::GetDesktopEnvironment

virtual wxString GetDesktopEnvironment () const

This method returns the name of the desktop environment currently running in a Unix
desktop. Currently only "KDE" or "GNOME" are supported and the code uses the X11
session protocol vendor name to figure out, which desktop environment is running. The
method returns an empty string otherwise and on all other platforms.

wxAppTraits::GetStandardPaths

virtual wxStandardPaths & GetStandardPaths ()

57



CHAPTER 7

Returns the wxStandardPaths object for the application. It's normally the same for wxBase
and wxGUI except in the case of wxMac and wxCocoa.

wxAppTraits::GetToolkitVersion

virtual wxPortld GetToolkitVersion (int *major = NULL, int *minor = NULL)

Returns the wxWidgets port ID used by the running program and eventually fills the given
pointers with the values of the major and minor digits of the native toolkit currently used.
The version numbers returned are thus detected at run-time and not compile-time (except
when this is not possible e.g. wxMotif).

E.qg. if your program is using wxGTK port this function will return wxPORT_GTK and put in
given pointers the versions of the GTK library in use.

See wxPlatformInfo (p. 1185) for more details.

wxAppTraits::HasStderr
virtual bool HasStderr ()

Returns true if fprintf(stderr) goes somewhere, false otherwise.

wxAppTraits::IsUsingUniversalWidgets

bool IsUsingUniversalWidgets () const

Returns true if the library was built as wxUniversal. Always returnsfalse for
wxBase-only apps.

wxAppTraits::ShowAssertDialog

virtual bool ShowAssertDialog (const wxString & msg)

Shows the assert dialog with the specified message in GUI mode or just prints the string to
stderr in console mode.

Returns true to suppress subsequent asserts, false to continue as before.

wxArchiveClassFactory

Allows the creation of streams to handle archive formats such as zip and tar.

For example, given a filename you can search for a factory that will handle it and create a
stream to read it:

factory = wxArchiveClassFactory::Find(filename,
WXSTREAM_FILEEXT);
if (factory)
stream = factory->NewStream(new
wxFFilelnputStream(filename));

58



CHAPTER 7

Find() (p. 60) can also search for a factory by MIME type or wxFileSystem protocol. The
available factories can be enumerated using GetFirst() and GetNext() (p. 60).

Derived from
wxObiject (p. 1147)
Include files
<wx/archive.h>
Data structures

enum wxStreamProtocolType

{
WXSTREAM_PROTOCOL, //wxFileSystemprotocol(s houldbeonlyone)
WXSTREAM_MIMETYPE, // MIME types the stream ha ndles
WXSTREAM_ENCODING, // Not used for archives
WXSTREAM_FILEEXT // File extensions the stre am handles
%
See also

Archive formats such as zip (p. 2220)
Generic archive programming (p. 2224)
wxArchiveEntry (p. 62)
wxArchivelnputStream (p. 64)
wxArchiveOutputStream (p. 69)
wxFilterClassFactory (p. 643)

wxArchiveClassFactory::Get/SetConv

wxMBConv& GetConv () const
void SetConv (WwxMBConv& conv)

The wxMBConv (p. 1038) object that the created streams will use when translating
meta-data. The initial default, set by the constructor, is wxConvLocal.

wxArchiveClassFactory::CanHandle

bool CanHandle (const wxChar* protocol, wxStreamProtocolType type =
WXSTREAM_PROTOCOL) const

Returns true if this factory can handle the given protocol, MIME type or file extension.

When using wxSTREAM_FILEEXT for the second parameter, the first parameter can be a
complete filename rather than just an extension.

59



CHAPTER 7

wxArchiveClassFactory::Find

static const wxArchiveClassFactory*  Find (const wxChar* protocol,
wxStreamProtocolType type = WwxSTREAM_PROTOCOL)

A static member that finds a factory that can handle a given protocol, MIME type or file
extension. Returns a pointer to the class factory if found, or NULL otherwise. It does not
give away ownership of the factory.

When using wxSTREAM_FILEEXT for the second parameter, the first parameter can be a
complete filename rather than just an extension.

wxArchiveClassFactory::GetFirst/GetNext

static const wxArchiveClassFactory*  GetFirst ()
const wxArchiveClassFactory*  GetNext() const
GetFirst and GetNext can be used to enumerate the available factories.

For example, to list them:
wxString list;
const wxArchiveClassFactory *factory =
wxArchiveClassFactory::GetFirst();
while (factory) {

list << factory->GetProtocol() << _T("\n");
factory = factory->GetNext();

}

GetFirst()/GetNext() return a pointer to a factory or NULL if no more are available. They do
not give away ownership of the factory.

wxArchiveClassFactory::GetinternalName

wxString GetlnternalName (const wxString& name, wxPathFormat format =
WXPATH_NATIVE) const

Calls the static GetInternalName() function for the archive entry type, for example
wxZipEntry::GetlnternalName() (p. 1889).

wxArchiveClassFactory::GetProtocol

wxString GetProtocol () const

Returns the wxFileSystem protocol supported by this factory. Equivalent to
wxString(*GetProtcols()).

wxArchiveClassFactory::GetProtocols

60



CHAPTER 7

const wxChar * const* GetProtocols (wxStreamProtocolType type =
WXSTREAM_PROTOCOL) const

Returns the protocols, MIME types or file extensions supported by this factory, as an array
of null terminated strings. It does not give away ownership of the array or strings.

For example, to list the file extensions a factory supports:

wxString list;
const wxChar *const *p;

for (p = factory->GetProtocols(WxSTREAM_FILEEXT ); *p; p++)
list<<*p << _T("\n");

wxArchiveClassFactory::NewEntry

wxArchiveEntry* NewEntry () const

Create a new wxArchiveEntry (p. 62) object of the appropriate type.

wxArchiveClassFactory::NewStream

wxArchivelnputStream* NewStream (wxInputStream& stream) const
wxArchiveOutputStream* NewStream (wxOutputStream& stream) const
wxArchivelnputStream* NewStream (wxInputStream* stream) const
wxArchiveOutputStream* NewStream (wxOutputStream* stream) const
Create a new input or output stream to read or write an archive.

If the parent stream is passed as a pointer then the new archive stream takes ownership of
it. If it is passed by reference then it does not.

wxArchiveClassFactory::PushFront

void PushFront ()
Adds this class factory to the list returned by GetFirst()/GetNext() (p. 60).

It is not necessary to do this to use the archive streams. It is usually used when
implementing streams, typically the implementation will add a static instance of its factory
class.

It can also be used to change the order of a factory already in the list, bringing it to the front.
This isn't a thread safe operation so can't be done when other threads are running that will
be using the list.

The list does not take ownership of the factory.

wxArchiveClassFactory::Remove

61



CHAPTER 7

void Remove ()
Removes this class factory from the list returned by GetFirst()/GetNext() (p. 60).

Removing from the list isn't a thread safe operation so can't be done when other threads
are running that will be using the list.

The list does not own the factories, so removing a factory does not delete it.

wxArchiveEntry

An abstract base class which serves as a common interface to archive entry classes such
as WxZipEntry (p. 1885). These hold the meta-data (filename, timestamp, etc.), for entries
in archive files such as zips and tars.

Derived from
wxObiject (p. 1147)
Include files
<wx/archive.h>
See also

Archive formats such as zip (p. 2220)
Generic archive programming (p. 2224)
wxArchivelnputStream (p. 64)
wxArchiveOutputStream (p. 69)
wxArchiveNoaotifier (p. 68)

Non-seekable streams

This information applies only when reading archives from non-seekable streams. When
the stream is seekable GetNextEntry() (p. 65)returns a fully populated wxArchiveEntry (p.
62). See 'Archives on non-seekable streams (p. 2225)' for more information.

For generic programming, when the worst case must be assumed, you can rely on all the
fields of wxArchiveEntry being fully populated when GetNextEntry() returns, with the the
following exceptions:

GetSize() (p. 63) Guaranteed to be available after the entry has been read to Eof() (p.
942), or CloseEntry() (p. 65) has been called

IsReadOnly() (p. 64) Guaranteed to be available after the end of the archive has
been reached, i.e. after GetNextEntry() returns NULL and Eof() is true

wxArchiveEntry::Clone

wxArchiveEntry* Clone () const

62



CHAPTER 7

Returns a copy of this entry object.

wxArchiveEntry::Get/SetDateTime
wxDateTime GetDateTime () const
void SetDateTime (const wxDateTime& dft)

The entry's timestamp.

wxArchiveEntry::GetInternalFormat

wxPathFormat GetinternalFormat () const

Returns the path format used internally within the archive to store filenames.

wxArchiveEntry::GetinternalName

wxString GetlnternalName () const

Returns the entry's filename in the internal format used within the archive. The name can
include directory components, i.e. it can be a full path.

The names of directory entries are returned without any trailing path separator. This gives
a canonical name that can be used in comparisons.

See also

Looking up an archive entry by name (p. 2222)

wxArchiveEntry::Get/SetName
wxString GetName (wxPathFormat format = wxPATH_NATIVE) const
void SetName (const wxString& hame, wxPathFormat format = wxPATH_NATIVE)

The entry's name, by default in the native format. The name can include directory
components, i.e. it can be a full path.

If this is a directory entry, (i.e. if IsDir() (p. 64)is true) then GetName() returns the name
with a trailing path separator.

Similarly, setting a name with a trailing path separator sets IsDir().

wxArchiveEntry::GetOffset

off _t GetOffset () const

Returns a numeric value unigue to the entry within the archive.

wxArchiveEntry::Get/SetSize

63



CHAPTER 7

off _t GetSize () const
void SetSize (off t size)

The size of the entry's data in bytes.

wxArchiveEntry::IsDir/SetlsDir

bool IsDir () const
void SetlsDir (bool isDir = true)
True if this is a directory entry.

Directory entries are entries with no data, which are used to store the meta-data of
directories. They also make it possible for completely empty directories to be stored.

The names of entries within an archive can be complete paths, and unarchivers typically
create whatever directories are necessary as they restore files, even if the archive
contains no explicit directory entries.

wxArchiveEntry::IsReadOnly/SetlsReadOnly

bool IsReadOnly () const
void SetlsReadOnly (bool isReadOnly = true)

True if the entry is a read-only file.

wxArchiveEntry::Set/UnsetNotifier

void SetNotifier (wxArchiveNotifier& notifier)
void UnsetNatifier ()

Sets the natifier (p. 68) for this entry. Whenever the wxArchivelnputStream (p. 64) updates
this entry, it will then invoke the associated notifier's OnEntryUpdated (p. 69)method.

Setting a natifier is not usually necessary. It is used to handle certain cases when
modifying an archive in a pipeline (i.e. between non-seekable streams).

See also

Archives on non-seekable streams (p. 2225)
wxArchiveNoaotifier (p. 68)

wxArchivelnputStream

An abstract base class which serves as a common interface to archive input streams such
as wxZiplnputStream (p. 1891).

GetNextEntry() (p. 65) returns an wxArchiveEntry (p. 62) object containing the meta-data

64



CHAPTER 7

for the next entry in the archive (and gives away ownership). Reading from the
wxArchivelnputStream then returns the entry's data. Eof() becomes true after an attempt
has been made to read past the end of the entry's data. When there are no more entries,
GetNextEntry() returns NULL and sets Eof().

Derived from
wxFilterinputStream (p. 646)
Include files

<wx/archive.h>

Data structures typedef wxArchiveEntry entry_type

See also

Archive formats such as zip (p. 2220)
wxArchiveEntry (p. 62)
wxArchiveOutputStream (p. 69)

wxArchivelnputStream::CloseEntry

bool CloseEntry ()

Closes the current entry. On a non-seekable stream reads to the end of the current entry
first.

wxArchivelnputStream::GetNextEntry

wxArchiveEntry* GetNextEntry ()

Closes the current entry if one is open, then reads the meta-data for the next entry and
returns it in a wxArchiveEntry (p. 62)object, giving away ownership. Reading this
wxArchivelnputStream then returns the entry's data.

wxArchivelnputStream::OpenEntry

bool OpenEntry (wxArchiveEntry& entry)

Closes the current entry if one is open, then opens the entry specified by the
wxArchiveEntry (p. 62) object.

entry must be from the same archive file that this wxArchivelnputStream is reading, and it
must be reading it from a seekable stream.

See also

Looking up an archive entry by name (p. 2222)

65



CHAPTER 7

wxArchivelterator

An input iterator template class that can be used to transfer an archive's catalogue to a
container. It is only available if wxXUSE_STL is set to 1 in setup.h, and the uses for it
outlined below require a compiler which supports member templates.

template <class Arc, class T = typename Arc::.entry type*>
class wxArchivelterator

/I this constructor creates an 'end of sequence ' object
wxArchivelterator();

/Itemplate parameter'Arc'shouldbethetype ofanarchiveinput
stream
wxArchivelterator(Arc& arc) {

L
h

The first template parameter should be the type of archive input stream (e.g.
wxArchivelnputStream (p. 64)) and the second can either be a pointer to an entry (e.g.
wxArchiveEntry (p. 62)*), or a string/pointer pair (e.g. std::pair<wxString,
wxArchiveEntry*>).

The <wx/archive.h> header defines the following typedefs:
typedef wxArchivelterator<wxArchivelnputStream> wxArchivelter;
typedef wxArchivelterator<wxArchivelnputStream,

std::pair<wxString, wxArchiveEntry*> >
wxArchivePairlter;

The header for any implementation of this interface should define similar typedefs for its
types, for example in <wx/zipstrm.h> there is:

typedef wxArchivelterator<wxZiplnputStream> wxZ iplter;

typedef wxArchivelterator<wxZiplnputStream,
std::pair<wxString, wxZipEntry*> > wxZ ipPairlter;

Transferring the catalogue of an archive arc to a vector cat, can then be done something
like this:

std::vector<wxArchiveEntry*> cat((wxArchivelter )arc,
wxArchivelter());

When the iterator is dereferenced, it gives away ownership of an entry object. So in the
above example, when you have finished with catyou must delete the pointers it contains.

If you have smart pointers with normal copy semantics (i.e. not auto_ptr or wxScopedPtr

66



CHAPTER 7

(p. 1403)), then you can create an iterator which uses them instead. For example, with a
smart pointer class for zip entries ZipEntryPtr:

typedef std::vector<ZipEntryPtr> ZipCatalog;

typedef wxArchivelterator<wxZiplnputStream, Zip EntryPtr>
Ziplter;

ZipCatalog cat((Ziplter)zip, Ziplter());

Iterators that return std::pair objects can be used to populate a std::multimap, to allow
entries to be looked up by name. The string is initialised using the wxArchiveEntry object's
GetinternalName() (p. 63) function.

typedef std::multimap<wxString, WxZipEntry*> Zi pCatalog;
ZipCatalog cat((wxZipPairlter)zip, wxZipPairlte rQ);

Note that this iterator also gives away ownership of an entry object each time it is
dereferenced. So in the above example, when you have finished with cat you must delete
the pointers it contains.

Or if you have them, a pair containing a smart pointer can be used (again ZipEntryPtr), no
worries about ownership:

typedef std::multimap<wxString, ZipEntryPtr> Zi pCatalog;
typedef wxArchivelterator<wxZiplnputStream,
std::pair<wxString, ZipEntryPtr> > ZipPairlter;

ZipCatalog cat((ZipPairlter)zip, ZipPairlter()) ;

Derived from
No base class
Include files
<wx/archive.h>
See also

wxArchiveEntry (p. 62)
wxArchivelnputStream (p. 64)
wxArchiveOutputStream (p. 69)

Data structures typedef std::input_iterator_tag iterator_category
typedef T value_type

typedef ptrdiff_t difference_type

typedef T* pointer

typedef T& reference

wxArchivelterator::wxArchivelterator

67



CHAPTER 7

wxArchivelterator ()
Construct an 'end of sequence' instance.
wxArchivelterator (Arc& arc)

Construct iterator that returns all the entries in the archive input stream arc.

wxArchivelterator::operator*

const T& operator* () const

Returns an entry object from the archive input stream, giving away ownership.

wxArchivelterator::operator++

wxArchivelterator& operator++ ()
wxArchivelterator& operator++ (int)

Position the input iterator at the next entry in the archive input stream.

wxArchiveNotifier

If you need to know when a wxArchivelnputStream (p. 64) updates a wxArchiveEntry (p.
62) object, you can create a notifier by deriving from this abstract base class, overriding
OnEntryUpdated() (p. 69). An instance of your natifier class can then be assigned to the
wxArchiveEntry object using wxArchiveEntry::SetNotifier() (p. 64). Your
OnEntryUpdated() method will then be invoked whenever the input stream updates the
entry.

Setting a natifier is not usually necessary. It is used to handle certain cases when
modifying an archive in a pipeline (i.e. between non-seekable streams). See Archives on
non-seekable streams (p. 2225).

Derived from
No base class
Include files
<wx/archive.h>
See also

Archives on non-seekable streams (p. 2225)
wxArchiveEntry (p. 62)
wxArchivelnputStream (p. 64)
wxArchiveOutputStream (p. 69)

68



CHAPTER 7

wxArchiveNotifier::OnEntryUpdated

void OnEntryUpdated (class wxArchiveEntry& entry)

This method must be overridden in your derived class.

wxArchiveOutputStream

An abstract base class which serves as a common interface to archive output streams
such as wxZipOutputStream (p. 1894).

PutNextEntry() (p. 70) is used to create a new entry in the output archive, then the entry's
data is written to the wxArchiveOutputStream. Another call to PutNextEntry() closes the
current entry and begins the next.

Derived from
wxFilterOutputStream (p. 647)
Include files

<wx/archive.h>

See also

Archive formats such as zip (p. 2220)
wxArchiveEntry (p. 62)
wxArchivelnputStream (p. 64)

wxArchiveOutputStream::~wxArchiveOutputStream

~wxArchiveOutputStream ()

Calls Close() (p. 69) if it has not already been called.

wxArchiveOutputStream::Close

bool Close ()

Closes the archive, returning true if it was successfully written. Called by the destructor if
not called explicitly.

wxArchiveOutputStream::CloseEntry

bool CloseEntry ()

Close the current entry. It is called implicitly whenever another new entry is created with
CopyEntry() (p. 70)or PutNextEntry() (p. 70), or when the archive is closed.

69



CHAPTER 7

wxArchiveOutputStream::CopyArchiveMetaData

bool CopyArchiveMetaData (wxArchivelnputStream& stream)

Some archive formats have additional meta-data that applies to the archive as a whole.
For example in the case of zip there is a comment, which is stored at the end of the zip file.
CopyArchiveMetaData() can be used to transfer such information when writing a modified
copy of an archive.

Since the position of the meta-data can vary between the various archive formats, it is best
to call CopyArchiveMetaData() before transferring the entries. The
wxArchiveOutputStream (p. 69)will then hold on to the meta-data and write it at the correct
point in the output file.

When the input archive is being read from a non-seekable stream, the meta-data may not
be available when CopyArchiveMetaData() is called, in which case the two streams set up
a link and transfer the data when it becomes available.

wxArchiveOutputStream::CopyEntry

bool CopyEntry (wxArchiveEntry* entry, wxArchivelnputStream& stream)

Takes ownership of entry and uses it to create a new entry in the archive. entry is then
opened in the input stream streamand its contents copied to this stream.

For archive types which compress entry data, CopyEntry() is likely to be much more
efficient than transferring the data using Read() and Write() since it will copy them without
decompressing and recompressing them.

entry must be from the same archive file that stream is accessing. For non-seekable
streams, entry must also be the last thing read from stream.

wxArchiveOutputStream::PutNextDirEntry

bool PutNextDirEntry (const wxString& name, const wxDateTime& dt=
wxDateTime::Now())

Create a new directory entry (see wxArchiveEntry::IsDir() (p. 64)) with the given name and
timestamp.

PutNextEntry() (p. 70) can also be used to create directory entries, by supplying a name
with a trailing path separator.

wxArchiveOutputStream::PutNextEntry

bool PutNextEntry (wxArchiveEntry* entry)

Takes ownership of entry and uses it to create a new entry in the archive. The entry's data
can then be written by writing to this wxArchiveOutputStream.

bool PutNextEntry (const wxString& name, const wxDateTime& dt=
wxDateTime::Now(), off_t size = wxInvalidOffset)

70



CHAPTER 7

Create a new entry with the given name, timestamp and size. The entry's data can then be
written by writing to this wxArchiveOutputStream.

WXArray

This section describes the so called dynamic arrays. This is a C array-like data structure
i.e. the member access time is constant (and not linear according to the number of
container elements as for linked lists). However, these arrays are dynamic in the sense
that they will automatically allocate more memory if there is not enough of it for adding a
new element. They also perform range checking on the index values but in debug mode
only, so please be sure to compile your application in debug mode to use it (see
debugging overview (p. 2069) for details). So, unlike the arrays in some other languages,
attempt to access an element beyond the arrays bound doesn't automatically expand the
array but provokes an assertion failure instead in debug build and does nothing (except
possibly crashing your program) in the release build.

The array classes were designed to be reasonably efficient, both in terms of run-time
speed and memory consumption and the executable size. The speed of array item access
is, of course, constant (independent of the number of elements) making them much more
efficient than linked lists (wxList (p. 966)). Adding items to the arrays is also implemented
in more or less constant time - but the price is preallocating the memory in advance. In the
memory management (p. 74) section you may find some useful hints about optimizing
wxArray memory usage. As for executable size, all wxArray functions are inline, so they do
not take any space at all.

wxWidgets has three different kinds of array. All of them derive from wxBaseArray class
which works with untyped data and can not be used directly. The standard macros
WX_DEFINE_ARRAY(), WX_DEFINE_SORTED_ARRAY() and

WX DEFINE_OBJARRAY () are used to define a new class deriving from it. The classes
declared will be called in this documentation wxArray, wxSortedArray and wxObjArray but
you should keep in mind that no classes with such names actually exist, each time you use
one of WX_DEFINE_XXXARRAY macro you define a class with a new name. In fact,
these names are "template" names and each usage of one of the macros mentioned
above creates a template specialization for the given element type.

wxArray is suitable for storing integer types and pointers which it does not treat as objects
in any way, i.e. the element pointed to by the pointer is not deleted when the element is
removed from the array. It should be noted that all of wxArray's functions are inline, so it
costs strictly nothing to define as many array types as you want (either in terms of the
executable size or the speed) as long as at least one of them is defined and this is always
the case because wxArrays are used by wxWidgets internally. This class has one serious
limitation: it can only be used for storing integral types (bool, char, short, int, long and their
unsigned variants) or pointers (of any kind). An attempt to use with objects of sizeof()
greater than sizeof(long) will provoke a runtime assertion failure, however declaring a
wxArray of floats will not (on the machines where sizeof(float) <= sizeof(long)), yet it will
not work, please use wxObjArray for storing floats and doubles (NB: a more efficient
wxArrayDouble class is scheduled for the next release of wxWidgets).

wxSortedArray is a wxArray variant which should be used when searching in the array is a
frequently used operation. It requires you to define an additional function for comparing
two elements of the array element type and always stores its items in the sorted order

71



CHAPTER 7

(according to this function). Thus, it is Index() (p. 80) function execution time is O(log(N))
instead ofO(N) for the usual arrays but the Add() (p. 79) method is slower: it is O(log(N))
instead of constant time (neglecting time spent in memory allocation routine). However, in
a usual situation elements are added to an array much less often than searched inside it,
so wxSortedArray may lead to huge performance improvements compared to wxArray.
Finally, it should be noticed that, as wxArray, wxSortedArray can be only used for storing
integral types or pointers.

wxObjArray class treats its elements like "objects". It may delete them when they are
removed from the array (invoking the correct destructor) and copies them using the
objects copy constructor. In order to implement this behaviour the definition of the
wxObjArray arrays is split in two parts: first, you should declare the new wxObjArray class
using WX_DECLARE_OBJARRAY () macro and then you must include the file defining the
implementation of template type: <wx/arrimpl.cpp> and define the array class with

WX _DEFINE_OBJARRAY () macro from a point where the full (as opposed to ‘forward’)
declaration of the array elements class is in scope. As it probably sounds very complicated
here is an example:

#include <wx/dynarray.h>

Ilwemustforwarddeclarethearraybecauseitis usedinsidetheclass
/I declaration

class MyDirectory;

class MyFile;

/I this defines two new types: ArrayOfDirectories a nd ArrayOfFiles
which can be

/I now used as shown below

WX_DECLARE_OBJARRAY(MyDirectory, ArrayOfDirectories );
WX_DECLARE_OBJARRAY(MyFile,  ArrayOfFiles);

class MyDirectory

{

ArrayOfDirectories m_subdirectories; // all sub directories
ArrayOfFiles m_files; //allfil esinthisdirectory

2

/Inowthatwe have MyDirectory declarationinscop ewemayfinishthe

/ldefinitionofArrayOfDirectories--notethatth isexpandsintosome

C++

// code and so should only be compiled once (i.e., don't putthisin

the

/I header, but into a source file or you will get | inking errors)

#include <wx/arrimpl.cpp>// this is a magic incant ation which must

be done!

WX_DEFINE_OBJARRAY (ArrayOfDirectories);

/l that's all!

It is not as elegant as writing

typedef std::vector<MyDirectory> ArrayOfDirectories ;

72



CHAPTER 7

but is not that complicated and allows the code to be compiled with any, however dumb,
C++ compiler in the world.

Things are much simpler for wxArray and wxSortedArray however: it is enough just to
write

WX_DEFINE_ARRAY_INT(int, ArrayOfints);
WX_DEFINE_SORTED_ARRAY_INT(int, ArrayOfSortedints);

i.e. there is only one DEFINE macro and no need for separateDECLAREDNne. For the
arrays of the primitive types, the macros
WX_DEFINE_ARRAY_CHAR/SHORT/INT/SIZE_T/LONG/DOUBLEhould be used
depending on the sizeof of the values (notice that storing values of smaller type, e.g.
shorts, in an array of larger one, e.g. ARRAY_INT, doesnot work on all architectures!).

See also:
Container classes overview (p. 2063), wxList (p. 966)
Include files

<wx/dynarray.h> for wxArray and wxSortedArray and additionally <wx/arrimpl.cpp> for
wxObijArray.

Macros for template array definition

To use an array you must first define the array class. This is done with the help of the
macros in this section. The class of array elements must be (at least) forward declared for
WX_DEFINE_ARRAY, WX_DEFINE_SORTED_ARRAY and

WX _ DECLARE_OBJARRAY macros and must be fully declared before you use
WX_DEFINE_OBJARRAY macro.

WX_DEFINE_ARRAY (p. 75)
WX_DEFINE_EXPORTED_ARRAY (p. 75)
WX_DEFINE_USER_EXPORTED_ARRAY (p. 75)
WX_DEFINE_SORTED_ARRAY (p. 76)
WX_DEFINE_SORTED_EXPORTED_ARRAY (p. 76)
WX_DEFINE_SORTED_USER_EXPORTED_ARRAY (p. 76)
WX_DECLARE_EXPORTED_OBJARRAY (p. 76)
WX_DECLARE_USER_EXPORTED_OBJARRAY (p. 76)
WX_DEFINE_OBJARRAY (p. 77)
WX_DEFINE_EXPORTED_OBJARRAY (p. 77)
WX_DEFINE_USER_EXPORTED_OBJARRAY (p. 77)

To slightly complicate the matters even further, the operator -> defined by default for the
array iterators by these macros only makes sense if the array element type is not a pointer
itself and, although it still works, this provokes warnings from some compilers and to avoid
them you should use the_PTRversions of the macros above. For example, to define an
array of pointers to double you should use:

73



CHAPTER 7

WX_DEFINE_ARRAY_PTR(double *, MyArrayOfDoublePointe rs);

Note that the above macros are generally only useful for wxObject types. There are
separate macros for declaring an array of a simple type, such as an int.

The following simple types are supported:
int

long

size t

double

To create an array of a simple type, simply append the type you want in CAPS to the array
definition.

For example, for an integer array, you'd use one of the following variants:

WX_DEFINE_ARRAY_INT (p. 75)
WX_DEFINE_EXPORTED_ARRAY_INT (p. 75)
WX_DEFINE_USER_EXPORTED_ARRAY_INT (p. 75)
WX_DEFINE_SORTED_ARRAY _INT (p. 76)
WX_DEFINE_SORTED_EXPORTED_ARRAY_INT (p. 76)
WX_DEFINE_SORTED_USER_EXPORTED_ARRAY_INT (p. 76)

Constructors and destructors

Array classes are 100% C++ objects and as such they have the appropriate copy
constructors and assignment operators. Copying wxArray just copies the elements but
copying wxObjArray copies the arrays items. However, for memory-efficiency sake,
neither of these classes has virtual destructor. It is not very important for wxArray which
has trivial destructor anyhow, but it does mean that you should avoid deleting wxObjArray
through a wxBaseArray pointer (as you would never use wxBaseArray anyhow it shouldn't
be a problem) and that you should not derive your own classes from the array classes.

wxArray default constructor (p. 78)
wxArray copy constructors and assignment operators (p. 78)
~wxArray (p. 79)

Memory management

Automatic array memory management is quite trivial: the array starts by preallocating
some minimal amount of memory (defined by WX_ARRAY_DEFAULT _INITIAL_SIZE)
and when further new items exhaust already allocated memory it reallocates it adding 50%
of the currently allocated amount, but no more than some maximal number which is
defined by ARRAY_MAXSIZE INCREMENT constant. Of course, this may lead to some
memory being wasted (ARRAY_MAXSIZE INCREMENT in the worst case, i.e. 4Kb in the
current implementation), so the Shrink() (p. 82) function is provided to deallocate the extra
memory. The Alloc() (p. 79)function can also be quite useful if you know in advance how
many items you are going to put in the array and will prevent the array code from
reallocating the memory more times than needed.

74



CHAPTER 7

Alloc (p. 79)
Shrink (p. 82)

Number of elements and simple item access

Functions in this section return the total number of array elements and allow to retrieve
them - possibly using just the C array indexing [] operator which does exactly the same as
ltem() (p. 81) method.

Count (p. 80)
GetCount (p. 80)

ISsEmpty (p. 81)
Item (p. 81)

Last (p. 81)

Adding items

Add (p. 79)

Insert (p. 80)

SetCount (p. 82)
WX_APPEND_ARRAY (p. 77)
WX_PREPEND_ARRAY (p. 78)

Removing items

WX_CLEAR_ARRAY (p. 78)

Empty (p. 80)
Clear (p. 79)

RemoveAt (p. 82)
Remove (p. 81)

Searching and sorting

Index (p. 80)
Sort (p. 82)

WX_DEFINE_ARRAY

WX_DEFINE_ARRAY (T, name)
WX_DEFINE_EXPORTED_ARRAY (T, name)
WX_DEFINE_USER_EXPORTED_ARRAY (T, name, exportspec)

This macro defines a new array class named name and containing the elements of type T.
The second form is used when compiling wxWidgets as a DLL under Windows and array
needs to be visible outside the DLL. The third is needed for exporting an array from a user
DLL.

75



CHAPTER 7

Example:

WX_DEFINE_ARRAY_INT(int, MyArrayInt);

class MyClass;
WX_DEFINE_ARRAY(MyClass *, ArrayOfMyClass);

Note that wxWidgets predefines the following standard array classes: wxArrayint,
wxArrayLong and wxArrayPtrVoid.

WX_DEFINE_SORTED_ARRAY

WX_DEFINE_SORTED_ARRAY (T, name)
WX_DEFINE_SORTED_EXPORTED_ARRAY (T, name)
WX_DEFINE_SORTED_USER_EXPORTED_ARRAY (T, name)

This macro defines a new sorted array class named name and containing the elements of
type T. The second form is used when compiling wxWidgets as a DLL under Windows and
array needs to be visible outside the DLL. The third is needed for exporting an array from
a user DLL.

Example:
WX_DEFINE_SORTED_ARRAY_INT(int, MySortedArrayint);

class MyClass;
WX_DEFINE_SORTED_ARRAY(MyClass *, ArrayOfMyClass);

You will have to initialize the objects of this class by passing a comparison function to the
array object constructor like this:

int Comparelnts(int nl, int n2)

{

return nl - n2;

}

wxSortedArraylnt sorted(Comparelnts);
int CompareMyClassObjects(MyClass *item1, MyClass * item2)

/I sort the items by their address...
return Stricmp(item1->GetAddress(), item2->GetA ddress());

}

wxArrayOfMyClass another(CompareMyClassObjects);

WX_DECLARE_OBJARRAY

WX_DECLARE_OBJARRAY (T, name)
WX_DECLARE_EXPORTED_OBJARRAY (T, name)

76



CHAPTER 7

WX_DECLARE_USER_EXPORTED_OBJARRAY (T, name)

This macro declares a new object array class nhamed name and containing the elements of
type T. The second form is used when compiling wxWidgets as a DLL under Windows and
array needs to be visible outside the DLL. The third is needed for exporting an array from
a user DLL.

Example:

class MyClass;
WX_DECLARE_OBJARRAY(MyClass, wxArrayOfMyClass); // note: not
"MyClass *"!

You must use WX_DEFINE_OBJARRAY() (p. 77) macro to define the array class -
otherwise you would get link errors.

WX_DEFINE_OBJARRAY

WX_DEFINE_OBJARRAY (name)
WX_DEFINE_EXPORTED_OBJARRAY (name)
WX_DEFINE_USER_EXPORTED_OBJARRAY (name)

This macro defines the methods of the array class name not defined by

theWX_ DECLARE_OBJARRAY() (p. 76) macro. You must include the file
<wx/arrimpl.cpp> before using this macro and you must have the full declaration of the
class of array elements in scope! If you forget to do the first, the error will be caught by the
compiler, but, unfortunately, many compilers will not give any warnings if you forget to do
the second - but the objects of the class will not be copied correctly and their real
destructor will not be called. The latter two forms are merely aliases of the first to satisfy
some people's sense of symmetry when using the exported declarations.

Example of usage:

/I first declare the class!
class MyClass

{
public:
MyClass(const MyClass&);

virtual ~MyClass();
b

#include <wx/arrimpl.cpp>
WX_DEFINE_OBJARRAY (wxArrayOfMyClass);

WX_APPEND_ARRAY

void WX_APPEND_ARRAY (wxArray& array, wxArray& other)

7



CHAPTER 7

This macro may be used to append all elements of the other array to thearray. The two
arrays must be of the same type.

WX_PREPEND_ARRAY

void WX_PREPEND_ARRAY (wxArray& array, WxArray& other)

This macro may be used to prepend all elements of the other array to thearray. The two
arrays must be of the same type.

WX_CLEAR_ARRAY

void WX_CLEAR_ARRAY (wxArray& array)

This macro may be used to delete all elements of the array before emptying it. It can not be
used with wxObjArrays - but they will delete their elements anyhow when you call Empty().

Default constructors

wxArray ()

wxObjArray ()

Default constructor initializes an empty array object.
wxSortedArray (int (*)(T first, T second) compareFunction)

There is no default constructor for wxSortedArray classes - you must initialize it with a
function to use for item comparison. It is a function which is passed two arguments of type
T where T is the array element type and which should return a negative, zero or positive
value according to whether the first element passed to it is less than, equal to or greater
than the second one.

wxArray copy constructor and assignment operator

wxArray (const wxArray& array)

wxSortedArray (const wxSortedArray& array)
wxObjArray (const wxObjArray& array)

wxArray& operator= (const wxArray& array)
wxSortedArray& operator= (const wxSortedArray& array)
wxObjArray& operator= (const wxObjArray& array)

The copy constructors and assignment operators perform a shallow array copy (i.e. they
don't copy the objects pointed to even if the source array contains the items of pointer
type) for wxArray and wxSortedArray and a deep copy (i.e. the array element are copied
too) for wxObjArray.

78



CHAPTER 7

WXArray::~wxArray

~wxArray ()
~wxSortedArray ()
~wxObjArray ()

The wxObjArray destructor deletes all the items owned by the array. This is not done by
wxArray and wxSortedArray versions - you may useWX_CLEAR_ARRAY (p. 78) macro
for this.

wxArray::Add

void Add (T item, size_t copies = 1)
void Add (T *item)

void Add (T &item, size_t copies = 1)

Appends the given number of copies of the item to the array consisting of the elements of
type T.

