
LAMMPS Users Manual
Large−scale Atomic/Molecular Massively Parallel Simulator

http://lammps.sandia.gov − Sandia National Laboratories
Copyright (2003) Sandia Corporation. This software and manual is distributed under the GNU General Public License.

Table of Contents
LAMMPS Documentation...1
1. Introduction..3

1.1 What is LAMMPS...3
1.2 LAMMPS features...4
General features...4
Particle and model types..4
Force fields..4
Atom creation..5
Ensembles, constraints, and boundary conditions...5
Integrators..5
Diagnostics..6
Output..6
Pre− and post−processing..6
Specialized features...6
1.3 LAMMPS non−features..6
1.4 Open source distribution..8
1.5 Acknowledgments and citations..9

2. Getting Started...13
2.1 What's in the LAMMPS distribution...13
2.2 Making LAMMPS...14
2.3 Making LAMMPS with optional packages...17
2.4 Building LAMMPS as a library..20
2.5 Running LAMMPS...21
2.6 Command−line options...22
2.7 LAMMPS screen output..23
2.8 Running on GPUs..24
GPU hardware...25
GPU single vs double precision..25
GPU Memory..25
2.9 Tips for users of previous LAMMPS versions..26

3. Commands...27
3.1 LAMMPS input script...27
3.2 Parsing rules..28
3.3 Input script structure..28
3.4 Commands listed by category...29
3.5 Individual commands..30
Fix styles..31
Compute styles..31
Pair_style potentials...31
Bond_style potentials..32
Angle_style potentials...32
Dihedral_style potentials...32
Improper_style potentials..33
Kspace solvers...33

4. How−to discussions...34
4.1 Restarting a simulation..34
4.2 2d simulations..35
4.3 CHARMM and AMBER force fields..36

LAMMPS Users Manual

i

Table of Contents
4.4 Running multiple simulations from one input script...36
4.5 Parallel tempering..38
4.6 Granular models..38
4.7 TIP3P water model..39
4.8 TIP4P water model..40
4.9 SPC water model...41
4.10 Coupling LAMMPS to other codes...41
4.11 Visualizing LAMMPS snapshots..43
4.12 Non−orthogonal simulation boxes..43
4.13 NEMD simulations..44
4.14 Extended spherical and aspherical particles..45
4.15 Output from LAMMPS (thermo, dumps, computes, fixes, variables)..47
4.16 Thermostatting, barostatting, and computing temperature..51
4.16 Walls..53

5. Example problems..55
6. Performance &scalability...57
7. Additional tools..58

amber2lmp tool..58
binary2txt tool...59
ch2lmp tool..59
chain tool...59
data2xmovie tool...59
eam generate tool...59
lmp2arc tool...60
lmp2cfg tool...60
lmp2traj tool..60
lmp2vmd tool...60
matlab tool...60
micelle2d tool..61
msi2lmp tool..61
pymol_asphere tool...61
python tool...61
restart2data tool...61
thermo_extract tool..62
vim tool..62
xmovie tool..62

8. Modifying &extending LAMMPS...63
Atom styles..64
Bond, angle, dihedral, improper potentials...65
Compute styles..66
Dump styles...66
Dump custom output options...66
Fix styles..67
Input script commands..68
Kspace computations...68
Minimization solvers...69
Pairwise potentials...69
Region styles...70

LAMMPS Users Manual

ii

Table of Contents
Thermodynamic output options...70
Variable options...70
Submitting new features to the developers to include in LAMMPS...71

9. Errors..73
9.1 Common problems..73
9.2 Reporting bugs...74
9.3 Error &warning messages...74
Errors:..74
Warnings:..120

10. Future and history..125
10.1 Coming attractions...125
10.2 Past versions..125

angle_style charmm command...128
angle_style class2 command..129
angle_style cg/cmm command...131
angle_coeff command..132
angle_style cosine command...134
angle_style cosine/delta command...135
angle_style cosine/squared command..136
angle_style harmonic command...137
angle_style hybrid command...138
angle_style none command..139
angle_style command...140
angle_style table command..142
atom_modify command...144
atom_style command...146
bond_style class2 command...148
bond_coeff command...149
bond_style fene command...151
bond_style fene/expand command...152
bond_style harmonic command...154
bond_style hybrid command..155
bond_style morse command...156
bond_style none command...157
bond_style nonlinear command...158
bond_style quartic command...159
bond_style command...161
bond_style table command...163
boundary command..165
change_box command..166
clear command...167
communicate command...168
compute command...170
compute ackland/atom command...174
compute angle/local command...176
compute bond/local command...178
compute centro/atom command...180
compute cna/atom command...182

LAMMPS Users Manual

iii

Table of Contents
compute com command...184
compute com/molecule command...185
compute coord/atom command..187
compute damage/atom command...188
compute dihedral/local command..189
compute displace/atom command..190
compute erotate/asphere command..192
compute erotate/sphere command..193
compute event/displace command...194
compute group/group command..195
compute gyration command...196
compute gyration/molecule command...197
compute heat/flux command..199

Sample LAMMPS input script..200
compute improper/local command...202
compute ke command..203
compute ke/atom command...204
compute_modify command..205
compute msd command...206
compute msd/molecule command..208
compute pair/local command...210
compute pe command..212
compute pe/atom command...214
compute pressure command...216
compute property/atom command...218
compute property/local command..220
compute property/molecule command...222
compute rdf command...223
compute reduce command...225
compute reduce/region command..225
compute stress/atom command..228
compute temp command..230
compute temp/asphere command...232
compute temp/com command..234
compute temp/deform command...236
compute temp/partial command...238
compute temp/profile command..240
compute temp/ramp command...242
compute temp/region command...244
compute temp/sphere command...246
create_atoms command..248
create_box command...250
delete_atoms command..251
delete_bonds command..253
dielectric command..255
dihedral_style charmm command..256
dihedral_style class2 command...258
dihedral_coeff command..261

LAMMPS Users Manual

iv

Table of Contents
dihedral_style harmonic command..263
dihedral_style helix command...264
dihedral_style hybrid command...265
dihedral_style multi/harmonic command...266
dihedral_style none command...267
dihedral_style opls command...268
dihedral_style command..269
dimension command..271
dipole command...272
displace_atoms command..273
displace_box command..275
dump command..278
dump_modify command..284
echo command...287
fix command..288
fix addforce command...292
fix atc command...294
fix ave/atom command...298
fix ave/histo command...300
fix ave/spatial command..304
fix ave/time command..309
fix aveforce command..313
fix bond/break command...315
fix bond/create command...318
fix bond/swap command..321
fix box/relax command..324
fix deform command..327
fix deposit command..333
fix drag command..336
fix dt/reset command..337
fix efield command..339
fix enforce2d command...340
fix evaporate command..341
fix freeze command..342
fix gravity command..343
fix heat command...345
fix imd command...347
fix indent command...349
fix langevin command..352
fix lineforce command...355
fix_modify command...356
fix momentum command...357
fix move command...359
fix nph command...362
fix npt command..365
fix npt/asphere command...369
fix npt/sphere command...373
fix nve command..377

LAMMPS Users Manual

v

Table of Contents
fix nve/asphere command..378
fix nve/limit command...379
fix nve/noforce command..381
fix nve/sphere command..382
fix nvt command..384
fix nvt/asphere command...387
fix nvt/sllod command...390
fix nvt/sphere command...393
fix orient/fcc command..396
fix planeforce command...400
fix poems..401
fix pour command..403
fix press/berendsen command..405
fix print command..408
fix reax/bonds command..410
fix recenter command...411
fix rigid...413
fix setforce command...417
fix shake command..418
fix smd command...420
fix spring command...423
fix spring/rg command...425
fix spring/self command...427
fix store/coord command...428
fix store/force command..430
fix temp/berendsen command..431
fix temp/rescale command...433
fix thermal/conductivity command..435
fix tmd command...438
fix ttm command..440
fix viscosity command...443
fix viscous command...446
fix wall/lj93 command...448
fix wall/lj126 command...448
fix wall/colloid command..448
fix wall/harmonic command..448
fix wall/gran command..452
fix wall/reflect command...455
fix wall/region command...457
fix wiggle command...460
group command..461
if command..463
improper_style class2 command..465
improper_coeff command..467
improper_style cvff command...469
improper_style harmonic command...470
improper_style hybrid command...471
improper_style none command..472

LAMMPS Users Manual

vi

Table of Contents
improper_style command...473
include command...475
jump command...476
kspace_modify command..478
kspace_style command..480
label command...482
lattice command...483
log command..486
mass command...487
min_modify command...489
min_style command...490
minimize command..491
neigh_modify command..494
neighbor command...497
newton command...499
next command..500
orient command..502
origin command...503
pair_style airebo command..504
pair_style born/coul/long command...507
pair_style buck command..509
pair_style buck/coul/cut command..509
pair_style buck/coul/long command..509
pair_style buck/coul command..511
pair_style lj/charmm/coul/charmm command...514
pair_style lj/charmm/coul/charmm/implicit command..514
pair_style lj/charmm/coul/long command...514
pair_style lj/charmm/coul/long/opt command...514
pair_style lj/class2 command...517
pair_style lj/class2/coul/cut command...517
pair_style lj/class2/coul/long command...517
pair_style cg/cmm command...520
pair_style cg/cmm/coul/cut command...520
pair_style cg/cmm/coul/long command...520
pair_coeff command..523
pair_style colloid command...526
pair_style coul/cut command...529
pair_style coul/debye command...529
pair_style coul/long command...529
pair_style dipole/cut command..531
pair_style dpd command..534
pair_style dsmc command..536
pair_style eam command...538
pair_style eam/opt command...538
pair_style eam/alloy command..538
pair_style eam/alloy/opt command..538
pair_style eam/cd command...538
pair_style eam/fs command...538

LAMMPS Users Manual

vii

Table of Contents
pair_style eam/fs/opt command...538
pair_style gayberne command...545
pair_style gayberne/gpu command..545
pair_style gran/hooke command..549
pair_style gran/hooke/history command..549
pair_style gran/hertz/history command..549
pair_style lj/gromacs command...553
pair_style lj/gromacs/coul/gromacs command...553
pair_style hybrid command..555
pair_style hybrid/overlay command...555
pair_style lj/cut command..558
pair_style lj/cut/gpu command...558
pair_style lj/cut/opt command..558
pair_style lj/cut/coul/cut command..558
pair_style lj/cut/coul/debye command...558
pair_style lj/cut/coul/long command..558
pair_style lj/cut/coul/long/tip4p command..558
pair_style lj96/cut command..563
pair_style lj/coul command..565
pair_style lj/expand command...568
pair_style lj/smooth command...570
pair_style lubricate command..572
pair_style meam command..575
pair_modify command...580
pair_style morse command..583
pair_style morse/opt command..583
pair_style none command..585
pair_style peri/pmb command..586
pair_style reax command...588
pair_style resquared command...590
pair_style soft command..593
pair_style command...595
pair_style sw command..598
pair_style table command..601
pair_style tersoff command..604
pair_style tersoff/zbl command..608
pair_write command..613
pair_style yukawa command..615
pair_style yukawa/colloid command...617
prd command..619
print command...623
processors command..624
read_data command...625
read_restart command..635
region command...637
replicate command...641
reset_timestep command..642
restart command...643

LAMMPS Users Manual

viii

Table of Contents
run command..645
run_style command..648
set command..651
shape command..654
shell command...656
special_bonds command..658
temper command..660
thermo command..662
thermo_modify command..663
thermo_style command..665
timestep command...669
uncompute command...670
undump command..671
unfix command..672
units command...673
variable command..676
velocity command..684
write_restart command...687

LAMMPS Users Manual

ix

LAMMPS Documentation

(15 Jan 2010 version of LAMMPS)

LAMMPS stands for Large−scale Atomic/Molecular Massively Parallel Simulator.

LAMMPS is a classical molecular dynamics simulation code designed to run efficiently on parallel computers. It
was developed at Sandia National Laboratories, a US Department of Energy facility, with funding from the DOE.
It is an open−source code, distributed freely under the terms of the GNU Public License (GPL).

The primary developers of LAMMPS are Steve Plimpton, Paul Crozier, and Aidan Thompson who can be
contacted at sjplimp,pscrozi,athomps at sandia.gov. The LAMMPS WWW Site at http://lammps.sandia.gov has
more information about the code and its uses.

The LAMMPS documentation is organized into the following sections. If you find errors or omissions in this
manual or have suggestions for useful information to add, please send an email to the developers so we can
improve the LAMMPS documentation.

Once you are familiar with LAMMPS, you may want to bookmark this page at Section_commands.html#comm
since it gives quick access to documentation for all LAMMPS commands.

PDF file of the entire manual, generated by htmldoc

IMPORTANT NOTE: If you browse the LAMMPS HTML doc pages from the LAMMPS WWW site, then they
describe the most current, fully−patched version of LAMMPS, which has changed after the date listed above.
These additions are described on this page. If you browse the HTML doc pages from the doc directory of the
tarball you downloaded, then they will describe that tarball, whether it was the original version for the date listed
above, or an upgraded tarball including features up to the date you downloaded it, again as described on this page.
When the tarball unpacks, it will contain the date that corresponds to which version you downloaded. The PDF
file described above is not regenerated for every patch, so it always corresponds to the original version with the
date listed above.

Introduction
1.1 What is LAMMPS
1.2 LAMMPS features
1.3 LAMMPS non−features
1.4 Open source distribution
1.5 Acknowledgments and citations

1.

Getting started
2.1 What's in the LAMMPS distribution
2.2 Making LAMMPS
2.3 Making LAMMPS with optional packages
2.4 Building LAMMPS as a library
2.5 Running LAMMPS
2.6 Command−line options
2.7 Screen output
2.8 Running on GPUs
2.9 Tips for users of previous versions

2.

Commands
3.1 LAMMPS input script
3.2 Parsing rules
3.3 Input script structure

3.

1

http://www.cs.sandia.gov/~sjplimp
http://lammps.sandia.gov
http://www.easysw.com/htmldoc
http://lammps.sandia.gov/bug.html
http://lammps.sandia.gov/bug.html

3.4 Commands listed by category
3.5 Commands listed alphabetically
How−to discussions
4.1 Restarting a simulation
4.2 2d simulations
4.3 CHARMM and AMBER force fields
4.4 Running multiple simulations from one input script
4.5 Parallel tempering
4.6 Granular models
4.7 TIP3P water model
4.8 TIP4P water model
4.9 SPC water model
4.10 Coupling LAMMPS to other codes
4.11 Visualizing LAMMPS snapshots
4.12 Non−orthogonal simulation boxes
4.13 NEMD simulations
4.14 Extended spherical and aspherical particles
4.15 Output from LAMMPS (thermo, dumps, computes, fixes, variables)
4.16 Thermostatting, barostatting, and compute temperature
4.17 Walls

4.

Example problems5.
Performance &scalability6.
Additional tools7.
Modifying &Extending LAMMPS8.
Errors
9.1 Common problems
9.2 Reporting bugs
9.3 Error &warning messages

9.

Future and history
10.1 Coming attractions
10.2 Past versions

10.

2

Previous Section − LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands − Next Section

1. Introduction

These sections provide an overview of what LAMMPS can and can't do, describe what it means for LAMMPS to
be an open−source code, and acknowledge the funding and people who have contributed to LAMMPS over the
years.

1.1 What is LAMMPS
1.2 LAMMPS features
1.3 LAMMPS non−features
1.4 Open source distribution
1.5 Acknowledgments and citations

1.1 What is LAMMPS

LAMMPS is a classical molecular dynamics code that models an ensemble of particles in a liquid, solid, or
gaseous state. It can model atomic, polymeric, biological, metallic, granular, and coarse−grained systems using a
variety of force fields and boundary conditions.

For examples of LAMMPS simulations, see the Publications page of the LAMMPS WWW Site.

LAMMPS runs efficiently on single−processor desktop or laptop machines, but is designed for parallel
computers. It will run on any parallel machine that compiles C++ and supports the MPI message−passing library.
This includes distributed− or shared−memory parallel machines and Beowulf−style clusters.

LAMMPS can model systems with only a few particles up to millions or billions. See this section for information
on LAMMPS performance and scalability, or the Benchmarks section of the LAMMPS WWW Site.

LAMMPS is a freely−available open−source code, distributed under the terms of the GNU Public License, which
means you can use or modify the code however you wish. See this section for a brief discussion of the
open−source philosophy.

LAMMPS is designed to be easy to modify or extend with new capabilities, such as new force fields, atom types,
boundary conditions, or diagnostics. See this section for more details.

The current version of LAMMPS is written in C++. Earlier versions were written in F77 and F90. See this section
for more information on different versions. All versions can be downloaded from the LAMMPS WWW Site.

LAMMPS was originally developed under a US Department of Energy CRADA (Cooperative Research and
Development Agreement) between two DOE labs and 3 companies. It is distributed by Sandia National Labs. See
this section for more information on LAMMPS funding and individuals who have contributed to LAMMPS.

In the most general sense, LAMMPS integrates Newton's equations of motion for collections of atoms, molecules,
or macroscopic particles that interact via short− or long−range forces with a variety of initial and/or boundary
conditions. For computational efficiency LAMMPS uses neighbor lists to keep track of nearby particles. The lists
are optimized for systems with particles that are repulsive at short distances, so that the local density of particles
never becomes too large. On parallel machines, LAMMPS uses spatial−decomposition techniques to partition the
simulation domain into small 3d sub−domains, one of which is assigned to each processor. Processors
communicate and store "ghost" atom information for atoms that border their sub−domain. LAMMPS is most
efficient (in a parallel sense) for systems whose particles fill a 3d rectangular box with roughly uniform density.

3

http://lammps.sandia.gov
http://lammps.sandia.gov
http://www-unix.mcs.anl.gov/mpi
http://lammps.sandia.gov
http://www.gnu.org/copyleft/gpl.html
http://lammps.sandia.gov
http://www.sandia.gov

Papers with technical details of the algorithms used in LAMMPS are listed in this section.

1.2 LAMMPS features

This section highlights LAMMPS features, with pointers to specific commands which give more details. If
LAMMPS doesn't have your favorite interatomic potential, boundary condition, or atom type, see this section,
which describes how you can add it to LAMMPS.

General features

runs on a single processor or in parallel•
distributed−memory message−passing parallelism (MPI)•
spatial−decomposition of simulation domain for parallelism•
open−source distribution•
highly portable C++•
optional libraries used: MPI and single−processor FFT•
easy to extend with new features and functionality•
runs from an input script•
syntax for defining and using variables and formulas•
syntax for looping over runs and breaking out of loops•
run one or multiple simulations simultaneously (in parallel) from one script•

Particle and model types

(atom style command)

atoms•
coarse−grained particles (e.g. bead−spring polymers)•
united−atom polymers or organic molecules•
all−atom polymers, organic molecules, proteins, DNA•
metals•
granular materials•
coarse−grained mesoscale models•
extended spherical and ellipsoidal particles•
point dipolar particles•
rigid collections of particles•
hybrid combinations of these•

Force fields

(pair style, bond style, angle style, dihedral style, improper style, kspace style commands)

pairwise potentials: Lennard−Jones, Buckingham, Morse, Yukawa, soft, class 2 (COMPASS), tabulated•
charged pairwise potentials: Coulombic, point−dipole•
manybody potentials: EAM, Finnis/Sinclair EAM, modified EAM (MEAM), Stillinger−Weber, Tersoff,
AI−REBO, ReaxFF

•

coarse−grained potentials: DPD, GayBerne, REsquared, colloidal, DLVO•
mesoscopic potentials: granular, Peridynamics•
bond potentials: harmonic, FENE, Morse, nonlinear, class 2, quartic (breakable)•
angle potentials: harmonic, CHARMM, cosine, cosine/squared, class 2 (COMPASS)•
dihedral potentials: harmonic, CHARMM, multi−harmonic, helix, class 2 (COMPASS), OPLS•

4

improper potentials: harmonic, cvff, class 2 (COMPASS)•
polymer potentials: all−atom, united−atom, bead−spring, breakable•
water potentials: TIP3P, TIP4P, SPC•
implicit solvent potentials: hydrodynamic lubrication, Debye•
long−range Coulombics and dispersion: Ewald, PPPM (similar to particle−mesh Ewald), Ewald/N for
long−range Lennard−Jones

•

force−field compatibility with common CHARMM, AMBER, OPLS, GROMACS options•
handful of GPU−enabled pair styles•

hybrid potentials: multiple pair, bond, angle, dihedral, improper potentials can be used in one simulation overlaid
potentials: superposition of multiple pair potentials

Atom creation

(read_data, lattice, create_atoms, delete_atoms, displace_atoms, replicate commands)

read in atom coords from files•
create atoms on one or more lattices (e.g. grain boundaries)•
delete geometric or logical groups of atoms (e.g. voids)•
replicate existing atoms multiple times•
displace atoms•

Ensembles, constraints, and boundary conditions

(fix command)

2d or 3d systems•
orthogonal or non−orthogonal (triclinic symmetry) simulation domains•
constant NVE, NVT, NPT, NPH integrators•
thermostatting options for groups and geometric regions of atoms•
pressure control via Nose/Hoover or Berendsen barostatting in 1 to 3 dimensions•
simulation box deformation (tensile and shear)•
harmonic (umbrella) constraint forces•
rigid body constraints•
SHAKE bond and angle constraints•
bond breaking, formation, swapping•
walls of various kinds•
non−equilibrium molecular dynamics (NEMD)•
variety of additional boundary conditions and constraints•

Integrators

(run, run_style, minimize commands)

velocity−Verlet integrator•
Brownian dynamics•
rigid body integration•
energy minimization via conjugate gradient or steepest descent relaxation•
rRESPA hierarchical timestepping•

5

Diagnostics

see the various flavors of the fix and compute commands•

Output

(dump, restart commands)

log file of thermodynamic info•
text dump files of atom coords, velocities, other per−atom quantities•
binary restart files•
per−atom quantities (energy, stress, centro−symmetry parameter, CNA, etc)•
user−defined system−wide (log file) or per−atom (dump file) calculations•
spatial and time averaging of per−atom quantities•
time averaging of system−wide quantities•
atom snapshots in native, XYZ, XTC, DCD, CFG formats•

Pre− and post−processing

Various pre− and post−processing serial tools are packaged with LAMMPS; see these doc pages.•
Our group has also written and released a separate toolkit called Pizza.py which provides tools for doing
setup, analysis, plotting, and visualization for LAMMPS simulations. Pizza.py is written in Python and is
available for download from the Pizza.py WWW site.

•

Specialized features

These are LAMMPS capabilities which you may not think of as typical molecular dynamics options:

real−time visualization and interactive MD•
atom−to−continuum coupling with finite elements•
coupled rigid body integration via the POEMS library•
parallel tempering•
parallel replica dynamics•
Direct Simulation Monte Carlo for low−density fluids•
Peridynamics mesoscale modeling•
targeted and steered molecular dynamics•
two−temperature electron model•

1.3 LAMMPS non−features

LAMMPS is designed to efficiently compute Newton's equations of motion for a system of interacting particles.
Many of the tools needed to pre− and post−process the data for such simulations are not included in the
LAMMPS kernel for several reasons:

the desire to keep LAMMPS simple•
they are not parallel operations•
other codes already do them•
limited development resources•

Specifically, LAMMPS itself does not:

6

http://www.sandia.gov/~sjplimp/pizza.html
http://www.python.org
http://www.sandia.gov/~sjplimp/pizza.html

run thru a GUI•
build molecular systems•
assign force−field coefficients automagically•
perform sophisticated analyses of your MD simulation•
visualize your MD simulation•
plot your output data•

A few tools for pre− and post−processing tasks are provided as part of the LAMMPS package; they are described
in this section. However, many people use other codes or write their own tools for these tasks.

As noted above, our group has also written and released a separate toolkit called Pizza.py which addresses some
of the listed bullets. It provides tools for doing setup, analysis, plotting, and visualization for LAMMPS
simulations. Pizza.py is written in Python and is available for download from the Pizza.py WWW site.

LAMMPS requires as input a list of initial atom coordinates and types, molecular topology information, and
force−field coefficients assigned to all atoms and bonds. LAMMPS will not build molecular systems and assign
force−field parameters for you.

For atomic systems LAMMPS provides a create_atoms command which places atoms on solid−state lattices (fcc,
bcc, user−defined, etc). Assigning small numbers of force field coefficients can be done via the pair coeff, bond
coeff, angle coeff, etc commands. For molecular systems or more complicated simulation geometries, users
typically use another code as a builder and convert its output to LAMMPS input format, or write their own code
to generate atom coordinate and molecular topology for LAMMPS to read in.

For complicated molecular systems (e.g. a protein), a multitude of topology information and hundreds of
force−field coefficients must typically be specified. We suggest you use a program like CHARMM or AMBER or
other molecular builders to setup such problems and dump its information to a file. You can then reformat the file
as LAMMPS input. Some of the tools in this section can assist in this process.

Similarly, LAMMPS creates output files in a simple format. Most users post−process these files with their own
analysis tools or re−format them for input into other programs, including visualization packages. If you are
convinced you need to compute something on−the−fly as LAMMPS runs, see this section for a discussion of how
you can use the dump and compute and fix commands to print out data of your choosing. Keep in mind that
complicated computations can slow down the molecular dynamics timestepping, particularly if the computations
are not parallel, so it is often better to leave such analysis to post−processing codes.

A very simple (yet fast) visualizer is provided with the LAMMPS package − see the xmovie tool in this section. It
creates xyz projection views of atomic coordinates and animates them. We find it very useful for debugging
purposes. For high−quality visualization we recommend the following packages:

VMD•
AtomEye•
PyMol•
Raster3d•
RasMol•

Other features that LAMMPS does not yet (and may never) support are discussed in this section.

Finally, these are freely−available molecular dynamics codes, most of them parallel, which may be well−suited to
the problems you want to model. They can also be used in conjunction with LAMMPS to perform complementary
modeling tasks.

7

http://www.sandia.gov/~sjplimp/pizza.html
http://www.python.org
http://www.sandia.gov/~sjplimp/pizza.html
http://www.scripps.edu/brooks
http://amber.scripps.edu
http://www.ks.uiuc.edu/Research/vmd
http://164.107.79.177/Archive/Graphics/A
http://pymol.sourceforge.net
http://www.bmsc.washington.edu/raster3d/raster3d.html
http://www.openrasmol.org

CHARMM•
AMBER•
NAMD•
NWCHEM•
DL_POLY•
Tinker•

CHARMM, AMBER, NAMD, NWCHEM, and Tinker are designed primarily for modeling biological molecules.
CHARMM and AMBER use atom−decomposition (replicated−data) strategies for parallelism; NAMD and
NWCHEM use spatial−decomposition approaches, similar to LAMMPS. Tinker is a serial code. DL_POLY
includes potentials for a variety of biological and non−biological materials; both a replicated−data and
spatial−decomposition version exist.

1.4 Open source distribution

LAMMPS comes with no warranty of any kind. As each source file states in its header, it is a copyrighted code
that is distributed free−of− charge, under the terms of the GNU Public License (GPL). This is often referred to as
open−source distribution − see www.gnu.org or www.opensource.org for more details. The legal text of the GPL
is in the LICENSE file that is included in the LAMMPS distribution.

Here is a summary of what the GPL means for LAMMPS users:

(1) Anyone is free to use, modify, or extend LAMMPS in any way they choose, including for commercial
purposes.

(2) If you distribute a modified version of LAMMPS, it must remain open−source, meaning you distribute it
under the terms of the GPL. You should clearly annotate such a code as a derivative version of LAMMPS.

(3) If you release any code that includes LAMMPS source code, then it must also be open−sourced, meaning you
distribute it under the terms of the GPL.

(4) If you give LAMMPS files to someone else, the GPL LICENSE file and source file headers (including the
copyright and GPL notices) should remain part of the code.

In the spirit of an open−source code, these are various ways you can contribute to making LAMMPS better. You
can send email to the developers on any of these items.

Point prospective users to the LAMMPS WWW Site. Mention it in talks or link to it from your WWW
site.

•

If you find an error or omission in this manual or on the LAMMPS WWW Site, or have a suggestion for
something to clarify or include, send an email to the developers.

•

If you find a bug, this section describes how to report it.•
If you publish a paper using LAMMPS results, send the citation (and any cool pictures or movies if you
like) to add to the Publications, Pictures, and Movies pages of the LAMMPS WWW Site, with links and
attributions back to you.

•

Create a new Makefile.machine that can be added to the src/MAKE directory.•
The tools sub−directory of the LAMMPS distribution has various stand−alone codes for pre− and
post−processing of LAMMPS data. More details are given in this section. If you write a new tool that
users will find useful, it can be added to the LAMMPS distribution.

•

LAMMPS is designed to be easy to extend with new code for features like potentials, boundary
conditions, diagnostic computations, etc. This section gives details. If you add a feature of general

•

8

http://www.scripps.edu/brooks
http://amber.scripps.edu
http://www.ks.uiuc.edu/Research/namd/
http://www.emsl.pnl.gov/docs/nwchem/nwchem.html
http://www.cse.clrc.ac.uk/msi/software/DL_POLY
http://dasher.wustl.edu/tinker
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org
http://www.opensource.org
http://lammps.sandia.gov/authors.html
http://lammps.sandia.gov
http://lammps.sandia.gov
http://lammps.sandia.gov/authors.html
http://lammps.sandia.gov

interest, it can be added to the LAMMPS distribution.
The Benchmark page of the LAMMPS WWW Site lists LAMMPS performance on various platforms.
The files needed to run the benchmarks are part of the LAMMPS distribution. If your machine is
sufficiently different from those listed, your timing data can be added to the page.

•

You can send feedback for the User Comments page of the LAMMPS WWW Site. It might be added to
the page. No promises.

•

Cash. Small denominations, unmarked bills preferred. Paper sack OK. Leave on desk. VISA also
accepted. Chocolate chip cookies encouraged.

•

1.5 Acknowledgments and citations

LAMMPS development has been funded by the US Department of Energy (DOE), through its CRADA, LDRD,
ASCI, and Genomes−to−Life programs and its OASCR and OBER offices.

Specifically, work on the latest version was funded in part by the US Department of Energy's Genomics:GTL
program (www.doegenomestolife.org) under the project, "Carbon Sequestration in Synechococcus Sp.: From
Molecular Machines to Hierarchical Modeling".

The following papers describe the parallel algorithms used in LAMMPS.

S. J. Plimpton, Fast Parallel Algorithms for Short−Range Molecular Dynamics, J Comp Phys, 117, 1−19
(1995).

S. J. Plimpton, R. Pollock, M. Stevens, Particle−Mesh Ewald and rRESPA for Parallel Molecular Dynamics
Simulations, in Proc of the Eighth SIAM Conference on Parallel Processing for Scientific Computing,
Minneapolis, MN (March 1997).

If you use LAMMPS results in your published work, please cite the J Comp Phys reference and include a pointer
to the LAMMPS WWW Site (http://lammps.sandia.gov).

If you send is information about your publication, we'll be pleased to add it to the Publications page of the
LAMMPS WWW Site. Ditto for a picture or movie for the Pictures or Movies pages.

The core group of LAMMPS developers is at Sandia National Labs. They include Steve Plimpton, Paul Crozier,
and Aidan Thompson and can be contacted via email: sjplimp, pscrozi, athomps at sandia.gov.

Here are various folks who have made significant contributions to features in LAMMPS. The most recent
contributions are at the top of the list.

pair yukawa/colloid Randy Schunk (Sandia)

fix wall/colloid Jeremy Lechman (Sandia)

pair_style dsmc for Direct Simulation Monte Carlo
(DSMC) modeling

Paul Crozier (Sandia)

fix imd for real−time viz and interactive MD Axel Kohlmeyer (Temple Univ)

concentration−dependent EAM potential Alexander Stukowski (Technical University of Darmstadt)

parallel replica dymamics (PRD) Mike Brown (Sandia)

min_style hftn Todd Plantenga (Sandia)

fix atc Reese Jones, Jon Zimmerman, Jeremy Templeton (Sandia)

dump cfg Liang Wan (Chinese Academy of Sciences)

fix nvt with Nose/Hoover chains Andy Ballard (U Maryland)

9

http://lammps.sandia.gov
http://lammps.sandia.gov
http://www.doe.gov
http://www.sc.doe.gov/ascr/home.html
http://www.er.doe.gov/production/ober/ober_top.html
http://www.doegenomestolife.org
http://www.genomes2life.org
http://lammps.sandia.gov
http://lammps.sandia.gov
http://www.cs.sandia.gov/~sjplimp

pair_style lj/cut/gpu, pair_style gayberne/gpu Mike Brown (Sandia)

pair_style lj96/cut, bond_style table, angle_style
table

Chuanfu Luo

fix langevin tally Carolyn Phillips (U Michigan)

compute heat/flux for Green−Kubo
Reese Jones (Sandia), Philip Howell (Siemens), Vikas
Varsney (AFRL)

region cone Pim Schravendijk

fix reax/bonds Aidan Thompson (Sandia)

pair born/coul/long Ahmed Ismail (Sandia)

fix ttm Paul Crozier (Sandia) and Carolyn Phillips (U Michigan)

fix box/relax Aidan Thompson and David Olmsted (Sandia)

ReaxFF potential Aidan Thompson (Sandia) and Hansohl Cho (MIT)

compute cna/atom Wan Liang (Chinese Academy of Sciences)

Tersoff/ZBL potential Dave Farrell (Northwestern U)

peridynamics Mike Parks (Sandia)

fix smd for steered MD Axel Kohlmeyer (U Penn)

GROMACS pair potentials Mark Stevens (Sandia)

lmp2vmd tool Axel Kohlmeyer (U Penn)

compute group/group Naveen Michaud−Agrawal (Johns Hopkins U)

CG−CMM user package for coarse−graining Axel Kohlmeyer (U Penn)

cosine/delta angle potential Axel Kohlmeyer (U Penn)

VIM editor add−ons for LAMMPS input scripts Gerolf Ziegenhain

pair lubricate Randy Schunk (Sandia)

compute ackland/atom Gerolf Zeigenhain

kspace_style ewald/n, pair_style lj/coul, pair_style
buck/coul

Pieter in 't Veld (Sandia)

AI−REBO bond−order potential Ase Henry (MIT)

making LAMMPS a true "object" that can be
instantiated multiple times, e.g. as a library

Ben FrantzDale (RPI)

pymol_asphere viz tool Mike Brown (Sandia)

NEMD SLLOD integration Pieter in 't Veld (Sandia)

tensile and shear deformations Pieter in 't Veld (Sandia)

GayBerne potential Mike Brown (Sandia)

ellipsoidal particles Mike Brown (Sandia)

colloid potentials Pieter in 't Veld (Sandia)

fix heat Paul Crozier and Ed Webb (Sandia)

neighbor multi and communicate multi Pieter in 't Veld (Sandia)

MATLAB post−processing scripts Arun Subramaniyan (Purdue)

triclinic (non−orthogonal) simulation domains Pieter in 't Veld (Sandia)

thermo_extract tool Vikas Varshney (Wright Patterson AFB)

fix ave/time and fix ave/spatial Pieter in 't Veld (Sandia)

MEAM potential Greg Wagner (Sandia)

optimized pair potentials for lj/cut, charmm/long,
eam, morse

James Fischer (High Performance Technologies), David
Richie and Vincent Natoli (Stone Ridge Technologies)

10

fix wall/lj126 Mark Stevens (Sandia)

Stillinger−Weber and Tersoff potentials Aidan Thompson and Xiaowang Zhou (Sandia)

region prism Pieter in 't Veld (Sandia)

LJ tail corrections for energy/pressure Paul Crozier (Sandia)

fix momentum and recenter Naveen Michaud−Agrawal (Johns Hopkins U)

multi−letter variable names Naveen Michaud−Agrawal (Johns Hopkins U)

OPLS dihedral potential Mark Stevens (Sandia)

POEMS coupled rigid body integrator Rudranarayan Mukherjee (RPI)

faster pair hybrid potential
James Fischer (High Performance Technologies, Inc),
Vincent Natoli and David Richie (Stone Ridge
Technology)

breakable bond quartic potential Chris Lorenz and Mark Stevens (Sandia)

DCD and XTC dump styles Naveen Michaud−Agrawal (Johns Hopkins U)

grain boundary orientation fix Koenraad Janssens and David Olmsted (Sandia)

lj/smooth pair potential Craig Maloney (UCSB)

radius−of−gyration spring fix
Naveen Michaud−Agrawal (Johns Hopkins U) and Paul
Crozier (Sandia)

self spring fix Naveen Michaud−Agrawal (Johns Hopkins U)

EAM CoAl and AlCu potentials Kwang−Reoul Lee (KIST, Korea)

cosine/squared angle potential Naveen Michaud−Agrawal (Johns Hopkins U)

helix dihedral potential
Naveen Michaud−Agrawal (Johns Hopkins U) and Mark
Stevens (Sandia)

Finnis/Sinclair EAM Tim Lau (MIT)

dissipative particle dynamics (DPD) potentials Kurt Smith (U Pitt) and Frank van Swol (Sandia)

TIP4P potential (4−site water) Ahmed Ismail and Amalie Frischknecht (Sandia)

uniaxial strain fix Carsten Svaneborg (Max Planck Institute)

thermodynamics enhanced by fix quantities Aidan Thompson (Sandia)

compressed dump files Erik Luijten (U Illinois)

cylindrical indenter fix Ravi Agrawal (Northwestern U)

electric field fix Christina Payne (Vanderbilt U)

AMBER LAMMPS tool
Keir Novik (Univ College London) and Vikas Varshney (U
Akron)

CHARMM LAMMPS tool Pieter in 't Veld and Paul Crozier (Sandia)

Morse bond potential Jeff Greathouse (Sandia)

radial distribution functions Paul Crozier &Jeff Greathouse (Sandia)

force tables for long−range Coulombics Paul Crozier (Sandia)

targeted molecular dynamics (TMD)
Paul Crozier (Sandia) and Christian Burisch (Bochum
University, Germany)

FFT support for SGI SCSL (Altix) Jim Shepherd (Ga Tech)

lmp2cfg and lmp2traj tools Ara Kooser, Jeff Greathouse, Andrey Kalinichev (Sandia)

parallel tempering Mark Sears (Sandia)

embedded atom method (EAM) potential Stephen Foiles (Sandia)

multi−harmonic dihedral potential Mathias Puetz (Sandia)

granular force fields and BC Leo Silbert &Gary Grest (Sandia)

11

2d Ewald/PPPM Paul Crozier (Sandia)

CHARMM force fields Paul Crozier (Sandia)

msi2lmp tool
Steve Lustig (Dupont), Mike Peachey &John Carpenter
(Cray)

HTFN energy minimizer Todd Plantenga (Sandia)

class 2 force fields Eric Simon (Cray)

NVT/NPT integrators Mark Stevens (Sandia)

rRESPA Mark Stevens &Paul Crozier (Sandia)

Ewald and PPPM solvers Roy Pollock (LLNL)
Other CRADA partners involved in the design and testing of LAMMPS were

John Carpenter (Mayo Clinic, formerly at Cray Research)•
Terry Stouch (Lexicon Pharmaceuticals, formerly at Bristol Myers Squibb)•
Steve Lustig (Dupont)•
Jim Belak (LLNL)•

12

Previous Section − LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands − Next Section

2. Getting Started

This section describes how to build and run LAMMPS, for both new and experienced users.

2.1 What's in the LAMMPS distribution
2.2 Making LAMMPS
2.3 Making LAMMPS with optional packages
2.4 Building LAMMPS as a library
2.5 Running LAMMPS
2.6 Command−line options
2.7 Screen output
2.8 Running on GPUs
2.9 Tips for users of previous versions

2.1 What's in the LAMMPS distribution

When you download LAMMPS you will need to unzip and untar the downloaded file with the following
commands, after placing the file in an appropriate directory.

gunzip lammps*.tar.gz
tar xvf lammps*.tar

This will create a LAMMPS directory containing two files and several sub−directories:

README text file

LICENSE
the GNU General Public License
(GPL)

bench benchmark problems

doc documentation

examples simple test problems

potentials
embedded atom method (EAM)
potential files

src source files

tools pre− and post−processing tools
If you download the Windows executable from the download page, then you just get a single file:

lmp_windows.exe

Skip to the Running LAMMPS section, to learn how to launch this executable on a Windows box.

Note that this executable does not include an MPI or FFT library, so it can only be run on a single processor and it
cannot perform simulations with long−range Coulombics using a PPPM solver.

The Windows executage also only includes certain packages and bug−fixes/upgrades listed on this page up to a
certain date, as stated on the download page. If you want something with more packages or that is more current,
you'll have to download the source tarball and build it yourself, as described in the next section.

13

http://lammps.sandia.gov
http://lammps.sandia.gov/bug.html

2.2 Making LAMMPS

This section has the following sub−sections:

Read this first•
Building a LAMMPS executable•
Common errors that can occur when making LAMMPS•
Editing a new low−level Makefile•
Additional build tips•

Read this first:

Building LAMMPS can be non−trivial. You will likely need to edit a makefile, there are compiler options,
additional libraries can be used (MPI, FFT), etc. Please read this section carefully. If you are not comfortable with
makefiles, or building codes on a Unix platform, or running an MPI job on your machine, please find a local
expert to help you. Many compiling, linking, and run problems that users are not really LAMMPS issues − they
are peculiar to the user's system, compilers, libraries, etc. Such questions are better answered by a local expert.

If you have a build problem that you are convinced is a LAMMPS issue (e.g. the compiler complains about a line
of LAMMPS source code), then please send an email to the developers.

If you succeed in building LAMMPS on a new kind of machine, for which there isn't a similar Makefile for in the
src/MAKE directory, send it to the developers and we'll include it in future LAMMPS releases.

Building a LAMMPS executable:

The src directory contains the C++ source and header files for LAMMPS. It also contains a top−level Makefile
and a MAKE sub−directory with low−level Makefile.* files for several machines. From within the src directory,
type "make" or "gmake". You should see a list of available choices. If one of those is the machine and options you
want, you can type a command like:

make linux
gmake mac

Note that on a multi−processor or multi−core platform you can launch a parallel make, by using the "−j" switch
with the make command, which will build LAMMPS more quickly.

If you get no errors and an executable like lmp_linux or lmp_mac is produced, you're done; it's your lucky day.

Common errors that can occur when making LAMMPS:

(1) If the make command breaks immediately with errors that indicate it can't find files with a "*" in their names,
this can be because your machine's make doesn't support wildcard expansion in a makefile. Try gmake instead of
make. If that doesn't work, try using a −f switch with your make command to use Makefile.list which explicitly
lists all the needed files, e.g.

make makelist
make −f Makefile.list linux
gmake −f Makefile.list mac

The first "make" command will create a current Makefile.list with all the file names in your src dir. The 2nd
"make" command (make or gmake) will use it to build LAMMPS.

14

http://lammps.sandia.gov/authors.html

(2) Other errors typically occur because the low−level Makefile isn't setup correctly for your machine. If your
platform is named "foo", you will need to create a Makefile.foo in the MAKE sub−directory. Use whatever
existing file is closest to your platform as a starting point. See the next section for more instructions.

(3) If you get a link−time error about missing libraries or missing dependencies, then it can be because:

you are including a package that needs an extra library, but have not pre−built the necessary package
library

•

you are linking to a library that doesn't exist on your system•
you are not linking to the necessary system library•

The first issue is discussed below. The other two issue mean you need to edit your low−level Makefile.foo, as
discussed in the next sub−section.

Editing a new low−level Makefile.foo:

These are the issues you need to address when editing a low−level Makefile for your machine. The portions of the
file you typically need to edit are the first line, the "compiler/linker settings" section, and the "system−specific
settings" section.

(1) Change the first line of Makefile.foo to list the word "foo" after the "#", and whatever other options you set.
This is the line you will see if you just type "make".

(3) The "compiler/linker settings" section lists compiler and linker settings for your C++ compiler, including
optimization flags. You can use g++, the open−source GNU compiler, which is available on all Unix systems.
You can also use mpicc which will typically be available if MPI is installed on your system, though you should
check which actual compiler it wraps. Vendor compilers often produce faster code. On boxes with Intel CPUs, we
suggest using the free Intel icc compiler, which you can download from Intel's compiler site.

If building a C++ code on your machine requires additional libraries, then you should list them as part of the LIB
variable.

The DEPFLAGS setting is what triggers the C++ compiler to create a dependency list for a source file. This
speeds re−compilation when source (*.cpp) or header (*.h) files are edited. Some compilers do not support
dependency file creation, or may use a different switch than −D. GNU g++ works with −D. If your compiler can't
create dependency files (a long list of errors involving *.d files), then you'll need to create a Makefile.foo
patterned after Makefile.storm, which uses different rules that do not involve dependency files.

(3) The "system−specific settings" section has 4 parts.

(3.a) The LMP_INC variable is used to include options that turn on system−dependent ifdefs within the
LAMMPS code.

The read_data and dump commands will read/write gzipped files if you compile with −DLAMMPS_GZIP. It
requires that your Unix support the "popen" command. Using one of the −DPACK_ARRAY,
−DPACK_POINTER, and −DPACK_MEMCPY options can make for faster parallel FFTs (in the PPPM solver)
on some platforms. The −DPACK_ARRAY setting is the default. If you use −DLAMMPS_XDR, the build will
include XDR compatibility files for doing particle dumps in XTC format. This is only necessary if your platform
does have its own XDR files available. See the Restrictions section of the dump command for details.

(3.b) The 3 MPI variables are used to specify an MPI library to build LAMMPS with.

15

http://www.intel.com/software/products/noncom

If you want LAMMPS to run in parallel, you must have an MPI library installed on your platform. If you use an
MPI−wrapped compiler, such as "mpicc" to build LAMMPS, you can probably leave these 3 variables blank. If
you do not use "mpicc" as your compiler/linker, then you need to specify where the mpi.h file (MPI_INC) and the
MPI library (MPI_PATH) is found and its name (MPI_LIB).

If you are installing MPI yourself, we recommend Argonne's MPICH 1.2 or 2.0 which can be downloaded from
the Argonne MPI site. LAM MPI should also work. If you are running on a big parallel platform, your system
people or the vendor should have already installed a version of MPI, which will be faster than MPICH or LAM,
so find out how to build and link with it. If you use MPICH or LAM, you will have to configure and build it for
your platform. The MPI configure script should have compiler options to enable you to use the same compiler you
are using for the LAMMPS build, which can avoid problems that can arise when linking LAMMPS to the MPI
library.

If you just want LAMMPS to run on a single processor, you can use the STUBS library in place of MPI, since
you don't need an MPI library installed on your system. See the Makefile.serial file for how to specify the 3 MPI
variables. You will also need to build the STUBS library for your platform before making LAMMPS itself. From
the STUBS dir, type "make" and it will hopefully create a libmpi.a suitable for linking to LAMMPS. If this build
fails, you will need to edit the STUBS/Makefile for your platform.

The file STUBS/mpi.cpp has a CPU timer function MPI_Wtime() that calls gettimeofday() . If your system
doesn't support gettimeofday() , you'll need to insert code to call another timer. Note that the ANSI−standard
function clock() rolls over after an hour or so, and is therefore insufficient for timing long LAMMPS simulations.

(3.c) The 3 FFT variables are used to specify an FFT library which LAMMPS uses when using the
particle−particle particle−mesh (PPPM) option in LAMMPS for long−range Coulombics via the kspace_style
command.

To use this option, you must have a 1d FFT library installed on your platform. This is specified by a switch of the
form −DFFT_XXX where XXX = INTEL, DEC, SGI, SCSL, or FFTW. All but the last one are native
vendor−provided libraries. FFTW is a fast, portable library that should work on any platform. You can download
it from www.fftw.org. Use version 2.1.X, not the newer 3.0.X. Building FFTW for your box should be as simple
as ./configure; make. Whichever FFT library you have on your platform, you'll need to set the appropriate
FFT_INC, FFT_PATH, and FFT_LIB variables in Makefile.foo.

If you examine src/fft3d.c and src.fft3d.h you'll see it's possible to add other vendor FFT libraries via #ifdef
statements in the appropriate places. If you successfully add a new FFT option, like −DFFT_IBM, please send the
LAMMPS developers an email; we'd like to add it to LAMMPS.

If you don't plan to use PPPM, you don't need an FFT library. In this case you can set FFT_INC to
−DFFT_NONE and leave the other 2 FFT variables blank. Or you can exclude the KSPACE package when you
build LAMMPS (see below).

(3.d) The several SYSLIB and SYSPATH variables can be ignored unless you are building LAMMPS with one or
more of the LAMMPS packages that require these extra system libraries. The names of these packages are the
prefixes on the SYSLIB and SYSPATH variables. See the section below for more details. The SYSLIB variables
list the system libraries. The SYSPATH variables are where they are located on your machine, which is typically
only needed if they are in some non−standard place, that is not in your library search path.

That's it. Once you have a correct Makefile.foo and you have pre−built any other libraries it will use (e.g. MPI,
FFT, package libraries), all you need to do from the src directory is type one of these 2 commands:

make foo
gmake foo

16

http://www-unix.mcs.anl.gov/mpi
http://www.fftw.org

You should get the executable lmp_foo when the build is complete.

Additional build tips:

(1) Building LAMMPS for multiple platforms.

You can make LAMMPS for multiple platforms from the same src directory. Each target creates its own object
sub−directory called Obj_name where it stores the system−specific *.o files.

(2) Cleaning up.

Typing "make clean−all" or "make clean−foo" will delete *.o object files created when LAMMPS is built, for
either all builds or for a particular machine.

(3) Building for a Mac.

OS X is BSD Unix, so it should just work. See the Makefile.mac file.

(4) Building for MicroSoft Windows.

The LAMMPS download page has an option to download a pre−built Windows exeutable. See below for
instructions for running this executable on a Windows box.

If the pre−built executable doesn't have the options you want, then you should be able to build LAMMPS from
source files on a Windows box. I've never done this, but LAMMPS is just standard C++ with MPI and FFT calls.
You can use cygwin to build LAMMPS with a Unix make; see Makefile.cygwin. Or you should be able to pull all
the source files into Visual C++ (ugh) or some similar development environment and build it. In the
src/MAKE/Windows directory are some notes from users on how they built LAMMPS under Windows, so you
can look at their instructions for tips. Good luck − we can't help you on this one.

2.3 Making LAMMPS with optional packages

This section has the following sub−sections:

Package basics•
Including/excluding packages•
Packages that require extra LAMMPS libraries•
Additional Makefile settings for extra libraries•

Package basics:

The source code for LAMMPS is structured as a large set of core files which are always included, plus optional
packages. Packages are groups of files that enable a specific set of features. For example, force fields for
molecular systems or granular systems are in packages. You can see the list of all packages by typing "make
package".

The current list of standard packages is as follows:

asphere aspherical particles and force fields

class2 class 2 force fields

colloid colloidal particle force fields

17

dipole point dipole particles and force fields

dsmc Direct Simulation Monte Carlo (DMSC) pair style

gpu GPU−enabled force field styles

granular force fields and boundary conditions for granular systems

kspace long−range Ewald and particle−mesh (PPPM) solvers

manybodymetal, 3−body, bond−order potentials

meam modified embedded atom method (MEAM) potential

molecule force fields for molecular systems

opt optimized versions of a few pair potentials

peri Peridynamics model and potential

poems coupled rigid body motion

prd parallel replica dynamics

reax ReaxFF potential

xtc dump atom snapshots in XTC format
There are also user−contributed packages which may be as simple as a single additional file or many files grouped
together which add a specific functionality to the code.

The difference between a standard package versus a user package is as follows.

Standard packages are supported by the LAMMPS developers and are written in a syntax and style consistent
with the rest of LAMMPS. This means we will answer questions about them, debug and fix them if necessary,
and keep them compatible with future changes to LAMMPS.

User packages don't necessarily meet these requirements. If you have problems using a feature provided in a user
package, you will likely need to contact the contributor directly to get help. Information on how to submit
additions you make to LAMMPS as a user−contributed package is given in this section of the documentation.

Including/excluding packages:

Any or all packages can be included or excluded independently BEFORE LAMMPS is built.

The two exceptions to this are the "gpu" and "opt" packages. Some of the files in these packages require other
packages to also be included. If this is not the case, then those subsidiary files in "gpu" and "opt" will not be
installed either. To install all the files in package "gpu", the "asphere" package must also be installed. To install
all the files in package "opt", the "kspace" and "manybody" packages must also be installed.

You may wish to exclude certain packages if you will never run certain kinds of simulations. This will keep you
from having to build auxiliary libraries (see below) and will produce a smaller executable which may run a bit
faster.

By default, LAMMPS includes only the "kspace", "manybody", and "molecule" packages.

Packages are included or excluded by typing "make yes−name" or "make no−name", where "name" is the name of
the package. You can also type "make yes−standard", "make no−standard", "make yes−user", "make no−user",
"make yes−all" or "make no−all" to include/exclude various sets of packages. Type "make package" to see the
various options.

IMPORTANT NOTE: These make commands work by simply moving files back and forth between the main src
directory and sub−directories with the package name, so that the files are seen or not seen when LAMMPS is

18

built. After you have included or excluded a package, you must re−build LAMMPS.

Additional make options exist to help manage LAMMPS files that exist in both the src directory and in package
sub−directories. You do not normally need to use these commands unless you are editing LAMMPS files or have
downloaded a patch from the LAMMPS WWW site.

Typing "make package−update" will overwrite src files with files from the package directories if the package has
been included. It should be used after a patch is installed, since patches only update the master package version of
a file. Typing "make package−overwrite" will overwrite files in the package directories with src files. Typing
"make package−check" will list differences between src and package versions of the same files. Again, type
"make package" to see the various options.

Packages that require extra LAMMPS libraries:

A few packages (standard or user) require that additional libraries be compiled first, which LAMMPS will link to
when it builds. The source code for these libraries are included in the LAMMPS distribution under the "lib"
directory. Look at the README files in the lib directories (e.g. lib/reax/README) for instructions on how to
build each library.

IMPORTANT NOTE: If you are including a package in your LAMMPS build that uses one of these libraries,
then you must build the library BEFORE building LAMMPS itself, since the LAMMPS build will attempt to link
with the library file.

Here is a bit of information about each library:

The "atc" library in lib/atc is used by the user−atc package. It provides continuum field estimation and molecular
dynamics−finite element coupling methods. It was written primarily by Reese Jones, Jeremy Templeton and
Jonathan Zimmerman at Sandia.

The "gpu" library in lib/gpu is used by the gpu package. It contains code to enable portions of LAMMPS to run on
a GPU chip associated with your CPU. Currently, only NVIDIA GPUs are supported. Building this library
requires NVIDIA Cuda tools to be installed on your system. See the Running on GPUs section below for more
info about installing and using Cuda.

The "meam" library in lib/meam is used by the meam package. computes the modified embedded atom method
potential, which is a generalization of EAM potentials that can be used to model a wider variety of materials. This
MEAM implementation was written by Greg Wagner at Sandia. It requires a F90 compiler to build. The C++ to
FORTRAN function calls in pair_meam.cpp assumes that FORTRAN object names are converted to C object
names by appending an underscore character. This is generally the case, but on machines that do not conform to
this convention, you will need to modify either the C++ code or your compiler settings.

The "poems" library in lib/poems is used by the poems package. computes the constrained rigid−body motion of
articulated (jointed) multibody systems. POEMS was written and is distributed by Prof Kurt Anderson's group at
Rensselaer Polytechnic Institute (RPI).

The "reax" library in lib/reax is used by the reax package. It computes the Reactive Force Field (ReaxFF)
potential, developed by Adri van Duin in Bill Goddard's group at CalTech. This implementation in LAMMPS
uses many of Adri's files and was developed by Aidan Thompson at Sandia and Hansohl Cho at MIT. It requires a
F77 or F90 compiler to build. The C++ to FORTRAN function calls in pair_reax.cpp assume that FORTRAN
object names are converted to C object names by appending an underscore character. This is generally the case,
but on machines that do not conform to this convention, you will need to modify either the C++ code or your
compiler settings. The name conversion is handled by the preprocessor macro called FORTRAN in

19

pair_reax_fortran.h. Different definitions of this macro can be obtained by adding a machine−specific macro
definition to the CCFLAGS variable in your Makefile e.g. −D_IBM. See pair_reax_fortran.h for more info.

As described in its README file, each library is built by typing something like

make −f Makefile.g++

in the appropriate directory, e.g. in lib/reax.

You must use a Makefile that is a match for your system. If one of the provided Makefiles is not appropriate for
your system you will need to edit or add one. For example, in the case of Fotran−based libraries, your system
must have a Fortran compiler, the settings for which will be in the Makefile.

Additional Makefile settings for extra libraries:

After the desired library or libraries are built, and the package has been included, you can build LAMMPS itself.
For example, from the lammps/src directory you would type this, to build LAMMPS with ReaxFF. Note that as
discussed in the preceding section, the package library itself, namely lib/reax/libreax.a, must already have been
built, for the LAMMPS build to be successful.

make yes−reax
make g++

Also note that simply building the library is not sufficient to use it from LAMMPS. As in this example, you must
also include the package that uses and wraps the library before you build LAMMPS itself.

As discussed in point (2.4) of this section above, there are settings in the low−level Makefile that specify
additional system libraries needed by individual LAMMPS add−on libraries. These are the settings you must
specify correctly in your low−level Makefile in lammps/src/MAKE, such as Makefile.foo:

To use the gpu package and library, the settings for gpu_SYSLIB and gpu_SYSPATH must be correct. These are
specific to the NVIDIA CUDA software which must be installed on your system.

To use the meam or reax packages and their libraries which are Fortran based, the settings for meam_SYSLIB,
reax_SYSLIB, meam_SYSPATH, and reax_SYSPATH must be correct. This is so that the C++ compiler can
perform a cross−language link using the appropriate system Fortran libraries.

To use the user−atc package and library, the settings for user−atc_SYSLIB and user−atc_SYSPATH must be
correct. This is so that the appropriate BLAS and LAPACK libs, used by the user−atc library, can be found.

2.4 Building LAMMPS as a library

LAMMPS can be built as a library, which can then be called from another application or a scripting language. See
this section for more info on coupling LAMMPS to other codes. Building LAMMPS as a library is done by typing

make makelib
make −f Makefile.lib foo

where foo is the machine name. The first "make" command will create a current Makefile.lib with all the file
names in your src dir. The 2nd "make" command will use it to build LAMMPS as a library. This requires that
Makefile.foo have a library target (lib) and system−specific settings for ARCHIVE and ARFLAGS. See
Makefile.linux for an example. The build will create the file liblmp_foo.a which another application can link to.

20

When used from a C++ program, the library allows one or more LAMMPS objects to be instantiated. All of
LAMMPS is wrapped in a LAMMPS_NS namespace; you can safely use any of its classes and methods from
within your application code, as needed. See the sample code examples/couple/c++_driver.cpp as an example.

When used from a C or Fortran program or a scripting language, the library has a simple function−style interface,
provided in library.cpp and library.h. See the sample code examples/couple/c_driver.cpp as an example.

You can add as many functions as you wish to library.cpp and library.h. In a general sense, those functions can
access LAMMPS data and return it to the caller or set LAMMPS data values as specified by the caller. These 4
functions are currently included in library.cpp:

void lammps_open(int, char **, MPI_Comm, void **ptr);
void lammps_close(void *ptr);
int lammps_file(void *ptr, char *);
int lammps_command(void *ptr, char *);

The lammps_open() function is used to initialize LAMMPS, passing in a list of strings as if they were
command−line arguments when LAMMPS is run from the command line and a MPI communicator for LAMMPS
to run under. It returns a ptr to the LAMMPS object that is created, and which should be used in subsequent
library calls. Note that lammps_open() can be called multiple times to create multiple LAMMPS objects.

The lammps_close() function is used to shut down LAMMPS and free all its memory. The lammps_file() and
lammps_command() functions are used to pass a file or string to LAMMPS as if it were an input file or single
command read from an input script.

2.5 Running LAMMPS

By default, LAMMPS runs by reading commands from stdin; e.g. lmp_linux < in.file. This means you first create
an input script (e.g. in.file) containing the desired commands. This section describes how input scripts are
structured and what commands they contain.

You can test LAMMPS on any of the sample inputs provided in the examples directory. Input scripts are named
in.* and sample outputs are named log.*.name.P where name is a machine and P is the number of processors it
was run on.

Here is how you might run one of the Lennard−Jones tests on a Linux box, using mpirun to launch a parallel job:

cd src
make linux
cp lmp_linux ../examples/lj
cd ../examples/lj
mpirun −np 4 lmp_linux <in.lj.nve

On a Windows machine, when you have downloaded the Windows executable lmp_windows.exe, you do
something different:

Get a command prompt by going to Start−>Run... , then typing "cmd" and OK.•
Move to the directory where you have saved lmp_windows.exe (e.g. by typing: cd "My Documents").•
At the command prompt, type "lmp_windows < in.lj", replacing in.lj with the name of your LAMMPS
input script.

•

The screen output from LAMMPS is described in the next section. As it runs, LAMMPS also writes a log.lammps
file with the same information.

21

Note that this sequence of commands copies the LAMMPS executable (lmp_linux) to the directory with the input
files. This may not be necessary, but some versions of MPI reset the working directory to where the executable is,
rather than leave it as the directory where you launch mpirun from (if you launch lmp_linux on its own and not
under mpirun). If that happens, LAMMPS will look for additional input files and write its output files to the
executable directory, rather than your working directory, which is probably not what you want.

If LAMMPS encounters errors in the input script or while running a simulation it will print an ERROR message
and stop or a WARNING message and continue. See this section for a discussion of the various kinds of errors
LAMMPS can or can't detect, a list of all ERROR and WARNING messages, and what to do about them.

LAMMPS can run a problem on any number of processors, including a single processor. In theory you should get
identical answers on any number of processors and on any machine. In practice, numerical round−off can cause
slight differences and eventual divergence of molecular dynamics phase space trajectories.

LAMMPS can run as large a problem as will fit in the physical memory of one or more processors. If you run out
of memory, you must run on more processors or setup a smaller problem.

2.6 Command−line options

At run time, LAMMPS recognizes several optional command−line switches which may be used in any order. For
example, lmp_ibm might be launched as follows:

mpirun −np 16 lmp_ibm −var f tmp.out −log my.log −screen none <in.alloy

These are the command−line options:

−echo style

Set the style of command echoing. The style can be none or screen or log or both. Depending on the style, each
command read from the input script will be echoed to the screen and/or logfile. This can be useful to figure out
which line of your script is causing an input error. The default value is log. The echo style can also be set by using
the echo command in the input script itself.

−partition 8x2 4 5 ...

Invoke LAMMPS in multi−partition mode. When LAMMPS is run on P processors and this switch is not used,
LAMMPS runs in one partition, i.e. all P processors run a single simulation. If this switch is used, the P
processors are split into separate partitions and each partition runs its own simulation. The arguments to the
switch specify the number of processors in each partition. Arguments of the form MxN mean M partitions, each
with N processors. Arguments of the form N mean a single partition with N processors. The sum of processors in
all partitions must equal P. Thus the command "−partition 8x2 4 5" has 10 partitions and runs on a total of 25
processors.

The input script specifies what simulation is run on which partition; see the variable and next commands. This
howto section gives examples of how to use these commands in this way. Simulations running on different
partitions can also communicate with each other; see the temper command.

−in file

Specify a file to use as an input script. This is an optional switch when running LAMMPS in one−partition mode.
If it is not specified, LAMMPS reads its input script from stdin − e.g. lmp_linux < in.run. This is a required
switch when running LAMMPS in multi−partition mode, since multiple processors cannot all read from stdin.

22

−log file

Specify a log file for LAMMPS to write status information to. In one−partition mode, if the switch is not used,
LAMMPS writes to the file log.lammps. If this switch is used, LAMMPS writes to the specified file. In
multi−partition mode, if the switch is not used, a log.lammps file is created with hi−level status information. Each
partition also writes to a log.lammps.N file where N is the partition ID. If the switch is specified in multi−partition
mode, the hi−level logfile is named "file" and each partition also logs information to a file.N. For both
one−partition and multi−partition mode, if the specified file is "none", then no log files are created. Using a log
command in the input script will override this setting.

−screen file

Specify a file for LAMMPS to write its screen information to. In one−partition mode, if the switch is not used,
LAMMPS writes to the screen. If this switch is used, LAMMPS writes to the specified file instead and you will
see no screen output. In multi−partition mode, if the switch is not used, hi−level status information is written to
the screen. Each partition also writes to a screen.N file where N is the partition ID. If the switch is specified in
multi−partition mode, the hi−level screen dump is named "file" and each partition also writes screen information
to a file.N. For both one−partition and multi−partition mode, if the specified file is "none", then no screen output
is performed.

−var name value

Specify a variable that will be defined for substitution purposes when the input script is read. "Name" is the
variable name which can be a single character (referenced as $x in the input script) or a full string (referenced as
${abc}). The value can be any string. Using this command−line option is equivalent to putting the line "variable
name index value" at the beginning of the input script. Defining an index variable as a command−line argument
overrides any setting for the same index variable in the input script, since index variables cannot be re−defined.
See the variable command for more info on defining index and other kinds of variables and this section for more
info on using variables in input scripts.

2.7 LAMMPS screen output

As LAMMPS reads an input script, it prints information to both the screen and a log file about significant actions
it takes to setup a simulation. When the simulation is ready to begin, LAMMPS performs various initializations
and prints the amount of memory (in MBytes per processor) that the simulation requires. It also prints details of
the initial thermodynamic state of the system. During the run itself, thermodynamic information is printed
periodically, every few timesteps. When the run concludes, LAMMPS prints the final thermodynamic state and a
total run time for the simulation. It then appends statistics about the CPU time and storage requirements for the
simulation. An example set of statistics is shown here:

Loop time of 49.002 on 2 procs for 2004 atoms

Pair time (%) = 35.0495 (71.5267)
Bond time (%) = 0.092046 (0.187841)
Kspce time (%) = 6.42073 (13.103)
Neigh time (%) = 2.73485 (5.5811)
Comm time (%) = 1.50291 (3.06703)
Outpt time (%) = 0.013799 (0.0281601)
Other time (%) = 2.13669 (4.36041)

Nlocal: 1002 ave, 1015 max, 989 min
Histogram: 1 0 0 0 0 0 0 0 0 1
Nghost: 8720 ave, 8724 max, 8716 min
Histogram: 1 0 0 0 0 0 0 0 0 1
Neighs: 354141 ave, 361422 max, 346860 min

23

Histogram: 1 0 0 0 0 0 0 0 0 1

Total # of neighbors = 708282
Ave neighs/atom = 353.434
Ave special neighs/atom = 2.34032
Number of reneighborings = 42
Dangerous reneighborings = 2

The first section gives the breakdown of the CPU run time (in seconds) into major categories. The second section
lists the number of owned atoms (Nlocal), ghost atoms (Nghost), and pair−wise neighbors stored per processor.
The max and min values give the spread of these values across processors with a 10−bin histogram showing the
distribution. The total number of histogram counts is equal to the number of processors.

The last section gives aggregate statistics for pair−wise neighbors and special neighbors that LAMMPS keeps
track of (see the special_bonds command). The number of times neighbor lists were rebuilt during the run is given
as well as the number of potentially "dangerous" rebuilds. If atom movement triggered neighbor list rebuilding
(see the neigh_modify command), then dangerous reneighborings are those that were triggered on the first
timestep atom movement was checked for. If this count is non−zero you may wish to reduce the delay factor to
insure no force interactions are missed by atoms moving beyond the neighbor skin distance before a rebuild takes
place.

If an energy minimization was performed via the minimize command, additional information is printed, e.g.

Minimization stats:
 E initial, next−to−last, final = −0.895962 −2.94193 −2.94342
 Gradient 2−norm init/final= 1920.78 20.9992
 Gradient inf−norm init/final= 304.283 9.61216
 Iterations = 36
 Force evaluations = 177

The first line lists the initial and final energy, as well as the energy on the next−to−last iteration. The next 2 lines
give a measure of the gradient of the energy (force on all atoms). The 2−norm is the "length" of this force vector;
the inf−norm is the largest component. The last 2 lines are statistics on how many iterations and force−evaluations
the minimizer required. Multiple force evaluations are typically done at each iteration to perform a 1d line
minimization in the search direction.

If a kspace_style long−range Coulombics solve was performed during the run (PPPM, Ewald), then additional
information is printed, e.g.

FFT time (% of Kspce) = 0.200313 (8.34477)
FFT Gflps 3d 1d−only = 2.31074 9.19989

The first line gives the time spent doing 3d FFTs (4 per timestep) and the fraction it represents of the total KSpace
time (listed above). Each 3d FFT requires computation (3 sets of 1d FFTs) and communication (transposes). The
total flops performed is 5Nlog_2(N), where N is the number of points in the 3d grid. The FFTs are timed with and
without the communication and a Gflop rate is computed. The 3d rate is with communication; the 1d rate is
without (just the 1d FFTs). Thus you can estimate what fraction of your FFT time was spent in communication,
roughly 75% in the example above.

2.8 Running on GPUs

A few LAMMPS pair styles can be run on graphical processing units (GPUs). We plan to add more over time.
Currently, they only support NVIDIA GPU cards. To use them you need to install certain NVIDIA CUDA
software on your system:

24

Check if you have an NVIDIA card: cat /proc/driver/nvidia/cards/0•
Go to http://www.nvidia.com/object/cuda_get.html•
Install a driver and toolkit appopriate for your system (SDK is not necessary)•
Run make in lammps/lib/gpu, editing a Makefile if necessary•
Run lammps/lib/gpu/nvc_get_devices to list supported devices and properties•

GPU hardware

When using GPUs, you are restricted to one physical GPU per LAMMPS process. This can be multiple GPUs on
a single node or across multiple nodes. For each GPU pair style, the first two arguments (GPU mode followed by
GPU ID) control how GPUs are selected. If you are running on a single node, the mode is "one/node" and the
parameter is the ID of the first GPU to select:

pair_style lj/cut/gpu one/node 0 2.5

The ID is the GPU ID reported by the driver for CUDA enabled graphics cards. For multiple GPU cards on a
node, an MPI process should be run for each graphics card. In this case, each process will grab the GPU with ID
equal to the process rank plus the GPU parameter.

For multiple nodes with one GPU per node, the mode is "one/gpu" and the parameter is the ID of the GPU used
on every node:

pair_style lj/cut/gpu one/gpu 1 2.5

In this case, MPI should be run with exactly one process per node.

For multiple nodes with multiple GPUs, the mode is "multi/gpu" and the parameter is the number of GPUs per
node:

pair_style lj/cut/gpu multi/gpu 3 2.5

In this case, LAMMPS will attempt to grab 3 GPUs per node and this requires that the number of processes per
node be 3. The first GPU selected must have ID zero for this mode (in the example, GPUs 0, 1, and 2 will be
selected on every node). An additional constraint is that the MPI processes must be filled by slot on each node
such that the process ranks on each node are always sequential. This is a option for the MPI launcher
(mpirun/mpiexec) and will be the default on many clusters.

GPU single vs double precision

See the lammps/lib/gpu/README for instructions on how to build the LAMMPS gpu library for single vs double
precision. The latter requires that your GPU card supports double precision.

GPU Memory

Upon initialization of the pair style, LAMMPS will reserve memory for 64K atoms per GPU or 70% of each
card's GPU memory, whichever value is limiting. If the GPU library is compiled for double precision, the
maximum number of atoms per GPU is 32K. When running a periodic system and/or in parallel, this maximum
atom count includes ghost atoms.

The value of 70% can be changed by editing the PERCENT_GPU_MEMORY definition in the appopriate
lammps/lib/gpu source file. The value of 64K cannot be increased and is the maximum number of atoms allowed
per GPU. By default, enough memory to store at least the maximum number of neighbors per atom is reserved on
the GPU, which is set by the neigh_modify one command. The default value of 2000 will be very high for many

25

cases. If memory on the graphics card is limiting, the number of atoms allowed can be increased by decreasing the
maximum number of neighbors. For example placing,

neigh_modify one 100

in the input script will decrease the maximum number of neighbors per atom to 100, allowing more atoms to be
run on the GPU.

2.9 Tips for users of previous LAMMPS versions

The current C++ began with a complete rewrite of LAMMPS 2001, which was written in F90. Features of earlier
versions of LAMMPS are listed in this section. The F90 and F77 versions (2001 and 99) are also freely
distributed as open−source codes; check the LAMMPS WWW Site for distribution information if you prefer those
versions. The 99 and 2001 versions are no longer under active development; they do not have all the features of
C++ LAMMPS.

If you are a previous user of LAMMPS 2001, these are the most significant changes you will notice in C++
LAMMPS:

(1) The names and arguments of many input script commands have changed. All commands are now a single
word (e.g. read_data instead of read data).

(2) All the functionality of LAMMPS 2001 is included in C++ LAMMPS, but you may need to specify the
relevant commands in different ways.

(3) The format of the data file can be streamlined for some problems. See the read_data command for details. The
data file section "Nonbond Coeff" has been renamed to "Pair Coeff" in C++ LAMMPS.

(4) Binary restart files written by LAMMPS 2001 cannot be read by C++ LAMMPS with a read_restart
command. This is because they were output by F90 which writes in a different binary format than C or C++ writes
or reads. Use the restart2data tool provided with LAMMPS 2001 to convert the 2001 restart file to a text data
file. Then edit the data file as necessary before using the C++ LAMMPS read_data command to read it in.

(5) There are numerous small numerical changes in C++ LAMMPS that mean you will not get identical answers
when comparing to a 2001 run. However, your initial thermodynamic energy and MD trajectory should be close if
you have setup the problem for both codes the same.

26

http://lammps.sandia.gov

Previous Section − LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands − Next Section

3. Commands

This section describes how a LAMMPS input script is formatted and what commands are used to define a
LAMMPS simulation.

3.1 LAMMPS input script
3.2 Parsing rules
3.3 Input script structure
3.4 Commands listed by category
3.5 Commands listed alphabetically

3.1 LAMMPS input script

LAMMPS executes by reading commands from a input script (text file), one line at a time. When the input script
ends, LAMMPS exits. Each command causes LAMMPS to take some action. It may set an internal variable, read
in a file, or run a simulation. Most commands have default settings, which means you only need to use the
command if you wish to change the default.

In many cases, the ordering of commands in an input script is not important. However the following rules apply:

(1) LAMMPS does not read your entire input script and then perform a simulation with all the settings. Rather,
the input script is read one line at a time and each command takes effect when it is read. Thus this sequence of
commands:

timestep 0.5
run 100
run 100

does something different than this sequence:

run 100
timestep 0.5
run 100

In the first case, the specified timestep (0.5 fmsec) is used for two simulations of 100 timesteps each. In the 2nd
case, the default timestep (1.0 fmsec) is used for the 1st 100 step simulation and a 0.5 fmsec timestep is used for
the 2nd one.

(2) Some commands are only valid when they follow other commands. For example you cannot set the
temperature of a group of atoms until atoms have been defined and a group command is used to define which
atoms belong to the group.

(3) Sometimes command B will use values that can be set by command A. This means command A must precede
command B in the input script if it is to have the desired effect. For example, the read_data command initializes
the system by setting up the simulation box and assigning atoms to processors. If default values are not desired,
the processors and boundary commands need to be used before read_data to tell LAMMPS how to map
processors to the simulation box.

Many input script errors are detected by LAMMPS and an ERROR or WARNING message is printed. This
section gives more information on what errors mean. The documentation for each command lists restrictions on

27

http://lammps.sandia.gov

how the command can be used.

3.2 Parsing rules

Each non−blank line in the input script is treated as a command. LAMMPS commands are case sensitive.
Command names are lower−case, as are specified command arguments. Upper case letters may be used in file
names or user−chosen ID strings.

Here is how each line in the input script is parsed by LAMMPS:

(1) If the line ends with a ""character (the "and" character which is shift−7 on most keyboards) with no trailing
whitespace (and no surrounding quotes), the command is assumed to continue on the next line. The next line is
concatenated to the previous line by removing the ""character ("and" character) and newline. This allows long
commands to be continued across two or more lines.

(2) All characters from the first "#" character onward are treated as comment and discarded.

(3) The line is searched repeatedly for $ characters which indicate variables that are replaced with a text string. If
the $ is followed by curly brackets, then the variable name is the text inside the curly brackets. If no curly
brackets follow the $, then the variable name is the character immediately following the $. Thus ${myTemp} and
$x refer to variable names "myTemp" and "x". See the variable command for details of how strings are assigned
to variables and how they are substituted for in input scripts.

(4) The line is broken into "words" separated by whitespace (tabs, spaces). Note that words can thus contain
letters, digits, underscores, or punctuation characters.

(5) The first word is the command name. All successive words in the line are arguments.

(6) Text with spaces can be enclosed in double quotes so it will be treated as a single argument. See the dump
modify or fix print commands for examples. A '#' or '$' character that is in text between double quotes will not be
treated as a comment or substituted for as a variable.

3.3 Input script structure

This section describes the structure of a typical LAMMPS input script. The "examples" directory in the LAMMPS
distribution contains many sample input scripts; the corresponding problems are discussed in this section, and
animated on the LAMMPS WWW Site.

A LAMMPS input script typically has 4 parts:

Initialization1.
Atom definition2.
Settings3.
Run a simulation4.

The last 2 parts can be repeated as many times as desired. I.e. run a simulation, change some settings, run some
more, etc. Each of the 4 parts is now described in more detail. Remember that almost all the commands need only
be used if a non−default value is desired.

(1) Initialization

28

http://lammps.sandia.gov

Set parameters that need to be defined before atoms are created or read−in from a file.

The relevant commands are units, dimension, newton, processors, boundary, atom_style, atom_modify.

If force−field parameters appear in the files that will be read, these commands tell LAMMPS what kinds of force
fields are being used: pair_style, bond_style, angle_style, dihedral_style, improper_style.

(2) Atom definition

There are 3 ways to define atoms in LAMMPS. Read them in from a data or restart file via the read_data or
read_restart commands. These files can contain molecular topology information. Or create atoms on a lattice
(with no molecular topology), using these commands: lattice, region, create_box, create_atoms. The entire set of
atoms can be duplicated to make a larger simulation using the replicate command.

(3) Settings

Once atoms and molecular topology are defined, a variety of settings can be specified: force field coefficients,
simulation parameters, output options, etc.

Force field coefficients are set by these commands (they can also be set in the read−in files): pair_coeff,
bond_coeff, angle_coeff, dihedral_coeff, improper_coeff, kspace_style, dielectric, special_bonds.

Various simulation parameters are set by these commands: neighbor, neigh_modify, group, timestep,
reset_timestep, run_style, min_style, min_modify.

Fixes impose a variety of boundary conditions, time integration, and diagnostic options. The fix command comes
in many flavors.

Various computations can be specified for execution during a simulation using the compute, compute_modify,
and variable commands.

Output options are set by the thermo, dump, and restart commands.

(4) Run a simulation

A molecular dynamics simulation is run using the run command. Energy minimization (molecular statics) is
performed using the minimize command. A parallel tempering (replica−exchange) simulation can be run using the
temper command.

3.4 Commands listed by category

This section lists all LAMMPS commands, grouped by category. The next section lists the same commands
alphabetically. Note that some style options for some commands are part of specific LAMMPS packages, which
means they cannot be used unless the package was included when LAMMPS was built. Not all packages are
included in a default LAMMPS build. These dependencies are listed as Restrictions in the command's
documentation.

Initialization:

atom_modify, atom_style, boundary, dimension, newton, processors, units

29

Atom definition:

create_atoms, create_box, lattice, read_data, read_restart, region, replicate

Force fields:

angle_coeff, angle_style, bond_coeff, bond_style, dielectric, dihedral_coeff, dihedral_style, improper_coeff,
improper_style, kspace_modify, kspace_style, pair_coeff, pair_modify, pair_style, pair_write, special_bonds

Settings:

communicate, dipole, group, mass, min_modify, min_style, neigh_modify, neighbor, reset_timestep, run_style,
set, shape, timestep, velocity

Fixes:

fix, fix_modify, unfix

Computes:

compute, compute_modify, uncompute

Output:

dump, dump_modify, restart, thermo, thermo_modify, thermo_style, undump, write_restart

Actions:

delete_atoms, delete_bonds, displace_atoms, displace_box, minimize, prd, run, temper

Miscellaneous:

clear, echo, if, include, jump, label, log, next, print, shell, variable

3.5 Individual commands

This section lists all LAMMPS commands alphabetically, with a separate listing below of styles within certain
commands. The previous section lists the same commands, grouped by category. Note that some style options for
some commands are part of specific LAMMPS packages, which means they cannot be used unless the package
was included when LAMMPS was built. Not all packages are included in a default LAMMPS build. These
dependencies are listed as Restrictions in the command's documentation.

angle_coeff angle_style atom_modify atom_style bond_coeff bond_style

boundary change_box clear communicate compute compute_modify

create_atoms create_box delete_atoms delete_bonds dielectric dihedral_coeff

dihedral_style dimension dipole displace_atomsdisplace_box dump

dump_modify echo fix fix_modify group if

improper_coeffimproper_style include jump kspace_modify kspace_style

label lattice log mass minimize min_modify

min_style neigh_modify neighbor newton next pair_coeff

30

pair_modify pair_style pair_write prd print processors

read_data read_restart region replicate reset_timestep restart

run run_style set shape shell special_bonds

temper thermo thermo_modify thermo_style timestep uncompute

undump unfix units variable velocity write_restart

Fix styles

See the fix command for one−line descriptions of each style or click on the style itself for a full description:

addforce aveforce ave/atom ave/histo ave/spatial ave/time bond/break bond/create

bond/swap box/relax deform deposit drag dt/reset efield enforce2d

evaporate freeze gravity heat indent langevin lineforce momentum

move nph npt npt/aspherenpt/sphere nve nve/asphere nve/limit

nve/noforce nve/sphere nvt nvt/asphere nvt/sllod nvt/sphere orient/fcc planeforce

poems pour press/berendsen print reax/bonds recenter rigid setforce

shake spring spring/rg spring/self store/coordstore/forcetemp/berendsentemp/rescale

thermal/conductivity tmd ttm viscosity viscous wall/colloid wall/gran wall/harmonic

wall/lj126 wall/lj93 wall/reflect wall/region
These are fix styles contributed by users, which can be used if LAMMPS is built with the appropriate package.

atc imd smd

Compute styles

See the compute command for one−line descriptions of each style or click on the style itself for a full description:

angle/local bond/local cna/atom com com/molecule coord/atom

damage/atomdihedral/local displace/atom erotate/asphere erotate/sphereevent/displace

group/group gyration gyration/molecule heat/flux improper/local ke

ke/atom msd msd/molecule pair/local pe pe/atom

pressure property/atom property/local property/molecule rdf reduce

reduce/region stress/atom temp temp/asphere temp/com temp/deform

temp/partial temp/profile temp/ramp temp/region temp/sphere
These are compute styles contributed by users, which can be used if LAMMPS is built with the appropriate
package.

ackland/atom

Pair_style potentials

See the pair_style command for an overview of pair potentials. Click on the style itself for a full description:

none hybrid hybrid/overlay airebo

born/coul/long buck buck/coul/cut buck/coul/long

colloid coul/cut coul/debye coul/long

31

dipole/cut dpd dsmc eam

eam/opt eam/alloy eam/alloy/opt eam/fs

eam/fs/opt gayberne gayberne/gpu gran/hertz/history

gran/hooke gran/hooke/history lj/charmm/coul/charmmlj/charmm/coul/charmm/implicit

lj/charmm/coul/longlj/charmm/coul/long/opt lj/class2 lj/class2/coul/cut

lj/class2/coul/long lj/cut lj/cut/gpu lj/cut/opt

lj/cut/coul/cut lj/cut/coul/debye lj/cut/coul/long lj/cut/coul/long/tip4p

lj/expand lj/gromacs lj/gromacs/coul/gromacs lj/smooth

lj96/cut lubricate meam morse

morse/opt peri/pmb reax resquared

soft sw table tersoff

tersoff/zbl yukawa yukawa/colloid
These are pair styles contributed by users, which can be used if LAMMPS is built with the appropriate package.

buck/coulcg/cmmcg/cmm/coul/cutcg/cmm/coul/long

eam/cd lj/coul

Bond_style potentials

See the bond_style command for an overview of bond potentials. Click on the style itself for a full description:

none hybrid class2 fene

fene/expand harmonic morse nonlinear

quartic table

Angle_style potentials

See the angle_style command for an overview of angle potentials. Click on the style itself for a full description:

none hybrid charmm class2

cosine cosine/delta cosine/squared harmonic

table
These are angle styles contributed by users, which can be used if LAMMPS is built with the appropriate package.

cg/cmm

Dihedral_style potentials

See the dihedral_style command for an overview of dihedral potentials. Click on the style itself for a full
description:

none hybrid charmm class2

harmonic helix multi/harmonic opls

32

Improper_style potentials

See the improper_style command for an overview of improper potentials. Click on the style itself for a full
description:

none hybrid class2 cvff

harmonic

Kspace solvers

See the kspace_style command for an overview of Kspace solvers. Click on the style itself for a full description:

ewald pppm pppm/tip4p
These are Kspace solvers contributed by users, which can be used if LAMMPS is built with the appropriate
package.

ewald/n

33

Previous Section − LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands − Next Section

4. How−to discussions

The following sections describe what commands can be used to perform certain kinds of LAMMPS simulations.

4.1 Restarting a simulation
4.2 2d simulations
4.3 CHARMM and AMBER force fields
4.4 Running multiple simulations from one input script
4.5 Parallel tempering
4.6 Granular models
4.7 TIP3P water model
4.8 TIP4P water model
4.9 SPC water model
4.10 Coupling LAMMPS to other codes
4.11 Visualizing LAMMPS snapshots
4.12 Non−orthogonal simulation boxes
4.13 NEMD simulations
4.14 Extended spherical and aspherical particles
4.15 Output from LAMMPS (thermo, dumps, computes, fixes, variables)
4.16 Thermostatting, barostatting and computing temperature
4.17 Walls

The example input scripts included in the LAMMPS distribution and highlighted in this section also show how to
setup and run various kinds of problems.

4.1 Restarting a simulation

There are 3 ways to continue a long LAMMPS simulation. Multiple run commands can be used in the same input
script. Each run will continue from where the previous run left off. Or binary restart files can be saved to disk
using the restart command. At a later time, these binary files can be read via a read_restart command in a new
script. Or they can be converted to text data files and read by a read_data command in a new script. This section
discusses the restart2data tool that is used to perform the conversion.

Here we give examples of 2 scripts that read either a binary restart file or a converted data file and then issue a
new run command to continue where the previous run left off. They illustrate what settings must be made in the
new script. Details are discussed in the documentation for the read_restart and read_data commands.

Look at the in.chain input script provided in the bench directory of the LAMMPS distribution to see the original
script that these 2 scripts are based on. If that script had the line

restart 50 tmp.restart

added to it, it would produce 2 binary restart files (tmp.restart.50 and tmp.restart.100) as it ran.

This script could be used to read the 1st restart file and re−run the last 50 timesteps:

read_restart tmp.restart.50

neighbor 0.4 bin
neigh_modify every 1 delay 1

34

http://lammps.sandia.gov

fix 1 all nve
fix 2 all langevin 1.0 1.0 10.0 904297

timestep 0.012

run 50

Note that the following commands do not need to be repeated because their settings are included in the restart file:
units, atom_style, special_bonds, pair_style, bond_style. However these commands do need to be used, since their
settings are not in the restart file: neighbor, fix, timestep.

If you actually use this script to perform a restarted run, you will notice that the thermodynamic data match at step
50 (if you also put a "thermo 50" command in the original script), but do not match at step 100. This is because
the fix langevin command uses random numbers in a way that does not allow for perfect restarts.

As an alternate approach, the restart file could be converted to a data file using this tool:

restart2data tmp.restart.50 tmp.restart.data

Then, this script could be used to re−run the last 50 steps:

units lj
atom_style bond
pair_style lj/cut 1.12
pair_modify shift yes
bond_style fene
special_bonds 0.0 1.0 1.0

read_data tmp.restart.data

neighbor 0.4 bin
neigh_modify every 1 delay 1

fix 1 all nve
fix 2 all langevin 1.0 1.0 10.0 904297

timestep 0.012

reset_timestep 50
run 50

Note that nearly all the settings specified in the original in.chain script must be repeated, except the pair_coeff
and bond_coeff commands since the new data file lists the force field coefficients. Also, the reset_timestep
command is used to tell LAMMPS the current timestep. This value is stored in restart files, but not in data files.

4.2 2d simulations

Use the dimension command to specify a 2d simulation.

Make the simulation box periodic in z via the boundary command. This is the default.

If using the create box command to define a simulation box, set the z dimensions narrow, but finite, so that the
create_atoms command will tile the 3d simulation box with a single z plane of atoms − e.g.

create box 1 −10 10 −10 10 −0.25 0.25

35

If using the read data command to read in a file of atom coordinates, set the "zlo zhi" values to be finite but
narrow, similar to the create_box command settings just described. For each atom in the file, assign a z coordinate
so it falls inside the z−boundaries of the box − e.g. 0.0.

Use the fix enforce2d command as the last defined fix to insure that the z−components of velocities and forces are
zeroed out every timestep. The reason to make it the last fix is so that any forces induced by other fixes will be
zeroed out.

Many of the example input scripts included in the LAMMPS distribution are for 2d models.

IMPORTANT NOTE: Some models in LAMMPS treat particles as extended spheres, as opposed to point
particles. In 2d, the particles will still be spheres, not disks, meaning their moment of inertia will be the same as in
3d.

4.3 CHARMM and AMBER force fields

There are many different ways to compute forces in the CHARMM and AMBER molecular dynamics codes, only
some of which are available as options in LAMMPS. A force field has 2 parts: the formulas that define it and the
coefficients used for a particular system. Here we only discuss formulas implemented in LAMMPS. Setting
coefficients is done in the input data file via the read_data command or in the input script with commands like
pair_coeff or bond_coeff. See this section for additional tools that can use CHARMM or AMBER to assign force
field coefficients and convert their output into LAMMPS input.

See (MacKerell) for a description of the CHARMM force field. See (Cornell) for a description of the AMBER
force field.

These style choices compute force field formulas that are consistent with common options in CHARMM or
AMBER. See each command's documentation for the formula it computes.

bond_style harmonic•
angle_style charmm•
dihedral_style charmm•
pair_style lj/charmm/coul/charmm•
pair_style lj/charmm/coul/charmm/implicit•
pair_style lj/charmm/coul/long•

special_bonds charmm•
special_bonds amber•

4.4 Running multiple simulations from one input script

This can be done in several ways. See the documentation for individual commands for more details on how these
examples work.

If "multiple simulations" means continue a previous simulation for more timesteps, then you simply use the run
command multiple times. For example, this script

units lj
atom_style atomic
read_data data.lj
run 10000

36

http://www.scripps.edu/brooks
http://amber.scripps.edu

run 10000
run 10000
run 10000
run 10000

would run 5 successive simulations of the same system for a total of 50,000 timesteps.

If you wish to run totally different simulations, one after the other, the clear command can be used in between
them to re−initialize LAMMPS. For example, this script

units lj
atom_style atomic
read_data data.lj
run 10000
clear
units lj
atom_style atomic
read_data data.lj.new
run 10000

would run 2 independent simulations, one after the other.

For large numbers of independent simulations, you can use variables and the next and jump commands to loop
over the same input script multiple times with different settings. For example, this script, named in.polymer

variable d index run1 run2 run3 run4 run5 run6 run7 run8
shell cd $d
read_data data.polymer
run 10000
shell cd ..
clear
next d
jump in.polymer

would run 8 simulations in different directories, using a data.polymer file in each directory. The same concept
could be used to run the same system at 8 different temperatures, using a temperature variable and storing the
output in different log and dump files, for example

variable a loop 8
variable t index 0.8 0.85 0.9 0.95 1.0 1.05 1.1 1.15
log log.$a
read data.polymer
velocity all create $t 352839
fix 1 all nvt $t $t 100.0
dump 1 all atom 1000 dump.$a
run 100000
next t
next a
jump in.polymer

All of the above examples work whether you are running on 1 or multiple processors, but assumed you are
running LAMMPS on a single partition of processors. LAMMPS can be run on multiple partitions via the
"−partition" command−line switch as described in this section of the manual.

In the last 2 examples, if LAMMPS were run on 3 partitions, the same scripts could be used if the "index" and
"loop" variables were replaced with universe−style variables, as described in the variable command. Also, the
"next t" and "next a" commands would need to be replaced with a single "next a t" command. With these
modifications, the 8 simulations of each script would run on the 3 partitions one after the other until all were

37

finished. Initially, 3 simulations would be started simultaneously, one on each partition. When one finished, that
partition would then start the 4th simulation, and so forth, until all 8 were completed.

4.5 Parallel tempering

The temper command can be used to perform a parallel tempering or replica−exchange simulation where multiple
copies of a simulation are run at different temperatures on different sets of processors, and Monte Carlo
temperature swaps are performed between pairs of copies.

Use the −procs and −in command−line switches to launch LAMMPS on multiple partitions.

In your input script, define a set of temperatures, one for each processor partition, using the variable command:

variable t world 300.0 310.0 320.0 330.0

Define a fix of style nvt or langevin to control the temperature of each simulation:

fix myfix all nvt $t $t 100.0

Use the temper command in place of a run command to perform a simulation where tempering exchanges will
take place:

temper 100000 100 $t myfix 3847 58382

4.6 Granular models

Granular system are composed of spherical particles with a diameter, as opposed to point particles. This means
they have an angular velocity and torque can be imparted to them to cause them to rotate.

To run a simulation of a granular model, you will want to use the following commands:

atom_style granular•
fix nve/sphere•
fix gravity•

This compute

compute erotate/sphere•

calculates rotational kinetic energy which can be output with thermodynamic info.

Use one of these 3 pair potentials, which compute forces and torques between interacting pairs of particles:

pair_style gran/history•
pair_style gran/no_history•
pair_style gran/hertzian•

These commands implement fix options specific to granular systems:

fix freeze•
fix pour•

38

fix viscous•
fix wall/gran•

The fix style freeze zeroes both the force and torque of frozen atoms, and should be used for granular system
instead of the fix style setforce.

For computational efficiency, you can eliminate needless pairwise computations between frozen atoms by using
this command:

neigh_modify exclude•

4.7 TIP3P water model

The TIP3P water model as implemented in CHARMM (MacKerell) specifies a 3−site rigid water molecule with
charges and Lennard−Jones parameters assigned to each of the 3 atoms. In LAMMPS the fix shake command can
be used to hold the two O−H bonds and the H−O−H angle rigid. A bond style of harmonic and an angle style of
harmonic or charmm should also be used.

These are the additional parameters (in real units) to set for O and H atoms and the water molecule to run a rigid
TIP3P−CHARMM model with a cutoff. The K values can be used if a flexible TIP3P model (without fix shake) is
desired. If the LJ epsilon and sigma for HH and OH are set to 0.0, it corresponds to the original 1983 TIP3P
model (Jorgensen).

O mass = 15.9994
H mass = 1.008

O charge = −0.834
H charge = 0.417

LJ epsilon of OO = 0.1521
LJ sigma of OO = 3.1507
LJ epsilon of HH = 0.0460
LJ sigma of HH = 0.4000
LJ epsilon of OH = 0.0836
LJ sigma of OH = 1.7753

K of OH bond = 450
r0 of OH bond = 0.9572

K of HOH angle = 55
theta of HOH angle = 104.52

These are the parameters to use for TIP3P with a long−range Coulombic solver (Ewald or PPPM in LAMMPS):

O mass = 15.9994
H mass = 1.008

O charge = −0.830
H charge = 0.415

LJ epsilon of OO = 0.102

39

LJ sigma of OO = 3.188
LJ epsilon, sigma of OH, HH = 0.0

K of OH bond = 450
r0 of OH bond = 0.9572

K of HOH angle = 55
theta of HOH angle = 104.52

4.8 TIP4P water model

The four−point TIP4P rigid water model extends the traditional three−point TIP3P model by adding an additional
site, usually massless, where the charge associated with the oxygen atom is placed. This site M is located at a
fixed distance away from the oxygen along the bisector of the HOH bond angle. A bond style of harmonic and an
angle style of harmonic or charmm should also be used.

Currently, only a four−point model for long−range Coulombics is implemented via the LAMMPS pair style
lj/cut/coul/long/tip4p. A cutoff version may be added the future. For both models, the bond lengths and bond
angles should be held fixed using the fix shake command.

These are the additional parameters (in real units) to set for O and H atoms and the water molecule to run a rigid
TIP4P model with a cutoff (Jorgensen). Note that the OM distance is specified in the pair_style command, not as
part of the pair coefficients.

O mass = 15.9994
H mass = 1.008

O charge = −1.040
H charge = 0.520

r0 of OH bond = 0.9572
theta of HOH angle = 104.52

OM distance = 0.15

LJ epsilon of O−O = 0.1550
LJ sigma of O−O = 3.1536
LJ epsilon, sigma of OH, HH = 0.0

These are the parameters to use for TIP4P with a long−range Coulombic solver (Ewald or PPPM in LAMMPS):

O mass = 15.9994
H mass = 1.008

O charge = −1.0484
H charge = 0.5242

r0 of OH bond = 0.9572
theta of HOH angle = 104.52

OM distance = 0.1250

40

LJ epsilon of O−O = 0.16275
LJ sigma of O−O = 3.16435
LJ epsilon, sigma of OH, HH = 0.0

4.9 SPC water model

The SPC water model specifies a 3−site rigid water molecule with charges and Lennard−Jones parameters
assigned to each of the 3 atoms. In LAMMPS the fix shake command can be used to hold the two O−H bonds and
the H−O−H angle rigid. A bond style of harmonic and an angle style of harmonic or charmm should also be used.

These are the additional parameters (in real units) to set for O and H atoms and the water molecule to run a rigid
SPC model with long−range Coulombics (Ewald or PPPM in LAMMPS).

O mass = 15.9994
H mass = 1.008

O charge = −0.820
H charge = 0.410

LJ epsilon of OO = 0.1553
LJ sigma of OO = 3.166
LJ epsilon, sigma of OH, HH = 0.0

r0 of OH bond = 1.0
theta of HOH angle = 109.47

To use SPC with a long−range Coulombic solver (Ewald or PPPM in LAMMPS), the only parameters that change
are the partial charge assignments:

O charge = −0.8476
H charge = 0.4238

4.10 Coupling LAMMPS to other codes

LAMMPS is designed to allow it to be coupled to other codes. For example, a quantum mechanics code might
compute forces on a subset of atoms and pass those forces to LAMMPS. Or a continuum finite element (FE)
simulation might use atom positions as boundary conditions on FE nodal points, compute a FE solution, and
return interpolated forces on MD atoms.

LAMMPS can be coupled to other codes in at least 3 ways. Each has advantages and disadvantages, which you'll
have to think about in the context of your application.

(1) Define a new fix command that calls the other code. In this scenario, LAMMPS is the driver code. During its
timestepping, the fix is invoked, and can make library calls to the other code, which has been linked to LAMMPS
as a library. This is the way the POEMS package that performs constrained rigid−body motion on groups of atoms
is hooked to LAMMPS. See the fix_poems command for more details. See this section of the documentation for
info on how to add a new fix to LAMMPS.

(2) Define a new LAMMPS command that calls the other code. This is conceptually similar to method (1), but in
this case LAMMPS and the other code are on a more equal footing. Note that now the other code is not called

41

http://www.rpi.edu/~anderk5/lab

during the timestepping of a LAMMPS run, but between runs. The LAMMPS input script can be used to alternate
LAMMPS runs with calls to the other code, invoked via the new command. The run command facilitates this with
its every option, which makes it easy to run a few steps, invoke the command, run a few steps, invoke the
command, etc.

In this scenario, the other code can be called as a library, as in (1), or it could be a stand−alone code, invoked by a
system() call made by the command (assuming your parallel machine allows one or more processors to start up
another program). In the latter case the stand−alone code could communicate with LAMMPS thru files that the
command writes and reads.

See this section of the documentation for how to add a new command to LAMMPS.

(3) Use LAMMPS as a library called by another code. In this case the other code is the driver and calls LAMMPS
as needed. Or a wrapper code could link and call both LAMMPS and another code as libraries. Again, the run
command has options that allow it to be invoked with minimal overhead (no setup or clean−up) if you wish to do
multiple short runs, driven by another program.

This section of the documentation describes how to build LAMMPS as a library. Once this is done, you can
interface with LAMMPS either via C++, C, or Fortran (or any other language that supports a vanilla C−like
interface, e.g. a scripting language). For example, from C++ you could create one (or more) "instances" of
LAMMPS, pass it an input script to process, or execute individual commands, all by invoking the correct class
methods in LAMMPS. From C or Fortran you can make function calls to do the same things. Library.cpp and
library.h contain such a C interface with the functions:

void lammps_open(int, char **, MPI_Comm, void **);
void lammps_close(void *);
void lammps_file(void *, char *);
char *lammps_command(void *, char *);

The functions contain C++ code you could write in a C++ application that was invoking LAMMPS directly. Note
that LAMMPS classes are defined within a LAMMPS namespace (LAMMPS_NS) if you use them from another
C++ application.

Two of the routines in library.cpp are of particular note. The lammps_open() function initiates LAMMPS and
takes an MPI communicator as an argument. It returns a pointer to a LAMMPS "object". As with C++, the
lammps_open() function can be called multiple times, to create multiple instances of LAMMPS.

LAMMPS will run on the set of processors in the communicator. This means the calling code can run LAMMPS
on all or a subset of processors. For example, a wrapper script might decide to alternate between LAMMPS and
another code, allowing them both to run on all the processors. Or it might allocate half the processors to
LAMMPS and half to the other code and run both codes simultaneously before syncing them up periodically.

Library.cpp contains a lammps_command() function to which the caller passes a single LAMMPS command (a
string). Thus the calling code can read or generate a series of LAMMPS commands (e.g. an input script) one line
at a time and pass it thru the library interface to setup a problem and then run it.

A few other sample functions are included in library.cpp, but the key idea is that you can write any functions you
wish to define an interface for how your code talks to LAMMPS and add them to library.cpp and library.h. The
routines you add can access any LAMMPS data. The examples/couple directory has example C++ and C codes
which show how a stand−alone code can link LAMMPS as a library, run LAMMPS on a subset of processors,
grab data from LAMMPS, change it, and put it back into LAMMPS.

42

4.11 Visualizing LAMMPS snapshots

LAMMPS itself does not do visualization, but snapshots from LAMMPS simulations can be visualized (and
analyzed) in a variety of ways.

LAMMPS snapshots are created by the dump command which can create files in several formats. The native
LAMMPS dump format is a text file (see "dump atom" or "dump custom") which can be visualized by the xmovie
program, included with the LAMMPS package. This produces simple, fast 2d projections of 3d systems, and can
be useful for rapid debugging of simulation geometry and atom trajectories.

Several programs included with LAMMPS as auxiliary tools can convert native LAMMPS dump files to other
formats. See the Section_tools doc page for details. The first is the ch2lmp tool, which contains a lammps2pdb
Perl script which converts LAMMPS dump files into PDB files. The second is the lmp2arc tool which converts
LAMMPS dump files into Accelrys' Insight MD program files. The third is the lmp2cfg tool which converts
LAMMPS dump files into CFG files which can be read into the AtomEye visualizer.

A Python−based toolkit distributed by our group can read native LAMMPS dump files, including custom dump
files with additional columns of user−specified atom information, and convert them to various formats or pipe
them into visualization software directly. See the Pizza.py WWW site for details. Specifically, Pizza.py can
convert LAMMPS dump files into PDB, XYZ, Ensight, and VTK formats. Pizza.py can pipe LAMMPS dump
files directly into the Raster3d and RasMol visualization programs. Pizza.py has tools that do interactive 3d
OpenGL visualization and one that creates SVG images of dump file snapshots.

LAMMPS can create XYZ files directly (via "dump xyz") which is a simple text−based file format used by many
visualization programs including VMD.

LAMMPS can create DCD files directly (via "dump dcd") which can be read by VMD in conjunction with a
CHARMM PSF file. Using this form of output avoids the need to convert LAMMPS snapshots to PDB files. See
the dump command for more information on DCD files.

LAMMPS can create XTC files directly (via "dump xtc") which is GROMACS file format which can also be read
by VMD for visualization. See the dump command for more information on XTC files.

4.12 Non−orthogonal simulation boxes

By default, LAMMPS uses an orthogonal simulation box to encompass the particles. The boundary command sets
the boundary conditions of the box (periodic, non−periodic, etc). If the box size is xprd by yprd by zprd then the 3
mutually orthogonal edge vectors of an orthogonal simulation box are a = (xprd,0,0), b = (0,yprd,0), and c =
(0,0,zprd).

LAMMPS also allows non−orthogonal simulation boxes (triclinic symmetry) to be defined with 3 additional "tilt"
parameters which change the edge vectors of the simulation box to be a = (xprd,0,0), b = (xy,yprd,0), and c =
(xz,yz,zprd). The xy, xz, and yz parameters can be positive or negative. The simulation box must be periodic in
both dimensions associated with a tilt factor. For example, if xz != 0.0, then the x and z dimensions must be
periodic.

To avoid extremely tilted boxes (which would be computationally inefficient), no tilt factor can skew the box
more than half the distance of the parallel box length, which is the 1st dimension in the tilt factor (x for xz). For
example, if xlo = 2 and xhi = 12, then the x box length is 10 and the xy tilt factor must be between −5 and 5.
Similarly, both xz and yz must be between −(xhi−xlo)/2 and +(yhi−ylo)/2. Note that this is not a limitation, since
if the maximum tilt factor is 5 (as in this example), then configurations with tilt = ..., −15, −5, 5, 15, 25, ... are all

43

http://164.107.79.177/Archive/Graphics/A
http://www.cs.sandia.gov/~sjplimp/pizza.html
http://www.ensight.com
http://www.ks.uiuc.edu/Research/vmd
http://www.ks.uiuc.edu/Research/vmd
http://www.ks.uiuc.edu/Research/vmd

equivalent.

You tell LAMMPS to use a non−orthogonal box when the simulation box is defined. This happens in one of 3
ways. If the create_box command is used with a region of style prism, then a non−orthogonal domain is setup.
See the region command for details. If the read_data command is used to define the simulation box, and the
header of the data file contains a line with the "xy xz yz" keyword, then a non−orthogonal domain is setup. See
the read_data command for details. Finally, if the read_restart command reads a restart file which was written
from a simulation using a triclinic box, then a non−orthogonal box will be enabled for the restarted simulation.

Note that you can define a non−orthogonal box with all 3 tilt factors = 0.0, so that it is initially orthogonal. This is
necessary if the box will become non−orthogonal. Alternatively, you can use the change_box command to convert
a simulation box from orthogonal to non−orthogonal and vice versa.

One use of non−orthogonal boxes is to model solid−state crystals with triclinic symmetry. The lattice command
can be used with non−orthogonal basis vectors to define a lattice that will tile a non−orthogonal simulation box
via the create_atoms command. Note that while the box edge vectors a,b,c cannot be arbitrary vectors (e.g. a must
be aligned with the x axis), it is possible to rotate any crystal's basis vectors so that they meet these restrictions.

A second use of non−orthogonal boxes is to shear a bulk solid to study the response of the material. The fix
deform command can be used for this purpose. It allows dynamic control of the xy, xz, and yz tilt factors as a
simulation runs.

Another use of non−orthogonal boxes is to perform non−equilibrium MD (NEMD) simulations, as discussed in
the next section.

4.13 NEMD simulations

Non−equilibrium molecular dynamics or NEMD simulations are typically used to measure a fluid's rheological
properties such as viscosity. In LAMMPS, such simulations can be performed by first setting up a
non−orthogonal simulation box (see the preceding Howto section).

A shear strain can be applied to the simulation box at a desired strain rate by using the fix deform command. The
fix nvt/sllod command can be used to thermostat the sheared fluid and integrate the SLLOD equations of motion
for the system. Fix nvt/sllod uses compute temp/deform to compute a thermal temperature by subtracting out the
streaming velocity of the shearing atoms. The velocity profile or other properties of the fluid can be monitored via
the fix ave/spatial command.

As discussed in the previous section on non−orthogonal simulation boxes, the amount of tilt or skew that can be
applied is limited by LAMMPS for computational efficiency to be 1/2 of the parallel box length. However, fix
deform can continuously strain a box by an arbitrary amount. As discussed in the fix deform command, when the
tilt value reaches a limit, the box is re−shaped to the opposite limit which is an equivalent tiling of periodic space.
The strain rate can then continue to change as before. In a long NEMD simulation these box re−shaping events
may occur many times.

In a NEMD simulation, the "remap" option of fix deform should be set to "remap v", since that is what fix
nvt/sllod assumes to generate a velocity profile consistent with the applied shear strain rate.

An alternative method for calculating viscosities is provided via the fix viscosity command.

44

4.14 Extended spherical and aspherical particles

Typical MD models treat atoms or particles as point masses. Sometimes, however, it is desirable to have a model
with finite−size particles such as spherioids or aspherical ellipsoids. The difference is that such particles have a
moment of inertia, rotational energy, and angular momentum. Rotation is induced by torque from interactions
with other particles.

LAMMPS has several options for running simulations with these kinds of particles. The following aspects are
discussed in turn:

atom styles•
pair potentials•
time integration•
computes, thermodynamics, and dump output•
rigid bodies composed of extended particles•

Atom styles

There are 3 atom styles that allow for definition of finite−size particles: granular, dipole, ellipsoid.

Granular particles are spheriods and each particle can have a unique diameter and mass (or density). These
particles store an angular velocity (omega) and can be acted upon by torque.

Dipolar particles are typically spheriods with a point dipole and each particle type has a diamater and mass, set by
the shape and mass commands. These particles store an angular velocity (omega) and can be acted upon by
torque. They also store an orientation for the point dipole (mu) which has a length set by the dipole command.
The set command can be used to initialize the orientation of dipole moments.

Ellipsoid particles are aspherical. Each particle type has an ellipsoidal shape and mass, defined by the shape and
mass commands. These particles store an angular momentum and their orientation (quaternion), and can be acted
upon by torque. They do not store an angular velocity (omega), which can be in a different direction than angular
momentum, rather they compute it as needed. Ellipsoidal particles can also store a dipole moment if an
atom_style hybrid ellipsoid dipole is used. The set command can be used to initialize the orientation of ellipsoidal
particles and has a brief explanation of quaternions.

Note that if one of these atom styles is used (or multiple styles via the atom_style hybrid command), not all
particles in the system are required to be finite−size or aspherical. For example, if the 3 shape parameters are set
to the same value, the particle will be a spheroid rather than an ellipsoid. If the 3 shape parameters are all set to
0.0 or if the diameter is set to 0.0, it will be a point particle. If the dipole moment is set to zero, the particle will
not have a point dipole associated with it. The pair styles used to compute pairwise interactions will typically
compute the correct interaction in these simplified (cheaper) cases. Pair_style hybrid can be used to insure the
correct interactions are computed for the appropriate style of interactions. Likewise, using groups to partition
particles (ellipsoid versus spheroid versus point particles) will allow you to use the appropriate time integrators
and temperature computations for each class of particles. See the doc pages for various commands for details.

Also note that for 2d simulations, finite−size spheroids and ellipsoids are still treated as 3d particles, rather than as
disks or ellipses. This means they have the same moment of inertia for a 3d extended object. When their
temperature is coomputed, the correct degrees of freedom are used for rotation in a 2d versus 3d system.

Pair potentials

When a system with extended particles is defined, the particles will only rotate and experience torque if the force
field computes such interactions. These are the various pair styles that generate torque:

45

pair_style gran/history•
pair_style gran/hertzian•
pair_style gran/no_history•
pair_style dipole/cut•
pair_style gayberne•
pair_style resquared•
pair_style lubricate•

The granular pair styles are used with atom_style granular. The dipole pair style is used with atom_style dipole.
The GayBerne and REsquared potentials require particles have a shape and are designed for ellipsoidal particles.
The lubrication potential requires that particles have a shape. It can currently only be used with extended spherical
particles.

Time integration

There are 3 fixes that perform time integration on extended spherical particles, meaning the integrators update the
rotational orientation and angular velocity or angular momentum of the particles:

fix nve/sphere•
fix nvt/sphere•
fix npt/sphere•

Likewise, there are 3 fixes that perform time integration on extended aspherical particles:

fix nve/asphere•
fix nvt/asphere•
fix npt/asphere•

The advantage of these fixes is that those which thermostat the particles include the rotational degrees of freedom
in the temperature calculation and thermostatting. Other thermostats can be used with fix nve/sphere or fix
nve/asphere, such as fix langevin or fix temp/berendsen, but those thermostats only operate on the translational
kinetic energy of the extended particles.

Note that for mixtures of point and extended particles, you should only use these integration fixes on groups
which contain extended particles.

Computes, thermodynamics, and dump output

There are 4 computes that calculate the temperature or rotational energy of extended spherical or aspherical
particles:

compute temp/sphere•
compute temp/asphere•
compute erotate/sphere•
compute erotate/asphere•

These include rotational degrees of freedom in their computation. If you wish the thermodynamic output of
temperature or pressure to use one of these computes (e.g. for a system entirely composed of extended particles),
then the compute can be defined and the thermo_modify command used. Note that by default thermodynamic
quantities will be calculated with a temperature that only includes translational degrees of freedom. See the
thermo_style command for details.

46

The dump custom command can output various attributes of extended particles, including the dipole moment
(mu), the angular velocity (omega), the angular momentum (angmom), the quaternion (quat), and the torque (tq)
on the particle.

Rigid bodies composed of extended particles

The fix rigid command treats a collection of particles as a rigid body, computes its inertia tensor, sums the total
force and torque on the rigid body each timestep due to forces on its constituent particles, and integrates the
motion of the rigid body.

(NOTE: the feature described in the following paragraph has not yet been released. It will be soon.)

If any of the constituent particles of a rigid body are extended particles (spheroids or ellipsoids), then their
contribution to the inertia tensor of the body is different than if they were point particles. This means the
rotational dynamics of the rigid body will be different. Thus a model of a dimer is different if the dimer consists
of two point masses versus two extended sphereoids, even if the two particles have the same mass. Extended
particles that experience torque due to their interaction with other particles will also impart that torque to a rigid
body they are part of.

See the "fix rigid" command for example of complex rigid−body models it is possible to define in LAMMPS.

Note that the fix shake command can also be used to treat 2, 3, or 4 particles as a rigid body, but it always
assumes the particles are point masses.

4.15 Output from LAMMPS (thermo, dumps, computes, fixes, variables)

There are four basic kinds of LAMMPS output:

Thermodynamic output, which is a list of quantities printed every few timesteps to the screen and logfile.•
Dump files, which contain snapshots of atoms and various per−atom values and are written at a specified
frequency.

•

Certain fixes can output user−specified quantities to files: fix ave/time for time averaging, fix ave/spatial
for spatial averaging, and fix print for single−line output of variables. Fix print can also output to the
screen.

•

Restart files.•

A simulation prints one set of thermodynamic output and (optionally) restart files. It can generate any number of
dump files and fix output files, depending on what dump and fix commands you specify.

As discussed below, LAMMPS gives you a variety of ways to determine what quantities are computed and
printed when the thermodynamics, dump, or fix commands listed above perform output. Throughout this
discussion, note that users can also add their own computes and fixes to LAMMPS which can then generate
values that can then be output with these commands.

The following sub−sections discuss different LAMMPS command related to output and the kind of data they
operate on and produce:

Global/per−atom/local data•
Scalar/vector/array data•
Thermodynamic output•
Dump file output•

47

Fixes that write output files•
Computes that process output quantities•
Fixes that process output quantities•
Computes that generate values to output•
Fixes that generate values to output•
Variables that generate values to output•
Summary table of output options and data flow between commands•

Global/per−atom/local data

Various output−related commands work with three different styles of data: global, per−atom, or local. A global
datum is one or more system−wide values, e.g. the temperature of the system. A per−atom datum is one or more
values per atom, e.g. the kinetic energy of each atom. Local datums are calculated by each processor based on the
atoms it owns, but there may be zero or more per atom, e.g. a list of bond distances.

Scalar/vector/array data

Global, per−atom, and local datums can each come in three kinds: a single scalar value, a vector of values, or a 2d
array of values. The doc page for a "compute" or "fix" or "variable" that generates data will specify both the style
and kind of data it produces, e.g. a per−atom vector.

When a quantity is accessed, as in many of the output commands discussed below, it can be referenced via the
following bracket notation, where ID in this case is the ID of a compute. The leading "c_" would be replaced by
"f_" for a fix, or "v_" for a variable:

c_ID entire scalar, vector, or array

c_ID[I] one element of vector, one column of array

c_ID[I][J] one element of array
In other words, using one bracket reduces the dimension of the data once (vector −> scalar, array −> vector).
Using two brackets reduces the dimension twice (array −> scalar). Thus a command that uses scalar values as
input can typically also process elements of a vector or array.

Thermodynamic output

The frequency and format of thermodynamic output is set by the thermo, thermo_style, and thermo_modify
commands. The thermo_style command also specifies what values are calculated and written out. Pre−defined
keywords can be specified (e.g. press, etotal, etc). Three additional kinds of keywords can also be specified (c_ID,
f_ID, v_name), where a compute or fix or variable provides the value to be output. In each case, the compute, fix,
or variable must generate global values for input to the thermo_style custom command.

Dump file output

Dump file output is specified by the dump and dump_modify commands. There are several pre−defined formats
(dump atom, dump xtc, etc).

There is also a dump custom format where the user specifies what values are output with each atom. Pre−defined
atom attributes can be specified (id, x, fx, etc). Three additional kinds of keywords can also be specified (c_ID,
f_ID, v_name), where a compute or fix or variable provides the values to be output. In each case, the compute,
fix, or variable must generate per−atom values for input to the dump custom command.

There is also a dump local format where the user specifies what local values to output. A pre−defined index
keyword can be specified to enumuerate the local values. Two additional kinds of keywords can also be specified

48

(c_ID, f_ID), where a compute or fix or variable provides the values to be output. In each case, the compute or fix
must generate local values for input to the dump local command.

Fixes that write output files

Three fixes take various quantities as input and can write output files: fix ave/time, fix ave/spatial, and fix print.

The fix ave/time command enables direct output to a file and/or time−averaging of global scalars or vectors. The
user specifies one or more quantities as input. These can be global compute values, global fix values, or variables
of any style except the atom style which produces per−atom values. Since a variable can refer to keywords used
by the thermo_style custom command (like temp or press) and individual per−atom values, a wide variety of
quantities can be time averaged and/or output in this way. If the inputs are one or more scalar values, then the fix
generate a global scalar or vector of output. If the inputs are one or more vector values, then the fix generates a
global vector or array of output. The time−averaged output of this fix can also be used as input to other output
commands.

The fix ave/spatial command enables direct output to a file of spatial−averaged per−atom quantities like those
output in dump files, within 1d layers of the simulation box. The per−atom quantities can be atom density (mass
or number) or atom attributes such as position, velocity, force. They can also be per−atom quantities calculated by
a compute, by a fix, or by an atom−style variable. The spatial−averaged output of this fix can also be used as
input to other output commands.

The fix ave/histo command enables direct output to a file of histogrammed quantities, which can be global or
per−atom or local quantities. The histogram output of this fix can also be used as input to other output commands.

The fix print command can generate a line of output written to the screen and log file or to a separate file,
periodically during a running simulation. The line can contain one or more variable values for any style variable
except the atom style). As explained above, variables themselves can contain references to global values
generated by thermodynamic keywords, computes, fixes, or other variables, or to per−atom values for a specific
atom. Thus the fix print command is a means to output a wide variety of quantities separate from normal
thermodynamic or dump file output.

Computes that process output quantities

The compute reduce and compute reduce/region commands take one or more vector quantities as inputs and
"reduce" them (sum, min, max, ave) to scalar quantities. These are produced as output values which can be used
as input to other output commands.

The compute property/atom command takes a list of one or more pre−defined atom attributes (id, x, fx, etc) and
stores the values in a per−atom vector or array. These are produced as output values which can be used as input to
other output commands. The list of atom attributes is the same as for the dump custom command.

The compute property/local command takes a list of one or more pre−defined local attributes (bond info, angle
info, etc) and stores the values in a local vector or array. These are produced as output values which can be used
as input to other output commands.

Fixes that process output quantities

The fix ave/atom command performs time−averaging of per−atom vectors. The per−atom quantities can be atom
attributes such as position, velocity, force. They can also be per−atom quantities calculated by a compute, by a
fix, or by an atom−style variable. The time−averaged per−atom output of this fix can be used as input to other
output commands.

49

Computes that generate values to output

Every compute in LAMMPS produces either global or per−atom or local values. The values can be scalars or
vectors or arrays of data. These values can be output using the other commands described in this section. The doc
page for each compute command describes what it produces. Computes that produce per−atom or local values
have the word "atom" or "local" in their style name. Computes without the word "atom" or "local" produce global
values.

Fixes that generate values to output

Some fixes in LAMMPS produces either global or per−atom or local values which can be accessed by other
commands. The values can be scalars or vectors or arrays of data. These values can be output using the other
commands described in this section. The doc page for each fix command tells whether it produces any output
quantities and describes them.

Variables that generate values to output

Every variables defined in an input script generates either a global scalar value or a per−atom vector (only
atom−style variables) when it is accessed. The formulas used to define equal− and atom−style variables can
contain references to the thermodynamic keywords and to global and per−atom data generated by computes, fixes,
and other variables. The values generated by variables can be output using the other commands described in this
section.

Summary table of output options and data flow between commands

This table summarizes the various commands that can be used for generating output from LAMMPS. Each
command produces output data of some kind and/or writes data to a file. Most of the commands can take data
from other commands as input. Thus you can link many of these commands together in pipeline form, where data
produced by one command is used as input to another command and eventually written to the screen or to a file.
Note that to hook two commands together the output and input data types must match, e.g. global/per−atom/local
data and scalar/vector/array data.

Also note that, as described above, when a command takes a scalar as input, that could be an element of a vector
or array. Likewise a vector input could be a column of an array.

Command Input Output

thermo_style custom global scalars screen, log file

dump custom per−atom vectors dump file

dump local local vectors dump file

fix print global scalar from variable screen, file

print global scalar from variable screen

computes N/A
global/per−atom/local
scalar/vector/array

fixes N/A
global/per−atom/local
scalar/vector/array

variables global scalars, per−atom vectors
global scalar, per−atom
vector

compute reduce global/per−atom/local vectors global scalar/vector

compute property/atom per−atom vectors per−atom vector/array

compute property/local local vectors local vector/array

50

fix ave/atom per−atom vectors per−atom vector/array

fix ave/time global scalars/vectors
global scalar/vector/array,
file

fix ave/spatial per−atom vectors global array, file

fix ave/histo global/per−atom/local scalars and vectors global array, file

4.16 Thermostatting, barostatting, and computing temperature

Thermostatting means controlling the temperature of particles in an MD simulation. Barostatting means
controlling the pressure. Since the pressure includes a kinetic component due to particle velocities, both these
operations require calculation of the temperature. Typically a target temperature (T) and/or pressure (P) is
specified by the user, and the thermostat or barostat attempts to equilibrate the system to the requested T and/or P.

Temperature is computed as kinetic energy divided by some number of degrees of freedom (and the Boltzmann
constant). Since kinetic energy is a function of particle velocity, there is often a need to distinguish between a
particle's advection velocity (due to some aggregate motiion of particles) and its thermal velocity. The sum of the
two is the particle's total velocity, but the latter is often what is wanted to compute a temperature.

LAMMPS has several options for computing temperatures, any of which can be used in thermostatting and
barostatting. These compute commands calculate temperature, and the compute pressure command calculates
pressure.

compute temp•
compute temp/sphere•
compute temp/asphere•
compute temp/com•
compute temp/deform•
compute temp/partial•
compute temp/profile•
compute temp/ramp•
compute temp/region•

All but the first 3 calculate velocity biases (i.e. advection velocities) that are removed when computing the
thermal temperature. Fix temp/sphere and fix temp/asphere compute kinetic energy for extended particles that
includes rotational degrees of freedom. They both allow, as an extra argument, which is another temperature
compute that subtracts a velocity bias. This allows the translational velocity of extended spherical or aspherical
particles to be adjusted in prescribed ways.

Thermostatting in LAMMPS is performed by fixes. Four thermostatting fixes are currently available:
Nose−Hoover (nvt), Berendsen, Langevin, and direct rescaling (temp/rescale):

fix nvt•
fix nvt/sphere•
fix nvt/asphere•
fix nvt/sllod•
fix temp/berendsen•
fix langevin•
fix temp/rescale•

51

Fix nvt only thermostats the translational velocity of particles. Fix nvt/sllod also does this, except that it subtracts
out a velocity bias due to a deforming box and integrates the SLLOD equations of motion. See the NEMD
simulations section of this page for further details. Fix nvt/sphere and fix nvt/asphere thermostat not only
translation velocities but also rotational velocities for spherical and aspherical particles.

Any of these fixes can use temperature computes that remove bias for two purposes: (a) computing the current
temperature to compare to the requested target temperature, and (b) adjusting only the thermal temperature
component of the particle's velocities. See the doc pages for the individual fixes and for the fix_modify command
for instructions on how to assign a temperature compute to a thermostatting fix. For example, you can apply a
thermostat to only the x and z components of velocity by using it in conjunction with compute temp/partial.

IMPORTANT NOTE: Only the nvt fixes perform time integration, meaning they update the velocities and
positions of particles due to forces and velocities respectively. The other thermostat fixes only adjust velocities;
they do NOT perform time integration updates. Thus they should be used in conjunction with a constant NVE
integration fix such as these:

fix nve•
fix nve/sphere•
fix nve/asphere•

Barostatting in LAMMPS is also performed by fixes. Two barosttating methods are currently available:
Nose−Hoover (npt and nph) and Berendsen:

fix npt•
fix npt/sphere•
fix npt/asphere•
fix nph•
fix press/berendsen•

The fix npt commands include a Nose−Hoover thermostat and barostat. Fix nph is just a Nose/Hoover barostat; it
does no thermostatting. Both fix nph and fix press/bernendsen can be used in conjunction with any of the
thermostatting fixes.

As with the thermostats, fix npt and fix nph only use translational motion of the particles in computing T and P
and performing thermo/barostatting. Fix npt/sphere and fix npt/asphere thermo/barostat using not only translation
velocities but also rotational velocities for spherical and aspherical particles.

All of the barostatting fixes use the compute pressure compute to calculate a current pressure. By default, this
compute is created with a simple compute temp (see the last argument of the compute pressure command), which
is used to calculated the kinetic componenet of the pressure. The barostatting fixes can also use temperature
computes that remove bias for the purpose of computing the kinetic componenet which contributes to the current
pressure. See the doc pages for the individual fixes and for the fix_modify command for instructions on how to
assign a temperature or pressure compute to a barostatting fix.

IMPORTANT NOTE: As with the thermostats, the Nose/Hoover methods (fix npt and fix nph) perform time
integration. Fix press/berendsen does NOT, so it should be used with one of the constant NVE fixes or with one
of the NVT fixes.

Finally, thermodynamic output, which can be setup via the thermo_style command, often includes temperature
and pressure values. As explained on the doc page for the thermo_style command, the default T and P are setup
by the thermo command itself. They are NOT the ones associated with any thermostatting or barostatting fix you
have defined or with any compute that calculates a temperature or pressure. Thus if you want to view these values

52

of T and P, you need to specify them explicitly via a thermo_style custom command. Or you can use the
thermo_modify command to re−define what temperature or pressure compute is used for default thermodynamic
output.

4.16 Walls

Walls in an MD simulation are typically used to bound particle motion, i.e. to serve as a boundary condition.

Walls in LAMMPS can be of rough (made of particles) or idealized surfaces. Ideal walls can be smooth,
generating forces only in the normal direction, or frictional, generating forces also in the tangential direction.

Rough walls, built of particles, can be created in various ways. The particles themselves can be generated like any
other particle, via the lattice and create_atoms commands, or read in via the read_data command.

Their motion can be constrained by many different commands, so that they do not move at all, move together as a
group at constant velocity or in response to a net force acting on them, move in a prescribed fashion (e.g. rotate
around a point), etc. Note that if a time integration fix like fix nve or fix nvt is not used with the group that
contains wall particles, their positions and velocities will not be updated.

fix aveforce − set force on particles to average value, so they move together•
fix setforce − set force on particles to a value, e.g. 0.0•
fix freeze − freeze particles for use as granular walls•
fix nve/noforce − advect particles by their velocity, but without force•
fix move − prescribe motion of particles by a linear velocity, oscillation, rotation, variable•

The fix move command offers the most generality, since the motion of individual particles can be specified with
variable formula which depends on time and/or the particle position.

For rough walls, it may be useful to turn off pairwise interactions between wall particles via the neigh_modify
exclude command.

Rough walls can also be created by specifying frozen particles that do not move and do not interact with mobile
particles, and then tethering other particles to the fixed particles, via a bond. The bonded particles do interact with
other mobile particles.

Idealized walls can be specified via several fix commands. Fix wall/gran creates frictional walls for use with
granular particles; all the other commands create smooth walls.

fix wall/reflect − reflective flat walls•
fix wall/lj93 − flat walls, with Lennard−Jones 9/3 potential•
fix wall/lj126 − flat walls, with Lennard−Jones 12/6 potential•
fix wall/colloid − flat walls, with pair_style colloid potential•
fix wall/harmonic − flat walls, with repulsive harmonic spring potential•
fix wall/region − use region surface as wall•
fix wall/gran − flat or curved walls with pair_style granular potential•

The lj93, lj126, colloid, and harmonic styles all allow the flat walls to move with a constant velocity, or oscillate
in time. The fix wall/region command offers the most generality, since the region surface is treated as a wall, and
the geometry of the region can be a simple primitive volume (e.g. a sphere, or cube, or plane), or a complex
volume made from the union and intersection of primitive volumes. Regions can also specify a volume "interior"
or "exterior" to the specified primitive shape or union or intersection. Regions can also be "dynamic" meaning

53

they move with constant velocity, oscillate, or rotate.

The only frictional idealized walls currently in LAMMPS are flat or curved surfaces specified by the fix wall/gran
command. At some point we plan to allow regoin surfaces to be used as frictional walls, as well as triangulated
surfaces.

(Cornell) Cornell, Cieplak, Bayly, Gould, Merz, Ferguson, Spellmeyer, Fox, Caldwell, Kollman, JACS 117,
5179−5197 (1995).

(Horn) Horn, Swope, Pitera, Madura, Dick, Hura, and Head−Gordon, J Chem Phys, 120, 9665 (2004).

(MacKerell) MacKerell, Bashford, Bellott, Dunbrack, Evanseck, Field, Fischer, Gao, Guo, Ha, et al, J Phys
Chem, 102, 3586 (1998).

(Jorgensen) Jorgensen, Chandrasekhar, Madura, Impey, Klein, J Chem Phys, 79, 926 (1983).

54

Previous Section − LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands − Next Section

5. Example problems

The LAMMPS distribution includes an examples sub−directory with several sample problems. Each problem is in
a sub−directory of its own. Most are 2d models so that they run quickly, requiring at most a couple of minutes to
run on a desktop machine. Each problem has an input script (in.*) and produces a log file (log.*) and dump file
(dump.*) when it runs. Some use a data file (data.*) of initial coordinates as additional input. A few sample log
file outputs on different machines and different numbers of processors are included in the directories to compare
your answers to. E.g. a log file like log.crack.foo.P means it ran on P processors of machine "foo".

The dump files produced by the example runs can be animated using the xmovie tool described in the Additional
Tools section of the LAMMPS documentation. Animations of many of these examples can be viewed on the
Movies section of the LAMMPS WWW Site.

These are the sample problems in the examples sub−directories:

colloid
big colloid particles in a small particle solvent, 2d
system

crack crack propagation in a 2d solid

dipole point dipolar particles, 2d system

ellipse ellipsoidal particles in spherical solvent, 2d system

flow Couette and Poiseuille flow in a 2d channel

friction
frictional contact of spherical asperities between 2d
surfaces

indent spherical indenter into a 2d solid

meam
MEAM test for SiC and shear (same as shear
examples)

melt rapid melt of 3d LJ system

micelle
self−assembly of small lipid−like molecules into 2d
bilayers

min energy minimization of 2d LJ melt

nemd non−equilibrium MD of 2d sheared system

obstacle flow around two voids in a 2d channel

peptide dynamics of a small solvated peptide chain (5−mer)

peri Peridynamics example of cylinder hit by projectile

pour
pouring of granular particles into a 3d box, then chute
flow

prd
parallel replica dynamics of a vacancy diffusion in
bulk Si

reax simple example for ReaxFF force field

rigid rigid bodies modeled as independent or coupled

shear
sideways shear applied to 2d solid, with and without
a void

Here is how you might run and visualize one of the sample problems:

cd indent
cp ../../src/lmp_linux . # copy LAMMPS executable to this dir

55

http://lammps.sandia.gov
http://lammps.sandia.gov

lmp_linux <in.indent # run the problem

Running the simulation produces the files dump.indent and log.lammps. You can visualize the dump file as
follows:

../../tools/xmovie/xmovie −scale dump.indent

There is also a directory "couple" in the examples sub−directory, which contains a stand−alone code umbrella.cpp
that links LAMMPS as a library. The README describes how to build the code. The code itself runs LAMMPS
on a subset of processors, sets up a LAMMPS problem by invoking LAMMPS input script commands one at a
time, does a run, grabs atom coordinates, changes one atom position, puts them back into LAMMPS, and does
another run.

This illustrates how an umbrella code could include new models and physics while using LAMMPS to perform
MD, or how the umbrella code could call both LAMMPS and some other code to perform a coupled calculation.

56

Previous Section − LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands − Next Section

6. Performance &scalability

LAMMPS performance on several prototypical benchmarks and machines is discussed on the Benchmarks page
of the LAMMPS WWW Site where CPU timings and parallel efficiencies are listed. Here, the benchmarks are
described briefly and some useful rules of thumb about their performance are highlighted.

These are the 5 benchmark problems:

LJ = atomic fluid, Lennard−Jones potential with 2.5 sigma cutoff (55 neighbors per atom), NVE
integration

1.

Chain = bead−spring polymer melt of 100−mer chains, FENE bonds and LJ pairwise interactions with a
2^(1/6) sigma cutoff (5 neighbors per atom), NVE integration

2.

EAM = metallic solid, Cu EAM potential with 4.95 Angstrom cutoff (45 neighbors per atom), NVE
integration

3.

Chute = granular chute flow, frictional history potential with 1.1 sigma cutoff (7 neighbors per atom),
NVE integration

4.

Rhodo = rhodopsin protein in solvated lipid bilayer, CHARMM force field with a 10 Angstrom LJ cutoff
(440 neighbors per atom), particle−particle particle−mesh (PPPM) for long−range Coulombics, NPT
integration

5.

The input files for running the benchmarks are included in the LAMMPS distribution, as are sample output files.
Each of the 5 problems has 32,000 atoms and runs for 100 timesteps. Each can be run as a serial benchmarks (on
one processor) or in parallel. In parallel, each benchmark can be run as a fixed−size or scaled−size problem. For
fixed−size benchmarking, the same 32K atom problem is run on various numbers of processors. For scaled−size
benchmarking, the model size is increased with the number of processors. E.g. on 8 processors, a 256K−atom
problem is run; on 1024 processors, a 32−million atom problem is run, etc.

A useful metric from the benchmarks is the CPU cost per atom per timestep. Since LAMMPS performance scales
roughly linearly with problem size and timesteps, the run time of any problem using the same model (atom style,
force field, cutoff, etc) can then be estimated. For example, on a 1.7 GHz Pentium desktop machine (Intel icc
compiler under Red Hat Linux), the CPU run−time in seconds/atom/timestep for the 5 problems is

Problem: LJ Chain EAM Chute Rhodopsin

CPU/atom/step:4.55E−6 2.18E−6 9.38E−6 2.18E−6 1.11E−4

Ratio to LJ: 1.0 0.48 2.06 0.48 24.5
The ratios mean that if the atomic LJ system has a normalized cost of 1.0, the bead−spring chains and granular
systems run 2x faster, while the EAM metal and solvated protein models run 2x and 25x slower respectively. The
bulk of these cost differences is due to the expense of computing a particular pairwise force field for a given
number of neighbors per atom.

Performance on a parallel machine can also be predicted from the one−processor timings if the parallel efficiency
can be estimated. The communication bandwidth and latency of a particular parallel machine affects the
efficiency. On most machines LAMMPS will give fixed−size parallel efficiencies on these benchmarks above
50% so long as the atoms/processor count is a few 100 or greater − i.e. on 64 to 128 processors. Likewise,
scaled−size parallel efficiencies will typically be 80% or greater up to very large processor counts. The
benchmark data on the LAMMPS WWW Site gives specific examples on some different machines, including a
run of 3/4 of a billion LJ atoms on 1500 processors that ran at 85% parallel efficiency.

57

http://lammps.sandia.gov
http://lammps.sandia.gov
http://lammps.sandia.gov

Previous Section − LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands − Next Section

7. Additional tools

LAMMPS is designed to be a computational kernel for performing molecular dynamics computations. Additional
pre− and post−processing steps are often necessary to setup and analyze a simulation. A few additional tools are
provided with the LAMMPS distribution and are described in this section.

Our group has also written and released a separate toolkit called Pizza.py which provides tools for doing setup,
analysis, plotting, and visualization for LAMMPS simulations. Pizza.py is written in Python and is available for
download from the Pizza.py WWW site.

Note that many users write their own setup or analysis tools or use other existing codes and convert their output to
a LAMMPS input format or vice versa. The tools listed here are included in the LAMMPS distribution as
examples of auxiliary tools. Some of them are not actively supported by Sandia, as they were contributed by
LAMMPS users. If you have problems using them, we can direct you to the authors.

The source code for each of these codes is in the tools sub−directory of the LAMMPS distribution. There is a
Makefile (which you may need to edit for your platform) which will build several of the tools which reside in that
directory. Some of them are larger packages in their own sub−directories with their own Makefiles.

amber2lmp•
binary2txt•
ch2lmp•
chain•
data2xmovie•
eam generate•
lmp2arc•
lmp2cfg•
lmp2traj•
lmp2vmd•
matlab•
micelle2d•
msi2lmp•
pymol_asphere•
python•
restart2data•
thermo_extract•
vim•
xmovie•

amber2lmp tool

The amber2lmp sub−directory contains two Python scripts for converting files back−and−forth between the
AMBER MD code and LAMMPS. See the README file in amber2lmp for more information.

These tools were written by Keir Novik while he was at Queen Mary University of London. Keir is no longer
there and cannot support these tools which are out−of−date with respect to the current LAMMPS version (and
maybe with respect to AMBER as well). Since we don't use these tools at Sandia, you'll need to experiment with
them and make necessary modifications yourself.

58

http://lammps.sandia.gov
http://www.cs.sandia.gov/~sjplimp/pizza.html
http://www.python.org
http://www.cs.sandia.gov/~sjplimp/pizza.html

binary2txt tool

The file binary2txt.cpp converts one or more binary LAMMPS dump file into ASCII text files. The syntax for
running the tool is

binary2txt file1 file2 ...

which creates file1.txt, file2.txt, etc. This tool must be compiled on a platform that can read the binary file created
by a LAMMPS run, since binary files are not compatible across all platforms.

ch2lmp tool

The ch2lmp sub−directory contains tools for converting files back−and−forth between the CHARMM MD code
and LAMMPS.

They are intended to make it easy to use CHARMM as a builder and as a post−processor for LAMMPS. Using
charmm2lammps.pl, you can convert an ensemble built in CHARMM into its LAMMPS equivalent. Using
lammps2pdb.pl you can convert LAMMPS atom dumps into pdb files.

See the README file in the ch2lmp sub−directory for more information.

These tools were created by Pieter in't Veld (pjintve at sandia.gov) and Paul Crozier (pscrozi at sandia.gov) at
Sandia.

chain tool

The file chain.f creates a LAMMPS data file containing bead−spring polymer chains and/or monomer solvent
atoms. It uses a text file containing chain definition parameters as an input. The created chains and solvent atoms
can strongly overlap, so LAMMPS needs to run the system initially with a "soft" pair potential to un−overlap it.
The syntax for running the tool is

chain <def.chain > data.file

See the def.chain or def.chain.ab files in the tools directory for examples of definition files. This tool was used to
create the system for the chain benchmark.

data2xmovie tool

The file data2xmovie.c converts a LAMMPS data file into a snapshot suitable for visualizing with the xmovie
tool, as if it had been output with a dump command from LAMMPS itself. The syntax for running the tool is

data2xmovie options <infile > outfile

See the top of the data2xmovie.c file for a discussion of the options.

eam generate tool

The tools/eam_generate directory contains several one−file C programs that convert an analytic formula into a
tabulated embedded atom method (EAM) setfl potential file. The potentials they produce are in the potentials
directory.

The source files and potentials were provided by Gerolf Ziegenhain (gerolf at ziegenhain.com).

59

lmp2arc tool

The lmp2arc sub−directory contains a tool for converting LAMMPS output files to the format for Accelrys'
Insight MD code (formerly MSI/Biosym and its Discover MD code). See the README file for more information.

This tool was written by John Carpenter (Cray), Michael Peachey (Cray), and Steve Lustig (Dupont). John is now
at the Mayo Clinic (jec at mayo.edu), but still fields questions about the tool.

This tool was updated for the current LAMMPS C++ version by Jeff Greathouse at Sandia (jagreat at sandia.gov).

lmp2cfg tool

The lmp2cfg sub−directory contains a tool for converting LAMMPS output files into a series of *.cfg files which
can be read into the AtomEye visualizer. See the README file for more information.

This tool was written by Ara Kooser at Sandia (askoose at sandia.gov).

lmp2traj tool

The lmp2traj sub−directory contains a tool for converting LAMMPS output files into 3 analysis files. One file can
be used to create contour maps of the atom positions over the course of the simulation. The other two files provide
density profiles and dipole moments. See the README file for more information.

This tool was written by Ara Kooser at Sandia (askoose at sandia.gov).

lmp2vmd tool

The lmp2vmd sub−directory contains some scripts for converting LAMMPS files into formats suitable for
visualizing with the VMD package.

One script extracts bond topology info from a LAMMPS data file. A second script attached amino acid (residue)
information to what is extracted from a data file. See the README file for more information.

These scripts were written by Axel Kohlmeyer (akohlmey at cmm.chem.upenn.edu) at U Penn.

matlab tool

The matlab sub−directory contains several MATLAB scripts for post−processing LAMMPS output. The scripts
include readers for log and dump files, a reader for radial distribution output from the fix rdf command, a reader
for EAM potential files, and a converter that reads LAMMPS dump files and produces CFG files that can be
visualized with the AtomEye visualizer.