The first version is used with wxArray and wxSortedArray. The second and the third are
used with wxObjArray. There is an important difference between them: if you give a
pointer to the array, it will take ownership of it, i.e. will delete it when the item is deleted
from the array. If you give a reference to the array, however, the array will make a copy of
the item and will not take ownership of the original item. Once again, it only makes sense
for wxObjArrays because the other array types never take ownership of their elements.
Also note that you cannot append more than one pointer as reusing it would lead to
deleting it twice (or more) and hence to a crash.

You may also use WX_APPEND_ARRAY (p. 77) macro to append all elements of one
array to another one but it is more efficient to usecopies parameter and modify the
elements in place later if you plan to append a lot of items.

wxArray::Alloc

void Alloc (size_t count)

Preallocates memory for a given number of array elements. It is worth calling when the
number of items which are going to be added to the array is known in advance because it
will save unneeded memory reallocation. If the array already has enough memory for the
given number of items, nothing happens. In any case, the existing contents of the array is
not modified.

wxArray::Clear

void Clear()

This function does the same as Empty() (p. 80) and additionally frees the memory
allocated to the array.

79



CHAPTER 7

wxArray::Count

size_t Count () const

Same as GetCount() (p. 80). This function is deprecated - it exists only for compatibility.

wxObjArray::Detach
T * Detach (size_t index)

Removes the element from the array, but, unlike,Remove() (p. 81) doesn't delete it. The
function returns the pointer to the removed element.

wxArray::Empty
void Empty ()

Empties the array. For wxObjArray classes, this destroys all of the array elements. For
wxArray and wxSortedArray this does nothing except marking the array of being empty -
this function does not free the allocated memory, useClear() (p. 79) for this.

wxArray::GetCount

size_t GetCount () const

Return the number of items in the array.

wxArray::Index

int Index (T& item, bool searchFromEnd = false) const
int Index (T& item) const

The first version of the function is for wxArray and wxObjArray, the second is for
wxSortedArray only.

Searches the element in the array, starting from either beginning or the end depending on
the value of searchFromEnd parameter. wxNOT_FOUNI3 returned if the element is not
found, otherwise the index of the element is returned.

Linear search is used for the wxArray and wxObjArray classes but binary search in the
sorted array is used for wxSortedArray (this is why searchFromEnd parameter doesn't
make sense for it).

NB: even for wxObjArray classes, the operator==() of the elements in the array is not
used by this function. It searches exactly the given element in the array and so will only
succeed if this element had been previously added to the array, but fail even if another,
identical, element is in the array.

wxArray::Insert

80



CHAPTER 7

void Insert (T item, size _t n, size_t copies = 1)
void Insert (T *item, size_t n)
void Insert (T &item, size_t n, size_t copies = 1)

Insert the given number of copies of the item into the array before the existing item n - thus,
Insert(something, Ou) will insert an item in such way that it will become the first array
element.

Please see Add() (p. 79) for explanation of the differences between the overloaded
versions of this function.

wxArray::IsEmpty

bool IsEmpty () const

Returns true if the array is empty, false otherwise.

WxArray::ltem

T& ltem(size_t index) const

Returns the item at the given position in the array. If index is out of bounds, an assert
failure is raised in the debug builds but nothing special is done in the release build.

The returned value is of type "reference to the array element type" for all of the array
classes.

WxArray::Last

T& Last () const

Returns the last element in the array, i.e. is the same as Item(GetCount() - 1). An assert
failure is raised in the debug mode if the array is empty.

The returned value is of type "reference to the array element type" for all of the array
classes.

wxArray::Remove

Remove (T item)

Removes an element from the array by value: the first item of the array equal to item is
removed, an assert failure will result from an attempt to remove an item which doesn't
exist in the array.

When an element is removed from wxObjArray it is deleted by the array - useDetach() (p.
80) if you don't want this to happen. On the other hand, when an object is removed from a
wxArray nothing happens - you should delete it manually if required:

T *item = array[n];

81



CHAPTER 7

delete item;
array.Remove(n)

See also WX_CLEAR_ARRAY (p. 78) macro which deletes all elements of a wxArray
(supposed to contain pointers).

wxArray::RemoveAt

RemoveAt (size_t index, size_t count = 1)

Removes count elements starting at index from the array. When an element is removed
from wxObjArray it is deleted by the array - useDetach() (p. 80) if you don't want this to
happen. On the other hand, when an object is removed from a wxArray nothing happens -
you should delete it manually if required:

T *item = array[n];

delete item;
array.RemoveAt(n)

See also WX_CLEAR_ARRAY (p. 78) macro which deletes all elements of a wxArray
(supposed to contain pointers).

wxArray::SetCount

void SetCount (size_t count, T defval = T(0))

This function ensures that the number of array elements is at leastcount. If the array has
already count or more items, nothing is done. Otherwise, count - GetCount()
elements are added and initialized to the value defval.

See also

GetCount (p. 80)

wxArray::Shrink

void Shrink ()

Frees all memory unused by the array. If the program knows that no new items will be
added to the array it may call Shrink() to reduce its memory usage. However, if a new item
is added to the array, some extra memory will be allocated again.

WxArray::Sort

void Sort (CMPFUNC<T> compareFunction)
The notation CMPFUNC<T> should be read as if we had the following declaration:

template int CMPFUNC(T *first, T *second);

where T is the type of the array elements. l.e. it is a function returningint which is passed
two arguments of type T *.

82



CHAPTER 7

Sorts the array using the specified compare function: this function should return a negative,
zero or positive value according to whether the first element passed to it is less than, equal
to or greater than the second one.

wxSortedArray doesn't have this function because it is always sorted.

wxArrayString

wxArrayString is an efficient container for storing wxString (p. 1552) objects. It has the
same features as all wxArray (p. 71) classes, i.e. it dynamically expands when new items
are added to it (so it is as easy to use as a linked list), but the access time to the elements
is constant, instead of being linear in number of elements as in the case of linked lists. It is
also very size efficient and doesn't take more space than a C array wxString[] type
(wxArrayString uses its knowledge of internals of wxString class to achieve this).

This class is used in the same way as other dynamic arrays (p. 71), except that no
WX_DEFINE_ARRAY declaration is needed for it. When a string is added or inserted in
the array, a copy of the string is created, so the original string may be safely deleted (e.g.
if it was a wxChar * pointer the memory it was using can be freed immediately after this).
In general, there is no need to worry about string memory deallocation when using this
class - it will always free the memory it uses itself.

The references returned by Item (p. 86), Last (p. 87) or operator([] (p. 84) are not constant,
so the array elements may be modified in place like this

array.Last().MakeUpper();

There is also a variant of wxArrayString called wxSortedArrayString which has exactly the
same methods as wxArrayString, but which always keeps the string in it in (alphabetical)
order. wxSortedArrayString uses binary search in its Index (p. 86) function (instead of
linear search for wxArrayString::Index) which makes it much more efficient if you add
strings to the array rarely (because, of course, you have to pay for Index() efficiency by
having Add() be slower) but search for them often. Several methods should not be used
with sorted array (basically, all which break the order of items) which is mentioned in their
description.

Final word: none of the methods of wxArrayString is virtual including its destructor, so this
class should not be used as a base class.

Derived from

Although this is not true strictly speaking, this class may be considered as a specialization
of wxArray (p. 71) class for the wxString member data: it is not implemented like this, but it
does have all of the wxArray functions.

Include files
<wx/arrstr.h>
See also

wxArray (p. 71), wxString (p. 1552), wxString overview (p. 2044)

83



CHAPTER 7

wxArrayString::wxArrayString

wxArrayString ()

Default constructor.

wxArrayString (const wxArrayString& array)

Copy constructor. Note that when an array is assigned to a sorted array, its contents is
automatically sorted during construction.

wxArrayString (size_t sz, const wxChar** arr)
Constructor from a C string array. Pass a size sz and array arr.
wxArrayString (size_t sz, const wxString* arr)

Constructor from a wxString array. Pass a size sz and array arr.

wxArrayString::~wxArrayString

~wxArrayString ()

Destructor frees memory occupied by the array strings. For the performance reasons it is
not virtual, so this class should not be derived from.

wxArrayString::operator=
wxArrayString & operator = (const wxArrayString& array)

Assignment operator.

wxArrayString::operator==
bool operator == (const wxArrayString& array) const

Compares 2 arrays respecting the case. Returns true only if the arrays have the same
number of elements and the same strings in the same order.

wxArrayString::operator!=

bool operator != (const wxArrayString& array) const

Compares 2 arrays respecting the case. Returns true if the arrays have different number
of elements or if the elements don't match pairwise.

wxArrayString::operator]]

wxString& operator[] (size_t nindex)

84



CHAPTER 7

Return the array element at position nindex. An assert failure will result from an attempt to
access an element beyond the end of array in debug mode, but no check is done in
release mode.

This is the operator version of Item (p. 86) method.

wxArrayString::Add
size_t Add(const wxString& str, size_t copies = 1)

Appends the given number of copies of the new item str to the array and returns the index
of the first new item in the array.

Warning: For sorted arrays, the index of the inserted item will not be, in general, equal to
GetCount() (p. 86) - 1 because the item is inserted at the correct position to keep the array
sorted and not appended.

See also: Insert (p. 86)

wxArrayString::Alloc

void Alloc (size_t nCount)

Preallocates enough memory to store nCount items. This function may be used to improve
array class performance before adding a known number of items consecutively.

See also: Dynamic array memory management (p. 74)

wxArrayString::Clear

void Clear()
Clears the array contents and frees memory.

See also: Empty (p. 85)

wxArrayString::Count

size_t Count () const

Returns the number of items in the array. This function is deprecated and is for backwards
compatibility only, please use GetCount (p. 86) instead.

wxArrayString::Empty
void Empty ()

Empties the array: after a call to this function GetCount (p. 86) will return 0. However, this
function does not free the memory used by the array and so should be used when the
array is going to be reused for storing other strings. Otherwise, you should use Clear (p.
85) to empty the array and free memory.

85



CHAPTER 7

wxArrayString::GetCount

size_t GetCount () const

Returns the number of items in the array.

wxArrayString::Index

int Index (const wxChar * sz, bool bCase = true, bool bFromEnd = false)

Search the element in the array, starting from the beginning ifoFromEnd is false or from
end otherwise. If bCase, comparison is case sensitive (default), otherwise the case is
ignored.

This function uses linear search for wxArrayString and binary search for
wxSortedArrayString, but it ignores the bCase and bFromEnd parameters in the latter
case.

Returns index of the first item matched or wxNOT_FOUNIJ there is no match.

wxArrayString::Insert

void Insert (const wxString& str, size_t nindex, size_t copies = 1)

Insert the given number of copies of the new element in the array before the position
nindex. Thus, for example, to insert the string in the beginning of the array you would write

Insert("foo", 0);
If nindex is equal to GetCount() this function behaves as Add (p. 85).

Warning: this function should not be used with sorted arrays because it could break the
order of items and, for example, subsequent calls to Index() (p. 86) would then not work!

wxArrayString::ISsEmpty

bool IsEmpty ()

Returns true if the array is empty, false otherwise. This function returns the same result as
GetCount() == 0 but is probably easier to read.

wxArrayString::ltem

wxString& Item(size_t nindex) const

Return the array element at position nindex. An assert failure will result from an attempt to
access an element beyond the end of array in debug mode, but no check is done in
release mode.

See also operator|] (p. 84) for the operator version.

86



CHAPTER 7

wxArrayString::Last

wxString& Last()

Returns the last element of the array. Attempt to access the last element of an empty array
will result in assert failure in debug build, however no checks are done in release mode.

wxArrayString::Remove

void Remove (const wxChar * sz)

Removes the first item matching this value. An assert failure is provoked by an attempt to
remove an element which does not exist in debug build.

See also: Index (p. 86)

wxArrayString::RemoveAt

void RemoveAt (size_t nindex, size_t count = 1)

Removes count items starting at position nindex from the array.

wxArrayString::Shrink
void Shrink ()

Releases the extra memory allocated by the array. This function is useful to minimize the
array memory consumption.

See also: Alloc (p. 85), Dynamic array memory management (p. 74)

wxArrayString::Sort

void Sort(bool reverseOrder = false)

Sorts the array in alphabetical order or in reverse alphabetical order if reverseOrder is true.
The sort is case-sensitive.

Warning: this function should not be used with sorted array because it could break the
order of items and, for example, subsequent calls to Index() (p. 86) would then not work!

void Sort(CompareFunction compareFunction)

Sorts the array using the specified compareFunction for item
comparison.CompareFunction is defined as a function taking two const wxString&
parameters and returning an int value less than, equal to or greater than 0 if the first string
is less than, equal to or greater than the second one.

Example

The following example sorts strings by their length.

87



CHAPTER 7

static int CompareStringLen(const wxString& first, const wxString&
second)

{
}

return first.length() - second.length();

wxArrayString array;

array.Add("one");
array.Add("two");
array.Add("three");
array.Add("four");

array.Sort(CompareStringLen);

Warning: this function should not be used with sorted array because it could break the
order of items and, for example, subsequent calls to Index() (p. 86) would then not work!

wxArtProvider

wxArtProvider class is used to customize the look of wxWidgets application. When
wxWidgets needs to display an icon or a bitmap (e.qg. in the standard file dialog), it does
not use a hard-coded resource but asks wxArtProvider for it instead. This way users can
plug in their own wxArtProvider class and easily replace standard art with their own
version. All that is needed is to derive a class from wxArtProvider, override
itsCreateBitmap (p. 91) method and register the provider withwxArtProvider::Push (p. 93):

class MyProvider : public wxArtProvider

{

protected:
wxBitmap CreateBitmap(const wxArtID& id,
const wxArtClient& client
const wxSize size)

{..}
h

wxArtProvider::Push(new MyProvider);

There's another way of taking advantage of this class: you can use it in your code and use
platform native icons as provided by wxArtProvider::GetBitmap (p. 91) or
wxArtProvider::Getlcon (p. 92) (NB: this is not yet really possible as of wxWidgets 2.3.3,
the set of wxArtProvider bitmaps is too small).

Identifying art resources

Every bitmap is known to wxArtProvider under an unique ID that is used by when
requesting a resource from it. The ID is represented by wxArtID type and can have one of
these predefined values (you can see bitmaps represented by these constants in the
artprov (p. 2028) sample):

*  WXART_ADD_BOOKMARK

88



CHAPTER 7

WXART_DEL_BOOKMARK
WXART_HELP_SIDE_PANEL
WXART_HELP_SETTINGS
WXART_HELP_BOOK
WXART_HELP_FOLDER
WXART_HELP_PAGE
WXART_GO_BACK
WXART_GO_FORWARD
WXART_GO_UP
WXART_GO_DOWN
WXART_GO_TO_PARENT
WXART_GO_HOME
WXART_FILE_OPEN
WXART_PRINT
WXART_HELP

WXART_TIP
WXART_REPORT_VIEW
WXART_LIST_VIEW
WXART_NEW_DIR
WXART_FOLDER
WXART_GO_DIR_UP
WXART_EXECUTABLE_FILE
WXART_NORMAL_FILE
WXART_TICK_MARK
WXART_CROSS_MARK
WXART_ERROR
WXART_QUESTION

WXART_WARNING

89



CHAPTER 7

*  WXART_INFORMATION
*  WXART_MISSING_IMAGE

Additionally, any string recognized by custom art providers registered using Push (p. 93)
may be used.

GTK+ Note

When running under GTK+ 2, GTK+ stock item IDs (e.g. "gtk-cdrom” ) may be used as
well. Additionally, if wxGTK was compiled against GTK+ >= 2.4, then it is also possible to
load icons from current icon theme by specifying their name (without extension and
directory components). Icon themes recognized by GTK+ follow thefreedesktop.org Icon
Themes specification (http://freedesktop.org/Standards/icon-theme-spec ).
Note that themes are not guaranteed to contain all icons, so wxArtProvider may return
wxNullBitmap  or wxNullicon . Default theme is typically installed in
{usr/share/icons/hicolor

Clients

Client is the entity that calls wxArtProvider's GetBitmap or Getlcon function. It is
represented by wxClientID type and can have one of these values:

«  WxXART_TOOLBAR

«  WxART_MENU

«  WxART_BUTTON

«  WxXART_FRAME_ICON

«  WXART_CMN_DIALOG

«  WxART_HELP_BROWSER
«  WxART_MESSAGE_BOX

«  wWxART_OTHER (used for all requests that don't fit into any of the categories
above)Client ID servers as a hint to wxArtProvider that is supposed to help it to
choose the best looking bitmap. For example it is often desirable to use slightly
different icons in menus and toolbars even though they represent the same action
(e.g. wx_ART_FILE_OPEN. Remember that this is really only a hint for
wxArtProvider -- it is common thatwxArtProvider::GetBitmap (p. 91) returns
identical bitmap for different client values!

See also
See the artprov (p. 2028) sample for an example of wxArtProvider usage.
Derived from

wxObiject (p. 1147)

90



CHAPTER 7

Include files

<wx/artprov.h>

wxArtProvider::~wxArtProvider

~wxArtProvider ()

The destructor automatically removes the provider from the provider stack used by
GetBitmap (p. 91).

wxArtProvider::CreateBitmap

wxBitmap CreateBitmap (const wxArtID& id, const wxArtClient& client, const
wxSize& size)

Derived art provider classes must override this method to create requested art resource.
Note that returned bitmaps are cached by wxArtProvider and it is therefore not necessary
to optimize CreateBitmap for speed (e.g. you may create wxBitmap objects from XPMs
here).

Parameters
id

wxATrtID unique identifier of the bitmap.
client

wxArtClient identifier of the client (i.e. who is asking for the bitmap). This only
servers as a hint.

size

Preferred size of the bitmap. The function may return a bitmap of different
dimensions, it will be automatically rescaled to meet client's request.

Note

This is not part of wxArtProvider's public API, usewxArtProvider::GetBitmap (p. 91) or
wxArtProvider::Getlcon (p. 92)to query wxArtProvider for a resource.

wxArtProvider::Delete

static bool Delete (wxArtProvider* provider)

Delete the given provider.

wxArtProvider::GetBitmap

91



CHAPTER 7

static wxBitmap GetBitmap (const wxArtID& id, const wxArtClient& client =
WXART_OTHER, const wxSize& size = wxDefaultSize)

Query registered providers for bitmap with given ID.
Parameters
id

wxATrtID unique identifier of the bitmap.
client

wxArtClient identifier of the client (i.e. who is asking for the bitmap).
size

Size of the returned bitmap or wxDefaultSize  if size doesn't matter.
Return value

The bitmap if one of registered providers recognizes the ID or wxNullBitmap otherwise.

wxArtProvider::Getlcon

static wxlcon Getlcon (const wxArtID& id, const wxArtClient& client =
WXART_OTHER, const wxSize& size = wxDefaultSize)

Same as wxArtProvider::GetBitmap (p. 91), but return a wxlcon object (or wxNullicon on
failure).

static wxSize GetSizeHint (const wxArtClient& client, bool platform_default = false)

Returns a suitable size hint for the given wxArtClient. If platform_default is true , return a
size based on the current platform, otherwise return the size from the topmost
wxArtProvider. wxDefaultSize may be returned if the client doesn't have a specified size,
like wxART_OTHER for example.

wxArtProvider::Insert

static void Insert (wxArtProvider* provider)

Register new art provider and add it to the bottom of providers stack (i.e. it will be queried
as the last one).

See also

Push (p. 93)

wxArtProvider::Pop

static bool Pop()

92



CHAPTER 7

Remove latest added provider and delete it.

wxArtProvider::Push

static void Push (wxArtProvider* provider)

Register new art provider and add it to the top of providers stack (i.e. it will be queried as
the first provider).

See also

Insert (p. 92)

wxArtProvider::Remove

static bool Remove (wxArtProvider* provider)

Remove a provider from the stack if it is on it. The provider is not deleted, unlike when
using Delete() (p. 91).

wxAuiDockArt

wxAuiDockArt is part of the wxAUI class framework. See also wxAUI overview (p. 2194).

Dock art provider code - a dock provider provides all drawing functionality to the wxAui
dock manager. This allows the dock manager to have a plugable look-and-feel.

By default, a wxAuiManager (p. 99) uses an instance of this class called
wxAuiDefaultDockArt  which provides bitmap art and a colour scheme that is adapted to
the major platforms' look. You can either derive from that class to alter its behaviour or
write a completely new dock art class. Call wxAuiManager::SetArtProvider (p. 103)to
make use this new dock art.

Derived from
No base class
Include files
<wx/aui/dockart.h>
See also
wxAuiManager (p. 99), wxAuiPanelnfo (p. 110)
Data structures
enum wxAuiPaneDockArtSetting

{
WXAUI_DOCKART_SASH_SIZE =0,

WXAUI_DOCKART_CAPTION_SIZE = 1,
WXAUI_DOCKART_GRIPPER_SIZE = 2,
WXAUI_DOCKART_PANE_BORDER_SIZE = 3,

93



CHAPTER 7

WXAU|_DOCKART_PANE_BUTTON_SIZE = 4,
WXAUI_DOCKART_BACKGROUND_COLOUR = 5,
WXAUI_DOCKART_SASH_COLOUR = 6,
WXAUI_DOCKART_ACTIVE_CAPTION_COLOUR =7,
WXAUI_DOCKART_ACTIVE_CAPTION_GRADIENT_COLOUR = 8,
WXAUI_DOCKART_INACTIVE_CAPTION_COLOUR =9,
WXAUI_DOCKART_INACTIVE_CAPTION_GRADIENT_COLOUR = 10,
WXAUI_DOCKART_ACTIVE_CAPTION_TEXT_COLOUR = 11,
WXAUI_DOCKART_INACTIVE_CAPTION_TEXT_COLOUR =12 |,
WXAUI_DOCKART_BORDER_COLOUR =13,
WXAUI_DOCKART_GRIPPER_COLOUR = 14,
WXAUI_DOCKART_CAPTION_FONT = 15,
WXAUI_DOCKART_GRADIENT_TYPE = 16

enum wxAuiPaneDockArtGradients

WXAUI_GRADIENT_NONE = 0,
WXAUI_GRADIENT_VERTICAL =1,
WXAUI_GRADIENT_HORIZONTAL =2

enum wxAuiPaneButtonState

WXAUI_BUTTON_STATE_NORMAL = 0,
WXAUI_BUTTON_STATE_HOVER = 1,
WXAUI_BUTTON_STATE_PRESSED = 2

}

enum wxAuiButtonld

WXAUI_BUTTON_CLOSE = 101,
WXAUI_BUTTON_MAXIMIZE_RESTORE = 102,
WXAUI_BUTTON_MINIMIZE = 103,
WXAUI_BUTTON_PIN = 104,
WXAUI_BUTTON_OPTIONS = 105,
WXAUI_BUTTON_WINDOWLIST = 106,
WXAUI_BUTTON_LEFT = 107,
WXAUI_BUTTON_RIGHT = 108,
WXAUI_BUTTON_UP = 109,
WXAUI_BUTTON_DOWN = 110,
WXAUI_BUTTON_CUSTOM1 = 201,
WXAUI_BUTTON_CUSTOM2 = 202,
WXAUI_BUTTON_CUSTOMS3 = 203

wxAuiDockArt::wxAuiDockArt

wxAuiDockArt ()

Constructor.

94



CHAPTER 7

wxAuiDockArt::~wxAuiDockArt

~wxAuiDockArt ()

Destructor.

wxAuiDockArt::DrawBackground

virtual void DrawBackground (wxDC& dc, wxWindow* window, int orientation, const
wxRect& rect)

Draws a background.

wxAuiDockArt::DrawBorder

virtual void DrawBorder (wxDC& dc, wxWindow* window, const wxRect& rect,
wxAuiPanelnfo& pane)

Draws a border.

wxAuiDockArt::DrawCaption

virtual void DrawCaption (wxDC& dc, wxWindow* window, const wxString& text,
const wxRect& rect, wxAuiPanelnfo& pane)

Draws a caption.

wxAuiDockArt::DrawGripper

virtual void DrawGripper (wxDC& dc, wxWindow* window, const wxRect& rect,
wxAuiPanelnfo& pane)

Draws a gripper.

wxAuiDockArt::DrawPaneButton

virtual void DrawPaneButton (wxDC& dc, wxWindow* window, int button, int
button_state, const wxRect& rect, wxAuiPanelnfo& pane)

Draws a button in the pane's title bar.
button can be one of the values of wxAuiButtonld .

button_state can be one of the values of wxAuiPaneButtonState

wxAuiDockArt::DrawSash

virtual void DrawSash (wxDC& dc, wxWindow* window, int orientation, const
wxRect& rect)

Draws a sash between two windows.

95



CHAPTER 7

wxAuiDockArt::GetColor

virtual wxColour GetColor (int id)

The same as GetColour (p. 96).

wxAuiDockArt::GetColour

virtual wxColour GetColour (int id)
Get the colour of a certain setting.

id can be one of the colour values of wxAuiPaneDockArtSetting
wxAuiDockArt::GetFont

virtual wxFont GetFont (int id)

Get a font setting.

wxAuiDockArt::GetMetric

virtual int GetMetric (int id)
Get the value of a certain setting.

id can be one of the size values of wxAuiPaneDockArtSetting

wxAuiDockArt::SetColor

virtual void SetColor (int id, const wxColour& color)
The same as SetColour (p. 96).
wxAuiDockArt::SetColour

virtual void SetColour (int id, const wxColor& colour)
Set a certain setting with the value colour.

id can be one of the colour values of wxAuiPaneDockArtSetting
wxAuiDockArt::SetFont

virtual void SetFont (int id, const wxFont& font)

Set a font setting.

wxAuiDockArt::SetMetric

virtual void SetMetric (int id, int new_val)

96



CHAPTER 7

Set a certain setting with the value new_val.

id can be one of the size values of wxAuiPaneDockArtSetting

wxAuiTabArt

Tab art class.
Derived from

No base class
Include files
<wx/aui/auibook.h>

Data structures

wxAuiTabArt::wxAuiTabArt
wxAuiTabArt ()

Constructor.
wxAuiTabArt::Clone

wxAuiTabArt* Clone ()

Clones the art object.

wxAuiTabArt::DrawBackground

void DrawBackground (wxDC& dc, wxWindow* wnd, const wxRect& rect)

Draws a background on the given area.

wxAuiTabArt::DrawButton

void DrawButton (wxDC& dc, wxWindow* wnd, const wxRect& in_rect, int bitmap_id,
int button_state, int orientation, const wxBitmap& bitmap_override, wxRect* out_rect)

Draws a button.

wxAuiTabArt::DrawTab

void DrawTab (wxDC& dc, wxWindow* wnd, const wxRect& in_rect, const wxString&
caption, const wxBitmap& bitmap, bool active, int close_button_state, wxRect*

out_tab_rect, wxRect* out_button_rect, int* X_extent)

97



CHAPTER 7

Draws a tab.

wxAUuiTabArt::GetBestTabCtrISize

int GetBestTabCtrISize (wxWindow* wnd, wxAuiNotebookPageArray& pages)

Returns the tab control size.

wxAuiTabArt::GetlndentSize

int GetindentSize ()

Returns the indent size.

wxAUuiTabArt::GetTabSize

wxSize GetTabSize (wxDC& dc, wxWindow* wnd, const wxString& caption, const
wxBitmap& bitmap, bool active, int close_button_state, int* x_extent)

Returns the tab size for the given caption, bitmap and state.
wxAuiTabArt::SetFlags

void SetFlags (unsigned int flags)

Sets flags.

wxAuiTabArt::SetMeasuringFont

void SetMeasuringFont (const wxFont& font)
Sets the font used for calculating measurements.
wxAuiTabArt::SetNormalFont

void SetNormalFont (const wxFont& font)
Sets the normal font for drawing labels.
wxAuiTabArt::SetSelectedFont

void SetSelectedFont (const wxFont& font)
Sets the font for drawing text for selected Ul elements.
wxAuiTabArt::SetSizinginfo

void SetSizinginfo (const wxSize& tab_ctrl_size, size t tab_count)

Sets sizing information.

98



CHAPTER 7

wxAuiTabArt::ShowWindowList

int ShowWindowList (wxWindow* wnd, const wxArrayString& items, int active_idx)

Pops up a menu to show the list of windows managed by wxAui.

wxAuiManager

wxAuiManager is the central class of the wxAUI class framework.
See also wxAUI overview (p. 2194).

wxAuiManager manages the panes associated with it for a particular wxFrame, using a
pane's wxAuiPanelnfo information to determine each pane's docking and floating behavior.
wxAuiManager uses wxWidgets' sizer mechanism to plan the layout of each frame. It uses
a replaceable dock art class to do all drawing, so all drawing is localized in one area, and
may be customized depending on an application's specific needs.

wxAuiManager works as follows: the programmer adds panes to the class, or makes
changes to existing pane properties (dock position, floating state, show state, etc.). To
apply these changes, wxAuiManager's Update() function is called. This batch processing
can be used to avoid flicker, by modifying more than one pane at a time, and then
"committing" all of the changes at once by calling Update().

Panes can be added quite easily:

wXTextCtrl* textl = new wxTextCtrl(this, -1);

WXTextCtrl* text2 = new wxTextCtrl(this, -1);
m_mgr.AddPane(textl, wxLEFT, wxT("Pane Caption"));
m_mgr.AddPane(text2, wxBOTTOM, wxT("Pane Caption"))
m_mgr.Update();

Later on, the positions can be modified easily. The following will float an existing pane in a
tool window:

m_mgr.GetPane(textl).Float();

Layers, Rows and Directions, Positions

Inside wxAUI, the docking layout is figured out by checking several pane parameters. Four
of these are important for determining where a pane will end up:

Direction: Each docked pane has a direction, Top, Bottom, Left, Right, or Center. This is
fairly self-explanatory. The pane will be placed in the location specified by this variable.

Position: More than one pane can be placed inside of a dock. Imagine two panes being
docked on the left side of a window. One pane can be placed over another. In
proportionally managed docks, the pane position indicates its sequential position, starting
with zero. So, in our scenario with two panes docked on the left side, the top pane in the
dock would have position 0, and the second one would occupy position 1.

Row: A row can allow for two docks to be placed next to each other. One of the most
common places for this to happen is in the toolbar. Multiple toolbar rows are allowed, the

99



CHAPTER 7

first row being row 0, and the second row 1. Rows can also be used on vertically docked
panes.

Layer: A layer is akin to an onion. Layer 0 is the very center of the managed pane. Thus, if
a pane is in layer 0, it will be closest to the center window (also sometimes known as the
"contentwindow"). Increasing layers "swallow up" all layers of a lower value. This can look
very similar to multiple rows, but is different because all panes in a lower level yield to

panes in higher levels. The best way to understand layers is by running the wxAUI sample.

Derived from
wxEvtHandler (p. 575)
Include files
<wx/aui/aui.h>
See also
wxAuiPanelnfo (p. 110),wxAuiDockArt (p. 93)
Data structures
enum wxAuiManagerDock

{
WXAUI_DOCK_NONE =0,

WXAUI_DOCK_TOP =1,

WXAUI_DOCK_RIGHT =2,
WXAUI_DOCK_BOTTOM = 3,

WXAUI_DOCK_LEFT = 4,

WXAUI_DOCK_CENTER =5,
WXAUI_DOCK_CENTRE = wxAUl_DOCK_CENTER

enum wxAuiManagerOption

WXAUI_MGR_ALLOW_FLOATING =1<<0,
WXAUI_MGR_ALLOW_ACTIVE_PANE  =1<<1,
WXAUI_MGR_TRANSPARENT _DRAG =1<<2,
WXAUI_MGR_TRANSPARENT HINT  =1<<3,
WXAUI_MGR_VENETIAN_BLINDS_HINT =1<<4,
WXAUI_MGR_RECTANGLE_HINT =1<<5,
WXAUI_MGR_HINT_FADE =1<<8,

WXAUI_MGR_NO_VENETIAN_BLINDS_FADE =1<<7,

WXAUI_MGR_DEFAULT = wxAUl_MGR_ALLOW_FLOATING |
WXAUI_MGR_TRANSPARENT_HINT |
WXAUI_MGR_HINT_FADE |
WXAUI_MGR_NO_VENETIAN_BLIND S_FADE

100



CHAPTER 7

wxAuiManager::wxAuiManager

wxAuiManager (wxWindow* managed wnd = NULL, unsigned int flags =
wxAUI_MGR_DEFAULT)

Constructor. managed_wnd specifies the wxFrame which should be managed.flags
specifies options which allow the frame management behavior to be modified.

wxAuiManager::~wxAuiManager

~wxAuiManager ()

wxAuiManager::AddPane

bool AddPane (wxWindow* window, const wxAuiPanelnfo& pane_info)

bool AddPane (wxWindow* window, int direction = wxLEFT, const wxString& caption =
WXEmptyString)

bool AddPane (wxWindow* window, const wxAuiPanelnfo& pane_info, const
wxPoint& drop_pos)

AddPane() tells the frame manager to start managing a child window. There are several
versions of this function. The first version allows the full spectrum of pane parameter
possibilities. The second version is used for simpler user interfaces which do not require
as much configuration. The last version allows a drop position to be specified, which will
determine where the pane will be added.

wxAuiManager::DetachPane

bool DetachPane (wxWindow* window)

Tells the wxAuiManager to stop managing the pane specified by window. The window, if in
a floated frame, is reparented to the frame managed by wxAuiManager.

wxAuiManager::GetAllPanes

wxAuiPanelnfoArray& GetAllPanes ()

Returns an array of all panes managed by the frame manager.

wxAuiManager::GetArtProvider

wxAuiDockArt*  GetArtProvider () const
Returns the current art provider being used.

See also: wxAuiDockArt (p. 93).

wxAuiManager::GetDockSizeConstraint

101



CHAPTER 7

void GetDockSizeConstraint (double* widthpct, double* heightpct)

Returns the current dock constraint values. See SetDockSizeConstraint() (p. 104) for
more information.

wxAuiManager::GetFlags

unsigned int GetFlags () const

Returns the current manager's flags.

wxAuiManager::GetManagedWindow

wxWindow* GetManagedWindow () const

Returns the frame currently being managed by wxAuiManager.

wxAuiManager::GetManager

static wxAuiManager* GetManager (wxWindow* window)

Calling this method will return the wxAuiManager for a given window. The window
parameter should specify any child window or sub-child window of the frame or window
managed by wxAuiManager. The window parameter need not be managed by the
manager itself, nor does it even need to be a child or sub-child of a managed window. It
must however be inside the window hierarchy underneath the managed window.

wxAuiManager::GetPane

wxAuiPanelnfo& GetPane (wxWindow* window)
wxAuiPanelnfo& GetPane(const wxString& hame)

GetPane is used to lookup a wxAuiPanelnfo object either by window pointer or by pane
name, which acts as a unique id for a window pane. The returned wxAuiPanelnfo object
may then be modified to change a pane's look, state or position. After one or more
modifications to wxAuiPanelnfo, wxAuiManager::Update() should be called to commit the
changes to the user interface. If the lookup failed (meaning the pane could not be found in
the manager), a call to the returned wxAuiPanelnfo's IsOk() method will return false.

wxAuiManager::HideHint

void HideHint ()

HideHint() hides any docking hint that may be visible.
wxAuiManager::InsertPane

bool InsertPane (wxWindow* window, const wxAuiPanelnfo& insert_location, int
insert_level = wxAUIl_INSERT_PANE)

102



CHAPTER 7

This method is used to insert either a previously unmanaged pane window into the frame
manager, or to insert a currently managed pane somewhere else. InsertPane will push all
panes, rows, or docks aside and insert the window into the position specified by
insert_location. Because insert_location can specify either a pane, dock row, or dock
layer, the insert_level parameter is used to disambiguate this. The parameter insert_level
can take a value of wxAUIl_INSERT_PANE, wxAUIl_INSERT_ROW or
wWXAUI_INSERT_DOCK.

wxAuiManager::LoadPanelnfo

void LoadPanelnfo (wxString pane_part, wxAuiPanelnfo& pane)

LoadPanelnfo() is similar to to LoadPerspective, with the exception that it only loads
information about a single pane. It is used in combination with SavePanelnfo().

wxAuiManager::LoadPerspective

bool LoadPerspective (const wxString& perspective, bool update = true)

Loads a saved perspective. If update is true, wxAuiManager::Update() is automatically
invoked, thus realizing the saved perspective on screen.

wxAuiManager::ProcessDockResult

bool ProcessDockResult (wxAuiPanelnfo& target, const wxAuiPanelnfo& new_pos)

ProcessDockResult() is a protected member of the wxAUI layout manager. It can be
overridden by derived classes to provide custom docking calculations.

wxAuiManager::SavePanelnfo

wxString SavePanelnfo (wxAuiPanelnfo& pane)

SavePanelnfo() is similar to SavePerspective, with the exception that it only saves
information about a single pane. It is used in combination with LoadPanelnfo().

wxAuiManager::SavePerspective

wxString SavePerspective ()

Saves the entire user interface layout into an encoded wxString, which can then be stored
by the application (probably using wxConfig). When a perspective is restored using
LoadPerspective(), the entire user interface will return to the state it was when the
perspective was saved.

wxAuiManager::SetArtProvider

void SetArtProvider (wxAuiDockArt* art_provider)

Instructs wxAuiManager to use art provider specified by parameterart_provider for all

103



CHAPTER 7

drawing calls. This allows plugable look-and-feel features. The previous art provider object,
if any, will be deleted by wxAuiManager.

See also: wxAuiDockArt (p. 93).

wxAuiManager::SetDockSizeConstraint

void SetDockSizeConstraint (double widthpct, double heightpct)

When a user creates a new dock by dragging a window into a docked position, often times
the large size of the window will create a dock that is unwieldly large. wxAuiManager by
default limits the size of any new dock to 1/3 of the window size. For horizontal docks, this
would be 1/3 of the window height. For vertical docks, 1/3 of the width. Calling this
function will adjust this constraint value. The numbers must be between 0.0 and 1.0. For
instance, calling SetDockSizeContraint with 0.5, 0.5 will cause new docks to be limited to
half of the size of the entire managed window.

wxAuiManager::SetFlags

void SetFlags (unsigned int flags)

This method is used to specify wxAuiManager's settings flags. flagsspecifies options
which allow the frame management behavior to be modified.

wxAuiManager::SetManagedWindow

void SetManagedWindow (wxWindow* managed_wnd)

Called to specify the frame or window which is to be managed by wxAuiManager. Frame
management is not restricted to just frames. Child windows or custom controls are also
allowed.

wxAuiManager::ShowHint

void ShowHint (const wxRect& rect)

This function is used by controls to explicitly show a hint window at the specified rectangle.
It is rarely called, and is mostly used by controls implementing custom pane drag/drop
behaviour. The specified rectangle should be in screen coordinates.

wxAuiManager::Unlnit

void Unlnit ()

Uninitializes the framework and should be called before a managed frame or window is
destroyed. Unlinit() is usually called in the managed wxFrame's destructor. It is necessary
to call this function before the managed frame or window is destroyed, otherwise the
manager cannot remove its custom event handlers from a window.

wxAuiManager::Update

104



CHAPTER 7

void Update ()

This method is called after any number of changes are made to any of the managed panes.
Update() must be invoked after AddPane() or InsertPane() are called in order to "realize"
or "commit" the changes. In addition, any nhumber of changes may be made to
wxAuiPanelnfo structures (retrieved with wxAuiManager::GetPane), but to realize the
changes, Update() must be called. This construction allows pane flicker to be avoided by
updating the whole layout at one time.

wxAuiNotebook

wxAuiNotebook is part of the wxAUI class framework. See also wxAUI overview (p. 2194).

wxAuiNotebook is a notebook control which implements many features common in
applications with dockable panes. Specifically, wxAuiNotebook implements functionality
which allows the user to rearrange tab order via drag-and-drop, split the tab window into
many different splitter configurations, and toggle through different themes to customize
the control's look and feel.

An effort has been made to try to maintain an APl as similar to that of wxNotebook.

The default theme that is used is wxAuiDefaultTabArt, which provides a modern, glossy
look and feel. The theme can be changed by calling wxAuiNotebook::SetArtProvider (p.
108).

Derived from
wxControl (p. 285)
Include files
<wx/aui/auibook.h>
Window styles

WXAUI_NB_DEFAULT_STYLE Defined as wxAUI_NB_TOP |
wxAUI_NB_TAB_SPLIT | wxAUI_NB_TAB_MOVE |
WXAUI_NB_SCROLL_BUTTONS |
wxAUI_NB_CLOSE_ON_ACTIVE_TAB.

WxAUI_NB_TAB_SPLIT Allows the tab control to be split by dragging a tab.
wxAUI_NB_TAB_MOVE Allows a tab to be moved horizontally by dragging.

wxAUI_NB_TAB_EXTERNAL_ MOVE Allows a tab to be moved to another tab
control.

WxAUI_NB_TAB_FIXED_WIDTH  With this style, all tabs have the same width.

WxAUI_NB_SCROLL BUTTONS  With this style, left and right scroll buttons are
displayed.

wxAUI_NB_WINDOWLIST BUTTON With this style, a drop-down list of windows is

105



CHAPTER 7

available.
wxAUI_NB_CLOSE_BUTTON With this style, a close button is available on the tab
bar.

wxAUI_NB_CLOSE_ON_ACTIVE_TAB With this style, the close button is visible on
the active tab.

wxAUI_NB_CLOSE_ON_ALL TABS With this style, the close button is visible on
all tabs.

wxAUI_NB_TOP With this style, tabs are drawn along the top of the notebook.

wxAUI_NB _BOTTOM With this style, tabs are drawn along the bottom of the
notebook.

Data structures

wxAuiNotebook::wxAuiNotebook

wxAuiNotebook ()

wxAuiNotebook (wxWindow* parent, wxWindowID id =wxID_ANY, const wxPoint&
pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxAUI_NB_DEFAULT_STYLE)

Constructor. Creates a wxAuiNotebok control.

wxAuiNotebook::AddPage

bool AddPage (wxWindow* page, const wxString& caption, bool select = false, const
wxBitmap& bitmap = wxNullBitmap)

Adds a page. If the select parameter is true, calling this will generate a page change
event.

wxAuiNotebook::AdvanceSelection

void AdvanceSelection (bool forward = true)

Sets the selection to the next or previous page.

wxAuiNotebook::Create

bool Create (wxWindow* parent, wxWindowID id =wxID_ANY, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style = 0)

Creates the notebook window.

wxAuiNotebook::DeletePage

106



CHAPTER 7

bool DeletePage (size_t page)
Deletes a page at the given index. Calling this method will generate a page change event.

wxAuiNotebook::GetArtProvider

WxAUuiTabArt* GetArtProvider () const

Returns the associated art provider.

wxAuiNotebook::GetHeightForPageHeight
int GetHeightForPageHeight (int pageHeight)

Returns the desired height of the notebook for the given page height. Use this to fit the
notebook to a given page size.

wxAuiNotebook::GetPage

wxWindow* GetPage (size_t page_idx) const
Returns the page specified by the given index.
wxAuiNotebook::GetPageBitmap

wxBitmap GetPageBitmap (size_t page) const
Returns the tab bitmap for the page.
wxAuiNotebook::GetPageCount

size_t GetPageCount () const

Returns the number of pages in the notebook.

wxAuiNotebook::GetPagelndex

int GetPagelndex (wxWindow* page_wnd) const

Returns the page index for the specified window. If the window is not found in the
notebook, wxNOT_FOUND is returned.

wxAuiNotebook::GetPageText

wxString GetPageText (size_t page) const

Returns the tab label for the page.

wxAuiNotebook::GetSelection

107



CHAPTER 7

int GetSelection () const

Returns the currently selected page.

wxAuiNotebook::GetTabCtrIHeight

int GetTabCtrIHeight () const

Returns the height of the tab control.

wxAuiNotebook::InsertPage

bool InsertPage (size_t page_idx, wxWindow* page, const wxString& caption, bool
select = false, const wxBitmap& bitmap = wxNullBitmap)

InsertPage() is similar to AddPage, but allows the ability to specify the insert location. If the
select parameter is true, calling this will generate a page change event.

wxAuiNotebook::RemovePage

bool RemovePage (size t page)

Removes a page, without deleting the window pointer.
wxAuiNotebook::SetArtProvider

void SetArtProvider (wxAuiTabArt* art)

Sets the art provider to be used by the notebook.

wxAuiNotebook::SetFont

bool SetFont (const wxFont& font)

Sets the font for drawing the tab labels, using a bold version of the font for selected tab
labels.

wxAuiNotebook::SetNormalFont

void SetNormalFont (const wxFont& font)
Sets the font for drawing unselected tab labels.
wxAuiNotebook::SetSelectedFont

void SetSelectedFont (const wxFont& font)

Sets the font for drawing selected tab labels.

wxAuiNotebook::SetMeasuringFont

108



CHAPTER 7

void SetMeasuringFont (const wxFont& font)

Sets the font for measuring tab labels.

wxAuiNotebook::SetPageBitmap

bool SetPageBitmap (size_t page, const wxBitmap& bitmap)

Sets the bitmap for the page. To remove a bitmap from the tab caption, pass
wxNullBitmap.

wxAuiNotebook::SetPageText

bool SetPageText (size_t page, const wxString& text)

Sets the tab label for the page.

wxAuiNotebook::SetSelection

size_t SetSelection (size_t new_page)

Sets the page selection. Calling this method will generate a page change event.

wxAuiNotebook::SetTabCtrIHeight

void SetTabCtrlHeight (int height)

Sets the tab height. By default, the tab control height is calculated by measuring the text
height and bitmap sizes on the tab captions. Calling this method will override that
calculation and set the tab control to the specified height parameter. A call to this method
will override any call to SetUniformBitmapSize(). Specifying -1 as the height will return the
control to its default auto-sizing behaviour.

wxAuiNotebook::SetUniformBitmapSize

void SetUniformBitmapSize (constwxSize& size)

SetUniformBitmapSize() ensures that all tabs will have the same height, even if some tabs
don't have bitmaps. Passing wxDefaultSize to this function will instruct the control to use
dynamic tab height, which is the default behaviour. Under the default behaviour, when a
tab with a large bitmap is added, the tab control's height will automatically increase to
accommodate the larger bitmap.

void Spilit (size_t page, int direction)

Split performs a split operation programmatically. The argument page indicates the page
that will be split off. This page will also become the active page after the split. The
direction argument specifies where the pane should go, it should be one of the following:
wxTOP, wxBOTTOM, wxLEFT, or wxRIGHT.

wxAuiNotebook::ShowWindowMenu

109



CHAPTER 7

bool ShowWindowMenu ()

Shows the window menu for the active tab control associated with this notebook, and
returns true if a selection was made.

wxAuiPanelnfo

wxAuiPanelnfo is part of the wxAUI class framework. See also wxAUI overview (p. 2194).

wxAuiPanelnfo specifies all the parameters for a pane. These parameters specify where
the pane is on the screen, whether it is docked or floating, or hidden. In addition, these
parameters specify the pane's docked position, floating position, preferred size, minimum
size, caption text among many other parameters.

Derived from

No base class

Include files

<wx/aui/aui.h>

See also

wxAuiManager (p. 99), wxAuiDockArt (p. 93)
Data structures

enum wxAuiPanelnsertLevel

{
WXAUI_INSERT_PANE =0,

WXAUI_INSERT_ROW = 1,
WXAUI_INSERT_DOCK = 2

}

wxAuiPanelnfo::wxAuiPanelnfo

wxAuiPanelnfo ()
Default constructor.
wxAuiPanelnfo (const wxAuiPanelnfo& c)

Copy constructor.

wxAuiPanelnfo::~wxAuiPanelnfo

~wxAuiPanelnfo ()

wxAuiPanelnfo::BestSize

110



CHAPTER 7

wxAuiPanelnfo& BestSize (const wxSize& size)
wxAuiPanelnfo& BestSize (int x, int y)

BestSize() sets the ideal size for the pane. The docking manager will attempt to use this
size as much as possible when docking or floating the pane.

wxAuiPanelnfo::Bottom

wxAuiPanelnfo& Bottom ()

Bottom() sets the pane dock position to the bottom side of the frame. This is the same
thing as calling Direction(wxAUl_DOCK_BOTTOM).

wxAuiPanelnfo::BottomDockable

wxAuiPanelnfo& BottomDockable (bool b = true)

BottomDockable() indicates whether a pane can be docked at the bottom of the frame.

wxAuiPanelnfo::Caption

wxAuiPanelnfo& Caption (const wxString& c)

Caption() sets the caption of the pane.

wxAuiPanelnfo::CaptionVisible

wxAuiPanelnfo& CaptionVisible (bool visible = true)

CaptionVisible indicates that a pane caption should be visible. If false, no pane caption is
drawn.

wxAuiPanelnfo::Centre

wxAuiPanelnfo& Centre ()
wxAuiPanelnfo& Center ()

Center() sets the pane dock position to the left side of the frame. The centre pane is the
space in the middle after all border panes (left, top, right, bottom) are subtracted from the
layout.

This is the same thing as calling Direction(wxAUl_DOCK_CENTRE).
wxAuiPanelnfo::CentrePane

wxAuiPanelnfo& CentrePane ()

wxAuiPanelnfo& CenterPane ()

111



CHAPTER 7

CentrePane() specifies that the pane should adopt the default center pane settings.
Centre panes usually do not have caption bars. This function provides an easy way of
preparing a pane to be displayed in the center dock position.

wxAuiPanelnfo::CloseButton

wxAuiPanelnfo& CloseButton (bool visible = true)

CloseButton() indicates that a close button should be drawn for the pane.

wxAuiPanelnfo::DefaultPane

wxAuiPanelnfo& DefaultPane ()

DefaultPane() specifies that the pane should adopt the default pane settings.

wxAuiPanelnfo::DestroyOnClose

wxAuiPanelnfo& DestroyOnClose (bool b = true)

DestroyOnClose() indicates whether a pane should be detroyed when it is closed.
Normally a pane is simply hidden when the close button is clicked. Setting
DestroyOnClose to true will cause the window to be destroyed when the user clicks the
pane's close button.

wxAuiPanelnfo::Direction

wxAuiPanelnfo& Direction (int direction)

Direction() determines the direction of the docked pane. It is functionally the same as
calling Left(), Right(), Top() or Bottom(), except that docking direction may be specified
programmatically via the parameter.

wxAuiPanelnfo::Dock

wxAuiPanelnfo& Dock ()

wxAuiPanelnfo::Dockable

wxAuiPanelnfo& Dockable (bool b = true)

Dockable() specifies whether a frame can be docked or not. It is the same as specifying
TopDockable(b).BottomDockable(b).LeftDockable(b).RightDockable(b).

wxAuiPanelnfo::Fixed

wxAuiPanelnfo& Fixed ()

Fixed() forces a pane to be fixed size so that it cannot be resized. After calling Fixed(),
IsFixed() will return true.

112



CHAPTER 7

wxAuiPanelnfo::Float

wxAuiPanelnfo& Float()

Float() indicates that a pane should be floated.

wxAuiPanelnfo::Floatable

wxAuiPanelnfo& Floatable (bool b = true)

Floatable() sets whether the user will be able to undock a pane and turn it into a floating
window.

wxAuiPanelnfo::FloatingPosition

wxAuiPanelnfo& FloatingPosition (const wxPoint& pos)
wxAuiPanelnfo& FloatingPosition (int x, int y)

FloatingPosition() sets the position of the floating pane.

wxAuiPanelnfo::FloatingSize

wxAuiPanelnfo& FloatingSize (const wxSize& size)
wxAuiPanelnfo& FloatingSize (int X, int y)

FloatingSize() sets the size of the floating pane.

wxAuiPanelnfo::Gripper

wxAuiPanelnfo& Gripper (bool visible = true)

Gripper() indicates that a gripper should be drawn for the pane.

wxAuiPanelnfo::GripperTop

wxAuiPanelnfo& GripperTop (bool attop = true)

GripperTop() indicates that a gripper should be drawn at the top of the pane.

wxAuiPanelnfo::HasBorder

bool HasBorder () const

HasBorder() returns true if the pane displays a border.

wxAuiPanelnfo::HasCaption

bool HasCaption () const

113



CHAPTER 7

HasCaption() returns true if the pane displays a caption.

wxAuiPanelnfo::HasCloseButton

bool HasCloseButton () const

HasCloseButton() returns true if the pane displays a button to close the pane.

wxAuiPanelnfo::HasFlag

bool HasFlag (unsigned int flag) const

HasFlag() returns true if the the property specified by flag is active for the pane.

wxAuiPanelnfo::HasGripper

bool HasGripper () const

HasGripper() returns true if the pane displays a gripper.

wxAuiPanelnfo::HasGripperTop

bool HasGripperTop () const

HasGripper() returns true if the pane displays a gripper at the top.
wxAuiPanelnfo::HasMaximizeButton

bool HasMaximizeButton () const

HasMaximizeButton() returns true if the pane displays a button to maximize the pane.
wxAuiPanelnfo::HasMinimizeButton

bool HasMinimizeButton () const

HasMinimizeButton() returns true if the pane displays a button to minimize the pane.
wxAuiPanelnfo::HasPinButton

bool HasPinButton () const

HasPinButton() returns true if the pane displays a button to float the pane.
wxAuiPanelnfo::Hide

wxAuiPanelnfo& Hide()

Hide() indicates that a pane should be hidden.

114



CHAPTER 7

wxAuiPanelnfo::IsBottomDockable

bool IsBottomDockable () const

IsBottomDockable() returns true if the pane can be docked at the bottom of the managed
frame.

wxAuiPanelnfo::IsDocked

bool IsDocked () const

IsDocked() returns true if the pane is docked.

wxAuiPanelnfo::IsFixed

bool IsFixed () const

IsFixed() returns true if the pane cannot be resized.

wxAuiPanelnfo::IsFloatable

bool IsFloatable () const

IsFloatable() returns true if the pane can be undocked and displayed as a floating window.

wxAuiPanelnfo::IsFloating

bool IsFloating () const

IsFloating() returns true if the pane is floating.

wxAuiPanelnfo::IsLeftDockable

bool IsLeftDockable () const

IsLeftDockable() returns true if the pane can be docked on the left of the managed frame.

wxAuiPanelnfo::IsMovable

bool IsMovable () const

IsMoveable() returns true if the docked frame can be undocked or moved to another dock
position.

wxAuiPanelnfo::IsOk

bool I1sOk() const

IsOk() returns true if the wxAuiPanelnfo structure is valid. A pane structure is valid if it has
an associated window.

115



CHAPTER 7

wxAuiPanelnfo::IsResizable

bool IsResizable () const

IsResizable() returns true if the pane can be resized.

wxAuiPanelnfo::IsRightDockable

bool IsRightDockable () const

IsRightDockable() returns true if the pane can be docked on the right of the managed
frame.

wxAuiPanelnfo::IsShown

bool IsShown () const

IsShown() returns true if the pane is currently shown.

wxAuiPanelnfo::IsToolbar

bool IsToolbar () const

IsToolbar() returns true if the pane contains a toolbar.

wxAuiPanelnfo::IsTopDockable

bool IsTopDockable () const

IsTopDockable() returns true if the pane can be docked at the top of the managed frame.

wxAuiPanelnfo::Layer

wxAuiPanelnfo& Layer (int layer)
Layer() determines the layer of the docked pane. The dock layer is similar to an onion, the

inner-most layer being layer 0. Each shell moving in the outward direction has a higher
layer number. This allows for more complex docking layout formation.

wxAuiPanelnfo::Left

wxAuiPanelnfo& Left()

Left() sets the pane dock position to the left side of the frame. This is the same thing as
calling Direction(wxAUI_DOCK_LEFT).

wxAuiPanelnfo::LeftDockable

wxAuiPanelnfo& LeftDockable (bool b = true)

116



CHAPTER 7

LeftDockable() indicates whether a pane can be docked on the left of the frame.

wxAuiPanelnfo::MaxSize

wxAuiPanelnfo& MaxSize (const wxSize& size)
wxAuiPanelnfo& MaxSize(int X, int y)

MaxSize() sets the maximum size of the pane.

wxAuiPanelnfo::MaximizeButton

wxAuiPanelnfo& MaximizeButton (bool visible = true)

MaximizeButton() indicates that a maximize button should be drawn for the pane.

wxAuiPanelnfo::MinSize

wxAuiPanelnfo& MinSize (const wxSize& size)
wxAuiPanelnfo& MinSize (int x, int y)

MinSize() sets the minimum size of the pane. Please note that this is only partially
supported as of this writing.

wxAuiPanelnfo::MinimizeButton

wxAuiPanelnfo& MinimizeButton (bool visible = true)

MinimizeButton() indicates that a minimize button should be drawn for the pane.

wxAuiPanelnfo::Movable

wxAuiPanelnfo& Movable (bool b = true)

Movable indicates whether a frame can be moved.

wxAuiPanelnfo::Name

wxAuiPanelnfo& Name(const wxString& n)

Name() sets the name of the pane so it can be referenced in lookup functions. If a name is
not specified by the user, a random name is assigned to the pane when it is added to the
manager.

wxAuiPanelnfo::PaneBorder

wxAuiPanelnfo& PaneBorder (bool visible = true)

PaneBorder indicates that a border should be drawn for the pane.

117



CHAPTER 7

wxAuiPanelnfo::PinButton

wxAuiPanelnfo& PinButton (bool visible = true)

PinButton() indicates that a pin button should be drawn for the pane.

wxAuiPanelnfo::Position

wxAuiPanelnfo& Position (int pos)

Position() determines the position of the docked pane.

wxAuiPanelnfo::Resizable

wxAuiPanelnfo& Resizable (bool resizable = true)

Resizable() allows a pane to be resized if the parameter is true, and forces it to be a fixed
size if the parameter is false. This is simply an antonym for Fixed().

wxAuiPanelnfo::Right

wxAuiPanelnfo& Right ()

Right() sets the pane dock position to the right side of the frame.

wxAuiPanelnfo::RightDockable

wxAuiPanelnfo& RightDockable (bool b = true)

RightDockable() indicates whether a pane can be docked on the right of the frame.
wxAuiPanelnfo::Row

wxAuiPanelnfo& Row (int row)

Row() determines the row of the docked pane.

wxAuiPanelnfo::SafeSet

void SafeSet(wxAuiPanelnfo source)

Write the safe parts of a newly loaded Panelnfo structure "source" into "this" used on
loading perspectives etc.

wxAuiPanelnfo::SetFlag

wxAuiPanelnfo& SetFlag (unsigned int flag, bool option_state)

SetFlag() turns the property given by flag on or off with the option_state parameter.

118



CHAPTER 7

wxAuiPanelnfo::Show

wxAuiPanelnfo& Show (bool show = true)

Show() indicates that a pane should be shown.

wxAuiPanelnfo::ToolbarPane

wxAuiPanelnfo& ToolbarPane ()

ToolbarPane() specifies that the pane should adopt the default toolbar pane settings.

wxAuiPanelnfo::Top

wxAuiPanelnfo& Top()

Top() sets the pane dock position to the top of the frame.

wxAuiPanelnfo::TopDockable

wxAuiPanelnfo& TopDockable (bool b = true)

TopDockable() indicates whether a pane can be docked at the top of the frame.

wxAuiPanelnfo::Window

wxAuiPanelnfo& Window (wxWindow* w)

Window() assigns the window pointer that the wxAuiPanelnfo should use. This normally
does not need to be specified, as the window pointer is automatically assigned to the
wxAuiPanelnfo structure as soon as it is added to the manager.

wxAuiPanelnfo::operator=

wxAuiPanelnfo& operator operator= (const wxAuiPanelnfo& c)

Makes a copy of the wxAuiPanelnfo object.

wxAutomationObject

The wxAutomationObject class represents an OLE automation object containing a
single data member, an IDispatch pointer. It contains a number of functions that make it
easy to perform automation operations, and set and get properties. The class makes
heavy use of the wxVariant (p. 1767) class.

The usage of these classes is quite close to OLE automation usage in Visual Basic. The
APl is high-level, and the application can specify multiple properties in a single string. The
following example gets the current Excel instance, and if it exists, makes the active cell
bold.

119



CHAPTER 7

wxAutomationObject excelObject;
if (excelObject.Getlnstance("Excel.Application"))
excelObject.PutProperty("ActiveCell.Font.Bold " true);

Note that this class obviously works under Windows only.
Derived from

wxObiject (p. 1147)

Include files

<wx/msw/ole/automtn.h>

See also

wxVariant (p. 1767)

wxAutomationObject::wxAutomationObject
wxAutomationObject (WXIDISPATCH* dispatchPtr = NULL)

Constructor, taking an optional IDispatch pointer which will be released when the object is
deleted.

wxAutomationObject::~wxAutomationObject

~wxAutomationObject ()

Destructor. If the internal IDispatch pointer is non-null, it will be released.

wxAutomationObject::CallMethod

wxVariant CallMethod (const wxString& method, int noArgs, wxVariant args|]) const
wxVariant CallMethod (const wxString& method, ...) const

Calls an automation method for this object. The first form takes a method name, number of
arguments, and an array of variants. The second form takes a method name and zero to
six constant references to variants. Since the variant class has constructors for the basic
data types, and C++ provides temporary objects automatically, both of the following lines
are syntactically valid:

wxVariant res = obj.CallMethod("Sum", wxVariant(1 2),
wxVariant(3.4));
wxVariant res = obj.CallMethod("Sum", 1.2, 3.4);

120



CHAPTER 7

Note that method can contain dot-separated property names, to save the application
needing to call GetProperty several times using several temporary objects. For example:

object.CallMethod("ActiveCell.Font.ShowDialog", " My caption");

wxAutomationObject::Createlnstance

bool Createlnstance (const wxString& classld) const

Creates a new object based on the class id, returning true if the object was successfully
created, or false if not.

wxAutomationObject::GetDispatchPtr

IDispatch* GetDispatchPtr () const

Gets the IDispatch pointer.

wxAutomationObject::Getinstance

bool Getinstance (const wxString& classld) const

Retrieves the current object associated with a class id, and attaches the IDispatch pointer
to this object. Returns true if a pointer was successfully retrieved, false otherwise.

Note that this cannot cope with two instances of a given OLE object being active
simultaneously, such as two copies of Excel running. Which object is referenced cannot
currently be specified.

wxAutomationObject::GetObject

bool GetObject (wxAutomationObject& obj const wxString& property, int noArgs = 0,
wxVariant args[] = NULL) const

Retrieves a property from this object, assumed to be a dispatch pointer, and initialises obj
with it. To avoid having to deal with IDispatch pointers directly, use this function in
preference to wxAutomationObject::GetProperty (p. 121) when retrieving objects from
other objects.

Note that an IDispatch pointer is stored as a void* pointer in wxVariant objects.
See also

wxAutomationObject::GetProperty (p. 121)

wxAutomationObject::GetProperty

wxVariant GetProperty (const wxString& property, int noArgs, wxVariant args[]) const

121



CHAPTER 7

wxVariant GetProperty (const wxString& property, ...) const

Gets a property value from this object. The first form takes a property name, number of
arguments, and an array of variants. The second form takes a property name and zero to
six constant references to variants. Since the variant class has constructors for the basic
data types, and C++ provides temporary objects automatically, both of the following lines
are syntactically valid:

wxVariant res = obj.GetProperty("Range", wxVarian t("AL1");
wxVariant res = obj.GetProperty("Range", "A1");

Note that property can contain dot-separated property names, to save the application
needing to call GetProperty several times using several temporary objects.

wxAutomationObject::Invoke

bool Invoke (const wxString& member, int action, wxVariant& retValue, int noArgs,
wxVariant args[], const wxVariant* ptrArgs[] = 0) const

This function is a low-level implementation that allows access to the IDispatch Invoke
function. It is not meant to be called directly by the application, but is used by other
convenience functions.

Parameters
member

The member function or property name.
action

Bitlist: may contain DISPATCH_PROPERTYPUT,
DISPATCH_PROPERTYPUTREF, DISPATCH_METHOD.

retValue

Return value (ignored if there is no return value)

noArgs
Number of arguments in args or ptrArgs.
args
If non-null, contains an array of variants.
ptrArgs
If non-null, contains an array of constant pointers to variants.

Return value

122



CHAPTER 7

true if the operation was successful, false otherwise.
Remarks

Two types of argument array are provided, so that when possible pointers are used for
efficiency.

wxAutomationObject::PutProperty

bool PutProperty (const wxString& property, int noArgs, wxVariant args[]) const
bool PutProperty (const wxString& property, ...)

Puts a property value into this object. The first form takes a property name, number of
arguments, and an array of variants. The second form takes a property name and zero to
six constant references to variants. Since the variant class has constructors for the basic
data types, and C++ provides temporary objects automatically, both of the following lines
are syntactically valid:

obj.PutProperty("Value", wxVariant(23));
obj.PutProperty("Value", 23);

Note that property can contain dot-separated property names, to save the application
needing to call GetProperty several times using several temporary objects.

wxAutomationObject::SetDispatchPtr

void SetDispatchPtr (WXIDISPATCH?* dispatchPtr)

Sets the IDispatch pointer. This function does not check if there is already an IDispatch
pointer.

You may need to cast from IDispatch* to WXIDISPATCH* when calling this function.

wxBitmap

This class encapsulates the concept of a platform-dependent bitmap, either monochrome
or colour or colour with alpha channel support.

Derived from

wxGDIObject (p. 708)
wxObiject (p. 1147)

Include files
<wx/bitmap.h>

Predefined objects

123



CHAPTER 7

Objects:
wxNullBitmap
See also

wxBitmap overview (p. 2114),supported bitmap file formats (p. 2115),wxDC::Blit (p.
457),wxlcon (p. 894), wxCursor (p. 297), wxBitmap (p. 123),wxMemoryDC (p. 1068)

wxBitmap::wxBitmap

wxBitmap ()

Default constructor.

wxBitmap (const wxBitmap& bitmap)

Copy constructor, uses reference counting (p. 2043). To make a real copy, you can use:
wxBitmap newBitmap = oldBitmap.GetSubBitmap(

wxRect(0, 0, oldBitmap .GetWidth(),
oldBitmap.GetHeight()));

wxBitmap (const void* data, int type, int width, int height, int depth =-1)
Creates a bitmap from the given data which is interpreted in platform-dependent manner.

wxBitmap (const char bits[], int width, int height
int depth = 1)

Creates a bitmap from an array of bits.

You should only use this function for monochrome bitmaps (depth 1) in portable programs:
in this case the bits parameter should contain an XBM image.

For other bit depths, the behaviour is platform dependent: under Windows, the data is
passed without any changes to the underlying CreateBitmap() API. Under other
platforms, only monochrome bitmaps may be created using this constructor and wximage
(p. 905) should be used for creating colour bitmaps from static data.

wxBitmap (int width, int height, int depth =-1)

Creates a new bitmap. A depth of -1 indicates the depth of the current screen or visual.
Some platforms only support 1 for monochrome and -1 for the current colour setting.
Beginning with version 2.5.4 of wxWidgets a depth of 32 including an alpha channel is
supported under MSW, Mac and GTK+.

wxBitmap (const char* const* bits)
Creates a bitmap from XPM data.

wxBitmap (const wxString& name, long type)

124



CHAPTER 7

Loads a bitmap from a file or resource.
wxBitmap (const wxlmage& img, int depth =-1)

Creates bitmap object from the image. This has to be done to actually display an image as
you cannot draw an image directly on a window. The resulting bitmap will use the provided
colour depth (or that of the current system if depth is -1) which entails that a colour
reduction has to take place.

When in 8-bit mode (PseudoColour mode), the GTK port will use a color cube created on
program start-up to look up colors. This ensures a very fast conversion, but the image
guality won't be perfect (and could be better for photo images using more sophisticated
dithering algorithms).

On Windows, if there is a palette present (set with SetPalette), it will be used when
creating the wxBitmap (most useful in 8-bit display mode). On other platforms, the palette
is currently ignored.

Parameters
bits

Specifies an array of pixel values.
width

Specifies the width of the bitmap.
height

Specifies the height of the bitmap.
depth

Specifies the depth of the bitmap. If this is omitted, the display depth of the screen is
used.

name

This can refer to a resource name under MS Windows, or a filename under MS
Windows and X. Its meaning is determined by the type parameter.

type
May be one of the following:
WXBITMAP_TYPE_BMP Load a Windows bitmap file.

WXBITMAP_TYPE_BMP_RESOURCELoad a Windows bitmap resource from the
executable. Windows only.

WXBITMAP_TYPE_PICT_RESOURCE Load a PICT image resource from
the executable. Mac OS only.

WXBITMAP_TYPE_GIF Load a GIF bitmap file.

125



CHAPTER 7

WXBITMAP_TYPE_XBM Load an X bitmap file.
WXBITMAP_TYPE_XPM Load an XPM bitmap file.

The validity of these flags depends on the platform and wxWidgets configuration. If
all possible wxWidgets settings are used, the Windows platform supports BMP file,
BMP resource, XPM data, and XPM. Under wxGTK, the available formats are BMP
file, XPM data, XPM file, and PNG file. Under wxMotif, the available formats are
XBM data, XBM file, XPM data, XPM file.

In addition, wxBitmap can read all formats that wxlmage (p. 905) can, which
currently include wxBITMAP_TYPE_JPEG, wxBITMAP_TYPE_TIF,
WXBITMAP_TYPE_PNG, wxBITMAP_TYPE_GIF, wxBITMAP_TYPE_PCX, and
WXBITMAP_TYPE_PNM. Of course, you must have wxlmage handlers loaded.

img
Platform-independent wximage object.
Remarks

The first form constructs a bitmap object with no data; an assignment or another member
function such as Create or LoadFile must be called subsequently.

The second and third forms provide copy constructors. Note that these do not copy the
bitmap data, but instead a pointer to the data, keeping a reference count. They are
therefore very efficient operations.

The fourth form constructs a bitmap from data whose type and value depends on the value
of the type argument.

The fifth form constructs a (usually monochrome) bitmap from an array of pixel values,
under both X and Windows.

The sixth form constructs a new bitmap.

The seventh form constructs a bitmap from pixmap (XPM) data, if wxWidgets has been
configured to incorporate this feature.

To use this constructor, you must first include an XPM file. For example, assuming that the
file mybitmap.xpm contains an XPM array of character pointers called mybitmap:

#include "mybitmap.xpm"

wxBitmap *bitmap = new wxBitmap(mybitmap);

The eighth form constructs a bitmap from a file or resource. name can refer to a resource
name under MS Windows, or a filename under MS Windows and X.

Under Windows, type defaults to wxBITMAP_TYPE_BMP_RESOURCE. Under X, type
defaults to wxBITMAP_TYPE_XPM.

See also

126



CHAPTER 7

wxBitmap::LoadFile (p. 131)

wxPython note: Constructors supported by wxPython are:

wxBitmap(name, flag) Loads a bitmap from a file

wWxEmptyBitmap(width, height, depth = -1) Creates an empty bitmap with

the given specifications

wxBitmapFromXPMData(listOfStrings) Create a bitmap from a
Python list of strings whose contents are XPM
data.

wxBitmapFromBits(bits, width, height, depth=-1) Create a bitmap from
an array of bits contained in a string.

wxBitmapFromimage(image, depth=-1) Convert a wximage to a
wxBitmap.

wxPerl note: Constructors supported by wxPerl are:

::Bitmap->new( width, height, depth = -1)
::Bitmap->new( name, type )

::Bitmap->new( icon )

::Bitmap->newFromBits( bits, width, height, depth=1)

::Bitmap->newFromXPM( data )

wxBitmap::~wxBitmap

~wxBitmap ()

Destructor. See reference-counted object destruction (p. 2043) for more info.

If the application omits to delete the bitmap explicitly, the bitmap will be destroyed
automatically by wxWidgets when the application exits.