See the README.pdf file for more information.

These scripts were written by Arun Subramaniyan at Purdue Univ (asubrama at purdue.edu).

60

http://164.107.79.177/Archive/Graphics/A
http://www.ks.uiuc.edu/Research/vmd/
http://www.mathworks.com
http://164.107.79.177/Archive/Graphics/A

micelle2d tool

The file micelle2d.f creates a LAMMPS data file containing short lipid chains in a monomer solution. It uses a
text file containing lipid definition parameters as an input. The created molecules and solvent atoms can strongly
overlap, so LAMMPS needs to run the system initially with a "soft" pair potential to un−overlap it. The syntax for
running the tool is

micelle2d <def.micelle2d > data.file

See the def.micelle2d file in the tools directory for an example of a definition file. This tool was used to create the
system for the micelle example.

msi2lmp tool

The msi2lmp sub−directory contains a tool for creating LAMMPS input data files from Accelrys' Insight MD
code (formerly MSI/Biosym and its Discover MD code). See the README file for more information.

This tool was written by John Carpenter (Cray), Michael Peachey (Cray), and Steve Lustig (Dupont). John is now
at the Mayo Clinic (jec at mayo.edu), but still fields questions about the tool.

This tool may be out−of−date with respect to the current LAMMPS and Insight versions. Since we don't use it at
Sandia, you'll need to experiment with it yourself.

pymol_asphere tool

The pymol_asphere sub−directory contains a tool for converting a LAMMPS dump file that contains orientation
info for ellipsoidal particles into an input file for the PyMol visualization package.

Specifically, the tool triangulates the ellipsoids so they can be viewed as true ellipsoidal particles within PyMol.
See the README and examples directory within pymol_asphere for more information.

This tool was written by Mike Brown at Sandia.

python tool

The python sub−directory contains several Python scripts that perform common LAMMPS post−processing tasks,
like

extract thermodynamic info from a log file as columns of numbers•
plot two columns of thermodynamic info from a log file using GnuPlot•
sort the snapshots in a dump file by atom ID•
convert dump files into XYZ, CFG, or PDB format for viz by other packages•

These are simple scripts built on Pizza.py modules. See the README for more info on Pizza.py and how to use
these scripts.

restart2data tool

The file restart2data.cpp converts a binary LAMMPS restart file into an ASCII data file. The syntax for running
the tool is

restart2data restart−file data−file (input−file)

61

http://pymol.sourceforge.net
http://www.cs.sandia.gov/~sjplimp/pizza.html

Input−file is optional and if specified will contain LAMMPS input commands for the masses and force field
parameters, instead of putting those in the data−file. Only a few force field styles currently support this option.

This tool must be compiled on a platform that can read the binary file created by a LAMMPS run, since binary
files are not compatible across all platforms.

Note that a text data file has less precision than a binary restart file. Hence, continuing a run from a converted data
file will typically not conform as closely to a previous run as will restarting from a binary restart file.

If a "%" appears in the specified restart−file, the tool expects a set of multiple files to exist. See the restart and
write_restart commands for info on how such sets of files are written by LAMMPS, and how the files are named.

thermo_extract tool

The thermo_extract tool reads one of more LAMMPS log files and extracts a thermodynamic value (e.g. Temp,
Press). It spits out the time,value as 2 columns of numbers so the tool can be used as a quick way to plot some
quantity of interest. See the header of the thermo_extract.c file for the syntax of how to run it and other details.

This tool was written by Vikas Varshney at Wright Patterson AFB (vikas.varshney at gmail.com).

vim tool

The files in the tools/vim directory are add−ons to the VIM editor that allow easier editing of LAMMPS input
scripts. See the README.txt file for details.

These files were provided by Gerolf Ziegenhain (gerolf at ziegenhain.com)

xmovie tool

The xmovie tool is an X−based visualization package that can read LAMMPS dump files and animate them. It is
in its own sub−directory with the tools directory. You may need to modify its Makefile so that it can find the
appropriate X libraries to link against.

The syntax for running xmovie is

xmovie options dump.file1 dump.file2 ...

If you just type "xmovie" you will see a list of options. Note that by default, LAMMPS dump files are in scaled
coordinates, so you typically need to use the −scale option with xmovie. When xmovie runs it opens a
visualization window and a control window. The control options are straightforward to use.

Xmovie was mostly written by Mike Uttormark (U Wisconsin) while he spent a summer at Sandia. It displays 2d
projections of a 3d domain. While simple in design, it is an amazingly fast program that can render large numbers
of atoms very quickly. It's a useful tool for debugging LAMMPS input and output and making sure your
simulation is doing what you think it should. The animations on the Examples page of the LAMMPS WWW site
were created with xmovie.

I've lost contact with Mike, so I hope he's comfortable with us distributing his great tool!

62

http://lammps.sandia.gov

Previous Section − LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands − Next Section

8. Modifying &extending LAMMPS

LAMMPS is designed in a modular fashion so as to be easy to modify and extend with new functionality. In fact,
about 75% of its source code is files added in this fashion.

In this section, changes and additions users can make are listed along with minimal instructions. If you add a new
feature to LAMMPS and think it will be of interest to general users, we encourage you to submit it to the
developers for inclusion in the released version of LAMMPS. Information about how to do this is provided below.

The best way to add a new feature is to find a similar feature in LAMMPS and look at the corresponding source
and header files to figure out what it does. You will need some knowledge of C++ to be able to understand the
hi−level structure of LAMMPS and its class organization, but functions (class methods) that do actual
computations are written in vanilla C−style code and operate on simple C−style data structures (vectors and
arrays).

Most of the new features described in this section require you to write a new C++ derived class (except for
exceptions described below, where you can make small edits to existing files). Creating a new class requires 2
files, a source code file (*.cpp) and a header file (*.h). The derived class must provide certain methods to work as
a new option. Depending on how different your new feature is compared to existing features, you can either
derive from the base class itself, or from a derived class that already exists. Enabling LAMMPS to invoke the new
class is as simple as putting the two source files in the src dir and re−building LAMMPS.

The advantage of C++ and its object−orientation is that all the code and variables needed to define the new
feature are in the 2 files you write, and thus shouldn't make the rest of LAMMPS more complex or cause
side−effect bugs.

Here is a concrete example. Suppose you write 2 files pair_foo.cpp and pair_foo.h that define a new class PairFoo
that computes pairwise potentials described in the classic 1997 paper by Foo, et al. If you wish to invoke those
potentials in a LAMMPS input script with a command like

pair_style foo 0.1 3.5

then your pair_foo.h file should be structured as follows:

#ifdef PAIR_CLASS
PairStyle(foo,PairFoo)
#else
...
(class definition for PairFoo)
...
#endif

where "foo" is the style keyword in the pair_style command, and PairFoo is the class name defined in your
pair_foo.cpp and pair_foo.h files.

When you re−build LAMMPS, your new pairwise potential becomes part of the executable and can be invoked
with a pair_style command like the example above. Arguments like 0.1 and 3.5 can be defined and processed by
your new class.

Here is a list of the new features that can be added in this way, along with information about how to submit your
features for inclusion in the LAMMPS distribution.

63

http://lammps.sandia.gov

Atom styles•
Bond, angle, dihedral, improper potentials•
Compute styles•
Dump styles•
Dump custom output options•
Fix styles which include integrators, temperature and pressure control, force constraints, boundary
conditions, diagnostic output, etc

•

Input script commands•
Kspace computations•
Minimization solvers•
Pairwise potentials•
Region styles•
Thermodynamic output options•
Variable options•

Submitting new features to the developers to include in LAMMPS•

As illustrated by the pairwise example, these options are referred to in the LAMMPS documentation as the "style"
of a particular command.

The instructions below give the header file for the base class that these styles are derived from. Public variables in
that file are ones used and set by the derived classes which are also used by the base class. Sometimes they are
also used by the rest of LAMMPS. Virtual functions in the base class header file which are set = 0 are ones you
must define in your new derived class to give it the functionality LAMMPS expects. Virtual functions that are not
set to 0 are functions you can optionally define.

Additionally, new output options can be added directly to the thermo.cpp, dump_custom.cpp, and variable.cpp
files as explained in these sections:

Dump custom output options•
Thermodynamic output options•
Variable options•

Here are additional guidelines for modifying LAMMPS and adding new functionality:

Think about whether what you want to do would be better as a pre− or post−processing step. Many
computations are more easily and more quickly done that way.

•

Don't do anything within the timestepping of a run that isn't parallel. E.g. don't accumulate a bunch of
data on a single processor and analyze it. You run the risk of seriously degrading the parallel efficiency.

•

If your new feature reads arguments or writes output, make sure you follow the unit conventions
discussed by the units command.

•

If you add something you think is truly useful and doesn't impact LAMMPS performance when it isn't
used, send an email to the developers. We might be interested in adding it to the LAMMPS distribution.

•

Atom styles

Classes that define an atom style are derived from the Atom class. The atom style determines what quantities are
associated with an atom. A new atom style can be created if one of the existing atom styles does not define all the
arrays you need to store and communicate with atoms.

64

http://lammps.sandia.gov/authors.html

Atom_vec_atomic.cpp is a simple example of an atom style.

Here is a brief description of methods you define in your new derived class. See atom.h for details.

grow re−allocate atom arrays to longer lengths

copy copy info for one atom to another atom's array locations

pack_comm store an atom's info in a buffer communicated every timestep

pack_comm_vel add velocity info to buffer

pack_comm_one store extra info unique to this atom style

unpack_comm retrieve an atom's info from the buffer

unpack_comm_vel also retrieve velocity info

unpack_comm_one retreive extra info unique to this atom style

pack_reverse store an atom's info in a buffer communicating partial forces

pack_reverse_one store extra info unique to this atom style

unpack_reverse retrieve an atom's info from the buffer

unpack_reverse_one retreive extra info unique to this atom style

pack_border
store an atom's info in a buffer communicated on neighbor
re−builds

pack_border_vel add velocity info to buffer

pack_border_one store extra info unique to this atom style

unpack_border retrieve an atom's info from the buffer

unpack_border_vel also retrieve velocity info

unpack_border_one retreive extra info unique to this atom style

pack_exchange store all an atom's info to migrate to another processor

unpack_exchange retrieve an atom's info from the buffer

size_restart number of restart quantities associated with proc's atoms

pack_restart pack atom quantities into a buffer

unpack_restart unpack atom quantities from a buffer

create_atom create an individual atom of this style

data_atom parse an atom line from the data file

memory_usage tally memory allocated by atom arrays
The constructor of the derived class sets values for several variables that you must set when defining a new atom
style, which are documented in atom_vec.h. New atom arrays are defined in atom.cpp. Search for the word
"customize" and you will find locations you will need to modify.

Bond, angle, dihedral, improper potentials

Classes that compute molecular interactions are derived from the Bond, Angle, Dihedral, and Improper classes.
New styles can be created to add new potentials to LAMMPS.

Bond_harmonic.cpp is the simplest example of a bond style. Ditto for the harmonic forms of the angle, dihedral,
and improper style commands.

Here is a brief description of methods you define in your new derived bond class. See bond.h, angle.h, dihedral.h,
and improper.h for details.

65

compute
compute the molecular
interactions

coeff
set coefficients for one bond
type

equilibrium_distance
length of bond, used by
SHAKE

write &read_restart
writes/reads coeffs to restart
files

single
force and energy of a single
bond

Compute styles

Classes that compute scalar and vector quantities like temperature and the pressure tensor, as well as classes that
compute per−atom quantities like kinetic energy and the centro−symmetry parameter are derived from the
Compute class. New styles can be created to add new calculations to LAMMPS.

Compute_temp.cpp is a simple example of computing a scalar temperature. Compute_ke_atom.cpp is a simple
example of computing per−atom kinetic energy.

Here is a brief description of methods you define in your new derived class. See compute.h for details.

compute_scalar compute a scalar quantity

compute_vector compute a vector of quantities

compute_peratomcompute one or more quantities per atom

pack_comm pack a buffer with items to communicate

unpack_comm unpack the buffer

pack_reverse pack a buffer with items to reverse communicate

unpack_reverse unpack the buffer

memory_usage tally memory usage

Dump styles

Dump custom output options

Classes that dump per−atom info to files are derived from the Dump class. To dump new quantities or in a new
format, a new derived dump class can be added, but it is typically simpler to modify the DumpCustom class
contained in the dump_custom.cpp file.

Dump_atom.cpp is a simple example of a derived dump class.

Here is a brief description of methods you define in your new derived class. See dump.h for details.

write_headerwrite the header section of a snapshot of atoms

count count the number of lines a processor will output

66

pack pack a proc's output data into a buffer

write_data write a proc's data to a file
See the dump command and its custom style for a list of keywords for atom information that can already be
dumped by DumpCustom. It includes options to dump per−atom info from Compute classes, so adding a new
derived Compute class is one way to calculate new quantities to dump.

Alternatively, you can add new keywords to the dump custom command. Search for the word "customize" in
dump_custom.cpp to see the half−dozen or so locations where code will need to be added.

Fix styles

In LAMMPS, a "fix" is any operation that is computed during timestepping that alters some property of the
system. Essentially everything that happens during a simulation besides force computation, neighbor list
construction, and output, is a "fix". This includes time integration (update of coordinates and velocities), force
constraints or boundary conditions (SHAKE or walls), and diagnostics (compute a diffusion coefficient). New
styles can be created to add new options to LAMMPS.

Fix_setforce.cpp is a simple example of setting forces on atoms to prescribed values. There are dozens of fix
options already in LAMMPS; choose one as a template that is similar to what you want to implement.

Here is a brief description of methods you can define in your new derived class. See fix.h for details.

setmask determines when the fix is called during the timestep

init initialization before a run

setup called immediately before the 1st timestep

initial_integrate called at very beginning of each timestep

pre_exchange called before atom exchange on re−neighboring steps

pre_neighbor called before neighbor list build

post_force called after pair &molecular forces are computed

final_integrate called at end of each timestep

end_of_step called at very end of timestep

write_restart dumps fix info to restart file

restart uses info from restart file to re−initialize the fix

grow_arrays allocate memory for atom−based arrays used by fix

copy_arrays
copy atom info when an atom migrates to a new
processor

memory_usage report memory used by fix

pack_exchange store atom's data in a buffer

unpack_exchange retrieve atom's data from a buffer

pack_restart store atom's data for writing to restart file

unpack_restart retrieve atom's data from a restart file buffer

size_restart size of atom's data

maxsize_restart max size of atom's data

initial_integrate_respa same as initial_integrate, but for rRESPA

post_force_respa same as post_force, but for rRESPA

final_integrate_respa same as final_integrate, but for rRESPA

67

pack_comm pack a buffer to communicate a per−atom quantity

unpack_comm unpack a buffer to communicate a per−atom quantity

pack_reverse_comm
pack a buffer to reverse communicate a per−atom
quantity

unpack_reverse_comm
unpack a buffer to reverse communicate a per−atom
quantity

thermo compute quantities for thermodynamic output
Typically, only a small fraction of these methods are defined for a particular fix. Setmask is mandatory, as it
determines when the fix will be invoked during the timestep. Fixes that perform time integration (nve, nvt, npt)
implement initial_integrate() and final_integrate() to perform velocity Verlet updates. Fixes that constrain forces
implement post_force().

Fixes that perform diagnostics typically implement end_of_step(). For an end_of_step fix, one of your fix
arguments must be the variable "nevery" which is used to determine when to call the fix and you must set this
variable in the constructor of your fix. By convention, this is the first argument the fix defines (after the ID,
group−ID, style).

If the fix needs to store information for each atom that persists from timestep to timestep, it can manage that
memory and migrate the info with the atoms as they move from processors to processor by implementing the
grow_arrays, copy_arrays, pack_exchange, and unpack_exchange methods. Similarly, the pack_restart and
unpack_restart methods can be implemented to store information about the fix in restart files. If you wish an
integrator or force constraint fix to work with rRESPA (see the run_style command), the initial_integrate,
post_force_integrate, and final_integrate_respa methods can be implemented. The thermo method enables a fix to
contribute values to thermodynamic output, as printed quantities and/or to be summed to the potential energy of
the system.

Input script commands

New commands can be added to LAMMPS input scripts by adding new classes that have a "command" method
and are listed in the Command sections of style.h (or style_user.h). For example, the create_atoms, read_data,
velocity, and run commands are all implemented in this fashion. When such a command is encountered in the
LAMMPS input script, LAMMPS simply creates a class with the corresponding name, invokes the "command"
method of the class, and passes it the arguments from the input script. The command method can perform
whatever operations it wishes on LAMMPS data structures.

The single method your new class must define is as follows:

commandoperations performed by the new command
Of course, the new class can define other methods and variables as needed.

Kspace computations

Classes that compute long−range Coulombic interactions via K−space representations (Ewald, PPPM) are derived
from the KSpace class. New styles can be created to add new K−space options to LAMMPS.

Ewald.cpp is an example of computing K−space interactions.

Here is a brief description of methods you define in your new derived class. See kspace.h for details.

68

init initialize the calculation before a run

setup
computation before the 1st timestep
of a run

compute every−timestep computation

memory_usage tally of memory usage

Minimization solvers

Classes that perform energy minimization derived from the Min class. New styles can be created to add new
minimization algorithms to LAMMPS.

Min_cg.cpp is an example of conjugate gradient minimization.

Here is a brief description of methods you define in your new derived class. See min.h for details.

init
initialize the minimization before
a run

run perform the minimization

memory_usage tally of memory usage

Pairwise potentials

Classes that compute pairwise interactions are derived from the Pair class. In LAMMPS, pairwise calculation
include manybody potentials such as EAM or Tersoff where particles interact without a static bond topology.
New styles can be created to add new pair potentials to LAMMPS.

Pair_lj_cut.cpp is a simple example of a Pair class, though it includes some optional methods to enable its use
with rRESPA.

Here is a brief description of the class methods in pair.h:

compute workhorse routine that computes pairwise interactions

settings reads the input script line with arguments you define

coeff set coefficients for one i,j type pair

init_one perform initialization for one i,j type pair

init_style initialization specific to this pair style

write &read_restart write/read i,j pair coeffs to restart files

write &read_restart_settingswrite/read global settings to restart files

single force and energy of a single pairwise interaction between 2 atoms

compute_inner/middle/outerversions of compute used by rRESPA
The inner/middle/outer routines are optional.

69

Region styles

Classes that define geometric regions are derived from the Region class. Regions are used elsewhere in LAMMPS
to group atoms, delete atoms to create a void, insert atoms in a specified region, etc. New styles can be created to
add new region shapes to LAMMPS.

Region_sphere.cpp is an example of a spherical region.

Here is a brief description of methods you define in your new derived class. See region.h for details.

matchdetermine whether a point is in the region

Thermodynamic output options

There is one class that computes and prints thermodynamic information to the screen and log file; see the file
thermo.cpp.

There are several styles defined in thermo.cpp: "one", "multi", "granular", etc. There is also a flexible "custom"
style which allows the user to explicitly list keywords for quantities to print when thermodynamic info is output.
See the thermo_style command for a list of defined quantities.

The thermo styles (one, multi, etc) are simply lists of keywords. Adding a new style thus only requires defining a
new list of keywords. Search for the word "customize" with references to "thermo style" in thermo.cpp to see the
two locations where code will need to be added.

New keywords can also be added to thermo.cpp to compute new quantities for output. Search for the word
"customize" with references to "keyword" in thermo.cpp to see the several locations where code will need to be
added.

Note that the thermo_style custom command already allows for thermo output of quantities calculated by fixes,
computes, and variables. Thus, it may be simpler to compute what you wish via one of those constructs, than by
adding a new keyword to the thermo command.

Variable options

There is one class that computes and stores variable information in LAMMPS; see the file variable.cpp. The value
associated with a variable can be periodically printed to the screen via the print, fix print, or thermo_style custom
commands. Variables of style "equal" can compute complex equations that involve the following types of
arguments:

thermo keywords = ke, vol, atoms, ... other variables = v_a, v_myvar, ... math functions = div(x,y), mult(x,y),
add(x,y), ... group functions = mass(group), xcm(group,x), ... atom values = x123, y3, vx34, ... compute values =
c_mytemp0, c_thermo_press3, ...

Adding keywords for the thermo_style custom command (which can then be accessed by variables) was discussed
here on this page.

Adding a new math function of one or two arguments can be done by editing one section of the
Variable::evaulate() method. Search for the word "customize" to find the appropriate location.

70

Adding a new group function can be done by editing one section of the Variable::evaulate() method. Search for
the word "customize" to find the appropriate location. You may need to add a new method to the Group class as
well (see the group.cpp file).

Accessing a new atom−based vector can be done by editing one section of the Variable::evaulate() method.
Search for the word "customize" to find the appropriate location.

Adding new compute styles (whose calculated values can then be accessed by variables) was discussed here on
this page.

Submitting new features to the developers to include in LAMMPS

We encourage users to submit new features that they add to LAMMPS to the developers, especially if you think
they will be useful to other users. If they are broadly useful we may add them as core files to LAMMPS or as part
of a standard package. Else we will add them as a user−contributed package. Examples of user packages are in src
sub−directories that start with USER. You can see a list of the both standard and user packages by typing "make
package" in the LAMMPS src directory.

With user packages, all we are really providing (aside from the fame and fortune that accompanies having your
name in the source code and on the Authors page of the LAMMPS WWW site), is a means for you to distribute
your work to the LAMMPS user community and a mechanism for others to easily try out your new feature. This
may help you find bugs or make contact with new collaborators. Note that you're also implicitly agreeing to
support your code which means answer questions, fix bugs, and maintain it if LAMMPS changes.

The previous sections of this doc page describe how to add new features of various kinds to LAMMPS. Packages
are simply collections of one or more new class files which are invoked as a new "style" within a LAMMPS input
script. If designed correctly, these additions do not require changes to the main core of LAMMPS; they are simply
add−on files. If you think your new feature does requires changes in other LAMMPS files, you'll need to
communicate with the developers, since we may or may not want to make those changes.

Here is what you need to do to submit a user package for our consideration. Following these steps will save time
for both you and us. See existing package files for examples.

Your user package will be a directory with a name like USER−FOO. In addition to your new files, the directory
should contain a README, and Install.csh file. Send us a tarball of this USER−FOO directory.

The README text file should contain your name and contact information and a brief description of what your
new package does.

The Install.csh file enables LAMMPS to include and exclude your package.

Your new source files need to have the LAMMPS copyright, GPL notice, and your name at the top. They need to
create a class that is inside the LAMMPS namespace. Other than that, your files can do whatever is necessary to
implement the new features. They don't have to be written in the same style and syntax as other LAMMPS files,
thought that would be nice.

Finally, in addition to the USER−FOO tarball, you also need to send us a documentation file for each new
command or style you are adding to LAMMPS. These are text files which we will convert to HTML. Use one of
the *.txt files in the doc dir as a starting point for the new file you create, since it should look similar to the doc
files for existing commands and styles. The "Restrictions" section of the doc page should indicate that your
feature is only available if LAMMPS is built with the "user−foo" package. See other user package files for an

71

http://lammps.sandia.gov/authors.html
http://lammps.sandia.gov/authors.html
http://lammps.sandia.gov
http://lammps.sandia.gov/authors.html

example of how to do this.

Note that the more clear and self−explanatory you make your doc and README files, the more likely it is that
users will try out your new feature.

(Foo) Foo, Morefoo, and Maxfoo, J of Classic Potentials, 75, 345 (1997).

72

Previous Section − LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands − Next Section

9. Errors

This section describes the various kinds of errors you can encounter when using LAMMPS.

9.1 Common problems
9.2 Reporting bugs
9.3 Error &warning messages

9.1 Common problems

If two LAMMPS runs do not produce the same answer on different machines or different numbers of processors,
this is typically not a bug. In theory you should get identical answers on any number of processors and on any
machine. In practice, numerical round−off can cause slight differences and eventual divergence of molecular
dynamics phase space trajectories within a few 100s or few 1000s of timesteps. However, the statistical properties
of the two runs (e.g. average energy or temperature) should still be the same.

If the velocity command is used to set initial atom velocities, a particular atom can be assigned a different velocity
when the problem on different machines. Obviously, this means the phase space trajectories of the two
simulations will rapidly diverge. See the discussion of the loop option in the velocity command for details.

Similarly, the create_atoms command generates a lattice of atoms. For the same physical system, the ordering and
numbering of atoms by atom ID may be different depending on the number of processors.

Some commands use random number generators which may be setup to produce different random number streams
on each processor and hence will produce different effects when run on different numbers of processors. A
commonly−used example is the fix langevin command for thermostatting.

A LAMMPS simulation typically has two stages, setup and run. Most LAMMPS errors are detected at setup time;
others like a bond stretching too far may not occur until the middle of a run.

LAMMPS tries to flag errors and print informative error messages so you can fix the problem. Of course
LAMMPS cannot figure out your physics mistakes, like choosing too big a timestep, specifying invalid force field
coefficients, or putting 2 atoms on top of each other! If you find errors that LAMMPS doesn't catch that you think
it should flag, please send an email to the developers.

If you get an error message about an invalid command in your input script, you can determine what command is
causing the problem by looking in the log.lammps file or using the echo command to see it on the screen. For a
given command, LAMMPS expects certain arguments in a specified order. If you mess this up, LAMMPS will
often flag the error, but it may read a bogus argument and assign a value that is valid, but not what you wanted.
E.g. trying to read the string "abc" as an integer value and assigning the associated variable a value of 0.

Generally, LAMMPS will print a message to the screen and exit gracefully when it encounters a fatal error.
Sometimes it will print a WARNING and continue on; you can decide if the WARNING is important or not. If
LAMMPS crashes or hangs without spitting out an error message first then it could be a bug (see this section) or
one of the following cases:

LAMMPS runs in the available memory a processor allows to be allocated. Most reasonable MD runs are
compute limited, not memory limited, so this shouldn't be a bottleneck on most platforms. Almost all large
memory allocations in the code are done via C−style malloc's which will generate an error message if you run out

73

http://lammps.sandia.gov
http://lammps.sandia.gov/authors.html

of memory. Smaller chunks of memory are allocated via C++ "new" statements. If you are unlucky you could run
out of memory just when one of these small requests is made, in which case the code will crash or hang (in
parallel), since LAMMPS doesn't trap on those errors.

Illegal arithmetic can cause LAMMPS to run slow or crash. This is typically due to invalid physics and numerics
that your simulation is computing. If you see wild thermodynamic values or NaN values in your LAMMPS
output, something is wrong with your simulation.

In parallel, one way LAMMPS can hang is due to how different MPI implementations handle buffering of
messages. If the code hangs without an error message, it may be that you need to specify an MPI setting or two
(usually via an environment variable) to enable buffering or boost the sizes of messages that can be buffered.

9.2 Reporting bugs

If you are confident that you have found a bug in LAMMPS, follow these steps.

Check the New features and bug fixes section of the LAMMPS WWW site to see if the bug has already been
reported or fixed or the Unfixed bug to see if a fix is pending.

Check the mailing list to see if it has been discussed before.

If not, send an email to the mailing list describing the problem with any ideas you have as to what is causing it or
where in the code the problem might be. The developers will ask for more info if needed, such as an input script
or data files.

The most useful thing you can do to help us fix the bug is to isolate the problem. Run it on the smallest number of
atoms and fewest number of processors and with the simplest input script that reproduces the bug and try to
identify what command or combination of commands is causing the problem.

As a last resort, you can send an email directly to the developers.

9.3 Error &warning messages

These are two alphabetic lists of the ERROR and WARNING messages LAMMPS prints out and the reason why.
If the explanation here is not sufficient, the documentation for the offending command may help. Grepping the
source files for the text of the error message and staring at the source code and comments is also not a bad idea!
Note that sometimes the same message can be printed from multiple places in the code.

Also note that error messages from user−contributed packages are not listed here. Is such an error occurs and is
not self−explanatory, you'll need to look in the source code or contact the author of the package.

Errors:

1−3 bond count is inconsistent
An inconsistency was detected when computing the number of 1−3 neighbors for each atom. This likely
means something is wrong with the bond topologies you have defined.

1−4 bond count is inconsistent
An inconsistency was detected when computing the number of 1−4 neighbors for each atom. This likely
means something is wrong with the bond topologies you have defined.

All angle coeffs are not set

74

http://lammps.sandia.gov/bug.html
http://lammps.sandia.gov
http://lammps.sandia.gov/unbug.html
http://lammps.sandia.gov/mail.html
http://lammps.sandia.gov/authors.html

All angle coefficients must be set in the data file or by the angle_coeff command before running a
simulation.

All bond coeffs are not set
All bond coefficients must be set in the data file or by the bond_coeff command before running a
simulation.

All dihedral coeffs are not set
All dihedral coefficients must be set in the data file or by the dihedral_coeff command before running a
simulation.

All dipole moments are not set
For atom styles that define dipole moments for each atom type, all moments must be set in the data file or
by the dipole command before running a simulation.

All improper coeffs are not set
All improper coefficients must be set in the data file or by the improper_coeff command before running a
simulation.

All masses are not set
For atom styles that define masses for each atom type, all masses must be set in the data file or by the
mass command before running a simulation. They must also be set before using the velocity command.

All pair coeffs are not set
All pair coefficients must be set in the data file or by the pair_coeff command before running a
simulation.

All shapes are not set
All atom types must have a shape setting, even if the particles are spherical.

All universe/uloop variables must have same # of values
Self−explanatory.

All variables in next command must be same style
Self−explanatory.

Angle atom missing in delete_bonds
The delete_bonds command cannot find one or more atoms in a particular angle on a particular processor.
The pairwise cutoff is too short or the atoms are too far apart to make a valid angle.

Angle atom missing in set command
The set command cannot find one or more atoms in a particular angle on a particular processor. The
pairwise cutoff is too short or the atoms are too far apart to make a valid angle.

Angle atoms %d %d %d missing on proc %d at step %d
One or more of 3 atoms needed to compute a particular angle are missing on this processor. Typically this
is because the pairwise cutoff is set too short or the angle has blown apart and an atom is too far away.

Angle coeff for hybrid has invalid style
Angle style hybrid uses another angle style as one of its coefficients. The angle style used in the
angle_coeff command or read from a restart file is not recognized.

Angle coeffs are not set
No angle coefficients have been assigned in the data file or via the angle_coeff command.

Angle potential must be defined for SHAKE
When shaking angles, an angle_style potential must be used.

Angle style hybrid cannot have hybrid as an argument
Self−explanatory.

Angle style hybrid cannot have none as an argument
Self−explanatory.

Angle style hybrid cannot use same angle style twice
Self−explanatory.

Angle table must range from 0 to 180 degrees
Self−explanatory.

Angle table parameters did not set N
List of angle table parameters must include N setting.

75

Angle_coeff command before angle_style is defined
Coefficients cannot be set in the data file or via the angle_coeff command until an angle_style has been
assigned.

Angle_coeff command before simulation box is defined
The angle_coeff command cannot be used before a read_data, read_restart, or create_box command.

Angle_coeff command when no angles allowed
The chosen atom style does not allow for angles to be defined.

Angle_style command when no angles allowed
The chosen atom style does not allow for angles to be defined.

Angles assigned incorrectly
Angles read in from the data file were not assigned correctly to atoms. This means there is something
invalid about the topology definitions.

Angles defined but no angle types
The data file header lists angles but no angle types.

Another input script is already being processed
Cannot attempt to open a 2nd input script, when the original file is still being processed.

Arccos of invalid value in variable formula
Argument of arccos() must be between −1 and 1.

Arcsin of invalid value in variable formula
Argument of arcsin() must be between −1 and 1.

At least one process could not allocate a CUDA−enabled gpu
Self−explanatory.

Atom IDs must be consecutive for dump dcd
Self−explanatory.

Atom IDs must be consecutive for dump xtc
Self−explanatory.

Atom IDs must be consecutive for dump xyz
Self−explanatory.

Atom IDs must be consecutive for velocity create loop all
Self−explanatory.

Atom count is inconsistent, cannot write restart file
Sum of atoms across processors does not equal initial total count. This is probably because you have lost
some atoms.

Atom in too many rigid bodies − boost MAXBODY
Fix poems has a parameter MAXBODY (in fix_poems.cpp) which determines the maximum number of
rigid bodies a single atom can belong to (i.e. a multibody joint). The bodies you have defined exceed this
limit.

Atom sort did not operate correctly
This is an internal LAMMPS error. Please report it to the developers.

Atom sorting has bin size = 0.0
The neighbor cutoff is being used as the bin size, but it is zero. Thus you must explicitly list a bin size in
the atom_modify sort command or turn off sorting.

Atom style hybrid cannot have hybrid as an argument
Self−explanatory.

Atom style hybrid cannot use same atom style twice
Self−explanatory.

Atom vector in equal−style variable formula
Atom vectors generate one value per atom which is not allowed in an equal−style variable.

Atom−style variable in equal−style variable formula
Atom−style variables generate one value per atom which is not allowed in an equal−style variable.

Atom_modify map command after simulation box is defined
The atom_modify map command cannot be used after a read_data, read_restart, or create_box command.

76

Atom_modify sort and first options cannot be used together
Self−explanatory.

Atom_style command after simulation box is defined
The atom_style command cannot be used after a read_data, read_restart, or create_box command.

Attempt to pop empty stack in fix box/relax
Internal LAMMPS error. Please report it to the developers.

Attempt to push beyond stack limit in fix box/relax
Internal LAMMPS error. Please report it to the developers.

Attempting to rescale a 0.0 temperature
Cannot rescale a temperature that is already 0.0.

Bad FENE bond
Two atoms in a FENE bond have become so far apart that the bond cannot be computed.

Bad grid of processors
The 3d grid of processors defined by the processors command does not match the number of processors
LAMMPS is being run on.

Bad kspace_modify slab parameter
Kspace_modify value for the slab/volume keyword must be >= 2.0.

Bad principal moments
Fix rigid did not compute the principal moments of inertia of a rigid group of atoms correctly.

Bias compute does not calculate a velocity bias
The specified compute must compute a bias for temperature.

Bias compute does not calculate temperature
The specified compute must compute temperature.

Bias compute group does not match compute group
The specified compute must operate on the same group as the parent compute.

Bitmapped lookup tables require int/float be same size
Cannot use pair tables on this machine, because of word sizes. Use the pair_modify command with table
0 instead.

Bitmapped table in file does not match requested table
Setting for bitmapped table in pair_coeff command must match table in file exactly.

Bitmapped table is incorrect length in table file
Number of table entries is not a correct power of 2.

Bond and angle potentials must be defined for TIP4P
Cannot use TIP4P pair potential unless bond and angle potentials are defined.

Bond atom missing in delete_bonds
The delete_bonds command cannot find one or more atoms in a particular bond on a particular processor.
The pairwise cutoff is too short or the atoms are too far apart to make a valid bond.

Bond atom missing in set command
The set command cannot find one or more atoms in a particular bond on a particular processor. The
pairwise cutoff is too short or the atoms are too far apart to make a valid bond.

Bond atoms %d %d missing on proc %d at step %d
One or both of 2 atoms needed to compute a particular bond are missing on this processor. Typically this
is because the pairwise cutoff is set too short or the bond has blown apart and an atom is too far away.

Bond coeff for hybrid has invalid style
Bond style hybrid uses another bond style as one of its coefficients. The bond style used in the
bond_coeff command or read from a restart file is not recognized.

Bond coeffs are not set
No bond coefficients have been assigned in the data file or via the bond_coeff command.

Bond potential must be defined for SHAKE
Cannot use fix shake unless bond potential is defined.

Bond style hybrid cannot have hybrid as an argument
Self−explanatory.

77

Bond style hybrid cannot have none as an argument
Self−explanatory.

Bond style hybrid cannot use same bond style twice
The sub−style arguments of bond_style hybrid cannot be duplicated. Check the input script.

Bond style quartic cannot be used with 3,4−body interactions
No angle, dihedral, or improper styles can be defined when using bond style quartic.

Bond style quartic requires special_bonds = 1,1,1
This is a restriction of the current bond quartic implementation.

Bond table parameters did not set N
List of bond table parameters must include N setting.

Bond_coeff command before bond_style is defined
Coefficients cannot be set in the data file or via the bond_coeff command until an bond_style has been
assigned.

Bond_coeff command before simulation box is defined
The bond_coeff command cannot be used before a read_data, read_restart, or create_box command.

Bond_coeff command when no bonds allowed
The chosen atom style does not allow for bonds to be defined.

Bond_style command when no bonds allowed
The chosen atom style does not allow for bonds to be defined.

Bonds assigned incorrectly
Bonds read in from the data file were not assigned correctly to atoms. This means there is something
invalid about the topology definitions.

Bonds defined but no bond types
The data file header lists bonds but no bond types.

Both sides of boundary must be periodic
Cannot specify a boundary as periodic only on the lo or hi side. Must be periodic on both sides.

Boundary command after simulation box is defined
The boundary command cannot be used after a read_data, read_restart, or create_box command.

Box bounds are invalid
The box boundaries specified in the read_data file are invalid. The lo value must be less than the hi value
for all 3 dimensions.

Cannot (yet) use PPPM with triclinic box
This feature is not yet supported.

Cannot change box to orthogonal when tilt is non−zero
Self−explanatory

Cannot change box with certain fixes defined
The change_box command cannot be used when fix ave/spatial or fix/deform are defined .

Cannot change box with dumps defined
Self−explanatory.

Cannot change dump_modify every for dump dcd
The frequency of writing dump dcd snapshots cannot be changed.

Cannot change timestep with fix pour
This fix pre−computes some values based on the timestep, so it cannot be changed during a simulation
run.

Cannot compute PPPM G
LAMMPS failed to compute a valid approximation for the PPPM g_ewald factor that partitions the
computation between real space and k−space.

Cannot create an atom map unless atoms have IDs
The simulation requires a mapping from global atom IDs to local atoms, but the atoms that have been
defined have no IDs.

Cannot create atoms with undefined lattice
Must use the lattice command before using the create_atoms command.

78

Cannot create_box after simulation box is defined
The create_box command cannot be used after a read_data, read_restart, or create_box command.

Cannot delete group all
Self−explanatory.

Cannot delete group currently used by a compute
Self−explanatory.

Cannot delete group currently used by a dump
Self−explanatory.

Cannot delete group currently used by a fix
Self−explanatory.

Cannot delete group currently used by atom_modify first
Self−explanatory.

Cannot displace_box on a non−periodic boundary
Self−explanatory.

Cannot evaporate atoms in atom_modify first group
This is a restriction due to the way atoms are organized in a list to enable the atom_modify first
command.

Cannot find delete_bonds group ID
Group ID used in the delete_bonds command does not exist.

Cannot fix deform on a non−periodic boundary
Only a periodic boundary can be modified.

Cannot have both pair_modify shift and tail set to yes
These 2 options are contradictory.

Cannot open AIREBO potential file %s
Self−explanatory.

Cannot open EAM potential file %s
The specified EAM potential file cannot be opened. Check that the path and name are correct.

Cannot open MEAM potential file %s
The specified MEAM potential file cannot be opened. Check that the path and name are correct.

Cannot open Stillinger−Weber potential file %s
The specified SW potential file cannot be opened. Check that the path and name are correct.

Cannot open Tersoff potential file %s
The specified Tersoff potential file cannot be opened. Check that the path and name are correct.

Cannot open dir to search for restart file
Using a "*" in the name of the restart file will open the current directory to search for matching file
names.

Cannot open dump file
The output file for the dump command cannot be opened. Check that the path and name are correct.

Cannot open file %s
The specified file cannot be opened. Check that the path and name are correct.

Cannot open fix ave/histo file %s
The specified file cannot be opened. Check that the path and name are correct.

Cannot open fix ave/spatial file %s
The specified file cannot be opened. Check that the path and name are correct.

Cannot open fix ave/time file %s
The specified file cannot be opened. Check that the path and name are correct.

Cannot open fix poems file %s
The specified file cannot be opened. Check that the path and name are correct.

Cannot open fix print file %s
The output file generated by the fix print command cannot be opened

Cannot open fix reax/bonds file %s
The output file for the fix reax/bonds command cannot be opened. Check that the path and name are

79

correct.
Cannot open fix tmd file %s

The output file for the fix tmd command cannot be opened. Check that the path and name are correct.
Cannot open fix ttm file %s

The output file for the fix ttm command cannot be opened. Check that the path and name are correct.
Cannot open gzipped file

LAMMPS is attempting to open a gzipped version of the specified file but was unsuccessful. Check that
the path and name are correct.

Cannot open input script %s
Self−explanatory.

Cannot open log.lammps
The default LAMMPS log file cannot be opened. Check that the directory you are running in allows for
files to be created.

Cannot open logfile %s
The LAMMPS log file specified in the input script cannot be opened. Check that the path and name are
correct.

Cannot open logfile
The LAMMPS log file named in a command−line argument cannot be opened. Check that the path and
name are correct.

Cannot open pair_write file
The specified output file for pair energies and forces cannot be opened. Check that the path and name are
correct.

Cannot open restart file %s
Self−explanatory.

Cannot open screen file
The screen file specified as a command−line argument cannot be opened. Check that the directory you are
running in allows for files to be created.

Cannot open universe log file
For a multi−partition run, the master log file cannot be opened. Check that the directory you are running
in allows for files to be created.

Cannot open universe screen file
For a multi−partition run, the master screen file cannot be opened. Check that the directory you are
running in allows for files to be created.

Cannot read_data after simulation box is defined
The read_data command cannot be used after a read_data, read_restart, or create_box command.

Cannot read_restart after simulation box is defined
The read_restart command cannot be used after a read_data, read_restart, or create_box command.

Cannot redefine variable as a different style
An equal−style variable can be re−defined but only if it was originally an equal−style variable.

Cannot replicate 2d simulation in z dimension
The replicate command cannot replicate a 2d simulation in the z dimension.

Cannot replicate with fixes that store atom quantities
Either fixes are defined that create and store atom−based vectors or a restart file was read which included
atom−based vectors for fixes. The replicate command cannot duplicate that information for new atoms.
You should use the replicate command before fixes are applied to the system.

Cannot reset timestep with a dynamic region defined
Dynamic regions (see the region command) have a time dependence. Thus you cannot change the
timestep when one or more of these are defined.

Cannot reset timestep with a time−dependent fix defined
You cannot reset the timestep when a fix that keeps track of elapsed time is in place.

Cannot reset timestep with dump file already written to
Changing the timestep will confuse when a dump file is written. Use the undump command, then restart

80

the dump file.
Cannot reset timestep with restart file already written

Changing the timestep will confuse when a restart file is written. Use the "restart 0" command to turn off
restarts, then start them again.

Cannot run 2d simulation with nonperiodic Z dimension
Use the boundary command to make the z dimension periodic in order to run a 2d simulation.

Cannot set both respa pair and inner/middle/outer
In the rRESPA integrator, you must compute pairwise potentials either all together (pair), or in pieces
(inner/middle/outer). You can't do both.

Cannot set both vel and wiggle in fix wall command
Self−explantory.

Cannot set dipole for this atom style
This atom style does not support dipole settings for each atom type.

Cannot set dump_modify flush for dump xtc
Self−explanatory.

Cannot set mass for this atom style
This atom style does not support mass settings for each atom type. Instead they are defined on a per−atom
basis in the data file.

Cannot set respa middle without inner/outer
In the rRESPA integrator, you must define both a inner and outer setting in order to use a middle setting.

Cannot set shape for this atom style
The atom style does not support this setting.

Cannot set this attribute for this atom style
The attribute being set does not exist for the defined atom style.

Cannot skew triclinic box in z for 2d simulation
Self−explanatory.

Cannot use Ewald with 2d simulation
The kspace style ewald cannot be used in 2d simulations. You can use 2d Ewald in a 3d simulation; see
the kspace_modify command.

Cannot use Ewald with triclinic box
This feature is not yet supported.

Cannot use PPPM with 2d simulation
The kspace style pppm cannot be used in 2d simulations. You can use 2d PPPM in a 3d simulation; see
the kspace_modify command.

Cannot use PRD with a time−dependent fix defined
PRD alters the timestep in ways that will mess up these fixes.

Cannot use PRD with a time−dependent region defined
PRD alters the timestep in ways that will mess up these regions.

Cannot use PRD with atom_modify sort enabled
This is a current restriction of PRD. You must turn off sorting, which is enabled by default, via the
atom_modify command.

Cannot use PRD with multi−proc replicas unless atom map exists
Use the atom_modify command to create an atom map.

Cannot use delete_atoms unless atoms have IDs
Your atoms do not have IDs, so the delete_atoms command cannot be used.

Cannot use delete_bonds with non−molecular system
Your choice of atom style does not have bonds.

Cannot use fix TMD unless atom map exists
Using this fix requires the ability to lookup an atom index, which is provided by an atom map. An atom
map does not exist (by default) for non−molecular problems. Using the atom_modify map command will
force an atom map to be created.

Cannot use fix bond/break with non−molecular systems

81

Self−explanatory.
Cannot use fix bond/create with non−molecular systems

Self−explanatory.
Cannot use fix box/relax on a non−periodic dimension

Only periodic dimensions can be controlled with this fix.
Cannot use fix deform trate on a box with zero tilt

The trate style alters the current strain.
Cannot use fix enforce2d with 3d simulation

Self−explanatory.
Cannot use fix nph on a non−periodic dimension

Only periodic dimensions can be controlled with this fix.
Cannot use fix nph with triclinic box

This feature is not yet supported.
Cannot use fix npt and fix deform on same dimension

These commands both change the box size/shape, so you cannot use both together.
Cannot use fix npt on a non−periodic dimension

Only periodic dimensions can be controlled with this fix.
Cannot use fix npt with triclinic box

This feature is not yet supported.
Cannot use fix pour with triclinic box

This feature is not yet supported.
Cannot use fix press/berendsen and fix deform on same dimension

Self−explanatory.
Cannot use fix press/berendsen on a non−periodic dimension

Self−explanatory.
Cannot use fix press/berendsen with triclinic box

Self−explanatory.
Cannot use fix reax/bonds without pair_style reax

Self−explantory.
Cannot use fix shake with non−molecular system

Your choice of atom style does not have bonds.
Cannot use fix ttm with 2d simulation

This is a current restriction of this fix due to the grid it creates.
Cannot use fix ttm with triclinic box

This is a current restriction of this fix due to the grid it creates.
Cannot use fix wall in periodic dimension

Self−explanatory.
Cannot use fix wall zlo/zhi for a 2d simulation

Self−explanatory.
Cannot use kspace solver on system with no charge

No atoms in system have a non−zero charge.
Cannot use neighbor bins − box size << cutoff

Too many neighbor bins will be created. This typically happens when the simulation box is very small in
some dimension, compared to the neighbor cutoff. Use the "nsq" style instead of "bin" style.

Cannot use newton pair with GPU GayBerne pair style
Self−explanatory.

Cannot use newton pair with GPU lj/cut pair style
Self−explanatory.

Cannot use nonperiodic boundares with fix ttm
This fix requires a fully periodic simulation box.

Cannot use nonperiodic boundaries with Ewald
For kspace style ewald, all 3 dimensions must have periodic boundaries unless you use the

82

kspace_modify command to define a 2d slab with a non−periodic z dimension.
Cannot use nonperiodic boundaries with PPPM

For kspace style pppm, all 3 dimensions must have periodic boundaries unless you use the kspace_modify
command to define a 2d slab with a non−periodic z dimension.

Cannot use pair hybrid with multiple GPU pair styles
Self−explanatory.

Cannot use pair tail corrections with 2d simulations
The correction factors are only currently defined for 3d systems.

Cannot use region INF or EDGE when box does not exist
Regions that extend to the box boundaries can only be used after the create_box command has been used.

Cannot use set atom with no atom IDs defined
Atom IDs are not defined, so they cannot be used to identify an atom.

Cannot use velocity create loop all unless atoms have IDs
Atoms in the simulation to do not have IDs, so this style of velocity creation cannot be performed.

Cannot use wall in periodic dimension
Self−explanatory.

Cannot wiggle and shear fix wall/gran
Cannot specify both options at the same time.

Cannot zero momentum of 0 atoms
The collection of atoms for which momentum is being computed has no atoms.

Change_box command before simulation box is defined
Self−explanatory.

Change_box operation is invalid
Cannot change orthogonal box to orthogonal or a triclinic box to triclinic.

Communicate group != atom_modify first group
Self−explanatory.

Compute ID for compute heat/flux does not exist
Self−explanatory.

Compute ID for compute reduce does not exist
Self−explanatory.

Compute ID for fix ave/atom does not exist
Self−explanatory.

Compute ID for fix ave/histo does not exist
Self−explanatory.

Compute ID for fix ave/spatial does not exist
Self−explanatory.

Compute ID for fix ave/time does not exist
Self−explanatory.

Compute ID must be alphanumeric or underscore characters
Self−explanatory.

Compute angle/local used when angles are not allowed
The atom style does not support angles.

Compute bond/local used when bonds are not allowed
The atom style does not support bonds.

Compute centro/atom requires a pair style be defined
This is because the computation of the centro−symmetry values uses a pairwise neighbor list.

Compute cna/atom cutoff is longer than pairwise cutoff
Self−explantory.

Compute cna/atom requires a pair style be defined
Self−explantory.

Compute com/molecule requires molecular atom style
Self−explanatory.

83

Compute coord/atom cutoff is longer than pairwise cutoff
Cannot compute coordination at distances longer than the pair cutoff, since those atoms are not in the
neighbor list.

Compute coord/atom requires a pair style be defined
Self−explantory.

Compute damage/atom requires peridynamic potential
Damage is a Peridynamic−specific metric. It requires you to be running a Peridynamics simulation.

Compute dihedral/local used when dihedrals are not allowed
The atom style does not support dihedrals.

Compute does not allow an extra compute or fix to be reset
This is an internal LAMMPS error. Please report it to the developers.

Compute erotate/asphere cannot be used with atom attributes diameter or rmass
These attributes override the shape and mass settings, so cannot be used.

Compute erotate/asphere requires atom attributes angmom, quat, shape
An atom style that defines these attributes must be used.

Compute erotate/asphere requires extended particles
This compute cannot be used with point paritlces.

Compute erotate/sphere requires atom attribute omega
An atom style that defines this attribute must be used.

Compute erotate/sphere requires atom attribute radius or shape
An atom style that defines these attributes must be used.

Compute erotate/sphere requires spherical particle shapes
Self−explanatory.

Compute event/displace has invalid fix event assigned
This is an internal LAMMPS error. Please report it to the developers.

Compute group/group group ID does not exist
Self−explanatory.

Compute gyration/molecule requires molecular atom style
Self−explanatory.

Compute heat/flux compute ID does not compute pe/atom
Self−explanatory.

Compute heat/flux requires ghost atoms store velocity
Use the communicate vel yes command to enable this.

Compute improper/local used when impropers are not allowed
The atom style does not support impropers.

Compute msd/molecule requires molecular atom style
Self−explanatory.

Compute pe must use group all
Energies computed by potentials (pair, bond, etc) are computed on all atoms.

Compute pressure must use group all
Virial contributions computed by potentials (pair, bond, etc) are computed on all atoms.

Compute pressure temperature ID does not compute temperature
The compute ID assigned to a pressure computation must compute temperature.

Compute property/atom for atom property that isn't allocated
Self−explanatory.

Compute property/local cannot use these inputs together
Only inputs that generate the same number of datums can be used togther. E.g. bond and angle quantities
cannot be mixed.

Compute property/local for property that isn't allocated
Self−explanatory.

Compute property/molecule requires molecular atom style
Self−explanatory.

84

Compute rdf requires a pair style be defined
Self−explanatory.

Compute reduce compute array is accessed out−of−range
Self−explanatory.

Compute reduce compute does not calculate a global array
Self−explanatory.

Compute reduce compute does not calculate a global vector
Self−explanatory.

Compute reduce compute does not calculate a local array
Self−explanatory.

Compute reduce compute does not calculate a local vector
Self−explanatory.

Compute reduce compute does not calculate a per−atom array
Self−explanatory.

Compute reduce compute does not calculate a per−atom vector
Self−explanatory.

Compute reduce fix array is accessed out−of−range
Self−explanatory.

Compute reduce fix does not calculate a global array
Self−explanatory.

Compute reduce fix does not calculate a global vector
Self−explanatory.

Compute reduce fix does not calculate a local array
Self−explanatory.

Compute reduce fix does not calculate a local vector
Self−explanatory.

Compute reduce fix does not calculate a per−atom array
Self−explanatory.

Compute reduce fix does not calculate a per−atom vector
Self−explanatory.

Compute reduce region ID does not exist
Self−explanatory.

Compute reduce replace requires min or max mode
Self−explanatory.

Compute reduce variable is not atom−style variable
Self−explanatory.

Compute temp/asphere cannot be used with atom attributes diameter or rmass
These attributes override the shape and mass settings, so cannot be used.

Compute temp/asphere requires atom attributes angmom, quat, shape
An atom style that defines these attributes must be used.

Compute temp/asphere requires extended particles
This compute cannot be used with point paritlces.

Compute temp/partial cannot use vz for 2d systemx
Self−explanatory.

Compute temp/profile cannot bin z for 2d systems
Self−explanatory.

Compute temp/profile cannot use vz for 2d systemx
Self−explanatory.

Compute temp/sphere requires atom attribute omega
An atom style that defines this attribute must be used.

Compute temp/sphere requires atom attribute radius or shape
An atom style that defines these attributes must be used.

85

Compute temp/sphere requires spherical particle shapes
Self−explanatory.

Compute used in variable between runs is not current
Computes cannot be invoked by a variable in between runs. Thus they must have been evaluated on the
last timestep of the previous run in order for their value(s) to be accessed. See the doc page for the
variable command for more info.

Compute used in variable thermo keyword between runs is not current
Some thermo keywords rely on a compute to calculate their value(s). Computes cannot be invoked by a
variable in between runs. Thus they must have been evaluated on the last timestep of the previous run in
order for their value(s) to be accessed. See the doc page for the variable command for more info.

Computed temperature for fix temp/berendsen cannot be 0.0
Self−explanatory.

Computed temperature for fix temp/rescale cannot be 0.0
Cannot rescale the temperature to a new value if the current temperature is 0.0.

Could not count initial bonds in fix bond/create
Could not find one of the atoms in a bond on this processor.

Could not create 3d FFT plan
The FFT setup in pppm failed.

Could not create 3d remap plan
The FFT setup in pppm failed.

Could not find atom_modify first group ID
Self−explanatory.

Could not find compute ID for PRD
Self−explanatory.

Could not find compute ID for temperature bias
Self−explanatory.

Could not find compute ID to delete
Self−explanatory.

Could not find compute displace/atom fix ID
Self−explanatory.

Could not find compute event/displace fix ID
Self−explanatory.

Could not find compute group ID
Self−explanatory.

Could not find compute heat/flux compute ID
Self−explanatory.

Could not find compute msd fix ID
Self−explanatory.

Could not find compute pressure temperature ID
The compute ID for calculating temperature does not exist.

Could not find compute_modify ID
Self−explanatory.

Could not find delete_atoms group ID
Group ID used in the delete_atoms command does not exist.

Could not find delete_atoms region ID
Region ID used in the delete_atoms command does not exist.

Could not find displace_atoms group ID
Group ID used in the displace_atoms command does not exist.

Could not find displace_box group ID
Group ID used in the displace_box command does not exist.

Could not find dump cfg compute ID
Self−explanatory.

86

Could not find dump cfg fix ID
Self−explanatory.

Could not find dump cfg variable name
Self−explanatory.

Could not find dump custom compute ID
The compute ID needed by dump custom to compute a per−atom quantity does not exist.

Could not find dump custom fix ID
Self−explanatory.

Could not find dump custom variable name
Self−explanatory.

Could not find dump group ID
A group ID used in the dump command does not exist.

Could not find dump local compute ID
Self−explanatory.

Could not find dump local fix ID
Self−explanatory.

Could not find dump modify compute ID
Self−explanatory.

Could not find dump modify fix ID
Self−explanatory.

Could not find dump modify variable name
Self−explanatory.

Could not find fix ID to delete
Self−explanatory.

Could not find fix group ID
A group ID used in the fix command does not exist.

Could not find fix poems group ID
A group ID used in the fix poems command does not exist.

Could not find fix recenter group ID
A group ID used in the fix recenter command does not exist.

Could not find fix rigid group ID
A group ID used in the fix rigid command does not exist.

Could not find fix_modify ID
A fix ID used in the fix_modify command does not exist.

Could not find fix_modify pressure ID
The compute ID for computing pressure does not exist.

Could not find fix_modify temperature ID
The compute ID for computing temperature does not exist.

Could not find group delete group ID
Self−explanatory.

Could not find set group ID
Group ID specified in set command does not exist.

Could not find thermo compute ID
Compute ID specified in thermo_style command does not exist.

Could not find thermo custom compute ID
The compute ID needed by thermo style custom to compute a requested quantity does not exist.

Could not find thermo custom fix ID
The fix ID needed by thermo style custom to compute a requested quantity does not exist.

Could not find thermo custom variable name
Self−explanatory.

Could not find thermo fix ID
Fix ID specified in thermo_style command does not exist.

87

Could not find thermo_modify pressure ID
The compute ID needed by thermo style custom to compute pressure does not exist.

Could not find thermo_modify temperature ID
The compute ID needed by thermo style custom to compute temperature does not exist.

Could not find undump ID
A dump ID used in the undump command does not exist.

Could not find velocity group ID
A group ID used in the velocity command does not exist.

Could not find velocity temperature ID
The compute ID needed by the velocity command to compute temperature does not exist.

Could not set finite−size particle attribute in fix rigid
The particle has a finite size but its attributes could not be determined.

Coulomb cutoffs of pair hybrid sub−styles do not match
If using a Kspace solver, all Coulomb cutoffs of long pair styles must be the same.

Cound not find dump_modify ID
Self−explanatory.

Create_atoms command before simulation box is defined
The create_atoms command cannot be used before a read_data, read_restart, or create_box command.

Create_atoms region ID does not exist
A region ID used in the create_atoms command does not exist.

Create_box region ID does not exist
A region ID used in the create_box command does not exist.

Create_box region does not support a bounding box
Not all regions represent bounded volumes. You cannot use such a region with the create_box command.

Cyclic loop in joint connections
Fix poems cannot (yet) work with coupled bodies whose joints connect the bodies in a ring (or cycle).

Degenerate lattice primitive vectors
Invalid set of 3 lattice vectors for lattice command.

Delete_atoms command before simulation box is defined
The delete_atoms command cannot be used before a read_data, read_restart, or create_box command.

Delete_atoms cutoff > neighbor cutoff
Cannot delete atoms further away than a processor knows about.

Delete_atoms requires a pair style be defined
This is because atom deletion within a cutoff uses a pairwise neighbor list.

Delete_bonds command before simulation box is defined
The delete_bonds command cannot be used before a read_data, read_restart, or create_box command.

Delete_bonds command with no atoms existing
No atoms are yet defined so the delete_bonds command cannot be used.

Deposition region extends outside simulation box
Self−explanatory.

Did not assign all atoms correctly
Atoms read in from a data file were not assigned correctly to processors. This is likely due to some atom
coordinates being outside a non−periodic simulation box.

Did not find all elements in MEAM library file
The requested elements were not found in the MEAM file.

Did not find fix shake partner info
Could not find bond partners implied by fix shake command. This error can be triggered if the
delete_bonds command was used before fix shake, and it removed bonds without resetting the 1−2, 1−3,
1−4 weighting list via the special keyword.

Did not find keyword in table file
Keyword used in pair_coeff command was not found in table file.

Dihedral atom missing in delete_bonds

88

The delete_bonds command cannot find one or more atoms in a particular dihedral on a particular
processor. The pairwise cutoff is too short or the atoms are too far apart to make a valid dihedral.

Dihedral atom missing in set command
The set command cannot find one or more atoms in a particular dihedral on a particular processor. The
pairwise cutoff is too short or the atoms are too far apart to make a valid dihedral.

Dihedral atoms %d %d %d %d missing on proc %d at step %d
One or more of 4 atoms needed to compute a particular dihedral are missing on this processor. Typically
this is because the pairwise cutoff is set too short or the dihedral has blown apart and an atom is too far
away.

Dihedral charmm is incompatible with Pair style
Dihedral style charmm must be used with a pair style charmm in order for the 1−4 epsilon/sigma
parameters to be defined.

Dihedral coeff for hybrid has invalid style
Dihedral style hybrid uses another dihedral style as one of its coefficients. The dihedral style used in the
dihedral_coeff command or read from a restart file is not recognized.

Dihedral coeffs are not set
No dihedral coefficients have been assigned in the data file or via the dihedral_coeff command.

Dihedral style hybrid cannot have hybrid as an argument
Self−explanatory.

Dihedral style hybrid cannot have none as an argument
Self−explanatory.

Dihedral style hybrid cannot use same dihedral style twice
Self−explanatory.

Dihedral_coeff command before dihedral_style is defined
Coefficients cannot be set in the data file or via the dihedral_coeff command until an dihedral_style has
been assigned.

Dihedral_coeff command before simulation box is defined
The dihedral_coeff command cannot be used before a read_data, read_restart, or create_box command.

Dihedral_coeff command when no dihedrals allowed
The chosen atom style does not allow for dihedrals to be defined.

Dihedral_style command when no dihedrals allowed
The chosen atom style does not allow for dihedrals to be defined.

Dihedrals assigned incorrectly
Dihedrals read in from the data file were not assigned correctly to atoms. This means there is something
invalid about the topology definitions.

Dihedrals defined but no dihedral types
The data file header lists dihedrals but no dihedral types.

Dimension command after simulation box is defined
The dimension command cannot be used after a read_data, read_restart, or create_box command.

Dipole command before simulation box is defined
The dipole command cannot be used before a read_data, read_restart, or create_box command.

Displace_atoms command before simulation box is defined
The displace_atoms command cannot be used before a read_data, read_restart, or create_box command.

Displace_box command before simulation box is defined
Self−explanatory.

Displace_box tilt factors require triclinic box
Cannot use tilt factors unless the simulation box is non−orthogonal.

Distance must be > 0 for compute event/displace
Self−explanatory.

Divide by 0 in variable formula
Self−explanatory.

Domain too large for neighbor bins

89

The domain has become extremely large so that neighbor bins cannot be used. Most likely, one or more
atoms have been blown out of the simulation box to a great distance.

Dump cfg and fix not computed at compatible times
The fix must produce per−atom quantities on timesteps that dump cfg needs them.

Dump cfg arguments must start with 'id type xs ys zs'
This is a requirement of the CFG output format.

Dump custom and fix not computed at compatible times
The fix must produce per−atom quantities on timesteps that dump custom needs them.

Dump custom compute does not calculate per−atom array
Self−explanatory.

Dump custom compute does not calculate per−atom vector
Self−explanatory.

Dump custom compute does not compute per−atom info
Self−explanatory.

Dump custom compute vector is accessed out−of−range
Self−explanatory.

Dump custom fix does not compute per−atom array
Self−explanatory.

Dump custom fix does not compute per−atom info
Self−explanatory.

Dump custom fix does not compute per−atom vector
Self−explanatory.

Dump custom fix vector is accessed out−of−range
Self−explanatory.

Dump custom variable is not atom−style variable
Only atom−style variables generate per−atom quantities, needed for dump output.

Dump dcd cannot dump unwrapped coords with triclinic box
Cannot use unwrap option with non−orthogonal simulation box.

Dump dcd must use group all
Self−explanatory.

Dump dcd of non−matching # of atoms
Every snapshot written by dump dcd must contain the same # of atoms.

Dump in CFG format requires one snapshot per file
Self−explanatory.

Dump local and fix not computed at compatible times
The fix must produce per−atom quantities on timesteps that dump local needs them.

Dump local attributes contain no compute or fix
Self−explanatory.

Dump local compute does not calculate local array
Self−explanatory.

Dump local compute does not calculate local vector
Self−explanatory.

Dump local compute does not compute local info
Self−explanatory.

Dump local compute vector is accessed out−of−range
Self−explanatory.

Dump local count is not consistent across input fields
Every column of output must be the same length.

Dump local fix does not compute local array
Self−explanatory.

Dump local fix does not compute local info
Self−explanatory.

90

Dump local fix does not compute local vector
Self−explanatory.

Dump local fix vector is accessed out−of−range
Self−explanatory.

Dump modify compute ID does not compute per−atom array
Self−explanatory.

Dump modify compute ID does not compute per−atom info
Self−explanatory.

Dump modify compute ID does not compute per−atom vector
Self−explanatory.

Dump modify compute ID vector is not large enough
Self−explanatory.

Dump modify element names do not match atom types
Number of element names must equal number of atom types.

Dump modify fix ID does not compute per−atom array
Self−explanatory.

Dump modify fix ID does not compute per−atom info
Self−explanatory.

Dump modify fix ID does not compute per−atom vector
Self−explanatory.

Dump modify fix ID vector is not large enough
Self−explanatory.

Dump modify variable is not atom−style variable
Self−explanatory.

Dump xtc must use group all
Self−explanatory.

Dump xtc must use group all
Self−explanatory.

Dump_modify region ID does not exist
Self−explanatory.

Dumping an atom property that isn't allocated
The chosen atom style does not define the per−atom quantity being dumped.

Electronic temperature dropped below zero
Something has gone wrong with the fix ttm electron temperature model.

Empty brackets in input command
A value inside the brackets is required for this formula element.

Energy was not tallied on needed timestep
You are using a thermo keyword that requires potentials to have tallied energy, but they didn't on this
timestep. See the variable doc page for ideas on how to make this work.

Expected floating point parameter in input script or data file
The quantity being read is an integer on non−numeric value.

Expected integer parameter in input script or data file
The quantity being read is a floating point on non−numeric value.

Failed to allocate %d bytes for array %s
Your LAMMPS simulation has run out of memory. You need to run a smaller simulation or on more
processors.

Failed to reallocate %d bytes for array %s
Your LAMMPS simulation has run out of memory. You need to run a smaller simulation or on more
processors.

Final box dimension due to fix deform is < 0.0
Self−explanatory.

Fix ID for compute reduce does not exist

91

Self−explanatory.
Fix ID for fix ave/atom does not exist

Self−explanatory.
Fix ID for fix ave/histo does not exist

Self−explanatory.
Fix ID for fix ave/spatial does not exist

Self−explanatory.
Fix ID for fix ave/time does not exist

Self−explanatory.
Fix ID must be alphanumeric or underscore characters

Self−explanatory.
Fix addforce region ID does not exist

Self−explanatory.
Fix ave/atom compute array is accessed out−of−range

Self−explanatory.
Fix ave/atom compute does not calculate a per−atom array

Self−explanatory.
Fix ave/atom compute does not calculate a per−atom vector

A compute used by fix ave/atom must generate per−atom values.
Fix ave/atom compute does not calculate per−atom values

A compute used by fix ave/atom must generate per−atom values.
Fix ave/atom fix array is accessed out−of−range

Self−explanatory.
Fix ave/atom fix does not calculate a per−atom array

Self−explanatory.
Fix ave/atom fix does not calculate a per−atom vector

A fix used by fix ave/atom must generate per−atom values.
Fix ave/atom fix does not calculate per−atom values

A fix used by fix ave/atom must generate per−atom values.
Fix ave/atom variable is not atom−style variable

A variable used by fix ave/atom must generate per−atom values.
Fix ave/histo cannot input local values in scalar mode

Self−explanatory.
Fix ave/histo cannot input per−atom values in scalar mode

Self−explanatory.
Fix ave/histo compute array is accessed out−of−range

Self−explanatory.
Fix ave/histo compute does not calculate a global array

Self−explanatory.
Fix ave/histo compute does not calculate a global scalar

Self−explanatory.
Fix ave/histo compute does not calculate a global vector

Self−explanatory.
Fix ave/histo compute does not calculate a local array

Self−explanatory.
Fix ave/histo compute does not calculate a local vector

Self−explanatory.
Fix ave/histo compute does not calculate a per−atom array

Self−explanatory.
Fix ave/histo compute does not calculate a per−atom vector

Self−explanatory.
Fix ave/histo compute does not calculate local values

92

Self−explanatory.
Fix ave/histo compute does not calculate per−atom values

Self−explanatory.
Fix ave/histo compute vector is accessed out−of−range

Self−explanatory.
Fix ave/histo fix array is accessed out−of−range

Self−explanatory.
Fix ave/histo fix does not calculate a global array

Self−explanatory.
Fix ave/histo fix does not calculate a global scalar

Self−explanatory.
Fix ave/histo fix does not calculate a global vector

Self−explanatory.
Fix ave/histo fix does not calculate a local array

Self−explanatory.
Fix ave/histo fix does not calculate a local vector

Self−explanatory.
Fix ave/histo fix does not calculate a per−atom array

Self−explanatory.
Fix ave/histo fix does not calculate a per−atom vector

Self−explanatory.
Fix ave/histo fix does not calculate local values

Self−explanatory.
Fix ave/histo fix does not calculate per−atom values

Self−explanatory.
Fix ave/histo fix vector is accessed out−of−range

Self−explanatory.
Fix ave/histo input is invalid compute

Self−explanatory.
Fix ave/histo input is invalid fix

Self−explanatory.
Fix ave/histo input is invalid variable

Self−explanatory.
Fix ave/histo inputs are not all global, peratom, or local

All inputs in a single fix ave/histo command must be of the same style.
Fix ave/spatial compute does not calculate a per−atom array

Self−explanatory.
Fix ave/spatial compute does not calculate a per−atom vector

A compute used by fix ave/spatial must generate per−atom values.
Fix ave/spatial compute does not calculate per−atom values

A compute used by fix ave/spatial must generate per−atom values.
Fix ave/spatial compute vector is accessed out−of−range

The index for the vector is out of bounds.
Fix ave/spatial fix does not calculate a per−atom array

Self−explanatory.
Fix ave/spatial fix does not calculate a per−atom vector

A fix used by fix ave/spatial must generate per−atom values.
Fix ave/spatial fix does not calculate per−atom values

A fix used by fix ave/spatial must generate per−atom values.
Fix ave/spatial fix vector is accessed out−of−range

The index for the vector is out of bounds.
Fix ave/spatial for triclinic boxes requires units reduced

93

Self−explanatory.
Fix ave/spatial settings invalid with changing box

If the ave setting is "running" or "window" and the box size/shape changes during the simulation, then the
units setting must be "reduced", else the number of bins may change.

Fix ave/spatial variable is not atom−style variable
A variable used by fix ave/spatial must generate per−atom values.

Fix ave/time cannot set output array intensive/extensive from these inputs
One of more of the vector inputs has individual elements which are flagged as intensive or extensive.
Such an input cannot be flagged as all intensive/extensive when turned into an array by fix ave/time.

Fix ave/time cannot use variable with vector mode
Variables produce scalar values.

Fix ave/time columns are inconsistent lengths
Self−explanatory.

Fix ave/time compute array is accessed out−of−range
Self−explanatory.

Fix ave/time compute does not calculate a array
Self−explanatory.

Fix ave/time compute does not calculate a scalar
Only computes that calculate a scalar or vector quantity (not a per−atom quantity) can be used with fix
ave/time.

Fix ave/time compute does not calculate a vector
Only computes that calculate a scalar or vector quantity (not a per−atom quantity) can be used with fix
ave/time.

Fix ave/time compute vector is accessed out−of−range
The index for the vector is out of bounds.

Fix ave/time fix array is accessed out−of−range
Self−explanatory.

Fix ave/time fix does not calculate a array
Self−explanatory.

Fix ave/time fix does not calculate a scalar
A fix used by fix ave/time must generate global values.

Fix ave/time fix does not calculate a vector
A fix used by fix ave/time must generate global values.

Fix ave/time fix vector is accessed out−of−range
The index for the vector is out of bounds.

Fix ave/time variable is not equal−style variable
A variable used by fix ave/time must generate a global value.

Fix aveforce region ID does not exist
Self−explanatory.

Fix bond/break requires special_bonds = 0,1,1
This is a restriction of the current fix bond/break implementation.

Fix bond/create cutoff is longer than pairwise cutoff
This is not allowed because bond creation is done using the pairwise neighbor list.

Fix bond/create requires special_bonds = 0,1,1
This is a restriction of the current fix bond/break implementation.

Fix bond/swap cannot use dihedral or improper styles
These styles cannot be defined when using this fix.

Fix bond/swap requires pair and bond styles
Self−explanatory.

Fix bond/swap requires special_bonds = 0,1,1
Self−explanatory.

Fix command before simulation box is defined

94

The fix command cannot be used before a read_data, read_restart, or create_box command.
Fix deform is changing yz by too much with changing xy

When both yz and xy are changing, it induces changes in xz if the box must flip from one tilt extreme to
another. Thus it is not allowed for yz to grow so much that a flip is induced.

Fix deform tilt factors require triclinic box
Cannot deform the tilt factors of a simulation box unless it is a triclinic (non−orthogonal) box.

Fix deform volume setting is invalid
Cannot use volume style unless other dimensions are being controlled.

Fix deposit region ID does not exist
Self−explanatory

Fix deposit region cannot be dynamic
Only static regions can be used with fix deposit.

Fix deposit region does not support a bounding box
Not all regions represent bounded volumes. You cannot use such a region with the fix deposit command.

Fix evaporate region ID does not exist
Self−explanatory

Fix for fix ave/atom not computed at compatible time
Fixes generate their values on specific timesteps. Fix ave/atom is requesting a value on a non−allowed
timestep.

Fix for fix ave/histo not computed at compatible time
Fixes generate their values on specific timesteps. Fix ave/histo is requesting a value on a non−allowed
timestep.

Fix for fix ave/spatial not computed at compatible time
Fixes generate their values on specific timesteps. Fix ave/spatial is requesting a value on a non−allowed
timestep.

Fix for fix ave/time not computed at compatible time
Fixes generate their values on specific timesteps. Fix ave/time is requesting a value on a non−allowed
timestep.

Fix freeze requires atom attribute torque
The atom style defined does not have this attribute.

Fix heat group has no atoms
Self−explanatory.

Fix heat kinetic energy went negative
This will cause the velocity rescaling about to be performed by fix heat to be invalid.

Fix in variable not computed at compatible time
Fixes generate their values on specific timesteps. The variable is requesting the values on a non−allowed
timestep.

Fix langevin period must be > 0.0
The time window for temperature relaxation must be > 0

Fix momentum group has no atoms
Self−explanatory.

Fix move cannot define z or vz variable for 2d problem
Self−explanatory.

Fix move cannot have 0 length rotation vector
Self−explanatory.

Fix move cannot rotate aroung non z−axis for 2d problem
Self−explanatory.

Fix move cannot set linear z motion for 2d problem
Self−explanatory.

Fix move cannot set wiggle z motion for 2d problem
Self−explanatory.

Fix nph periods must be > 0.0

95

The time window for pressure relaxation must be > 0
Fix npt periods must be > 0.0

The time window for temperature or pressure relaxation must be > 0
Fix npt/asphere cannot be used with atom attributes diameter or rmass

An atom style that defines these attributes must be used.
Fix npt/asphere requires atom attributes quat, angmom, torque, shape

An atom style that specifies these quantities is needed.
Fix npt/sphere requires atom attribute radius or shape

An atom style that defines these attributes must be used.
Fix npt/sphere requires atom attributes omega, torque

An atom style that specifies these quantities is needed.
Fix nve/asphere cannot be used with atom attributes diameter or rmass

These attributes override the shape and mass settings, so cannot be used.
Fix nve/asphere requires atom attributes angmom, quat, torque, shape

An atom style that specifies these quantities is needed.
Fix nve/asphere requires extended particles

This fix can only be used for particles with a shape setting.
Fix nve/sphere requires atom attribute mu

An atom style with this attribute is needed.
Fix nve/sphere requires atom attribute radius or shape

An atom style that specifies these quantities is needed.
Fix nve/sphere requires atom attributes omega, torque

An atom style with these attributes is needed.
Fix nve/sphere requires extended particles

This fix can only be used for particles of a finite size.
Fix nve/sphere requires spherical particle shapes

Self−explanatory.
Fix nvt period must be > 0.0

The time window for temperature relaxation must be > 0
Fix nvt/asphere cannot be used with atom attributes diameter or rmass

These attributes override the shape and mass settings, so cannot be used.
Fix nvt/asphere requires atom attributes quat, angmom, torque, shape

An atom style that specifies these quantities is needed.
Fix nvt/asphere requires extended particles

This fix can only be used for particles of a finite size.
Fix nvt/sphere requires atom attribute radius or shape

An atom style with these attributes is needed.
Fix nvt/sphere requires atom attributes omega, torque

An atom style with these attributes is needed.
Fix nvt/sphere requires extended particles

This fix can only be used for particles of a finite size.
Fix nvt/sphere requires spherical particle shapes

Self−explanatory.
Fix orient/fcc file open failed

The fix orient/fcc command could not open a specified file.
Fix orient/fcc file read failed

The fix orient/fcc command could not read the needed parameters from a specified file.
Fix orient/fcc found self twice

The neighbor lists used by fix orient/fcc are messed up. If this error occurs, it is likely a bug, so send an
email to the developers.

Fix pour region ID does not exist
Self−explanatory.

96

http://lammps.sandia.gov/authors.html

Fix pour region cannot be dynamic
Only static regions can be used with fix pour.

Fix pour region does not support a bounding box
Not all regions represent bounded volumes. You cannot use such a region with the fix pour command.

Fix pour requires atom attributes radius, rmass
The atom style defined does not have these attributes.

Fix press/berendsen period must be > 0.0
Self−explanatory.

Fix reax/bonds numbonds > nsbmax_most
The limit of the number of bonds expected by the ReaxFF force field was exceeded.

Fix recenter group has no atoms
Self−explanatory.

Fix rigid: Bad principal moments
The principal moments of inertia computed for a rigid body are not within the required tolerances.

Fix shake cannot be used with minimization
Cannot use fix shake while doing an energy minimization since it turns off bonds that should contribute to
the energy.

Fix spring couple group ID does not exist
Self−explanatory.

Fix temp/berendsen period must be > 0.0
Self−explanatory.

Fix thermal/conductivity swap value must be positive
Self−explanatory.

Fix tmd must come after integration fixes
Any fix tmd command must appear in the input script after all time integration fixes (nve, nvt, npt). See
the fix tmd documentation for details.

Fix ttm electron temperatures must be > 0.0
Self−explanatory.

Fix ttm electronic_density must be > 0.0
Self−explanatory.

Fix ttm electronic_specific_heat must be > 0.0
Self−explanatory.

Fix ttm electronic_thermal_conductivity must be >= 0.0
Self−explanatory.

Fix ttm gamma_p must be > 0.0
Self−explanatory.

Fix ttm gamma_s must be >= 0.0
Self−explanatory.

Fix ttm number of nodes must be > 0
Self−explanatory.

Fix ttm v_0 must be >= 0.0
Self−explanatory.

Fix used in compute reduce not computed at compatible time
Fixes generate their values on specific timesteps. Compute sum is requesting a value on a non−allowed
timestep.

Fix viscosity swap value must be positive
Self−explanatory.

Fix viscosity vtarget value must be positive
Self−explanatory.

Fix wall cutoff <= 0.0
Self−explanatory.

Fix wall/colloid cannot be used with atom attribute diameter

97

Only finite−size particles defined by the shape command can be used.
Fix wall/colloid requires atom attribute shape

Self−explanatory.
Fix wall/colloid requires extended particles

Self−explanatory.
Fix wall/colloid requires spherical particles

Self−explanatory.
Fix wall/gran is incompatible with Pair style

Must use a granular pair style to define the parameters needed for this fix.
Fix wall/gran requires atom attributes radius, omega, torque

The atom style defined does not have these attributes.
Fix wall/region colloid cannot be used with atom attribute diameter

Only finite−size particles defined by the shape command can be used.
Fix wall/region colloid requires atom attribute shape

Self−explanatory.
Fix wall/region colloid requires extended particles

Self−explanatory.
Fix wall/region colloid requires spherical particles

Self−explanatory.
Fix wall/region cutoff <= 0.0

Self−explanatory.
Fix wall/region region ID does not exist

Self−explanatory.
Fix_modify pressure ID does not compute pressure

The compute ID assigned to the fix must compute pressure.
Fix_modify temperature ID does not compute temperature

The compute ID assigned to the fix must compute temperature.
Found no restart file matching pattern

When using a "*" in the restart file name, no matching file was found.
Gravity must point in −y to use with fix pour in 2d

Gravity must be pointing "down" in a 2d box.
Gravity must point in −z to use with fix pour in 3d

Gravity must be pointing "down" in a 3d box, i.e. theta = 180.0.
Group ID does not exist

A group ID used in the group command does not exist.
Group ID in variable formula does not exist

Self−explanatory.
Group command before simulation box is defined

The group command cannot be used before a read_data, read_restart, or create_box command.
Group region ID does not exist

A region ID used in the group command does not exist.
Illegal ... command

Self−explanatory. Check the input script syntax and compare to the documentation for the command. You
can use −echo screen as a command−line option when running LAMMPS to see the offending line.

Illegal Stillinger−Weber parameter
One or more of the coefficients defined in the potential file is invalid.

Illegal Tersoff parameter
One or more of the coefficients defined in the potential file is invalid.

Illegal chemical element names
The name is too long to be a chemical element.

Illegal simulation box
The lower bound of the simulation box is greater than the upper bound.

98

Improper atom missing in delete_bonds
The delete_bonds command cannot find one or more atoms in a particular improper on a particular
processor. The pairwise cutoff is too short or the atoms are too far apart to make a valid improper.

Improper atom missing in set command
The set command cannot find one or more atoms in a particular improper on a particular processor. The
pairwise cutoff is too short or the atoms are too far apart to make a valid improper.

Improper atoms %d %d %d %d missing on proc %d at step %d
One or more of 4 atoms needed to compute a particular improper are missing on this processor. Typically
this is because the pairwise cutoff is set too short or the improper has blown apart and an atom is too far
away.

Improper coeff for hybrid has invalid style
Improper style hybrid uses another improper style as one of its coefficients. The improper style used in
the improper_coeff command or read from a restart file is not recognized.

Improper coeffs are not set
No improper coefficients have been assigned in the data file or via the improper_coeff command.

Improper style hybrid cannot have hybrid as an argument
Self−explanatory.

Improper style hybrid cannot have none as an argument
Self−explanatory.

Improper style hybrid cannot use same improper style twice
Self−explanatory.

Improper_coeff command before improper_style is defined
Coefficients cannot be set in the data file or via the improper_coeff command until an improper_style has
been assigned.

Improper_coeff command before simulation box is defined
The improper_coeff command cannot be used before a read_data, read_restart, or create_box command.

Improper_coeff command when no impropers allowed
The chosen atom style does not allow for impropers to be defined.

Improper_style command when no impropers allowed
The chosen atom style does not allow for impropers to be defined.

Impropers assigned incorrectly
Impropers read in from the data file were not assigned correctly to atoms. This means there is something
invalid about the topology definitions.

Impropers defined but no improper types
The data file header lists improper but no improper types.

Inconsistent iparam/jparam values in fix bond/create command
If itype and jtype are the same, then their maxbond and newtype settings must also be the same.

Incorrect args for angle coefficients
Self−explanatory. Check the input script or data file.

Incorrect args for bond coefficients
Self−explanatory. Check the input script or data file.

Incorrect args for dihedral coefficients
Self−explanatory. Check the input script or data file.

Incorrect args for improper coefficients
Self−explanatory. Check the input script or data file.

Incorrect args for pair coefficients
Self−explanatory. Check the input script or data file.

Incorrect args in pair_style command
Self−explanatory.

Incorrect atom format in data file
Number of values per atom line in the data file is not consistent with the atom style.

Incorrect boundaries with slab Ewald

99

Must have periodic x,y dimensions and non−periodic z dimension to use 2d slab option with Ewald.
Incorrect boundaries with slab PPPM

Must have periodic x,y dimensions and non−periodic z dimension to use 2d slab option with PPPM.
Incorrect element names in EAM potential file

The element names in the EAM file do not match those requested.
Incorrect format in MEAM potential file

Incorrect number of words per line in the potential file.
Incorrect format in Stillinger−Weber potential file

Incorrect number of words per line in the potential file.
Incorrect format in TMD target file

Format of file read by fix tmd command is incorrect.
Incorrect format in Tersoff potential file

Incorrect number of words per line in the potential file.
Incorrect multiplicity arg for dihedral coefficients

Self−explanatory. Check the input script or data file.
Incorrect sign arg for dihedral coefficients

Self−explanatory. Check the input script or data file.
Incorrect velocity format in data file

Each atom style defines a format for the Velocity section of the data file. The read−in lines do not match.
Incorrect weight arg for dihedral coefficients

Self−explanatory. Check the input script or data file.
Index between input command brackets must be positive

Self−explantory.
Indexed per−atom vector in variable formula without atom map

Accessing a value from an atom vector requires the ability to lookup an atom index, which is provided by
an atom map. An atom map does not exist (by default) for non−molecular problems. Using the
atom_modify map command will force an atom map to be created.

Induced tilt by displace_box is too large
The final tilt value must be between −1/2 and 1/2 of the perpendicular box length.

Initial temperatures not all set in fix ttm
Self−explantory.

Input line too long after variable substitution
This is a hard (very large) limit defined in the input.cpp file.

Input line too long: %s
This is a hard (very large) limit defined in the input.cpp file.

Insertion region extends outside simulation box
Region specified with fix insert command extends outside the global simulation box.

Insufficient Jacobi rotations for POEMS body
Eigensolve for rigid body was not sufficiently accurate.

Insufficient Jacobi rotations for rigid body
Eigensolve for rigid body was not sufficiently accurate.

Invalid REAX atom type
There is a mis−match between LAMMPS atom types and the elements listed in the ReaxFF force field
file.

Invalid angle style
The choice of angle style is unknown.

Invalid angle table length
Length must be 2 or greater.

Invalid angle type in Angles section of data file
Angle type must be positive integer and within range of specified angle types.

Invalid angle type index for fix shake
Self−explanatory.

100

Invalid atom ID in Angles section of data file
Atom IDs must be positive integers and within range of defined atoms.

Invalid atom ID in Atoms section of data file
Atom IDs must be positive integers.

Invalid atom ID in Bonds section of data file
Atom IDs must be positive integers and within range of defined atoms.

Invalid atom ID in Dihedrals section of data file
Atom IDs must be positive integers and within range of defined atoms.

Invalid atom ID in Impropers section of data file
Atom IDs must be positive integers and within range of defined atoms.

Invalid atom ID in Velocities section of data file
Atom IDs must be positive integers and within range of defined atoms.

Invalid atom mass for fix shake
Mass specified in fix shake command must be > 0.0.

Invalid atom style
The choice of atom style is unknown.

Invalid atom type in Atoms section of data file
Atom types must range from 1 to specified # of types.

Invalid atom type in create_atoms command
The create_box command specified the range of valid atom types. An invalid type is being requested.

Invalid atom type in fix bond/create command
Self−explanatory.

Invalid atom type in neighbor exclusion list
Atom types must range from 1 to Ntypes inclusive.

Invalid atom type index for fix shake
Atom types must range from 1 to Ntypes inclusive.

Invalid atom types in pair_write command
Atom types must range from 1 to Ntypes inclusive.

Invalid atom vector in variable formula
The atom vector is not recognized.

Invalid attribute in dump custom command
Self−explantory.

Invalid attribute in dump local command
Self−explantory.

Invalid attribute in dump modify command
Self−explantory.

Invalid bond style
The choice of bond style is unknown.

Invalid bond table length
Length must be 2 or greater.

Invalid bond type in Bonds section of data file
Bond type must be positive integer and within range of specified bond types.

Invalid bond type in fix bond/break command
Self−explanatory.

Invalid bond type in fix bond/create command
Self−explanatory.

Invalid bond type index for fix shake
Self−explanatory. Check the fix shake command in the input script.

Invalid coeffs for this angle style
Cannot set class 2 coeffs in data file for this angle style.

Invalid coeffs for this dihedral style
Cannot set class 2 coeffs in data file for this dihedral style.

101

Invalid coeffs for this improper style
Cannot set class 2 coeffs in data file for this improper style.

Invalid command−line argument
One or more command−line arguments is invalid. Check the syntax of the command you are using to
launch LAMMPS.

Invalid compute ID in variable formula
The compute is not recognized.

Invalid compute style
Self−explanatory.

Invalid cutoff in communicate command
Specified cutoff must be >= 0.0.

Invalid cutoffs in pair_write command
Inner cutoff must be larger than 0.0 and less than outer cutoff.

Invalid d1 or d2 value for pair colloid coeff
Neither d1 or d2 can be < 0.

Invalid data file section: Angle Coeffs
Atom style does not allow angles.

Invalid data file section: AngleAngle Coeffs
Atom style does not allow impropers.

Invalid data file section: AngleAngleTorsion Coeffs
Atom style does not allow dihedrals.

Invalid data file section: AngleTorsion Coeffs
Atom style does not allow dihedrals.

Invalid data file section: Angles
Atom style does not allow angles.

Invalid data file section: Bond Coeffs
Atom style does not allow bonds.

Invalid data file section: BondAngle Coeffs
Atom style does not allow angles.

Invalid data file section: BondBond Coeffs
Atom style does not allow angles.

Invalid data file section: BondBond13 Coeffs
Atom style does not allow dihedrals.

Invalid data file section: Bonds
Atom style does not allow bonds.

Invalid data file section: Dihedral Coeffs
Atom style does not allow dihedrals.

Invalid data file section: Dihedrals
Atom style does not allow dihedrals.

Invalid data file section: EndBondTorsion Coeffs
Atom style does not allow dihedrals.

Invalid data file section: Improper Coeffs
Atom style does not allow impropers.

Invalid data file section: Impropers
Atom style does not allow impropers.

Invalid data file section: MiddleBondTorsion Coeffs
Atom style does not allow dihedrals.

Invalid density in Atoms section of data file
Density value cannot be <= 0.0.

Invalid dihedral style
The choice of dihedral style is unknown.

Invalid dihedral type in Dihedrals section of data file

102

Dihedral type must be positive integer and within range of specified dihedral types.
Invalid dipole line in data file

Self−explanatory.
Invalid dipole value

Self−explanatory.
Invalid dump dcd filename

Filenames used with the dump dcd style cannot be binary or compressed or cause multiple files to be
written.

Invalid dump frequency
Dump frequency must be 1 or greater.

Invalid dump style
The choice of dump style is unknown.

Invalid dump xtc filename
Filenames used with the dump xtc style cannot be binary or compressed or cause multiple files to be
written.

Invalid dump xyz filename
Filenames used with the dump xyz style cannot be binary or cause files to be written by each processor.

Invalid dump_modify threshhold operator
Operator keyword used for threshold specification in not recognized.

Invalid fix ID in variable formula
The fix is not recognized.

Invalid fix ave/time off column
Self−explantory.

Invalid fix box/relax command for a 2d simulation
Fix box/relax styles involving the z dimension cannot be used in a 2d simulation.

Invalid fix nph command for a 2d simulation
Cannot use style xy, yz, or xz for a 2d simulation.

Invalid fix nph command pressure settings
Pressure settings for different components must be the same if the components are coupled.

Invalid fix npt command for a 2d simulation
Cannot use style xy, yz, or xz for a 2d simulation.

Invalid fix npt command pressure settings
Pressure settings for different components must be the same if the components are coupled.

Invalid fix press/berendsen command for a 2d simulation
Can only use xyz or aniso styles in 2d.

Invalid fix press/berendsen command pressure settings
Pressure settings for different components must be the same if the components are coupled.

Invalid fix style
The choice of fix style is unknown.

Invalid flag in force field section of restart file
Unrecognized entry in restart file.

Invalid flag in header section of restart file
Unrecognized entry in restart file.

Invalid flag in type arrays section of restart file
Unrecognized entry in restart file.

Invalid frequency in temper command
Nevery must be > 0.

Invalid group ID in neigh_modify command
A group ID used in the neigh_modify command does not exist.

Invalid group function in variable formula
Group function is not recognized.

Invalid group in communicate command

103

Self−explanatory.
Invalid improper style

The choice of improper style is unknown.
Invalid improper type in Impropers section of data file

Improper type must be positive integer and within range of specified improper types.
Invalid keyword in angle table parameters

Self−explanatory.
Invalid keyword in bond table parameters

Self−explanatory.
Invalid keyword in compute angle/local command

Self−explanatory.
Invalid keyword in compute bond/local command

Self−explanatory.
Invalid keyword in compute dihedral/local command

Self−explanatory.
Invalid keyword in compute improper/local command

Self−explanatory.
Invalid keyword in compute pair/local command

Self−explanatory.
Invalid keyword in compute property/atom command

Self−explanatory.
Invalid keyword in compute property/local command

Self−explanatory.
Invalid keyword in compute property/molecule command

Self−explanatory.
Invalid keyword in dump cfg command

Self−explanatory.
Invalid keyword in pair table parameters

Keyword used in list of table parameters is not recognized.
Invalid keyword in thermo_style custom command

One or more specified keywords are not recognized.
Invalid kspace style

The choice of kspace style is unknown.
Invalid mass line in data file

Self−explanatory.
Invalid mass value

Self−explanatory.
Invalid math or group function in variable formula

The math or group function is not recognized.
Invalid natoms for dump dcd

Natoms is initially 0 which is not valid for the dump dcd style. Natoms must be constant for the duration
of the simulation.

Invalid natoms for dump xtc
Natoms is initially 0 which is not valid for the dump xtc style.

Invalid natoms for dump xyz
Natoms is initially 0 which is not valid for the dump xyz style.

Invalid option in lattice command for non−custom style
Certain lattice keywords are not supported unless the lattice style is "custom".

Invalid order of forces within respa levels
For respa, ordering of force computations within respa levels must obey certain rules. E.g. bonds cannot
be compute less frequently than angles, pairwise forces cannot be computed less frequently than kspace,
etc.

104

Invalid pair style
The choice of pair style is unknown.

Invalid pair table cutoff
Cutoffs in pair_coeff command are not valid with read−in pair table.

Invalid pair table length
Length of read−in pair table is invalid

Invalid radius in Atoms section of data file
Radius must be >= 0.0.

Invalid random number seed in fix ttm command
Random number seed must be > 0.

Invalid random number seed in set command
Random number seed must be > 0.

Invalid region in group function in variable formula
Self−explanatory.

Invalid region style
The choice of region style is unknown.

Invalid replace values in compute reduce
Self−explanatory.

Invalid seed for Marsaglia random # generator
The initial seed for this random number generator must be a positive integer less than or equal to 900
million.

Invalid seed for Park random # generator
The initial seed for this random number generator must be a positive integer.

Invalid shape line in data file
Self−explanatory.

Invalid shape line in data file
Self−explanatory.

Invalid shape value
Self−explanatory.

Invalid shear direction for fix wall/gran
Self−explanatory.

Invalid style in pair_write command
Self−explanatory. Check the input script.

Invalid syntax in variable formula
Self−explanatory.

Invalid t_event in prd command
Self−explanatory.

Invalid thermo keyword in variable formula
The keyword is not recognized.

Invalid type for dipole set
Dipole command must set a type from 1−N where N is the number of atom types.

Invalid type for mass set
Mass command must set a type from 1−N where N is the number of atom types.

Invalid type for shape set
Atom type is out of bounds.

Invalid value in set command
The value specified for the setting is invalid, likely because it is too small or too large.

Invalid variable evaluation in variable formula
A variable used in a formula could not be evaluated.

Invalid variable in next command
Self−explanatory.

Invalid variable name in variable formula

105

Variable name is not recognized.
Invalid variable name

Variable name used in an input script line is invalid.
Invalid variable style with next command

Variable styles equal and world cannot be used in a next command.
Invalid wiggle direction for fix wall/gran

Self−explanatory.
Invoked angle equil angle on angle style none

Self−explanatory.
Invoked angle single on angle style none

Self−explanatory.
Invoked bond equil distance on bond style none

Self−explanatory.
Invoked bond single on bond style none

Self−explanatory.
Invoked pair single on pair style none

A command (e.g. a dump) attempted to invoke the single() function on a pair style none, which is illegal.
You are probably attempting to compute per−atom quantities with an undefined pair style.

KSpace style has not yet been set
Cannot use kspace_modify command until a kspace style is set.

KSpace style is incompatible with Pair style
Setting a kspace style requires that a pair style with a long−range Coulombic component be selected.

Keyword %s in MEAM parameter file not recognized
Self−explanatory.

Kspace style requires atom attribute q
The atom style defined does not have these attributes.

Label wasn't found in input script
Self−explanatory.

Lattice orient vectors are not orthogonal
The three specified lattice orientation vectors must be mutually orthogonal.

Lattice orient vectors are not right−handed
The three specified lattice orientation vectors must create a right−handed coordinate system such that a1
cross a2 = a3.

Lattice primitive vectors are collinear
The specified lattice primitive vectors do not for a unit cell with non−zero volume.

Lattice settings are not compatible with 2d simulation
One or more of the specified lattice vectors has a non−zero z component.

Lattice spacings are invalid
Each x,y,z spacing must be > 0.

Lattice style incompatible with simulation dimension
2d simulation can use sq, sq2, or hex lattice. 3d simulation can use sc, bcc, or fcc lattice.

Log of zero/negative in variable formula
Self−explanatory.

Lost atoms via displace_atoms: original %.15g current %.15g
The displace_atoms command lost one or more atoms.

Lost atoms via displace_box: original %.15g current %.15g
The displace_box command lost one or more atoms.

Lost atoms: original %.15g current %.15g
A thermodynamic computation has detected lost atoms.

MEAM library error %d
A call to the MEAM Fortran library returned an error.

Mass command before simulation box is defined

106

The mass command cannot be used before a read_data, read_restart, or create_box command.
Min_style command before simulation box is defined

The min_style command cannot be used before a read_data, read_restart, or create_box command.
Minimization could not find thermo_pe compute

This compute is created by the thermo command. It must have been explicitly deleted by a uncompute
command.

Minimize command before simulation box is defined
The minimize command cannot be used before a read_data, read_restart, or create_box command.

Mismatched brackets in input command
Self−explanatory.

Mismatched compute in variable formula
A compute is referenced incorrectly or a compute that produces per−atom values is used in an equal−style
variable formula.

Mismatched fix in variable formula
A fix is referenced incorrectly or a fix that produces per−atom values is used in an equal−style variable
formula.

Mismatched variable in variable formula
A variable is referenced incorrectly or an atom−style variable that produces per−atom values is used in an
equal−style variable formula.

Molecule count changed in compute com/molecule
Number of molecules must remain constant over time.

Molecule count changed in compute gyration/molecule
Number of molecules must remain constant over time.

Molecule count changed in compute msd/molecule
Number of molecules must remain constant over time.

Molecule count changed in compute property/molecule
Number of molecules must remain constant over time.

More than one fix deform
Only one fix deform can be defined at a time.

More than one fix freeze
Only one of these fixes can be defined, since the granular pair potentials access it.

More than one fix shake
Only one fix shake can be defined.

Must define angle_style before Angle Coeffs
Must use an angle_style command before reading a data file that defines Angle Coeffs.

Must define angle_style before BondAngle Coeffs
Must use an angle_style command before reading a data file that defines Angle Coeffs.

Must define angle_style before BondBond Coeffs
Must use an angle_style command before reading a data file that defines Angle Coeffs.

Must define bond_style before Bond Coeffs
Must use a bond_style command before reading a data file that defines Bond Coeffs.

Must define dihedral_style before AngleAngleTorsion Coeffs
Must use a dihedral_style command before reading a data file that defines AngleAngleTorsion Coeffs.

Must define dihedral_style before AngleTorsion Coeffs
Must use a dihedral_style command before reading a data file that defines AngleTorsion Coeffs.

Must define dihedral_style before BondBond13 Coeffs
Must use a dihedral_style command before reading a data file that defines BondBond13 Coeffs.

Must define dihedral_style before Dihedral Coeffs
Must use a dihedral_style command before reading a data file that defines Dihedral Coeffs.

Must define dihedral_style before EndBondTorsion Coeffs
Must use a dihedral_style command before reading a data file that defines EndBondTorsion Coeffs.

Must define dihedral_style before MiddleBondTorsion Coeffs

107

Must use a dihedral_style command before reading a data file that defines MiddleBondTorsion Coeffs.
Must define improper_style before AngleAngle Coeffs

Must use an improper_style command before reading a data file that defines AngleAngle Coeffs.
Must define improper_style before Improper Coeffs

Must use an improper_style command before reading a data file that defines Improper Coeffs.
Must define pair_style before Pair Coeffs

Must use a pair_style command before reading a data file that defines Pair Coeffs.
Must have more than one processor partition to temper

Cannot use the temper command with only one processor partition. Use the −partition command−line
option.

Must read Atoms before Angles
The Atoms section of a data file must come before an Angles section.

Must read Atoms before Bonds
The Atoms section of a data file must come before a Bonds section.

Must read Atoms before Dihedrals
The Atoms section of a data file must come before a Dihedrals section.

Must read Atoms before Impropers
The Atoms section of a data file must come before an Impropers section.

Must read Atoms before Velocities
The Atoms section of a data file must come before a Velocities section.

Must set both respa inner and outer
Cannot use just the inner or outer option with respa without using the other.

Must specify a region in fix deposit
The region keyword must be specified with this fix.

Must specify a region in fix pour
The region keyword must be specified with this fix.

Must use −in switch with multiple partitions
A multi−partition simulation cannot read the input script from stdin. The −in command−line option must
be used to specify a file.

Must use a block or cylinder region with fix pour
Self−explanatory.

Must use a block region with fix pour for 2d simulations
Self−explanatory.

Must use a bond style with TIP4P potential
TIP4P potentials assume bond lengths in water are constrained by a fix shake command.

Must use a molecular atom style with fix poems molecule
Self−explanatory.

Must use a molecular atom style with fix rigid molecule
Self−explanatory.

Must use a z−axis cylinder with fix pour
The axis of the cylinder region used with the fix insert command must be oriented along the z dimension.

Must use an angle style with TIP4P potential
TIP4P potentials assume angles in water are constrained by a fix shake command.

Must use atom style with molecule IDs with fix bond/swap
Self−explanatory.

Must use charged atom style with fix efield
The atom style being used does not allow atoms to have assigned charges. Hence it will not work with
this fix which generates a force due to an E−field acting on charge.

Must use fix gravity with fix pour
Insertion of granular particles must be done under the influence of gravity.

Must use molecular atom style with neigh_modify exclude molecule
The atom style must define a molecule ID to use the exclude option.

108

Needed topology not in data file
The header of the data file indicated that bonds or angles or dihedrals or impropers would be included, but
they were not present.

Neigh_modify include group != atom_modify first group
Self−explanatory.

Neighbor delay must be 0 or multiple of every setting
The delay and every parameters set via the neigh_modify command are inconsistent. If the delay setting is
non−zero, then it must be a multiple of the every setting.

Neighbor list overflow, boost neigh_modify one or page
There are too many neighbors of a single atom. Use the neigh_modify command to increase the neighbor
page size and the max number of neighbors allowed for one atom.

Neighbor multi not yet enabled for granular
Self−explanatory.

Neighbor multi not yet enabled for rRESPA
Self−explanatory.

Neighbor page size must be >= 10x the one atom setting
This is required to prevent wasting too much memory.

New bond exceeded bonds per atom in fix bond/create
See the read_data command for info on setting the "extra bond per atom" header value to allow for
additional bonds to be formed.

New bond exceeded special list size in fix bond/create
See the special_bonds extra command for info on how to leave space in the special bonds list to allow for
additional bonds to be formed.

Newton bond change after simulation box is defined
The newton command cannot be used to change the newton bond value after a read_data, read_restart, or
create_box command.

No angle style is defined for compute angle/local
Self−explanatory.

No angles allowed with this atom style
Self−explanatory. Check data file.

No atoms in data file
The header of the data file indicated that atoms would be included, but they were not present.

No basis atoms in lattice
Basis atoms must be defined for lattice style user.

No bond style is defined for compute bond/local
Self−explanatory.

No bonds allowed with this atom style
Self−explanatory. Check data file.

No dihedral style is defined for compute dihedral/local
Self−explanatory.

No dihedrals allowed with this atom style
Self−explanatory. Check data file.

No dump custom arguments specified
The dump custom command requires that atom quantities be specified to output to dump file.

No dump local arguments specified
Self−explanatory.

No improper style is defined for compute improper/local
Self−explanatory.

No impropers allowed with this atom style
Self−explanatory. Check data file.

No matching element in EAM potential file
The EAM potential file does not contain elements that match the requested elements.

109

No pair style is defined for compute pair/local
Self−explanatory.

No pair style is defined for compute property/local
Self−explanatory.

No rigid bodies defined
The fix specification did not end up defining any rigid bodies.

Non digit character between brackets in input command
Self−explanatory.

Non integer # of swaps in temper command
Swap frequency in temper command must evenly divide the total # of timesteps.

One or more atoms belong to multiple rigid bodies
Two or more rigid bodies defined by the fix rigid command cannot contain the same atom.

One or zero atoms in rigid body
Any rigid body defined by the fix rigid command must contain 2 or more atoms.

Out of range atoms − cannot compute PPPM
One or more atoms are attempting to map their charge to a PPPM grid point that is not owned by a
processor. This is likely for one of two reasons, both of them bad. First, it may mean that an atom near the
boundary of a processor's sub−domain has moved more than 1/2 the neighbor skin distance without
neighbor lists being rebuilt and atoms being migrated to new processors. This also means you may be
missing pairwise interactions that need to be computed. The solution is to change the re−neighboring
criteria via the neigh_modify command. The safest settings are "delay 0 every 1 check yes". Second, it
may mean that an atom has moved far outside a processor's sub−domain or even the entire simulation
box. This indicates bad physics, e.g. due to highly overlapping atoms, too large a timestep, etc.

POEMS fix must come before NPT/NPH fix
NPT/NPH fix must be defined in input script after all poems fixes, else the fix contribution to the pressure
virial is incorrect.

PPPM grid is too large
The global PPPM grid is larger than OFFSET in one or more dimensions. OFFSET is currently set to
4096. You likely need to decrease the requested precision.

PPPM order cannot be greater than %d
Self−explanatory.

PPPM order has been reduced to 0
LAMMPS has attempted to reduce the PPPM order to enable the simulation to run, but can reduce the
order no further. Try increasing the accuracy of PPPM by reducing the tolerance size, thus inducing a
larger PPPM grid.

PRD command before simulation box is defined
The prd command cannot be used before a read_data, read_restart, or create_box command.

PRD nsteps must be multiple of t_event
Self−explanatory.

PRD t_corr must be multiple of t_event
Self−explanatory.

Pair coeff for hybrid has invalid style
Style in pair coeff must have been listed in pair_style command.

Pair cutoff < Respa interior cutoff
One or more pairwise cutoffs are too short to use with the specified rRESPA cutoffs.

Pair dipole/cut requires atom attributes q, mu, torque, dipole
An atom style that specifies these quantities is needed.

Pair distance < table inner cutoff
Two atoms are closer together than the pairwise table allows.

Pair distance > table outer cutoff
Two atoms are further apart than the pairwise table allows.

Pair dpd requires ghost atoms store velocity

110

Use the communicate vel yes command to enable this.
Pair gayberne cannot be used with atom attribute diameter

Finite−size particles must be defined with the shape command.
Pair gayberne epsilon a,b,c coeffs are not all set

Each atom type involved in pair_style gayberne must have these 3 coefficients set at least once.
Pair gayberne requires atom attributes quat, torque, shape

An atom style that defines these attributes must be used.
Pair granular requires atom attributes radius, omega, torque

The atom style defined does not have these attributes.
Pair granular requires ghost atoms store velocity

Use the communicate vel yes command to enable this.
Pair granular with shear history requires newton pair off

This is a current restriction of the implementation of pair granular styles with history.
Pair hybrid sub−style is not used

No pair_coeff command used a sub−style specified in the pair_style command.
Pair inner cutoff < Respa interior cutoff

One or more pairwise cutoffs are too short to use with the specified rRESPA cutoffs.
Pair inner cutoff >= Pair outer cutoff

The specified cutoffs for the pair style are inconsistent.
Pair lubricate cannot be used with atom attributes diameter or rmass

These attributes override the shape and mass settings, so cannot be used.
Pair lubricate requires atom attribute omega or angmom

An atom style that defines these attributes must be used.
Pair lubricate requires atom attributes torque and shape

An atom style that defines these attributes must be used.
Pair lubricate requires extended particles

This pair style can only be used for particles with a shape setting.
Pair lubricate requires ghost atoms store velocity

Use the communicate vel yes command to enable this.
Pair lubricate requires spherical, mono−disperse particles

This is a current restriction of this pair style.
Pair peri lattice is not identical in x, y, and z

The lattice defined by the lattice command must be cubic.
Pair peri requires a lattice be defined

Use the lattice command for this purpose.
Pair peri requires an atom map, see atom_modify

Even for atomic systems, an atom map is required to find Peridynamic bonds. Use the atom_modify
command to define one.

Pair resquared cannot be used with atom attribute diameter
This attribute overrides the shape settings, so cannot be used.

Pair resquared epsilon a,b,c coeffs are not all set
Self−explanatory.

Pair resquared epsilon and sigma coeffs are not all set
Self−explanatory.

Pair resquared requires atom attributes quat, torque, shape
An atom style that defines these attributes must be used.

Pair style AIREBO requires atom IDs
This is a requirement to use the AIREBO potential.

Pair style AIREBO requires newton pair on
Self−explanatory.

Pair style MEAM requires newton pair on
See the newton command. This is a restriction to use the MEAM potential.

111

Pair style Stillinger−Weber requires atom IDs
This is a requirement to use the SW potential.

Pair style Stillinger−Weber requires newton pair on
See the newton command. This is a restriction to use the SW potential.

Pair style Tersoff requires atom IDs
This is a requirement to use the Tersoff potential.

Pair style Tersoff requires newton pair on
See the newton command. This is a restriction to use the Tersoff potential.

Pair style born/coul/long requires atom attribute q
An atom style that defines this attribute must be used.

Pair style buck/coul/cut requires atom attribute q
The atom style defined does not have this attribute.

Pair style buck/coul/long requires atom attribute q
The atom style defined does not have these attributes.

Pair style coul/cut requires atom attribute q
The atom style defined does not have these attributes.

Pair style does not support bond_style quartic
The pair style does not have a single() function, so it can not be invoked by bond_style quartic.

Pair style does not support compute group/group
The pair_style does not have a single() function, so it cannot be invokded by the compute group/group
command.

Pair style does not support compute heat/flux
The pair style does not have a single() function, so it can not be invoked by compute heat/flux.

Pair style does not support compute pair/local
The pair style does not have a single() function, so it can not be invoked by fix bond/swap.

Pair style does not support compute property/local
The pair style does not have a single() function, so it can not be invoked by fix bond/swap.

Pair style does not support fix bond/swap
The pair style does not have a single() function, so it can not be invoked by fix bond/swap.

Pair style does not support pair_write
The pair style does not have a single() function, so it can not be invoked by pair write.

Pair style does not support rRESPA inner/middle/outer
You are attempting to use rRESPA options with a pair style that does not support them.

Pair style granular with history requires atoms have IDs
Atoms in the simulation do not have IDs, so history effects cannot be tracked by the granular pair
potential.

Pair style hybrid cannot have hybrid as an argument
Self−explanatory.

Pair style hybrid cannot have none as an argument
Self−explanatory.

Pair style hybrid cannot use same pair style twice
The sub−style arguments of pair_style hybrid cannot be duplicated. Check the input script.

Pair style is incompatible with KSpace style
If a pair style with a long−range Coulombic component is selected, then a kspace style must also be used.

Pair style lj/charmm/coul/charmm requires atom attribute q
The atom style defined does not have these attributes.

Pair style lj/charmm/coul/long requires atom attribute q
The atom style defined does not have these attributes.

Pair style lj/class2/coul/cut requires atom attribute q
The atom style defined does not have this attribute.

Pair style lj/class2/coul/long requires atom attribute q
The atom style defined does not have this attribute.

112

Pair style lj/cut/coul/cut requires atom attribute q
The atom style defined does not have this attribute.

Pair style lj/cut/coul/long requires atom attribute q
The atom style defined does not have this attribute.

Pair style lj/cut/coul/long/tip4p requires atom IDs
There are no atom IDs defined in the system and the TIP4P potential requires them to find O,H atoms
with a water molecule.

Pair style lj/cut/coul/long/tip4p requires atom attribute q
The atom style defined does not have these attributes.

Pair style lj/cut/coul/long/tip4p requires newton pair on
This is because the computation of constraint forces within a water molecule adds forces to atoms owned
by other processors.

Pair style lj/gromacs/coul/gromacs requires atom attribute q
An atom_style with this attribute is needed.

Pair style peri_pmb requires atom style peri
This is because atom style peri stores quantities needed by the peridynamic potential.

Pair style reax requires atom IDs
This is a requirement to use the ReaxFF potential.

Pair style reax requires newton pair on
This is a requirement to use the ReaxFF potential.

Pair table cutoffs must all be equal to use with KSpace
When using pair style table with a long−range KSpace solver, the cutoffs for all atom type pairs must all
be the same, since the long−range solver starts at that cutoff.

Pair table parameters did not set N
List of pair table parameters must include N setting.

Pair tersoff/zbl requires metal or real units
This is a current restriction of this pair potential.

Pair yukawa/colloid cannot be used with atom attribute diameter
Only finite−size particles defined by the shape command can be used.

Pair yukawa/colloid requires atom attribute shape
Self−explanatory.

Pair yukawa/colloid requires spherical particles
Self−explanatory.

Pair_coeff command before pair_style is defined
Self−explanatory.

Pair_coeff command before simulation box is defined
The pair_coeff command cannot be used before a read_data, read_restart, or create_box command.

Pair_modify command before pair_style is defined
Self−explanatory.

Pair_write command before pair_style is defined
Self−explanatory.

Particle on or inside fix wall surface
Particles must be "exterior" to the wall in order for energy/force to be calculated.

Particle on or inside fix wall/region surface
Particles must be "exterior" to the region surface in order for energy/force to be calculated.

Per−atom compute in equal−style variable formula
Equal−style variables cannot use per−atom quantities.

Per−atom energy was not tallied on needed timestep
You are using a thermo keyword that requires potentials to have tallied energy, but they didn't on this
timestep. See the variable doc page for ideas on how to make this work.

Per−atom fix in equal−style variable formula
Equal−style variables cannot use per−atom quantities.

113

Per−atom virial not available with GPU Gay−Berne
Self−explanatory.

Per−atom virial not available with GPU lj/cut
Self−explanatory.

Per−atom virial was not tallied on needed timestep
You are using a thermo keyword that requires potentials to have tallied the virial, but they didn't on this
timestep. See the variable doc page for ideas on how to make this work.

Potential file has duplicate entry
The potential file for a SW or Tersoff potential has more than one entry for the same 3 ordered elements.

Potential file is missing an entry
The potential file for a SW or Tersoff potential does not have a needed entry.

Power by 0 in variable formula
Self−explanatory.

Pressure ID for fix box/relax does not exist
The compute ID needed to compute pressure for the fix does not exist.

Pressure ID for fix modify does not exist
Self−explanatory.

Pressure ID for fix nph does not exist
The compute ID needed to compute pressure for the fix does not exist.

Pressure ID for fix npt does not exist
The compute ID needed to compute pressure for the fix does not exist.

Pressure ID for fix press/berendsen does not exist
The compute ID needed to compute pressure for the fix does not exist.

Pressure ID for thermo does not exist
The compute ID needed to compute pressure for thermodynamics does not exist.

Proc grid in z != 1 for 2d simulation
There cannot be more than 1 processor in the z dimension of a 2d simulation.

Processor partitions are inconsistent
The total number of processors in all partitions must match the number of processors LAMMPS is
running on.

Processors command after simulation box is defined
The processors command cannot be used after a read_data, read_restart, or create_box command.

Quaternion creation numeric error
A numeric error occurred in the creation of a rigid body by the fix rigid command.

R0 < 0 for fix spring command
Equilibrium spring length is invalid.

Region cannot have 0 length rotation vector
Self−explanatory.

Region intersect region ID does not exist
Self−explanatory.

Region union or intersect cannot be dynamic
The sub−regions can be dynamic, but not the combined region.

Region union region ID does not exist
One or more of the region IDs specified by the region union command does not exist.

Replacing a fix, but new style != old style
A fix ID can be used a 2nd time, but only if the style matches the previous fix. In this case it is assumed
you with to reset a fix's parameters. This error may mean you are mistakenly re−using a fix ID when you
do not intend to.

Replicate command before simulation box is defined
The replicate command cannot be used before a read_data, read_restart, or create_box command.

Replicate did not assign all atoms correctly
Atoms replicated by the replicate command were not assigned correctly to processors. This is likely due

114

to some atom coordinates being outside a non−periodic simulation box.
Respa inner cutoffs are invalid

The first cutoff must be <= the second cutoff.
Respa levels must be >= 1

Self−explanatory.
Respa middle cutoffs are invalid

The first cutoff must be <= the second cutoff.
Reuse of compute ID

A compute ID cannot be used twice.
Reuse of dump ID

A dump ID cannot be used twice.
Reuse of region ID

A region ID cannot be used twice.
Rigid body has degenerate moment of inertia

Fix poems will only work with bodies (collections of atoms) that have non−zero principal moments of
inertia. This means they must be 3 or more non−collinear atoms, even with joint atoms removed.

Rigid fix must come before NPT/NPH fix
NPT/NPH fix must be defined in input script after all rigid fixes, else the rigid fix contribution to the
pressure virial is incorrect.

Run command before simulation box is defined
The run command cannot be used before a read_data, read_restart, or create_box command.

Run command start value is after start of run
Self−explanatory.

Run command stop value is before end of run
Self−explanatory.

Run command upto value is before current timestep
Self−explanatory.

Run_style command before simulation box is defined
The run_style command cannot be used before a read_data, read_restart, or create_box command.

Set command before simulation box is defined
The set command cannot be used before a read_data, read_restart, or create_box command.

Set command with no atoms existing
No atoms are yet defined so the set command cannot be used.

Set region ID does not exist
Region ID specified in set command does not exist.

Shake angles have different bond types
All 3−atom angle−constrained SHAKE clusters specified by the fix shake command that are the same
angle type, must also have the same bond types for the 2 bonds in the angle.

Shake atoms %d %d %d %d missing on proc %d at step %d
The 4 atoms in a single shake cluster specified by the fix shake command are not all accessible to a
processor. This probably means an atom has moved too far.

Shake atoms %d %d %d missing on proc %d at step %d
The 3 atoms in a single shake cluster specified by the fix shake command are not all accessible to a
processor. This probably means an atom has moved too far.

Shake atoms %d %d missing on proc %d at step %d
The 2 atoms in a single shake cluster specified by the fix shake command are not all accessible to a
processor. This probably means an atom has moved too far.

Shake cluster of more than 4 atoms
A single cluster specified by the fix shake command can have no more than 4 atoms.

Shake clusters are connected
A single cluster specified by the fix shake command must have a single central atom with up to 3 other
atoms bonded to it.

115

Shake determinant = 0.0
The determinant of the matrix being solved for a single cluster specified by the fix shake command is
numerically invalid.

Shake fix must come before NPT/NPH fix
NPT fix must be defined in input script after SHAKE fix, else the SHAKE fix contribution to the pressure
virial is incorrect.

Shape command before simulation box is defined
Self−explanatory.

Sqrt of negative in variable formula
Self−explanatory.

Substitution for illegal variable
Input script line contained a variable that could not be substituted for.

TIP4P hydrogen has incorrect atom type
The TIP4P pairwise computation found an H atom whose type does not agree with the specified H type.

TIP4P hydrogen is missing
The TIP4P pairwise computation failed to find the correct H atom within a water molecule.

TMD target file did not list all group atoms
The target file for the fix tmd command did not list all atoms in the fix group.

Target T for fix npt cannot be 0.0
Self−explanatory.

Target T for fix nvt cannot be 0.0
Self−explanatory.

Temper command before simulation box is defined
The temper command cannot be used before a read_data, read_restart, or create_box command.

Temperature ID for fix bond/swap does not exist
Self−explanatory.

Temperature ID for fix box/relax does not exist
Self−explanatory.

Temperature ID for fix nph does not exist
Self−explanatory.

Temperature ID for fix npt does not exist
Self−explanatory.

Temperature ID for fix nvt does not exist
Self−explanatory.

Temperature ID for fix press/berendsen does not exist
Self−explanatory.

Temperature ID for fix temp/berendsen does not exist
Self−explanatory.

Temperature ID for fix temp/rescale does not exist
Self−explanatory.

Temperature for fix nvt/sllod does not have a bias
The specified compute must compute temperature with a bias.

Temperature region ID does not exist
The region ID specified in the temperature command does not exist.

Tempering could not find thermo_pe compute
This compute is created by the thermo command. It must have been explicitly deleted by a uncompute
command.

Tempering fix ID is not defined
The fix ID specified by the temper command does not exist.

Tempering temperature fix is not valid
The fix specified by the temper command is not one that controls temperature (nvt or langevin).

Thermo and fix not computed at compatible times

116

Fixes generate values on specific timesteps. The thermo output does not match these timesteps.
Thermo compute array is accessed out−of−range

Self−explanatory.
Thermo compute does not compute array

Self−explanatory.
Thermo compute does not compute scalar

Self−explanatory.
Thermo compute does not compute vector

Self−explanatory.
Thermo compute vector is accessed out−of−range

Self−explanatory.
Thermo custom variable cannot be indexed

Self−explanatory.
Thermo custom variable is not equal−style variable

Only equal−style variables can be output with thermodynamics, not atom−style variables.
Thermo fix array is accessed out−of−range

Self−explanatory.
Thermo fix does not compute array

Self−explanatory.
Thermo fix does not compute scalar

Self−explanatory.
Thermo fix does not compute vector

Self−explanatory.
Thermo fix vector is accessed out−of−range

Self−explanatory.
Thermo keyword in variable requires thermo to use/init pe

You are using a thermo keyword in a variable that requires potential energy to be calculated, but your
thermo output does not use it. Add it to your thermo output.

Thermo keyword in variable requires thermo to use/init press
You are using a thermo keyword in a variable that requires pressure to be calculated, but your thermo
output does not use it. Add it to your thermo output.

Thermo keyword in variable requires thermo to use/init temp
You are using a thermo keyword in a variable that requires temperature to be calculated, but your thermo
output does not use it. Add it to your thermo output.

Thermo style does not use press
Cannot use thermo_modify to set this parameter since the thermo_style is not computing this quantity.

Thermo style does not use temp
Cannot use thermo_modify to set this parameter since the thermo_style is not computing this quantity.

Thermo_modify pressure ID does not compute pressure
The specified compute ID does not compute pressure.

Thermo_modify temperature ID does not compute temperature
The specified compute ID does not compute temperature.

Thermo_style command before simulation box is defined
The thermo_style command cannot be used before a read_data, read_restart, or create_box command.

Threshhold for an atom property that isn't allocated
A dump threshhold has been requested on a quantity that is not defined by the atom style used in this
simulation.

Timestep must be >= 0
Specified timestep size is invalid.

Too big a problem to replicate with molecular atom style
Molecular problems cannot become bigger than 2^31 atoms (or bonds, etc) when replicated, else the atom
IDs and other quantities cannot be stored in 32−bit quantities.

117

Too few bits for lookup table
Table size specified via pair_modify command does not work with your machine's floating point
representation.

Too many atom sorting bins
This is likely due to an immense simulation box that has blown up to a large size.

Too many exponent bits for lookup table
Table size specified via pair_modify command does not work with your machine's floating point
representation.

Too many groups
The maximum number of atom groups (including the "all" group) is given by MAX_GROUP in
group.cpp and is 32.

Too many mantissa bits for lookup table
Table size specified via pair_modify command does not work with your machine's floating point
representation.

Too many masses for fix shake
The fix shake command cannot list more masses than there are atom types.

Too many neighbor bins
This is likely due to an immense simulation box that has blown up to a large size.

Too many total bits for bitmapped lookup table
Table size specified via pair_modify command is too large. Note that a value of N generates a 2^N size
table.

Too many touching neighbors − boost MAXTOUCH
A granular simulation has too many neighbors touching one atom. The MAXTOUCH parameter in
fix_shear_history.cpp must be set larger and LAMMPS must be re−built.

Total # of atoms exceeds maximum allowed per GPGPU
See the doc page for a description of this memory limit.

Tree structure in joint connections
Fix poems cannot (yet) work with coupled bodies whose joints connect the bodies in a tree structure.

Triclinic box must be periodic in skewed dimensions
This is a requirement for using a non−orthogonal box. E.g. to set a non−zero xy tilt, both x and y must be
periodic dimensions.

Triclinic box skew is too large
The displacement in a skewed direction must be less than half the box length in that dimension. E.g. the
xy tilt must be between −half and +half of the x box length.

Tried to convert a double to int, but input_double > INT_MAX
Self−explanatory.

Two groups cannot be the same in fix spring couple
Self−explanatory.

Unbalanced quotes in input line
No matching end double quote was found following a leading double quote.

Unexpected end of data file
LAMMPS hit the end of the data file while attempting to read a section. Something is wrong with the
format of the data file.

Units command after simulation box is defined
The units command cannot be used after a read_data, read_restart, or create_box command.

Universe/uloop variable count < # of partitions
A universe or uloop style variable must specify a number of values >= to the number of processor
partitions.

Unknown command: %s
The command is not known to LAMMPS. Check the input script.

Unknown identifier in data file: %s
A section of the data file cannot be read by LAMMPS.

118

Unknown table style in angle style table
Self−explanatory.

Unknown table style in bond style table
Self−explanatory.

Unknown table style in pair_style command
Style of table is invalid for use with pair_style table command.

Unrecognized lattice type in MEAM file 1
The lattice type in an entry of the MEAM library file is not valid.

Unrecognized lattice type in MEAM file 2
The lattice type in an entry of the MEAM parameter file is not valid.

Use of compute temp/ramp with undefined lattice
Must use lattice command with compute temp/ramp command if units option is set to lattice.

Use of displace_atoms with undefined lattice
Must use lattice command with displace_atoms command if units option is set to lattice.

Use of displace_box with undefined lattice
Must use lattice command with displace_box command if units option is set to lattice.

Use of fix ave/spatial with undefined lattice
A lattice must be defined to use fix ave/spatial with units = lattice.

Use of fix deform with undefined lattice
A lattice must be defined to use fix deform with units = lattice.

Use of fix deposit with undefined lattice
Must use lattice command with compute fix deposit command if units option is set to lattice.

Use of fix dt/reset with undefined lattice
Must use lattice command with fix dt/reset command if units option is set to lattice.

Use of fix indent with undefined lattice
The lattice command must be used to define a lattice before using the fix indent command.

Use of fix move with undefined lattice
Must use lattice command with fix move command if units option is set to lattice.

Use of fix recenter with undefined lattice
Must use lattice command with fix recenter command if units option is set to lattice.

Use of fix wall with undefined lattice
Must use lattice command with fix wall command if units option is set to lattice.

Use of region with undefined lattice
If scale = lattice (the default) for the region command, then a lattice must first be defined via the lattice
command.

Use of velocity with undefined lattice
If scale = lattice (the default) for the velocity set or velocity ramp command, then a lattice must first be
defined via the lattice command.

Using fix nvt/sllod with inconsistent fix deform remap option
Fix nvt/sllod requires that deforming atoms have a velocity profile provided by "remap v" as a fix deform
option.

Using fix nvt/sllod with no fix deform defined
Self−explanatory.

Variable evaluation before simulation box is defined
Cannot evaluate a compute or fix or atom−based value in a variable before the simulation has been setup.

Variable for fix move is invalid style
Self−explanatory.

Variable formula compute vector is accessed out−of−range
Self−explanatory.

Variable formula fix vector is accessed out−of−range
Self−explanatory.

Variable name for compute reduce does not exist

119

Self−explanatory.
Variable name for fix ave/atom does not exist

Self−explanatory.
Variable name for fix ave/histo does not exist

Self−explanatory.
Variable name for fix ave/spatial does not exist

Self−explanatory.
Variable name for fix ave/time does not exist

Self−explanatory.
Variable name for fix move does not exist

Self−explanatory.
Variable name must be alphanumeric or underscore characters

Self−explanatory.
Velocity command before simulation box is defined

The velocity command cannot be used before a read_data, read_restart, or create_box command.
Velocity command with no atoms existing

A velocity command has been used, but no atoms yet exist.
Velocity ramp in z for a 2d problem

Self−explanatory.
Velocity temperature ID does not compute temperature

The compute ID given to the velocity command must compute temperature.
Virial was not tallied on needed timestep

You are using a thermo keyword that requires potentials to have tallied the virial, but they didn't on this
timestep. See the variable doc page for ideas on how to make this work.

World variable count doesn't match # of partitions
A world−style variable must specify a number of values equal to the number of processor partitions.

Write_restart command before simulation box is defined
The write_restart command cannot be used before a read_data, read_restart, or create_box command.

Zero−length lattice orient vector
Self−explanatory.

Warnings:

All element names have been set to 'C' for dump cfg
Use the dump_modify command if you wish to override this.

Atom with molecule ID = 0 included in compute molecule group
The group used in a compute command that operates on moleclues includes atoms with no molecule ID.
This is probably not what you want.

Broken bonds will not alter angles, dihedrals, or impropers
See the doc page for fix bond/break for more info on this restriction.

Compute cna/atom cutoff may be too large to find ghost atom neighbors
The neighbor cutoff used may not encompass enough ghost atoms to perform this operation correctly.

Computing temperature of portions of rigid bodies
The group defined by the temperature compute does not encompass all the atoms in one or more rigid
bodies, so the change in degrees−of−freedom for the atoms in those partial rigid bodies will not be
accounted for.

Created bonds will not create angles, dihedrals, or impropers
See the doc page for fix bond/create for more info on this restriction.

Dihedral problem: %d %d %d %d %d %d
Conformation of the 4 listed dihedral atoms is extreme; you may want to check your simulation geometry.

Dump dcd/xtc timestamp may be wrong with fix dt/reset
If the fix changes the timestep, the dump dcd file will not reflect the change.

120

FENE bond too long: %d %d %d %g
A FENE bond has stretched dangerously far. It's interaction strength will be truncated to attempt to
prevent the bond from blowing up.

FENE bond too long: %d %g
A FENE bond has stretched dangerously far. It's interaction strength will be truncated to attempt to
prevent the bond from blowing up.

Fix bond/swap will ignore defined angles
See the doc page for fix bond/swap for more info on this restriction.

Fix move does not update angular momentum
Atoms store this quantity, but fix move does not (yet) update it.

Fix move does not update quaternions
Atoms store this quantity, but fix move does not (yet) update it.

Fix recenter should come after all other integration fixes
Other fixes may change the position of the center−of−mass, so fix recenter should come last.

Fix thermal/conductivity comes before fix ave/spatial
The order of these 2 fixes in your input script is such that fix thermal/conductivity comes first. If you are
using fix ave/spatial to measure the temperature profile induced by fix viscosity, then this may cause a
glitch in the profile since you are averaging immediately after swaps have occurred. Flipping the order of
the 2 fixes typically helps.

Fix viscosity comes before fix ave/spatial
The order of these 2 fixes in your input script is such that fix viscosity comes first. If you are using fix
ave/spatial to measure the velocity profile induced by fix viscosity, then this may cause a glitch in the
profile since you are averaging immediately after swaps have occurred. Flipping the order of the 2 fixes
typically helps.

Group for fix_modify temp != fix group
The fix_modify command is specifying a temperature computation that computes a temperature on a
different group of atoms than the fix itself operates on. This is probably not what you want to do.

Improper problem: %d %d %d %d %d %d
Conformation of the 4 listed improper atoms is extreme; you may want to check your simulation
geometry.

Kspace_modify slab param < 2.0 may cause unphysical behavior
The kspace_modify slab parameter should be larger to insure periodic grids padded with empty space do
not overlap.

Less insertions than requested
Less atom insertions occurred on this timestep due to the fix insert command than were scheduled. This is
probably because there were too many overlaps detected.

Lost atoms: original %.15g current %.15g
A thermodynamic computation has detected lost atoms.

Mismatch between velocity and compute groups
The temperature computation used by the velocity command will not be on the same group of atoms that
velocities are being set for.

More than one compute centro/atom
It is not efficient to use compute centro/atom more than once.

More than one compute cna/atom defined
It is not efficient to use compute cna/atom more than once.

More than one compute coord/atom
It is not efficient to use compute coord/atom more than once.

More than one compute damage/atom
It is not efficient to use compute ke/atom more than once.

More than one compute ke/atom
It is not efficient to use compute ke/atom more than once.

More than one fix poems

121

It is not efficient to use fix poems more than once.
More than one fix rigid

It is not efficient to use fix rigid more than once.
New thermo_style command, previous thermo_modify settings will be lost

If a thermo_style command is used after a thermo_modify command, the settings changed by the
thermo_modify command will be reset to their default values. This is because the thermo_modify
commmand acts on the currently defined thermo style, and a thermo_style command creates a new style.

No fixes defined, atoms won't move
If you are not using a fix like nve, nvt, npt then atom velocities and coordinates will not be updated
during timestepping.

No joints between rigid bodies, use fix rigid instead
The bodies defined by fix poems are not connected by joints. POEMS will integrate the body motion, but
it would be more efficient to use fix rigid.

Not using real units with pair reax
This is most likely an error, unless you have created your own ReaxFF parameter file in a different set of
units.

One or more atoms are time integrated more than once
This is probably an error since you typically do not want to advance the positions or velocities of an atom
more than once per timestep.

One or more compute molecules has atoms not in group
The group used in a compute command that operates on moleclues does not include all the atoms in some
molecules. This is probably not what you want.

One or more respa levels compute no forces
This is computationally inefficient.

Pair dsmc: num_of_collisions > number_of_A
Collision model in DSMC is breaking down.

Pair dsmc: num_of_collisions > number_of_B
Collision model in DSMC is breaking down.

Particle deposition was unsuccessful
The fix deposit command was not able to insert as many atoms as needed. The requested volume fraction
may be too high, or other atoms may be in the insertion region.

Reducing PPPM order b/c stencil extends beyond neighbor processor
LAMMPS is attempting this in order to allow the simulation to run. It should not effect the PPPM
accuracy.

Replacing a fix, but new group != old group
The ID and style of a fix match for a fix you are changing with a fix command, but the new group you are
specifying does not match the old group.

Replicating in a non−periodic dimension
The parameters for a replicate command will cause a non−periodic dimension to be replicated; this may
cause unwanted behavior.

Resetting reneighboring criteria during PRD
A PRD simulation requires that neigh_modify settings be delay = 0, every = 1, check = yes. Since these
settings were not in place, LAMMPS changed them and will restore them to their original values after the
PRD simulation.

Resetting reneighboring criteria during minimization
Minimization requires that neigh_modify settings be delay = 0, every = 1, check = yes. Since these
settings were not in place, LAMMPS changed them and will restore them to their original values after the
minimization.

Restart file used different # of processors
The restart file was written out by a LAMMPS simulation running on a different number of processors.
Due to round−off, the trajectories of your restarted simulation may diverge a little more quickly than if
you ran on the same # of processors.

122

Restart file used different 3d processor grid
The restart file was written out by a LAMMPS simulation running on a different 3d grid of processors.
Due to round−off, the trajectories of your restarted simulation may diverge a little more quickly than if
you ran on the same # of processors.

Restart file used different boundary settings, using restart file values
Your input script cannot change these restart file settings.

Restart file used different newton bond setting, using restart file value
The restart file value will override the setting in the input script.

Restart file used different newton pair setting, using input script value
The input script value will override the setting in the restart file.

Restart file version does not match LAMMPS version
This may cause problems when reading the restart file.

Running PRD with only one replica
This is allowed, but you will get no parallel speed−up.

Shake determinant < 0.0
The determinant of the quadratic equation being solved for a single cluster specified by the fix shake
command is numerically suspect. LAMMPS will set it to 0.0 and continue.

Should not allow rigid bodies to bounce off relecting walls
LAMMPS allows this, but their dynamics are not computed correctly.

System is not charge neutral, net charge = %g
The total charge on all atoms on the system is not 0.0, which is not valid for Ewald or PPPM.

Table inner cutoff >= outer cutoff
You specified an inner cutoff for a Coulombic table that is longer than the global cutoff. Probably not
what you wanted.

Temperature for NPH is not for group all
User−assigned temperature to NPH fix does not compute temperature for all atoms. Since NPH computes
a global pressure, the kinetic energy contribution from the temperature is assumed to also be for all atoms.
Thus the pressure used by NPH could be inaccurate.

Temperature for NPT is not for group all
User−assigned temperature to NPT fix does not compute temperature for all atoms. Since NPT computes
a global pressure, the kinetic energy contribution from the temperature is assumed to also be for all atoms.
Thus the pressure used by NPT could be inaccurate.

Temperature for fix modify is not for group all
The temperature compute is being used with a pressure calculation which does operate on group all, so
this may be inconsistent.

Temperature for thermo pressure is not for group all
User−assigned temperature to thermo via the thermo_modify command does not compute temperature for
all atoms. Since thermo computes a global pressure, the kinetic energy contribution from the temperature
is assumed to also be for all atoms. Thus the pressure printed by thermo could be inaccurate.

Too many common neighbors in CNA %d times
More than the maximum # of neighbors was found multiple times. This was unexpected.

Too many inner timesteps in fix ttm
Self−explanatory.

Too many neighbors in CNA for %d atoms
More than the maximum # of neighbors was found multiple times. This was unexpected.

Use special bonds = 0,1,1 with bond style fene/expand
Most FENE models need this setting for the special_bonds command.

Use special bonds = 0,1,1 with bond style fene
Most FENE models need this setting for the special_bonds command.

Using compute temp/deform with inconsistent fix deform remap option
Fix nvt/sllod assumes deforming atoms have a velocity profile provided by "remap v" or "remap none" as
a fix deform option.

123

Using compute temp/deform with no fix deform defined
This is probably an error, since it makes little sense to use compute temp/deform in this case.

Using pair tail corrections with nonperiodic system
This is probably a bogus thing to do, since tail corrections are computed by integrating the density of a
periodic system out to infinity.

124

Previous Section − LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands − Next Section

10. Future and history

This section lists features we are planning to add to LAMMPS, features of previous versions of LAMMPS, and
features of other parallel molecular dynamics codes I've distributed.

10.1 Coming attractions
10.2 Past versions

10.1 Coming attractions

The current version of LAMMPS incorporates nearly all the features from previous parallel MD codes developed
at Sandia. These include earlier versions of LAMMPS itself, Warp and ParaDyn for metals, and GranFlow for
granular materials.

These are new features we'd like to eventually add to LAMMPS. Some are being worked on; some haven't been
implemented because of lack of time or interest; others are just a lot of work! See this page on the LAMMPS
WWW site for more details.

Coupling to finite elements for streess−strain•
New ReaxFF implementation•
Nudged elastic band•
Temperature accelerated dynamics•
Triangulated particles•
Stochastic rotation dynamics•
Stokesian dynamics via fast lubrication dynamics•
NPT with changing box shape (Parinello−Rahman)•
Long−range point−dipole solver•
Per−atom energy and stress for long−range Coulombics•
Long−range Coulombics via Ewald and PPPM for triclinic boxes•
Metadynamics•
Direct Simulation Monte Carlo − DSMC•

10.2 Past versions

LAMMPS development began in the mid 1990s under a cooperative research &development agreement
(CRADA) between two DOE labs (Sandia and LLNL) and 3 companies (Cray, Bristol Myers Squibb, and
Dupont). Soon after the CRADA ended, a final F77 version of the code, LAMMPS 99, was released. As
development of LAMMPS continued at Sandia, the memory management in the code was converted to F90; a
final F90 version was released as LAMMPS 2001.

The current LAMMPS is a rewrite in C++ and was first publicly released in 2004. It includes many new features,
including features from other parallel molecular dynamics codes written at Sandia, namely ParaDyn, Warp, and
GranFlow. ParaDyn is a parallel implementation of the popular serial DYNAMO code developed by Stephen
Foiles and Murray Daw for their embedded atom method (EAM) metal potentials. ParaDyn uses atom− and
force−decomposition algorithms to run in parallel. Warp is also a parallel implementation of the EAM potentials
designed for large problems, with boundary conditions specific to shearing solids in varying geometries.
GranFlow is a granular materials code with potentials and boundary conditions peculiar to granular systems. All
of these codes (except ParaDyn) use spatial−decomposition techniques for their parallelism.

125

http://lammps.sandia.gov
http://lammps.sandia.gov/future.html

These older codes are available for download from the LAMMPS WWW site, except for Warp &GranFlow which
were primarily used internally. A brief listing of their features is given here.

LAMMPS 2001

F90 + MPI•
dynamic memory•
spatial−decomposition parallelism•
NVE, NVT, NPT, NPH, rRESPA integrators•
LJ and Coulombic pairwise force fields•
all−atom, united−atom, bead−spring polymer force fields•
CHARMM−compatible force fields•
class 2 force fields•
3d/2d Ewald &PPPM•
various force and temperature constraints•
SHAKE•
Hessian−free truncated−Newton minimizer•
user−defined diagnostics•

LAMMPS 99

F77 + MPI•
static memory allocation•
spatial−decomposition parallelism•
most of the LAMMPS 2001 features with a few exceptions•
no 2d Ewald &PPPM•
molecular force fields are missing a few CHARMM terms•
no SHAKE•

Warp

F90 + MPI•
spatial−decomposition parallelism•
embedded atom method (EAM) metal potentials + LJ•
lattice and grain−boundary atom creation•
NVE, NVT integrators•
boundary conditions for applying shear stresses•
temperature controls for actively sheared systems•
per−atom energy and centro−symmetry computation and output•

ParaDyn

F77 + MPI•
atom− and force−decomposition parallelism•
embedded atom method (EAM) metal potentials•
lattice atom creation•
NVE, NVT, NPT integrators•
all serial DYNAMO features for controls and constraints•

GranFlow

F90 + MPI•

126

http://lammps.sandia.gov

spatial−decomposition parallelism•
frictional granular potentials•
NVE integrator•
boundary conditions for granular flow and packing and walls•
particle insertion•

127

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

angle_style charmm command

Syntax:

angle_style charmm

Examples:

angle_style charmm
angle_coeff 1 300.0 107.0 50.0 3.0

Description:

The charmm angle style uses the potential

with an additional Urey_Bradley term based on the distance r between the 1st and 3rd atoms in the angle. K,
theta0, Kub, and Rub are coefficients defined for each angle type.

See (MacKerell) for a description of the CHARMM force field.