Do not delete a bitmap that is selected into a memory device context.

wxBitmap::AddHandler

static void AddHandler (wxBitmapHandler* handler)

Adds a handler to the end of the static list of format handlers.

handler

A new bitmap format handler object. There is usually only one instance of a given

handler class in an application session.

127



CHAPTER 7

See also

wxBitmapHandler (p. 146)

wxBitmap::CleanUpHandlers

static void CleanUpHandlers ()
Deletes all bitmap handlers.

This function is called by wxWidgets on exit.

wxBitmap::ConvertTolmage

wximage ConvertTolmage ()

Creates an image from a platform-dependent bitmap. This preserves mask information so
that bitmaps and images can be converted back and forth without loss in that respect.

wxBitmap::CopyFromlicon

bool CopyFromlcon (const wxlcon& icon)

Creates the bitmap from an icon.

wxBitmap::Create

virtual bool Create (int width, int height, int depth = -1)

Creates a fresh bitmap. If the final argument is omitted, the display depth of the screen is
used.

virtual bool Create(const void* data, int type, int width, int height, int depth = -1)
Creates a bitmap from the given data, which can be of arbitrary type.
Parameters
width
The width of the bitmap in pixels.
height
The height of the bitmap in pixels.
depth
The depth of the bitmap in pixels. If this is -1, the screen depth is used.
data

Data whose type depends on the value of type.

128



CHAPTER 7

type

A bitmap type identifier - see wxBitmap::wxBitmap (p. 124) for a list of possible
values.

Return value
true if the call succeeded, false otherwise.
Remarks

The first form works on all platforms. The portability of the second form depends on the
type of data.

See also

wxBitmap::wxBitmap (p. 124)

wxBitmap::FindHandler

static wxBitmapHandler* FindHandler (const wxString& name)
Finds the handler with the given name.

static wxBitmapHandler* FindHandler (const wxString& extension, wxBitmapType
bitmapType)

Finds the handler associated with the given extension and type.
static wxBitmapHandler* FindHandler (wxBitmapType bitmapType)
Finds the handler associated with the given bitmap type.
name

The handler name.
extension

The file extension, such as "bmp".
bitmapType

The bitmap type, such as wxBITMAP_TYPE_BMP.
Return value
A pointer to the handler if found, NULL otherwise.
See also

wxBitmapHandler (p. 146)

wxBitmap::GetDepth

129



CHAPTER 7

int GetDepth () const

Gets the colour depth of the bitmap. A value of 1 indicates a monochrome bitmap.

wxBitmap::GetHandlers

static wxList& GetHandlers ()

Returns the static list of bitmap format handlers.
See also

wxBitmapHandler (p. 146)

wxBitmap::GetHeight
int GetHeight () const

Gets the height of the bitmap in pixels.

wxBitmap::GetPalette

wxPalette* GetPalette () const

Gets the associated palette (if any) which may have been loaded from a file or set for the
bitmap.

See also

wxPalette (p. 1166)

wxBitmap::GetMask

wxMask* GetMask () const

Gets the associated mask (if any) which may have been loaded from a file or set for the
bitmap.

See also

wxBitmap::SetMask (p. 134), wxMask (p. 1035)

wxBitmap::GetWidth

int GetWidth () const

Gets the width of the bitmap in pixels.
See also

wxBitmap::GetHeight (p. 130)

130



CHAPTER 7

wxBitmap::GetSubBitmap

wxBitmap GetSubBitmap (const wxRect& rect) const

Returns a sub bitmap of the current one as long as the rect belongs entirely to the bitmap.
This function preserves bit depth and mask information.

wxBitmap::InitStandardHandlers

static void InitStandardHandlers ()

Adds the standard bitmap format handlers, which, depending on wxWidgets configuration,
can be handlers for Windows bitmap, Windows bitmap resource, and XPM.

This function is called by wxWidgets on startup.
See also

wxBitmapHandler (p. 146)

wxBitmap::InsertHandler

static void InsertHandler (wxBitmapHandler* handler)
Adds a handler at the start of the static list of format handlers.
handler

A new bitmap format handler object. There is usually only one instance of a given
handler class in an application session.

See also

wxBitmapHandler (p. 146)

wxBitmap::LoadFile

bool LoadFile (const wxString& nhame, wxBitmapType type)
Loads a bitmap from a file or resource.

Parameters

name

Either a filename or a Windows resource name. The meaning of name is determined
by the type parameter.

type
One of the following values:

WXBITMAP_TYPE_BMP Load a Windows bitmap file.

131



CHAPTER 7

WXBITMAP_TYPE_BMP_RESOURCE Load a Windows bitmap resource
from the executable.

WXBITMAP_TYPE_PICT_RESOURCE Load a PICT image resource from
the executable. Mac OS only.

WXBITMAP_TYPE_GIF Load a GIF bitmap file.

WXBITMAP_TYPE_XBM Load an X bitmap file.

WXBITMAP_TYPE_XPM Load an XPM bitmap file.

The validity of these flags depends on the platform and wxWidgets configuration.

In addition, wxBitmap can read all formats that wxlmage (p. 905) can
(WxBITMAP_TYPE_JPEG, wxBITMAP_TYPE_PNG, wxBITMAP_TYPE_GIF,
WXBITMAP_TYPE_PCX, wxBITMAP_TYPE_PNM). (Of course you must have
wxIimage handlers loaded.)

Return value
true if the operation succeeded, false otherwise.
Remarks

A palette may be associated with the bitmap if one exists (especially for colour Windows
bitmaps), and if the code supports it. You can check if one has been created by using the
GetPalette (p. 130) member.

See also

wxBitmap::SaveFile (p. 133)

wxBitmap::IsOk
bool I1sOk() const

Returns true if bitmap data is present.

wxBitmap::RemoveHandler

static bool RemoveHandler (const wxString& name)
Finds the handler with the given name, and removes it. The handler is not deleted.
name
The handler name.
Return value
true if the handler was found and removed, false otherwise.

See also

132



CHAPTER 7

wxBitmapHandler (p. 146)

wxBitmap::SaveFile

bool SaveFile (const wxString& name, wxBitmapType type, wxPalette* palette =
NULL)

Saves a bitmap in the named file.
Parameters
name
A filename. The meaning of name is determined by the type parameter.
type
One of the following values:
WXBITMAP_TYPE_BMP Save a Windows bitmap file.
WXBITMAP_TYPE_GIF Save a GIF bitmap file.
WXBITMAP_TYPE_XBM Save an X bitmap file.
WXBITMAP_TYPE_XPM Save an XPM bitmap file.
The validity of these flags depends on the platform and wxWidgets configuration.

In addition, wxBitmap can save all formats that wximage (p. 905) can
(WxBITMAP_TYPE_JPEG, wxBITMAP_TYPE_PNG). (Of course you must have
wxIimage handlers loaded.)

palette
An optional palette used for saving the bitmap.
Return value
true if the operation succeeded, false otherwise.
Remarks
Depending on how wxWidgets has been configured, not all formats may be available.
See also

wxBitmap::LoadFile (p. 131)

wxBitmap::SetDepth
void SetDepth (int depth)

Sets the depth member (does not affect the bitmap data).

133



CHAPTER 7

Parameters
depth
Bitmap depth.

wxBitmap::SetHeight

void SetHeight (int height)

Sets the height member (does not affect the bitmap data).
Parameters

height

Bitmap height in pixels.

wxBitmap::SetMask

void SetMask (wxMask* mask)

Sets the mask for this bitmap.

Remarks

The bitmap object owns the mask once this has been called.
See also

wxBitmap::GetMask (p. 130), wxMask (p. 1035)

wxBitmap::SetPalette
void SetPalette (const wxPalette& palette)
Sets the associated palette. (Not implemented under GTK+).
Parameters
palette
The palette to set.
See also

wxPalette (p. 1166)

wxBitmap::SetWidth

void SetWidth (int width)

Sets the width member (does not affect the bitmap data).

134



CHAPTER 7

Parameters
width

Bitmap width in pixels.

wxBitmap::operator =
wxBitmap& operator = (const wxBitmap& bitmap)
Assignment operator, using reference counting (p. 2043).
Parameters
bitmap

Bitmap to assign.
Return value

Returns 'this' object.

wxBitmapComboBox

A combobox that displays bitmap in front of the list items. It currently only allows using
bitmaps of one size, and resizes itself so that a bitmap can be shown next to the text field.

Derived from

wxComboBox (p. 225)
wxControlWithltems (p. 286)
wxControl (p. 285)
wxWindow (p. 1794)
wxEvtHandler (p. 575)
wxObiject (p. 1147)

Remarks

While wxBitmapComboBox contains the wxComboBox (p. 225)API, but it might not
actually be derived from that class. In fact, if the platform does not have a native
implementation, wxBitmapComboBox will inherit from wxOwnerDrawnComboBox (p.
1151). You can determine if the implementation is generic by checking whether
WXGENERIC_BITMAPCOMBOBOX is defined.

Include files
<wx/bmpcbox.h>
Window styles

wxCB_READONLY Creates a combobox without a text editor. On some
platforms the control may appear very different when this
style is used.

135



CHAPTER 7

wxCB_SORT Sorts the entries in the list alphabetically.

WXTE_PROCESS_ENTER The control will generate the event
WXEVT_COMMAND_TEXT_ENTER (otherwise pressing
Enter key is either processed internally by the control or
used for navigation between dialog controls). Windows only.

See also window styles overview (p. 2086).
Event handling

EVT_COMBOBOX(id, func) Process a
WXEVT_COMMAND_COMBOBOX_SELECTE
D event, when an item on the list is selected.

EVT_TEXT(id, func) Process a
WXEVT_COMMAND_TEXT_UPDATED event,
when the combobox text changes.

EVT_TEXT_ENTER(id, func) Process a wxEVT_COMMAND_TEXT_ENTER
event, when <RETURN> is pressed in the
combobox.

See also

wxComboBox (p. 225), wxChoice (p. 186), wxOwnerDrawnComboBox (p. 1151),
wxCommandEvent (p. 250)

wxBitmapComboBox::wxBitmapComboBox

wxBitmapComboBox ()
Default constructor.

wxBitmapComboBox (wxWindow* parent, wxWindowID id, const wxString& value =
" const wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, int n
=0, const wxString choices[] = NULL, long style = 0, const wxValidator& validator =
wxDefaultValidator, const wxString& name = "comboBox")

wxBitmapComboBox (wxWindow* parent, wxWindowID id, const wxString& value,
const wxPoint& pos, const wxSize& size, const wxArrayString& choices, long style =
0, const wxValidator& validator = wxDefaultValidator, const wxString& name =
"comboBox")

Constructor, creating and showing a combobox.
Parameters
parent

Parent window. Must not be NULL.

136



CHAPTER 7

id
Window identifier. A value of -1 indicates a default value.
value
Initial selection string. An empty string indicates no selection.
pos
Window position.
size
Window size. If the default size (-1, -1) is specified then the window is sized
appropriately.
n
Number of strings with which to initialise the control.
choices

An array of strings with which to initialise the control.
style

Window style. See wxBitmapComboBox (p. 135).
validator

Window validator.
name

Window name.
See also

wxBitmapComboBox::Create (p. 137), wxValidator (p. 1765)

wxBitmapComboBox::~wxBitmapComboBox

~wxBitmapComboBox ()

Destructor, destroying the combobox.

wxBitmapComboBox::Create

bool Create (wxWindow* parent, wxWindowlID id, const wxString& value =", const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, int n, const
wxString choices|], long style = 0, const wxValidator& validator = wxDefaultValidator,
const wxString& name = "comboBox")

bool Create (wxWindow* parent, wxWindowlID id, const wxString& value, const

137



CHAPTER 7

wxPoint& pos, const wxSize& size, const wxArrayString& choices, long style =0,
const wxValidator& validator = wxDefaultValidator, const wxString& name =
"comboBox")

Creates the combobox for two-step construction. Derived classes should call or replace
this function. See wxBitmapComboBox::wxBitmapComboBox (p. 136) for further details.

wxBitmapComboBox::Append

int Append (const wxString& item, const wxBitmap& bitmap = wxNullBitmap)
Adds the item to the end of the combo box.
int Append (const wxString& item, const wxBitmap& bitmap, void * clientData)

int Append (const wxString& item, const wxBitmap& bitmap, wxClientData
*clientData)

Adds the item to the end of the combo box, associating the given, typed or untyped, client
data pointer with the item.

wxBitmapComboBox::GetBitmapSize

wxSize GetBitmapSize () const

Returns size of bitmaps used in the list.

wxBitmapComboBox::GetltemBitmap

wxBitmap GetltemBitmap (unsigned int n) const

Returns the bitmap of the item with the given index.

wxBitmapComboBox::Insert

int Insert (const wxString& item, const wxBitmap& bitmap, unsigned int pos)

Inserts the item into the list before pos. Not valid for wxCB_SORTstyle, use Append
instead.

int Insert (const wxString& item, const wxBitmap& bitmap, unsigned int pos, void
*clientData)

int Insert (const wxString& item, const wxBitmap& bitmap, unsigned int pos,
wxClientData * clientData)

Inserts the item into the list before pos, associating the given, typed or untyped, client data
pointer with the item. Not valid for wxCB_SORTstyle, use Append instead.

wxBitmapComboBox::SetltemBitmap

138



CHAPTER 7

void SetltemBitmap (unsigned int n, const wxBitmap& bitmap)

Sets the bitmap for the given item.

wxBitmapButton

A bitmap button is a control that contains a bitmap. It may be placed on a dialog box (p.
496) or panel (p. 1169), or indeed almost any other window.

Derived from

wxButton (p. 164)
wxControl (p. 285)
wxWindow (p. 1794)
wxEvtHandler (p. 575)
wxObiject (p. 1147)

Include files
<wx/bmpbuttn.h>
Remarks

A bitmap button can be supplied with a single bitmap, and wxWidgets will draw all button
states using this bitmap. If the application needs more control, additional bitmaps for the
selected state, unpressed focused state, and greyed-out state may be supplied.

Button states
This class supports bitmaps for several different states:

normal This is the bitmap shown in the default state, it must be
always valid while all the other bitmaps are optional and
don't have to be set.

disabled Bitmap shown when the button is disabled.

selected Bitmap shown when the button is pushed (e.g. while the
user keeps the mouse button pressed on it)

focus Bitmap shown when the button has keyboard focus but is
not pressed.

hover Bitmap shown when the mouse is over the button (but it is
not pressed). Notice that if hover bitmap is not specified but
the current platform Ul uses hover images for the buttons
(such as Windows XP or GTK+), then the focus bitmap is
used for hover state as well. This makes it possible to set
focus bitmap only to get reasonably good behaviour on all
platforms.

Window styles

139



CHAPTER 7

wxBU_AUTODRAW If this is specified, the button will be drawn automatically
using the label bitmap only, providing a 3D-look border. If
this style is not specified, the button will be drawn without
borders and using all provided bitmaps. WIN32 only.

wxBU_LEFT Left-justifies the bitmap label. WIN32 only.

wxBU_TOP Aligns the bitmap label to the top of the button. WIN32 only.

wxBU_RIGHT Right-justifies the bitmap label. WIN32 only.

wxBU_BOTTOM AIilgns the bitmap label to the bottom of the button. WIN32
only.

Note that wxBU _EXACTFIT supported by wxButton (p. 164) is not used by this class as
bitmap buttons don't have any minimal standard size by default.

See also window styles overview (p. 2086).
Event handling

EVT_BUTTON(id, func) Process a
WXEVT_COMMAND_BUTTON_CLICKED
event, when the button is clicked.

See also

wxButton (p. 164)

wxBitmapButton::wxBitmapButton

wxBitmapButton ()
Default constructor.

wxBitmapButton (wxWindow* parent, wxWindowID id, const wxBitmap& bitmap,
const wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long
style = wxBU_AUTODRAW, const wxValidator& validator = wxDefaultValidator, const
wxString& name = "button")

Constructor, creating and showing a button.
Parameters
parent

Parent window. Must not be NULL.

Button identifier. A value of -1 indicates a default value.

bitmap

140



CHAPTER 7

Bitmap to be displayed.
pos

Button position.
size

Button size. If the default size (-1, -1) is specified then the button is sized
appropriately for the bitmap.

style
Window style. See wxBitmapButton (p. 139).
validator
Window validator.
name
Window name.
Remarks

The bitmap parameter is normally the only bitmap you need to provide, and wxWidgets will
draw the button correctly in its different states. If you want more control, call any of the
functions wxBitmapButton::SetBitmapSelected (p. 145),
wxBitmapButton::SetBitmapFocus (p. 143), wxBitmapButton::SetBitmapDisabled (p.
143).

Note that the bitmap passed is smaller than the actual button created.
See also

wxBitmapButton::Create (p. 141), wxValidator (p. 1765)

wxBitmapButton::~wxBitmapButton

~wxBitmapButton ()

Destructor, destroying the button.

wxBitmapButton::Create

bool Create (wxWindow* parent, wxWindowID id, const wxBitmap& bitmap, const
wxPoint& pos, const wxSize& size = wxDefaultSize, long style = 0, const
wxValidator& validator, const wxString& name = "button")

Button creation function for two-step creation. For more details, see
wxBitmapButton::wxBitmapButton (p. 140).

wxBitmapButton::GetBitmapDisabled

141



CHAPTER 7

const wxBitmap& GetBitmapDisabled () constwxBitmap& GetBitmapDisabled ()
Returns the bitmap for the disabled state, may be invalid.

Return value

A reference to the disabled state bitmap.

See also

wxBitmapButton::SetBitmapDisabled (p. 143)

wxBitmapButton::GetBitmapFocus

const wxBitmap& GetBitmapFocus () constwxBitmap& GetBitmapFocus ()
Returns the bitmap for the focused state, may be invalid.

Return value

A reference to the focused state bitmap.

See also

wxBitmapButton::SetBitmapFocus (p. 143)

wxBitmapButton::GetBitmapHover

const wxBitmap& GetBitmapHover () constwxBitmap& GetBitmapHover ()
Returns the bitmap used when the mouse is over the button, may be invalid.
See also

wxBitmapButton::SetBitmapHover (p. 144)

wxBitmapButton::GetBitmapLabel

const wxBitmap& GetBitmapLabel () constwxBitmap& GetBitmapLabel ()
Returns the label bitmap (the one passed to the constructor), always valid.
Return value

A reference to the button's label bitmap.

See also

wxBitmapButton::SetBitmapLabel (p. 144)

wxBitmapButton::GetBitmapSelected

wxBitmap& GetBitmapSelected () constwxBitmap& GetBitmapSelected ()

142



CHAPTER 7

Returns the bitmap for the pushed button state, may be invalid.
Return value

A reference to the selected state bitmap.

See also

wxBitmapButton::SetBitmapSelected (p. 145)

wxBitmapButton::GetBitmapSelected

wxBitmap& GetBitmapSelected () const
Returns the bitmap for the selected state.
Return value

A reference to the selected state bitmap.
See also

wxBitmapButton::SetBitmapSelected (p. 145)

wxBitmapButton::SetBitmapDisabled

void SetBitmapDisabled (constwxBitmap& bitmap)
Sets the bitmap for the disabled button appearance.
Parameters
bitmap

The bitmap to set.
See also

wxBitmapButton::GetBitmapDisabled (p. 141), wxBitmapButton::SetBitmapLabel (p. 144),
wxBitmapButton::SetBitmapSelected (p. 145), wxBitmapButton::SetBitmapFocus (p. 143)

wxBitmapButton::SetBitmapFocus

void SetBitmapFocus (const wxBitmap& bitmap)
Sets the bitmap for the button appearance when it has the keyboard focus.
Parameters
bitmap
The bitmap to set.

See also

143



CHAPTER 7

wxBitmapButton::GetBitmapFocus (p. 142), wxBitmapButton::SetBitmapLabel (p. 144),
wxBitmapButton::SetBitmapSelected (p. 145), wxBitmapButton::SetBitmapDisabled (p.
143)

wxBitmapButton::SetBitmapHover

void SetBitmapHover (const wxBitmap& bitmap)
Sets the bitmap to be shown when the mouse is over the button.

This function is new since wxWidgets version 2.7.0 and the hover bitmap is currently only
supported in WxMSW.

See also

wxBitmapButton::GetBitmapHover (p. 142)

wxBitmapButton::SetBitmapLabel

void SetBitmapLabel (const wxBitmap& bitmap)
Sets the bitmap label for the button.
Parameters
bitmap
The bitmap label to set.
Remarks

This is the bitmap used for the unselected state, and for all other states if no other bitmaps
are provided.

See also

wxBitmapButton::GetBitmapLabel (p. 142)

wxBitmapButton::SetBitmapSelected

void SetBitmapSelected (const wxBitmap& bitmap)
Sets the bitmap for the selected (depressed) button appearance.
Parameters
bitmap
The bitmap to set.
See also

wxBitmapButton::GetBitmapSelected (p. 143), wxBitmapButton::SetBitmapLabel (p. 144),
wxBitmapButton::SetBitmapFocus (p. 143), wxBitmapButton::SetBitmapDisabled (p. 143)

144



CHAPTER 7

wxBitmapButton::SetBitmapSelected

void SetBitmapSelected (const wxBitmap& bitmap)
Sets the bitmap for the selected (depressed) button appearance.
Parameters
bitmap
The bitmap to set.
See also

wxBitmapButton::GetBitmapSelected (p. 143), wxBitmapButton::SetBitmapLabel (p. 144),
wxBitmapButton::SetBitmapFocus (p. 143), wxBitmapButton::SetBitmapDisabled (p. 143)

wxBitmapDataObiject

wxBitmapDataObiject is a specialization of wxDataObject for bitmap data. It can be used
without change to paste data into the wxClipboard (p. 199) or a wxDropSource (p. 558). A
user may wish to derive a new class from this class for providing a bitmap on-demand in
order to minimize memory consumption when offering data in several formats, such as a
bitmap and GIF.

wxPython note: If you wish to create a derived wxBitmapDataObject class in wxPython
you should derive the class from wxPyBitmapDataObject in order to get Python-aware
capabilities for the various virtual methods.

Virtual functions to override

This class may be used as is, but GetBitmap (p. 146) may be overridden to increase
efficiency.

Derived from

wxDataObjectSimple (p. 335)
wxDataObject (p. 311)

Include files
<wx/dataobj.h>
See also

Clipboard and drag and drop overview (p. 2147), wxDataObject (p. 311),
wxDataObjectSimple (p. 335), wxFileDataObject (p. 598), wxTextDataObject (p. 1652),
wxDataObject (p. 311)

wxBitmapDataObject (const wxBitmap& bitmap = wxNullBitmap)

Constructor, optionally passing a bitmap (otherwise use SetBitmap (p. 146) later).

145



CHAPTER 7

wxBitmapDataObject::GetBitmap

virtual wxBitmap GetBitmap () const

Returns the bitmap associated with the data object. You may wish to override this method
when offering data on-demand, but this is not required by wxWidgets' internals. Use this
method to get data in bitmap form from the wxClipboard (p. 199).

wxBitmapDataObject::SetBitmap

virtual void SetBitmap (const wxBitmap& bitmap)

Sets the bitmap associated with the data object. This method is called when the data
object receives data. Usually there will be no reason to override this function.

wxBitmapHandler

Overview (p. 2114)

This is the base class for implementing bitmap file loading/saving, and bitmap creation
from data. It is used within wxBitmap and is not normally seen by the application.

If you wish to extend the capabilities of wxBitmap, derive a class from wxBitmapHandler
and add the handler using wxBitmap::AddHandler (p. 127) in your application initialisation.

Derived from
wxObiject (p. 1147)
Include files
<wx/bitmap.h>
See also

wxBitmap (p. 123), wxlcon (p. 894), wxCursor (p. 297)

wxBitmapHandler::wxBitmapHandler

wxBitmapHandler ()

Default constructor. In your own default constructor, initialise the members m_name,
m_extension and m_type.

wxBitmapHandler::~wxBitmapHandler

~wxBitmapHandler ()

Destroys the wxBitmapHandler object.

146



CHAPTER 7

wxBitmapHandler::Create

virtual bool Create (wxBitmap* bitmap, const void* data, int type, int width, int height,
int depth = -1)

Creates a bitmap from the given data, which can be of arbitrary type. The wxBitmap object
bitmap is manipulated by this function.

Parameters
bitmap
The wxBitmap object.
width
The width of the bitmap in pixels.
height
The height of the bitmap in pixels.
depth
The depth of the bitmap in pixels. If this is -1, the screen depth is used.
data
Data whose type depends on the value of type.
type

A bitmap type identifier - see wxBitmapHandler::wxBitmapHandler (p. 124) for a list
of possible values.

Return value

true if the call succeeded, false otherwise (the default).
wxBitmapHandler::GetName

const wxString& GetName() const

Gets the name of this handler.
wxBitmapHandler::GetExtension

const wxString& GetExtension () const

Gets the file extension associated with this handler.

wxBitmapHandler::GetType

long GetType () const

147



CHAPTER 7

Gets the bitmap type associated with this handler.

wxBitmapHandler::LoadFile

bool LoadFile (wxBitmap* bitmap, const wxString& name, long type)
Loads a bitmap from a file or resource, putting the resulting data into bitmap.
Parameters
bitmap

The bitmap object which is to be affected by this operation.
name

Either a filename or a Windows resource name. The meaning of name is determined
by the type parameter.

type
See wxBitmap::wxBitmap (p. 124) for values this can take.
Return value
true if the operation succeeded, false otherwise.
See also

wxBitmap::LoadFile (p. 131)
wxBitmap::SaveFile (p. 133)
wxBitmapHandler;:SaveFile (p. 148)

wxBitmapHandler::SaveFile

bool SaveFile (wxBitmap* bitmap, const wxString& name, int type, wxPalette* palette
= NULL)

Saves a bitmap in the named file.
Parameters
bitmap
The bitmap object which is to be affected by this operation.
name
A filename. The meaning of name is determined by the type parameter.
type
See wxBitmap::wxBitmap (p. 124) for values this can take.

palette

148



CHAPTER 7

An optional palette used for saving the bitmap.
Return value
true if the operation succeeded, false otherwise.
See also

wxBitmap::LoadFile (p. 131)
wxBitmap::SaveFile (p. 133)
wxBitmapHandler::LoadFile (p. 148)

wxBitmapHandler::SetName

void SetName (const wxString& name)
Sets the handler name.

Parameters

name

Handler name.

wxBitmapHandler::SetExtension

void SetExtension (const wxString& extension)
Sets the handler extension.

Parameters

extension

Handler extension.

wxBitmapHandler::SetType
void SetType (long type)
Sets the handler type.
Parameters

name

Handler type.

wxBoxSizer

The basic idea behind a box sizer is that windows will most often be laid out in rather
simple basic geometry, typically in a row or a column or several hierarchies of either.

149



CHAPTER 7

For more information, please see Programming with wxBoxSizer (p. 2099).
Derived from

wxSizer (p. 1444)
wxObiject (p. 1147)

Include files
<wx/sizer.h>
See also

wxSizer (p. 1444), Sizer overview (p. 2095)

wxBoxSizer::wxBoxSizer

wxBoxSizer (int orient)

Constructor for a wxBoxSizer. orient may be either of wxVERTICAL or wxHORIZONTAL
for creating either a column sizer or a row sizer.

wxBoxSizer::RecalcSizes

void RecalcSizes ()

Implements the calculation of a box sizer's dimensions and then sets the size of its
children (calling wxWindow::SetSize (p. 1842) if the child is a window). It is used internally
only and must not be called by the user. Documented for information.

wxBoxSizer::CalcMin

wxSize CalcMin ()

Implements the calculation of a box sizer's minimal. It is used internally only and must not
be called by the user. Documented for information.

wxBoxSizer::GetOrientation

int GetOrientation ()

Returns the orientation of the box sizer, either wxVERTICAL or wxHORIZONTAL.

wxBrush

A brush is a drawing tool for filling in areas. It is used for painting the background of
rectangles, ellipses, etc. It has a colour and a style.

Derived from

wxGDIObject (p. 708)

150



CHAPTER 7

wxObiject (p. 1147)
Include files
<wx/brush.h>
Predefined objects
Objects:
wxNullBrush
Pointers:

WxBLUE_BRUSH
WXGREEN_BRUSH
WXWHITE_BRUSH
WXBLACK_BRUSH
WXGREY_BRUSH
WXMEDIUM_GREY_BRUSH
WXLIGHT_GREY_BRUSH
WXTRANSPARENT_BRUSH
wWxCYAN_BRUSH
WXRED_BRUSH

Remarks

On a monochrome display, wxWidgets shows all brushes as white unless the colour is
really black.

Do not initialize objects on the stack before the program commences, since other required
structures may not have been set up yet. Instead, define global pointers to objects and
create them in wxApp::Oninit (p. 52) or when required.

An application may wish to create brushes with different characteristics dynamically, and
there is the consequent danger that a large number of duplicate brushes will be created.
Therefore an application may wish to get a pointer to a brush by using the global list of
brushes wxTheBrushList , and calling the member function FindOrCreateBrush .

This class uses reference counting and copy-on-write (p. 2043)internally so that
assignments between two instances of this class are very cheap. You can therefore use
actual objects instead of pointers without efficiency problems. If an instance of this class is
changed it will create its own data internally so that other instances, which previously
shared the data using the reference counting, are not affected.

See also

wxBrushList (p. 156), wxDC (p. 456), wxDC::SetBrush (p. 472)

wxBrush::wxBrush

wxBrush ()

151



CHAPTER 7

Default constructor. The brush will be uninitialised, and wxBrush:IsOk (p. 154) will return

false.
wxBrush (const wxColour& colour, int style = wxSOLI D)
Constructs a brush from a colour object and style.
wxBrush (const wxString& colourName, int style)
Constructs a brush from a colour name and style.
wxBrush (const wxBitmap& stippleBitmap)
Constructs a stippled brush using a bitmap.
wxBrush (const wxBrush& brush)
Copy constructor, uses reference counting (p. 2043).
Parameters
colour

Colour object.

colourName

Colour name. The name will be looked up in the colour database.

style
One of:
WXTRANSPARENT Transparent (no fill).
wxSOLID Solid.
WXSTIPPLE Uses a bitmap as a stipple.
wxBDIAGONAL_HATCH Backward diagonal hatch.
WXCROSSDIAG_HATCH Cross-diagonal hatch.
wxFDIAGONAL_ HATCH Forward diagonal hatch.
WXCROSS HATCH Cross hatch.
WXHORIZONTAL_HATCH Horizontal hatch.
WXVERTICAL_HATCH Vertical hatch.

brush

Pointer or reference to a brush to copy.

152



CHAPTER 7

stippleBitmap
A bitmap to use for stippling.
Remarks
If a stipple brush is created, the brush style will be set to wxSTIPPLE.
See also

wxBrushList (p. 156), wxColour (p. 217), wxColourDatabase (p. 223)

wxBrush::~wxBrush

~wxBrush ()

Destructor. See reference-counted object destruction (p. 2043) for more info.
Remarks

Although all remaining brushes are deleted when the application exits, the application
should try to clean up all brushes itself. This is because wxWidgets cannot know if a
pointer to the brush object is stored in an application data structure, and there is a risk of
double deletion.

wxBrush::GetColour

wxColour& GetColour () const
Returns a reference to the brush colour.
See also

wxBrush::SetColour (p. 154)

wxBrush::GetStipple

wxBitmap * GetStipple () const

Gets a pointer to the stipple bitmap. If the brush does not have a wxSTIPPLE style, this
bitmap may be non-NULL but uninitialised (wxBitmap:IsOk (p. 132) returns false).

See also

wxBrush::SetStipple (p. 155)

wxBrush::GetStyle

int GetStyle () const
Returns the brush style, one of:

WXTRANSPARENT Transparent (no fill).

153



CHAPTER 7

wxSOLID Solid.

wxBDIAGONAL_HATCH Backward diagonal hatch.
WXCROSSDIAG_HATCH Cross-diagonal hatch.
wxFDIAGONAL_ HATCH Forward diagonal hatch.
WXCROSS_ HATCH Cross hatch.
WXHORIZONTAL_HATCH Horizontal hatch.
WXVERTICAL_HATCH Vertical hatch.

WXSTIPPLE Stippled using a bitmap.
WXSTIPPLE_MASK_ OPAQUE Stippled using a bitmap's mask.
See also

wxBrush::SetStyle (p. 155), wxBrush::SetColour (p. 154), wxBrush::SetStipple (p. 155)

wxBrush::IsHatch

bool IsHatch () const
Returns true if the style of the brush is any of hatched fills.
See also

wxBrush::GetStyle (p. 153)

wxBrush::1sOk

bool I1sOk() const

Returns true if the brush is initialised. It will return false if the default constructor has been
used (for example, the brush is a member of a class, or NULL has been assigned to it).

wxBrush::SetColour

void SetColour (wxColour& colour)

Sets the brush colour using a reference to a colour object.

void SetColour (const wxString& colourName)

Sets the brush colour using a colour name from the colour database.

void SetColour (unsigned char red, unsigned char green, unsigned char blue)
Sets the brush colour using red, green and blue values.

See also

154



CHAPTER 7

wxBrush::GetColour (p. 153)

wxBrush::SetStipple

void SetStipple (const wxBitmap& bitmap)
Sets the stipple bitmap.
Parameters
bitmap
The bitmap to use for stippling.

Remarks

The style will be set to wxSTIPPLE, unless the bitmap has a mask associated to it, in
which case the style will be set to wxSTIPPLE_MASK_OPAQUE.

If the wxSTIPPLE variant is used, the bitmap will be used to fill out the area to be drawn. If
the wxSTIPPLE_MASK_OPAQUE is used, the current text foreground and text
background determine what colours are used for displaying and the bits in the mask
(which is a mono-bitmap actually) determine where to draw what.

Note that under Windows 95, only 8x8 pixel large stipple bitmaps are supported, Windows
98 and NT as well as GTK support arbitrary bitmaps.

See also

wxBitmap (p. 123)

wxBrush::SetStyle

void SetStyle (int style)

Sets the brush style.

style
One of:
WXTRANSPARENT
wxSOLID
wxBDIAGONAL_HATCH
wXxCROSSDIAG_HATCH
wxFDIAGONAL_HATCH
wxCROSS_HATCH
WXHORIZONTAL_HATCH

Transparent (no fill).
Solid.

Backward diagonal hatch.
Cross-diagonal hatch.
Forward diagonal hatch.
Cross hatch.

Horizontal hatch.

155



CHAPTER 7

WXVERTICAL_HATCH Vertical hatch.

WXSTIPPLE Stippled using a bitmap.

WXSTIPPLE_MASK OPAQUE Stippled using a bitmap's mask.
See also

wxBrush::GetStyle (p. 153)

wxBrush::operator =

wxBrush& operator = (const wxBrush& brush)

Assignment operator, using reference counting (p. 2043).

wxBrush::operator ==

bool operator == (const wxBrush& brush)

Equality operator. See reference-counted object comparison (p. 2043) for more info.

wxBrush::operator !=

bool operator != (const wxBrush& brush)

Inequality operator. See reference-counted object comparison (p. 2043) for more info.

wxBrushList

A brush list is a list containing all brushes which have been created.
Derived from

wxList (p. 966)
wxObiject (p. 1147)

Include files
<wx/gdicmn.h>
Remarks

There is only one instance of this class: wxTheBrushList . Use this object to search for a
previously created brush of the desired type and create it if not already found. In some
windowing systems, the brush may be a scarce resource, so it can pay to reuse old
resources if possible. When an application finishes, all brushes will be deleted and their
resources freed, eliminating the possibility of ‘'memory leaks'. However, it is best not to rely
on this automatic cleanup because it can lead to double deletion in some circumstances.

There are two mechanisms in recent versions of wxWidgets which make the brush list less

156



CHAPTER 7

useful than it once was. Under Windows, scarce resources are cleaned up internally if they
are not being used. Also, a reference counting mechanism applied to all GDI objects
means that some sharing of underlying resources is possible. You don't have to keep track
of pointers, working out when it is safe delete a brush, because the reference counting
does it for you. For example, you can set a brush in a device context, and then
immediately delete the brush you passed, because the brush is 'copied'.