The following coefficients must be defined for each angle type via the angle_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

K (energy/radian^2)•
theta0 (degrees)•
K_ub (energy/distance^2)•
r_ub (distance)•

Theta0 is specified in degrees, but LAMMPS converts it to radians internally; hence the units of K are in
energy/radian^2.

Restrictions:

This angle style can only be used if LAMMPS was built with the "molecular" package (which it is by default).
See the Making LAMMPS section for more info on packages.

Related commands:

angle_coeff

Default: none

(MacKerell) MacKerell, Bashford, Bellott, Dunbrack, Evanseck, Field, Fischer, Gao, Guo, Ha, et al, J Phys
Chem, 102, 3586 (1998).

128

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

angle_style class2 command

Syntax:

angle_style class2

Examples:

angle_style class2
angle_coeff * 75.0

Description:

The class2 angle style uses the potential

where Ea is the angle term, Ebb is a bond−bond term, and Eba is a bond−angle term. Theta0 is the equilibrium
angle and r1 and r2 are the equilibrium bond lengths.

See (Sun) for a description of the COMPASS class2 force field.

For this style, coefficients for the Ea formula can be specified in the input script or data file. These are the 4
coefficients:

theta0 (degrees)•
K2 (energy/radian^2)•
K3 (energy/radian^3)•
K4 (energy/radian^4)•

Theta0 is specified in degrees, but LAMMPS converts it to radians internally; hence the units of the various K are
in per−radian.

Coefficients for the Ebb and Eba formulas can only be specified in the data file.

For the Ebb formula, the coefficients are listed under a "BondBond Coeffs" heading and each line lists 3
coefficients:

M (energy/distance^2)•
r1 (distance)•
r2 (distance)•

For the Eba formula, the coefficients are listed under a "BondAngle Coeffs" heading and each line lists 4
coefficients:

129

http://lammps.sandia.gov

N1 (energy/distance^2)•
N2 (energy/distance^2)•
r1 (distance)•
r2 (distance)•

The theta0 value in the Eba formula is not specified, since it is the same value from the Ea formula.

Restrictions:

This angle style can only be used if LAMMPS was built with the "class2" package. See the Making LAMMPS
section for more info on packages.

Related commands:

angle_coeff

Default: none

(Sun) Sun, J Phys Chem B 102, 7338−7364 (1998).

130

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

angle_style cg/cmm command

Syntax:

angle_style cg/cmm

Examples:

angle_style cg/cmm
angle_coeff 1 300.0 107.0 lj9_6 0.4491 3.7130

Description:

The cg/cmm angle style is a combination of the harmonic angle potential,

where theta0 is the equilibrium value of the angle and K a prefactor, with the repulsive part of the non−bonded
cg/cmm pair style between the atoms 1 and 3. This angle potential is intended for coarse grained MD simulations
with the CMM parametrization using the pair_style cg/cmm. Relative to the pair_style cg/cmm, however, the
energy is shifted by epsilon, to avoid sudden jumps. Note that the usual 1/2 factor is included in K.

The following coefficients must be defined for each angle type via the angle_coeff command as in the example
above. As with other CMM coarse grained parameters, they cannot be set in the data file, but can be restored from
restarts via the read_restart command:

K (energy/radian^2)•
theta0 (degrees)•
cg_type (string, one of lj9_6, lj12_4, lj12_6)•
epsilon (energy units)•
sigma (distance units)•

Theta0 is specified in degrees, but LAMMPS converts it to radians internally; hence the units of K are in
energy/radian^2.

Restrictions:

This angle style can only be used if LAMMPS was built with the "user−cg−cmm" package. See the Making
LAMMPS section for more info on packages.

Related commands:

angle_coeff, angle_style harmonic, pair_style cg/cmm

Default: none

131

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

angle_coeff command

Syntax:

angle_coeff N args

N = angle type (see asterisk form below)•
args = coefficients for one or more angle types•

Examples:

angle_coeff 1 300.0 107.0
angle_coeff * 5.0
angle_coeff 2*10 5.0

Description:

Specify the angle force field coefficients for one or more angle types. The number and meaning of the coefficients
depends on the angle style. Angle coefficients can also be set in the data file read by the read_data command or in
a restart file.

N can be specified in one of two ways. An explicit numeric value can be used, as in the 1st example above. Or a
wild−card asterisk can be used to set the coefficients for multiple angle types. This takes the form "*" or "*n" or
"n*" or "m*n". If N = the number of angle types, then an asterisk with no numeric values means all types from 1
to N. A leading asterisk means all types from 1 to n (inclusive). A trailing asterisk means all types from n to N
(inclusive). A middle asterisk means all types from m to n (inclusive).

Note that using an angle_coeff command can override a previous setting for the same angle type. For example,
these commands set the coeffs for all angle types, then overwrite the coeffs for just angle type 2:

angle_coeff * 200.0 107.0 1.2
angle_coeff 2 50.0 107.0

A line in a data file that specifies angle coefficients uses the exact same format as the arguments of the
angle_coeff command in an input script, except that wild−card asterisks should not be used since coefficients for
all N types must be listed in the file. For example, under the "Angle Coeffs" section of a data file, the line that
corresponds to the 1st example above would be listed as

1 300.0 107.0

Here is an alphabetic list of angle styles defined in LAMMPS. Click on the style to display the formula it
computes and coefficients specified by the associated angle_coeff command:

angle_style none − turn off angle interactions•
angle_style hybrid − define multiple styles of angle interactions•

angle_style charmm − CHARMM angle•
angle_style class2 − COMPASS (class 2) angle•
angle_style cosine − cosine angle potential•
angle_style cosine/delta − difference of cosines angle potential•
angle_style cosine/squared − cosine squared angle potential•

132

http://lammps.sandia.gov

angle_style harmonic − harmonic angle•
angle_style table − tabulated by angle•

There are also additional angle styles submitted by users which are included in the LAMMPS distribution. The
list of these with links to the individual styles are given in the angle section of this page.

Restrictions:

This command must come after the simulation box is defined by a read_data, read_restart, or create_box
command.

An angle style must be defined before any angle coefficients are set, either in the input script or in a data file.

Related commands:

angle_style

Default: none

133

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

angle_style cosine command

Syntax:

angle_style cosine

Examples:

angle_style cosine
angle_coeff * 75.0

Description:

The cosine angle style uses the potential

where K is defined for each angle type.

The following coefficients must be defined for each angle type via the angle_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

K (energy)•

Restrictions:

This angle style can only be used if LAMMPS was built with the "molecular" package (which it is by default).
See the Making LAMMPS section for more info on packages.

Related commands:

angle_coeff

Default: none

134

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

angle_style cosine/delta command

Syntax:

angle_style cosine/delta

Examples:

angle_style cosine/delta
angle_coeff 2*4 75.0 100.0

Description:

The cosine/delta angle style uses the potential

where theta0 is the equilibrium value of the angle, and K is a prefactor. Note that the usual 1/2 factor is included
in K.

The following coefficients must be defined for each angle type via the angle_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

K (energy)•
theta0 (degrees)•

Theta0 is specified in degrees, but LAMMPS converts it to radians internally.

Restrictions:

This angle style can only be used if LAMMPS was built with the "molecular" package (which it is by default).
See the Making LAMMPS section for more info on packages.

Related commands:

angle_coeff, angle_style cosine/squared

Default: none

135

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

angle_style cosine/squared command

Syntax:

angle_style cosine/squared

Examples:

angle_style cosine/squared
angle_coeff 2*4 75.0 100.0

Description:

The cosine/squared angle style uses the potential

where theta0 is the equilibrium value of the angle, and K is a prefactor. Note that the usual 1/2 factor is included
in K.

The following coefficients must be defined for each angle type via the angle_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

K (energy)•
theta0 (degrees)•

Theta0 is specified in degrees, but LAMMPS converts it to radians internally.

Restrictions:

This angle style can only be used if LAMMPS was built with the "molecular" package (which it is by default).
See the Making LAMMPS section for more info on packages.

Related commands:

angle_coeff

Default: none

136

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

angle_style harmonic command

Syntax:

angle_style harmonic

Examples:

angle_style harmonic
angle_coeff 1 300.0 107.0

Description:

The harmonic angle style uses the potential

where theta0 is the equilibrium value of the angle, and K is a prefactor. Note that the usual 1/2 factor is included
in K.

The following coefficients must be defined for each angle type via the angle_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

K (energy/radian^2)•
theta0 (degrees)•

Theta0 is specified in degrees, but LAMMPS converts it to radians internally; hence the units of K are in
energy/radian^2.

Restrictions: none

This angle style can only be used if LAMMPS was built with the "molecular" package (which it is by default).
See the Making LAMMPS section for more info on packages.

Related commands:

angle_coeff

Default: none

137

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

angle_style hybrid command

Syntax:

angle_style hybrid style1 style2 ...

style1,style2 = list of one or more angle styles•

Examples:

angle_style hybrid harmonic cosine
angle_coeff 1 harmonic 80.0 1.2
angle_coeff 2* cosine 50.0

Description:

The hybrid style enables the use of multiple angle styles in one simulation. An angle style is assigned to each
angle type. For example, angles in a polymer flow (of angle type 1) could be computed with a harmonic potential
and angles in the wall boundary (of angle type 2) could be computed with a cosine potential. The assignment of
angle type to style is made via the angle_coeff command or in the data file.

In the angle_coeff command, the first coefficient sets the angle style and the remaining coefficients are those
appropriate to that style. In the example above, the 2 angle_coeff commands would set angles of angle type 1 to
be computed with a harmonic potential with coefficients 80.0, 1.2 for K, r0. All other angle types (2−N) would be
computed with a cosine potential with coefficient 50.0 for K.

If the angle class2 potential is one of the hybrid styles, it requires additional BondBond and BondAngle
coefficients be specified in the data file. These lines must also have an additional "class2" argument added after
the angle type. For angle types which are assigned to other hybrid styles, use the style name (e.g. "harmonic")
appropriate to that style. The BondBond and BondAngle coeffs for that angle type will then be ignored.

An angle style of none can be specified as the 2nd argument to the angle_coeff command, if you desire to turn off
certain angle types.

Restrictions:

This angle style can only be used if LAMMPS was built with the "molecular" package (which it is by default).
See the Making LAMMPS section for more info on packages.

Unlike other angle styles, the hybrid angle style does not store angle coefficient info for individual sub−styles in a
binary restart files. Thus when retarting a simulation from a restart file, you need to re−specify angle_coeff
commands.

Related commands:

angle_coeff

Default: none

138

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

angle_style none command

Syntax:

angle_style none

Examples:

angle_style none

Description:

Using an angle style of none means angle forces are not computed, even if triplets of angle atoms were listed in
the data file read by the read_data command.

Restrictions: none

Related commands: none

Default: none

139

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

angle_style command

Syntax:

angle_style style

style = none or hybrid or charmm or class2 or cosine or cosine/squared or harmonic•

Examples:

angle_style harmonic
angle_style charmm
angle_style hybrid harmonic cosine

Description:

Set the formula(s) LAMMPS uses to compute angle interactions between triplets of atoms, which remain in force
for the duration of the simulation. The list of angle triplets is read in by a read_data or read_restart command from
a data or restart file.

Hybrid models where angles are computed using different angle potentials can be setup using the hybrid angle
style.

The coefficients associated with a angle style can be specified in a data or restart file or via the angle_coeff
command.

All angle potentials store their coefficient data in binary restart files which means angle_style and angle_coeff
commands do not need to be re−specified in an input script that restarts a simulation. See the read_restart
command for details on how to do this. The one exception is that angle_style hybrid only stores the list of
sub−styles in the restart file; angle coefficients need to be re−specified.

IMPORTANT NOTE: When both an angle and pair style is defined, the special_bonds command often needs to
be used to turn off (or weight) the pairwise interaction that would otherwise exist between 3 bonded atoms.

In the formulas listed for each angle style, theta is the angle between the 3 atoms in the angle.

Here is an alphabetic list of angle styles defined in LAMMPS. Click on the style to display the formula it
computes and coefficients specified by the associated angle_coeff command:

angle_style none − turn off angle interactions•
angle_style hybrid − define multiple styles of angle interactions•

angle_style charmm − CHARMM angle•
angle_style class2 − COMPASS (class 2) angle•
angle_style cosine − cosine angle potential•
angle_style cosine/delta − difference of cosines angle potential•
angle_style cosine/squared − cosine squared angle potential•
angle_style harmonic − harmonic angle•
angle_style table − tabulated by angle•

140

http://lammps.sandia.gov

There are also additional angle styles submitted by users which are included in the LAMMPS distribution. The
list of these with links to the individual styles are given in the angle section of this page.

Restrictions:

Angle styles can only be set for atom_styles that allow angles to be defined.

Most angle styles are part of the "molecular" package. They are only enabled if LAMMPS was built with that
package. See the Making LAMMPS section for more info on packages. The doc pages for individual bond
potentials tell if it is part of a package.

Related commands:

angle_coeff

Default:

angle_style none

141

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

angle_style table command

Syntax:

angle_style table style N

style = linear or spline = method of interpolation•
N = use N values in table•

Examples:

angle_style table linear 1000
angle_coeff 3 file.table ENTRY1

Description:

Style table creates interpolation tables of length N from angle potential and force values listed in a file(s) as a
function of angle The files are read by the angle_coeff command.

The interpolation tables are created by fitting cubic splines to the file values and interpolating energy and force
values at each of N distances. During a simulation, these tables are used to interpolate energy and force values as
needed. The interpolation is done in one of 2 styles: linear or spline.

For the linear style, the angle is used to find 2 surrounding table values from which an energy or force is
computed by linear interpolation.

For the spline style, a cubic spline coefficients are computed and stored at each of the N values in the table. The
angle is used to find the appropriate set of coefficients which are used to evaluate a cubic polynomial which
computes the energy or force.

The following coefficients must be defined for each angle type via the angle_coeff command as in the example
above.

filename•
keyword•

The filename specifies a file containing tabulated energy and force values. The keyword specifies a section of the
file. The format of this file is described below.

The format of a tabulated file is as follows (without the parenthesized comments):

Angle potential for harmonic (one or more comment or blank lines)

HAM (keyword is the first text on line)
N 181 FP 0 0 EQ 90.0 (N, FP, EQ parameters)
 (blank line)
N 181 FP 0 0 (N, FP parameters)
1 0.0 200.5 2.5 (index, angle, energy, force)
2 1.0 198.0 2.5
...
181 180.0 0.0 0.0

142

http://lammps.sandia.gov

A section begins with a non−blank line whose 1st character is not a "#"; blank lines or lines starting with "#" can
be used as comments between sections. The first line begins with a keyword which identifies the section. The line
can contain additional text, but the initial text must match the argument specified in the angle_coeff command.
The next line lists (in any order) one or more parameters for the table. Each parameter is a keyword followed by
one or more numeric values.

The parameter "N" is required and its value is the number of table entries that follow. Note that this may be
different than the N specified in the angle_style table command. Let Ntable = N in the angle_style command, and
Nfile = "N" in the tabulated file. What LAMMPS does is a preliminary interpolation by creating splines using the
Nfile tabulated values as nodal points. It uses these to interpolate as needed to generate energy and force values at
Ntable different points. The resulting tables of length Ntable are then used as described above, when computing
energy and force for individual angles. This means that if you want the interpolation tables of length Ntable to
match exactly what is in the tabulated file (with effectively no preliminary interpolation), you should set Ntable =
Nfile.

The "FP" parameter is optional. If used, it is followed by two values fplo and fphi, which are the derivatives of the
force at the innermost and outermost angle settings. These values are needed by the spline construction routines.
If not specified by the "FP" parameter, they are estimated (less accurately) by the first two and last two force
values in the table.

The "EQ" parameter is also optional. If used, it is followed by a the equilibrium angle value, which is used, for
example, by the fix shake command. If not used, the equilibrium angle is set to 180.0.

Following a blank line, the next N lines list the tabulated values. On each line, the 1st value is the index from 1 to
N, the 2nd value is the angle value (in degrees), the 3rd value is the energy (in energy units), and the 4th is the
force (in force units). The angle values must increase from one line to the next.

Note that one file can contain many sections, each with a tabulated potential. LAMMPS reads the file section by
section until it finds one that matches the specified keyword.

Restrictions:

This angle style can only be used if LAMMPS was built with the "molecular" package (which it is by default).
See the Making LAMMPS section for more info on packages.

Related commands:

angle_coeff

Default: none

143

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

atom_modify command

Syntax:

atom_modify keyword values ...

one or more keyword/value pairs may be appended•
keyword = map or first or sort

map value = array or hash
first value = group−ID = group whose atoms will appear first in internal atom lists
sort values = Nfreq binsize

 Nfreq = sort atoms spatially every this many time steps
 binsize = bin size for spatial sorting (distance units)

•

Examples:

atom_modify map hash
atom_modify map array sort 10000 2.0
atom_modify first colloid

Description:

Modify properties of the atom style selected within LAMMPS.

The map keyword determines how atom ID lookup is done for molecular problems. Lookups are performed by
bond (angle, etc) routines in LAMMPS to find the local atom index associated with a global atom ID. When the
array value is used, each processor stores a lookup table of length N, where N is the total # of atoms in the
system. This is the fastest method for most simulations, but a processor can run out of memory to store the table
for very large simulations. The hash value uses a hash table to perform the lookups. This method can be slightly
slower than the array method, but its memory cost is proportional to N/P on each processor, where P is the total
number of processors running the simulation.

The first keyword allows a group to be specified whose atoms will be maintained as the first atoms in each
processor's list of owned atoms. This in only useful when the specified group is a small fraction of all the atoms,
and there are other operations LAMMPS is performing that will be sped−up significantly by being able to loop
over the smaller set of atoms. Otherwise the reordering required by this option will be a net slow−down. The
neigh_modify include and communicate group commands are two examples of commands that require this setting
to work efficiently. Several fixes, most notably time integration fixes like fix nve, also take advantage of this
setting if the group they operate on is the group specified by this command. Note that specifying "all" as the
group−ID effectively turns off the first option.

It is OK to use the first keyword with a group that has not yet been defined, e.g. to use the atom_modify first
command at the beginning of your input script. LAMMPS does not use the group until a simullation is run.

The sort keyword turns on a spatial sorting or reordering of atoms within each processor's sub−domain every
Nfreq timesteps. This can improve cache performance and thus speed=up a LAMMPS simulation, as discussed in
a paper by (Meloni). In tests we have done, the amount of speed−up can range from zero to 3−4x. It is typically
more effective at speeding up simulations of liquids as opposed to solids.

Reordering is peformed every Nfreq timesteps during a dynamics run or iterations during a minimization. More
precisely, reordering occurs at the first reneighboring that occurs after the target timestep. The reordering is

144

http://lammps.sandia.gov

performed locally by each processor, using bins of the specified binsize. If binsize is set to 0.0, then a binsize
equal to half the neighbor cutoff distance (force cutoff plus skin distance) is used, which is a reasonable value.
After the atoms have been binned, they are reordered so that atoms in the same bin are adjacent to each other in
the processor's 1d list of atoms.

The goal of this procedure is for atoms be near each other in the processor's 1d list of atoms that are also near to
each other spatially. This can improve cache performance when pairwise intereractions and neighbor lists are
computed. Note that if bins are too small, there will be few atoms/bin. Likewise if bins are too large, there will be
many atoms/bin. In both cases, the goal of cache locality can be undermined.

IMPORTANT NOTE: Running a simulation with sorting on versus off should not change the simulation results in
a statistical sense. However, reordering will induce round−off differences, which will lead to diverging
trajectories when comparing two simluations. Various commands, particularly those which use random numbers
(e.g. velocity create, and fix langevin), may generate different results (but statistically identical) depending on the
order in which they process atoms. The order of atoms in a dump file will also change if sorting is enabled.

Restrictions:

The map keyword can only be used before the simulation box is defined by a read_data or create_box command.

The first and sort options cannot be used together. Since sorting is on by default, it will be turned off if the first
keyword is used with a group−ID that is not "all".

Related commands: none

Default:

By default, atomic (non−molecular) problems do not allocate maps. For molecular problems, the option default is
map = array. By default, a "first" group is not defined. By default, sorting is enabled with a frequency of 1000 and
a binsize of 0.0, which means the neighbor cutoff will be used to set the bin size.

(Meloni) Meloni and Rasati, J Chem Phys, 126, 121102 (2007).

145

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

atom_style command

Syntax:

atom_style style args

style = angle or atomic or bond or charge or colloid or dipole or ellipsoid or full or granular or molecular
or peri or hybrid

•

 args = none for any style except hybrid
hybrid args = list of one or more sub−styles

Examples:

atom_style atomic
atom_style bond
atom_style full
atom_style hybrid charge bond

Description:

Define what style of atoms to use in a simulation. This determines what attributes are associated with the atoms.
This command must be used before a simulation is setup via a read_data, read_restart, or create_box command.

Once a style is assigned, it cannot be changed, so use a style general enough to encompass all attributes. E.g. with
style bond, angular terms cannot be used or added later to the model. It is OK to use a style more general than
needed, though it may be slightly inefficient.

The choice of style affects what quantities are stored by each atom, what quantities are communicated between
processors to enable forces to be computed, and what quantities are listed in the data file read by the read_data
command.

These are the additional attributes of each style and the typical kinds of physical systems they are used to model.
All styles store coordinates, velocities, atom IDs and types. See the read_data, create_atoms, and set commands
for info on how to set these various quantities.

angle bonds and angles bead−spring polymers with stiffness

atomic only the default values coarse−grain liquids, solids, metals

bond bonds bead−spring polymers

charge charge atomic system with charges

colloid angular velocity extended spherical particles

dipole charge and dipole moment atomic system with dipoles

ellipsoid quaternion for particle orientation, angular momentumextended aspherical particles

full molecular + charge bio−molecules

granular diameter, density, angular velocity granular models

molecularbonds, angles, dihedrals, impropers uncharged molecules

peri density, volume mesocopic Peridynamic models
All of the styles define point particles, except the colloid, dipole, ellipsoid, granular, and peri styles, which define
finite−size particles. For colloid, dipole, and ellipsoid systems, the shape command is used to specify the size and

146

http://lammps.sandia.gov

shape of particles on a per−type basis, which is spherical for colloid and dipole particles and spherical or
aspherical for ellipsoid particles. For granular systems, the particles are spherical and each has a per−particle
specified diameter. For peri systems, the particles are spherical and each has a per−particle specified volume.

All of the styles assign mass to particles on a per−type basis, using the mass command, except the granular and
peri styles which assign mass on a per−particle basis. For granular systems, the specified diameter and density
are used to calculate each particle's mass. For peri systems, the speficied volume and density are used to calculate
each particle's mass.

Typically, simulations require only a single (non−hybrid) atom style. If some atoms in the simulation do not have
all the properties defined by a particular style, use the simplest style that defines all the needed properties by any
atom. For example, if some atoms in a simulation are charged, but others are not, use the charge style. If some
atoms have bonds, but others do not, use the bond style.

The only scenario where the hybrid style is needed is if there is no single style which defines all needed properties
of all atoms. For example, if you want colloidal particles with charge, you would need to use "atom_style hybrid
colloid charge". When a hybrid style is used, atoms store and communicate the union of all quantities implied by
the individual styles.

LAMMPS can be extended with new atom styles; see this section.

Restrictions:

This command cannot be used after the simulation box is defined by a read_data or create_box command.

The angle, bond, full, and molecular styles are part of the "molecular" package. The granular style is part of the
"granular" package. The colloid style is part of the "colloid" package. The dipole style is part of the "dipole"
package. The ellipsoid style is part of the "asphere" package. The peri style is part of the "peri" package for
Peridynamics. They are only enabled if LAMMPS was built with that package. See the Making LAMMPS section
for more info.

Related commands:

read_data, pair_style

Default:

atom_style atomic

147

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

bond_style class2 command

Syntax:

bond_style class2

Examples:

bond_style class2
bond_coeff 1 1.0 100.0 80.0 80.0

Description:

The class2 bond style uses the potential

where r0 is the equilibrium bond distance.

See (Sun) for a description of the COMPASS class2 force field.

The following coefficients must be defined for each bond type via the bond_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

R0 (distance)•
K2 (energy/distance^2)•
K3 (energy/distance^3)•
K4 (energy/distance^4)•

Restrictions:

This bond style can only be used if LAMMPS was built with the "class2" package. See the Making LAMMPS
section for more info on packages.

Related commands:

bond_coeff, delete_bonds

Default: none

(Sun) Sun, J Phys Chem B 102, 7338−7364 (1998).

148

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

bond_coeff command

Syntax:

bond_coeff N args

N = bond type (see asterisk form below)•
args = coefficients for one or more bond types•

Examples:

bond_coeff 5 80.0 1.2
bond_coeff * 30.0 1.5 1.0 1.0
bond_coeff 1*4 30.0 1.5 1.0 1.0
bond_coeff 1 harmonic 200.0 1.0

Description:

Specify the bond force field coefficients for one or more bond types. The number and meaning of the coefficients
depends on the bond style. Bond coefficients can also be set in the data file read by the read_data command or in
a restart file.

N can be specified in one of two ways. An explicit numeric value can be used, as in the 1st example above. Or a
wild−card asterisk can be used to set the coefficients for multiple bond types. This takes the form "*" or "*n" or
"n*" or "m*n". If N = the number of bond types, then an asterisk with no numeric values means all types from 1
to N. A leading asterisk means all types from 1 to n (inclusive). A trailing asterisk means all types from n to N
(inclusive). A middle asterisk means all types from m to n (inclusive).

Note that using a bond_coeff command can override a previous setting for the same bond type. For example,
these commands set the coeffs for all bond types, then overwrite the coeffs for just bond type 2:

bond_coeff * 100.0 1.2
bond_coeff 2 200.0 1.2

A line in a data file that specifies bond coefficients uses the exact same format as the arguments of the bond_coeff
command in an input script, except that wild−card asterisks should not be used since coefficients for all N types
must be listed in the file. For example, under the "Bond Coeffs" section of a data file, the line that corresponds to
the 1st example above would be listed as

5 80.0 1.2

Here is an alphabetic list of bond styles defined in LAMMPS. Click on the style to display the formula it
computes and coefficients specified by the associated bond_coeff command:

bond_style none − turn off bonded interactions•
bond_style hybrid − define multiple styles of bond interactions•

bond_style class2 − COMPASS (class 2) bond•
bond_style fene − FENE (finite−extensible non−linear elastic) bond•
bond_style fene/expand − FENE bonds with variable size particles•
bond_style harmonic − harmonic bond•

149

http://lammps.sandia.gov

bond_style morse − Morse bond•
bond_style nonlinear − nonlinear bond•
bond_style quartic − breakable quartic bond•
bond_style table − tabulated by bond length•

There are also additional bond styles submitted by users which are included in the LAMMPS distribution. The list
of these with links to the individual styles are given in the bond section of this page.

Restrictions:

This command must come after the simulation box is defined by a read_data, read_restart, or create_box
command.

A bond style must be defined before any bond coefficients are set, either in the input script or in a data file.

Related commands:

bond_style

Default: none

150

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

bond_style fene command

Syntax:

bond_style fene

Examples:

bond_style fene
bond_coeff 1 30.0 1.5 1.0 1.0

Description:

The fene bond style uses the potential

to define a finite extensible nonlinear elastic (FENE) potential (Kremer), used for bead−spring polymer models.
The first term is attractive, the 2nd Lennard−Jones term is repulsive. The first term extends to R0, the maximum
extent of the bond. The 2nd term is cutoff at 2^(1/6) sigma, the minimum of the LJ potential.

The following coefficients must be defined for each bond type via the bond_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

K (energy/distance^2)•
R0 (distance)•
epsilon (energy)•
sigma (distance)•

Restrictions:

This bond style can only be used if LAMMPS was built with the "molecular" package (which it is by default). See
the Making LAMMPS section for more info on packages.

You typically should specify special_bonds fene or special_bonds lj/coul 0 1 1 to use this bond style. LAMMPS
will issue a warning it that's not the case.

Related commands:

bond_coeff, delete_bonds

Default: none

(Kremer) Kremer, Grest, J Chem Phys, 92, 5057 (1990).

151

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

bond_style fene/expand command

Syntax:

bond_style fene/expand

Examples:

bond_style fene/expand
bond_coeff 1 30.0 1.5 1.0 1.0 0.5

Description:

The fene/expand bond style uses the potential

to define a finite extensible nonlinear elastic (FENE) potential (Kremer), used for bead−spring polymer models.
The first term is attractive, the 2nd Lennard−Jones term is repulsive.

The fene/expand bond style is similar to fene except that an extra shift factor of delta (positive or negative) is
added to r to effectively change the bead size of the bonded atoms. The first term now extends to R0 + delta and
the 2nd term is cutoff at 2^(1/6) sigma + delta.

The following coefficients must be defined for each bond type via the bond_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

K (energy/distance^2)•
R0 (distance)•
epsilon (energy)•
sigma (distance)•
delta (distance)•

Restrictions:

This bond style can only be used if LAMMPS was built with the "molecular" package (which it is by default). See
the Making LAMMPS section for more info on packages.

You typically should specify special_bonds fene or special_bonds lj/coul 0 1 1 to use this bond style. LAMMPS
will issue a warning it that's not the case.

Related commands:

bond_coeff, delete_bonds

Default: none

152

http://lammps.sandia.gov

(Kremer) Kremer, Grest, J Chem Phys, 92, 5057 (1990).

153

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

bond_style harmonic command

Syntax:

bond_style harmonic

Examples:

bond_style harmonic
bond_coeff 5 80.0 1.2

Description:

The harmonic bond style uses the potential

where r0 is the equilibrium bond distance. Note that the usual 1/2 factor is included in K.

The following coefficients must be defined for each bond type via the bond_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

K (energy/distance^2)•
r0 (distance)•

Restrictions:

This bond style can only be used if LAMMPS was built with the "molecular" package (which it is by default). See
the Making LAMMPS section for more info on packages.

Related commands:

bond_coeff, delete_bonds

Default: none

154

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

bond_style hybrid command

Syntax:

bond_style hybrid style1 style2 ...

style1,style2 = list of one or more bond styles•

Examples:

bond_style hybrid harmonic fene
bond_coeff 1 harmonic 80.0 1.2
bond_coeff 2* fene 30.0 1.5 1.0 1.0

Description:

The hybrid style enables the use of multiple bond styles in one simulation. A bond style is assigned to each bond
type. For example, bonds in a polymer flow (of bond type 1) could be computed with a fene potential and bonds
in the wall boundary (of bond type 2) could be computed with a harmonic potential. The assignment of bond type
to style is made via the bond_coeff command or in the data file.

In the bond_coeff command, the first coefficient sets the bond style and the remaining coefficients are those
appropriate to that style. In the example above, the 2 bond_coeff commands would set bonds of bond type 1 to be
computed with a harmonic potential with coefficients 80.0, 1.2 for K, r0. All other bond types (2−N) would be
computed with a fene potential with coefficients 30.0, 1.5, 1.0, 1.0 for K, R0, epsilon, sigma.

A bond style of none can be specified as the 2nd argument to the bond_coeff command, if you desire to turn off
certain bond types.

Restrictions:

This bond style can only be used if LAMMPS was built with the "molecular" package (which it is by default). See
the Making LAMMPS section for more info on packages.

Unlike other bond styles, the hybrid bond style does not store bond coefficient info for individual sub−styles in a
binary restart files. Thus when retarting a simulation from a restart file, you need to re−specify bond_coeff
commands.

Related commands:

bond_coeff, delete_bonds

Default: none

155

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

bond_style morse command

Syntax:

bond_style morse

Examples:

bond_style morse
bond_coeff 5 1.0 2.0 1.2

Description:

The morse bond style uses the potential

where r0 is the equilibrium bond distance, alpha is a stiffness parameter, and D determines the depth of the
potential well.

The following coefficients must be defined for each bond type via the bond_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

D (energy)•
alpha (inverse distance)•
r0 (distance)•

Restrictions:

This bond style can only be used if LAMMPS was built with the "molecular" package (which it is by default). See
the Making LAMMPS section for more info on packages.

Related commands:

bond_coeff, delete_bonds

Default: none

156

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

bond_style none command

Syntax:

bond_style none

Examples:

bond_style none

Description:

Using a bond style of none means bond forces are not computed, even if pairs of bonded atoms were listed in the
data file read by the read_data command.

Restrictions: none

Related commands: none

Default: none

157

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

bond_style nonlinear command

Syntax:

bond_style nonlinear

Examples:

bond_style nonlinear
bond_coeff 2 100.0 1.1 1.4

Description:

The nonlinear bond style uses the potential

to define an anharmonic spring (Rector) of equilibrium length r0 and maximum extension lamda.

The following coefficients must be defined for each bond type via the bond_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

epsilon (energy)•
r0 (distance)•
lamda (distance)•

Restrictions:

This bond style can only be used if LAMMPS was built with the "molecular" package (which it is by default). See
the Making LAMMPS section for more info on packages.

Related commands:

bond_coeff, delete_bonds

Default: none

(Rector) Rector, Van Swol, Henderson, Molecular Physics, 82, 1009 (1994).

158

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

bond_style quartic command

Syntax:

bond_style quartic

Examples:

bond_style quartic
bond_coeff 2 1200 −0.55 0.25 1.3 34.6878

Description:

The quartic bond style uses the potential

to define a bond that can be broken as the simulation proceeds (e.g. due to a polymer being stretched). The sigma
and epsilon used in the LJ portion of the formula are both set equal to 1.0 by LAMMPS.

The following coefficients must be defined for each bond type via the bond_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

K (energy/distance^2)•
B1 (distance)•
B2 (distance)•
Rc (distance)•
U0 (energy)•

This potential was constructed to mimic the FENE bond potential for coarse−grained polymer chains. When
monomers with sigma = epsilon = 1.0 are used, the following choice of parameters gives a quartic potential that
looks nearly like the FENE potential: K = 1200, B1 = −0.55, B2 = 0.25, Rc = 1.3, and U0 = 34.6878. Different
parameters can be specified using the bond_coeff command, but you will need to choose them carefully so they
form a suitable bond potential.

Rc is the cutoff length at which the bond potential goes smoothly to a local maximum. If a bond length ever
becomes > Rc, LAMMPS "breaks" the bond, which means two things. First, the bond potential is turned off by
setting its type to 0, and is no longer computed. Second, a pairwise interaction between the two atoms is turned
on, since they are no longer bonded.

LAMMPS does the second task via a computational sleight−of−hand. It subtracts the pairwise interaction as part
of the bond computation. When the bond breaks, the subtraction stops. For this to work, the pairwise interaction
must always be computed by the pair_style command, whether the bond is broken or not. This means that
special_bonds must be set to 1,1,1, as indicated as a restriction below.

Note that when bonds are dumped to a file via dump bond, bonds with type 0 are not included. The delete_bonds
command can also be used to query the status of broken bonds or permanently delete them, e.g.:

delete_bonds all stats

159

http://lammps.sandia.gov

delete_bonds all bond 0 remove

Restrictions:

This bond style can only be used if LAMMPS was built with the "molecular" package (which it is by default). See
the Making LAMMPS section for more info on packages.

The quartic style requires that special_bonds parameters be set to 1,1,1. Three− and four−body interactions
(angle, dihedral, etc) cannot be used with quartic bonds.

Related commands:

bond_coeff, delete_bonds

Default: none

160

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

bond_style command

Syntax:

bond_style style args

style = none or hybrid or class2 or fene or fene/expand or harmonic or morse or nonlinear or quartic•

 args = none for any style except hybrid
hybrid args = list of one or more styles

Examples:

bond_style harmonic
bond_style fene
bond_style hybrid harmonic fene

Description:

Set the formula(s) LAMMPS uses to compute bond interactions between pairs of atoms. In LAMMPS, a bond
differs from a pairwise interaction, which are set via the pair_style command. Bonds are defined between
specified pairs of atoms and remain in force for the duration of the simulation (unless the bond breaks which is
possible in some bond potentials). The list of bonded atoms is read in by a read_data or read_restart command
from a data or restart file. By contrast, pair potentials are typically defined between all pairs of atoms within a
cutoff distance and the set of active interactions changes over time.

Hybrid models where bonds are computed using different bond potentials can be setup using the hybrid bond
style.

The coefficients associated with a bond style can be specified in a data or restart file or via the bond_coeff
command.

All bond potentials store their coefficient data in binary restart files which means bond_style and bond_coeff
commands do not need to be re−specified in an input script that restarts a simulation. See the read_restart
command for details on how to do this. The one exception is that bond_style hybrid only stores the list of
sub−styles in the restart file; bond coefficients need to be re−specified.

IMPORTANT NOTE: When both a bond and pair style is defined, the special_bonds command often needs to be
used to turn off (or weight) the pairwise interaction that would otherwise exist between 2 bonded atoms.

In the formulas listed for each bond style, r is the distance between the 2 atoms in the bond.

Here is an alphabetic list of bond styles defined in LAMMPS. Click on the style to display the formula it
computes and coefficients specified by the associated bond_coeff command:

bond_style none − turn off bonded interactions•
bond_style hybrid − define multiple styles of bond interactions•

bond_style class2 − COMPASS (class 2) bond•
bond_style fene − FENE (finite−extensible non−linear elastic) bond•
bond_style fene/expand − FENE bonds with variable size particles•

161

http://lammps.sandia.gov

bond_style harmonic − harmonic bond•
bond_style morse − Morse bond•
bond_style nonlinear − nonlinear bond•
bond_style quartic − breakable quartic bond•
bond_style table − tabulated by bond length•

There are also additional bond styles submitted by users which are included in the LAMMPS distribution. The list
of these with links to the individual styles are given in the bond section of this page.

Restrictions:

Bond styles can only be set for atom styles that allow bonds to be defined.

Most bond styles are part of the "molecular" package. They are only enabled if LAMMPS was built with that
package. See the Making LAMMPS section for more info on packages. The doc pages for individual bond
potentials tell if it is part of a package.

Related commands:

bond_coeff, delete_bonds

Default:

bond_style none

162

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

bond_style table command

Syntax:

bond_style table style N

style = linear or spline = method of interpolation•
N = use N values in table•

Examples:

bond_style table linear 1000
bond_coeff 1 file.table ENTRY1

Description:

Style table creates interpolation tables of length N from bond potential and force values listed in a file(s) as a
function of bond length. The files are read by the bond_coeff command.

The interpolation tables are created by fitting cubic splines to the file values and interpolating energy and force
values at each of N distances. During a simulation, these tables are used to interpolate energy and force values as
needed. The interpolation is done in one of 2 styles: linear or spline.

For the linear style, the bond length is used to find 2 surrounding table values from which an energy or force is
computed by linear interpolation.

For the spline style, a cubic spline coefficients are computed and stored at each of the N values in the table. The
bond length is used to find the appropriate set of coefficients which are used to evaluate a cubic polynomial which
computes the energy or force.

The following coefficients must be defined for each bond type via the bond_coeff command as in the example
above.

filename•
keyword•

The filename specifies a file containing tabulated energy and force values. The keyword specifies a section of the
file. The format of this file is described below.

The format of a tabulated file is as follows (without the parenthesized comments):

Bond potential for harmonic (one or more comment or blank lines)

HAM (keyword is the first text on line)
N 101 FP 0 0 EQ 0.5 (N, FP, EQ parameters)
 (blank line)
1 0.00 338.0000 1352.0000 (index, bond−length, energy, force)
2 0.01 324.6152 1324.9600
...
101 1.00 338.0000 −1352.0000

163

http://lammps.sandia.gov

A section begins with a non−blank line whose 1st character is not a "#"; blank lines or lines starting with "#" can
be used as comments between sections. The first line begins with a keyword which identifies the section. The line
can contain additional text, but the initial text must match the argument specified in the bond_coeff command.
The next line lists (in any order) one or more parameters for the table. Each parameter is a keyword followed by
one or more numeric values.

The parameter "N" is required and its value is the number of table entries that follow. Note that this may be
different than the N specified in the bond_style table command. Let Ntable = N in the bond_style command, and
Nfile = "N" in the tabulated file. What LAMMPS does is a preliminary interpolation by creating splines using the
Nfile tabulated values as nodal points. It uses these to interpolate as needed to generate energy and force values at
Ntable different points. The resulting tables of length Ntable are then used as described above, when computing
energy and force for individual bond lengths. This means that if you want the interpolation tables of length Ntable
to match exactly what is in the tabulated file (with effectively no preliminary interpolation), you should set Ntable
= Nfile.

The "FP" parameter is optional. If used, it is followed by two values fplo and fphi, which are the derivatives of the
force at the innermost and outermost bond lengths. These values are needed by the spline construction routines. If
not specified by the "FP" parameter, they are estimated (less accurately) by the first two and last two force values
in the table.

The "EQ" parameter is also optional. If used, it is followed by a the equilibrium bond length, which is used, for
example, by the fix shake command. If not used, the equilibrium bond length is set to 0.0.

Following a blank line, the next N lines list the tabulated values. On each line, the 1st value is the index from 1 to
N, the 2nd value is the bond length r (in distance units), the 3rd value is the energy (in energy units), and the 4th is
the force (in force units). The bond lengths must increase from one line to the next.

Note that one file can contain many sections, each with a tabulated potential. LAMMPS reads the file section by
section until it finds one that matches the specified keyword.

Restrictions:

This bond style can only be used if LAMMPS was built with the "molecular" package (which it is by default). See
the Making LAMMPS section for more info on packages.

Related commands:

bond_coeff, delete_bonds

Default: none

164

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

boundary command

Syntax:

boundary x y z

x,y,z = p or s or f or m, one or two letters

p is periodic
f is non−periodic and fixed
s is non−periodic and shrink−wrapped
m is non−periodic and shrink−wrapped with a minimum value

•

Examples:

boundary p p f
boundary p fs p
boundary s f fm

Description:

Set the style of boundaries for the global simulation box in each dimension. A single letter assigns the same style
to both the lower and upper face of the box. Two letters assigns the first style to the lower face and the second
style to the upper face. The initial size of the simulation box is set by the read_data, read_restart, or create_box
commands.

The style p means the box is periodic, so that particles interact across the boundary, and they can exit one end of
the box and re−enter the other end. A periodic dimension can change in size due to constant pressure boundary
conditions or box deformation (see the fix npt and fix deform commands). The p style must be applied to both
faces of a dimension.

The styles f, s, and m mean the box is non−periodic, so that particles do not interact across the boundary and do
not move from one side of the box to the other. For style f, the position of the face is fixed. If an atom moves
outside the face it may be lost. For style s, the position of the face is set so as to encompass the atoms in that
dimension (shrink−wrapping), no matter how far they move. For style m, shrink−wrapping occurs, but is bounded
by the value specified in the data or restart file or set by the create_box command. For example, if the upper z
face has a value of 50.0 in the data file, the face will always be positioned at 50.0 or above, even if the maximum
z−extent of all the atoms becomes less than 50.0.

Restrictions:

This command cannot be used after the simulation box is defined by a read_data or create_box command.

Related commands:

See the thermo_modify command for a discussion of lost atoms.

Default:

boundary p p p

165

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

change_box command

Syntax:

change_box style

style = ortho or triclinic

ortho = convert simulation box from non−orthogonal (triclinic) to orthogonal
triclinic = convert simulation box from orthogonal to non−orthogonal (triclinic)

Examples:

change_box ortho
change_box triclinic

Description:

By default LAMMPS runs a simulation in an orthogonal, axis−aligned simulation box. LAMMPS can also run
simulations in non−orthogonal (triclinic) simulation boxes. A box is defined as either orthogonal or
non−orthogonal when it is created via the create_box, read_data, or read_restart commands.

This command allows you to toggle the existing simulation box from orthogonal to non−orthogonal and vice
versa. For example, an initial equilibration simulation can be run in an orthogonal box, the box can be toggled
to non−orthogonal, and then a non−equilibrium MD (NEMD) simulation can be run with deformation via the
fix deform command.

Note that if the simulation box is currently non−orthogonal and has non−zero tilt in xy, yz, or xz, then it cannot
be converted to an orthogonal box.

Restrictions:

At the point in the input script when this command is issued, no dumps can be active, nor can a fix ave/spatial
or fix deform be active. This is because these commands test whether the simulation box is orthogonal when
they are first issued. Note that these commands can appear in your script before a change_box command is
issued, so long as an undump or unfix command is also used to turn them off.

Related commands: none

Default: none

•

166

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

clear command

Syntax:

clear

Examples:

(commands for 1st simulation)
clear
(commands for 2nd simulation)

Description:

This command deletes all atoms, restores all settings to their default values, and frees all memory allocated by
LAMMPS. Once a clear command has been executed, it is as if LAMMPS were starting over, with only the
exceptions noted below. This command enables multiple jobs to be run sequentially from one input script.

These settings are not affected by a clear command: the working directory (shell command), log file status (log
command), echo status (echo command), and input script variables (variable command).

Restrictions: none

Related commands: none

Default: none

167

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

communicate command

Syntax:

communicate style keyword value ...

style = single or multi•
zero or more keyword/value pairs may be appended•
keyword = cutoff or group or vel

cutoff value = Rcut (distance units) = communicate atoms from this far away
group value = group−ID = only communicate atoms in the group
vel value = yes or no = do or do not communicate velocity info with ghost atoms

•

Examples:

communicate multi
communicate multi group solvent
communicate single vel yes
communicate single cutoff 5.0 vel yes

Description:

This command sets the style of inter−processor communication that occurs each timestep as atom coordinates and
other properties are exchanged between neighboring processors and stored as properties of ghost atoms.

The default style is single which means each processor acquires information for ghost atoms that are within a
single distance from its sub−domain. The distance is the maximum of the neighbor cutoff for all atom type pairs.

For many systems this is an efficient algorithm, but for systems with widely varying cutoffs for different type
pairs, the multi style can be faster. In this case, each atom type is assigned its own distance cutoff for
communication purposes, and fewer atoms will be communicated. See the neighbor multi command for a
neighbor list construction option that may also be beneficial for simulations of this kind.

The cutoff option allows you to set a ghost cutoff distance, which is the distance from the borders of a processor's
sub−domain at which ghost atoms are acquired from other processors. By default the ghost cutoff = neighbor
cutoff = pairwise force cutoff + neighbor skin. See the neighbor command for more information about the skin
distance. If the specified Rcut is greater than the neighbor cutoff, then extra ghost atoms will be acquired. If it is
smaller, the ghost cutoff is set to the neighbor cutoff.

These are simulation scenarios in which it may be useful to set a ghost cutoff > neighbor cutoff:

a single polymer chain with bond interactions, but no pairwise interactions•
bonded interactions (e.g. dihedrals) extend further than the pairwise cutoff•
ghost atoms beyond the pairwise cutoff are needed for some computation•

In the first scenario, a pairwise potential may not be defined. Thus the pairwise neighbor cutoff will be 0.0. But
ghost atoms are still needed for computing bond, angle, etc interactions between atoms on different processors.
The appropriate ghost cutoff depends on the newton bond setting. For newton bond off, the distance needs to be
the furthest distance between any two atoms in the bond, angle, etc. E.g. the distance between 1−4 atoms in a
dihedral. For newton bond on, the distance between the central atom in the bond, angle, etc and any other atom is

168

http://lammps.sandia.gov

sufficient. E.g. the distance between 2−4 atoms in a dihedral.

In the second scenario, a pairwise potential is defined, but its neighbor cutoff is not sufficiently long enough to
enable bond, angle, etc terms to be computed. As in the previous scenario, an appropriate ghost cutoff should be
set.

In the last scenario, a fix or compute or pairwise potential needs to calculate with ghost atoms beyond the normal
pairwise cutoff for some computation it performs (e.g. locate neighbors of ghost atoms in a multibody pair
potential). Setting the ghost cutoff appropriately can insure it will find the needed atoms.

The group option will limit communication to atoms in the specified group. This can be useful for models where
no ghost atoms are needed for some kinds of particles. All atoms (not just those in the specified group) will still
migrate to new processors as they move. The group specified with this option must also be specified via the
atom_modify first command.

The vel option enables velocity information to be communicated with ghost particles. Depending on the
atom_style, velocity info includes the translational velocity, angular velocity, and angular momentum of a
particle. If the vel option is set to yes, then ghost atoms store these quantities; if no then they do not. The yes
setting is needed by some pair styles which require the velocity state of both the I and J particles to compute a
pairwise I,J interaction.

Restrictions: none

Related commands:

neighbor

Default:

The default settings are style = single, group = all, cutoff = 0.0, ghost = no. The cutoff default of 0.0 means that
ghost cutoff = neighbor cutoff = pairwise force cutoff + neighbor skin.

169

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

compute command

Syntax:

compute ID group−ID style args

ID = user−assigned name for the computation•
group−ID = ID of the group of atoms to perform the computation on•
style = one of a list of possible style names (see below)•
args = arguments used by a particular style•

Examples:

compute 1 all temp
compute newtemp flow temp/partial 1 1 0
compute 3 all ke/atom

Description:

Define a computation that will be performed on a group of atoms. Quantities calculated by a compute are
instantaneous values, meaning they are calculated from information about atoms on the current timestep or
iteration, though a compute may internally store some information about a previous state of the system. Defining
a compute does not perform a computation. Instead computes are invoked by other LAMMPS commands as
needed, e.g. to calculate a temperature needed for a thermostat fix or to generate thermodynamic or dump file
output. See this howto section for a summary of various LAMMPS output options, many of which involve
computes.

The ID of a compute can only contain alphanumeric characters and underscores.

Computes calculate one of three styles of quantities: global, per−atom, or local. A global quantity is one or more
system−wide values, e.g. the temperature of the system. A per−atom quantity is one or more values per atom, e.g.
the kinetic energy of each atom. Per−atom values are set to 0.0 for atoms not in the specified compute group.
Local quantities are calculated by each processor based on the atoms it owns, but there may be zero or more per
atom, e.g. a list of bond distances. Computes that produce per−atom quantities have the word "atom" in their
style, e.g. ke/atom. Computes that produce local quantities have the word "local" in their style, e.g. bond/local.
Styles with neither "atom" or "local" in their style produce global quantities.

Note that a single compute produces either global or per−atom or local quantities, but never more than one of
these.

Global, per−atom, and local quantities each come in three kinds: a single scalar value, a vector of values, or a 2d
array of values. The doc page for each compute describes the style and kind of values it produces, e.g. a per−atom
vector. Some computes produce more than one kind of a single style, e.g. a global scalar and a global vector.

When a compute quantity is accessed, as in many of the output commands discussed below, it can be referenced
via the following bracket notation, where ID is the ID of the compute:

c_ID entire scalar, vector, or array

c_ID[I] one element of vector, one column of array

c_ID[I][J] one element of array

170

http://lammps.sandia.gov

In other words, using one bracket reduces the dimension of the quantity once (vector −> scalar, array −> vector).
Using two brackets reduces the dimension twice (array −> scalar). Thus a command that uses scalar compute
values as input can also process elements of a vector or array.

Note that commands and variables which use compute quantities typically do not allow for all kinds, e.g. a
command may require a vector of values, not a scalar. This means there is no ambiguity about referring to a
compute quantity as c_ID even if it produces, for example, both a scalar and vector. The doc pages for various
commands explain the details.

In LAMMPS, the values generated by a compute can be used in several ways:

The results of computes that calculate a global temperature or pressure can be used by fixes that do
thermostatting or barostatting or when atom velocities are created.

•

Global values can be output via the thermo_style custom or fix ave/time command. Or the values can be
referenced in a variable equal or variable atom command.

•

Per−atom values can be output via the dump custom command or the fix ave/spatial command. Or they
can be time−averaged via the fix ave/atom command or reduced by the compute reduce command. Or the
per−atom values can be referenced in an atom−style variable.

•

Local values can be reduced by the compute reduce command, or histogrammed by the fix ave/histo
command, or output by the dump local command.

•

The results of computes that calculate global quantities can be either "intensive" or "extensive" values. Intensive
means the value is independent of the number of atoms in the simulation, e.g. temperature. Extensive means the
value scales with the number of atoms in the simulation, e.g. total rotational kinetic energy. Thermodynamic
output will normalize extensive values depending on the "thermo_modify norm" setting. But if a compute value is
accessed in another way, e.g. by a variable, you may need to know whether it is an intensive or extensive value.
See the doc page for individual computes for further info.

LAMMPS creates its own computes internally for thermodynamic output. Three computes are always created,
named "thermo_temp", "thermo_press", and "thermo_pe", as if these commands had been invoked in the input
script:

compute thermo_temp all temp
compute thermo_press all pressure thermo_temp
compute thermo_pe all pe

Additional computes for other quantities are created if the thermo style requires it. See the documentation for the
thermo_style command.

Fixes that calculate temperature or pressure, i.e. for thermostatting or barostatting, may also create computes.
These are discussed in the documentation for specific fix commands.

In all these cases, the default computes LAMMPS creates can be replaced by computes defined by the user in the
input script, as described by the thermo_modify and fix modify commands.

Properties of either a default or user−defined compute can be modified via the compute_modify command.

Computes can be deleted with the uncompute command.

Code for new computes can be added to LAMMPS (see this section of the manual) and the results of their
calculations accessed in the various ways described above.

171

Each compute style has its own doc page which describes its arguments and what it does. Here is an alphabetic
list of compute styles available in LAMMPS:

angle/local − theta and energy of each angle•
bond/local − distance and energy of each bond•
centro/atom − centro−symmetry parameter for each atom•
cna/atom − common neighbor analysis (CNA) for each atom•
com − center−of−mass of group of atoms•
com/molecule − center−of−mass for each molecule•
coord/atom − coordination number for each atom•
damage/atom − Peridynamic damage for each atom•
dihedral/local − angle of each dihedral•
displace/atom − displacement of each atom•
erotate/asphere − rotational energy of aspherical particles•
erotate/sphere − rotational energy of spherical particles•
event/displace − detect event on atom displacement•
group/group − energy/force between two groups of atoms•
gyration − radius of gyration of group of atoms•
gyration/molecule − radius of gyration for each molecule•
heat/flux − heat flux through a group of atoms•
improper/local − angle of each improper•
ke − translational kinetic energy•
ke/atom − kinetic energy for each atom•
msd − mean−squared displacement of group of atoms•
msd/molecule − mean−squared displacement for each molecule•
pair/local − distance/energy/force of each pairwise interaction•
pe − potential energy•
pe/atom − potential energy for each atom•
pressure − total pressure and pressure tensor•
property/atom − convert atom attributes to per−atom vectors/arrays•
property/local − convert local attributes to localvectors/arrays•
property/molecule − convert molecule attributes to localvectors/arrays•
rdf − radial distribution function g(r) histogram of group of atoms•
reduce − combine per−atom quantities into a single global value•
reduce/region − same as compute reduce, within a region•
stress/atom − stress tensor for each atom•
temp − temperature of group of atoms•
temp/asphere − temperature of aspherical particles•
temp/com − temperature after subtracting center−of−mass velocity•
temp/deform − temperature excluding box deformation velocity•
temp/partial − temperature excluding one or more dimensions of velocity•
temp/profile − temperature excluding a binned velocity profile•
temp/ramp − temperature excluding ramped velocity component•
temp/region − temperature of a region of atoms•
temp/sphere − temperature of spherical particles•

There are also additional compute styles submitted by users which are included in the LAMMPS distribution. The
list of these with links to the individual styles are given in the compute section of this page.

Restrictions: none

Related commands:

172

uncompute, compute_modify, fix ave/atom, fix ave/spatial, fix ave/time, fix ave/histo

Default: none

173

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

compute ackland/atom command

Syntax:

compute ID group−ID ackland/atom

ID, group−ID are documented in compute command•
ackland/atom = style name of this compute command•

Examples:

compute 1 all ackland/atom

Description:

Defines a computation that calculates the local lattice structure according to the formulation given in (Ackland).

In contrast to the centro−symmetry parameter this method is stable against temperature boost, because it is based
not on the distance between particles but the angles. Therefore statistical fluctuations are averaged out a little
more. A comparison with the Common Neighbor Analysis metric is made in the paper.

The result is a number which is mapped to the following different lattice structures:

0 = UNKNOWN•
1 = BCC•
2 = FCC•
3 = HCP•
4 = ICO•

The neighbor list needed to compute this quantity is constructed each time the calculation is performed (i.e. each
time a snapshot of atoms is dumped). Thus it can be inefficient to compute/dump this quantity too frequently or to
have multiple compute/dump commands, each of which computes this quantity.−

Output info:

This compute calculates a scalar quantity for each atom, which can be accessed by any command that uses
per−atom values from a compute as input. See this section for an overview of LAMMPS output options.

Restrictions:

This compute is part of the "user−ackland" package. It is only enabled if LAMMPS was built with that package.
See the Making LAMMPS section for more info.

Related commands:

compute centro/atom

Default: none

174

http://lammps.sandia.gov

(Ackland) Ackland, Jones, Phys Rev B, 73, 054104 (2006).

175

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

compute angle/local command

Syntax:

compute ID group−ID angle/local input1 input2 ...

ID, group−ID are documented in compute command•
angle/local = style name of this compute command•
zero or more keywords may be appended•
keyword = theta or eng

theta = tabulate angles
eng = tabulate angle energies

•

Examples:

compute 1 all angle/local theta
compute 1 all angle/local eng theta

Description:

Define a computation that calculates properties of individual angle interactions. The number of datums generated,
aggregated across all processors, equals the number of angles in the system.

The local data stored by this command is generated by looping over all the atoms owned on a processor and their
angles. An angle will only be included if all 3 atoms in the angle are in the specified compute group. Any angles
that have been broken (see the angle_style command) by setting their angle type to 0 are not included. Angles that
have been turned off (see the fix shake or delete_bonds commands) by setting their angle type negative are
written into the file, but their energy will be 0.0.

The output theta will be in degrees. The output eng will be in energy units.

Note that as atoms migrate from processor to processor, there will be no consistent ordering of the entries within
the local vector or array from one timestep to the next. The only consistency that is guaranteed is that the ordering
on a particular timestep will be the same for local vectors or arrays generated by other compute commands. For
example, angle output from the compute property/local command can be combined with data from this command
and output by the dump local command in a consistent way.

Output info:

This compute calculates a local vector or local array depending on the number of keywords. The length of the
vector or number of rows in the array is the number of angles. If a single keyword is specified, a local vector is
produced. If two or more keywords are specified, a local array is produced where the number of columns = the
number of keywords. The vector or array can be accessed by any command that uses local values from a compute
as input. See this section for an overview of LAMMPS output options.

Restrictions: none

Related commands:

dump local, compute property/local

176

http://lammps.sandia.gov

Default: none

177

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

compute bond/local command

Syntax:

compute ID group−ID bond/local input1 input2 ...

ID, group−ID are documented in compute command•
bond/local = style name of this compute command•
zero or more keywords may be appended•
keyword = dist or eng

dist = tabulate bond distances
eng = tablutate bond energies

•

Examples:

compute 1 all bond/local eng
compute 1 all bond/local dist eng

Description:

Define a computation that calculates properties of individual bond interactions. The number of datums generated,
aggregated across all processors, equals the number of bonds in the system.

The local data stored by this command is generated by looping over all the atoms owned on a processor and their
bonds. A bond will only be included if both atoms in the bond are in the specified compute group. Any bonds that
have been broken (see the bond_style command) by setting their bond type to 0 are not included. Bonds that have
been turned off (see the fix shake or delete_bonds commands) by setting their bond type negative are written into
the file, but their energy will be 0.0.

The output dist will be in distance units. The output eng will be in energy units.

Note that as atoms migrate from processor to processor, there will be no consistent ordering of the entries within
the local vector or array from one timestep to the next. The only consistency that is guaranteed is that the ordering
on a particular timestep will be the same for local vectors or arrays generated by other compute commands. For
example, bond output from the compute property/local command can be combined with data from this command
and output by the dump local command in a consistent way.

Output info:

This compute calculates a local vector or local array depending on the number of keywords. The length of the
vector or number of rows in the array is the number of bonds. If a single keyword is specified, a local vector is
produced. If two or more keywords are specified, a local array is produced where the number of columns = the
number of keywords. The vector or array can be accessed by any command that uses local values from a compute
as input. See this section for an overview of LAMMPS output options.

Restrictions: none

Related commands:

dump local, compute property/local

178

http://lammps.sandia.gov

Default: none

179

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

compute centro/atom command

Syntax:

compute ID group−ID centro/atom

ID, group−ID are documented in compute command•
centro/atom = style name of this compute command•

Examples:

compute 1 all centro/atom

Description:

Define a computation that calculates the centro−symmetry parameter for each atom in the group. In solid−state
systems the centro−symmetry parameter is a useful measure of the local lattice disorder around an atom and can
be used to characterize whether the atom is part of a perfect lattice, a local defect (e.g. a dislocation or stacking
fault), or at a surface.

The value of the centro−symmetry parameter will be 0.0 for atoms not in the specified compute group.

This parameter is computed using the following formula from (Kelchner)

where the 12 nearest neighbors are found (for fcc lattices) and Ri and Ri+6 are the vectors from the central atom
to the opposite pair of nearest neighbors. Atoms not in the group are included in the 12 neighbors used in this
calculation.

The neighbor list needed to compute this quantity is constructed each time the calculation is performed (e.g. each
time a snapshot of atoms is dumped). Thus it can be inefficient to compute/dump this quantity too frequently or to
have multiple compute/dump commands, each with a centro/atom style.

Output info:

This compute calculates a per−atom vector, which can be accessed by any command that uses per−atom values
from a compute as input. See this section for an overview of LAMMPS output options.

Restrictions: none

Related commands:

compute cna/atom

Default: none

180

http://lammps.sandia.gov

(Kelchner) Kelchner, Plimpton, Hamilton, Phys Rev B, 58, 11085 (1998).

181

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

compute cna/atom command

Syntax:

compute ID group−ID cna/atom cutoff

ID, group−ID are documented in compute command•
cna/atom = style name of this compute command•
cutoff = cutoff distance for nearest neighbors (distance units)•

Examples:

compute 1 all cna/atom 3.08

Description:

Define a computation that calculates the CNA (Common Neighbor Analysis) pattern for each atom in the group.
In solid−state systems the CNA pattern is a useful measure of the local crystal structure around an atom. The
CNA methodology is described in (Faken) and (Tsuzuki).

Currently, there are five kinds of CNA patterns LAMMPS recognizes:

fcc = 1•
hcp = 2•
bcc = 3•
icosohedral = 4•
unknown = 5•

The value of the CNA pattern will be 0 for atoms not in the specified compute group. Note that normally a CNA
calculation should only be be performed on mono−component systems.

The CNA calculation can be sensitive to the specified cutoff value. You should insure the appropriate nearest
neighbors of an atom are found within the cutoff distance for the presumed crystal strucure. E.g. 12 nearest
neighbor for perfect FCC and HCP crystals, 14 nearest neighbors for perfect BCC crystals. These formulas can be
used to obtain a good cutoff distance:

where a is the lattice constant for the crystal structure concerned and in the HCP case, x = (c/a) / 1.633, where
1.633 is the ideal c/a for HCP crystals.

182

http://lammps.sandia.gov

Also note that since the CNA calculation in LAMMPS uses the neighbors of an owned atom to find the nearest
neighbors of a ghost atom, the following relation should also be satisfied:

where Rc is the cutoff distance of the potential, Rs is the skin distance as specified by the neighbor command, and
cutoff is the argument used with the compute cna/atom command. LAMMPS will issue a warning if this is not the
case.

The neighbor list needed to compute this quantity is constructed each time the calculation is performed (e.g. each
time a snapshot of atoms is dumped). Thus it can be inefficient to compute/dump this quantity too frequently or to
have multiple compute/dump commands, each with a cna/atom style.

Output info:

This compute calculates a per−atom vector, which can be accessed by any command that uses per−atom values
from a compute as input. See this section for an overview of LAMMPS output options.

Restrictions: none

Related commands:

compute centro/atom

Default: none

(Faken) Faken, Jonsson, Comput Mater Sci, 2, 279 (1994).

(Tsuzuki) Tsuzuki, Branicio, Rino, Comput Phys Comm, 177, 518 (2007).

183

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

compute com command

Syntax:

compute ID group−ID com

ID, group−ID are documented in compute command•
com = style name of this compute command•

Examples:

compute 1 all com

Description:

Define a computation that calculates the center−of−mass of the group of atoms, including all effects due to atoms
passing thru periodic boundaries.

A vector of three quantites is calculated by this compute, which are the x,y,z coordinates of the center of mass.

IMPORTANT NOTE: The coordinates of an atom contribute to the center−of−mass in "unwrapped" form, by
using the image flags associated with each atom. See the dump custom command for a discussion of "unwrapped"
coordinates. See the Atoms section of the read_data command for a discussion of image flags and how they are
set for each atom. You can reset the image flags (e.g. to 0) before invoking this compute by using the set image
command.

IMPORTANT NOTE: If an atom is part of a rigid body (see the fix rigid command), it's periodic image flags are
altered, and its contribution to the center−of−mass may not reflect its true contribution. See the fix rigid command
for details. Thus, to compute the center−of−mass of rigid bodies as they cross periodic boundaries, you will need
to post−process a dump file containing coordinates of the atoms in the bodies.

Output info:

This compute calculates a global vector of length 3, which can be accessed by indices 1−3 by any command that
uses global vector values from a compute as input. See this section for an overview of LAMMPS output options.

The vector values are "intensive", meaning they are independent of the number of atoms in the simulation.

Restrictions: none

Related commands:

compute com/molecule

Default: none

184

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

compute com/molecule command

Syntax:

compute ID group−ID com/molecule

ID, group−ID are documented in compute command•
com/molecule = style name of this compute command•

Examples:

compute 1 fluid com/molecule

Description:

Define a computation that calculates the center−of−mass of individual molecules. The calculation includes all
effects due to atoms passing thru periodic boundaries.

The x,y,z coordinates of the center−of−mass for a particular molecule are only computed if one or more of its
atoms are in the specified group. Normally all atoms in the molecule should be in the group, however this is not
required. LAMMPS will warn you if this is not the case. Only atoms in the group contribute to the
center−of−mass calculation for the molecule.

Let Nmolecules be the number of molecules for which the center−of−mass is calculated. If not all molecules have
atoms in the group, then the molecule with the lowest ID is the first of the Nmolecules. The next lowest ID is the
second, etc, up to Nmolecules.

IMPORTANT NOTE: The coordinates of an atom contribute to the molecule's center−of−mass in "unwrapped"
form, by using the image flags associated with each atom. See the dump custom command for a discussion of
"unwrapped" coordinates. See the Atoms section of the read_data command for a discussion of image flags and
how they are set for each atom. You can reset the image flags (e.g. to 0) before invoking this compute by using
the set image command.

IMPORTANT NOTE: If an atom is part of a rigid body (see the fix rigid command), it's periodic image flags are
altered, and its contribution to the center−of−mass may not reflect its true contribution. See the fix rigid command
for details. Thus, to compute the center−of−mass of rigid bodies as they cross periodic boundaries, you will need
to post−process a dump file containing coordinates of the atoms in the bodies.

Output info:

This compute calculates a global array where the number of rows = Nmolecules and the number of columns = 3
for the x,y,z center−of−mass coordinates of each molecule. These values can be accessed by any command that
uses global array values from a compute as input. See this section for an overview of LAMMPS output options.

The array values are "intensive", meaning they are independent of the number of atoms in the simulation.

Restrictions: none

Related commands:

185

http://lammps.sandia.gov

compute com

Default: none

186

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

compute coord/atom command

Syntax:

compute ID group−ID coord/atom cutoff

ID, group−ID are documented in compute command•
coord/atom = style name of this compute command•
cutoff = distance within which to count coordination neighbors (distance units)•

Examples:

compute 1 all coord/atom 2.0

Description:

Define a computation that calculates the coordination number for each atom in a group.

The value of the coordination number will be 0.0 for atoms not in the specified compute group.

The coordination number is defined as the number of neighbor atoms within the specified cutoff distance from the
central atom. Atoms not in the group are included in the coordination number of atoms in the group.

The neighbor list needed to compute this quantity is constructed each time the calculation is performed (i.e. each
time a snapshot of atoms is dumped). Thus it can be inefficient to compute/dump this quantity too frequently or to
have multiple compute/dump commands, each of a coord/atom style.

Output info:

This compute calculates a per−atom vector, which can be accessed by any command that uses per−atom values
from a compute as input. See this section for an overview of LAMMPS output options.

Restrictions: none

Related commands: none

Default: none

187

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

compute damage/atom command

Syntax:

compute ID group−ID damage/atom

ID, group−ID are documented in compute command•
damage/atom = style name of this compute command•

Examples:

compute 1 all damage/atom

Description:

Define a computation that calculates the per−atom damage for each atom in a group. Please see the PDLAMMPS
user guide for a formal definition of "damage" and more details about Peridynamics as it is implemented in
LAMMPS.

The value of the damage will be 0.0 for atoms not in the specified compute group.

Output info:

This compute calculates a per−atom vector, which can be accessed by any command that uses per−atom values
from a compute as input. See this section for an overview of LAMMPS output options.

Restrictions:

The damage/atom style is part of the "peri" package. It is only enabled if LAMMPS was built with that package.
See the Making LAMMPS section for more info.

Related commands:

dump custom

Default: none

188

http://lammps.sandia.gov
http://www.sandia.gov/~mlparks/papers/PDLAMMPS.pdf
http://www.sandia.gov/~mlparks/papers/PDLAMMPS.pdf

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

compute dihedral/local command

Syntax:

compute ID group−ID dihedral/local input1 input2 ...

ID, group−ID are documented in compute command•
dihedral/local = style name of this compute command•
zero or more keywords may be appended•
keyword = phi

phi = tabulate dihedral angles

•

Examples:

compute 1 all dihedral/local phi

Description:

Define a computation that calculates properties of individual dihedral interactions. The number of datums
generated, aggregated across all processors, equals the number of angles in the system.

The local data stored by this command is generated by looping over all the atoms owned on a processor and their
dihedrals. A dihedral will only be included if all 4 atoms in the dihedral are in the specified compute group.

The output phi will be in degrees.

Note that as atoms migrate from processor to processor, there will be no consistent ordering of the entries within
the local vector or array from one timestep to the next. The only consistency that is guaranteed is that the ordering
on a particular timestep will be the same for local vectors or arrays generated by other compute commands. For
example, dihedral output from the compute property/local command can be combined with data from this
command and output by the dump local command in a consistent way.

Output info:

This compute calculates a local vector or local array depending on the number of keywords. The length of the
vector or number of rows in the array is the number of dihedrals. If a single keyword is specified, a local vector is
produced. If two or more keywords are specified, a local array is produced where the number of columns = the
number of keywords. The vector or array can be accessed by any command that uses local values from a compute
as input. See this section for an overview of LAMMPS output options.

Restrictions: none

Related commands:

dump local, compute property/local

Default: none

189

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

compute displace/atom command

Syntax:

compute ID group−ID displace/atom

ID, group−ID are documented in compute command•
displace/atom = style name of this compute command•

Examples:

compute 1 all displace/atom

Description:

Define a computation that calculates the current displacement of each atom in the group from its original
coordinates, including all effects due to atoms passing thru periodic boundaries.

A vector of four quantites per atom is calculated by this compute. The first 3 elements of the vector are the
dx,dy,dz displacements. The 4th component is the total displacement, i.e. sqrt(dx*dx + dy*dy + dz*dz).

The displacement of an atom is from its original position at the time the compute command was issued. To store
the original coordinates, the compute creates its own fix of style "store/coord", as if this command had been
issued:

fix compute−ID_store_coord group−ID store/coord

See the fix store/coord command for details. Note that the ID of the new fix is the compute−ID + underscore +
"store_coord", and the group for the new fix is the same as the compute group.

The value of the displacement will be 0.0 for atoms not in the specified compute group.

IMPORTANT NOTE: Fix store/coord stores the initial coordinates in "unwrapped" form, by using the image
flags associated with each atom. See the dump custom command for a discussion of "unwrapped" coordinates.
See the Atoms section of the read_data command for a discussion of image flags and how they are set for each
atom. You can reset the image flags (e.g. to 0) before invoking this compute by using the set image command.

IMPORTANT NOTE: If an atom is part of a rigid body (see the fix rigid command), it's periodic image flags are
altered, and the computed displacement may not reflect its true displacement. See the fix rigid command for
details. Thus, to compute the displacement of rigid bodies as they cross periodic boundaries, you will need to
post−process a dump file containing coordinates of the atoms in the bodies.

IMPORTANT NOTE: If you want the quantities calculated by this compute to be continuous when running from
a restart file, then you should use the same ID for this compute, as in the original run. This is so that the created
fix will also have the same ID, and thus be initialized correctly with atom coordinates from the restart file.

Output info:

This compute calculates a per−atom array with 4 columns, which can be accessed by indices 1−4 by any
command that uses per−atom values from a compute as input. See this section for an overview of LAMMPS

190

http://lammps.sandia.gov

output options.

Restrictions: none

Related commands:

compute msd, dump custom, fix store/coord

Default: none

191

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

compute erotate/asphere command

Syntax:

compute ID group−ID erotate/asphere

ID, group−ID are documented in compute command•
erotate/asphere = style name of this compute command•

Examples:

compute 1 all erotate/asphere

Description:

Define a computation that calculates the rotational kinetic energy of a group of aspherical particles.

The rotational kinetic energy is computed as 1/2 I w^2, where I is the inertia tensor for the aspherical particle and
w is its angular velocity, which is computed from its angular momentum.

IMPORTANT NOTE: For 2d models, particles are treated as ellipsoids, not ellipses, meaning their moments of
inertia will be the same as in 3d.

Output info:

This compute calculates a global scalar (the KE). This value can be used by any command that uses a global
scalar value from a compute as input. See this section for an overview of LAMMPS output options.

The scalar value calculated by this compute is "extensive", meaning it it scales with the number of atoms in the
simulation.

Restrictions:

This compute requires that particles be represented as extended ellipsoids and not point particles. This means they
will have an angular momentum and a shape which is determined by the shape command.

This compute requires that atoms store angular momentum and a quaternion to represent their orientation, as
defined by the atom_style. It also require they store a per−type shape. The particles cannot store a per−particle
diameter or per−particle mass.

All particles in the group must be finite−size. They cannot be point particles, but they can be aspherical or
spherical.

Related commands: none

compute erotate/sphere

Default: none

192

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

compute erotate/sphere command

Syntax:

compute ID group−ID erotate/sphere

ID, group−ID are documented in compute command•
erotate/sphere = style name of this compute command•

Examples:

compute 1 all erotate/sphere

Description:

Define a computation that calculates the rotational kinetic energy of a group of spherical particles.

The rotational energy is computed as 1/2 I w^2, where I is the moment of inertia for a sphere and w is the
particle's angular velocity.

IMPORTANT NOTE: For 2d models, particles are treated as spheres, not disks, meaning their moment of inertia
will be the same as in 3d.

Output info:

This compute calculates a global scalar (the KE). This value can be used by any command that uses a global
scalar value from a compute as input. See this section for an overview of LAMMPS output options.

The scalar value calculated by this compute is "extensive", meaning it it scales with the number of atoms in the
simulation.

Restrictions:

This compute requires that atoms store angular velocity (omega) as defined by the atom_style. It also require they
store either a per−particle diameter or per−type shape.

All particles in the group must be finite−size spheres or point particles. They cannot be aspherical. Point particles
will not contribute to the rotational energy.

Related commands:

compute erotate/asphere

Default: none

193

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

compute event/displace command

Syntax:

compute ID group−ID event/displace threshold

ID, group−ID are documented in compute command•
event/displace = style name of this compute command•
threshold = minimum distance anyparticle must move to trigger an event (distance units)•

Examples:

compute 1 all event/displace 0.5

Description:

Define a computation that flags an "event" if any particle in the group has moved a distance greater than the
specified threshold distance when compared to a previously stored reference state (i.e. the previous event). This
compute is typically used in conjunction with the prd command, to detect if a transition to a new minimum energy
basin has occurred.

This value calculated by the compute is equal to 0 if no particle has moved far enough, and equal to 1 if one or
more particles have moved further than the threshold distance.

Output info:

This compute calculates a global scalar (the flag). This value can be used by any command that uses a global
scalar value from a compute as input. See this section for an overview of LAMMPS output options.

The scalar value calculated by this compute is "intensive", meaning it is independent of the number of atoms in
the simulation.

Restrictions:

This command can only be used if LAMMPS was built with the "prd" package. See the Making LAMMPS
section for more info on packages.

Related commands:

prd

Default: none

194

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

compute group/group command

Syntax:

compute ID group−ID group/group group2−ID

ID, group−ID are documented in compute command•
group/group = style name of this compute command•
group2−ID = group ID of second (or same) group•

Examples:

compute 1 lower group/group upper
compute mine fluid group/group wall

Description:

Define a computation that calculates the total energy and force interaction between two groups of atoms: the
compute group and the specified group2. The two groups can be the same. The interaction energy is defined as the
pairwise energy between all pairs of atoms where one atom in the pair is in the first group and the other is in the
second group. Likewise, the interaction force calculated by this compute is the force on the compute group atoms
due to pairwise interactions with atoms in the specified group2.

The energy and force are calculated by looping over a neighbor list of pairwise interactions. Thus it can be
inefficient to compute this quantity too frequently.

Output info:

This compute calculates a global scalar (the energy) and a global vector of length 3 (force), which can be accessed
by indices 1−3. These values can be used by any command that uses global scalar or vector values from a
compute as input. See this section for an overview of LAMMPS output options.

Both the scalar and vector values calculated by this compute are "extensive", meaning they scale with the number
of atoms in the simulation.

Restrictions:

Only pairwise interactions, as defined by the pair_style command, are included in this calculation. Bond (angle,
dihedral, etc) interactions between atoms in the two groups are not included. Long−range interactions due to a
kspace_style command are also not included. Not all pair potentials can be evaluated in a pairwise mode as
required by this compute. For example, 3−body potentials, such as Tersoff and Stillinger−Weber cannot be used.
EAM potentials for metals only include the pair potential portion of the EAM interaction, not the embedding
term.

Related commands: none

Default: none

195

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

compute gyration command

Syntax:

compute ID group−ID gyration

ID, group−ID are documented in compute command•
gyration = style name of this compute command•

Examples:

compute 1 molecule gyration

Description:

Define a computation that calculates the radius of gyration Rg of the group of atoms, including all effects due to
atoms passing thru periodic boundaries.

Rg is a measure of the size of the group of atoms, and is computed by this formula

where M is the total mass of the group, Rcm is the center−of−mass position of the group, and the sum is over all
atoms in the group.

IMPORTANT NOTE: The coordinates of an atom contribute to Rg in "unwrapped" form, by using the image
flags associated with each atom. See the dump custom command for a discussion of "unwrapped" coordinates.
See the Atoms section of the read_data command for a discussion of image flags and how they are set for each
atom. You can reset the image flags (e.g. to 0) before invoking this compute by using the set image command.

Output info:

This compute calculates a global scalar (Rg). This value can be used by any command that uses a global scalar
value from a compute as input. See this section for an overview of LAMMPS output options.

The scalar value calculated by this compute is "intensive", meaning it is independent of the number of atoms in
the simulation.

Restrictions: none

Related commands:

compute gyration/molecule

Default: none

196

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

compute gyration/molecule command

Syntax:

compute ID group−ID gyration/molecule

ID, group−ID are documented in compute command•
gyration/molecule = style name of this compute command•

Examples:

compute 1 molecule gyration/molecule

Description:

Define a computation that calculates the radius of gyration Rg of individual molecules. The calculation includes
all effects due to atoms passing thru periodic boundaries.

Rg is a measure of the size of a molecule, and is computed by this formula

where M is the total mass of the molecule, Rcm is the center−of−mass position of the molecule, and the sum is
over all atoms in the molecule and in the group.

Rg for a particular molecule is only computed if one or more of its atoms are in the specified group. Normally all
atoms in the molecule should be in the group, however this is not required. LAMMPS will warn you if this is not
the case. Only atoms in the group contribute to the Rg calculation for the molecule.

Let Nmolecules be the number of molecules for which Rg is calculated. If not all molecules have atoms in the
group, then the molecule with the lowest ID is the first of the Nmolecules. The next lowest ID is the second, etc,
up to Nmolecules.

IMPORTANT NOTE: The coordinates of an atom contribute to Rg in "unwrapped" form, by using the image
flags associated with each atom. See the dump custom command for a discussion of "unwrapped" coordinates.
See the Atoms section of the read_data command for a discussion of image flags and how they are set for each
atom. You can reset the image flags (e.g. to 0) before invoking this compute by using the set image command.

Output info:

This compute calculates a global vector of Rg values where the length of the vector = Nmolecules. These values
can be used by any command that uses global vector values from a compute as input. See this section for an
overview of LAMMPS output options.

The vector values calculated by this compute are "intensive", meaning it is independent of the number of atoms in
the simulation.

Restrictions: none

197

http://lammps.sandia.gov

Related commands: none

compute gyration

Default: none

198

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

compute heat/flux command

Syntax:

compute ID group−ID heat/flux pe−ID

ID, group−ID are documented in compute command•
heat/flux = style name of this compute command•
pe−ID = ID of a compute that calculates per−atom potential energy•

Examples:

compute myFlux all heat/flux myPE

Description:

Define a computation that calculates the heat flux vector based on interactions between atoms in the specified
group. This can be used by itself to measure the heat flux between a hot and cold reservoir of particles or to
calculate a thermal conductivity using the Green−Kubo formalism.

See the fix thermal/conductivity command for details on how to compute thermal conductivity in an alternate
way, via the Muller−Plathe method.

The compute takes a pe−ID argument which is the ID of a compute pe/atom that calculates per−atom potential
energy. Normally, it should be defined for the same group used by compute heat/flux, though LAMMPS does not
check for this.

The Green−Kubo formulas relate the ensemble average of the auto−correlation of the heat flux J to the thermal
conductivity kappa.

Ei is the per−atom energy (potential and kinetic). The potential portion is calculated by the compute pe−ID
specified as an argument to the compute heat/flux command.

IMPORTANT NOTE: The per−atom potential energy calculated by the pe−ID compute should only include
pairwise energy, to be consistent with the second virial−like term in the formula for J. Thus if any bonds, angles,
etc exist in the system, the compute should limit its calculation to only the pair contribution. E.g. it could be
defined as follows. Note that if pair is not listed as the last argument, it will be included by default, but so will
other contributions such as bond, angle, etc.

compute myPE all pe/atom pair

199

http://lammps.sandia.gov

The second term of the heat flux equation for J is calculated by compute heat/flux for pairwise interactions for any
I,J pair where one of the 2 atoms in is the compute group. It can be output every so many timesteps (e.g. via the
thermo_style custom command). Then as post−processing steps, an autocorrelation can be performed, its integral
estimated, and the Green−Kubo formula evaluated.

Here is an example of this procedure. First a LAMMPS input script for solid Ar is appended below. A Python
script correlate.py is also given, which calculates the autocorrelation of the flux output in the logfile flux.log,
produced by the LAMMPS run. It is invoked as

correlate.py flux.log −c 3 −s 200

The resulting data lists the autocorrelation in column 1 and the integral of the autocorrelation in column 2. The
integral of the correlation needs to be multiplied by V/(kB T^2) times the sample interval and the appropriate unit
conversion factors. For real units in LAMMPS, this is 2917703220.0 in this case. The final thermal conductivity
value obtained is 0.25 W/mK.

The 6 components of the vector calculated by this compute are as follows. The first 3 components are the x, y, z
components of the full heat flux. The next 3 components are the x, y, z components of just the convective portion
of the flux, which is the energy per atom times the velocity of the atom.

Output info:

This compute calculates a global vector of length 6 (heat flux vector), which can be accessed by indices 1−6.
These values can be used by any command that uses global vector values from a compute as input. See this
section for an overview of LAMMPS output options.

The vector values calculated by this compute are "extensive", meaning they scale with the number of atoms in the
simulation. They should be divided by the appropriate volume to get a flux.

Restrictions:

Only pairwise interactions, as defined by the pair_style command, are included in this calculation.

This compute requires you to use the communicate vel yes option so that velocites are stored by ghost atoms.

Related commands:

fix thermal/conductivity

Default: none

Sample LAMMPS input script

atom_style dpd
units real
dimension 3
boundary p p p
lattice fcc 5.376 orient x 1 0 0 orient y 0 1 0 orient z 0 0 1
region box block 0 4 0 4 0 4
create_box 1 box
create_atoms 1 box
mass 1 39.948
pair_style lj/cut 13.0
pair_coeff * * 0.2381 3.405
group every region box

200

velocity all create 70 102486 mom yes rot yes dist gaussian
timestep 4.0
thermo 10

−−−−−−−−−−−−− Equilibration and thermalisation −−−−−−−−−−−−−−−−

fix NPT all npt 70 70 10 xyz 0.0 0.0 100.0 drag 0.2
run 8000
unfix NPT

−−−−−−−−−−−−−−− Equilibration in nve −−−−−−−−−−−−−−−−−

fix NVE all nve
run 8000

−−−−−−−−−−−−−− Flux calculation in nve −−−−−−−−−−−−−−−

reset_timestep 0
compute myPE all pe/atom pair
compute flux all heat/flux myPE
log flux.log
variable J equal c_flux[1]/vol
thermo_style custom step temp v_J
run 100000

201

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

compute improper/local command

Syntax:

compute ID group−ID improper/local input1 input2 ...

ID, group−ID are documented in compute command•
improper/local = style name of this compute command•
zero or more keywords may be appended•
keyword = chi

chi = tabulate improper angles

•

Examples:

compute 1 all improper/local chi

Description:

Define a computation that calculates properties of individual improper interactions. The number of datums
generated, aggregated across all processors, equals the number of impropers in the system.

The local data stored by this command is generated by looping over all the atoms owned on a processor and their
impropers. An improper will only be included if all 4 atoms in the improper are in the specified compute group.

The output chi will be in degrees.

Note that as atoms migrate from processor to processor, there will be no consistent ordering of the entries within
the local vector or array from one timestep to the next. The only consistency that is guaranteed is that the ordering
on a particular timestep will be the same for local vectors or arrays generated by other compute commands. For
example, improper output from the compute property/local command can be combined with data from this
command and output by the dump local command in a consistent way.

Output info:

This compute calculates a local vector or local array depending on the number of keywords. The length of the
vector or number of rows in the array is the number of impropers. If a single keyword is specified, a local vector
is produced. If two or more keywords are specified, a local array is produced where the number of columns = the
number of keywords. The vector or array can be accessed by any command that uses local values from a compute
as input. See this section for an overview of LAMMPS output options.

Restrictions: none

Related commands:

dump local, compute property/local

Default: none

202

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

compute ke command

Syntax:

compute ID group−ID ke

ID, group−ID are documented in compute command•
ke = style name of this compute command•

Examples:

compute 1 all ke

Description:

Define a computation that calculates the translational kinetic energy of a group of particles.

The kinetic energy or each particle is computed as 1/2 m v^2, where m and v are the mass and velocity of the
particle.

There is a subtle difference between the quantity calculated by this compute and the kinetic energy calculated by
the ke or etotal keyword used in thermodynamic output, as specified by the thermo_style command. For this
compute, kinetic energy is "translational" kinetic energy, calculated by the simple formula above. For
thermodynamic output, the ke keyword infers kinetic energy from the temperature of the system with 1/2 Kb T of
energy for each degree of freedom. For the default temperature computation via the compute temp command,
these are the same. But different computes that calculate temperature can subtract out different non−thermal
components of velocity and/or include different degrees of freedom (translational, rotational, etc).

Output info:

This compute calculates a global scalar (the KE). This value can be used by any command that uses a global
scalar value from a compute as input. See this section for an overview of LAMMPS output options.

The scalar value calculated by this compute is "extensive", meaning it it scales with the number of atoms in the
simulation.

Restrictions: none

Related commands:

compute erotate/sphere

Default: none

203

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

compute ke/atom command

Syntax:

compute ID group−ID ke/atom

ID, group−ID are documented in compute command•
ke/atom = style name of this compute command•

Examples:

compute 1 all ke/atom

Description:

Define a computation that calculates the per−atom translational kinetic energy for each atom in a group.

The kinetic energy is simply 1/2 m v^2, where m is the mass and v is the velocity of each atom.

The value of the kinetic energy will be 0.0 for atoms not in the specified compute group.

Output info:

This compute calculates a per−atom vector, which can be accessed by any command that uses per−atom values
from a compute as input. See this section for an overview of LAMMPS output options.

Restrictions: none

Related commands:

dump custom

Default: none

204

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

compute_modify command

Syntax:

compute_modify compute−ID keyword value ...

compute−ID = ID of the compute to modify•
one or more keyword/value pairs may be listed•
keyword = extra or dynamic

extra value = N
 N = # of extra degrees of freedom to subtract

dynamic value = yes or no
 yes/no = do or do not recompute the number of atoms contributing to the temperature

thermo value = yes or no
 yes/no = do or do not add contributions from fixes to the potential energy

•

Examples:

compute_modify myTemp extra 0
compute_modify newtemp dynamic yes extra 600

Description:

Modify one or more parameters of a previously defined compute. Not all compute styles support all parameters.

The extra keyword refers to how many degrees−of−freedom are subtracted (typically from 3N) as a normalizing
factor in a temperature computation. Only computes that compute a temperature use this option. The default is 2
or 3 for 2d or 3d systems which is a correction factor for an ensemble of velocities with zero total linear
momentum. You can use a negative number for the extra parameter if you need to add degrees−of−freedom. See
the compute temp/asphere command for an example.

The dynamic keyword determines whether the number of atoms N in the compute group is re−computed each
time a temperature is computed. Only compute styles that compute a temperature use this option. By default, N is
assumed to be constant. If you are adding atoms to the system (see the fix pour or fix deposit commands) or
expect atoms to be lost (e.g. due to evaporation), then this option can be used to insure the temperature is correctly
normalized.

The thermo keyword determines whether the potential energy contribution calculated by some fixes is added to
the potential energy calculated by the compute. Currently, only the compute of style pe uses this option. See the
doc pages for individual fixes for details.

Restrictions: none

Related commands:

compute

Default:

The option defaults are extra = 2 or 3 for 2d or 3d systems and dynamic = no. Thermo is yes if the compute of
style pe was defined with no extra keywords; otherwise it is no.

205

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

compute msd command

Syntax:

compute ID group−ID msd keyword values ...

ID, group−ID are documented in compute command•
msd = style name of this compute command•
zero or more keyword/value pairs may be appended•
keyword = com

com value = yes or no

•

Examples:

compute 1 all msd
compute 1 upper msd com yes

Description:

Define a computation that calculates the mean−squared displacement (MSD) of the group of atoms, including all
effects due to atoms passing thru periodic boundaries.

A vector of four quantites is calculated by this compute. The first 3 elements of the vector are the squared
dx,dy,dz displacements, summed and averaged over atoms in the group. The 4th component is the total squared
displacement, i.e. (dx*dx + dy*dy + dz*dz), summed and averaged over atoms in the group.

The slope of the mean−squared displacement (MSD) versus time is proportional to the diffusion coefficient of the
diffusing atoms.

The displacement of an atom is from its original position at the time the compute command was issued. To store
the original coordinates, the compute creates its own fix of style "store/coord", as if this command had been
issued:

fix compute−ID_store_coord group−ID store/coord

See the fix store/coord command for details. Note that the ID of the new fix is the compute−ID + underscore +
"store_coord", and the group for the new fix is the same as the compute group.

If the com option is set to yes then the effect of any drift in the center−of−mass of the group of atoms is subtracted
out before the displacment of each atom is calcluated. The com option is also passed to the created fix store/coord.

IMPORTANT NOTE: Fix store/coord stores the initial coordinates in "unwrapped" form, by using the image
flags associated with each atom. See the dump custom command for a discussion of "unwrapped" coordinates.
See the Atoms section of the read_data command for a discussion of image flags and how they are set for each
atom. You can reset the image flags (e.g. to 0) before invoking this compute by using the set image command.

IMPORTANT NOTE: If an atom is part of a rigid body (see the fix rigid command), it's periodic image flags are
altered, and its contribution to the MSD may not reflect its true contribution. See the fix rigid command for
details. Thus, to compute the MSD of rigid bodies as they cross periodic boundaries, you will need to
post−process a dump file containing coordinates of the atoms in the bodies.

206

http://lammps.sandia.gov

IMPORTANT NOTE: If you want the quantities calculated by this compute to be continuous when running from
a restart file, then you should use the same ID for this compute, as in the original run. This is so that the created
fix will also have the same ID, and thus be initialized correctly with atom coordinates from the restart file.

Output info:

This compute calculates a global vector of length 4, which can be accessed by indices 1−4 by any command that
uses global vector values from a compute as input. See this section for an overview of LAMMPS output options.

The vector values are "intensive", meaning they are independent of the number of atoms in the simulation.

Restrictions: none

Related commands:

compute displace_atom, fix store/coord, compute msd/molecule

Default:

The option default is com = no.

207

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

compute msd/molecule command

Syntax:

compute ID group−ID msd/molecule

ID, group−ID are documented in compute command•
msd/molecule = style name of this compute command•

Examples:

compute 1 all msd/molecule

Description:

Define a computation that calculates the mean−squared displacement (MSD) of individual molecules. The
calculation includes all effects due to atoms passing thru periodic boundaries.

Four quantites are calculated by this compute for each molecule. The first 3 quantities are the squared dx,dy,dz
displacements of the center−of−mass. The 4th component is the total squared displacement, i.e. (dx*dx + dy*dy +
dz*dz) of the center−of−mass.

The slope of the mean−squared displacement (MSD) versus time is proportional to the diffusion coefficient of the
diffusing molecules.

The displacement of the center−of−mass of the molecule is from its original center−of−mass position at the time
the compute command was issued.

The MSD for a particular molecule is only computed if one or more of its atoms are in the specified group.
Normally all atoms in the molecule should be in the group, however this is not required. LAMMPS will warn you
if this is not the case. Only atoms in the group contribute to the center−of−mass calculation for the molecule,
which is used to caculate its initial and current position.

Let Nmolecules be the number of molecules for which the MSD is calculated. If not all molecules have atoms in
the group, then the molecule with the lowest ID is the first of the Nmolecules. The next lowest ID is the second,
etc, up to Nmolecules.

IMPORTANT NOTE: The initial coordinates of each molecule are stored in "unwrapped" form, by using the
image flags associated with each atom. See the dump custom command for a discussion of "unwrapped"
coordinates. See the Atoms section of the read_data command for a discussion of image flags and how they are
set for each atom. You can reset the image flags (e.g. to 0) before invoking this compute by using the set image
command.

IMPORTANT NOTE: If an atom is part of a rigid body (see the fix rigid command), it's periodic image flags are
altered, and its contribution to the MSD may not reflect its true contribution. See the fix rigid command for
details. Thus, to compute the MSD of rigid bodies as they cross periodic boundaries, you will need to
post−process a dump file containing coordinates of the atoms in the bodies.

IMPORTANT NOTE: Unlike the compute msd command, this compute does not store the initial center−of−mass
coorindates of its molecules in a restart file. Thus you cannot continue the MSD per molecule calculation of this

208

http://lammps.sandia.gov

compute when running from a restart file.

Output info:

This compute calculates a global array where the number of rows = Nmolecules and the number of columns = 4
for dx,dy,dz and the total displacement. These values can be accessed by any command that uses global array
values from a compute as input. See this section for an overview of LAMMPS output options.

The array values are "intensive", meaning they are independent of the number of atoms in the simulation.

Restrictions: none

Related commands:

compute msd

Default: none

209

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

compute pair/local command

Syntax:

compute ID group−ID pair/local input1 input2 ...

ID, group−ID are documented in compute command•
pair/local = style name of this compute command•
zero or more keywords may be appended•
keyword = dist or eng or force

dist = tabulate pairwise distances
eng = tablutate pairwise energies
eng = tablutate pairwise forces

•

Examples:

compute 1 all pair/local eng
compute 1 all pair/local dist eng force

Description:

Define a computation that calculates properties of individual pairwise interactions. The number of datums
generated, aggregated across all processors, equals the number of pairwise interactions in the system.

The local data stored by this command is generated by looping over the pairwise neighbor list. Info about an
individual pairwise interaction will only be included if both atoms in the pair are in the specified compute group,
and if the current pairwise distance is less than the force cutoff distance for that interaction, as defined by the
pair_style and pair_coeff commands.

The output dist will be in distance units. The output eng will be in energy units. The output force will be in force
units.

Note that as atoms migrate from processor to processor, there will be no consistent ordering of the entries within
the local vector or array from one timestep to the next. The only consistency that is guaranteed is that the ordering
on a particular timestep will be the same for local vectors or arrays generated by other compute commands. For
example, pair output from the compute property/local command can be combined with data from this command
and output by the dump local command in a consistent way.

Output info:

This compute calculates a local vector or local array depending on the number of keywords. The length of the
vector or number of rows in the array is the number of pairs. If a single keyword is specified, a local vector is
produced. If two or more keywords are specified, a local array is produced where the number of columns = the
number of keywords. The vector or array can be accessed by any command that uses local values from a compute
as input. See this section for an overview of LAMMPS output options.

Restrictions: none

Related commands:

210

http://lammps.sandia.gov

dump local, compute property/local

Default: none

211

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

compute pe command

Syntax:

compute ID group−ID pe keyword ...

ID, group−ID are documented in compute command•
pe = style name of this compute command•
zero or more keywords may be appended•
keyword = pair or bond or angle or dihedral or improper or kspace•

Examples:

compute 1 all pe
compute molPE all pe bond angle dihedral improper

Description:

Define a computation that calculates the potential energy of the entire system of atoms. The specified group must
be "all". See the compute pe/atom command if you want per−atom energies. These per−atom values could be
summed for a group of atoms via the compute reduce command.

The energy is calculated by the various pair, bond, etc potentials defined for the simulation. If no extra keywords
are listed, then the potential energy is the sum of pair, bond, angle, dihedral, improper, and kspace (long−range)
energy. If any extra keywords are listed, then only those components are summed to compute the potential
energy.

Various fixes can contribute to the total potential energy of the system. See the doc pages for individual fixes for
details. The thermo option of the compute_modify command determines whether these contributions are added
into the computed potential energy. If no keywords are specified the default is yes. If any keywords are specified,
the default is no.

A compute of this style with the ID of "thermo_pe" is created when LAMMPS starts up, as if this command were
in the input script:

compute thermo_pe all pe

See the "thermo_style" command for more details.

Output info:

This compute calculates a global scalar (the potential energy). This value can be used by any command that uses a
global scalar value from a compute as input. See this section for an overview of LAMMPS output options.

The scalar value calculated by this compute is "extensive", meaning it it scales with the number of atoms in the
simulation.

Restrictions: none

Related commands:

212

http://lammps.sandia.gov

compute pe/atom

Default: none

213

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

compute pe/atom command

Syntax:

compute ID group−ID pe/atom keyword ...

ID, group−ID are documented in compute command•
pe/atom = style name of this compute command•
zero or more keywords may be appended•
keyword = pair or bond or angle or dihedral or improper•

Examples:

compute 1 all pe/atom
compute 1 all pe/atom pair
compute 1 all pe/atom pair bond

Description:

Define a computation that computes the per−atom potential energy for each atom in a group. See the compute pe
command if you want the potential energy of the entire system.

The per−atom energy is calculated by the various pair, bond, etc potentials defined for the simulation. If no extra
keywords are listed, then the potential energy is the sum of pair, bond, angle, dihedral, and improper energy. If
any extra keywords are listed, then only those components are summed to compute the potential energy.

Note that the energy of each atom is due to its interaction with all other atoms in the simulation, not just with
other atoms in the group.

For an energy contribution produced by a small set of atoms (e.g. 4 atoms in a dihedral or 3 atoms in a Tersoff
3−body interaction), that energy is assigned in equal portions to each atom in the set. E.g. 1/4 of the dihedral
energy to each of the 4 atoms.

The dihedral_style charmm style calculates pairwise interactions between 1−4 atoms. The energy contribution of
these terms is included in the pair energy, not the dihedral energy.

As an example of per−atom potential energy compared to total potential energy, these lines in an input script
should yield the same result in the last 2 columns of thermo output:

compute peratom all pe/atom
compute pe all reduce sum c_peratom
thermo_style custom step temp etotal press pe c_pe

IMPORTANT NOTE: The per−atom energy does NOT include contributions due to long−range Coulombic
interactions (via the kspace_style command). It's not clear this contribution can easily be computed.

Output info:

This compute calculates a per−atom vector, which can be accessed by any command that uses per−atom values
from a compute as input. See this section for an overview of LAMMPS output options.

214

http://lammps.sandia.gov

Restrictions:

Related commands:

compute pe, compute stress/atom

Default: none

215

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

compute pressure command

Syntax:

compute ID group−ID pressure temp−ID keyword ...

ID, group−ID are documented in compute command•
pressure = style name of this compute command•
temp−ID = ID of compute that calculates temperature•
zero or more keywords may be appended•
keyword = ke or pair or bond or angle or dihedral or improper or kspace or fix or virial•

Examples:

compute 1 all pressure myTemp
compute 1 all pressure thermo_temp pair bond

Description:

Define a computation that calculates the pressure of the entire system of atoms. The specified group must be "all".
See the compute stress/atom command if you want per−atom pressure (stress). These per−atom values could be
summed for a group of atoms via the compute reduce command.

The pressure is computed by the formula

where N is the number of atoms in the system (see discussion of DOF below), Kb is the Boltzmann constant, T is
the temperature, d is the dimensionality of the system (2 or 3 for 2d/3d), V is the system volume (or area in 2d),
and the second term is the virial, computed within LAMMPS for all pairwise as well as 2−body, 3−body, and
4−body, and long−range interactions. Fixes that impose constraints (e.g. the fix shake command) also contribute
to the virial term.

A symmetric pressure tensor, stored as a 6−element vector, is also calculated by this compute. The 6 components
of the vector are ordered xx, yy, zz, xy, xz, yz. The equation for the I,J components (where I and J = x,y,z) is
similar to the above formula, except that the first term uses components of the kinetic energy tensor and the
second term uses components of the virial tensor:

If no extra keywords are listed, the entire equations above are calculated which include a kinetic energy
(temperature) term and the virial as the sum of pair, bond, angle, dihedral, improper, kspace (long−range), and fix
contributions to the force on each atom. If any extra keywords are listed, then only those components are summed
to compute temperature or ke and/or the virial. The virial keyword means include all terms except the kinetic
energy ke.

216

http://lammps.sandia.gov

The temperature and kinetic energy tensor is not calculated by this compute, but rather by the temperature
compute specified with the command. Normally this compute should calculate the temperature of all atoms for
consistency with the virial term, but any compute style that calculates temperature can be used, e.g. one that
excludes frozen atoms or other degrees of freedom.

Note that the N in the first formula above is really degrees−of−freedom divided by d = dimensionality, where the
DOF value is calcluated by the temperature compute. See the various compute temperature styles for details.

A compute of this style with the ID of "thermo_press" is created when LAMMPS starts up, as if this command
were in the input script:

compute thermo_press all pressure thermo_temp

where "thermo_temp" is the ID of a similarly defined compute of style "temp". See the "thermo_style" command
for more details.

Output info:

This compute calculates a global scalar (the pressure) and a global vector of length 6 (pressure tensor), which can
be accessed by indices 1−6. These values can be used by any command that uses global scalar or vector values
from a compute as input. See this section for an overview of LAMMPS output options.

The scalar and vector values calculated by this compute are "intensive", meaning they are independent of the
number of atoms in the simulation.

Restrictions: none

Related commands:

compute temp, compute stress/atom, thermo_style,

Default: none

217

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

compute property/atom command

Syntax:

compute ID group−ID property/atom input1 input2 ...

ID, group−ID are documented in compute command•
property/atom = style name of this compute command•
input = one or more atom attributes

 possible attributes = id, mol, type, mass,
 x, y, z, xs, ys, zs, xu, yu, zu, ix, iy, iz,
 vx, vy, vz, fx, fy, fz,
 q, mux, muy, muz,
 radius, omegax, omegay, omegaz,
 angmomx, angmomy, angmomz,
 quatw, quati, quatj, quatk, tqx, tqy, tqz

 id = atom ID
 mol = molecule ID
 type = atom type
 mass = atom mass
 x,y,z = unscaled atom coordinates
 xs,ys,zs = scaled atom coordinates
 xu,yu,zu = unwrapped atom coordinates
 ix,iy,iz = box image that the atom is in
 vx,vy,vz = atom velocities
 fx,fy,fz = forces on atoms
 q = atom charge
 mux,muy,muz = orientation of dipolar atom
 radius = radius of extended spherical particle
 omegax,omegay,omegaz = angular velocity of extended particle
 angmomx,angmomy,angmomz = angular momentum of extended particle
 quatw,quati,quatj,quatk = quaternion components for aspherical particles
 tqx,tqy,tqz = torque on extended particles

•

Examples:

compute 1 all property/atom xs vx fx mux
compute 2 all property/atom type
compute 1 all property/atom ix iy iz

Description:

Define a computation that simply stores atom attributes for each atom in the group. This is useful so that the
values can be used by other output commands that take computes as inputs. See for example, the compute reduce,
fix ave/atom, fix ave/histo, fix ave/spatial, and atom−style variable commands.

The list of possible attributes is the same as that used by the dump custom command, which describes their
meaning. Basically, this list gives your input script access to any per−atom quantity stored by LAMMPS.

The values are stored in a per−atom vector or array as discussed below. Zeroes are stored for atoms not in the
specified group.

Output info:

218

http://lammps.sandia.gov

This compute calculates a per−atom vector or per−atom array depending on the number of input values. If a single
input is specified, a per−atom vector is produced. If two or more inputs are specified, a per−atom array is
produced where the number of columns = the number of inputs. The vector or array can be accessed by any
command that uses per−atom values from a compute as input. See this section for an overview of LAMMPS
output options.

Restrictions: none

Related commands:

dump custom, compute reduce, fix ave/atom, fix ave/spatial

Default: none

219

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

compute property/local command

Syntax:

compute ID group−ID property/local input1 input2 ...

ID, group−ID are documented in compute command•
property/local = style name of this compute command•
input = one or more attributes

 possible attributes = patom1 patom2
 batom1 batom2 btype
 aatom1 aatom2 aatom3 atype
 datom1 datom2 datom3 dtype
 iatom1 iatom2 iatom3 itype

 patom1, patom2 = IDs of 2 atoms in each pair
 batom1, batom2 = IDs of 2 atoms in each bond
 btype = bond type of each bond
 aatom1, aatom2, aatom3 = IDs of 3 atoms in each angle
 atype = angle type of each angle
 datom1, datom2, datom3, datom4 = IDs of 4 atoms in each dihedral
 dtype = dihedral type of each dihedral
 iatom1, iatom2, iatom3, iatom4 = IDs of 4 atoms in each improper
 itype = improper type of each improper

•

Examples:

compute 1 all property/local btype batom1 batom2
compute 1 all property/local atype aatom2

Description:

Define a computation that stores the specified attributes as local data so it can be accessed by other output
commands. If the input attributes refer to bond information, then the number of datums generated, aggregated
across all processors, equals the number of bonds in the system. Ditto for pairs, angles, etc.

If multiple input attributes are specified then they must all generate the same amount of information, so that the
resulting local array has the same number of rows for each column. This means that only bond attributes can be
specified together, or angle attributes, etc. Bond and angle attributes can not be mixed in the same compute
property/local command.

If the inputs are pair attributes, the local data is generated by looping over the pairwise neighbor list. Info about an
individual pairwise interaction will only be included if both atoms in the pair are in the specified compute group,
and if the current pairwise distance is less than the force cutoff distance for that interaction, as defined by the
pair_style and pair_coeff commands.

If the inputs are bond, angle, etc attributes, the local data is generated by looping over all the atoms owned on a
processor and extracting bond, angle, etc info. For bonds, info about an individual bond will only be included if
both atoms in the bond are in the specified compute group. Likewise for angles, dihedrals, etc.

Note that as atoms migrate from processor to processor, there will be no consistent ordering of the entries within
the local vector or array from one timestep to the next. The only consistency that is guaranteed is that the ordering

220

http://lammps.sandia.gov

on a particular timestep will be the same for local vectors or arrays generated by other compute commands. For
example, output from the compute bond/local command can be combined with bond atom indices from this
command and output by the dump local command in a consistent way.

The patom1 and patom2 attributes refer to the atom IDs of the 2 atoms in each pairwise interaction computed by
the pair_style command.

IMPORTANT NOTE: For pairs, if two atoms I,J are involved in 1−2, 1−3, 1−4 interactions within the molecular
topology, their pairwise interaction may be turned off, and thus they will not appear in the neighbor list, and will
not be part of the local data created by this command. More specifically, this is true of I,J pairs with a weighting
factor of 0.0; pairs with a non−zero weighting factor are included. The weighting factors for 1−2, 1−3, and 1−4
pairwise interactions are set by the special_bonds command.

The batom1 and batom2 attributes refer to the atom IDs of the 2 atoms in each bond. The btype attribute refers to
the type of the bond, from 1 to Nbtypes = # of bond types. The number of bond types is defined in the data file
read by the read_data command. The attributes that start with "a", "d", "i", refer to similar values for angles,
dihedrals, and impropers.

Output info:

This compute calculates a local vector or local array depending on the number of input values. The length of the
vector or number of rows in the array is the number of bonds, angles, etc. If a single input is specified, a local
vector is produced. If two or more inputs are specified, a local array is produced where the number of columns =
the number of inputs. The vector or array can be accessed by any command that uses local values from a compute
as input. See this section for an overview of LAMMPS output options.

Restrictions: none

Related commands:

dump local, compute reduce

Default: none

221

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

compute property/molecule command

Syntax:

compute ID group−ID property/molecule input1 input2 ...

ID, group−ID are documented in compute command•
property/molecule = style name of this compute command•
input = one or more attributes

 possible attributes = mol

 mol = molecule ID

•

Examples:

compute 1 all property/molecule mol

Description:

Define a computation that stores the specified attributes as global data so it can be accessed by other output
commands and used in conjunction with other commands that generate per−molecule data, such as compute
com/molecule and compute msd/molecule.

The mol attribute generates a list of molecule IDs in ascending order for any molecule with one or more of its
atoms in the specified group. This list and ordering of molecule IDs will be consistent with the ordering produced
by other compute commands that generate per−molecule datums. Thus this attribute can be used to produce
molecule IDs as labels for those datums when they are output to a file, e.g. by the fix ave/time command.

Output info:

This compute calculates a global vector or global array depending on the number of input values. The length of
the vector or number of rows in the array is the number of molecules. If a single input is specified, a global vector
is produced. If two or more inputs are specified, a global array is produced where the number of columns = the
number of inputs. The vector or array can be accessed by any command that uses global values from a compute as
input. See this section for an overview of LAMMPS output options.

Restrictions: none

Related commands: none

Default: none

222

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

compute rdf command

Syntax:

compute ID group−ID rdf Nbin itype1 jtype1 itype2 jtype2 ...

ID, group−ID are documented in compute command•
rdf = style name of this compute command•
Nbin = number of RDF bins•
itypeN = central atom type for Nth RDF histogram (see asterisk form below)•
jtypeN = distribution atom type for Nth RDF histogram (see asterisk form below)•

Examples:

fix 1 all rdf 100
fix 1 all rdf 100 1 1
fix 1 all rdf 100 * 3
fix 1 fluid rdf 500 1 1 1 2 2 1 2 2
fix 1 fluid rdf 500 1*3 2 5 *10

Description:

Define a computation that calculates the radial distribution function (RDF), also called g(r), and the coordination
number for a group of particles. Both are calculated in histogram form by binning pairwise distances into Nbin
bins from 0.0 to the maximum force cutoff defined by the pair_style command. The bins are of uniform size in
radial distance. Thus a single bin encompasses a thin shell of distances in 3d and a thin ring of distances in 2d.

The itypeN and jtypeN arguments are optional. These arguments must come in pairs. If no pairs are listed, then a
single histogram is computed for g(r) between all atom types. If one or more pairs are listed, then a separate
histogram is generated for each itype,jtype pair.

The itypeN and jtypeN settings can be specified in one of two ways. An explicit numeric value can be used, as in
the 4th example above. Or a wild−card asterisk can be used to specify a range of atom types. This takes the form
"*" or "*n" or "n*" or "m*n". If N = the number of atom types, then an asterisk with no numeric values means all
types from 1 to N. A leading asterisk means all types from 1 to n (inclusive). A trailing asterisk means all types
from n to N (inclusive). A middle asterisk means all types from m to n (inclusive).

If both itypeN and jtypeN are single values, as in the 4th example above, this means that a g(r) is computed where
atoms of type itypeN are the central atom, and atoms of type jtypeN are the distribution atom. If either itypeN and
jtypeN represent a range of values via the wild−card asterisk, as in the 5th example above, this means that a g(r) is
computed where atoms of any of the range of types represented by itypeN are the central atom, and atoms of any
of the range of types represented by jtypeN are the distribution atom.

Pairwise distances are generated by looping over a pairwise neighbor list, just as they would be in a pair_style
computation. The distance between two atoms I and J is included in a specific histogram if the following criteria
are met:

atoms I,J are both in the specified fix group•
the distance between atoms I,J is less than the maximum force cutoff•
the type of the I atom matches itypeN (one or a range of types)•
the type of the J atom matches jtypeN (one or a range of types)•

223

http://lammps.sandia.gov

the I,J interaction is included in the neighbor list•

IMPORTANT NOTE: The last point is relevant for molecular systems with bonds, because if two atoms I,J are
involved in 1−2, 1−3, 1−4 interactions within the molecular topology, their pairwise interaction may be turned
off, and thus they will not appear in the neighbor list, and will not contribute to g(r). More specifically, this is true
of I,J pairs with a weighting factor of 0.0; pairs with a non−zero weighting factor are included. The weighting
factors for 1−2, 1−3, and 1−4 pairwise interactions are set by the special_bonds command.

It is OK if a particular pairwise distance is included in more than one individual histogram, due to the way the
itypeN and jtypeN arguments are specified.

The g(r) value for a bin is calculated from the histogram count by scaling it by the idealized number of how many
counts there would be if atoms of type jtypeN were uniformly distributed. Thus it involves the count of itypeN
atoms, the count of jtypeN atoms, the volume of the entire simulation box, and the volume of the bin's thin shell in
3d (or the area of the bin's thin ring in 2d).

A coordination number coord(r) is also calculated, which is the sum of g(r) values for all bins up to and including
the current bin.

Output info:

This compute calculates a global array with the number of rows = Nbins, and the number of columns = 1 +
2*Npairs, where Npairs is the number of I,J pairings specified. The first column has the bin coordinate (center of
the bin), Each successive set of 2 columns has the g(r) and coord(r) values for a specific set of itypeN versus
jtypeN interactions, as described above. These values can be used by any command that uses a global values from
a compute as input. See this section for an overview of LAMMPS output options.

The array values calculated by this compute are all "intensive", since they are normalized, meaning they are
independent of the number of atoms in the simulation.

Restrictions:

The RDF is not computed for distances longer than the force cutoff, since processors (in parallel) don't know
about atom coordinates for atoms further away than that distance. If you want an RDF for larger distances, you'll
need to post−process a dump file.

Related commands:

fix ave/histo

Default: none

224

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

compute reduce command

compute reduce/region command

Syntax:

compute ID group−ID style arg mode input1 input2 ... keyword args ...

ID, group−ID are documented in compute command•
style = reduce or reduce/region

reduce arg = none
reduce/region arg = region−ID

 region−ID = ID of region to use for choosing atoms

•

mode = sum or min or max or ave•
one or more inputs can be listed•
input = x, y, z, vx, vy, vz, fx, fy, fz, c_ID, c_ID[N], f_ID, f_ID[N], v_name

 x,y,z,vx,vy,vz,fx,fy,fz = atom attribute (position, velocity, force component)
 c_ID = vector calculated by a compute with ID
 c_ID[I] = Ith column of array calculated by a compute with ID
 f_ID = vector calculated by a fix with ID
 f_ID[I] = Ith column of array calculated by a fix with ID
 v_name = per−atom vector calculated by an atom−style variable with name

•

zero or more keyword/args pairs may be appended•
keyword = replace

replace args = vec1 vec2
 vec1 = reduced value from this input vector will be replaced
 vec2 = replace it with vec1[N] where N is index of max/min value from vec2

•

Examples:

compute 1 all reduce sum c_force
compute 1 all reduce/region subbox sum c_force
compute 2 all reduce min c_press2 f_ave v_myKE
compute 3 fluid reduce max c_index1 c_index2 c_dist replace 1 3 replace 2 3

Description:

Define a calculation that "reduces" one or more vector inputs into scalar values, one per listed input. The inputs
can be global, per−atom, or local quantities. Atom attributes are per−atom quantities, computes and fixes may
generate any of the three kinds of quantities, and atom−style variables generate per−atom quantities.

The reduction operation is specified by the mode setting. The sum option adds the values in the vector into a
global total. The min or max options find the minimum or maximum value across all vector values. The ave
setting adds the vector values into a global total, then divides by the number of values in the vector.

Each listed input is operated on independently. For per−atom inputs, the group specified with this command
means only atoms within the group contribute to the result. For per−atom inputs, if the compute reduce/region
command is used, the atoms must also currently be within the region. Note that an input that produces per−atom
quantities may define its own group which affects the quantities it returns. For example, if a compute is used as an
input which generates a per−atom vector, it will generate values of 0.0 for atoms that are not in the group

225

http://lammps.sandia.gov

specified for that compute.

Each listed input can be an atom attribute (position, velocity, force component) or can be the result of a compute
or fix or the evaluation of an atom−style variable.

The atom attribute values (x,y,z,vx,vy,vz,fx,fy,fz) are self−explanatory. Note that other atom attributes can be
used as inputs to this fix by using the compute property/atom command and then specifying an input value from
that compute.

If a value begins with "c_", a compute ID must follow which has been previously defined in the input script.
Computes can generate global, per−atom, or local quantities. See the individual compute doc page for details. If
no bracketed integer is appended, the vector calculated by the compute is used. If a bracketed interger is
appended, the Ith column of the array calculated by the compute is used. Users can also write code for their own
compute styles and add them to LAMMPS.

If a value begins with "f_", a fix ID must follow which has been previously defined in the input script. Fixes can
generate global, per−atom, or local quantities. See the individual fix doc page for details. Note that some fixes
only produce their values on certain timesteps, which must be compatible with when compute reduce references
the values, else an error results. If no bracketed integer is appended, the vector calculated by the fix is used. If a
bracketed integer is appended, the Ith column of the array calculated by the fix is used. Users can also write code
for their own fix style and add them to LAMMPS.

If a value begins with "v_", a variable name must follow which has been previously defined in the input script. It
must be an atom−style variable. Atom−style variables can reference thermodynamic keywords and various
per−atom attributes, or invoke other computes, fixes, or variables when they are evaluated, so this is a very
general means of generating per−atom quantities to reduce.

If the replace keyword is used, two indices vec1 and vec2 are specified, where each index ranges from 1 to the #
of input values. The replace keyword can only be used if the mode is min or max. It works as follows. A min/max
is computed as usual on the vec2 input vector. The index N of that value within vec2 is also stored. Then, instead
of performing a min/max on the vec1 input vector, the stored index is used to select the Nth element of the vec1
vector.

Thus, for example, if you wish to use this compute to find the bond with maximum stretch, you can do it as
follows:

compute 1 all property/local batom1 batom2
compute 2 all bond/local dist
compute 3 all reduce max c_1[1] c_1[2] c_2 replace 1 3 replace 2 3
thermo_style custom step temp c_3[1] c_3[2] c_3[3]

The first two input values in the compute reduce command are vectors with the IDs of the 2 atoms in each bond,
using the compute property/local command. The last input value is bond distance, using the compute bond/local
command. Instead of taking the max of the two atom ID vectors, which does not yield useful information in this
context, the replace keywords will extract the atom IDs for the two atoms in the bond of maximum stretch. These
atom IDs and the bond stretch will be printed with thermodynamic output.

If a single input is specified this compute produces a global scalar value. If multiple inputs are specified, this
compute produces a vector of global values, the length of which is equal to the number of inputs specified.

As discussed below, for sum mode, the value(s) produced by this compute are all "extensive", meaning their value
scales linearly with the number of atoms involved. If normalized values are desired, this compute can be accessed
by the thermo_style custom command with thermo_modify norm yes set as an option. Or it can be accessed by a

226

variable that divides by the appropriate atom count.

Output info:

This compute calculates a global scalar or global vector of length N where N is the number of inputs, and which
can be accessed by indices 1−N. These values can be used by any command that uses global scalar or vector
values from a compute as input. See this section for an overview of LAMMPS output options.

For sum mode, the scalar and vector values calculated by this compute are "extensive", meaning they scale with
the number of atoms in the simulation. For min or max or ave modes, the value(s) are intensive.

Restrictions: none

Related commands:

compute, fix, variable

Default: none

227

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

compute stress/atom command

Syntax:

compute ID group−ID stress/atom keyword ...

ID, group−ID are documented in compute command•
stress/atom = style name of this compute command•
zero or more keywords may be appended•
keyword = ke or pair or bond or angle or dihedral or improper or fix or virial•

Examples:

compute 1 mobile stress/atom
compute 1 all stress/atom pair bond

Description:

Define a computation that computes the symmetric per−atom stress tensor for each atom in a group. The tensor
for each atom has 6 components and is stored as a 6−element vector in the following order: xx, yy, zz, xy, xz, yz.
See the compute pressure command if you want the stress tensor (pressure) of the entire system.

The stress tensor for atom I is given by the following formula, where a and b take on values x,y,z to generate the
6 components of the symmetric tensor:

The first term is a kinetic energy contribution for atom I. The second term is a pairwise energy contribution where
n loops over the Np neighbors of atom I, r1 and r2 are the positions of the 2 atoms in the pairwise interaction, and
F1 and F2 are the forces on the 2 atoms resulting from the pairwise interaction. The third term is a bond
contribution of similar form for the Nb bonds which atom I is part of. There are similar terms for the Na angle, Nd
dihedral, and Ni improper interactions atom I is part of. Finally, there is a term for the Nf fixes that apply internal
constraint forces to atom I. Currently, only the fix shake and fix rigid commands contribute to this term.

As the coefficients in the formula imply, a virial contribution produced by a small set of atoms (e.g. 4 atoms in a
dihedral or 3 atoms in a Tersoff 3−body interaction) is assigned in equal portions to each atom in the set. E.g. 1/4
of the dihedral virial to each of the 4 atoms, or 1/3 of the fix virial due to SHAKE constraints applied to atoms in
a a water molecule via the fix shake command.

If no extra keywords are listed, all of the terms in this formula are included in the per−atom stress tensor. If any
extra keywords are listed, only those terms are summed to compute the tensor. The virial keyword means include

228

http://lammps.sandia.gov

all terms except the kinetic energy ke.

Note that the stress for each atom is due to its interaction with all other atoms in the simulation, not just with other
atoms in the group.

The dihedral_style charmm style calculates pairwise interactions between 1−4 atoms. The virial contribution of
these terms is included in the pair virial, not the dihedral virial.

Note that as defined in the formula, per−atom stress is the negative of the per−atom pressure tensor. It is also
really a stress−volume formulation, meaning the computed quantity is in units of pressure−volume. It would need
to be divided by a per−atom volume to have units of stress (pressure), but an individual atom's volume is not easy
to compute in a deformed solid or a liquid. Thus, if the diagonal components of the per−atom stress tensor are
summed for all atoms in the system and the sum is divided by dV, where d = dimension and V is the volume of
the system, the result should be −P, where P is the total pressure of the system.

These lines in an input script for a 3d system should yield that result. I.e. the last 2 columns of thermo output will
be the same:

compute peratom all stress/atom
compute p all reduce sum c_peratom[1] c_peratom[2] c_peratom[3]
variable press equal −(c_p[1]+c_p[2]+c_p[3])/(3*vol)
thermo_style custom step temp etotal press v_press

IMPORTANT NOTE: The per−atom stress does NOT include contributions due to long−range Coulombic
interactions (via the kspace_style command). It's not clear this contribution can easily be computed.

Output info:

This compute calculates a per−atom array with 6 columns, which can be accessed by indices 1−6 by any
command that uses per−atom values from a compute as input. See this section for an overview of LAMMPS
output options.

Restrictions: none

Related commands:

compute pe, compute pressure

Default: none

229

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

compute temp command

Syntax:

compute ID group−ID temp

ID, group−ID are documented in compute command•
temp = style name of this compute command•

Examples:

compute 1 all temp
compute myTemp mobile temp

Description:

Define a computation that calculates the temperature of a group of atoms. A compute of this style can be used by
any command that computes a temperature, e.g. thermo_modify, fix temp/rescale, fix npt, etc.

The temperature is calculated by the formula KE = dim/2 N k T, where KE = total kinetic energy of the group of
atoms (sum of 1/2 m v^2), dim = 2 or 3 = dimensionality of the simulation, N = number of atoms in the group, k =
Boltzmann constant, and T = temperature.

A kinetic energy tensor, stored as a 6−element vector, is also calculated by this compute for use in the
computation of a pressure tensor. The formula for the components of the tensor is the same as the above formula,
except that v^2 is replaced by vx*vy for the xy component, etc. The 6 components of the vector are ordered xx,
yy, zz, xy, xz, yz.

The number of atoms contributing to the temperature is assumed to be constant for the duration of the run; use the
dynamic option of the compute_modify command if this is not the case.

This compute subtracts out degrees−of−freedom due to fixes that constrain molecular motion, such as fix shake
and fix rigid. This means the temperature of groups of atoms that include these constraints will be computed
correctly. If needed, the subtracted degrees−of−freedom can be altered using the extra option of the
compute_modify command.

A compute of this style with the ID of "thermo_temp" is created when LAMMPS starts up, as if this command
were in the input script:

compute thermo_temp all temp

See the "thermo_style" command for more details.

See this howto section of the manual for a discussion of different ways to compute temperature and perform
thermostatting.

Output info:

This compute calculates a global scalar (the temperature) and a global vector of length 6 (KE tensor), which can
be accessed by indices 1−6. These values can be used by any command that uses global scalar or vector values
from a compute as input. See this section for an overview of LAMMPS output options.

230

http://lammps.sandia.gov

The scalar value calculated by this compute is "intensive", meaning it is independent of the number of atoms in
the simulation. The vector values are "extensive", meaning they scale with the number of atoms in the simulation.

Restrictions: none

Related commands:

compute temp/partial, compute temp/region, compute pressure

Default: none

231

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

compute temp/asphere command

Syntax:

compute ID group−ID temp/asphere bias−ID

ID, group−ID are documented in compute command•
temp/asphere = style name of this compute command•
bias−ID = ID of a temperature compute that removes a velocity bias (optional)•

Examples:

compute 1 all temp/asphere
compute myTemp mobile temp/asphere tempCOM

Description:

Define a computation that calculates the temperature of a group of aspherical particles, including a contribution
from both their translational and rotational kinetic energy. This differs from the usual compute temp command,
which assumes point particles with only translational kinetic energy.

Only finite−size particles (aspherical or spherical) can be included in the group. For 3d finite−size particles, each
has 6 degrees of freedom (3 translational, 3 rotational). For 2d finite−size particles, each has 3 degrees of freedom
(2 translational, 1 rotational).

IMPORTANT NOTE: This choice for degrees of freedom (dof) assumes that all finite−size aspherical or
spherical particles in your model will freely rotate, sampling all their rotational dof. It is possible to use a
combination of interaction potentials and fixes that induce no torque or otherwise constrain some of all of your
particles so that this is not the case. Then there are less dof and you should use the compute_modify extra
command to adjust the dof accordingly.

For example, an aspherical particle with all three of its shape parameters the same is a sphere. If it does not rotate,
then it should have 3 dof instead of 6 in 3d (or 2 instead of 3 in 2d). A uniaxial aspherical particle has two of its
three shape parameters the same. If it does not rotate around the axis perpendicular to its circular cross section,
then it should have 5 dof instead of 6 in 3d.

The translational kinetic energy is computed the same as is described by the compute temp command. The
rotational kinetic energy is computed as 1/2 I w^2, where I is the inertia tensor for the aspherical particle and w is
its angular velocity, which is computed from its angular momentum.

IMPORTANT NOTE: For 2d models, particles are treated as ellipsoids, not ellipses, meaning their moments of
inertia will be the same as in 3d.

A kinetic energy tensor, stored as a 6−element vector, is also calculated by this compute. The formula for the
components of the tensor is the same as the above formula, except that v^2 and w^2 are replaced by vx*vy and
wx*wy for the xy component, and the appropriate elements of the inertia tensor are used. The 6 components of
the vector are ordered xx, yy, zz, xy, xz, yz.

The number of atoms contributing to the temperature is assumed to be constant for the duration of the run; use the
dynamic option of the compute_modify command if this is not the case.

232

http://lammps.sandia.gov

If a bias−ID is specified it must be the ID of a temperature compute that removes a "bias" velocity from each
atom. This allows compute temp/sphere to compute its thermal temperature after the translational kinetic energy
components have been altered in a prescribed way, e.g. to remove a velocity profile. Thermostats that use this
compute will work with this bias term. See the doc pages for individual computes that calculate a temperature and
the doc pages for fixes that perform thermostatting for more details.

This compute subtracts out translational degrees−of−freedom due to fixes that constrain molecular motion, such
as fix shake and fix rigid. This means the temperature of groups of atoms that include these constraints will be
computed correctly. If needed, the subtracted degrees−of−freedom can be altered using the extra option of the
compute_modify command.

See this howto section of the manual for a discussion of different ways to compute temperature and perform
thermostatting.

Output info:

This compute calculates a global scalar (the temperature) and a global vector of length 6 (KE tensor), which can
be accessed by indices 1−6. These values can be used by any command that uses global scalar or vector values
from a compute as input. See this section for an overview of LAMMPS output options.

The scalar value calculated by this compute is "intensive", meaning it is independent of the number of atoms in
the simulation. The vector values are "extensive", meaning they scale with the number of atoms in the simulation.

Restrictions:

This compute requires that particles be represented as extended ellipsoids and not point particles. This means they
will have an angular momentum and a shape which is determined by the shape command.

Related commands:

compute temp

Default: none

233

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

compute temp/com command

Syntax:

compute ID group−ID temp/com

ID, group−ID are documented in compute command•
temp/com = style name of this compute command•

Examples:

compute 1 all temp/com
compute myTemp mobile temp/com

Description:

Define a computation that calculates the temperature of a group of atoms, after subtracting out the
center−of−mass velocity of the group. This is useful if the group is expected to have a non−zero net velocity for
some reason. A compute of this style can be used by any command that computes a temperature, e.g.
thermo_modify, fix temp/rescale, fix npt, etc.

After the center−of−mass velocity has been subtracted from each atom, the temperature is calculated by the
formula KE = dim/2 N k T, where KE = total kinetic energy of the group of atoms (sum of 1/2 m v^2), dim = 2 or
3 = dimensionality of the simulation, N = number of atoms in the group, k = Boltzmann constant, and T =
temperature.

A kinetic energy tensor, stored as a 6−element vector, is also calculated by this compute for use in the
computation of a pressure tensor. The formula for the components of the tensor is the same as the above formula,
except that v^2 is replaced by vx*vy for the xy component, etc. The 6 components of the vector are ordered xx,
yy, zz, xy, xz, yz.

The number of atoms contributing to the temperature is assumed to be constant for the duration of the run; use the
dynamic option of the compute_modify command if this is not the case.

The removal of the center−of−mass velocity by this fix is essentially computing the temperature after a "bias" has
been removed from the velocity of the atoms. If this compute is used with a fix command that performs
thermostatting then this bias will be subtracted from each atom, thermostatting of the remaining thermal velocity
will be performed, and the bias will be added back in. Thermostatting fixes that work in this way include fix nvt,
fix temp/rescale, fix temp/berendsen, and fix langevin.

This compute subtracts out degrees−of−freedom due to fixes that constrain molecular motion, such as fix shake
and fix rigid. This means the temperature of groups of atoms that include these constraints will be computed
correctly. If needed, the subtracted degrees−of−freedom can be altered using the extra option of the
compute_modify command.

See this howto section of the manual for a discussion of different ways to compute temperature and perform
thermostatting.

Output info:

234

http://lammps.sandia.gov

This compute calculates a global scalar (the temperature) and a global vector of length 6 (KE tensor), which can
be accessed by indices 1−6. These values can be used by any command that uses global scalar or vector values
from a compute as input. See this section for an overview of LAMMPS output options.

The scalar value calculated by this compute is "intensive", meaning it is independent of the number of atoms in
the simulation. The vector values are "extensive", meaning they scale with the number of atoms in the simulation.

Restrictions: none

Related commands:

compute temp

Default: none

235

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

compute temp/deform command

Syntax:

compute ID group−ID temp/deform

ID, group−ID are documented in compute command•
temp/deform = style name of this compute command•

Examples:

compute myTemp all temp/deform

Description:

Define a computation that calculates the temperature of a group of atoms, after subtracting out a streaming
velocity induced by the simulation box changing size and/or shape, for example in a non−equilibrium MD
(NEMD) simulation. The size/shape change is induced by use of the fix deform command. A compute of this
style is created by the fix nvt/sllod command to compute the thermal temperature of atoms for thermostatting
purposes. A compute of this style can also be used by any command that computes a temperature, e.g.
thermo_modify, fix temp/rescale, fix npt, etc.

The deformation fix changes the box size and/or shape over time, so each atom in the simulation box can be
thought of as having a "streaming" velocity. For example, if the box is being sheared in x, relative to y, then
atoms at the bottom of the box (low y) have a small x velocity, while atoms at the top of the box (hi y) have a
large x velocity. This position−dependent streaming velocity is subtracted from each atom's actual velocity to
yield a thermal velocity which is used to compute the temperature.

IMPORTANT NOTE: Fix deform has an option for remapping either atom coordinates or velocities to the
changing simulation box. When using this compute in conjunction with a deforming box, fix deform should NOT
remap atom positions, but rather should let atoms respond to the changing box by adjusting their own velocities
(or let fix deform remap the atom velocities, see it's remap option). If fix deform does remap atom positions, then
they appear to move with the box but their velocity is not changed, and thus they do NOT have the streaming
velocity assumed by this compute. LAMMPS will warn you if fix deform is defined and its remap setting is not
consistent with this compute.

After the streaming velocity has been subtracted from each atom, the temperature is calculated by the formula KE
= dim/2 N k T, where KE = total kinetic energy of the group of atoms (sum of 1/2 m v^2), dim = 2 or 3 =
dimensionality of the simulation, N = number of atoms in the group, k = Boltzmann constant, and T =
temperature. Note that v in the kinetic energy formula is the atom's thermal velocity.

A kinetic energy tensor, stored as a 6−element vector, is also calculated by this compute for use in the
computation of a pressure tensor. The formula for the components of the tensor is the same as the above formula,
except that v^2 is replaced by vx*vy for the xy component, etc. The 6 components of the vector are ordered xx,
yy, zz, xy, xz, yz.

The number of atoms contributing to the temperature is assumed to be constant for the duration of the run; use the
dynamic option of the compute_modify command if this is not the case.

The removal of the box deformation velocity component by this fix is essentially computing the temperature after

236

http://lammps.sandia.gov

a "bias" has been removed from the velocity of the atoms. If this compute is used with a fix command that
performs thermostatting then this bias will be subtracted from each atom, thermostatting of the remaining thermal
velocity will be performed, and the bias will be added back in. Thermostatting fixes that work in this way include
fix nvt, fix temp/rescale, fix temp/berendsen, and fix langevin.

This compute subtracts out degrees−of−freedom due to fixes that constrain molecular motion, such as fix shake
and fix rigid. This means the temperature of groups of atoms that include these constraints will be computed
correctly. If needed, the subtracted degrees−of−freedom can be altered using the extra option of the
compute_modify command.

See this howto section of the manual for a discussion of different ways to compute temperature and perform
thermostatting.

Output info:

This compute calculates a global scalar (the temperature) and a global vector of length 6 (KE tensor), which can
be accessed by indices 1−6. These values can be used by any command that uses global scalar or vector values
from a compute as input. See this section for an overview of LAMMPS output options.

The scalar value calculated by this compute is "intensive", meaning it is independent of the number of atoms in
the simulation. The vector values are "extensive", meaning they scale with the number of atoms in the simulation.

Restrictions: none

Related commands:

compute temp/ramp, compute temp/profile, fix deform, fix nvt/sllod

Default: none

237

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

compute temp/partial command

Syntax:

compute ID group−ID temp/partial xflag yflag zflag

ID, group−ID are documented in compute command•
temp/partial = style name of this compute command•
xflag,yflag,zflag = 0/1 for whether to exclude/include this dimension•

Examples:

compute newT flow temp/partial 1 1 0

Description:

Define a computation that calculates the temperature of a group of atoms, after excluding one or more velocity
components. A compute of this style can be used by any command that computes a temperature, e.g.
thermo_modify, fix temp/rescale, fix npt, etc.

The temperature is calculated by the formula KE = dim/2 N k T, where KE = total kinetic energy of the group of
atoms (sum of 1/2 m v^2), dim = dimensionality of the simulation, N = number of atoms in the group, k =
Boltzmann constant, and T = temperature. The calculation of KE excludes the x, y, or z dimensions if xflag, yflag,
or zflag = 0. The dim parameter is adjusted to give the correct number of degrees of freedom.

A kinetic energy tensor, stored as a 6−element vector, is also calculated by this compute for use in the calculation
of a pressure tensor. The formula for the components of the tensor is the same as the above formula, except that
v^2 is replaced by vx*vy for the xy component, etc. The 6 components of the vector are ordered xx, yy, zz, xy,
xz, yz.

The number of atoms contributing to the temperature is assumed to be constant for the duration of the run; use the
dynamic option of the compute_modify command if this is not the case.

The removal of velocity components by this fix is essentially computing the temperature after a "bias" has been
removed from the velocity of the atoms. If this compute is used with a fix command that performs thermostatting
then this bias will be subtracted from each atom, thermostatting of the remaining thermal velocity will be
performed, and the bias will be added back in. Thermostatting fixes that work in this way include fix nvt, fix
temp/rescale, fix temp/berendsen, and fix langevin.

This compute subtracts out degrees−of−freedom due to fixes that constrain molecular motion, such as fix shake
and fix rigid. This means the temperature of groups of atoms that include these constraints will be computed
correctly. If needed, the subtracted degrees−of−freedom can be altered using the extra option of the
compute_modify command.

See this howto section of the manual for a discussion of different ways to compute temperature and perform
thermostatting.

Output info:

This compute calculates a global scalar (the temperature) and a global vector of length 6 (KE tensor), which can

238

http://lammps.sandia.gov

be accessed by indices 1−6. These values can be used by any command that uses global scalar or vector values
from a compute as input. See this section for an overview of LAMMPS output options.

The scalar value calculated by this compute is "intensive", meaning it is independent of the number of atoms in
the simulation. The vector values are "extensive", meaning they scale with the number of atoms in the simulation.

Restrictions: none

Related commands:

compute temp, compute temp/region, compute pressure

Default: none

239

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

compute temp/profile command

Syntax:

compute ID group−ID temp/profile xflag yflag zflag binstyle args

ID, group−ID are documented in compute command•
temp/profile = style name of this compute command•
xflag,yflag,zflag = 0/1 for whether to exclude/include this dimension•
binstyle = x or y or z or xy or yz or xz or xyz

x arg = Nx
y arg = Ny
z arg = Nz
xy args = Nx Ny
yz args = Ny Nz
xz args = Nx Nz
xyz args = Nx Ny Nz

 Nx,Ny,Nz = number of velocity bins in x,y,z dimensions

•

Examples:

compute myTemp flow temp/profile 1 1 1 x 10
compute myTemp flow temp/profile 0 1 1 xyz 20 20 20

Description:

Define a computation that calculates the temperature of a group of atoms, after subtracting out a
spatially−averaged velocity field, before computing the kinetic energy. This can be useful for thermostatting a
collection of atoms undergoing a complex flow, e.g. via a profile−unbiased thermostat (PUT) as described in
(Evans). A compute of this style can be used by any command that computes a temperature, e.g. thermo_modify,
fix temp/rescale, fix npt, etc.

The xflag, yflag, zflag settings determine which components of average velocity are subtracted out.

The binstyle setting and its Nx, Ny, Nz arguments determine how bins are setup to perform spatial averaging.
"Bins" can be 1d slabs, 2d pencils, or 3d bricks depending on which binstyle is used. The simulation box is
partitioned conceptually into Nx by Ny by Nz bins. Depending on the binstyle, you may only specify one or two of
these values; the others are effectively set to 1 (no binning in that dimension). For non−orthogonal (triclinic)
simulation boxes, the bins are "tilted" slabs or pencils or bricks that are parallel to the tilted faces of the box. See
the region prism command for a discussion of the geometry of tilted boxes in LAMMPS.

When a temperature is computed, the velocity for the set of atoms that are both in the compute group and in the
same spatial bin is summed to compute an average velocity for the bin. This bias velocity is then subtracted from
the velocities of individual atoms in the bin to yield a thermal velocity for each atom. Note that if there is only one
atom in the bin, it's thermal velocity will thus be 0.0.

After the spatially−averaged velocity field has been subtracted from each atom, the temperature is calculated by
the formula KE = dim/2 N k T, where KE = total kinetic energy of the group of atoms (sum of 1/2 m v^2), dim =
2 or 3 = dimensionality of the simulation, N = number of atoms in the group, k = Boltzmann constant, and T =
temperature.

240

http://lammps.sandia.gov

A kinetic energy tensor, stored as a 6−element vector, is also calculated by this compute for use in the
computation of a pressure tensor. The formula for the components of the tensor is the same as the above formula,
except that v^2 is replaced by vx*vy for the xy component, etc. The 6 components of the vector are ordered xx,
yy, zz, xy, xz, yz.

The number of atoms contributing to the temperature is assumed to be constant for the duration of the run; use the
dynamic option of the compute_modify command if this is not the case.

The removal of the spatially−averaged velocity field by this fix is essentially computing the temperature after a
"bias" has been removed from the velocity of the atoms. If this compute is used with a fix command that performs
thermostatting then this bias will be subtracted from each atom, thermostatting of the remaining thermal velocity
will be performed, and the bias will be added back in. Thermostatting fixes that work in this way include fix nvt,
fix temp/rescale, fix temp/berendsen, and fix langevin.

This compute subtracts out degrees−of−freedom due to fixes that constrain molecular motion, such as fix shake
and fix rigid. This means the temperature of groups of atoms that include these constraints will be computed
correctly. If needed, the subtracted degrees−of−freedom can be altered using the extra option of the
compute_modify command.

See this howto section of the manual for a discussion of different ways to compute temperature and perform
thermostatting. Using this compute in conjunction with a thermostatting fix, as explained there, will effectively
implement a profile−unbiased thermostat (PUT), as described in (Evans).