So you may find it easier to ignore the brush list, and instead create and copy brushes as
you see fit. If your Windows resource meter suggests your application is using too many
resources, you can resort to using GDI lists to share objects explicitly.

The only compelling use for the brush list is for wxWidgets to keep track of brushes in
order to clean them up on exit. It is also kept for backward compatibility with earlier
versions of wxWidgets.

See also

wxBrush (p. 150)

wxBrushList::wxBrushList

void wxBrushList ()

Constructor. The application should not construct its own brush list: use the object pointer
wxTheBrushList .

wxBrushList::FindOrCreateBrush

wxBrush * FindOrCreateBrush (const wxColour& colour, int style = wxSOLID)

Finds a brush with the specified attributes and returns it, else creates a new brush, adds it
to the brush list, and returns it.

Parameters
colour
Colour object.
style
Brush style. See wxBrush::SetStyle (p. 155) for a list of styles.

wxBufferedDC

This class provides a simple way to avoid flicker: when drawing on it, everything is in fact
first drawn on an in-memory buffer (awxBitmap (p. 123)) and then copied to the screen,
using the associated wxDC, only once, when this object is destroyed. wxBufferedDC itself
is typically associated with wxClientDC (p. 196), if you want to use it in your EVT_PAINT
handler, you should look atwxBufferedPaintDC (p. 159) instead.

157



CHAPTER 7

When used like this, a valid dc must be specified in the constructor while the buffer bitmap
doesn't have to be explicitly provided, by default this class will allocate the bitmap of
required size itself. However using a dedicated bitmap can speed up the redrawing
process by eliminating the repeated creation and destruction of a possibly big bitmap.
Otherwise, wxBufferedDC can be used in the same way as any other device context.

There is another possible use for wxBufferedDC is to use it to maintain a backing store for
the window contents. In this case, the associated dcmay be NULLbut a valid backing store
bitmap should be specified.

Finally, please note that GTK+ 2.0 as well as OS X provide double buffering themselves
natively. You can either use wxWindow::IsDoubleBuffered (p. 1821) to determine whether
you need to use buffering or not, or use wxAutoBufferedPaintDC (p. 160) to avoid
needless double buffering on the systems which already do it automatically.

Derived from

wxMemoryDC (p. 1068)
wxDC (p. 456)
wxObiject (p. 1147)

Include files
<wx/dcbuffer.h>
See also

wxDC (p. 456), wxMemoryDC (p. 1068), wxBufferedPaintDC (p. 159),
wxAutoBufferedPaintDC (p. 160)

wxBufferedDC::wxBufferedDC

wxBufferedDC ()

wxBufferedDC (wxDC *dc, const wxSize& area, int style =
WXBUFFER_CLIENT_AREA)

wxBufferedDC (wxDC *dc, wxBitmap& buffer, int style = wxBUFFER_CLIENT_AREA)

If you use the first, default, constructor, you must call one of the Init (p. 159) methods later
in order to use the object.

The other constructors initialize the object immediately and Init() must not be called
after using them.

Parameters
dc

The underlying DC: everything drawn to this object will be flushed to this DC when
this object is destroyed. You may pass NULL in order to just initialize the buffer, and
not flush it.

158



CHAPTER 7

area

The size of the bitmap to be used for buffering (this bitmap is created internally when
it is not given explicitly).

buffer

Explicitly provided bitmap to be used for buffering: this is the most efficient solution
as the bitmap doesn't have to be recreated each time but it also requires more
memory as the bitmap is never freed. The bitmap should have appropriate size,
anything drawn outside of its bounds is clipped.

style

wxBUFFER_CLIENT_AREA to indicate that just the client area of the window is
buffered, or wxBUFFER_VIRTUAL_AREA to indicate that the buffer bitmap covers
the virtual area (in which case PrepareDC is automatically called for the actual
window device context).

wxBufferedDC::Init

void Init(wxDC *dc, const wxSize& area, int style = wxBUFFER_CLIENT_AREA)
void Init(wxDC *dc, wxBitmap& buffer, int style = wxBUFFER_CLIENT_AREA)

These functions initialize the object created using the default constructor. Please see
constructors documentation (p. 158) for details.

wxBufferedDC::~wxBufferedDC

Copies everything drawn on the DC so far to the underlying DC associated with this object,
if any.

wxBufferedPaintDC

This is a subclass of wxBufferedDC (p. 157) which can be used inside of an OnPaint()
event handler. Just create an object of this class instead of wxPaintDC (p. 1163) and make
sure wxWindow::SetBackgroundStyle (p. 1807)is called with wxBG_STYLE_CUSTOM
somewhere in the class initialization code, and that's all you have to do to (mostly) avoid
flicker. The only thing to watch out for is that if you are using this class together with
wxScrolledWindow (p. 1414), you probably do not want to call PrepareDC (p. 1421) on it
as it already does this internally for the real underlying wxPaintDC.

Derived from

wxBufferedDC (p. 157)
wxMemoryDC (p. 1068)
wxDC (p. 456)
wxObiject (p. 1147)

Include files

159



CHAPTER 7

<wx/dcbuffer.h>
See also

wxDC (p. 456), wxBufferedDC (p. 157), wxAutoBufferedPaintDC (p. 160)

wxBufferedPaintDC::wxBufferedPaintDC

wxBufferedPaintDC (wxWindow * window, wxBitmap& buffer, int style =
WXxBUFFER_CLIENT_AREA)

wxBufferedPaintDC (wxWindow * window, int style = wxBUFFER_CLIENT_AREA)

As with wxBufferedDC (p. 158), you may either provide the bitmap to be used for buffering
or let this object create one internally (in the latter case, the size of the client part of the
window is used).

Pass wxBUFFER_CLIENT_AREA for the style parameter to indicate that just the client
area of the window is buffered, or wxBUFFER_VIRTUAL_AREA to indicate that the buffer
bitmap covers the virtual area (in which case PrepareDC is automatically called for the
actual window device context).

wxBufferedPaintDC::~wxBufferedPaintDC

Copies everything drawn on the DC so far to the window associated with this object, using
a wxPaintDC (p. 1163).

wxAutoBufferedPaintDC

This wxDC derivative can be used inside of an OnPaint() event handler to achieve
double-buffered drawing. Just create an object of this class instead of wxPaintDC (p.
1163)and make sure wxWindow::SetBackgroundStyle (p. 1807) is called with
wxBG_STYLE_CUSTOM somewhere in the class initialization code, and that's all you
have to do to (mostly) avoid flicker.

The difference between wxBufferedPaintDC (p. 159) and this class, is the lightweigthness
- on platforms which have native double-buffering, wxAutoBufferedPaintDC is simply a
typedef of wxPaintDC. Otherwise, it is a typedef of wxBufferedPaintDC.

Derived from

wxBufferedPaintDC (p. 159)
wxPaintDC (p. 1163)

wxDC (p. 456)

wxObiject (p. 1147)

Include files

<wx/dcbuffer.h>

160



CHAPTER 7

See also

wxDC (p. 456), wxBufferedPaintDC (p. 159)

wxAutoBufferedPaintDC::wxAutoBufferedPaintDC

wxAutoBufferedPaintDC  (wxWindow * window)

Constructor. Pass a pointer to the window on which you wish to paint.

wxBufferedInputStream

This stream acts as a cache. It caches the bytes read from the specified input stream (See
wxFilterinputStream (p. 646)). It uses wxStreamBuffer and sets the default in-buffer size to
1024 bytes. This class may not be used without some other stream to read the data from
(such as a file stream or a memory stream).

Derived from
wxFilterinputStream (p. 646)
Include files

<wx/stream.h>

See also

wxStreamBuffer (p. 1545), wxInputStream (p. 941),wxBufferedOutputStream (p. 161)

wxBufferedOutputStream

This stream acts as a cache. It caches the bytes to be written to the specified output
stream (See wxFilterOutputStream (p. 647)). The data is only written when the cache is
full, when the buffered stream is destroyed or when calling SeekO().

This class may not be used without some other stream to write the data to (such as a file
stream or a memory stream).

Derived from
wxFilterOutputStream (p. 647)
Include files

<wx/stream.h>

See also

wxStreamBuffer (p. 1545), wxOutputStream (p. 1155)

161



CHAPTER 7

wxBufferedOutputStream::wxBufferedOutputStream

wxBufferedOutputStream (const wxOutputStream&  parent)

Creates a buffered stream using a buffer of a default size of 1024 bytes for cashing the
stream parent.

wxBufferedOutputStream::~wxBufferedOutputStream

~wxBufferedOutputStream ()

Destructor. Calls Sync() and destroys the internal buffer.

wxBufferedOutputStream::SeekO

off t SeekO(off t pos, wxSeekMode mode)

Calls Sync() and changes the stream position.

wxBufferedOutputStream::Sync
void Sync ()

Flushes the buffer and calls Sync() on the parent stream.

wxBusyCursor

This class makes it easy to tell your user that the program is temporarily busy. Just create
a wxBusyCursor object on the stack, and within the current scope, the hourglass will be
shown.

For example:
wxBusyCursor wait;

for (inti = 0; i <100000; i++)
DoAcCalculation();

It works by calling wxBeginBusyCursor (p. 1931) in the constructor, and
wxEndBusyCursor (p. 1934) in the destructor.

Derived from
None
Include files

<wx/utils.h>

162



CHAPTER 7

See also

wxBeginBusyCursor (p. 1931), wxEndBusyCursor (p. 1934), wxWindowDisabler (p. 1854)

wxBusyCursor::wxBusyCursor

wxBusyCursor (wxCursor* cursor = WwxHOURGLASS CURSOR)

Constructs a busy cursor object, calling wxBeginBusyCursor (p. 1931).

wxBusyCursor::~wxBusyCursor

~wxBusyCursor ()

Destroys the busy cursor object, calling wxEndBusyCursor (p. 1934).

wxBusylnfo

This class makes it easy to tell your user that the program is temporarily busy. Just create
a wxBusylnfo object on the stack, and within the current scope, a message window will be
shown.

For example:
wxBusylnfo wait("Please wait, working...");
for (inti = 0; i < 100000; i++)

DoACalculation();
}

It works by creating a window in the constructor, and deleting it in the destructor.

You may also want to call wxTheApp->Yield() to refresh the window periodically (in case it
had been obscured by other windows, for example) like this:

wxWindowDisabler disableAll;

wxBusylnfo wait("Please wait, working...");

for (inti = 0; i < 100000; i++)
DoAcCalculation();

if (1(i % 1000))
wxTheApp->Yield();
}

but take care to not cause undesirable reentrancies when doing it (see wxApp::Yield() (p.
56) for more details). The simplest way to do it is to use wxWindowDisabler (p. 1854) class
as illustrated in the above example.

163



CHAPTER 7

Derived from
None
Include files

<wx/busyinfo.h>

wxBusylnfo::wxBusyInfo

wxBusyInfo (const wxString& msg, wxWindow* parent = NULL)
Constructs a busy info window as child of parent and displays msgin it.

NB: If parent is not NULLyou must ensure that it is not closed while the busy info is shown.

wxBusylnfo::~wxBusylInfo

~wxBusylInfo ()

Hides and closes the window containing the information text.

wxButton

A button is a control that contains a text string, and is one of the most common elements of
a GUL. It may be placed on a dialog box (p. 496) or panel (p. 1169), or indeed almost any
other window.

Derived from

wxControl (p. 285)
wxWindow (p. 1794)
wxEvtHandler (p. 575)
wxObiject (p. 1147)

Include files
<wx/button.h>

Window styles

wxBU_LEFT Left-justifies the label. Windows and GTK+ only.

wxBU_TOP Aligns the label to the top of the button. Windows and GTK+
only.

wxBU_RIGHT Right-justifies the bitmap label. Windows and GTK+ only.

wxBU_BOTTOM Aligns the label to the bottom of the button. Windows and
GTK+ only.

164



CHAPTER 7

wxBU_EXACTFIT Creates the button as small as possible instead of making it
of the standard size (which is the default behaviour ).

wxNO_BORDER Creates a flat button. Windows and GTK+ only.
See also window styles overview (p. 2086).
Event handling

EVT_BUTTON(id, func) Process a
wWXEVT_COMMAND_BUTTON_CLICKED
event, when the button is clicked.

See also

wxBitmapButton (p. 139)

wxButton::wxButton

wxButton ()
Default constructor.

wxButton (wxWindow* parent, wxWindowID id, const wxString& label =
WXEmptyString, const wxPoint& pos = wxDefaultPosition, const wxSize& size =
wxDefaultSize, long style =0, const wxValidator& validator = wxDefaultValidator, const
wxString& name = "button")

Constructor, creating and showing a button.

The preferred way to create standard buttons is to use default value oflabel. If no label is
supplied and id is one of standard IDs fromthis list (p. 2001), standard label will be used. In
addition to that, the button will be decorated with stock icons under GTK+ 2.

Parameters
parent

Parent window. Must not be NULL.

Button identifier. A value of wxID_ANY indicates a default value.
label

Text to be displayed on the button.
pos

Button position.

size

165



CHAPTER 7

Button size. If the default size is specified then the button is sized appropriately for
the text.

style
Window style. See wxButton (p. 164).
validator
Window validator.
name
Window name.
See also

wxButton::Create (p. 166), wxValidator (p. 1765)

wxButton::~wxButton

~wxButton ()

Destructor, destroying the button.

wxButton::Create

bool Create (wxWindow* parent, wxWindowID id, const wxString& label =
WXEmptyString, const wxPoint& pos = wxDefaultPosition, const wxSize& size =
wxDefaultSize, long style = 0, const wxValidator& validator, const wxString& name =
"button™)

Button creation function for two-step creation. For more details, seewxButton::wxButton (p.
165).

wxButton::GetLabel

wxString GetLabel () const

Returns the string label for the button.
Return value

The button's label.

See also

wxButton::SetLabel (p. 167)

wxButton::GetDefaultSize

wxSize GetDefaultSize ()

166



CHAPTER 7

Returns the default size for the buttons. It is advised to make all the dialog buttons of the
same size and this function allows to retrieve the (platform and current font dependent
size) which should be the best suited for this.

wxButton::SetDefault

void SetDefault ()
This sets the button to be the default item for the panel or dialog box.
Remarks

Under Windows, only dialog box buttons respond to this function. As normal under
Windows and Motif, pressing return causes the default button to be depressed when the
return key is pressed. See also wxWindow::SetFocus (p. 1837) which sets the keyboard
focus for windows and text panel items, and wxTopLevelWindow::SetDefaultltem (p.
1715).

Note that under Motif, calling this function immediately after creation of a button and
before the creation of other buttons will cause misalignment of the row of buttons, since
default buttons are larger. To get around this, call SetDefault after you have created a row
of buttons: wxWidgets will then set the size of all buttons currently on the panel to the
same size.

wxButton::SetLabel

void SetlLabel (const wxString& label)
Sets the string label for the button.
Parameters
label

The label to set.
See also

wxButton::GetLabel (p. 166)

wxCalculateLayoutEvent

This event is sent by wxLayoutAlgorithm (p. 961) to calculate the amount of the remaining
client area that the window should occupy.

Derived from

wxEvent (p. 572)
wxObiject (p. 1147)

Include files

167



CHAPTER 7

<wx/laywin.h>
Event table macros

EVT_CALCULATE_LAYOUT (func) Process a wxEVT_CALCULATE_LAYOUT
event, which asks the window to take a 'bite' out
of a rectangle provided by the algorithm.

See also

wxQueryLayoutIinfoEvent (p. 1238), wxSashLayoutWindow (p. 1394), wxLayoutAlgorithm
(p. 961).

wxCalculateLayoutEvent::.wxCalculateLayoutEvent

wxCalculateLayoutEvent (wxWindowlID id = 0)

Constructor.

wxCalculateLayoutEvent::GetFlags

int GetFlags () const

Returns the flags associated with this event. Not currently used.

wxCalculateLayoutEvent::GetRect

wxRect GetRect () const

Before the event handler is entered, returns the remaining parent client area that the
window could occupy. When the event handler returns, this should contain the remaining
parent client rectangle, after the event handler has subtracted the area that its window
occupies.

wxCalculateLayoutEvent::SetFlags

void SetFlags (int flags)

Sets the flags associated with this event. Not currently used.
wxCalculateLayoutEvent::SetRect

void SetRect (const wxRect& rect)

Call this to specify the new remaining parent client area, after the space occupied by the
window has been subtracted.

wxCalendarCitrl

168



CHAPTER 7

The calendar control allows the user to pick a date. For this, it displays a window
containing several parts: a control at the top to pick the month and the year (either or both
of them may be disabled), and a month area below them which shows all the days in the
month. The user can move the current selection using the keyboard and select the date
(generating EVT_CALENDARvent) by pressing <Return> or double clicking it.

It has advanced possibilities for the customization of its display. All global settings (such
as colours and fonts used) can, of course, be changed. But also, the display style for each
day in the month can be set independently using wxCalendarDateAttr (p. 174) class.

An item without custom attributes is drawn with the default colours and font and without
border, but setting custom attributes with SetAttr (p. 173) allows to modify its appearance.
Just create a custom attribute object and set it for the day you want to be displayed
specially (note that the control will take ownership of the pointer, i.e. it will delete it itself). A
day may be marked as being a holiday, even if it is not recognized as one by wxDateTime
(p. 2053) using SetHoliday (p. 175) method.

As the attributes are specified for each day, they may change when the month is changed,
so you will often want to update them in EVT_CALENDAR_MONTBdent handler.

Derived from

wxControl (p. 285)
wxWindow (p. 1794)
wxEvtHandler (p. 575)
wxObiject (p. 1147)

Include files

<wx/calctrl.h>

Window styles

WXCAL_SUNDAY_FIRST  Show Sunday as the first day in the week
WXCAL_MONDAY_FIRST Show Monday as the first day in the week
WxCAL_SHOW_HOLIDAYS Highlight holidays in the calendar
WXCAL_NO_YEAR _CHANGE Disable the year changing

WXCAL_NO_MONTH_CHANGE Disable the month (and, implicitly, the year)
changing

WxCAL_SHOW_SURROUNDING_WEEKS Show the neighbouring weeks in the
previous and next months

WXCAL_SEQUENTIAL_MONTH_SELECTION Use alternative, more compact, style
for the month and year selection controls.

The default calendar style is wxCAL_SHOW_HOLIDAYS

Event table macros

169



CHAPTER 7

To process input from a calendar control, use these event handler macros to direct input to
member functions that take a wxCalendarEvent (p. 177) argument.

EVT_CALENDAR(id, func) A day was double clicked in the calendar.
EVT_CALENDAR_SEL CHANGED(id, func) The selected date changed.
EVT_CALENDAR_DAY(id, func) The selected day changed.

EVT_CALENDAR_MONTH(id, func) The selected month changed.

EVT_CALENDAR_YEAR(id, func) The selected year changed.
EVT_CALENDAR_WEEKDAY_CLICKED(id, func) User clicked on the week day
header

Note that changing the selected date will result in either of EVT_CALENDAR_DAYAONTH
or YEARevents and EVT_CALENDAR_SEL_CHANGEDe.
Constants

The following are the possible return values for HitTest (p. 174) method:

enum wxCalendarHitTestResult

WXCAL_HITTEST_NOWHERE, // outside of anyth ing
WXCAL_HITTEST_HEADER, /l on the header (w eekdays)
WXCAL_HITTEST_DAY /I on a day in the calendar
}
See also

Calendar sample (p. 2028)
wxCalendarDateAttr (p. 174)
wxCalendarEvent (p. 177)

wxCalendarCtrl::.wxCalendarCitrl

wxCalendarCtrl ()
Default constructor, use Create (p. 170) after it.

wxCalendarCtrl (wxWindow* parent, wxWindowID id, const wxDateTime& date =
wxDefaultDateTime, const wxPoint& pos = wxDefaultPosition, const wxSize& size =
wxDefaultSize, long style = wxCAL_SHOW_HOLIDAYS, const wxString& name =
wxCalendarNamesStr)

Does the same as Create (p. 170) method.

wxCalendarCtrl::Create

170



CHAPTER 7

bool Create (wxWindow* parent, wxWindowID id, const wxDateTime& date =
wxDefaultDateTime, const wxPoint& pos = wxDefaultPosition, const wxSize& size =
wxDefaultSize, long style = wxCAL_SHOW_HOLIDAYS, const wxString& name =
wxCalendarNamesStr)

Creates the control. See wxWindow (p. 1796) for the meaning of the parameters and the
control overview for the possible styles.

wxCalendarCtrl::~wxCalendarCtrl

~wxCalendarCtrl ()

Destroys the control.

wxCalendarCitrl::SetDate

void SetDate (const wxDateTime& date)

Sets the current date.

wxCalendarCtrl::GetDate

const wxDateTime& GetDate () const

Gets the currently selected date.

wxCalendarCtrl::EnableYearChange

void EnableYearChange (bool enable = true)

This function should be used instead of changing wxCAL_NO_YEAR_CHANGHgle bit
directly. It allows or disallows the user to change the year interactively.

wxCalendarCtrl::EnableMonthChange

void EnableMonthChange (bool enable = true)

This function should be used instead of changing wxCAL_NO_MONTH_CHANE&He bit. It
allows or disallows the user to change the month interactively. Note that if the month can
not be changed, the year can not be changed neither.

wxCalendarCtrl::EnableHolidayDisplay

void EnableHolidayDisplay (bool display = true)

This function should be used instead of changing wxCAL_SHOW_HOLIDA$/le bit
directly. It enables or disables the special highlighting of the holidays.

wxCalendarCtrl::SetHeaderColours

171



CHAPTER 7

void SetHeaderColours (const wxColour& colFg, const wxColour& colBg)

Set the colours used for painting the weekdays at the top of the control.

wxCalendarCtrl::GetHeaderColourFg

const wxColour& GetHeaderColourFg () const
Gets the foreground colour of the header part of the calendar window.
See also

SetHeaderColours (p. 171)

wxCalendarCtrl::GetHeaderColourBg

const wxColour& GetHeaderColourBg () const
Gets the background colour of the header part of the calendar window.
See also

SetHeaderColours (p. 171)

wxCalendarCtrl::SetHighlightColours

void SetHighlightColours (const wxColour& colFg, const wxColour& colBg)

Set the colours to be used for highlighting the currently selected date.

wxCalendarCtrl::GetHighlightColourFg

const wxColour& GetHighlightColourFg () const
Gets the foreground highlight colour.
See also

SetHighlightColours (p. 172)

wxCalendarCtrl::GetHighlightColourBg

const wxColour& GetHighlightColourBg () const
Gets the background highlight colour.
See also

SetHighlightColours (p. 172)

wxCalendarCtrl::SetHolidayColours

172



CHAPTER 7

void SetHolidayColours (const wxColour& colFg, const wxColour& colBg)

Sets the colours to be used for the holidays highlighting (only used if the window style
includes wxCAL_SHOW_HOLIDAYfagQ).

wxCalendarCtrl::GetHolidayColourFg

const wxColour& GetHolidayColourFg () const
Return the foreground colour currently used for holiday highlighting.
See also

SetHolidayColours (p. 172)

wxCalendarCtrl::GetHolidayColourBg

const wxColour& GetHolidayColourBg () const
Return the background colour currently used for holiday highlighting.
See also

SetHolidayColours (p. 172)

wxCalendarCtrl::GetAttr

wxCalendarDateAttr *  GetAttr (size_t day) const
Returns the attribute for the given date (should be in the range 1...31).

The returned pointer may be NULL

wxCalendarCtrl::SetAttr

void SetAttr (size_t day, wxCalendarDateAttr* attr)
Associates the attribute with the specified date (in the range 1...31).

If the pointer is NULL, the items attribute is cleared.

wxCalendarCtrl::SetHoliday

void SetHoliday (size_t day)

Marks the specified day as being a holiday in the current month.
wxCalendarCtrl::ResetAttr

void ResetAttr (size_t day)

173



CHAPTER 7

Clears any attributes associated with the given day (in the rangel...31).

wxCalendarCtrl::HitTest

wxCalendarHitTestResult HitTest (const wxPoint& pos, wxDateTime* date = NULL,
wxDateTime::WeekDay* wd = NULL)

Returns one of wxCAL_HITTEST_ XXXconstants (p. 168) and fills either date or wd
pointer with the corresponding value depending on the hit test code.

wxCalendarDateAttr

wxCalendarDateAttr is a custom attributes for a calendar date. The objects of this class
are used with wxCalendarCtrl (p. 168).

Derived from
No base class
Constants

Here are the possible kinds of borders which may be used to decorate a date:

enum wxCalendarDateBorder

{
wXCAL_BORDER_NONE, /I no border (defau It)
wxCAL_BORDER_SQUARE, /[ a rectangular bo rder
wxCAL_BORDER_ROUND /I a round border
}
See also

wxCalendarCtrl (p. 168)
Include files

<wx/calctrl.h>

wxCalendarDateAttr::wxCalendarDateAttr

wxCalendarDateAttr ()

wxCalendarDateAttr (const wxColour& colText, const wxColour& colBack =
wxNullColour, const wxColour& colBorder = wxNullColour, const wxFont& font =
wxNullFont, wxCalendarDateBorder border = wxCAL_BORDER_NONE)

wxCalendarDateAttr (wxCalendarDateBorder border, const wxColour& colBorder =
wxNullColour)

The constructors.

174



CHAPTER 7

wxCalendarDateAttr::SetTextColour

void SetTextColour (const wxColour& colText)

Sets the text (foreground) colour to use.

wxCalendarDateAttr::SetBackgroundColour

void SetBackgroundColour (constwxColour& colBack)

Sets the text background colour to use.

wxCalendarDateAttr::SetBorderColour

void SetBorderColour (const wxColour& col)

Sets the border colour to use.

wxCalendarDateAttr::SetFont

void SetFont (const wxFont& font)

Sets the font to use.

wxCalendarDateAttr::SetBorder

void SetBorder (wxCalendarDateBorder border)

Sets the border kind (p. 174)

wxCalendarDateAttr::SetHoliday

void SetHoliday (bool holiday)

Display the date with this attribute as a holiday.

wxCalendarDateAttr::HasTextColour

bool HasTextColour () const

Returns true if this item has a non-default text foreground colour.

wxCalendarDateAttr::HasBackgroundColour

bool HasBackgroundColour () const

Returns true if this attribute specifies a non-default text background colour.

wxCalendarDateAttr::HasBorderColour

175



CHAPTER 7

bool HasBorderColour () const

Returns true if this attribute specifies a non-default border colour.

wxCalendarDateAttr::HasFont

bool HasFont () const

Returns true if this attribute specifies a non-default font.

wxCalendarDateAttr::HasBorder

bool HasBorder () const

Returns true if this attribute specifies a non-default (i.e. any) border.

wxCalendarDateAttr::IsHoliday

bool IsHoliday () const

Returns true if this attribute specifies that this item should be displayed as a holiday.

wxCalendarDateAttr::GetTextColour

const wxColour& GetTextColour () const

Returns the text colour to use for the item with this attribute.

wxCalendarDateAttr.:GetBackgroundColour

const wxColour& GetBackgroundColour () const

Returns the background colour to use for the item with this attribute.
wxCalendarDateAttr::GetBorderColour

const wxColour& GetBorderColour () const

Returns the border colour to use for the item with this attribute.
wxCalendarDateAttr::GetFont

const wxFont& GetFont () const

Returns the font to use for the item with this attribute.
wxCalendarDateAttr::GetBorder

wxCalendarDateBorder GetBorder () const

176



CHAPTER 7

Returns the border (p. 174) to use for the item with this attribute.

wxCalendarEvent

The wxCalendarEvent class is used together with wxCalendarCtrl (p. 168).
Derived from

wxDateEvent (p. 339)
wxCommandEvent (p. 250)
wxEvent (p. 572)

wxObiject (p. 1147)

Include files
<wx/calctrl.h>
See also

wxCalendarCtrl (p. 168)

wxCalendarEvent::GetWeekDay

wxDateTime::WeekDay GetWeekDay () const

Returns the week day on which the user clicked in EVT_CALENDAR_WEEKDAY_CLICKED
handler. It doesn't make sense to call this function in other handlers.

wxCalendarEvent::SetWeekDay

void SetWeekDay (wxDateTime::WeekDay day)

Sets the week day carried by the event, normally only used by the library internally.

wxCaret

A caret is a blinking cursor showing the position where the typed text will appear. The text
controls usually have a caret but wxCaret class also allows to use a caret in other
windows.

Currently, the caret appears as a rectangle of the given size. In the future, it will be
possible to specify a bitmap to be used for the caret shape.

A caret is always associated with a window and the current caret can be retrieved using
wxWindow::GetCaret (p. 1808). The same caret can't be reused in two different windows.

Derived from

No base class

177



CHAPTER 7

Include files
<wx/caret.h>

Data structures

wxCaret::wxCaret

wxCaret ()

Default constructor: you must use one of Create() functions later.
wxCaret (wxWindow* window, int width, int height)

wxCaret (wxWindowBase* window, const wxSize& size)

Create the caret of given (in pixels) width and height and associates it with the given
window.

wxCaret::Create
bool Create (wxWindowBase* window, int width, int height)
bool Create (wxWindowBase* window, const wxSize& size)

Create the caret of given (in pixels) width and height and associates it with the given
window (same as constructor).

wxCaret::GetBlinkTime

static int GetBlinkTime ()

Returns the blink time which is measured in milliseconds and is the time elapsed between
2 inversions of the caret (blink time of the caret is the same for all carets, so this functions
is static).

wxCaret::GetPosition

void GetPosition (int* x, int* y) const

wxPoint GetPosition () const

Get the caret position (in pixels).

wxPerl note: In wxPerl there are two methods instead of a single overloaded method:
GetPosition() Returns a Wx::Point

GetPositionXY() Returns a 2-element list ( x, y)

178



CHAPTER 7

wxCaret::GetSize

void GetSize (int* width, int* height) const
wxSize GetSize () const

Get the caret size.

wxPerl note: In wxPerl there are two methods instead of a single overloaded method:

GetSize() Returns a Wx::Size
GetSizeWH)() Returns a 2-element list ( width,
height)

wxCaret::GetWindow

wxWindow* GetWindow () const

Get the window the caret is associated with.

wxCaret::Hide
void Hide()

Same as wxCaret::Show(false) (p. 180).

wxCaret:: IsOk

bool I1sOk() const

Returns true if the caret was created successfully.

wxCaret::IsVisible

bool IsVisible () const

Returns true if the caret is visible and false if it is permanently hidden (if it is is blinking and
not shown currently but will be after the next blink, this method still returns true).

wxCaret::Move
void Move (int X, int y)
void Move (const wxPoint& pt)

Move the caret to given position (in logical coordinates).

wxCaret::SetBlinkTime

179



CHAPTER 7

static void SetBlinkTime (int milliseconds)
Sets the blink time for all the carets.
Remarks

Under Windows, this function will change the blink time for all carets permanently (until the
next time it is called), even for the carets in other applications.

See also

GetBlinkTime (p. 178)

wxCaret::SetSize
void SetSize (int width, int height)
void SetSize (const wxSize& size)

Changes the size of the caret.

wxCaret::Show

void Show (bool show = true)

Shows or hides the caret. Notice that if the caret was hidden N times, it must be shown N
times as well to reappear on the screen.

wxCheckBox

A checkbox is a labelled box which by default is either on (checkmark is visible) or off (no
checkmark). Optionally (when the wxCHK_3STATE style flag is set) it can have a third
state, called the mixed or undetermined state. Often this is used as a "Does Not Apply"
state.

Derived from

wxControl (p. 285)
wxWindow (p. 1794)
wxEvtHandler (p. 575)
wxObiject (p. 1147)

Include files

<wx/checkbox.h>

Window styles

WXCHK_2STATE Create a 2-state checkbox. This is the default.

WXCHK_3STATE Create a 3-state checkbox. Not implemented in
WXMGL, wx0S2 and wxGTK built against GTK+

180



CHAPTER 7

1.2.

WXCHK_ALLOW_3RD_STATE_FOR_USER By default a user can't set a 3-state
checkbox to the third state. It can only be done
from code. Using this flags allows the user to set
the checkbox to the third state by clicking.

WXALIGN_RIGHT Makes the text appear on the left of the
checkbox.

See also window styles overview (p. 2086).
Event handling

EVT_CHECKBOX(id, func) Process a
WXEVT_COMMAND_CHECKBOX_CLICKED
event, when the checkbox is clicked.

See also

wxRadioButton (p. 1249), wxCommandEvent (p. 250)

wxCheckBox::wxCheckBox

wxCheckBox ()
Default constructor.

wxCheckBox (wxWindow* parent, wxWindowID id, const wxString& label, const
wxPoint& pos =wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =0,
const wxValidator& val, const wxString& name = "checkBox")

Constructor, creating and showing a checkbox.
Parameters
parent

Parent window. Must not be NULL.

Checkbox identifier. A value of -1 indicates a default value.
label

Text to be displayed next to the checkbox.
pos

Checkbox position. If the position (-1, -1) is specified then a default position is
chosen.

181



CHAPTER 7

size
Checkbox size. If the default size (-1, -1) is specified then a default size is chosen.
style
Window style. See wxCheckBox (p. 180).
validator
Window validator.
name
Window name.
See also

wxCheckBox::Create (p. 182), wxValidator (p. 1765)

wxCheckBox::~wxCheckBox

~wxCheckBox ()

Destructor, destroying the checkbox.

wxCheckBox::Create

bool Create (wxWindow* parent, wxWindowlID id, const wxString& label, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =0,
const wxValidator& val, const wxString& name = "checkBox")

Creates the checkbox for two-step construction. See wxCheckBox::wxCheckBox (p. 181)
for details.

wxCheckBox::GetValue

bool GetValue () const
Gets the state of a 2-state checkbox.
Return value

Returns true if it is checked, false otherwise.

wxCheckBox::Get3StateValue

wxCheckBoxState Get3StateValue () const
Gets the state of a 3-state checkbox.

Return value

182



CHAPTER 7

Returns wxCHK_UNCHECKED when the checkbox is unchecked, wxCHK _CHECKED
when it is checked and wxCHK_UNDETERMINED when it's in the undetermined state.
Asserts when the function is used with a 2-state checkbox.

wxCheckBox::Is3rdStateAllowedForUser

bool Is3rdStateAllowedForUser () const
Returns whether or not the user can set the checkbox to the third state.
Return value

Returns true if the user can set the third state of this checkbox, false if it can only be set
programmatically or if it's a 2-state checkbox.

wxCheckBox::Is3State

bool Is3State () const

Returns whether or not the checkbox is a 3-state checkbox.
Return value

Returns true if this checkbox is a 3-state checkbox, false if it's a 2-state checkbox.

wxCheckBox::IsChecked

bool IsChecked () const

This is just a maybe more readable synonym for GetValue (p. 182): just as the latter, it
returns true if the checkbox is checked and false otherwise.

wxCheckBox::SetValue

void SetValue (bool state)

Sets the checkbox to the given state. This does not cause a
WXEVT_COMMAND_CHECKBOX_ CLICKED event to get emitted.

Parameters
state

If true , the check is on, otherwise it is off.

wxCheckBox::Set3StateValue

void Set3StateValue (const wxCheckBoxState state)

Sets the checkbox to the given state. This does not cause a
WXEVT_COMMAND_CHECKBOX_ CLICKED event to get emitted.

183



CHAPTER 7

Parameters
state

Can be one of; wxCHK_UNCHECKED (Check is off), wxCHK_CHECKED (Check is
on) or wxCHK_UNDETERMINED (Check is mixed). Asserts when the checkbox is a
2-state checkbox and setting the state to wxCHK_UNDETERMINED.

wxCheckListBox

A checklistbox is like a listbox, but allows items to be checked or unchecked.

When using this class under Windows wxWidgets must be compiled with
USE_OWNER_DRAWN set to 1.

Only the new functions for this class are documented; see also wxListBox (p. 974).

Please note that wxCheckListBox uses client data in its implementation, and therefore this
is not available to the application.

Derived from

wxListBox (p. 974)
wxControl (p. 285)
wxWindow (p. 1794)
wxEvtHandler (p. 575)
wxObiject (p. 1147)

Include files
<wx/checklst.h>
Window styles

See wxListBox (p. 974).
Event handling

EVT_CHECKLISTBOX(id, func) Process a
WXEVT_COMMAND_CHECKLISTBOX TOGG
LED event, when an item in the check list box is
checked or unchecked.

See also

wxListBox (p. 974), wxChoice (p. 186), wxComboBox (p. 225), wxListCtrl (p. 980),
wxCommandEvent (p. 250)

wxCheckListBox::wxCheckListBox

wxCheckListBox ()

184



CHAPTER 7

Default constructor.

wxCheckListBox (wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, int n, const wxString choices]]
= NULL, long style = 0, const wxValidator& validator = wxDefaultValidator, const
wxString& name = "listBox")

wxCheckListBox (wxWindow* parent, wxWindowID id, const wxPoint& pos, const
wxSize& size, const wxArrayString& choices, long style = 0, const wxValidator&
validator = wxDefaultValidator, const wxString& name = "listBox")

Constructor, creating and showing a list box.
Parameters
parent

Parent window. Must not be NULL.

id
Window identifier. A value of -1 indicates a default value.
pos
Window position.
size
Window size. If the default size (-1, -1) is specified then the window is sized
appropriately.
n
Number of strings with which to initialise the control.
choices

An array of strings with which to initialise the control.
style

Window style. See wxCheckListBox (p. 184).
validator

Window validator.
name

Window name.

wxPython note: The wxCheckListBox constructor in wxPython reduces the nand
choices arguments are to a single argument, which is a list of strings.

wxPerl note: In wxPerl there is just an array reference in place of nand choices

185



CHAPTER 7

wxCheckListBox::~wxCheckListBox

void ~wxCheckListBox ()

Destructor, destroying the list box.

wxCheckListBox::Check

void Check (int item, bool check = true)

Checks the given item. Note that calling this method doesn't result in
WXEVT_COMMAND_CHECKLISTBOX_TOGGLE being emitted.

Parameters
item

Index of item to check.
check

true if the item is to be checked, false otherwise.

wxCheckListBox::IsChecked

bool IsChecked (unsigned int item) const

Returns true if the given item is checked, false otherwise.
Parameters

item

Index of item whose check status is to be returned.

wxChoice

A choice item is used to select one of a list of strings. Unlike a listbox, only the selection is
visible until the user pulls down the menu of choices.

Derived from

wxControlWithltems (p. 286)
wxControl (p. 285)
wxWindow (p. 1794)
wxEvtHandler (p. 575)
wxObiject (p. 1147)

Include files

<wx/choice.h>

186



CHAPTER 7

Window styles

There are no special styles for wxChoice.
See also window styles overview (p. 2086).
Event handling

EVT_CHOICE(id, func) Process a
WXEVT_COMMAND_CHOICE_SELECTED
event, when an item on the list is selected.

See also

wxListBox (p. 974), wxComboBox (p. 225), wxCommandEvent (p. 250)

wxChoice::wxChoice

wxChoice ()
Default constructor.

wxChoice (wxWindow * parent, wxWindowlID id, const wxPoint& pos, const wxSize&
size, int n, const wxString choices][], long style = 0, const wxValidator& validator =
wxDefaultValidator, const wxString& name = "choice")

wxChoice (wxWindow * parent, wxWindowlID id, const wxPoint& pos, const wxSize&
size, const wxArrayString& choices, long style = 0, const wxValidator& validator =
wxDefaultValidator, const wxString& name = "choice")

Constructor, creating and showing a choice.
Parameters
parent

Parent window. Must not be NULL.

Window identifier. A value of -1 indicates a default value.
pos

Window position.
size

Window size. If the default size (-1, -1) is specified then the choice is sized
appropriately.

187



CHAPTER 7

Number of strings with which to initialise the choice control.
choices

An array of strings with which to initialise the choice control.
style

Window style. See wxChoice (p. 186).
validator

Window validator.
name

Window name.
See also
wxChoice::Create (p. 188), wxValidator (p. 1765)

wxPython note: The wxChoice constructor in wxPython reduces the nand choices
arguments are to a single argument, which is a list of strings.

wxPerl note: In wxPerl there is just an array reference in place of nand choices

wxChoice::~wxChoice

~wxChoice ()

Destructor, destroying the choice item.

wxChoice::Create

bool Create (wxWindow * parent, wxWindowlID id, const wxPoint& pos, const
wxSize& size, int n, const wxString choices]], long style = 0, const wxValidator&
validator = wxDefaultValidator, const wxString& name = "choice")

bool Create (wxWindow * parent, wxWindowlID id, const wxPoint& pos, const
wxSize& size, const wxArrayString& choices, long style = 0, const wxValidator&
validator = wxDefaultValidator, const wxString& name = "choice")

Creates the choice for two-step construction. See wxChoice::wxChoice (p. 187).

wxChoice::GetColumns

int GetColumns () const
Gets the number of columns in this choice item.

Remarks

188



CHAPTER 7

This is implemented for Motif only and always returns 1 for the other platforms.

wxChoice::GetCurrentSelection

int GetCurrentSelection () const

Unlike GetSelection (p. 289) which only returns the accepted selection value, i.e. the
selection in the control once the user closes the dropdown list, this function returns the
current selection. That is, while the dropdown list is shown, it returns the currently selected
item in it. When it is not shown, its result is the same as for the other function.

This function is new since wxWidgets version 2.6.2 (before this versionGetSelection (p.
289) itself behaved like this).

wxChoice::SetColumns

void SetColumns (int n=1)
Sets the number of columns in this choice item.
Parameters
n
Number of columns.
Remarks

This is implemented for Motif only and doesn't do anything under other platforms.

wxChoicebook

wxChoicebook is a class similar to wxNotebook (p. 1135) but which uses a wxChoice (p.
186) to show the labels instead of the tabs.

There is no documentation for this class yet but its usage is identical to wxNotebook
(except for the features clearly related to tabs only), so please refer to that class
documentation for now. You can also use the notebook sample (p. 2033) to see
wxChoicebook in action.

wxChoicebook allows the use of wxBookCitrl::GetControlSizer, allowing a program to add
other controls next to the choice control. This is particularly useful when screen space is
restricted, as it often is when wxChoicebook is being employed.

Derived from

wxBookCtriBase
wxControl (p. 285)
wxWindow (p. 1794)
wxEvtHandler (p. 575)
wxObiject (p. 1147)

189



CHAPTER 7

Include files
<wx/choicebk.h>

Window styles

wxCHB_DEFAULT Choose the default location for the labels depending on the
current platform (left everywhere except Mac where it is
top).

WxCHB_TOP Place labels above the page area.

WXCHB_LEFT Place labels on the left side.

WXCHB_RIGHT Place labels on the right side.

wxCHB_BOTTOM Place labels below the page area.

See also

wxBookCtrl (p. 2124), wxNotebook (p. 1135), notebook sample (p. 2033)

wxClassinfo

This class stores meta-information about classes. Instances of this class are not generally
defined directly by an application, but indirectly through use of macros such as
DECLARE_DYNAMIC_CLASS and IMPLEMENT_DYNAMIC_CLASS.

Derived from
No parent class.
Include files
<wx/object.h>
See also

Overview (p. 2042), wxObiject (p. 1147)

wxClasslInfo::wxClassinfo

wxClassiInfo (const wxChar * className, const wxClassInfo * baseClassl, const
wxClassiInfo * baseClass2, int size, wxObjectConstructorFn  fn)

Constructs a wxClasslInfo object. The supplied macros implicitly construct objects of this
class, so there is no need to create such objects explicitly in an application.

wxClassInfo::CreateObject

wxObject* CreateObject () const

190



CHAPTER 7

Creates an object of the appropriate kind. Returns NULL if the class has not been declared
dynamically creatable (typically, it is an abstract class).

wxClassInfo::FindClass

static wxClassiInfo * FindClass (wxChar * name)

Finds the wxClassInfo object for a class of the given string name.

wxClassInfo::GetBaseClassNamel

wxChar * GetBaseClassNamel () const

Returns the name of the first base class (NULL if none).

wxClassInfo::GetBaseClassName?2

wxChar * GetBaseClassName2 () const

Returns the name of the second base class (NULL if none).

wxClassInfo::GetClassName

wxChar * GetClassName () const

Returns the string form of the class name.

wxClassInfo::GetSize

int GetSize () const

Returns the size of the class.

wxClasslInfo::InitializeClasses

static void InitializeClasses ()

Initializes pointers in the wxClassInfo objects for fast execution of IsKindOf. Called in base
wxWidgets library initialization.

wxClassInfo::IsDynamic

bool IsDynamic () const

Returns true if this class info can create objects of the associated class.
wxClassInfo::IsKindOf

bool IsKindOf (wxClassInfo* info)

191



CHAPTER 7

Returns true if this class is a kind of (inherits from) the given class.

wxColourPickerCitrl

This control allows the user to select a colour. The generic implementation is a button
which brings up a wxColourDialog (p. 224) when clicked. Native implementation may differ
but this is usually a (small) widget which give access to the colour-chooser dialog. It is only
available if wxUSE_COLOURPICKERCTR4.set to 1 (the default).

Derived from

wxPickerBase (p. 1183)
wxControl (p. 285)
wxWindow (p. 1794)
wxEvtHandler (p. 575)
wxObiject (p. 1147)

Include files

<wx/clrpicker.h>

Window styles

WXCLRP_DEFAULT_STYLE The default style: 0.

WXCLRP_USE_TEXTCTRL Creates a text control to the left of the picker button which is
completely managed by the wxColourPickerCtrl (p. 193)and
which can be used by the user to specify a colour (see
SetColour (p. 194)). The text control is automatically
synchronized with button's value. Use functions defined in
wxPickerBase (p. 1183) to modify the text control.

WXCLRP_SHOW _LABEL  Shows the colour in HTML form (AABBCC) as colour button
label (instead of no label at all).

Event handling

To process a colour picker event, use these event handler macros to direct input to
member functions that take a wxColourPickerEvent (p. 194) argument.

EVT_COLOURPICKER_CHANGED(id, func) The user changed the colour
selected in the control either using the button or
using text control (see
WXCLRP_USE_TEXTCTRL; note that in this
case the event is fired only if the user's input is
valid, i.e. recognizable).

See also

wxColourDialog (p. 224),
wxColourPickerEvent (p. 194)

192



CHAPTER 7

wxColourPickerCtrl::wxColourPickerCitrl

wxColourPickerCtrl (wxWindow * parent, wxWindowID id, const wxColour& colour =
*WXBLACK, const wxPoint& pos = wxDefaultPosition, const wxSize& size =
wxDefaultSize, long style = wxCLRP_DEFAULT_STYLE, const wxValidator& validator
= wxDefaultValidator,const wxString& name = "colourpickerctrl")

Initializes the object and calls Create (p. 193) with all the parameters.

wxColourPickerCtrl::Create

bool Create (wxWindow * parent, wxWindowlID id, const wxColour& colour =
*WXBLACK, const wxPoint& pos = wxDefaultPosition, const wxSize& size =
wxDefaultSize, long style = wxCLRP_DEFAULT_STYLE, const wxValidator& validator
= wxDefaultValidator,const wxString& name = "colourpickerctrl")

Parameters
parent

Parent window, must not be non-NULL

The identifier for the control.
colour

The initial colour shown in the control.
pos

Initial position.
size

Initial size.
style

The window style, see wxCRLP_* flags.
validator

Validator which can be used for additional date checks.
name

Control name.
Return value

true if the control was successfully created or false if creation failed.

193



CHAPTER 7

wxColourPickerCtrl::GetColour

wxColour GetColour () const

Returns the currently selected colour.

wxColourPickerCtrl::SetColour

void SetColour (const wxColour & col)
void SetColour (const wxString & colname)

Sets the currently selected colour. See wxColour::Set (p. 220).

wxColourPickerEvent

This event class is used for the events generated bywxColourPickerCtrl (p. 193).
Derived from

wxCommandEvent (p. 250)
wxEvent (p. 572)
wxObiject (p. 1147)

Include files
<wx/clrpicker.h>
Event handling

To process input from a wxColourPickerCtrl, use one of these event handler macros to
direct input to member function that take awxColourPickerEvent (p. 194) argument:

EVT_COLOURPICKER_CHANGED(id, func) Generated whenever the selected
colour changes.

See also
wxColourPickerCtrl (p. 193)

wxColourPickerEvent::wxColourPickerEvent

wxColourPickerEvent (wxObject* generator, int id, const wxColour& colour)

The constructor is not normally used by the user code.

wxColourPickerEvent::GetColour

wxColour GetColour () const

Retrieve the colour the user has just selected.

194



CHAPTER 7

wxColourPickerEvent::SetColour

void SetColour (const wxColour & pos)

Set the colour associated with the event.

wxClient

A wxClient object represents the client part of a client-server DDE-like (Dynamic Data
Exchange) conversation. The actual DDE-based implementation using wxDDEClient is
available on Windows only, but a platform-independent, socket-based version of this API
is available using wxTCPClient, which has the same API.

To create a client which can communicate with a suitable server, you need to derive a
class from wxConnection and another from wxClient. The custom wxConnection class will
intercept communications in a 'conversation' with a server, and the custom wxClient is
required so that a user-overriddenwxClient::OnMakeConnection (p. 196) member can
return a wxConnection of the required class, when a connection is made. Look at the IPC
sample and the Interprocess communications overview (p. 2172) for an example of how to
do this.

Derived from

wxClientBase
wxObiject (p. 1147)

Include files
<wx/ipc.h>
See also

wxServer (p. 1430), wxConnection (p. 277), Interprocess communications overview (p.
2172)

wxClient::wxClient

wxClient ()

Constructs a client object.

wxClient::MakeConnection

wxConnectionBase * MakeConnection (const wxString& host, const wxString&
service, const wxString& topic)

Tries to make a connection with a server by host (machine name under UNIX - use
'localhost' for same machine; ignored when using native DDE in Windows), service name
and topic string. If the server allows a connection, a wxConnection object will be returned.

195



CHAPTER 7

The type of wxConnection returned can be altered by overriding the
wxClient::OnMakeConnection (p. 196) member to return your own derived connection
object.

Under Unix, the service name may be either an integer port identifier in which case an
Internet domain socket will be used for the communications, or a valid file name (which
shouldn't exist and will be deleted afterwards) in which case a Unix domain socket is
created.

SECURITY NOTE: Using Internet domain sockets if extremely insecure for IPC as there is
absolutely no access control for them, use Unix domain sockets whenever possible!

wxClient::OnMakeConnection

wxConnectionBase * OnMakeConnection ()

Called by wxClient::MakeConnection (p. 195), by default this simply returns a new
wxConnection object. Override this method to return a wxConnection descendant
customised for the application.

The advantage of deriving your own connection class is that it will enable you to intercept
messages initiated by the server, such as wxConnection::OnAdvise (p. 279). You may
also want to store application-specific data in instances of the new class.

wxClient::ValidHost
bool ValidHost (const wxString& host)

Returns true if this is a valid host name, false otherwise. This always returns true under
MS Windows.

wxClientDC

A wxClientDC must be constructed if an application wishes to paint on the client area of a
window from outside an OnPaint event. This should normally be constructed as a
temporary stack object; don't store a wxClientDC object.

To draw on a window from within OnPaint, construct a wxPaintDC (p. 1163) object.

To draw on the whole window including decorations, construct a wxWindowDC (p. 1852)
object (Windows only).

Derived from

wxWindowDC (p. 1852)
wxDC (p. 456)wxObject (p. 1147)

Include files
<wx/dcclient.h>

See also

196



CHAPTER 7

wxDC (p. 456), wxMemoryDC (p. 1068), wxPaintDC (p. 1163), wxWindowDC (p. 1852),
wxScreenDC (p. 1406)

wxClientDC::wxClientDC

wxClientDC (wxWindow* window)

Constructor. Pass a pointer to the window on which you wish to paint.

wxClientData

All classes deriving from wxEvtHandler (p. 575)(such as all controls and wxApp (p. 45))
can hold arbitrary data which is here referred to as "client data". This is useful e.g. for
scripting languages which need to handle shadow objects for most of wxWidgets' classes
and which store a handle to such a shadow class as client data in that class. This data can
either be of type void - in which case the datacontainer does not take care of freeing the
data again or it is of type wxClientData or its derivatives. In that case the container (e.g. a
control) will free the memory itself later. Note that you must not assign both void data and
data derived from the wxClientData class to a container.

Some controls can hold various items and these controls can additionally hold client data
for each item. This is the case forwxChoice (p. 186), wxComboBox (p. 225)and wxListBox
(p. 974). wxTreeCtrl (p. 1727)has a specialized class wxTreeltemData (p. 1750)for each
item in the tree.

If you want to add client data to your own classes, you may use the mix-in class
wxClientDataContainer (p. 198).

Include files
<wx/cIntdata.h>
See also

wxEvtHandler (p. 575), wxTreeltemData (p. 1750),wxStringClientData (p. 1580),
wxClientDataContainer (p. 198)

wxClientData::wxClientData

wxClientData ()

Constructor.

wxClientData::~wxClientData

~wxClientData ()

197



CHAPTER 7

Virtual destructor.

wxClientDataContainer

This class is a mixin that provides storage and management of “client data." This data can
either be of type void - in which case the datacontainer does not take care of freeing the
data again or it is of type wxClientData or its derivatives. In that case the container will free
the memory itself later. Note that you must not assign both void data and data derived from
the wxClientData class to a container.

NOTE: This functionality is currently duplicated in wxEvtHandler in order to avoid having
more than one vtable in that class hierarchy.

See also

wxEvtHandler (p. 575), wxClientData (p. 197)
Derived from

No base class

Include files

<wx/clntdata.h>

Data structures

wxClientDataContainer::wxClientDataContainer

wxClientDataContainer ()

wxClientDataContainer::~wxClientDataContainer

~wxClientDataContainer ()

wxClientDataContainer::GetClientData

void* GetClientData () const

Get the untyped client data.

wxClientDataContainer::GetClientObject

wxClientData* GetClientObject () const

Get a pointer to the client data object.

wxClientDataContainer::SetClientData

198



CHAPTER 7

void SetClientData (void* data)

Set the untyped client data.

wxClientDataContainer::SetClientObject

void SetClientObject (wxClientData* data)

Set the client data object. Any previous object will be deleted.

wxClipboard

A class for manipulating the clipboard. Note that this is not compatible with the clipboard
class from wxWidgets 1.xx, which has the same name but a different implementation.

To use the clipboard, you call member functions of the global wxTheClipboard object.
See also the wxDataObject overview (p. 2148) for further information.

Call wxClipboard::Open (p. 201) to get ownership of the clipboard. If this operation returns
true, you now own the clipboard. Call wxClipboard::SetData (p. 201) to put data on the
clipboard, or wxClipboard::GetData (p. 201) to retrieve data from the clipboard. Call
wxClipboard::Close (p. 200) to close the clipboard and relinquish ownership. You should
keep the clipboard open only momentarily.

For example:

/I Write some text to the clipboard
if (wxTheClipboard->Open())

/I This data objects are held by the clipboard,

/I so do not delete them in the app.

wxTheClipboard->SetData( new wxTextDataObject(" Some text") );
wxTheClipboard->Close();

}

/l Read some text
if (wxTheClipboard->Open())

if (wxTheClipboard->IsSupported( wxDF_TEXT ))
wxTextDataObject data;
wxTheClipboard->GetData( data );
wxMessageBox( data.GetText() );

wxTheClipboard->Close();
}

Derived from
wxObiject (p. 1147)

Include files

199



CHAPTER 7

<wx/clipbrd.h>
See also

Drag and drop overview (p. 2147), wxDataObject (p. 311)

wxClipboard::wxClipboard

wxClipboard ()

Constructor.

wxClipboard::~wxClipboard

~wxClipboard ()

Destructor.

wxClipboard::AddData

bool AddData (wxDataObject* data)

Call this function to add the data object to the clipboard. You may call this function
repeatedly after having cleared the clipboard using wxClipboard::Clear (p. 200).

After this function has been called, the clipboard owns the data, so do not delete the data
explicitly.

See also

wxClipboard::SetData (p. 201)

wxClipboard::Clear

void Clear()

Clears the global clipboard object and the system's clipboard if possible.

wxClipboard::Close

void Close ()

Call this function to close the clipboard, having opened it with wxClipboard::Open (p. 201).

wxClipboard::Flush

bool Flush ()

Flushes the clipboard: this means that the data which is currently on clipboard will stay

200



CHAPTER 7

available even after the application exits (possibly eating memory), otherwise the
clipboard will be emptied on exit. Returns false if the operation is unsuccessful for any
reason.

wxClipboard::GetData

bool GetData(wxDataObject& data)

Call this function to fill data with data on the clipboard, if available in the required format.
Returns true on success.

wxClipboard::IsOpened

bool IsOpened () const

Returns true if the clipboard has been opened.

wxClipboard::IsSupported

bool IsSupported (const wxDataFormat& format)

Returns true if there is data which matches the data format of the given data object
currently available (IsSupported sounds like a misnomer, FIXME: better deprecate this
name?) on the clipboard.

wxClipboard::Open

bool Open|()

Call this function to open the clipboard before calling wxClipboard::SetData (p. 201) and
wxClipboard::GetData (p. 201).

Call wxClipboard::Close (p. 200) when you have finished with the clipboard. You should
keep the clipboard open for only a very short time.

Returns true on success. This should be tested (as in the sample shown above).

wxClipboard::SetData

bool SetData(wxDataObject* data)

Call this function to set the data object to the clipboard. This function will clear all previous
contents in the clipboard, so calling it several times does not make any sense.

After this function has been called, the clipboard owns the data, so do not delete the data
explicitly.

See also

wxClipboard::AddData (p. 200)

201



CHAPTER 7

wxClipboard::UsePrimarySelection

void UsePrimarySelection (bool primary = true)

On platforms supporting it (currently only GTK), selects the so called PRIMARY
SELECTION as the clipboard as opposed to the normal clipboard, if primary is true.

wxClipboardTextEvent

This class represents the events generated by a control (typically a wxTextCtrl (p. 1632)
but other windows can generate these events as well) when its content gets copied or cut
to, or pasted from the clipboard. There are three types of corresponding events
WXEVT_COMMAND_TEXT_COPY, wxEVT_COMMAND_TEXT_CUT and
WXEVT_COMMAND_TEXT_PASTE.

If any of these events is processed (without being skipped) by an event handler, the
corresponding operation doesn't take place which allows to prevent the text from being
copied from or pasted to a control. It is also possible to examine the clipboard contents in
the PASTE event handler and transform it in some way before inserting in a control -- for
example, changing its case or removing invalid characters.

Finally notice that a CUT event is always preceded by the COPY event which makes it
possible to only process the latter if it doesn't matter if the text was copied or cut.

Remarks

These events are currently only generated by wxComboBox (p. 225) and under Windows
and wxTextCtrl (p. 1632) under Windows and GTK and are not generated for the text
controls with wxTE_RICH style under Windows.

Derived from

wxCommandEvent (p. 250)
wxEvent (p. 572)
wxObiject (p. 1147)

Include files
<wx/event.h>
Event handling

To process this type of events use the following event handling macros. Thefunc
parameter must be a member functions that takes an argument of
typewxClipboardTextEvent &

EVT_TEXT_COPY(id, func) Some or all of the controls
content was copied to the
clipboard.

EVT_TEXT_CUT(id, func) Some or all of the controls

content was cut (i.e. copied

202



CHAPTER 7

and deleted).

EVT_TEXT_PASTE(id, func) Clipboard content was pasted
into the control.

See also

wxClipboard (p. 199)

wxClipboardTextEvent::wxClipboardTextEvent

wxClipboardTextEvent (wxEventType commandType = wxEVT_NULL, int id = 0)

wxCloseEvent

This event class contains information about window and session close events.

The handler function for EVT_CLOSE is called when the user has tried to close a a frame
or dialog box using the window manager (X) or system menu (Windows). It can also be
invoked by the application itself programmatically, for example by calling the
wxWindow::Close (p. 1801) function.

You should check whether the application is forcing the deletion of the window using
wxCloseEvent::CanVeto (p. 204). If this is false , you must destroy the window using
wxWindow::Destroy (p. 1803). If the return value is true, it is up to you whether you
respond by destroying the window.

If you don't destroy the window, you should call wxCloseEvent::Veto (p. 205) to let the
calling code know that you did not destroy the window. This allows the wxWindow::Close
(p. 1801) function to return true or false depending on whether the close instruction
was honoured or not.

Derived from
wxEvent (p. 572)
Include files
<wx/event.h>
Event table macros

To process a close event, use these event handler macros to direct input to member
functions that take a wxCloseEvent argument.

EVT_CLOSE(func) Process a close event, supplying the member
function. This event applies to wxFrame and
wxDialog classes.

EVT_QUERY_END_SESSION(func) Process a query end session event, supplying

203



CHAPTER 7

the member function. This event applies to
WxApp only.

EVT_END_SESSION(func) Process an end session event, supplying the
member function. This event applies to wxApp
only.

See also
wxWindow::Close (p. 1801), Window deletion overview (p. 2086)

wxCloseEvent::.wxCloseEvent

wxCloseEvent (WXTYPE commandEventType =0, int id = 0)

Constructor.

wxCloseEvent::CanVeto

bool CanVeto ()

Returns true if you can veto a system shutdown or a window close event. Vetoing a
window close event is not possible if the calling code wishes to force the application to exit,
and so this function must be called to check this.

wxCloseEvent::GetLoggingOff

bool GetLoggingOff () const

Returns true if the user is just logging off or false if the system is shutting down. This
method can only be called for end session and query end session events, it doesn't make
sense for close window event.

wxCloseEvent::SetCanVeto

void SetCanVeto (bool canVeto)

Sets the 'can veto' flag.
wxCloseEvent::SetForce

void SetForce (bool force) const
Sets the 'force’ flag.

wxCloseEvent::SetLoggingOff

void SetlLoggingOff (bool loggingOff) const
Sets the 'logging off' flag.

204



CHAPTER 7

wxCloseEvent::Veto

void Veto (bool veto = true)

Call this from your event handler to veto a system shutdown or to signal to the calling
application that a window close did not happen.

You can only veto a shutdown if wxCloseEvent::CanVeto (p. 204) returns true.

wxCmdLineParser

wxCmdLineParser is a class for parsing the command line.
It has the following features:
1. distinguishes options, switches and parameters; allows option grouping
2. allows both short and long options
3. automatically generates the usage message from the command line description
4. does type checks on the options values (number, date, ...).
To use it you should follow these steps:

1. construct (p. 207) an object of this class giving it the command line to parse and
optionally its description or use AddXXX() functions later

2. call Parse()
3. use Found() to retrieve the results
In the documentation below the following terminology is used:

switch This is a boolean option which can be given or
not, but which doesn't have any value. We use
the word switch to distinguish such boolean
options from more generic options like those
described below. For example, -v _might be a
switch meaning "enable verbose mode".

option Option for us here is something which comes
with a value 0 unlike a switch. For example,
-o:filename might be an option which allows
to specify the name of the output file.

parameter This is a required program argument.
Derived from
No base class

Include files

205



CHAPTER 7

<wx/cmdline.h>

Constants

The structure wxCmdLineEntryDesc is used to describe the one command line switch,
option or parameter. An array of such structures should be passed to SetDesc() (p. 211).
Also, the meanings of parameters of the AddXXX() functions are the same as of the
corresponding fields in this structure:

struct wxCmdLineEntryDesc

{
wxCmdLineEntryType kind;

const wxChar *shortName;
const wxChar *longName;
const wxChar *description;
wxCmdLineParamType type;
int flags;

h

The type of a command line entity is in the kind field and may be one of the following
constants:

enum wxCmdLineEntryType

{
WXCMD_LINE_SWITCH,

wxCMD_LINE_OPTION,
wxCMD_LINE_PARAM,
wxCMD_LINE_NONE /I use this to terminat e the list

The field shortName is the usual, short, name of the switch or the option.longName is the
corresponding long name or NULL if the option has no long name. Both of these fields are
unused for the parameters. Both the short and long option names can contain only letters,
digits and the underscores.

description is used by the Usage() (p. 212) method to construct a help message
explaining the syntax of the program.

The possible values of type which specifies the type of the value accepted by an option or
parameter are:

enum wxCmdLineParamType

{
wxCMD_LINE_VAL_STRING, // default
wxCMD_LINE_VAL NUMBER,
wxCMD_LINE_VAL DATE,
wxCMD_LINE_VAL NONE

Finally, the flags field is a combination of the following bit masks:

206



CHAPTER 7

enum
wXCMD_LINE_OPTION_MANDATORY =0x01, // this opt ionmustbegiven
wxCMD_LINE_PARAM_OPTIONAL=0x02,//thepara metermaybeomitted
wWXCMD_LINE_PARAM_MULTIPLE =0x04, // the para meter may be
repeated
wXCMD_LINE_OPTION_HELP=0x08,//thisopt ionisahelprequest
wWXCMD_LINE_NEEDS_SEPARATOR =0x10, // must hav e sep before the
value
}

Notice that by default (i.e. if flags are just 0), options are optional (sic) and each call to
AddParam() (p. 212) allows one more parameter - this may be changed by giving
non-default flags to it, i.e. use wxCMD_LINE_OPTION_MANDATORYrequire that the
option is given and wxCMD_LINE_PARAM_OPTIONAD make a parameter optional. Also,
wxCMD_LINE_PARAM_MULTIPLBEay be specified if the programs accepts a variable
number of parameters - but it only can be given for the last parameter in the command line
description. If you use this flag, you will probably need to use GetParamCount (p. 213) to
retrieve the number of parameters effectively specified after calling Parse (p. 212).

The last flag wxCMD_LINE_NEEDS_SEPARAT@RBnN be specified to require a separator
(either a colon, an equal sign or white space) between the option name and its value. By
default, no separator is required.

See also

WxApp::argc (p. 46) and wxApp::argv (p. 46)
console sample

Construction

Before Parse (p. 212) can be called, the command line parser object must have the
command line to parse and also the rules saying which switches, options and parameters
are valid - this is called command line description in what follows.

You have complete freedom of choice as to when specify the required information, the
only restriction is that it must be done before calling Parse (p. 212).

To specify the command line to parse you may use either one of constructors accepting it
(wxCmdLineParser(argc, argv) (p. 209) or wxCmdLineParser (p. 209) usually) or, if you
use the default constructor (p. 208), you can do it later by calling SetCmdLine (p. 210).

The same holds for command line description: it can be specified either in the constructor
(without command line (p. 209) or together with it (p. 209)) or constructed later using either
SetDesc (p. 211) or combination of AddSwitch (p. 211), AddOption (p. 212) and
AddParam (p. 212) methods.

Using constructors or SetDesc (p. 211) uses a (usually const static ) table containing
the command line description. If you want to decide which options to accept during the

207



CHAPTER 7

run-time, using one of the AddXXX() functions above might be preferable.

Customization

wxCmdLineParser has several global options which may be changed by the application.
All of the functions described in this section should be called before Parse (p. 212).

First global option is the support for long (also known as GNU-style) options. The long
options are the ones which start with two dashes ("--" ) and look like this: --verbose , i.e.
they generally are complete words and not some abbreviations of them. As long options
are used by more and more applications, they are enabled by default, but may be disabled
with DisableLongOptions (p. 210).

Another global option is the set of characters which may be used to start an option
(otherwise, the word on the command line is assumed to be a parameter). Under Unix,
' is always used, but Windows has at least two common choices for this: - and'/'
Some programs also use '+' . The default is to use what suits most the current platform,
but may be changed with SetSwitchChars (p. 210) method.

Finally, SetLogo (p. 211) can be used to show some application-specific text before the
explanation given by Usage (p. 212) function.

Parsing command line

After the command line description was constructed and the desired options were set, you
can finally call Parse (p. 212) method. It returns 0 if the command line was correct and was
parsed, -1 if the help option was specified (this is a separate case as, normally, the
program will terminate after this) or a positive number if there was an error during the
command line parsing.

In the latter case, the appropriate error message and usage information are logged by
wxCmdLineParser itself using the standard wxWidgets logging functions.

Getting results

After calling Parse (p. 212) (and if it returned 0), you may access the results of parsing
using one of overloaded Found() methods.

For a simple switch, you will simply call Found (p. 212) to determine if the switch was given
or not, for an option or a parameter, you will call a version of Found() which also returns
the associated value in the provided variable. All Found() functions return true if the
switch or option were found in the command line or false if they were not specified.

wxCmdLineParser::wxCmdLineParser

wxCmdLineParser ()

Default constructor. You must use SetCmdLine (p. 210) later.

208



CHAPTER 7

wxCmdLineParser::.wxCmdLineParser
wxCmdLineParser (int argc, char** argv)
wxCmdLineParser (int argc, wchar_t** argv)

Constructor specifies the command line to parse. This is the traditional (Unix) command
line format. The parameters argc and argv have the same meaning as for main()
function.

The second overloaded constructor is only available in Unicode build. The first one is
available in both ANSI and Unicode modes because under some platforms the command
line arguments are passed as ASCII strings even to Unicode programs.

wxCmdLineParser::wxCmdLineParser

wxCmdLineParser (constwxString& cmdline)

Constructor specifies the command line to parse in Windows format. The parameter
cmdline has the same meaning as the corresponding parameter of WinMain()

wxCmdLineParser::wxCmdLineParser

wxCmdLineParser (const wxCmdLineEntryDesc* desc)

Same as wxCmdLineParser (p. 208), but also specifies the command line description (p.
211).

wxCmdLineParser::wxCmdLineParser

wxCmdLineParser (const wxCmdLineEntryDesc* desc, int argc, char** argv)

Same as wxCmdLineParser (p. 209), but also specifies the command line description (p.
211).

wxCmdLineParser::wxCmdLineParser

wxCmdLineParser (const wxCmdLineEntryDesc* desc, const wxString& cmdline)

Same as wxCmdLineParser (p. 209), but also specifies the command line description (p.
211).

wxCmdLineParser::ConvertStringToArgs

static wxArrayString ConvertStringToArgs (const wxChar *cmdline)

Breaks down the string containing the full command line in words. The words are
separated by whitespace. The quotes can be used in the input string to quote the white
space and the back slashes can be used to quote the quotes.

209



CHAPTER 7

wxCmdLineParser::SetCmdLine
void SetCmdLine (int argc, char** argv)
void SetCmdLine (int argc, wchar_t** argv)

Set command line to parse after using one of the constructors which don't do it. The
second overload of this function is only available in Unicode build.

See also

wxCmdLineParser (p. 209)

wxCmdLineParser::SetCmdLine

void SetCmadLine (const wxString& cmdline)
Set command line to parse after using one of the constructors which don't do it.
See also

wxCmdLineParser (p. 209)

wxCmdLineParser::~wxCmdLineParser
~wxCmdLineParser ()

Frees resources allocated by the object.

NB: destructor is not virtual, don't use this class polymorphically.

wxCmdLineParser::SetSwitchChars

void SetSwitchChars (const wxString& switchChars)

switchChars contains all characters with which an option or switch may start. Default is
" for Unix, "-/" for Windows.

wxCmdLineParser::EnableLongOptions

void EnableLongOptions (bool enable = true)

Enable or disable support for the long options.

As long options are not (yet) POSIX-compliant, this option allows to disable them.
See also

Customization (p. 208) and AreLongOptionsEnabled (p. 211)

wxCmdLineParser::DisableLongOptions

210



CHAPTER 7

void DisableLongOptions ()
Identical to EnableLongOptions(false) (p. 210).

wxCmdLineParser::AreLongOptionsEnabled

bool AreLongOptionsEnabled ()

Returns true if long options are enabled, otherwise false.
See also

EnableLongOptions (p. 210)

wxCmdLineParser::SetLogo

void SetlLogo (const wxString& logo)

logo is some extra text which will be shown by Usage (p. 212) method.

wxCmdLineParser::SetDesc

void SetDesc (const wxCmdLineEntryDesc* desc)
Construct the command line description
Take the command line description from the wxCMD_LINE_NONE terminated table.