Output info:

This compute calculates a global scalar (the temperature) and a global vector of length 6 (KE tensor), which can
be accessed by indices 1−6. These values can be used by any command that uses global scalar or vector values
from a compute as input. See this section for an overview of LAMMPS output options.

The scalar value calculated by this compute is "intensive", meaning it is independent of the number of atoms in
the simulation. The vector values are "extensive", meaning they scale with the number of atoms in the simulation.

Restrictions:

You should not use too large a velocity−binning grid, especially in 3d. In the current implementation, the binned
velocity averages are summed across all processors, so this will be inefficient if the grid is too large, and the
operation is performed every timestep, as it will be for most thermostats.

Related commands:

compute temp, compute temp/ramp, compute temp/deform, compute pressure

Default:

The option default is units = lattice.

(Evans) Evans and Morriss, Phys Rev Lett, 56, 2172−2175 (1986).

241

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

compute temp/ramp command

Syntax:

compute ID group−ID temp/ramp vdim vlo vhi dim clo chi keyword value ...

ID, group−ID are documented in compute command•
temp/ramp = style name of this compute command•
vdim = vx or vy or vz•
vlo,vhi = subtract velocities between vlo and vhi (velocity units)•
dim = x or y or z•
clo,chi = lower and upper bound of domain to subtract from (distance units)•
zero or more keyword/value pairs may be appended•
keyword = units•

units value = lattice or box

Examples:

compute 2nd middle temp/ramp vx 0 8 y 2 12 units lattice

Description:

Define a computation that calculates the temperature of a group of atoms, after subtracting out an ramped velocity
profile before computing the kinetic energy. A compute of this style can be used by any command that computes
a temperature, e.g. thermo_modify, fix temp/rescale, fix npt, etc.

The meaning of the arguments for this command which define the velocity ramp are the same as for the velocity
ramp command which was presumably used to impose the velocity.

After the ramp velocity has been subtracted from the specified dimension for each atom, the temperature is
calculated by the formula KE = dim/2 N k T, where KE = total kinetic energy of the group of atoms (sum of 1/2 m
v^2), dim = 2 or 3 = dimensionality of the simulation, N = number of atoms in the group, k = Boltzmann constant,
and T = temperature.

The units keyword determines the meaning of the distance units used for coordinates (c1,c2) and velocities
(vlo,vhi). A box value selects standard distance units as defined by the units command, e.g. Angstroms for units =
real or metal. A lattice value means the distance units are in lattice spacings; e.g. velocity = lattice spacings / tau.
The lattice command must have been previously used to define the lattice spacing.

A kinetic energy tensor, stored as a 6−element vector, is also calculated by this compute for use in the
computation of a pressure tensor. The formula for the components of the tensor is the same as the above formula,
except that v^2 is replaced by vx*vy for the xy component, etc. The 6 components of the vector are ordered xx,
yy, zz, xy, xz, yz.

The number of atoms contributing to the temperature is assumed to be constant for the duration of the run; use the
dynamic option of the compute_modify command if this is not the case.

The removal of the ramped velocity component by this fix is essentially computing the temperature after a "bias"
has been removed from the velocity of the atoms. If this compute is used with a fix command that performs

242

http://lammps.sandia.gov

thermostatting then this bias will be subtracted from each atom, thermostatting of the remaining thermal velocity
will be performed, and the bias will be added back in. Thermostatting fixes that work in this way include fix nvt,
fix temp/rescale, fix temp/berendsen, and fix langevin.

This compute subtracts out degrees−of−freedom due to fixes that constrain molecular motion, such as fix shake
and fix rigid. This means the temperature of groups of atoms that include these constraints will be computed
correctly. If needed, the subtracted degrees−of−freedom can be altered using the extra option of the
compute_modify command.

See this howto section of the manual for a discussion of different ways to compute temperature and perform
thermostatting.

Output info:

This compute calculates a global scalar (the temperature) and a global vector of length 6 (KE tensor), which can
be accessed by indices 1−6. These values can be used by any command that uses global scalar or vector values
from a compute as input. See this section for an overview of LAMMPS output options.

The scalar value calculated by this compute is "intensive", meaning it is independent of the number of atoms in
the simulation. The vector values are "extensive", meaning they scale with the number of atoms in the simulation.

Restrictions: none

Related commands:

compute temp, compute temp/profie, compute temp/deform, compute pressure

Default:

The option default is units = lattice.

243

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

compute temp/region command

Syntax:

compute ID group−ID temp/region region−ID

ID, group−ID are documented in compute command•
temp/region = style name of this compute command•
region−ID = ID of region to use for choosing atoms•

Examples:

temperature mine flow region boundary

Description:

Define a computation that calculates the temperature of a group of atoms in a geometric region. This can be useful
for thermostatting one portion of the simulation box. E.g. a McDLT simulation where one side is cooled, and the
other side is heated. A compute of this style can be used by any command that computes a temperature, e.g.
thermo_modify, fix temp/rescale, etc.

Note that a region−style temperature can be used to thermostat with fix temp/rescale or fix langevin, but should
probably not be used with Nose/Hoover style fixes (fix nvt, fix npt, or fix nph), if the degrees−of−freedom
included in the computed T varies with time.

The temperature is calculated by the formula KE = dim/2 N k T, where KE = total kinetic energy of the group of
atoms (sum of 1/2 m v^2), dim = 2 or 3 = dimensionality of the simulation, N = number of atoms in both the
group and region, k = Boltzmann constant, and T = temperature.

A kinetic energy tensor, stored as a 6−element vector, is also calculated by this compute for use in the
computation of a pressure tensor. The formula for the components of the tensor is the same as the above formula,
except that v^2 is replaced by vx*vy for the xy component, etc. The 6 components of the vector are ordered xx,
yy, zz, xy, xz, yz.

The number of atoms contributing to the temperature is compute each time the temperature is evaluated since it is
assumed atoms can enter/leave the region. Thus there is no need to use the dynamic option of the
compute_modify command for this compute style.

The removal of atoms outside the region by this fix is essentially computing the temperature after a "bias" has
been removed, which in this case is the velocity of any atoms outside the region. If this compute is used with a fix
command that performs thermostatting then this bias will be subtracted from each atom, thermostatting of the
remaining thermal velocity will be performed, and the bias will be added back in. Thermostatting fixes that work
in this way include fix nvt, fix temp/rescale, fix temp/berendsen, and fix langevin. This means any of the
thermostatting fixes can operate on a geometric region of atoms, as defined by this compute.

Unlike other compute styles that calculate temperature, this compute does NOT currently subtract out
degrees−of−freedom due to fixes that constrain molecular motion, such as fix shake and fix rigid. If needed the
subtracted degrees−of−freedom can be altered using the extra option of the compute_modify command.

See this howto section of the manual for a discussion of different ways to compute temperature and perform

244

http://lammps.sandia.gov

thermostatting.

Output info:

This compute calculates a global scalar (the temperature) and a global vector of length 6 (KE tensor), which can
be accessed by indices 1−6. These values can be used by any command that uses global scalar or vector values
from a compute as input. See this section for an overview of LAMMPS output options.

The scalar value calculated by this compute is "intensive", meaning it is independent of the number of atoms in
the simulation. The vector values are "extensive", meaning they scale with the number of atoms in the simulation.

Restrictions: none

Related commands:

compute temp, compute pressure

Default: none

245

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

compute temp/sphere command

Syntax:

compute ID group−ID temp/sphere bias−ID

ID, group−ID are documented in compute command•
temp/sphere = style name of this compute command•
bias−ID = ID of a temperature compute that removes a velocity bias (optional)•

Examples:

compute 1 all temp/sphere
compute myTemp mobile temp/sphere tempCOM

Description:

Define a computation that calculates the temperature of a group of spherical particles, including a contribution
from both their translational and rotational kinetic energy. This differs from the usual compute temp command,
which assumes point particles with only translational kinetic energy.

Both point and finite−size particles can be included in the group. Point particles do not rotate, so they have only
translational degrees of freedom. For 3d spherical particles, each has 6 degrees of freedom (3 translational, 3
rotational). For 2d spherical particles, each has 3 degrees of freedom (2 translational, 1 rotational).

IMPORTANT NOTE: This choice for degrees of freedom (dof) assumes that all finite−size spherical particles in
your model will freely rotate, sampling all their rotational dof. It is possible to use a combination of interaction
potentials and fixes that induce no torque or otherwise constrain some of all of your particles so that this is not the
case. Then there are less dof and you should use the compute_modify extra command to adjust the dof
accordingly.

The translational kinetic energy is computed the same as is described by the compute temp command. The
rotational kinetic energy is computed as 1/2 I w^2, where I is the moment of inertia for a sphere and w is the
particle's angular velocity.

IMPORTANT NOTE: For 2d models, particles are treated as spheres, not disks, meaning their moment of inertia
will be the same as in 3d.

A kinetic energy tensor, stored as a 6−element vector, is also calculated by this compute. The formula for the
components of the tensor is the same as the above formulas, except that v^2 and w^2 are replaced by vx*vy and
wx*wy for the xy component. The 6 components of the vector are ordered xx, yy, zz, xy, xz, yz.

The number of atoms contributing to the temperature is assumed to be constant for the duration of the run; use the
dynamic option of the compute_modify command if this is not the case.

If a bias−ID is specified it must be the ID of a temperature compute that removes a "bias" velocity from each
atom. This allows compute temp/sphere to compute its thermal temperature after the translational kinetic energy
components have been altered in a prescribed way, e.g. to remove a velocity profile. Thermostats that use this
compute will work with this bias term. See the doc pages for individual computes that calculate a temperature and
the doc pages for fixes that perform thermostatting for more details.

246

http://lammps.sandia.gov

This compute subtracts out translational degrees−of−freedom due to fixes that constrain molecular motion, such
as fix shake and fix rigid. This means the temperature of groups of atoms that include these constraints will be
computed correctly. If needed, the subtracted degrees−of−freedom can be altered using the extra option of the
compute_modify command.

See this howto section of the manual for a discussion of different ways to compute temperature and perform
thermostatting.

Output info:

This compute calculates a global scalar (the temperature) and a global vector of length 6 (KE tensor), which can
be accessed by indices 1−6. These values can be used by any command that uses global scalar or vector values
from a compute as input. See this section for an overview of LAMMPS output options.

The scalar value calculated by this compute is "intensive", meaning it is independent of the number of atoms in
the simulation. The vector values are "extensive", meaning they scale with the number of atoms in the simulation.

Restrictions:

This compute requires that particles be represented as extended spheres and not point particles. This means they
will have an angular velocity and a diameter which is determined either by the shape command or by each particle
being assigned an individual radius, e.g. for atom_style granular.

Related commands:

compute temp, compute temp/asphere

Default: none

247

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

create_atoms command

Syntax:

create_atoms type style args keyword values ...

type = atom type (1−Ntypes) of atoms to create•
style = box or region or single

box args = none
region args = region−ID

 region−ID = atoms will only be created if contained in the region
single args = x y z

 x,y,z = coordinates of a single atom (distance units)

•

zero or more keyword/value pairs may be appended•
keyword = basis or units

basis values = M itype
 M = which basis atom
 itype = atom type (1−N) to assign to this basis atom

units value = lattice or box
lattice = the geometry is defined in lattice units
box = the geometry is defined in simulation box units

•

Examples:

create_atoms 1 box
create_atoms 3 region regsphere basis 2 3
create_atoms 3 single 0 0 5

Description:

This command creates atoms on a lattice or a single atom as an alternative to reading in their coordinates via a
read_data or read_restart command. A simulation box must already exist, which is typically created via the
create_box command. Before using this command, a lattice must also be defined using the lattice command. The
only exception is for the single style with units = box.

For the box style, the create_atoms command fills the entire simulation box with atoms on the lattice. If your
simulation box is periodic, you should insure its size is a multiple of the lattice spacings, to avoid unwanted atom
overlaps at the box boundaries. If your box is periodic and a multiple of the lattice spacing in a particular
dimension, LAMMPS is careful to put exactly one atom at the boundary (on either side of the box), not zero or
two.

For the region style, the geometric volume is filled that is inside the simulation box and is also consistent with the
region volume. See the region command for details. Note that a region can be specified so that its "volume" is
either inside or outside a geometric boundary. Also note that if your region is the same size as a periodic
simulation box (in some dimension), LAMMPS does not implement the same logic as with the box style, to insure
exactly one atom at the boundary. if this is what you desire, you should either use the box style, or tweak the
region size to get precisely the atoms you want.

For the single style, a single atom is added to the system at the specified coordinates. This can be useful for
debugging purposes or to create a tiny system with a handful of atoms at specified positions.

248

http://lammps.sandia.gov

The basis keyword specifies an atom type that will be assigned to specific basis atoms as they are created. See the
lattice command for specifics on how basis atoms are defined for the unit cell of the lattice. By default, all created
atoms are assigned the argument type as their atom type.

The units keyword determines the meaning of the distance units used to specify the coordinates of the one atom
created by the single style. A box value selects standard distance units as defined by the units command, e.g.
Angstroms for units = real or metal. A lattice value means the distance units are in lattice spacings.

Note that this command adds atoms to those that already exist. By using the create_atoms command multiple
times, multiple sets of atoms can be added to the simulation. For example, interleaving create_atoms with lattice
commands specifying different orientations, grain boundaries can be created. By using the create_atoms
command in conjunction with the delete_atoms command, reasonably complex geometries can be created. The
create_atoms command can also be used to add atoms to a system previously read in from a data or restart file. In
all these cases, care should be taken to insure that new atoms do not overlap existing atoms inappropriately. The
delete_atoms command can be used to handle overlaps.

Atom IDs are assigned to created atoms in the following way. The collection of created atoms are assigned
consecutive IDs that start immediately following the largest atom ID existing before the create_atoms command
was invoked. When a simulation is performed on different numbers of processors, there is no guarantee a
particular created atom will be assigned the same ID.

Aside from their ID, atom type, and xyz position, other properties of created atoms are set to default values,
depending on which quantities are defined by the chosen atom style. See the atom style command for more
details. See the set and velocity commands for info on how to change these values.

charge = 0.0•
dipole moment = 0.0•
diameter = 1.0•
volume = 1.0•
density = 1.0•
velocity = 0.0•
angular velocity = 0.0•
angular momentum = 0.0•
quaternion = (1,0,0,0)•
bonds, angles, dihedrals, impropers = none•

The granular style sets the diameter and density to 1.0 and calculates a mass for the particle, which is PI/6 *
diameter^3 = 0.5236. The peri style sets the volume and density to 1.0 and calculates a mass for the particle,
which is also 1.0.

Restrictions:

An atom_style must be previously defined to use this command.

Related commands:

lattice, region, create_box, read_data, read_restart

Default: none

249

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

create_box command

Syntax:

create_box N region−ID

N = # of atom types to use in this simulation•
region−ID = ID of region to use as simulation domain•

Examples:

create_box 2 mybox

Description:

This command creates a simulation box based on the specified region. Thus a region command must first be used
to define a geometric domain.

The argument N is the number of atom types that will be used in the simulation.

If the region is not of style prism, then LAMMPS encloses the region (block, sphere, etc) with an axis−aligned
(orthogonal) box which becomes the simulation domain.

If the region is of style prism, LAMMPS creates a non−orthogonal simulation domain shaped as a parallelepiped
with triclinic symmetry. See the region prism command for a description of how the shape of the parallelepiped is
defined. The parallelepiped has its "origin" at (xlo,ylo,zlo) and 3 edge vectors starting from its origin given by a =
(xhi−xlo,0,0); b = (xy,yhi−ylo,0); c = (xz,yz,zhi−zlo).

A prism region used with the create_box command must have tilt factors (xy,xz,yz) that do not skew the box more
than half the distance of the parallel box length. For example, if xlo = 2 and xhi = 12, then the x box length is 10
and the xy tilt factor must be between −5 and 5. Similarly, both xz and yz must be between −(xhi−xlo)/2 and
+(yhi−ylo)/2. Note that this is not a limitation, since if the maximum tilt factor is 5 (as in this example), then
configurations with tilt = ..., −15, −5, 5, 15, 25, ... are all equivalent.

When a prism region is used, the simulation domain must be periodic in any dimensions with a non−zero tilt
factor, as defined by the boundary command. I.e. if the xy tilt factor is non−zero, then both the x and y
dimensions must be periodic. Similarly, x and z must be periodic if xz is non−zero and y and z must be periodic if
yz is non−zero.

Restrictions:

An atom_style and region must have been previously defined to use this command.

Related commands:

create_atoms, region

Default: none

250

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

delete_atoms command

Syntax:

delete_atoms style args

style = group or region or overlap or porosity

group args = group−ID
region args = region−ID
overlap args = cutoff group1−ID group2−ID

 cutoff = delete one atom from pairs of atoms within the cutoff (distance units)
 group1−ID = one atom in pair must be in this group
 group2−ID = other atom in pair must be in this group

porosity args = region−ID fraction seed
 region−ID = region within which to perform deletions
 fraction = delete this fraction of atoms
 seed = random number seed (positive integer)

•

Examples:

delete_atoms group edge
delete_atoms region sphere
delete_atoms overlap 0.3 all all
delete_atoms overlap 0.5 solvent colloid
delete_atoms porosity cube 0.1

Description:

Delete the specified atoms. This command can be used to carve out voids from a block of material or to delete
created atoms that are too close to each other (e.g. at a grain boundary).

For style group, all atoms belonging to the group are deleted.

For style region, all atoms in the region volume are deleted.

For style overlap pairs of atoms whose distance of separation is within the specified cutoff distance are searched
for, and one of the 2 atoms is deleted. Only pairs where one of the two atoms is in the first group specified and the
other atom is in the second group are considered. The atom that is in the first group is the one that is deleted.

Note that it is OK for the two group IDs to be the same (e.g. group all), or for some atoms to be members of both
groups. In these cases, either atom in the pair may be deleted. Also note that if there are atoms which are members
of both groups, the only guarantee is that at the end of the deletion operation, enough deletions will have occurred
that no atom pairs within the cutoff will remain (subject to the group restriction). There is no guarantee that the
minimum number of atoms will be deleted, or that the same atoms will be deleted when running on different
numbers of processors.

For style porosity a specified fraction of atoms are deleted within the specified region. For example, if fraction is
0.1, then 10% of the atoms will be deleted. The atoms to delete are chosen randomly. There is no guarantee that
the exact fraction of atoms will be deleted, or that the same atoms will be deleted when running on different
numbers of processors.

251

http://lammps.sandia.gov

After atoms are deleted, if the system is not molecular (no bonds), then atom IDs are re−assigned so that they run
from 1 to the number of atoms in the system. This is not done for molecular systems, since it would foul up the
bond connectivity that has already been assigned.

Restrictions:

The overlap styles requires inter−processor communication to acquire ghost atoms and build a neighbor list. This
means that your system must be ready to perform a simulation before using this command (force fields setup,
atom masses set, etc). Since a neighbor list is used to find overlapping atom pairs, it also means that you must
define a pair style with force cutoffs greater than or equal to the desired overlap cutoff between pairs of relevant
atom types, even though the pair potential will not be evaluated.

If the special_bonds command is used with a setting of 0, then a pair of bonded atoms (1−2, 1−3, or 1−4) will not
appear in the neighbor list, and thus will not be considered for deletion by the overlap styles. You probably don't
want to be deleting one atom in a bonded pair anyway.

Related commands:

create_atoms

Default: none

252

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

delete_bonds command

Syntax:

delete_bonds group−ID style args keyword ...

group−ID = group ID•
style = multi or atom or bond or angle or dihedral or improper or stats

multi args = none
atom args = an atom type
bond args = a bond type
angle args = an angle type
dihedral args = a dihedral type
improper args = an improper type
stats args = none

•

zero or more keywords may be appended•
keyword = undo or remove or special•

Examples:

delete_bonds frozen multi remove
delete_bonds all atom 4 special
delete_bonds all stats

Description:

Turn off (or on) molecular topology interactions, i.e. bonds, angles, dihedrals, impropers. This command is useful
for deleting interactions that have been previously turned off by bond−breaking potentials. It is also useful for
turning off topology interactions between frozen or rigid atoms. Pairwise interactions can be turned off via the
neigh_modify exclude command. The fix shake command also effectively turns off certain bond and angle
interactions.

For all styles, an interaction is only turned off (or on) if all the atoms involved are in the specified group. For style
multi this is the only criterion applied − all types of bonds, angles, dihedrals, impropers in the group turned off.

For style atom, one or more of the atoms involved must also be of the specified type. For style bond, only bonds
are candidates for turn−off, and the bond must be of the specified type. Styles angle, dihedral, and improper are
treated similarly.

For style bond, you can set the type to 0 to delete bonds that have been previously broken; e.g. see the bond_style
quartic command.

For style stats no interactions are turned off (or on); the status of all interactions in the specified group is simply
reported. This is useful for diagnostic purposes if bonds have been turned off by a bond−breaking potential during
a previous run.

The default behavior of the delete_bonds command is to turn off interactions by toggling their type to a negative
value. E.g. a bond_type of 2 is set to −2. The neighbor list creation routines will not include such an interaction in
their interaction lists. The default is also to not alter the list of 1−2, 1−3, 1−4 neighbors computed by the
special_bonds command and used to weight pairwise force and energy calculations. This means that pairwise
computations will proceed as if the bond (or angle, etc) were still turned on.

253

http://lammps.sandia.gov

The keywords listed above can be appended to the argument list to alter the default behavior.

The undo keyword inverts the delete_bonds command so that the specified bonds, angles, etc are turned on if they
are currently turned off. This means any negative value is toggled to positive. Note that the fix shake command
also sets bond and angle types negative, so this option should not be used on those interactions.

The remove keyword is invoked at the end of the delete_bonds operation. It causes turned−off bonds (angles, etc)
to be removed from each atom's data structure and then adjusts the global bond (angle, etc) counts accordingly.
Removal is a permanent change; removed bonds cannot be turned back on via the undo keyword. Removal does
not alter the pairwise 1−2, 1−3, 1−4 weighting list.

The special keyword is invoked at the end of the delete_bonds operation, after (optional) removal. It re−computes
the pairwise 1−2, 1−3, 1−4 weighting list. The weighting list computation treats turned−off bonds the same as
turned−on. Thus, turned−off bonds must be removed if you wish to change the weighting list.

Note that the choice of remove and special options affects how 1−2, 1−3, 1−4 pairwise interactions will be
computed across bonds that have been modified by the delete_bonds command.

Restrictions:

This command requires inter−processor communication to coordinate the deleting of bonds. This means that your
system must be ready to perform a simulation before using this command (force fields setup, atom masses set,
etc).

If deleted bonds (angles, etc) are removed but the 1−2, 1−3, 1−4 weighting list is not recomputed, this can cause a
later fix shake command to fail due to an atom's bonds being inconsistent with the weighting list. This should only
happen if the group used in the fix command includes both atoms in the bond, in which case you probably should
be recomputing the weighting list.

Related commands:

neigh_modify exclude, special_bonds, fix shake

Default: none

254

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

dielectric command

Syntax:

dielectric value

value = dielectric constant•

Examples:

dielectric 2.0

Description:

Set the dielectric constant for Coulombic interactions (pairwise and long−range) to this value. The constant is
unitless, since it is used to reduce the strength of the interactions. The value is used in the denominator of the
formulas for Coulombic interactions − e.g. a value of 4.0 reduces the Coulombic interactions to 25% of their
default strength. See the pair_style command for more details.

Restrictions: none

Related commands:

pair_style

Default:

dielectric 1.0

255

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

dihedral_style charmm command

Syntax:

dihedral_style charmm

Examples:

dihedral_style charmm
dihedral_coeff 1 120.0 1 60 0.5

Description:

The charmm dihedral style uses the potential

See (MacKerell) for a description of the CHARMM force field. This dihedral style can also be used for the
AMBER force field (see comment on weighting factors below). See (Cornell) for a description of the AMBER
force field.

The following coefficients must be defined for each dihedral type via the dihedral_coeff command as in the
example above, or in the data file or restart files read by the read_data or read_restart commands:

K (energy)•
n (integer >= 0)•
d (integer value of degrees)•
weighting factor (0.0 to 1.0)•

The weighting factor is applied to pairwise interaction between the 1st and 4th atoms in the dihedral, which are
computed by a CHARMM pair_style with epsilon and sigma values specified with a pair_coeff command. Note
that this weighting factor is unrelated to the weighting factor specified by the special bonds command which
applies to all 1−4 interactions in the system.

For CHARMM force fields, the special_bonds 1−4 weighting factor should be set to 0.0. This is because the pair
styles that contain "charmm" (e.g. pair_style lj/charmm/coul/long) define extra 1−4 interaction coefficients that
are used by this dihedral style to compute those interactions explicitly. This means that if any of the weighting
factors defined as dihedral coefficients (4th coeff above) are non−zero, then you must use a charmm pair style.
Note that if you do not set the special_bonds 1−4 weighting factor to 0.0 (which is the default) then 1−4
interactions in dihedrals will be computed twice, once by the pair routine and once by the dihedral routine, which
is probably not what you want.

For AMBER force fields, the special_bonds 1−4 weighting factor should be set to the AMBER defaults (1/2 and
5/6) and all the dihedral weighting factors (4th coeff above) should be set to 0.0. In this case, you can use any pair
style you wish, since the dihedral does not need any 1−4 information.

Restrictions:

256

http://lammps.sandia.gov

This dihedral style can only be used if LAMMPS was built with the "molecular" package (which it is by default).
See the Making LAMMPS section for more info on packages.

Related commands:

dihedral_coeff

Default: none

(Cornell) Cornell, Cieplak, Bayly, Gould, Merz, Ferguson, Spellmeyer, Fox, Caldwell, Kollman, JACS 117,
5179−5197 (1995).

(MacKerell) MacKerell, Bashford, Bellott, Dunbrack, Evanseck, Field, Fischer, Gao, Guo, Ha, et al, J Phys
Chem B, 102, 3586 (1998).

257

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

dihedral_style class2 command

Syntax:

dihedral_style class2

Examples:

dihedral_style class2
dihedral_coeff 1 100 75 100 70 80 60

Description:

The class2 dihedral style uses the potential

where Ed is the dihedral term, Embt is a middle−bond−torsion term, Eebt is an end−bond−torsion term, Eat is an
angle−torsion term, Eaat is an angle−angle−torsion term, and Ebb13 is a bond−bond−13 term.

Theta1 and theta2 are equilibrium angles and r1 r2 r3 are equilibrium bond lengths.

See (Sun) for a description of the COMPASS class2 force field.

For this style, coefficients for the Ed formula can be specified in either the input script or data file. These are the 6
coefficients:

K1 (energy)•
phi1 (degrees)•
K2 (energy)•
phi2 (degrees)•
K3 (energy)•
phi3 (degrees)•

Coefficients for all the other formulas can only be specified in the data file.

For the Embt formula, the coefficients are listed under a "MiddleBondTorsion Coeffs" heading and each line lists
4 coefficients:

258

http://lammps.sandia.gov

A1 (energy/distance)•
A2 (energy/distance)•
A3 (energy/distance)•
r2 (distance)•

For the Eebt formula, the coefficients are listed under a "EndBondTorsion Coeffs" heading and each line lists 8
coefficients:

B1 (energy/distance)•
B2 (energy/distance)•
B3 (energy/distance)•
C1 (energy/distance)•
C2 (energy/distance)•
C3 (energy/distance)•
r1 (distance)•
r3 (distance)•

For the Eat formula, the coefficients are listed under a "AngleTorsion Coeffs" heading and each line lists 8
coefficients:

D1 (energy/radian)•
D2 (energy/radian)•
D3 (energy/radian)•
E1 (energy/radian)•
E2 (energy/radian)•
E3 (energy/radian)•
theta1 (degrees)•
theta2 (degrees)•

Theta1 and theta2 are specified in degrees, but LAMMPS converts them to radians internally; hence the units of D
and E are in energy/radian.

For the Eaat formula, the coefficients are listed under a "AngleAngleTorsion Coeffs" heading and each line lists 3
coefficients:

M (energy/radian^2)•
theta1 (degrees)•
theta2 (degrees)•

Theta1 and theta2 are specified in degrees, but LAMMPS converts them to radians internally; hence the units of
M are in energy/radian^2.

For the Ebb13 formula, the coefficients are listed under a "BondBond13 Coeffs" heading and each line lists 3
coefficients:

N (energy/distance^2)•
r1 (distance)•
r3 (distance)•

Restrictions:

This dihedral style can only be used if LAMMPS was built with the "class2" package. See the Making LAMMPS

259

section for more info on packages.

Related commands:

dihedral_coeff

Default: none

(Sun) Sun, J Phys Chem B 102, 7338−7364 (1998).

260

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

dihedral_coeff command

Syntax:

dihedral_coeff N args

N = dihedral type (see asterisk form below)•
args = coefficients for one or more dihedral types•

Examples:

dihedral_coeff 1 80.0 1 3
dihedral_coeff * 80.0 1 3 0.5
dihedral_coeff 2* 80.0 1 3 0.5

Description:

Specify the dihedral force field coefficients for one or more dihedral types. The number and meaning of the
coefficients depends on the dihedral style. Dihedral coefficients can also be set in the data file read by the
read_data command or in a restart file.

N can be specified in one of two ways. An explicit numeric value can be used, as in the 1st example above. Or a
wild−card asterisk can be used to set the coefficients for multiple dihedral types. This takes the form "*" or "*n"
or "n*" or "m*n". If N = the number of dihedral types, then an asterisk with no numeric values means all types
from 1 to N. A leading asterisk means all types from 1 to n (inclusive). A trailing asterisk means all types from n
to N (inclusive). A middle asterisk means all types from m to n (inclusive).

Note that using a dihedral_coeff command can override a previous setting for the same dihedral type. For
example, these commands set the coeffs for all dihedral types, then overwrite the coeffs for just dihedral type 2:

dihedral_coeff * 80.0 1 3
dihedral_coeff 2 200.0 1 3

A line in a data file that specifies dihedral coefficients uses the exact same format as the arguments of the
dihedral_coeff command in an input script, except that wild−card asterisks should not be used since coefficients
for all N types must be listed in the file. For example, under the "Dihedral Coeffs" section of a data file, the line
that corresponds to the 1st example above would be listed as

1 80.0 1 3

Here is an alphabetic list of dihedral styles defined in LAMMPS. Click on the style to display the formula it
computes and coefficients specified by the associated dihedral_coeff command:

dihedral_style none − turn off dihedral interactions•
dihedral_style hybrid − define multiple styles of dihedral interactions•

dihedral_style charmm − CHARMM dihedral•
dihedral_style class2 − COMPASS (class 2) dihedral•
dihedral_style harmonic − harmonic dihedral•
dihedral_style helix − helix dihedral•
dihedral_style multi/harmonic − multi−harmonic dihedral•

261

http://lammps.sandia.gov

dihedral_style opls − OPLS dihedral•

There are also additional dihedral styles submitted by users which are included in the LAMMPS distribution. The
list of these with links to the individual styles are given in the dihedral section of this page.

Restrictions:

This command must come after the simulation box is defined by a read_data, read_restart, or create_box
command.

A dihedral style must be defined before any dihedral coefficients are set, either in the input script or in a data file.

Related commands:

dihedral_style

Default: none

262

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

dihedral_style harmonic command

Syntax:

dihedral_style harmonic

Examples:

dihedral_style harmonic
dihedral_coeff 1 80.0 1 2

Description:

The harmonic dihedral style uses the potential

The following coefficients must be defined for each dihedral type via the dihedral_coeff command as in the
example above, or in the data file or restart files read by the read_data or read_restart commands:

K (energy)•
d (+1 or −1)•
n (integer >= 0)•

Restrictions:

This dihedral style can only be used if LAMMPS was built with the "molecular" package (which it is by default).
See the Making LAMMPS section for more info on packages.

Related commands:

dihedral_coeff

Default: none

263

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

dihedral_style helix command

Syntax:

dihedral_style helix

Examples:

dihedral_style helix
dihedral_coeff 1 80.0 100.0 40.0

Description:

The helix dihedral style uses the potential

This coarse−grain dihedral potential is described in (Guo). For dihedral angles in the helical region, the energy
function is represented by a standard potential consisting of three minima, one corresponding to the trans (t) state
and the other to gauche states (g+ and g−). The paper describes how the A,B,C parameters are chosen so as to
balance secondary (largely driven by local interactions) and tertiary structure (driven by long−range interactions).

The following coefficients must be defined for each dihedral type via the dihedral_coeff command as in the
example above, or in the data file or restart files read by the read_data or read_restart commands:

A (energy)•
B (energy)•
C (energy)•

Restrictions:

This dihedral style can only be used if LAMMPS was built with the "molecular" package (which it is by default).
See the Making LAMMPS section for more info on packages.

Related commands:

dihedral_coeff

Default: none

(Guo) Guo and Thirumalai, Journal of Molecular Biology, 263, 323−43 (1996).

264

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

dihedral_style hybrid command

Syntax:

dihedral_style hybrid style1 style2 ...

style1,style2 = list of one or more dihedral styles•

Examples:

dihedral_style hybrid harmonic helix
dihedral_coeff 1 harmonic 6.0 1 3
dihedral_coeff 2 helix 10 10 10

Description:

The hybrid style enables the use of multiple dihedral styles in one simulation. An dihedral style is assigned to
each dihedral type. For example, dihedrals in a polymer flow (of dihedral type 1) could be computed with a
harmonic potential and dihedrals in the wall boundary (of dihedral type 2) could be computed with a helix
potential. The assignment of dihedral type to style is made via the dihedral_coeff command or in the data file.

In the dihedral_coeff command, the first coefficient sets the dihedral style and the remaining coefficients are those
appropriate to that style. In the example above, the 2 dihedral_coeff commands would set dihedrals of dihedral
type 1 to be computed with a harmonic potential with coefficients 80.0, 1.2 for K, d, n. Dihedral type 2 would be
computed with a helix potential with coefficients 10.0, 10.0, 10.0 for A, B, C.

If the dihedral class2 potential is one of the hybrid styles, it requires additional MiddleBondTorsion,
EndBondTorsion, AngleTorsion, AngleAngleTorsion, and BondBond13 coefficients be specified in the data file.
These lines must also have an additional "class2" argument added after the dihedral type. For dihedral types
which are assigned to other hybrid styles, use the style name (e.g. "harmonic") appropriate to that style. The
MiddleBondTorsion, etc coeffs for that dihedral type will then be ignored.

A dihedral style of none can be specified as the 2nd argument to the dihedral_coeff command, if you desire to
turn off certain dihedral types.

Restrictions:

This dihedral style can only be used if LAMMPS was built with the "molecular" package (which it is by default).
See the Making LAMMPS section for more info on packages.

Unlike other dihedral styles, the hybrid dihedral style does not store dihedral coefficient info for individual
sub−styles in a binary restart files. Thus when retarting a simulation from a restart file, you need to re−specify
dihedral_coeff commands.

Related commands:

dihedral_coeff

Default: none

265

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

dihedral_style multi/harmonic command

Syntax:

dihedral_style multi/harmonic

Examples:

dihedral_style multi/harmonic
dihedral_coeff 1 20 20 20 20 20

Description:

The multi/harmonic dihedral style uses the potential

The following coefficients must be defined for each dihedral type via the dihedral_coeff command as in the
example above, or in the data file or restart files read by the read_data or read_restart commands:

A1 (energy)•
A2 (energy)•
A3 (energy)•
A4 (energy)•
A5 (energy)•

Restrictions:

This dihedral style can only be used if LAMMPS was built with the "molecular" package (which it is by default).
See the Making LAMMPS section for more info on packages.

Related commands:

dihedral_coeff

Default: none

266

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

dihedral_style none command

Syntax:

dihedral_style none

Examples:

dihedral_style none

Description:

Using an dihedral style of none means dihedral forces are not computed, even if quadruplets of dihedral atoms
were listed in the data file read by the read_data command.

Restrictions: none

Related commands: none

Default: none

267

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

dihedral_style opls command

Syntax:

dihedral_style opls

Examples:

dihedral_style opls
dihedral_coeff 1 90.0 90.0 90.0 70.0

Description:

The opls dihedral style uses the potential

Note that the usual 1/2 factor is not included in the K values.

This dihedral potential is used in the OPLS force field and is described in (Watkins).

The following coefficients must be defined for each dihedral type via the dihedral_coeff command as in the
example above, or in the data file or restart files read by the read_data or read_restart commands:

K1 (energy)•
K2 (energy)•
K3 (energy)•
K4 (energy)•

Restrictions:

This dihedral style can only be used if LAMMPS was built with the "molecular" package (which it is by default).
See the Making LAMMPS section for more info on packages.

Related commands:

dihedral_coeff

Default: none

(Watkins) Watkins and Jorgensen, J Phys Chem A, 105, 4118−4125 (2001).

268

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

dihedral_style command

Syntax:

dihedral_style style

style = none or hybrid or charmm or class2 or harmonic or helix or multi/harmonic or opls•

Examples:

dihedral_style harmonic
dihedral_style multi/harmonic
dihedral_style hybrid harmonic charmm

Description:

Set the formula(s) LAMMPS uses to compute dihedral interactions between quadruplets of atoms, which remain
in force for the duration of the simulation. The list of dihedral quadruplets is read in by a read_data or read_restart
command from a data or restart file.

Hybrid models where dihedrals are computed using different dihedral potentials can be setup using the hybrid
dihedral style.

The coefficients associated with a dihedral style can be specified in a data or restart file or via the dihedral_coeff
command.

All dihedral potentials store their coefficient data in binary restart files which means dihedral_style and
dihedral_coeff commands do not need to be re−specified in an input script that restarts a simulation. See the
read_restart command for details on how to do this. The one exception is that dihedral_style hybrid only stores the
list of sub−styles in the restart file; dihedral coefficients need to be re−specified.

IMPORTANT NOTE: When both a dihedral and pair style is defined, the special_bonds command often needs to
be used to turn off (or weight) the pairwise interaction that would otherwise exist between 4 bonded atoms.

In the formulas listed for each dihedral style, phi is the torsional angle defined by the quadruplet of atoms.

Here are some important points to take note of when defining the LAMMPS dihedral coefficients in the formulas
that follow so that they are compatible with other force fields:

The LAMMPS convention is that the trans position = 180 degrees, while in some force fields trans = 0
degrees.

•

Some force fields reverse the sign convention on d.•
Some force fields divide/multiply K by the number of multiple torsions that contain the j−k bond in an
i−j−k−l torsion.

•

Some force fields let n be positive or negative which corresponds to d = 1 or −1 for the harmonic style.•

Here is an alphabetic list of dihedral styles defined in LAMMPS. Click on the style to display the formula it
computes and coefficients specified by the associated dihedral_coeff command:

dihedral_style none − turn off dihedral interactions•
dihedral_style hybrid − define multiple styles of dihedral interactions•

269

http://lammps.sandia.gov

dihedral_style charmm − CHARMM dihedral•
dihedral_style class2 − COMPASS (class 2) dihedral•
dihedral_style harmonic − harmonic dihedral•
dihedral_style helix − helix dihedral•
dihedral_style multi/harmonic − multi−harmonic dihedral•
dihedral_style opls − OPLS dihedral•

There are also additional dihedral styles submitted by users which are included in the LAMMPS distribution. The
list of these with links to the individual styles are given in the dihedral section of this page.

Restrictions:

Dihedral styles can only be set for atom styles that allow dihedrals to be defined.

Most dihedral styles are part of the "molecular" package. They are only enabled if LAMMPS was built with that
package. See the Making LAMMPS section for more info on packages. The doc pages for individual dihedral
potentials tell if it is part of a package.

Related commands:

dihedral_coeff

Default:

dihedral_style none

270

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

dimension command

Syntax:

dimension N

N = 2 or 3•

Examples:

dimension 2

Description:

Set the dimensionality of the simulation. By default LAMMPS runs 3d simulations. To run a 2d simulation, this
command should be used prior to setting up a simulation box via the create_box or read_data commands. Restart
files also store this setting.

See the discussion in this section for additional instructions on how to run 2d simulations.

IMPORTANT NOTE: Some models in LAMMPS treat particles as extended spheres or ellipsoids, as opposed to
point particles. In 2d, the particles will still be spheres or ellipsoids, not circular disks or ellipses, meaning their
moment of inertia will be the same as in 3d.

Restrictions:

This command must be used before the simulation box is defined by a read_data or create_box command.

Related commands:

fix enforce2d

Default:

dimension 3

271

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

dipole command

Syntax:

dipole I value

I = atom type (see asterisk form below)•
value = dipole moment (dipole units)•

Examples:

dipole 1 1.0
dipole 3 2.0
dipole 3*5 0.0

Description:

Set the dipole moment for all atoms of one or more atom types. This command is only used for atom styles that
require dipole moments (atom_style dipole). A value of 0.0 should be used if the atom type has no dipole
moment. Dipole values can also be set in the read_data data file. See the units command for a discussion of dipole
units.

Currently, only atom_style dipole requires dipole moments be set.

I can be specified in one of two ways. An explicit numeric value can be used, as in the 1st example above. Or a
wild−card asterisk can be used to set the dipole moment for multiple atom types. This takes the form "*" or "*n"
or "n*" or "m*n". If N = the number of atom types, then an asterisk with no numeric values means all types from
1 to N. A leading asterisk means all types from 1 to n (inclusive). A trailing asterisk means all types from n to N
(inclusive). A middle asterisk means all types from m to n (inclusive).

A line in a data file that specifies a dipole moment uses the same format as the arguments of the dipole command
in an input script, except that no wild−card asterisk can be used. For example, under the "Dipoles" section of a
data file, the line that corresponds to the 1st example above would be listed as

1 1.0

Restrictions:

This command must come after the simulation box is defined by a read_data, read_restart, or create_box
command.

All dipoles moments must be defined before a simulation is run (if the atom style requires dipoles be set). They
must also all be defined before a set dipole or set dipole/random command is used.

Related commands: none

Default: none

272

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

displace_atoms command

Syntax:

displace_atoms group−ID style args keyword value ...

group−ID = ID of group of atoms to displace•
style = move or ramp or random

move args = delx dely delz
 delx,dely,delz = distance to displace in each dimension (distance units)

ramp args = ddim dlo dhi dim clo chi
 ddim = x or y or z
 dlo,dhi = displacement distance between dlo and dhi (distance units)
 dim = x or y or z
 clo,chi = lower and upper bound of domain to displace (distance units)

random args = dx dy dz seed
 dx,dy,dz = random displacement magnitude in each dimension (distance units)
 seed = random # seed (positive integer)

•

zero or more keyword/value pairs may be appended

 keyword = units
 value = box or lattice

•

Examples:

displace_atoms top move 0 −5 0 units box
displace_atoms flow ramp x 0.0 5.0 y 2.0 20.5

Description:

Displace a group of atoms. This can be used to move atoms a large distance before beginning a simulation or to
randomize atoms initially on a lattice. For example, in a shear simulation, an initial strain can be imposed on the
system. Or two groups of atoms can be brought into closer proximity.

The move style displaces the group of atoms by the specified 3d distance.

The ramp style displaces atoms a variable amount in one dimension depending on the atom's coordinate in a
(possibly) different dimension. For example, the second example command displaces atoms in the x−direction an
amount between 0.0 and 5.0 distance units. Each atom's displacement depends on the fractional distance its y
coordinate is between 2.0 and 20.5. Atoms with y−coordinates outside those bounds will be moved the minimum
(0.0) or maximum (5.0) amount.

The random style independently moves each atom in the group by a random displacement, uniformly sampled
from a value between −dx and +dx in the x dimension, and similarly for y and z. Random numbers are used in
such a way that the displacement of a particular atom is the same, regardless of how many processors are being
used.

Distance units for displacement are determined by the setting of box or lattice for the units keyword. Box means
distance units as defined by the units command − e.g. Angstroms for real units. Lattice means distance units are
in lattice spacings. The lattice command must have been previously used to define the lattice spacing.

273

http://lammps.sandia.gov

Care should be taken not to move atoms on top of other atoms. After the move, atoms are remapped into the
periodic simulation box if needed.

Atoms can be moved arbitrarily long distances by this command. If the simulation box is non−periodic, this can
change its size or shape. This is not a problem, except that the mapping of processors to the simulation box is not
changed by this command from its initial 3d configuration; see the processors command. Thus, if the box size or
shape changes dramatically, the simulation may not be as well load−balanced (atoms per processor) as the initial
mapping tried to achieve.

Restrictions:

This command requires inter−processor communication to migrate atoms once they have been displaced. This
means that your system must be ready to perform a simulation before using this command (force fields are setup,
atom masses are set, etc).

Related commands:

lattice

Default:

The option defaults are units = lattice.

274

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

displace_box command

Syntax:

displace_box group−ID parameter args ... keyword value ...

group−ID = ID of group of atoms to displace•
one or more parameter/arg pairs may be appended

parameter = x or y or z or xy or xz or yz
x, y, z args = style value(s)

 style = final or delta or scale or volume
final values = lo hi

 lo hi = box boundaries at end of run (distance units)
delta values = dlo dhi

 dlo dhi = change in box boundaries at end of run (distance units)
scale values = factor

 factor = multiplicative factor for change in box length at end of run
volume value = none = adjust this dim to preserve volume of system

xy, xz, yz args = style value
 style = final or delta

final value = tilt
 tilt = tilt factor at end of run (distance units)

delta value = dtilt
 dtilt = change in tilt factor at end of run (distance units)

•

zero or more keyword/value pairs may be appended•
keyword = remap or units

remap value = x or none
 x = remap coords of atoms in group into deforming box
 none = no remapping of coords

units value = lattice or box
 lattice = distances are defined in lattice units
 box = distances are defined in simulation box units

•

Examples:

displace_box all xy final −2.0 z final 0.0 5.0 units box
displace_box all x scale 1.1 y volume z volume

Description:

Change the volume and/or shape of the simulation box. Orthogonal simulation boxes have 3 adjustable
parameters (x,y,z). Triclinic (non−orthogonal) simulation boxes have 6 adjustable parameters (x,y,z,xy,xz,yz).
Any or all of them can be adjusted independently and simultaneously by this command. This fix can be used to
expand or contract a box, or to apply a shear strain to a non−orthogonal box.

Any parameter varied by this command must refer to a periodic dimension − see the boundary command. For
parameters "xy", "xz", and "yz" this means both affected dimensions must be periodic, e.g. x and y for "xy".
Dimensions not varied by this command can be periodic or non−periodic.

The size and shape of the initial simulation box are specified by the create_box or read_data or read_restart
command used to setup the simulation, or they are the values from the end of the previous run. The create_box,
read data, and read_restart commands also determine whether the simulation box is orthogonal or triclinic and
their doc pages explain the meaning of the xy,xz,yz tilt factors. If the displace_box command changes the

275

http://lammps.sandia.gov

xy,xz,yz tilt factors, then the simulation box must be triclinic, even if its initial tilt factors are 0.0.

For the x, y, and z parameters, this is the meaning of their styles and values.

For style final, the final lo and hi box boundaries of a dimension are specified. The values can be in lattice or box
distance units. See the discussion of the units keyword below.

For style delta, plus or minus changes in the lo/hi box boundaries of a dimension are specified. The values can be
in lattice or box distance units. See the discussion of the units keyword below.

For style scale, a multiplicative factor to apply to the box length of a dimension is specified. For example, if the
initial box length is 10, and the factor is 1.1, then the final box length will be 11. A factor less than 1.0 means
compression.

The volume style changes the specified dimension in such a way that the box volume remains constant while other
box dimensions are changed explicitly via the styles discussed above. For example, "x scale 1.1 y scale 1.1 z
volume" will shrink the z box length as the x,y box lengths increase, to keep the volume constant (product of x,y,z
lengths). If "x scale 1.1 z volume" is specified and parameter y is unspecified, then the z box length will shrink as
x increases to keep the product of x,z lengths constant. If "x scale 1.1 y volume z volume" is specified, then both
the y,z box lengths will shrink as x increases to keep the volume constant (product of x,y,z lengths). In this case,
the y,z box lengths shrink so as to keep their relative aspect ratio constant.

For solids or liquids, note that when one dimension of the box is expanded by this command, it may be physically
undesirable to hold the other 2 box lengths constant (unspecified by this command) since that implies a density
change. Using the volume style for those 2 dimensions to keep the box volume constant may make more physical
sense, but may also not be correct for materials and potentials whose Poisson ratio is not 0.5.

For the scale and volume styles, the box length is expanded or compressed around its mid point.

For the xy, xz, and yz parameters, this is the meaning of their styles and values. Note that changing the tilt factors
of a triclinic box does not change its volume.

For style final, the final tilt factor is specified. The value can be in lattice or box distance units. See the discussion
of the units keyword below.

For style delta, a plus or minus change in the tilt factor is specified. The value can be in lattice or box distance
units. See the discussion of the units keyword below.

All of these styles change the xy, xz, yz tilt factors. In LAMMPS, tilt factors (xy,xz,yz) for triclinic boxes are
always bounded by half the distance of the parallel box length. For example, if xlo = 2 and xhi = 12, then the x
box length is 10 and the xy tilt factor must be between −5 and 5. Similarly, both xz and yz must be between
−(xhi−xlo)/2 and +(yhi−ylo)/2. Note that this is not a limitation, since if the maximum tilt factor is 5 (as in this
example), then configurations with tilt = ..., −15, −5, 5, 15, 25, ... are all equivalent. Any tilt factor specified by
this command must be within these limits.

The remap keyword determines whether atom positions are re−mapped to the new box. If remap is set to x (the
default), atoms in the fix group are re−mapped; otherwise they are not. If remap is set to none, then this
remapping does not take place.

The units keyword determines the meaning of the distance units used to define various arguments. A box value
selects standard distance units as defined by the units command, e.g. Angstroms for units = real or metal. A lattice
value means the distance units are in lattice spacings. The lattice command must have been previously used to

276

define the lattice spacing.

The simulation box size or shape can be changed by arbitrarily large amounts by this command. This is not a
problem, except that the mapping of processors to the simulation box is not changed by this command from its
initial 3d configuration; see the processors command. Thus, if the box size or shape changes dramatically, the
simulation may not be as well load−balanced (atoms per processor) as the initial mapping tried to achieve.

Restrictions:

Any box dimension varied by this fix must be periodic.

This command requires inter−processor communication to migrate atoms once they have moved. This means that
your system must be ready to perform a simulation before using this command (force fields are setup, atom
masses are set, etc).

Related commands:

fix deform

Default:

The option defaults are remap = x and units = lattice.

277

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

dump command

Syntax:

dump ID group−ID style N file args

ID = user−assigned name for the dump•
group−ID = ID of the group of atoms to be dumped•
style = atom or cfg or dcd or xtc or xyz or local or custom•
N = dump every this many timesteps•
file = name of file to write dump info to•
args = list of arguments for a particular style

atom args = none
cfg args = same as custom args, see below
dcd args = none
xtc args = none
xyz args = none

local args = list of local attributes
 possible attributes = index, c_ID, c_ID[N], f_ID, f_ID[N]
 index = enumeration of local values
 c_ID = local vector calculated by a compute with ID
 c_ID[N] = Nth column of local array calculated by a compute with ID
 f_ID = local vector calculated by a fix with ID
 f_ID[N] = Nth column of local array calculated by a fix with ID

custom args = list of atom attributes
 possible attributes = id, mol, type, mass,
 x, y, z, xs, ys, zs, xu, yu, zu, ix, iy, iz,
 vx, vy, vz, fx, fy, fz,
 q, mux, muy, muz,
 radius, omegax, omegay, omegaz,
 angmomx, angmomy, angmomz,
 quatw, quati, quatj, quatk, tqx, tqy, tqz,
 c_ID, c_ID[N], f_ID, f_ID[N], v_name

 id = atom ID
 mol = molecule ID
 type = atom type
 mass = atom mass
 x,y,z = unscaled atom coordinates
 xs,ys,zs = scaled atom coordinates
 xu,yu,zu = unwrapped atom coordinates
 ix,iy,iz = box image that the atom is in
 vx,vy,vz = atom velocities
 fx,fy,fz = forces on atoms
 q = atom charge
 mux,muy,muz = orientation of dipolar atom
 radius = radius of extended spherical particle
 omegax,omegay,omegaz = angular velocity of extended particle
 angmomx,angmomy,angmomz = angular momentum of extended particle
 quatw,quati,quatj,quatk = quaternion components for aspherical particles
 tqx,tqy,tqz = torque on extended particles
 c_ID = per−atom vector calculated by a compute with ID
 c_ID[N] = Nth column of per−atom array calculated by a compute with ID
 f_ID = per−atom vector calculated by a fix with ID
 f_ID[N] = Nth column of per−atom array calculated by a fix with ID

•

278

http://lammps.sandia.gov

 v_name = per−atom vector calculated by an atom−style variable with name

Examples:

dump myDump all atom 100 dump.atom
dump 2 subgroup atom 50 dump.run.bin
dump 4a all custom 100 dump.myforce.* id type x y vx fx
dump 4b flow custom 100 dump.%.myforce id type c_myF[3] v_ke
dump 2 inner cfg 10 dump.snap.*.cfg id type xs ys zs vx vy vz
dump snap all cfg 100 dump.config.*.cfg id type xs ys zs id type c_Stress2
dump 1 all xtc 1000 file.xtc

Description:

Dump a snapshot of atom quantities to one or more files every N timesteps in one of several styles. As described
below, the filename determines the kind of output (text or binary or gzipped, one big file or one per timestep, one
big file or one per processor). Only information for atoms in the specified group is dumped. The dump_modify
command can also alter what atoms are included. Not all styles support all these options; see details below.

IMPORTANT NOTE: Because periodic boundary conditions are enforced only on timesteps when neighbor lists
are rebuilt, the coordinates of an atom written to a dump file may be slightly outside the simulation box.

When LAMMPS is running in parallel, the atom information written to dump files (typically one line per atom)
may be written in an indeterminate order. This is because data for a single snapshot is collected from multiple
processors. This is always the case for the atom, local, and custom styles. It is also the case for the xyz style if the
dump group is not all. It is not the case for the dcd and xtc styles which always write atoms in sorted order. So
does the xyz style if the dump group is all. The cfg style supports the sort option of the dump_modify command
which allows sorting to be turned on or off.

The style keyword determines what atom quantities are written to the file and in what format. Settings made via
the dump_modify command can also alter the format of individual values and the file itself.

The atom, local, and custom styles create files in a simple text format that is self−explanatory when viewing a
dump file. Many of the LAMMPS post−processing tools, including Pizza.py, work with this format.

For post−processing purposes the atom and custom text files are self−describing in the following sense. The
simulation box bounds are included in each snapshot and if the box is triclinic (non−orthogonal), then the tilt
factors are also printed; see the region prism command for a description of tilt factors. For triclinic boxes the box
bounds themselves (first 2 quantities on each line) are a true "bounding box" around the simulation domain, which
means they include the effect of any tilt. The "ITEM: ATOMS" line in each snapshot also lists the meaning of
each column of the per−atom lines that follow. For example, this would be "id type xs ys zs" for the default atom
style, and it will be the atom attributes you specify in the dump command for the custom style.

For style atom, atom coordinates are written to the file, along with the atom ID and atom type. By default, atom
coords are written in a scaled format (from 0 to 1). I.e. an x value of 0.25 means the atom is at a location 1/4 of
the distance from xlo to xhi of the box boundaries. The format can be changed to unscaled coords via the
dump_modify settings. Image flags can also be added for each atom via dump_modify.

Style custom allows you to specify a list of atom attributes to be written to the dump file for each atom. Possible
attributes are listed above and will appear in the order specified. You cannot specify a quantity that is not defined
for a particular simulation − such as q for atom style bond, since that atom style doesn't assign charges. Dumps
occur at the very end of a timestep, so atom attributes will include effects due to fixes that are applied during the
timestep. An explanation of the possible dump custom attributes is given below.

279

http://www.cs.sandia.gov/~sjplimp/pizza.html

For style local, local output generated by computes and fixes is used to gnerate lines of output that is written to
the dump file. This local data is typically calculated by each processor based on the atoms it owns, but there may
be zero or more entities per atom, e.g. a list of bond distances. An explanation of the possible dump local
attributes is given below. Note that by using input from the compute property/local command with dump local, it
is possible to generate information on bonds, angles, etc that can be cut and pasted directly into a data file read by
the read_data command.

Style cfg has the same command syntax as style custom and writes extended CFG format files, as used by the
AtomEye visualization package. Since the extended CFG format uses a single snapshot of the system per file, a
wild−card "*" must be included in the filename, as discussed below. The list of atom attributes for style cfg must
begin with "id type xs ys zs", since these quantities are needed to write the CFG files in the appropriate format
(though the "id" and "type" fields do not appear explicitly in the file). Any remaining attributes will be stored as
"auxiliary properties" in the CFG files. Note that you will typically want to use the dump_modify element
command with CFG−formatted files, to associate element names with atom types, so that AtomEye can render
atoms appropriately.

The dcd style writes DCD files, a standard atomic trajectory format used by the CHARMM, NAMD, and XPlor
molecular dynamics packages. DCD files are binary and thus may not be portable to different machines. The
dump group must be all for the dcd style. The unwrap option of the dump_modify command allows DCD
coordinates to be written "unwrapped" by the image flags for each atom. Unwrapped means that if the atom has
passed thru a periodic boundary one or more times, the value is printed for what the coordinate would be if it had
not been wrapped back into the periodic box. Note that these coordinates may thus be far outside the box size
stored with the snapshot.

The xtc style writes XTC files, a compressed trajectory format used by the GROMACS molecular dynamics
package, and described here. The precision used in XTC files can be adjusted via the dump_modify command.
The default value of 1000 means that coordinates are stored to 1/1000 nanometer accuracy. XTC files are portable
binary files written in the NFS XDR data format, so that any machine which supports XDR should be able to read
them. The dump group must be all for the xtc style. The unwrap option of the dump_modify command allows
XTC coordinates to be written "unwrapped" by the image flags for each atom. Unwrapped means that if the atom
has passed thru a periodic boundary one or more times, the value is printed for what the coordinate would be if it
had not been wrapped back into the periodic box. Note that these coordinates may thus be far outside the box size
stored with the snapshot.

The xyz style writes XYZ files, which is a simple text−based coordinate format that many codes can read.

Note that DCD, XTC, and XYZ formatted files can be read directly by VMD (a popular molecular viewing
program). We are told VMD will also read LAMMPS atom style dump files since someone has added a
LAMMPS format plug−in to VMD. It may require an initial snapshot from an XYZ formatted file to get started.

Dumps are performed on timesteps that are a multiple of N (including timestep 0) and on the last timestep of a
minimization if the minimization converges. A dump is also performed on the very first timestep after the dump
command is invoked. This can be useful following a minimization which may converge and end on an arbitrary
timestep. N can be changed between runs by using the dump_modify command (not allowed for dcd style).

The specified filename determines how the dump file(s) is written. The default is to write one large text file,
which is opened when the dump command is invoked and closed when an undump command is used or when
LAMMPS exits. For the dcd and xtc styles, this is a single large binary file.

Dump filenames can contain two wild−card characters. If a "*" character appears in the filename, then one file per
snapshot is written and the "*" character is replaced with the timestep value. For example, tmp.dump.* becomes
tmp.dump.0, tmp.dump.10000, tmp.dump.20000, etc. This option is not available for the dcd and xtc styles.

280

http://mt.seas.upenn.edu/Archive/Graphics/A
http://www.gromacs.org/documentation/reference_3.3/online/xtc.html
http://www.ks.uiuc.edu/Research/vmd

If a "%" character appears in the filename, then one file is written for each processor and the "%" character is
replaced with the processor ID from 0 to P−1. For example, tmp.dump.% becomes tmp.dump.0, tmp.dump.1, ...
tmp.dump.P−1, etc. This creates smaller files and can be a fast mode of output on parallel machines that support
parallel I/O for output. This option is not available for the dcd, xtc, and xyz styles.

Note that the "*" and "%" characters can be used together to produce a large number of small dump files!

If the filename ends with ".bin", the dump file (or files, if "*" or "%" is also used) is written in binary format. A
binary dump file will be about the same size as a text version, but will typically write out much faster. Of course,
when post−processing, you will need to convert it back to text format (see the binary2txt tool) or write your own
code to read the binary file. The format of the binary file can be understood by looking at the tools/binary2txt.cpp
file. This option is only available for the atom and custom styles.

If the filename ends with ".gz", the dump file (or files, if "*" or "%" is also used) is written in gzipped format. A
gzipped dump file will be about 3x smaller than the text version, but will also take longer to write. This option is
not available for the dcd and xtc styles.

This section explains the local attributes that can be specified as part of the local style.

The index attribute can be used to generate an index number from 1 to N for each line written into the dump file,
where N is the total number of local datums from all processors, or lines of output that will appear in the snapshot.
Note that because data from different processors depend on what atoms they currently own, and atoms migrate
between processor, there is no guarantee that the same index will be used for the same info (e.g. a particular bond)
in successive snapshots.

The c_ID and c_ID[N] attributes allow local vectors or arrays calculated by a compute to be output. The ID in the
attribute should be replaced by the actual ID of the compute that has been defined previously in the input script.
See the compute command for details. There are computes for calculating local information such as indices, types,
and energies for bonds and angles.

Note that computes which calculate global or per−atom quantities, as opposed to local quantities, cannot be output
in a dump local command. Instead, global quantities can be output by the thermo_style custom command, and
per−atom quantities can be output by the dump custom command.

If c_ID is used as a attribute, then the local vector calculated by the compute is printed. If c_ID[N] is used, then N
must be in the range from 1−M, which will print the Nth column of the M−length local array calculated by the
compute.

The f_ID and f_ID[N] attributes allow local vectors or arrays calculated by a fix to be output. The ID in the
attribute should be replaced by the actual ID of the fix that has been defined previously in the input script.

If f_ID is used as a attribute, then the local vector calculated by the fix is printed. If f_ID[N] is used, then N must
be in the range from 1−M, which will print the Nth column of the M−length local array calculated by the fix.

This section explains the atom attributes that can be specified as part of the custom and cfg styles.

The id, mol, type, mass, vx, vy, vz, fx, fy, fz, q attributes are self−explanatory.

Id is the atom ID. Mol is the molecule ID, included in the data file for molecular systems. Type is the atom type.
Mass is the atom mass. Vx, vy, vz, fx, fy, fz, and q are components of atom velocity and force and atomic charge.

281

There are several options for outputting atom coordinates. The x, y, z attributes write atom coordinates "unscaled",
in the appropriate distance units (Angstroms, sigma, etc). Use xs, ys, zs if you want the coordinates "scaled" to the
box size, so that each value is 0.0 to 1.0. If the simluation box is triclinic (tilted), then all atom coords will still be
between 0.0 and 1.0. Use xu, yu, zu if you want the coordinates "unwrapped" by the image flags for each atom.
Unwrapped means that if the atom has passed thru a periodic boundary one or more times, the value is printed for
what the coordinate would be if it had not been wrapped back into the periodic box. Note that using xu, yu, zu
means that the coordinate values may be far outside the box bounds printed with the snapshot. The image flags
can be printed directly using the ix, iy, iz attributes. The dump_modify command describes in more detail what is
meant by scaled vs unscaled coordinates and the image flags.

The mux, muy, muz attributes are specific to dipolar systems defined with an atom style of dipole. They give the
orientation of the atom's point dipole moment.

The radius attribute is specific to extended spherical particles that have a finite size, such as granular particles
defined with an atom style of granular.

The omegax, omegay, and omegaz attributes are specific to extended spherical or aspherical particles that have an
angular velocity. Only certain atom styles, such as granular or dipole define this quantity.

The angmomx, angmomy, and angmomz attributes are specific to extended aspherical particles that have an
angular momentum. Only the ellipsoid atom style defines this quantity.

The quatw, quati, quatj, quatk attributes are for aspherical particles defined with an atom style of ellipsoid. They
are the components of the quaternion that defines the orientation of the particle.

The tqx, tqy, tqz attributes are for extended spherical or aspherical particles that can sustain a rotational torque due
to interactions with other particles.

The c_ID and c_ID[N] attributes allow per−atom vectors or arrays calculated by a compute to be output. The ID
in the attribute should be replaced by the actual ID of the compute that has been defined previously in the input
script. See the compute command for details. There are computes for calculating the per−atom energy, stress,
centro−symmetry parameter, and coordination number of individual atoms.

Note that computes which calculate global or local quantities, as opposed to per−atom quantities, cannot be output
in a dump custom command. Instead, global quantities can be output by the thermo_style custom command, and
local quantities can be output by the dump local command.

If c_ID is used as a attribute, then the per−atom vector calculated by the compute is printed. If c_ID[N] is used,
then N must be in the range from 1−M, which will print the Nth column of the M−length per−atom array
calculated by the compute.

The f_ID and f_ID[N] attributes allow vector or array per−atom quantities calculated by a fix to be output. The ID
in the attribute should be replaced by the actual ID of the fix that has been defined previously in the input script.
The fix ave/atom command is one that calculates per−atom quantities. Since it can time−average per−atom
quantities produced by any compute, fix, or atom−style variable, this allows those time−averaged results to be
written to a dump file.

If f_ID is used as a attribute, then the per−atom vector calculated by the fix is printed. If f_ID[N] is used, then N
must be in the range from 1−M, which will print the Nth column of the M−length per−atom array calculated by
the fix.

The v_name attribute allows per−atom vectors calculated by a variable to be output. The name in the attribute

282

should be replaced by the actual name of the variable that has been defined previously in the input script. Only an
atom−style variable can be referenced, since it is the only style that generates per−atom values. Variables of style
atom can reference individual atom attributes, per−atom atom attributes, thermodynamic keywords, or invoke
other computes, fixes, or variables when they are evaluated, so this is a very general means of creating quantities
to output to a dump file.

See this section of the manual for information on how to add new compute and fix styles to LAMMPS to
calculate per−atom quantities which could then be output into dump files.

Restrictions:

To write gzipped dump files, you must compile LAMMPS with the −DLAMMPS_GZIP option − see the Making
LAMMPS section of the documentation.

The xtc style is part of the "xtc" package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info. This is because some machines may not support the lo−level XDR data
format that XTC files are written with, which will result in a compile−time error when a lo−level include file is
not found. Putting this style in a package makes it easy to exclude from a LAMMPS build for those machines.
However, the XTC package also includes two compatibility header files and associated functions, which should
be a suitable substitute on machines that do not have the appropriate native header files. This option can be
invoked at build time by adding −DLAMMPS_XDR to the CCFLAGS variable in the appropriate lo−level
Makefile, e.g. src/MAKE/Makefile.foo. This compatibility mode has been tested successfully on Cray XT3 and
IBM BlueGene/L machines and should also work on the Cray XT4, IBM BG/P, and Windows XP machines.

Related commands:

dump_modify, undump

Default: none

283

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

dump_modify command

Syntax:

dump_modify dump−ID keyword values ...

dump−ID = ID of dump to modify•
one or more keyword/value pairs may be appended•
keyword = append or every or flush or format or image or label or precision or region or scale or sort or
thresh or unwrap

append arg = yes or no
element args = E1 E2 ... EN, where N = # of atom types

 E1,...,EN = element name, e.g. C or Fe or Ga
every arg = N

 N = dump every this many timesteps
format arg = C−style format string for one line of output
flush arg = yes or no
image arg = yes or no
label arg = string

 string = character string (e.g. BONDS) to use in header of dump local file
precision arg = power−of−10 value from 10 to 1000000
region arg = region−ID or "none"
scale arg = yes or no
sort arg = yes or no
thresh args = attribute operation value

 attribute = same attributes (x,fy,etotal,sxx,etc) used by dump custom style
 operation = "" or ">=" or "==" or "!="
 value = numeric value to compare to
 these 3 args can be replaced by the word "none" to turn off thresholding

unwrap arg = yes or no

•

Examples:

dump_modify 1 format "%d %d %20.15g %g %g" scale yes
dump_modify myDump image yes scale no flush yes
dump_modify 1 region mySphere thresh x <0.0 thresh epair >= 3.2
dump_modify xtcdump precision 10000

Description:

Modify the parameters of a previously defined dump command. Not all parameters are relevant to all dump styles.

The append keyword applies to all dump styles except cfg and xtc and dcd. It also applies only to text output files,
not to binary or gzipped files. If specified as yes, then dump snapshots are appended to the end of an existing
dump file. If specified as no, then a new dump file will be created which will overwrite an existing file with the
same name. This keyword can only take effect if the dump_modify command is used after the dump command,
but before the first command that causes dump snapshots to be output, e.g. a run or minimize command. Once the
dump file has been opened, this keyword has no further effect.

The element keyword applies only to the the dump cfg style. It associates element names (e.g. H, C, Fe) with
LAMMPS atom types, so that the AtomEye visualization package can render atoms with the appropriate size and
color. An element name is specified for each atom type (1 to Ntype) in the simulation. The same element name
can be given to multiple atom types.

284

http://lammps.sandia.gov
http://mt.seas.upenn.edu/Archive/Graphics/A

The every keyword changes the dump frequency originally specified by the dump command to a new value which
must be > 0. The dump frequency cannot be changed for the dump dcd style.

The flush keyword determines whether a flush operation in invoked after a dump snapshot is written to the dump
file. A flush insures the output in that file is current (no buffering by the OS), even if LAMMPS halts before the
simulation completes. Flushes cannot be performed with dump style xtc.

The text−based dump styles have a default C−style format string which simply specifies %d for integers and %g
for real values. The format keyword can be used to override the default with a new C−style format string. Do not
include a trailing "\n" newline character in the format string. This option has no effect on the dcd and xtc dump
styles since they write binary files. Note that for the cfg style, the first two fields (atom id and type) are not
actually written into the CFG file, though you must include formats for them in the format string.

The image keyword applies only to the dump atom style. If the image value is yes, 3 flags are appended to each
atom's coords which are the absolute box image of the atom in each dimension. For example, an x image flag of
−2 with a normalized coord of 0.5 means the atom is in the center of the box, but has passed thru the box
boundary 2 times and is really 2 box lengths to the left of its current coordinate. Note that for dump style custom
these various values can be printed in the dump file by using the appropriate atom attributes in the dump
command itself.

The label keyword applies only to the dump local style. When it writes local informatoin, such as bond or angle
topology to a dump file, it will use the specified label to format the header. By default this includes 2 lines:

ITEM: NUMBER OF ENTRIES
ITEM: ENTRIES ...

The word "ENTRIES" will be replaced with the string specified, e.g. BONDS or ANGLES.

The precision keyword only applies to the dump xtc style. A specified value of N means that coordinates are
stored to 1/N nanometer accuracy, e.g. for N = 1000, the coordinates are written to 1/1000 nanometer accuracy.

The region keyword only applies to the dump custom and cfg styles. If specified, only atoms in the region will be
written to the dump file. Only one region can be applied as a filter (the last one specified). See the region
command for more details. Note that a region can be defined as the "inside" or "outside" of a geometric shape,
and it can be the "union" or "intersection" of a series of simpler regions.

The scale keyword applies only to the dump atom style. A scale value of yes means atom coords are written in
normalized units from 0.0 to 1.0 in each box dimension. If the simluation box is triclinic (tilted), then all atom
coords will still be between 0.0 and 1.0. A value of no means they are written in absolute distance units (e.g.
Angstroms or sigma).

The sort keyword applies only to the dump cfg style. A sort value of yes means atoms will be written into the
CFG file in sorted order, sorted by the atom ID. A value of no means a sort will not be performed and that atoms
may be in an indeterminate order, depending on which processor owns which atoms.

The thresh keyword only applies to the dump custom and cfg styles. Multiple thresholds can be specified.
Specifying "none" turns off all threshold criteria. If thresholds are specified, only atoms whose attributes meet all
the threshold criteria are written to the dump file. The possible attributes that can be tested for are the same as
those that can be specified in the dump custom command. Note that different attributes can be output by the dump
custom command than are used as threshold criteria by the dump_modify command. E.g. you can output the
coordinates and stress of atoms whose energy is above some threshold.

285

The unwrap keyword only applies to the dump dcd and xtc styles. If set to yes, coordinates will be written
"unwrapped" by the image flags for each atom. Unwrapped means that if the atom has passed thru a periodic
boundary one or more times, the value is printed for what the coordinate would be if it had not been wrapped back
into the periodic box. Note that these coordinates may thus be far outside the box size stored with the snapshot.

Restrictions: none

Related commands:

dump, undump

Default:

The option defaults are

append = no•
element = "C" for every atom type•
every = whatever it was set to via the dump command•
flush = yes (except for the dump xtc style)•
format = %d and %g for each integer or floating point value•
image = no•
label = ENTRIES•
precision = 1000•
region = none•
scale = yes•
sort = no•
thresh = none•
unwrap = no•

286

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

echo command

Syntax:

echo style

style = none or screen or log or both•

Examples:

echo both
echo log

Description:

This command determines whether LAMMPS echoes each input script command to the screen and/or log file as it
is read and processed. If an input script has errors, it can be useful to look at echoed output to see the last
command processed.

The command−line switch −echo can be used in place of this command.

Restrictions: none

Related commands: none

Default:

echo log

287

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix command

Syntax:

fix ID group−ID style args

ID = user−assigned name for the fix•
group−ID = ID of the group of atoms to apply the fix to•
style = one of a long list of possible style names (see below)•
args = arguments used by a particular style•

Examples:

fix 1 all nve
fix 3 all nvt 300.0 300.0 0.01
fix mine top setforce 0.0 NULL 0.0

Description:

Set a fix that will be applied to a group of atoms. In LAMMPS, a "fix" is any operation that is applied to the
system during timestepping or minimization. Examples include updating of atom positions and velocities due to
time integration, controlling temperature, applying constraint forces to atoms, enforcing boundary conditions,
computing diagnostics, etc. There are dozens of fixes defined in LAMMPS and new ones can be added; see this
section for a discussion.

Fixes perform their operations at different stages of the timestep. If 2 or more fixes operate at the same stage of
the timestep, they are invoked in the order they were specified in the input script.

The ID of a fix can only contain alphanumeric characters and underscores.

Fixes can be deleted with the unfix command.

IMPORTANT NOTE: The unfix command is the only way to turn off a fix; simply specifying a new fix with a
similar style will not turn off the first one. This is especially important to realize for integration fixes. For
example, using a fix nve command for a second run after using a fix nvt command for the first run, will not cancel
out the NVT time integration invoked by the "fix nvt" command. Thus two time integrators would be in place!

If you specify a new fix with the same ID and style as an existing fix, the old fix is deleted and the new one is
created (presumably with new settings). This is the same as if an "unfix" command were first performed on the
old fix, except that the new fix is kept in the same order relative to the existing fixes as the old one originally was.
Note that this operation also wipes out any additional changes made to the old fix via the fix_modify command.

The fix modify command allows settings for some fixes to be reset. See the doc page for individual fixes for
details.

Some fixes store an internal "state" which is written to binary restart files via the restart or write_restart
commands. This allows the fix to continue on with its calculations in a restarted simulation. See the read_restart
command for info on how to re−specify a fix in an input script that reads a restart file. See the doc pages for
individual fixes for info on which ones can be restarted.

288

http://lammps.sandia.gov

Some fixes calculate one of three styles of quantities: global, per−atom, or local, which can be used by other
commands or output as described below. A global quantity is one or more system−wide values, e.g. the energy of
a wall interacting with particles. A per−atom quantity is one or more values per atom, e.g. the displacement vector
for each atom since time 0. Per−atom values are set to 0.0 for atoms not in the specified fix group. Local
quantities are calculated by each processor based on the atoms it owns, but there may be zero or more per atoms.

Note that a single fix may produces either global or per−atom or local quantities (or none at all), but never more
than one of these.

Global, per−atom, and local quantities each come in three kinds: a single scalar value, a vector of values, or a 2d
array of values. The doc page for each fix describes the style and kind of values it produces, e.g. a per−atom
vector. Some fixes produce more than one kind of a single style, e.g. a global scalar and a global vector.

When a fix quantity is accessed, as in many of the output commands discussed below, it can be referenced via the
following bracket notation, where ID is the ID of the fix:

f_ID entire scalar, vector, or array

f_ID[I] one element of vector, one column of array

f_ID[I][J] one element of array
In other words, using one bracket reduces the dimension of the quantity once (vector −> scalar, array −> vector).
Using two brackets reduces the dimension twice (array −> scalar). Thus a command that uses scalar fix values as
input can also process elements of a vector or array.

Note that commands and variables which use fix quantities typically do not allow for all kinds, e.g. a command
may require a vector of values, not a scalar. This means there is no ambiguity about referring to a fix quantity as
f_ID even if it produces, for example, both a scalar and vector. The doc pages for various commands explain the
details.

In LAMMPS, the values generated by a fix can be used in several ways:

Global values can be output via the thermo_style custom or fix ave/time command. Or the values can be
referenced in a variable equal or variable atom command.

•

Per−atom values can be output via the dump custom command or the fix ave/spatial command. Or they
can be time−averaged via the fix ave/atom command or reduced by the compute reduce command. Or the
per−atom values can be referenced in an atom−style variable.

•

Local values can be reduced by the compute reduce command, or histogrammed by the fix ave/histo
command.

•

See this howto section for a summary of various LAMMPS output options, many of which involve fixes.

The results of fixes that calculate global quantities can be either "intensive" or "extensive" values. Intensive
means the value is independent of the number of atoms in the simulation, e.g. temperature. Extensive means the
value scales with the number of atoms in the simulation, e.g. total rotational kinetic energy. Thermodynamic
output will normalize extensive values depending on the "thermo_modify norm" setting. But if a fix value is
accessed in another way, e.g. by a variable, you may need to know whether it is an intensive or extensive value.
See the doc page for individual fixes for further info.

Each fix style has its own documentation page which describes its arguments and what it does, as listed below.
Here is an alphabetic list of fix styles available in LAMMPS:

addforce − add a force to each atom•

289

aveforce − add an averaged force to each atom•
ave/atom − compute per−atom time−averaged quantities•
ave/histo − compute/output time−averaged histograms•
ave/spatial − compute/output time−averaged per−atom quantities by layer•
ave/time − compute/output global time−averaged quantities•
bond/break − break bonds on the fly•
bond/create − create bonds on the fly•
bond/swap − Monte Carlo bond swapping•
box/relax − relax box size during energy minimization•
deform − change the simulation box size/shape•
deposit − add new atoms above a surface•
drag − drag atoms towards a defined coordinate•
dt/reset − reset the timestep based on velocity, forces•
efield − impose electric field on system•
enforce2d − zero out z−dimension velocity and force•
evaporate − remove atoms from simulation periodically•
freeze − freeze atoms in a granular simulation•
gravity − add gravity to atoms in a granular simulation•
heat − add/subtract momentum−conserving heat•
indent − impose force due to an indenter•
langevin − Langevin temperature control•
lineforce − constrain atoms to move in a line•
momentum − zero the linear and/or angular momentum of a group of atoms•
move − move atoms in a prescribed fashion•
nph − constant NPH time integration via Nose/Hoover•
npt − constant NPT time integration via Nose/Hoover•
npt/asphere − NPT for aspherical particles•
npt/sphere − NPT for spherical particles•
nve − constant NVE time integration•
nve/asphere − NVT for aspherical particles•
nve/limit − NVE with limited step length•
nve/noforce − NVE without forces (v only)•
nve/sphere − NVT for spherical particles•
nvt − constant NVT time integration via Nose/Hoover•
nvt/asphere − NVT for aspherical particles•
nvt/sllod − NVT for NEMD with SLLOD equations•
nvt/sphere − NVT for spherical particles•
orient/fcc − add grain boundary migration force•
planeforce − constrain atoms to move in a plane•
poems − constrain clusters of atoms to move as coupled rigid bodies•
pour − pour new atoms into a granular simulation domain•
press/berendsen − pressure control by Berendsen barostat•
print − print text and variables during a simulation•
reax/bonds − write out ReaxFF bond information recenter − constrain the center−of−mass position of a
group of atoms

•

rigid − constrain one or more clusters of atoms to move as a rigid body•
setforce − set the force on each atom•
shake − SHAKE constraints on bonds and/or angles•
spring − apply harmonic spring force to group of atoms•
spring/rg − spring on radius of gyration of group of atoms•
spring/self − spring from each atom to its origin•
store/coord − store coords of each atom•

290

store/force − store force on each atom•
temp/berendsen − temperature control by Berendsen thermostat•
temp/rescale − temperature control by velocity rescaling•
thermal/conductivity − Muller−Plathe kinetic energy exchange for thermal conductivity calculation•
tmd − guide a group of atoms to a new configuration•
ttm − two−temperature model for electronic/atomic coupling•
viscosity − Muller−Plathe momentum exchange for viscosity calculation•
viscous − viscous damping for granular simulations•
wall/colloid − Lennard−Jones wall interacting with finite−size particles•
wall/gran − frictional wall(s) for granular simulations•
wall/harmonic − harmonic spring wall•
wall/lj126 − Lennard−Jones 12−6 wall•
wall/lj93 − Lennard−Jones 9−3 wall•
wall/reflect − reflecting wall(s)•
wall/region − use region surface as wall•

There are also additional fix styles submitted by users which are included in the LAMMPS distribution. The list
of these with links to the individual styles are given in the fix section of this page.

Restrictions:

Some fix styles are part of specific packages. They are only enabled if LAMMPS was built with that package. See
the Making LAMMPS section for more info on packages. The doc pages for individual fixes tell if it is part of a
package.

Related commands:

unfix, fix_modify

Default: none

291

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix addforce command

Syntax:

fix ID group−ID addforce fx fy fz keyword value ...

ID, group−ID are documented in fix command•
addforce = style name of this fix command•
fx,fy,fz = force component values (force units)•
zero or more keyword/value pairs may be appended to args•
keyword = region

region value = region−ID
 region−ID = ID of region atoms must be in to have added force

•

Examples:

fix kick flow addforce 1.0 0.0 0.0

Description:

Add fx,fy,fz to the corresponding component of force for each atom in the group. This command can be used to
give an additional push to atoms in a simulation, such as for a simulation of Poiseuille flow in a channel.

If the region keyword is used, the atom must also be in the specified geometric region in order to have force
added to it.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files.

The fix_modify energy option is supported by this fix to add the potential "energy" inferred by the added force to
the system's potential energy as part of thermodynamic output. This is a fictitious quantity but is needed so that
the minimize command can include the forces added by this fix in a consistent manner. I.e. there is a decrease in
potential energy when atoms move in the direction of the added force.

This fix computes a scalar and a 3−vector of forces, which can be accessed by various output commands. The
scalar is the potential energy discussed above. The vector is the total force on the group of atoms before the forces
on individual atoms are changed by the fix. The scalar vector values calculated by this fix are "extensive",
meaning they scale with the number of atoms in the simulation.

No parameter of this fix can be used with the start/stop keywords of the run command.

The forces due to this fix are imposed during an energy minimization, invoked by the minimize command.

IMPORTANT NOTE: If you want the fictitious potential energy associated with the added forces to be included
in the total potential energy of the system (the quantity being minimized), you MUST enable the fix_modify
energy option for this fix.

Restrictions: none

292

http://lammps.sandia.gov

Related commands:

fix setforce, fix aveforce

Default: none

293

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix atc command

Syntax:

fix ID groupID atc type paramfile

ID, group−ID are documented in fix command•
atc = style name of this fix command•
type = thermal or two_temperature or hardy

thermal = thermal coupling with field: temperature
two_temperature = electron−phonon coupling with field, temperature and electron_temperature
hardy = Hardy on−the−fly post−processing

•

paramfile = file with material parameters (not specified for hardy type)•

Examples:

fix AtC atc_atoms atc thermal Ar_thermal.dat
fix AtC atc_atoms atc transfer hardy

Description:

This fix creates a coupled finite element (FE) and molecular dynamics (MD) simulation and/or an on−the−fly
estimation of continuum fields, where a FE mesh is specified and overlaps the particles, something like this:

Interscale operators are defined that construct continuum fields from atomic data. Coupled simulations use FE
projection approximated on a discrete field. Currently, coupling is restricted to thermal physics. The Hardy
module can use either FE projection or integration Kernels evaluated at mesh points.

Coupling methods enable appropriate corrections to the atomic data to be made based on the FE field. For
example, a Gaussian isokinetic thermostat can apply heat sources to the atoms that varies in space on the same
scale as the FE element size. Meshes are not created automatically and must be specified on LAMMPS regions
with prescribed element sizes.

Coupling and post−processing can be combined in the same simulations using separate fix atc commands.

Note that mesh computations and storage run in serial (not parallelized) so performance will degrade when large
element counts are used.

294

http://lammps.sandia.gov

For detailed exposition of the theory and algorithms implemented in this fix, please see the papers here and here.
Please refer to the standard finite element (FE) texts, such as this book, for the basics of FE simulation.

Thermal and two_temperature (coupling) types use a Verlet time−integration algorithm. The hardy type does not
contain its own time−integrator and must be used with a separate fix that does contain one, e.g. fix nve, fix nvt,
etc.

A set of example input files with the attendant material files are included in the examples/USER/atc directory of
the LAMMPS distribution.

An extensive set of additional documentation pages for the options turned on via the fix_modify command for this
fix are inlcluded in the doc/USER/atc directory of the LAMMPS distribution. Individual doc pages are listed and
linked to below.

The following commands are typical of a coupling problem:

 # ... commands to create and initialize the MD system

 # initial fix to designate coupling type and group to apply it to
 # tag group physics material_file
 fix AtC internal atc thermal Ar_thermal.mat

 # create a uniform 12 x 2 x 2 mesh that covers region contain the group
 # nx ny nz region periodicity
 fix_modify AtC fem create mesh 12 2 2 mdRegion f p p

 # specify the control method for the type of coupling
 # physics control_type
 fix_modify AtC transfer thermal control flux

 # specify the initial values for the empirical field "temperature"
 # field node_group value
 fix_modify AtC transfer initial temperature all 30.0

 # create an output stream for nodal fields
 # filename output_frequency
 fix_modify AtC transfer output atc_fe_output 100

 run 1000

The following commands are typical of a post−processing (Hardy) problem:

 # ... commands to create and initialize the MD system

 # initial fix to designate post−processing and the group to apply it to
 # no material file is allowed nor required
 fix AtC internal atc hardy

 # create a uniform 1 x 1 x 1 mesh that covers region contain the group
 # with periodicity this effectively creats a system average
 fix_modify AtC fem create mesh 1 1 1 box p p p

 # change from default lagrangian map to eulerian
 # refreshed every 100 steps
 fix_modify AtC atom_element_map eulerian 100

 # start with no field defined
 fix_modify AtC transfer fields none

295

 # add mass density, potential energy density, stress and temperature
 fix_modify AtC transfer fields add density energy stress temperature

 # create an output stream for nodal fields
 # filename output_frequency
 fix_modify AtC transfer output nvtFE 100 text

 run 1000

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. The fix_modify options relevant to this fix are listed
below. No global scalar or vector or per−atom quantities are stored by this fix for access by various output
commands. No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not
invoked during energy minimization.

Restrictions:

This fix is part of the "user−atc" package. It is only enabled if LAMMPS was built with that package, which also
requires the ATC library be built and linked with LAMMPS. See the Making LAMMPS section for more info.

Related commands:

After specifying this fix in your input script, several other fix_modify commands are used to setup the problem,
e.g. define the finite element mesh and prescribe initial and boundary conditions.

fix_modify commands for setup:

fix_modify AtC fem create mesh•
fix_modify AtC mesh create_nodeset•
fix_modify AtC mesh create_faceset•
fix_modify AtC mesh create_elementset•
fix_modify AtC transfer internal•
fix_modify AtC transfer boundary•
fix_modify AtC transfer internal_quadrature•
fix_modify AtC transfer pmfc•
fix_modify AtC extrinsic electron_integration•

fix_modify commands for boundary and initial conditions:

fix_modify AtC transfer initial•
fix_modify AtC transfer fix•
fix_modify AtC transfer unfix•
fix_modify AtC transfer fix_flux•
fix_modify AtC transferunfix_flux•
fix_modify AtC transfer source•
fix_modify AtC transfer remove_source•

fix_modify commands for control and filtering:

fix_modify AtC transfer thermal control•
fix_modify AtC transfer filter•
fix_modify AtC transfer filter scale•

296

fix_modify AtC transfer equilibrium_start•
fix_modify AtC extrinsic exchange•

fix_modify commands for output:

fix_modify AtC transfer output•
fix_modify AtC transfer atomic_output•
fix_modify AtC mesh output•
fix_modify AtC transfer write_restart•
fix_modify AtC transfer read_restart•

fix_modify commands for post−processing:

fix_modify AtC transfer fields•
fix_modify AtC transfer gradients•
fix_modify AtC transfer rates•
fix_modify AtC transfer computes•
fix_modify AtC set•
fix_modify AtC transfer on_the_fly•
fix_modify AtC boundary_integral•
fix_modify AtC contour_integral•

miscellaneous fix_modify commands:

fix_modify AtC transfer atom_element_map•
fix_modify AtC transfer neighbor_reset_frequency•

Default: none

(Wagner) Wagner, Jones, Templeton, Parks, Special Issue of Computer Methods and Applied Mechanics, 197,
3351−3365 (2008).

(Zimmerman) Zimmerman, Webb, Hoyt, Jones, Klein, Bammann, Special Issue of Modelling and Simulation in
Materials Science and Engineering, 12, S319 (2004).

(Hughes) T.J.R Hughes, "The Finite Element Method," Dover (2003).

297

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix ave/atom command

Syntax:

fix ID group−ID ave/atom Nevery Nrepeat Nfreq value1 value2 ...

ID, group−ID are documented in fix command•
ave/atom = style name of this fix command•
Nevery = use input values every this many timesteps•
Nrepeat = # of times to use input values for calculating averages•
Nfreq = calculate averages every this many timesteps one or more input values can be listed•
value = x, y, z, vx, vy, vz, fx, fy, fz, c_ID, c_ID[i], f_ID, f_ID[i], v_name

 x,y,z,vx,vy,vz,fx,fy,fz = atom attribute (position, velocity, force component)
 c_ID = per−atom vector calculated by a compute with ID
 c_ID[I] = Ith column of per−atom array calculated by a compute with ID
 f_ID = per−atom vector calculated by a fix with ID
 f_ID[I] = Ith column of per−atom array calculated by a fix with ID
 v_name = per−atom vector calculated by an atom−style variable with name

•

Examples:

fix 1 all ave/atom 1 100 100 vx vy vz
fix 1 all ave/atom 10 20 1000 c_my_stress1

Description:

Use one or more per−atom vectors as inputs every few timesteps, and average them atom by atom over longer
timescales. The resulting per−atom averages can be used by other output commands such as the fix ave/spatial or
dump custom commands.

The group specified with the command means only atoms within the group have their averages computed. Results
are set to 0.0 for atoms not in the group.

Each input value can be an atom attribute (position, velocity, force component) or can be the result of a compute
or fix or the evaluation of an atom−style variable. In the latter cases, the compute, fix, or variable must produce a
per−atom vector, not a global quantity or local quantity. If you wish to time−average global quantities from a
compute, fix, or variable, then see the fix ave/time command.

Computes that produce per−atom vectors or arrays are those which have the word atom in their style name. See
the doc pages for individual fixes to determine which ones produce per−atom vectors or arrays. Variables of style
atom are the only ones that can be used with this fix since they produce per−atom vectors.

Each per−atom value of each input vector is averaged independently.

The Nevery, Nrepeat, and Nfreq arguments specify on what timesteps the input values will be used in order to
contribute to the average. The final averaged quantities are generated every Nfreq timesteps. The average is over
Nrepeat quantities, computed in the preceding portion of the simulation every Nevery timesteps. Nfreq must be a
multiple of Nevery and Nevery must be non−zero even if Nrepeat is 1. Also, the timesteps contributing to the
average value cannot overlap, i.e. Nfreq > (Nrepeat−1)*Nevery is required.

298

http://lammps.sandia.gov

For example, if Nevery=2, Nrepeat=6, and Nfreq=100, then values on timesteps 90,92,94,96,98,100 will be used
to compute the final average on timestep 100. Similarly for timesteps 190,192,194,196,198,200 on timestep 200,
etc.

The atom attribute values (x,y,z,vx,vy,vz,fx,fy,fz) are self−explanatory. Note that other atom attributes can be
used as inputs to this fix by using the compute property/atom command and then specifying an input value from
that compute.

If a value begins with "c_", a compute ID must follow which has been previously defined in the input script. If no
bracketed term is appended, the per−atom vector calculated by the compute is used. If a bracketed term containing
an index I is appended, the Ith column of the per−atom array calculated by the compute is used. Users can also
write code for their own compute styles and add them to LAMMPS.

If a value begins with "f_", a fix ID must follow which has been previously defined in the input script. If no
bracketed term is appended, the per−atom vector calculated by the fix is used. If a bracketed term containing an
index I is appended, the Ith column of the per−atom array calculated by the fix is used. Note that some fixes only
produce their values on certain timesteps, which must be compatible with Nevery, else an error will result. Users
can also write code for their own fix styles and add them to LAMMPS.

If a value begins with "v_", a variable name must follow which has been previously defined in the input script as
an atom−style variable Variables of style atom can reference thermodynamic keywords, or invoke other
computes, fixes, or variables when they are evaluated, so this is a very general means of generating per−atom
quantities to time average.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to this
fix. No global scalar or vector quantities are stored by this fix for access by various output commands.

This fix produces a per−atom vector or array which can be accessed by various output commands. A vector is
produced if only a single quantity is averaged by this fix. If two or more quantities are averaged, then an array of
values is produced. The per−atom values can only be accessed on timesteps that are multiples of Nfreq since that
is when averaging is performed.

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions: none

Related commands:

compute, fix ave/histo, fix ave/spatial, fix ave/time, variable,

Default: none

299

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix ave/histo command

Syntax:

fix ID group−ID ave/time Nevery Nrepeat Nfreq lo hi Nbin value1 value2 ... keyword args ...

ID, group−ID are documented in fix command•
ave/histo = style name of this fix command•
Nevery = use input values every this many timesteps•
Nrepeat = # of times to use input values for calculating histogram•
Nfreq = calculate histogram every this many timesteps lo,hi = lo/hi bounds within which to histogram
Nbin = # of histogram bins one or more input values can be listed

•

value = x, y, z, vx, vy, vz, fx, fy, fz, c_ID, c_ID[N], f_ID, f_ID[N], v_name

 x,y,z,vx,vy,vz,fx,fy,fz = atom attribute (position, velocity, force component)c_ID = scalar or vector calculated by a compute with ID
 c_ID[I] = Ith component of vector or Ith column of array calculated by a compute with ID
 f_ID = scalar or vector calculated by a fix with ID
 f_ID[I] = Ith component of vector or Ith column of array calculated by a fix with ID
 v_name = value(s) calculated by an equal−style or atom−style variable with name

•

zero or more keyword/arg pairs may be appended•
keyword = mode or file or ave or start or beyond or title1 or title2 or title3

mode arg = scalar or vector
 scalar = all input values are scalars
 vector = all input values are vectors

file arg = filename
 filename = name of file to output histogram(s) to

ave args = one or running or window
 one = output a new average value every Nfreq steps
 running = output cumulative average of all previous Nfreq steps
 window M = output average of M most recent Nfreq steps

start args = Nstart
 Nstart = start averaging on this timestep

beyond arg = ignore or end or extra
 ignore = ignore values outside histogram lo/hi bounds
 end = count values outside histogram lo/hi bounds in end bins
 extra = create 2 extra bins for value outside histogram lo/hi bounds

title1 arg = string
 string = text to print as 1st line of output file

title2 arg = string
 string = text to print as 2nd line of output file

title3 arg = string
 string = text to print as 3rd line of output file, only for vector mode

•

Examples:

fix 1 all ave/histo 100 5 1000 0.5 1.5 50 c_myTemp file temp.histo ave running
fix 1 all ave/histo 100 5 1000 −5 5 100 c_thermo_press[2] c_thermo_press[3] title1 "My output values"
fix 1 all ave/histo 1 100 1000 −2.0 2.0 18 vx vy vz mode vector ave running beyond extra

Description:

Use one or more values as inputs every few timesteps, histogram them, and average the histogram over longer
timescales. The resulting histogram can be used by other output commands, and can also be written to a file.

300

http://lammps.sandia.gov

The group specified with this command is ignored for global and local input values. For per−atom input values,
only atoms in the group contribute to the histogram. Note that regardless of the specified group, calculations may
be performed by computes and fixes which store their own "group" definition.

A histogram is simply a count of the number of values that fall within a histogram bin. Nbins are defined, with
even spacing between lo and hi. Values that fall outside the lo/hi bounds can be treated in different ways; see the
discussion of the beyond keyword below.

Each input value can be an atom attribute (position, velocity, force component) or can be the result of a compute
or fix or the evaluation of an equal−style or atom−style variable. The set of input values can be either all global,
all per−atom, or all local quantities. Inputs of different kinds (e.g. global and per−atom) cannot be mixed. The
input values must also be either all scalar or all vector values, depending on the setting of the mode keyword.

Atom attributes are per−atom vector values. See the doc page for individual "compute" and "fix" commands to
see what kinds of quantities they generate.

The output of this command is a single histogram for all input values combined together, not one histogram per
input value. See below for details on the format of the output of this fix.

The Nevery, Nrepeat, and Nfreq arguments specify on what timesteps the input values will be used in order to
contribute to the histogram. The final histogram is generated every Nfreq timesteps. It is averaged over Nrepeat
histograms, computed in the preceding portion of the simulation every Nevery timesteps. Nfreq must be a multiple
of Nevery and Nevery must be non−zero even if Nrepeat is 1. Also, the timesteps contributing to the histogram
cannot overlap, i.e. Nfreq > (Nrepeat−1)*Nevery is required.

For example, if Nevery=2, Nrepeat=6, and Nfreq=100, then input values on timesteps 90,92,94,96,98,100 will be
used to compute the final histogram on timestep 100. Similarly for timesteps 190,192,194,196,198,200 on
timestep 200, etc. If Nrepeat=1 and Nfreq = 100, then no time averaging of the histogram is done; a histogram is
simply generated on timesteps 100,200,etc.

The atom attribute values (x,y,z,vx,vy,vz,fx,fy,fz) are self−explanatory. Note that other atom attributes can be
used as inputs to this fix by using the compute property/atom command and then specifying an input value from
that compute.

If a value begins with "c_", a compute ID must follow which has been previously defined in the input script. If
mode = scalar, then if no bracketed term is appended, the global scalar calculated by the compute is used. If a
bracketed term is appended, the Ith element of the global vector calculated by the compute is used. If mode =
vector, then if no bracketed term is appended, the global or per−atom or local vector calculated by the compute is
used. If a bracketed term is appended, the Ith column of the global or per−atom or local array calculated by the
compute is used.

Note that there is a compute reduce command which can sum per−atom quantities into a global scalar or vector
which can thus be accessed by fix ave/histo. Or it can be a compute defined not in your input script, but by
thermodynamic output or other fixes such as fix nvt or fix temp/rescale. See the doc pages for these commands
which give the IDs of these computes. Users can also write code for their own compute styles and add them to
LAMMPS.

If a value begins with "f_", a fix ID must follow which has been previously defined in the input script. If mode =
scalar, then if no bracketed term is appended, the global scalar calculated by the fix is used. If a bracketed term is
appended, the Ith element of the global vector calculated by the fix is used. If mode = vector, then if no bracketed
term is appended, the global or per−atom or local vector calculated by the fix is used. If a bracketed term is
appended, the Ith column of the global or per−atom or local array calculated by the fix is used.

301

Note that some fixes only produce their values on certain timesteps, which must be compatible with Nevery, else
an error will result. Users can also write code for their own fix styles and add them to LAMMPS.

If a value begins with "v_", a variable name must follow which has been previously defined in the input script. If
mode = scalar, then only equal−style variables can be used, which produce a global value. If mode = vector, then
only atom−style variables can be used, which produce a per−atom vector. See the variable command for details.
Note that variables of style equal and atom define a formula which can reference individual atom properties or
thermodynamic keywords, or they can invoke other computes, fixes, or variables when they are evaluated, so this
is a very general means of specifying quantities to histogram.

Additional optional keywords also affect the operation of this fix.

If the mode keyword is set to scalar, then all input values must be global scalars, or elements of global vectors. If
the mode keyword is set to vector, then all input values must be global or per−atom or local vectors, or columns of
global or per−atom or local arrays.

The beyond keyword determines how input values that fall outside the lo to hi bounds are treated. Values such
that lo <= value <= hi are assigned to one bin. Values on a bin boundary are assigned to the lower of the 2 bins. If
beyond is set to ignore then values < lo and values > hi are ignored, i.e. they are not binned. If beyond is set to end
then values < lo are counted in the first bin and values > hi are counted in the last bin. If beyond is set to extend
then two extra bins are created, so that there are Nbins+2 total bins. Values < lo are counted in the first bin and
values > hi are counted in the last bin (Nbins+1). Values between lo and hi (inclusive) are counted in bins 2 thru
Nbins+1. The "coordinate" stored and printed for these two extra bins is lo and hi.

The ave keyword determines how the histogram produced every Nfreq steps are averaged with histograms
produced on previous steps that were multiples of Nfreq, before they are accessed by another output command or
written to a file.

If the ave setting is one, then the histograms produced on timesteps that are multiples of Nfreq are independent of
each other; they are output as−is without further averaging.

If the ave setting is running, then the histograms produced on timesteps that are multiples of Nfreq are summed
and averaged in a cumulative sense before being output. Each bin value in the histogram is thus the average of the
bin value produced on that timestep with all preceding values for the same bin. This running average begins when
the fix is defined; it can only be restarted by deleting the fix via the unfix command, or by re−defining the fix by
re−specifying it.

If the ave setting is window, then the histograms produced on timesteps that are multiples of Nfreq are summed
within a moving "window" of time, so that the last M histograms are used to produce the output. E.g. if M = 3 and
Nfreq = 1000, then the output on step 10000 will be the combined histogram of the individual histograms on steps
8000,9000,10000. Outputs on early steps will be sums over less than M histograms if they are not available.

The start keyword specifies what timestep histogramming will begin on. The default is step 0. Often input values
can be 0.0 at time 0, so setting start to a larger value can avoid including a 0.0 in a running or windowed
histogram.

The file keyword allows a filename to be specified. Every Nfreq steps, one histogram is written to the file. This
includes a leading line that contains the timestep, number of bins, the total count of values contributing to the
histogram, the count of values that were not histogrammed (see the beyond keyword), the minimum value
encountered, and the maximum value encountered. The min/max values include values that were not
histogrammed. Following the leading line, one line per bin is written into the file. Each line contains the bin #, the
coordinate for the center of the bin (between lo and hi), the count of values in the bin, and the normalized count.

302

The normalized count is the bin count divided by the total count (not including values not histogrammed), so that
the normalized values sum to 1.0 across all bins.

The title1 and title2 and title3 keywords allow specification of the strings that will be printed as the first 3 lines of
the output file, assuming the file keyword was used. LAMMPS uses default values for each of these, so they do
not need to be specified.

By default, these header lines are as follows:

Histogram for fix ID
TimeStep Number−of−bins Total−counts Missing−counts Min−value Max−value
Bin Coord Count Count/Total

In the first line, ID is replaced with the fix−ID. The second line describes the six values that are printed at the first
of each section of output. The third describes the 4 values printed for each bin in the histogram.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to this
fix.

This fix produces a global vector and global array which can be accessed by various output commands. The
values can only be accessed on timesteps that are multiples of Nfreq since that is when a histogram is generated.
The global vector has 4 values:

1 = total counts in the histogram 2 = values that were not histogrammed (see beyond keyword) 3 = min value of
all input values, including ones not histogrammed 4 = max value of all input values, including ones not
histogrammed

The global array has # of rows = Nbins and # of columns = 3. The first column has the bin coordinate, the 2nd
column has the count of values in that histogram bin, and the 3rd column has the bin count divided by the total
count (not including missing counts), so that the values in the 3rd column sum to 1.0.

The vector and array values calculated by this fix are all treated as "intensive", meaning they are independent of
the number of atoms in the simulation. If this is not the case, e.g. due to histogramming per−atom input values,
then you will need to account for that when interpreting the values produced by this fix.

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions: none

Related commands:

compute, fix ave/atom, fix ave/spatial, fix ave/time, variable,

Default: none

The option defaults are mode = scalar, ave = one, start = 0, no file output, beyond = ignore, and title 1,2,3 =
strings as described above.

303

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix ave/spatial command

Syntax:

fix ID group−ID ave/spatial Nevery Nrepeat Nfreq dim origin delta value1 value2 ... keyword args ...

ID, group−ID are documented in fix command•
ave/spatial = style name of this fix command•
Nevery = use input values every this many timesteps•
Nrepeat = # of times to use input values for calculating averages•
Nfreq = calculate averages every this many timesteps dim = x or y or z•
origin = lower or center or upper or coordinate value (distance units)•
delta = thickness of spatial layers in dim (distance units)•
one or more input values can be listed•
value = x, y, z, vx, vy, vz, fx, fy, fz, density/mass, density/number, c_ID, c_ID[I], f_ID, f_ID[I], v_name

 x,y,z,vx,vy,vz,fx,fy,fz = atom attribute (velocity, force component)
 density/number, density/mass = number or mass density
 c_ID = per−atom vector calculated by a compute with ID
 c_ID[I] = Ith column of per−atom array calculated by a compute with ID
 f_ID = per−atom vector calculated by a fix with ID
 f_ID[I] = Ith column of per−atom array calculated by a fix with ID
 v_name = per−atom vector calculated by an atom−style variable with name

•

zero or more keyword/arg pairs may be appended•
keyword = norm or units or file or ave or title1 or title2 or title3

units arg = box or lattice or reduced
norm arg = all or sample
file arg = filename

 filename = file to write results to
ave args = one or running or window M

 one = output new average value every Nfreq steps
 running = output cumulative average of all previous Nfreq steps
 window M = output average of M most recent Nfreq steps

title1 arg = string
 string = text to print as 1st line of output file

title2 arg = string
 string = text to print as 2nd line of output file

title3 arg = string
 string = text to print as 3rd line of output file

•

Examples:

fix 1 all ave/spatial 10000 1 10000 z lower 0.02 c_myCentro units reduced & title1 "My output values"
fix 1 flow ave/spatial 100 10 1000 y 0.0 1.0 vx vz norm sample file vel.profile
fix 1 flow ave/spatial 100 5 1000 y 0.0 2.5 density/mass ave running

Description:

Use one or more per−atom vectors as inputs every few timesteps, bin them spatially by layer in a dimension, and
average the layer values over longer timescales. The resulting layer averages can be used by other output
commands such as thermo_style custom, and can also be written to a file.

The group specified with the command means only atoms within the group contribute to layer averages.

304

http://lammps.sandia.gov

Each listed value can be an atom attribute (position, velocity, force component), a mass or number density, or the
result of a compute or fix or the evaluation of an atom−style variable. In the latter cases, the compute, fix, or
variable must produce a per−atom quantity, not a global quantity. If you wish to time−average global quantities
from a compute, fix, or variable, then see the fix ave/time command.

Computes that produce per−atom quantities are those which have the word atom in their style name. See the doc
pages for individual fixes to determine which ones produce per−atom quantities. Variables of style atom are the
only ones that can be used with this fix since all other styles of variable produce global quantities.

The per−atom values of each input vector are binned and averaged independently of the per−atom values in other
input vectors.

The Nevery, Nrepeat, and Nfreq arguments specify on what timesteps the input values will be used to bin them
into layers and contribute to the average. The final averaged quantities are generated every Nfreq timesteps. The
average is over Nrepeat quantities, computed in the preceding portion of the simulation every Nevery timesteps.
Nfreq must be a multiple of Nevery and Nevery must be non−zero even if Nrepeat is 1. Also, the timesteps
contributing to the average value cannot overlap, i.e. Nfreq > (Nrepeat−1)*Nevery is required.

For example, if Nevery=2, Nrepeat=6, and Nfreq=100, then values on timesteps 90,92,94,96,98,100 will be used
to compute the final average on timestep 100. Similarly for timesteps 190,192,194,196,198,200 on timestep 200,
etc. If Nrepeat=1 and Nfreq = 100, then no time averaging is done; values are simply generated on timesteps
100,200,etc.

Each per−atom property is also averaged over atoms in each layer, where the layers are in a particular dim and
have a thickness given by delta. Every Nfreq steps, when an averaging is being performed and the per−atom
property is calculated for the first time, the number of layers and the layer boundaries are computed. Thus if the
simulation box changes size during a simulation, the number of layers and their boundaries may also change.
Layers are defined relative to a specified origin, which may be the lower/upper edge of the box (in dim) or its
center point, or a specified coordinate value. Starting at the origin, sufficient layers are created in both directions
to completely cover the box. On subsequent timesteps every atom is mapped to one of the layers. Atoms beyond
the lowermost/uppermost layer are counted in the first/last layer.

For orthogonal simulation boxes, the layers are "slices" aligned with the xyz coordinate axes. For non−orthogonal
(triclinic) simulation boxes, the layers are "tilted slices" that are parallel to the tilted faces of the box. See the
region prism command for a discussion of the geometry of tilted boxes in LAMMPS. As described there, a tilted
simulation box has edge vectors a,b,c. In that nomenclature, layers in the x dimension have faces with normals in
the "b" cross "c" direction. Layers in y have faces normal to the "a" cross "c" direction. And layers in z have faces
normal to the "a" cross "b" direction. Note that in order to define the thickness and position of these tilted layers
in an unambiguous fashion, the units option must be set to reduced when using a non−orthogonal simulation box,
as discussed below.

The atom attribute values (x,y,z,vx,vy,vz,fx,fy,fz) are self−explanatory. Note that other atom attributes can be
used as inputs to this fix by using the compute property/atom command and then specifying an input value from
that compute.

The density/number value means the number density is computed in each layer, i.e. a weighting of 1 for each
atom. The density/mass value means the mass density is computed in each layer, i.e. each atom is weighted by its
mass. The resulting density is normalized by the volume of the layer so that units of number/volume or
mass/volume are output.

If a value begins with "c_", a compute ID must follow which has been previously defined in the input script. If no
bracketed integer is appended, the per−atom vector calculated by the compute is used. If a bracketed interger is

305

appended, the Ith column of the per−atom array calculated by the compute is used. Users can also write code for
their own compute styles and add them to LAMMPS.

If a value begins with "f_", a fix ID must follow which has been previously defined in the input script. If no
bracketed integer is appended, the per−atom vector calculated by the fix is used. If a bracketed integer is
appended, the Ith column of the per−atom array calculated by the fix is used. Note that some fixes only produce
their values on certain timesteps, which must be compatible with Nevery, else an error results. Users can also
write code for their own fix styles and add them to LAMMPS.

If a value begins with "v_", a variable name must follow which has been previously defined in the input script.
Variables of style atom can reference thermodynamic keywords and various per−atom attributes, or invoke other
computes, fixes, or variables when they are evaluated, so this is a very general means of generating per−atom
quantities to spatially average.

Additional optional keywords also affect the operation of this fix.

The units keyword determines the meaning of the distance units used for the layer thickness delta and for origin if
it is a coordinate value. For orthogonal simulation boxes, any of the 3 options may be used. For non−orthogonal
(triclinic) simulation boxes, only the reduced option may be used.

A box value selects standard distance units as defined by the units command, e.g. Angstroms for units = real or
metal. A lattice value means the distance units are in lattice spacings. The lattice command must have been
previously used to define the lattice spacing. A reduced value means normalized unitless values between 0 and 1,
which represent the lower and upper faces of the simulation box respectively. Thus an origin value of 0.5 means
the center of the box in any dimension. A delta value of 0.1 means 10 layers span the box in any dimension.

Consider a non−orthogonal box, with layers in the x dimension. No matter how the box is tilted, an origin of 0.0
means start layers at the lower "b" cross "c" plane of the simulation box and an origin of 1.0 means to start layers
at the upper "b" cross "c" face of the box. A delta value of 0.1 means there will be 10 layers from 0.0 to 1.0,
regardless of the current size or shape of the simulation box.

The norm keyword affects how averaging is done for the output produced every Nfreq timesteps. For an all
setting, a layer quantity is summed over all atoms in all Nrepeat samples, as is the count of atoms in the layer. The
printed value for the layer is Total−quantity / Total−count. In other words it is an average over the entire Nfreq
timescale.

For a sample setting, the layer quantity is summed over atoms for only a single sample, as is the count, and a
"average sample value" is computed, i.e. Sample−quantity / Sample−count. The printed value for the layer is the
average of the Nrepeat "average sample values", In other words it is an average of an average.

The ave keyword determines how the layer values produced every Nfreq steps are averaged with layer values
produced on previous steps that were multiples of Nfreq, before they are accessed by another output command or
written to a file.

If the ave setting is one, then the layer values produced on timesteps that are multiples of Nfreq are independent of
each other; they are output as−is without further averaging.

If the ave setting is running, then the layer values produced on timesteps that are multiples of Nfreq are summed
and averaged in a cumulative sense before being output. Each output layer value is thus the average of the layer
value produced on that timestep with all preceding values for the same layer. This running average begins when
the fix is defined; it can only be restarted by deleting the fix via the unfix command, or re−defining the fix by
re−specifying it.

306

If the ave setting is window, then the layer values produced on timesteps that are multiples of Nfreq are summed
and averaged within a moving "window" of time, so that the last M values for the same layer are used to produce
the output. E.g. if M = 3 and Nfreq = 1000, then the output on step 10000 will be the average of the individual
layer values on steps 8000,9000,10000. Outputs on early steps will average over less than M values if they are not
available.

The file keyword allows a filename to be specified. Every Nfreq timesteps, a section of layer info will be written
to a text file in the following format. A line with the timestep and number of layers is written. Then one line per
layer is written, containing the layer ID (1−N), the coordinate of the center of the layer, the number of atoms in
the layer, and one or more calculated values. The number of values in each line corresponds to the number of
values specified in the fix ave/spatial command. The number of atoms and the value(s) are average quantities. If
the value of the units keyword is box or lattice, the "coord" is printed in box units. If the value of the units
keyword is reduced, the "coord" is printed in reduced units (0−1).

The title1 and title2 and title3 keywords allow specification of the strings that will be printed as the first 3 lines of
the output file, assuming the file keyword was used. LAMMPS uses default values for each of these, so they do
not need to be specified.

By default, these header lines are as follows:

Spatial−averaged data for fix ID and group name
Timestep Number−of−layers
Layer Coord Count value1 value2 ...

In the first line, ID and name are replaced with the fix−ID and group name. The second line describes the two
values that are printed at the first of each section of output. In the third line the values are replaced with the
appropriate fields from the fix ave/spatial command.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to this
fix.

This fix computes a global array of values which can be accessed by various output commands. The values can
only be accessed on timesteps that are multiples of Nfreq since that is when averaging is performed. The global
array has # of rows = Nlayers and # of columns = Nvalues+2. The first column has the layer coordinate (center of
the layer), the 2nd column has the count of atoms in that layer, and the remaining columns are the Nvalue
quantities. When the array is accessed with an I that exceeds the current number of layers, than a 0.0 is returned
by the fix instead of an error, since the number of layers can vary as a simulation runs, depending on the
simulation box size. The array values calculated by this fix are "intensive", meaning they are independent of the
number of atoms in the simulation, since they are already normalized by the count of atoms in each layer.

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions:

When the ave keyword is set to running or window then the number of layers must remain the same during the
simulation, so that the appropriate averaging can be done. This will be the case if the simulation box size doesn't
change or if the units keyword is set to reduced.

Related commands:

307

compute, fix ave/atom, fix ave/histo, fix ave/time, variable,

Default:

The option defaults are units = lattice, norm = all, no file output, and ave = one, title 1,2,3 = strings as described
above.

308

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix ave/time command

Syntax:

fix ID group−ID ave/time Nevery Nrepeat Nfreq value1 value2 ... keyword args ...

ID, group−ID are documented in fix command•
ave/time = style name of this fix command•
Nevery = use input values every this many timesteps•
Nrepeat = # of times to use input values for calculating averages•
Nfreq = calculate averages every this many timesteps one or more input values can be listed•
value = c_ID, c_ID[N], f_ID, f_ID[N], v_name

 c_ID = global scalar or vector calculated by a compute with ID
 c_ID[I] = Ith component of global vector or Ith column of global array calculated by a compute with ID
 f_ID = global scalar or vector calculated by a fix with ID
 f_ID[I] = Ith component of global vector or Ith column of global array calculated by a fix with ID
 v_name = global value calculated by an equal−style variable with name

•

zero or more keyword/arg pairs may be appended•
keyword = mode or file or ave or start or off or title1 or title2 or title3

mode arg = scalar or vector
 scalar = all input values are global scalars
 vector = all input values are global vectors

file arg = filename
 filename = name of file to output time averages to

ave args = one or running or window M
 one = output a new average value every Nfreq steps
 running = output cumulative average of all previous Nfreq steps
 window M = output average of M most recent Nfreq steps

start args = Nstart
 Nstart = start averaging on this timestep

off arg = M = do not average this value
 M = value # from 1 to Nvalues

title1 arg = string
 string = text to print as 1st line of output file

title2 arg = string
 string = text to print as 2nd line of output file

title3 arg = string
 string = text to print as 3rd line of output file, only for vector mode

•

Examples:

fix 1 all ave/time 100 5 1000 c_myTemp c_thermo_temp file temp.profile
fix 1 all ave/time 100 5 1000 c_thermo_press[2] ave window 20 & title1 "My output values"
fix 1 all ave/time 1 100 1000 f_indent f_indent[1] file temp.indent off 1

Description:

Use one or more global values as inputs every few timesteps, and average them over longer timescales. The
resulting averages can be used by other output commands such as thermo_style custom, and can also be written to
a file. Note that if no time averaging is done, this command can be used as a convenient way to simply output one
or more global values to a file.

309

http://lammps.sandia.gov

The group specified with this command is ignored. However, note that calculations may be performed by
computes and fixes which store their own "group" definitions.

Each input value can be the result of a compute or fix or the evaluation of an equal−style variable. In each case,
the compute, fix, or variable must produce a global quantity, not a per−atom or local quantity. If you wish to
spatial− or time−average or histogram per−atom quantities from a compute, fix, or variable, then see the fix
ave/spatial, fix ave/atom, or fix ave/histo commands. If you wish to sum a per−atom quantity into a single global
quantity, see the compute reduce command.

Computes that produce global quantities are those which do not have the word atom in their style name. Only a
few fixes produce global quantities. See the doc pages for individual fixes for info on which ones produce such
values. Variables of style equal are the only ones that can be used with this fix. Variables of style atom cannot be
used, since they produce per−atom values.

The listed values must either be all scalars or all vectors, depending on the setting of the mode option. In both
cases, the averaging is performed independently on each input value. I.e. each input scalar or the elements of each
input vector is averaged independently.

If mode = vector, then all the input vectors must be the same length.

The Nevery, Nrepeat, and Nfreq arguments specify on what timesteps the input values will be used in order to
contribute to the average. The final averaged quantities are generated every Nfreq timesteps. The average is over
Nrepeat quantities, computed in the preceding portion of the simulation every Nevery timesteps. Nfreq must be a
multiple of Nevery and Nevery must be non−zero even if Nrepeat is 1. Also, the timesteps contributing to the
average value cannot overlap, i.e. Nfreq > (Nrepeat−1)*Nevery is required.

For example, if Nevery=2, Nrepeat=6, and Nfreq=100, then values on timesteps 90,92,94,96,98,100 will be used
to compute the final average on timestep 100. Similarly for timesteps 190,192,194,196,198,200 on timestep 200,
etc. If Nrepeat=1 and Nfreq = 100, then no time averaging is done; values are simply generated on timesteps
100,200,etc.

If a value begins with "c_", a compute ID must follow which has been previously defined in the input script. If
mode = scalar, then if no bracketed term is appended, the global scalar calculated by the compute is used. If a
bracketed term is appended, the Ith element of the global vector calculated by the compute is used. If mode =
vector, then if no bracketed term is appended, the global vector calculated by the compute is used. If a bracketed
term is appended, the Ith column of the global array calculated by the compute is used.

Note that there is a compute reduce command which can sum per−atom quantities into a global scalar or vector
which can thus be accessed by fix ave/time. Or it can be a compute defined not in your input script, but by
thermodynamic output or other fixes such as fix nvt or fix temp/rescale. See the doc pages for these commands
which give the IDs of these computes. Users can also write code for their own compute styles and add them to
LAMMPS.

If a value begins with "f_", a fix ID must follow which has been previously defined in the input script. If mode =
scalar, then if no bracketed term is appended, the global scalar calculated by the fix is used. If a bracketed term is
appended, the Ith element of the global vector calculated by the fix is used. If mode = vector, then if no bracketed
term is appended, the global vector calculated by the fix is used. If a bracketed term is appended, the Ith column
of the global array calculated by the fix is used.

Note that some fixes only produce their values on certain timesteps, which must be compatible with Nevery, else
an error will result. Users can also write code for their own fix styles and add them to LAMMPS.

310

If a value begins with "v_", a variable name must follow which has been previously defined in the input script.
Variables can only be used as input for mode = scalar. Only equal−style variables can be referenced. See the
variable command for details. Note that variables of style equal define a formula which can reference individual
atom properties or thermodynamic keywords, or they can invoke other computes, fixes, or variables when they are
evaluated, so this is a very general means of specifying quantities to time average.

Additional optional keywords also affect the operation of this fix.

If the mode keyword is set to scalar, then all input values must be global scalars, or elements of global vectors. If
the mode keyword is set to vector, then all input values must be global vectors, or columns of global arrays.

The ave keyword determines how the values produced every Nfreq steps are averaged with values produced on
previous steps that were multiples of Nfreq, before they are accessed by another output command or written to a
file.

If the ave setting is one, then the values produced on timesteps that are multiples of Nfreq are independent of each
other; they are output as−is without further averaging.

If the ave setting is running, then the values produced on timesteps that are multiples of Nfreq are summed and
averaged in a cumulative sense before being output. Each output value is thus the average of the value produced
on that timestep with all preceding values. This running average begins when the fix is defined; it can only be
restarted by deleting the fix via the unfix command, or by re−defining the fix by re−specifying it.

If the ave setting is window, then the values produced on timesteps that are multiples of Nfreq are summed and
averaged within a moving "window" of time, so that the last M values are used to produce the output. E.g. if M =
3 and Nfreq = 1000, then the output on step 10000 will be the average of the individual values on steps
8000,9000,10000. Outputs on early steps will average over less than M values if they are not available.

The start keyword specifies what timestep averaging will begin on. The default is step 0. Often input values can
be 0.0 at time 0, so setting start to a larger value can avoid including a 0.0 in a running or windowed average.

The off keyword can be used to flag any of the input values. If a value is flagged, it will not be time averaged.
Instead the most recent input value will always be stored and output. This is useful if one of more of the inputs
produced by a compute or fix or variable are effectively constant or are simply current values. E.g. they are being
written to a file with other time−averaged values for purposes of creating well−formatted output.

The file keyword allows a filename to be specified. Every Nfreq steps, one quantity or vector of quantities is
written to the file for each input value specified in the fix ave/time command. For mode = scalar, this means a
single line is written each time output is performed. Thus the file ends up to be a series of lines, i.e. one column of
numbers for each input value. For mode = vector, an array of numbers is written each time output is performed.
The number of rows is the length of the input vectors, and the number of columns is the number of values. Thus
the file ends up to be a series of these array sections.

The title1 and title2 and title3 keywords allow specification of the strings that will be printed as the first 2 or 3
lines of the output file, assuming the file keyword was used. LAMMPS uses default values for each of these, so
they do not need to be specified.

By default, these header lines are as follows for mode = scalar:

Time−averaged data for fix ID
TimeStep value1 value2 ...

311

In the first line, ID is replaced with the fix−ID. In the second line the values are replaced with the appropriate
fields from the fix ave/time command. There is no third line in the header of the file, so the title3 setting is
ignored when mode = scalar.

By default, these header lines are as follows for mode = vector:

Time−averaged data for fix ID
TimeStep Number−of−rows
Row value1 value2 ...

In the first line, ID is replaced with the fix−ID. The second line describes the two values that are printed at the
first of each section of output. In the third line the values are replaced with the appropriate fields from the fix
ave/time command.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to this
fix.

This fix produces a global scalar or vector or array which can be accessed by various output commands. The
values can only be accessed on timesteps that are multiples of Nfreq since that is when averaging is performed.

A scalar is produced if only a single input value is averaged and mode = scalar. A vector is produced if multiple
input values are averaged for mode = scalar, or a single input value for mode = vector. In the first case, the length
of the vector is the number of inputs. In the second case, the length of the vector is the same as the length of the
input vector. An array is produced if multiple input values are averaged and mode = vector. The global array has #
of rows = length of the input vectors and # of columns = number of inputs.

If the fix prouduces a scalar or vector, then the scalar and each element of the vector may be either "intensive" or
"extensive". If the fix produces an array, then all elements in the array will be either "intensive" or "extensive".
Intensive means the value is independent of the number of atoms in the simulation. Extensive means the value
scales with the number of atoms in the simulation. If a compute or fix provides the value being time averaged,
then the compute or fix determines whether the value is intensive or extensive; see the doc page for that compute
or fix for further info. Values produced by a variable are whatever the variable calculates.

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions: none

Related commands:

compute, fix ave/atom, fix ave/spatial, fix ave/histo, variable

Default: none

The option defaults are mode = scalar, ave = one, start = 0, no file output, title 1,2,3 = strings as described above,
and no off settings for any input values.

312

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix aveforce command

Syntax:

fix ID group−ID aveforce fx fy fz keyword value ...

ID, group−ID are documented in fix command•
aveforce = style name of this fix command•
fx,fy,fz = force component values (force units)•
zero or more keyword/value pairs may be appended to args•
keyword = region

region value = region−ID
 region−ID = ID of region atoms must be in to have added force

•

Examples:

fix pressdown topwall aveforce 0.0 −1.0 0.0
fix 2 bottomwall aveforce NULL −1.0 0.0 region top

Description:

Apply an additional external force to a group of atoms in such a way that every atom experiences the same force.
This is useful for pushing on wall or boundary atoms so that the structure of the wall does not change over time.

The existing force is averaged for the group of atoms, component by component. The actual force on each atom is
then set to the average value plus the component specified in this command. This means each atom in the group
receives the same force.

If any of the arguments is specified as NULL then the forces in that dimension are not changed. Note that this is
not the same as specifying a 0.0 value, since that sets all forces to the same average value without adding in any
additional force.

If the region keyword is used, the atom must also be in the specified geometric region in order to have force
added to it.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to this
fix.

This fix computes a 3−vector of forces, which can be accessed by various output commands. This is the total
force on the group of atoms before the forces on individual atoms are changed by the fix. The vector values
calculated by this fix are "extensive", meaning they scale with the number of atoms in the simulation.

No parameter of this fix can be used with the start/stop keywords of the run command.

The forces due to this fix are imposed during an energy minimization, invoked by the minimize command.

Restrictions: none

313

http://lammps.sandia.gov

Related commands:

fix setforce, fix addforce

Default: none

314

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix bond/break command

Syntax:

fix ID group−ID bond/break Nevery bondtype Rmax keyword values ...

ID, group−ID are documented in fix command•
bond/break = style name of this fix command•
Nevery = attempt bond breaking every this many steps•
bondtype = type of bonds to break•
Rmax = bond longer than Rmax can break (distance units)•
zero or more keyword/value pairs may be appended to args•
keyword = prob

prob values = fraction seed
 fraction = break a bond with this probability if otherwise eligible
 seed = random number seed (positive integer)

•

Examples:

fix 5 all bond/break 10 2 1.2
fix 5 polymer bond/break 1 1 2.0 prob 0.5 49829

Description:

Break bonds between pairs of atoms as a simulation runs according to specified criteria. This can be used to
model the dissolution of a polymer network due to stretching of the simulation box or other deformations. In this
context, a bond means an interaction between a pair of atoms computed by the bond_style command. Once the
bond is broken it will be permanently deleted. This is different than a pairwise bond−order potential such as
Tersoff or AIREBO which infers bonds and many−body interactions based on the current geometry of a small
cluster of atoms and effectively creates and destroys bonds from timestep to timestep as atoms move.

A check for possible bond breakage is performed every Nevery timesteps. If two bonded atoms I,J are further than
a distance Rmax of each other, if the bond is of type bondtype, and if both I and J are in the specified fix group,
then I,J is labeled as a "possible" bond to break.

If several bonds involving an atom are stretched, it may have multiple possible bonds to break. Every atom checks
its list of possible bonds to break and labels the longest such bond as its "sole" bond to break. After this is done, if
atom I is bonded to atom J in its sole bond, and atom J is bonded to atom I in its sole bond, then the I,J bond is
"eligible" to be broken.

Note that these rules mean an atom will only be part of at most one broken bond on a given timestep. It also
means that if atom I chooses atom J as its sole partner, but atom J chooses atom K is its sole partner (due to Rjk >
Rij), then this means atom I will not be part of a broken bond on this timestep, even if it has other possible bond
partners.

The prob keyword can effect whether an eligible bond is actually broken. The fraction setting must be a value
between 0.0 and 1.0. A uniform random number between 0.0 and 1.0 is generated and the eligible bond is only
broken if the random number < fraction.

315

http://lammps.sandia.gov

When a bond is broken, data structures within LAMMPS that store bond topology are updated to reflect the
breakage. This can also affect subsequent computation of pairwise interactions involving the atoms in the bond.
See the Restriction section below for additional information.

Computationally, each timestep this fix operates, it loops over bond lists and computes distances between pairs of
bonded atoms in the list. It also communicates between neighboring processors to coordinate which bonds are
broken. Thus it will increase the cost of a timestep. Thus you should be cautious about invoking this fix too
frequently.

You can dump out snapshots of the current bond topology via the dump bond command.

IMPORTANT NOTE: Breaking a bond typically alters the energy of a system. You should be careful not to
choose bond breaking criteria that induce a dramatic change in energy. For example, if you define a very stiff
harmonic bond and break it when 2 atoms are separated by a distance far from the equilibribum bond length, then
the 2 atoms will be dramatically released when the bond is broken. More generally, you may need to thermostat
your system to compensate for energy changes resulting from broken bonds.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to this
fix.

This fix computes two statistics which it stores in a vector of length 2, which can be accessed by various output
commands. The vector values calculated by this fix are "extensive", meaning they scale with the number of atoms
in the simulation.

These are the 2 quantities:

(1) # of bonds broken on the most recent breakage timestep•
(2) cummulative # of bonds broken•

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions:

Currently, there are 2 restrictions for using this fix. We may relax these in the future if there are new models that
would be enabled by it.

When a bond is broken, you might wish to turn off angle and dihedral interactions that include that bond.
However, LAMMPS does not check for these angles and dihedrals, even if your simulation defines an angle_style
or dihedral_style.

This fix requires that the pairwise weightings defined by the special_bonds command be 0,1,1 for 1−2, 1−3, and
1−4 neighbors within the bond topology. This effectively means that the pairwise interaction between atoms I and
J is turned off when a bond between them exists and will be turned on when the bond is broken. It also means that
the pairwise interaction of I with J's other bond partners is unaffected by the existence of the bond.

Related commands:

fix bond/create, fix bond/swap, dump bond, special_bonds

316

Default:

The option defaults are prob = 1.0.

317

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix bond/create command

Syntax:

fix ID group−ID bond/create Nevery itype jtype Rmin bondtype keyword values ...

ID, group−ID are documented in fix command•
bond/create = style name of this fix command•
Nevery = attempt bond creation every this many steps•
itype,jtype = atoms of itype can bond to atoms of jtype•
Rmin = 2 atoms separated by less than Rmin can bond (distance units)•
bondtype = type of created bonds•
zero or more keyword/value pairs may be appended to args•
keyword = iparam or jparam or prob

iparam values = maxbond, newtype
 maxbond = max # of bonds of bondtype the itype atom can have
 newtype = change the itype atom to this type when maxbonds exist

jparam values = maxbond, newtype
 maxbond = max # of bonds of bondtype the jtype atom can have
 newtype = change the jtype atom to this type when maxbonds exist

prob values = fraction seed
 fraction = create a bond with this probability if otherwise eligible
 seed = random number seed (positive integer)

•

Examples:

fix 5 all bond/create 10 1 2 0.8 1
fix 5 all bond/create 1 3 3 0.8 1 prob 0.5 85784 iparam 2 3

Description:

Create bonds between pairs of atoms as a simulation runs according to specified criteria. This can be used to
model cross−linking of polymers, the formation of a percolation network, etc. In this context, a bond means an
interaction between a pair of atoms computed by the bond_style command. Once the bond is created it will be
permanently in place. This is different than a pairwise bond−order potential such as Tersoff or AIREBO which
infers bonds and many−body interactions based on the current geometry of a small cluster of atoms and
effectively creates and destroys bonds from timestep to timestep as atoms move.

A check for possible new bonds is performed every Nevery timesteps. If two atoms I,J are within a distance Rmin
of each other, if I is of atom type itype, if J is of atom type jtype, if both I and J are in the specified fix group, if a
bond does not already exist between I and J, and if both I and J meet their respective maxbond requirement
(explained below), then I,J is labeled as a "possible" bond pair.

If several atoms are close to an atom, it may have multiple possible bond partners. Every atom checks its list of
possible bond partners and labels the closest such partner as its "sole" bond partner. After this is done, if atom I
has atom J as its sole partner, and atom J has atom I as its sole partner, then the I,J bond is "eligible" to be formed.

Note that these rules mean an atom will only be part of at most one created bond on a given timestep. It also
means that if atom I chooses atom J as its sole partner, but atom J chooses atom K is its sole partner (due to Rjk <
Rij), then this means atom I will not form a bond on this timestep, even if it has other possible bond partners.

318

http://lammps.sandia.gov

It is permissible to have itype = jtype. Rmin must be <= the pairwise cutoff distance between itype and jtype
atoms, as defined by the pair_style command.

The iparam and jparam keywords can be used to limit the bonding functionality of the participating atoms. Each
atom keeps track of how many bonds of bondtype it already has. If atom I of itype already has maxbond bonds (as
set by the iparam keyword), then it will not form any more. Likewise for atom J. If maxbond is set to 0, then there
is no limit on the number of bonds that can be formed with that atom.

The newtype value for iparam and jparam can be used to change the atom type of atom I or J when it reaches
maxbond number of bonds of type bondtype. This means it can now interact in a pairwise fashion with other
atoms in a different way by specifying different pair_coeff coefficients. If you do not wish the atom type to
change, simply specify newtype as itype or jtype.

The prob keyword can also effect whether an eligible bond is actually created. The fraction setting must be a
value between 0.0 and 1.0. A uniform random number between 0.0 and 1.0 is generated and the eligible bond is
only created if the random number < fraction.

Any bond that is created is assigned a bond type of bondtype. Data structures within LAMMPS that store bond
topology are updated to reflect the new bond. This can also affect subsequent computation of pairwise interactions
involving the atoms in the bond. See the Restriction section below for additional information.

IMPORTANT NOTE: To create a new bond, the internal LAMMPS data structures that store this information
must have space for it. When LAMMPS is initialized from a data file, the list of bonds is scanned and the
maximum number of bonds per atom is tallied. If some atom will acquire more bonds than this limit as this fix
operates, then the "extra bonds per atom" parameter in the data file header must be set to allow for it. See the
read_data command for more details. Note that if this parameter needs to be set, it means a data file must be used
to initialize the system, even if it initially has no bonds. A data file with no atoms can be used if you wish to add
unbonded atoms via the create atoms command, e.g. for a percolation simulation.

IMPORTANT NOTE: LAMMPS also maintains a data structure that stores a list of 1st, 2nd, and 3rd neighbors of
each atom (in the bond topology of the system) for use in weighting pairwise interactions for bonded atoms.
Adding a bond adds a single entry to this list. The "extra" keyword of the special_bonds command should be used
to leave space for new bonds if the maximum number of entries for any atom will be exceeded as this fix
operates. See the special_bonds command for details.

Note that even if your simulation starts with no bonds, you must define a bond_style and use the bond_coeff
command to specify coefficients for the bondtype. Similarly, if new atom types are specified by the iparam or
jparam keywords, they must be within the range of atom types allowed by the simulation and pairwise
coefficients must be specified for the new types.

Computationally, each timestep this fix operates, it loops over neighbor lists and computes distances between
pairs of atoms in the list. It also communicates between neighboring processors to coordinate which bonds are
created. Thus it roughly doubles the cost of a timestep. Thus you should be cautious about invoking this fix too
frequently.

You can dump out snapshots of the current bond topology via the dump bond command.

IMPORTANT NOTE: Creating a bond typically alters the energy of a system. You should be careful not to
choose bond creation criteria that induce a dramatic change in energy. For example, if you define a very stiff
harmonic bond and create it when 2 atoms are separated by a distance far from the equilibribum bond length, then
the 2 atoms will oscillate dramatically when the bond is formed. More generally, you may need to thermostat your
system to compensate for energy changes resulting from created bonds.

319

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to this
fix.

This fix computes two statistics which it stores in a vector of length 2, which can be accessed by various output
commands. The vector values calculated by this fix are "extensive", meaning they scale with the number of atoms
in the simulation.

These are the 2 quantities:

(1) # of bonds created on the most recent creation timestep•
(2) cummulative # of bonds created•

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions:

Currently, there are 2 restrictions for using this fix. We may relax these in the future if there are new models that
would be enabled by it.

When a bond is created, you might wish to induce new angle and dihedral interactions that include that bond.
However, LAMMPS does not create these angles and dihedrals, even if your simulation defines an angle_style or
dihedral_style.

This fix requires that the pairwise weightings defined by the special_bonds command be 0,1,1 for 1−2, 1−3, and
1−4 neighbors within the bond topology. This effectively means that the pairwise interaction between atoms I and
J will be turned off when a bond between them is created. It also means that the pairwise interaction of I with J's
other bond partners will be unaffected by the new bond.

Related commands:

fix bond/break, fix bond/swap, dump bond, special_bonds

Default:

The option defaults are iparam = (0,itype), jparam = (0,jtype), and prob = 1.0.

320

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix bond/swap command

Syntax:

fix ID group−ID bond/swap fraction cutoff seed

ID, group−ID are documented in fix command•
bond/swap = style name of this fix command•
fraction = fraction of group atoms to consider for swapping•
cutoff = distance at which swapping will be considered (distance units)•
seed = random # seed (positive integer)•

Examples:

fix 1 all bond/swap 0.5 1.3 598934

Description:

In a simulation of polymer chains, this command attempts to swap bonds between two different chains,
effectively grafting the end of one chain onto another chain and vice versa. This is done via Monte Carlo rules
using the Boltzmann acceptance criterion. The purpose is to equilibrate the polymer chain conformations more
rapidly than dynamics alone would do it, by enabling instantaneous large conformational changes in a dense
polymer melt. The polymer chains should thus more rapidly converge to the proper end−to−end distances and
radii of gyration. It is designed for use with systems of FENE or harmonic bead−spring polymer chains where
each polymer is a linear chain of monomers, but LAMMPS does not enforce this requirement, i.e. any bond_style
can be used.

A schematic of the kinds of bond swaps that can occur is shown here:

On the left, the red and blue chains have two monomers A1 and B1 close to each other, which are currently
bonded to monomers A2 and B2 respectively within their own chains. The bond swap operation will attempt to
delete the A1−A2 and B1−B2 bonds and replace them with A1−B2 and B1−A2 bonds. If the swap is energetically
favorable, the two chains on the right are the result and each polymer chain has undergone a dramatic
conformational change. This reference provides more details on how the algorithm works and its application:
(Sides).

The bond swapping operation is invoked each time neighbor lists are built during a simulation, since it potentially
alters the list of which neighbors are considered for pairwise interaction. At each reneighboring step, each
processor considers a random specified fraction of its atoms as potential swapping monomers for this timestep.
Choosing a small fraction value can reduce the likelihood of a reverse swap occurring soon after an initial swap.

321

http://lammps.sandia.gov

For each monomer A1, its neighbors are examined to find a possible B1 monomer. Both A1 and B1 must be in the
fix group, their separation must be less than the specified cutoff, and the molecule IDs of A1 and B1 must be the
same (see below). If a suitable partner is found, the energy change due to swapping the 2 bonds is computed. This
includes changes in pairwise, bond, and angle energies due to the altered connectivity of the 2 chains. Dihedral
and improper interactions are not allowed to be defined when this fix is used.

If the energy decreases due to the swap operation, the bond swap is accepted. If the energy increases it is accepted
with probability exp(−delta/kT) where delta is the increase in energy, k is the Boltzmann constant, and T is the
current temperature of the system. Whether the swap is accepted or rejected, no other swaps are attempted by this
processor on this timestep.

The criterion for matching molecule IDs is how bond swaps performed by this fix conserve chain length. To use
this features you must setup the molecule IDs for your polymer chains in a certain way, typically in the data file,
read by the read_data comand. Consider a system of 6−mer chains. You have 3 choices. If the molecule IDs for
monomers on each chain are set to 1,2,3,4,5,6 then swaps will conserve length. For a particular momoner there
will be only one other monomer on another chain which is a potential swap partner. If the molecule IDs for
monomers on each chain are set to 1,2,3,3,2,1 then swaps will conserve length but swaps will be able to occur at
either end of a chain. Thus for a particular monomer there will be 2 possible swap partners on another chain. In
this scenario, swaps can also occur within a single chain, i.e. the two ends of a chain swap with each other. The
third choice is to give all monomers on all chains the same molecule ID, e.g. 0. This will allow a wide variety of
swaps to occur, but will NOT conserve chain lengths.

IMPORTANT NOTE: If your simulation uses molecule IDs in the usual way, where all monomers on a single
chain are assigned the same ID (different for each chain), then swaps will only occur within the same chain and
will NOT conserve chain length. This is probably not what you want for this fix.

This fix computes a temperature each time it is invoked for use by the Boltzmann criterion. To do this, the fix
creates its own compute of style temp, as if this command had been issued:

compute fix−ID_temp all temp

See the compute temp command for details. Note that the ID of the new compute is the fix−ID with underscore +
"temp" appended and the group for the new compute is "all", so that the temperature of the entire system is used.

Note that this is NOT the compute used by thermodynamic output (see the thermo_style command) with ID =
thermo_temp. This means you can change the attributes of this fix's temperature (e.g. its degrees−of−freedom) via
the compute_modify command or print this temperature during thermodyanmic output via the thermo_style
custom command using the appropriate compute−ID. It also means that changing attributes of thermo_temp will
have no effect on this fix.

Restart, fix_modify, thermo output, run start/stop, minimize info:

No information about this fix is written to binary restart files. Because the state of the random number generator is
not saved in restart files, this means you cannot do "exact" restarts with this fix, where the simulation continues
on the same as if no restart had taken place. However, in a statistical sense, a restarted simulation should produce
the same behavior. Also note that each processor generates possible swaps independently of other processors.
Thus if you repeat the same simulation on a different number of processors, the specific swaps performed will be
different.