Example of usage:

static const wxCmdLineEntryDesc cmdLineDesc|[] =

{
{wxCMD_LINE_SWITCH, "v", "verbose", "be verbos e"},
{wxCMD_LINE_SWITCH, "q", "quiet", "be quiet" 1,
{wxCMD_LINE_OPTION, "0", "output", "output fi le"},
{ wxCMD_LINE_OPTION, "i", "input", "input dir "1
{wxCMD_LINE_OPTION, "s", "size", "output bl ock size",
wxCMD_LINE_VAL_NUMBER },
{wxCMD_LINE_OPTION, "d", "date", "output fi le date"”,

wxCMD_LINE_VAL_DATE },

{ WxCMD_LINE_PARAM, NULL, NULL, "input file",
WXCMD_LINE_VAL_STRING, wxCMD_LINE_PARAM_MULTIPLE },

{ WxCMD_LINE_NONE }
h

wxCmdLineParser parser;

parser.SetDesc(cmdLineDesc);

wxCmdLineParser::AddSwitch

211



CHAPTER 7

void AddSwitch (const wxString& name, const wxString& Ing = wxEmptyString, const
wxString& desc = wxEmptyString, int flags = 0)

Add a switch name with an optional long name Ing (no long name if it is empty, which is
default), description desc and flags flags to the command line description.

wxCmdLineParser::AddOption

void AddOption (const wxString& name, const wxString& Ing = wxEmptyString, const
wxString& desc = wxEmptyString, wxCmdLineParamType type =
wxCMD_LINE_VAL_STRING, int flags = 0)

Add an option name with an optional long name Ing (no long name if it is empty, which is
default) taking a value of the given type (string by default) to the command line description.

wxCmdLineParser::AddParam

void AddParam (const wxString& desc = wxEmptyString, wxCmdLineParamType type
= wxCMD_LINE_VAL_STRING, int flags = 0)

Add a parameter of the given type to the command line description.

wxCmdLineParser::Parse

int Parse (bool giveUsage =tr ue)

Parse the command line, return O if ok, -1 if "-h" or "--help" option was encountered
and the help message was given or a positive value if a syntax error occurred.

Parameters
giveUsage

If true (default), the usage message is given if a syntax error was encountered
while parsing the command line or if help was requested. If false , only error
messages about possible syntax errors are given, use Usage (p. 212) to show the
usage message from the caller if needed.

wxCmdLineParser::Usage

void Usage|()

Give the standard usage message describing all program options. It will use the options
and parameters descriptions specified earlier, so the resulting message will not be helpful
to the user unless the descriptions were indeed specified.

See also

SetLogo (p. 211)

wxCmdLineParser::Found

212



CHAPTER 7

bool Found (const wxString& name) const

Returns true if the given switch was found, false otherwise.

wxCmdLineParser::Found

bool Found (const wxString& name, wxString* value) const

Returns true if an option taking a string value was found and stores the value in the
provided pointer (which should not be NULL).

wxCmdLineParser::Found

bool Found (const wxString& name, long* value) const

Returns true if an option taking an integer value was found and stores the value in the
provided pointer (which should not be NULL).

wxCmdLineParser::Found

bool Found (const wxString& name, wxDateTime* value) const

Returns true if an option taking a date value was found and stores the value in the
provided pointer (which should not be NULL).

wxCmdLineParser::GetParamCount

size_t GetParamCount () const

Returns the number of parameters found. This function makes sense mostly if you had
used wxCMD_LINE_PARAM_MULTIPLHag.

wxCmdLineParser::GetParam

wxString GetParam (size_t n = Qu) const
Returns the value of Nth parameter (as string only for now).
See also

GetParamCount (p. 213)

wxCollapsiblePane

A collapsible pane is a container with an embedded button-like control which can be used
by the user to collapse or expand the pane's contents.

Once constructed you should use the GetPane (p. 216)function to access the pane and
add your controls inside it (i.e. use theGetPane (p. 216)'s returned pointer as parent for the
controls which must go in the pane, NOT the wxCollapsiblePane itself!).

213



CHAPTER 7

Note that because of its nature of control which can dynamically (and drastically) change
its size at run-time under user-input, when putting wxCollapsiblePane inside a wxSizer (p.
1444) you should be careful to add it with a proportion value of zero; this is because
otherwise all other windows with non-null proportion values would automatically get
resized each time the user expands or collapse the pane window resulting usually in a
weird, flickering effect.

Usage sample:

wxCollapsiblePane *collpane = new wxCollapsible Pane(this,
wxID_ANY, wxT("Details:"));

/laddthepanewithazeroproportionvalueto the'sz'sizerwhich
contains it

sz->Add(collpane, 0, wxGROW|wxALL, 5);

/Inow add a test label in the collapsible pane using a sizerto
layout it:

wxWindow *win = collpane->GetPane();

wxSizer *paneSz = new wxBoxSizer(wWxVERTICAL);

paneSz->Add(new wxStaticText(win, wxID_ANY, wxT ("test!™), 1,
WXGROWI|wXALL, 2);

win->SetSizer(paneSz);
paneSz->SetSizeHints(win);

It is only available if wxUSE_COLLPANIES set to 1 (the default).
Derived from

wxControl (p. 285)
wxWindow (p. 1794)
wxEvtHandler (p. 575)
wxObiject (p. 1147)

Include files

<wx/collpane.h>

Window styles

WXCP_DEFAULT_STYLE The default style: 0.
Event handling

To process a collapsible pane event, use these event handler macros to direct input to
member functions that take a wxCollapsiblePaneEvent (p. 216) argument.

EVT_COLLAPSIBLEPANE_CHANGED(id, func)  The user showed or hidden the
collapsible pane.

See also

wxPanel (p. 1169),
wxCollapsiblePaneEvent (p. 216)

214



CHAPTER 7

wxCollapsiblePane::wxCollapsiblePane

wxCollapsiblePane (wxWindow * parent, wxWindowID id, const wxString& label,
const wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long
style = wxCP_DEFAULT_STYLE, const wxValidator& validator =
wxDefaultValidator,const wxString& name = "collapsiblePane")

Initializes the object and calls Create (p. 215) with all the parameters.

wxCollapsiblePane::Create

bool Create (wxWindow * parent, wxWindowlID id, const wxString& label, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxCP_DEFAULT_STYLE, const wxValidator& validator = wxDefaultValidator,const
wxString& name = "collapsiblePane")

Parameters
parent

Parent window, must not be non-NULL

The identifier for the control.
label

The initial label shown in the button which allows the user to expand or collapse the
pane window.

pos
Initial position.
size
Initial size.
style
The window style, see wxCP_* flags.
validator
Validator which can be used for additional date checks.
name
Control name.

Return value

215



CHAPTER 7

true if the control was successfully created or false

wxCollapsiblePane::IsCollapsed

bool IsCollapsed () const

Returns true if the pane window is currently hidden.

wxCollapsiblePane::IsExpanded

bool IsExpanded () const

Returns true if the pane window is currently shown.

wxCollapsiblePane::Collapse

void Collapse (bool collapse = true)
Collapses or expands the pane window.
wxCollapsiblePane::Expand

void Expand ()

Same as Col | apse (p. 216)(false)

wxCollapsiblePane::GetPane

wxWindow * GetPane () const

if creation failed.

Returns a pointer to the pane window. Add controls to the returned wxWindow (p. 1794)to

make them collapsible.

wxCollapsiblePaneEvent

This event class is used for the events generated bywxCollapsiblePane (p. 215).

Derived from

wxCommandEvent (p. 250)
wxEvent (p. 572)
wxObiject (p. 1147)

Include files
<wx/collpane.h>

Event handling

To process input from a wxCollapsiblePane, use one of these event handler macros to

216



CHAPTER 7

direct input to member function that take awxCollapsiblePaneEvent (p. 216) argument:

EVT_COLLAPSIBLEPANE_CHANGED(id, func)  The user showed or hidden the
collapsible pane.

See also
wxCollapsiblePane (p. 215)

wxCollapsiblePaneEvent::wxCollapsiblePaneEvent

wxCollapsiblePaneEvent (wxObject * generator, int id, bool collapsed)

The constructor is not normally used by the user code.

wxCollapsiblePaneEvent::GetCollapsed

bool GetCollapsed () const

Returns true if the pane has been collapsed.

wxCollapsiblePaneEvent::SetCollapsed

void SetCollapsed (bool collapsed)

Sets this as a collapsed pane event (if collapsed is true ) or as an expanded pane event
(if collapsed is false ).

wxColour

A colour is an object representing a combination of Red, Green, and Blue (RGB) intensity
values, and is used to determine drawing colours. See the entry for wxColourDatabase (p.
223) for how a pointer to a predefined, named colour may be returned instead of creating
a new colour.

Valid RGB values are in the range 0 to 255.

You can retrieve the current system colour settings with wxSystemSettings (p. 1592).
Derived from

wxObiject (p. 1147)

Include files

<wx/colour.h>

Predefined objects

Objects:

217



CHAPTER 7

wxNullColour
Pointers:

WXxBLACK
WXWHITE
WXRED

wxBLUE
WXGREEN
WXCYAN
WXLIGHT _GREY

See also

wxColourDatabase (p. 223), wxPen (p. 1175), wxBrush (p. 150), wxColourDialog (p. 224),
wxSystemSettings (p. 1592)

wxColour::wxColour

wxColour ()
Default constructor.

wxColour (unsigned char red, unsigned char green, unsigned char blue, unsigned
char alpha=wxALPHA OPAQUE)

Constructs a colour from red, green, blue and alpha values.
wxColour (const wxString& colourNname)
Constructs a colour using the given string. See Set (p. 220) for more info.
wxColour (const wxColour& colour)
Copy constructor.
Parameters
red
The red value.
green
The green value.
blue
The blue value.
alpha
The alpha value. Alpha values range from 0 (WXALPHA TRANSPARENT) to 255

218



CHAPTER 7

(WXALPHA_OPAQUE).
colourName
The colour name.
colour
The colour to copy.
See also
wxColourDatabase (p. 223)
wxPython note: Constructors supported by wxPython are:
wxColour(red=0, green=0, blue=0)

wxNamedColour(name)

wxColour::Alpha

unsigned char Alpha () const

Returns the alpha value, on platforms where alpha is not yet supported, this always
returns wxALPHA OPAQUE.

wxColour::Blue

unsigned char Blue () const

Returns the blue intensity.

wxColour::GetAsString

wxString GetAsString (long flags) const
Converts this colour to a wxString (p. 1552)using the given flags.

The supported flags are wxC2S_NAME , to obtain the colour name (e.g.
wxColour(255,0,0) -> "red" ), wxC2S_CSS_SYNTAX, to obtain the colour in the
"rgb(r,g,b)" syntax (e.g. wxColour(255,0,0) -> "rgh(255,0,0)" ), and

wxC2S HTML_SYNTAX, to obtain the colour as "#" followed by 6 hexadecimal digits
(e.g. wxColour(255,0,0) -> "#FF0000" ).

This function never fails and always returns a non-empty string.

This function is new since wxWidgets version 2.7.0

wxColour::GetPixel

219



CHAPTER 7

long GetPixel () const

Returns a pixel value which is platform-dependent. On Windows, a COLORREF is
returned. On X, an allocated pixel value is returned.

-1 is returned if the pixel is invalid (on X, unallocated).

wxColour::Green

unsigned char Green() const

Returns the green intensity.

wxColour::1sOk

bool I1sOk() const

Returns true if the colour object is valid (the colour has been initialised with RGB values).

wxColour::Red

unsigned char Red() const

Returns the red intensity.

wxColour::Set

void Set(unsigned char red, unsigned char green, unsigned char blue, unsigned
char alpha=wxALPHA OPAQUE)

void Set(unsigned long RGB)
bool Set(const wxString & str)

Sets the RGB intensity values using the given values (first overload), extracting them from
the packed long (second overload), using the given string (third overloard).

When using third form, Set() accepts: colour names (those listed in
wxTheColourDatabase (p. 223)), the CSS-like "RGB(r,g,b)" syntax (case insensitive)
and the HTML-like syntax (i.e. "#" followed by 6 hexadecimal digits for red, green, blue
components).

Returns true if the conversion was successful, false otherwise.

This function is new since wxWidgets version 2.7.0

wxColour::operator =

wxColour& operator = (const wxColour& colour)

Assignment operator, taking another colour object.

220



CHAPTER 7

wxColour& operator = (const wxString& colourName)
Assignment operator, using a colour name to be found in the colour database.
See also

wxColourDatabase (p. 223)

wxColour::operator ==

bool operator == (const wxColour& colour)

Tests the equality of two colours by comparing individual red, green, blue colours and
alpha values.

wxColour::operator !=

bool operator != (const wxColour& colour)

Tests the inequality of two colours by comparing individual red, green, blue colours and
alpha values.

wxColourData

This class holds a variety of information related to colour dialogs.
Derived from

wxObiject (p. 1147)

Include files

<wx/cmndata.h>

See also

wxColour (p. 217), wxColourDialog (p. 224), wxColourDialog overview (p. 2125)

wxColourData::wxColourData
wxColourData ()

Constructor. Initializes the custom colours to wxNullColour , the data colour setting to
black, and the choose full setting to true.

wxColourData::~wxColourData

~wxColourData ()

221



CHAPTER 7

Destructor.

wxColourData::GetChooseFull

bool GetChooseFull () const

Under Windows, determines whether the Windows colour dialog will display the full dialog
with custom colour selection controls. Under PalmOS, determines whether colour dialog

will display full rgb colour picker or only available palette indexer. Has no meaning under
other platforms.

The default value is true.

wxColourData::GetColour

wxColour& GetColour () const
Gets the current colour associated with the colour dialog.

The default colour is black.

wxColourData::GetCustomColour

wxColour& GetCustomColour (int i) const

Gets the ith custom colour associated with the colour dialog. i should be an integer
between 0 and 15.

The default custom colours are invalid colours.

wxColourData::SetChooseFull

void SetChooseFull (const bool flag)

Under Windows, tells the Windows colour dialog to display the full dialog with custom
colour selection controls. Under other platforms, has no effect.

The default value is true.
wxColourData::SetColour

void SetColour (const wxColour& colour)
Sets the default colour for the colour dialog.
The default colour is black.
wxColourData::SetCustomColour

void SetCustomColour (int i, const wxColour& colour)

222



CHAPTER 7

Sets the ith custom colour for the colour dialog. i should be an integer between 0 and 15.

The default custom colours are invalid colours.

wxColourData::operator =

void operator = (const wxColourData& data)

Assignment operator for the colour data.

wxColourDatabase

wxWidgets maintains a database of standard RGB colours for a predefined set of named
colours (such as "BLACK", "LIGHT GREY"). The application may add to this set if desired
by usingAddColour (p. 224) and may use it to look up colours by names using Find (p.
224) or find the names for the standard colour suing FindName (p. 224).

There is one predefined instance of this class calledwxTheColourDatabase .
Derived from

None

Include files

<wx/gdicmn.h>

Remarks

The standard database contains at least the following colours:

AQUAMARINE, BLACK, BLUE, BLUE VIOLET, BROWN, CADET BLUE, CORAL,
CORNFLOWER BLUE, CYAN, DARK GREY, DARK GREEN, DARK OLIVE GREEN,
DARK ORCHID, DARK SLATE BLUE, DARK SLATE GREY DARK TURQUOISE, DIM
GREY, FIREBRICK, FOREST GREEN, GOLD, GOLDENROD, GREY, GREEN, GREEN
YELLOW, INDIAN RED, KHAKI, LIGHT BLUE, LIGHT GREY, LIGHT STEEL BLUE, LIME
GREEN, MAGENTA, MAROON, MEDIUM AQUAMARINE, MEDIUM BLUE, MEDIUM
FOREST GREEN, MEDIUM GOLDENROD, MEDIUM ORCHID, MEDIUM SEA GREEN,
MEDIUM SLATE BLUE, MEDIUM SPRING GREEN, MEDIUM TURQUOISE, MEDIUM
VIOLET RED, MIDNIGHT BLUE, NAVY, ORANGE, ORANGE RED, ORCHID, PALE
GREEN, PINK, PLUM, PURPLE, RED, SALMON, SEA GREEN, SIENNA, SKY BLUE,
SLATE BLUE, SPRING GREEN, STEEL BLUE, TAN, THISTLE, TURQUOISE, VIOLET,
VIOLET RED, WHEAT, WHITE, YELLOW, YELLOW GREEN.

See also

wxColour (p. 217)

wxColourDatabase::wxColourDatabase

223



CHAPTER 7

wxColourDatabase ()

Constructs the colour database. It will be initialized at the first use.

wxColourDatabase::AddColour

void AddColour (const wxString& colourName, const wxColour& colour)
void AddColour (const wxString& colourName, wxColour* colour)

Adds a colour to the database. If a colour with the same name already exists, it is
replaced.

Please note that the overload taking a pointer is deprecated and will be removed in the
next wxWidgets version, please don't use it.

wxColourDatabase::Find

wxColour Find (const wxString& colourName)

Finds a colour given the name. Returns an invalid colour object (that is, such that its Ok()
(p. 220) method returns false ) if the colour wasn't found in the database.

wxColourDatabase::FindName

wxString FindName (const wxColour& colour) const

Finds a colour name given the colour. Returns an empty string if the colour is not found in
the database.

wxColourDialog

This class represents the colour chooser dialog.
Derived from

wxDialog (p. 496)
wxWindow (p. 1794)
wxEvtHandler (p. 575)
wxObiject (p. 1147)

Include files
<wx/colordlg.h>
See also

wxColourDialog Overview (p. 2125),
wxColour (p. 217),

wxColourData (p. 221),
wxGetColourFromUser (p. 1934)

224



CHAPTER 7

wxColourDialog::wxColourDialog

wxColourDialog (wxWindow* parent, wxColourData* data = NULL)

Constructor. Pass a parent window, and optionally a pointer to a block of colour data,
which will be copied to the colour dialog's colour data. Custom colours from colour data
object will be be used in dialog's colour palette. Invalid entries in custom colours list will be
ignored on some platforms (GTK) or replaced with white colour on platforms where
custom colours palette has fixed size (MSW).

See also

wxColourData (p. 221)

wxColourDialog::~wxColourDialog

~wxColourDialog ()

Destructor.

wxColourDialog::Create

bool Create (wxWindow* parent, wxColourData* data = NULL)

Same as constructor (p. 225).

wxColourDialog::GetColourData

wxColourData& GetColourData ()

Returns the colour data (p. 221) associated with the colour dialog.

wxColourDialog::ShowModal

int ShowModal ()

Shows the dialog, returning wxID_OK if the user pressed OK, and wxID_CANCEL
otherwise.

wxComboBox

A combobox is like a combination of an edit control and a listbox. It can be displayed as
static list with editable or read-only text field; or a drop-down list with text field; or a
drop-down list without a text field.

A combobox permits a single selection only. Combobox items are numbered from zero.

If you need a customized combobox, have a look at wxComboCitrl (p.

225



CHAPTER 7

232),wxOwnerDrawnComboBox (p. 1151), wxComboPopup (p. 246)and the ready-to-use
wxBitmapComboBox (p. 135).

Derived from

wxControlWithltems (p. 286)
wxControl (p. 285)
wxWindow (p. 1794)
wxEvtHandler (p. 575)
wxObiject (p. 1147)

Include files
<wx/combobox.h>
Window styles

wxCB_SIMPLE Creates a combobox with a permanently
displayed list. Windows only.

wxCB_DROPDOWN Creates a combobox with a drop-down list.

wxCB_READONLY Same as wxCB_DROPDOWN but only the
strings specified as the combobox choices can
be selected, it is impossible to select (even from
a program) a string which is not in the choices

list.
wxCB_SORT Sorts the entries in the list alphabetically.
WXTE_PROCESS_ENTER The control will generate the event

WXEVT_COMMAND_TEXT_ENTER (otherwise
pressing Enter key is either processed internally
by the control or used for navigation between
dialog controls). Windows only.

See also window styles overview (p. 2086).
Event handling

EVT_COMBOBOX(id, func) Process a
WXEVT_COMMAND_COMBOBOX_SELECTE
D event, when an item on the list is selected.
Note that callingGetValue (p. 230) returns the
new value of selection.

EVT_TEXT(id, func) Process a
WXEVT_COMMAND_TEXT_UPDATED event,
when the combobox text changes.

EVT_TEXT_ENTER(id, func) Process a wxEVT_COMMAND_TEXT_ENTER
event, when <RETURN> is pressed in the
combobox.

226



CHAPTER 7

See also

wxListBox (p. 974), wxTextCtrl (p. 1632), wxChoice (p. 186), wxCommandEvent (p. 250)

wxComboBox::wxComboBox

wxComboBox ()

Default constructor.

wxComboBox (wxWindow* parent, wxWindowID id, const wxString& value =",
const wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, int n=0,
const wxString choices[] = NULL, long style = 0, const wxValidator& validator =
wxDefaultValidator, const wxString& name = "comboBox")

wxComboBox (wxWindow* parent, wxWindowID id, const wxString& value, const
wxPoint& pos, const wxSize& size, const wxArrayString& choices, long style =0,
const wxValidator& validator = wxDefaultValidator, const wxString& name =
"comboBox")

Constructor, creating and showing a combobox.
Parameters
parent

Parent window. Must not be NULL.

id
Window identifier. A value of -1 indicates a default value.
value
Initial selection string. An empty string indicates no selection.
pos
Window position.
size
Window size. If the default size (-1, -1) is specified then the window is sized
appropriately.
n
Number of strings with which to initialise the control.
choices

An array of strings with which to initialise the control.

227



CHAPTER 7

style
Window style. See wxComboBox (p. 225).
validator
Window validator.
name
Window name.
See also
wxComboBox::Create (p. 228), wxValidator (p. 1765)

wxPython note: The wxComboBox constructor in wxPython reduces the nand choices
arguments are to a single argument, which is a list of strings.

wxPerl note: In wxPerl there is just an array reference in place of nand choices

wxComboBox::~wxComboBox

~wxComboBox ()

Destructor, destroying the combobox.

wxComboBox::Create

bool Create (wxWindow* parent, wxWindowlID id, const wxString& value =", const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, int n, const
wxString choices|], long style = 0, const wxValidator& validator = wxDefaultValidator,
const wxString& name = "comboBox")

bool Create (wxWindow* parent, wxWindowlID id, const wxString& value, const
wxPoint& pos, const wxSize& size, const wxArrayString& choices, long style =0,
const wxValidator& validator = wxDefaultValidator, const wxString& name =
"comboBox")

Creates the combobox for two-step construction. Derived classes should call or replace
this function. See wxComboBox::wxComboBox (p. 227) for further details.

wxComboBox::CanCopy

bool CanCopy () const

Returns true if the combobox is editable and there is a text selection to copy to the
clipboard. Only available on Windows.

wxComboBox::CanCut

bool CanCut() const

228



CHAPTER 7

Returns true if the combobox is editable and there is a text selection to copy to the
clipboard. Only available on Windows.

wxComboBox::CanPaste

bool CanPaste () const

Returns true if the combobox is editable and there is text on the clipboard that can be
pasted into the text field. Only available on Windows.

wxComboBox::CanRedo

bool CanRedo () const

Returns true if the combobox is editable and the last undo can be redone. Only available
on Windows.

wxComboBox::CanUndo

bool CanUndo () const

Returns true if the combobox is editable and the last edit can be undone. Only available on
Windows.

wxComboBox::Copy

void Copy ()

Copies the selected text to the clipboard.

wxComboBox::Cut

void Cut()

Copies the selected text to the clipboard and removes the selection.

wxComboBox::GetCurrentSelection

int GetCurrentSelection () const

This function does the same things as wxChoice::GetCurrentSelection (p. 189) and
returns the item currently selected in the dropdown list if it's open or the same thing as
GetSelection (p. 289) otherwise.

wxComboBox::GetlnsertionPoint

long GetlnsertionPoint () const

Returns the insertion point for the combobox's text field.

229



CHAPTER 7

Note: Under wxMSW, this function always returns 0 if the combobox doesn't have the
focus.

wxComboBox::GetLastPosition

virtual wxTextPos GetLastPosition () const

Returns the last position in the combobox text field.

wxComboBox::GetSelection

void GetSelection (long * from, long * to) const

This is the same as wxTextCtrl::GetSelection (p. 1641) for the text control which is part of
the combobox. Notice that this is a different method from
wxControlWithltems::GetSelection (p. 289).

Currently this method is only implemented in wxMSW and wxGTK.

wxComboBox::GetValue

wxString GetValue () const

Returns the current value in the combobox text field.

wxComboBox::Paste

void Paste()

Pastes text from the clipboard to the text field.

wxComboBox::Redo

void Redo()

Redoes the last undo in the text field. Windows only.

wxComboBox::Replace

void Replace (long from, long to, const wxString& text)
Replaces the text between two positions with the given text, in the combobox text field.
Parameters
from
The first position.

to

230



CHAPTER 7

The second position.
text

The text to insert.

wxComboBox::Remove

void Remove (long from, long to)
Removes the text between the two positions in the combobox text field.
Parameters
from
The first position.
to

The last position.

wxComboBox::SetlnsertionPoint

void SetlnsertionPoint (long pos)

Sets the insertion point in the combobox text field.
Parameters

pos

The new insertion point.

wxComboBox::SetinsertionPointEnd

void SetlnsertionPointEnd ()

Sets the insertion point at the end of the combobox text field.

wxComboBox::SetSelection

void SetSelection (long from, long to)
Selects the text between the two positions, in the combobox text field.
Parameters
from
The first position.

to

231



CHAPTER 7

The second position.

wxPython note: This method is called SetMark in wxPython, SetSelection  name is
kept forwxControlWithltems::SetSelection (p. 292).

wxComboBox::SetValue

void SetValue (const wxString& text)
Sets the text for the combobox text field.

NB: For a combobox with wxCB_READONL3}tyle the string must be in the combobox
choices list, otherwise the call to SetValue() is ignored.

Parameters
text

The text to set.

wxComboBox::Undo
void Undo ()

Undoes the last edit in the text field. Windows only.

wxComboCitrl

A combo control is a generic combobox that allows totally custom popup. In addition it has
other customization features. For instance, position and size of the dropdown button can
be changed.

Setting Custom Popup for wxComboCirl

wxComboCitrl needs to be told somehow which control to use and this is done by
SetPopupControl(). However, we need something more than just a wxControl in this
method as, for example, we need to call SetStringValue("initial text value") and wxControl
doesn't have such method. So we also need awxComboPopup (p. 246) which is an
interface which must be implemented by a control to be usable as a popup.

We couldn't derive wxComboPopup from wxControl as this would make it impossible to
have a class deriving from a wxWidgets control and from it, so instead it is just a mix-in.

Here's a minimal sample of wxListView (p. 1008) popup:

#include <wx/combo.h>
#include <wx/listctrl.h>

class wxListViewComboPopup : public wxListView,
public wxComboPopup
{

public:

232



CHAPTER 7

// Initialize member variables
virtual void Init()

{
}

/I Create popup control
virtual bool Create(wxWindow* parent)

{
return
wxListView::Create(parent,1,wxPoint(0,0),wxDefaultS ize);

}

/I Return pointer to the created control
virtual wxWindow *GetControl() { return this; }

m_value = -1;

/I Translate string into a list selection
virtual void SetStringValue(const wxString& s)
{
int n = wxListView::Findltem(-1,s);
if (n >= 0 && n < wxListView::GetltemCount 0)
wxListView::Select(n);

}

/I Get list selection as a string
virtual wxString GetStringValue() const

if (m_value >=0)
return wxListView::GetltemText(m_value) ;
return wxEmptyString;

}

/I Do mouse hot-tracking (which is typical in | ist popups)
void OnMouseMove(wxMouseEvent& event)

/I TODO: Move selection to cursor

}

/I On mouse left up, set the value and close th e popup
void OnMouseClick(wxMouseEvent& WXUNUSED(event) )

{

m_value = wxListView::GetFirstSelected();

/I TODO: Send event as well

Dismiss();
protected:
int m_value; // current item index
private:

DECLARE_EVENT_TABLE()
h

233



CHAPTER 7

BEGIN_EVENT_TABLE(wxListViewComboPopup, wxListView)
EVT_MOTION(wxListViewComboPopup::OnMouseMove)
EVT_LEFT_UP(wxListViewComboPopup::OnMouseClick)

END_EVENT_TABLE()

Here's how you would create and populate it in a dialog constructor:

wxComboCtrl* comboCtrl = new

wxComboCitrl(this,wxID_ANY,wxEmptyString);

wxListViewComboPopup* popupCtrl = new wxListVie wComboPopup();

comboCitrl->SetPopupControl(popupCitrl);

/I Populate using wxListView methods

p(?lpL.JpCtrI->Insertltem(popupCtrI->GetItemCount() WXT("First
Ite;)n(?]?))L’JpCtrI->Insertltem(popupCtrI->GetItemCount() WXT("Second
Ite;)nog))L’JpCtrI->Insertltem(popupCtrI->GetItemCount() WXT("Third

Item"));

Derived from

wxControl (p. 285)
wxWindow (p. 1794)
wxEvtHandler (p. 575)
wxObiject (p. 1147)

Include files

<combo.h>

Window styles
wxCB_READONLY
wxCB_SORT
WXTE_PROCESS_ENTER

WXCC_SPECIAL_DCLICK

wxCC_STD_BUTTON

Text will not be editable.
Sorts the entries in the list alphabetically.

The control will generate the event
WXEVT_COMMAND_TEXT_ENTER (otherwise
pressing Enter key is either processed internally
by the control or used for navigation between
dialog controls). Windows only.

Double-clicking triggers a call to popup's
OnComboDoubleClick. Actual behaviour is
defined by a derived class. For instance,
wxOwnerDrawnComboBox will cycle an item.
This style only applies if wxCB_READONLY is
used as well.

Drop button will behave more like a standard

234



CHAPTER 7

push button.
See also window styles overview (p. 2086).
Event handling

EVT_TEXT(id, func) Process a
WXEVT_COMMAND_TEXT_UPDATED event,
when the text changes.

EVT_TEXT_ENTER(id, func) Process a wxEVT_COMMAND_TEXT_ENTER
event, when <RETURN> is pressed in the
combo control.

See also

wxComboBox (p. 225), wxChoice (p. 186),wxOwnerDrawnComboBox (p. 1151),
wxComboPopup (p. 246), wxCommandEvent (p. 250)

wxComboCtrl::wxComboCitrl

wxComboCitrl ()
Default constructor.

wxComboCtrl (wxWindow* parent, wxWindowID id, const wxString& value =", const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =0,
const wxValidator& validator = wxDefaultValidator, const wxString& name =
"comboCtrl")

Constructor, creating and showing a combo control.
Parameters
parent

Parent window. Must not be NULL.

Window identifier. A value of -1 indicates a default value.
value

Initial selection string. An empty string indicates no selection.
pos

Window position.
size

Window size. If the default size (-1, -1) is specified then the window is sized

235



CHAPTER 7

appropriately.
style
Window style. See wxComboCtrl (p. 232).
validator
Window validator.
name
Window name.
See also

wxComboCitrl::Create (p. 236), wxValidator (p. 1765)

wxComboCtrl::~wxComboCtrl

~wxComboCitrl ()

Destructor, destroying the combo control.

wxComboCtrl::AnimateShow

virtual bool AnimateShow (const wxRect& rect, int flags)

This member function is not normally called in application code. Instead, it can be
implemented in a derived class to create a custom popup animation.

Parameters
Same as in DoShowPopup (p. 237).
Return value

true if animation finishes before the function returns.false otherwise. In the latter case
you need to manually call DoShowPopup after the animation ends.

wxComboCitrl::Create

bool Create (wxWindow* parent, wxWindowlID id, const wxString& value =", const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =0,
const wxValidator& validator = wxDefaultValidator, const wxString& name =
"comboCtrl")

Creates the combo control for two-step construction. Derived classes should call or
replace this function. See wxComboCtrl::wxComboCtrl (p. 235) for further details.

wxComboCitrl::Copy

void Copy ()

236



CHAPTER 7

Copies the selected text to the clipboard.

wxComboCitrl::Cut

void Cut()

Copies the selected text to the clipboard and removes the selection.

wxComboCitrl::DoSetPopupControl

void DoSetPopupControl (wxComboPopup* popup)

This member function is not normally called in application code. Instead, it can be
implemented in a derived class to return default wxComboPopup, incase popup is NULL.

Note: If you have implemented OnButtonClick to do something else than show the popup,
then DoSetPopupControl must always return NULL.

wxComboCtrl::DoShowPopup

virtual void DoShowPopup (const wxRect& rect, int flags)

This member function is not normally called in application code. Instead, it must be called
in a derived class to make sure popup is properly shown after a popup animation has
finished (but only if AnimateShow (p. 236) did not finish the animation within it's function
scope).

Parameters
rect

Position to show the popup window at, in screen coordinates.
flags

Combination of any of the following:

wxComboCtrl::ShowAbove Popup is shown above the control instead
of below.
wxComboCitrl::CanDeferShow Showing the popup can be deferred to

happen sometime after ShowPopup (p.
245) has finished. In this case,
AnimateShow (p. 236) must return
false

wxComboCitrl::EnablePopupAnimation

void EnablePopupAnimation (bool enable = true)

Enables or disables popup animation, if any, depending on the value of the argument.

237



CHAPTER 7

wxComboCitrl::GetBitmapDisabled

const wxBitmap& GetBitmapDisabled () const

Returns disabled button bitmap that has been set withSetButtonBitmaps (p. 242).
Return value

A reference to the disabled state bitmap.

wxComboCitrl::GetBitmapHover

const wxBitmap& GetBitmapHover () const
Returns button mouse hover bitmap that has been set withSetButtonBitmaps (p. 242).
Return value

A reference to the mouse hover state bitmap.

wxComboCitrl::GetBitmapNormal

const wxBitmap& GetBitmapNormal () const
Returns default button bitmap that has been set withSetButtonBitmaps (p. 242).
Return value

A reference to the normal state bitmap.

wxComboCitrl::GetBitmapPressed

const wxBitmap& GetBitmapPressed () const
Returns depressed button bitmap that has been set withSetButtonBitmaps (p. 242).
Return value

A reference to the depressed state bitmap.
wxComboCtrl::GetButtonSize

wxSize GetButtonSize ()

Returns current size of the dropdown button.

wxComboCitrl::GetCustomPaintWidth

int GetCustomPaintWidth () const

Returns custom painted area in control.

238



CHAPTER 7

See also

wxComboCitrl::SetCustomPaintWidth (p. 243).

wxComboCtrl::GetFeatures

static int GetFeatures ()

Returns features supported by wxComboCitrl. If needed feature is missing, you need to
instead use wxGenericComboCitrl, which however may lack native look and feel (but
otherwise sports identical API).

Return value

Value returned is a combination of following flags:

wxComboCtrlFeatures::MovableButton Button can be on either side of the control.
wxComboCtrlFeatures::BitmapButton Button may be replaced with bitmap.
wxComboCtrlFeatures::ButtonSpacing Button can have spacing.
wxComboCtrlFeatures:: TextIndent SetTextIndent works.
wxComboCtrlFeatures::PaintControl Combo control itself can be custom
painted.
wxComboCtrlFeatures::PaintWritable A variable- width area in front of writable
combo control's textctrl can be custom
painted.
wxComboCtrlFeatures::Borderless wxNO_BORDER window style works.
wxComboCtrlFeatures::All All of the above.

wxComboCitrl::GetlnsertionPoint
long GetlnsertionPoint () const
Returns the insertion point for the combo control's text field.

Note: Under wxMSW, this function always returns 0 if the combo control doesn't have the
focus.

wxComboCitrl::IsPopupWindowState

bool IsPopupWindowState (int state) const

Returns true if the popup window is in the given state. Possible values
are:wxCombocCitrl;;Hidden Popup
window is hidden.