The fix_modify temp option is supported by this fix. You can use it to assign a compute you have defined to this
fix which will be used to compute the temperature for the Boltzmann criterion.

322

This fix computes two statistical quantities as a 2−vector of output, which can be accessed by various output
commands. The first component of the vector is the cummulative number of swaps performed by all processors.
The second component of the vector is the cummulative number of swaps attempted (whether accepted or
rejected). Note that a swap "attempt" only occurs when swap partners meeting the criteria described above are
found on a particular timestep. The vector values calculated by this fix are "intensive", meaning they are
independent of the number of atoms in the simulation.

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions:

The setings of the "special_bond" command must be 0,1,1 in order to use this fix, which is typical of bead−spring
chains with FENE or harmonic bonds. This means that pairwise interactions between bonded atoms are turned
off, but are turned on between atoms two or three hops away along the chain backbone.

Currently, energy changes in dihedral and improper interactions due to a bond swap are not considered. Thus a
simulation that uses this fix cannot use a dihedral or improper potential.

Related commands: none

Default: none

(Sides) Sides, Grest, Stevens, Plimpton, J Polymer Science B, 42, 199−208 (2004).

323

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix box/relax command

Syntax:

fix ID group−ID box/relax style args keyword value ...

ID, group−ID are documented in fix command•
box/relax = style name of this fix command•
style = xyz or xy or yz or xz or aniso

xyz arg = P = desired pressure (pressure units)
xy or yz or xz or aniso args = Px Py Pz

 Px,Py,Pz = desired pressure in x,y,z (pressure units)

•

zero or more keyword/value pairs may be appended to the args•
keyword = dilate or vmax

dilate value = all or partial
vmax value = fraction = max allowed volume change in one iteration

•

Examples:

fix 1 all box/relax xyz 0.0 vmax 0.001
fix 2 water box/relax aniso 0.0 0.0 1000.0 dilate partial

Description:

Apply an external pressure to the simulation box during an energy minimization. This allows the box dimensions
to vary during the iterations of the minimizer so that the final configuration will be both an energy minimum for
the potential energy of the atoms and the system pressure will be close to the desired pressure. Conceptually,
specifying a positive pressure is like squeezing on the simulation box; a negative pressure typically allows the box
to expand.

The pressure can be specified in one of several styles, as determined by the style argument.

Style xyz means couple all 3 dimensions together when pressure is computed (isotropic pressure), and
dilate/contract the 3 dimensions together. Styles xy or yz or xz means that the 2 specified dimensions are coupled
together, both for pressure computation and for dilation/contraction. The 3rd dimension dilates/contracts
independently according to its specified pressure. For style aniso, all 3 dimensions dilate/contract independently
according to the 3 specified pressure values.

For any of the styles except xyz, the target pressure for any independent components (e.g. z in xy, or any
dimension in aniso) can be specified as NULL. This means that no pressure is applied to that dimension so that
the box dimension remains unchanged during the minimization.

For styles xy and yz and xz, the target pressures must be the same for the two coupled dimensions and cannot be
specified as NULL.

For all pressure styles, the simulation box stays rectangular in shape. Tilted boxes (triclinic symmetry) are
supported by other LAMMPS commands (see this section of the manual), but not yet by this command.

When the size of the simulation box changes, all atoms are re−scaled to new positions, unless the keyword dilate

324

http://lammps.sandia.gov

is specified with a value of partial, in which case only the atoms in the fix group are re−scaled. This can be useful
for leaving the coordinates of atoms in a solid substrate unchanged and controlling the pressure of a surrounding
fluid.

The vmax keyword can be used to limit the fractional change in the volume of the simulation box that can occur in
one iteration of the minimizer. If the pressure is not settling down during the minimization this can be because the
volume is fluctuating too much. The specfied fraction must be greater than 0.0 and should be << 1.0. A value of
0.001 means the volume cannot change by more than 1/10 of a percent in one iteration for style xyz. For the other
styles it means no linear dimension of the simulation box can change by more than 1/10 of a percent.

IMPORTANT NOTE: As normally computed, pressure includes a kinetic− energy or temperature−dependent
component; see the compute pressure command. However, atom velocities are ignored during a minimization, and
the applied pressure(s) specified with this command are assumed to only be the virial component of the pressure
(the non−kinetic portion). Thus if atoms have a non−zero temperature and you print the usual thermodynamic
pressure, it may not appear the system is converging to your specified pressure. The solution for this is to either
(a) zero the velocities of all atoms before performing the minimization, or (b) make sure you are monitoring the
pressure without its kinetic component. The latter can be done by outputting the pressure from the fix this
command creates (see below) or a pressure fix you define yourself.

IMPORTANT NOTE: Because pressure is often a very sensitive function of volume, it can be difficult for the
minimizer to equilibrate the system the desired pressure with high precision. Some techiniques that seem to help
are (a) use the "min_modify line quadratic" option when minimizing with box relaxtions, and (b) minimize
several times in succession if need be, to drive the pressure closer to the target pressure. Also note that some
systems (e.g. liquids) will not sustain an anisotropic applied pressure, which means the minimizer will not
converge.

This fix computes a temperature and pressure each timestep. The temperature is used to compute the kinetic
contribution to the pressure, even though this is subsequently ignored by default. To do this, the fix creates its
own computes of style "temp" and "pressure", as if these commands had been issued:

compute fix−ID_temp group−ID temp
compute fix−ID_press group−ID pressure fix−ID_temp virial

See the compute temp and compute pressure commands for details. Note that the IDs of the new computes are the
fix−ID + underscore + "temp" or fix_ID + underscore + "press", and the group for the new computes is the same
as the fix group. Also note that the pressure compute does not include a kinetic component.

Note that these are NOT the computes used by thermodynamic output (see the thermo_style command) with ID =
thermo_temp and thermo_press. This means you can change the attributes of this fix's temperature or pressure via
the compute_modify command or print this temperature or pressure during thermodynamic output via the
thermo_style custom command using the appropriate compute−ID. It also means that changing attributes of
thermo_temp or thermo_press will have no effect on this fix.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files.

The fix_modify temp and press options are supported by this fix. You can use them to assign a compute you have
defined to this fix which will be used in its temperature and pressure calculation, as described above. Note that as
described above, if you assign a pressure compute to this fix that includes a kinetic energy component it will
affect the minimization, most likely in an undesirable way.

325

IMPORTANT NOTE: If both the temp and press keywords are used in a single thermo_modify command (or in
two separate commands), then the order in which the keywords are specified is important. Note that a pressure
compute defines its own temperature compute as an argument when it is specified. The temp keyword will
override this (for the pressure compute being used by fix npt), but only if the temp keyword comes after the press
keyword. If the temp keyword comes before the press keyword, then the new pressure compute specified by the
press keyword will be unaffected by the temp setting.

No global scalar or vector or per−atom quantities are stored by this fix for access by various output commands.
No parameter of this fix can be used with the start/stop keywords of the run command.

This fix is invoked during energy minimization, but not for the purpose of adding a contribution to the energy or
forces being minimized. Instead it alters the simulation box geometry as described above.

Restrictions:

Any box dimension adjusted by this fix must be periodic. A dimension whose target pressure is specified as
NULL can be non−periodic or periodic.

Related commands:

fix npt, minimize

Default:

The keyword defaults are dilate = all and vmax = 0.0001.

326

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix deform command

Syntax:

fix ID group−ID deform N parameter args ... keyword value ...

ID, group−ID are documented in fix command•
deform = style name of this fix command•
N = perform box deformation every this many timesteps•
one or more parameter/arg pairs may be appended

parameter = x or y or z or xy or xz or yz
x, y, z args = style value(s)

 style = final or delta or scale or vel or erate or trate or volume or wiggle
final values = lo hi

 lo hi = box boundaries at end of run (distance units)
delta values = dlo dhi

 dlo dhi = change in box boundaries at end of run (distance units)
scale values = factor

 factor = multiplicative factor for change in box length at end of run
vel value = V

 V = change box length at this velocity (distance/time units),
 effectively an engineering strain rate

erate value = R
 R = engineering strain rate (1/time units)

trate value = R
 R = true strain rate (1/time units)

volume value = none = adjust this dim to preserve volume of system
wiggle value = A Tp

 A = amplitude of oscillation (distance units)
 Tp = period of oscillation (time units)

xy, xz, yz args = style value
 style = final or delta or vel or erate or trate or wiggle

final value = tilt
 tilt = tilt factor at end of run (distance units)

delta value = dtilt
 dtilt = change in tilt factor at end of run (distance units)

vel value = V
 V = change tilt factor at this velocity (distance/time units),
 effectively an engineering shear strain rate

erate value = R
 R = engineering shear strain rate (1/time units)

trate value = R
 R = true shear strain rate (1/time units)

wiggle value = A Tp
 A = amplitude of oscillation (distance units)
 Tp = period of oscillation (time units)

•

zero or more keyword/value pairs may be appended•
keyword = remap or units

remap value = x or v or none
 x = remap coords of atoms in group into deforming box
 v = remap velocities of all atoms when they cross periodic boundaries
 none = no remapping of x or v

units value = lattice or box
 lattice = distances are defined in lattice units
 box = distances are defined in simulation box units

•

327

http://lammps.sandia.gov

Examples:

fix 1 all deform 1 x final 0.0 9.0 z final 0.0 5.0 units box
fix 1 all deform 1 x trate 0.1 y volume z volume
fix 1 all deform 1 xy erate 0.001 remap v
fix 1 all deform 10 y delta 0.5 xz vel 1.0

Description:

Change the volume and/or shape of the simulation box during a dynamics run. Orthogonal simulation boxes have
3 adjustable parameters (x,y,z). Triclinic (non−orthogonal) simulation boxes have 6 adjustable parameters
(x,y,z,xy,xz,yz). Any or all of them can be adjusted independently and simultaneously by this command. This fix
can be used to perform non−equilibrium MD (NEMD) simulations of a continuously strained system. See the fix
nvt/sllod and compute temp/deform commands for more details.

Any parameter varied by this command must refer to a periodic dimension − see the boundary command. For
parameters "xy", "xz", and "yz" this means both affected dimensions must be periodic, e.g. x and y for "xy".
Dimensions not varied by this command can be periodic or non−periodic. Unspecified periodic dimensions can
also be controlled by a fix npt or fix nph command.

The size and shape of the simulation box at the beginning of the simulation run were either specified by the
create_box or read_data or read_restart command used to setup the simulation initially if it is the first run, or they
are the values from the end of the previous run. The create_box, read data, and read_restart commands specify
whether the simulation box is orthogonal or non−orthogonal (triclinic) and explain the meaning of the xy,xz,yz tilt
factors. If fix deform changes the xy,xz,yz tilt factors, then the simulation box must be triclinic, even if its initial
tilt factors are 0.0.

As described below, the desired simulation box size and shape at the end of the run are determined by the
parameters of the fix deform command. Every Nth timestep during the run, the simulation box is expanded,
contracted, or tilted to ramped values between the initial and final values.

For the x, y, and z parameters, this is the meaning of their styles and values.

The final, delta, scale, vel, and erate styles all change the specified dimension of the box via "constant
displacement" which is effectively a "constant engineering strain rate". This means the box dimension changes
linearly with time from its initial to final value.

For style final, the final lo and hi box boundaries of a dimension are specified. The values can be in lattice or box
distance units. See the discussion of the units keyword below.

For style delta, plus or minus changes in the lo/hi box boundaries of a dimension are specified. The values can be
in lattice or box distance units. See the discussion of the units keyword below.

For style scale, a multiplicative factor to apply to the box length of a dimension is specified. For example, if the
initial box length is 10, and the factor is 1.1, then the final box length will be 11. A factor less than 1.0 means
compression.

For style vel, a velocity at which the box length changes is specified in units of distance/time. This is effectively a
"constant engineering strain rate", where rate = V/L0 and L0 is the initial box length. The distance can be in
lattice or box distance units. See the discussion of the units keyword below. For example, if the initial box length
is 100 Angstroms, and V is 10 Angstroms/psec, then after 10 psec, the box length will have doubled. After 20
psec, it will have tripled.

328

The erate style changes a dimension of the the box at a "constant engineering strain rate". The units of the
specified strain rate are 1/time. See the units command for the time units associated with different choices of
simulation units, e.g. picoseconds for "metal" units). Tensile strain is unitless and is defined as delta/L0, where L0
is the original box length and delta is the change relative to the original length. The box length L as a function of
time will change as

L(t) = L0 (1 + erate*dt)

where dt is the elapsed time (in time units). Thus if erate R is specified as 0.1 and time units are picoseconds, this
means the box length will increase by 10% of its original length every picosecond. I.e. strain after 1 psec = 0.1,
strain after 2 psec = 0.2, etc. R = −0.01 means the box length will shrink by 1% of its original length every
picosecond. Note that for an "engineering" rate the change is based on the original box length, so running with R
= 1 for 10 picoseconds expands the box length by a factor of 11 (strain of 10), which is different that what the
trate style would induce.

The trate style changes a dimension of the box at a "constant true strain rate". Note that this is not an "engineering
strain rate", as the other styles are. Rather, for a "true" rate, the rate of change is constant, which means the box
dimension changes non−linearly with time from its initial to final value. The units of the specified strain rate are
1/time. See the units command for the time units associated with different choices of simulation units, e.g.
picoseconds for "metal" units). Tensile strain is unitless and is defined as delta/L0, where L0 is the original box
length and delta is the change relative to the original length.

The box length L as a function of time will change as

L(t) = L0 exp(trate*dt)

where dt is the elapsed time (in time units). Thus if trate R is specified as ln(1.1) and time units are picoseconds,
this means the box length will increase by 10% of its current (not original) length every picosecond. I.e. strain
after 1 psec = 0.1, strain after 2 psec = 0.21, etc. R = ln(2) or ln(3) means the box length will double or triple
every picosecond. R = ln(0.99) means the box length will shrink by 1% of its current length every picosecond.
Note that for a "true" rate the change is continuous and based on the current length, so running with R = ln(2) for
10 picoseconds does not expand the box length by a factor of 11 as it would with erate, but by a factor of 1024
since the box length will double every picosecond.

Note that to change the volume (or cross−sectional area) of the simulation box at a constant rate, you can change
multiple dimensions via erate or trate. E.g. to double the box volume every picosecond, you could set "x trate M",
"y trate M", "z trate M", with M = pow(2,1/3) − 1 = 1.26, since if each box dimension grows by 26%, the box
volume doubles.

The volume style changes the specified dimension in such a way that the box volume remains constant while other
box dimensions are changed explicitly via the styles discussed above. For example, "x scale 1.1 y scale 1.1 z
volume" will shrink the z box length as the x,y box lengths increase, to keep the volume constant (product of x,y,z
lengths). If "x scale 1.1 z volume" is specified and parameter y is unspecified, then the z box length will shrink as
x increases to keep the product of x,z lengths constant. If "x scale 1.1 y volume z volume" is specified, then both
the y,z box lengths will shrink as x increases to keep the volume constant (product of x,y,z lengths). In this case,
the y,z box lengths shrink so as to keep their relative aspect ratio constant.

For solids or liquids, note that when one dimension of the box is expanded via fix deform (i.e. tensile strain), it
may be physically undesirable to hold the other 2 box lengths constant (unspecified by fix deform) since that
implies a density change. Using the volume style for those 2 dimensions to keep the box volume constant may
make more physical sense, but may also not be correct for materials and potentials whose Poisson ratio is not 0.5.
An alternative is to use fix npt aniso with zero applied pressure on those 2 dimensions, so that they respond to the
tensile strain dynamically.

329

The wiggle style oscillates the specified box length dimension sinusoidally with the specified amplitude and
period. I.e. the box length L as a function of time is given by

L(t) = L0 + A sin(2*pi t/Tp)

where L0 is its initial length. If the amplitude A is a positive number the box initially expands, then contracts, etc.
If A is negative then the box initially contracts, then expands, etc. The amplitude can be in lattice or box distance
units. See the discussion of the units keyword below.

For the scale, vel, erate, trate, volume, and wiggle styles, the box length is expanded or compressed around its
mid point.

For the xy, xz, and yz parameters, this is the meaning of their styles and values. Note that changing the tilt factors
of a triclinic box does not change its volume.

The final, delta, vel, and erate styles all change the shear strain at a "constant engineering shear strain rate". This
means the tilt factor changes linearly with time from its initial to final value.

For style final, the final tilt factor is specified. The value can be in lattice or box distance units. See the discussion
of the units keyword below.

For style delta, a plus or minus change in the tilt factor is specified. The value can be in lattice or box distance
units. See the discussion of the units keyword below.

For style vel, a velocity at which the tilt factor changes is specified in units of distance/time. This is effectively an
"engineering shear strain rate", where rate = V/L0 and L0 is the initial box length perpendicular to the direction of
shear. The distance can be in lattice or box distance units. See the discussion of the units keyword below. For
example, if the initial tilt factor is 5 Angstroms, and the V is 10 Angstroms/psec, then after 1 psec, the tilt factor
will be 15 Angstroms. After 2 psec, it will be 25 Angstroms.

The erate style changes a tilt factor at a "constant engineering shear strain rate". The units of the specified shear
strain rate are 1/time. See the units command for the time units associated with different choices of simulation
units, e.g. picoseconds for "metal" units). Shear strain is unitless and is defined as offset/length, where length is
the box length perpendicular to the shear direction (e.g. y box length for xy deformation) and offset is the
displacement distance in the shear direction (e.g. x direction for xy deformation) from the unstrained orientation.

The tilt factor T as a function of time will change as

T(t) = T0 + erate*dt

where T0 is the initial tilt factor and dt is the elapsed time (in time units). Thus if erate R is specified as 0.1 and
time units are picoseconds, this means the shear strain will increase by 0.1 every picosecond. I.e. if the xy shear
strain was initially 0.0, then strain after 1 psec = 0.1, strain after 2 psec = 0.2, etc. Thus the tilt factor would be 0.0
at time 0, 0.1*ybox at 1 psec, 0.2*ybox at 2 psec, etc, where ybox is the original y box length. R = 1 or 2 means
the tilt factor will increase by 1 or 2 every picosecond. R = −0.01 means a decrease in shear strain by 0.01 every
picosecond.

The trate style changes a tilt factor at a "constant true shear strain rate". Note that this is not an "engineering shear
strain rate", as the other styles are. Rather, for a "true" rate, the rate of change is constant, which means the tilt
factor changes non−linearly with time from its initial to final value. The units of the specified shear strain rate are
1/time. See the units command for the time units associated with different choices of simulation units, e.g.
picoseconds for "metal" units). Shear strain is unitless and is defined as offset/length, where length is the box
length perpendicular to the shear direction (e.g. y box length for xy deformation) and offset is the displacement

330

distance in the shear direction (e.g. x direction for xy deformation) from the unstrained orientation.

The tilt factor T as a function of time will change as

T(t) = T0 exp(trate*dt)

where T0 is the initial tilt factor and dt is the elapsed time (in time units). Thus if trate R is specified as ln(1.1)
and time units are picoseconds, this means the shear strain or tilt factor will increase by 10% every picosecond.
I.e. if the xy shear strain was initially 0.1, then strain after 1 psec = 0.11, strain after 2 psec = 0.121, etc. R = ln(2)
or ln(3) means the tilt factor will double or triple every picosecond. R = ln(0.99) means the tilt factor will shrink
by 1% every picosecond. Note that the change is continuous, so running with R = ln(2) for 10 picoseconds does
not change the tilt factor by a factor of 10, but by a factor of 1024 since it doubles every picosecond. Note that the
initial tilt factor must be non−zero to use the trate option.

Note that shear strain is defined as the tilt factor divided by the perpendicular box length. The erate and trate
styles control the tilt factor, but assume the perpendicular box length remains constant. If this is not the case (e.g.
it changes due to another fix deform parameter), then this effect on the shear strain is ignored.

The wiggle style oscillates the specified tilt factor sinusoidally with the specified amplitude and period. I.e. the tilt
factor T as a function of time is given by

T(t) = T0 + A sin(2*pi t/Tp)

where T0 is its initial value. If the amplitude A is a positive number the tilt factor initially becomes more positive,
then more negative, etc. If A is negative then the tilt factor initially becomes more negative, then more positive,
etc. The amplitude can be in lattice or box distance units. See the discussion of the units keyword below.

All of these styles change the xy, xz, yz tilt factors during a simulation. In LAMMPS, tilt factors (xy,xz,yz) for
triclinic boxes are always bounded by half the distance of the parallel box length. For example, if xlo = 2 and xhi
= 12, then the x box length is 10 and the xy tilt factor must be between −5 and 5. Similarly, both xz and yz must
be between −(xhi−xlo)/2 and +(yhi−ylo)/2. Note that this is not a limitation, since if the maximum tilt factor is 5
(as in this example), then configurations with tilt = ..., −15, −5, 5, 15, 25, ... are all equivalent.

To obey this constraint and allow for large shear deformations to be applied via the xy, xz, or yz parameters, the
following algorithm is used. If prd is the associated parallel box length (10 in the example above), then if the tilt
factor exceeds the accepted range of −5 to 5 during the simulation, then the box is re−shaped to the other limit (an
equivalent box) and the simulation continues. Thus for this example, if the initial xy tilt factor was 0.0 and "xy
final 100.0" was specified, then during the simulation the xy tilt factor would increase from 0.0 to 5.0, the box
would be re−shaped so that the tilt factor becomes −5.0, the tilt factor would increase from −5.0 to 5.0, the box
would be re−shaped again, etc. The re−shaping would occur 10 times and the final tilt factor at the end of the
simulation would be 0.0. During each re−shaping event, atoms are remapped into the new box in the appropriate
manner.

Each time the box size or shape is changed, the remap keyword determines whether atom positions are remapped
to the new box. If remap is set to x (the default), atoms in the fix group are remapped; otherwise they are not.
Note that their velocities are not changed, just their positions are altered. If remap is set to v, then any atom in the
fix group that crosses a periodic boundary will have a delta added to its velocity equal to the difference in
velocities between the lo and hi boundaries. Note that this velocity difference can include tilt components, e.g. a
delta in the x velocity when an atom crosses the y periodic boundary. If remap is set to none, then neither of these
remappings take place.

Conceptually, setting remap to x forces the atoms to deform via an affine transformation that exactly matches the
box deformation. This setting is typically appropriate for solids. Note that though the atoms are effectively

331

"moving" with the box over time, it is not due to their having a velocity that tracks the box change, but only due
to the remapping. By contrast, setting remap to v is typically appropriate for fluids, where you want the atoms to
respond to the change in box size/shape on their own and acquire a velocity that matches the box change, so that
their motion will naturally track the box without explicit remapping of their coordinates.

IMPORTANT NOTE: When non−equilibrium MD (NEMD) simulations are performed using this fix, the option
"remap v" should normally be used. This is because fix nvt/sllod adjusts the atom positions and velocities to
induce a velocity profile that matches the changing box size/shape. Thus atom coordinates should NOT be
remapped by fix deform, but velocities SHOULD be when atoms cross periodic boundaries, since that is
consistent with maintaining the velocity profile already created by fix nvt/sllod. LAMMPS will warn you if the
remap setting is not consistent with fix nvt/sllod.

IMPORTANT NOTE: If a fix rigid is defined for rigid bodies, and remap is set to x, then the center−of−mass
coordinates of rigid bodies will be remapped to the changing simulation box. This will be done regardless of
whether atoms in the rigid bodies are in the fix deform group or not. The velocity of the centers of mass are not
remapped even if remap is set to v, since fix nvt/sllod does not currently do anything special for rigid particles. If
you wish to perform a NEMD simulation of rigid particles, you can either thermostat them independently or
include a background fluid and thermostat the fluid via fix nvt/sllod.

The units keyword determines the meaning of the distance units used to define various arguments. A box value
selects standard distance units as defined by the units command, e.g. Angstroms for units = real or metal. A lattice
value means the distance units are in lattice spacings. The lattice command must have been previously used to
define the lattice spacing. Note that the units choice also affects the vel style parameters since it is defined in
terms of distance/time.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to this
fix. No global scalar or vector or per−atom quantities are stored by this fix for access by various output
commands.

This fix can perform deformation over multiple runs, using the start and stop keywords of the run command. See
the run command for details of how to do this.

This fix is not invoked during energy minimization.

Restrictions:

Any box dimension varied by this fix must be periodic.

Related commands:

displace_box

Default:

The option defaults are remap = x and units = lattice.

332

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix deposit command

Syntax:

fix ID group−ID deposit N type M seed keyword values ...

ID, group−ID are documented in fix command•
deposit = style name of this fix command•
N = # of atoms to insert•
type = atom type to assign to inserted atoms•
M = insert a single particle every M steps•
seed = random # seed (positive integer)•
one or more keyword/value pairs may be appended to args•
keyword = region or global or local or near or attempt or rate or vx or vy or vz or units

region value = region−ID
 region−ID = ID of region to use as insertion volume

global values = lo hi
 lo,hi = put new particle a distance lo−hi above all other particles (distance units)

local values = lo hi delta
 lo,hi = put new particle a distance lo−hi above any nearby particle beneath it (distance units)
 delta = lateral distance within which a neighbor is considered "nearby" (distance units)

near value = R
 R = only insert particle if further than R from existing particles (distance units)

attempt value = Q
 Q = attempt a single insertion up to Q times

rate value = V
 V = z velocity (y in 2d) at which insertion volume moves (velocity units)

vx values = vxlo vxhi
 vxlo,vxhi = range of x velocities for inserted particle (velocity units)

vy values = vylo vyhi
 vylo,vyhi = range of y velocities for inserted particle (velocity units)

vz values = vzlo vzhi
 vzlo,vzhi = range of z velocities for inserted particle (velocity units)

units value = lattice or box
 lattice = the geometry is defined in lattice units
 box = the geometry is defined in simulation box units

•

Examples:

fix 3 all deposit 1000 2 100 29494 region myblock local 1.0 1.0 1.0 units box
fix 2 newatoms deposit 10000 1 500 12345 region disk near 2.0 vz −1.0 −0.8

Description:

Insert a single particle into the simulation domain every M timesteps until N particles have been inserted. This is
useful for simulating the deposition of particles onto a surface.

Inserted particles have the specified atom type and are assigned to two groups: the default group "all" and the
group specified in the fix deposit command (which can also be "all").

If you are computing temperature values which include inserted particles, you will want to use the
compute_modify dynamic option, which insures the current number of atoms is used as a normalizing factor each
time temperature is computed.

333

http://lammps.sandia.gov

Care must be taken that inserted particles are not too near existing particles, using the options described below.
When inserting particles above a surface in a non−periodic box (see the boundary command), the possibility of a
particle escaping the surface and flying upward should be considered, since the particle may be lost or the box
size may grow infinitely large. A fix wall/reflect command can be used to prevent this behavior. Note that if a
shrink−wrap boundary is used, it is OK to insert the new particle outside the box, however the box will
immediately be expanded to include the new particle.

This command must use the region keyword to define an insertion volume. The specified region must have been
previously defined with a region command. It must be defined with side = in.

Each timestep a particle is to be inserted, its coordinates are chosen as follows. A random position within the
insertion volume is generated. If neither the global or local keyword is used, that is the trial position. If the global
keyword is used, the random x,y values are used, but the z position of the new particle is set above the highest
current atom in the simulation by a distance randomly chosen between lo/hi. (For a 2d simulation, this is done for
the y position.) If the local keyword is used, the z position is set a distance between lo/hi above the highest current
atom in the simulation that is "nearby" the chosen x,y position. In this context, "nearby" means the lateral distance
(in x,y) between the new and old particles is less than the delta parameter.

Once a trial x,y,z location has been computed, the insertion is only performed if no current particle in the
simulation is within a distance R of the new particle. If this test fails, a new random position within the insertion
volume is chosen and another trial is made. Up to Q attempts are made. If an atom is not successfully deposited,
LAMMPS prints a warning message.

The rate option moves the insertion volume in the z direction (3d) or y direction (2d). This enables particles to be
inserted from a successively higher height over time. Note that this parameter is ignored if the global or local
keywords are used, since those options choose a z−coordinate for insertion independently.

The vx, vy, and vz components of velocity for the inserted particle are set using the values specified for the vx, vy,
and vz keywords. Note that normally, new particles should be a assigned a negative vertical velocity so that they
move towards the surface.

The units keyword determines the meaning of the distance units used for the other deposition parameters. A box
value selects standard distance units as defined by the units command, e.g. Angstroms for units = real or metal. A
lattice value means the distance units are in lattice spacings. The lattice command must have been previously used
to define the lattice spacing. Note that the units choice affects all the keyword values that have units of distance or
velocity.

Restart, fix_modify, output, run start/stop, minimize info:

This fix writes the state of the deposition to binary restart files. This includes information about how many atoms
have been depositied, the random number generator seed, the next timestep for deposition, etc. See the
read_restart command for info on how to re−specify a fix in an input script that reads a restart file, so that the
operation of the fix continues in an uninterrupted fashion.

None of the fix_modify options are relevant to this fix. No global scalar or vector or per−atom quantities are
stored by this fix for access by various output commands. No parameter of this fix can be used with the start/stop
keywords of the run command. This fix is not invoked during energy minimization.

Restrictions:

The specified insertion region cannot be a "dynamic" region, as defined by the region command.

334

Related commands:

fix_pour, region

Default:

The option defaults are delta = 0.0, near = 0.0, attempt = 10, rate = 0.0, vx = 0.0 0.0, vy = 0.0 0.0, vz = 0.0 0.0,
and units = lattice.

335

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix drag command

Syntax:

fix ID group−ID drag x y z fmag delta

ID, group−ID are documented in fix command•
drag = style name of this fix command•
x,y,z = coord to drag atoms towards•
fmag = magnitude of force to apply to each atom (force units)•
delta = cutoff distance inside of which force is not applied (distance units)•

Examples:

fix center small−molecule drag 0.0 10.0 0.0 5.0 2.0

Description:

Apply a force to each atom in a group to drag it towards the point (x,y,z). The magnitude of the force is specified
by fmag. If an atom is closer than a distance delta to the point, then the force is not applied.

Any of the x,y,z values can be specified as NULL which means do not include that dimension in the distance
calculation or force application.

This command can be used to steer one or more atoms to a new location in the simulation.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to this
fix.

This fix computes a 3−vector of forces, which can be accessed by various output commands. This is the total
force on the group of atoms by the drag force. The vector values calculated by this fix are "extensive", meaning
they scale with the number of atoms in the simulation.

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions: none

Related commands:

fix spring, fix spring/self, fix spring/rg, fix smd

Default: none

336

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix dt/reset command

Syntax:

fix ID group−ID dt/reset N Tmin Tmax Xmax keyword values ...

ID, group−ID are documented in fix command•
dt/reset = style name of this fix command•
N = recompute dt every N timesteps•
Tmin = minimum dt allowed (can be NULL) (time units)•
Tmax = maximum dt allowed (can be NULL) (time units)•
Xmax = maximum distance for an atom to move in one timestep (distance units)•
zero or more keyword/value pairs may be appended•
keyword = units•

units value = lattice or box
 lattice = Xmax is defined in lattice units
 box = Xmax is defined in simulation box units

Examples:

fix 5 all dt/reset 10 1.0e−5 0.01 0.1
fix 5 all dt/reset 10 0.01 2.0 0.2 units box

Description:

Reset the timestep size every N steps during a run, so that no atom moves further than Xmax, based on current
atom velocities and forces. This can be useful when starting from a configuration with overlapping atoms, where
forces will be large. Or it can be useful when running an impact simulation where one or more high−energy atoms
collide with a solid, causing a damage cascade.

This fix overrides the timestep size setting made by the timestep command. The new timestep size dt is computed
in the following manner.

For each atom, the timestep is computed that would cause it to displace Xmax on the next integration step, as a
function of its current velocity and force. Since performing this calculation exactly would require the solution to a
quartic equation, a cheaper estimate is generated. The estimate is conservative in that the atom's displacement is
guaranteed not to exceed Xmax, though it may be smaller.

Given this putative timestep for each atom, the minimum timestep value across all atoms is computed. Then the
Tmin and Tmax bounds are applied, if specified. If one (or both) is specified as NULL, it is not applied.

When the run style is respa, this fix resets the outer loop (largest) timestep, which is the same timestep that the
timestep command sets.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to this
fix.

337

http://lammps.sandia.gov

The current timestep size is stored as a scalar quantity by this fix. The cumulative simulation time (in time units)
is stored as the first element of a vector. Both these quantities can be accessed by various output commands. The
scalar and vector values calculated by this fix are "intensive", meaning they are independent of the number of
atoms in the simulation.

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions:

The cumulative time is zeroed when the fix is created and continuously accrues thereafter. Using the
reset_timestep command while this fix is defined will mess up the time accumulation.

Related commands:

timestep

Default:

The option defaults is units = lattice.

338

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix efield command

Syntax:

fix ID group−ID efield ex ey ez

ID, group−ID are documented in fix command•
efield = style name of this fix command•
ex,ey,ez = E−field component values (electric field units)•

Examples:

fix kick external−field efield 1.0 0.0 0.0

Description:

Add a force F = qE to each charged atom in the group due to an external electric field being applied to the system.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to this
fix. No global scalar or vector or per−atom quantities are stored by this fix for access by various output
commands. No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not
invoked during energy minimization.

Restrictions: none

Related commands:

fix addforce

Default: none

339

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix enforce2d command

Syntax:

fix ID group−ID enforce2d

ID, group−ID are documented in fix command•
enforce2d = style name of this fix command•

Examples:

fix 5 all enforce2d

Description:

Zero out the z−dimension velocity and force on each atom in the group. This is useful when running a 2d
simulation to insure that atoms do not move from their initial z coordinate.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to this
fix. No global scalar or vector or per−atom quantities are stored by this fix for access by various output
commands. No parameter of this fix can be used with the start/stop keywords of the run command.

The forces due to this fix are imposed during an energy minimization, invoked by the minimize command.

Restrictions: none

Related commands: none

Default: none

340

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix evaporate command

Syntax:

fix ID group−ID evaporate N M region−ID seed

ID, group−ID are documented in fix command•
evaporate = style name of this fix command•
N = delete atoms every this many timesteps•
M = number of atoms to delete each time•
region−ID = ID of region within which to perform deletions•
seed = random number seed to use for choosing atoms to delete•

Examples:

fix 1 solvent evaporate 1000 10 surface 49892

Description:

Remove M atoms from the simulation every N steps. This can be used, for example, to model evaporation of
solvent particles (i.e. drying) of a system. Every N steps, the number of atoms in the fix group and within the
specifed region are counted. M of these are chosen at random and deleted. If there are less than M eligible
particles, then all of them are deleted.

Note that you cannot currently delete solvent molecules with this command, only individual atoms. If you delete
only one atom in a molecule, an error will result.

Note that neighbor lists are re−built on timesteps that atoms are removed. Thus you should not remove atoms too
frequently or you will incur overhead due to the cost of building neighbor lists.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to this
fix.

The cummulative number of deleted atoms is stored as a scalar quantity by this fix. This quantity can be accessed
by various output commands. The scalar value is "intensive", meaning it is independent of the number of atoms in
the simulation.

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions: none

Related commands:

fix deposit

Default: none

341

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix freeze command

Syntax:

fix ID group−ID freeze

ID, group−ID are documented in fix command•
freeze = style name of this fix command•

Examples:

fix 2 bottom freeze

Description:

Zero out the force and torque on a granular particle. This is useful for preventing certain particles from moving in
a simulation. The granular pair styles also detect if this fix has been defined and compute interactions between
frozen and non−frozen particles appropriately, as if the frozen particle has infinite mass.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to this
fix.

This fix computes a 3−vector of forces, which can be accessed by various output commands. This is the total
force on the group of atoms before the forces on individual atoms are changed by the fix. The vector values
calculated by this fix are "extensive", meaning they scale with the number of atoms in the simulation.

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions:

This fix is part of the "granular" package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info.

There can only be a single freeze fix defined. This is because other the granular pair styles treat frozen particles
differently and need to be able to reference a single group to which this fix is applied.

Related commands: none

atom_style granular

Default: none

342

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix gravity command

Syntax:

fix ID group gravity style magnitude args

ID, group are documented in fix command•
gravity = style name of this fix command•
magnitude = size of acceleration (force/mass units)•
style = chute or spherical or gradient or vector

chute args = angle
 angle = angle in +x away from −z or −y axis in 3d/2d (in degrees)

spherical args = phi theta
 phi = azimuthal angle from +x axis (in degrees)
 theta = angle from +z or +y axis in 3d/2d (in degrees)

gradient args = phi theta phi_grad theta_grad
 phi = azimuthal angle from +x axis (in degrees)
 theta = angle from +z or +y axis in 3d/2d (in degrees)
 phi_grad = rate of change of angle phi (full rotations per time unit)
 theta_grad = rate of change of angle theta (full rotations per time unit)

vector args = x y z
 x y z = vector direction to apply the acceleration

•

Examples:

fix 1 all gravity 1.0 chute 24.0
fix 1 all gravity 1.0 spherical 0.0 −180.0
fix 1 all gravity 1.0 gradient 0.0 −180.0 0.0 0.1
fix 1 all gravity 100.0 vector 1 1 0

Description:

Impose an additional acceleration on each particle in the group. This fix is typically used with granular systems to
include a "gravity" term acting on the macroscopic particles. More generally, it can represent any kind of driving
field, e.g. a pressure gradient inducing a Poiseuille flow in a fluid. Note that this fix operates differently than the
fix addforce command. The addforce fix adds the same force to each atom, independent of its mass. This
command imparts the same acceleration to each atom (force/mass).

The magnitude of the acceleration is specified in force/mass units. For granular systems (LJ units) this is typically
1.0. See the units command for details.

Style chute is typically used for simulations of chute flow where the specified angle is the chute angle, with flow
occurring in the +x direction. For 3d systems, the tilt is away from the z axis; for 2d systems, the tilt is away from
the y axis.

Style spherical allows an arbitrary 3d direction to be specified for the acceleration vector. Phi and theta are
defined in the usual spherical coordinates. Thus for acceleration acting in the −z direction, theta would be 180.0
(or −180.0). Theta = 90.0 and phi = −90.0 would mean acceleration acts in the −y direction. For 2d systems, phi is
ignored and theta is an angle in the xy plane where theta = 0.0 is the y−axis.

Style gradient is the same as style spherical except that the direction of the acceleration vector is time dependent.
The units of the gradient arguments are in full rotations per time unit. E.g. a timestep of 0.001 and a gradient of

343

http://lammps.sandia.gov

0.1 means the acceleration vector would rotate thru 360 degrees every 10,000 timesteps. For the time−dependent
case, the initial direction of the acceleration vector is set to phi,theta when the fix is specified and evolves
thereafter. For 2d systems, phi and phi_grad are ignored.

Style vector imposes an acceleration in the vector direction given by (x,y,z). For 2d systems, the z component is
ignored.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to this
fix. No global scalar or vector or per−atom quantities are stored by this fix for access by various output
commands. No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not
invoked during energy minimization.

Restrictions: none

Related commands:

atom_style granular, fix addforce

Default: none

344

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix heat command

Syntax:

fix ID group−ID heat N eflux

ID, group−ID are documented in fix command•
heat = style name of this fix command•
N = add/subtract heat every this many timesteps•
eflux = rate of heat addition or subtraction (energy/time units)•

Examples:

fix 3 qin heat 1 1.0
fix 4 qout heat 1 −1.0

Description:

Add non−translational kinetic energy (heat) to a group of atoms such that their aggregate momentum is
conserved. Two of these fixes can be used to establish a temperature gradient across a simulation domain by
adding heat to one group of atoms (hot reservoir) and subtracting heat from another (cold reservoir). E.g. a
simulation sampling from the McDLT ensemble. Note that the fix is applied to a group of atoms, not a geometric
region, so that the same set of atoms is affected wherever they may move to.

Heat addition/subtraction is performed every N timesteps. The eflux parameter determines the change in aggregate
energy of the entire group of atoms per unit time, e.g. in eV/psec for metal units. Thus it is an "extensive"
quantity, meaning its magnitude should be scaled with the number of atoms in the group. Since eflux is
independent of N or the timestep, a larger value of N will add/subtract a larger amount of energy each time the fix
is invoked. If heat is subtracted from the system too aggressively so that the group's kinetic energy would go to
zero, LAMMPS halts with an error message.

Fix heat is different from a thermostat such as fix nvt or fix temp/rescale in that energy is added/subtracted
continually. Thus if there isn't another mechanism in place to counterbalance this effect, the entire system will
heat or cool continuously. You can use multiple heat fixes so that the net energy change is 0.0 or use fix viscous
to drain energy from the system.

This fix does not change the coordinates of its atoms; it only scales their velocities. Thus you must still use an
integration fix (e.g. fix nve) on the affected atoms. This fix should not normally be used on atoms that have their
temperature controlled by another fix − e.g. fix nvt or fix langevin fix.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to this
fix.

This fix computes a scalar which can be accessed by various output commands. This scalar is the most recent
value by which velocites were scaled. The scalar value calculated by this fix is "intensive", meaning it is
independent of the number of atoms in the simulation.

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked

345

http://lammps.sandia.gov

during energy minimization.

Restrictions: none

Related commands:

compute temp, compute temp/region

Default: none

346

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix imd command

Syntax:

fix ID group−ID imd trate port keyword values ...

ID, group−ID are documented in fix command•
imd = style name of this fix command•
port = port number on which the fix listens for an IMD client•
keyword = unwrap or fscale or trate

unwrap arg = on or off
 off = coordinates are wrapped back into the principal unit cell (default)
 on = "unwrapped" coordinates using the image flags used

fscale arg = factor
 factor = floating point number to scale IMD forces (default: 1.0)

trate arg = transmission rate of coordinate data sets (default: 1)
nowait arg = on or off

 off = LAMMPS waits to be connected to an IMD client before continuing (default)
 on = LAMMPS listens for an IMD client, but continues with the run

•

Examples:

fix vmd all imd 5678
fix comm all imd 8888 trate 5 unwrap on fscale 10.0

Description:

This fix implements the "Interactive MD" (IMD) protocol which allows to connect an IMD client, for example the
VMD visualization program, to a running LAMMPS simulation and monitor the progress of the simulation and
interactively apply forces to selected atoms.

The source code for this fix includes code developed by the Theoretical and Computational Biophysics Group in
the Beckman Institute for Advanced Science and Technology at the University of Illinois at Urbana−Champaign.
We thank them for providing a software interface that allows codes like LAMMPS to hook to VMD.

Upon initialization of the fix, it will open a communication port on the node with MPI task 0 and wait for an
incoming connection. As soon as an IMD client is connected, the simulation will continue and the fix will send
the current coordinates of the fix's group to the IMD client at every trate MD step. When using r−RESPA, trate
applies to the steps of the outmost RESPA level. During a run with an active IMD connection also the IMD client
can request to apply forces to selected atoms of the fix group.

The port number selected must be an available network port number. On many machines, port numbers < 1024
are reserved for accounts with system manager privilege and specific applications. If multiple imd fixes would be
active at the same time, each needs to use a different port number.

The nowait keyword controls the behavior of the fix when no IMD client is connected. With the default setting of
off, LAMMPS will wait until a connection is made before continuing with the execution. Setting nowait to on will
have the LAMMPS code be ready to connect to a client, but continue with the simulation. This can for example
be used to monitor the progress of an ongoing calculation without the need to be permanently connected or having
to download a trajectory file.

347

http://lammps.sandia.gov
http://www.ks.uiuc.edu/Research/vmd
http://www.ks.uiuc.edu/Research/vmd

The trate keyword allows to select how often the coordinate data is sent to the IMD client. It can also be changed
on request of the IMD client through an IMD protocol message. The unwrap keyword allows to send
"unwrapped" coordinates to the IMD client that undo the wrapping back of coordinates into the principle unit cell,
as done by default in LAMMPS. The fscale keyword allows to apply a scaling factor to forces transmitted by the
IMD client. The IMD protocols stipulates that forces are transferred in kcal/mol/angstrom under the assumption
that coordinates are given in angstrom. For LAMMPS runs with different units or as a measure to tweak the
forces generated by the manipulation of the IMD client, this option allows to make adjustments.

To connect VMD to a listening LAMMPS simulation on the same machine with fix imd enabled, one needs to
start VMD and load a coordinate or topology file that matches the fix group. When the VMD command prompts
appears, one types the command line:

imd connect localhost 5678

This assumes that fix imd was started with 5678 as a port number for the IMD protocol.

The steps to do interactive manipulation of a running simulation in VMD are the following:

In the Mouse menu of the VMD Main window, select "Mouse −> Force −> Atom". You may alternately select
"Residue", or "Fragment" to apply forces to whole residues or fragments. Your mouse can now be used to apply
forces to your simulation. Click on an atom, residue, or fragment and drag to apply a force. Click quickly without
moving the mouse to turn the force off. You can also use a variety of 3D position trackers to apply forces to your
simulation. Trackers with force−feedback such as the Sensable PHANTOM allow you to feel the forces you are
applying to your molecules, as if they were real objects. See the VMD IMD Homepage for more details.

If IMD control messages are received, a line of text describing the message and its effect will be printed to the
LAMMPS output screen, if screen output is active.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to this
fix. No global scalar or vector or per−atom quantities are stored by this fix for access by various output
commands. No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not
invoked during energy minimization.

Restrictions:

This fix is part of the "user−imd" package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info.

When used in combination with VMD, a topology or coordinate file has to be loaded, which matches (in number
and ordering of atoms) the group the fix is applied to. The fix internally sorts atom IDs by ascending integer
value; in VMD (and thus the IMD protocol) those will be assigned 0−based consecutive index numbers.

When using multiple active IMD connections at the same time, each needs to use a different port number.

Related commands: none

Default: none

348

http://www.ks.uiuc.edu/Research/vmd/imd/

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix indent command

Syntax:

fix ID group−ID indent k keyword values ...

ID, group−ID are documented in fix command•
indent = style name of this fix command•
k = force constant for indenter surface (force/distance^2 units)•
one or more keyword/value pairs may be appended•
keyword = sphere or cylinder or plane or vel or rstart or side or units

sphere args = x y z R
 x,y,z = initial position of center of indenter (distance units)
 R = sphere radius of indenter (distance units)

cylinder args = dim c1 c2 R
 dim = x or y or z = axis of cylinder
 c1,c2 = coords of cylinder axis in other 2 dimensions (distance units)
 R = cylinder radius of indenter (distance units)

plane args = dim pos side
 dim = x or y or z = plane perpendicular to this dimension
 pos = position of plane in dimension x, y, or z (distance units)
 side = lo or hi

vel args = vx vy vz
 vx,vy,vz = velocity of center of indenter (velocity units)

rstart value = R0
 R0 = sphere or cylinder radius at start of run (distance units)
 R is value at end of run, so indenter expands/contracts over time

side value = in or out
in = the indenter acts on particles inside the sphere or cylinder
out = the indenter acts on particles outside the sphere or cylinder

units value = lattice or box
 lattice = the geometry is defined in lattice units
 box = the geometry is defined in simulation box units

•

Examples:

fix 1 all indent 10.0 sphere 0.0 0.0 15.0 3.0 vel 0.0 0.0 −1.0
fix 2 flow indent 10.0 cylinder z 0.0 0.0 10.0 units box

Description:

Insert an indenter within a simulation box. The indenter repels all atoms that touch it, so it can be used to push
into a material or as an obstacle in a flow. Or it can be used as a constraining wall around a simulation; see the
discussion of the side keyword below.

The indenter can either be spherical or cylindrical or planar. You must set one of those 3 keywords.

A spherical indenter exerts a force of magnitude

F(r) = − k (r − R)^2

on each atom where k is the specified force constant, r is the distance from the atom to the center of the indenter,
and R is the radius of the indenter. The force is repulsive and F(r) = 0 for r > R. The calculation of distance to the
indenter center accounts for periodic boundaries, which means the indenter can effectively straddle one or more

349

http://lammps.sandia.gov

periodic boundaries.

A cylindrical indenter exerts the same force, except that r is the distance from the atom to the center axis of the
cylinder. The cylinder extends infinitely along its axis. The calculation of distance to the indenter axis accounts
for periodic boundaries, which means the indenter can effectively straddle one or more periodic boundaries.

A planar indenter is really an axis−aligned infinite−extent wall exerting the same force on atoms in the system,
where R is the position of the plane and r−R is the distance from the plane. If the side parameter of the plane is
specified as lo then it will indent from the lo end of the simulation box, meaning that atoms with a coordinate less
than the plane's current position will be pushed towards the hi end of the box and atoms with a coordinate higher
than the plane's current position will feel no force. Vice versa if side is specified as hi.

If the vel keyword is specified, the center (or axis or position) of the spherical (or cylindrical or planar) indenter
will move during the simulation, based on its initial position (x,y,z), the specified (vx,vy,vz), and the time elapsed
since the beginning of the simulation. For periodic systems and spherical or cylindrical indenters, the new
position of the center or axis is wrapped back into the periodic box as needed. See the note below about making
the indenter move continuously across multiple runs.

If the rstart keyword is specified, then the radius of the indenter is a time−dependent quantity. This only applies
to spherical or cylindrical indenters. R0 is the value assigned at the start of the run; R is the value at the end. At
intermediate times, the radius is linearly interpolated between these two values. This option can be used, for
example, to grow/shrink a void within the simulation box. See the note below about making the radius change
continuously across multiple runs.

If the side keyword is specified as out, which is the default, then particles outside the indenter are pushded away
from its outer surface, as described above. This only applies to spherical or cylindrical indenters. If the side
keyword is specified as in, the action of the indenter is reversed. Particles inside the indenter are pushed away
from its inner surface. In other words, the indenter is now a containing wall that traps the particles inside it. If the
radius shrinks over time, it will squeeze the particles.

The units keyword determines the meaning of the distance units used to define the indenter. A box value selects
standard distance units as defined by the units command, e.g. Angstroms for units = real or metal. A lattice value
means the distance units are in lattice spacings. The lattice command must have been previously used to define
the lattice spacing. Note that the units choice affects not only the indenter's physical geometry, but also its
velocity and force constant since they are defined in terms of distance as well.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files.

The fix_modify energy option is supported by this fix to add the energy of interaction between atoms and the
indenter to the system's potential energy as part of thermodynamic output. The energy of each particle interacting
with the indenter is K/3 (r − R)^3.

This fix computes a scalar energy and a 3−vector of forces (on the indenter), which can be accessed by various
output commands. The scalar and vector values calculated by this fix are "extensive", meaning they scale with the
number of atoms in the simulation.

This fix can adjust the indenter position and radius over multiple runs, using the start and stop keywords of the
run command. See the run command for details of how to do this. If you do not do this, the indenter position and
readius will be reset to their specified initial values at the beginning of each run.

350

The forces due to this fix are imposed during an energy minimization, invoked by the minimize command. The
rstart keyword does not change the indenter radius during an energy minimization; the indenter always has a
radius of its final value R in that case.

IMPORTANT NOTE: If you want the atom/indenter interaction energy to be included in the total potential
energy of the system (the quantity being minimized), you must enable the fix_modify energy option for this fix.

Restrictions: none

Related commands: none

Default:

The option defaults are vel = 0,0,0, side = out, and units = lattice.

351

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix langevin command

Syntax:

fix ID group−ID langevin Tstart Tstop damp seed keyword values ...

ID, group−ID are documented in fix command•
langevin = style name of this fix command•
Tstart,Tstop = desired temperature at start/end of run (temperature units)•
damp = damping parameter (time units)•
seed = random number seed to use for white noise (positive integer)•
zero or more keyword/value pairs may be appended

keyword = scale or tally
scale values = type ratio

 type = atom type (1−N)
 ratio = factor by which to scale the damping coefficient

tally values = no or yes
no = do not tally the energy added/subtracted to atoms
yes = do tally the energy added/subtracted to atoms

•

Examples:

fix 3 boundary langevin 1.0 1.0 1000.0 699483
fix 1 all langevin 1.0 1.1 100.0 48279 scale 3 1.5

Description:

Apply a Langevin thermostat to a group of atoms which models an interaction with a background implicit solvent.
Used with fix nve, this command performs Brownian dynamics (BD), since the total force on each atom will have
the form:

F = Fc + Ff + Fr
Ff = − (m / damp) v
Fr is proportional to sqrt(Kb T m / (dt damp))

Fc is the conservative force computed via the usual inter−particle interactions (pair_style, bond_style, etc).

The Ff and Fr terms are added by this fix.

Ff is a frictional drag or viscous damping term proportional to the particle's velocity. The proportionality constant
for each atom is computed as m/damp, where m is the mass of the particle and damp is the damping factor
specified by the user.

Fr is a force due to solvent atoms at a temperature T randomly bumping into the particle. As derived from the
fluctuation/dissipation theorem, its magnitude as shown above is proportional to sqrt(Kb T m / dt damp), where
Kb is the Boltzmann constant, T is the desired temperature, m is the mass of the particle, dt is the timestep size,
and damp is the damping factor. Random numbers are used to randomize the direction and magnitude of this force
as described in (Dunweg), where a uniform random number is used (instead of a Gaussian random number) for
speed.

Note that the thermostat effect of this fix is applied to only the translational degrees of freedom for the particles,

352

http://lammps.sandia.gov

which is an important consideration if extended spherical or aspherical particles which have rotational degrees of
freedom are being thermostatted with this fix. The translational degrees of freedom can also have a bias velocity
removed from them before thermostatting takes place; see the description below.

IMPORTANT NOTE: Unlike the fix nvt command which performs Nose/Hoover thermostatting AND time
integration, this fix does NOT perform time integration. It only modifies forces to effect thermostatting. Thus you
must use a separate time integration fix, like fix nve to actually update the velocities and positions of atoms using
the modified forces. Likewise, this fix should not normally be used on atoms that also have their temperature
controlled by another fix − e.g. by fix nvt or fix temp/rescale commands.

See this howto section of the manual for a discussion of different ways to compute temperature and perform
thermostatting.

The desired temperature at each timestep is a ramped value during the run from Tstart to Tstop.

Like other fixes that perform thermostatting, this fix can be used with compute commands that remove a "bias"
from the atom velocities. E.g. removing the center−of−mass velocity from a group of atoms or removing the
x−component of velocity from the calculation. This is not done by default, but only if the fix_modify command is
used to assign a temperature compute to this fix that includes such a bias term. See the doc pages for individual
compute commands to determine which ones include a bias. In this case, the thermostat works in the following
manner: bias is removed from each atom, thermostatting is performed on the remaining thermal degrees of
freedom, and the bias is added back in.

The damp parameter is specified in time units and determines how rapidly the temperature is relaxed. For
example, a value of 100.0 means to relax the temperature in a timespan of (roughly) 100 time units (tau or fmsec
or psec − see the units command). The damp factor can be thought of as inversely related to the viscosity of the
solvent. I.e. a small relaxation time implies a hi−viscosity solvent and vice versa. See the discussion about gamma
and viscosity in the documentation for the fix viscous command for more details.

The random # seed must be a positive integer. A Marsaglia random number generator is used. Each processor
uses the input seed to generate its own unique seed and its own stream of random numbers. Thus the dynamics of
the system will not be identical on two runs on different numbers of processors.

The keyword scale allows the damp factor to be scaled up or down by the specified factor for atoms of that type.
This can be useful when different atom types have different sizes or masses. It can be used multiple times to
adjust damp for several atom types. Note that specifying a ratio of 2 increases the relaxation time which is
equivalent to the solvent's viscosity acting on particles with 1/2 the diameter. This is the opposite effect of scale
factors used by the fix viscous command, since the damp factor in fix langevin is inversely related to the gamma
factor in fix viscous. Also note that the damping factor in fix langevin includes the particle mass in Ff, unlike fix
viscous. Thus the mass and size of different atom types should be accounted for in the choice of ratio values.

The keyword tally enables the calculation of the cummulative energy added/subtracted to the atoms as they are
thermostatted. Effectively it is the energy exchanged between the infinite thermal reservoir and the particles. As
described below, this energy can then be printed out or added to the potential energy of the system to monitor
energy conservation.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. Because the state of the random number generator is
not saved in restart files, this means you cannot do "exact" restarts with this fix, where the simulation continues
on the same as if no restart had taken place. However, in a statistical sense, a restarted simulation should produce
the same behavior.

353

The fix_modify temp option is supported by this fix. You can use it to assign a temperature compute you have
defined to this fix which will be used in its thermostatting procedure, as described above. For consistency, the
group used by this fix and by the compute should be the same.

The fix_modify energy option is supported by this fix to add the energy change induced by Langevin
thermostatting to the system's potential energy as part of thermodynamic output. Note that use of this option
requires setting the tally keyword to yes.

The cummulative energy change due to this fix is stored as a scalar quantity, which can be accessed by various
output commands. The scalar value calculated by this fix is "extensive", meaning it scales with the number of
atoms in the simulation. Note that use of this option requires setting the tally keyword to yes.

This fix can ramp its target temperature over multiple runs, using the start and stop keywords of the run
command. See the run command for details of how to do this.

This fix is not invoked during energy minimization.

Restrictions: none

Related commands:

fix nvt, fix temp/rescale, fix viscous, fix nvt

Default:

The option defaults are scale = 1.0 for all types and tally = no.

(Dunweg) Dunweg and Paul, Int J of Modern Physics C, 2, 817−27 (1991).

354

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix lineforce command

Syntax:

fix ID group−ID lineforce x y z

ID, group−ID are documented in fix command•
lineforce = style name of this fix command•
x y z = direction of line as a 3−vector•

Examples:

fix hold boundary lineforce 0.0 1.0 1.0

Description:

Adjust the forces on each atom in the group so that only the component of force along the linear direction
specified by the vector (x,y,z) remains. This is done by subtracting out components of force in the plane
perpendicular to the line.

If the initial velocity of the atom is 0.0 (or along the line), then it should continue to move along the line
thereafter.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to this
fix. No global scalar or vector or per−atom quantities are stored by this fix for access by various output
commands. No parameter of this fix can be used with the start/stop keywords of the run command.

The forces due to this fix are imposed during an energy minimization, invoked by the minimize command.

Restrictions: none

Related commands:

fix planeforce

Default: none

355

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix_modify command

Syntax:

fix_modify fix−ID keyword value ...

fix−ID = ID of the fix to modify•
one or more keyword/value pairs may be appended•
keyword = temp or press or energy

temp value = compute ID that calculates a temperature
press value = compute ID that calculates a pressure
energy value = yes or no

•

Examples:

fix_modify 3 temp myTemp press myPress
fix_modify 1 energy yes

Description:

Modify one or more parameters of a previously defined fix. Only specific fix styles support specific parameters.
See the doc pages for individual fix commands for info on which ones support which fix_modify parameters.

The temp keyword is used to determine how a fix computes temperature. The specified compute ID must have
been previously defined by the user via the compute command and it must be a style of compute that calculates a
temperature. All fixes that compute temperatures define their own compute by default, as described in their
documentation. Thus this option allows the user to override the default method for computing T.

The press keyword is used to determine how a fix computes pressure. The specified compute ID must have been
previously defined by the user via the compute command and it must be a style of compute that calculates a
pressure. All fixes that compute pressures define their own compute by default, as described in their
documentation. Thus this option allows the user to override the default method for computing P.

For fixes that calculate a contribution to the potential energy of the system, the energy keyword will include that
contribution in thermodynamic output of potential energy. See the thermo_style command for info on how
potential energy is output. The contribution by itself can be printed by using the keyword f_ID in the thermo_style
custom command, where ID is the fix−ID of the appropriate fix. Note that you must use this setting for a fix if
you are using it when performing an energy minimization and if you want the energy and forces it produces to be
part of the optimization criteria.

Restrictions: none

Related commands:

fix, compute temp, compute pressure, thermo_style

Default:

The option defaults are temp = ID defined by fix, press = ID defined by fix, energy = no.

356

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix momentum command

Syntax:

fix ID group−ID momentum N keyword values ...

ID, group−ID are documented in fix command•
momentum = style name of this fix command•
N = adjust the momentum every this many timesteps one or more keyword/value pairs may be appended•
keyword = linear or angular

linear values = xflag yflag zflag
 xflag,yflag,zflag = 0/1 to exclude/include each dimension

angular values = none

•

Examples:

fix 1 all momentum 1 linear 1 1 0
fix 1 all momentum 100 linear 1 1 1 angular

Description:

Zero the linear and/or angular momentum of the group of atoms every N timesteps by adjusting the velocities of
the atoms. One (or both) of the linear or angular keywords must be specified.

If the linear keyword is used, the linear momentum is zeroed by subtracting the center−of−mass velocity of the
group from each atom. This does not change the relative velocity of any pair of atoms. One or more dimensions
can be excluded from this operation by setting the corresponding flag to 0.

If the angular keyword is used, the angular momentum is zeroed by subtracting a rotational component from each
atom.

This command can be used to insure the entire collection of atoms (or a subset of them) does not drift or rotate
during the simulation due to random perturbations (e.g. fix langevin thermostatting).

Note that the velocity command can be used to create initial velocities with zero aggregate linear and/or angular
momentum.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to this
fix. No global scalar or vector or per−atom quantities are stored by this fix for access by various output
commands. No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not
invoked during energy minimization.

Restrictions: none

Related commands:

fix recenter, velocity

357

http://lammps.sandia.gov

Default: none

358

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix move command

Syntax:

fix ID group−ID move style args keyword values ...

ID, group−ID are documented in fix command•
move = style name of this fix command•
style = linear or wiggle or rotate or variable

linear args = Vx Vy Vz
 Vx,Vy,Vz = components of velocity vector (velocity units), any component can be specified as NULL

wiggle args = Ax Ay Az period
 Ax,Ay,Az = components of amplitude vector (distance units), any component can be specified as NULL
 period = period of oscillation (time units)

rotate args = Px Py Pz Rx Ry Rz period
 Px,Py,Pz = origin point of axis of rotation (distance units)
 Rx,Ry,Rz = axis of rotation vector
 period = period of rotation (time units)

variable args = v_dx v_dy v_dz v_vx v_vy v_vz
 v_dx,v_dy,v_dz = 3 variable names that calculate x,y,z displacement as function of time, any component can be specified as NULL
 v_vx,v_vy,v_vz = 3 variable names that calculate x,y,z velocity as function of time, any component can be specified as NULL

•

zero or more keyword/value pairs may be appended•
keyword = units

units value = box or lattice

•

Examples:

fix 1 boundary move wiggle 3.0 0.0 0.0 1.0 units box
fix 2 boundary move rotate 0.0 0.0 0.0 0.0 0.0 1.0 5.0
fix 2 boundary move variable v_myx v_myy NULL v_VX v_VY NULL

Description:

Perform updates of position and velocity for atoms in the group each timestep using the specified settings or
formulas, without regard to forces on the atoms. This can be useful for boundary or other atoms, whose movement
can influence nearby atoms.

IMPORTANT NOTE: The atoms affected by this fix should not normally be time integrated by other fixes (e.g.
fix nve, fix nvt), since that will change their positions and velocities twice.

IMPORTANT NOTE: As atoms move due to this fix, they will pass thru periodic boundaries and be remapped to
the other side of the simulation box, just as they would during normal time integration (e.g. via the fix nve
command). It is up to you to decide whether periodic boundaries are appropriate with the kind of atom motion
you are prescribing with this fix.

IMPORTANT NOTE: As dicsussed below, atoms are moved relative to their initial position at the time the fix is
specified. These initial coordinates are stored by the fix in "unwrapped" form, by using the image flags associated
with each atom. See the dump custom command for a discussion of "unwrapped" coordinates. See the Atoms
section of the read_data command for a discussion of image flags and how they are set for each atom. You can
reset the image flags (e.g. to 0) before invoking this fix by using the set image command.

359

http://lammps.sandia.gov

The linear style moves atoms at a constant velocity, so that their position X = (x,y,z) as a function of time is given
in vector notation as

X(t) = X0 + V * delta

where X0 = (x0,y0,z0) is their position at the time the fix is specified, V is the specified velocity vector with
components (Vx,Vy,Vz), and delta is the time elapsed since the fix was specified. This style also sets the velocity
of each atom to V = (Vx,Vy,Vz). If any of the velocity components is specified as NULL, then the position and
velocity of that component is time integrated the same as the fix nve command would perform, using the
corresponding force component on the atom.

The wiggle style moves atoms in an oscillatory fashion, so that their position X = (x,y,z) as a function of time is
given in vector notation as

X(t) = X0 + A sin(omega*delta)

where X0 = (x0,y0,z0) is their position at the time the fix is specified, A is the specified amplitude vector with
components (Ax,Ay,Az), omega is 2 PI / period, and delta is the time elapsed since the fix was specified. This
style also sets the velocity of each atom to the time derivative of this expression. If any of the amplitude
components is specified as NULL, then the position and velocity of that component is time integrated the same as
the fix nve command would perform, using the corresponding force component on the atom.

The rotate style rotates atoms around a rotation axis R = (Rx,Ry,Rz) that goes thru a point P = (Px,Py,Pz). The
period of the rotation is also specified. This style also sets the velocity of each atom to (omega cross Rperp)
where omega is its angular velocity around the rotation axis and Rperp is a perpendicular vector from the rotation
axis to the atom. If the defined atom_style assigns an angular velocity to each atom, then each atom's angular
velocity is also set to omega. Note that the direction of rotation for the atoms around the rotation axis is consistent
with the right−hand rule: if your right−hand's thumb points along R, then your fingers wrap around the axis in the
direction of rotation.

The variable style allows the position and velocity components of each atom to be set by formulas specified via
the variable command. Each of the 6 variables is specified as an argument to the fix as v_name, where name is the
name of the variable that appears elsewhere in the input script.

Each variable must be of either the equal or atom style. Equal−style variables compute a single numeric quantity,
that can be a function of the timestep as well as of other simulation values. Atom−style variables compute a
numeric quantity for each atom, that can be a function per−atom quantities, such as the atom's position, as well as
of the timestep and other simulation values. Note that this fix stores the original coordinates of each atom (see
note below) so that per−atom quantity can be used in an atom−style variable formula. See the variable command
for details.

The first 3 variables (v_dx,v_dy,v_dz) specified for the variable style are used to calculate a displacement from
the atom's original position at the time the fix was specified. The second 3 variables (v_vx,v_vy,v_vz) specified
are used to compute a velocity for each atom.

Any of the 6 variables can be specified as NULL. If both the displacement and velocity variables for a particular
x,y,z component are specified as NULL, then the position and velocity of that component is time integrated the
same as the fix nve command would perform, using the corresponding force component on the atom. If only the
velocity variable for a component is specified as NULL, then the displacement variable will be used to set the
position of the atom, and its velocity component will not be changed. If only the displacement variable for a
component is specified as NULL, then the velocity variable will be used to set the velocity of the atom, and the
position of the atom will be time integrated using that velocity.

360

The units keyword determines the meaning of the distance units used to define the linear velocity and wiggle
amplitude and rotate origin. This setting is ignored for the variable style. A box value selects standard units as
defined by the units command, e.g. velocity in Angstroms/fmsec and amplitude and position in Angstroms for
units = real. A lattice value means the velocity units are in lattice spacings per time and the amplitude and
position are in lattice spacings. The lattice command must have been previously used to define the lattice spacing.
Each of these 3 quantities may be dependent on the x,y,z dimension, since the lattice spacings can be different in
x,y,z.

For rRESPA time integration, this fix adjusts the position and velocity of atoms on the outermost rRESPA level.

Restart, fix_modify, output, run start/stop, minimize info:

This fix writes the original coordinates of moving atoms to binary restart files, so that the motion can be
continuous in a restarted simulation. See the read_restart command for info on how to re−specify a fix in an input
script that reads a restart file, so that the operation of the fix continues in an uninterrupted fashion.

None of the fix_modify options are relevant to this fix.

This fix produces a per−atom array which can be accessed by various output commands. The number of columns
for each atom is 3, and the columns store the original unwrapped x,y,z coords of each atom. The per−atom values
be accessed on any timestep.

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions: none

Related commands:

fix nve

Default: none

The option default is units = lattice.

361

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix nph command

Syntax:

fix ID group−ID nph p−style args keyword value ...

ID, group−ID are documented in fix command•
nph = style name of this fix command•
p−style = xyz or xy or yz or xz or aniso

xyz args = Pstart Pstop Pdamp
 Pstart,Pstop = desired pressure at start/end of run (pressure units)
 Pdamp = pressure damping parameter (time units)

xy or yz or xz args = Px0 Px1 Py0 Py1 Pz0 Pz1 Pdamp
 Px0,Px1,Py0,Py1,Pz0,Pz1 = desired pressure in x,y,z at
 start/end (0/1) of run (pressure units)
 Pdamp = pressure damping parameter (time units)

aniso args = Px0 Px1 Py0 Py1 Pz0 Pz1 Pdamp
 Px0,Px1,Py0,Py1,Pz0,Pz1 = desired pressure in x,y,z at
 start/end (0/1) of run (pressure units)
 Pdamp = pressure damping parameter (time units)

•

zero or more keyword/value pairs may be appended•
keyword = drag or dilate

drag value = drag factor added to barostat (0.0 = no drag)
dilate value = all or partial

•

Examples:

fix 1 all nph xyz 0.0 0.0 1000.0
fix 2 all nph xz 5.0 5.0 NULL NULL 5.0 5.0 1000.0 drag 1.0
fix 2 all nph aniso 0.0 0.0 0.0 0.0 NULL NULL 1000.0

Description:

Perform constant NPH integration to update positions and velocities each timestep for atoms in the group using a
Nose/Hoover pressure barostat (Hoover), implemented as described in (Melchionna). P is pressure. This creates a
system trajectory consistent with the isobaric ensemble. Unlike fix npt, temperature will not be controlled if no
other fix is used. Temperature can be controlled independently by using a thermostatting fis such as fix langevin
or fix temp/rescale.

The atoms in the fix group are the only ones whose velocities and positions are updated by the velocity/position
update portion of the NPT integration.

Regardless of what atoms are in the fix group, a global pressure is computed for all atoms. Similarly, when the
size of the simulation box is changed, all atoms are re−scaled to new positions, unless the keyword dilate is
specified with a value of partial, in which case only the atoms in the fix group are re−scaled. The latter can be
useful for leaving the coordinates of atoms in a solid substrate unchanged and controlling the pressure of a
surrounding fluid.

IMPORTANT NOTE: Unlike the fix press/berendsen command which performs barostatting but NO time
integration, this fix performs barostatting AND time integration. Thus you should not use any other time
integration fix, such as fix nve or fix nvt on atoms to which this fix is applied. Use fix npt instead of this fix, if

362

http://lammps.sandia.gov

you want to control both temperature and pressure via Nose/Hoover.

See this howto section of the manual for a discussion of different ways to compute temperature and perform
thermostatting and barostatting.

The pressure can be controlled in one of several styles, as specified by the p−style argument. In each case, the
desired pressure at each timestep is a ramped value during the run from the starting value to the end value.

Style xyz means couple all dimensions together when pressure is computed (isotropic pressure), and
dilate/contract the dimensions together.

Styles xy or yz or xz means that the 2 specified dimensions are coupled together, both for pressure computation
and for dilation/contraction. The 3rd dimension dilates/contracts independently, using its pressure component as
the driving force. These styles cannot be used for a 2d simulation.

For style aniso, all dimensions dilate/contract independently using their individual pressure components as the
driving forces.

For any of the styles except xyz, any of the independent pressure components (e.g. z in xy, or any dimension in
aniso) can have their target pressures (both start and stop values) specified as NULL. This means that no pressure
control is applied to that dimension so that the box dimension remains unchanged. For a 2d simulation the z
pressure components must be specified as NULL when using style aniso.

For styles xy and yz and xz, the starting and stopping pressures must be the same for the two coupled dimensions
and cannot be specified as NULL.

In some cases (e.g. for solids) the pressure (volume) and/or temperature of the system can oscillate undesirably
when a Nose/Hoover barostat is applied. The optional drag keyword will damp these oscillations, although it
alters the Nose/Hoover equations. A value of 0.0 (no drag) leaves the Nose/Hoover formalism unchanged. A
non−zero value adds a drag term; the larger the value specified, the greater the damping effect. Performing a short
run and monitoring the pressure is the best way to determine if the drag term is working. Typically a value
between 0.2 to 2.0 is sufficient to damp oscillations after a few periods.

For all pressure styles, the simulation box stays rectangular in shape. Parinello−Rahman boundary condition for
tilted boxes (triclinic symmetry) are supported by other LAMMPS commands (see this section of the manual), but
not yet by this command.

For all styles, the Pdamp parameter determines the time scale on which pressure is relaxed. For example, a value
of 1000.0 means to relax the pressure in a timespan of (roughly) 1000 time units (tau or fmsec or psec − see the
units command).

This fix computes a temperature and pressure each timestep. To do this, the fix creates its own computes of style
"temp" and "pressure", as if these commands had been issued:

compute fix−ID_temp group−ID temp

compute fix−ID_press group−ID pressure fix−ID_temp

See the compute temp and compute pressure commands for details. Note that the IDs of the new computes are the
fix−ID + underscore + "temp" or fix_ID + underscore + "press", and the group for the new computes is the same
as the fix group.

363

Note that these are NOT the computes used by thermodynamic output (see the thermo_style command) with ID =
thermo_temp and thermo_press. This means you can change the attributes of this fix's temperature or pressure via
the compute_modify command or print this temperature or pressure during thermodynamic output via the
thermo_style custom command using the appropriate compute−ID. It also means that changing attributes of
thermo_temp or thermo_press will have no effect on this fix.

Restart, fix_modify, output, run start/stop, minimize info:

This fix writes the state of the Nose/Hoover barostat to binary restart files. See the read_restart command for info
on how to re−specify a fix in an input script that reads a restart file, so that the operation of the fix continues in an
uninterrupted fashion.

The fix_modify temp and press options are supported by this fix. You can use them to assign a compute you have
defined to this fix which will be used in its thermostatting or barostatting procedure. If you do this, note that the
kinetic energy derived from the compute temperature should be consistent with the virial term computed using all
atoms for the pressure. LAMMPS will warn you if you choose to compute temperature on a subset of atoms.

The fix_modify energy option is supported by this fix to add the energy change induced by Nose/Hoover
barostatting to the system's potential energy as part of thermodynamic output.

The cummulative energy change due to this fix is stored as a scalar quantity, which can be accessed by various
output commands. The scalar value calculated by this fix is "extensive", meaning it scales with the number of
atoms in the simulation.

This fix can ramp its target pressure over multiple runs, using the start and stop keywords of the run command.
See the run command for details of how to do this.

This fix is not invoked during energy minimization.

Restrictions:

Any dimension being adjusted by this fix must be periodic. A dimension whose target pressures are specified as
NULL can be non−periodic or periodic.

Related commands:

fix nve, fix npt, fix_modify

Default:

The keyword defaults are drag = 0.0 and dilate = all.

(Hoover) Hoover, Phys Rev A, 34, 2499 (1986).

(Melchionna) Melchionna, Ciccotti, Holian, Molecular Physics, 78, 533−44 (1993).

364

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix npt command

Syntax:

fix ID group−ID npt Tstart Tstop Tdamp p−style args keyword value ...

ID, group−ID are documented in fix command•
npt = style name of this fix command•
Tstart,Tstop = desired temperature at start/end of run•
Tdamp = temperature damping parameter (time units)•
p−style = xyz or xy or yz or xz or aniso

xyz args = Pstart Pstop Pdamp
 Pstart,Pstop = desired pressure at start/end of run (pressure units)
 Pdamp = pressure damping parameter (time units)

xy or yz or xz or aniso args = Px_start Px_stop Py_start Py_stop Pz_start Pz_stop Pdamp
 Px_start,Px_stop,... = desired pressure in x,y,z at start/end of run (pressure units)
 Pdamp = pressure damping parameter (time units)

•

zero or more keyword/value pairs may be appended•
keyword = drag or dilate

drag value = drag factor added to barostat/thermostat (0.0 = no drag)
dilate value = all or partial

•

Examples:

fix 1 all npt 300.0 300.0 100.0 xyz 0.0 0.0 1000.0
fix 2 all npt 300.0 300.0 100.0 xz 5.0 5.0 NULL NULL 5.0 5.0 1000.0
fix 2 all npt 300.0 300.0 100.0 xz 5.0 5.0 NULL NULL 5.0 5.0 1000.0 drag 0.2
fix 2 water npt 300.0 300.0 100.0 aniso 0.0 0.0 0.0 0.0 NULL NULL 1000.0 dilate partial

Description:

Perform constant NPT integration to update positions and velocities each timestep for atoms in the group using a
Nose/Hoover temperature thermostat (Hoover1) and Nose/Hoover pressure barostat (Hoover2), implemented as
described in (Melchionna). P is pressure; T is temperature. This creates a system trajectory consistent with the
isothermal−isobaric ensemble.

The thermostat is applied to only the translational degrees of freedom for the particles. The translational degrees
of freedom can also have a bias velocity removed from them before thermostatting takes place; see the description
below.

The desired temperature at each timestep is a ramped value during the run from Tstart to Tstop. The Tdamp
parameter is specified in time units and determines how rapidly the temperature is relaxed. For example, a value
of 100.0 means to relax the temperature in a timespan of (roughly) 100 time units (tau or fmsec or psec − see the
units command).

The atoms in the fix group are the only ones whose velocities and positions are updated by the velocity/position
update portion of the NPT integration.

Regardless of what atoms are in the fix group, a global pressure is computed for all atoms. Similarly, when the
size of the simulation box is changed, all atoms are re−scaled to new positions, unless the keyword dilate is

365

http://lammps.sandia.gov

specified with a value of partial, in which case only the atoms in the fix group are re−scaled. The latter can be
useful for leaving the coordinates of atoms in a solid substrate unchanged and controlling the pressure of a
surrounding fluid.

IMPORTANT NOTE: Unlike the fix temp/berendsen command which performs thermostatting but NO time
integration, this fix performs thermostatting/barostatting AND time integration. Thus you should not use any
other time integration fix, such as fix nve on atoms to which this fix is applied. Likewise, this fix should not
normally be used on atoms that also have their temperature controlled by another fix − e.g. by fix langevin or fix
temp/rescale commands.

See this howto section of the manual for a discussion of different ways to compute temperature and perform
thermostatting and barostatting.

The pressure can be controlled in one of several styles, as specified by the p−style argument. In each case, the
desired pressure at each timestep is a ramped value during the run from the starting value to the end value.

Style xyz means couple all dimensions together when pressure is computed (isotropic pressure), and
dilate/contract the dimensions together.

Styles xy or yz or xz means that the 2 specified dimensions are coupled together, both for pressure computation
and for dilation/contraction. The 3rd dimension dilates/contracts independently, using its pressure component as
the driving force. These styles cannot be used for a 2d simulation.

For style aniso, all dimensions dilate/contract independently using their individual pressure components as the
driving forces.

For any of the styles except xyz, any of the independent pressure components (e.g. z in xy, or any dimension in
aniso) can have their target pressures (both start and stop values) specified as NULL. This means that no pressure
control is applied to that dimension so that the box dimension remains unchanged. For a 2d simulation the z
pressure components must be specified as NULL when using style aniso.

For styles xy and yz and xz, the starting and stopping pressures must be the same for the two coupled dimensions
and cannot be specified as NULL.

In some cases (e.g. for solids) the pressure (volume) and/or temperature of the system can oscillate undesirably
when a Nose/Hoover barostat and thermostat is applied. The optional drag keyword will damp these oscillations,
although it alters the Nose/Hoover equations. A value of 0.0 (no drag) leaves the Nose/Hoover formalism
unchanged. A non−zero value adds a drag term; the larger the value specified, the greater the damping effect.
Performing a short run and monitoring the pressure and temperature is the best way to determine if the drag term
is working. Typically a value between 0.2 to 2.0 is sufficient to damp oscillations after a few periods.

For all pressure styles, the simulation box stays rectangular in shape. Parinello−Rahman boundary condition for
tilted boxes (triclinic symmetry) are supported by other LAMMPS commands (see this section of the manual), but
not yet by this command.

For all styles, the Pdamp parameter operates like the Tdamp parameter, determining the time scale on which
pressure is relaxed. For example, a value of 1000.0 means to relax the pressure in a timespan of (roughly) 1000
time units (tau or fmsec or psec − see the units command).

This fix computes a temperature and pressure each timestep. To do this, the fix creates its own computes of style
"temp" and "pressure", as if these commands had been issued:

366

compute fix−ID_temp group−ID temp
compute fix−ID_press group−ID pressure fix−ID_temp

See the compute temp and compute pressure commands for details. Note that the IDs of the new computes are the
fix−ID + underscore + "temp" or fix_ID + underscore + "press", and the group for the new computes is the same
as the fix group.

Note that these are NOT the computes used by thermodynamic output (see the thermo_style command) with ID =
thermo_temp and thermo_press. This means you can change the attributes of this fix's temperature or pressure via
the compute_modify command or print this temperature or pressure during thermodynamic output via the
thermo_style custom command using the appropriate compute−ID. It also means that changing attributes of
thermo_temp or thermo_press will have no effect on this fix.

Like other fixes that perform thermostatting, this fix can be used with compute commands that calculate a
temperature after removing a "bias" from the atom velocities. E.g. removing the center−of−mass velocity from a
group of atoms or only calculating temperature on the x−component of velocity or only calculating temperature
for atoms in a geometric region. This is not done by default, but only if the fix_modify command is used to assign
a temperature compute to this fix that includes such a bias term. See the doc pages for individual compute
commands to determine which ones include a bias. In this case, the thermostat works in the following manner: the
current temperature is calculated taking the bias into account, bias is removed from each atom, thermostatting is
performed on the remaining thermal degrees of freedom, and the bias is added back in.

Restart, fix_modify, output, run start/stop, minimize info:

This fix writes the state of the Nose/Hoover thermostat and barostat to binary restart files. See the read_restart
command for info on how to re−specify a fix in an input script that reads a restart file, so that the operation of the
fix continues in an uninterrupted fashion.

The fix_modify temp and press options are supported by this fix. You can use them to assign a compute you have
defined to this fix which will be used in its thermostatting or barostatting procedure, as described above. If you do
this, note that the kinetic energy derived from the compute temperature should be consistent with the virial term
computed using all atoms for the pressure. LAMMPS will warn you if you choose to compute temperature on a
subset of atoms.

IMPORTANT NOTE: If both the temp and press keywords are used in a single thermo_modify command (or in
two separate commands), then the order in which the keywords are specified is important. Note that a pressure
compute defines its own temperature compute as an argument when it is specified. The temp keyword will
override this (for the pressure compute being used by fix npt), but only if the temp keyword comes after the press
keyword. If the temp keyword comes before the press keyword, then the new pressure compute specified by the
press keyword will be unaffected by the temp setting.

The fix_modify energy option is supported by this fix to add the energy change induced by Nose/Hoover
thermostatting and barostatting to the system's potential energy as part of thermodynamic output.

The cummulative energy change due to this fix is stored as a scalar quantity, which can be accessed by various
output commands. The scalar value calculated by this fix is "extensive", meaning it scales with the number of
atoms in the simulation.

This fix can ramp its target temperature and pressure over multiple runs, using the start and stop keywords of the
run command. See the run command for details of how to do this.

This fix is not invoked during energy minimization.

367

Restrictions:

Any dimension being adjusted by this fix must be periodic. A dimension whose target pressures are specified as
NULL can be non−periodic or periodic.

The final Tstop cannot be 0.0 since it would make the target T = 0.0 at some timestep during the simulation which
is not allowed in the Nose/Hoover formulation.

Related commands:

fix nve, fix nvt, fix nph, fix_modify

Default:

The keyword defaults are drag = 0.0 and dilate = all.

(Hoover1) Hoover, Phys Rev A, 31, 1695 (1985).

(Hoover2) Hoover, Phys Rev A, 34, 2499 (1986).

(Melchionna) Melchionna, Ciccotti, Holian, Molecular Physics, 78, 533−44 (1993).

368

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix npt/asphere command

Syntax:

fix ID group−ID npt/asphere Tstart Tstop Tdamp p−style args keyword value ...

ID, group−ID are documented in fix command•
npt/asphere = style name of this fix command•
Tstart,Tstop = desired temperature at start/end of run•
Tdamp = temperature damping parameter (time units)•
p−style = xyz or xy or yz or xz or aniso

xyz args = Pstart Pstop Pdamp
 Pstart,Pstop = desired pressure at start/end of run (pressure units)
 Pdamp = pressure damping parameter (time units)

xy or yz or xz or aniso args = Px_start Px_stop Py_start Py_stop Pz_start Pz_stop Pdamp
 Px_start,Px_stop,... = desired pressure in x,y,z at start/end of run (pressure units)
 Pdamp = pressure damping parameter (time units)

•

zero or more keyword/value pairs may be appended•
keyword = drag or dilate

drag value = drag factor added to barostat/thermostat (0.0 = no drag)
dilate value = all or partial

•

Examples:

fix 1 all npt/asphere 300.0 300.0 100.0 xyz 0.0 0.0 1000.0
fix 2 all npt/asphere 300.0 300.0 100.0 xz 5.0 5.0 NULL NULL 5.0 5.0 1000.0
fix 2 all npt/asphere 300.0 300.0 100.0 xz 5.0 5.0 NULL NULL 5.0 5.0 1000.0 drag 0.2
fix 2 water npt/asphere 300.0 300.0 100.0 aniso 0.0 0.0 0.0 0.0 NULL NULL 1000.0 dilate partial

Description:

Perform constant NPT integration to update position, velocity, orientation, and angular velocity each timestep for
aspherical or ellipsoidal particles in the group using a Nose/Hoover temperature thermostat and Nose/Hoover
pressure barostat. P is pressure; T is temperature. This creates a system trajectory consistent with the
isothermal−isobaric ensemble.

The thermostat is applied to both the translational and rotational degrees of freedom for the aspherical particles,
assuming a compute is used which calculates a temperature that includes the rotational degrees of freedom (see
below). The translational degrees of freedom can also have a bias velocity removed from them before
thermostatting takes place; see the description below.

The desired temperature at each timestep is a ramped value during the run from Tstart to Tstop. The Tdamp
parameter is specified in time units and determines how rapidly the temperature is relaxed. For example, a value
of 100.0 means to relax the temperature in a timespan of (roughly) 100 time units (tau or fmsec or psec − see the
units command).

The particles in the fix group are the only ones whose velocities and positions are updated by the velocity/position
update portion of the NPT integration.

Regardless of what particles are in the fix group, a global pressure is computed for all particles. Similarly, when

369

http://lammps.sandia.gov

the size of the simulation box is changed, all particles are re−scaled to new positions, unless the keyword dilate is
specified with a value of partial, in which case only the particles in the fix group are re−scaled. The latter can be
useful for leaving the coordinates of particles in a solid substrate unchanged and controlling the pressure of a
surrounding fluid.

The pressure can be controlled in one of several styles, as specified by the p−style argument. In each case, the
desired pressure at each timestep is a ramped value during the run from the starting value to the end value.

Style xyz means couple all dimensions together when pressure is computed (isotropic pressure), and
dilate/contract the dimensions together.

Styles xy or yz or xz means that the 2 specified dimensions are coupled together, both for pressure computation
and for dilation/contraction. The 3rd dimension dilates/contracts independently, using its pressure component as
the driving force. These styles cannot be used for a 2d simulation.

For style aniso, all dimensions dilate/contract independently using their individual pressure components as the
driving forces.

For any of the styles except xyz, any of the independent pressure components (e.g. z in xy, or any dimension in
aniso) can have their target pressures (both start and stop values) specified as NULL. This means that no pressure
control is applied to that dimension so that the box dimension remains unchanged. For a 2d simulation the z
pressure components must be specified as NULL when using style aniso.

For styles xy and yz and xz, the starting and stopping pressures must be the same for the two coupled dimensions
and cannot be specified as NULL.

In some cases (e.g. for solids) the pressure (volume) and/or temperature of the system can oscillate undesirably
when a Nose/Hoover barostat and thermostat is applied. The optional drag keyword will damp these oscillations,
although it alters the Nose/Hoover equations. A value of 0.0 (no drag) leaves the Nose/Hoover formalism
unchanged. A non−zero value adds a drag term; the larger the value specified, the greater the damping effect.
Performing a short run and monitoring the pressure and temperature is the best way to determine if the drag term
is working. Typically a value between 0.2 to 2.0 is sufficient to damp oscillations after a few periods.

For all pressure styles, the simulation box stays rectangular in shape. Parinello−Rahman boundary conditions
(tilted box) are not yet implemented in LAMMPS.

For all styles, the Pdamp parameter operates like the Tdamp parameter, determining the time scale on which
pressure is relaxed. For example, a value of 1000.0 means to relax the pressure in a timespan of (roughly) 1000
time units (tau or fmsec or psec − see the units command).

This fix computes a temperature and pressure each timestep. To do this, the fix creates its own computes of style
"temp/asphere" and "pressure", as if these commands had been issued:

compute fix−ID_temp group−ID temp/asphere
compute fix−ID_press group−ID pressure fix−ID_temp

See the compute temp/asphere and compute pressure commands for details. Note that the IDs of the new
computes are the fix−ID + underscore + "temp" or fix_ID + underscore + "press", and the group for the new
computes is the same as the fix group.

Note that these are NOT the computes used by thermodynamic output (see the thermo_style command) with ID =
thermo_temp and thermo_press. This means you can change the attributes of this fix's temperature or pressure via

370

the compute_modify command or print this temperature or pressure during thermodynamic output via the
thermo_style custom command using the appropriate compute−ID. It also means that changing attributes of
thermo_temp or thermo_press will have no effect on this fix.

Like other fixes that perform thermostatting, this fix can be used with compute commands that calculate a
temperature after removing a "bias" from the atom velocities. E.g. removing the center−of−mass velocity from a
group of atoms or only calculating temperature on the x−component of velocity or only calculating temperature
for atoms in a geometric region. This is not done by default, but only if the fix_modify command is used to assign
a temperature compute to this fix that includes such a bias term. See the doc pages for individual compute
commands to determine which ones include a bias. In this case, the thermostat works in the following manner: the
current temperature is calculated taking the bias into account, bias is removed from each atom, thermostatting is
performed on the remaining thermal degrees of freedom, and the bias is added back in.

Restart, fix_modify, output, run start/stop, minimize info:

This fix writes the state of the Nose/Hoover thermostat and barostat to binary restart files. See the read_restart
command for info on how to re−specify a fix in an input script that reads a restart file, so that the operation of the
fix continues in an uninterrupted fashion.

The fix_modify temp and press options are supported by this fix. You can use them to assign a compute you have
defined to this fix which will be used in its thermostatting or barostatting procedure. If you do this, note that the
kinetic energy derived from the compute temperature should be consistent with the virial term computed using all
atoms for the pressure. LAMMPS will warn you if you choose to compute temperature on a subset of atoms.

The fix_modify energy option is supported by this fix to add the energy change induced by Nose/Hoover
thermostatting and barostatting to the system's potential energy as part of thermodynamic output.

The cummulative energy change due to this fix is stored as a scalar quantity, which can be accessed by various
output commands. The scalar value calculated by this fix is "extensive", meaning it scales with the number of
atoms in the simulation.

This fix can ramp its target temperature and pressure over multiple runs, using the start and stop keywords of the
run command. See the run command for details of how to do this.

This fix is not invoked during energy minimization.

Restrictions:

This fix is part of the "asphere" package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info.

This fix requires that atoms store torque and angular momentum and a quaternion to represent their orientation, as
defined by the atom_style. It also require they store a per−type shape. The particles cannot store a per−particle
diameter or per−particle mass.

All particles in the group must be finite−size. They cannot be point particles, but they can be aspherical or
spherical.

Any dimension being adjusted by this fix must be periodic. A dimension whose target pressures are specified as
NULL can be non−periodic or periodic.

The final Tstop cannot be 0.0 since it would make the target T = 0.0 at some timestep during the simulation which

371

is not allowed in the Nose/Hoover formulation.

Related commands:

fix npt, fix nve_asphere, fix npt_asphere, fix_modify

Default:

The keyword defaults are drag = 0.0 and dilate = all.

372

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix npt/sphere command

Syntax:

fix ID group−ID npt/sphere Tstart Tstop Tdamp p−style args keyword value ...

ID, group−ID are documented in fix command•
npt/sphere = style name of this fix command•
Tstart,Tstop = desired temperature at start/end of run•
Tdamp = temperature damping parameter (time units)•
p−style = xyz or xy or yz or xz or aniso

xyz args = Pstart Pstop Pdamp
 Pstart,Pstop = desired pressure at start/end of run (pressure units)
 Pdamp = pressure damping parameter (time units)

xy or yz or xz or aniso args = Px_start Px_stop Py_start Py_stop Pz_start Pz_stop Pdamp
 Px_start,Px_stop,... = desired pressure in x,y,z at start/end of run (pressure units)
 Pdamp = pressure damping parameter (time units)

•

zero or more keyword/value pairs may be appended•
keyword = drag or dilate

drag value = drag factor added to barostat/thermostat (0.0 = no drag)
dilate value = all or partial

•

Examples:

fix 1 all npt/sphere 300.0 300.0 100.0 xyz 0.0 0.0 1000.0
fix 2 all npt/sphere 300.0 300.0 100.0 xz 5.0 5.0 NULL NULL 5.0 5.0 1000.0
fix 2 all npt/sphere 300.0 300.0 100.0 xz 5.0 5.0 NULL NULL 5.0 5.0 1000.0 drag 0.2
fix 2 water npt/sphere 300.0 300.0 100.0 aniso 0.0 0.0 0.0 0.0 NULL NULL 1000.0 dilate partial

Description:

Perform constant NPT integration to update position, velocity, and angular velocity each timestep for extended
spherical particles in the group using a Nose/Hoover temperature thermostat and Nose/Hoover pressure barostat.
P is pressure; T is temperature. This creates a system trajectory consistent with the isothermal−isobaric ensemble.

This fix differs from the fix npt command, which assumes point particles and only updates their position and
velocity.

The thermostat is applied to both the translational and rotational degrees of freedom for the spherical particles,
assuming a compute is used which calculates a temperature that includes the rotational degrees of freedom (see
below). The translational degrees of freedom can also have a bias velocity removed from them before
thermostatting takes place; see the description below.

The desired temperature at each timestep is a ramped value during the run from Tstart to Tstop. The Tdamp
parameter is specified in time units and determines how rapidly the temperature is relaxed. For example, a value
of 100.0 means to relax the temperature in a timespan of (roughly) 100 time units (tau or fmsec or psec − see the
units command).

The particles in the fix group are the only ones whose velocities and positions are updated by the velocity/position
update portion of the NPT integration.

373

http://lammps.sandia.gov

Regardless of what particles are in the fix group, a global pressure is computed for all particles. Similarly, when
the size of the simulation box is changed, all particles are re−scaled to new positions, unless the keyword dilate is
specified with a value of partial, in which case only the particles in the fix group are re−scaled. The latter can be
useful for leaving the coordinates of particles in a solid substrate unchanged and controlling the pressure of a
surrounding fluid.

The pressure can be controlled in one of several styles, as specified by the p−style argument. In each case, the
desired pressure at each timestep is a ramped value during the run from the starting value to the end value.

Style xyz means couple all dimensions together when pressure is computed (isotropic pressure), and
dilate/contract the dimensions together.

Styles xy or yz or xz means that the 2 specified dimensions are coupled together, both for pressure computation
and for dilation/contraction. The 3rd dimension dilates/contracts independently, using its pressure component as
the driving force. These styles cannot be used for a 2d simulation.

For style aniso, all dimensions dilate/contract independently using their individual pressure components as the
driving forces.

For any of the styles except xyz, any of the independent pressure components (e.g. z in xy, or any dimension in
aniso) can have their target pressures (both start and stop values) specified as NULL. This means that no pressure
control is applied to that dimension so that the box dimension remains unchanged. For a 2d simulation the z
pressure components must be specified as NULL when using style aniso.

For styles xy and yz and xz, the starting and stopping pressures must be the same for the two coupled dimensions
and cannot be specified as NULL.

In some cases (e.g. for solids) the pressure (volume) and/or temperature of the system can oscillate undesirably
when a Nose/Hoover barostat and thermostat is applied. The optional drag keyword will damp these oscillations,
although it alters the Nose/Hoover equations. A value of 0.0 (no drag) leaves the Nose/Hoover formalism
unchanged. A non−zero value adds a drag term; the larger the value specified, the greater the damping effect.
Performing a short run and monitoring the pressure and temperature is the best way to determine if the drag term
is working. Typically a value between 0.2 to 2.0 is sufficient to damp oscillations after a few periods.

For all pressure styles, the simulation box stays rectangular in shape. Parinello−Rahman boundary conditions
(tilted box) are not yet implemented in LAMMPS.

For all styles, the Pdamp parameter operates like the Tdamp parameter, determining the time scale on which
pressure is relaxed. For example, a value of 1000.0 means to relax the pressure in a timespan of (roughly) 1000
time units (tau or fmsec or psec − see the units command).

This fix computes a temperature and pressure each timestep. To do this, the fix creates its own computes of style
"temp/asphere" and "pressure", as if these commands had been issued:

compute fix−ID_temp group−ID temp/sphere
compute fix−ID_press group−ID pressure fix−ID_temp

See the compute temp/sphere and compute pressure commands for details. Note that the IDs of the new computes
are the fix−ID + underscore + "temp" or fix_ID + underscore + "press", and the group for the new computes is the
same as the fix group.

Note that these are NOT the computes used by thermodynamic output (see the thermo_style command) with ID =

374

thermo_temp and thermo_press. This means you can change the attributes of this fix's temperature or pressure via
the compute_modify command or print this temperature or pressure during thermodynamic output via the
thermo_style custom command using the appropriate compute−ID. It also means that changing attributes of
thermo_temp or thermo_press will have no effect on this fix.

Like other fixes that perform thermostatting, this fix can be used with compute commands that calculate a
temperature after removing a "bias" from the atom velocities. E.g. removing the center−of−mass velocity from a
group of atoms or only calculating temperature on the x−component of velocity or only calculating temperature
for atoms in a geometric region. This is not done by default, but only if the fix_modify command is used to assign
a temperature compute to this fix that includes such a bias term. See the doc pages for individual compute
commands to determine which ones include a bias. In this case, the thermostat works in the following manner: the
current temperature is calculated taking the bias into account, bias is removed from each atom, thermostatting is
performed on the remaining thermal degrees of freedom, and the bias is added back in.

Restart, fix_modify, output, run start/stop, minimize info:

This fix writes the state of the Nose/Hoover thermostat and barostat to binary restart files. See the read_restart
command for info on how to re−specify a fix in an input script that reads a restart file, so that the operation of the
fix continues in an uninterrupted fashion.

The fix_modify temp and press options are supported by this fix. You can use them to assign a compute you have
defined to this fix which will be used in its thermostatting or barostatting procedure. If you do this, note that the
kinetic energy derived from the compute temperature should be consistent with the virial term computed using all
atoms for the pressure. LAMMPS will warn you if you choose to compute temperature on a subset of atoms.

The fix_modify energy option is supported by this fix to add the energy change induced by Nose/Hoover
thermostatting and barostatting to the system's potential energy as part of thermodynamic output.

The potential cummulative energy change due to this fix is stored as a scalar quantity, which can be accessed by
various output commands. The scalar value calculated by this fix is "extensive", meaning it scales with the
number of atoms in the simulation.

This fix can ramp its target temperature and pressure over multiple runs, using the start and stop keywords of the
run command. See the run command for details of how to do this.

This fix is not invoked during energy minimization.

Restrictions:

This fix requires that atoms store torque and angular velocity (omega) as defined by the atom_style. It also require
they store either a per−particle diameter or per−type shape.

All particles in the group must be finite−size spheres. They cannot be point particles, nor can they be aspherical.

Any dimension being adjusted by this fix must be periodic. A dimension whose target pressures are specified as
NULL can be non−periodic or periodic.

The final Tstop cannot be 0.0 since it would make the target T = 0.0 at some timestep during the simulation which
is not allowed in the Nose/Hoover formulation.

Related commands:

375

fix npt, fix nve_sphere, fix nvt_sphere, fix npt_asphere, fix_modify

Default:

The keyword defaults are drag = 0.0 and dilate = all.

376

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix nve command

Syntax:

fix ID group−ID nve

ID, group−ID are documented in fix command•
nve = style name of this fix command•

Examples:

fix 1 all nve

Description:

Perform constant NVE integration to update position and velocity for atoms in the group each timestep. V is
volume; E is energy. This creates a system trajectory consistent with the microcanonical ensemble.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to this
fix. No global scalar or vector or per−atom quantities are stored by this fix for access by various output
commands. No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not
invoked during energy minimization.

Restrictions: none

Related commands:

fix nvt, fix npt

Default: none

377

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix nve/asphere command

Syntax:

fix ID group−ID nve/asphere

ID, group−ID are documented in fix command•
nve/asphere = style name of this fix command•

Examples:

fix 1 all nve/asphere

Description:

Perform constant NVE integration to update position, velocity, orientation, and angular velocity for aspherical
particles in the group each timestep. V is volume; E is energy. This creates a system trajectory consistent with the
microcanonical ensemble.

This fix differs from the fix nve command, which assumes point particles and only updates their position and
velocity.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to this
fix. No global scalar or vector or per−atom quantities are stored by this fix for access by various output
commands. No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not
invoked during energy minimization.

Restrictions:

This fix is part of the "asphere" package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info.

This fix requires that atoms store torque and angular momentum and a quaternion to represent their orientation, as
defined by the atom_style. It also require they store a per−type shape. The particles cannot store a per−particle
diameter or per−particle mass.

All particles in the group must be finite−size. They cannot be point particles, but they can be aspherical or
spherical.

Related commands:

fix nve, fix nve/sphere

Default: none

378

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix nve/limit command

Syntax:

fix ID group−ID nve/limit xmax

ID, group−ID are documented in fix command•
nve = style name of this fix command•
xmax = maximum distance an atom can move in one timestep (distance units)•

Examples:

fix 1 all nve/limit 0.1

Description:

Perform constant NVE updates of position and velocity for atoms in the group each timestep. A limit is imposed
on the maximum distance an atom can move in one timestep. This is useful when starting a simulation with a
configuration containing highly overlapped atoms. Normally this would generate huge forces which would blow
atoms out of the simulation box, causing LAMMPS to stop with an error.

Using this fix can overcome that problem. Forces on atoms must still be computable (which typically means 2
atoms must have a separation distance > 0.0). But large velocities generated by large forces are reset to a value
that corresponds to a displacement of length xmax in a single timestep. Xmax is specified in distance units; see the
units command for details. The value of xmax should be consistent with the neighbor skin distance and the
frequency of neighbor list re−building, so that pairwise interactions are not missed on successive timesteps as
atoms move. See the neighbor and neigh_modify commands for details.

Note that if a velocity reset occurs the integrator will not conserve energy. On steps where no velocity resets
occur, this integrator is exactly like the fix nve command. Since forces are unaltered, pressures computed by
thermodynamic output will still be very large for overlapped configurations.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to this
fix.

This fix computes a scalar quantity which is the count of how many updates of atom's velocity/position were
limited by the maximum distance criterion. This should be roughly the number of atoms so affected, except that
updates occur at both the beginning and end of a timestep in a velocity Verlet timestepping algorithm. This is a
cumulative quantity for the current run, but is re−initialized to zero each time a run is performed. This value can
be accessed by various output commands. The scalar value calculated by this fix is "extensive", meaning it scales
with the number of atoms in the simulation.

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions: none

Related commands:

379

http://lammps.sandia.gov

fix nve, fix nve/noforce, pair_style soft

Default: none

380

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix nve/noforce command

Syntax:

fix ID group−ID nve

ID, group−ID are documented in fix command•
nve/noforce = style name of this fix command•

Examples:

fix 3 wall nve/noforce

Description:

Perform updates of position, but not velocity for atoms in the group each timestep. In other words, the force on
the atoms is ignored and their velocity is not updated. The atom velocities are used to update their positions.

This can be useful for wall atoms, when you set their velocities, and want the wall to move (or stay stationary) in
a prescribed fashion.

This can also be accomplished via the fix setforce command, but with fix nve/noforce, the forces on the wall
atoms are unchanged, and can thus be printed by the dump command or queried with an equal−style variable that
uses the fcm() group function to compute the total force on the group of atoms.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to this
fix. No global scalar or vector or per−atom quantities are stored by this fix for access by various output
commands. No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not
invoked during energy minimization.

Restrictions: none

Related commands:

fix nve

Default: none

381

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix nve/sphere command

Syntax:

fix ID group−ID nve/sphere

ID, group−ID are documented in fix command•
nve/sphere = style name of this fix command•
zero or more keyword/value pairs may be appended•
keyword = update

update value = dipole
 dipole = update orientation of dipole moment during integration

•

Examples:

fix 1 all nve/sphere
fix 1 all nve/sphere update dipole

Description:

Perform constant NVE integration to update position, velocity, and angular velocity for extended spherical
particles in the group each timestep. V is volume; E is energy. This creates a system trajectory consistent with the
microcanonical ensemble.

This fix differs from the fix nve command, which assumes point particles and only updates their position and
velocity.

If the update keyword is used with the dipole value, then the orientation of the dipole moment of each particle is
also updated during the time integration. This option should be used for models where a dipole moment is
assigned to particles via the dipole command.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to this
fix. No global scalar or vector or per−atom quantities are stored by this fix for access by various output
commands. No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not
invoked during energy minimization.

Restrictions:

This fix requires that atoms store torque and angular velocity (omega) as defined by the atom_style. It also require
they store either a per−particle diameter or per−type shape. If the dipole keyword is used, then they must store a
dipole moment.

All particles in the group must be finite−size spheres. They cannot be point particles, nor can they be aspherical.

Related commands:

fix nve, fix nve/asphere

382

http://lammps.sandia.gov

Default: none

383

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix nvt command

Syntax:

fix ID group−ID nvt Tstart Tstop Tdamp keyword value ...

ID, group−ID are documented in fix command•
nvt = style name of this fix command•
Tstart,Tstop = desired temperature at start/end of run•
Tdamp = temperature damping parameter (time units)•
zero or more keyword/value pairs may be appended•
keyword = drag or chain

drag value = drag factor added to thermostat (0.0 = no drag)
chain value = yes or no

•

Examples:

fix 1 all nvt 300.0 300.0 100.0
fix 1 all nvt 300.0 300.0 100.0 drag 0.2 chain no

Description:

Perform constant NVT integration to update positions and velocities each timestep for atoms in the group using a
Nose/Hoover temperature thermostat (Hoover). V is volume; T is temperature. This creates a system trajectory
consistent with the canonical ensemble.

The thermostat is applied to only the translational degrees of freedom for the particles. The translational degrees
of freedom can also have a bias velocity removed from them before thermostatting takes place; see the description
below.

The desired temperature at each timestep is a ramped value during the run from Tstart to Tstop. The Tdamp
parameter is specified in time units and determines how rapidly the temperature is relaxed. For example, a value
of 100.0 means to relax the temperature in a timespan of (roughly) 100 time units (tau or fmsec or psec − see the
units command).

The chain keyword determines whether Nose/Hoover chains are used or not. If chain is specified as no, then the
original Nose/Hoover formulation is used. If chain is specified as yes, which is the default, then chains as
described in (Martyna) are used which include extra non−physical variables which couple to the thermostat.
Nose/Hoover chains provide a more robust NVT integrator, overcoming non−ergodic sampling issues and energy
oscillations found with ordinary Nose/Hoover dynamics. Our implementation uses one chain and integrates the
equations of motion via a Trotter expansion good to 2nd order accuracy in the timestep size.

In some cases (e.g. for solids) the temperature of the system can oscillate undesirably when a Nose/Hoover
thermostat is applied, though this should be less of a problem if Nose/Hoover chains are used. The optional drag
keyword will damp these oscillations in an ad−hoc fashion, by altering the Nose/Hoover equations so that they no
longer exactly sample the canonical ensemble. A value of 0.0 (no drag) leaves the Nose/Hoover formalism
unchanged. A non−zero value adds a drag term; the larger the value specified, the greater the damping effect.
Performing a short run and monitoring the temperature is the best way to determine if the drag term is working.
Typically a value between 0.2 to 2.0 is sufficient to damp oscillations after a few periods.

384

http://lammps.sandia.gov

IMPORTANT NOTE: Unlike the fix temp/berendsen command which performs thermostatting but NO time
integration, this fix performs thermostatting/barostatting AND time integration. Thus you should not use any
other time integration fix, such as fix nve on atoms to which this fix is applied. Likewise, this fix should not
normally be used on atoms that also have their temperature controlled by another fix − e.g. by fix langevin or fix
temp/rescale commands.

See this howto section of the manual for a discussion of different ways to compute temperature and perform
thermostatting.

This fix computes a temperature each timestep. To do this, the fix creates its own compute of style "temp", as if
this command had been issued:

compute fix−ID_temp group−ID temp

See the compute temp command for details. Note that the ID of the new compute is the fix−ID + underscore +
"temp", and the group for the new compute is the same as the fix group.

Note that this is NOT the compute used by thermodynamic output (see the thermo_style command) with ID =
thermo_temp. This means you can change the attributes of this fix's temperature (e.g. its degrees−of−freedom) via
the compute_modify command or print this temperature during thermodynamic output via the thermo_style
custom command using the appropriate compute−ID. It also means that changing attributes of thermo_temp will
have no effect on this fix.

Like other fixes that perform thermostatting, this fix can be used with compute commands that calculate a
temperature after removing a "bias" from the atom velocities. E.g. removing the center−of−mass velocity from a
group of atoms or only calculating temperature on the x−component of velocity or only calculating temperature
for atoms in a geometric region. This is not done by default, but only if the fix_modify command is used to assign
a temperature compute to this fix that includes such a bias term. See the doc pages for individual compute
commands to determine which ones include a bias. In this case, the thermostat works in the following manner: the
current temperature is calculated taking the bias into account, bias is removed from each atom, thermostatting is
performed on the remaining thermal degrees of freedom, and the bias is added back in.

Restart, fix_modify, output, run start/stop, minimize info:

This fix writes the state of the Nose/Hoover thermostat to binary restart files. See the read_restart command for
info on how to re−specify a fix in an input script that reads a restart file, so that the operation of the fix continues
in an uninterrupted fashion.

The fix_modify temp option is supported by this fix. You can use it to assign a temperature compute you have
defined to this fix which will be used in its thermostatting procedure, as described above. For consistency, the
group used by this fix and by the compute should be the same.

The fix_modify energy option is supported by this fix to add the energy change induced by Nose/Hoover
thermostatting to the system's potential energy as part of thermodynamic output.

The cummulative energy change due to this fix is stored as a scalar quantity, which can be accessed by various
output commands. The scalar value calculated by this fix is "extensive", meaning it scales with the number of
atoms in the simulation.

This fix can ramp its target temperature over multiple runs, using the start and stop keywords of the run
command. See the run command for details of how to do this.

This fix is not invoked during energy minimization.

385

Restrictions:

The final Tstop cannot be 0.0 since it would make the target T = 0.0 at some timestep during the simulation which
is not allowed in the Nose/Hoover formulation.

Related commands:

fix nve, fix npt, fix temp/rescale, fix langevin, fix_modify, compute temp

Default:

The keyword defaults are drag = 0.0 and chain = yes.

(Hoover) Hoover, Phys Rev A, 31, 1695 (1985).

(Martyna) Martyna, Klein, Tuckerman, J Chem Phys, 97, 2635 (1992); Martyna, Tuckerman, Tobias, Klein, Mol
Phys, 87, 1117.

386

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix nvt/asphere command

Syntax:

fix ID group−ID nvt/asphere Tstart Tstop Tdamp keyword value ...

ID, group−ID are documented in fix command•
nvt/asphere = style name of this fix command•
Tstart,Tstop = desired temperature at start/end of run•
Tdamp = temperature damping parameter (time units)•
zero or more keyword/value pairs may be appended•
keyword = drag

drag value = drag factor added to thermostat (0.0 = no drag)

•

Examples:

fix 1 all nvt/asphere 300.0 300.0 100.0
fix 1 all nvt/asphere 300.0 300.0 100.0 drag 0.2

Description:

Perform constant NVT integration to update position, velocity, orientation, and angular velocity each timestep for
aspherical or ellipsoidal particles in the group using a Nose/Hoover temperature thermostat. V is volume; T is
temperature. This creates a system trajectory consistent with the canonical ensemble.

The thermostat is applied to both the translational and rotational degrees of freedom for the aspherical particles,
assuming a compute is used which calculates a temperature that includes the rotational degrees of freedom (see
below). The translational degrees of freedom can also have a bias velocity removed from them before
thermostatting takes place; see the description below.

The desired temperature at each timestep is a ramped value during the run from Tstart to Tstop. The Tdamp
parameter is specified in time units and determines how rapidly the temperature is relaxed. For example, a value
of 100.0 means to relax the temperature in a timespan of (roughly) 100 time units (tau or fmsec or psec − see the
units command).

In some cases (e.g. for solids) the temperature of the system can oscillate undesirably when a Nose/Hoover
thermostat is applied. The optional drag keyword will damp these oscillations, although it alters the Nose/Hoover
equations. A value of 0.0 (no drag) leaves the Nose/Hoover formalism unchanged. A non−zero value adds a drag
term; the larger the value specified, the greater the damping effect. Performing a short run and monitoring the
temperature is the best way to determine if the drag term is working. Typically a value between 0.2 to 2.0 is
sufficient to damp oscillations after a few periods.

This fix computes a temperature each timestep. To do this, the fix creates its own compute of style
"temp/asphere", as if this command had been issued:

compute fix−ID_temp group−ID temp/asphere

See the compute temp/asphere command for details. Note that the ID of the new compute is the fix−ID +
underscore + "temp", and the group for the new compute is the same as the fix group.

387

http://lammps.sandia.gov

Note that this is NOT the compute used by thermodynamic output (see the thermo_style command) with ID =
thermo_temp. This means you can change the attributes of this fix's temperature (e.g. its degrees−of−freedom) via
the compute_modify command or print this temperature during thermodynamic output via the thermo_style
custom command using the appropriate compute−ID. It also means that changing attributes of thermo_temp will
have no effect on this fix.

Like other fixes that perform thermostatting, this fix can be used with compute commands that calculate a
temperature after removing a "bias" from the atom velocities. E.g. removing the center−of−mass velocity from a
group of atoms or only calculating temperature on the x−component of velocity or only calculating temperature
for atoms in a geometric region. This is not done by default, but only if the fix_modify command is used to assign
a temperature compute to this fix that includes such a bias term. See the doc pages for individual compute
commands to determine which ones include a bias. In this case, the thermostat works in the following manner: the
current temperature is calculated taking the bias into account, bias is removed from each atom, thermostatting is
performed on the remaining thermal degrees of freedom, and the bias is added back in.

Restart, fix_modify, output, run start/stop, minimize info:

This fix writes the state of the Nose/Hoover thermostat to binary restart files. See the read_restart command for
info on how to re−specify a fix in an input script that reads a restart file, so that the operation of the fix continues
in an uninterrupted fashion.

The fix_modify temp option is supported by this fix. You can use it to assign a compute you have defined to this
fix which will be used in its thermostatting procedure.

The fix_modify energy option is supported by this fix to add the energy change induced by Nose/Hoover
thermostatting to the system's potential energy as part of thermodynamic output.

The cummulative energy change due to this fix is stored as a scalar quantity, which can be accessed by various
output commands. The scalar value calculated by this fix is "extensive", meaning it scales with the number of
atoms in the simulation.

This fix can ramp its target temperature over multiple runs, using the start and stop keywords of the run
command. See the run command for details of how to do this.

This fix is not invoked during energy minimization.

Restrictions:

This fix is part of the "asphere" package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info.

This fix requires that atoms store torque and angular momentum and a quaternion to represent their orientation, as
defined by the atom_style. It also require they store a per−type shape. The particles cannot store a per−particle
diameter or per−particle mass.

All particles in the group must be finite−size. They cannot be point particles, but they can be aspherical or
spherical.

The final Tstop cannot be 0.0 since it would make the target T = 0.0 at some timestep during the simulation which
is not allowed in the Nose/Hoover formulation.

Related commands:

388

fix nvt, fix nve_asphere, fix npt_asphere, fix_modify

Default:

The keyword defaults are drag = 0.0.

389

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix nvt/sllod command

Syntax:

fix ID group−ID nvt/sllod Tstart Tstop Tdamp keyword value ...

ID, group−ID are documented in fix command•
nvt/sllod = style name of this fix command•
Tstart,Tstop = desired temperature at start/end of run•
Tdamp = temperature damping parameter (time units)•
zero or more keyword/value pairs may be appended•
keyword = drag

drag value = drag factor added to thermostat (0.0 = no drag)

•

Examples:

fix 1 all nvt/sllod 300.0 300.0 100.0
fix 1 all nvt/sllod 300.0 300.0 100.0 drag 0.2

Description:

Perform constant NVT integration to update positions and velocities each timestep for atoms in the group using a
Nose/Hoover temperature thermostat. V is volume; T is temperature. This creates a system trajectory consistent
with the canonical ensemble.

This thermostat is used for a simulation box that is changing size and/or shape, for example in a non−equilibrium
MD (NEMD) simulation. The size/shape change is induced by use of the fix deform command, so each point in
the simulation box can be thought of as having a "streaming" velocity. This position−dependent streaming
velocity is subtracted from each atom's actual velocity to yield a thermal velocity which is used for temperature
computation and thermostatting. For example, if the box is being sheared in x, relative to y, then points at the
bottom of the box (low y) have a small x velocity, while points at the top of the box (hi y) have a large x velocity.
These velocities do not contribute to the thermal "temperature" of the atom.

IMPORTANT NOTE: Fix deform has an option for remapping either atom coordinates or velocities to the
changing simulation box. To use fix nvt/sllod, fix deform should NOT remap atom positions, because fix nvt/sllod
adjusts the atom positions and velocities to create a velocity profile that matches the changing box size/shape. Fix
deform SHOULD remap atom velocities when atoms cross periodic boundaries since that is consistent with
maintaining the velocity profile created by fix nvt/sllod. LAMMPS will give an error if this setting is not
consistent.

The SLLOD equations of motion coupled to a Nose/Hoover thermostat are discussed in (Tuckerman) (eqs 4 and
5), which is what is implemented in LAMMPS in a velocity Verlet formulation.

The desired temperature at each timestep is a ramped value during the run from Tstart to Tstop. The Tdamp
parameter is specified in time units and determines how rapidly the temperature is relaxed. For example, a value
of 100.0 means to relax the temperature in a timespan of (roughly) 100 time units (tau or fmsec or psec − see the
units command).

In some cases (e.g. for solids) the temperature of the system can oscillate undesirably when a Nose/Hoover
thermostat is applied. The optional drag keyword will damp these oscillations, although it alters the Nose/Hoover

390

http://lammps.sandia.gov

equations. A value of 0.0 (no drag) leaves the Nose/Hoover formalism unchanged. A non−zero value adds a drag
term; the larger the value specified, the greater the damping effect. Performing a short run and monitoring the
temperature is the best way to determine if the drag term is working. Typically a value between 0.2 to 2.0 is
sufficient to damp oscillations after a few periods.

This fix computes a temperature each timestep. To do this, the fix creates its own compute of style
"temp/deform", as if this command had been issued:

compute fix−ID_temp group−ID temp/deform

See the compute temp/deform command for details. Note that the ID of the new compute is the fix−ID +
underscore + "temp", and the group for the new compute is the same as the fix group.

Note that this is NOT the compute used by thermodynamic output (see the thermo_style command) with ID =
thermo_temp. This means you can change the attributes of this fix's temperature (e.g. its degrees−of−freedom) via
the compute_modify command or print this temperature during thermodynamic output via the thermo_style
custom command using the appropriate compute−ID. It also means that changing attributes of thermo_temp will
have no effect on this fix.

Like other fixes that perform thermostatting, this fix can be used with compute commands that calculate a
temperature after removing a "bias" from the atom velocities. E.g. removing the center−of−mass velocity from a
group of atoms or only calculating temperature on the x−component of velocity or only calculating temperature
for atoms in a geometric region. This is not done by default, but only if the fix_modify command is used to assign
a temperature compute to this fix that includes such a bias term. See the doc pages for individual compute
commands to determine which ones include a bias. In this case, the thermostat works in the following manner: the
current temperature is calculated taking the bias into account, bias is removed from each atom, thermostatting is
performed on the remaining thermal degrees of freedom, and the bias is added back in.

Restart, fix_modify, output, run start/stop, minimize info:

This fix writes the state of the Nose/Hoover thermostat to binary restart files. See the read_restart command for
info on how to re−specify a fix in an input script that reads a restart file, so that the operation of the fix continues
in an uninterrupted fashion.

The fix_modify temp option is supported by this fix. You can use it to assign a compute you have defined to this
fix which will be used in its thermostatting procedure.

The fix_modify energy option is supported by this fix to add the energy change induced by Nose/Hoover
thermostatting to the system's potential energy as part of thermodynamic output.

The cummulative energy change due to this fix is stored as a scalar quantity, which can be accessed by various
output commands. The scalar value calculated by this fix is "extensive", meaning it scales with the number of
atoms in the simulation.

This fix can ramp its target temperature over multiple runs, using the start and stop keywords of the run
command. See the run command for details of how to do this.

This fix is not invoked during energy minimization.

Restrictions:

The final Tstop cannot be 0.0 since it would make the target T = 0.0 at some timestep during the simulation which
is not allowed in the Nose/Hoover formulation.

391

Related commands:

fix nve, fix npt, fix npt, fix temp/rescale, fix langevin, fix_modify, compute temp

Default:

The keyword defaults are drag = 0.0.

(Tuckerman) Tuckerman, Mundy, Balasubramanian, Klein, J Chem Phys, 106, 5615 (1997).

392

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix nvt/sphere command

Syntax:

fix ID group−ID nvt/sphere Tstart Tstop Tdamp keyword value ...

ID, group−ID are documented in fix command•
nvt/sphere = style name of this fix command•
Tstart,Tstop = desired temperature at start/end of run•
Tdamp = temperature damping parameter (time units)•
zero or more keyword/value pairs may be appended•
keyword = drag

drag value = drag factor added to thermostat (0.0 = no drag)

•

Examples:

fix 1 all nvt/sphere 300.0 300.0 100.0
fix 1 all nvt/sphere 300.0 300.0 100.0 drag 0.2

Description:

Perform constant NVT integration to update position, velocity, and angular velocity each timestep for extended
spherical particles in the group using a Nose/Hoover temperature thermostat. V is volume; T is temperature. This
creates a system trajectory consistent with the canonical ensemble.

This fix differs from the fix nvt command, which assumes point particles and only updates their position and
velocity.

The thermostat is applied to both the translational and rotational degrees of freedom for the spherical particles,
assuming a compute is used which calculates a temperature that includes the rotational degrees of freedom (see
below). The translational degrees of freedom can also have a bias velocity removed from them before
thermostatting takes place; see the description below.

The desired temperature at each timestep is a ramped value during the run from Tstart to Tstop. The Tdamp
parameter is specified in time units and determines how rapidly the temperature is relaxed. For example, a value
of 100.0 means to relax the temperature in a timespan of (roughly) 100 time units (tau or fmsec or psec − see the
units command).

In some cases (e.g. for solids) the temperature of the system can oscillate undesirably when a Nose/Hoover
thermostat is applied. The optional drag keyword will damp these oscillations, although it alters the Nose/Hoover
equations. A value of 0.0 (no drag) leaves the Nose/Hoover formalism unchanged. A non−zero value adds a drag
term; the larger the value specified, the greater the damping effect. Performing a short run and monitoring the
temperature is the best way to determine if the drag term is working. Typically a value between 0.2 to 2.0 is
sufficient to damp oscillations after a few periods.

This fix computes a temperature each timestep. To do this, the fix creates its own compute of style "temp/sphere",
as if this command had been issued:

compute fix−ID_temp group−ID temp/sphere

393

http://lammps.sandia.gov

See the compute temp/sphere command for details. Note that the ID of the new compute is the fix−ID +
underscore + "temp", and the group for the new compute is the same as the fix group.

Note that this is NOT the compute used by thermodynamic output (see the thermo_style command) with ID =
thermo_temp. This means you can change the attributes of this fix's temperature (e.g. its degrees−of−freedom) via
the compute_modify command or print this temperature during thermodynamic output via the thermo_style
custom command using the appropriate compute−ID. It also means that changing attributes of thermo_temp will
have no effect on this fix.

Like other fixes that perform thermostatting, this fix can be used with compute commands that calculate a
temperature after removing a "bias" from the atom velocities. E.g. removing the center−of−mass velocity from a
group of atoms or only calculating temperature on the x−component of velocity or only calculating temperature
for atoms in a geometric region. This is not done by default, but only if the fix_modify command is used to assign
a temperature compute to this fix that includes such a bias term. See the doc pages for individual compute
commands to determine which ones include a bias. In this case, the thermostat works in the following manner: the
current temperature is calculated taking the bias into account, bias is removed from each atom, thermostatting is
performed on the remaining thermal degrees of freedom, and the bias is added back in.

Restart, fix_modify, output, run start/stop, minimize info:

This fix writes the state of the Nose/Hoover thermostat to binary restart files. See the read_restart command for
info on how to re−specify a fix in an input script that reads a restart file, so that the operation of the fix continues
in an uninterrupted fashion.

The fix_modify temp option is supported by this fix. You can use it to assign a compute you have defined to this
fix which will be used in its thermostatting procedure.

The fix_modify energy option is supported by this fix to add the energy change induced by Nose/Hoover
thermostatting to the system's potential energy as part of thermodynamic output.

The cummulative energy change due to this fix is stored as a scalar quantity, which can be accessed by various
output commands. The scalar value calculated by this fix is "extensive", meaning it scales with the number of
atoms in the simulation.

This fix can ramp its target temperature over multiple runs, using the start and stop keywords of the run
command. See the run command for details of how to do this.

This fix is not invoked during energy minimization.

Restrictions:

This fix requires that atoms store torque and angular velocity (omega) as defined by the atom_style. It also require
they store either a per−particle radius or per−type shape.

All particles in the group must be finite−size spheres. They cannot be point particles, nor can they be aspherical.

The final Tstop cannot be 0.0 since it would make the target T = 0.0 at some timestep during the simulation which
is not allowed in the Nose/Hoover formulation.

Related commands:

fix nvt, fix nve_sphere, fix nvt_asphere, fix npt_sphere, fix_modify

394

Default:

The keyword defaults are drag = 0.0.

395

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix orient/fcc command

fix ID group−ID orient/fcc nstats dir alat dE cutlo cuthi file0 file1

ID, group−ID are documented in fix command•
nstats = print stats every this many steps, 0 = never•
dir = 0/1 for which crystal is used as reference•
alat = fcc cubic lattice constant (distance units)•
dE = energy added to each atom (energy units)•
cutlo,cuthi = values between 0.0 and 1.0, cutlo < cuthi•
file0,file1 = files that specify orientation of each grain•

Examples:

fix gb all orient/fcc 0 1 4.032008 0.001 0.25 0.75 xi.vec chi.vec

Description:

The fix applies an orientation−dependent force to atoms near a planar grain boundary which can be used to induce
grain boundary migration (in the direction perpendicular to the grain boundary plane). The motivation and
explanation of this force and its application are described in (Janssens). The force is only applied to atoms in the
fix group.

The basic idea is that atoms in one grain (on one side of the boundary) have a potential energy dE added to them.
Atoms in the other grain have 0.0 potential energy added. Atoms near the boundary (whose neighbor environment
is intermediate between the two grain orientations) have an energy between 0.0 and dE added. This creates an
effective driving force to reduce the potential energy of atoms near the boundary by pushing them towards one of
the grain orientations. For dir = 1 and dE > 0, the boundary will thus move so that the grain described by file0
grows and the grain described by file1 shrinks. Thus this fix is designed for simulations of two−grain systems,
either with one grain boundary and free surfaces parallel to the boundary, or a system with periodic boundary
conditions and two equal and opposite grain boundaries. In either case, the entire system can displace during the
simulation, and such motion should be accounted for in measuring the grain boundary velocity.

The potential energy added to atom I is given by these formulas

396

http://lammps.sandia.gov

which are fully explained in (Janssens). The order parameter Xi for atom I in equation (1) is a sum over the 12
nearest neighbors of atom I. Rj is the vector from atom I to its neighbor J, and RIj is a vector in the reference
(perfect) crystal. That is, if dir = 0/1, then RIj is a vector to an atom coord from file 0/1. Equation (2) gives the
expected value of the order parameter XiIJ in the other grain. Hi and lo cutoffs are defined in equations (3) and
(4), using the input parameters cutlo and cuthi as thresholds to avoid adding grain boundary energy when the
deviation in the order parameter from 0 or 1 is small (e.g. due to thermal fluctuations in a perfect crystal). The
added potential energy Ui for atom I is given in equation (6) where it is interpolated between 0 and dE using the
two threshold Xi values and the Wi value of equation (5).

The derivative of this energy expression gives the force on each atom which thus depends on the orientation of its
neighbors relative to the 2 grain orientations. Only atoms near the grain boundary feel a net force which tends to
drive them to one of the two grain orientations.

In equation (1), the reference vector used for each neighbor is the reference vector closest to the actual neighbor
position. This means it is possible two different neighbors will use the same reference vector. In such cases, the
atom in question is far from a perfect orientation and will likely receive the full dE addition, so the effect of
duplicate reference vector usage is small.

The dir parameter determines which grain wants to grow at the expense of the other. A value of 0 means the first
grain will shrink; a value of 1 means it will grow. This assumes that dE is positive. The reverse will be true if dE
is negative.

The alat parameter is the cubic lattice constant for the fcc material and is only used to compute a cutoff distance
of 1.57 * alat / sqrt(2) for finding the 12 nearest neighbors of each atom (which should be valid for an fcc crystal).
A longer/shorter cutoff can be imposed by adjusting alat. If a particular atom has less than 12 neighbors within
the cutoff, the order parameter of equation (1) is effectively multiplied by 12 divided by the actual number of
neighbors within the cutoff.

The dE parameter is the maximum amount of additional energy added to each atom in the grain which wants to
shrink.

397

The cutlo and cuthi parameters are used to reduce the force added to bulk atoms in each grain far away from the
boundary. An atom in the bulk surrounded by neighbors at the ideal grain orientation would compute an order
parameter of 0 or 1 and have no force added. However, thermal vibrations in the solid will cause the order
parameters to be greater than 0 or less than 1. The cutoff parameters mask this effect, allowing forces to only be
added to atoms with order−parameters between the cutoff values.

File0 and file1 are filenames for the two grains which each contain 6 vectors (6 lines with 3 values per line) which
specify the grain orientations. Each vector is a displacement from a central atom (0,0,0) to a nearest neighbor
atom in an fcc lattice at the proper orientation. The vector lengths should all be identical since an fcc lattice has a
coordination number of 12. Only 6 are listed due to symmetry, so the list must include one from each pair of
equal−and−opposite neighbors. A pair of orientation files for a Sigma=5 tilt boundary are show below.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files.

The fix_modify energy option is supported by this fix to add the potential energy of atom interactions with the
grain boundary driving force to the system's potential energy as part of thermodynamic output.

The potential energy change due to this fix is stored as a scalar quantity, which can be accessed by various output
commands. The scalar value calculated by this fix is "extensive", meaning it scales with the number of atoms in
the simulation.

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions:

This fix should only be used with fcc lattices.

Related commands:

fix_modify

Default: none

(Janssens) Janssens, Olmsted, Holm, Foiles, Plimpton, Derlet, Nature Materials, 5, 124−127 (2006).

For illustration purposes, here are example files that specify a Sigma=5 tilt boundary. This is for a lattice constant
of 3.5706 Angs.

file0:

 0.798410432046075 1.785300000000000 1.596820864092150
 −0.798410432046075 1.785300000000000 −1.596820864092150
 2.395231296138225 0.000000000000000 0.798410432046075
 0.798410432046075 0.000000000000000 −2.395231296138225
 1.596820864092150 1.785300000000000 −0.798410432046075
 1.596820864092150 −1.785300000000000 −0.798410432046075

file1:

398

 −0.798410432046075 1.785300000000000 1.596820864092150
 0.798410432046075 1.785300000000000 −1.596820864092150
 0.798410432046075 0.000000000000000 2.395231296138225
 2.395231296138225 0.000000000000000 −0.798410432046075
 1.596820864092150 1.785300000000000 0.798410432046075
 1.596820864092150 −1.785300000000000 0.798410432046075

399

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix planeforce command

Syntax:

fix ID group−ID planeforce x y z

ID, group−ID are documented in fix command•
lineforce = style name of this fix command•
x y z = 3−vector that is normal to the plane•

Examples:

fix hold boundary planeforce 1.0 0.0 0.0

Description:

Adjust the forces on each atom in the group so that only the components of force in the plane specified by the
normal vector (x,y,z) remain. This is done by subtracting out the component of force perpendicular to the plane.

If the initial velocity of the atom is 0.0 (or in the plane), then it should continue to move in the plane thereafter.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to this
fix. No global scalar or vector or per−atom quantities are stored by this fix for access by various output
commands. No parameter of this fix can be used with the start/stop keywords of the run command.

The forces due to this fix are imposed during an energy minimization, invoked by the minimize command.

Restrictions: none

Related commands:

fix lineforce

Default: none

400

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix poems

Syntax:

fix ID group−ID poems keyword values

ID, group−ID are documented in fix command•
poems = style name of this fix command•
keyword = group or file or molecule

group values = list of group IDs
molecule values = none
file values = filename

•

Examples:

fix 3 fluid poems group clump1 clump2 clump3
fix 3 fluid poems file cluster.list

Description:

Treats one or more sets of atoms as coupled rigid bodies. This means that each timestep the total force and torque
on each rigid body is computed and the coordinates and velocities of the atoms are updated so that the collection
of bodies move as a coupled set. This can be useful for treating a large biomolecule as a collection of connected,
coarse−grained particles.

The coupling, associated motion constraints, and time integration is performed by the software package
Parallelizable Open source Efficient Multibody Software (POEMS) which computes the constrained rigid−body
motion of articulated (jointed) multibody systems (Anderson). POEMS was written and is distributed by Prof
Kurt Anderson, his graduate student Rudranarayan Mukherjee, and other members of his group at Rensselaer
Polytechnic Institute (RPI). Rudranarayan developed the LAMMPS/POEMS interface. For copyright information
on POEMS and other details, please refer to the documents in the poems directory distributed with LAMMPS.

This fix updates the positions and velocities of the rigid atoms with a constant−energy time integration, so you
should not update the same atoms via other fixes (e.g. nve, nvt, npt, temp/rescale, langevin).

Each body must have a non−degenerate inertia tensor, which means if must contain at least 3 non−collinear
atoms. Which atoms are in which bodies can be defined via several options.

For option group, each of the listed groups is treated as a rigid body. Note that only atoms that are also in the fix
group are included in each rigid body.

For option molecule, each set of atoms in the group with a different molecule ID is treated as a rigid body.

For option file, sets of atoms are read from the specified file and each set is treated as a rigid body. Each line of
the file specifies a rigid body in the following format:

ID type atom1−ID atom2−ID atom3−ID ...

ID as an integer from 1 to M (the number of rigid bodies). Type is any integer; it is not used by the fix poems
command. The remaining arguments are IDs of atoms in the rigid body, each typically from 1 to N (the number of

401

http://lammps.sandia.gov
http://www.rpi.edu/~anderk5/lab

atoms in the system). Only atoms that are also in the fix group are included in each rigid body. Blank lines and
lines that begin with '#' are skipped.

A connection between a pair of rigid bodies is inferred if one atom is common to both bodies. The POEMS solver
treats that atom as a spherical joint with 3 degrees of freedom. Currently, a collection of bodies can only be
connected by joints as a linear chain. The entire collection of rigid bodies can represent one or more chains. Other
connection topologies (tree, ring) are not allowed, but will be added later. Note that if no joints exist, it is more
efficient to use the fix rigid command to simulate the system.

When the poems fix is defined, it will print out statistics on the total # of clusters, bodies, joints, atoms involved.
A cluster in this context means a set of rigid bodies connected by joints.

For computational efficiency, you should turn off pairwise and bond interactions within each rigid body, as they
no longer contribute to the motion. The "neigh_modify exclude" and "delete_bonds" commands can be used to do
this if each rigid body is a group.

For computational efficiency, you should only define one fix poems which includes all the desired rigid bodies.
LAMMPS will allow multiple poems fixes to be defined, but it is more expensive.

The degrees−of−freedom removed by coupled rigid bodies are accounted for in temperature and pressure
computations. Similarly, the rigid body contribution to the pressure virial is also accounted for. The latter is only
correct if forces within the bodies have been turned off, and there is only a single fix poems defined.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to this
fix. No global scalar or vector or per−atom quantities are stored by this fix for access by various output
commands. No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not
invoked during energy minimization.

Restrictions:

This fix is part of the "poems" package. It is only enabled if LAMMPS was built with that package, which also
requires the POEMS library be built and linked with LAMMPS. See the Making LAMMPS section for more info.

Related commands:

fix rigid, delete_bonds, neigh_modify exclude

Default: none

(Anderson) Anderson, Mukherjee, Critchley, Ziegler, and Lipton "POEMS: Parallelizable Open−source Efficient
Multibody Software ", Engineering With Computers (2006). (link to paper)

402

http://dx.doi.org/10.1007/s00366-006-0026-x

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix pour command

Syntax:

fix ID group−ID pour N type seed keyword values ...

ID, group−ID are documented in fix command•
pour = style name of this fix command•
N = # of atoms to insert•
type = atom type to assign to inserted atoms•
seed = random # seed (positive integer)•
one or more keyword/value pairs may be appended to args•
keyword = region or diam or dens or vol or rate or vel

region value = region−ID
 region−ID = ID of region to use as insertion volume

diam values = lo hi
 lo,hi = range of diameters for inserted particles (distance units)

dens values = lo hi
 lo,hi = range of densities for inserted particles

vol values = fraction Nattempt
 fraction = desired volume fraction for filling insertion volume
 Nattempt = max # of insertion attempts per atom

rate value = V
 V = z velocity (3d) or y velocity (2d) at which
 insertion volume moves (velocity units)

vel values (3d) = vxlo vxhi vylo vyhi vz
vel values (2d) = vxlo vxhi vy

 vxlo,vxhi = range of x velocities for inserted particles (velocity units)
 vylo,vyhi = range of y velocities for inserted particles (velocity units)
 vz = z velocity (3d) assigned to inserted particles (velocity units)
 vy = y velocity (2d) assigned to inserted particles (velocity units)

•

Examples:

fix 3 all pour 1000 2 29494 region myblock
fix 2 all pour 10000 1 19985583 region disk vol 0.33 100 rate 1.0 diam 0.9 1.1

Description:

Insert particles into a granular run every few timesteps within a specified region until N particles have been
inserted. This is useful for simulating the pouring of particles into a container under the influence of gravity.

Inserted particles are assigned the specified atom type and are assigned to two groups: the default group "all" and
the group specified in the fix pour command (which can also be "all").

This command must use the region keyword to define an insertion volume. The specified region must have been
previously defined with a region command. It must be of type block or a z−axis cylinder and must be defined with
side = in. The cylinder style of region can only be used with 3d simulations.

Each timestep particles are inserted, they are placed randomly inside the insertion volume so as to mimic a stream
of poured particles. The larger the volume, the more particles that can be inserted at any one timestep. Particles
are inserted again after enough time has elapsed that the previously inserted particles fall out of the insertion
volume under the influence of gravity. Insertions continue every so many timesteps until the desired # of particles

403

http://lammps.sandia.gov

has been inserted.

All other keywords are optional with defaults as shown below. The diam, dens, and vel options enable inserted
particles to have a range of diameters or densities or xy velocities. The specific values for a particular inserted
particle will be chosen randomly and uniformly between the specified bounds. The vz or vy value for option vel
assigns a z−velocity (3d) or y−velocity (2d) to each inserted particle.

The vol option specifies what volume fraction of the insertion volume will be filled with particles. The higher the
value, the more particles are inserted each timestep. Since inserted particles cannot overlap, the maximum volume
fraction should be no higher than about 0.6. Each timestep particles are inserted, LAMMPS will make up to a
total of M tries to insert the new particles without overlaps, where M = # of inserted particles * Nattempt. If
LAMMPS is unsuccessful at completing all insertions, it prints a warning.

The rate option moves the insertion volume in the z direction (3d) or y direction (2d). This enables pouring
particles from a successively higher height over time.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. This means you must be careful when restarting a
pouring simulation, when the restart file was written in the middle of the pouring operation. Specifically, you
should use a new fix pour command in the input script for the restarted simulation that continues the operation.
You will need to adjust the arguments of the original fix pour command to do this.

Also note that because the state of the random number generator is not saved in restart files, you cannot do
"exact" restarts with this fix, where the simulation continues on the same as if no restart had taken place.
However, in a statistical sense, a restarted simulation should produce the same behavior if you adjust the fix pour
parameters appropriately.

None of the fix_modify options are relevant to this fix. No global scalar or vector or per−atom quantities are
stored by this fix for access by various output commands. No parameter of this fix can be used with the start/stop
keywords of the run command. This fix is not invoked during energy minimization.

Restrictions:

This fix is part of the "granular" package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info.

For 3d simulations, a gravity fix in the −z direction must be defined for use in conjunction with this fix. For 2d
simulations, gravity must be defined in the −y direction.

The specified insertion region cannot be a "dynamic" region, as defined by the region command.

Related commands:

fix_deposit, fix_gravity, region

Default:

The option defaults are diam = 1.0 1.0, dens = 1.0 1.0, vol = 0.25 50, rate = 0.0, vel = 0.0 0.0 0.0 0.0 0.0.

404

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix press/berendsen command

Syntax:

fix ID group−ID press/berendsen p−style args keyword value ...

ID, group−ID are documented in fix command•
press/berendsen = style name of this fix command•
p−style = xyz or xy or yz or xz or aniso

xyz args = Pstart Pstop Pdamp
 Pstart,Pstop = desired pressure at start/end of run (pressure units)
 Pdamp = pressure damping parameter (time units)

xy or yz or xz args = Px0 Px1 Py0 Py1 Pz0 Pz1 Pdamp
 Px0,Px1,Py0,Py1,Pz0,Pz1 = desired pressure in x,y,z at
 start/end (0/1) of run (pressure units)
 Pdamp = pressure damping parameter (time units)

aniso args = Px0 Px1 Py0 Py1 Pz0 Pz1 Pdamp
 Px0,Px1,Py0,Py1,Pz0,Pz1 = desired pressure in x,y,z at
 start/end (0/1) of run (pressure units)
 Pdamp = pressure damping parameter (time units)

•

zero or more keyword/value pairs may be appended•
keyword = dilate or modulus

dilate value = all or partial
modulus value = bulk modulus of system (pressure units)

•

Examples:

fix 1 all press/berendsen xyz 0.0 0.0 1000.0
fix 2 all press/berendsen aniso 0.0 0.0 0.0 0.0 NULL NULL 1000.0 dilate partial

Description:

Reset the pressure of the system by using a Berendsen barostat (Berendsen), which rescales the system volume
and (optionally) the atoms coordinates withing the simulation box every timestep.

Regardless of what atoms are in the fix group, a global pressure is computed for all atoms. Similarly, when the
size of the simulation box is changed, all atoms are re−scaled to new positions, unless the keyword dilate is
specified with a value of partial, in which case only the atoms in the fix group are re−scaled. The latter can be
useful for leaving the coordinates of atoms in a solid substrate unchanged and controlling the pressure of a
surrounding fluid.

IMPORTANT NOTE: Unlike the fix npt or fix nph commands which perform Nose/Hoover barostatting AND
time integration, this fix does NOT perform time integration. It only modifies the box size and atom coordinates
to effect barostatting. Thus you must use a separate time integration fix, like fix nve or fix nvt to actually update
the positions and velocities of atoms. This fix can be used in conjunction with thermostatting fixes to control the
temperature, such as fix nvt or fix langevin or fix temp/berendsen.

See this howto section of the manual for a discussion of different ways to compute temperature and perform
thermostatting and barostatting.

405

http://lammps.sandia.gov

The pressure can be controlled in one of several styles, as specified by the p−style argument. In each case, the
desired pressure at each timestep is a ramped value during the run from the starting value to the end value.

Style xyz means couple all dimensions together when pressure is computed (isotropic pressure), and
dilate/contract the dimensions together.

Styles xy or yz or xz means that the 2 specified dimensions are coupled together, both for pressure computation
and for dilation/contraction. The 3rd dimension dilates/contracts independently, using its pressure component as
the driving force. These styles cannot be used for a 2d simulation.

For style aniso, all dimensions dilate/contract independently using their individual pressure components as the
driving forces.

For any of the styles except xyz, any of the independent pressure components (e.g. z in xy, or any dimension in
aniso) can have their target pressures (both start and stop values) specified as NULL. This means that no pressure
control is applied to that dimension so that the box dimension remains unchanged. For a 2d simulation the z
pressure components must be specified as NULL when using style aniso.

For styles xy and yz and xz, the starting and stopping pressures must be the same for the two coupled dimensions
and cannot be specified as NULL.

In some cases (e.g. for solids) the pressure (volume) and/or temperature of the system can oscillate undesirably
when a Nose/Hoover barostat is applied. The optional drag keyword will damp these oscillations, although it
alters the Nose/Hoover equations. A value of 0.0 (no drag) leaves the Nose/Hoover formalism unchanged. A
non−zero value adds a drag term; the larger the value specified, the greater the damping effect. Performing a short
run and monitoring the pressure is the best way to determine if the drag term is working. Typically a value
between 0.2 to 2.0 is sufficient to damp oscillations after a few periods.

For all pressure styles, the simulation box stays rectangular in shape. Parinello−Rahman boundary condition for
tilted boxes (triclinic symmetry) are supported by other LAMMPS commands (see this section of the manual), but
not yet by this command.

For all styles, the Pdamp parameter determines the time scale on which pressure is relaxed. For example, a value
of 1000.0 means to relax the pressure in a timespan of (roughly) 1000 time units (tau or fmsec or psec − see the
units command).

IMPORTANT NOTE: The relaxation time is actually also a function of the bulk modulus of the system (inverse
of isothermal compressibility). The bulk modulus has units of pressure and is the amount of pressure that would
need to be applied (isotropically) to reduce the volume of the system by a factor of 2 (assuming the bulk modulus
was a constant, independent of density, which it's not). The bulk modulus can be set via the keyword modulus.
The Pdamp parameter is effectively multiplied by the bulk modulus, so if the pressure is relaxing faster than
expected or desired, increasing the bulk modulus has the same effect as increasing Pdamp. The converse is also
true. LAMMPS does not attempt to guess a correct value of the bulk modulus; it just uses 10.0 as a default value
which gives reasonable relaxation for a Lennard−Jones liquid, but will be way off for other materials and way too
small for solids. Thus you should experiment to find appropriate values of Pdamp and/or the modulus when using
this fix.

This fix computes a temperature and pressure each timestep. To do this, the fix creates its own computes of style
"temp" and "pressure", as if these commands had been issued:

compute fix−ID_temp group−ID temp
compute fix−ID_press group−ID pressure fix−ID_temp

406

See the compute temp and compute pressure commands for details. Note that the IDs of the new computes are the
fix−ID + underscore + "temp" or fix_ID + underscore + "press", and the group for the new computes is the same
as the fix group.

Note that these are NOT the computes used by thermodynamic output (see the thermo_style command) with ID =
thermo_temp and thermo_press. This means you can change the attributes of this fix's temperature or pressure via
the compute_modify command or print this temperature or pressure during thermodynamic output via the
thermo_style custom command using the appropriate compute−ID. It also means that changing attributes of
thermo_temp or thermo_press will have no effect on this fix.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files.

The fix_modify temp and press options are supported by this fix. You can use them to assign a compute you have
defined to this fix which will be used in its temperature and pressure calculations. If you do this, note that the
kinetic energy derived from the compute temperature should be consistent with the virial term computed using all
atoms for the pressure. LAMMPS will warn you if you choose to compute temperature on a subset of atoms.

No global scalar or vector or per−atom quantities are stored by this fix for access by various output commands.

This fix can ramp its target pressure over multiple runs, using the start and stop keywords of the run command.
See the run command for details of how to do this.

This fix is not invoked during energy minimization.

Restrictions:

Any dimension being adjusted by this fix must be periodic. A dimension whose target pressures are specified as
NULL can be non−periodic or periodic.

Related commands:

fix nve, fix nph, fix npt, fix temp/berendsen, fix_modify

Default:

The keyword defaults are dilate = all, modulus = 10.0 in units of pressure for whatever units are defined.

(Berendsen) Berendsen, Postma, van Gunsteren, DiNola, Haak, J Chem Phys, 81, 3684 (1984).

407

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix print command

Syntax:

fix ID group−ID print N string keyword value ...

ID, group−ID are documented in fix command•
print = style name of this fix command•
N = print every N steps•
string = text string to print with optional variable names•
zero or more keyword/value pairs may be appended•
keyword = file or append or screen or title

file value = filename
append value = filename
screen value = yes or no
title value = string

 string = text to print as 1st line of output file

•

Examples:

fix extra all print 100 "Coords of marker atom = $x $y $z"
fix extra all print 100 "Coords of marker atom = $x $y $z" file coord.txt

Description:

Print a text string every N steps during a simulation run. This can be used for diagnostic purposes or as a
debugging tool to monitor some quantity during a run. The text string must be a single argument, so it should be
enclosed in double quotes if it is more than one word. If it contains variables it must be enclosed in double quotes
to insure they are not evaluated when the input script line is read, but will instead be evaluated each time the
string is printed.

See the variable command for a description of equal style variables which are the most useful ones to use with the
fix print command, since they are evaluated afresh each timestep that the fix print line is output. Equal−style
variables calculate formulas involving mathematical operations, atom properties, group properties,
thermodynamic properties, global values calculated by a compute or fix, or references to other variables.

If the file or append keyword is used, a filename is specified to which the output generated by this fix will be
written. If file is used, then the filename is overwritten if it already exists. If append is used, then the filename is
appended to if it already exists, or created if it does not exist.

If the screen keyword is used, output by this fix to the screen and logfile can be turned on or off as desired.

The title keyword allow specification of the string that will be printed as the first line of the output file, assuming
the file keyword was used. By default, the title line is as follows:

Fix print output for fix ID

where ID is replaced with the fix−ID.

Restart, fix_modify, output, run start/stop, minimize info:

408

http://lammps.sandia.gov

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to this
fix. No global scalar or vector or per−atom quantities are stored by this fix for access by various output
commands. No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not
invoked during energy minimization.

Restrictions: none

Related commands:

variable, print

Default:

The option defaults are no file output, screen = yes, and title string as described above.

409

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix reax/bonds command

Syntax:

fix ID group−ID reax/bonds Nevery filename

ID, group−ID are documented in fix command•
reax/bonds = style name of this fix command•
Nevery = output interval in timesteps•
filename = name of output file•

Examples:

fix 1 all reax/bonds 100 bonds.tatb

Description:

Write out the bond information computed by the ReaxFF potential specified by pair_style reax. The bond
information is written to filename on timesteps that are multiples of Nevery, including timestep 0.

The format of the output file should be self−explantory.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to this
fix. No global scalar or vector or per−atom quantities are stored by this fix for access by various output
commands. No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not
invoked during energy minimization.

Restrictions:

This fix requires that the pair_style reax be invoked. This fix is part of the "reax" package. It is only enabled if
LAMMPS was built with that package, which also requires the REAX library be built and linked with LAMMPS.
See the Making LAMMPS section for more info.

Related commands:

pair_style reax

Default:

none

410

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix recenter command

Syntax:

fix ID group−ID recenter x y z keyword value ...

ID, group−ID are documented in fix command•
recenter = style name of this fix command•
x,y,z = constrain center−of−mass to these coords (distance units), any coord can also be NULL or INIT
(see below)

•

zero or more keyword/value pairs may be appended•
keyword = shift or units

shift value = group−ID
 group−ID = group of atoms whose coords are shifted

units value = box or lattice or fraction

•

Examples:

fix 1 all recenter 0.0 0.5 0.0
fix 1 all recenter INIT INIT NULL
fix 1 all recenter INIT 0.0 0.0 units box

Description:

Constrain the center−of−mass position of a group of atoms by adjusting the coordinates of the atoms every
timestep. This is simply a small shift that does not alter the dynamics of the system or change the relative
coordinates of any pair of atoms in the group. This can be used to insure the entire collection of atoms (or a
portion of them) do not drift during the simulation due to random perturbations (e.g. fix langevin thermostatting).

Distance units for the x,y,z values are determined by the setting of the units keyword, as discussed below. One or
more x,y,z values can also be specified as NULL, which means exclude that dimension from this operation. Or it
can be specified as INIT which means to constrain the center−of−mass to its initial value at the beginning of the
run.

The center−of−mass (COM) is computed for the group specified by the fix. If the current COM is different than
the specified x,y,z, then a group of atoms has their coordinates shifted by the difference. By default the shifted
group is also the group specified by the fix. A different group can be shifted by using the shift keyword. For
example, the COM could be computed on a protein to keep it in the center of the simulation box. But the entire
system (protein + water) could be shifted.

If the units keyword is set to box, then the distance units of x,y,z are defined by the units command − e.g.
Angstroms for real units. A lattice value means the distance units are in lattice spacings. The lattice command
must have been previously used to define the lattice spacing. A fraction value means a fractional distance between
the lo/hi box boundaries, e.g. 0.5 = middle of the box. The default is to use lattice units.

Note that the velocity command can be used to create velocities with zero aggregate linear and/or angular
momentum.

IMPORTANT NOTE: This fix performs its operations at the same point in the timestep as other time integration
fixes, such as fix nve, fix nvt, or fix npt. Thus fix recenter should normally be the last such fix specified in the

411

http://lammps.sandia.gov

input script, since the adjustments it makes to atom coordinates should come after the changes made by time
integration. LAMMPS will warn you if your fixes are not ordered this way.

IMPORTANT NOTE: If you use this fix on a small group of atoms (e.g. a molecule in solvent) without using the
shift keyword to adjust the positions of all atoms in the system, then the results can be unpredictable. For
example, if the molecule is pushed in one direction by the solvent, its velocity will increase. But its coordinates
will be recentered, meaning it is pushed back towards the force. Thus over time, the velocity and temperature of
the molecule could become very large (though it won't appear to be moving due to the recentering). If you are
thermostatting the entire system, then the solvent would be cooled to compensate. A better solution for this
simulation scenario is to use the fix spring command to tether the molecule in place.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to this
fix. No global scalar or vector or per−atom quantities are stored by this fix for access by various output
commands. No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not
invoked during energy minimization.

Restrictions:

This fix should not be used with an x,y,z setting that causes a large shift in the system on the 1st timestep, due to
the requested COM being very different from the initial COM. This could cause atoms to be lost, especially in
parallel. Instead, use the displace_atoms command, which can be used to move atoms a large distance.

Related commands:

fix momentum, velocity

Default:

The option defaults are adjust = fix group−ID, and units = lattice.

412

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix rigid

Syntax:

fix ID group−ID rigid bodystyle args keyword values ...

ID, group−ID are documented in fix command•
rigid = style name of this fix command•
bodystyle = single or molecule or group

single args = none
molecule args = none
group args = N groupID1 groupID2 ...

 N = # of groups
 groupID1, groupID2, ... = list of N group IDs

•

zero or more keyword/value pairs may be appended•
keyword = force or torque

force values = M xflag yflag zflag
 M = which rigid body from 1−Nbody (see asterisk form below)
 xflag,yflag,zflag = off/on if component of center−of−mass force is active

torque values = M xflag yflag zflag
 M = which rigid body from 1−Nbody (see asterisk form below)
 xflag,yflag,zflag = off/on if component of center−of−mass torque is active

•

Examples:

fix 1 clump rigid single
fix 1 clump rigid single force 1 off off on
fix 1 polychains rigid molecule
fix 1 polychains rigid molecule force 1*5 off off off force 6*10 off off on
fix 2 fluid rigid group 3 clump1 clump2 clump3
fix 2 fluid rigid group 3 clump1 clump2 clump3 torque * off off off

Description:

Treat one or more sets of atoms as independent rigid bodies. This means that each timestep the total force and
torque on each rigid body is computed as the sum of the forces and torques on its constituent particles and the
coordinates, velocities, and orientations of the atoms in each body are updated so that the body moves and rotates
as a single entity.

Examples of large rigid bodies are a large colloidal particle, or portions of a large biomolecule such as a protein.

Example of small rigid bodies are patchy nanoparticles, such as those modeled in this paper by Sharon Glotzer's
group, clumps of granular particles, lipid molecules consiting of one or more point dipoles connected to other
spheroids or ellipsoids, and coarse−grain models of nano or colloidal particles consisting of a small number of
constituent particles. Note that the fix shake command can also be used to rigidify small molecules of 2, 3, or 4
atoms, e.g. water molecules. That fix treats the constituent atoms as point masses.

The constituent particles within a rigid body can be point particles (the default in LAMMPS) or finite−size
particles, such as spheroids and ellipsoids. See the shape command and atom_style granular for more details on
these kinds of particles. Finite−size particles contribute differently to the moment of inertia of a rigid body than
do point particles. Finite−size particles can also experience torque (e.g. due to frictional granular interactions) and

413

http://lammps.sandia.gov

have an orientation. These contributions are accounted for by the fix.

Forces between particles within a body do not contribute to the external force or torque on the body. Thus for
computational efficiency, you may wish to turn off pairwise and bond interactions between particles within each
rigid body. The neigh_modify exclude and delete_bonds commands are used to do this. For finite−size particles
this also means the particles can be highly overlapped when creating the rigid body.

IMPORTANT NOTE: This fix is overkill if you simply want to hold a collection of atoms stationary or have them
move with a constant velocity. A simpler way to hold atoms stationary is to not include those atoms in your time
integration fix. E.g. use "fix 1 mobile nve" instead of "fix 1 all nve", where "mobile" is the group of atoms that
you want to move. You can move atoms with a constant velocity by assigning them an initial velocity (via the
velocity command), setting the force on them to 0.0 (via the fix setforce command), and integrating them as usual
(e.g. via the fix nve command).

IMPORTANT NOTE: This fix updates the positions and velocities of the rigid atoms with a constant−energy time
integration, so you should not update the same atoms via other fixes (e.g. nve, nvt, npt).

Each body must have two or more atoms. An atom can belong to at most one rigid body. Which atoms are in
which bodies can be defined via several options.

For bodystyle single the entire fix group of atoms is treated as one rigid body.

For bodystyle molecule, each set of atoms in the fix group with a different molecule ID is treated as a rigid body.

For bodystyle group, each of the listed groups is treated as a separate rigid body. Only atoms that are also in the
fix group are included in each rigid body.

By default, each rigid body is acted on by other atoms which induce an external force and torque on its center of
mass, causing it to translate and rotate. Components of the external center−of−mass force and torque can be
turned off by the force and torque keywords. This may be useful if you wish a body to rotate but not translate, or
vice versa, or if you wish it to rotate or translate continuously unaffected by interactions with other particles. Note
that if you expect a rigid body not to move or rotate by using these keywords, you must insure its initial
center−of−mass translational or angular velocity is 0.0. Otherwise the initial translational or angular momentum
the body has will persist.

An xflag, yflag, or zflag set to off means turn off the component of force of torque in that dimension. A setting of
on means turn on the component, which is the default. Which rigid body(s) the settings apply to is determined by
the first argument of the force and torque keywords. It can be an integer M from 1 to Nbody, where Nbody is the
number of rigid bodies defined. A wild−card asterisk can be used in place of, or in conjunction with, the M
argument to set the flags for multiple rigid bodies. This takes the form "*" or "*n" or "n*" or "m*n". If N = the
number of rigid bodies, then an asterisk with no numeric values means all bodies from 1 to N. A leading asterisk
means all bodies from 1 to n (inclusive). A trailing asterisk means all bodies from n to N (inclusive). A middle
asterisk means all types from m to n (inclusive). Note that you can use the force or torque keywords as many
times as you like. If a particular rigid body has its component flags set multiple times, the settings from the final
keyword are used.

For computational efficiency, you may wish to turn off pairwise and bond interactions within each rigid body, as
they no longer contribute to the motion. The neigh_modify exclude and delete_bonds commands are used to do
this.

For computational efficiency, you should define one fix rigid which includes all the desired rigid bodies.
LAMMPS will allow multiple rigid fixes to be defined, but it is more expensive.

414

This fix uses constant−energy NVE−style integration, so you may need to impose additional constraints to control
the temperature of an ensemble of rigid bodies. You can use fix langevin for this purpose to treat the system as
effectively immersed in an implicit solvent, e.g. a Brownian dynamics model. Or you can thermostat only the
non−rigid atoms that surround one or more rigid bodies (i.e. explicit solvent) by appropriate choice of groups in
the compute and fix commands for temperature and thermostatting.

If you calculate a temperature for particles in the rigid bodies, the degrees−of−freedom removed by each rigid
body are accounted for in the temperature (and pressure) computation, but only if the temperature group includes
all the particles in a particular rigid body.

A 3d rigid body has 6 degrees of freedom (3 translational, 3 rotational), except for a collection of point particles
lying on a straight line, which has only 5, e.g a dimer. A 2d rigid body has 3 degrees of freedom (2 translational, 1
rotational).

IMPORTANT NOTE: You may wish to explicitly subtract additional degrees−of−freedom if you use the force
and torque keywords to eliminate certain motions of one or more rigid bodies, as LAMMPS does not do this
automatically.

The rigid body contribution to the pressure of the system (virial) is also accounted for by this fix.

IMPORTANT NOTE: The periodic image flags of atoms in rigid bodies are modified when the center−of−mass
of the rigid body moves across a periodic boundary. They are not incremented/decremented as they would be for
non−rigid atoms. This change does not affect dynamics, but means that any diagnostic computation based on the
atomic image flag values must be adjusted accordingly. For example, the fix msd will not compute the expected
mean−squared displacement for such atoms, and the image flag values written to a dump file will be different than
they would be if the atoms were not in a rigid body. It also means that if you have bonds between a pair of rigid
bodies and the bond straddles a periodic boundary, you cannot use the replicate command to increase the system
size.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to this
fix.

This fix computes a global array of values which can be accessed by various output commands. The number of
rows in the array is equal to the number of rigid bodies. The number of columns is 12. Thus for each rigid body,
12 values are stored: the xyz coords of the center of mass (COM), the xyz components of the COM velocity, the
xyz components of the force acting on the COM, and the xyz components of the torque acting on the COM. The
force and torque values in the array are not affected by the force and torque keywords in the fix rigid command;
they reflect values before any changes are made by those keywords.

The ordering of the rigid bodies (by row in the array) is as follows. For the single keyword there is just one rigid
body. For the molecule keyword, the bodies are ordered by ascending molecule ID. For the group keyword, the
list of group IDs determines the ordering of bodies.

The array values calculated by this fix are "intensive", meaning they are independent of the number of atoms in
the simulation.

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions:

415

This fix performs an MPI_Allreduce each timestep that is proportional in length to the number of rigid bodies.
Hence it will not scale well in parallel if large numbers of rigid bodies are simulated.

If the atoms in a single rigid body initially straddle a periodic boundary, the input data file must define the image
flags for each atom correctly, so that LAMMPS can "unwrap" the atoms into a valid rigid body.

Related commands:

delete_bonds, neigh_modify exclude

Default:

The option defaults are force * on on on and torque * on on on meaning all rigid bodies are acted on by
center−of−mass force and torque.

(Zhang) Zhang, Glotzer, Nanoletters, 4, 1407−1413 (2004).

416

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix setforce command

Syntax:

fix ID group−ID setforce fx fy fz

ID, group−ID are documented in fix command•
setforce = style name of this fix command•
fx,fy,fz = force component values•

Examples:

fix freeze indenter setforce 0.0 0.0 0.0
fix 2 edge setforce NULL 0.0 0.0

Description:

Set each component of force on each atom in the group to the specified values fx,fy,fz. This erases all previously
computed forces on the atom, though additional fixes could add new forces. This command can be used to freeze
certain atoms in the simulation by zeroing their force, assuming their initial velocity zero.

Any of the fx,fy,fz values can be specified as NULL which means do not alter the force component in that
dimension.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to this
fix.

This fix computes a 3−vector of forces, which can be accessed by various output commands. This is the total
force on the group of atoms before the forces on individual atoms are changed by the fix. The vector values
calculated by this fix are "extensive", meaning they scale with the number of atoms in the simulation.

No parameter of this fix can be used with the start/stop keywords of the run command.

The forces due to this fix are imposed during an energy minimization, invoked by the minimize command.

Restrictions: none

Related commands:

fix addforce, fix aveforce

Default: none

417

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix shake command

Syntax:

fix ID group−ID shake tol iter N keyword values ...

ID, group−ID are documented in fix command•
shake = style name of this fix command•
tol = accuracy tolerance of SHAKE solution•
iter = max # of iterations in each SHAKE solution•
N = print SHAKE statistics every this many timesteps (0 = never)•
one or more keyword/value pairs are appended•
keyword = b or a or t or m

b values = one or more bond types
a values = one or more angle types
t values = one or more atom types
m value = one or more mass values

•

Examples:

fix 1 sub shake 0.0001 20 10 b 4 19 a 3 5 2
fix 1 sub shake 0.0001 20 10 t 5 6 m 1.0 a 31

Description:

Apply bond and angle constraints to specified bonds and angles in the simulation. This typically enables a longer
timestep.

Each timestep the specified bonds and angles are reset to their equilibrium lengths and angular values via the
well−known SHAKE algorithm. This is done by applying an additional constraint force so that the new positions
preserve the desired atom separations. The equations for the additional force are solved via an iterative method
that typically converges to an accurate solution in a few iterations. The desired tolerance (e.g. 1.0e−4 = 1 part in
10000) and maximum # of iterations are specified as arguments. Setting the N argument will print statistics to the
screen and log file about regarding the lengths of bonds and angles that are being constrained. Small delta values
mean SHAKE is doing a good job.

In LAMMPS, only small clusters of atoms can be constrained. This is so the constraint calculation for a cluster
can be performed by a single processor, to enable good parallel performance. A cluster is defined as a central
atom connected to others in the cluster by constrained bonds. LAMMPS allows for the following kinds of clusters
to be constrained: one central atom bonded to 1 or 2 or 3 atoms, or one central atom bonded to 2 others and the
angle between the 3 atoms also constrained. This means water molecules or CH2 or CH3 groups may be
constrained, but not all the C−C backbone bonds of a long polymer chain.

The b keyword lists bond types that will be constrained. The t keyword lists atom types. All bonds connected to
an atom of the specified type will be constrained. The m keyword lists atom masses. All bonds connected to atoms
of the specified masses will be constrained (within a fudge factor of MASSDELTA specified in fix_shake.cpp).
The a keyword lists angle types. If both bonds in the angle are constrained then the angle will also be constrained
if its type is in the list.

For all keywords, a particular bond is only constrained if both atoms in the bond are in the group specified with

418

http://lammps.sandia.gov

the SHAKE fix.

The degrees−of−freedom removed by SHAKE bonds and angles are accounted for in temperature and pressure
computations. Similarly, the SHAKE contribution to the pressure of the system (virial) is also accounted for.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to this
fix. No global scalar or vector or per−atom quantities are stored by this fix for access by various output
commands. No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not
invoked during energy minimization.

Restrictions:

For computational efficiency, there can only be one shake fix defined in a simulation.

If you use a tolerance that is too large or a max−iteration count that is too small, the constraints will not be
enforced very strongly, which can lead to poor energy conservation. You can test for this in your system by
running a constant NVE simulation with a particular set of SHAKE parameters and monitoring the energy versus
time.

Related commands: none

Default: none

419

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix smd command

Syntax:

fix ID group−ID smd type values keyword values

ID, group−ID are documented in fix command•
smd = style name of this fix command•
mode = cvel or cfor to select constant velocity or constant force SMD

cvel values = K vel
 K = spring constant (force/distance units)
 vel = velocity of pulling (distance/time units)

cfor values = force
 force = pulling force (force units)

•

keyword = tether or couple

tether values = x y z R0
 x,y,z = point to which spring is tethered
 R0 = distance of end of spring from tether point (distance units)

couple values = group−ID2 x y z R0
 group−ID2 = 2nd group to couple to fix group with a spring
 x,y,z = direction of spring, automatically computed with 'auto'
 R0 = distance of end of spring (distance units)

•

Examples:

fix pull cterm smd cvel 20.0 −0.00005 tether NULL NULL 100.0 0.0
fix pull cterm smd cvel 20.0 −0.0001 tether 25.0 25 25.0 0.0
fix stretch cterm smd cvel 20.0 0.0001 couple nterm auto auto auto 0.0
fix pull cterm smd cfor 5.0 tether 25.0 25.0 25.0 0.0

Description:

This fix implements several options of steered MD (SMD) as reviewed in (Izrailev), which allows to induce
conformational changes in systems and to compute the potential of mean force (PMF) along the assumed reaction
coordinate (Park) based on Jarzynski's equality (Jarzynski). This fix borrows a lot from fix spring and fix setforce.

You can apply a moving spring force to a group of atoms (tether style) or between two groups of atoms (couple
style). The spring can then be used in either constant velocity (cvel) mode or in constant force (cfor) mode to
induce transitions in your systems. When running in tether style, you may need some way to fix some other part
of the system (e.g. via fix spring/self)

The tether style attaches a spring between a point at a distance of R0 away from a fixed point x,y,z and the center
of mass of the fix group of atoms. A restoring force of magnitude K (R − R0) Mi / M is applied to each atom in
the group where K is the spring constant, Mi is the mass of the atom, and M is the total mass of all atoms in the
group. Note that K thus represents the total force on the group of atoms, not a per−atom force.

In cvel mode the distance R is incremented or decremented monotonously according to the pulling (or pushing)
velocity. In cfor mode a constant force is added and the actual distance in direction of the spring is recorded.

The couple style links two groups of atoms together. The first group is the fix group; the second is specified by
group−ID2. The groups are coupled together by a spring that is at equilibrium when the two groups are displaced

420

http://lammps.sandia.gov

by a vector in direction x,y,z with respect to each other and at a distance R0 from that displacement. Note that
x,y,z only provides a direction and will be internally normalized. But since it represents the absolute displacement
of group−ID2 relative to the fix group, (1,1,0) is a different spring than (−1,−1,0). For each vector component, the
displacement can be described with the auto parameter. In this case the direction is recomputed in every step,
which can be useful for steering a local process where the whole object undergoes some other change. When the
relative positions and distance between the two groups are not in equilibrium, the same spring force described
above is applied to atoms in each of the two groups.

For both the tether and couple styles, any of the x,y,z values can be specified as NULL which means do not
include that dimension in the distance calculation or force application.

For constant velocity pulling (cvel mode), the running integral over the pulling force in direction of the spring is
recorded and can then later be used to compute the potential of mean force (PMF) by averaging over multiple
independent trajectories along the same pulling path.

Restart, fix_modify, output, run start/stop, minimize info:

The fix stores the direction of the spring, current pulling target distance and the running PMF to binary restart
files. See the read_restart command for info on how to re−specify a fix in an input script that reads a restart file,
so that the operation of the fix continues in an uninterrupted fashion.

None of the fix_modify options are relevant to this fix.

This fix computes a vector list of 7 quantities, which can be accessed by various output commands. The quantities
in the vector are in this order: the x−, y−, and z−component of the pulling force, the total force in direction of the
pull, the equilibrium distance of the spring, the distance between the two reference points, and finally the
accumulated PMF (the sum of pulling forces times displacement).

The force is the total force on the group of atoms by the spring. In the case of the couple style, it is the force on
the fix group (group−ID) or the negative of the force on the 2nd group (group−ID2). The vector values calculated
by this fix are "extensive", meaning they scale with the number of atoms in the simulation.

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions:

This fix is part of the "user−smd" package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info.

Related commands:

fix drag, fix spring, fix spring/self, fix spring/rg

Default: none

(Izrailev) Izrailev, Stepaniants, Isralewitz, Kosztin, Lu, Molnar, Wriggers, Schulten. Computational Molecular
Dynamics: Challenges, Methods, Ideas, volume 4 of Lecture Notes in Computational Science and Engineering,
pp. 39−65. Springer−Verlag, Berlin, 1998.

(Park) Park, Schulten, J. Chem. Phys. 120 (13), 5946 (2004)

421

(Jarzynski) Jarzynski, Phys. Rev. Lett. 78, 2690 (1997)

422

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix spring command

Syntax:

fix ID group−ID spring keyword values

ID, group−ID are documented in fix command•
spring = style name of this fix command•
keyword = tether or couple

tether values = K x y z R0
 K = spring constant (force/distance units)
 x,y,z = point to which spring is tethered
 R0 = equilibrium distance from tether point (distance units)

couple values = group−ID2 K x y z R0
 group−ID2 = 2nd group to couple to fix group with a spring
 K = spring constant (force/distance units)
 x,y,z = direction of spring
 R0 = equilibrium distance of spring (distance units)

•

Examples:

fix pull ligand spring tether 50.0 0.0 0.0 0.0 0.0
fix pull ligand spring tether 50.0 0.0 0.0 0.0 5.0
fix pull ligand spring tether 50.0 NULL NULL 2.0 3.0
fix 5 bilayer1 spring couple bilayer2 100.0 NULL NULL 10.0 0.0
fix longitudinal pore spring couple ion 100.0 NULL NULL −20.0 0.0
fix radial pore spring couple ion 100.0 0.0 0.0 NULL 5.0

Description:

Apply a spring force to a group of atoms or between two groups of atoms. This is useful for applying an umbrella
force to a small molecule or lightly tethering a large group of atoms (e.g. all the solvent or a large molecule) to the
center of the simulation box so that it doesn't wander away over the course of a long simulation. It can also be
used to hold the centers of mass of two groups of atoms at a given distance or orientation with respect to each
other.

The tether style attaches a spring between a fixed point x,y,z and the center of mass of the fix group of atoms. The
equilibrium position of the spring is R0. At each timestep the distance R from the center of mass of the group of
atoms to the tethering point is computed, taking account of wrap−around in a periodic simulation box. A restoring
force of magnitude K (R − R0) Mi / M is applied to each atom in the group where K is the spring constant, Mi is
the mass of the atom, and M is the total mass of all atoms in the group. Note that K thus represents the total force
on the group of atoms, not a per−atom force.

The couple style links two groups of atoms together. The first group is the fix group; the second is specified by
group−ID2. The groups are coupled together by a spring that is at equilibrium when the two groups are displaced
by a vector x,y,z with respect to each other and at a distance R0 from that displacement. Note that x,y,z is the
equilibrium displacement of group−ID2 relative to the fix group. Thus (1,1,0) is a different spring than (−1,−1,0).
When the relative positions and distance between the two groups are not in equilibrium, the same spring force
described above is applied to atoms in each of the two groups.

For both the tether and couple styles, any of the x,y,z values can be specified as NULL which means do not
include that dimension in the distance calculation or force application.

423

http://lammps.sandia.gov

The first example above pulls the ligand towards the point (0,0,0). The second example holds the ligand near the
surface of a sphere of radius 5 around the point (0,0,0). The third example holds the ligand a distance 3 away from
the z=2 plane (on either side).

The fourth example holds 2 bilayers a distance 10 apart in z. For the last two examples, imagine a pore (a slab of
atoms with a cylindrical hole cut out) oriented with the pore axis along z, and an ion moving within the pore. The
fifth example holds the ion a distance of −20 below the z = 0 center plane of the pore (umbrella sampling). The
last example holds the ion a distance 5 away from the pore axis (assuming the center−of−mass of the pore in x,y
is the pore axis).

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files.

The fix_modify energy option is supported by this fix to add the energy stored in the spring to the system's
potential energy as part of thermodynamic output.

This fix computes a scalar energy which can be accessed by various output commands. This energy is spring
energy = 0.5 * K * r^2.

This fix also computes 4 output quantities stored in a vector of length 4, which can be accessed by various output
commands. The first 3 quantities are xyz components of the total force added to the group of atoms by the spring.
In the case of the couple style, it is the force on the fix group (group−ID) or the negative of the force on the 2nd
group (group−ID2). The 4th quantity is the magnitude of the force added by the spring, as a positive value if
(r−R0) > 0 and a negative value if (r−R0) < 0. This sign convention can be useful when using the spring force to
compute a potential of mean force (PMF).

The scalar and vector values calculated by this fix are "extensive", meaning they scale with the number of atoms
in the simulation.

No parameter of this fix can be used with the start/stop keywords of the run command.

The forces due to this fix are imposed during an energy minimization, invoked by the minimize command.

IMPORTANT NOTE: If you want the spring energy to be included in the total potential energy of the system (the
quantity being minimized), you MUST enable the fix_modify energy option for this fix.

Restrictions: none

Related commands:

fix drag, fix spring/self, fix spring/rg, fix smd

Default: none

424

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix spring/rg command

Syntax:

fix ID group−ID spring/rg K RG0

ID, group−ID are documented in fix command•
spring/rg = style name of this fix command•
K = harmonic force constant (force/distance units)•
RG0 = target radius of gyration to constrain to (distance units)•

 if RG0 = NULL, use the current RG as the target value

Examples:

fix 1 protein spring/rg 5.0 10.0
fix 2 micelle spring/rg 5.0 NULL

Description:

Apply a harmonic restraining force to atoms in the group to affect their central moment about the center of mass
(radius of gyration). This fix is useful to encourage a protein or polymer to fold/unfold and also when sampling
along the radius of gyration as a reaction coordinate (i.e. for protein folding).

The radius of gyration is defined as RG in the first formula. The energy of the constraint and associated force on
each atom is given by the second and third formulas, when the group is at a different RG than the target value
RG0.

The (xi − center−of−mass) term is computed taking into account periodic boundary conditions, m_i is the mass of
the atom, and M is the mass of the entire group. Note that K is thus a force constant for the aggregate force on the
group of atoms, not a per−atom force.

If RG0 is specified as NULL, then the RG of the group is computed at the time the fix is specified, and that value
is used as the target.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to this
fix. No global scalar or vector or per−atom quantities are stored by this fix for access by various output
commands. No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not

425

http://lammps.sandia.gov

invoked during energy minimization.

Restrictions: none

Related commands:

fix spring, fix spring/self fix drag, fix smd

Default: none

426

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix spring/self command

Syntax:

fix ID group−ID spring/self K

ID, group−ID are documented in fix command•
spring/self = style name of this fix command•
K = spring constant (force/distance units)•

Examples:

fix tether boundary−atoms spring/self 10.0

Description:

Apply a spring force independently to each atom in the group to tether it to its initial position. The initial position
for each atom is its location at the time the fix command was issued. At each timestep, the magnitude of the force
on each atom is −Kr, where r is the displacement of the atom from its current position to its initial position.

Restart, fix_modify, output, run start/stop, minimize info:

This fix writes the original coordinates of tethered atoms to binary restart files, so that the spring effect will be the
same in a restarted simulation. See the read_restart command for info on how to re−specify a fix in an input script
that reads a restart file, so that the operation of the fix continues in an uninterrupted fashion.

The fix_modify energy option is supported by this fix to add the energy stored in the per−atom springs to the
system's potential energy as part of thermodynamic output.

This fix computes a scalar energy which can be accessed by various output commands. This energy is the sum of
the spring energy for each atom, where the per−atom energy is 0.5 * K * r^2.

No parameter of this fix can be used with the start/stop keywords of the run command.

The forces due to this fix are imposed during an energy minimization, invoked by the minimize command.

IMPORTANT NOTE: If you want the per−atom spring energy to be included in the total potential energy of the
system (the quantity being minimized), you MUST enable the fix_modify energy option for this fix.

Restrictions: none

Related commands:

fix drag, fix spring, fix smd, fix spring/rg

Default: none

427

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix store/coord command

Syntax:

fix ID group−ID store/coord keyword values ...

ID, group−ID are documented in fix command•
store/coord = style name of this fix command•
zero or more keyword/value pairs may be appended•
keyword = com

com value = yes or no

•

Examples:

fix 1 all store/coord
fix 1 upper store/coord com yes

Description:

Store the original coordinates of atoms in the group at the time the fix command is issued. This is used for
computing a displacement of the atoms at later times, via the compute displace/atom command. Or the original
coordinates can be accessed by other output commands that use per−atom quantities such as the dump custom
command.

IMPORTANT NOTE: The original coordinates are stored in "unwrapped" form, by using the image flags
associated with each atom. See the dump custom command for a discussion of "unwrapped" coordinates. See the
Atoms section of the read_data command for a discussion of image flags and how they are set for each atom. You
can reset the image flags (e.g. to 0) before invoking this fix by using the set image command.

IMPORTANT NOTE: If an atom is part of a rigid body (see the fix rigid command), it's periodic image flags are
altered, and its original coordinates may not be what you expect. See the fix rigid command for details.

If the com keyword is set to yes then the position of each atom relative to the center−of−mass of the group of
atoms is stored, instead of the absolute position. This option is used by the compute msd command.

Restart, fix_modify, output, run start/stop, minimize info:

This fix writes the original coordinates of the atoms to binary restart files, so that the values can be restored when
a simulation is restarted. See the read_restart command for info on how to re−specify a fix in an input script that
reads a restart file, so that the operation of the fix continues in an uninterrupted fashion.

None of the fix_modify options are relevant to this fix.

This fix produces a per−atom array which can be accessed by various output commands. The number of columns
for each atom is 3, and the columns store the original unwrapped x,y,z coords of each atom. The per−atom values
be accessed on any timestep.

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

428

http://lammps.sandia.gov

Restrictions: none

Related commands:

compute msd, compute displace/atom, compute store/force

Default:

The option default is com = no.

429

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix store/force command

Syntax:

fix ID group−ID store/force

ID, group−ID are documented in fix command•
store/force = style name of this fix command•

Examples:

fix 1 all store/force

Description:

Store the forces on atoms in the group at the point in time during timestepping when the fix is invoked, as
described below. This is useful for storing forces before constraints or other boundary conditions are computed
which modify the forces, so that the original forces can be written to a dump file or accessed by other output
commands that use per−atom quantities.

This fix is invoked at the point in the velocity−Verlet timestepping immediately after pair, bond, angle, dihedral,
improper, and long−range forces have been calculated. It is the point in the timestep when various fixes that
compute constraint forces are calculated and potentially modify the force on each atom. Examples of such fixes
are fix shake, fix wall, and fix indent.

IMPORTANT NOTE: The order in which various fixes are applied which operate at the same point during the
timestep, is the same as the order they are specified in the input script. Thus normally, if you want to store
per−atom forces due to force field interactions, before constraints are applied, you should list this fix first within
that set of fixes, i.e. before other fixes that apply constraints. However, if you wish to include certain constraints
(e.g. fix shake) in the stored force, then it could be specified after some fixes and before others.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to this
fix.

This fix produces a per−atom array which can be accessed by various output commands. The number of columns
for each atom is 3, and the columns store the x,y,z forces on each atom. The per−atom values be accessed on any
timestep.

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions: none

Related commands:

compute store/coord

Default: none

430

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix temp/berendsen command

Syntax:

fix ID group−ID temp/berendsen Tstart Tstop Tdamp

ID, group−ID are documented in fix command•
temp/berendsen = style name of this fix command•
Tstart,Tstop = desired temperature at start/end of run•
Tdamp = temperature damping parameter (time units)•

Examples:

fix 1 all temp/berendsen 300.0 300.0 100.0

Description:

Reset the temperature of a group of atoms by using a Berendsen thermostat (Berendsen), which rescales their
velocities every timestep.

The thermostat is applied to only the translational degrees of freedom for the particles, which is an important
consideration if extended spherical or aspherical particles which have rotational degrees of freedom are being
thermostatted with this fix. The translational degrees of freedom can also have a bias velocity removed from them
before thermostatting takes place; see the description below.

The desired temperature at each timestep is a ramped value during the run from Tstart to Tstop. The Tdamp
parameter is specified in time units and determines how rapidly the temperature is relaxed. For example, a value
of 100.0 means to relax the temperature in a timespan of (roughly) 100 time units (tau or fmsec or psec − see the
units command).

IMPORTANT NOTE: Unlike the fix nvt command which performs Nose/Hoover thermostatting AND time
integration, this fix does NOT perform time integration. It only modifies velocities to effect thermostatting. Thus
you must use a separate time integration fix, like fix nve to actually update the positions of atoms using the
modified velocities. Likewise, this fix should not normally be used on atoms that also have their temperature
controlled by another fix − e.g. by fix nvt or fix langevin commands.

See this howto section of the manual for a discussion of different ways to compute temperature and perform
thermostatting.

This fix computes a temperature each timestep. To do this, the fix creates its own compute of style "temp", as if
this command had been issued:

compute fix−ID_temp group−ID temp

See the compute temp command for details. Note that the ID of the new compute is the fix−ID + underscore +
"temp", and the group for the new compute is the same as the fix group.

Note that this is NOT the compute used by thermodynamic output (see the thermo_style command) with ID =
thermo_temp. This means you can change the attributes of this fix's temperature (e.g. its degrees−of−freedom) via
the compute_modify command or print this temperature during thermodynamic output via the thermo_style

431

http://lammps.sandia.gov

custom command using the appropriate compute−ID. It also means that changing attributes of thermo_temp will
have no effect on this fix.

Like other fixes that perform thermostatting, this fix can be used with compute commands that calculate a
temperature after removing a "bias" from the atom velocities. E.g. removing the center−of−mass velocity from a
group of atoms or only calculating temperature on the x−component of velocity or only calculating temperature
for atoms in a geometric region. This is not done by default, but only if the fix_modify command is used to assign
a temperature compute to this fix that includes such a bias term. See the doc pages for individual compute
commands to determine which ones include a bias. In this case, the thermostat works in the following manner: the
current temperature is calculated taking the bias into account, bias is removed from each atom, thermostatting is
performed on the remaining thermal degrees of freedom, and the bias is added back in.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files.

The fix_modify temp option is supported by this fix. You can use it to assign a temperature compute you have
defined to this fix which will be used in its thermostatting procedure, as described above. For consistency, the
group used by this fix and by the compute should be the same.

No global scalar or vector or per−atom quantities are stored by this fix for access by various output commands.

This fix can ramp its target temperature over multiple runs, using the start and stop keywords of the run
command. See the run command for details of how to do this.

This fix is not invoked during energy minimization.

Restrictions: none

Related commands:

fix nve, fix nvt, fix temp/rescale, fix langevin, fix_modify, compute temp, fix press/berendsen

Default: none

(Berendsen) Berendsen, Postma, van Gunsteren, DiNola, Haak, J Chem Phys, 81, 3684 (1984).

432

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix temp/rescale command

Syntax:

fix ID group−ID temp/rescale N Tstart Tstop window fraction

ID, group−ID are documented in fix command•
temp/rescale = style name of this fix command•
N = perform rescaling every N steps•
Tstart,Tstop = desired temperature at start/end of run (temperature units)•
window = only rescale if temperature is outside this window (temperature units)•
fraction = rescale to target temperature by this fraction•

Examples:

fix 3 flow temp/rescale 100 1.0 1.1 0.02 0.5
fix 3 boundary temp/rescale 1 1.0 1.5 0.05 1.0
fix 3 boundary temp/rescale 1 1.0 1.5 0.05 1.0

Description:

Reset the temperature of a group of atoms by explicitly rescaling their velocities.

The rescaling is applied to only the translational degrees of freedom for the particles, which is an important
consideration if extended spherical or aspherical particles which have rotational degrees of freedom are being
thermostatted with this fix. The translational degrees of freedom can also have a bias velocity removed from them
before thermostatting takes place; see the description below.

Rescaling is performed every N timesteps. The target temperature is a ramped value between the Tstart and Tstop
temperatures at the beginning and end of the run.

Rescaling is only performed if the difference between the current and desired temperatures is greater than the
window value. The amount of rescaling that is applied is a fraction (from 0.0 to 1.0) of the difference between the
actual and desired temperature. E.g. if fraction = 1.0, the temperature is reset to exactly the desired value.

IMPORTANT NOTE: Unlike the fix nvt command which performs Nose/Hoover thermostatting AND time
integration, this fix does NOT perform time integration. It only modifies velocities to effect thermostatting. Thus
you must use a separate time integration fix, like fix nve to actually update the positions of atoms using the
modified velocities. Likewise, this fix should not normally be used on atoms that also have their temperature
controlled by another fix − e.g. by fix nvt or fix langevin commands.

See this howto section of the manual for a discussion of different ways to compute temperature and perform
thermostatting.

This fix computes a temperature each timestep. To do this, the fix creates its own compute of style "temp", as if
one of this command had been issued:

compute fix−ID_temp group−ID temp

See the compute temp for details. Note that the ID of the new compute is the fix−ID + underscore + "temp", and
the group for the new compute is the same as the fix group.

433

http://lammps.sandia.gov

Note that this is NOT the compute used by thermodynamic output (see the thermo_style command) with ID =
thermo_temp. This means you can change the attributes of this fix's temperature (e.g. its degrees−of−freedom) via
the compute_modify command or print this temperature during thermodynamic output via the thermo_style
custom command using the appropriate compute−ID. It also means that changing attributes of thermo_temp will
have no effect on this fix.

Like other fixes that perform thermostatting, this fix can be used with compute commands that calculate a
temperature after removing a "bias" from the atom velocities. E.g. removing the center−of−mass velocity from a
group of atoms or only calculating temperature on the x−component of velocity or only calculating temperature
for atoms in a geometric region. This is not done by default, but only if the fix_modify command is used to assign
a temperature compute to this fix that includes such a bias term. See the doc pages for individual compute
commands to determine which ones include a bias. In this case, the thermostat works in the following manner: the
current temperature is calculated taking the bias into account, bias is removed from each atom, thermostatting is
performed on the remaining thermal degrees of freedom, and the bias is added back in.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files.

The fix_modify temp option is supported by this fix. You can use it to assign a temperature compute you have
defined to this fix which will be used in its thermostatting procedure, as described above. For consistency, the
group used by this fix and by the compute should be the same.

The fix_modify energy option is supported by this fix to add the energy change implied by a velocity rescaling to
the system's potential energy as part of thermodynamic output.

The cummulative energy change due to this fix is stored as a scalar quantity, which can be accessed by various
output commands. The scalar value calculated by this fix is "extensive", meaning it scales with the number of
atoms in the simulation.

This fix can ramp its target temperature over multiple runs, using the start and stop keywords of the run
command. See the run command for details of how to do this.

This fix is not invoked during energy minimization.

Restrictions: none

Related commands:

fix langevin, fix nvt, fix_modify

Default: none

434

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix thermal/conductivity command

Syntax:

fix ID group−ID thermal/conductivity N edim Nbin keyword value ...

ID, group−ID are documented in fix command•
thermal/conductivity = style name of this fix command•
N = perform kinetic energy exchange every N steps•
edim = x or y or z = direction of kinetic energy transfer•
Nbin = # of layers in edim direction (must be even number)•
zero or more keyword/value pairs may be appended•
keyword = swap

swap value = Nswap = number of swaps to perform every N steps

•

Examples:

fix 1 all thermal/conductivity 100 z 20
fix 1 all thermal/conductivity 50 z 20 swap 2

Description:

Use the Muller−Plathe algorithm described in this paper to exchange kinetic energy between two particles in
different regions of the simulation box every N steps. This induces a temperature gradient in the system. As
described below this enables a thermal conductivity of the fluid to be calculated. This algorithm is sometimes
called a reverse non−equilibrium MD (reverse NEMD) approach to computing thermal conductivity. This is
because the usual NEMD approach is to impose a temperature gradient on the system and measure the response as
the resulting heat flux. In the Muller−Plathe method, the heat flux is imposed, and the temperature gradient is the
system's response.

See the compute heat/flux command for details on how to compute thermal conductivity in an alternate way, via
the Green−Kubo formalism.

The simulation box is divided into Nbin layers in the edim direction, where the layer 1 is at the low end of that
dimension and the layer Nbin is at the high end. Every N steps, Nswap pairs of atoms are chosen in the following
manner. Only atoms in the fix group are considered. The hottest Nswap atoms in layer 1 are selected. Similarly,
the coldest Nswap atoms in the "middle" layer (see below) are selected. The two sets of Nswap atoms are paired
up and their velocities are exchanged. This effectively swaps their kinetic energies, assuming their masses are the
same. Over time, this induces a temperature gradient in the system which can be measured using commands such
as the following, which writes the temperature profile (assuming z = edim) to the file tmp.profile:

compute ke all ke/atom
variable temp atom c_ke[]/1.5
fix 3 all ave/spatial 10 100 1000 z lower 0.05 v_temp & file tmp.profile units reduced

Note that by default, Nswap = 1, though this can be changed by the optional swap keyword. Setting this parameter
appropriately, in conjunction with the swap rate N, allows the heat flux to be adjusted across a wide range of
values, and the kinetic energy to be exchanged in large chunks or more smoothly.

The "middle" layer for velocity swapping is defined as the Nbin/2 + 1 layer. Thus if Nbin = 20, the two swapping

435

http://lammps.sandia.gov

layers are 1 and 11. This should lead to a symmetric temperature profile since the two layers are separated by the
same distance in both directions in a periodic sense. This is why Nbin is restricted to being an even number.

As described below, the total kinetic energy transferred by these swaps is computed by the fix and can be output.
Dividing this quantity by time and the cross−sectional area of the simulation box yields a heat flux. The ratio of
heat flux to the slope of the temperature profile is the thermal conductivity of the fluid, in appopriate units. See
the Muller−Plathe paper for details.

IMPORTANT NOTE: After equilibration, if the temperature gradient you observe is not linear, then you are
likely swapping energy too frequently and are not in a regime of linear response. In this case you cannot
accurately infer a thermal conductivity and should try increasing the Nevery parameter.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to this
fix.

The cummulative kinetic energy transferred between the bottom and middle of the simulation box (in the edim
direction) is stored as a scalar quantity by this fix. This quantity is zeroed when the fix is defined and accumlates
thereafter, once every N steps. The units of the quantity are energy; see the units command for details. This
quantity can be accessed by various output commands, such as thermo_style custom. The scalar value calculated
by this fix is "intensive", meaning it is independent of the number of atoms in the simulation.

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions:

LAMMPS does not check, but the masses of all exchanged atom pairs should be the same to use this fix in a way
that conserves both momentum and kinetic energy. Thus you should not need to thermostat the system. If you do
use a thermostat, you may want to apply it only to the non−swapped dimensions (other than vdim).

LAMMPS does not check, but you should not use this fix to swap the kinetic energy of atoms that are in
constrained molecules, e.g. via fix shake or fix rigid. This is because application of the constraints will alter the
amount of transferred momentum. You should, however, be able to use flexible molecules. See the Zhang paper
for a discussion and results of this idea.

When running a simulation with large, massive particles or molecules in a background solvent, you may want to
only exchange kinetic energy bewteen solvent particles.

Related commands:

fix ave/spatial, fix viscosity, compute heat/flux

Default:

The option defaults are swap = 1.

(Muller−Plathe) Muller−Plathe and Reith, Computational and Theoretical Polymer Science, 9, 203−209 (1999).

436

(Zhang) Zhang, Lussetti, de Souza, Muller−Plathe, J Phys Chem B, 109, 15060−15067 (2005).

437

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix tmd command

Syntax:

fix ID group−ID tmd rho_final file1 N file2

ID, group−ID are documented in fix command•
tmd = style name of this fix command•
rho_final = desired value of rho at the end of the run (distance units)•
file1 = filename to read target structure from•
N = dump TMD statistics every this many timesteps, 0 = no dump•
file2 = filename to write TMD statistics to (only needed if N > 0)•

Examples:

fix 1 all nve
fix 2 tmdatoms tmd 1.0 target_file 100 tmd_dump_file

Description:

Perform targeted molecular dynamics (TMD) on a group of atoms. A holonomic constraint is used to force the
atoms to move towards (or away from) the target configuration. The parameter "rho" is monotonically decreased
(or increased) from its initial value to rho_final at the end of the run.

Rho has distance units and is a measure of the root−mean−squared distance (RMSD) between the current
configuration of the atoms in the group and the target coordinates listed in file1. Thus a value of rho_final = 0.0
means move the atoms all the way to the final structure during the course of the run.

The target file1 can be ASCII text or a gzipped text file (detected by a .gz suffix). The format of the target file1 is
as follows:

0.0 25.0 xlo xhi
0.0 25.0 ylo yhi
0.0 25.0 zlo zhi
125 24.97311 1.69005 23.46956 0 0 −1
126 1.94691 2.79640 1.92799 1 0 0
127 0.15906 3.46099 0.79121 1 0 0
...

The first 3 lines may or may not be needed, depending on the format of the atoms to follow. If image flags are
included with the atoms, the 1st 3 lo/hi lines must appear in the file. If image flags are not included, the 1st 3 lines
should not appear. The 3 lines contain the simulation box dimensions for the atom coordinates, in the same format
as in a LAMMPS data file (see the read_data command).

The remaining lines each contain an atom ID and its target x,y,z coordinates. The atom lines (all or none of them)
can optionally be followed by 3 integer values: nx,ny,nz. For periodic dimensions, they specify which image of
the box the atom is considered to be in, i.e. a value of N (positive or negative) means add N times the box length
to the coordinate to get the true value.

The atom lines can be listed in any order, but every atom in the group must be listed in the file. Atoms not in the
fix group may also be listed; they will be ignored.

438

http://lammps.sandia.gov

TMD statistics are written to file2 every N timesteps, unless N is specified as 0, which means no statistics.

The atoms in the fix tmd group should be integrated (via a fix nve, nvt, npt) along with other atoms in the system.

Restarts can be used with a fix tmd command. For example, imagine a 10000 timestep run with a rho_initial = 11
and a rho_final = 1. If a restart file was written after 2000 time steps, then the configuration in the file would have
a rho value of 9. A new 8000 time step run could be performed with the same rho_final = 1 to complete the
conformational change at the same transition rate. Note that for restarted runs, the name of the TMD statistics file
should be changed to prevent it being overwritten.

For more information about TMD, see (Schlitter1) and (Schlitter2).

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to this
fix. No global scalar or vector or per−atom quantities are stored by this fix for access by various output
commands.

This fix can ramp its rho parameter over multiple runs, using the start and stop keywords of the run command.
See the run command for details of how to do this.

This fix is not invoked during energy minimization.

Restrictions:

All TMD fixes must be listed in the input script after all integrator fixes (nve, nvt, npt) are applied. This ensures
that atoms are moved before their positions are corrected to comply with the constraint.

Atoms that have a TMD fix applied should not be part of a group to which a SHAKE fix is applied. This is
because LAMMPS assumes there are not multiple competing holonomic constraints applied to the same atoms.

To read gzipped target files, you must compile LAMMPS with the −DLAMMPS_GZIP option − see the Making
LAMMPS section of the documentation.

Related commands: none

Default: none

(Schlitter1) Schlitter, Swegat, Mulders, "Distance−type reaction coordinates for modelling activated processes", J
Molecular Modeling, 7, 171−177 (2001).

(Schlitter2) Schlitter and Klahn, "The free energy of a reaction coordinate at multiple constraints: a concise
formulation", Molecular Physics, 101, 3439−3443 (2003).

439

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix ttm command

Syntax:

fix ID group−ID ttm seed C_e rho_e kappa_e gamma_p gamma_s v_0 Nx Ny Nz T_infile N T_outfile

ID, group−ID are documented in fix command•
ttm = style name of this fix command•
seed = random number seed to use for white noise (positive integer)•
C_e = electronic specific heat (energy/(electron*temperature) units)•
rho_e = electronic density (electrons/volume units)•
kappa_e = electronic thermal conductivity (energy/(time*distance*temperature) units)•
gamma_p = friction coefficient due to electron−ion interactions (mass/time units)•
gamma_s = friction coefficient due to electronic stopping (mass/time units)•
v_0 = electronic stopping critical velocity (velocity units)•
Nx = number of thermal solve grid points in the x−direction (positive integer)•
Ny = number of thermal solve grid points in the y−direction (positive integer)•
Nz = number of thermal solve grid points in the z−direction (positive integer)•
T_infile = filename to read initial electronic temperature from•
N = dump TTM temperatures every this many timesteps, 0 = no dump•
T_outfile = filename to write TTM temperatures to (only needed if N > 0)•

Examples:

fix 2 all ttm 699489 1.0 1.0 10 0.1 0.0 2.0 1 12 1 initialTs 1000 T.out
fix 2 all ttm 123456 1.0 1.0 1.0 1.0 1.0 5.0 5 5 5 Te.in 1 Te.out

Description:

Use a two−temperature model (TTM) to represent heat transfer through and between electronic and atomic
subsystems. LAMMPS models the atomic subsystem as usual with a molecular dynamics model and the classical
force field specified by the user, but the electronic subsystem is modeled as a continuum, or a background "gas",
on a regular grid. Energy can be transferred spatially within the grid representing the electrons. Energy can also
be transferred between the electronic and the atomic subsystems. The algorithm underlying this fix was derived
by D. M. Duffy and A. M. Rutherford and is discussed in two J Physics: Condensed Matter papers: (Duffy) and
(Rutherford). They used this algorithm in cascade simulations where a primary knock−on atom (PKA) was
initialized with a high velocity to simulate a radiation event.

Heat transfer between the electronic and atomic subsystems is carried out via an inhomogeneous Langevin
thermostat. This thermostat differs from the regular Langevin thermostat (fix langevin) in three important ways.
First, the Langevin thermostat is applied uniformly to all atoms in the user−specified group for a single target
temperature, whereas the TTM fix applies Langevin thermostatting locally to atoms within the volumes
represented by the user−specified grid points with a target temperature specific to that grid point. Second, the
Langevin thermostat couples the temperature of the atoms to an infinite heat reservoir, whereas the heat reservoir
for fix TTM is finite and represents the local electrons. Third, the TTM fix allows users to specify not just one
friction coefficient, but rather two independent friction coefficients: one for the electron−ion interactions
(gamma_p), and one for electron stopping (gamma_s).

When the friction coefficient due to electron stopping, gamma_s, is non−zero, electron stopping effects are
included for atoms moving faster than the electron stopping critical velocity, v_0. For further details about this

440

http://lammps.sandia.gov

algorithm, see (Duffy) and (Rutherford).

Energy transport within the electronic subsystem is solved according to the heat diffusion equation with added
source terms for heat transfer between the subsystems:

where C_e is the specific heat, rho_e is the density, kappa_e is the thermal conductivity, T is temperature, the "e"
and "a" subscripts represent electronic and atomic subsystems respectively, g_p is the coupling constant for the
electron−ion interaction, and g_s is the electron stopping coupling parameter. C_e, rho_e, and kappa_e are
specified as parameters to the fix. The other quantities are derived. The form of the heat diffusion equation used
here is almost the same as that in equation 6 of (Duffy), with the exception that the electronic density is explicitly
reprensented, rather than being part of the the specific heat parameter.

Currently, this fix assumes that none of the user−supplied parameters will vary with temperature. This assumption
can be relaxed by modifying the source code to include the desired temperature dependency and functional form
for any of the parameters. Note that (Duffy) used a tanh() functional form for the temperature dependence of the
electronic specific heat, but ignored temperature dependencies of any of the other parameters.

This fix requires use of periodic boundary conditions and a 3D simulation. Periodic boundary conditions are also
used in the heat equation solve for the electronic subsystem. This varies from the approach of (Rutherford) where
the atomic subsystem was embedded within a larger continuum representation of the electronic subsystem.

The initial electronic temperature input file, T_infile, is a text file LAMMPS reads in with no header and with four
numeric columns (ix,iy,iz,Temp) and with a number of rows equal to the number of user−specified grid points
(Nx by Ny by Nz). The ix,iy,iz are node indices from 0 to nxnodes−1, etc. For example, the initial electronic
temperatures on a 1 by 2 by 3 grid could be specified in a T_infile as follows:

0 0 0 1.0
0 0 1 1.0
0 0 2 1.0
0 1 0 2.0
0 1 1 2.0
0 1 2 2.0

where the electronic temperatures along the y=0 plane have been set to 1.0, and the electronic temperatures along
the y=1 plane have been set to 2.0. The order of lines in this file is no important. If all the nodal values are not
specified, LAMMPS will generate an error.

The temperature output file, T_oufile, is created and written by this fix. Temperatures for both the electronic and
atomic subsystems at every node and every N timesteps are output. If N is specified as zero, no output is
generated, and no output filename is needed. The format of the output is as follows. One long line is written every
output timestep. The timestep itself is given in the first column. The next Nx*Ny*Nz columns contain the
temperatures for the atomic subsystem, and the final Nx*Ny*Nz columns contain the temperatures for the
electronic subsystem. The ordering of the Nx*Ny*Nz columns is with the z index varing fastest, y the next fastest,
and x the slowest.

This fix does not change the coordinates of its atoms; it only scales their velocities. Thus a time integration fix
(e.g. fix nve) should still be used to time integrate the affected atoms. This fix should not normally be used on
atoms that have their temperature controlled by another fix − e.g. fix nvt or fix langevin.

441

This fix computes 2 output quantities stored in a vector of length 2, which can be accessed by various output
commands. The first quantity is the total energy of the electronic subsystem. The second quantity is the energy
transferred from the electronic to the atomic subsystem on that timestep. Note that the velocity verlet integrator
applies the fix ttm forces to the atomic subsystem as two half−step velocity updates: one on the current timestep
and one on the subsequent timestep. Consequently, the change in the atomic subsystem energy is lagged by half a
timestep relative to the change in the electronic subsystem energy. As a result of this, users may notice slight
fluctuations in the sum of the atomic and electronic subsystem energies reported at the end of the timestep.

The vector values calculated by this fix are "extensive", meaning they scale with the number of atoms in the
simulation.

IMPORTANT NOTE: The current implementation creates a copy of the electron grid that overlays the entire
simulation domain, for each processor. Values on the grid are summed across all processors. Thus you should
insure that this grid is not too large, else your simulation could incur high memory and communication costs.

Restart, fix_modify, output, run start/stop, minimize info:

This fix writes the state of the electronic subsystem and the energy exchange between the subsystems to binary
restart files. See the read_restart command for info on how to re−specify a fix in an input script that reads a restart
file, so that the operation of the fix continues in an uninterrupted fashion.

Because the state of the random number generator is not saved in the restart files, this means you cannot do
"exact" restarts with this fix, where the simulation continues on the same as if no restart had taken place.
However, in a statistical sense, a restarted simulation should produce the same behavior.

None of the fix_modify options are relevant to this fix. No global scalar or vector or per−atom quantities are
stored by this fix for access by various output commands. No parameter of this fix can be used with the start/stop
keywords of the run command. This fix is not invoked during energy minimization.

Restrictions:

This fix can only be used for 3d simulations and orthogonal simlulation boxes. You must use periodic boundary
conditions with this fix.

Related commands:

fix langevin, fix dt/reset

Default: none

(Duffy) D M Duffy and A M Rutherford, J. Phys.: Condens. Matter, 19, 016207−016218 (2007).

(Rutherford) A M Rutherford and D M Duffy, J. Phys.: Condens. Matter, 19, 496201−496210 (2007).

442

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix viscosity command

Syntax:

fix ID group−ID viscosity N vdim pdim Nbin keyword value ...

ID, group−ID are documented in fix command•
viscosity = style name of this fix command•
N = perform momentum exchange every N steps•
vdim = x or y or z = which momentum component to exchange•
pdim = x or y or z = direction of momentum transfer•
Nbin = # of layers in pdim direction (must be even number)•
zero or more keyword/value pairs may be appended•
keyword = swap or target

swap value = Nswap = number of swaps to perform every N steps
vtarget value = V or INF = target velocity of swap partners (velocity units)

•

Examples:

fix 1 all viscosity 100 x z 20
fix 1 all viscosity 50 x z 20 swap 2 vtarget 1.5

Description:

Use the Muller−Plathe algorithm described in this paper to exchange momenta between two particles in different
regions of the simulation box every N steps. This induces a shear velocity profile in the system. As described
below this enables a viscosity of the fluid to be calculated. This algorithm is sometimes called a reverse
non−equilibrium MD (reverse NEMD) approach to computing viscosity. This is because the usual NEMD
approach is to impose a shear velocity profile on the system and measure the response via an off−diagonal
component of the stress tensor, which is proportional to the momentum flux. In the Muller−Plathe method, the
momentum flux is imposed, and the shear velocity profile is the system's response.

The simulation box is divided into Nbin layers in the pdim direction, where the layer 1 is at the low end of that
dimension and the layer Nbin is at the high end. Every N steps, Nswap pairs of atoms are chosen in the following
manner. Only atoms in the fix group are considered. Nswap atoms in layer 1 with positive velocity components in
the vdim direction closest to the target value V are selected. Similarly, Nswap atoms in the "middle" layer (see
below) with negative velocity components in the vdim direction closest to the negative of the target value V are
selected. The two sets of Nswap atoms are paired up and their vdim momenta components are swapped within
each pair. This resets their velocities, typically in opposite directions. Over time, this induces a shear velocity
profile in the system which can be measured using commands such as the following, which writes the profile to
the file tmp.profile:

fix f1 all ave/spatial 100 10 1000 z lower 0.05 vx & file tmp.profile units reduced

Note that by default, Nswap = 1 and vtarget = INF, though this can be changed by the optional swap and vtarget
keywords. When vtarget = INF, one or more atoms with the most positive and negative velocity components are
selected. Setting these parameters appropriately, in conjunction with the swap rate N, allows the momentum flux
rate to be adjusted across a wide range of values, and the momenta to be exchanged in large chunks or more
smoothly.

443

http://lammps.sandia.gov

The "middle" layer for momenta swapping is defined as the Nbin/2 + 1 layer. Thus if Nbin = 20, the two swapping
layers are 1 and 11. This should lead to a symmetric velocity profile since the two layers are separated by the
same distance in both directions in a periodic sense. This is why Nbin is restricted to being an even number.

As described below, the total momentum transferred by these velocity swaps is computed by the fix and can be
output. Dividing this quantity by time and the cross−sectional area of the simulation box yields a momentum flux.
The ratio of momentum flux to the slope of the shear velocity profile is the viscosity of the fluid, in appopriate
units. See the Muller−Plathe paper for details.

IMPORTANT NOTE: After equilibration, if the velocity profile you observe is not linear, then you are likely
swapping momentum too frequently and are not in a regime of linear response. In this case you cannot accurately
infer a viscosity and should try increasing the Nevery parameter.

An alternative method for calculating a viscosity is to run a NEMD simulation, as described in this section of the
manual. NEMD simulations deform the simmulation box via the fix deform command. Thus they cannot be run
on a charged system using a PPPM solver since PPPM does not currently support non−orthogonal boxes. Using
fix viscosity keeps the box orthogonal; thus it does not suffer from this limitation.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to this
fix.

The cummulative momentum transferred between the bottom and middle of the simulation box (in the pdim
direction) is stored as a scalar quantity by this fix. This quantity is zeroed when the fix is defined and accumlates
thereafter, once every N steps. The units of the quantity are momentum = mass*velocity. This quantity can be
accessed by various output commands, such as thermo_style custom. The scalar value calculated by this fix is
"intensive", meaning it is independent of the number of atoms in the simulation.

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions:

If the masses of all exchange partners are the same, then swaps conserve both momentum and kinetic energy.
Thus you should not need to thermostat the system. If you do use a thermostat, you may want to apply it only to
the non−swapped dimensions (other than vdim).

LAMMPS does not check, but you should not use this fix to swap velocities of atoms that are in constrained
molecules, e.g. via fix shake or fix rigid. This is because application of the constraints will alter the amount of
transferred momentum. You should, however, be able to use flexible molecules. See the Maginn paper for an
example of using this algorithm in a computation of alcohol molecule properties.

When running a simulation with large, massive particles or molecules in a background solvent, you may want to
only exchange momenta bewteen solvent particles.

Related commands:

fix ave/spatial, fix thermal/conductivity

Default:

444

The option defaults are swap = 1 and vtarget = INF.

(Muller−Plathe) Muller−Plathe, Phys Rev E, 59, 4894−4898 (1999).

(Maginn) Kelkar, Rafferty, Maginn, Siepmann, Fluid Phase Equilibria, 260, 218−231 (2007).

445

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix viscous command

Syntax:

fix ID group−ID viscous gamma keyword values ...

ID, group−ID are documented in fix command•
viscous = style name of this fix command•
gamma = damping coefficient (force/velocity units)•
zero or more keyword/value pairs can be appended•
keyword = b or a or t or m•
zero or more keyword/value pairs may be appended

keyword = scale
scale values = type ratio

 type = atom type (1−N)
 ratio = factor to scale the damping coefficient by

•

Examples:

fix 1 flow viscous 0.1
fix 1 damp viscous 0.5 scale 3 2.5

Description:

Add a viscous damping force to atoms in the group that is proportional to the velocity of the atom. The added
force can be thought of as a frictional interaction with implicit solvent, i.e. the no−slip Stokes drag on a spherical
particle. In granular simulations this can be useful for draining the kinetic energy from the system in a controlled
fashion. If used without additional thermostatting (to add kinetic energy to the system), it has the effect of slowly
(or rapidly) freezing the system; hence it can also be used as a simple energy minimization technique.

The damping force F is given by F = − gamma * velocity. The larger the coefficient, the faster the kinetic energy
is reduced. If the optional keyword scale is used, gamma can scaled up or down by the specified factor for atoms
of that type. It can be used multiple times to adjust gamma for several atom types.

IMPORTANT NOTE: You should specify gamma in force/velocity units. This is not the same as mass/time units,
at least for some of the LAMMPS units options like "real" or "metal" that are not self−consistent.

In a Brownian dynamics context, gamma = Kb T / D, where Kb = Boltzmann's constant, T = temperature, and D =
particle diffusion coefficient. D can be written as Kb T / (3 pi eta d), where eta = dynamic viscosity of the
frictional fluid and d = diameter of particle. This means gamma = 3 pi eta d, and thus is proportional to the
viscosity of the fluid and the particle diameter.

In the current implementation, rather than have the user specify a viscosity, gamma is specified directly in
force/velocity units. If needed, gamma can be adjusted for atoms of different sizes (i.e. sigma) by using the scale
keyword.

Note that Brownian dynamics models also typically include a randomized force term to thermostat the system at a
chosen temperature. The fix langevin command does this. It has the same viscous damping term as fix viscous
and adds a random force to each atom. Hence if using fix langevin you do not typically need to use fix viscous.
Also note that the gamma of fix viscous is related to the damping parameter of fix langevin, except that the units

446

http://lammps.sandia.gov

of gamma are force/velocity and the units of damp are time, so that it can more easily be used as a thermostat.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to this
fix. No global scalar or vector or per−atom quantities are stored by this fix for access by various output
commands. No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not
invoked during energy minimization.

Restrictions: none

Related commands:

fix langevin

Default: none

447

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix wall/lj93 command

fix wall/lj126 command

fix wall/colloid command

fix wall/harmonic command

Syntax:

fix ID group−ID style keyword values ...

ID, group−ID are documented in fix command•
style = wall/lj93 or wall/lj126 or wall/colloid or wall/harmonic•
one or more keyword/value pairs may be appended•
keyword = xlo or xhi or ylo or yhi or zlo or zhi or vel or wiggle/sin or wiggle/cos or units

xlo, xhi, ylo, yhi, zlo, zhi values = coord epsilon sigma cutoff
 coord = position of wall (distance units)
 epsilon = strength factor for wall−particle interaction (energy or energy/distance^2 units)
 sigma = size factor for wall−particle interaction (distance units)
 cutoff = distance from wall at which wall−particle interaction is cut off (distance units)

vel value = v
 v = velocity of wall in perpendicular direction (velocity units)

wiggle/sin values = amplitude period
 amplitude = size of oscillation (distance units)
 period = time of oscillation (time units)

wiggle/cos values = amplitude period
 amplitude = size of oscillation (distance units)
 period = time of oscillation (time units)

units value = lattice or box
 lattice = the wall is defined in lattice units
 box = the wall is defined in simulation box units

•

Examples:

fix wallhi all wall/lj93 xhi 10.0 1.0 1.0 2.5
fix wallhi all wall/lj126 xhi 23.2 1.0 1.0 2.5 vel 1.0 units box
fix zwalls all wall/colloid zlo 0.0 1.0 1.0 0.858 zhi 40.0 1.0 1.0 0.858

Description:

Bound the simulation domain on one or more of its faces with a flat wall that interacts with the atoms in the group
by generating a force on the atom in a direction perpendicular to the wall. The energy of wall−particle interactions
depends on the style.

For style wall/lj93, the energy E is given by the 9/3 potential:

448

http://lammps.sandia.gov

For style wall/lj126, the energy E is given by the 12/6 potential:

For style wall/colloid, the energy E is given by an integrated form of the pair_style colloid potential:

For style wall/harmonic, the energy E is given by a harmonic spring potential:

In all cases, r is the distance from the particle to the wall at position coord, and Rc is the cutoff distance at which
the particle and wall no longer interact. The energy of the wall potential is shifted so that the wall−particle
interaction energy is 0.0 at the cutoff distance.

For the wall/lj93 and wall/lj126 styles, epsilon and sigma are the usual Lennard−Jones parameters, which
determine the strength and size of the particle as it interacts with the wall. Epsilon has energy units. Note that this
epsilon and sigma may be different than any epsilon or sigma values defined for a pair style that computes
particle−particle interactions.

The wall/lj93 interaction is derived by integrating over a 3d half−lattice of Lennard−Jones 12/6 particles. The
wall/lj126 interaction is effectively a harder, more repulsive wall interaction.

For the wall/colloid style, epsilon is effectively a Hamaker constant with energy units for the colloid−wall
interaction, R is the radius of the colloid particle, D is the distance from the surface of the colloid particle to the
wall (r−R), and sigma is the size of a constituent LJ particle inside the colloid particle. Note that the cutoff
distance Rc in this case is the distance from the colloid particle center to the wall.

The wall/colloid interaction is derived by integrating over constituent LJ particles of size sigma within the colloid
particle and a 3d half−lattice of Lennard−Jones 12/6 particles of size sigma in the wall.

For the wall/harmonic style, epsilon is effectively the spring constant K, and has units (energy/distance^2). The
input parameter sigma is ignored. The minimum energy position of the harmonic spring is at the cutoff. This is a
repulsive−only spring since the interaction is truncated at the cutoff

IMPORTANT NOTE: For all of the styles, you must insure that r is always > 0 for all particles in the group, or
LAMMPS will generate an error. This means you cannot start your simulation with particles at the wall position
coord (r = 0) or with particles on the wrong side of the wall (r < 0). For the wall/lj93 and wall/lj126 styles, the
energy of the wall/particle interaction (and hence the force on the particle) blows up as r −> 0. The wall/colloid
style is even more restrictive, since the energy blows up as D = r−R −> 0. This means the finite−size particles of
radius R must be a distance larger than R from the wall position coord. The harmonic style is a softer potential

449

and does not blow up as r −> 0, but you must use a large enough epsilon that particles always reamin on the
correct side of the wall (r > 0).

If the vel keyword is specified, the position of all walls will move during the simulation in a perpendicular
direction, based on their initial coord position, the specified velocity vel, and the time elapsed since the fix was
specified. A positive velocity means each wall moves inward, towards the center of the box. I.e. an xlo wall will
move in the +x direction and an xhi wall will move in the −x direction. A negative velocity means each wall
moves outward, away from the center of the box. If you want different walls to move with different velocities,
then you need to use multiple fix wall commands.

If the wiggle/sin keyword is specified, the position of all walls will oscillate sinusoidally during the simulation in
the perpendicular direction, according to the equation:

position = coord + A sin(omega*delta)

If the wiggle/cos keyword is specified, the position of all walls will oscillate sinusoidally during the simulation in
the perpendicular direction, according to the equation:

position = coord + A (1 − cos(omega*delta))

In both cases, coord is the specified initial position of the wall, A is the amplitude, omega is 2 PI / period, and
delta is the time elapsed since the fix was specified. A positive amplitude means each wall initially moves inward,
towards the center of the box. I.e. an xlo wall will move initially in the +x direction and an xhi wall will move
initially in the −x direction. A negative velocity means each wall moves initially outward, away from the center of
the box. Note that the wiggle/sin option oscillates with amplitude A around the pos0 position and the velocity of
the wall is a maximum at time 0. By contrast, for the wiggle/cos option the wall moves up to 2A away from pos0
in one direction and the velocity of the wall is 0 at time 0. If you want different walls to oscillate with different
amplitudes or periods, then you need to use multiple fix wall commands.

The units keyword determines the meaning of the distance units used to define the position of the wall and its
velocity and wiggle amplitude. A box value selects standard distance units as defined by the units command, e.g.
Angstroms for units = real or metal. A lattice value means the distance units are in lattice spacings. The lattice
command must have been previously used to define the lattice spacing. Note that with the lattice option, the wall's
position is specified in lattice spacings, the wall's velocity is specified in lattice spacings per time, and the wall's
oscillation amplitude is specified in lattice spacings. Each of these 3 quantities may be dependent on the x,y,z
dimension, since the lattice spacings can be different in x,y,z.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files.

The fix_modify energy option is supported by this fix to add the energy of interaction between atoms and each
wall to the system's potential energy as part of thermodynamic output.

This fix computes a scalar energy and a 6−length vector of forces (one force magnitude per wall), which can be
accessed by various output commands. The scalar and vector values calculated by this fix are "extensive",
meaning they scale with the number of atoms in the simulation. Note that the scalar energy is the sum of
interactions with all defined walls. If you want the energy on a per−wall basis, you need to use multiple fix wall
commands. The 6 vector quantities are the force on the xlo wall, the xhi wall, ylo, yhi, zlo, zhi. These values will
only be non−zero if the corresponding wall is defined. Note that an outward force on a wall will be a negative
value for lo walls and a positive value for hi walls.

No parameter of this fix can be used with the start/stop keywords of the run command.

450

The forces due to this fix are imposed during an energy minimization, invoked by the minimize command.

IMPORTANT NOTE: If you want the atom/wall interaction energy to be included in the total potential energy of
the system (the quantity being minimized), you MUST enable the fix_modify energy option for this fix.

Restrictions:

Any dimension (xyz) that has a wall must be non−periodic.

You cannot use both the vel and either of the wiggle keywords together.

Related commands:

fix wall/reflect, fix wall/gran, fix wall/region

Default:

The option defaults are no velocity, no wiggle, and units = lattice.

451

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix wall/gran command

Syntax:

fix ID group−ID wall/gran Kn Kt gamma_n gamma_t xmu dampflag wallstyle args keyword values ...

ID, group−ID are documented in fix command•
wall/gran = style name of this fix command•
Kn = elastic constant for normal particle repulsion (force/distance units or pressure units − see discussion
below)

•

Kt = elastic constant for tangential contact (force/distance units or pressure units − see discussion below)•
gamma_n = damping coefficient for collisions in normal direction (1/time units or 1/time−distance units −
see discussion below)

•

gamma_t = damping coefficient for collisions in tangential direction (1/time units or 1/time−distance
units − see discussion below)

•

xmu = static yield criterion (unitless fraction between 0.0 and 1.0)•
dampflag = 0 or 1 if tangential damping force is excluded or included•
wallstyle = xplane or yplane or zplane or zcylinder•
args = list of arguments for a particular style

xplane or yplane or zplane args = lo hi
 lo,hi = position of lower and upper plane (distance units), either can be NULL)

zcylinder args = radius
 radius = cylinder radius (distance units)

•

zero or more keyword/value pairs may be appended to args•
keyword = wiggle or shear

wiggle values = dim amplitude period
 dim = x or y or z
 amplitude = size of oscillation (distance units)
 period = time of oscillation (time units)

shear values = dim vshear
 dim = x or y or z
 vshear = magnitude of shear velocity (velocity units)

•

Examples:

fix 1 all wall/gran 200000.0 NULL 50.0 NULL 0.5 0 xplane −10.0 10.0
fix 1 all wall/gran 200000.0 NULL 50.0 NULL 0.5 0 zplane 0.0 NULL
fix 2 all wall/gran 100000.0 20000.0 50.0 30.0 0.5 1 zcylinder 15.0 wiggle z 3.0 2.0

Description:

Bound the simulation domain of a granular system with a frictional wall. All particles in the group interact with
the wall when they are close enough to touch it.

The first set of parameters (Kn, Kt, gamma_n, gamma_t, xmu, and dampflag) have the same meaning as those
specified with the pair_style granular force fields. This means a NULL can be used for either Kt or gamma_t as
described on that page. If a NULL is used for Kt, then a default value is used where Kt = 2/7 Kn. If a NULL is
used for gamma_t, then a default value is used where gamma_t = 1/2 gamma_n.

The nature of the wall/particle interactions are determined by which pair_style is used in your input script: hooke,
hooke/history, or hertz/history. The equation for the force between the wall and particles touching it is the same as

452

http://lammps.sandia.gov

the corresponding equation on the pair_style granular doc page, in the limit of one of the two particles going to
infinite radius and mass (flat wall). I.e. delta = radius − r = overlap of particle with wall, m_eff = mass of particle,
and sqrt(RiRj/Ri+Rj) becomes sqrt(radius of particle). The units for Kn, Kt, gamma_n, and gamma_t are as
described on that doc page. The meaning of xmu and dampflag are also as described on that page. Note that you
can choose different values for these 6 wall/particle coefficients than for particle/particle interactions, if you wish
your wall to interact differently with the particles, e.g. if the wall is a different material.

IMPORTANT NOTE: As discussed on the doc page for pair_style granular, versions of LAMMPS before 9Jan09
used a different equation for Hertzian interactions. This means Hertizian wall/particle interactions have also
changed. They now include a sqrt(radius) term which was not present before. Also the previous versions used Kn
and Kt from the pairwise interaction and hardwired dampflag to 1, rather than letting them be specified directly.
This means you can set the values of the wall/particle coefficients appropriately in the current code to reproduce
the results of a prevoius Hertzian monodisperse calculation. For example, for the common case of a monodisperse
system with particles of diameter 1, Kn, Kt, gamma_n, and gamma_s should be set sqrt(2.0) larger than they were
previously.

The wallstyle can be planar or cylindrical. The 3 planar options specify a pair of walls in a dimension. Wall
positions are given by lo and hi. Either of the values can be specified as NULL if a single wall is desired. For a
zcylinder wallstyle, the cylinder's axis is at x = y = 0.0, and the radius of the cylinder is specified.

Optionally, the wall can be moving, if the wiggle or shear keywords are appended. Both keywords cannot be used
together.

For the wiggle keyword, the wall oscillates sinusoidally, similar to the oscillations of frozen particles specified by
the fix_wiggle command. This is useful in packing simulations of granular particles. The arguments to the wiggle
keyword specify a dimension for the motion, as well as it's amplitude and period. Note that if the dimension is in
the plane of the wall, this is effectively a shearing motion. If the dimension is perpendicular to the wall, it is more
of a shaking motion. A zcylinder wall can only be wiggled in the z dimension.

Each timestep, the position of a wiggled wall in the appropriate dim is set according to this equation:

position = coord + A − A cos (omega * delta)

where coord is the specified initial position of the wall, A is the amplitude, omega is 2 PI / period, and delta is the
time elapsed since the fix was specified. The velocity of the wall is set to the derivative of this expression.

For the shear keyword, the wall moves continuously in the specified dimension with velocity vshear. The
dimension must be tangential to walls with a planar wallstyle, e.g. in the y or z directions for an xplane wall. For
zcylinder walls, a dimension of z means the cylinder is moving in the z−direction along it's axis. A dimension of x
or y means the cylinder is spinning around the z−axis, either in the clockwise direction for vshear > 0 or
counter−clockwise for vshear < 0. In this case, vshear is the tangential velocity of the wall at whatever radius has
been defined.

Restart, fix_modify, output, run start/stop, minimize info:

This fix writes the shear friction state of atoms interacting with the wall to binary restart files, so that a simulation
can continue correctly if granular potentials with shear "history" effects are being used. See the read_restart
command for info on how to re−specify a fix in an input script that reads a restart file, so that the operation of the
fix continues in an uninterrupted fashion.

None of the fix_modify options are relevant to this fix. No global scalar or vector or per−atom quantities are
stored by this fix for access by various output commands. No parameter of this fix can be used with the start/stop
keywords of the run command. This fix is not invoked during energy minimization.

453

Restrictions:

This fix is part of the "granular" package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info.

Any dimension (xyz) that has a granular wall must be non−periodic.

Related commands:

fix_wiggle, pair_style granular

Default: none

454

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix wall/reflect command

Syntax:

fix ID group−ID wall/reflect keyword ...

ID, group−ID are documented in fix command•
wall/reflect = style name of this fix command•
one or more keyword/value pairs may be appended•
keyword = xlo or xhi or ylo or yhi or zlo or zhi•

Examples:

fix xwalls all wall/reflect xlo xhi
fix walls all wall/reflect xlo ylo zlo xhi yhi zhi

Description:

Bound the simulation with one or more walls which reflect particles when they attempt to move thru them.

Reflection means that if an atom moves outside the box on a timestep by a distance delta (e.g. due to fix nve),
then it is put back inside the box by the same delta and the sign of the corresponding component of its velocity is
flipped.

When used in conjunction with fix nve and run_style verlet, the resultant time−integration algorithm is equivalent
to the primitive splitting algorithm (PSA) described by Bond. Because each reflection event divides the
corresponding timestep asymmetrically, energy conservation is only satisfied to O(dt), rather than to O(dt^2) as it
would be for velocity−Verlet integration without reflective walls.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to this
fix. No global scalar or vector or per−atom quantities are stored by this fix for access by various output
commands. No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not
invoked during energy minimization.

Restrictions:

Any dimension (xyz) that has a reflecting wall must be non−periodic.

A reflecting wall should not be used with rigid bodies such as those defined by a "fix rigid" command. This is
because the wall/reflect displaces atoms directly rather than exerts a force on them. For rigid bodies, use a soft
wall instead, such as fix wall/lj93. LAMMPS will flag the use of a rigid fix with fix wall/reflect with a warning,
but will not generate an error.

Related commands:

fix wall/lj93 command

Default: none

455

http://lammps.sandia.gov

(Bond) Bond and Leimkuhler, SIAM J Sci Comput, 30, p 134 (2007).

456

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix wall/region command

Syntax:

fix ID group−ID wall/region region−ID style epsilon sigma cutoff

ID, group−ID are documented in fix command•
wall/region = style name of this fix command•
region−ID = region whose boundary will act as wall•
style = lj93 or lj126 or colloid or harmonic•
epsilon = strength factor for wall−particle interaction (energy or energy/distance^2 units)•
sigma = size factor for wall−particle interaction (distance units)•
cutoff = distance from wall at which wall−particle interaction is cut off (distance units)•

Examples:

fix wall all wall/region mySphere lj93 1.0 1.0 2.5

Description:

Treat the surface of the geometric region defined by the region−ID as a bounding wall which interacts with
nearby particles according to the specified style. The distance between a particle and the surface is the distance to
the nearest point on the surface and the force the wall exerts on the particle is along the direction between that
point and the particle, which is the direction normal to the surface at that point.

Regions are defined using the region command. Note that the region volume can be interior or exterior to the
bounding surface, which will determine in which direction the surface interacts with particles, i.e. the direction of
the surface normal. Regions can either be primitive shapes (block, sphere, cylinder, etc) or combinations of
primitive shapes specified via the union or intersect region styles. These latter styles can be used to construct
particle containers with complex shapes. Regions can also change over time via keywords like linear, wiggle, and
rotate, which when used with this fix, have the effect of moving the region surface in a prescribed manner.

IMPORTANT NOTE: As discussed on the region command doc page, regions in LAMMPS do not get wrapped
across periodic boundaries. It is up to you to insure that periodic or non−periodic boundaries are specified
appropriately via the boundary command when using a region as a wall that bounds particle motion.

IMPORTANT NOTE: For primitive regions with sharp corners and/or edges (e.g. a block or cylinder),
wall/particle forces are computed accurately for both interior and exterior regions. For union and intersect
regions, additional sharp corners and edges may be present due to the intersection of the surfaces of 2 or more
primitive volumes. These corners and edges can be of two types: concave or convex. Concave points/edges are
like the corners of a cube as seen by particles in the interior of a cube. Wall/particle forces around these features
are computed correctly. Convex points/edges are like the corners of a cube as seen by particles exterior to the
cube, i.e. the points jut into the volume where particles are present. LAMMPS does NOT compute the location of
these convex points directly, and hence wall/particle forces in the cutoff volume around these points suffer from
inaccuracies. The basic problem is that the outward normal of the surface is not continuous at these points. This
can cause particles to feel no force (they don't "see" the wall) when in one location, then move a distance epsilon,
and suddenly feel a large force because they now "see" the wall. In the worst−case scenario, this can blow
particles out of the simulation box. Thus, as a general rule you should not use the fix wall/region command with
union or interesect regions that have convex points or edges.

457

http://lammps.sandia.gov

The energy of wall−particle interactions depends on the specified style.

For style lj93, the energy E is given by the 9/3 potential:

For style lj126, the energy E is given by the 12/6 potential:

For style colloid, the energy E is given by an integrated form of the pair_style colloid potential:

For style wall/harmonic, the energy E is given by a harmonic spring potential:

In all cases, r is the distance from the particle to the region surface, and Rc is the cutoff distance at which the
particle and surface no longer interact. The energy of the wall potential is shifted so that the wall−particle
interaction energy is 0.0 at the cutoff distance.

For the lj93 and lj126 styles, epsilon and sigma are the usual Lennard−Jones parameters, which determine the
strength and size of the particle as it interacts with the wall. Epsilon has energy units. Note that this epsilon and
sigma may be different than any epsilon or sigma values defined for a pair style that computes particle−particle
interactions.

The lj93 interaction is derived by integrating over a 3d half−lattice of Lennard−Jones 12/6 particles. The lj126
interaction is effectively a harder, more repulsive wall interaction.

For the colloid style, epsilon is effectively a Hamaker constant with energy units for the colloid−wall interaction,
R is the radius of the colloid particle, D is the distance from the surface of the colloid particle to the wall (r−R),
and sigma is the size of a constituent LJ particle inside the colloid particle. Note that the cutoff distance Rc in this
case is the distance from the colloid particle center to the wall.

The colloid interaction is derived by integrating over constituent LJ particles of size sigma within the colloid
particle and a 3d half−lattice of Lennard−Jones 12/6 particles of size sigma in the wall.

458

For the wall/harmonic style, epsilon is effectively the spring constant K, and has units (energy/distance^2). The
input parameter sigma is ignored. The minimum energy position of the harmonic spring is at the cutoff. This is a
repulsive−only spring since the interaction is truncated at the cutoff

IMPORTANT NOTE: For all of the styles, you must insure that r is always > 0 for all particles in the group, or
LAMMPS will generate an error. This means you cannot start your simulation with particles on the region surface
(r = 0) or with particles on the wrong side of the region surface (r < 0). For the wall/lj93 and wall/lj126 styles, the
energy of the wall/particle interaction (and hence the force on the particle) blows up as r −> 0. The wall/colloid
style is even more restrictive, since the energy blows up as D = r−R −> 0. This means the finite−size particles of
radius R must be a distance larger than R from the region surface. The harmonic style is a softer potential and
does not blow up as r −> 0, but you must use a large enough epsilon that particles always reamin on the correct
side of the region surface (r > 0).

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files.

The fix_modify energy option is supported by this fix to add the energy of interaction between atoms and the wall
to the system's potential energy as part of thermodynamic output.

This fix computes a scalar energy and a 3−length vector of forces, which can be accessed by various output
commands. The scalar and vector values calculated by this fix are "extensive", meaning they scale with the
number of atoms in the simulation. The scalar energy is the sum of energy interactions for all particles interacting
with the wall represented by the region surface. The 3 vector quantities are the x,y,z components of the total force
acting on the wall due to the particles.

No parameter of this fix can be used with the start/stop keywords of the run command.

The forces due to this fix are imposed during an energy minimization, invoked by the minimize command.

IMPORTANT NOTE: If you want the atom/wall interaction energy to be included in the total potential energy of
the system (the quantity being minimized), you MUST enable the fix_modify energy option for this fix.

Restrictions: none

Related commands:

fix wall/lj93, fix wall/lj126, fix wall/colloid, fix wall/gran

Default: none

459

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

fix wiggle command

Syntax:

fix ID group−ID wiggle dim amplitude period

ID, group−ID are documented in fix command•
wiggle = style name of this fix command•
dim = x or y or z•
amplitude = size of oscillation (distance units)•
period = time of oscillation (time units)•

Examples:

fix 1 frozen wiggle y 3.0 0.5

Description:

Move a group of atoms in a sinusoidal oscillation. This is useful in granular simulations when boundary atoms are
wiggled to induce packing of the dynamic atoms. The dimension dim of movement is specified as is the amplitude
and period of the oscillations. Each timestep the dim coordinate of each atom is set to

coord = coord0 + A − A cos (omega * delta)

where coord0 is the coordinate at the time the fix was specified, A is the amplitude, omega is 2 PI / period, and
delta is the elapsed time since the fix was specified. The velocity of the atom is set to the derivative of this
expression.

Note that if a value of A > 0 is specified, each wiggling atom does not oscillate around its initial position, but
moves entirely in the positive direction relative to its initial position. This is so that its initial velocity will be 0.0.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to this
fix. No global scalar or vector or per−atom quantities are stored by this fix for access by various output
commands. No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not
invoked during energy minimization.

Restrictions: none

Related commands: none

Default: none

460

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

group command

Syntax:

group ID style args

ID = user−defined name of the group•
style = delete or region or type or id or molecule or subtract or union or intersect

delete = no args
region args = region−ID
type or id or molecule

 args = one or more atom types, atom IDs, or molecule IDs
 args = logical value
 logical = "" or ">=" or "==" or "!="
 value = an atom type or atom ID or molecule ID (depending on style)
 args = logical value1 value2
 logical = ""
 value1,value2 = atom types or atom IDs or molecule IDs
 (depending on style)

subtract args = two or more group IDs
union args = one or more group IDs
intersect args = two or more group IDs

•

Examples:

group edge region regstrip
group water type 3 4
group sub id <= 150
group polyA molecule 50 250
group boundary subtract all a2 a3
group boundary union lower upper
group boundary intersect upper flow
group boundary delete

Description:

Identify a collection of atoms as belonging to a group. The group ID can then be used in other commands such as
fix, compute, dump, or velocity to act on those atoms together.

If the group ID already exists, the group command adds the specified atoms to the group.

The delete style removes the named group and un−assigns all atoms that were assigned to that group. Since there
is a restriction (see below) that no more than 32 groups can be defined at any time, the delete style allows you to
remove groups that are no longer needed, so that more can be specified. You cannot delete a group if it has been
used to define a current fix or compute or dump.

The region style puts all atoms in the region volume into the group. Note that this is a static one−time assignment.
The atoms remain assigned (or not assigned) to the group even in they later move out of the region volume.

The type, id, and molecule styles put all atoms with the specified atom types, atom IDs, or molecule IDs into the
group. These 3 styles can have their arguments specified in one of two formats. The 1st format is a list of values
(types or IDs). For example, the 2nd command in the examples above puts all atoms of type 3 or 4 into the group
named water. The 2nd format is a logical followed by one or two values (type or ID). The 7 valid logicals are

461

http://lammps.sandia.gov

listed above. All the logicals except take a single argument. The 3rd example above adds all atoms with IDs from
1 to 150 to the group named sub. The logical means "between" and takes 2 arguments. The 4th example above
adds all atoms belonging to molecules with IDs from 50 to 250 (inclusive) to the group named polyA.

The subtract style takes a list of two or more existing group names as arguments. All atoms that belong to the 1st
group, but not to any of the other groups are added to the specified group.

The union style takes a list of one or more existing group names as arguments. All atoms that belong to any of the
listed groups are added to the specified group.

The intersect style takes a list of two or more existing group names as arguments. Atoms that belong to every one
of the listed groups are added to the specified group.

A group with the ID all is predefined. All atoms belong to this group. This group cannot be deleted.

Restrictions:

There can be no more than 32 groups defined at one time, including "all".

Related commands:

dump, fix, region, temperature, velocity

Default:

All atoms belong to the "all" group.

462

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

if command

Syntax:

if value1 operator value2 then command1 else command2

value1 = 1st value•
operator = "" or ">=" or "==" or "!="•
value2 = 2nd value•
then = required word•
command1 = command to execute if condition is met•
else = optional word•
command2 = command to execute if condition is not met (optional argument)•

Examples:

if ${steps} > 1000 then exit
if $x <= $y then "print X is smaller = $x" else "print Y is smaller = $y"
if ${eng} > 0.0 then "timestep 0.005"
if ${eng} > ${eng_previous} then "jump file1" else "jump file2"

Description:

This command provides an in−then−else test capability within an input script. Two values are numerically
compared to each other and the result is TRUE or FALSE. Note that as in the examples above, either of the values
can be variables, as defined by the variable command, so that when they are evaluated when substituted for in the
if command, a user−defined computation will be performed which can depend on the current state of the
simulation.

If the result of the if test is TRUE, then command1 is executed. This can be any valid LAMMPS input script
command. If the command is more than 1 word, it should be enclosed in double quotes, so that it will be treated as
a single argument, as in the examples above.

The if command can contain an optional "else" clause. If it does and the result of the if test is FALSE, then
command2 is executed.

Note that by jumping to a label in the same input script, the if command can be used to break out of a loop. See
the variable delete for info on how to delete the associated loop variable, so that it can be re−used later in the
input script.

Note that if either command1 or command2 is a bogus LAMMPS command, such as "exit" in the first example,
then executing the command will cause LAMMPS to halt.

Here is an example of a double loop which uses the if and jump commands to break out of the inner loop when a
condition is met, then continues iterating thru the outer loop.

label loopa
variable a loop 5
 label loopb
 variable b loop 5
 print "A,B = $a,$b"
 run 10000

463

http://lammps.sandia.gov

 if $b > 2 then "jump in.script break"
 next b
 jump in.script loopb
label break
variable b delete

next a
jump in.script loopa

Restrictions: none

Related commands:

variable

Default: none

464

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

improper_style class2 command

Syntax:

improper_style class2

Examples:

improper_style class2
improper_coeff 1 100.0 0

Description:

The class2 improper style uses the potential

where Ei is the improper term and Eaa is an angle−angle term. The 3 X terms in Ei are an average over 3
out−of−plane angles.

The 4 atoms in an improper quadruplet (listed in the data file read by the read_data command) are ordered I,J,K,L.
X_IJKL refers to the angle between the plane of I,J,K and the plane of J,K,L, and the bond JK lies in both planes.
Similarly for X_KJLI and X_LJIK. Note that atom J appears in the common bonds (JI, JK, JL) of all 3 X terms.
Thus J (the 2nd atom in the quadruplet) is the atom of symmetry in the 3 X angles.

The subscripts on the various theta's refer to different combinations of 3 atoms (I,J,K,L) used to form a particular
angle. E.g. Theta_IJL is the angle formed by atoms I,J,L with J in the middle. Theta1, theta2, theta3 are the
equilibrium positions of those angles. Again, atom J (the 2nd atom in the quadruplet) is the atom of symmetry in
the theta angles, since it is always the center atom.

Since atom J is the atom of symmetry, normally the bonds J−I, J−K, J−L would exist for an improper to be
defined between the 4 atoms, but this is not required.

See (Sun) for a description of the COMPASS class2 force field.

The following coefficients must be defined for each improper type via the improper_coeff command as in the
example above, or in the data file or restart files read by the read_data or read_restart commands:

For this style, coefficients for the Ei formula can be specified in either the input script or data file. These are the 2
coefficients:

K (energy/radian^2)•
X0 (degrees)•

465

http://lammps.sandia.gov

X0 is specified in degrees, but LAMMPS converts it to radians internally; hence the units of K are in
energy/radian^2.

Coefficients for the Eaa formula can only be specified in the data file. For the Eaa formula, the coefficients are
listed under a "AngleAngle Coeffs" heading and each line lists 6 coefficients:

M1 (energy/distance)•
M2 (energy/distance)•
M3 (energy/distance)•
theta1 (degrees)•
theta2 (degrees)•
theta3 (degrees)•

The theta values are specified in degrees, but LAMMPS converts them to radians internally; hence the units of M
are in energy/radian^2.

Restrictions:

This improper style can only be used if LAMMPS was built with the "class2" package. See the Making LAMMPS
section for more info on packages.

Related commands:

improper_coeff

Default: none

(Sun) Sun, J Phys Chem B 102, 7338−7364 (1998).

466

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

improper_coeff command

Syntax:

improper_coeff N args

N = improper type (see asterisk form below)•
args = coefficients for one or more improper types•

Examples:

improper_coeff 1 300.0 0.0
improper_coeff * 80.2 −1 2
improper_coeff *4 80.2 −1 2

Description:

Specify the improper force field coefficients for one or more improper types. The number and meaning of the
coefficients depends on the improper style. Improper coefficients can also be set in the data file read by the
read_data command or in a restart file.

N can be specified in one of two ways. An explicit numeric value can be used, as in the 1st example above. Or a
wild−card asterisk can be used to set the coefficients for multiple improper types. This takes the form "*" or "*n"
or "n*" or "m*n". If N = the number of improper types, then an asterisk with no numeric values means all types
from 1 to N. A leading asterisk means all types from 1 to n (inclusive). A trailing asterisk means all types from n
to N (inclusive). A middle asterisk means all types from m to n (inclusive).

Note that using an improper_coeff command can override a previous setting for the same improper type. For
example, these commands set the coeffs for all improper types, then overwrite the coeffs for just improper type 2:

improper_coeff * 300.0 0.0
improper_coeff 2 50.0 0.0

A line in a data file that specifies improper coefficients uses the exact same format as the arguments of the
improper_coeff command in an input script, except that wild−card asterisks should not be used since coefficients
for all N types must be listed in the file. For example, under the "Improper Coeffs" section of a data file, the line
that corresponds to the 1st example above would be listed as

1 300.0 0.0

Here is an alphabetic list of improper styles defined in LAMMPS. Click on the style to display the formula it
computes and coefficients specified by the associated improper_coeff command:

improper_style none − turn off improper interactions•
improper_style hybrid − define multiple styles of improper interactions•

improper_style class2 − COMPASS (class 2) improper•
improper_style cvff − CVFF improper•
improper_style harmonic − harmonic improper•

467

http://lammps.sandia.gov

There are also additional improper styles submitted by users which are included in the LAMMPS distribution.
The list of these with links to the individual styles are given in the improper section of this page.

Restrictions:

This command must come after the simulation box is defined by a read_data, read_restart, or create_box
command.

An improper style must be defined before any improper coefficients are set, either in the input script or in a data
file.

Related commands:

improper_style

Default: none

468

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

improper_style cvff command

Syntax:

improper_style cvff

Examples:

improper_style cvff
improper_coeff 1 80.0 −1 4

Description:

The cvff improper style uses the potential

where phi is the Wilson out−of−plane angle.

If the 4 atoms in an improper quadruplet (listed in the data file read by the read_data command) are ordered
I,J,K,L then the Wilson angle is between the plane of I,J,K and the plane of J,K,L. This is essentially a dihedral
angle, which is why the formula for this improper style is the same as for dihedral_style harmonic. Alternatively,
you can think of atoms J,K,L as being in a plane, and atom I above the plane, and the Wilson angle as a measure
of how far out−of−plane I is with respect to the other 3 atoms.

Note that defining 4 atoms to interact in this way, does not mean that bonds necessarily exist between I−J, J−K, or
K−L, as they would in a linear dihedral. Normally, the bonds I−J, I−K, I−L would exist for an improper to be
defined between the 4 atoms.

The following coefficients must be defined for each improper type via the improper_coeff command as in the
example above, or in the data file or restart files read by the read_data or read_restart commands:

K (energy)•
d (+1 or −1)•
n (0,1,2,3,4,6)•

Restrictions:

This improper style can only be used if LAMMPS was built with the "molecular" package (which it is by default).
See the Making LAMMPS section for more info on packages.

Related commands:

improper_coeff

Default: none

469

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

improper_style harmonic command

Syntax:

improper_style harmonic

Examples:

improper_style harmonic
improper_coeff 1 100.0 0

Description:

The harmonic improper style uses the potential

where X is the improper angle, X0 is its equilibrium value, and K is a prefactor. Note that the usual 1/2 factor is
included in K.

If the 4 atoms in an improper quadruplet (listed in the data file read by the read_data command) are ordered
I,J,K,L then X is the angle between the plane of I,J,K and the plane of J,K,L. Alternatively, you can think of
atoms J,K,L as being in a plane, and atom I above the plane, and X as a measure of how far out−of−plane I is with
respect to the other 3 atoms.

Note that defining 4 atoms to interact in this way, does not mean that bonds necessarily exist between I−J, J−K, or
K−L, as they would in a linear dihedral. Normally, the bonds I−J, I−K, I−L would exist for an improper to be
defined between the 4 atoms.

The following coefficients must be defined for each improper type via the improper_coeff command as in the
example above, or in the data file or restart files read by the read_data or read_restart commands:

K (energy/radian^2)•
X0 (degrees)•

X0 is specified in degrees, but LAMMPS converts it to radians internally; hence the units of K are in
energy/radian^2.

Restrictions:

This improper style can only be used if LAMMPS was built with the "molecular" package (which it is by default).
See the Making LAMMPS section for more info on packages.

Related commands:

improper_coeff

Default: none

470

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

improper_style hybrid command

Syntax:

improper_style hybrid style1 style2 ...

style1,style2 = list of one or more improper styles•

Examples:

improper_style hybrid harmonic helix
improper_coeff 1 harmonic 120.0 30
improper_coeff 2 cvff 20.0 −1 2

Description:

The hybrid style enables the use of multiple improper styles in one simulation. An improper style is assigned to
each improper type. For example, impropers in a polymer flow (of improper type 1) could be computed with a
harmonic potential and impropers in the wall boundary (of improper type 2) could be computed with a cvff
potential. The assignment of improper type to style is made via the improper_coeff command or in the data file.

In the improper_coeff command, the first coefficient sets the improper style and the remaining coefficients are
those appropriate to that style. In the example above, the 2 improper_coeff commands would set impropers of
improper type 1 to be computed with a harmonic potential with coefficients 120.0, 30 for K, X0. Improper type 2
would be computed with a cvff potential with coefficients 20.0, −1, 2 for K, d, n.

If the improper class2 potential is one of the hybrid styles, it requires additional AngleAngle coefficients be
specified in the data file. These lines must also have an additional "class2" argument added after the improper
type. For improper types which are assigned to other hybrid styles, use the style name (e.g. "harmonic")
appropriate to that style. The AngleAngle coeffs for that improper type will then be ignored.

An improper style of none can be specified as the 2nd argument to the improper_coeff command, if you desire to
turn off certain improper types.

Restrictions:

This improper style can only be used if LAMMPS was built with the "molecular" package (which it is by default).
See the Making LAMMPS section for more info on packages.

Unlike other improper styles, the hybrid improper style does not store improper coefficient info for individual
sub−styles in a binary restart files. Thus when retarting a simulation from a restart file, you need to re−specify
improper_coeff commands.

Related commands:

improper_coeff

Default: none

471

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

improper_style none command

Syntax:

improper_style none

Examples:

improper_style none

Description:

Using an improper style of none means improper forces are not computed, even if quadruplets of improper atoms
were listed in the data file read by the read_data command.

Restrictions: none

Related commands: none

Default: none

472

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

improper_style command

Syntax:

improper_style style

style = none or hybrid or class2 or cvff or harmonic•

Examples:

improper_style harmonic
improper_style cvff
improper_style hybrid cvff harmonic

Description:

Set the formula(s) LAMMPS uses to compute improper interactions between quadruplets of atoms, which remain
in force for the duration of the simulation. The list of improper quadruplets is read in by a read_data or
read_restart command from a data or restart file. Note that the ordering of the 4 atoms in an improper quadruplet
determines the the definition of the improper angle used in the formula for each style. See the doc pages of
individual styles for details.

Hybrid models where impropers are computed using different improper potentials can be setup using the hybrid
improper style.

The coefficients associated with an improper style can be specified in a data or restart file or via the
improper_coeff command.

All improper potentials store their coefficient data in binary restart files which means improper_style and
improper_coeff commands do not need to be re−specified in an input script that restarts a simulation. See the
read_restart command for details on how to do this. The one exception is that improper_style hybrid only stores
the list of sub−styles in the restart file; improper coefficients need to be re−specified.

IMPORTANT NOTE: When both an improper and pair style is defined, the special_bonds command often needs
to be used to turn off (or weight) the pairwise interaction that would otherwise exist between a group of 4 bonded
atoms.

Here is an alphabetic list of improper styles defined in LAMMPS. Click on the style to display the formula it
computes and coefficients specified by the associated improper_coeff command:

improper_style none − turn off improper interactions•
improper_style hybrid − define multiple styles of improper interactions•

improper_style class2 − COMPASS (class 2) improper•
improper_style cvff − CVFF improper•
improper_style harmonic − harmonic improper•

There are also additional improper styles submitted by users which are included in the LAMMPS distribution.
The list of these with links to the individual styles are given in the improper section of this page.

473

http://lammps.sandia.gov

Restrictions:

Improper styles can only be set for atom_style choices that allow impropers to be defined.

Most improper styles are part of the "molecular" package. They are only enabled if LAMMPS was built with that
package. See the Making LAMMPS section for more info on packages. The doc pages for individual improper
potentials tell if it is part of a package.

Related commands:

improper_coeff

Default:

improper_style none

474

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

include command

Syntax:

include file

file = filename of new input script to switch to•

Examples:

include newfile
include in.run2

Description:

This command opens a new input script file and begins reading LAMMPS commands from that file. When the
new file is finished, the original file is returned to. Include files can be nested as deeply as desired. If input script
A includes script B, and B includes A, then LAMMPS could run for a long time.

If the filename is a variable (see the variable command), different processor partitions can run different input
scripts.

Restrictions: none

Related commands:

variable, jump

Default: none

475

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

jump command

Syntax:

jump file label

file = filename of new input script to switch to•
label = optional label within file to jump to•

Examples:

jump newfile
jump in.run2 runloop

Description:

This command closes the current input script file, opens the file with the specified name, and begins reading
LAMMPS commands from that file. Unlike the include command, the original file is not returned to, although by
using multiple jump commands it is possible to chain from file to file or back to the original file.

Optionally, if a 2nd argument is used, it is treated as a label and the new file is scanned (without executing
commands) until the label is found, and commands are executed from that point forward. This can be used to loop
over a portion of the input script, as in this example. These commands perform 10 runs, each of 10000 steps, and
create 10 dump files named file.1, file.2, etc. The next command is used to exit the loop after 10 iterations. When
the "a" variable has been incremented for the tenth time, it will cause the next jump command to be skipped.

variable a loop 10
label loop
dump 1 all atom 100 file.$a
run 10000
undump 1
next a
jump in.lj loop

If the jump file argument is a variable, the jump command can be used to cause different processor partitions to
run different input scripts. In this example, LAMMPS is run on 40 processors, with 4 partitions of 10 procs each.
An in.file containing the example variable and jump command will cause each partition to run a different
simulation.

mpirun −np 40 lmp_ibm −partition 4x10 −in in.file

variable f world script.1 script.2 script.3 script.4
jump $f

Here is an example of a double loop which uses the if and jump commands to break out of the inner loop when a
condition is met, then continues iterating thru the outer loop.

label loopa
variable a loop 5
 label loopb
 variable b loop 5
 print "A,B = $a,$b"
 run 10000
 if $b > 2 then "jump in.script break"

476

http://lammps.sandia.gov

 next b
 jump in.script loopb
label break
variable b delete

next a
jump in.script loopa

Restrictions:

If you jump to a file and it does not contain the specified label, LAMMPS will come to the end of the file and
exit.

Related commands:

variable, include, label, next

Default: none

477

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

kspace_modify command

Syntax:

kspace_modify keyword value ...

one or more keyword/value pairs may be listed•
keyword = mesh or order or gewald or slab

mesh value = x y z
 x,y,z = PPPM FFT grid size in each dimension

order value = N
 N = grid extent of Gaussian for PPPM mapping of each charge

gewald value = r
 r = PPPM G−ewald parameter

slab value = volfactor
 volfactor = ratio of the total extended volume used in the
 2d approximation compared with the volume of the simulation domain

•

Examples:

kspace_modify mesh 24 24 30 order 6
kspace_modify slab 3.0

Description:

Set parameters used by the kspace solvers defined by the kspace_style command. Not all parameters are relevant
to all kspace styles.

The mesh keyword sets the 3d FFT grid size for kspace style pppm. Each dimension must be factorizable into
powers of 2, 3, and 5. When this option is not set, the PPPM solver chooses its own grid size, consistent with the
user−specified accuracy and pairwise cutoff. Values for x,y,z of 0,0,0 unset the option.

The order keyword determines how many grid spacings an atom's charge extends when it is mapped to the FFT
grid in kspace style pppm. The default for this parameter is 5, which means each charge spans 5 grid cells in each
dimension. The larger the value of this parameter, the smaller the FFT grid will need to be to achieve the
requested precision. Conversely, the smaller the order value, the larger the grid will be. Note that there is an
inherent trade−off involved: a small grid will lower the cost of FFTs, but a large order parameter will increase the
cost of intepolating charge/fields to/from the grid. And vice versa.

The order parameter may be reset by LAMMPS when it sets up the PPPM FFT grid if the implied grid stencil
extends beyond the grid cells owned by neighboring processors. Typically this will only occur when small
problems are run on large numbers of processors. A warning will be generated indicating the order parameter is
being reduced to allow LAMMPS to run the problem.

The gewald keyword sets the value of the PPPM G−ewald parameter. Without this setting, LAMMPS chooses the
parameter automatically as a function of cutoff, precision, grid spacing, etc. This means it can vary from one
simulation to the next which may not be desirable for matching a KSpace solver to a pre−tabulated pairwise
potential. This setting can also be useful if PPPM fails to choose a good grid spacing and G−ewald parameter
automatically. If the value is set to 0.0, LAMMPS will choose the G−ewald parameter automatically.

478

http://lammps.sandia.gov

The slab keyword allows an Ewald or PPPM solver to be used for a systems that are periodic in x,y but
non−periodic in z − a boundary setting of "boundary p p f". This is done by treating the system as if it were
periodic in z, but inserting empty volume between atom slabs and removing dipole inter−slab interactions so that
slab−slab interactions are effectively turned off. The volfactor value sets the ratio of the extended dimension in z
divided by the actual dimension in z. The recommended value is 3.0. A larger value is inefficient; a smaller value
introduces unwanted slab−slab interactions. The use of fixed boundaries in z means that the user must prevent
particle migration beyond the initial z−bounds, typically by providing a wall−style fix.

Restrictions: none

Related commands:

kspace_style, boundary

Default:

The option defaults are mesh = 0 0 0, order = 5, gewald = 0.0, and slab = 1.0.

479

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

kspace_style command

Syntax:

kspace_style style value

style = none or ewald or pppm or pppm/tip4p or ewald/n

none value = none
ewald value = precision

 precision = desired accuracy
pppm value = precision

 precision = desired accuracy
pppm/tip4p value = precision

 precision = desired accuracy
ewald/n value = precision

 precision = desired accuracy

•

Examples:

kspace_style pppm 1.0e−4
kspace_style none

Description:

Define a K−space solver for LAMMPS to use each timestep to compute long−range Coulombic interactions or
long−range 1/r^N interactions. When such a solver is used in conjunction with an appropriate pair style, the cutoff
for Coulombic or other 1/r^N interactions is effectively infinite; each charge in the system interacts with charges
in an infinite array of periodic images of the simulation domain.

The ewald style performs a standard Ewald summation as described in any solid−state physics text.

The pppm style invokes a particle−particle particle−mesh solver (Hockney) which maps atom charge to a 3d
mesh, uses 3d FFTs to solve Poisson's equation on the mesh, then interpolates electric fields on the mesh points
back to the atoms. It is closely related to the particle−mesh Ewald technique (PME) (Darden) used in AMBER
and CHARMM. The cost of traditional Ewald summation scales as N^(3/2) where N is the number of atoms in the
system. The PPPM solver scales as Nlog(N) due to the FFTs, so it is almost always a faster choice (Pollock).

The pppm/tip4p style is identical to the pppm style except that it adds a charge at the massless 4th site in each
TIP4P water molecule. It should be used with pair styles with a long/tip4p in their style name.

The ewald/n style augments ewald by adding long−range dispersion sum capabilities for 1/r^N potentials and is
useful for simulation of interfaces (Veld). It also performs standard coulombic Ewald summations, but in a more
efficient manner than the ewald style. The 1/r^N capability means that Lennard−Jones or Buckingham potentials
can be used with ewald/n without a cutoff, i.e. they become full long−range potentials.

Currently, only the ewald/n style can be used with non−orthogonal (triclinic symmetry) simulation boxes.

When a kspace style is used, a pair style that includes the short−range correction to the pairwise Coulombic or
other 1/r^N forces must also be selected. For Coulombic interactions, these styles are ones that have a coul/long in
their style name. For 1/r^6 dispersion forces in a Lennard−Jones or Buckingham potential, see the pair_style
lj/coul or pair_style buck/coul commands.

480

http://lammps.sandia.gov

A precision value of 1.0e−4 means one part in 10000. This setting is used in conjunction with the pairwise cutoff
to determine the number of K−space vectors for style ewald or the FFT grid size for style pppm.

See the kspace_modify command for additional options of the K−space solvers that can be set.

Restrictions:

A simulation must be 3d and periodic in all dimensions to use an Ewald or PPPM solver. The only exception is if
the slab option is set with kspace_modify, in which case the xy dimensions must be periodic and the z dimension
must be non−periodic.

Kspace styles are part of the "kspace" package. They are only enabled if LAMMPS was built with that package.
See the Making LAMMPS section for more info.

The ewald/n style is part of the "user−ewaldn" package. It is only enabled if LAMMPS was built with that
package. See the Making LAMMPS section for more info.

When using a long−range pairwise TIP4P potential, you must use kspace style pppm/tip4p and vice versa.

Related commands:

kspace_modify, pair_style lj/cut/coul/long, pair_style lj/charmm/coul/long, pair_style lj/coul, pair_style buck/coul

Default:

kspace_style none

(Darden) Darden, York, Pedersen, J Chem Phys, 98, 10089 (1993).

(Hockney) Hockney and Eastwood, Computer Simulation Using Particles, Adam Hilger, NY (1989).

(Pollock) Pollock and Glosli, Comp Phys Comm, 95, 93 (1996).

(Veld) In 't Veld, Ismail, Grest, J Chem Phys, in press (2007).

481

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

label command

Syntax:

label ID

ID = string used as label name•

Examples:

label xyz
label loop

Description:

Label this line of the input script with the chosen ID. Unless a jump command was used previously, this does
nothing. But if a jump command was used with a label argument to begin invoking this script file, then all
command lines in the script prior to this line will be ignored. I.e. execution of the script will begin at this line.
This is useful for looping over a section of the input script as discussed in the jump command.

Restrictions: none

Related commands: none

Default: none

482

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

lattice command

Syntax:

lattice style scale keyword values ...

style = none or sc or bcc or fcc or hcp or diamond or sq or sq2 or hex or custom•
scale = scale factor between lattice and simulation box

 for style none:
 scale is not specified (nor any optional arguments)
 for all other styles:
 scale = reduced density rho* (for LJ units)
 scale = lattice constant in distance units (for non−LJ units)

•

zero or more keyword/value pairs may be appended•
keyword = origin or orient or spacing or a1 or a2 or a3 or basis

origin values = x y z
 x,y,z = fractions of a unit cell (0 <= x,y,z <1)

orient values = dim i j k
 dim = x or y or z
 i,j,k = integer lattice directions

spacing values = dx dy dz
 dx,dy,dz = lattice spacings in the x,y,z box directions

a1,a2,a3 values = x y z
 x,y,z = primitive vector components that define unit cell

basis values = x y z
 x,y,z = fractional coords of a basis atom (0 <= x,y,z <1)

•

Examples:

lattice fcc 3.52
lattice hex 0.85
lattice sq 0.8 origin 0.0 0.5 0.0 orient x 1 1 0 orient y −1 1 0
lattice custom 3.52 a1 1.0 0.0 0.0 a2 0.5 1.0 0.0 a3 0.0 0.0 0.5 & basis 0.0 0.0 0.0 basis 0.5 0.5 0.5
lattice none

Description:

Define a lattice for use by other commands. In LAMMPS, a lattice is simply a set of points in space, determined
by a unit cell with basis atoms, that is replicated infinitely in all dimensions. The arguments of the lattice
command can be used to define a wide variety of crystallographic lattices.

A lattice is used by LAMMPS in two ways. First, the create_atoms command creates atoms on the lattice points
inside the simulation box. Note that the create_atoms command allows different atom types to be assigned to
different basis atoms of the lattice. Second, the lattice spacing in the x,y,z dimensions implied by the lattice, can
be used by other commands as distance units (e.g. create_box, region and velocity), which are often convenient to
use when the underlying problem geometry is atoms on a lattice.

The lattice style must be consistent with the dimension of the simulation − see the dimension command. Styles sc
or bcc or fcc or hcp or diamond are for 3d problems. Styles sq or sq2 or hex are for 2d problems. Style custom can
be used for either 2d or 3d problems.

483

http://lammps.sandia.gov

A lattice consists of a unit cell, a set of basis atoms within that cell, and a set of transformation parameters (scale,
origin, orient) that map the unit cell into the simulation box. The vectors a1,a2,a3 are the edge vectors of the unit
cell. This is the nomenclature for "primitive" vectors in solid−state crystallography, but in LAMMPS the unit cell
they determine does not have to be a "primitive cell" of minimum volume.

Lattices of style sc, fcc, bcc, and diamond are 3d lattices that define a cubic unit cell with edge length = 1.0. This
means a1 = 1 0 0, a2 = 0 1 0, and a3 = 0 0 1. Style hcp has a1 = 1 0 0, a2 = 0 sqrt(3) 0, and a3 = 0 0 sqrt(8/3). The
placement of the basis atoms within the unit cell are described in any solid−state physics text. A sc lattice has 1
basis atom at the lower−left−bottom corner of the cube. A bcc lattice has 2 basis atoms, one at the corner and one
at the center of the cube. A fcc lattice has 4 basis atoms, one at the corner and 3 at the cube face centers. A hcp
lattice has 4 basis atoms, two in the z = 0 plane and 2 in the z = 0.5 plane. A diamond lattice has 8 basis atoms.

Lattices of style sq and sq2 are 2d lattices that define a square unit cell with edge length = 1.0. This means a1 = 1
0 0 and a2 = 0 1 0. A sq lattice has 1 basis atom at the lower−left corner of the square. A sq2 lattice has 2 basis
atoms, one at the corner and one at the center of the square. A hex style is also a 2d lattice, but the unit cell is
rectangular, with a1 = 1 0 0 and a2 = 0 sqrt(3) 0. It has 2 basis atoms, one at the corner and one at the center of the
rectangle.

A lattice of style custom allows you to specify a1, a2, a3, and a list of basis atoms to put in the unit cell. By
default, a1 and a2 and a3 are 3 orthogonal unit vectors (edges of a unit cube). But you can specify them to be of
any length and non−orthogonal to each other, so that they describe a tilted parallelepiped. Via the basis keyword
you add atoms, one at a time, to the unit cell. Its arguments are fractional coordinates (0.0 <= x,y,z < 1.0), so that
a value of 0.5 means a position half−way across the unit cell in that dimension.

This sub−section discusses the arguments that determine how the idealized unit cell is transformed into a lattice of
points within the simulation box.

The scale argument determines how the size of the unit cell will be scaled when mapping it into the simulation
box. I.e. it determines a multiplicative factor to apply to the unit cell, to convert it to a lattice of the desired size
and distance units in the simulation box. The meaning of the scale argument depends on the units being used in
your simulation.

For all unit styles except lj, the scale argument is specified in the distance units defined by the unit style. For
example, in real or metal units, if the unit cell is a unit cube with edge length 1.0, specifying scale = 3.52 would
create a cubic lattice with a spacing of 3.52 Angstroms. In cgs units, the spacing would be 3.52 cm.

For unit style lj, the scale argument is the Lennard−Jones reduced density, typically written as rho*. LAMMPS
converts this value into the multiplicative factor via the formula "factor^dim = rho/rho*", where rho = N/V with V
= the volume of the lattice unit cell and N = the number of basis atoms in the unit cell (described below), and dim
= 2 or 3 for the dimensionality of the simulation. Effectively, this means that if LJ particles of size sigma = 1.0 are
used in the simulation, the lattice of particles will be at the desired reduced density.

The origin option specifies how the unit cell will be shifted or translated when mapping it into the simulation box.
The x,y,z values are fractional values (0.0 <= x,y,z < 1.0) meaning shift the lattice by a fraction of the lattice
spacing in each dimension. The meaning of "lattice spacing" is discussed below.

The orient option specifies how the unit cell will be rotated when mapping it into the simulation box. The dim
argument is one of the 3 coordinate axes in the simulation box. The other 3 arguments are the crystallographic
direction in the lattice that you want to orient along that axis, specified as integers. E.g. "orient x 2 1 0" means the
x−axis in the simulation box will be the [210] lattice direction. The 3 lattice directions you specify must be
mutually orthogonal and obey the right−hand rule, i.e. (X cross Y) points in the Z direction. Note that this
description is really only valid for orthogonal lattices. If you are using the more general lattice style custom with

484

non−orthogonal a1,a2,a3 vectors, then think of the 3 orient options as creating a 3x3 rotation matrix which is
applied to a1,a2,a3 to rotate the original unit cell to a new orientation in the simulation box.

Several LAMMPS commands have the option to use distance units that are inferred from "lattice spacing" in the
x,y,z box directions. E.g. the region command can create a block of size 10x20x20, where 10 means 10 lattice
spacings in the x direction.

The spacing option sets the 3 lattice spacings directly. All must be non−zero (use 1.0 for dz in a 2d simulation).
The specified values are multiplied by the multiplicative factor described above that is associated with the scale
factor. Thus a spacing of 1.0 means one unit cell independent of the scale factor. This option can be useful if the
spacings LAMMPS computes are inconvenient to use in subsequent commands, which can be the case for
non−orthogonal or rotated lattices.

If the spacing option is not specified, the lattice spacings are computed by LAMMPS in the following way. A unit
cell of the lattice is mapped into the simulation box (scaled, shifted, rotated), so that it now has (perhaps) a
modified size and orientation. The lattice spacing in X is defined as the difference between the min/max extent of
the x coordinates of the 8 corner points of the modified unit cell. Similarly, the Y and Z lattice spacings are
defined as the difference in the min/max of the y and z coordinates.

Note that if the unit cell is orthogonal with axis−aligned edges (not rotated via the orient keyword), then the
lattice spacings in each dimension are simply the scale factor (described above) multiplied by the length of
a1,a2,a3. Thus a hex style lattice with a scale factor of 3.0 Angstroms, would have a lattice spacing of 3.0 in x and
3*sqrt(3.0) in y.

IMPORTANT NOTE: For non−orthogonal unit cells and/or when a rotation is applied via the orient keyword,
then the lattice spacings may be less intuitive. In particular, in these cases, there is no guarantee that the lattice
spacing is an integer multiple of the periodicity of the lattice in that direction. Thus, if you create an orthogonal
periodic simulation box whose size in a dimension is a multiple of the lattice spacing, and then fill it with atoms
via the create_atoms command, you will NOT necessarily create a periodic system. I.e. atoms may overlap
incorrectly at the faces of the simulation box.

Regardless of these issues, the values of the lattice spacings LAMMPS calculates are printed out, so their effect in
commands that use the spacings should be decipherable.

The command "lattice none" can be used to turn off a previous lattice definition. Any command that attempts to
use the lattice directly (create_atoms) or associated lattice spacings will then generate an error. No additional
arguments need be used with "lattice none".

Restrictions:

The a1,a2,a3,basis keywords can only be used with style custom.

Related commands:

dimension, create_atoms, region

Default:

lattice none

For other lattice styles, the option defaults are origin = 0.0 0.0 0.0, orient = x 1 0 0, orient = y 0 1 0, orient = z 0 0
1, a1 = 1 0 0, a2 = 0 1 0, and a3 = 0 0 1.

485

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

log command

Syntax:

log file

file = name of new logfile•

Examples:

log log.equil

Description:

This command closes the current LAMMPS log file, opens a new file with the specified name, and begins logging
information to it. If the specified file name is none, then no new log file is opened.

If multiple processor partitions are being used, the file name should be a variable, so that different processors do
not attempt to write to the same log file.

The file "log.lammps" is the default log file for a LAMMPS run. The name of the initial log file can also be set by
the command−line switch −log. See this section for details.

Restrictions: none

Related commands: none

Default:

The default LAMMPS log file is named log.lammps

486

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

mass command

Syntax:

mass I value

I = atom type (see asterisk form below)•
value = mass•

Examples:

mass 1 1.0
mass * 62.5
mass 2* 62.5

Description:

Set the mass for all atoms of one or more atom types. Per−type mass values can also be set in the read_data data
file using the "Masses" keyword. See the units command for what mass units to use.

The I index can be specified in one of two ways. An explicit numeric value can be used, as in the 1st example
above. Or a wild−card asterisk can be used to set the mass for multiple atom types. This takes the form "*" or
"*n" or "n*" or "m*n". If N = the number of atom types, then an asterisk with no numeric values means all types
from 1 to N. A leading asterisk means all types from 1 to n (inclusive). A trailing asterisk means all types from n
to N (inclusive). A middle asterisk means all types from m to n (inclusive).

A line in a data file that follows the "Masses" keyword specifies mass using the same format as the arguments of
the mass command in an input script, except that no wild−card asterisk can be used. For example, under the
"Masses" section of a data file, the line that corresponds to the 1st example above would be listed as

1 1.0

Note that the mass command can only be used if the atom style requires per−type atom mass to be set. Currently,
all but the granular and peri styles do. They require mass to be set for individual particles, not types. Per−atom
masses are defined in the data file read by the read_data command, or set to default values by the create_atoms
command. Per−atom masses can also be set to new values by the set diameter or set density command.

Also note that pair_style eam defines the masses of atom types in the EAM potential file, in which case the mass
command is normally not used.

If you define a hybrid atom style which includes one (or more) sub−styles which require per−type mass and one
(or more) sub−styles which require per−atom mass, then you must define both. However, in this case the per−type
mass will be ignored; only the per−atom mass will be used by LAMMPS.

Restrictions:

This command must come after the simulation box is defined by a read_data, read_restart, or create_box
command.

All masses must be defined before a simulation is run. They must also all be defined before a velocity or fix shake
command is used.

487

http://lammps.sandia.gov

The mass assigned to any type or atom must be > 0.0.

Related commands: none

Default: none

488

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

min_modify command

Syntax:

min_modify keyword values ...

one or more keyword/value pairs may be listed

keyword = dmax or line
dmax value = max

 max = maximum distance for line search to move (distance units)
line value = backtrack or quadratic

 backtrack,quadratic = style of linesearch to use

•

Examples:

min_modify dmax 0.2

Description:

This command sets parameters that affect the energy minimization algorithms selected by the min_style
command. The various settings may affect the convergence rate and overall number of force evaluations required
by a minimization, so users can experiment with these parameters to tune their minimizations.

The cg and sd minimization styles have an outer iteration and an inner iteration which is steps along a
one−dimensional line search in a particular search direction. The dmax parameter is how far any atom can move
in a single line search in any dimension (x, y, or z). Thus a value of 0.1 in real units means no atom will move
further than 0.1 Angstroms in a single outer iteration. This prevents highly overlapped atoms from being moved
long distances (e.g. through another atom) due to large forces.

The choice of line search algorithm for the cg and sd minimization styles can be selected via the line keyword.
The default backtracking search is robust and should always find a local energy minimum. However, it will
"converge" when it can no longer reduce the energy of the system. Individual atom forces may still be larger than
desired at this point, because the energy change is measured as the difference of two large values (energy before
and energy after) and that difference may be smaller than machine epsilon even if atoms could move in the
gradient direction to reduce forces further.

By contast, the quadratic line search algorithm is often able to reduce forces closer to 0.0. It may also be more
efficient than the backtracking algorithm by requiring fewer energy/force evaluations. However, it may not be as
robust for some problems.

Restrictions: none

Related commands:

min_style, minimize

Default:

The option defaults are dmax = 0.1 and line = backtrack.

489

http://lammps.sandia.gov

LAMMPS WWW Page − LAMMPS Documentation − LAMMPS Commands

min_style command

Syntax:

min_style style

style = cg or hftn or sd•

Examples:

min_style cg
min_style hftn

Description:

Choose a minimization algorithm to use when a minimize command is performed.

Style cg is the Polak−Ribiere version of the conjugate gradient (CG) algorithm. At each iteration the force
gradient is combined with the previous iteration information to compute a new search direction perpendicular
(conjugate) to the previous search direction. The PR variant affects how the direction is chosen and how the CG
method is restarted when it ceases to make progress. The PR variant is thought to be the most effective CG
choice.

Style hftn is a Hessian−free truncated Newton algorithm. At each iteration a quadratic model of the energy
potential is solved by a conjugate gradient inner iteration. The Hessian (second derivatives) of the energy is not
formed directly, but approximated in each conjugate search direction by a finite difference directional derivative.
When close to an energy minimum, the algorithm behaves like a Newton method and exhibits a quadratic
convergence rate to high accuracy. In most cases the behavior of hftn is similar to cg, but it offers another
minimizer alternative if cg seems to perform poorly. This style is not affected by the min_modify command.

Style sd is a steepest descent algorithm. At each iteration, the search direction is set to the downhill direction
corresponding to the force vector (negative gradient of energy). Typically, steepest descent will not converge as
quickly as CG, but may be more robust in some situations.

Restrictions: none

Related commands:

min_modify, minimize

Default:

min_style cg

490

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

minimize command

Syntax:

minimize etol ftol maxiter maxeval

etol = stopping tolerance for energy (unitless)•
ftol = stopping tolerance for force (force units)•
maxiter = max iterations of minimizer•
maxeval = max number of force/energy evaluations•

Examples:

minimize 1.0e−4 1.0e−6 100 1000
minimize 0.0 1.0e−8 1000 100000

Description:

Perform an energy minimization of the system, by iteratively adjusting atom coordinates. Iterations are terminated
when one of the stopping criteria is satisfied. At that point the configuration will hopefully be in local potential
energy minimum. More precisely, the configuration should approximate a critical point for the objective function
(see below), which may or may not be a local minimum.

The minimization algorithm used is set by the min_style command. Other options are set by the min_modify
command. Minimize commands can be interspersed with run commands to alternate between relaxation and
dynamics. The minimizers bound the distance atoms move in one iteration, so that you can relax systems with
highly overlapped atoms (large energies and forces) by pushing the atoms off of each other.

Alternate means of relaxing a system are to run dynamics with a small or limited timestep. Or dynamics can be
run using fix viscous to impose a damping force that slowly drains all kinetic energy from the system. The
pair_style soft potential can be used to un−overlap atoms while running dynamics.

A minimization involves an outer iteration loop which sets the search direction along which atom coordinates are
changed. An inner iteration is then performed using a line search algorithm. The line search typically evaluates
forces and energies several times to set new coordinates. Currently, a backtracking algorithm is used which may
not be optimal in terms of the number of force evaulations performed, but appears to be more robust than previous
line searches we've tried. The backtracking method is described in Nocedal and Wright's Numerical Optimization
(Procedure 3.1 on p 41).

The objective function being minimized is the total potential energy of the system as a function of the N atom
coordinates:

where the first term is the sum of all non−bonded pairwise interactions including long−range Coulombic
interactions, the 2nd thru 5th terms are bond, angle, dihedral, and improper interactions respectively, and the last
term is energy due to fixes which can act as constraints or apply force to atoms, such as thru interaction with a

491

http://lammps.sandia.gov

wall. See the discussion below about how fix commands affect minimization.

The starting point for the minimization is the current configuration of the atoms.

The minimization procedure stops if any of several criteria are met:

the change in energy between outer iterations is less than etol•
the 2−norm (length) of the global force vector is less than the ftol•
the line search fails because the step distance backtracks to 0.0•
the number of outer iterations exceeds maxiter•
the number of total force evaluations exceeds maxeval•

For the first criterion, the specified energy tolerance etol is unitless; it is met when the energy change between
successive iterations divided by the energy magnitude is less than or equal to the tolerance. For example, a setting
of 1.0e−4 for etol means an energy tolerance of one part in 10^4.

For the second criterion, the specified force tolerance ftol is in force units, since it is the length of the global force
vector for all atoms, e.g. a vector of size 3N for N atoms. Since many of the components will be near zero after
minimization, you can think of ftol as an upper bound on the final force on any component of any atom. For
example, a setting of 1.0e−4 for ftol means no x, y, or z component of force on any atom will be larger than
1.0e−4 (in force units) after minimization.

Either or both of the etol and ftol values can be set to 0.0, in which case some other criterion will terminate the
minimization.

During a minimization, the outer iteration count is treated as a timestep. Output is triggered by this timestep, e.g.
thermodynamic output or dump and restart files.

Following minimization, a statistical summary is printed that lists which convergence criterion caused the
minimizer to stop, as well as information about the energy, force, final line search, and and iteration counts. An
example is as follows:

Minimization stats:
 Stopping criterion = max iterations
 Energy initial, next−to−last, final =
 −0.626828169302 −2.82642039062 −2.82643549739
 Force two−norm initial, final = 2052.1 91.9642
 Force max component initial, final = 346.048 9.78056
 Final line search alpha, max atom move = 2.23899e−06 2.18986e−05
 Iterations, force evaluations = 2000 12724

The 3 energy values are for before and after the minimization and on the next−to−last iteration. This is what the
etol parameter checks.

The two−norm force values are the length of the global force vector before and after minimization. This is what
the ftol parameter checks.

The max−component force values are the absolute value of the largest component (x,y,z) in the global force
vector.

The alpha parameter for the line−search, when multiplied by the max force component (on the last iteration),
gives the max distance any atom moved during the last iteration. Alpha will be 0.0 if the line search could not
reduce the energy. Even if alpha is non−zero, if the "max atom move" distance is tiny compared to typical atom
coordinates, then it is possible the last iteration effectively caused no atom movement and thus the evaluated

492

energy did not change and the minimizer terminated. Said another way, even with non−zero forces, it's possible
the effect of those forces is to move atoms a distance less than machine precision, so that the energy cannot be
further reduced.

The iterations and force evaluation values are what is checked by the maxiter and maxeval parameters.

IMPORTANT NOTE: It is highly recommended that you use a pair style that goes to 0.0 at the cutoff distance
when performing minimization (even if you later change it when running dynamics). If this is not done, the total
energy of the system will have discontinuities when the relative distance between any pair of atoms changes from
cutoff+epsilon to cutoff−epsilon and the minimizer may behave poorly.

Note that a cutoff Lennard−Jones potential (and others) can be shifted so that its energy is 0.0 at the cutoff via the
pair_modify command. See the doc pages for inidividual pair styles for details. Note that Coulombic potentials
always have a cutoff, unless versions with a long−range component are used (e.g. pair_style lj/cut/coul/long). The
CHARMM potentials go to 0.0 at the cutoff (e.g. pair_style lj/charmm/coul/charmm, as do the GROMACS
potentials (e.g. pair_style lj/gromacs.

If a soft potential (pair_style soft) is used the Astop value is used for the prefactor (no time dependence).

The fix box/relax command can be used to apply an external pressure to the simulation box and allow it to
shrink/expand during the minimization.

Only a few other fixes (typically those that apply force constraints) are invoked during minimization. See the doc
pages for individual fix commands to see which ones are relevant.

IMPORTANT NOTE: Some fixes which are invoked during minimization have an associated potential energy.
For that energy to be included in the total potential energy of the system (the quantity being minimized), you
MUST enable the fix_modify energy option for that fix. The doc pages for individual fix commands specify if this
should be done.

Restrictions:

Features that are not yet implemented are listed here, in case someone knows how they could be coded:

It is an error to use fix shake with minimization because it turns off bonds that should be included in the potential
energy of the system. The effect of a fix shake can be approximated during a minimization by using stiff spring
constants for the bonds and/or angles that would normally be constrained by the SHAKE algorithm.

Fix rigid is also not supported by minimization. It is not an error to have it defined, but the energy minimization
will not keep the defined body(s) rigid during the minimization. Note that if bonds, angles, etc internal to a rigid
body have been turned off (e.g. via neigh_modify exclude), they will not contribute to the potential energy which
is probably not what is desired.

Pair potentials that produce torque on a particle (e.g. granular potentials or the GayBerne potential for ellipsoidal
particles) are not relaxed by a minimization. More specifically, radial relaxations are induced, but no rotations are
induced by a minimization, so such a system will not fully relax.