239



CHAPTER 7

wxComboCitrl::Animating Popup window is being shown, but the
popup animation has not yet finished.

wxComboCitrl::Visible Popup window is fully visible.

wxComboCitrl::GetLastPosition

long GetLastPosition () const

Returns the last position in the combo control text field.

wxComboCitrl::GetPopupControl

wxComboPopup* GetPopupControl ()

Returns current popup interface that has been set with SetPopupControl.

wxComboCitrl::GetPopupWindow

wxWindow* GetPopupWindow () const

Returns popup window containing the popup control.
wxComboCitrl::GetTextCtrl

wxTextCtrl* GetTextCtrl () const

Get the text control which is part of the combo control.
wxComboCtrl::GetTextindent

wxCoord GetTextindent () const

Returns actual indentation in pixels.
wxComboCitrl::GetTextRect

const wxRect& GetTextRect () const

Returns area covered by the text field (includes everything except borders and the
dropdown button).

wxComboCitrl::GetValue

wxString GetValue () const

Returns text representation of the current value. For writable combo control it always
returns the value in the text field.

wxComboCitrl::HidePopup

240



CHAPTER 7

void HidePopup ()

Dismisses the popup window.

wxComboCitrl::IsPopupShown
bool IsPopupShown () const

Returns true if the popup is currently shown

wxComboCitrl::OnButtonClick

void OnButtonClick ()
Implement in a derived class to define what happens on dropdown button click.
Default action is to show the popup.

Note: If you implement this to do something else than show the popup, you must then also
implementDoSetPopupControl (p. 237) to always return NULL.

wxComboCitrl::Paste

void Paste()

Pastes text from the clipboard to the text field.

wxComboCitrl::Remove

void Remove (long from, long to)
Removes the text between the two positions in the combo control text field.
Parameters
from
The first position.
to

The last position.

wxComboCitrl::Replace

void Replace (long from, long to, const wxString& value)
Replaces the text between two positions with the given text, in the combo control text field.
Parameters

from

241



CHAPTER 7

The first position.
to

The second position.
text

The text to insert.

wxComboCtrl::SetButtonBitmaps

void SetButtonBitmaps (const wxBitmap& bmpNormal, bool pushButtonBg = false,
const wxBitmap& bmpPressed = wxNullBitmap, const wxBitmap& bmpHover =
wxNullBitmap, const wxBitmap& bmpDisabled = wxNullBitmap)

Sets custom dropdown button graphics.
Parameters
bmpNormal
Default button image.
pushButtonBg
If true , blank push button background is painted below the image.
bmpPressed
Depressed button image.
bmpHover

Button image when mouse hovers above it. This should be ignored on platforms and
themes that do not generally draw different kind of button on mouse hover.

bmpDisabled

Disabled button image.

wxComboCitrl::SetButtonPosition

void SetButtonPosition (int width = -1, int height = -1, int side = wxRIGHT, int spacingX
= O)

Sets size and position of dropdown button.
Parameters
width

Button width. Value <= 0 specifies default.

242



CHAPTER 7

height

Button height. Value <= 0 specifies default.
side

Indicates which side the button will be placed. Value can be wxLEFT or wxRIGHT.
spacingX

Horizontal spacing around the button. Default is 0.

wxComboCtrl::SetCustomPaintWidth

void SetCustomPaintWidth (int width)

Set width, in pixels, of custom painted area in control without wxCB_READONLsiyle. In
read-only wxOwnerDrawnComboBox (p. 1151), this is used to indicate area that is not
covered by the focus rectangle.

wxComboCitrl::SetinsertionPoint

void SetlnsertionPoint (long pos)
Sets the insertion point in the text field.
Parameters

pos

The new insertion point.

wxComboCitrl::SetinsertionPointEnd

void SetlnsertionPointEnd ()

Sets the insertion point at the end of the combo control text field.

wxComboCtrl::SetPopupAnchor

void SetPopupAnchor (int anchorSide)

Set side of the control to which the popup will align itself. Valid values arewxLEFT,
WXRIGHT and 0. The default value 0 means that the most appropriate side is used (which,
currently, is always wxLEFT).

wxComboCitrl::SetPopupControl

void SetPopupControl (wxComboPopup* popup)

Set popup interface class derived from wxComboPopup. This method should be called as
soon as possible after the control has been created, unless OnButtonClick (p. 241)has

243



CHAPTER 7

been overridden.

wxComboCtrl::SetPopupExtents

void SetPopupExtents (int extLeft, int extRight)
Extends popup size horizontally, relative to the edges of the combo control.
Parameters
extLeft

How many pixel to extend beyond the left edge of the control. Default is O.
extRight

How many pixel to extend beyond the right edge of the control. Default is O.
Remarks
Popup minimum width may override arguments.

It is up to the popup to fully take this into account.

wxComboCitrl::SetPopupMaxHeight

void SetPopupMaxHeight (int height)

Sets preferred maximum height of the popup.
Remarks

Value -1 indicates the default.

Also, popup implementation may choose to ignore this.

wxComboCitrl::SetPopupMinWidth

void SetPopupMinWidth (int width)

Sets minimum width of the popup. If wider than combo control, it will extend to the left.
Remarks

Value -1 indicates the default.

Also, popup implementation may choose to ignore this.

wxComboCitrl::SetSelection

void SetSelection (long from, long to)

Selects the text between the two positions, in the combo control text field.

244



CHAPTER 7

Parameters
from

The first position.
to

The second position.

wxComboCtrl::SetText

void SetText(const wxString& value)

Sets the text for the text field without affecting the popup. Thus, unlike SetValue (p. 245), it
works equally well with combo control using wxCB_READONL3¥tyle.

wxComboCitrl::SetTextindent

void SetTextindent (int indent)

This will set the space in pixels between left edge of the control and the text, regardless
whether control is read-only or not. Value -1 can be given to indicate platform default.

wxComboCitrl::SetValue

void SetValue (const wxString& value)
Sets the text for the combo control text field.

NB: For a combo control with wxCB_READONL¥tyle the string must be accepted by the
popup (for instance, exist in the dropdown list), otherwise the call to SetValue() is ignored

wxComboCitrl::SetValueWithEvent

void SetValueWithEvent (const wxString& value, bool withEvent = true)

Same as SetValue, but also sends wxCommandEvent of type
WXEVT_COMMAND_TEXT_UPDATED if withEvent s true .

wxComboCtrl::ShowPopup
void ShowPopup ()

Show the popup.
wxComboCitrl::Undo

void Undo ()

Undoes the last edit in the text field. Windows only.

245



CHAPTER 7

wxComboCtrl::UseAltPopupWindow

void UseAltPopupWindow (bool enable = true)

Enable or disable usage of an alternative popup window, which guarantees ability to focus
the popup control, and allows common native controls to function normally. This
alternative popup window is usually a wxDialog, and as such, when it is shown, its parent
top-level window will appear as if the focus has been lost from it.

wxComboPopup

In order to use a custom popup with wxComboCitrl (p. 232), an interface class must be
derived from wxComboPopup. For more information how to use it, see Setting Custom
Popup for wxComboCitrl (p. 232).

Include files
<combo.h>
See also

wxComboCitrl (p. 232)

wxComboPopup::wxComboPopup

wxComboPopup ()

Default constructor. It is recommended that internal variables are prepared in Init (p. 247)
instead (because m_combo (p. 246) is not valid in constructor).

wxComboPopup::m_combo

wxComboCtrl m_combo

Parent wxComboCitrl (p. 232). This is parameter has been prepared before Init (p. 247) is
called.

wxComboPopup::Create

bool Create (wxWindow* parent)
The derived class must implement this to create the popup control.
Return value

true if the call succeeded, false otherwise.

wxComboPopup::Dismiss

246



CHAPTER 7

void Dismiss ()

Utility function that hides the popup.

wxComboPopup::GetAdjustedSize

wxSize GetAdjustedSize (int minWidth, int prefHeight, int maxHeight)

The derived class may implement this to return adjusted size for the popup control,
according to the variables given.

Parameters
minWidth

Preferred minimum width.
prefHeight

Preferred height. May be -1 to indicate no preference.
maxWidth

Max height for window, as limited by screen size.
Remarks

Called each time popup is about to be shown.

wxComboPopup::GetControl

wxWindow* GetControl ()

The derived class must implement this to return pointer to the associated control created
in Create (p. 246).

wxComboPopup::GetStringValue

wxString GetStringValue () const

The derived class must implement this to return string representation of the value.

wxComboPopup::Init
void Init()

The derived class must implement this to initialize its internal variables. This method is
called immediately after construction finishes. m_combo (p. 246)member variable has
been initialized before the call.

wxComboPopup::IsCreated

247



CHAPTER 7

bool IsCreated () const
Utility method that returns true if Create has been called.

Useful in conjunction with LazyCreate (p. 248).

wxComboPopup::LazyCreate

bool LazyCreate ()

The derived class may implement this to returntrue if it wants to delay call to Create (p.
246)until the popup is shown for the first time. It is more efficient, but on the other hand it is
often more convenient to have the control created immediately.

Remarks

Base implementation returns false

wxComboPopup::OnComboDoubleClick

void OnComboDoubleClick ()

The derived class may implement this to do something when the parent wxComboCitrl (p.
232) gets double-clicked.

wxComboPopup::OnComboKeyEvent

void OnComboKeyEvent (wxKeyEvent& event)

The derived class may implement this to receive key events from the parent wxComboCitl
(p. 232).

Events not handled should be skipped, as usual.
wxComboPopup::OnDismiss

void OnDismiss ()

The derived class may implement this to do special processing when popup is hidden.

wxComboPopup::OnPopup

void OnPopup ()

The derived class may implement this to do special processing when popup is shown.
wxComboPopup::PaintComboControl

void PaintComboControl (wxDC& dc, const wxRect& rect)

The derived class may implement this to paint the parent wxComboCitrl (p. 232).

248



CHAPTER 7

Default implementation draws value as string.

wxComboPopup::SetStringValue

void SetStringValue (const wxString& value)

The derived class must implement this to receive string value changes from wxComboCitl
(p. 232).

wxCommand

wxCommand is a base class for modelling an application command, which is an action
usually performed by selecting a menu item, pressing a toolbar button or any other means
provided by the application to change the data or view.

Derived from
wxObiject (p. 1147)
Include files
<wx/cmdproc.h>
See also

Overview (p. 2132)

wxCommand::.wxCommand

wxCommand (bool canUndo = false, const wxString& name = NULL)

Constructor. wxCommand is an abstract class, so you will need to derive a new class and
call this constructor from your own constructor.

canUndo tells the command processor whether this command is undo-able. You can
achieve the same functionality by overriding the CanUndo member function (if for example
the criteria for undoability is context-dependent).

name must be supplied for the command processor to display the command name in the
application's edit menu.

wxCommand::~wxCommand

~wxCommand ()

Destructor.

wxCommand::CanUndo

249



CHAPTER 7

bool CanUndo ()

Returns true if the command can be undone, false otherwise.

wxCommand::Do

bool Do()

Override this member function to execute the appropriate action when called. Return true
to indicate that the action has taken place, false otherwise. Returning false will indicate to
the command processor that the action is not undoable and should not be added to the
command history.

wxCommand::GetName

wxString GetName ()

Returns the command name.

wxCommand::Undo

bool Undo ()

Override this member function to un-execute a previous Do. Return true to indicate that
the action has taken place, false otherwise. Returning false will indicate to the command
processor that the action is not redoable and no change should be made to the command
history.

How you implement this command is totally application dependent, but typical strategies
include:

» Perform an inverse operation on the last modified piece of data in the document.
When redone, a copy of data stored in command is pasted back or some
operation reapplied. This relies on the fact that you know the ordering of Undos;
the user can never Undo at an arbitrary position in the command history.

» Restore the entire document state (perhaps using document transactioning).
Potentially very inefficient, but possibly easier to code if the user interface and
data are complex, and an 'inverse execute' operation is hard to write.

The docview sample uses the first method, to remove or restore segments in the drawing.

wxCommandEvent

This event class contains information about command events, which originate from a
variety of simple controls. More complex controls, such as wxTreeCtrl (p. 1727), have
separate command event classes.

Derived from

wxEvent (p. 572)

250



CHAPTER 7

Include files
<wx/event.h>

Event table macros

To process a menu command event, use these event handler macros to direct input to
member functions that take a wxCommandEvent argument.

EVT_COMMAND(id, event, func)

Process a command, supplying the window
identifier, command event identifier, and
member function.

EVT_COMMAND_RANGE(id1, id2, event, func)  Process a command for a range of

EVT_BUTTON(id, func)

EVT_CHECKBOX(id, func)

EVT_CHOICE(id, func)

EVT_COMBOBOX(id, func)

EVT_LISTBOX(id, func)

EVT_LISTBOX_DCLICK(id, func)

EVT_MENU(id, func)

EVT_MENU_RANGE(id1, id2, func)

window identifiers, supplying the minimum and
maximum window identifiers, command event
identifier, and member function.

Process a
WXEVT_COMMAND_BUTTON_CLICKED
command, which is generated by a wxButton
control.

Process a
WXEVT_COMMAND_CHECKBOX_ CLICKED
command, which is generated by a
wxCheckBox control.

Process a
WXEVT_COMMAND_CHOICE_SELECTED
command, which is generated by a wxChoice
control.

Process a
WXEVT_COMMAND_COMBOBOX_SELECTE
D command, which is generated by a
wxComboBox control.

Process a
WXEVT_COMMAND_LISTBOX_SELECTED
command, which is generated by a wxListBox
control.

Process a
WXEVT_COMMAND_LISTBOX_DOUBLECLIC
KED command, which is generated by a
wxListBox control.

Process a
WxXEVT_COMMAND_MENU_SELECTED
command, which is generated by a menu item.

Process a

251



CHAPTER 7

EVT_CONTEXT_MENU(func)

EVT_RADIOBOX(id, func)

EVT_RADIOBUTTON(id, func)

EVT_SCROLLBAR(id, func)

EVT_SLIDER(id, func)

EVT_TEXT(id, func)

EVT_TEXT_ENTER(id, func)

EVT_TEXT_MAXLEN(id, func)

EVT_TOGGLEBUTTON(id, func)

WXEVT_COMMAND_MENU_RANGE
command, which is generated by a range of
menu items.

Process the event generated when the user has
requested a popup menu to appear by pressing
a special keyboard key (under Windows) or by
right clicking the mouse.

Process a
WXEVT_COMMAND_RADIOBOX_SELECTED
command, which is generated by a wxRadioBox
control.

Process a
WXEVT_COMMAND_RADIOBUTTON_SELEC
TED command, which is generated by a
wxRadioButton control.

Process a
WXEVT_COMMAND_SCROLLBAR_UPDATED
command, which is generated by a wxScrollBar
control. This is provided for compatibility only;
more specific scrollbar event macros should be
used instead (see wxScrollEvent (p. 1423)).

Process a
WXEVT_COMMAND_SLIDER_UPDATED
command, which is generated by a wxSlider
control.

Process a
WXEVT_COMMAND_TEXT_UPDATED
command, which is generated by a wxTextCtrl
control.

Process a wxEVT_COMMAND_TEXT_ENTER
command, which is generated by a wxTextCtrl
control. Note that you must use
WXTE_PROCESS_ENTER flag when creating
the control if you want it to generate such
events.

Process a
WXEVT_COMMAND_TEXT_MAXLEN
command, which is generated by a wxTextCtrl
control when the user tries to enter more
characters into it than the limit previously set
with SetMaxLength (p. 1648).

Process a
WXEVT_COMMAND_TOGGLEBUTTON_CLIC
KED event.

252



CHAPTER 7

EVT_TOOL(id, func) Process a
WXEVT_COMMAND_TOOL_CLICKED event (a
synonym for
WXEVT_COMMAND_MENU_SELECTED).
Pass the id of the tool.

EVT_TOOL_RANGE(id1, id2, func) Process a
WXEVT_COMMAND_TOOL_CLICKED event

for a range of identifiers. Pass the ids of the
tools.

EVT_TOOL_RCLICKED(id, func) Process a
WXEVT_COMMAND_TOOL_RCLICKED event.
Pass the id of the tool.

EVT_TOOL_RCLICKED_RANGE(id1, id2, func)  Process a
WXEVT_COMMAND_TOOL_RCLICKED event
for a range of ids. Pass the ids of the tools.

EVT_TOOL_ENTER(id, func) Process a wxEVT_COMMAND_TOOL_ENTER
event. Pass the id of the toolbar itself. The value
of wxCommandEvent::GetSelection is the tool
id, or -1 if the mouse cursor has moved off a
tool.

EVT_COMMAND_LEFT_CLICK(id, func) Process a
WXEVT_COMMAND_LEFT_CLICK command,
which is generated by a control (Windows 95
and NT only).

EVT_COMMAND_LEFT_DCLICK(id, func) Process a
WXEVT_COMMAND_LEFT_DCLICK command,
which is generated by a control (Windows 95
and NT only).

EVT_COMMAND_RIGHT_CLICK(id, func) Process a
WXEVT_COMMAND_RIGHT_CLICK command,
which is generated by a control (Windows 95
and NT only).

EVT_COMMAND_SET_FOCUS(id, func) Process a
WXEVT_COMMAND_SET_ FOCUS command,
which is generated by a control (Windows 95
and NT only).

EVT_COMMAND_KILL FOCUS(id, func) Process a
WXEVT_COMMAND_KILL_FOCUS command,
which is generated by a control (Windows 95
and NT only).

EVT_COMMAND_ENTER(id, func) Process a wxEVT_COMMAND_ENTER
command, which is generated by a control.

253



CHAPTER 7

wxCommandEvent::wxCommandEvent

wxCommandEvent (WXTYPE commandEventType = 0, int id = 0)

Constructor.

wxCommandEvent::Checked

bool Checked () const

Deprecated, use IsChecked (p. 255) instead.

wxCommandEvent::GetClientData

void* GetClientData ()

Returns client data pointer for a listbox or choice selection event (not valid for a
deselection).

wxCommandEvent::GetClientObject

wxClientData * GetClientObject ()

Returns client object pointer for a listbox or choice selection event (not valid for a
deselection).

wxCommandEvent::GetExtraLong

long GetExtralLong ()

Returns extra information dependant on the event objects type. If the event comes from a
listbox selection, it is a boolean determining whether the event was a selection (true) or a
deselection (false). A listbox deselection only occurs for multiple-selection boxes, and in
this case the index and string values are indeterminate and the listbox must be examined
by the application.

wxCommandEvent::GetInt

int Getint ()

Returns the integer identifier corresponding to a listbox, choice or radiobox selection (only
if the event was a selection, not a deselection), or a boolean value representing the value
of a checkbox.

wxCommandEvent::GetSelection

int GetSelection ()

Returns item index for a listbox or choice selection event (not valid for a deselection).

254



CHAPTER 7

wxCommandEvent::GetString

wxString GetString ()

Returns item string for a listbox or choice selection event (not valid for a deselection).

wxCommandEvent::IsChecked

bool IsChecked () const

This method can be used with checkbox and menu events: for the checkboxes, the
method returns true for a selection event and false for a deselection one. For the menu
events, this method indicates if the menu item just has become checked or unchecked
(and thus only makes sense for checkable menu items).

wxCommandEvent::IsSelection
bool IsSelection ()

For a listbox or similar event, returns true if it is a selection, false if it is a deselection.

wxCommandEvent::SetClientData

void SetClientData (void* clientData)

Sets the client data for this event.

wxCommandEvent::SetClientObject

void SetClientObject (wxClientData* clientObject)

Sets the client object for this event. The client object is not owned by the event object and
the event object will not delete the client object in its destructor. The client object must be
owned and deleted by another object (e.g. a control) that has longer life time than the
event object.

wxCommandEvent::SetExtraLong
void SetExtraLong (long extraLong)
Sets the m_extraLong member.
wxCommandEvent::Setint

void Setint (int intCommand)

Sets the m_commandint member.

wxCommandEvent::SetString

255



CHAPTER 7

void SetString (const wxString& string)

Sets the m_commandString member.

wxCommandProcessor

wxCommandProcessor is a class that maintains a history of wxCommands, with
undo/redo functionality built-in. Derive a new class from this if you want different
behaviour.

Derived from
wxObiject (p. 1147)
Include files
<wx/cmdproc.h>
See also

wxCommandProcessor overview (p. 2133), wxCommand (p. 249)

wxCommandProcessor::wxCommandProcessor

wxCommandProcessor (int maxCommands = -1)
Constructor.

maxCommands may be set to a positive integer to limit the number of commands stored to
it, otherwise (and by default) the list of commands can grow arbitrarily.

wxCommandProcessor::~wxCommandProcessor
~wxCommandProcessor ()

Destructor.

wxCommandProcessor::CanUndo

virtual bool CanUndo ()

Returns true if the currently-active command can be undone, false otherwise.
wxCommandProcessor::ClearCommands

virtual void ClearCommands ()

Deletes all commands in the list and sets the current command pointer to NULL

256



CHAPTER 7

wxCommandProcessor::Redo

virtual bool Redo()

Executes (redoes) the current command (the command that has just been undone if any).
wxCommandProcessor::GetCommands

wxList& GetCommands () const

Returns the list of commands.

wxCommandProcessor::GetMaxCommands

int GetMaxCommands () const

Returns the maximum number of commands that the command processor stores.

wxCommandProcessor::GetEditMenu

wxMenu* GetEditMenu () const

Returns the edit menu associated with the command processor.
wxCommandProcessor::GetRedoAccelerator

const wxString& GetRedoAccelerator () const

Returns the string that will be appended to the Redo menu item.
wxCommandProcessor::GetRedoMenuLabel

wxString GetRedoMenuLabel () const

Returns the string that will be shown for the redo menu item.
wxCommandProcessor::GetUndoAccelerator

const wxString& GetUndoAccelerator () const

Returns the string that will be appended to the Undo menu item.
wxCommandProcessor::GetUndoMenuLabel

wxString GetUndoMenuLabel () const

Returns the string that will be shown for the undo menu item.

wxCommandProcessor::Initialize

257



CHAPTER 7

virtual void Initialize ()

Initializes the command processor, setting the current command to the last in the list (if
any), and updating the edit menu (if one has been specified).

wxCommandProcessor::IsDirty

virtual bool IsDirty ()

Returns a boolean value that indicates if changes have been made since the last save
operation. This only works if wxCommandProcessor::MarkAsSaved (p. 258)is called
whenever the project is saved.

wxCommandProcessor::MarkAsSaved

virtual void MarkAsSaved ()

You must call this method whenever the project is saved if you plan to use
wxCommandProcessor::IsDirty (p. 258).

wxCommandProcessor::SetEditMenu

void SetEditMenu (wxMenu* menu)

Tells the command processor to update the Undo and Redo items on this menu as
appropriate. Set this to NULL if the menu is about to be destroyed and command
operations may still be performed, or the command processor may try to access an invalid
pointer.

wxCommandProcessor::SetMenuStrings

void SetMenusStrings ()

Sets the menu labels according to the currently set menu and the current command state.
wxCommandProcessor::SetRedoAccelerator

void SetRedoAccelerator (const wxString& accel)

Sets the string that will be appended to the Redo menu item.
wxCommandProcessor::SetUndoAccelerator

void SetUndoAccelerator (const wxString& accel)

Sets the string that will be appended to the Undo menu item.
wxCommandProcessor::Submit

virtual bool Submit (wxCommand * command, bool storelt = true)

258



CHAPTER 7

Submits a new command to the command processor. The command processor calls
wxCommand::Do to execute the command; if it succeeds, the command is stored in the
history list, and the associated edit menu (if any) updated appropriately. If it fails, the
command is deleted immediately. Once Submit has been called, the passed command
should not be deleted directly by the application.

storelt indicates whether the successful command should be stored in the history list.

wxCommandProcessor::Undo

virtual bool Undo ()

Undoes the command just executed.

wxCondition

wxCondition variables correspond to pthread conditions or to Win32 event objects. They
may be used in a multithreaded application to wait until the given condition becomes true
which happens when the condition becomes signaled.

For example, if a worker thread is doing some long task and another thread has to wait
until it is finished, the latter thread will wait on the condition object and the worker thread
will signal it on exit (this example is not perfect because in this particular case it would be
much better to just Wait() (p. 1677) for the worker thread, but if there are several worker
threads it already makes much more sense).

Note that a call to Signal() (p. 261) may happen before the other thread calls Wait() (p.
262) and, just as with the pthread conditions, the signal is then lost and so if you want to be
sure that you don't miss it you must keep the mutex associated with the condition initially
locked and lock it again before calling Signal() (p. 261). Of course, this means that this call
is going to block until Wait() (p. 262) is called by another thread.

Example

This example shows how a main thread may launch a worker thread which starts running
and then waits until the main thread signals it to continue:

class MySignallingThread : public wxThread

public:
MySignallingThread(wxMutex *mutex, wxCondition *condition)

m_mutex = mutex;
m_condition = condition;

Create();
}

virtual ExitCode Entry()
{

..doourjob ...

/ltellthe other(s)thread(s)thatwe'rea bouttoterminate:

259



CHAPTER 7

we must
/Nlockthemutexfirstorwemightsignal

the
/l waiting threads start waiting on it!
wxMutexLocker lock(m_mutex);
m_condition.Broadcast(); // same as Signal(

waiter only
return O;

}
private:

wxCondition *m_condition;
wxMutex *m_mutex;

h

int main()
{
wxMutex mutex;
wxCondition condition(mutex);

/I the mutex should be initially locked
mutex.Lock();

/I create and run the thread but notice that it

/I exit (and signal its exit) before we unlock

MySignallingThread *thread = new MySignallingTh
&condition);

thread->Run();

/lwaitforthethreadtermination: Wait() atom
mutex

/I which allows the thread to continue and star

condition.Wait();

/I now we can exit
return O;

}

theconditionbefore

) here -- one

won'tbe ableto
the mutex below
read(&mutex,

icallyunlocksthe

ts waiting

Of course, here it would be much better to simply use a joinable thread and call
wxThread::Wait (p. 1677) on it, but this example does illustrate the importance of properly

locking the mutex when using wxCondition.

Constants

The following return codes are returned by wxCondition member functions:

enum wxCondError

wWXCOND_NO_ERROR =0, //successful completio

WXCOND_INVALID,
successfully

wxCOND_TIMEOUT, /I WaitTimeout() has ti

wWXCOND_MISC_ERROR /I some other error

h

/I object hasn't been i

n
nitialized

med out

260



CHAPTER 7

Derived from
None.

Include files
<wx/thread.h>
See also

wxThread (p. 1669), wxMutex (p. 1130)

wxCondition::wxCondition

wxCondition (wxMutex& mutex)

Default and only constructor. The mutex must be locked by the caller before calling Wait (p.
262) function.

Use IsOk (p. 261) to check if the object was successfully initialized.

wxCondition::~wxCondition

~wxCondition ()

Destroys the wxCondition object. The destructor is not virtual so this class should not be
used polymorphically.

wxCondition::Broadcast

void Broadcast ()

Broadcasts to all waiting threads, waking all of them up. Note that this method may be
called whether the mutex associated with this condition is locked or not.

See also

wxCondition::Signal (p. 261)

wxCondition::IsOk

bool I1sOk() const

Returns true if the object had been initialized successfully, false if an error occurred.

wxCondition::Signal

void Signal ()

261



CHAPTER 7

Signals the object waking up at most one thread. If several threads are waiting on the
same condition, the exact thread which is woken up is undefined. If no threads are waiting,
the signal is lost and the condition would have to be signalled again to wake up any thread
which may start waiting on it later.

Note that this method may be called whether the mutex associated with this condition is
locked or not.

See also

wxCondition::Broadcast (p. 261)

wxCondition::Wait

wxCondError Wait()
Waits until the condition is signalled.

This method atomically releases the lock on the mutex associated with this condition (this
is why it must be locked prior to calling Wait) and puts the thread to sleep until Signal (p.
261) or Broadcast (p. 261) is called. It then locks the mutex again and returns.

Note that even if Signal (p. 261) had been called before Wait without waking up any thread,
the thread would still wait for another one and so itis important to ensure that the condition
will be signalled after Wait or the thread may sleep forever.

Return value
Returns wxCOND_NO_ERRQ@R success, another value if an error occurred.
See also

WaitTimeout (p. 262)

wxCondition::WaitTimeout

wxCondError WaitTimeout (unsigned long milliseconds)
Waits until the condition is signalled or the timeout has elapsed.

This method is identical to Wait (p. 262) except that it returns, with the return code of
wxCOND_TIMEOU®s soon as the given timeout expires.

Parameters
milliseconds

Timeout in milliseconds
Return value

Returns wxCOND_NO_ERRGRhe condition was signalled, wxCOND_TIMEOUTF the
timeout elapsed before this happened or another error code from wxCondError enum.

262



CHAPTER 7

wxConfigBase

wxConfigBase class defines the basic interface of all config classes. It can not be used by
itself (it is an abstract base class) and you will always use one of its derivations:
wxFileConfig (p. 597), wxRegConfig or any other.

However, usually you don't even need to know the precise nature of the class you're
working with but you would just use the wxConfigBase methods. This allows you to write
the same code regardless of whether you're working with the registry under Win32 or
text-based config files under Unix (or even Windows 3.1 .INI files if you're really unlucky).
To make writing the portable code even easier, wxWidgets provides a typedef wxConfig
which is mapped onto the native wxConfigBase implementation on the given platform: i.e.
wxRegConfig under Win32 and wxFileConfig otherwise.

See config overview (p. 2071) for the descriptions of all features of this class.

It is highly recommended to use static functions Get() and/or Set(), so please have a look
at them. (p. 264)

Derived from
No base class

Include files

<wx/config.h> (to let wxWidgets choose a wxConfig class for your platform)
<wx/confbase.h> (base config class)

<wx/fileconf.h> (wxFileConfig class)

<wx/msw/regconf.h> (wxRegConfig class)

Example

Here is how you would typically use this class:

/I using wxConfig instead of writing wxFileConfig or wxRegConfig
enhances

/I portability of the code

wxConfig *config = new wxConfig("MyAppName");

wxString str;
if ( config->Read("LastPrompt", &str) ) {

/Nastpromptwasfoundinthe configfile/reg istryanditsvalue
iS now
/l'in str
else {
/I no last prompt...
}
/I another example: using default values and the full path instead
of just
/I key name: if the key is not found , the value 17 is returned
long value = config->Read("/LastRun/CalculatedVal ues/MaxValue",
17);

263



CHAPTER 7

/I at the end of the program we would save everyt hing back
config->Write("LastPrompt", str);
config->Write("/LastRun/CalculatedValues/MaxValue " value);

/I the changes will be written back automatically
delete config;

This basic example, of course, doesn't show all wxConfig features, such as enumerating,
testing for existence and deleting the entries and groups of entries in the config file, its
abilities to automatically store the default values or expand the environment variables on
the fly. However, the main idea is that using this class is easy and that it should normally
do what you expect it to.

NB: in the documentation of this class, the words "config file" also mean "registry hive" for
wxRegConfig and, generally speaking, might mean any physical storage where a
wxConfigBase-derived class stores its data.

Static functions

These functions deal with the "default" config object. Although its usage is not at all
mandatory it may be convenient to use a global config object instead of creating and
deleting the local config objects each time you need one (especially because creating a
wxFileConfig object might be a time consuming operation). In this case, you may create
this global config object in the very start of the program and Set() it as the default. Then,
from anywhere in your program, you may access it using the Get() function. This global
wxConfig object will be deleted by wxWidgets automatically if it exists. Note that this
implies that if you do delete this object yourself (usually in wxApp::OnExit (p. 51)) you must
use Set(NULL)to prevent wxWidgets from deleting it the second time.

As it happens, you may even further simplify the procedure described above: you may
forget about calling Set(). When Get() is called and there is no current object, it will create
one using Create() function. To disable this behaviour DontCreateOnDemand() is
provided.

Note: You should use either Set() or Get() because wxWidgets library itself would take
advantage of it and could save various information in it. For example wxFontMapper (p.
674) or Unix version of wxFileDialog (p. 599) have the ability to use wxConfig class.

Set (p. 275)

Get (p. 271)

Create (p. 270)
DontCreateOnDemand (p. 270)

Constructor and destructor

wxConfigBase (p. 268)
~wxConfigBase (p. 270)

264



CHAPTER 7

Path management

As explained in config overview (p. 2071), the config classes support a file system-like
hierarchy of keys (files) and groups (directories). As in the file system case, to specify a
key in the config class you must use a path to it. Config classes also support the notion of
the current group, which makes it possible to use the relative paths. To clarify all this, here
is an example (it is only for the sake of demonstration, it doesn't do anything sensible!):

wxConfig *config = new wxConfig("FooBarApp");

/I right now the current path is /'
conf->Write("RootEntry", 1);

/I go to some other place: if the group(s) don't exist, they will
be created
conf->SetPath("/Group/Subgroup™);

/I create an entry in subgroup
conf->Write("SubgroupEntry", 3);

/I'".."is understood

conf->Write("../GroupEntry", 2);

conf->SetPath("..");

WXASSERT( conf->Read("Subgroup/SubgroupEntry”, Ol )==3);

/I use absolute path: it is allowed, too
WXASSERT( conf->Read("/RootEntry", Ol) == 1);

Warning: it is probably a good idea to always restore the path to its old value on function
exit:
void foo(wxConfigBase *config)
{
wxString strOldPath = config->GetPath();

config->SetPath("/Foo/Data");

config->SetPath(strOldPath);
}

because otherwise the assert in the following example will surely fail (we suppose here
that foo() function is the same as above except that it doesn't save and restore the path):

void bar(wxConfigBase *config)

config->Write("Test", 17);

foo(config);
/I we're reading "/Foo/Data/Test" here! -1 will probably be
returned...
WXASSERT( config->Read("Test", -1) == 17);
}

265



CHAPTER 7

Finally, the path separator in wxConfigBase and derived classes is always '/', regardless of
the platform (i.e. it is not \\' under Windows).

SetPath (p. 276)
GetPath (p. 273)

Enumeration

The functions in this section allow to enumerate all entries and groups in the config file. All
functions here return false when there are no more items.

You must pass the same index to GetNext and GetFirst (don't modify it). Please note that
it is not the index of the current item (you will have some great surprises with
wxRegConfig if you assume this) and you shouldn't even look at it: it is just a "cookie"
which stores the state of the enumeration. It can't be stored inside the class because it
would prevent you from running several enumerations simultaneously, that's why you
must pass it explicitly.

Having said all this, enumerating the config entries/groups is very simple:

wxConfigBase *config = ...;
wxArrayString aNames;

/I enumeration variables
wxString str;
long dummy;

/I first enum all entries
bool bCont = config->GetFirstEntry(str, dummy);
while (bCont) {

aNames.Add(str);

bCont = GetConfig()->GetNextEntry(str, dummy);
}

... we have all entry names in aNames...

/I now all groups...
bCont = GetConfig()->GetFirstGroup(str, dummy);
while (bCont) {

aNames.Add(str);

bCont = GetConfig()->GetNextGroup(str, dummy);
}

... we have all group (and entry) names in aNames

There are also functions to get the number of entries/subgroups without actually
enumerating them, but you will probably never need them.

GetFirstGroup (p. 272)
GetNextGroup (p. 272)

266



CHAPTER 7

GetFirstEntry (p. 272)
GetNextEntry (p. 272)
GetNumberOfEntries (p. 273)
GetNumberOfGroups (p. 273)

Tests of existence

HasGroup (p. 273)
HasEntry (p. 273)
Exists (p. 271)
GetEntryType (p. 271)

Miscellaneous functions

GetAppName (p. 271)
GetVendorName (p. 273)
SetUmask (p. 598)

Key access

These function are the core of wxConfigBase class: they allow you to read and write config
file data. All Read function take a default value which will be returned if the specified key is
not found in the config file.

Currently, only two types of data are supported: string and long (but it might change in the
near future). To work with other types: for int or bool you can work with function
taking/returning long and just use the casts. Better yet, just use long for all variables which
you're going to save in the config file: chances are that sizeof(bool) ==

sizeof(int) == sizeof(long) anyhow on your system. For float, double and, in
general, any other type you'd have to translate them to/from string representation and use
string functions.

Try not to read long values into string variables and vice versa: although it just might work
with wxFileConfig, you