Related commands:

min_modify, min_style, run_style

Default: none

493

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

neigh_modify command

Syntax:

neigh_modify keyword values ...

one or more keyword/value pairs may be listed

keyword = delay or every or check or once or include or exclude or page or one or binsize
delay value = N

 N = delay building until this many steps since last build
every value = M

 M = build neighbor list every this many steps
check value = yes or no

yes = only build if some atom has moved half the skin distance or more
no = always build on 1st step that every and delay are satisfied

once
yes = only build neighbor list once at start of run and never rebuild
no = rebuild neighbor list according to other settings

include value = group−ID
 group−ID = only build pair neighbor lists for atoms in this group

exclude values:
 type M N
 M,N = exclude if one atom in pair is type M, other is type N
 group group1−ID group2−ID
 group1−ID,group2−ID = exclude if one atom is in 1st group, other in 2nd
 molecule group−ID
 groupname = exclude if both atoms are in the same molecule and in the same group
 none
 delete all exclude settings

page value = N
 N = number of pairs stored in a single neighbor page

one value = N
 N = max number of neighbors of one atom

binsize value = size
 size = bin size for neighbor list construction (distance units)

•

Examples:

neigh_modify every 2 delay 10 check yes page 100000
neigh_modify exclude type 2 3
neigh_modify exclude group frozen frozen check no
neigh_modify exclude group residue1 chain3
neigh_modify exclude molecule rigid

Description:

This command sets parameters that affect the building and use of pairwise neighbor lists.

The every, delay, check, and once options affect how often lists are built as a simulation runs. The delay setting
means never build a new list until at least N steps after the previous build. The every setting means build the list
every M steps (after the delay has passed). If the check setting is no, the list is built on the 1st step that satisfies
the delay and every settings. If the check setting is yes, then the list is only built on a particular step if some atom
has moved more than half the skin distance (specified in the neighbor command) since the last build. If the once
setting is yes, then the neighbor list is only built once at the beginning of each run, and never rebuilt. This should
only be done if you are certain atoms will not move far enough that the list should be rebuilt. E.g. running a

494

http://lammps.sandia.gov

simulation of a cold crystal. Note that it is not that expensive to check if neighbor lists should be rebuilt.

When the rRESPA integrator is used (see the run_style command), the every and delay parameters refer to the
longest (outermost) timestep.

The include option limits the building of pairwise neighbor lists to atoms in the specified group. This can be
useful for models where a large portion of the simulation is particles that do not interact with other particles or
with each other via pairwise interactions. The group specified with this option must also be specified via the
atom_modify first command.

The exclude option turns off pairwise interactions between certain pairs of atoms, by not including them in the
neighbor list. These are sample scenarios where this is useful:

In crack simulations, pairwise interactions can be shut off between 2 slabs of atoms to effectively create a
crack.

•

When a large collection of atoms is treated as frozen, interactions between those atoms can be turned off
to save needless computation. E.g. Using the fix setforce command to freeze a wall or portion of a
bio−molecule.

•

When one or more rigid bodies are specified, interactions within each body can be turned off to save
needless computation. See the fix rigid command for more details.

•

The exclude type option turns off the pairwise interaction if one atom is of type M and the other of type N. M can
equal N. The exclude group option turns off the interaction if one atom is in the first group and the other is the
second. Group1−ID can equal group2−ID. The exclude molecule option turns off the interaction if both atoms are
in the specified group and in the same molecule, as determined by their molecule ID.

Each of the exclude options can be specified multiple times. The exclude type option is the most efficient option
to use; it requires only a single check, no matter how many times it has been specified. The other exclude options
are more expensive if specified multiple times; they require one check for each time they have been specified.

Note that the exclude options only affect pairwise interactions; see the delete_bonds command for information on
turning off bond interactions.

The page and one options affect how memory is allocated for the neighbor lists. For most simulations the default
settings for these options are fine, but if a very large problem is being run or a very long cutoff is being used,
these parameters can be tuned. The indices of neighboring atoms are stored in "pages", which are allocated one
after another as they fill up. The size of each page is set by the page value. A new page is allocated when the next
atom's neighbors could potentially overflow the list. This threshold is set by the one value which tells LAMMPS
the maximum number of neighbor's one atom can have.

IMPORTANT NOTE: LAMMPS can crash without an error message if the number of neighbors for a single
particle is larger than the page setting, which means it is much, much larger than the one setting. This is because
LAMMPS doesn't error check these limits for every pairwise interaction (too costly), but only after all the
particle's neighbors have been found. This problem usually means something is very wrong with the way you've
setup your problem (particle spacing, cutoff length, neighbor skin distance, etc). If you really expect that many
neighbors per particle, then boost the one and page settings accordingly.

The binsize option allows you to specify what size of bins will be used in neighbor list construction to sort and
find neighboring atoms. By default, for neighbor style bin, LAMMPS uses bins that are 1/2 the size of the
maximum pair cutoff. For neighbor style multi, the bins are 1/2 the size of the minimum pair cutoff. Typically
these are good values values for minimizing the time for neighbor list construction. This setting overrides the
default. If you make it too big, there is little overhead due to looping over bins, but more atoms are checked. If

495

you make it too small, the optimal number of atoms is checked, but bin overhead goes up. If you set the binsize to
0.0, LAMMPS will use the default binsize of 1/2 the cutoff.

Restrictions:

If the "delay" setting is non−zero, then it must be a multiple of the "every" setting.

The exclude molecule option can only be used with atom styles that define molecule IDs.

The value of the page setting must be at least 10x larger than the one setting. This insures neighbor pages are not
mostly empty space.

Related commands:

neighbor, delete_bonds

Default:

The option defaults are delay = 10, every = 1, check = yes, once = no, include = all, exclude = none, page =
100000, one = 2000, and binsize = 0.0.

496

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

neighbor command

Syntax:

neighbor skin style

skin = extra distance beyond force cutoff (distance units)•
style = bin or nsq or multi•

Examples:

neighbor 0.3 bin
neighbor 2.0 nsq

Description:

This command sets parameters that affect the building of pairwise neighbor lists. All atom pairs within a neighbor
cutoff distance equal to the their force cutoff plus the skin distance are stored in the list. Typically, the larger the
skin distance, the less often neighbor lists need to be built, but more pairs must be checked for possible force
interactions every timestep. The default value for skin depends on the choice of units for the simulation; see the
default values below.

The skin distance is also used to determine how often atoms migrate to new processors if the check option of the
neigh_modify command is set to yes. Atoms are migrated (communicated) to new processors on the same
timestep that neighbor lists are re−built.

The style value selects what algorithm is used to build the list. The bin style creates the list by binning which is an
operation that scales linearly with N/P, the number of atoms per processor where N = total number of atoms and P
= number of processors. It is almost always faster than the nsq style which scales as (N/P)^2. For unsolvated
small molecules in a non−periodic box, the nsq choice can sometimes be faster. Either style should give the same
answers.

The multi style is a modified binning algorithm that is useful for systems with a wide range of cutoff distances,
e.g. due to different size particles. For the bin style, the bin size is set to 1/2 of the largest cutoff distance between
any pair of atom types and a single set of bins is defined to search over for all atom types. This can be inefficient
if one pair of types has a very long cutoff, but other type pairs have a much shorter cutoff. For style multi the bin
size is set to 1/2 of the shortest cutoff distance and multiple sets of bins are defined to search over for different
atom types. This imposes some extra setup overhead, but the searches themselves may be much faster for the
short−cutoff cases. See the communicate multi command for a communication option option that may also be
beneficial for simulations of this kind.

The neigh_modify command has additional options that control how often neighbor lists are built and which pairs
are stored in the list.

When a run is finished, counts of the number of neighbors stored in the pairwise list and the number of times
neighbor lists were built are printed to the screen and log file. See this section for details.

Restrictions: none

Related commands:

497

http://lammps.sandia.gov

neigh_modify, units, communicate

Default:

0.3 bin for units = lj, skin = 0.3 sigma
2.0 bin for units = real or metal, skin = 2.0 Angstroms
0.001 bin for units = si, skin = 0.001 meters = 1.0 mm
0.1 bin for units = cgs, skin = 0.1 cm = 1.0 mm

498

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

newton command

Syntax:

newton flag
newton flag1 flag2

flag = on or off for both pairwise and bonded interactions•
flag1 = on or off for pairwise interactions•
flag2 = on or off for bonded interactions•

Examples:

newton off
newton on off

Description:

This command turns Newton's 3rd law on or off for pairwise and bonded interactions. For most problems, setting
Newton's 3rd law to on means a modest savings in computation at the cost of two times more communication.
Whether this is faster depends on problem size, force cutoff lengths, a machine's compute/communication ratio,
and how many processors are being used.

Setting the pairwise newton flag to off means that if two interacting atoms are on different processors, both
processors compute their interaction and the resulting force information is not communicated. Similarly, for
bonded interactions, newton off means that if a bond, angle, dihedral, or improper interaction contains atoms on 2
or more processors, the interaction is computed by each processor.

LAMMPS should produce the same answers for any newton flag settings, except for round−off issues.

With run_style respa and only bonded interactions (bond, angle, etc) computed in the innermost timestep, it may
be faster to turn newton off for bonded interactions, to avoid extra communication in the innermost loop.

Restrictions:

The newton bond setting cannot be changed after the simulation box is defined by a read_data or create_box
command.

Related commands:

run_style respa

Default:

newton on

499

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

next command

Syntax:

next variables

variables = one or more variable names•

Examples:

next x
next a t x myTemp

Description:

This command is used with variables defined by the variable command. It assigns the next value to the variable
from the list of values defined for that variable by the variable command. Thus when that variable is subsequently
substituted for in an input script command, the new value is used.

See the variable command for info on how to define and use different kinds of variables in LAMMPS input
scripts. If a variable name is a single lower−case character from "a" to "z", it can be used in an input script
command as $a or $z. If it is multiple letters, it can be used as ${myTemp}.

If multiple variables are used as arguments to the next command, then all must be of the same variable style:
index, loop, universe, or uloop. An exception is that universe− and uloop−style variables can be mixed in the
same next command. Atom− or equal− or world−style variables cannot be incremented by a next command. All
the variables specified are incremented by one value from their respective lists.

When any of the variables in the next command has no more values, a flag is set that causes the input script to
skip the next jump command encountered. This enables a loop containing a next command to exit. As explained
in the variable command, the variable that has exhausted its values is also deleted. This allows it to be used and
re−defined later in the input script.

When the next command is used with index− or loop−style variables, the next value is assigned to the variable for
all processors. When the next command is used with universe− or uloop−style variables, the next value is
assigned to whichever processor partition executes the command first. All processors in the partition are assigned
the same value. Running LAMMPS on multiple partitions of processors via the "−partition" command−line
switch is described in this section of the manual. Universe− and uloop−style variables are incremented using the
files "tmp.lammps.variable" and "tmp.lammps.variable.lock" which you will see in your directory during such a
LAMMPS run.

Here is an example of running a series of simulations using the next command with an index−style variable. If this
input script is named in.polymer, 8 simulations would be run using data files from directories run1 thru run8.

variable d index run1 run2 run3 run4 run5 run6 run7 run8
shell cd $d
read_data data.polymer
run 10000
shell cd ..
clear
next d
jump in.polymer

500

http://lammps.sandia.gov

If the variable "d" were of style universe, and the same in.polymer input script were run on 3 partitions of
processors, then the first 3 simulations would begin, one on each set of processors. Whichever partition finished
first, it would assign variable "d" the 4th value and run another simulation, and so forth until all 8 simulations
were finished.

Jump and next commands can also be nested to enable multi−level loops. For example, this script will run 15
simulations in a double loop.

variable i loop 3
 variable j loop 5
 clear
 ...
 read_data data.polymer.ij
 print Running simulation $i.$j
 run 10000
 next j
 jump in.script
next i
jump in.script

Here is an example of a double loop which uses the if and jump commands to break out of the inner loop when a
condition is met, then continues iterating thru the outer loop.

label loopa
variable a loop 5
 label loopb
 variable b loop 5
 print "A,B = $a,$b"
 run 10000
 if $b > 2 then "jump in.script break"
 next b
 jump in.script loopb
label break
variable b delete

next a
jump in.script loopa

Restrictions: none

Related commands:

jump, include, shell, variable,

Default: none

501

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

orient command

Syntax:

orient dim i j k

dim = x or y or z•
i,j,k = orientation of lattice that is along box direction dim•

Examples:

orient x 1 1 0
orient y −1 1 0
orient z 0 0 1

Description:

Specify the orientation of a cubic lattice along simulation box directions x or y or z. These 3 basis vectors are used
when the create_atoms command generates a lattice of atoms.

The 3 basis vectors B1, B2, B3 must be mutually orthogonal and form a right−handed system such that B1 cross
B2 is in the direction of B3.

The basis vectors should be specified in an irreducible form (smallest possible integers), though LAMMPS does
not check for this.

Restrictions: none

Related commands:

origin, create_atoms

Default:

orient x 1 0 0
orient y 0 1 0
orient z 0 0 1

502

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

origin command

Syntax:

origin x y z

x,y,z = origin of a lattice•

Examples:

origin 0.0 0.5 0.5

Description:

Set the origin of the lattice defined by the lattice command. The lattice is used by the create_atoms command to
create new atoms and by other commands that use a lattice spacing as a distance measure. This command offsets
the origin of the lattice from the (0,0,0) coordinate of the simulation box by some fraction of a lattice spacing in
each dimension.

The specified values are in lattice coordinates from 0.0 to 1.0, so that a value of 0.5 means the lattice is displaced
1/2 a cubic cell.

Restrictions: none

Related commands:

lattice, orient

Default:

origin 0 0 0

503

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

pair_style airebo command

Syntax:

pair_style airebo cutoff LJ_flag TORSION_flag

cutoff = LJ cutoff (sigma scale factor)•
LJ_flag = 0/1 to turn off/on the LJ term in AIREBO (optional)•
TORSION_flag = 0/1 to turn off/on the torsion term in AIREBO (optional)•

Examples:

pair_style airebo 3.0
pair_style airebo 2.5 1 0
pair_coeff * * ../potentials/CH.airebo H C

Description:

The airebo pair style computes the Adaptive Intermolecular Reactive Empirical Bond Order (AIREBO) Potential
of (Stuart) for a system of carbon and/or hydrogen atoms. The potential consists of three terms:

By default, all three terms are included. If the two optional flag arguments to the pair_style command are
included, the LJ and torsional terms can be turned off. Note that both or neither of the flags must be included.

The detailed formulas for this potential are given in (Stuart); here we provide only a brief description.

The E_REBO term has the same functional form as the hydrocarbon REBO potential developed in (Brenner). The
coefficients for E_REBO in AIREBO are essentially the same as Brenner's potential, but a few fitted spline values
are slightly different. For most cases the E_REBO term in AIREBO will produce the same energies, forces and
statistical averages as the original REBO potential from which it was derived. The E_REBO term in the AIREBO
potential gives the model its reactive capabilities and only describes short−ranged C−C, C−H and H−H
interactions (r < 2 Angstroms). These interactions have strong coordination−dependence through a bond order
parameter, which adjusts the attraction between the I,J atoms based on the position of other nearby atoms and thus
has 3− and 4−body dependence.

The E_LJ term adds longer−ranged interactions (2 < r < cutoff) using a form similar to the standard Lennard
Jones potential. The E_LJ term in AIREBO contains a series of switching functions so that the short−ranged LJ
repulsion (1/r^12) does not interfere with the energetics captured by the E_REBO term. The extent of the E_LJ
interactions is determined by the cutoff argument to the pair_style command which is a scale factor. For each type
pair (C−C, C−H, H−H) the cutoff is obtained by multiplying the scale factor by the sigma value defined in the
potential file for that type pair. In the standard AIREBO potential, sigma_CC = 3.4 Angstroms, so with a scale
factor of 3.0 (the argument in pair_style), the resulting E_LJ cutoff would be 10.2 Angstroms.

The E_TORSION term is an explicit 4−body potential that describes various dihedral angle preferences in
hydrocarbon configurations.

504

http://lammps.sandia.gov

Only a single pair_coeff command is used with the airebo style which specifies an AIREBO potential file with
parameters for C and H. These are mapped to LAMMPS atom types by specifying N additional arguments after
the filename in the pair_coeff command, where N is the number of LAMMPS atom types:

filename•
N element names = mapping of AIREBO elements to atom types•

As an example, if your LAMMPS simulation has 4 atom types and you want the 1st 3 to be C, and the 4th to be
H, you would use the following pair_coeff command:

pair_coeff * * CH.airebo C C C H

The 1st 2 arguments must be * * so as to span all LAMMPS atom types. The first three C arguments map
LAMMPS atom types 1,2,3 to the C element in the AIREBO file. The final H argument maps LAMMPS atom
type 4 to the H element in the SW file. If a mapping value is specified as NULL, the mapping is not performed.
This can be used when a airebo potential is used as part of the hybrid pair style. The NULL values are
placeholders for atom types that will be used with other potentials.

The parameters/coefficients for the AIREBO potentials are listed in the CH.airebo file to agree with the original
(Stuart) paper. Thus the parameters are specific to this potential and the way it was fit, so modifying the file
should be done cautiously. Also note that the E_LJ and E_TORSION terms in AIREBO are intended to be used
with the E_REBO term and not as stand−alone potentials. Thus we don't suggest you use pair_style airebo with
the E_REBO term turned off.

Mixing, shift, table, tail correction, restart, rRESPA info:

This pair style does not support the pair_modify mix, shift, table, and tail options.

This pair style does not write its information to binary restart files, since it is stored in potential files. Thus, you
need to re−specify the pair_style and pair_coeff commands in an input script that reads a restart file.

This pair style can only be used via the pair keyword of the run_style respa command. It does not support the
inner, middle, outer keywords.

Restrictions:

This pair style is part of the "manybody" package. It is only enabled if LAMMPS was built with that package
(which it is by default). See the Making LAMMPS section for more info.

This pair potential requires the newton setting to be "on" for pair interactions.

The CH.airebo potential file provided with LAMMPS (see the potentials directory) is parameterized for metal
units. You can use the AIREBO potential with any LAMMPS units, but you would need to create your own
AIREBO potential file with coefficients listed in the appropriate units if your simulation doesn't use "metal" units.

Related commands:

pair_coeff

Default: none

505

(Stuart) Stuart, Tutein, Harrison, J Chem Phys, 112, 6472−6486 (2000).

(Brenner) Brenner, Shenderova, Harrison, Stuart, Ni, Sinnott, J Physics: Condensed Matter, 14, 783−802 (2002).

506

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

pair_style born/coul/long command

Syntax:

pair_style born/coul/long cutoff (cutoff2)

cutoff = global cutoff for LJ (and Coulombic if only 1 arg) (distance units)•
cutoff2 = global cutoff for Coulombic (optional) (distance units)•

Examples:

pair_style born/coul/long 10.0
pair_style born/coul/long 10.0 8.0
pair_coeff * * 6.08 0.317 2.340 24.18 11.51
pair_coeff 1 1 6.08 0.317 2.340 24.18 11.51

Description:

This pair style compute the Born−Mayer−Huggins potential described in (Fumi and Tosi), given by

where sigma is an interaction−dependent length parameter, rho is an ionic−pair dependent length parameter, and
the last term represents the usual Coulombic pairwise interaction between atoms I and J. In the Coulombic term, k
is an energy−conversion constant, Qi and Qj are the charges on the 2 atoms, and epsilon is the dielectric constant
which can be set by the dielectric command.

If one cutoff is specified in the pair_style command, it is used for both the A,C,D and Coulombic terms. If two
cutoffs are specified, the first is used as the cutoff for the A,C,D terms, and the second is the cutoff for the
Coulombic term.

Note that this potential is identical to the Buckingham potential when sigma = D = 0.

An additional damping factor is applied to the Coulombic term so it can be used in conjunction with the
kspace_style command and its ewald or pppm option. The Coulombic cutoff specified for this style means that
pairwise interactions within this distance are computed directly; interactions outside that distance are computed in
reciprocal space.

The following coefficients must be defined for each pair of atoms types via the pair_coeff command as in the
examples above, or in the data file or restart files read by the read_data or read_restart commands, or by mixing as
described below:

A (energy units)•
rho (distance units)•
sigma (distance units)•
C (energy units * distance units^6)•
D (energy units * distance units^8)•
cutoff (distance units)•

507

http://lammps.sandia.gov

The last coefficient is optional. If not specified, the global A,C,D cutoff specified in the pair_style command is
used. Only the A,C,D cutoff can be specified since a Coulombic cutoff cannot be specified for an individual I,J
type pair. All type pairs use the same global Coulombic cutoff specified in the pair_style command.

Mixing, shift, table, tail correction, restart, rRESPA info:

This style does not support mixing. Thus, coefficients for all I,J pairs must be specified explicitly.

This style supports the pair_modify shift option for the energy of the exp(), 1/r^6, and 1/r^8 portion of the pair
interaction.

This style does not support the pair_modify table option since a tabulation capability has not yet been added to
this potential.

This style does not support the pair_modify tail option for adding long−range tail corrections to energy and
pressure.

This style writes its information to binary restart files, so pair_style and pair_coeff commands do not need to be
specified in an input script that reads a restart file.

This style only supports the pair keyword of run_style respa. See the run_style command for details.

Restrictions:

The born/coul/long style is part of the "kspace" package. It is only enabled if LAMMPS was built with that
package (which it is by default). See the Making LAMMPS section for more info.

Related commands:

pair_coeff, pair_style buck

Default: none

Fumi and Tosi, J Phys Chem Solids, 25, 31 (1964), Fumi and Tosi, J Phys Chem Solids, 25, 45 (1964).

508

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

pair_style buck command

pair_style buck/coul/cut command

pair_style buck/coul/long command

Syntax:

pair_style style args

style = buck or buck/coul/cut or buck/coul/long•
args = list of arguments for a particular style•

buck args = cutoff
 cutoff = global cutoff for Buckingham interactions (distance units)

buck/coul/cut args = cutoff (cutoff2)
 cutoff = global cutoff for Buckingham (and Coulombic if only 1 arg) (distance units)
 cutoff2 = global cutoff for Coulombic (optional) (distance units)

buck/coul/long args = cutoff (cutoff2)
 cutoff = global cutoff for Buckingham (and Coulombic if only 1 arg) (distance units)
 cutoff2 = global cutoff for Coulombic (optional) (distance units)

Examples:

pair_style buck 2.5
pair_coeff * * 100.0 1.5 200.0
pair_coeff * * 100.0 1.5 200.0 3.0

pair_style buck/coul/cut 10.0
pair_style buck/coul/cut 10.0 8.0
pair_coeff * * 100.0 1.5 200.0
pair_coeff 1 1 100.0 1.5 200.0 9.0
pair_coeff 1 1 100.0 1.5 200.0 9.0 8.0

pair_style buck/coul/long 10.0
pair_style buck/coul/long 10.0 8.0
pair_coeff * * 100.0 1.5 200.0
pair_coeff 1 1 100.0 1.5 200.0 9.0

Description:

The buck style computes a Buckingham potential (exp/6 instead of Lennard−Jones 12/6) given by

Rc is the cutoff.

The buck/coul/cut and buck/coul/long styles add a Coulombic term as described for the lj/cut pair styles.

Note that this potential is related to the Born−Mayer−Huggins potential.

509

http://lammps.sandia.gov

The following coefficients must be defined for each pair of atoms types via the pair_coeff command as in the
examples above, or in the data file or restart files read by the read_data or read_restart commands:

A (energy units)•
rho (distance units)•
C (energy−distance^6 units)•
cutoff (distance units)•
cutoff2 (distance units)•

The second coefficient, rho, must be greater than zero.

The latter 2 coefficients are optional. If not specified, the global LJ and Coulombic cutoffs are used. If only one
cutoff is specified, it is used as the cutoff for both LJ and Coulombic interactions for this type pair. If both
coefficients are specified, they are used as the LJ and Coulombic cutoffs for this type pair. You cannot specify 2
cutoffs for style buck, since it has no Coulombic terms.

For buck/coul/long only the LJ cutoff can be specified since a Coulombic cutoff cannot be specified for an
individual I,J type pair. All type pairs use the same global Coulombic cutoff specified in the pair_style command.

Mixing, shift, table, tail correction, restart, rRESPA info:

None of the Buckingham pair styles support mixing. Thus, coefficients for all I,J pairs must be specified
explicitly.

All of the Buckingham pair styles support the pair_modify shift option for the energy of the exp() and 1/r^6
portion of the pair interaction.

The buck/coul/long pair style does not support the pair_modify table option since a tabulation capability has not
yet been added to this potential.

None of the Buckingham pair styles support the pair_modify tail option for adding long−range tail corrections to
energy and pressure.

All of the Buckingham pair styles write their information to binary restart files, so pair_style and pair_coeff
commands do not need to be specified in an input script that reads a restart file.

All of the Buckingham pair styles can only be used via the pair keyword of the run_style respa command. They
do not support the inner, middle, outer keywords.

Restrictions:

The buck/coul/long style is part of the "kspace" package. It is only enabled if LAMMPS was built with that
package (which it is by default). See the Making LAMMPS section for more info.

Related commands:

pair_coeff, pair_style born

Default: none

510

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

pair_style buck/coul command

Syntax:

pair_style buck/coul flag_buck flag_coul cutoff (cutoff2)

flag_buck = long or cut

long = use Kspace long−range summation for the dispersion term 1/r^6
cut = use a cutoff

•

flag_coul = long or off

long = use Kspace long−range summation for the Coulombic term 1/r
off = omit the Coulombic term

•

cutoff = global cutoff for Buckingham (and Coulombic if only 1 cutoff) (distance units)•
cutoff2 = global cutoff for Coulombic (optional) (distance units)•

Examples:

pair_style buck/coul cut off 2.5
pair_style buck/coul cut long 2.5 4.0
pair_style buck/coul long long 2.5 4.0
pair_coeff * * 1 1
pair_coeff 1 1 1 3 4

Description:

The buck/coul style computes a Buckingham potential (exp/6 instead of Lennard−Jones 12/6) and Coulombic
potential, given by

Rc is the cutoff. If one cutoff is specified in the pair_style command, it is used for both the Buckingham and
Coulombic terms. If two cutoffs are specified, they are used as cutoffs for the Buckingham and Coulombic terms
respectively.

The purpose of this pair style is to capture long−range interactions resulting from both attractive 1/r^6
Buckingham and Coulombic 1/r interactions. This is done by use of the flag_lj and flag_coul settings. The "Ismail
paper has more details on when it is appropriate to include long−range 1/r^6 interactions, using this potential.

If flag_lj is set to long, no cutoff is used on the Buckingham 1/r^6 dispersion term. The long−range portion is
calculated by using the kspace_style ewald/n command. The specified Buckingham cutoff then determines which
portion of the Buckingham interactions are computed directly by the pair potential versus which part is computed
in reciprocal space via the Kspace style. If flag_lj is set to cut, the Buckingham interactions are simply cutoff, as
with pair_style buck.

511

http://lammps.sandia.gov

If flag_coul is set to long, no cutoff is used on the Coulombic interactions. The long−range portion is calculated
by using any style, including ewald/n of the kspace_style command. Note that if flag_buck is also set to long, then
only the ewald/n Kspace style can perform the long−range calculations for both the Buckingham and Coulombic
interactions. If flag_coul is set to off, Coulombic interactions are not computed.

The following coefficients must be defined for each pair of atoms types via the pair_coeff command as in the
examples above, or in the data file or restart files read by the read_data or read_restart commands:

A (energy units)•
rho (distance units)•
C (energy−distance^6 units)•
cutoff (distance units)•
cutoff2 (distance units)•

The second coefficient, rho, must be greater than zero.

The latter 2 coefficients are optional. If not specified, the global Buckingham and Coulombic cutoffs specified in
the pair_style command are used. If only one cutoff is specified, it is used as the cutoff for both Buckingham and
Coulombic interactions for this type pair. If both coefficients are specified, they are used as the Buckingham and
Coulombic cutoffs for this type pair. Note that if you are using flag_buck set to long, you cannot specify a
Buckingham cutoff for an atom type pair, since only one global Buckingham cutoff is allowed. Similarly, if you
are using flag_coul set to long, you cannot specify a Coulombic cutoff for an atom type pair, since only one
global Coulombic cutoff is allowed.

Mixing, shift, table, tail correction, restart, rRESPA info:

This pair styles does not support mixing. Thus, coefficients for all I,J pairs must be specified explicitly.

This pair style supports the pair_modify shift option for the energy of the exp() and 1/r^6 portion of the pair
interaction, assuming flag_buck is cut.

This pair style does not support the pair_modify shift option for the energy of the Buckingham portion of the pair
interaction.

This pair style does not support the pair_modify table option since a tabulation capability has not yet been added
to this potential.

This pair style write its information to binary restart files, so pair_style and pair_coeff commands do not need to
be specified in an input script that reads a restart file.

This pair style supports the use of the inner, middle, and outer keywords of the run_style respa command,
meaning the pairwise forces can be partitioned by distance at different levels of the rRESPA hierarchy. See the
run_style command for details.

Restrictions:

This style is part of the "user−ewaldn" package. It is only enabled if LAMMPS was built with that package. See
the Making LAMMPS section for more info.

Related commands:

pair_coeff

512

Default: none

(Ismail) Ismail, Tsige, In 't Veld, Grest, Molecular Physics (accepted) (2007).

513

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

pair_style lj/charmm/coul/charmm command

pair_style lj/charmm/coul/charmm/implicit command

pair_style lj/charmm/coul/long command

pair_style lj/charmm/coul/long/opt command

Syntax:

pair_style style args

style = lj/charmm/coul/charmm or lj/charmm/coul/charmm/implicit or lj/charmm/coul/long or
lj/charmm/coul/long/opt

•

args = list of arguments for a particular style•

lj/charmm/coul/charmm args = inner outer (inner2) (outer2)
 inner, outer = global switching cutoffs for Lennard Jones (and Coulombic if only 2 args)
 inner2, outer2 = global switching cutoffs for Coulombic (optional)

lj/charmm/coul/charmm/implicit args = inner outer (inner2) (outer2)
 inner, outer = global switching cutoffs for LJ (and Coulombic if only 2 args)
 inner2, outer2 = global switching cutoffs for Coulombic (optional)

lj/charmm/coul/long args = inner outer (cutoff)
 inner, outer = global switching cutoffs for LJ (and Coulombic if only 2 args)
 cutoff = global cutoff for Coulombic (optional, outer is Coulombic cutoff if only 2 args)

Examples:

pair_style lj/charmm/coul/charmm 8.0 10.0
pair_style lj/charmm/coul/charmm 8.0 10.0 7.0 9.0
pair_coeff * * 100.0 2.0
pair_coeff 1 1 100.0 2.0 150.0 3.5

pair_style lj/charmm/coul/charmm/implicit 8.0 10.0
pair_style lj/charmm/coul/charmm/implicit 8.0 10.0 7.0 9.0
pair_coeff * * 100.0 2.0
pair_coeff 1 1 100.0 2.0 150.0 3.5

pair_style lj/charmm/coul/long 8.0 10.0
pair_style lj/charmm/coul/long/opt 8.0 10.0
pair_style lj/charmm/coul/long 8.0 10.0 9.0
pair_coeff * * 100.0 2.0
pair_coeff 1 1 100.0 2.0 150.0 3.5

Description:

The lj/charmm styles compute LJ and Coulombic interactions with an additional switching function S(r) that
ramps the energy and force smoothly to zero between an inner and outer cutoff. It is a widely used potential in the
CHARMM MD code. See (MacKerell) for a description of the CHARMM force field.

514

http://lammps.sandia.gov
http://www.scripps.edu/brooks

Both the LJ and Coulombic terms require an inner and outer cutoff. They can be the same for both formulas or
different depending on whether 2 or 4 arguments are used in the pair_style command. In each case, the inner
cutoff distance must be less than the outer cutoff. It it typical to make the difference between the 2 cutoffs about
1.0 Angstrom.

Style lj/charmm/coul/charmm/implicit computes the same formulas as style lj/charmm/coul/charmm except that
an additional 1/r term is included in the Coulombic formula. The Coulombic energy thus varies as 1/r^2. This is
effectively a distance−dependent dielectric term which is a simple model for an implicit solvent with additional
screening. It is designed for use in a simulation of an unsolvated biomolecule (no explicit water molecules).

Style lj/charmm/coul/long computes the same formulas as style lj/charmm/coul/charmm except that an additional
damping factor is applied to the Coulombic term, as in the discussion for pair style lj/cut/coul/long. Only one
Coulombic cutoff is specified for lj/charmm/coul/long; if only 2 arguments are used in the pair_style command,
then the outer LJ cutoff is used as the single Coulombic cutoff.

Style lj/charmm/coul/long/opt is an optimized version of style lj/charmm/coul/long that should give identical
answers. Depending on system size and the processor you are running on, it may be 5−25% faster (for the
pairwise portion of the run time).

The following coefficients must be defined for each pair of atoms types via the pair_coeff command as in the
examples above, or in the data file or restart files read by the read_data or read_restart commands, or by mixing as
described below:

epsilon (energy units)•
sigma (distance units)•
epsilon_14 (energy units)•
sigma_14 (distance units)•

Note that sigma is defined in the LJ formula as the zero−crossing distance for the potential, not as the energy
minimum at 2^(1/6) sigma.

The latter 2 coefficients are optional. If they are specified, they are used in the LJ formula between 2 atoms of
these types which are also first and fourth atoms in any dihedral. No cutoffs are specified because this CHARMM
force field does not allow varying cutoffs for individual atom pairs; all pairs use the global cutoff(s) specified in
the pair_style command.

515

Mixing, shift, table, tail correction, restart, rRESPA info:

For atom type pairs I,J and I != J, the epsilon, sigma, epsilon_14, and sigma_14 coefficients for all of the
lj/charmm pair styles can be mixed. They are always mixed with the value arithmetic. See the "pair_modify"
command for details.

None of the lj/charmm pair styles support the pair_modify shift option, since the Lennard−Jones portion of the
pair interaction is smoothed to 0.0 at the cutoff.

The lj/charmm/coul/long and lj/charmm/coul/long/opt pair styles support the pair_modify table option since they
can tabulate the short−range portion of the long−range Coulombic interaction.

None of the lj/charmm pair styles support the pair_modify tail option for adding long−range tail corrections to
energy and pressure, since the Lennard−Jones portion of the pair interaction is smoothed to 0.0 at the cutoff.

All of the lj/charmm pair styles write their information to binary restart files, so pair_style and pair_coeff
commands do not need to be specified in an input script that reads a restart file.

The lj/charmm/coul/long pair style supports the use of the inner, middle, and outer keywords of the run_style
respa command, meaning the pairwise forces can be partitioned by distance at different levels of the rRESPA
hierarchy. The other styles only support the pair keyword of run_style respa. See the run_style command for
details.

Restrictions:

The lj/charmm/coul/charmm and lj/charmm/coul/charmm/implicit styles are part of the "molecule" package. The
lj/charmm/coul/long style is part of the "kspace" package. The lj/charmm/coul/long/opt style is part of the "opt"
package and also requires the "kspace" package. They are only enabled if LAMMPS was built with those
package(s) (molecule and kspace are by default). See the Making LAMMPS section for more info.

On some 64−bit machines, compiling with −O3 appears to break the Coulombic tabling option used by the
lj/charmm/coul/long style. See the "Additional build tips" section of the Making LAMMPS documentation pages
for workarounds on this issue.

Related commands:

pair_coeff

Default: none

(MacKerell) MacKerell, Bashford, Bellott, Dunbrack, Evanseck, Field, Fischer, Gao, Guo, Ha, et al, J Phys
Chem, 102, 3586 (1998).

516

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

pair_style lj/class2 command

pair_style lj/class2/coul/cut command

pair_style lj/class2/coul/long command

Syntax:

pair_style style args

style = lj/class2 or lj/class2/coul/cut or lj/class2/coul/long•
args = list of arguments for a particular style•

lj/class2 args = cutoff
 cutoff = global cutoff for class 2 interactions (distance units)

lj/class2/coul/cut args = cutoff (cutoff2)
 cutoff = global cutoff for class 2 (and Coulombic if only 1 arg) (distance units)
 cutoff2 = global cutoff for Coulombic (optional) (distance units)

lj/class2/coul/long args = cutoff (cutoff2)
 cutoff = global cutoff for class 2 (and Coulombic if only 1 arg) (distance units)
 cutoff2 = global cutoff for Coulombic (optional) (distance units)

Examples:

pair_style lj/class2 10.0
pair_coeff * * 100.0 2.5
pair_coeff 1 2* 100.0 2.5 9.0

pair_style lj/class2/coul/cut 10.0
pair_style lj/class2/coul/cut 10.0 8.0
pair_coeff * * 100.0 3.0
pair_coeff 1 1 100.0 3.5 9.0
pair_coeff 1 1 100.0 3.5 9.0 9.0

pair_style lj/class2/coul/long 10.0
pair_style lj/class2/coul/long 10.0 8.0
pair_coeff * * 100.0 3.0
pair_coeff 1 1 100.0 3.5 9.0

Description:

The lj/class2 styles compute a 6/9 Lennard−Jones potential given by

Rc is the cutoff.

The lj/class2/coul/cut and lj/class2/coul/long styles add a Coulombic term as described for the lj/cut pair styles.

See (Sun) for a description of the COMPASS class2 force field.

517

http://lammps.sandia.gov

The following coefficients must be defined for each pair of atoms types via the pair_coeff command as in the
examples above, or in the data file or restart files read by the read_data or read_restart commands, or by mixing as
described below:

epsilon (energy units)•
sigma (distance units)•
cutoff1 (distance units)•
cutoff2 (distance units)•

The latter 2 coefficients are optional. If not specified, the global class 2 and Coulombic cutoffs are used. If only
one cutoff is specified, it is used as the cutoff for both class 2 and Coulombic interactions for this type pair. If
both coefficients are specified, they are used as the class 2 and Coulombic cutoffs for this type pair. You cannot
specify 2 cutoffs for style lj/class2, since it has no Coulombic terms.

For lj/class2/coul/long only the class 2 cutoff can be specified since a Coulombic cutoff cannot be specified for an
individual I,J type pair. All type pairs use the same global Coulombic cutoff specified in the pair_style command.

: line

If the pair_coeff command is not used to define coefficients for a particular I != J type pair, the mixing rule for
epsilon and sigma for all class2 potentials is to use the sixthpower formulas documented by the pair_modify
command. The pair_modify mix setting is thus ignored for class2 potentials for epsilon and sigma. However it is
still followed for mixing the cutoff distance.

Mixing, shift, table, tail correction, restart, rRESPA info:

For atom type pairs I,J and I != J, the epsilon and sigma coefficients and cutoff distance for all of the lj/class2 pair
styles can be mixed. Epsilon and sigma are always mixed with the value sixthpower. The cutoff distance is mixed
by whatever option is set by the pair_modify command (default = geometric). See the "pair_modify" command
for details.

All of the lj/class2 pair styles support the pair_modify shift option for the energy of the Lennard−Jones portion of
the pair interaction.

The lj/class2/coul/long pair style does not support the pair_modify table option since a tabulation capability has
not yet been added to this potential.

All of the lj/class2 pair styles support the pair_modify tail option for adding a long−range tail correction to the
energy and pressure of the Lennard−Jones portion of the pair interaction.

All of the lj/class2 pair styles write their information to binary restart files, so pair_style and pair_coeff
commands do not need to be specified in an input script that reads a restart file.

All of the lj/class2 pair styles can only be used via the pair keyword of the run_style respa command. They do not
support the inner, middle, outer keywords.

Restrictions:

All of these pair styles are part of the "class2" package. They are only enabled if LAMMPS was built with that
package. See the Making LAMMPS section for more info.

Related commands:

518

pair_coeff

Default: none

(Sun) Sun, J Phys Chem B 102, 7338−7364 (1998).

519

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

pair_style cg/cmm command

pair_style cg/cmm/coul/cut command

pair_style cg/cmm/coul/long command

Syntax:

pair_style style args

style = cg/cmm or cg/cmm/coul/cut or cg/cmm/coul/long•
args = list of arguments for a particular style•

cg/cmm args = cutoff
 cutoff = global cutoff for Lennard Jones interactions (distance units)

cg/cmm/coul/cut args = cutoff (cutoff2) (kappa)
 cutoff = global cutoff for LJ (and Coulombic if only 1 arg) (distance units)
 cutoff2 = global cutoff for Coulombic (optional) (distance units)
 kappa = Debye length (optional, defaults to 0.0 = disabled) (inverse distance units)

cg/cmm/coul/long args = cutoff (cutoff2)
 cutoff = global cutoff for LJ (and Coulombic if only 1 arg) (distance units)
 cutoff2 = global cutoff for Coulombic (optional) (distance units)

Examples:

pair_style cg/cmm 2.5
pair_coeff 1 1 lj12_6 1 1.1 2.8

pair_style cg/cmm/coul/cut 10.0 12.0
pair_coeff 1 1 lj9_6 100.0 3.5 9.0
pair_coeff 1 1 lj12_4 100.0 3.5 9.0 9.0

pair_style cg/cmm/coul/long 10.0
pair_style cg/cmm/coul/long 10.0 8.0
pair_coeff 1 1 lj9_6 100.0 3.5 9.0

Description:

The cg/cmm styles compute a 9/6, 12/4, or 12/6 Lennard−Jones potential, given by

as required for the CMM Coarse−grained MD parametrization discussed in (Shinoda) and (DeVane). Rc is the
cutoff.

Style cg/cmm/coul/cut adds a Coulombic pairwise interaction given by

520

http://lammps.sandia.gov

where C is an energy−conversion constant, Qi and Qj are the charges on the 2 atoms, and epsilon is the dielectric
constant which can be set by the dielectric command. If one cutoff is specified in the pair_style command, it is
used for both the LJ and Coulombic terms. If two cutoffs are specified, they are used as cutoffs for the LJ and
Coulombic terms respectively.

This style also contains an additional exp() damping factor to the Coulombic term, given by

where kappa is the Debye length (kappa=0.0 is the unscreened coulomb). This potential is another way to mimic
the screening effect of a polar solvent.

Style cg/cmm/coul/long computes the same Coulombic interactions as style cg/cmm/coul/cut except that an
additional damping factor is applied to the Coulombic term so it can be used in conjunction with the kspace_style
command and its ewald or pppm option. The Coulombic cutoff specified for this style means that pairwise
interactions within this distance are computed directly; interactions outside that distance are computed in
reciprocal space.

The following coefficients must be defined for each pair of atoms types via the pair_coeff command as in the
examples above, or in the data file or restart files read by the read_data or read_restart commands, or by mixing as
described below:

cg_type (lj9_6, lj12_4, or lj12_6)•
epsilon (energy units)•
sigma (distance units)•
cutoff1 (distance units)•
cutoff2 (distance units)•

Note that sigma is defined in the LJ formula as the zero−crossing distance for the potential, not as the energy
minimum. The prefactors are chosen so that the potential minimum is at −epsilon.

The latter 2 coefficients are optional. If not specified, the global LJ and Coulombic cutoffs specified in the
pair_style command are used. If only one cutoff is specified, it is used as the cutoff for both LJ and Coulombic
interactions for this type pair. If both coefficients are specified, they are used as the LJ and Coulombic cutoffs for
this type pair.

For cg/cmm/coul/long only the LJ cutoff can be specified since a Coulombic cutoff cannot be specified for an
individual I,J type pair. All type pairs use the same global Coulombic cutoff specified in the pair_style command.

Mixing, shift, table, tail correction, restart, and rRESPA info:

For atom type pairs I,J and I != J, the epsilon and sigma coefficients and cutoff distance for all of the cg/cmm pair
styles cannot be mixed, since different pairs may have different exponents. So all parameters for all pairs have to
be specified explicitly through the "pair_coeff" command. Defining then in a data file is also not supported, due to
limitations of that file format.

521

All of the cg/cmm pair styles support the pair_modify shift option for the energy of the Lennard−Jones portion of
the pair interaction.

The cg/cmm/coul/long pair styles support the pair_modify table option since they can tabulate the short−range
portion of the long−range Coulombic interaction.

All of the cg/cmm pair styles write their information to binary restart files, so pair_style and pair_coeff commands
do not need to be specified in an input script that reads a restart file.

The cg/cmm, cg/cmm/coul/cut and lj/cut/coul/long pair styles support the use of the inner, middle, and outer
keywords of the run_style respa command, meaning the pairwise forces can be partitioned by distance at different
levels of the rRESPA hierarchy. See the run_style command for details.

Restrictions:

All of the cg/cmm pair styles are part of the "user−cg−cmm" package. They are only enabled if LAMMPS was
built with that package. The cg/cmm/coul/long style also requires the "kspace" package to be built (which is
enabled by default). See the Making LAMMPS section for more info.

On some 64−bit machines, compiling with −O3 appears to break the Coulombic tabling option used by the
cg/cmm/coul/long style. See the "Additional build tips" section of the Making LAMMPS documentation pages for
workarounds on this issue.

Related commands:

pair_coeff, angle_style cg/cmm

Default: none

(Shinoda) Shinoda, DeVane, Klein, Mol Sim, 33, 27 (2007).

(DeVane) Shinoda, DeVane, Klein, Soft Matter, 4, 2453−2462 (2008).

522

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

pair_coeff command

Syntax:

pair_coeff I J args

I,J = atom types (see asterisk form below)•
args = coefficients for one or more pairs of atom types•

Examples:

pair_coeff 1 2 1.0 1.0 2.5
pair_coeff 2 * 1.0 1.0
pair_coeff 3* 1*2 1.0 1.0 2.5
pair_coeff * * 1.0 1.0
pair_coeff * * nialhjea 1 1 2
pair_coeff * 3 morse.table ENTRY1
pair_coeff 1 2 lj/cut 1.0 1.0 2.5 (for pair_style hybrid)

Description:

Specify the pairwise force field coefficients for one or more pairs of atom types. The number and meaning of the
coefficients depends on the pair style. Pair coefficients can also be set in the data file read by the read_data
command or in a restart file.

I and J can be specified in one of two ways. Explicit numeric values can be used for each, as in the 1st example
above. I <= J is required. LAMMPS sets the coefficients for the symmetric J,I interaction to the same values.

A wild−card asterisk can be used in place of or in conjunction with the I,J arguments to set the coefficients for
multiple pairs of atom types. This takes the form "*" or "*n" or "n*" or "m*n". If N = the number of atom types,
then an asterisk with no numeric values means all types from 1 to N. A leading asterisk means all types from 1 to
n (inclusive). A trailing asterisk means all types from n to N (inclusive). A middle asterisk means all types from m
to n (inclusive). Note that only type pairs with I <= J are considered; if asterisks imply type pairs where J < I, they
are ignored.

Note that a pair_coeff command can override a previous setting for the same I,J pair. For example, these
commands set the coeffs for all I,J pairs, then overwrite the coeffs for just the I,J = 2,3 pair:

pair_coeff * * 1.0 1.0 2.5
pair_coeff 2 3 2.0 1.0 1.12

A line in a data file that specifies pair coefficients uses the exact same format as the arguments of the pair_coeff
command in an input script, with the exception of the I,J type arguments. In each line of the "Pair Coeffs" section
of a data file, only a single type I is specified, which sets the coefficients for type I interacting with type I. This is
because the section has exactly N lines, where N = the number of atom types. For this reason, the wild−card
asterisk should also not be used as part of the I argument. Thus in a data file, the line corresponding to the 1st
example above would be listed as

2 1.0 1.0 2.5

For many potentials, if coefficients for type pairs with I != J are not set explicitly by a pair_coeff command, the
values are inferred from the I,I and J,J settings by mixing rules; see the pair_modify command for a discussion.

523

http://lammps.sandia.gov

Details on this option as it pertains to individual potentials are described on the doc page for the potential.

Here is an alphabetic list of pair styles defined in LAMMPS. Click on the style to display the formula it computes,
arguments specified in the pair_style command, and coefficients specified by the associated pair_coeff command:

pair_style hybrid − multiple styles of pairwise interactions•
pair_style hybrid/overlay − multiple styles of superposed pairwise interactions•

pair_style airebo − AI−REBO potential•
pair_style born/coul/long − Born−Mayer−Huggins with long−range Coulomb•
pair_style buck − Buckingham potential•
pair_style buck/coul/cut − Buckingham with cutoff Coulomb•
pair_style buck/coul/long − Buckingham with long−range Coulomb•
pair_style colloid − integrated colloidal potential•
pair_style coul/cut − cutoff Coulombic potential•
pair_style coul/debye − cutoff Coulombic potential with Debye screening•
pair_style coul/long − long−range Coulombic potential•
pair_style dipole/cut − point dipoles with cutoff•
pair_style dpd − dissipative particle dynamics (DPD)•
pair_style dsmc − Direct Simulation Monte Carlo (DSMC)•
pair_style eam − embedded atom method (EAM)•
pair_style eam/opt − optimized version of EAM•
pair_style eam/alloy − alloy EAM•
pair_style eam/alloy/opt − optimized version of alloy EAM•
pair_style eam/fs − Finnis−Sinclair EAM•
pair_style eam/fs/opt − optimized version of Finnis−Sinclair EAM•
pair_style gayberne − Gay−Berne ellipsoidal potential•
pair_style gayberne/gpu − GPU−enabled Gay−Berne ellipsoidal potential•
pair_style gran/hertz/history − granular potential with Hertzian interactions•
pair_style gran/hooke − granular potential with history effects•
pair_style gran/hooke/history − granular potential without history effects•
pair_style lj/charmm/coul/charmm − CHARMM potential with cutoff Coulomb•
pair_style lj/charmm/coul/charmm/implicit − CHARMM for implicit solvent•
pair_style lj/charmm/coul/long − CHARMM with long−range Coulomb•
pair_style lj/charmm/coul/long/opt − optimized version of CHARMM with long−range Coulomb•
pair_style lj/class2 − COMPASS (class 2) force field with no Coulomb•
pair_style lj/class2/coul/cut − COMPASS with cutoff Coulomb•
pair_style lj/class2/coul/long − COMPASS with long−range Coulomb•
pair_style lj/cut − cutoff Lennard−Jones potential with no Coulomb•
pair_style lj/cut/gpu − GPU−enabled version of cutoff LJ•
pair_style lj/cut/opt − optimized version of cutoff LJ•
pair_style lj/cut/coul/cut − LJ with cutoff Coulomb•
pair_style lj/cut/coul/debye − LJ with Debye screening added to Coulomb•
pair_style lj/cut/coul/long − LJ with long−range Coulomb•
pair_style lj/cut/coul/long/tip4p − LJ with long−range Coulomb for TIP4P water•
pair_style lj/expand − Lennard−Jones for variable size particles•
pair_style lj/gromacs − GROMACS−style Lennard−Jones potential•
pair_style lj/gromacs/coul/gromacs − GROMACS−style LJ and Coulombic potential•
pair_style lj/smooth − smoothed Lennard−Jones potential•
pair_style lj96/cut − Lennard−Jones 9/6 potential•
pair_style lubricate − hydrodynamic lubrication forces•
pair_style meam − modified embedded atom method (MEAM)•

524

pair_style morse − Morse potential•
pair_style morse/opt − optimized version of Morse potential•
pair_style peri/pmb − peridynamic PMB potential•
pair_style reax − ReaxFF potential•
pair_style resquared − Everaers RE−Squared ellipsoidal potential•
pair_style soft − Soft (cosine) potential•
pair_style sw − Stillinger−Weber 3−body potential•
pair_style table − tabulated pair potential•
pair_style tersoff − Tersoff 3−body potential•
pair_style tersoff/zbl − Tersoff/ZBL 3−body potential•
pair_style yukawa − Yukawa potential•
pair_style yukawa/colloid − screened Yukawa potential for finite−size particles•

There are also additional pair styles submitted by users which are included in the LAMMPS distribution. The list
of these with links to the individual styles are given in the pair section of this page.

Restrictions:

This command must come after the simulation box is defined by a read_data, read_restart, or create_box
command.

Related commands:

pair_style, pair_modify, read_data, read_restart, pair_write

Default: none

525

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

pair_style colloid command

Syntax:

pair_style colloid cutoff

cutoff = global cutoff for colloidal interactions (distance units)•

Examples:

pair_style colloid 10.0
pair_coeff * * 25 1.0 10.0 10.0
pair_coeff 1 1 144 1.0 0.0 0.0 3.0
pair_coeff 1 2 75.398 1.0 0.0 10.0 9.0
pair_coeff 2 2 39.478 1.0 10.0 10.0 25.0

Description:

Style colloid computes pairwise interactions between large colloidal particles and small solvent particles using 3
formulas. A colloidal particle has a size > sigma; a solvent particle is the usual Lennard−Jones particle of size
sigma.

The colloid−colloid interaction energy is given by

where A_cc is the Hamaker constant, a1 and a2 are the radii of the two colloidal particles, and Rc is the cutoff.
This equation results from describing each colloidal particle as an integrated collection of Lennard−Jones
particles of size sigma and is derived in (Everaers).

The colloid−solvent interaction energy is given by

526

http://lammps.sandia.gov

where A_cs is the Hamaker constant, a is the radius of the colloidal particle, and Rc is the cutoff. This formula is
derived from the colloid−colloid interaction, letting one of the particle sizes go to zero.

The solvent−solvent interaction energy is given by the usual Lennard−Jones formula

with A_ss set appropriately, which results from letting both particle sizes go to zero.

When used in combination with pair_style yukawa/colloid, the two terms become the so−called DLVO potential,
which combines electrostatic repulsion and van der Waals attraction.

The following coefficients must be defined for each pair of atoms types via the pair_coeff command as in the
examples above, or in the data file or restart files read by the read_data or read_restart commands, or by mixing as
described below:

A (energy units)•
sigma (distance units)•
d1 (distance units)•
d2 (distance units)•
cutoff (distance units)•

A is the Hamaker energy prefactor and should typically be set as follows:

A_cc = colloid/colloid = 4 pi^2 = 39.5•
A_cs = colloid/solvent = sqrt(A_cc*A_ss)•
A_ss = solvent/solvent = 144 (assuming epsilon = 1, so that 144/36 = 4)•

Sigma is the size of the solvent particle or the constituent particles integrated over in the colloidal particle and
should typically be set as follows:

Sigma_cc = colloid/colloid = 1.0•
Sigma_cs = colloid/solvent = arithmetic mixing between colloid sigma and solvent sigma•
Sigma_ss = solvent/solvent = 1.0 or whatever size the solvent particle is•

Thus typically Sigma_cs = 1.0, unless the solvent particle's size != 1.0.

D1 and d2 are particle diameters, so that d1 = 2*a1 and d2 = 2*a2 in the formulas above. Both d1 and d2 must be
values >= 0. If d1 > 0 and d2 > 0, then the pair interacts via the colloid−colloid formula above. If d1 = 0 and d2 =
0, then the pair interacts via the solvent−solvent formula. I.e. a d value of 0 is a Lennard−Jones particle of size
sigma. If either d1 = 0 or d2 = 0 and the other is larger, then the pair interacts via the colloid−solvent formula.

Note that the diameter of a particular particle type may appear in multiple pair_coeff commands, as it interacts
with other particle types. You should insure the particle diameter is specified consistently each time it appears.

527

The last coefficient is optional. If not specified, the global cutoff specified in the pair_style command is used.
However, you typically want different cutoffs for interactions between different particle sizes. E.g. if colloidal
particles of diameter 10 are used with solvent particles of diameter 1, then a solvent−solvent cutoff of 2.5 would
correspond to a colloid−colloid cutoff of 25. A good rule−of−thumb is to use a colloid−solvent cutoff that is half
the big diameter + 4 times the small diameter. I.e. 9 = 5 + 4 for the colloid−solvent cutoff in this case.

IMPORTANT NOTE: When using pair_style colloid for a mixture with 2 (or more) widely different particles
sizes (e.g. sigma=10 colloids in a background sigam=1 LJ fluid), you will likely want to use these commands for
efficiency: neighbor multi and communicate multi.

Mixing, shift, table, tail correction, restart, rRESPA info:

For atom type pairs I,J and I != J, the A, sigma, d1, and d2 coefficients and cutoff distance for this pair style can
be mixed. A is an energy value mixed like a LJ epsilon. D1 and d2 are distance values and are mixed like sigma.
The default mix value is geometric. See the "pair_modify" command for details.

This pair style supports the pair_modify shift option for the energy of the pair interaction.

The pair_modify table option is not relevant for this pair style.

This pair style does not support the pair_modify tail option for adding long−range tail corrections to energy and
pressure.

This pair style writes its information to binary restart files, so pair_style and pair_coeff commands do not need to
be specified in an input script that reads a restart file.

This pair style can only be used via the pair keyword of the run_style respa command. It does not support the
inner, middle, outer keywords.

Restrictions:

This style is part of the "colloid" package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info.

Related commands:

pair_coeff

Default: none

(Everaers) Everaers, Ejtehadi, Phys Rev E, 67, 041710 (2003).

528

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

pair_style coul/cut command

pair_style coul/debye command

pair_style coul/long command

Syntax:

pair_style coul/cut cutoff
pair_style coul/debye kappa cutoff
pair_style coul/long cutoff

cutoff = global cutoff for Coulombic interactions•
kappa = Debye length (inverse distance units)•

Examples:

pair_style coul/cut 2.5
pair_coeff * *
pair_coeff 2 2 3.5

pair_style coul/debye 1.4 3.0
pair_coeff * *
pair_coeff 2 2 3.5

pair_style coul/long 10.0
pair_coeff * *

Description:

The coul/cut style computes the standard Coulombic interaction potential given by

where C is an energy−conversion constant, Qi and Qj are the charges on the 2 atoms, and epsilon is the dielectric
constant which can be set by the dielectric command. The cutoff Rc truncates the interaction distance.

Style coul/debye adds an additional exp() damping factor to the Coulombic term, given by

where kappa is the Debye length. This potential is another way to mimic the screening effect of a polar solvent.

Style coul/long computes the same Coulombic interactions as style coul/cut except that an additional damping
factor is applied so it can be used in conjunction with the kspace_style command and its ewald or pppm option.
The Coulombic cutoff specified for this style means that pairwise interactions within this distance are computed
directly; interactions outside that distance are computed in reciprocal space.

529

http://lammps.sandia.gov

These potentials are designed to be combined with other pair potentials via the pair_style hybrid/overlay
command. This is because they have no repulsive core. Hence if they are used by themselves, there will be no
repulsion to keep two oppositely charged particles from overlapping each other.

The following coefficients must be defined for each pair of atoms types via the pair_coeff command as in the
examples above, or in the data file or restart files read by the read_data or read_restart commands, or by mixing as
described below:

cutoff (distance units)•

For coul/cut and coul/debye, the cutoff coefficient is optional. If it is not used (as in some of the examples above),
the default global value specified in the pair_style command is used.

For coul/long no cutoff can be specified for an individual I,J type pair via the pair_coeff command. All type pairs
use the same global Coulombic cutoff specified in the pair_style command.

Mixing, shift, table, tail correction, restart, rRESPA info:

For atom type pairs I,J and I != J, the cutoff distance for the coul/cut style can be mixed. The default mix value is
geometric. See the "pair_modify" command for details.

The pair_modify shift option is not relevant for these pair styles.

The coul/long style supports the pair_modify table option for tabulation of the short−range portion of the
long−range Coulombic interaction.

These pair styles do not support the pair_modify tail option for adding long−range tail corrections to energy and
pressure.

These pair styles write their information to binary restart files, so pair_style and pair_coeff commands do not need
to be specified in an input script that reads a restart file.

This pair style can only be used via the pair keyword of the run_style respa command. It does not support the
inner, middle, outer keywords.

Restrictions:

The coul/long style is part of the "kspace" package. It is only enabled if LAMMPS was built with that package
(which it is by default). See the Making LAMMPS section for more info.

On some 64−bit machines, compiling with −O3 appears to break the Coulombic tabling option used by the
coul/long style. See the "Additional build tips" section of the Making LAMMPS documentation pages for
workarounds on this issue.

Related commands:

pair_coeff, pair_style hybrid/overlay

Default: none

530

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

pair_style dipole/cut command

Syntax:

pair_style dipole/cut cutoff (cutoff2)

cutoff = global cutoff LJ (and Coulombic if only 1 arg) (distance units)•
cutoff2 = global cutoff for Coulombic (optional) (distance units)•

Examples:

pair_style dipole/cut 10.0
pair_coeff * * 1.0 1.0
pair_coeff 2 3 1.0 1.0 2.5 4.0

Description:

Style dipole/cut computes interactions between pairs of particles that each have a charge and/or a point dipole
moment. In addition to the usual Lennard−Jones interaction between the particles (Elj) the charge−charge (Eqq),
charge−dipole (Eqp), and dipole−dipole (Epp) interactions are computed by these formulas for the energy (E),
force (F), and torque (T) between particles I and J.

where qi and qj are the charges on the two particles, pi and pj are the dipole moment vectors of the two particles, r
is their separation distance, and the vector r = Ri − Rj is the separation vector between the two particles. Note that

531

http://lammps.sandia.gov

Eqq and Fqq are simply Coulombic energy and force, Fij = −Fji as symmetric forces, and Tij != −Tji since the
torques do not act symmetrically. These formulas are discussed in (Allen) and in (Toukmaji).

If one cutoff is specified in the pair_style command, it is used for both the LJ and Coulombic (q,p) terms. If two
cutoffs are specified, they are used as cutoffs for the LJ and Coulombic (q,p) terms respectively.

Atoms with dipole moments should be integrated using the fix nve/sphere update dipole command to rotate the
dipole moments. The compute temp/sphere command can be used to monitor the temperature, since it includes
rotational degrees of freedom. The atom_style dipole command should be used since it defines the point dipoles
and their rotational state. The magnitude of the dipole moment for each type of particle can be defined by the
dipole command or in the "Dipoles" section of the data file read in by the read_data command. Their initial
orientation can be defined by the set dipole command or in the "Atoms" section of the data file.

The following coefficients must be defined for each pair of atoms types via the pair_coeff command as in the
examples above, or in the data file or restart files read by the read_data or read_restart commands, or by mixing as
described below:

epsilon (energy units)•
sigma (distance units)•
cutoff1 (distance units)•
cutoff2 (distance units)•

The latter 2 coefficients are optional. If not specified, the global LJ and Coulombic cutoffs specified in the
pair_style command are used. If only one cutoff is specified, it is used as the cutoff for both LJ and Coulombic
interactions for this type pair. If both coefficients are specified, they are used as the LJ and Coulombic cutoffs for
this type pair.

Mixing, shift, table, tail correction, restart, rRESPA info:

For atom type pairs I,J and I != J, the epsilon and sigma coefficients and cutoff distances for this pair style can be
mixed. The default mix value is geometric. See the "pair_modify" command for details.

For atom type pairs I,J and I != J, the A, sigma, d1, and d2 coefficients and cutoff distance for this pair style can
be mixed. A is an energy value mixed like a LJ epsilon. D1 and d2 are distance values and are mixed like sigma.
The default mix value is geometric. See the "pair_modify" command for details.

This pair style supports the pair_modify shift option for the energy of the Lennard−Jones portion of the pair
interaction.

The pair_modify table option is not relevant for this pair style.

This pair style does not support the pair_modify tail option for adding long−range tail corrections to energy and
pressure.

This pair style writes its information to binary restart files, so pair_style and pair_coeff commands do not need to
be specified in an input script that reads a restart file.

This pair style can only be used via the pair keyword of the run_style respa command. It does not support the
inner, middle, outer keywords.

Restrictions:

532

This style is part of the "dipole" package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info.

Related commands:

pair_coeff, fix nve/dipole, compute temp/dipole

Default: none

(Allen) Allen and Tildesley, Computer Simulation of Liquids, Clarendon Press, Oxford, 1987.

(Toukmaji) Toukmaji, Sagui, Board, and Darden, J Chem Phys, 113, 10913 (2000).

533

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

pair_style dpd command

Syntax:

pair_style dpd T cutoff seed

T = temperature (temperature units)•
cutoff = global cutoff for DPD interactions (distance units)•
seed = random # seed (positive integer)•

Examples:

pair_style dpd 1.0 2.5 34387
pair_coeff * * 3.0 1.0
pair_coeff 1 1 3.0 1.0 1.0

Description:

Style dpd computes a force field for dissipative particle dynamics (DPD) following the exposition in (Groot). The
force on atom I due to atom J is given as a sum of 3 terms

where Fc is a conservative force, Fd is a dissipative force, and Fr is a random force. Rij is a unit vector in the
direction Ri − Rj, Vij is the vector difference in velocities of the two atoms = Vi − Vj, alpha is a Gaussian random
number with zero mean and unit variance, dt is the timestep size, and w(r) is a weighting factor that varies
between 0 and 1. Rc is the cutoff. Sigma is set equal to sqrt(2 Kb T gamma), where Kb is the Boltzmann constant
and T is the temperature parameter in the pair_style command.

The pairwise energy associated with this potential is only due to the conservative force term Fc.

The following coefficients must be defined for each pair of atoms types via the pair_coeff command as in the
examples above, or in the data file or restart files read by the read_data or read_restart commands:

A (force units)•
gamma (force/velocity units)•
cutoff (distance units)•

The last coefficient is optional. If not specified, the global DPD cutoff is used. Note that sigma is set equal to
sqrt(2 T gamma), where T is the temperature set by the pair_style command so it does not need to be specified.

Mixing, shift, table, tail correction, restart, rRESPA info:

This pair style does not support mixing. Thus, coefficients for all I,J pairs must be specified explicitly.

534

http://lammps.sandia.gov

This pair style does not support the pair_modify shift option for the energy of the pair interaction.

The pair_modify table option is not relevant for this pair style.

This pair style does not support the pair_modify tail option for adding long−range tail corrections to energy and
pressure.

This pair style writes its information to binary restart files, so pair_style and pair_coeff commands do not need to
be specified in an input script that reads a restart file. Note that the user−specified random number seed is stored
in the restart file, so when a simulation is restarted, each processor will re−initialize its random number generator
the same way it did initially. This means the random forces will be random, but will not be the same as they
would have been if the original simulation had continued past the restart time.

This pair style can only be used via the pair keyword of the run_style respa command. It does not support the
inner, middle, outer keywords.

Restrictions:

The default frequency for rebuilding neighbor lists is every 10 steps (see the neigh_modify command). This may
be too infrequent for DPD simulations since particles move rapidly and can overlap by large amounts. If this
setting yields a non−zero number of "dangerous" reneighborings (printed at the end of a simulation), you should
experiment with forcing reneighboring more often and see if system energies/trajectories change.

This pair style requires you to use the communicate vel yes option so that velocites are stored by ghost atoms.

Related commands:

pair_coeff

Default: none

(Groot) Groot and Warren, J Chem Phys, 107, 4423−35 (1997).

535

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

pair_style dsmc command

Syntax:

pair_style dsmc max_cell_size seed weighting Tref Nrecompute Nsample

max_cell_size = global maximum cell size for DSMC interactions (distance units)•
seed = random # seed (positive integer)•
weighting = macroparticle weighting•
Tref = reference temperature (temperature units)•
Nrecompute = recompute v*sigma_max every this many timesteps (timesteps)•
Nsample = sample this many times in recomputing v*sigma_max•

Examples:

pair_style dsmc 2.5 34387 10 1.0 100 20
pair_coeff * * 1.0
pair_coeff 1 1 1.0

Description:

Style dsmc computes collisions between pairs of particles for a direct simulation Monte Carlo (DSMC) model
following the exposition in (Bird). Each collision resets the velocities of the two particles involved. The number
of pairwise collisions for each pair or particle types and the length scale within which they occur are determined
by the parameters of the pair_style and pair_coeff commands.

Stochastic collisions are performed using the variable hard sphere (VHS) approach, with the user−defined
max_cell_size value used as the maximum DSMC cell size, and reference cross−sections for collisions given
using the pair_coeff command.

There is no pairwise energy or virial contributions associated with this pair style.

The following coefficient must be defined for each pair of atoms types via the pair_coeff command as in the
examples above, or in the data file or restart files read by the read_data or read_restart commands:

sigma (area units, i.e. distance−squared)•

The global DSMC max_cell_size determines the maximum cell length used in the DSMC calculation. A
structured mesh is overlayed on the simulation box such that an integer number of cells are created in each
direction for each processor's sub−domain. Cell lengths are adjusted up to the user−specified maximum cell size.

To perform a DSMC simulation with LAMMPS, several additional options should be set in your input script,
though LAMMPS does not check for these settings.

Since this pair style does not compute particle forces, you should use the "fix nve/noforce" time integration fix for
the DSMC particles, e.g.

fix 1 all nve/noforce

This pair style assumes that all particles will communicated to neighboring processors every timestep as they
move. This makes it possible to perform all collisions between pairs of particles that are on the same processor.

536

http://lammps.sandia.gov

To ensure this occurs, you should use these commands:

neighbor 0.0 bin
neigh_modify every 1 delay 0 check no
communicate single cutoff 0.0

These commands insure that LAMMPS communicates particles to neighboring processors every timestep and that
no ghost atoms are created. The output statistics for a simulation run should indicate there are no ghost particles
or neighbors.

Mixing, shift, table, tail correction, restart, rRESPA info:

This pair style does not support mixing. Thus, coefficients for all I,J pairs must be specified explicitly.

This pair style does not support the pair_modify shift option for the energy of the pair interaction.

The pair_modify table option is not relevant for this pair style.

This pair style does not support the pair_modify tail option for adding long−range tail corrections to energy and
pressure.

This pair style writes its information to binary restart files, so pair_style and pair_coeff commands do not need to
be specified in an input script that reads a restart file. Note that the user−specified random number seed is stored
in the restart file, so when a simulation is restarted, each processor will re−initialize its random number generator
the same way it did initially. This means the random forces will be random, but will not be the same as they
would have been if the original simulation had continued past the restart time.

This pair style can only be used via the pair keyword of the run_style respa command. It does not support the
inner, middle, outer keywords.

Restrictions:

This style is part of the "dsmc" package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info.

Related commands:

pair_coeff, fix nve/noforce, neigh_modify, neighbor, communicate

Default: none

(Bird) G. A. Bird, "Molecular Gas Dynamics and the Direct Simulation of Gas Flows" (1994).

537

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

pair_style eam command

pair_style eam/opt command

pair_style eam/alloy command

pair_style eam/alloy/opt command

pair_style eam/cd command

pair_style eam/fs command

pair_style eam/fs/opt command

Syntax:

pair_style style

style = eam or eam/alloy or eam/cd or eam/fs or eam/opt or eam/alloy/opt or eam/fs/opt•

Examples:

pair_style eam
pair_style eam/opt
pair_coeff * * cuu3
pair_coeff 1*3 1*3 niu3.eam

pair_style eam/alloy
pair_style eam/alloy/opt
pair_coeff * * ../potentials/nialhjea.eam.alloy Ni Al Ni Ni

pair_style eam/cd
pair_coeff * * ../potentials/FeCr.cdeam Fe Cr

pair_style eam/fs
pair_style eam/fs/opt
pair_coeff * * nialhjea.eam.fs Ni Al Ni Ni

Description:

Style eam computes pairwise interactions for metals and metal alloys using embedded−atom method (EAM)
potentials (Daw). The total energy Ei of an atom I is given by

where F is the embedding energy which is a function of the atomic electron density rho, phi is a pair potential
interaction, and alpha and beta are the element types of atoms I and J. The multi−body nature of the EAM
potential is a result of the embedding energy term. Both summations in the formula are over all neighbors J of

538

http://lammps.sandia.gov

atom I within the cutoff distance.

Style eam/opt is an optimized version of style eam that should give identical answers. Depending on system size
and the processor you are running on, it may be 5−25% faster (for the pairwise portion of the run time).

The cutoff distance and the tabulated values of the functionals F, rho, and phi are listed in one or more files which
are specified by the pair_coeff command. These are ASCII text files in a DYNAMO−style format which is
described below. DYNAMO was the original serial EAM MD code, written by the EAM originators. Several
DYNAMO potential files for different metals are included in the "potentials" directory of the LAMMPS
distribution. All of these files are parameterized in terms of LAMMPS metal units.

IMPORTANT NOTE: The eam style reads single−element EAM potentials in the DYNAMO funcfl format.
Either single element or alloy systems can be modeled using multiple funcfl files and style eam. For the alloy case
LAMMPS mixes the single−element potentials to produce alloy potentials, the same way that DYNAMO does.
Alternatively, a single DYNAMO setfl file or Finnis/Sinclair EAM file can be used by LAMMPS to model alloy
systems by invoking the eam/alloy or eam/cd or eam/fs styles as described below. These files require no mixing
since they specify alloy interactions explicitly.

There are several WWW sites that distribute and document EAM potentials stored in DYNAMO or other formats:

http://www.ctcms.nist.gov/potentials
http://cst−www.nrl.navy.mil/ccm6/ap
http://enpub.fulton.asu.edu/cms/potentials/main/main.htm

These potentials should be usable with LAMMPS, though the alternate formats would need to be converted to the
DYNAMO format used by LAMMPS and described on this page. The NIST site is maintained by Chandler
Becker (cbecker at nist.gov) who is good resource for info on interatomic potentials and file formats.

For style eam, potential values are read from a file that is in the DYNAMO single−element funcfl format. If the
DYNAMO file was created by a Fortran program, it cannot have "D" values in it for exponents. C only recognizes
"e" or "E" for scientific notation.

Note that unlike for other potentials, cutoffs for EAM potentials are not set in the pair_style or pair_coeff
command; they are specified in the EAM potential files themselves.

For style eam a potential file must be assigned to each I,I pair of atom types by using one or more pair_coeff
commands, each with a single argument:

filename•

Thus the following command

pair_coeff *2 1*2 cuu3.eam

will read the cuu3 potential file and use the tabulated Cu values for F, phi, rho that it contains for type pairs 1,1
and 2,2 (type pairs 1,2 and 2,1 are ignored). In effect, this makes atom types 1 and 2 in LAMMPS be Cu atoms.
Different single−element files can be assigned to different atom types to model an alloy system. The mixing to
create alloy potentials for type pairs with I != J is done automatically the same way that the serial DYNAMO code
originally did it; you do not need to specify coefficients for these type pairs.

Funcfl files in the potentials directory of the LAMMPS distribution have an ".eam" suffix. A DYNAMO
single−element funcfl file is formatted as follows:

539

line 1: comment (ignored)•
line 2: atomic number, mass, lattice constant, lattice type (e.g. FCC)•
line 3: Nrho, drho, Nr, dr, cutoff•

On line 2, all values but the mass are ignored by LAMMPS. The mass is in mass units (e.g. mass number or
grams/mole for metal units). The cubic lattice constant is in Angstroms. On line 3, Nrho and Nr are the number of
tabulated values in the subsequent arrays, drho and dr are the spacing in density and distance space for the values
in those arrays, and the specified cutoff becomes the pairwise cutoff used by LAMMPS for the potential. The
units of dr are Angstroms; I'm not sure of the units for drho − some measure of electron density.

Following the three header lines are three arrays of tabulated values:

embedding function F(rho) (Nrho values)•
effective charge function Z(r) (Nr values)•
density function rho(r) (Nr values)•

The values for each array can be listed as multiple values per line, so long as each array starts on a new line. For
example, the individual Z(r) values are for r = 0,dr,2*dr, ... (Nr−1)*dr.

The units for the embedding function F are eV. The units for the density function rho are the same as for drho (see
above, electron density). The units for the effective charge Z are "atomic charge" or sqrt(Hartree * Bohr−radii).
For two interacting atoms i,j this is used by LAMMPS to compute the pair potential term in the EAM energy
expression as r*phi, in units of eV−Angstroms, via the formula

r*phi = 27.2 * 0.529 * Zi * Zj

where 1 Hartree = 27.2 eV and 1 Bohr = 0.529 Angstroms.

Style eam/alloy computes pairwise interactions using the same formula as style eam. However the associated
pair_coeff command reads a DYNAMO setfl file instead of a funcfl file. Setfl files can be used to model a
single−element or alloy system. In the alloy case, as explained above, setfl files contain explicit tabulated values
for alloy interactions. Thus they allow more generality than funcfl files for modeling alloys.

Style eam/alloy/opt is an optimized version of style eam/alloy that should give identical answers. Depending on
system size and the processor you are running on, it may be 5−25% faster (for the pairwise portion of the run
time).

For style eam/alloy, potential values are read from a file that is in the DYNAMO multi−element setfl format,
except that element names (Ni, Cu, etc) are added to one of the lines in the file. If the DYNAMO file was created
by a Fortran program, it cannot have "D" values in it for exponents. C only recognizes "e" or "E" for scientific
notation.

Only a single pair_coeff command is used with the eam/alloy style which specifies a DYNAMO setfl file, which
contains information for M elements. These are mapped to LAMMPS atom types by specifying N additional
arguments after the filename in the pair_coeff command, where N is the number of LAMMPS atom types:

filename•
N element names = mapping of setfl elements to atom types•

As an example, the potentials/nialhjea setfl file has tabulated EAM values for 3 elements and their alloy
interactions: Ni, Al, and H. If your LAMMPS simulation has 4 atoms types and you want the 1st 3 to be Ni, and
the 4th to be Al, you would use the following pair_coeff command:

540

pair_coeff * * nialhjea.eam.alloy Ni Ni Ni Al

The 1st 2 arguments must be * * so as to span all LAMMPS atom types. The first three Ni arguments map
LAMMPS atom types 1,2,3 to the Ni element in the setfl file. The final Al argument maps LAMMPS atom type 4
to the Al element in the setfl file. Note that there is no requirement that your simulation use all the elements
specified by the setfl file.

If a mapping value is specified as NULL, the mapping is not performed. This can be used when an eam/alloy
potential is used as part of the hybrid pair style. The NULL values are placeholders for atom types that will be
used with other potentials.

Setfl files in the potentials directory of the LAMMPS distribution have an ".eam.alloy" suffix. A DYNAMO
multi−element setfl file is formatted as follows:

lines 1,2,3 = comments (ignored)•
line 4: Nelements Element1 Element2 ... ElementN•
line 5: Nrho, drho, Nr, dr, cutoff•

In a DYNAMO setfl file, line 4 only lists Nelements = the # of elements in the setfl file. For LAMMPS, the
element name (Ni, Cu, etc) of each element must be added to the line, in the order the elements appear in the file.

The meaning and units of the values in line 5 is the same as for the funcfl file described above. Note that the
cutoff (in Angstroms) is a global value, valid for all pairwise interactions for all element pairings.

Following the 5 header lines are Nelements sections, one for each element, each with the following format:

line 1 = atomic number, mass, lattice constant, lattice type (e.g. FCC)•
embedding function F(rho) (Nrho values)•
density function rho(r) (Nr values)•

As with the funcfl files, only the mass (g/cm^3) is used by LAMMPS from the 1st line. The cubic lattice constant
is in Angstroms. The F and rho arrays are unique to a single element and have the same format and units as in a
funcfl file.

Following the Nelements sections, Nr values for each pair potential phi(r) array are listed for all i,j element pairs
in the same format as other arrays. Since these interactions are symmetric (i,j = j,i) only phi arrays with i >= j are
listed, in the following order: i,j = (1,1), (2,1), (2,2), (3,1), (3,2), (3,3), (4,1), ..., (Nelements, Nelements). Unlike
the effective charge array Z(r) in funcfl files, the tabulated values for each phi function are listed in setfl files
directly as r*phi (in units of eV−Angstroms), since they are for atom pairs.

Style eam/cd is similar to the eam/alloy style, except that it computes alloy pairwise interactions using the
concentration−dependent embedded−atom method (CD−EAM). This model can reproduce the enthalpy of mixing
of alloys over the full composition range, as described in (Stukowski).

The pair_coeff command is specified the same as for the eam/alloy style. However the DYNAMO setfl file must
has two lines added to it, at the end of the file:

line 1: Comment line (ignored)•
line 2: N Coefficient0 Coefficient1 ... CoeffincientN•

The last line begins with the degree N of the polynomial function h(x) that modifies the cross interaction between
A and B elements. Then N+1 coefficients for the terms of the polynomial are then listed.

541

Modified EAM setfl files used with the eam/cd style must contain exactly two elements, i.e. in the current
implementation the eam/cd style only supports binary alloys. The first and second elements in the input EAM file
are always taken as the A and B species.

CD−EAM files in the potentials directory of the LAMMPS distribution have a ".cdeam" suffix.

Style eam/fs computes pairwise interactions for metals and metal alloys using a generalized form of EAM
potentials due to Finnis and Sinclair (Finnis). The total energy Ei of an atom I is given by

This has the same form as the EAM formula above, except that rho is now a functional specific to the atomic
types of both atoms I and J, so that different elements can contribute differently to the total electron density at an
atomic site depending on the identity of the element at that atomic site.

Style eam/fs/opt is an optimized version of style eam/fs that should give identical answers. Depending on system
size and the processor you are running on, it may be 5−25% faster (for the pairwise portion of the run time).

The associated pair_coeff command for style eam/fs reads a DYNAMO setfl file that has been extended to include
additional rho_alpha_beta arrays of tabulated values. A discussion of how FS EAM differs from conventional
EAM alloy potentials is given in (Ackland1). An example of such a potential is the same author's Fe−P FS
potential (Ackland2). Note that while FS potentials always specify the embedding energy with a square root
dependence on the total density, the implementation in LAMMPS does not require that; the user can tabulate any
functional form desired in the FS potential files.

For style eam/fs, the form of the pair_coeff command is exactly the same as for style eam/alloy, e.g.

pair_coeff * * nialhjea.eam.fs Ni Ni Ni Al

where there are N additional arguments after the filename, where N is the number of LAMMPS atom types. The
N values determine the mapping of LAMMPS atom types to EAM elements in the file, as described above for
style eam/alloy. As with eam/alloy, if a mapping value is NULL, the mapping is not performed. This can be used
when an eam/fs potential is used as part of the hybrid pair style. The NULL values are used as placeholders for
atom types that will be used with other potentials.

FS EAM files include more information than the DYNAMO setfl format files read by eam/alloy, in that i,j density
functionals for all pairs of elements are included as needed by the Finnis/Sinclair formulation of the EAM.

FS EAM files in the potentials directory of the LAMMPS distribution have an ".eam.fs" suffix. They are
formatted as follows:

lines 1,2,3 = comments (ignored)•
line 4: Nelements Element1 Element2 ... ElementN•
line 5: Nrho, drho, Nr, dr, cutoff•

The 5−line header section is identical to an EAM setfl file.

Following the header are Nelements sections, one for each element I, each with the following format:

line 1 = atomic number, mass, lattice constant, lattice type (e.g. FCC)•

542

embedding function F(rho) (Nrho values)•
density function rho(r) for element I at element 1 (Nr values)•
density function rho(r) for element I at element 2•
...•
density function rho(r) for element I at element Nelement•

The units of these quantities in line 1 are the same as for setfl files. Note that the rho(r) arrays in Finnis/Sinclair
can be asymmetric (i,j != j,i) so there are Nelements^2 of them listed in the file.

Following the Nelements sections, Nr values for each pair potential phi(r) array are listed in the same manner
(r*phi, units of eV−Angstroms) as in EAM setfl files. Note that in Finnis/Sinclair, the phi(r) arrays are still
symmetric, so only phi arrays for i >= j are listed.

Mixing, shift, table, tail correction, restart, rRESPA info:

For atom type pairs I,J and I != J, where types I and J correspond to two different element types, mixing is
performed by LAMMPS as described above with the individual styles. You never need to specify a pair_coeff
command with I != J arguments for the eam styles.

This pair style does not support the pair_modify shift, table, and tail options.

The eam pair styles do not write their information to binary restart files, since it is stored in tabulated potential
files. Thus, you need to re−specify the pair_style and pair_coeff commands in an input script that reads a restart
file.

The eam pair styles can only be used via the pair keyword of the run_style respa command. They do not support
the inner, middle, outer keywords.

Restrictions:

All of these styles except those ending in opt and the eam/cd style are part of the "manybody" package. They are
only enabled if LAMMPS was built with that package (which it is by default).

The styles ending in opt are part of the "opt" package and also require the "manybody" package. They are only
enabled if LAMMPS was built with those packages. See the Making LAMMPS section for more info.

The eam/cd style is part of the "user−cd−eam" package and also requires the "manybody" package. It is only
enabled if LAMMPS was built with those packages. See the Making LAMMPS section for more info.

Related commands:

pair_coeff

Default: none

(Ackland1) Ackland, Condensed Matter (2005).

(Ackland2) Ackland, Mendelev, Srolovitz, Han and Barashev, Journal of Physics: Condensed Matter, 16, S2629
(2004).

543

(Daw) Daw, Baskes, Phys Rev Lett, 50, 1285 (1983). Daw, Baskes, Phys Rev B, 29, 6443 (1984).

(Finnis) Finnis, Sinclair, Philosophical Magazine A, 50, 45 (1984).

(Stukowski) Stukowski, Sadigh, Erhart, Caro; Modeling Simulation Materials Science &Engineering, 7, 075005
(2009).

544

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

pair_style gayberne command

pair_style gayberne/gpu command

Syntax:

pair_style gayberne gamma upsilon mu cutoff

pair_style gayberne/gpu gpuflag gpunum gamma upsilon mu cutoff

style = gayberne or gayberne/gpu•
gpumode = one/node or one/gpu or multi/gpu, only used with gayberne/gpu•
gpuID = ID or number of GPUs, only used with gayberne/gpu•
gamma = shift for potential minimum (typically 1)•
upsilon = exponent for eta orientation−dependent energy function•
mu = exponent for chi orientation−dependent energy function•
cutoff = global cutoff for interactions (distance units)•

Examples:

pair_style gayberne 1.0 1.0 1.0 10.0
pair_style gayberne/gpu one/node 0 1.0 1.0 1.0 10.0
pair_coeff * * 1.0 1.7 1.7 3.4 3.4 1.0 1.0 1.0

Description:

The gayberne styles compute a Gay−Berne anisotropic LJ interaction (Berardi) between pairs of ellipsoidal
particles or an ellipsoidal and spherical particle via the formulas

where A1 and A2 are the transformation matrices from the simulation box frame to the body frame and r12 is the
center to center vector between the particles. Ur controls the shifted distance dependent interaction based on the
distance of closest approach of the two particles (h12) and the user−specified shift parameter gamma. When both
particles are spherical, the formula reduces to the usual Lennard−Jones interaction (see details below for when
Gay−Berne treats a particle as "spherical").

Style gayberne/gpu is a GPU−enabled version of style gayberne that should give identical answers. Depending on
system size and the GPU processor you have on your system, it may be 100x faster (for the pairwise portion of
the run time). See more details below.

For large uniform molecules it has been shown that the energy parameters are approximately representable in
terms of local contact curvatures (Everaers):

545

http://lammps.sandia.gov

The variable names utilized as potential parameters are for the most part taken from (Everaers) in order to be
consistent with the RE−squared pair potential. Details on the upsilon and mu parameters are given here.

More details of the Gay−Berne formulation are given in the references listed below and in this supplementary
document.

Use of this pair style requires the NVE, NVT, or NPT fixes with the asphere extension (e.g. fix nve/asphere) in
order to integrate particle rotation. Additionally, atom_style ellipsoid should be used since it defines the rotational
state of the ellipsoidal particles. The size and shape of the ellipsoidal particles are defined by the shape command.

The following coefficients must be defined for each pair of atoms types via the pair_coeff command as in the
examples above, or in the data file or restart files read by the read_data or read_restart commands, or by mixing as
described below:

epsilon = well depth (energy units)•
sigma = minimum effective particle radii (distance units)•
epsilon_i_a = relative well depth of type I for side−to−side interactions•
epsilon_i_b = relative well depth of type I for face−to−face interactions•
epsilon_i_c = relative well depth of type I for end−to−end interactions•
epsilon_j_a = relative well depth of type J for side−to−side interactions•
epsilon_j_b = relative well depth of type J for face−to−face interactions•
epsilon_j_c = relative well depth of type J for end−to−end interactions•
cutoff (distance units)•

The last coefficient is optional. If not specified, the global cutoff specified in the pair_style command is used.

It is typical for the Gay−Berne potential to define sigma as the minimum of the 3 "shape" diameters for a I,I
interaction, though this is not required. Note that this is a different meaning for sigma than the pair_style
resquared potential uses.

The epsilon_i and epsilon_j coefficients are actually defined for atom types, not for pairs of atom types. Thus, in a
series of pair_coeff commands, they only need to be specified once for each atom type.

Specifically, if any of epsilon_i_a, epsilon_i_b, epsilon_i_c are non−zero, the three values are assigned to atom
type I. If all the epsilon_i values are zero, they are ignored. If any of epsilon_j_a, epsilon_j_b, epsilon_j_c are
non−zero, the three values are assigned to atom type J. If all three epsilon_i values are zero, they are ignored.
Thus the typical way to define the epsilon_i and epsilon_j coefficients is to list their values in "pair_coeff I J"
commands when I = J, but set them to 0.0 when I != J. If you do list them when I != J, you should insure they are
consistent with their values in other pair_coeff commands.

Note that if this potential is being used as a sub−style of pair_style hybrid, and there is no "pair_coeff I I" setting
made for Gay−Berne for a particular type I (because I−I interactions are computed by another hybrid pair
potential), then you still need to insure the epsilon a,b,c coefficients are assigned to that type in a "pair_coeff I J"
command.

IMPORTANT NOTE: If the epsilon a,b,c for an atom type are all 1.0, and if the shape of the particle is spherical
(see the shape command), meaning the 3 diameters are all the same, then the particle is treated as "spherical" by
the Gay−Berne potential. This is significant because if two "spherical" particles interact, then the simple

546

Lennard−Jones formula is used to compute their interaction energy/force using epsilon and sigma, which is much
cheaper to compute than the full Gay−Berne formula. Thus you should insure epsilon a,b,c are set to 1.0 for
spherical particle types and use epsilon and sigma to specify its interaction with other spherical particles.

The gayberne/gpu style is identical to the gayberne style, except that each processor off−loads its pairwise
calculations to a GPU chip. Depending on the hardware available on your system this can provide a significant
speed−up, espcially for the relatively expensive computations inherent in Gay−Berne interactions. See the
Running on GPUs section of the manual for more details about hardware and software requirements for using
GPUs.

The gpumode and gpuID settings in the pair_style command refer to how the GPUs on your system are
configured.

Set gpumode to one/node if you have a single compute "node" on your system, which may have multiple cores
and/or GPUs. GpuID should be set to the ID of the (first) GPU you wish to use with LAMMPS (another GPU
might be driving your display).

Set gpumode to one/gpu if you have multiple compute "nodes" on your system, with one GPU per node. GpuID
should be set to the ID of the GPU.

Set gpumode to multi/gpu if you have multiple compute "nodes" on your system, each with multiple GPUs.
GpuID should be set to the number of GPUs per node.

More details about these settings and various possible hardware configuration are in this section of the manual.

Additional requirements in your input script to run with style gayberne/gpu are as follows:

The newton pair setting must be off.

You should use the neigh_modify one command and set its value to something close (but slightly larger) than the
number of pairwise neighbors/atom you expect to have in your model. This is a function of the pairwise cutoff.
Note that the default for this setting is 2000, which is much larger than most models need. Unlike neighbor lists in
LAMMPS itself, the GPU version of this pair style uses that setting to allocate memory on the GPU for neighbor
information. If the setting is too large, it will limit the number of atoms that can be stored on the GPU.

Mixing, shift, table, tail correction, restart, rRESPA info:

For atom type pairs I,J and I != J, the epsilon and sigma coefficients and cutoff distance for this pair style can be
mixed. The default mix value is geometric. See the "pair_modify" command for details.

This pair styles supports the pair_modify shift option for the energy of the Lennard−Jones portion of the pair
interaction, but only for sphere−sphere interactions. There is no shifting performed for ellipsoidal interactions due
to the anisotropic dependence of the interaction.

The pair_modify table option is not relevant for this pair style.

This pair style does not support the pair_modify tail option for adding long−range tail corrections to energy and
pressure.

This pair style writes its information to binary restart files, so pair_style and pair_coeff commands do not need to
be specified in an input script that reads a restart file.

547

This pair style can only be used via the pair keyword of the run_style respa command. It does not support the
inner, middle, outer keywords.

Restrictions:

The gayberne style is part of the "asphere" package. The gayberne/gpu style is part of the "gpu" package. They
are only enabled if LAMMPS was built with the those packages. See the Making LAMMPS section for more info.

This pair style requires that atoms store torque and a quaternion to represent their orientation, as defined by the
atom_style. It also require they store a per−type shape. The particles cannot store a per−particle diameter.

Particles acted on by the potential can be extended aspherical or spherical particles, or point particles.

The Gay−Berne potential does not become isotropic as r increases (Everaers). The distance−of−closest−approach
approximation used by LAMMPS becomes less accurate when high−aspect ratio ellipsoids are used.

Related commands:

pair_coeff, fix nve/asphere, compute temp/asphere, pair_style resquared

Default: none

(Everaers) Everaers and Ejtehadi, Phys Rev E, 67, 041710 (2003).

(Berardi) Berardi, Fava, Zannoni, Chem Phys Lett, 297, 8−14 (1998). Berardi, Muccioli, Zannoni, J Chem Phys,
128, 024905 (2008).

(Perram) Perram and Rasmussen, Phys Rev E, 54, 6565−6572 (1996).

(Allen) Allen and Germano, Mol Phys 104, 3225−3235 (2006).

548

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

pair_style gran/hooke command

pair_style gran/hooke/history command

pair_style gran/hertz/history command

Syntax:

pair_style style Kn Kt gamma_n gamma_t xmu dampflag

style = gran/hooke or gran/hooke/history or gran/hertz/history•
Kn = elastic constant for normal particle repulsion (force/distance units or pressure units − see discussion
below)

•

Kt = elastic constant for tangential contact (force/distance units or pressure units − see discussion below)•
gamma_n = damping coefficient for collisions in normal direction (1/time units or 1/time−distance units −
see discussion below)

•

gamma_t = damping coefficient for collisions in tangential direction (1/time units or 1/time−distance
units − see discussion below)

•

xmu = static yield criterion (unitless fraction between 0.0 and 1.0)•
dampflag = 0 or 1 if tangential damping force is excluded or included•

IMPORTANT NOTE: Versions of LAMMPS before 9Jan09 had different style names for granular force fields.
This is to emphasize the fact that the Hertzian equation has changed to model polydispersity more accurately. A
side effect of the change is that the Kn, Kt, gamma_n, and gamma_t coefficients in the pair_style command must
be specified with different values in order to reproduce calculations made with earlier versions of LAMMPS, even
for monodisperse systems. See the NOTE below for details.

Examples:

pair_style gran/hooke/history 200000.0 NULL 50.0 NULL 0.5 1
pair_style gran/hooke 200000.0 70000.0 50.0 30.0 0.5 0

Description:

The gran styles use the following formulas for the frictional force between two granular particles, as described in
(Brilliantov), (Silbert), and (Zhang), when the distance r between two particles of radii Ri and Rj is less than their
contact distance d = Ri + Rj. There is no force between the particles when r > d.

The two Hookean styles use this formula:

The Hertzian style uses this formula:

549

http://lammps.sandia.gov

In both equations the first parenthesized term is the normal force between the two particles and the second
parenthesized term is the tangential force. The normal force has 2 terms, a contact force and a damping force. The
tangential force also has 2 terms: a shear force and a damping force. The shear force is a "history" effect that
accounts for the tangential displacement between the particles for the duration of the time they are in contact. This
term is included in pair styles hooke/history and hertz/history, but is not included in pair style hooke. The
tangential damping force term is included in all three pair styles if dampflag is set to 1; it is not included if
dampflag is set to 0.

The other quantities in the equations are as follows:

delta = d − r = overlap distance of 2 particles•
Kn = elastic constant for normal contact•
Kt = elastic constant for tangential contact•
gamma_n = viscoelastic damping constant for normal contact•
gamma_t = viscoelastic damping constant for tangential contact•
m_eff = Mi Mj / (Mi + Mj) = effective mass of 2 particles of mass Mi and Mj•
Delta St = tangential displacement vector between 2 spherical particles which is truncated to satisfy a
frictional yield criterion

•

n_ij = unit vector along the line connecting the centers of the 2 particles•
Vn = normal component of the relative velocity of the 2 particles•
Vt = tangential component of the relative velocity of the 2 particles•

The Kn, Kt, gamma_n, and gamma_t coefficients are specified as parameters to the pair_style command. If a
NULL is used for Kt, then a default value is used where Kt = 2/7 Kn. If a NULL is used for gamma_t, then a
default value is used where gamma_t = 1/2 gamma_n.

The interpretation and units for these 4 coefficients are different in the Hookean versus Hertzian equations.

The Hookean model is one where the normal push−back force for two overlapping particles is a linear function of
the overlap distance. Thus the specified Kn is in units of (force/distance). Note that this push−back force is
independent of absolute particle size (in the monodisperse case) and of the relative sizes of the two particles (in
the polydisperse case). This model also applies to the other terms in the force equation so that the specified
gamma_n is in units of (1/time), Kt is in units of (force/distance), and gamma_t is in units of (1/time).

The Hertzian model is one where the normal push−back force for two overlapping particles is proportional to the
area of overlap of the two particles, and is thus a non−linear function of overlap distance. Thus Kn has units of
force per area and is thus specified in units of (pressure). The effects of absolute particle size (monodispersity)
and relative size (polydispersity) are captured in the radii−dependent pre−factors. When these pre−factors are
carried through to the other terms in the force equation it means that the specified gamma_n is in units of
(1/(time*distance)), Kt is in units of (pressure), and gamma_t is in units of (1/(time*distance)).

Note that in the Hookean case, Kn can be thought of as a linear spring constant with units of force/distance. In the
Hertzian case, Kn is like a non−linear spring constant with units of force/area or pressure, and as shown in the
(Zhang) paper, Kn = 4G / (3(1−nu)) where nu = the Poisson ratio, G = shear modulus = E / (1(1+nu)), and E =
Young's modulus. Similarly, Kt = 8G / (2−nu). Thus in the Hertzian case Kn and Kt can be set to values that
corresponds to properties of the material being modeled. This is also true in the Hookean case, except that a
spring constant must be chosen that is appropriate for the absolute size of particles in the model. Since relative
particle sizes are not accounted for, the Hookean styles may not be a suitable model for polydisperse systems.

IMPORTANT NOTE: In versions of LAMMPS before 9Jan09, the equation for Hertzian interactions did not
include the sqrt(RiRj/Ri+Rj) term and thus was not as accurate for polydisperse systems. For monodisperse
systems, sqrt(RiRj/Ri+Rj) is a constant factor that effectively scales all 4 coefficients: Kn, Kt, gamma_n,

550

gamma_t. Thus you can set the values of these 4 coefficients appropriately in the current code to reproduce the
results of a previous Hertzian monodisperse calculation. For example, for the common case of a monodisperse
system with particles of diameter 1, all 4 of these coefficients should now be set 2x larger than they were
previously.

Xmu is also specified in the pair_style command and is the upper limit of the tangential force through the
Coulomb criterion Ft = xmu*Fn, where Ft and Fn are the total tangential and normal force components in the
formulas above. Thus in the Hookean case, the tangential force between 2 particles grows according to a
tangential spring and dash−pot model until Ft/Fn = xmu and is then held at Ft = Fn*xmu until the particles lose
contact. In the Hertzian case, a similar analogy holds, though the spring is no longer linear.

For granular styles there are no additional coefficients to set for each pair of atom types via the pair_coeff
command. All settings are global and are made via the pair_style command. However you must still use the
pair_coeff for all pairs of granular atom types. For example the command

pair_coeff * *

should be used if all atoms in the simulation interact via a granular potential (i.e. one of the pair styles above is
used). If a granular potential is used as a sub−style of pair_style hybrid, then specific atom types can be used in
the pair_coeff command to determine which atoms interact via a granular potential.

Mixing, shift, table, tail correction, restart, rRESPA info:

The pair_modify mix, shift, table, and tail options are not relevant for granular pair styles.

These pair styles write their information to binary restart files, so a pair_style command does not need to be
specified in an input script that reads a restart file.

These pair styles can only be used via the pair keyword of the run_style respa command. They do not support the
inner, middle, outer keywords.

Restrictions: none

All the granular pair styles are part of the "granular" package. It is only enabled if LAMMPS was built with that
package. See the Making LAMMPS section for more info.

These pair styles require that atoms store torque and angular velocity (omega) as defined by the atom_style. They
also require a per−particle radius is stored. The granular atom style does all of this.

This pair style requires you to use the communicate vel yes option so that velocites are stored by ghost atoms.

Related commands:

pair_coeff

Default: none

(Brilliantov) Brilliantov, Spahn, Hertzsch, Poschel, Phys Rev E, 53, p 5382−5392 (1996).

(Silbert) Silbert, Ertas, Grest, Halsey, Levine, Plimpton, Phys Rev E, 64, p 051302 (2001).

551

(Zhang) Zhang and Makse, Phys Rev E, 72, p 011301 (2005).

552

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

pair_style lj/gromacs command

pair_style lj/gromacs/coul/gromacs command

Syntax:

pair_style style args

style = lj/gromacs or lj/gromacs/coul/gromacs•
args = list of arguments for a particular style•

lj/gromacs args = inner outer
 inner, outer = global switching cutoffs for Lennard Jones

lj/gromacs/coul/gromacs args = inner outer (inner2) (outer2)
 inner, outer = global switching cutoffs for Lennard Jones (and Coulombic if only 2 args)
 inner2, outer2 = global switching cutoffs for Coulombic (optional)

Examples:

pair_style lj/gromacs 9.0 12.0
pair_coeff * * 100.0 2.0
pair_coeff 2 2 100.0 2.0 8.0 10.0

pair_style lj/gromacs/coul/gromacs 9.0 12.0
pair_style lj/gromacs/coul/gromacs 8.0 10.0 7.0 9.0
pair_coeff * * 100.0 2.0

Description:

The lj/gromacs styles compute LJ and Coulombic interactions with an additional switching function S(r) that
ramps the energy and force smoothly to zero between an inner and outer cutoff. It is a commonly used potential in
the GROMACS MD code and for the coarse−grained models of (Marrink).

R1 is the inner cutoff; Rc is the outer cutoff. The coefficients A and B are computed by LAMMPS to perform the
smoothing. The function S(r) is actually applied once to each term of the LJ formula and once to the Coulombic
formula, so there are 2 or 3 sets of A,B coefficients depending on which pair_style is used. The boundary
conditions applied to the smoothing function are as follows: S(r1) = S'(r1) = 0, S(rc) = −F(rc), S'(rc) = −F'(rc),
where F(r) is the correpsonding term in the LJ or Coulombic function and a single quote represents a derivative
with respect to r.

The inner and outer cutoff for the LJ and Coulombic terms can be the same or different depending on whether 2
or 4 arguments are used in the pair_style command. The inner LJ cutoff must be > 0, but the inner Coulombic

553

http://lammps.sandia.gov
http://www.gromacs.org

cutoff can be >= 0.

The following coefficients must be defined for each pair of atoms types via the pair_coeff command as in the
examples above, or in the data file or restart files read by the read_data or read_restart commands, or by mixing as
described below:

epsilon (energy units)•
sigma (distance units)•
inner (distance units)•
outer (distance units)•

Note that sigma is defined in the LJ formula as the zero−crossing distance for the potential, not as the energy
minimum at 2^(1/6) sigma.

The last 2 coefficients are optional inner and outer cutoffs for style lj/gromacs. If not specified, the global inner
and outer values are used.

The last 2 coefficients cannot be used with style lj/gromacs/coul/gromacs because this force field does not allow
varying cutoffs for individual atom pairs; all pairs use the global cutoff(s) specified in the pair_style command.

Mixing, shift, table, tail correction, restart, rRESPA info:

For atom type pairs I,J and I != J, the epsilon and sigma coefficients and cutoff distance for all of the lj/cut pair
styles can be mixed. The default mix value is geometric. See the "pair_modify" command for details.

None of the GROMACS pair styles support the pair_modify shift option, since the Lennard−Jones portion of the
pair interaction is already smoothed to 0.0 at the cutoff.

The pair_modify table option is not relevant for this pair style.

None of the GROMACS pair styles support the pair_modify tail option for adding long−range tail corrections to
energy and pressure, since there are no corrections for a potential that goes to 0.0 at the cutoff.

All of the GROMACS pair styles write their information to binary restart files, so pair_style and pair_coeff
commands do not need to be specified in an input script that reads a restart file.

All of the GROMACS pair styles can only be used via the pair keyword of the run_style respa command. They do
not support the inner, middle, outer keywords.

Restrictions: none

Related commands:

pair_coeff

Default: none

(Marrink) Marrink, de Vries, Mark, J Phys Chem B, 108, 750−760 (2004).

554

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

pair_style hybrid command

pair_style hybrid/overlay command

Syntax:

pair_style hybrid style1 args style2 args ...
pair_style hybrid/overlay style1 args style2 args ...

style1,style2 = list of one or more pair styles and their arguments•

Examples:

pair_style hybrid lj/cut/coul/cut 10.0 eam lj/cut 5.0
pair_coeff 1*2 1*2 eam niu3
pair_coeff 3 3 lj/cut/coul/cut 1.0 1.0
pair_coeff 1*2 3 lj/cut 0.5 1.2

pair_style hybrid/overlay lj/cut 2.5 coul/long 2.0
pair_coeff * * lj/cut 1.0 1.0
pair_coeff * * coul/long

Description:

The hybrid and hybrid/overlay styles enable the use of multiple pair styles in one simulation. With the hybrid
style, exactly one pair style is assigned to each pair of atom types. With the hybrid/overlay style, one or more pair
styles can be assigned to each pair of atom types. The assignment of pair styles to type pairs is made via the
pair_coeff command.

Here are two examples of hybrid simulations. The hybrid style could be used for a simulation of a metal droplet
on a LJ surface. The metal atoms interact with each other via an eam potential, the surface atoms interact with
each other via a lj/cut potential, and the metal/surface interaction is also computed via a lj/cut potential. The
hybrid/overlay style could be used as in the 2nd example above, where multiple potentials are superposed in an
additive fashion to compute the interaction between atoms. In this example, using lj/cut and coul/long together
gives the same result as if the lj/cut/coul/long potential were used by itself. In this case, it would be more efficient
to use the single combined potential, but in general any combination of pair potentials can be used together in to
produce an interaction that is not encoded in any single pair_style file, e.g. adding Coulombic forces between
granular particles.

All pair styles that will be used are listed as "sub−styles" following the hybrid or hybrid/overlay keyword, in any
order. Each sub−style's name is followed by its usual arguments, as illustrated in the example above. See the doc
pages of individual pair styles for a listing and explanation of the appropriate arguments.

The pair_coeff commands are also specified exactly as they would be for a simulation using only one pair style,
with one additional argument. Following the I,J type specification, the first argument sets the pair sub−style. The
remaining arguments are the coefficients appropriate to that style. For example, consider a simulation with 3 atom
types: types 1 and 2 are Ni atoms, type 3 are LJ atoms with charges. The following commands would set up a
hybrid simulation:

pair_style hybrid eam/alloy lj/cut/coul/cut 10.0 lj/cut 8.0
pair_coeff * * eam/alloy nialhjea Ni Ni NULL
pair_coeff 3 3 lj/cut/coul/cut 1.0 1.0

555

http://lammps.sandia.gov

pair_coeff 1*2 3 lj/cut 0.8 1.3

Note that the pair_coeff command for eam/alloy includes a mapping specification of elements to all atom types,
even those not assigned to the eam/alloy potential. The NULL keyword is used by such potentials (eam/alloy,
Tersoff, AIREBO, etc), to denote an atom type that will be assigned to a different sub−style.

For the hybrid style, each atom type pair I,J is assigned to exactly one sub−style. Just as with a simulation using a
single pair style, if you specify the same atom type pair in a second pair_coeff command, the previous assignment
will be overwritten.

For the hybrid/overlay style, each atom type pair I,J can be assigned to one or more sub−styles. Thus if you
specify the same atom type pair in a second pair_coeff command, a second sub−style is added to the list of
potentials that will be calculated for two interactings atoms of those types.

Coefficients must be defined for each pair of atoms types via the pair_coeff command as described above, or in
the data file or restart files read by the read_data or read_restart commands, or by mixing as described below.

For both the hybrid and hybrid/overlay styles, every atom type pair I,J (where I <= J) must be assigned to at least
one sub−style via the pair_coeff command as in the examples above, or in the data file read by the read_data, or
by mixing as described below.

If you want there to be no interactions between a particular pair of atom types, you have 3 choices. You can
assign the type pair to some sub−style and use the neigh_modify exclude type command. You can assign it to
some sub−style and set the coefficients so that there is effectively no interaction (e.g. epsilon = 0.0 in a LJ
potential). Or, for hybrid and hybrid/overlay simulations, you can use this form of the pair_coeff command:

pair_coeff 2 3 none

If an assignment to none is made in a simulation with the hybrid/overlay pair style, it wipes out all previous
assignments of that atom type pair to sub−styles.

Note that you may need to use an atom_style hybrid command in your input script, if atoms in the simulation will
need attributes from several atom styles, due to using multiple pair potentials.

Mixing, shift, table, tail correction, restart, rRESPA info:

Any pair potential settings made via the pair_modify command are passed along to all sub−styles of the hybrid
potential.

For atom type pairs I,J and I != J, if the sub−style assigned to I,I and J,J is the same, and if the sub−style allows
for mixing, then the coefficients for I,J can be mixed. This means you do not have to specify a pair_coeff
command for I,J since the I,J type pair will be assigned automatically to the I,I sub−style and its coefficients
generated by the mixing rule used by that sub−style. For the hybrid/overlay style, there is an additional
requirement that both the I,I and J,J pairs are assigned to a single sub−style. See the "pair_modify" command for
details of mixing rules. See the See the doc page for the sub−style to see if allows for mixing.

The hybrid pair styles supports the pair_modify shift, table, and tail options for an I,J pair interaction, if the
associated sub−style supports it.

For the hybrid pair styles, the list of sub−styles and their respective settings are written to binary restart files, so a
pair_style command does not need to specified in an input script that reads a restart file. However, the coefficient
information is not stored in the restart file. Thus, pair_coeff commands need to be re−specified in the restart input
script.

556

These pair styles support the use of the inner, middle, and outer keywords of the run_style respa command, if
their sub−styles do.

Restrictions:

When using a long−range Coulombic solver (via the kspace_style command) with a hybrid pair_style, one or
more sub−styles will be of the "long" variety, e.g. lj/cut/coul/long or buck/coul/long. You must insure that the
short−range Coulombic cutoff used by each of these long pair styles is the same or else LAMMPS will generate
an error.

Related commands:

pair_coeff

Default: none

557

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

pair_style lj/cut command

pair_style lj/cut/gpu command

pair_style lj/cut/opt command

pair_style lj/cut/coul/cut command

pair_style lj/cut/coul/debye command

pair_style lj/cut/coul/long command

pair_style lj/cut/coul/long/tip4p command

Syntax:

pair_style style args

style = lj/cut or lj/cut/gpu or lj/cut/opt or lj/cut/coul/cut or lj/cut/coul/debye or lj/cut/coul/long or
lj/cut/coul/long/tip4p

•

args = list of arguments for a particular style•

lj/cut args = cutoff
 cutoff = global cutoff for Lennard Jones interactions (distance units)

lj/cut/gpu args = gpumode gpuID cutoff
 gpumode = one/node or one/gpu or multi/gpu
 gpuID = ID or number of GPUs
 cutoff = global cutoff for Lennard Jones interactions (distance units)

lj/cut/opt args = cutoff
 cutoff = global cutoff for Lennard Jones interactions (distance units)

lj/cut/coul/cut args = cutoff (cutoff2)
 cutoff = global cutoff for LJ (and Coulombic if only 1 arg) (distance units)
 cutoff2 = global cutoff for Coulombic (optional) (distance units)

lj/cut/coul/debye args = kappa cutoff (cutoff2)
 kappa = Debye length (inverse distance units)
 cutoff = global cutoff for LJ (and Coulombic if only 1 arg) (distance units)
 cutoff2 = global cutoff for Coulombic (optional) (distance units)

lj/cut/coul/long args = cutoff (cutoff2)
 cutoff = global cutoff for LJ (and Coulombic if only 1 arg) (distance units)
 cutoff2 = global cutoff for Coulombic (optional) (distance units)

lj/cut/coul/long/tip4p args = otype htype btype atype qdist cutoff (cutoff2)
 otype,htype = atom types for TIP4P O and H
 btype,atype = bond and angle types for TIP4P waters
 qdist = distance from O atom to massless charge (distance units)
 cutoff = global cutoff for LJ (and Coulombic if only 1 arg) (distance units)
 cutoff2 = global cutoff for Coulombic (optional) (distance units)

Examples:

pair_style lj/cut 2.5
pair_style lj/cut/gpu one/node 0 2.5
pair_style lj/cut/opt 2.5
pair_coeff * * 1 1
pair_coeff 1 1 1 1.1 2.8

558

http://lammps.sandia.gov

pair_style lj/cut/coul/cut 10.0
pair_style lj/cut/coul/cut 10.0 8.0
pair_coeff * * 100.0 3.0
pair_coeff 1 1 100.0 3.5 9.0
pair_coeff 1 1 100.0 3.5 9.0 9.0

pair_style lj/cut/coul/debye 1.5 3.0
pair_style lj/cut/coul/debye 1.5 2.5 5.0
pair_coeff * * 1.0 1.0
pair_coeff 1 1 1.0 1.5 2.5
pair_coeff 1 1 1.0 1.5 2.5 5.0

pair_style lj/cut/coul/long 10.0
pair_style lj/cut/coul/long 10.0 8.0
pair_coeff * * 100.0 3.0
pair_coeff 1 1 100.0 3.5 9.0

pair_style lj/cut/coul/long/tip4p 1 2 7 8 0.3 12.0
pair_style lj/cut/coul/long/tip4p 1 2 7 8 0.3 12.0 10.0
pair_coeff * * 100.0 3.0
pair_coeff 1 1 100.0 3.5 9.0

Description:

The lj/cut styles compute the standard 12/6 Lennard−Jones potential, given by

Rc is the cutoff.

Style lj/cut/gpu is a GPU−enabled version of style lj/cut that should give identical answers. Depending on system
size and the GPU processor you have on your system, it may be 4x faster (for the pairwise portion of the run
time). See more details below.

Style lj/cut/opt is an optimized version of style lj/cut that should give identical answers. Depending on system size
and the processor you are running on, it may be 5−25% faster (for the pairwise portion of the run time).

Style lj/cut/coul/cut adds a Coulombic pairwise interaction given by

where C is an energy−conversion constant, Qi and Qj are the charges on the 2 atoms, and epsilon is the dielectric
constant which can be set by the dielectric command. If one cutoff is specified in the pair_style command, it is
used for both the LJ and Coulombic terms. If two cutoffs are specified, they are used as cutoffs for the LJ and
Coulombic terms respectively.

Style lj/cut/coul/debye adds an additional exp() damping factor to the Coulombic term, given by

559

where kappa is the Debye length. This potential is another way to mimic the screening effect of a polar solvent.

Style lj/cut/coul/long computes the same Coulombic interactions as style lj/cut/coul/cut except that an additional
damping factor is applied to the Coulombic term so it can be used in conjunction with the kspace_style command
and its ewald or pppm option. The Coulombic cutoff specified for this style means that pairwise interactions
within this distance are computed directly; interactions outside that distance are computed in reciprocal space.

Style lj/cut/coul/long/tip4p implements the TIP4P water model of (Jorgensen), which introduces a massless site
located a short distance away from the oxygen atom along the bisector of the HOH angle. The atomic types of the
oxygen and hydrogen atoms, the bond and angle types for OH and HOH interactions, and the distance to the
massless charge site are specified as pair_style arguments.

IMPORTANT NOTE: For each TIP4P water molecule in your system, the atom IDs for the O and 2 H atoms
must be consecutive, with the O atom first. This is to enable LAMMPS to "find" the 2 H atoms associated with
each O atom. For example, if the atom ID of an O atom in a TIP4P water molecule is 500, then its 2 H atoms must
have IDs 501 and 502.

See the howto section for more information on how to use the TIP4P pair style.

The following coefficients must be defined for each pair of atoms types via the pair_coeff command as in the
examples above, or in the data file or restart files read by the read_data or read_restart commands, or by mixing as
described below:

epsilon (energy units)•
sigma (distance units)•
cutoff1 (distance units)•
cutoff2 (distance units)•

Note that sigma is defined in the LJ formula as the zero−crossing distance for the potential, not as the energy
minimum at 2^(1/6) sigma.

The latter 2 coefficients are optional. If not specified, the global LJ and Coulombic cutoffs specified in the
pair_style command are used. If only one cutoff is specified, it is used as the cutoff for both LJ and Coulombic
interactions for this type pair. If both coefficients are specified, they are used as the LJ and Coulombic cutoffs for
this type pair. You cannot specify 2 cutoffs for style lj/cut, since it has no Coulombic terms.

For lj/cut/coul/long and lj/cut/coul/long/tip4p only the LJ cutoff can be specified since a Coulombic cutoff cannot
be specified for an individual I,J type pair. All type pairs use the same global Coulombic cutoff specified in the
pair_style command.

The lj/cut/gpu style is identical to the lj/cut style, except that each processor off−loads its pairwise calculations to
a GPU chip. Depending on the hardware available on your system this can provide a speed−up. See the Running
on GPUs section of the manual for more details about hardware and software requirements for using GPUs.

The gpumode and gpuID settings in the pair_style command refer to how the GPUs on your system are
configured.

Set gpumode to one/node if you have a single compute "node" on your system, which may have multiple cores

560

and/or GPUs. GpuID should be set to the ID of the (first) GPU you wish to use with LAMMPS (another GPU
might be driving your display).

Set gpumode to one/gpu if you have multiple compute "nodes" on your system, with one GPU per node. GpuID
should be set to the ID of the GPU.

Set gpumode to multi/gpu if you have multiple compute "nodes" on your system, each with multiple GPUs.
GpuID should be set to the number of GPUs per node.

More details about these settings and various possible hardware configuration are in this section of the manual.

Additional requirements in your input script to run with style lj/cut/gpu are as follows:

The newton pair setting must be off.

You should use the neigh_modify one command and set its value to something close (but slightly larger) than the
number of pairwise neighbors/atom you expect to have in your model. This is a function of the pairwise cutoff.
Note that the default for this setting is 2000, which is much larger than most models need. Unlike neighbor lists in
LAMMPS itself, the GPU version of this pair style uses that setting to allocate memory on the GPU for neighbor
information. If the setting is too large, it will limit the number of atoms that can be stored on the GPU.

Mixing, shift, table, tail correction, restart, rRESPA info:

For atom type pairs I,J and I != J, the epsilon and sigma coefficients and cutoff distance for all of the lj/cut pair
styles can be mixed. The default mix value is geometric. See the "pair_modify" command for details.

All of the lj/cut pair styles support the pair_modify shift option for the energy of the Lennard−Jones portion of the
pair interaction.

The lj/cut/coul/long and lj/cut/coul/long/tip4p pair styles support the pair_modify table option since they can
tabulate the short−range portion of the long−range Coulombic interaction.

All of the lj/cut pair styles support the pair_modify tail option for adding a long−range tail correction to the
energy and pressure of the Lennard−Jones portion of the pair interaction.

All of the lj/cut pair styles write their information to binary restart files, so pair_style and pair_coeff commands
do not need to be specified in an input script that reads a restart file.

The lj/cut and lj/cut/coul/long pair styles support the use of the inner, middle, and outer keywords of the run_style
respa command, meaning the pairwise forces can be partitioned by distance at different levels of the rRESPA
hierarchy. The other styles only support the pair keyword of run_style respa. See the run_style command for
details.

Restrictions:

The lj/cut/coul/long and lj/cut/coul/long/tip4p styles are part of the "kspace" package. The lj/cut/gpu style is part
of the "gpu" package. The lj/cut/opt style is part of the "opt" package. They are only enabled if LAMMPS was
built with those packages. See the Making LAMMPS section for more info. Note that the "kspace" package is
installed by default.

On some 64−bit machines, compiling with −O3 appears to break the Coulombic tabling option used by the
lj/cut/coul/long style. See the "Additional build tips" section of the Making LAMMPS documentation pages for

561

workarounds on this issue.

Related commands:

pair_coeff

Default: none

(Jorgensen) Jorgensen, Chandrasekhar, Madura, Impey, Klein, J Chem Phys, 79, 926 (1983).

562

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

pair_style lj96/cut command

Syntax:

pair_style lj96/cut cutoff

cutoff = global cutoff for lj96/cut interactions (distance units)•

Examples:

pair_style lj96/cut 2.5
pair_coeff * * 1.0 1.0 0.5
pair_coeff 1 1 1.0 1.0 −0.2 2.0

Description:

The lj96/cut style compute a 9/6 Lennard−Jones potential, instead of the standard 12/6 potential, given by

Rc is the cutoff.

The following coefficients must be defined for each pair of atoms types via the pair_coeff command as in the
examples above, or in the data file or restart files read by the read_data or read_restart commands, or by mixing as
described below:

epsilon (energy units)•
sigma (distance units)•
delta (distance units)•
cutoff (distance units)•

The last coefficient is optional. If not specified, the global LJ cutoff specified in the pair_style command is used.

Mixing, shift, table, tail correction, restart, rRESPA info:

For atom type pairs I,J and I != J, the epsilon and sigma coefficients and cutoff distance for all of the lj/cut pair
styles can be mixed. The default mix value is geometric. See the "pair_modify" command for details.

This pair style supports the pair_modify shift option for the energy of the pair interaction.

The pair_modify table option is not relevant for this pair style.

This pair style supports the pair_modify tail option for adding a long−range tail correction to the energy and
pressure of the pair interaction.

This pair style writes its information to binary restart files, so pair_style and pair_coeff commands do not need to
be specified in an input script that reads a restart file.

563

http://lammps.sandia.gov

This pair style supports the use of the inner, middle, and outer keywords of the run_style respa command,
meaning the pairwise forces can be partitioned by distance at different levels of the rRESPA hierarchy. See the
run_style command for details.

Restrictions: none

Related commands:

pair_coeff

Default: none

564

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

pair_style lj/coul command

Syntax:

pair_style lj/coul flag_lj flag_coul cutoff (cutoff2)

flag_lj = long or cut

long = use Kspace long−range summation for the dispersion term 1/r^6
cut = use a cutoff

•

flag_coul = long or off

long = use Kspace long−range summation for the Coulombic term 1/r
off = omit the Coulombic term

•

cutoff = global cutoff for LJ (and Coulombic if only 1 cutoff) (distance units)•
cutoff2 = global cutoff for Coulombic (optional) (distance units)•

Examples:

pair_style lj/coul cut off 2.5
pair_style lj/coul cut long 2.5 4.0
pair_style lj/coul long long 2.5 4.0
pair_coeff * * 1 1
pair_coeff 1 1 1 3 4

Description:

The lj/coul style computes the standard 12/6 Lennard−Jones and Coulombic potentials, given by

where C is an energy−conversion constant, Qi and Qj are the charges on the 2 atoms, epsilon is the dielectric
constant which can be set by the dielectric command, and Rc is the cutoff. If one cutoff is specified in the
pair_style command, it is used for both the LJ and Coulombic terms. If two cutoffs are specified, they are used as
cutoffs for the LJ and Coulombic terms respectively.

The purpose of this pair style is to capture long−range interactions resulting from both attractive 1/r^6
Lennard−Jones and Coulombic 1/r interactions. This is done by use of the flag_lj and flag_coul settings. The In 't
Veld paper has more details on when it is appropriate to include long−range 1/r^6 interactions, using this
potential.

If flag_lj is set to long, no cutoff is used on the LJ 1/r^6 dispersion term. The long−range portion is calculated by
using the kspace_style ewald/n command. The specified LJ cutoff then determines which portion of the LJ
interactions are computed directly by the pair potential versus which part is computed in reciprocal space via the

565

http://lammps.sandia.gov

Kspace style. If flag_lj is set to cut, the LJ interactions are simply cutoff, as with pair_style lj/cut.

If flag_coul is set to long, no cutoff is used on the Coulombic interactions. The long−range portion is calculated
by using any style, including ewald/n of the kspace_style command. Note that if flag_lj is also set to long, then
only the ewald/n Kspace style can perform the long−range calculations for both the LJ and Coulombic
interactions. If flag_coul is set to off, Coulombic interactions are not computed.

The following coefficients must be defined for each pair of atoms types via the pair_coeff command as in the
examples above, or in the data file or restart files read by the read_data or read_restart commands, or by mixing as
described below:

epsilon (energy units)•
sigma (distance units)•
cutoff1 (distance units)•
cutoff2 (distance units)•

Note that sigma is defined in the LJ formula as the zero−crossing distance for the potential, not as the energy
minimum at 2^(1/6) sigma.

The latter 2 coefficients are optional. If not specified, the global LJ and Coulombic cutoffs specified in the
pair_style command are used. If only one cutoff is specified, it is used as the cutoff for both LJ and Coulombic
interactions for this type pair. If both coefficients are specified, they are used as the LJ and Coulombic cutoffs for
this type pair. Note that if you are using flag_lj set to long, you cannot specify a LJ cutoff for an atom type pair,
since only one global LJ cutoff is allowed. Similarly, if you are using flag_coul set to long, you cannot specify a
Coulombic cutoff for an atom type pair, since only one global Coulombic cutoff is allowed.

Mixing, shift, table, tail correction, restart, rRESPA info:

For atom type pairs I,J and I != J, the epsilon and sigma coefficients and cutoff distance for all of the lj/cut pair
styles can be mixed. The default mix value is geometric. See the "pair_modify" command for details.

This pair style supports the pair_modify shift option for the energy of the Lennard−Jones portion of the pair
interaction, assuming flag_lj is cut.

This pair style supports the pair_modify table option since it can tabulate the short−range portion of the
long−range Coulombic interaction.

This pair styles supports the pair_modify tail option for adding a long−range tail correction to the Lennard−Jones
portion of the energy and pressure of the pair interaction, assuming flag_lj is cut.

This pair style writes its information to binary restart files, so pair_style and pair_coeff commands do not need to
be specified in an input script that reads a restart file.

This pair style supports the use of the inner, middle, and outer keywords of the run_style respa command,
meaning the pairwise forces can be partitioned by distance at different levels of the rRESPA hierarchy. See the
run_style command for details.

Restrictions:

This style is part of the "user−ewaldn" package. It is only enabled if LAMMPS was built with that package. See
the Making LAMMPS section for more info.

566

On some 64−bit machines, compiling with −O3 appears to break the Coulombic tabling option used by the lj/coul
style. See the "Additional build tips" section of the Making LAMMPS documentation pages for workarounds on
this issue.

Related commands:

pair_coeff

Default: none

(In 't Veld) In 't Veld, Ismail, Grest, J Chem Phys (accepted) (2007).

567

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

pair_style lj/expand command

Syntax:

pair_style lj/expand cutoff

cutoff = global cutoff for lj/expand interactions (distance units)•

Examples:

pair_style lj/expand 2.5
pair_coeff * * 1.0 1.0 0.5
pair_coeff 1 1 1.0 1.0 −0.2 2.0

Description:

Style lj/expand computes a LJ interaction with a distance shifted by delta which can be useful when particles are
of different sizes, since it is different that using different sigma values in a standard LJ formula:

Rc is the cutoff which does not include the delta distance. I.e. the actual force cutoff is the sum of cutoff + delta.

The following coefficients must be defined for each pair of atoms types via the pair_coeff command as in the
examples above, or in the data file or restart files read by the read_data or read_restart commands, or by mixing as
described below:

epsilon (energy units)•
sigma (distance units)•
delta (distance units)•
cutoff (distance units)•

The delta values can be positive or negative. The last coefficient is optional. If not specified, the global LJ cutoff
is used.

Mixing, shift, table, tail correction, restart, rRESPA info:

For atom type pairs I,J and I != J, the epsilon, sigma, and shift coefficients and cutoff distance for this pair style
can be mixed. Shift is always mixed via an arithmetic rule. The other coefficients are mixed according to the
pair_modify mix value. The default mix value is geometric. See the "pair_modify" command for details.

This pair style supports the pair_modify shift option for the energy of the pair interaction.

The pair_modify table option is not relevant for this pair style.

This pair style supports the pair_modify tail option for adding a long−range tail correction to the energy and
pressure of the pair interaction.

568

http://lammps.sandia.gov

This pair style writes its information to binary restart files, so pair_style and pair_coeff commands do not need to
be specified in an input script that reads a restart file.

This pair style can only be used via the pair keyword of the run_style respa command. It does not support the
inner, middle, outer keywords.

Restrictions: none

Related commands:

pair_coeff

Default: none

569

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

pair_style lj/smooth command

Syntax:

pair_style lj/smooth Rin Rc

Rin = inner cutoff beyond which force smoothing will be applied (distance units)•
Rc = outer cutoff for lj/smooth interactions (distance units)•

Examples:

pair_style lj/smooth 8.0 10.0
pair_coeff * * 10.0 1.5
pair_coeff 1 1 20.0 1.3 7.0 9.0

Description:

Style lj/smooth computes a LJ interaction with a force smoothing applied between the inner and outer cutoff.

The polynomial coefficients C1, C2, C3, C4 are computed by LAMMPS to cause the force to vary smoothly from
the inner cutoff Rin to the outer cutoff Rc.

At the inner cutoff the force and its 1st derivative will match the unsmoothed LJ formula. At the outer cutoff the
force and its 1st derivative will be 0.0. The inner cutoff cannot be 0.0.

IMPORTANT NOTE: this force smoothing causes the energy to be discontinuous both in its values and 1st
derivative. This can lead to poor energy conservation and may require the use of a thermostat. Plot the energy and
force resulting from this formula via the pair_write command to see the effect.

The following coefficients must be defined for each pair of atoms types via the pair_coeff command as in the
examples above, or in the data file or restart files read by the read_data or read_restart commands, or by mixing as
described below:

epsilon (energy units)•
sigma (distance units)•
innner (distance units)•
outer (distance units)•

The last 2 coefficients are optional inner and outer cutoffs. If not specified, the global values for Rin and Rc are
used.

Mixing, shift, table, tail correction, restart, rRESPA info:

570

http://lammps.sandia.gov

For atom type pairs I,J and I != J, the epsilon, sigma, Rin coefficients and the cutoff distance for this pair style can
be mixed. Rin is a cutoff value and is mixed like the cutoff. The other coefficients are mixed according to the
pair_modify mix option. The default mix value is geometric. See the "pair_modify" command for details.

This pair style supports the pair_modify shift option for the energy of the pair interaction.

The pair_modify table option is not relevant for this pair style.

This pair style does not support the pair_modify tail option for adding long−range tail corrections to energy and
pressure, since the energy of the pair interaction is smoothed to 0.0 at the cutoff.

This pair style writes its information to binary restart files, so pair_style and pair_coeff commands do not need to
be specified in an input script that reads a restart file.

This pair style can only be used via the pair keyword of the run_style respa command. It does not support the
inner, middle, outer keywords.

Restrictions: none

Related commands:

pair_coeff

Default: none

571

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

pair_style lubricate command

Syntax:

pair_style lubricate mu squeeze shear pump twist cutinner cutoff T_target seed

mu = dynamic viscosity (dynamic viscosity units)•
squeeze = 0/1 for squeeze force off/on•
shear = 0/1 for shear force off/on•
pump = 0/1 for pump force off/on•
twist = 0/1 for twist force off/on•
cutinner = (distance units)•
cutoff = outer cutoff for interactions (distance units)•
T_target = desired temperature (temperature units)•
seed = random number seed (positive integer)•

Examples:

pair_style lubricate 1.5 1 1 1 0 2.3 2.4 1.3 5878598
pair_coeff 1 1 1.8 2.0
pair_coeff * *

Description:

Style lubricate computes pairwise interactions between mono−disperse spherical particles via this formula from
(Ball and Melrose)

which represents the dissipation W between two nearby particles due to their relative velocities in the presence of
a background solvent with viscosity mu. Note that this is dynamic viscosity which has units of
mass/distance/time, not kinematic viscosity.

Rc is the outer cutoff specified in the pair_style command, the translational velocities of the 2 particles are v1 and
v2, the angular velocities are w1 and w2, and n is the unit vector in the direction from particle 1 to 2. The 4 terms
represent four modes of pairwise interaction: squeezing, shearing, pumping, and twisting. The 4 flags in the
pair_style command turn on or off each of these modes by including or excluding each term. The 4 coefficients on
each term are functions of the separation distance of the particles and the viscosity. Details are given in (Ball and
Melrose), including the forces and torques that result from taking derivatives of this equation with respect to
velocity (see Appendix A).

Unlike most pair potentials, the two specified cutoffs (cutinner and cutoff) refer to the surface−to−surface
separation between two particles, not center−to−center distance. Currently, this pair style can only be used for
mono−disperse extended spheres (same radii), so that separation is r_ij − 2*radius, where r_ij is the
center−to−center distance between the particles. Within the inner cutoff cutinner, the forces and torques are

572

http://lammps.sandia.gov

evaluated at a separation of cutinner. The outer cutoff is the separation distance beyond which the pair−wise
forces are zero.

A Langevin thermostatting term is also added to the pairwise force, similar to that provided by the fix langevin or
pair_style dpd commands. The target temperature for the thermostat is the specified T_target. The seed is used for
the random numbers generated for the thermostat.

The following coefficients must be defined for each pair of atoms types via the pair_coeff command as in the
examples above, or in the data file or restart files read by the read_data or read_restart commands, or by mixing as
described below:

cutinner (distance units)•
cutoff (distance units)•

The two coefficients are optional. If neither is specified, the two cutoffs specified in the pair_style command are
used. Otherwise both must be specified.

Mixing, shift, table, tail correction, restart, rRESPA info:

For atom type pairs I,J and I != J, the two cutoff distances for this pair style can be mixed. The default mix value
is geometric. See the "pair_modify" command for details.

This pair style does not support the pair_modify shift option for the energy of the pair interaction.

The pair_modify table option is not relevant for this pair style.

This pair style does not support the pair_modify tail option for adding long−range tail corrections to energy and
pressure.

This pair style writes its information to binary restart files, so pair_style and pair_coeff commands do not need to
be specified in an input script that reads a restart file.

This pair style can only be used via the pair keyword of the run_style respa command. It does not support the
inner, middle, outer keywords.

Restrictions:

This style is part of the "colloid" package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info.

This pair style requires that atoms store torque and a quaternion to represent their orientation, as defined by the
atom_style. It also require they store a per−type shape. The particles cannot store a per−particle diameter or
per−particle mass.

All the shape settings must be for finite−size spheres. They cannot be point particles, nor can they be aspherical.
Additionally all the shape types must specify particles of the same size, i.e. a monodisperse system.

This pair style requires you to use the communicate vel yes option so that velocites are stored by ghost atoms.

Related commands:

pair_coeff

573

Default: none

(Ball) Ball and Melrose, Physica A, 247, 444−472 (1997).

574

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

pair_style meam command

Syntax:

pair_style meam

Examples:

pair_style meam
pair_coeff * * ../potentials/library.meam Si ../potentials/si.meam Si
pair_coeff * * ../potentials/library.meam Ni Al NULL Ni Al Ni Ni

Description:

Style meam computes pairwise interactions for a variety of materials using modified embedded−atom method
(MEAM) potentials (Baskes). Conceptually, it is an extension to the original EAM potentials which adds angular
forces. It is thus suitable for modeling metals and alloys with fcc, bcc, hcp and diamond cubic structures, as well
as covalently bonded materials like silicon and carbon.

In the MEAM formulation, the total energy E of a system of atoms is given by:

where F is the embedding energy which is a function of the atomic electron density rho, and phi is a pair potential
interaction. The pair interaction is summed over all neighbors J of atom I within the cutoff distance. As with
EAM, the multi−body nature of the MEAM potential is a result of the embedding energy term. Details of the
computation of the embedding and pair energies, as implemented in LAMMPS, are given in (Gullet) and
references therein.

The various parameters in the MEAM formulas are listed in two files which are specified by the pair_coeff
command. These are ASCII text files in a format consistent with other MD codes that implement MEAM
potentials, such as the serial DYNAMO code and Warp. Several MEAM potential files with parameters for
different materials are included in the "potentials" directory of the LAMMPS distribution with a ".meam" suffix.
All of these are parameterized in terms of LAMMPS metal units.

Note that unlike for other potentials, cutoffs for MEAM potentials are not set in the pair_style or pair_coeff
command; they are specified in the MEAM potential files themselves.

Only a single pair_coeff command is used with the meam style which specifies two MEAM files and the
element(s) to extract information for. The MEAM elements are mapped to LAMMPS atom types by specifying N
additional arguments after the 2nd filename in the pair_coeff command, where N is the number of LAMMPS
atom types:

MEAM library file•
Elem1, Elem2, ...•
MEAM parameter file•
N element names = mapping of MEAM elements to atom types•

575

http://lammps.sandia.gov

As an example, the potentials/library.meam file has generic MEAM settings for a variety of elements. The
potentials/sic.meam file has specific parameter settings for a Si and C alloy system. If your LAMMPS simulation
has 4 atoms types and you want the 1st 3 to be Si, and the 4th to be C, you would use the following pair_coeff
command:

pair_coeff * * library.meam Si C sic.meam Si Si Si C

The 1st 2 arguments must be * * so as to span all LAMMPS atom types. The two filenames are for the library and
parameter file respectively. The Si and C arguments (between the file names) are the two elements for which info
will be extracted from the library file. The first three trailing Si arguments map LAMMPS atom types 1,2,3 to the
MEAM Si element. The final C argument maps LAMMPS atom type 4 to the MEAM C element.

If the 2nd filename is specified as NULL, no parameter file is read, which simply means the generic parameters in
the library file are used. Use of the NULL specification for the parameter file is discouraged for systems with
more than a single element type (e.g. alloys), since the parameter file is expected to set element interaction terms
that are not captured by the information in the library file.

If a mapping value is specified as NULL, the mapping is not performed. This can be used when a meam potential
is used as part of the hybrid pair style. The NULL values are placeholders for atom types that will be used with
other potentials.

The MEAM library file provided with LAMMPS has the name potentials/library.meam. It is the "meamf" file
used by other MD codes. Aside from blank and comment lines (start with #) which can appear anywhere, it is
formatted as a series of entries, each of which has 19 parameters and can span multiple lines:

elt, lat, z, ielement, atwt, alpha, b0, b1, b2, b3, alat, esub, asub, t0, t1, t2, t3, rozero, ibar

The "elt" and "lat" parameters are text strings, such as elt = Si or Cu and lat = dia or fcc. Because the library file is
used by Fortran MD codes, these strings may be enclosed in single quotes, but this is not required. The other
numeric parameters match values in the formulas above. The value of the "elt" string is what is used in the
pair_coeff command to identify which settings from the library file you wish to read in. There can be multiple
entries in the library file with the same "elt" value; LAMMPS reads the 1st matching entry it finds and ignores the
rest.

If used, the MEAM parameter file contains settings that override or complement the library file settings.
Examples of such parameter files are in the potentials directory with a ".meam" suffix. Their format is the same as
is read by other Fortran MD codes. Aside from blank and comment lines (start with #) which can appear
anywhere, each line has one of the following forms. Each line can also have a trailing comment (starting with #)
which is ignored.

keyword = value
keyword(I) = value
keyword(I,J) = value
keyword(I,J,K) = value

The recognized keywords are as follows:

Ec, alpha, rho0, delta, lattce, attrac, repuls, nn2, Cmin, Cmax, rc, delr, augt1, gsmooth_factor, re

where

rc = cutoff radius for cutoff function; default = 4.0
delr = length of smoothing distance for cutoff function; default = 0.1
rho0(I) = relative density for element I (overwrites value

576

 read from meamf file)
Ec(I,J) = cohesive energy of reference structure for I−J mixture
delta(I,J) = heat of formation for I−J alloy; if Ec_IJ is input as
 zero, then LAMMPS sets Ec_IJ = (Ec_II + Ec_JJ)/2 − delta_IJ
alpha(I,J) = alpha parameter for pair potential between I and J (can
 be computed from bulk modulus of reference structure
re(I,J) = equilibrium distance between I and J in the reference
 structure
Cmax(I,J,K) = Cmax screening parameter when I−J pair is screened
 by K (I<=J); default = 2.8
Cmin(I,J,K) = Cmin screening parameter when I−J pair is screened
 by K (I<=J); default = 2.0
lattce(I,J) = lattice structure of I−J reference structure:
 dia = diamond (interlaced fcc for alloy)
 fcc = face centered cubic
 bcc = body centered cubic
 dim = dimer
 b1 = rock salt (NaCl structure)
nn2(I,J) = turn on second−nearest neighbor MEAM formulation for
 I−J pair (see for example (Lee)). Only valid for I=J.
 0 = second−nearest neighbor formulation off
 1 = second−nearest neighbor formulation on
 default = 0
attrac(I,J) = additional cubic attraction term in Rose energy I−J pair potential
 default = 0
repuls(I,J) = additional cubic repulsive term in Rose energy I−J pair potential
 default = 0
gsmooth_factor = factor determining the length of the G−function smoothing
 region; only significant for ibar=0 or ibar=4.
 99.0 = short smoothing region, sharp step
 0.5 = long smoothing region, smooth step
 default = 99.0
augt1 = integer flag for whether to augment t1 parameter by
 3/5*t3 to account for old vs. new meam formulations;
 0 = don't augment t1
 1 = augment t1
 default = 1

Rc, delr, re are in distance units (Angstroms in the case of metal units). Ec and delta are in energy units (eV in the
case of metal units).

Each keyword represents a quantity which is either a scalar, vector, 2d array, or 3d array and must be specified
with the correct corresponding array syntax. The indices I,J,K each run from 1 to N where N is the number of
MEAM elements being used.

Thus these lines

rho0(2) = 2.25
alpha(1,2) = 4.37

set rho0 for the 2nd element to the value 2.25 and set alpha for the alloy interaction between elements 1 and 2 to
4.37.

The augt1 parameter is related to modifications in the MEAM formulation of the partial electron density function.
In recent literature, an extra term is included in the expression for the third−order density in order to make the
densities orthogonal (see for example (Wang), equation 3d); this term is included in the MEAM implementation
in lammps. However, in earlier published work this term was not included when deriving parameters, including
most of those provided in the library.meam file included with lammps, and to account for this difference the
parameter t1 must be augmented by 3/5*t3. If augt1=1, the default, this augmentation is done automatically.

577

When parameter values are fit using the modified density function, as in more recent literature, augt1 should be
set to 0.

The parameters attrac and repuls can be used to modify the Rose energy function used to compute the pair
potential. This function gives the energy of the reference state as a function of interatomic spacing. The form of
this function is:

astar = alpha * (r/re − 1.d0)
erose = −Ec*(1+astar+a3*(astar**3)/(r/re))*exp(−astar)
a3 = repuls, astar <0
a3 = attrac, astar >= 0

Most published MEAM parameter sets use the default values attrac=repulse=0. Setting repuls=attrac=delta
corresponds to the form used in several recent published MEAM parameter sets, such as (Vallone)

Mixing, shift, table, tail correction, restart, rRESPA info:

For atom type pairs I,J and I != J, where types I and J correspond to two different element types, mixing is
performed by LAMMPS with user−specifiable parameters as described above. You never need to specify a
pair_coeff command with I != J arguments for this style.

This pair style does not support the pair_modify shift, table, and tail options.

This pair style does not write its information to binary restart files, since it is stored in potential files. Thus, you
need to re−specify the pair_style and pair_coeff commands in an input script that reads a restart file.

This pair style can only be used via the pair keyword of the run_style respa command. It does not support the
inner, middle, outer keywords.

Restrictions:

This style is part of the "meam" package. It is only enabled if LAMMPS was built with that package, which also
requires the MEAM library be built and linked with LAMMPS. See the Making LAMMPS section for more info.

Related commands:

pair_coeff, pair_style eam

Default: none

(Baskes) Baskes, Phys Rev B, 46, 2727−2742 (1992).

(Gullet) Gullet, Wagner, Slepoy, SANDIA Report 2003−8782 (2003). This report may be accessed on−line via
this link.

(Lee) Lee, Baskes, Phys. Rev. B, 62, 8564−8567 (2000).

(Wang) Wang, Van Hove, Ross, Baskes, J. Chem. Phys., 121, 5410 (2004).

578

http://infoserve.sandia.gov/sand_doc/2003/038782.pdf

(Valone) Valone, Baskes, Martin, Phys. Rev. B, 73, 214209 (2006).

579

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

pair_modify command

Syntax:

pair_modify keyword value ...

one or more keyword/value pairs may be listed•
keyword = shift or mix or table or tabinner or tail

mix value = geometric or arithmetic or sixthpower
shift value = yes or no
table value = N

 2^N = # of values in table
tabinner value = cutoff

 cutoff = inner cutoff at which to begin table (distance units)
tail value = yes or no

•

Examples:

pair_modify shift yes mix geometric
pair_modify tail yes
pair_modify table 12

Description:

Modify the parameters of the currently defined pair style. Not all parameters are relevant to all pair styles.

The mix keyword affects pair coefficients for interactions between atoms of type I and J, when I != J and the
coefficients are not explicitly set in the input script. Note that coefficients for I = J must be set explicitly, either in
the input script via the "pair_coeff" command or in the "Pair Coeffs" section of the data file. For some pair styles
is is not necessary to specify coefficients when I != J, since a "mixing" rule will create them from the I,I and J,J
settings. The pair_modify mix value determines what formulas are used to compute the mixed coefficients. In
each case, the cutoff distance is mixed the same way as sigma.

Note that not all pair styles support mixing. Also, some mix options are not available for certain pair styles. See
the doc page for individual pair styles for those restrictions. Note also that the pair_coeff command also can be to
directly set coefficients for a specific I != J pairing, in which case no mixing is performed.

mix geometric

epsilon_ij = sqrt(epsilon_i * epsilon_j)
sigma_ij = sqrt(sigma_i * sigma_j)

mix arithmetic

epsilon_ij = sqrt(epsilon_i * epsilon_j)
sigma_ij = (sigma_i + sigma_j) / 2

mix sixthpower

epsilon_ij = (2 * sqrt(epsilon_i*epsilon_j) * sigma_i^3 * sigma_j^3) /
 (sigma_i^6 + sigma_j^6)
sigma_ij = ((sigma_i**6 + sigma_j**6) / 2) ^ (1/6)

580

http://lammps.sandia.gov

The shift keyword determines whether a Lennard−Jones potential is shifted at its cutoff to 0.0. If so, this adds an
energy term to each pairwise interaction which will be included in the thermodynamic output, but does not affect
pair forces or atom trajectories. See the doc page for individual pair styles to see which ones support this option.

The table keyword applies to pair styles with a long−range Coulombic term; see the doc page for individual styles
to see which potentials support this option. If N is non−zero, a table of length 2^N is pre−computed for forces and
energies, which can shrink their computational cost by up to a factor of 2. The table is indexed via a bit−mapping
technique (Wolff) and a linear interpolation is performed between adjacent table values. In our experiments with
different table styles (lookup, linear, spline), this method typically gave the best performance in terms of speed
and accuracy.

The choice of table length is a tradeoff in accuracy versus speed. A larger N yields more accurate force
computations, but requires more memory which can slow down the computation due to cache misses. A
reasonable value of N is between 8 and 16. The default value of 12 (table of length 4096) gives approximately the
same accuracy as the no−table (N = 0) option. For N = 0, forces and energies are computed directly, using a
polynomial fit for the needed erfc() function evaluation, which is what earlier versions of LAMMPS did. Values
greater than 16 typically slow down the simulation and will not improve accuracy; values from 1 to 8 give
unreliable results.

The tabinner keyword sets an inner cutoff above which the pairwise computation is done by table lookup (if
tables are invoked). The smaller this value is set, the less accurate the table becomes (for a given number of table
values), which can require use of larger tables. The default cutoff value is sqrt(2.0) distance units which means
nearly all pairwise interactions are computed via table lookup for simulations with "real" units, but some close
pairs may be computed directly (non−table) for simulations with "lj" units.

When the tail keyword is set to yes, certain pair styles will add a long−range VanderWaals tail "correction" to the
energy and pressure. See the doc page for individual styles to see which support this option. These corrections are
included in the calculation and printing of thermodynamic quantities (see the thermo_style command). Their
effect will also be included in constant NPT or NPH simulations where the pressure influences the simulation box
dimensions (e.g. the fix npt and fix nph commands). The formulas used for the long−range corrections come from
equation 5 of (Sun).

Several assumptions are inherent in using tail corrections, including the following:

The simulated system is a 3d bulk homogeneous liquid. This option should not be used for systems that
are non−liquid, 2d, have a slab geometry (only 2d periodic), or inhomogeneous.

•

G(r), the radial distribution function (rdf), is unity beyond the cutoff, so a fairly large cutoff should be
used (i.e. 2.5 sigma for an LJ fluid), and it is probably a good idea to verify this assumption by checking
the rdf. The rdf is not exactly unity beyond the cutoff for each pair of interaction types, so the tail
correction is necessarily an approximation.

•

Thermophysical properties obtained from calculations with this option enabled will not be
thermodynamically consistent with the truncated force−field that was used. In other words, atoms do not
feel any LJ pair interactions beyond the cutoff, but the energy and pressure reported by the simulation
include an estimated contribution from those interactions.

•

Restrictions: none

You cannot use shift yes with tail yes, since those are conflicting options. You cannot use tail yes with 2d
simulations.

Related commands:

581

pair_style, pair_coeff, thermo_style

Default:

The option defaults are mix = geometric, shift = no, table = 12, tabinner = sqrt(2.0), tail = no.

Note that some pair styles perform mixing, but only a certain style of mixing. See the doc pages for individual
pair styles for details.

(Wolff) Wolff and Rudd, Comp Phys Comm, 120, 200−32 (1999).

(Sun) Sun, J Phys Chem B, 102, 7338−7364 (1998).

582

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

pair_style morse command

pair_style morse/opt command

Syntax:

pair_style morse cutoff

cutoff = global cutoff for Morse interactions (distance units)•

Examples:

pair_style morse 2.5
pair_style morse/opt 2.5
pair_coeff * * 100.0 2.0 1.5
pair_coeff 1 1 100.0 2.0 1.5 3.0

Description:

Style morse computes pairwise interactions with the formula

Rc is the cutoff.

The following coefficients must be defined for each pair of atoms types via the pair_coeff command as in the
examples above, or in the data file or restart files read by the read_data or read_restart commands:

D0 (energy units)•
alpha (1/distance units)•
r0 (distance units)•
cutoff (distance units)•

The last coefficient is optional. If not specified, the global morse cutoff is used.

Style morse/opt is an optimized version of style morse that should give identical answers. Depending on system
size and the processor you are running on, it may be 5−25% faster (for the pairwise portion of the run time).

Mixing, shift, table, tail correction, restart, rRESPA info:

None of these pair styles support mixing. Thus, coefficients for all I,J pairs must be specified explicitly.

All of these pair styles support the pair_modify shift option for the energy of the pair interaction.

The pair_modify table options is not relevant for the Morse pair styles.

None of these pair styles support the pair_modify tail option for adding long−range tail corrections to energy and
pressure.

583

http://lammps.sandia.gov

All of these pair styles write their information to binary restart files, so pair_style and pair_coeff commands do
not need to be specified in an input script that reads a restart file.

These pair styles can only be used via the pair keyword of the run_style respa command. They do not support the
inner, middle, outer keywords.

Restrictions:

The morse/opt style is part of the "opt" package. It is only enabled if LAMMPS was built with that package. See
the Making LAMMPS section for more info.

Related commands:

pair_coeff

Default: none

584

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

pair_style none command

Syntax:

pair_style none

Examples:

pair_style none

Description:

Using a pair style of none means pair forces are not computed.

With this choice, the force cutoff is 0.0, which means that only atoms within the neighbor skin distance (see the
neighbor command) are communicated between processors. You must insure the skin distance is large enough to
acquire atoms needed for computing bonds, angles, etc.

A pair style of none will also prevent pairwise neighbor lists from being built. However if the neighbor style is
bin, data structures for binning are still allocated. If the neighbor skin distance is small, then these data structures
can consume a large amount of memory. So you should either set the neighbor style to nsq or set the skin distance
to a larger value.

Restrictions: none

Related commands: none

Default: none

585

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

pair_style peri/pmb command

Syntax:

pair_style peri/pmb

Examples:

pair_style peri/pmb
pair_coeff * * 1.6863e22 0.0015001 0.0005 0.25

Description:

Style peri/pmb style implements the Peridynamic bond−based prototype microelastic brittle (PMB) model, which
can be used to model materials at the mesoscopic or macroscopic scale. The canonical paper on Peridynamics is
(Silling). The implementation of Peridynamics in LAMMPS is described in (Parks). Also see the PDLAMMPS
user guide for more details about this particular potential and using it in LAMMPS.

The following coefficients must be defined for each pair of atom types via the pair_coeff command as in the
examples above, or in the data file or restart files read by the read_data or read_restart commands, or by mixing as
described below:

c (energy/distance/volume^2 units)•
horizon (distance units)•
s00 (unitless)•
alpha (unitless)•

C is the effectively a spring constant for Peridynamic bonds, the horizon is a cutoff distance for truncating
interactions, and s00 and alpha are used as a bond breaking criteria. The units of c are such that c/distance =
stiffness/volume^2, where stiffness is energy/distance^2 and volume is distance^3. See the users guide for more
details.

Mixing, shift, table, tail correction, restart, rRESPA info:

This pair style does not support mixing. Thus, coefficients for all I,J pairs must be specified explicitly.

This pair style does not support the pair_modify shift option.

The pair_modify table and tail options are not relevant for this pair style.

This pair style writes its information to binary restart files, so pair_style and pair_coeff commands do not need to
be specified in an input script that reads a restart file.

This pair style can only be used via the pair keyword of the run_style respa command. It does not support the
inner, middle, outer keywords.

Restrictions:

The peri/pmb style is part of the "peri" package. It is only enabled if LAMMPS was built with that package. See
the Making LAMMPS section for more info.

586

http://lammps.sandia.gov
http://www.sandia.gov/~mlparks/papers/PDLAMMPS.pdf
http://www.sandia.gov/~mlparks/papers/PDLAMMPS.pdf

Related commands:

pair_coeff

Default: none

(Parks) Parks, Lehoucq, Plimpton, Silling, to appear in Comp Phys Comm, (2008).

(Silling) Silling, J Mech Phys Solids, 48, 175−209 (2000).

587

MLAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

pair_style reax command

Syntax:

pair_style reax hbcut precision

hbcut = hydrogen−bond cutoff (distance units)•
precision = precision for charge equilibration•

Examples:

pair_style reax
pair_style reax 10.0 1.0e−5
pair_coeff * * ffield.reax 3 1 2 2

Description:

The pair style computes the ReaxFF potential of van Duin, Goddard and co−workers. ReaxFF uses
distance−dependent bond−order functions to represent the contributions of chemical bonding to the potential
energy. There is more than one version of ReaxFF. The version implemented in LAMMPS uses the functional
forms documented in the supplemental information of the following paper: (Chenoweth et al., 2008). The
parameter values in the file ffield.reax provided with the ReaxFF examples are based on those used in: (Strachan
et al., 2005).

LAMMPS provides a ReaxFF potential file in its potentials dir, namely potentials/ffield.reax. Its format is
identical to that used by van Duin and co−workers. It contains parameterizations for the following elements: C, H,
O, N, S. Si has been temporarily removed. You can use another file in place of it, and ReaxFF files with
parameterizations for other elements or for specific chemical systems may be available elsewhere.

The hbcut and precision settings are optional arguments. If neither is provided, default settings are used: hbcut =
10 (which is Angstroms in real units) and precision = 1.0e−6 (one part in 10^6). If you wish to override either of
these defaults, then both settings must be specified.

Use of this pair style requires that a charge be defined for every atom since the potential performs charge
equilibration. See the atom_style and read_data commands for details on how to specify charges.

The thermo variable evdwl stores the sum of all the ReaxFF potential energy contributions, with the exception of
the Coulombic and charge equilibration contributions which are stored in the thermo variable ecoul. The output of
these quantities is controlled by the thermo command.

Only a single pair_coeff command is used with the reax style which specifies a ReaxFF potential file with
parameters for all needed elements. These are mapped to LAMMPS atom types by specifying N additional
arguments after the filename in the pair_coeff command, where N is the number of LAMMPS atom types:

filename•
N indices = mapping of ReaxFF elements to atom types•

The specification of the filename and the mapping of LAMMPS atom types recognized by the ReaxFF is done
differently than for other LAMMPS potentials, due to the non−portable difficulty of passing character strings (e.g.
filename, element names) between C++ and Fortran.

588

http://lammps.sandia.gov

The filename has to be "ffield.reax" and it has to exist in the directory you are running LAMMPS in. This means
you cannot prepend a path to the file in the potentials dir. Rather, you should copy that file into the directory you
are running from. If you wish to use another ReaxFF potential file, then name it "ffield.reax" and put it in the
directory you run from.

In the ReaxFF potential file, near the top, is a section that contains element names, each with a couple dozen
numeric parameters. The ffield.reax provided with LAMMPS lists 6 elements: C, H, O, N, S, Si, though Si has
been temporarily removed. Think of these as numbered 1 to 6. Each of the N indices you specify for the N atom
types of LAMMPS atoms must be an integer from 1 to 6. Atoms with LAMMPS type 1 will be mapped to
whatever element you specify as the first index value, etc.

In the pair_coeff example above, the LAMMPS simulation has 4 atoms types and they are set as follows:

type 1 = O
type 2 = C
type 3 = H
type 4 = H

Mixing, shift, table, tail correction, restart, rRESPA info:

This pair style does not support the pair_modify mix, shift, table, and tail options.

This pair style does not write its information to binary restart files, since it is stored in potential files. Thus, you
need to re−specify the pair_style and pair_coeff commands in an input script that reads a restart file.

This pair style can only be used via the pair keyword of the run_style respa command. It does not support the
inner, middle, outer keywords.

Restrictions:

This pair style is part of the "reax" package. It is only enabled if LAMMPS was built with that package, which
also requires the REAX library be built and linked with LAMMPS. See the Making LAMMPS section for more
info.

The ffield.reax potential file provided with LAMMPS in the potentials directory is parameterized for real units.
You can use the ReaxFF potential with any LAMMPS units, but you would need to create your own potential file
with coefficients listed in the appropriate units if your simulation doesn't use "real" units. This would be
somewhat tricky, so contact the LAMMPS authors if you wish to do this.

Related commands:

pair_coeff

Default: none

(Chenoweth) Chenoweth, van Duin and Goddard III, Journal of Physical Chemistry A, 112, 1040−1053 (2008).

(Strachan) Strachan, Kober, van Duin, Oxgaard, and Goddard, Journal of Chemical Physics, 122, 054502 (2005).

589

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

pair_style resquared command

Syntax:

pair_style resquared cutoff

cutoff = global cutoff for interactions (distance units)•

Examples:

pair_style resquared 10.0
pair_coeff * * 1.0 1.0 1.7 3.4 3.4 1.0 1.0 1.0

Description:

Style resquared computes the RE−squared anisotropic interaction (Everaers), (Babadi) between pairs of
ellipsoidal and/or spherical Lennard−Jones particles. For ellipsoidal interactions, the potential considers the
ellipsoid as being comprised of small spheres of size sigma. LJ particles are a single sphere of size sigma. The
distinction is made to allow the pair style to make efficient calculations of ellipsoid/solvent interactions.

Details for the equations used are given in the references below and in this supplementary document.

Use of this pair style requires the NVE, NVT, or NPT fixes with the asphere extension (e.g. fix nve/asphere) in
order to integrate particle rotation. Additionally, atom_style ellipsoid should be used since it defines the rotational
state of the ellipsoidal particles. The size and shape of the ellipsoidal particles are defined by the shape command.

The following coefficients must be defined for each pair of atoms types via the pair_coeff command as in the
examples above, or in the data file or restart files read by the read_data or read_restart commands:

A12 = Energy Prefactor/Hamaker constant (energy units)•
sigma = atomic interaction diameter (distance units)•
epsilon_i_a = relative well depth of type I for side−to−side interactions•
epsilon_i_b = relative well depth of type I for face−to−face interactions•
epsilon_i_c = relative well depth of type I for end−to−end interactions•
epsilon_j_a = relative well depth of type J for side−to−side interactions•
epsilon_j_b = relative well depth of type J for face−to−face interactions•
epsilon_j_c = relative well depth of type J for end−to−end interactions•
cutoff (distance units)•

The last coefficient is optional. If not specified, the global cutoff specified in the pair_style command is used.

As described above, sigma is the size of the small spheres which are integrated over to create the potential. Note
that this is a different meaning for sigma than the pair_style gayberne potential uses.

The parameters used depend on the type of the interacting particles, i.e. ellipsoid or LJ sphere. The type of particle
is determined by the diameters specified with the shape command. LJ spheres have diameters equal to zero and
thus represent a single particle with size sigma. The epsilon_i_* or epsilon_j_* parameters are ignored for LJ
sphere interactions. The interactions between two LJ sphere particles are computed using the standard
Lennard−Jones formula.

590

http://lammps.sandia.gov

For ellipsoid−LJ sphere interactions, a correction to the distance− of−closest approach equation has been
implemented to reduce the error from disparate sizes; see this supplementary document.

A12 specifies the energy prefactor which depends on the type of particles interacting. For ellipsoid−ellipsoid
interactions, A12 is the Hamaker constant as described in (Everaers). In LJ units:

where rho gives the number density of the spherical particles composing the ellipsoids and epsilon_LJ determines
the interaction strength of the spherical particles.

For ellipsoid−LJ sphere interactions, A12 gives the energy prefactor (see here for details:

For LJ sphere−LJ sphere interactions, A12 is the standard epsilon used in Lennard−Jones pair styles:

sigma specifies the diameter of the continuous distribution of constituent particles within each ellipsoid used to
model the RE−squared potential.

For large uniform molecules it has been shown that the epsilon_*_* energy parameters are approximately
representable in terms of local contact curvatures (Everaers):

where a, b, and c give the particle diameters.

The last coefficient is optional. If not specified, the global cutoff specified in the pair_style command is used.

The epsilon_i and epsilon_j coefficients are actually defined for atom types, not for pairs of atom types. Thus, in a
series of pair_coeff commands, they only need to be specified once for each atom type.

Specifically, if any of epsilon_i_a, epsilon_i_b, epsilon_i_c are non−zero, the three values are assigned to atom
type I. If all the epsilon_i values are zero, they are ignored. If any of epsilon_j_a, epsilon_j_b, epsilon_j_c are
non−zero, the three values are assigned to atom type J. If all three epsilon_i values are zero, they are ignored.
Thus the typical way to define the epsilon_i and epsilon_j coefficients is to list their values in "pair_coeff I J"
commands when I = J, but set them to 0.0 when I != J. If you do list them when I != J, you should insure they are
consistent with their values in other pair_coeff commands.

Note that if this potential is being used as a sub−style of pair_style hybrid, and there is no "pair_coeff I I" setting
made for RE−squared for a particular type I (because I−I interactions are computed by another hybrid pair
potential), then you still need to insure the epsilon a,b,c coefficients are assigned to that type in a "pair_coeff I J"
command.

591

Mixing, shift, table, tail correction, restart, rRESPA info:

For atom type pairs I,J and I != J, the epsilon and sigma coefficients and cutoff distance can be mixed, but only
for LJ sphere pairs. The default mix value is geometric. See the "pair_modify" command for details. Other type
pairs cannot be mixed, due to the different meanings of the energy prefactors used to calculate the interactions and
the implicit dependence of the ellipsoid−LJ sphere interaction on the equation for the Hamaker constant presented
here. Mixing of sigma and epsilon followed by calculation of the energy prefactors using the equations above is
recommended.

This pair styles supports the pair_modify shift option for the energy of the Lennard−Jones portion of the pair
interaction, but only for sphere−sphere interactions. There is no shifting performed for ellipsoidal interactions due
to the anisotropic dependence of the interaction.

The pair_modify table option is not relevant for this pair style.

This pair style does not support the pair_modify tail option for adding long−range tail corrections to energy and
pressure.

This pair style writes its information to binary restart files, so pair_style and pair_coeff commands do not need to
be specified in an input script that reads a restart file.

This pair style can only be used via the pair keyword of the run_style respa command. It does not support the
inner, middle, outer keywords of the run_style command.

Restrictions:

This style is part of the "asphere" package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info.

This pair style requires that atoms store torque and a quaternion to represent their orientation, as defined by the
atom_style. It also require they store a per−type shape. The particles cannot store a per−particle diameter.

Particles acted on by the potential can be extended aspherical or spherical particles, or point particles.

The distance−of−closest−approach approximation used by LAMMPS becomes less accurate when high−aspect
ratio ellipsoids are used.

Related commands:

pair_coeff, fix nve/asphere, compute temp/asphere, pair_style gayberne

Default: none

(Everaers) Everaers and Ejtehadi, Phys Rev E, 67, 041710 (2003).

(Berardi) Babadi, Ejtehadi, Everaers, J Comp Phys, 219, 770−779 (2006).

592

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

pair_style soft command

Syntax:

pair_style soft cutoff

cutoff = global cutoff for soft interactions (distance units)•

Examples:

pair_style soft 2.5
pair_coeff * * 0.0 60.0
pair_coeff 1 1 0.0 60.0 3.0

Description:

Style soft computes pairwise interactions with the formula

It is useful for pushing apart overlapping atoms, since it does not blow up as r goes to 0. A is a pre−factor that
varies in time from the start to the end of the run. The run command documents how to make the ramping take
place across multiple runs. Rc is the cutoff. See the fix nve/limit command for another way to push apart
overlapping atoms.

The following coefficients must be defined for each pair of atom types via the pair_coeff command as in the
examples above, or in the data file or restart files read by the read_data or read_restart commands, or by mixing as
described below:

Astart (energy units)•
Astop (energy units)•
cutoff (distance units)•

Astart and Astop are the values of the prefactor at the start and end of the next run. At intermediate times the
value of A will be ramped between these 2 values. Note that before performing a 2nd run, you will want to adjust
the values of Astart and Astop for all type pairs, or switch to a new pair style.

The last coefficient is optional. If not specified, the global soft cutoff is used.

Mixing, shift, table, tail correction, restart, rRESPA info:

For atom type pairs I,J and I != J, the Astart, Astop coefficients and cutoff distance for this pair style can be
mixed. Astart and Atop are always mixed via a geometric rule. The cutoff is mixed according to the pair_modify
mix value. The default mix value is geometric. See the "pair_modify" command for details.

This pair style does not support the pair_modify shift option, since the pair interaction goes to 0.0 at the cutoff.

The pair_modify table and tail options are not relevant for this pair style.

593

http://lammps.sandia.gov

This pair style writes its information to binary restart files, so pair_style and pair_coeff commands do not need to
be specified in an input script that reads a restart file.

This pair style can only be used via the pair keyword of the run_style respa command. It does not support the
inner, middle, outer keywords.

Restrictions: none

Related commands:

pair_coeff, fix nve/limit

Default: none

594

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

pair_style command

Syntax:

pair_style style args

style = one of the styles from the list below•
args = arguments used by a particular style•

Examples:

pair_style lj/cut 2.5
pair_style eam/alloy
pair_style hybrid lj/charmm/coul/long 10.0 eam
pair_style table linear 1000
pair_style none

Description:

Set the formula(s) LAMMPS uses to compute pairwise interactions. In LAMMPS, pair potentials are defined
between pairs of atoms that are within a cutoff distance and the set of active interactions typically changes over
time. See the bond_style command to define potentials between pairs of bonded atoms, which typically remain in
place for the duration of a simulation.

In LAMMPS, pairwise force fields encompass a variety of interactions, some of which include many−body
effects, e.g. EAM, Stillinger−Weber, Tersoff, REBO potentials. They are still classified as "pairwise" potentials
because the set of interacting atoms changes with time (unlike molecular bonds) and thus a neighbor list is used to
find nearby interacting atoms.

Hybrid models where specified pairs of atom types interact via different pair potentials can be setup using the
hybrid pair style.

The coefficients associated with a pair style are typically set for each pair of atom types, and are specified by the
pair_coeff command or read from a file by the read_data or read_restart commands.

The pair_modify command sets options for mixing of type I−J interaction coefficients and adding energy offsets
or tail corrections to Lennard−Jones potentials. Details on these options as they pertain to individual potentials are
described on the doc page for the potential. Likewise, info on whether the potential information is stored in a
restart file is listed on the potential doc page.

In the formulas listed for each pair style, E is the energy of a pairwise interaction between two atoms separated by
a distance r. The force between the atoms is the negative derivative of this expression.

If the pair_style command has a cutoff argument, it sets global cutoffs for all pairs of atom types. The distance(s)
can be smaller or larger than the dimensions of the simulation box.

Typically, the global cutoff value can be overridden for a specific pair of atom types by the pair_coeff command.
The pair style settings (including global cutoffs) can be changed by a subsequent pair_style command using the
same style. This will reset the cutoffs for all atom type pairs, including those previously set explicitly by a
pair_coeff command. The exceptions to this are that pair_style table and hybrid settings cannot be reset. A new
pair_style command for these styles will wipe out all previously specified pair_coeff values.

595

http://lammps.sandia.gov

Here is an alphabetic list of pair styles defined in LAMMPS. Click on the style to display the formula it computes,
arguments specified in the pair_style command, and coefficients specified by the associated pair_coeff command:

pair_style none − turn off pairwise interactions•
pair_style hybrid − multiple styles of pairwise interactions•
pair_style hybrid/overlay − multiple styles of superposed pairwise interactions•

pair_style airebo − AI−REBO potential•
pair_style born/coul/long − Born−Mayer−Huggins with long−range Coulomb•
pair_style buck − Buckingham potential•
pair_style buck/coul/cut − Buckingham with cutoff Coulomb•
pair_style buck/coul/long − Buckingham with long−range Coulomb•
pair_style colloid − integrated colloidal potential•
pair_style coul/cut − cutoff Coulombic potential•
pair_style coul/debye − cutoff Coulombic potential with Debye screening•
pair_style coul/long − long−range Coulombic potential•
pair_style dipole/cut − point dipoles with cutoff•
pair_style dpd − dissipative particle dynamics (DPD)•
pair_style dsmc − Direct Simulation Monte Carlo (DSMC)•
pair_style eam − embedded atom method (EAM)•
pair_style eam/opt − optimized version of EAM•
pair_style eam/alloy − alloy EAM•
pair_style eam/alloy/opt − optimized version of alloy EAM•
pair_style eam/fs − Finnis−Sinclair EAM•
pair_style eam/fs/opt − optimized version of Finnis−Sinclair EAM•
pair_style gayberne − Gay−Berne ellipsoidal potential•
pair_style gayberne/gpu − GPU−enabled Gay−Berne ellipsoidal potential•
pair_style gran/hertz/history − granular potential with Hertzian interactions•
pair_style gran/hooke − granular potential with history effects•
pair_style gran/hooke/history − granular potential without history effects•
pair_style lj/charmm/coul/charmm − CHARMM potential with cutoff Coulomb•
pair_style lj/charmm/coul/charmm/implicit − CHARMM for implicit solvent•
pair_style lj/charmm/coul/long − CHARMM with long−range Coulomb•
pair_style lj/charmm/coul/long/opt − optimized version of CHARMM with long−range Coulomb•
pair_style lj/class2 − COMPASS (class 2) force field with no Coulomb•
pair_style lj/class2/coul/cut − COMPASS with cutoff Coulomb•
pair_style lj/class2/coul/long − COMPASS with long−range Coulomb•
pair_style lj/cut − cutoff Lennard−Jones potential with no Coulomb•
pair_style lj/cut/gpu − GPU−enabled version of cutoff LJ•
pair_style lj/cut/opt − optimized version of cutoff LJ•
pair_style lj/cut/coul/cut − LJ with cutoff Coulomb•
pair_style lj/cut/coul/debye − LJ with Debye screening added to Coulomb•
pair_style lj/cut/coul/long − LJ with long−range Coulomb•
pair_style lj/cut/coul/long/tip4p − LJ with long−range Coulomb for TIP4P water•
pair_style lj/expand − Lennard−Jones for variable size particles•
pair_style lj/gromacs − GROMACS−style Lennard−Jones potential•
pair_style lj/gromacs/coul/gromacs − GROMACS−style LJ and Coulombic potential•
pair_style lj/smooth − smoothed Lennard−Jones potential•
pair_style lj96/cut − Lennard−Jones 9/6 potential•
pair_style lubricate − hydrodynamic lubrication forces•
pair_style meam − modified embedded atom method (MEAM)•

596

pair_style morse − Morse potential•
pair_style morse/opt − optimized version of Morse potential•
pair_style peri/pmb − peridynamic PMB potential•
pair_style reax − ReaxFF potential•
pair_style resquared − Everaers RE−Squared ellipsoidal potential•
pair_style soft − Soft (cosine) potential•
pair_style sw − Stillinger−Weber 3−body potential•
pair_style table − tabulated pair potential•
pair_style tersoff − Tersoff 3−body potential•
pair_style tersoff/zbl − Tersoff/ZBL 3−body potential•
pair_style yukawa − Yukawa potential•
pair_style yukawa/colloid − screened Yukawa potential for finite−size particles•

There are also additional pair styles submitted by users which are included in the LAMMPS distribution. The list
of these with links to the individual styles are given in the pair section of this page.

Restrictions:

This command must be used before any coefficients are set by the pair_coeff, read_data, or read_restart
commands.

Some pair styles are part of specific packages. They are only enabled if LAMMPS was built with that package.
See the Making LAMMPS section for more info on packages. The doc pages for individual pair potentials tell if it
is part of a package.

Related commands:

pair_coeff, read_data, pair_modify, kspace_style, dielectric, pair_write

Default:

pair_style none

597

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

pair_style sw command

Syntax:

pair_style sw

Examples:

pair_style sw
pair_coeff * * si.sw Si
pair_coeff * * GaN.sw Ga N Ga

Description:

The sw style computes a 3−body Stillinger−Weber potential for the energy E of a system of atoms as

where phi2 is a two−body term and phi3 is a three−body term. The summations in the formula are over all
neighbors J and K of atom I within a cutoff distance = a*sigma.

Only a single pair_coeff command is used with the sw style which specifies a Stillinger−Weber potential file with
parameters for all needed elements. These are mapped to LAMMPS atom types by specifying N additional
arguments after the filename in the pair_coeff command, where N is the number of LAMMPS atom types:

filename•
N element names = mapping of SW elements to atom types•

As an example, imagine a file SiC.sw has Stillinger−Weber values for Si and C. If your LAMMPS simulation has
4 atoms types and you want the 1st 3 to be Si, and the 4th to be C, you would use the following pair_coeff
command:

pair_coeff * * SiC.sw Si Si Si C

The 1st 2 arguments must be * * so as to span all LAMMPS atom types. The first three Si arguments map
LAMMPS atom types 1,2,3 to the Si element in the SW file. The final C argument maps LAMMPS atom type 4
to the C element in the SW file. If a mapping value is specified as NULL, the mapping is not performed. This can
be used when a sw potential is used as part of the hybrid pair style. The NULL values are placeholders for atom
types that will be used with other potentials.

Stillinger−Weber files in the potentials directory of the LAMMPS distribution have a ".sw" suffix. Lines that are
not blank or comments (starting with #) define parameters for a triplet of elements. The parameters in a single
entry correspond to the two−body and three−body coefficients in the formula above:

598

http://lammps.sandia.gov

element 1 (the center atom in a 3−body interaction)•
element 2•
element 3•
epsilon (energy units)•
sigma (distance units)•
a•
lambda•
gamma•
costheta0•
A•
B•
p•
q•
tol•

The A, B, p, and q parameters are used only for two−body interactions. The lambda and costheta0 parameters are
used only for three−body interactions. The epsilon, sigma and a parameters are used for both two−body and
three−body interactions. gamma is used only in the three−body interactions, but is defined for pairs of atoms. The
non−annotated parameters are unitless.

LAMMPS introduces an additional performance−optimization parameter tol that is used for both two−body and
three−body interactions. In the Stillinger−Weber potential, the interaction energies become negligibly small at
atomic separations substantially less than the theoretical cutoff distances. LAMMPS therefore defines a virtual
cutoff distance based on a user defined tolerance tol. The use of the virtual cutoff distance in constructing atom
neighbor lists can significantly reduce the neighbor list sizes and therefore the computational cost. LAMMPS
provides a tol value for each of the three−body entries so that they can be separately controlled. If tol = 0.0, then
the standard Stillinger−Weber cutoff is used.

The Stillinger−Weber potential file must contain entries for all the elements listed in the pair_coeff command. It
can also contain entries for additional elements not being used in a particular simulation; LAMMPS ignores those
entries.

For a single−element simulation, only a single entry is required (e.g. SiSiSi). For a two−element simulation, the
file must contain 8 entries (for SiSiSi, SiSiC, SiCSi, SiCC, CSiSi, CSiC, CCSi, CCC), that specify SW parameters
for all permutations of the two elements interacting in three−body configurations. Thus for 3 elements, 27 entries
would be required, etc.

As annotated above, the first element in the entry is the center atom in a three−body interaction. Thus an entry for
SiCC means a Si atom with 2 C atoms as neighbors. The parameter values used for the two−body interaction
come from the entry where the 2nd and 3rd elements are the same. Thus the two−body parameters for Si
interacting with C, comes from the SiCC entry. The three−body parameters can in principle be specific to the
three elements of the configuration. In the literature, however, the three−body parameters are usually defined by
simple formulas involving two sets of pair−wise parameters, corresponding to the ij and ik pairs, where i is the
center atom. The user must ensure that the correct combining rule is used to calculate the values of the threebody
parameters for alloys. Note also that the function phi3 contains two exponential screening factors with parameter
values from the ij pair and ik pairs. So phi3 for a C atom bonded to a Si atom and a second C atom will depend on
the three−body parameters for the CSiC entry, and also on the two−body parameters for the CCC and CSiSi
entries. Since the order of the two neighbors is arbitrary, the threebody parameters for entries CSiC and CCSi
should be the same. Similarly, the two−body parameters for entries SiCC and CSiSi should also be the same. The
parameters used only for two−body interactions (A, B, p, and q) in entries whose 2nd and 3rd element are
different (e.g. SiCSi) are not used for anything and can be set to 0.0 if desired.

599

Mixing, shift, table, tail correction, restart, rRESPA info:

For atom type pairs I,J and I != J, where types I and J correspond to two different element types, mixing is
performed by LAMMPS as described above from values in the potential file.

This pair style does not support the pair_modify shift, table, and tail options.

This pair style does not write its information to binary restart files, since it is stored in potential files. Thus, you
need to re−specify the pair_style and pair_coeff commands in an input script that reads a restart file.

This pair style can only be used via the pair keyword of the run_style respa command. It does not support the
inner, middle, outer keywords.

Restrictions:

This pair style is part of the "manybody" package. It is only enabled if LAMMPS was built with that package
(which it is by default). See the Making LAMMPS section for more info.

This pair style requires the newton setting to be "on" for pair interactions.

The Stillinger−Weber potential files provided with LAMMPS (see the potentials directory) are parameterized for
metal units. You can use the SW potential with any LAMMPS units, but you would need to create your own SW
potential file with coefficients listed in the appropriate units if your simulation doesn't use "metal" units.

Related commands:

pair_coeff

Default: none

(Stillinger) Stillinger and Weber, Phys Rev B, 31, 5262 (1985).

600

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

pair_style table command

Syntax:

pair_style table style N

style = lookup or linear or spline or bitmap = method of interpolation•
N = use N values in lookup, linear, spline tables•
N = use 2^N values in bitmap tables•

Examples:

pair_style table linear 1000
pair_style table bitmap 12
pair_coeff * 3 morse.table ENTRY1
pair_coeff * 3 morse.table ENTRY1 7.0

Description:

Style table creates interpolation tables of length N from pair potential and force values listed in a file(s) as a
function of distance. The files are read by the pair_coeff command.

The interpolation tables are created by fitting cubic splines to the file values and interpolating energy and force
values at each of N distances. During a simulation, these tables are used to interpolate energy and force values as
needed. The interpolation is done in one of 4 styles: lookup, linear, spline, or bitmap.

For the lookup style, the distance between 2 atoms is used to find the nearest table entry, which is the energy or
force.

For the linear style, the pair distance is used to find 2 surrounding table values from which an energy or force is
computed by linear interpolation.

For the spline style, a cubic spline coefficients are computed and stored at each of the N values in the table. The
pair distance is used to find the appropriate set of coefficients which are used to evaluate a cubic polynomial
which computes the energy or force.

For the bitmap style, the N means to create interpolation tables that are 2^N in length. (Wolff) and a linear
interpolation is performed between adjacent table values.

The following coefficients must be defined for each pair of atoms types via the pair_coeff command as in the
examples above.

filename•
keyword•
cutoff (distance units)•

The filename specifies a file containing tabulated energy and force values. The keyword specifies a section of the
file. The cutoff is an optional coefficient. If not specified, the outer cutoff in the table itself (see below) will be
used to build an interpolation table that extend to the largest tabulated distance. If specified, only file values up to
the cutoff are used to create the interpolation table. The format of this file is described below.

601

http://lammps.sandia.gov

Here are some guidelines for using the pair_style table command to best effect:

Vary the number of table points; you may need to use more than you think to get good resolution.•
Always use the pair_write command to produce a plot of what the final interpolated potential looks like.
This can show up interpolation "features" you may not like.

•

Start with the linear style; it's the style least likely to have problems.•
Use N in the pair_style command equal to the "N" in the tabulation file, so additional interpolation is not
needed. See discussion below.

•

Use as large an inner cutoff as possible. This avoids fitting splines to very steep parts of the potential.•

The format of a tabulated file is as follows (without the parenthesized comments):

Morse potential for Fe (one or more comment or blank lines)

MORSE_FE (keyword is first text on line)
N 500 R 1.0 10.0 (N, R, RSQ, BITMAP, FPRIME parameters)
 (blank)
1 1.0 25.5 102.34 (index, r, energy, force)
2 1.02 23.4 98.5
...
500 10.0 0.001 0.003

A section begins with a non−blank line whose 1st character is not a "#"; blank lines or lines starting with "#" can
be used as comments between sections. The first line begins with a keyword which identifies the section. The line
can contain additional text, but the initial text must match the argument specified in the pair_coeff command. The
next line lists (in any order) one or more parameters for the table. Each parameter is a keyword followed by one
or more numeric values.

The parameter "N" is required and its value is the number of table entries that follow. Note that this may be
different than the N specified in the pair_style table command. Let Ntable = N in the pair_style command, and
Nfile = "N" in the tabulated file. What LAMMPS does is a preliminary interpolation by creating splines using the
Nfile tabulated values as nodal points. It uses these to interpolate as needed to generate energy and force values at
Ntable different points. The resulting tables of length Ntable are then used as described above, when computing
energy and force for individual pair distances. This means that if you want the interpolation tables of length
Ntable to match exactly what is in the tabulated file (with effectively no preliminary interpolation), you should set
Ntable = Nfile.

All other parameters are optional. If "R" or "RSQ" or "BITMAP" does not appear, then the distances in each line
of the table are used as−is to perform spline interpolation. In this case, the table values can be spaced in r
uniformly or however you wish to position table values in regions of large gradients.

If used, the parameters "R" or "RSQ" are followed by 2 values rlo and rhi. If specified, the distance associated
with each energy and force value is computed from these 2 values (at high accuracy), rather than using the
(low−accuracy) value listed in each line of the table. For "R", distances uniformly spaced between rlo and rhi are
computed; for "RSQ", squared distances uniformly spaced between rlo*rlo and rhi*rhi are computed.

If used, the parameter "BITMAP" is also followed by 2 values rlo and rhi. These values, along with the "N" value
determine the ordering of the N lines that follow and what distance is associated with each. This ordering is
complex, so it is not documented here, since this file is typically produced by the pair_write command with its
bitmap option. When the table is in BITMAP format, the "N" parameter in the file must be equal to 2^M where M
is the value specified in the pair_style command. Also, a cutoff parameter cannot be used as an optional 3rd
argument in the pair_coeff command; the entire table extent as specified in the file must be used.

602

If used, the parameter "FPRIME" is followed by 2 values fplo and fphi which are the derivative of the force at the
innermost and outermost distances listed in the table. These values are needed by the spline construction routines.
If not specified by the "FPRIME" parameter, they are estimated (less accurately) by the first 2 and last 2 force
values in the table. This parameter is not used by BITMAP tables.

Following a blank line, the next N lines list the tabulated values. On each line, the 1st value is the index from 1 to
N, the 2nd value is r (in distance units), the 3rd value is the energy (in energy units), and the 4th is the force (in
force units). The r values must increase from one line to the next (unless the BITMAP parameter is specified).

Note that one file can contain many sections, each with a tabulated potential. LAMMPS reads the file section by
section until it finds one that matches the specified keyword.

Mixing, shift, table, tail correction, restart, rRESPA info:

This pair style does not support mixing. Thus, coefficients for all I,J pairs must be specified explicitly.

The pair_modify shift, table, and tail options are not relevant for this pair style.

This pair style writes the settings for the "pair_style table" command to binary restart files, so a pair_style
command does not need to specified in an input script that reads a restart file. However, the coefficient
information is not stored in the restart file, since it is tabulated in the potential files. Thus, pair_coeff commands
do need to be specified in the restart input script.

This pair style can only be used via the pair keyword of the run_style respa command. It does not support the
inner, middle, outer keywords.

Restrictions: none

Related commands:

pair_coeff

Default: none

(Wolff) Wolff and Rudd, Comp Phys Comm, 120, 200−32 (1999).

603

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

pair_style tersoff command

Syntax:

pair_style tersoff

Examples:

pair_style tersoff
pair_coeff * * Si.tersoff Si
pair_coeff * * SiC.tersoff Si C Si

Description:

The tersoff style computes a 3−body Tersoff potential (Tersoff_1) for the energy E of a system of atoms as

where f_R is a two−body term and f_A includes three−body interactions. The summations in the formula are over
all neighbors J and K of atom I within a cutoff distance = R + D.

Only a single pair_coeff command is used with the tersoff style which specifies a Tersoff potential file with
parameters for all needed elements. These are mapped to LAMMPS atom types by specifying N additional
arguments after the filename in the pair_coeff command, where N is the number of LAMMPS atom types:

filename•
N element names = mapping of Tersoff elements to atom types•

As an example, imagine the SiC.tersoff file has Tersoff values for Si and C. If your LAMMPS simulation has 4
atoms types and you want the 1st 3 to be Si, and the 4th to be C, you would use the following pair_coeff
command:

pair_coeff * * SiC.tersoff Si Si Si C

604

http://lammps.sandia.gov

The 1st 2 arguments must be * * so as to span all LAMMPS atom types. The first three Si arguments map
LAMMPS atom types 1,2,3 to the Si element in the Tersoff file. The final C argument maps LAMMPS atom type
4 to the C element in the Tersoff file. If a mapping value is specified as NULL, the mapping is not performed.
This can be used when a tersoff potential is used as part of the hybrid pair style. The NULL values are
placeholders for atom types that will be used with other potentials.

Tersoff files in the potentials directory of the LAMMPS distribution have a ".tersoff" suffix. Lines that are not
blank or comments (starting with #) define parameters for a triplet of elements. The parameters in a single entry
correspond to coefficients in the formula above:

element 1 (the center atom in a 3−body interaction)•
element 2 (the atom bonded to the center atom)•
element 3 (the atom influencing the 1−2 bond in a bond−order sense)•
m•
gamma•
lambda3 (1/distance units)•
c•
d•
costheta0 (can be a value < −1 or > 1)•
n•
beta•
lambda2 (1/distance units)•
B (energy units)•
R (distance units)•
D (distance units)•
lambda1 (1/distance units)•
A (energy units)•

The n, beta, lambda2, B, lambda1, and A parameters are only used for two−body interactions. The m, gamma,
lambda3, c, d, and costheta0 parameters are only used for three−body interactions. The R and D parameters are
used for both two−body and three−body interactions. The non−annotated parameters are unitless. The value of m
must be 3 or 1.

The Tersoff potential file must contain entries for all the elements listed in the pair_coeff command. It can also
contain entries for additional elements not being used in a particular simulation; LAMMPS ignores those entries.

For a single−element simulation, only a single entry is required (e.g. SiSiSi). For a two−element simulation, the
file must contain 8 entries (for SiSiSi, SiSiC, SiCSi, SiCC, CSiSi, CSiC, CCSi, CCC), that specify Tersoff
parameters for all permutations of the two elements interacting in three−body configurations. Thus for 3 elements,
27 entries would be required, etc.

As annotated above, the first element in the entry is the center atom in a three−body interaction and it is bonded to
the 2nd atom and the bond is influenced by the 3rd atom. Thus an entry for SiCC means Si bonded to a C with
another C atom influencing the bond. Thus three−body parameters for SiCSi and SiSiC entries will not, in
general, be the same. The parameters used for the two−body interaction come from the entry where the 2nd
element is repeated. Thus the two−body parameters for Si interacting with C, comes from the SiCC entry. By
symmetry, the twobody parameters in the SiCC and CSiSi entries should thus be the same. The parameters used
for a particular three−body interaction come from the entry with the corresponding three elements. The
parameters used only for two−body interactions (n, beta, lambda2, B, lambda1, and A) in entries whose 2nd and
3rd element are different (e.g. SiCSi) are not used for anything and can be set to 0.0 if desired.

We chose the above form so as to enable users to define all commonly used variants of the Tersoff potential. In

605

particular, our form reduces to the original Tersoff form when m = 3 and gamma = 1, while it reduces to the form
of Albe et al. when beta = 1 and m = 1. Note that in the current Tersoff implementation in LAMMPS, m must be
specified as either 3 or 1. Tersoff used a slightly different but equivalent form for alloys, which we will refer to as
Tersoff_2 potential (Tersoff_2).

LAMMPS parameter values for Tersoff_2 can be obtained as follows: gamma = 1, just as for Tersoff_1, but now
lambda3 = 0 and the value of m has no effect. The parameters for species i and j can be calculated using the
Tersoff_2 mixing rules:

Tersoff_2 parameters R and S must be converted to the LAMMPS parameters R and D (R is different in both
forms), using the following relations: R=(R'+S')/2 and D=(S'−R')/2, where the primes indicate the Tersoff_2
parameters.

In the potentials directory, the file SiCGe.tersoff provides the LAMMPS parameters for Tersoff's various versions
of Si, as well as his alloy parameters for Si, C, and Ge. This file can be used for pure Si, (three different versions),
pure C, pure Ge, binary SiC, and binary SiGe. LAMMPS will generate an error if this file is used with any
combination involving C and Ge, since there are no entries for the GeC interactions (Tersoff did not publish
parameters for this cross−interaction.) Tersoff files are also provided for the SiC alloy (SiC.tersoff) and the GaN
(GaN.tersoff) alloys.

Many thanks to Rutuparna Narulkar, David Farrell, and Xiaowang Zhou for helping clarify how Tersoff
parameters for alloys have been defined in various papers.

Mixing, shift, table, tail correction, restart, rRESPA info:

For atom type pairs I,J and I != J, where types I and J correspond to two different element types, mixing is
performed by LAMMPS as described above from values in the potential file.

This pair style does not support the pair_modify shift, table, and tail options.

This pair style does not write its information to binary restart files, since it is stored in potential files. Thus, you
need to re−specify the pair_style and pair_coeff commands in an input script that reads a restart file.

This pair style can only be used via the pair keyword of the run_style respa command. It does not support the
inner, middle, outer keywords.

Restrictions:

This pair style is part of the "manybody" package. It is only enabled if LAMMPS was built with that package
(which it is by default). See the Making LAMMPS section for more info.

606

This pair style requires the newton setting to be "on" for pair interactions.

The Tersoff potential files provided with LAMMPS (see the potentials directory) are parameterized for metal
units. You can use the Tersoff potential with any LAMMPS units, but you would need to create your own Tersoff
potential file with coefficients listed in the appropriate units if your simulation doesn't use "metal" units.

Related commands:

pair_coeff

Default: none

(Tersoff_1) J. Tersoff, Phys Rev B, 37, 6991 (1988).

(Albe) J. Nord, K. Albe, P. Erhart, and K. Nordlund, J. Phys.: Condens. Matter, 15, 5649(2003).

(Tersoff_2) J. Tersoff, Phys Rev B, 39, 5566 (1989)

607

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

pair_style tersoff/zbl command

Syntax:

pair_style tersoff/zbl

Examples:

pair_style tersoff/zbl
pair_coeff * * SiC.tersoff.zbl Si C Si

Description:

The tersoff/zbl style computes a 3−body Tersoff potential (Tersoff_1) with a close−separation pairwise
modification based on a Coulomb potential and the Ziegler−Biersack−Littmark universal screening function
(ZBL), giving the energy E of a system of atoms as

608

http://lammps.sandia.gov

The f_F term is a fermi−like function used to smoothly connect the ZBL repulsive potential with the Tersoff
potential. There are 2 parameters used to adjust it: A_F and r_C. A_F controls how "sharp" the transition is
between the two, and r_C is essentially the cutoff for the ZBL potential.

For the ZBL portion, there are two terms. The first is the Coulomb repulsive term, with Z1, Z2 as the number of
protons in each nucleus, e as the electron charge (1 for metal and real units) and epsilon0 as the permittivity of
vacuum. The second part is the ZBL universal screening function, with a0 being the Bohr radius (typically 0.529
Angstroms), and the remainder of the coefficients provided by the original paper. This screening function should
be applicable to most systems. However, it is only accurate for small separations (i.e. less than 1 Angstrom).

For the Tersoff portion, f_R is a two−body term and f_A includes three−body interactions. The summations in the
formula are over all neighbors J and K of atom I within a cutoff distance = R + D.

Only a single pair_coeff command is used with the tersoff/zbl style which specifies a Tersoff/ZBL potential file
with parameters for all needed elements. These are mapped to LAMMPS atom types by specifying N additional
arguments after the filename in the pair_coeff command, where N is the number of LAMMPS atom types:

filename•
N element names = mapping of Tersoff/ZBL elements to atom types•

As an example, imagine the SiC.tersoff.zbl file has Tersoff/ZBL values for Si and C. If your LAMMPS
simulation has 4 atoms types and you want the 1st 3 to be Si, and the 4th to be C, you would use the following
pair_coeff command:

pair_coeff * * SiC.tersoff Si Si Si C

The 1st 2 arguments must be * * so as to span all LAMMPS atom types. The first three Si arguments map
LAMMPS atom types 1,2,3 to the Si element in the Tersoff/ZBL file. The final C argument maps LAMMPS atom
type 4 to the C element in the Tersoff/ZBL file. If a mapping value is specified as NULL, the mapping is not
performed. This can be used when a tersoff/zbl potential is used as part of the hybrid pair style. The NULL values
are placeholders for atom types that will be used with other potentials.

Tersoff/ZBL files in the potentials directory of the LAMMPS distribution have a ".tersoff.zbl" suffix. Lines that
are not blank or comments (starting with #) define parameters for a triplet of elements. The parameters in a single
entry correspond to coefficients in the formula above:

element 1 (the center atom in a 3−body interaction)•
element 2 (the atom bonded to the center atom)•
element 3 (the atom influencing the 1−2 bond in a bond−order sense)•
m•
gamma•
lambda3 (1/distance units)•
c•
d•
costheta0 (can be a value < −1 or > 1)•
n•
beta•
lambda2 (1/distance units)•
B (energy units)•
R (distance units)•
D (distance units)•
lambda1 (1/distance units)•
A (energy units)•

609

Z_i•
Z_j•
ZBLcut (distance units)•
ZBLexpscale (1/distance units)•

The n, beta, lambda2, B, lambda1, and A parameters are only used for two−body interactions. The m, gamma,
lambda3, c, d, and costheta0 parameters are only used for three−body interactions. The R and D parameters are
used for both two−body and three−body interactions. The Z_i,Z_j, ZBLcut, ZBLexpscale parameters are used in
the ZBL repulsive portion of the potential and in the Fermi−like function. The non−annotated parameters are
unitless. The value of m must be 3 or 1.

The Tersoff/ZBL potential file must contain entries for all the elements listed in the pair_coeff command. It can
also contain entries for additional elements not being used in a particular simulation; LAMMPS ignores those
entries.

For a single−element simulation, only a single entry is required (e.g. SiSiSi). For a two−element simulation, the
file must contain 8 entries (for SiSiSi, SiSiC, SiCSi, SiCC, CSiSi, CSiC, CCSi, CCC), that specify Tersoff
parameters for all permutations of the two elements interacting in three−body configurations. Thus for 3 elements,
27 entries would be required, etc.

As annotated above, the first element in the entry is the center atom in a three−body interaction and it is bonded to
the 2nd atom and the bond is influenced by the 3rd atom. Thus an entry for SiCC means Si bonded to a C with
another C atom influencing the bond. Thus three−body parameters for SiCSi and SiSiC entries will not, in
general, be the same. The parameters used for the two−body interaction come from the entry where the 2nd
element is repeated. Thus the two−body parameters for Si interacting with C, comes from the SiCC entry. By
symmetry, the twobody parameters in the SiCC and CSiSi entries should thus be the same. The parameters used
for a particular three−body interaction come from the entry with the corresponding three elements. The
parameters used only for two−body interactions (n, beta, lambda2, B, lambda1, and A) in entries whose 2nd and
3rd element are different (e.g. SiCSi) are not used for anything and can be set to 0.0 if desired.

We chose the above form so as to enable users to define all commonly used variants of the Tersoff portion of the
potential. In particular, our form reduces to the original Tersoff form when m = 3 and gamma = 1, while it reduces
to the form of Albe et al. when beta = 1 and m = 1. Note that in the current Tersoff implementation in LAMMPS,
m must be specified as either 3 or 1. Tersoff used a slightly different but equivalent form for alloys, which we will
refer to as Tersoff_2 potential (Tersoff_2).

LAMMPS parameter values for Tersoff_2 can be obtained as follows: gamma = 1, just as for Tersoff_1, but now
lambda3 = 0 and the value of m has no effect. The parameters for species i and j can be calculated using the
Tersoff_2 mixing rules:

610

Values not shown are determined by the first atom type. Finally, the Tersoff_2 parameters R and S must be
converted to the LAMMPS parameters R and D (R is different in both forms), using the following relations:
R=(R'+S')/2 and D=(S'−R')/2, where the primes indicate the Tersoff_2 parameters.

In the potentials directory, the file SiCGe.tersoff provides the LAMMPS parameters for Tersoff's various versions
of Si, as well as his alloy parameters for Si, C, and Ge. This file can be used for pure Si, (three different versions),
pure C, pure Ge, binary SiC, and binary SiGe. LAMMPS will generate an error if this file is used with any
combination involving C and Ge, since there are no entries for the GeC interactions (Tersoff did not publish
parameters for this cross−interaction.) Tersoff files are also provided for the SiC alloy (SiC.tersoff) and the GaN
(GaN.tersoff) alloys.

Many thanks to Rutuparna Narulkar, David Farrell, and Xiaowang Zhou for helping clarify how Tersoff
parameters for alloys have been defined in various papers. Also thanks to Ram Devanathan for providing the base
ZBL implementation.

Mixing, shift, table, tail correction, restart, rRESPA info:

For atom type pairs I,J and I != J, where types I and J correspond to two different element types, mixing is
performed by LAMMPS as described above from values in the potential file.

This pair style does not support the pair_modify shift, table, and tail options.

This pair style does not write its information to binary restart files, since it is stored in potential files. Thus, you
need to re−specify the pair_style and pair_coeff commands in an input script that reads a restart file.

This pair style can only be used via the pair keyword of the run_style respa command. It does not support the
inner, middle, outer keywords.

Restrictions:

This pair style is part of the "manybody" package. It is only enabled if LAMMPS was built with that package
(which it is by default). See the Making LAMMPS section for more info.

This pair style requires the newton setting to be "on" for pair interactions.

The Tersoff/ZBL potential files provided with LAMMPS (see the potentials directory) are parameterized for
metal units. You can use the Tersoff potential with any LAMMPS units, but you would need to create your own
Tersoff potential file with coefficients listed in the appropriate units if your simulation doesn't use "metal" units.

Related commands:

pair_coeff

Default: none

(Tersoff_1) J. Tersoff, Phys Rev B, 37, 6991 (1988).

(ZBL) J.F. Ziegler, J.P. Biersack, U. Littmark, 'Stopping and Ranges of Ions in Matter' Vol 1, 1985, Pergamon
Press.

611

(Albe) J. Nord, K. Albe, P. Erhartand K. Nordlund, J. Phys.: Condens. Matter, 15, 5649(2003).

(Tersoff_2) J. Tersoff, Phys Rev B, 39, 5566 (1989)

612

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

pair_write command

Syntax:

pair_write itype jtype N style inner outer file keyword Qi Qj

itype,jtype = 2 atom types•
N = # of values•
style = r or rsq or bitmap•
inner,outer = inner and outer cutoff (distance units)•
file = name of file to write values to•
keyword = section name in file for this set of tabulated values•
Qi,Qj = 2 atom charges (charge units) (optional)•

Examples:

pair_write 1 3 500 r 1.0 10.0 table.txt LJ
pair_write 1 1 1000 rsq 2.0 8.0 table.txt Yukawa_1_1 −0.5 0.5

Description:

Write energy and force values to a file as a function of distance for the currently defined pair potential. This is
useful for plotting the potential function or otherwise debugging its values. If the file already exists, the table of
values is appended to the end of the file to allow multiple tables of energy and force to be included in one file.

The energy and force values are computed at distances from inner to outer for 2 interacting atoms of type itype
and jtype, using the appropriate pair_coeff coefficients. If the style is r, then N distances are used, evenly spaced
in r; if the style is rsq, N distances are used, evenly spaced in r^2.

For example, for N = 7, style = r, inner = 1.0, and outer = 4.0, values are computed at r = 1.0, 1.5, 2.0, 2.5, 3.0,
3.5, 4.0.

If the style is bitmap, then 2^N values are written to the file in a format and order consistent with how they are
read in by the pair_coeff command for pair style table. For reasonable accuracy in a bitmapped table, choose N
>= 12, an inner value that is smaller than the distance of closest approach of 2 atoms, and an outer value <= cutoff
of the potential.

If the pair potential is computed between charged atoms, the charges of the pair of interacting atoms can
optionally be specified. If not specified, values of Qi = Qj = 1.0 are used.

The file is written in the format used as input for the pair_style table option with keyword as the section name.
Each line written to the file lists an index number (1−N), a distance (in distance units), an energy (in energy
units), and a force (in force units).

Restrictions:

All force field coefficients for pair and other kinds of interactions must be set before this command can be
invoked.

Due to how the pairwise force is computed, an inner value > 0.0 must be specified even if the potential has a finite

613

http://lammps.sandia.gov

value at r = 0.0.

For EAM potentials, the pair_write command only tabulates the pairwise portion of the potential, not the
embedding portion.

Related commands:

pair_style, pair_coeff

Default: none

614

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

pair_style yukawa command

Syntax:

pair_style yukawa kappa cutoff

kappa = screening length (inverse distance units)•
cutoff = global cutoff for Yukawa interactions (distance units)•

Examples:

pair_style yukawa 2.0 2.5
pair_coeff 1 1 100.0 2.3
pair_coeff * * 100.0

Description:

Style yukawa computes pairwise interactions with the formula

Rc is the cutoff.

The following coefficients must be defined for each pair of atoms types via the pair_coeff command as in the
examples above, or in the data file or restart files read by the read_data or read_restart commands, or by mixing as
described below:

A (energy*distance units)•
cutoff (distance units)•

The last coefficient is optional. If not specified, the global yukawa cutoff is used.

Mixing, shift, table, tail correction, restart, rRESPA info:

For atom type pairs I,J and I != J, the A coefficient and cutoff distance for this pair style can be mixed. A is an
energy value mixed like a LJ epsilon. The default mix value is geometric. See the "pair_modify" command for
details.

This pair style supports the pair_modify shift option for the energy of the pair interaction.

The pair_modify table option is not relevant for this pair style.

This pair style does not support the pair_modify tail option for adding long−range tail corrections to energy and
pressure.

This pair style writes its information to binary restart files, so pair_style and pair_coeff commands do not need to
be specified in an input script that reads a restart file.

615

http://lammps.sandia.gov

This pair style can only be used via the pair keyword of the run_style respa command. It does not support the
inner, middle, outer keywords.

Restrictions: none

Related commands:

pair_coeff

Default: none

616

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

pair_style yukawa/colloid command

Syntax:

pair_style yukawa/colloid kappa cutoff

kappa = screening length (inverse distance units)•
cutoff = global cutoff for colloidal Yukawa interactions (distance units)•

Examples:

pair_style yukawa/colloid 2.0 2.5
pair_coeff 1 1 100.0 2.3
pair_coeff * * 100.0

Description:

Style yukawa/colloid computes pairwise interactions with the formula

where Ri and Rj are the radii of the two particles and Rc is the cutoff.

In contrast to pair_style yukawa, this functional form arises from the Coulombic interaction between two colloid
particles, screened due to the presence of an electrolyte. Pair_style yukawa is a screened Coulombic potential
between two point−charges and uses no such approximation.

This potential applies to nearby particle pairs for which the Derjagin approximation holds, meaning h << Ri + Rj,
where h is the surface−to−surface separation of the two particles.

When used in combination with pair_style colloid, the two terms become the so−called DLVO potential, which
combines electrostatic repulsion and van der Waals attraction.

The following coefficients must be defined for each pair of atoms types via the pair_coeff command as in the
examples above, or in the data file or restart files read by the read_data or read_restart commands, or by mixing as
described below:

A (energy/distance units)•
cutoff (distance units)•

The prefactor A is determined from the relationship between surface charge and surface potential due to the
presence of electrolyte. Note that the A for this potential style has different units than the A used in pair_style
yukawa. For low surface potentials, i.e. less than about 25 mV, A can be written as:

A = 2 * PI * R*eps*eps0 * kappa * psi^2

where

617

http://lammps.sandia.gov

R = colloid radius (distance units)•
eps0 = permittivity of free space (charge^2/energy/distance units)•
eps = relative permittivity of fluid medium (dimensionless)•
kappa = inverse screening length (1/distance units)•
psi = surface potential (energy/charge units)•

The last coefficient is optional. If not specified, the global yukawa/colloid cutoff is used.

Mixing, shift, table, tail correction, restart, rRESPA info:

For atom type pairs I,J and I != J, the A coefficient and cutoff distance for this pair style can be mixed. A is an
energy value mixed like a LJ epsilon. The default mix value is geometric. See the "pair_modify" command for
details.

This pair style supports the pair_modify shift option for the energy of the pair interaction.

The pair_modify table option is not relevant for this pair style.

This pair style does not support the pair_modify tail option for adding long−range tail corrections to energy and
pressure.

This pair style writes its information to binary restart files, so pair_style and pair_coeff commands do not need to
be specified in an input script that reads a restart file.

This pair style can only be used via the pair keyword of the run_style respa command. It does not support the
inner, middle, outer keywords.

Restrictions:

This style is part of the "colloid" package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info.

Because this potential uses the radii of the particles, the atom style must support particles whose size is set via the
shape command. For example atom_style colloid or ellipsoid. Only spherical particles are currently allowed for
pair_style yukawa/colloid, which means that for each particle type, its 3 shape diameters must be equal to each
other.

Related commands:

pair_coeff

Default: none

618

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

prd command

Syntax:

prd N t_event n_dephase t_dephase t_correlate compute−ID seed keyword value ...

N = # of timesteps to run (not including dephasing/quenching)•
t_event = timestep interval between event checks•
n_dephase = number of velocity randomizations to perform in each dephase run•
t_dephase = number of timesteps to run dynamics after each velocity randomization during dephase•
t_correlate = number of timesteps within which 2 consecutive events are considered to be correlated•
compute−ID = ID of the compute used for event detection•
random_seed = random # seed (positive integer)•
zero or more keyword/value pairs may be appended•
keyword = min or temp or vel

min values = etol ftol maxiter maxeval
 etol = stopping tolerance for energy, used in quenching
 ftol = stopping tolerance for force, used in quenching
 maxiter = max iterations of minimize, used in quenching
 maxeval = max number of force/energy evaluations, used in quenching

temp value = Tdephase
 Tdephase = target temperature for velocity randomization, used in dephasing

vel values = loop dist
 loop = all or local or geom, used in dephasing
 dist = uniform or gaussian, used in dephasing

•

Examples:

prd 5000 100 10 10 100 1 54982
prd 5000 100 10 10 100 1 54982 maxiter 100

Description:

Run Parallel Replica Dynamics (PRD) as described in this paper by Art Voter. PRD is a method for performing
accelerated dynamics that is suitable for infrequent−event systems that obey first−order kinetics. A good overview
of accelerated dynamics methods for such systems in given in this review paper from the same group. To quote
from the paper: "The dynamical evolution is characterized by vibrational excursions within a potential basin,
punctuated by occasional transitions between basins." The transition probability is characterized by p(t) =
k*exp(−kt) where k is the rate constant.

A PRD run is performed by running independent simulations on multiple replicas of the same system, which
gives an effective enhancement in the timescale spanned by the multiple simulations, waiting for an event to
occur. To run with M replicas, you must launch LAMMPS on M partitions, where a partition is one or more
processors. This is done by using the "−partition" command−line argument when LAMMPS is launched. See this
section of the manual for details. A PRD run can be performed on a single partition, though this offers no
effective parallel speed−up in searching for infrequent events.

When a PRD run is performed, it is assumed that each replica is running the same model, though LAMMPS does
not check for this. I.e. the simulation domain, the number of atoms, the interaction potentials, etc are the same for
every replica.

619

http://lammps.sandia.gov

A PRD run has several stages, which are repeated each time an "event" occurs in one of the replicas, as defined
below. The logic for a PRD run is as follows:

while (time remains):
 dephase for n_dephase*t_dephase steps
 until (event occurs on some replica):
 run dynamics for t_event steps
 quench
 check for uncorrelated event on any replica
 until (no correlated event occurs):
 run dynamics for t_correlate steps
 quench
 check for correlated event on this replica
 event replica shares state with all replicas

Before this loop begins, the state of the system on replica 0 is shared with all replicas, so that all replicas begin
from the same initial state. The first potential energy basin is identified by quenching (an energy minimization,
see below) the initial state and storing the resulting coordinates for reference.

In the first stage, dephasing is performed by each replica independently to eliminate correlations between replicas.
This is done by choosing a random set of velocities, based on the random_seed that is specified, and running
t_dephase timesteps of dynamics. This is repeated n_dephase times. If the temp keyword is not specified, the
target temperature for velocity randomization for each replica is the temperature at the timestep replication
occured, otherwise, it is the specified Tdephase temperature. The style of velocity randomization is controlled
using the keyword vel with arguments that have the same meaning as their counterparts in the velocity command.

In the second stage, each replica runs dynamics continuously, stopping every t_event steps to check if a transition
event has occurred. This check is performed by quenching the system and comparing the resulting atom
coordinates to the coordinates from the previous basin. The first time through the PRD loop, the "previous basin"
is the set of quenched coordinates from the initial state of the system.

A quench is an energy minimization and is performed by whichever algorithm has been defined by the min_style
command. Minimization parameters may be set via the min_modify command and by the min keyword of the
PRD command. The latter are the settings that would be used with the minimize command. Note that typically,
you do not need to perform a highly−converged minimization to detect a transition event.

The event check is performed by a compute with the specified compute−ID. Currently there is only one compute
that works with the PRD commmand, which is the compute event/displace command. Other event−checking
computes may be added. Compute event/displace checks whether any atom in the compute group has moved
further than a specified threshold distance. If so, an "event" has occurred.

In the third stage, the replica on which the event occurred continues to run dynamics to search for correlated
events. This is done by running dynamics for t_correlate steps, quenching every t_event steps, and checking if
another event has occurred. The first time no correlated event occurs, the final state of the system is shared with
all replicas, the new basin reference coordinates are updated with the quenched state, and the outer loop begins
again.

Four kinds of output can be generated during a PRD run: event statistics, thermodynamic output by each replica,
dump files, and restart files.

When running with multiple partitions (each of which is a replica in this case), the print−out to the screen and
master log.lammps file is limited to event statistics. Note that if a PRD run is performed on only a single replica
then the event statistics will be intermixed with the usual thermodynamic output discussed below.

620

The quantities printed each time an event occurs are the timestep, clock, event number, a correlation flag, and the
replica number.

The timestep is the usual LAMMPS timestep, except that time does not advance during dephasing or quenches,
but only during dynamics. Note that are two kinds of dynamics in the PRD loop listed above. The first is when all
replicas are performing independent dynamics. The second is when correlated events are being searched for and
only one replica is running dynamics.

The clock is the same as the timestep except that it advances by M steps every timestep during the first kind of
dynamics when the M replicas are running independently. The clock represents the real time that effectively
elapses during a PRD simulation of N steps on M replicas. If most of the PRD run is spent in the second stage of
the loop above, searching for infrequent events, then the clock will advance nearly N*M steps. Note the clock
time between events will be drawn from p(t).

The event number is a counter that increments with each event, whether it is uncorrelated or correlated.

The correlation flag will be 0 when an uncorrelated event occurs during the second stage of the loop listed above.
I.e. when all replicas are running independently. The correlation flag will be 1 when a correlated event occurs
during the third stage of the loop listed above. I.e. when only one replica is running dynamics.

The replica number is the ID of the replica (from 0 to M−1) that found the event.

When running on multiple partitions, LAMMPS produces additional log files for each partition, e.g.
log.lammps.0, log.lammps.1, etc. For the PRD command, these contain the thermodynamic output for each
replica. You will see short runs and minimizations corresponding to the dynamics and quench operations of the
loop listed above. The timestep will be reset aprpopriately depending on whether the operation advances time or
not.

After the PRD command completes, timing statistics for the PRD run are printed in each replica's log file, giving a
breakdown of how much CPU time was spent in each stage (dephasing, dynamics, quenching, etc).

Any dump files defined in the input script, will be written to during a PRD run at timesteps corresponding to both
uncorrelated and correlated events. This means the the requested dump frequency in the dump command is
ignored. There will be one dump file (per dump command) created for all partitions.

The atom coordinates of the dump snapshot are those of the minimum energy configuration resulting from
quenching following a transition event. The timesteps written into the dump files correspond to the timestep at
which the event occurred and NOT the clock. A dump snapshot corresponding to the initial minimum state used
for event detection is written to the dump file at the beginning of each PRD run.

If the restart command is used, a single restart file for all the partitions is generated, which allows a PRD run to be
continued by a new input script in the usual manner.

The restart file is generated at the end of the loop listed above. If no correlated events are found, this means it
contains a snapshot of the system at time T + t_correlate, where T is the time at which the uncorrelated event
occurred. If correlated events were found, then it contains a snapshot of the system at time T + t_correlate, where
T is the time of the last correlated event.

The restart frequency specified in the restart command is interpreted differently when performing a PRD run. It
does not mean the timestep interval between restart files. Instead it means an event interval for uncorrelated
events. Thus a frequency of 1 means write a restart file every time an uncorrelated event occurs. A frequency of
10 means write a restart file every 10th uncorrelated event.

621

When an input script reads a restart file from a previous PRD run, the new script can be run on a different number
of replicas or processors. However, it is assumed that t_correlate in the new PRD command is the same as it was
previously. If not, the calculation of the "clock" value for the first event in the new run will be slightly off.

Restrictions:

This command can only be used if LAMMPS was built with the "prd" package. See the Making LAMMPS
section for more info on packages.

N and t_correlate settings must be integer multiples of t_event.

Runs restarted from restart file written during a PRD run will not produce identical results due to changes in the
random numbers used for dephasing.

This command cannot be used when any fixes are defined that keep track of elapsed time to perform
time−dependent operations. Examples include the "ave" fixes such as fix ave/spatial. Also fix dt/reset and fix
deposit.

Related commands:

compute event/displace, min_modify, min_style, run_style, minimize, velocity

Default:

The option defaults are min = 40 50 0.1 0.1, no temp setting, and vel = geom gaussian.

(Voter) Voter, Phys Rev B, 57, 13985 (1998).

(Voter2) Voter, Montalenti, Germann, Annual Review of Materials Research 32, 321 (2002).

622

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

print command

Syntax:

print string

string = text string to print, which may contain variables•

Examples:

print "Done with equilibration"
print "The system volume is now $v"

Description:

Print a text string to the screen and logfile. The text string must be a single argument, so it should be enclosed in
double quotes if it is more than one word. If variables are included in the string, they will be evaluated and their
current values printed.

If you want the print command to be executed multiple times (with changing variable values), there are 3 options.
First, consider using the fix print command, which will print a string periodically during a simulation. Second, the
print command can be used as an argument to the every option of the run command. Third, the print command
could appear in a section of the input script that is looped over (see the jump and next commands).

See the variable command for a description of equal style variables which are typically the most useful ones to
use with the print command. Equal−style variables can calculate formulas involving mathematical operations,
atom properties, group properties, thermodynamic properties, global values calculated by a compute or fix, or
references to other variables.

Restrictions: none

Related commands:

fix print, variable

Default: none

623

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

processors command

Syntax:

processors Px Py Pz

Px,Py,Pz = # of processors in each dimension of a 3d grid•

Examples:

processors 2 4 4

Description:

Specify how processors are mapped as a 3d logical grid to the global simulation box.

When this command has not been specified, LAMMPS will choose Px, Py, Pz based on the dimensions of the
global simulation box so as to minimize the surface/volume ratio of each processor's sub−domain.

Since LAMMPS does not load−balance by changing the grid of 3d processors on−the−fly, this command should
be used to override the LAMMPS default if it is known to be sub−optimal for a particular problem. For example,
a problem where the atom's extent will change dramatically over the course of the simulation.

The product of Px, Py, Pz must equal P, the total # of processors LAMMPS is running on. If multiple partitions
are being used then P is the number of processors in this partition; see this section for an explanation of the
−partition command−line switch.

If P is large and prime, a grid such as 1 x P x 1 will be required, which may incur extra communication costs.

Restrictions:

This command cannot be used after the simulation box is defined by a read_data or create_box command. It can
be used before a restart file is read to change the 3d processor grid from what is specified in the restart file.

Related commands: none

Default:

LAMMPS chooses Px, Py, Pz

624

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

read_data command

Syntax:

read_data file

file = name of data file to read in•

Examples:

read_data data.lj
read_data ../run7/data.polymer.gz

Description:

Read in a data file containing information LAMMPS needs to run a simulation. The file can be ASCII text or a
gzipped text file (detected by a .gz suffix). This is one of 3 ways to specify initial atom coordinates; see the
read_restart and create_atoms commands for alternative methods.

The structure of the data file is important, though many settings and sections are optional or can come in any
order. See the examples directory for sample data files for different problems.

A data file has a header and a body. The header appears first. The first line of the header is always skipped; it
typically contains a description of the file. Then lines are read one at a time. Lines can have a trailing comment
starting with '#' that is ignored. If the line is blank (only whitespace after comment is deleted), it is skipped. If the
line contains a header keyword, the corresponding value(s) is read from the line. If it doesn't contain a header
keyword, the line begins the body of the file.

The body of the file contains zero or more sections. The first line of a section has only a keyword. The next line is
skipped. The remaining lines of the section contain values. The number of lines depends on the section keyword
as described below. Zero or more blank lines can be used between sections. Sections can appear in any order, with
a few exceptions as noted below.

The formatting of individual lines in the data file (indentation, spacing between words and numbers) is not
important except that header and section keywords (e.g. atoms, xlo xhi, Masses, Bond Coeffs) must be capitalized
as shown and can't have extra white space between their words − e.g. two spaces or a tab between "Bond" and
"Coeffs" is not valid.

These are the recognized header keywords. Header lines can come in any order. The value(s) are read from the
beginning of the line. Thus the keyword atoms should be in a line like "1000 atoms"; the keyword ylo yhi should
be in a line like "−10.0 10.0 ylo yhi"; the keyword xy xz yz should be in a line like "0.0 5.0 6.0 xy xz yz". All these
settings have a default value of 0, except the lo/hi box size defaults are −0.5 and 0.5. A line need only appear if
the value is different than the default.

atoms = # of atoms in system•
bonds = # of bonds in system•
angles = # of angles in system•
dihedrals = # of dihedrals in system•
impropers = # of impropers in system•
atom types = # of atom types in system•

625

http://lammps.sandia.gov

bond types = # of bond types in system•
angle types = # of angle types in system•
dihedral types = # of dihedral types in system•
improper types = # of improper types in system•
extra bond per atom = leave space for this many new bonds per atom•
xlo xhi = simulation box boundaries in x dimension•
ylo yhi = simulation box boundaries in y dimension•
zlo zhi = simulation box boundaries in z dimension•
xy xz yz = simulation box tilt factors for triclinic domain•

The initial simulation box size is determined by the lo/hi settings. In any dimension, the system may be periodic
or non−periodic; see the boundary command.

If the xy xz yz line does not appear, LAMMPS will set up an axis−aligned (orthogonal) simulation box. If the line
does appear, LAMMPS creates a non−orthogonal simulation domain shaped as a parallelepiped with triclinic
symmetry. See the region prism command for a description of how the extent of the parallelepiped is defined. The
parallelepiped has its "origin" at (xlo,ylo,zlo) and 3 edge vectors starting from the origin given by a =
(xhi−xlo,0,0); b = (xy,yhi−ylo,0); c = (xz,yz,zhi−zlo). Note that if your simulation will tilt the box, e.g. via the fix
deform command, the simulation box must be triclinic, even if the tilt factors are initially 0.0.

The tilt factors (xy,xz,yz) can not skew the box more than half the distance of the parallel box length. For
example, if xlo = 2 and xhi = 12, then the x box length is 10 and the xy tilt factor must be between −5 and 5.
Similarly, both xz and yz must be between −(xhi−xlo)/2 and +(yhi−ylo)/2. Note that this is not a limitation, since
if the maximum tilt factor is 5 (as in this example), then configurations with tilt = ..., −15, −5, 5, 15, 25, ... are all
equivalent.

When a triclinic system is used, the simulation domain must be periodic in any dimensions with a non−zero tilt
factor, as defined by the boundary command. I.e. if the xy tilt factor is non−zero, then both the x and y
dimensions must be periodic. Similarly, x and z must be periodic if xz is non−zero and y and z must be periodic if
yz is non−zero.

For 2d simulations, the zlo zhi values should be set to bound the z coords for atoms that appear in the file; the
default of −0.5 0.5 is valid if all z coords are 0.0. For 2d triclinic simulations, the xz and yz tilt factors must be
0.0.

If the system is periodic (in a dimension), then atom coordinates can be outside the bounds (in that dimension);
they will be remapped (in a periodic sense) back inside the box.

IMPORTANT NOTE: If the system is non−periodic (in a dimension), then all atoms in the data file must have
coordinates (in that dimension) that are "greater than or equal to" the lo value and "less than or equal to" the hi
value. If the non−periodic dimension is of style "fixed" (see the boundary command), then the atom coords must
be strictly "less than" the hi value, due to the way LAMMPS assign atoms to processors. Note that you should not
make the lo/hi values radically smaller/larger than the extent of the atoms. For example, if your atoms extend
from 0 to 50, you should not specify the box bounds as −10000 and 10000. This is because LAMMPS uses the
specified box size to layout the 3d grid of processors. A huge (mostly empty) box will be sub−optimal for
performance and may cause a parallel simulation to lose atoms the first time that LAMMPS shrink−wraps the box
around the atoms.

The "extra bond per atom" setting should be used if new bonds will be added to the system when a simulation
runs, e.g. by using the fix bond/create command. This will pre−allocate space in LAMMPS data structures for
storing the new bonds.

626

These are the section keywords for the body of the file.

Atoms, Velocities, Masses, Shapes, Dipoles = atom−property sections•
Bonds, Angles, Dihedrals, Impropers = molecular topology sections•
Pair Coeffs, Bond Coeffs, Angle Coeffs, Dihedral Coeffs, Improper Coeffs = force field sections•
BondBond Coeffs, BondAngle Coeffs, MiddleBondTorsion Coeffs, EndBondTorsion Coeffs, AngleTorsion
Coeffs, AngleAngleTorsion Coeffs, BondBond13 Coeffs, AngleAngle Coeffs = class 2 force field sections

•

Each section is listed below in alphabetic order. The format of each section is described including the number of
lines it must contain and rules (if any) for where it can appear in the data file.

Any individual line in the various sections can have a trailing comment starting with "#" for annotation purposes.
E.g. in the Atoms section:

10 1 17 −1.0 10.0 5.0 6.0 # salt ion

Angle Coeffs section:

one line per angle type•
line syntax: ID coeffs

 ID = angle type (1−N)
 coeffs = list of coeffs

•

example:

 6 70 108.5 0 0

•

The number and meaning of the coefficients are specific to the defined angle style. See the angle_style and
angle_coeff commands for details. Coefficients can also be set via the angle_coeff command in the input script.

AngleAngle Coeffs section:

one line per improper type•
line syntax: ID coeffs

 ID = improper type (1−N)
 coeffs = list of coeffs (see improper_coeff)

•

AngleAngleTorsion Coeffs section:

one line per dihedral type•
line syntax: ID coeffs

 ID = dihedral type (1−N)
 coeffs = list of coeffs (see dihedral_coeff)

•

Angles section:

one line per angle•
line syntax: ID type atom1 atom2 atom3

 ID = number of angle (1−Nangles)
 type = angle type (1−Nangletype)
 atom1,atom2,atom3 = IDs of 1st,2nd,3rd atoms in angle

•

627

example:

 2 2 17 29 430

The 3 atoms are ordered linearly within the angle. Thus the central atom (around which the angle is computed) is
the atom2 in the list. E.g. H,O,H for a water molecule. The Angles section must appear after the Atoms section.
All values in this section must be integers (1, not 1.0).

AngleTorsion Coeffs section:

one line per dihedral type•
line syntax: ID coeffs

 ID = dihedral type (1−N)
 coeffs = list of coeffs (see dihedral_coeff)

•

Atoms section:

one line per atom•
line syntax: depends on atom style•

An Atoms section must appear in the data file if natoms > 0 in the header section. The atoms can be listed in any
order. These are the line formats for each atom style in LAMMPS. As discussed below, each line can optionally
have 3 flags (nx,ny,nz) appended to it, which indicate which image of a periodic simulation box the atom is in.
These may be important to include for some kinds of analysis.

angle atom−ID molecule−ID atom−type x y z

atomic atom−ID atom−type x y z

bond atom−ID molecule−ID atom−type x y z

charge atom−ID atom−type q x y z

colloid atom−ID atom−type x y z

dipole atom−ID atom−type q x y z mux muy muz

ellipsoid atom−ID atom−type x y z quatw quati quatj quatk

full atom−ID molecule−ID atom−type q x y z

granular atom−ID atom−type diameter density x y z

molecularatom−ID molecule−ID atom−type x y z

peri atom−ID atom−type volume density x y z

hybrid atom−ID atom−type x y z sub−style1 sub−style2 ...
The keywords have these meanings:

atom−ID = integer ID of atom•
molecule−ID = integer ID of molecule the atom belongs to•
type−ID = type of atom (1−Ntype)•
q = charge on atom (charge units)•
diameter = diameter of atom (distance units)•
density = density of atom (mass/distance^3 units)•
volume = volume of atom (distance^3 units)•
x,y,z = coordinates of atom•
mux,muy,muz = direction of dipole moment of atom•
quatw,quati,quatj,quatk = quaternion components for orientation of atom•

628

The units for these quantities depend on the unit style; see the units command for details.

For 2d simulations specify z as 0.0, or a value within the zlo zhi setting in the data file header.

The atom−ID is used to identify the atom throughout the simulation and in dump files. Normally, it is a unique
value from 1 to Natoms for each atom. Unique values larger than Natoms can be used, but they will cause extra
memory to be allocated on each processor, if an atom map array is used (see the atom_modify command). If an
atom map array is not used (e.g. an atomic system with no bonds), velocities are not assigned in the data file, and
you don't care if unique atom IDs appear in dump files, then the atom−IDs can all be set to 0.

The molecule ID is a 2nd identifier attached to an atom. Normally, it is a number from 1 to N, identifying which
molecule the atom belongs to. It can be 0 if it is an unbonded atom or if you don't care to keep track of molecule
assignments.

The diameter specifies the size of a finite size particle, analagous to the shape command which sets the size on a
per−type basis. A diameter can be set to 0.0, which means that atom is a point particle and not a finite−size
particles. Some pair styles and fixes and computes that operate on finite−size particles allow for a mixture of
finite−size and point particles. See the doc pages of individual commands for details.

The density is used in conjunction with the diameter to set the mass of a particle as mass = density * volume. If
the diameter and volume are 0.0 meaning a point particle, then the mass is not 0.0 but is set as mass = density.

The values quatw, quati, quatj, and quatk set the orientation of the atom as a quaternion (4−vector). Note that the
shape command or "Shapes" section of the data file specifies the aspect ratios of an ellipsoidal particle, which is
oriented by default with its x−axis along the simulation box's x−axis, and similarly for y and z. If this body is
rotated (via the right−hand rule) by an angle theta around a unit vector (a,b,c), then the quaternion that represents
its new orientation is given by (cos(theta/2), a*sin(theta/2), b*sin(theta/2), c*sin(theta/2)). These 4 components
are quatw, quati, quatj, and quatk as specified above. LAMMPS normalizes each atom's quaternion in case (a,b,c)
was not a unit vector.

For atom_style hybrid, following the 5 initial values (ID,type,x,y,z), specific values for each sub−style must be
listed. The order of the sub−styles is the same as they were listed in the atom_style command. The sub−style
specific values are those that are not the 5 standard ones (ID,type,x,y,z). For example, for the "charge" sub−style,
a "q" value would appear. For the "full" sub−style, a "molecule−ID" and "q" would appear. These are listed in the
same order they appear as listed above.

Thus if

atom_style hybrid charge granular

were used in the input script, each atom line would have these fields:

atom−ID atom−type x y z q diameter density

Atom lines (all lines or none of them) can optionally list 3 trailing integer values: nx,ny,nz. For periodic
dimensions, they specify which image of the simulation box the atom is considered to be in. An image of 0 means
it is inside the box as defined. A value of 2 means add 2 box lengths to get the true value. A value of −1 means
subtract 1 box length to get the true value. LAMMPS updates these flags as atoms cross periodic boundaries
during the simulation. The flags can be output with atom snapshots via the dump command.

If nx,ny,nz values are not set in the data file, LAMMPS initializes them to 0. If image information is needed for
later analysis and they are not all initially 0, it's important to set them correctly in the data file. Also, if you plan to
use the replicate command to generate a larger system, these flags must be listed correctly for bonded atoms when

629

the bond crosses a periodic boundary. I.e. the values of the image flags should be different by 1 (in the appropriate
dimension) for the two atoms in such a bond.

Atom velocities and other atom quantities not defined above are set to 0.0 when the Atoms section is read.
Velocities can be set later by a Velocities section in the data file or by a velocity or set command in the input
script.

Bond Coeffs section:

one line per bond type•
line syntax: ID coeffs

 ID = bond type (1−N)
 coeffs = list of coeffs

•

example:

 4 250 1.49

•

The number and meaning of the coefficients are specific to the defined bond style. See the bond_style and
bond_coeff commands for details. Coefficients can also be set via the bond_coeff command in the input script.

BondAngle Coeffs section:

one line per angle type•
line syntax: ID coeffs

 ID = angle type (1−N)
 coeffs = list of coeffs (see class 2 section of angle_coeff)

•

BondBond Coeffs section:

one line per angle type•
line syntax: ID coeffs

 ID = angle type (1−N)
 coeffs = list of coeffs (see class 2 section of angle_coeff)

•

BondBond13 Coeffs section:

one line per dihedral type•
line syntax: ID coeffs

 ID = dihedral type (1−N)
 coeffs = list of coeffs (see class 2 section of dihedral_coeff)

•

Bonds section:

one line per bond•
line syntax: ID type atom1 atom2

 ID = bond number (1−Nbonds)
 type = bond type (1−Nbondtype)
 atom1,atom2 = IDs of 1st,2nd atoms in bond

•

example:•

630

 12 3 17 29

The Bonds section must appear after the Atoms section. All values in this section must be integers (1, not 1.0).

Dihedral Coeffs section:

one line per dihedral type•
line syntax: ID coeffs

 ID = dihedral type (1−N)
 coeffs = list of coeffs

•

example:

 3 0.6 1 0 1

•

The number and meaning of the coefficients are specific to the defined dihedral style. See the dihedral_style and
dihedral_coeff commands for details. Coefficients can also be set via the dihedral_coeff command in the input
script.

Dihedrals section:

one line per dihedral•
line syntax: ID type atom1 atom2 atom3 atom4

 ID = number of dihedral (1−Ndihedrals)
 type = dihedral type (1−Ndihedraltype)
 atom1,atom2,atom3,atom4 = IDs of 1st,2nd,3rd,4th atoms in dihedral

•

example:

 12 4 17 29 30 21

•

The 4 atoms are ordered linearly within the dihedral. The Dihedrals section must appear after the Atoms section.
All values in this section must be integers (1, not 1.0).

Dipoles section:

one line per atom type line syntax: ID dipole−moment

 ID = atom type (1−N)
 dipole−moment = value of dipole moment

•

example:

 2 0.5

•

This defines the dipole moment of each atom type (which can be 0.0 for some types). This can also be set via the
dipole command in the input script.

EndBondTorsion Coeffs section:

one line per dihedral type•
line syntax: ID coeffs

 ID = dihedral type (1−N)
 coeffs = list of coeffs (see class 2 section of dihedral_coeff)

•

631

Improper Coeffs section:

one line per improper type•
line syntax: ID coeffs

 ID = improper type (1−N)
 coeffs = list of coeffs

•

example:

 2 20 0.0548311

•

The number and meaning of the coefficients are specific to the defined improper style. See the improper_style and
improper_coeff commands for details. Coefficients can also be set via the improper_coeff command in the input
script.

Impropers section:

one line per improper•
line syntax: ID type atom1 atom2 atom3 atom4

 ID = number of improper (1−Nimpropers)
 type = improper type (1−Nimpropertype)
 atom1,atom2,atom3,atom4 = IDs of 1st,2nd,3rd,4th atoms in improper

•

example:

 12 3 17 29 13 100

•

The ordering of the 4 atoms determines the definition of the improper angle used in the formula for each improper
style. See the doc pages for individual styles for details.

The Impropers section must appear after the Atoms section. All values in this section must be integers (1, not 1.0).

Masses section:

one line per atom type•
line syntax: ID mass

 ID = atom type (1−N)
 mass = mass value

•

example:

 3 1.01

•

This defines the mass of each atom type. This can also be set via the mass command in the input script. This
section should not be used for atom styles that define a mass for individual atoms − e.g. atom style granular.

MiddleBondTorsion Coeffs section:

one line per dihedral type•
line syntax: ID coeffs

 ID = dihedral type (1−N)
 coeffs = list of coeffs (see class 2 section of dihedral_coeff)

•

632

Pair Coeffs section:

one line per atom type•
line syntax: ID coeffs

 ID = atom type (1−N)
 coeffs = list of coeffs

•

example:

 3 0.022 2.35197 0.022 2.35197

•

The number and meaning of the coefficients are specific to the defined pair style. See the pair_style and
pair_coeff commands for details. Coefficients can also be set via the pair_coeff command in the input script.

Shapes section:

one line per atom type•
line syntax: ID x y z

 ID = atom type (1−N)
 x = x diameter
 y = y diameter
 z = z diameter

•

example:

 3 2.0 1.0 1.0

•

This defines the shape of each atom type. This can also be set via the shape command in the input script. This
section should only be used for atom styles that define a shape, e.g. atom style dipole or ellipsoid.

Velocities section:

one line per atom•
line syntax: depends on atom style•

all styles except those listedatom−ID vx vy vz

dipole atom−ID vx vy vz wx wy wz

ellipsoid atom−ID vx vy vz lx ly lz

granular atom−ID vx vy vz wx wy wz
where the keywords have these meanings:

vx,vy,vz = translational velocity of atom•
lx,ly,lz = angular momentum of aspherical atom•
wx,wy,wz = angular velocity of granular atom•

The velocity lines can appear in any order. This section can only be used after an Atoms section. This is because
the Atoms section must have assigned a unique atom ID to each atom so that velocities can be assigned to them.

Vx,vy,vz are in units of velocity. Lx, ly, lz are in units of angular momentum (distance−velocity−mass).
Wx,Wy,Wz are in units of angular velocity (radians/time).

633

Translational velocities can also be set by the velocity command in the input script.

Restrictions:

To read gzipped data files, you must compile LAMMPS with the −DLAMMPS_GZIP option − see the Making
LAMMPS section of the documentation.

Related commands:

read_restart, create_atoms

Default: none

634

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

read_restart command

Syntax:

read_restart file

file = name of binary restart file to read in•

Examples:

read_restart save.10000
read_restart restart.*
read_restart poly.*.%

Description:

Read in a previously saved simulation from a restart file. This allows continuation of a previous run. Information
about what is stored in a restart file is given below.

Restart files are saved in binary format to enable exact restarts, meaning that the trajectories of a restarted run will
precisely match those produced by the original run had it continued on. Several things can prevent exact restarts
due to round−off effects, in which case the trajectories in the 2 runs will slowly diverge. These include running on
a different number of processors or changing certain settings such as those set by the newton or processors
commands. LAMMPS will issue a WARNING in these cases. Certain fixes will also not restart exactly, though
they should provide statistically similar results. These include fix shake and fix langevin. If a restarted run is
immediately different than the run which produced the restart file, it could be a LAMMPS bug, so consider
reporting it if you think the behavior is wrong.

Because restart files are binary, they may not be portable to other machines. They can be converted to ASCII data
files using the restart2data tool in the tools sub−directory of the LAMMPS distribution.

Similar to how restart files are written (see the write_restart and restart commands), the restart filename can
contain two wild−card characters. If a "*" appears in the filename, the directory is searched for all filenames that
match the pattern where "*" is replaced with a timestep value. The file with the largest timestep value is read in.
Thus, this effectively means, read the latest restart file. It's useful if you want your script to continue a run from
where it left off. See the run command and its "upto" option for how to specify the run command so it doesn't
need to be changed either.

If a "%" character appears in the restart filename, LAMMPS expects a set of multiple files to exist. The restart and
write_restart commands explain how such sets are created. Read_restart will first read a filename where "%" is
replaced by "base". This file tells LAMMPS how many processors created the set. Read_restart then reads the
additional files. For example, if the restart file was specified as save.% when it was written, then read_restart
reads the files save.base, save.0, save.1, ... save.P−1, where P is the number of processors that created the restart
file. Note that only a single processor reads all the files, so the input does not use parallel I/O. The number of
processors which created the set can be different the number of processors in the current LAMMPS simulation.

A restart file stores the following information about a simulation: units and atom style, simulation box size and
shape and boundary settings, group definitions, atom type settings such as mass and particle shape, individual
atoms and their group assignments and molecular topology attributes, force field styles and coefficients, and
special_bonds settings. This means that commands for these quantities do not need to be re−specified in the input

635

http://lammps.sandia.gov

script that reads the restart file, though you can redefine settings after the restart file is read.

One exception is that some pair styles do not store their info in restart files. The doc pages for individual pair
styles note if this is the case. This is also true of bond_style hybrid (and angle_style, dihedral_style,
improper_style hybrid).

Information about kspace_style settings are not stored in the restart file. Hence if you wish to use an Ewald or
PPPM solver, these commands must be re−issued after the restart file is read.

The list of fixes used for a simulation is not stored in the restart file. This means the new input script should
specify all fixes it will use. Note that some fixes store an internal "state" which is written to the restart file. This
allows the fix to continue on with its calculations in a restarted simulation. To re−enable such a fix, the fix
command in the new input script must use the same fix−ID and group−ID as was used in the input script that
wrote the restart file. If a match is found, LAMMPS prints a message indicating that the fix is being re−enabled. If
no match is found before the first run or minimization is performed by the new script, the "state" information for
the saved fix is discarded. See the doc pages for individual fixes for info on which ones can be restarted in this
manner.

Bond interactions (angle, etc) that have been turned off by the fix shake or delete_bonds command will be written
to a restart file as if they are turned on. This means they will need to be turned off again in a new run after the
restart file is read.

Bonds that are broken (e.g. by a bond−breaking potential) are written to the restart file as broken bonds with a
type of 0. Thus these bonds will still be broken when the restart file is read.

IMPORTANT NOTE: No other information is stored in the restart file. This means that an input script that reads
a restart file should specify settings for quantities like timestep size, thermodynamic and dump output, geometric
regions, etc.

Restrictions: none

Related commands:

read_data, write_restart, restart

Default: none

636

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

region command

Syntax:

region ID style args keyword value ...

ID = user−assigned name for the region•
style = block or cone or cylinder or plane or prism or sphere or union or intersect

block args = xlo xhi ylo yhi zlo zhi
 xlo,xhi,ylo,yhi,zlo,zhi = bounds of block in all dimensions (distance units)

cone args = dim c1 c2 radlo radhi lo hi
 dim = x or y or z = axis of cone
 c1,c2 = coords of cone axis in other 2 dimensions (distance units)
 radlo,radhi = cone radii at lo and hi end (distance units)
 lo,hi = bounds of cone in dim (distance units)

cylinder args = dim c1 c2 radius lo hi
 dim = x or y or z = axis of cylinder
 c1,c2 = coords of cylinder axis in other 2 dimensions (distance units)
 radius = cylinder radius (distance units)
 lo,hi = bounds of cylinder in dim (distance units)

plane args = px py pz nx ny nz
 px,py,pz = point on the plane (distance units)
 nx,ny,nz = direction normal to plane (distance units)

prism args = xlo xhi ylo yhi zlo zhi xy xz yz
 xlo,xhi,ylo,yhi,zlo,zhi = bounds of untilted prism (distance units)
 xy = distance to tilt y in x direction (distance units)
 xz = distance to tilt z in x direction (distance units)
 yz = distance to tilt z in y direction (distance units)

sphere args = x y z radius
 x,y,z = center of sphere (distance units)
 radius = radius of sphere (distance units)

union args = N reg−ID1 reg−ID2 ...
 N = # of regions to follow, must be 2 or greater
 reg−ID1,reg−ID2, ... = IDs of regions to join together

intersect args = N reg−ID1 reg−ID2 ...
 N = # of regions to follow, must be 2 or greater
 reg−ID1,reg−ID2, ... = IDs of regions to intersect

•

zero or more keyword/value pairs may be appended•
keyword = side or units or vel or wiggle or rotate

side value = in or out
in = the region is inside the specified geometry
out = the region is outside the specified geometry

units value = lattice or box
lattice = the geometry is defined in lattice units
box = the geometry is defined in simulation box units

vel args = Vx Vy Vz
 Vx,Vy,Vz = components of velocity vector (velocity units)

wiggle args = Ax Ay Az period
 Ax,Ay,Az = components of amplitude vector (distance units)
 period = period of oscillation (time units)

rotate args = Px Py Pz Rx Ry Rz period
 Px,Py,Pz = origin point of axis of rotation (distance units)
 Rx,Ry,Rz = axis of rotation vector
 period = period of rotation (time units)

•

Examples:

637

http://lammps.sandia.gov

region 1 block −3.0 5.0 INF 10.0 INF INF
region 2 sphere 0.0 0.0 0.0 5 side out
region void cylinder y 2 3 5 −5.0 EDGE units box
region 1 prism 0 10 0 10 0 10 2 0 0
region outside union 4 side1 side2 side3 side4
region 2 sphere 0.0 0.0 0.0 5 side out wiggle 1 1 0 10

Description:

This command defines a geometric region of space. Various other commands use regions. For example, the region
can be filled with atoms via the create_atoms command. Or the atoms in the region can be identified as a group
via the group command, or deleted via the delete_atoms command. Or the surface of the region can be used as a
boundary wall via the fix wall/region command.

Normally, regions in LAMMPS are "static", meaning their geometric extent does not change with time. If the vel
or wiggle or rotate keyword is used, as described below, the region becomes "dynamic", meaning it's location or
orientation changes with time. This may be useful, for example, when thermostatting a region, via the compute
temp/region command, or when the fix wall/region command uses a region surface as a bounding wall on particle
motion, i.e. a rotating container.

The lo/hi values for block or cone or cylinder or prism styles can be specified as EDGE or INF. EDGE means
they extend all the way to the global simulation box boundary. Note that this is the current box boundary; if the
box changes size during a simulation, the region does not. INF means a large negative or positive number
(1.0e20), so it should encompass the simulation box even if it changes size. If a region is defined before the
simulation box has been created (via create_box or read_data or read_restart commands), then an EDGE or INF
parameter cannot be used. For a prism region, a non−zero tilt factor in any pair of dimensions cannot be used if
both the lo/hi values in either of those dimensions are INF. E.g. if the xy tilt is non−zero, then xlo and xhi cannot
both be INF, nor can ylo and yhi.

IMPORTANT NOTE: Regions in LAMMPS do not get wrapped across periodic boundaries, as specified by the
boundary command. For example, a spherical region that is defined so that it overlaps a periodic boundary is not
treated as 2 half−spheres, one on either side of the simulation box.

IMPORTANT NOTE: Regions in LAMMPS are always 3d geometric objects, regardless of whether the
dimension of a simulation is 2d or 3d. Thus when using regions in a 2d simulation, you should be careful to define
the region so that its intersection with the 2d x−y plane of the simulation is the 2d geometric object you want.

For style cone, an axis−aligned cone is defined which is like a cylinder except that two different radii (one at each
end) can be defined. Either of the radii (but not both) can be 0.0.

For style cone and cylinder, the c1,c2 params are coordinates in the 2 other dimensions besides the cylinder axis
dimension. For dim = x, c1/c2 = y/z; for dim = y, c1/c2 = x/z; for dim = z, c1/c2 = x/y. Thus the third example
above specifies a cylinder with its axis in the y−direction located at x = 2.0 and z = 3.0, with a radius of 5.0, and
extending in the y−direction from −5.0 to the upper box boundary.

For style plane, a plane is defined which contain the point (px,py,pz) and has a normal vector (nx,ny,nz). The
normal vector does not have to be of unit length. The "inside" of the plane is the half−space in the direction of the
normal vector; see the discussion of the side option below.

For style prism, a parallelepiped is defined (it's too hard to spell parallelepiped in an input script!). Think of the
parallelepiped as initially an axis−aligned orthogonal box with the same xyz lo/hi parameters as region style block
would define. Then, while holding the (xlo,ylo,zlo) corner point fixed, the box is "skewed" or "tilted" in 3
directions. First, for the lower xy face of the box, the xy factor is how far the upper y edge is shifted in the x

638

direction. The lower xy face is now a parallelogram. A plus or minus value for xy can be specified; 0.0 means no
tilt. Then, the upper xy face of the box is translated in the x and y directions by xz and yz. This results in a
parallelepiped whose "origin" is at (xlo,ylo,zlo) with 3 edge vectors starting from its origin given by a =
(xhi−xlo,0,0); b = (xy,yhi−ylo,0); c = (xz,yz,zhi−zlo).

A prism region used with the create_box command must have tilt factors (xy,xz,yz) that do not skew the box more
than half the distance of the parallel box length. For example, if xlo = 2 and xhi = 12, then the x box length is 10
and the xy tilt factor must be between −5 and 5. Similarly, both xz and yz must be between −(xhi−xlo)/2 and
+(yhi−ylo)/2. Note that this is not a limitation, since if the maximum tilt factor is 5 (as in this example), then
configurations with tilt = ..., −15, −5, 5, 15, 25, ... are all equivalent.

The union style creates a region consisting of the volume of all the listed regions combined. The intersect style
creates a region consisting of the volume that is common to all the listed regions.

The side keyword determines whether the region is considered to be inside or outside of the specified geometry.
Using this keyword in conjunction with union and intersect regions, complex geometries can be built up. For
example, if the interior of two spheres were each defined as regions, and a union style with side = out was
constructed listing the region−IDs of the 2 spheres, the resulting region would be all the volume in the simulation
box that was outside both of the spheres.

The units keyword determines the meaning of the distance units used to define the region for any argument above
listed as having distance units. It also affects the scaling of the velocity vector specfied with the vel keyword, the
amplitude vector specified with the wiggle keyword, and the rotation point specified with the rotate keyword,
since they each involve a distance metric.

A box value selects standard distance units as defined by the units command, e.g. Angstroms for units = real or
metal. A lattice value means the distance units are in lattice spacings. The lattice command must have been
previously used to define the lattice spacings which are used as follows:

For style block, the lattice spacing in dimension x is applied to xlo and xhi, similarly the spacings in
dimensions y,z are applied to ylo/yhi and zlo/zhi.

•

For style cone, the lattice spacing in argument dim is applied to lo and hi. The spacings in the two radial
dimensions are applied to c1 and c2. The two cone radii are scaled by the lattice spacing in the dimension
corresponding to c1.

•

For style cylinder, the lattice spacing in argument dim is applied to lo and hi. The spacings in the two
radial dimensions are applied to c1 and c2. The cylinder radius is scaled by the lattice spacing in the
dimension corresponding to c1.

•

For style plane, the lattice spacing in dimension x is applied to px and nx, similarly the spacings in
dimensions y,z are applied to py/ny and pz/nz.

•

For style prism, the lattice spacing in dimension x is applied to xlo and xhi, similarly for ylo/yhi and
zlo/zhi. The lattice spacing in dimension x is applied to xy and xz, and the spacing in dimension y to yz.

•

For style sphere, the lattice spacing in dimensions x,y,z are applied to the sphere center x,y,z. The spacing
in dimension x is applied to the sphere radius.

•

If the vel or wiggle or rotate keywords are used, the region is "dynamic", meaning its location or orientation
changes with time. No more than one of these keywords can be used at a time. These keywords cannot be used
with a union or intersect style region. Instead, the keywords should be used to define the individual sub−regions
of the union or intersect region. Normally, each sub−region should be "dynamic" in the same manner (e.g. rotate
around the same point), though this is not a requirement.

The vel style moves the region at a constant velocity, so that its position X = (x,y,z) as a function of time is given
in vector notation as

639

X(t) = X0 + V * delta

where X0 = (x0,y0,z0) is its position at the time the region is specified, V is the specified velocity vector with
components (Vx,Vy,Vz), and delta is the time elapsed since the region was specified.

The wiggle style moves the region in an oscillatory fashion, so that its position X = (x,y,z) as a function of time is
given in vector notation as

X(t) = X0 + A sin(omega*delta)

where X0 = (x0,y0,z0) is its position at the time the region is specified, A is the specified amplitude vector with
components (Ax,Ay,Az), omega is 2 PI / period, and delta is the time elapsed since the region was specified.

The rotate style rotates the region around a rotation axis R = (Rx,Ry,Rz) that goes thru a point P = (Px,Py,Pz).
The period of the rotation is also specified. The direction of rotation for the region around the rotation axis is
consistent with the right−hand rule: if your right−hand thumb points along R, then your fingers wrap around the
axis in the direction of rotation.

Restrictions:

A prism cannot be of 0.0 thickness in any dimension; use a small z thickness for 2d simulations. For 2d
simulations, the xz and yz parameters must be 0.0.

Related commands:

lattice, create_atoms, delete_atoms, group

Default:

The option defaults are side = in, units = lattice, and no velocity, wiggling, or rotation.

640

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

replicate command

Syntax:

replicate nx ny nz

nx,ny,nz = replication factors in each dimension•

Examples:

replicate 2 3 2

Description:

Replicate the current simulation one or more times in each dimension. For example, replication factors of 2,2,2
will create a simulation with 8x as many atoms by doubling the simulation domain in each dimension. A
replication factor of 1 in a dimension leaves the simulation domain unchanged.

All properties of the atoms are replicated, including their velocities, which may or may not be desirable. New
atom IDs are assigned to new atoms, as are molecule IDs. Bonds and other topology interactions are created
between pairs of new atoms as well as between old and new atoms. This is done by using the image flag for each
atom to "unwrap" it out of the periodic box before replicating it. This means that molecular bonds you specify in
the original data file that span the periodic box should be between two atoms with image flags that differ by 1.
This will allow them to be unwrapped appropriately.

Restrictions:

A 2d simulation cannot be replicated in the z dimension.

If a simulation is non−periodic in a dimension, care should be used when replicating it in that dimension, as it
may put atoms nearly on top of each other.

If the current simulation was read in from a restart file (before a run is performed), there can have been no fix
information stored in the file for individual atoms. Similarly, no fixes can be defined at the time the replicate
command is used that require vectors of atom information to be stored. This is because the replicate command
does not know how to replicate that information for new atoms it creates.

Replicating a system that has rigid bodies (defined via the fix rigid command), either currently defined or that
created the restart file which was read in before replicating, can cause problems if there is a bond between a pair
of rigid bodies that straddle a periodic boundary. This is because the periodic image information for particles in
the rigid bodies are set differently than for a non−rigid system and can result in a new bond being created that
spans the periodic box. Thus you cannot use the replicate command in this scenario.

Related commands: none

Default: none

641

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

reset_timestep command

Syntax:

reset_timestep N

N = timestep number•

Examples:

reset_timestep 0
reset_timestep 4000000

Description:

Set the timestep counter to the specified value. This command normally comes after the timestep has been set by
reading it in from a file or a previous simulation advanced the timestep.

The read_data and create_box commands set the timestep to 0; the read_restart command sets the timestep to the
value it had when the restart file was written.

Restrictions: none

This command cannot be used when a dump file is defined via the dump command and has already been written
to. It also cannot be used when a restart frequency has been set, and a restart file has already been written. This is
because the changed timestep can mess up the planned timestep for the next file write. See the undump command
or restart 0 command for info on how to turn off these definitions if necessary. New specifications for dump and
restart files can be given after the reset_timestep command is used.

This command cannot be used when any fixes are defined that keep track of elapsed time to perform
time−dependent operations. Examples include the "ave" fixes such as fix ave/spatial. Also fix dt/reset and fix
deposit.

This command cannot be used when any dynamic regions are defined via the region command, which have
time−dependent position and orientation.

There are other fixes which use the current timestep which may produce unexpected behavior, but LAMMPS
allows them to be in place when resetting the timestep. For example, commands which thermostat the system, e.g.
fix nvt, allow you to specify a target temperature which ramps from Tstart to Tstop which may persist over
several runs. If you change the timestep, you may change the target temperature.

Resetting the timestep will clear the flags for computes that may have calculated some quantity from a previous
run. This means that quantity cannot be accessed by a variable in between runs until a new run is performed. See
the variable command for more details.

Related commands: none

Default: none

642

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

restart command

Syntax:

restart 0
restart N root
restart N file1 file2

N = write a restart file every this many timesteps•
root = filename to which timestep # is appended•
file1,file2 = two full filenames, toggle between them when writing file•

Examples:

restart 0
restart 1000 poly.restart
restart 1000 restart.*.equil
restart 10000 poly.%.1 poly.%.2

Description:

Write out a binary restart file every so many timesteps as a run proceeds. A value of 0 means do not write out
restart files. Using one filename as an argument will create a series of filenames which include the timestep in the
filename. Using two filenames will produce only 2 restart files. LAMMPS will toggle between the 2 names as it
writes successive restart files.

Similar to dump files, the restart filename(s) can contain two wild−card characters. If a "*" appears in the
filename, it is replaced with the current timestep value. This is only recognized when a single filename is used
(not when toggling back and forth). Thus, the 3rd example above creates restart files as follows:
restart.1000.equil, restart.2000.equil, etc. If a single filename is used with no "*", then the timestep value is
appended. E.g. the 2nd example above creates restart files as follows: poly.restart.1000, poly.restart.2000, etc.

If a "%" character appears in the restart filename(s), then one file is written for each processor and the "%"
character is replaced with the processor ID from 0 to P−1. An additional file with the "%" replaced by "base" is
also written, which contains global information. For example, the files written on step 1000 for filename restart.%
would be restart.base.1000, restart.0.1000, restart.1.1000, ..., restart.P−1.1000. This creates smaller files and can
be a fast mode of output on parallel machines that support parallel I/O for output.

Restart files are written on timesteps that are a multiple of N but not on the first timestep of a run or minimization.
A restart file is not written on the last timestep of a run unless it is a multiple of N. A restart file is written on the
last timestep of a minimization if N > 0 and the minimization converges.

See the read_restart command for information about what is stored in a restart file.

Restart files can be read by a read_restart command to restart a simulation from a particular state. Because the file
is binary (to enable exact restarts), it may not be readable on another machine. In this case, the restart2data
program in the tools directory can be used to convert a restart file to an ASCII data file. Both the read_restart
command and restart2data tool can read in a restart file that was written with the "%" character so that multiple
files were created.

Restrictions: none

643

http://lammps.sandia.gov

Related commands:

write_restart, read_restart

Default:

restart 0

644

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

run command

Syntax:

run N keyword values ...

N = # of timesteps•
zero or more keyword/value pairs may be appended•
keyword = upto or start or stop or pre or post or every

upto value = none
start value = N1

 N1 = timestep at which 1st run started
stop value = N2

 N2 = timestep at which last run will end
pre value = no or yes
post value = no or yes
every values = M command

 M = break the run into M−timestep segments and invoke a command between them
 command = a single LAMMPS command listed the same as if on a line by itself
 NULL means no command will be invoked

•

Examples:

run 10000
run 1000000 upto
run 100 start 0 stop 1000
run 1000 pre no post yes
run 100000 start 0 stop 1000000 every 1000 print "Protein Rg = $r"
run 100000 every 1000 NULL

Description:

Run or continue dynamics for a specified number of timesteps.

When the run style is respa, N refers to outer loop (largest) timesteps.

A value of N = 0 is acceptable; only the thermodynamics of the system are computed and printed without taking a
timestep.

The upto keyword means to perform a run starting at the current timestep up to the specified timestep. E.g. if the
current timestep is 10,000 and "run 100000 upto" is used, then an additional 90,000 timesteps will be run. This
can be useful for very long runs on a machine that allocates chunks of time and terminate your job when time is
exceeded. If you need to restart your script multiple times (reading in the last restart file), you can keep restarting
your script with the same run command until the simulation finally completes.

The start or stop keywords can be used if multiple runs are being performed and you want a fix command that
changes some value over time (e.g. temperature) to make the change across the entire set of runs and not just a
single run. See the doc page for individual fixes to see which ones can be used with the start/stop keywords. The
pair_style soft potential also changes its pair potential coefficients in this manner.

For example, consider this fix followed by 10 run commands:

fix 1 all nvt 200.0 300.0 1.0

645

http://lammps.sandia.gov

run 1000 start 0 stop 10000
run 1000 start 0 stop 10000
...
run 1000 start 0 stop 10000

The NVT fix ramps the target temperature from 200.0 to 300.0 during a run. If the run commands did not have the
start/stop keywords (just "run 1000"), then the temperature would ramp from 200.0 to 300.0 during the 1000 steps
of each run. With the start/stop keywords, the ramping takes place over the 10000 steps of all runs together.

The pre and post keywords can be used to streamline the setup, clean−up, and associated output to the screen that
happens before and after a run. This can be useful if you wish to do many short runs in succession (e.g. LAMMPS
is being called as a library which is doing other computations between successive short LAMMPS runs).

By default (pre and post = yes), LAMMPS creates neighbor lists, computes forces, and imposes fix constraints
before every run. And after every run it gathers and prints timings statistics. If a run is just a continuation of a
previous run (i.e. no settings are changed), the initial computation is not necessary; the old neighbor list is still
valid as are the forces. So if pre is specified as "no" then the initial setup is skipped, except for printing
thermodynamic info. Note that if pre is set to "no" for the very 1st run LAMMPS performs, then it is overridden,
since the initial setup computations must be done.

IMPORTANT NOTE: If your input script changes settings between 2 runs (e.g. adds a fix or dump or compute or
changes a neighbor list parameter), then the initial setup must be performed. LAMMPS does not check for this,
but it would be an error to use the pre no option in this case.

If post is specified as "no", the full timing summary is skipped; only a one−line summary timing is printed.

The every option provides a means of breaking a LAMMPS run into a series of shorter runs. Optionally a single
LAMMPS command can be executed in between the short runs. This is a means to avoid listing a long series of
runs and commands in your input script. For example, a print command could be invoked or a fix could be
redefined, e.g. to reset a thermostat temperature. Or it could be useful for invoking a command you have added to
LAMMPS that wraps some other code (e.g. as a library) to perform a computation periodically during a long
LAMMPS run. See this section of the documentation for info about how to add new commands to LAMMPS. See
this section of the documentation for ideas about how to couple LAMMPS to other codes.

With the every option, N total steps are simulated, in shorter runs of M steps each. After each M−length run, the
command is invoked. If the command is specified as NULL, no command is invoked. Thus these lines:

variable q equal x[100]
run 6000 every 2000 print "Coord = $q"

are the equivalent of:

variable q equal x[100]
run 2000
print Coord = $q
run 2000
print Coord = $q
run 2000
print Coord = $q

which does 3 runs of 2000 steps and prints the x−coordinate of a particular atom between runs. Note that, as in
this example, the command can contain variables which will be evaluated each time the command is invoked.

IMPORTANT NOTE: For the every option, the command should be listed exactly as it would be if it appeared on
a line by itself. Thus all remaining arguments after the M value are considered part of the LAMMPS command

646

(e.g. print "Protein Rg = $r" as in the example above). This means that, if specified, the every option must be the
last keyword used.

IMPORTANT NOTE: For the every option, if the command includes a variable (e.g. $x or ${abc}), and you want
the variable to be evaluated afresh each time the command is invoked, then you should enclose that command
argument in double quotes, as in the "Protein Rg = $r" example above. If you don't do this, then the variable will
be substituted for only once initially when the run command is parsed, just as occurs for any other command
containing a variable.

If the pre and post options are set to "no" when used with the every keyword, then the 1st run will do the full
setup and the last run will print the full timing summary, but these operations will be skipped for intermediate
runs.

Restrictions: none

Related commands:

minimize, run_style, temper

Default:

The option defaults are start = the current timestep, stop = current timestep + N, pre = yes, and post = yes.

647

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

run_style command

Syntax:

run_style style args

style = verlet or respa

verlet args = none
respa args = N n1 n2 ... keyword values ...

 N = # of levels of rRESPA
 n1, n2, ... = loop factor between rRESPA levels (N−1 values)
 zero or more keyword/value pairings may be appended to the loop factors
 keyword = bond or angle or dihedral or improper or

pair or inner or middle or outer or kspace
bond value = M

 M = which level (1−N) to compute bond forces in
angle value = M

 M = which level (1−N) to compute angle forces in
dihedral value = M

 M = which level (1−N) to compute dihedral forces in
improper value = M

 M = which level (1−N) to compute improper forces in
pair value = M

 M = which level (1−N) to compute pair forces in
inner values = M cut1 cut2

 M = which level (1−N) to compute pair inner forces in
 cut1 = inner cutoff between pair inner and
 pair middle or outer (distance units)
 cut2 = outer cutoff between pair inner and
 pair middle or outer (distance units)

middle values = M cut1 cut2
 M = which level (1−N) to compute pair middle forces in
 cut1 = inner cutoff between pair middle and pair outer (distance units)
 cut2 = outer cutoff between pair middle and pair outer (distance units)

outer value = M
 M = which level (1−N) to compute pair outer forces in

kspace value = M
 M = which level (1−N) to compute kspace forces in

•

Examples:

run_style verlet
run_style respa 4 2 2 2 bond 1 dihedral 2 pair 3 kspace 4
run_style respa 4 2 2 2 bond 1 dihedral 2 inner 3 5.0 6.0 outer 4 kspace 4

Description:

Choose the style of time integrator used for molecular dynamics simulations performed by LAMMPS.

The verlet style is a velocity−Verlet integrator.

The respa style implements the rRESPA multi−timescale integrator (Tuckerman) with N hierarchical levels,
where level 1 is the innermost loop (shortest timestep) and level N is the outermost loop (largest timestep). The
loop factor arguments specify what the looping factor is between levels. N1 specifies the number of iterations of
level 1 for a single iteration of level 2, N2 is the iterations of level 2 per iteration of level 3, etc. N−1 looping

648

http://lammps.sandia.gov

parameters must be specified.

The timestep command sets the timestep for the outermost rRESPA level. Thus if the example command above
for a 4−level rRESPA had an outer timestep of 4.0 fmsec, the inner timestep would be 8x smaller or 0.5 fmsec.
All other LAMMPS commands that specify number of timesteps (e.g. neigh_modify parameters, dump every N
timesteps, etc) refer to the outermost timesteps.

The rRESPA keywords enable you to specify at what level of the hierarchy various forces will be computed. If
not specified, the defaults are that bond forces are computed at level 1 (innermost loop), angle forces are
computed where bond forces are, dihedral forces are computed where angle forces are, improper forces are
computed where dihedral forces are, pair forces are computed at the outermost level, and kspace forces are
computed where pair forces are. The inner, middle, outer forces have no defaults.

The inner and middle keywords take additional arguments for cutoffs that are used by the pairwise force
computations. If the 2 cutoffs for inner are 5.0 and 6.0, this means that all pairs up to 6.0 apart are computed by
the inner force. Those between 5.0 and 6.0 have their force go ramped to 0.0 so the overlap with the next regime
(middle or outer) is smooth. The next regime (middle or outer) will compute forces for all pairs from 5.0 outward,
with those from 5.0 to 6.0 having their value ramped in an inverse manner.

Only some pair potentials support the use of the inner and middle and outer keywords. If not, only the pair
keyword can be used with that pair style, meaning all pairwise forces are computed at the same rRESPA level.
See the doc pages for individual pair styles for details.

When using rRESPA (or for any MD simulation) care must be taken to choose a timestep size(s) that insures the
Hamiltonian for the chosen ensemble is conserved. For the constant NVE ensemble, total energy must be
conserved. Unfortunately, it is difficult to know a priori how well energy will be conserved, and a fairly long test
simulation (~10 ps) is usually necessary in order to verify that no long−term drift in energy occurs with the trial
set of parameters.

With that caveat, a few rules−of−thumb may be useful in selecting respa settings. The following applies mostly to
biomolecular simulations using the CHARMM or a similar all−atom force field, but the concepts are adaptable to
other problems. Without SHAKE, bonds involving hydrogen atoms exhibit high−frequency vibrations and require
a timestep on the order of 0.5 fmsec in order to conserve energy. The relatively inexpensive force computations
for the bonds, angles, impropers, and dihedrals can be computed on this innermost 0.5 fmsec step. The outermost
timestep cannot be greater than 4.0 fmsec without risking energy drift. Smooth switching of forces between the
levels of the rRESPA hierarchy is also necessary to avoid drift, and a 1−2 angstrom "healing distance" (the
distance between the outer and inner cutoffs) works reasonably well. We thus recommend the following settings
for use of the respa style without SHAKE in biomolecular simulations:

timestep 4.0
run_style respa 4 2 2 2 inner 2 4.5 6.0 middle 3 8.0 10.0 outer 4

With these settings, users can expect good energy conservation and roughly a 2.5 fold speedup over the verlet
style with a 0.5 fmsec timestep.

If SHAKE is used with the respa style, time reversibility is lost, but substantially longer time steps can be
achieved. For biomolecular simulations using the CHARMM or similar all−atom force field, bonds involving
hydrogen atoms exhibit high frequency vibrations and require a time step on the order of 0.5 fmsec in order to
conserve energy. These high frequency modes also limit the outer time step sizes since the modes are coupled. It
is therefore desirable to use SHAKE with respa in order to freeze out these high frequency motions and increase
the size of the time steps in the respa hierarchy. The following settings can be used for biomolecular simulations
with SHAKE and rRESPA:

649

fix 2 all shake 0.000001 500 0 m 1.0 a 1
timestep 4.0
run_style respa 2 2 inner 1 4.0 5.0 outer 2

With these settings, users can expect good energy conservation and roughly a 1.5 fold speedup over the verlet
style with SHAKE and a 2.0 fmsec timestep.

For non−biomolecular simulations, the respa style can be advantageous if there is a clear separation of time scales
− fast and slow modes in the simulation. Even a LJ system can benefit from rRESPA if the interactions are
divided by the inner, middle and outer keywords. A 2−fold or more speedup can be obtained while maintaining
good energy conservation. In real units, for a pure LJ fluid at liquid density, with a sigma of 3.0 angstroms, and
epsilon of 0.1 Kcal/mol, the following settings seem to work well:

timestep 36.0
run_style respa 3 3 4 inner 1 3.0 4.0 middle 2 6.0 7.0 outer 3

Restrictions: none

Whenever using rRESPA, the user should experiment with trade−offs in speed and accuracy for their system, and
verify that they are conserving energy to adequate precision.

Related commands:

timestep, run

Default:

run_style verlet

(Tuckerman) Tuckerman, Berne and Martyna, J Chem Phys, 97, p 1990 (1992).

650

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

set command

Syntax:

set style ID keyword values ...

style = atom or group or region•
ID = atom ID or group ID or region ID•
one or more keyword/value pairs may be appended•
keyword = type or type/fraction or mol or x or y or z or vx or vy or vz or charge or dipole or
dipole/random or quat/random or diameter or density or volume or image or bond or angle or dihedral or
improper

type value = atom type
type/fraction values = type fraction seed

 type = new atom type
 fraction = fraction of selected atoms to set to new atom type
 seed = random # seed (positive integer)

mol value = molecule ID
x,y,z value = atom coordinate (distance units)
vx,vy,vz value = velocity component (velocity units)
charge value = atomic charge (charge units)
dipole values = x y z

 x,y,z = orientation of dipole moment vector
dipole/random value = seed

 seed = random # seed (positive integer) for dipole moment orientations
quat values = a b c theta

 a,b,c = unit vector to rotate particle around via right−hand rule
 theta = rotation angle in degrees

quat/random value = seed
 seed = random # seed (positive integer) for quaternion orientations

diameter value = particle diameter (distance units)
density value = particle density (mass/distance^3 units)
volume value = particle volume (distance^3 units)
image nx ny nz

 nx,ny,nz = which periodic image of the simulation box the atom is in
bond value = bond type for all bonds between selected atoms
angle value = angle type for all angles between selected atoms
dihedral value = dihedral type for all dihedrals between selected atoms
improper value = improper type for all impropers between selected atoms

•

Examples:

set group solvent type 2
set group solvent type/fraction 2 0.5 12393
set group edge bond 4
set region half charge 0.5
set atom 100 x 0.5 vx 1.0
set atom 1492 type 3

Description:

Set one or more properties of one or more atoms. Since atom properties are initially assigned by the read_data,
read_restart or create_atoms commands, this command changes those assignments. This can be useful for
overriding the default values assigned by the create_atoms command (e.g. charge = 0.0). It can be useful for
altering pairwise and molecular force interactions, since force−field coefficients are defined in terms of types. It

651

http://lammps.sandia.gov

can be used to change the labeling of atoms by atom type when they are output in dump files. It can be useful for
debugging purposes; i.e. positioning an atom at a precise location to compute subsequent forces or energy.

The style atom selects a single atom. The style group selects the entire group of atoms. The style region selects all
atoms in the geometric region. The associated ID for each of these styles is either the unique atom ID (typically a
number from 1 to N = the number of atoms in the simulation), the group ID, or the region ID. See the group and
region commands for details of how to specify a group or region.

Keyword type sets the atom type for all selected atoms. The specified value must be from 1 to ntypes, where
ntypes was set by the create_box command or the atom types field in the header of the data file read by the
read_data command.

Keyword type/fraction sets the atom type for a fraction of the selected atoms. The actual number of atoms
changed is not guaranteed to be exactly the requested fraction, but should be statistically close. Random numbers
are used in such a way that a particular atom is changed or not changed, regardless of how many processors are
being used.

Keyword mol sets the molecule ID for all selected atoms. The atom style being used must support the use of
molecule IDs.

Keywords x, y, z, vx, vy, vz, and charge set the coordinates, velocity, or charge of all selected atoms. For charge,
the atom style being used must support the use of atomic charge.

Keyword dipole uses the specified x,y,z values as components of a vector to set as the orientation of the dipole
moment vectors of the selected atoms. The magnitude of the dipole moment for each atom is set by the dipole
command.

Keyword dipole/random randomizes the orientation of the dipole moment vectors of the selected atoms. The
magnitude of the dipole moment for each atom is set by the dipole command. For 2d systems, the z component of
the orientation is set to 0.0. Random numbers are used in such a way that the orientation of a particular atom is the
same, regardless of how many processors are being used.

Keyword quat uses the specified values to create a quaternion (4−vector) that represents the orientation of the
selected atoms. Note that the shape command is used to specify the aspect ratios of an ellipsoidal particle, which
is oriented by default with its x−axis along the simulation box's x−axis, and similarly for y and z. If this body is
rotated (via the right−hand rule) by an angle theta around a unit rotation vector (a,b,c), then the quaternion that
represents its new orientation is given by (cos(theta/2), a*sin(theta/2), b*sin(theta/2), c*sin(theta/2)). The theta
and a,b,c values are the arguments to the quat keyword. LAMMPS normalizes the quaternion in case (a,b,c) was
not specified as a unit vector. For 2d systems, the a,b,c values are ignored, since a rotation vector of (0,0,1) is the
only valid choice.

Keyword quat/random randomizes the orientation of the quaternion of the selected atoms. Random numbers are
used in such a way that the orientation of a particular atom is the same, regardless of how many processors are
being used. For 2d systems, only orientations in the xy plane are generated.

For the dipole and quat keywords, the atom style being used must support the use of dipoles or quaternions.

Keyword diameter sets the size of all selected particles. If the particles have a per−atom mass and density, then it
also sets their mass.

Keyword density sets the density of all selected particles. If the particles have a per−atom mass and diameter, then
it also sets their mass. If the particles have a per−atom mass and volume (as defined by PeriDynamics), then it

652

also sets their mass.

Keyword volume sets the volume of all selected particles, as defined by PeriDynamics.

Keyword image sets which image of the simulation box the atom is considered to be in. It is only applied to
periodic dimensions. An image of 0 means it is inside the box as defined. A value of 2 means add 2 box lengths to
get the true value. A value of −1 means subtract 1 box length to get the true value. LAMMPS updates these flags
as atoms cross periodic boundaries during the simulation. The flags can be output with atom snapshots via the
dump command. If a value of NULL is specified for any of nx,ny,nz, then the current image value for that
dimension is unchanged.

This command can be useful after a system has been equilibrated and atoms have diffused one or more box
lengths in various directions. This command can then reset the image values for atoms so that they are effectively
inside the simulation box, e.g if a diffusion coefficient is about to be measured via the fix msd command. Care
should be taken not to reset the image flags of two atoms in a bond to the same value if the bond straddles a
periodic boundary (rather they should be different by +/− 1). This will not affect the dynamics of a simulation, but
may mess up analysis of the trajectories if a LAMMPS diagnostic or your own analysis relies on the image flags
to unwrap a molecule which straddles the periodic box.

For the diameter and density and volume keywords, the atom style being used must support the use of those
parameters. For example, granular particles store a diameter and density. Peridynamic particles store a volume
and density.

Keywords bond, angle, dihedral, and improper, set the bond type (angle type, etc) of all bonds (angles, etc) of
selected atoms to the specified value from 1 to nbondtypes (nangletypes, etc). All atoms in a particular bond
(angle, etc) must be selected atoms in order for the change to be made. The value of nbondtype (nangletypes, etc)
was set by the bond types (angle types, etc) field in the header of the data file read by the read_data command.

Restrictions:

You cannot set an atom attribute (e.g. mol or q or volume) if the atom_style does not have that attribute.

This command requires inter−processor communication to coordinate the setting of bond types (angle types, etc).
This means that your system must be ready to perform a simulation before using one of these keywords (force
fields set, atom mass set, etc). This is not necessary for other keywords.

Using the region style with the bond (angle, etc) keywords can give unpredictable results if there are bonds
(angles, etc) that straddle periodic boundaries. This is because the region may only extend up to the boundary and
partner atoms in the bond (angle, etc) may have coordinates outside the simulation box if they are ghost atoms.

Related commands:

create_box, create_atoms, read_data

Default: none

653

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

shape command

Syntax:

shape I x y z

I = atom type (see asterisk form below)•
x = x diameter (distance units)•
y = y diameter (distance units)•
z = z diameter (distance units)•

Examples:

shape 1 1.0 1.0 1.0
shape * 3.0 1.0 1.0
shape 2* 3.0 1.0 1.0

Description:

Set the shape for all atoms of one or more atom types. In LAMMPS, particles that have a finite size are said to
have a "shape", as opposed to being a point mass. The shape can be spherical or aspherical, depending on whether
the 3 shape values are the same or different. Shape values can also be set in the read_data data file using the
"Shapes" keyword. See the units command for what distance units to use.

The I index can be specified in one of two ways. An explicit numeric value can be used, as in the 1st example
above. Or a wild−card asterisk can be used to set the shape for multiple atom types. This takes the form "*" or
"*n" or "n*" or "m*n". If N = the number of atom types, then an asterisk with no numeric values means all types
from 1 to N. A leading asterisk means all types from 1 to n (inclusive). A trailing asterisk means all types from n
to N (inclusive). A middle asterisk means all types from m to n (inclusive).

A line in a data file that follows the "Shapes" keyword specifies shape using the same format as the arguments of
the shape command in an input script, except that no wild−card asterisk can be used. For example, under the
"Shapes" section of a data file, the line that corresponds to the 1st example above would be listed as

1 1.0 1.0 1.0

The shape values can be set to all 0.0, which means that atoms of that type are point particles and not finite−size
particles. Some pair styles and fixes and computes that operate on finite−size particles allow for a mixture of
finite−size and point particles. See the doc pages of individual commands for details.

Note that the shape command can only be used if the atom style requires per−type atom shape to be set. Currently,
only the colloid, dipole, and ellipsoid styles do. The granular and peri styles also define finite−size spherical
particles, but their size is set on a per−particle basis. These are are defined in the data file read by the read_data
command, or set to default values by the create_atoms command, or set to new values by the set diameter
command.

Dipoles use the atom shape to compute a moment of inertia for rotational energy. See the pair_style dipole
command. Only the 1st component of the shape is used since the particles are assumed to be spherical.

Ellipsoids use the atom shape to compute a generalized inertia tensor. For example, a shape setting of 3.0 1.0 1.0
defines a particle 3x longer in x than in y or z and with a circular cross−section in yz. Ellipsoids which are in fact

654

http://lammps.sandia.gov

spherical can be defined by setting all 3 shape components the same.

If you define a hybrid atom style which includes one (or more) sub−styles which require per−type shape and one
(or more) sub−styles which require per−atom diameter, then you must define both. However, in this case the
per−type shape will be ignored; only the per−atom diameter will be used by LAMMPS. This means you cannot
currently mix aspherical particles with per−atom diameter particles.

Restrictions:

This command must come after the simulation box is defined by a read_data, read_restart, or create_box
command.

All shapes must be defined before a simulation is run (if the atom style requires shapes be set).

Related commands: none

Default: none

655

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

shell command

Syntax:

shell style args

style = cd or mkdir or mv or rm or rmdir

cd arg = dir
 dir = directory to change to

mkdir args = dir1 dir2 ...
 dir1,dir2 = one or more directories to create

mv args = old new
 old = old filename
 new = new filename

rm args = file1 file2 ...
 file1,file2 = one or more filenames to delete

rmdir args = dir1 dir2 ...
 dir1,dir2 = one or more directories to delete

•

Examples:

shell cd sub1
shell cd ..
shell mkdir tmp1 tmp2 tmp3
shell rmdir tmp1
shell mv log.lammps hold/log.1
shell rm TMP/file1 TMP/file2

Description:

Execute a shell command. Only a few simple file−based shell commands are supported, in Unix−style syntax.
With the exception of cd, all commands are executed by only a single processor, so that files/directories are not
being manipulated by multiple processors.

The cd style executes the Unix "cd" command to change the working directory. All subsequent LAMMPS
commands that read/write files will use the new directory. All processors execute this command.

The mkdir style executes the Unix "mkdir" command to create one or more directories.

The mv style executes the Unix "mv" command to rename a file and/or move it to a new directory.

The rm style executes the Unix "rm" command to remove one or more files.

The rmdir style executes the Unix "rmdir" command to remove one or more directories. A directory must be
empty to be successfully removed.

Restrictions:

LAMMPS does not detect errors or print warnings when any of these Unix commands execute. E.g. if the
specified directory does not exist, executing the cd command will silently not do anything.

Related commands: none

656

http://lammps.sandia.gov

Default: none

657

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

special_bonds command

Syntax:

special_bonds keyword values ...

one or more keyword/value pairs may be appended•
keyword = amber or charmm or fene or lj/coul or lj or coul or dihedral or extra

amber values = none
charmm values = none
fene values = none
lj/coul values = w1,w2,w3

 w1,w2,w3 = weights (0.0 to 1.0) on pairwise Lennard−Jones and Coulombic interactions
lj values = w1,w2,w3

 w1,w2,w3 = weights (0.0 to 1.0) on pairwise Lennard−Jones interactions
coul values = w1,w2,w3

 w1,w2,w3 = weights (0.0 to 1.0) on pairwise Coulombic interactions
dihedral value = yes or no
extra value = N

 N = number of extra 1−2,1−3,1−4 interactions to save space for

•

Examples:

special_bonds amber
special_bonds charmm
special_bonds fene dihedral no
special_bonds lj/coul 0.0 0.0 0.5 dihedral yes
special_bonds lj 0.0 0.0 0.5 coul 0.0 0.0 0.0 dihedral yes
special_bonds lj/coul 0 1 1 extra 2

Description:

Set weighting coefficients for pairwise energy and force contributions from atom pairs that are also bonded to
each other directly or indirectly. For Lennard−Jones (LJ) and Coulombic pairwise interactions, these coefficients
come in sets of three. The 1st coefficient is the weighting factor on 1−2 atom pairs, which are those directly
bonded to each other. The 2nd coefficient is the weighting factor on 1−3 atom pairs which are those separated by
2 bonds (e.g. the two H atoms in a water molecule). The 3rd coefficient is the weighting factor on 1−4 atom pairs
which are those separated by 3 bonds (e.g. the 1st and 4th atoms in a dihedral interaction). Thus if the 1−2
coefficient is set to 0.0, then the pairwise interaction is effectively turned off for all pairs of atoms bonded to each
other.

IMPORTANT NOTE: For purposes of computing weighted pairwise interactions, 1−3 and 1−4 interactions are
not defined from the list of angles or dihedrals used by the simulation. Rather, they are inferred topologically
from the set of bonds defined when the simulation is defined from a data or restart file (see read_data or
read_restart commands). Thus the set of 1−2,1−3,1−4 interactions that the weights apply to is the same whether
angle and dihedral potentials are computed or not, and remains the same even if bonds are constrained, or turned
off, or removed during a simulation.

The two exceptions to this rule are (a) if the dihedral keyword is set to yes (see below), or (b) if the delete_bonds
command is used with the special option that recomputes the 1−2,1−3,1−4 topologies after bonds are deleted; see
the delete_bonds command for more details.

658

http://lammps.sandia.gov

The amber keyword sets the 3 coefficients to 0.0, 0.0, 0.5 for LJ interactions and to 0.0, 0.0, 0.8333 for
Coulombic interactions, which is the default for a commonly used version of the AMBER force field, where the
last value is really 5/6.

The charmm keyword sets the 3 coefficients to 0.0, 0.0, 0.0 for both LJ and Coulombic interactions, which is the
default for a commonly used version of the CHARMM force field. Note that in pair styles
lj/charmm/coul/charmm and lj/charmm/coul/long the 1−4 coefficients are defined explicitly, and these pairwise
contributions are computed as part of the charmm dihedral style − see the pair_coeff and dihedral_style
commands for more information.

The fene keyword sets the 3 coefficients to 0.0, 1.0, 1.0 for both LJ and Coulombic interactions, which is
consistent with a coarse−grained polymer model with FENE bonds.

The lj/coul, lj, and coul keywords allow the 3 coefficients to be set explicitly. The lj/coul keyword sets both the LJ
and Coulombic coefficients to the same 3 values. The lj and coul keywords only set either the LJ or Coulombic
coefficients. Use both of them if you wish to set the LJ coefficients to different values than the Coulombic
coefficients.

The dihedral keyword allows the 1−4 weighting factor to be ignored for individual atom pairs if they are not
listed as the first and last atoms in any dihedral defined in the simulation. For example, imagine the 1−4 weighting
factor is set to 0.5 and you have a linear molecule with 5 atoms and bonds as follows: 1−2−3−4−5. If your data
file defines 1−2−3−4 as a dihedral, but does not define 2−3−4−5 as a dihedral, then the pairwise interaction
between atoms 1 and 4 will always be weighted by 0.5, but different force fields use different rules for weighting
the pairwise interaction between atoms 2 and 5. If the dihedral keyword is specified as yes, then the pairwise
interaction between atoms 2 and 5 will be unaffected (full weighting of 1.0). If the dihedral keyword is specified
as no which is the default, then the 2,5 interaction will also be weighted by 0.5.

The extra keyword is used when additional bonds will be created during a simulation run, e.g. by the fix
bond/create command. A list of 1−2,1−3,1−4 neighbors for each atom is calculated and stored by LAMMPS. If
new bonds are created, the list needs to grow. Using the extra keyword leaves empty space in the list for N
additional bonds to be added. If you do not do this, you may get an error when bonds are added.

Restrictions: none

Related commands:

delete_bonds, fix bond/create

Default:

All 3 Lennard−Jones and 3 Coulobmic weighting coefficients = 0.0, dihedral = no, and extra = 0.

659

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

temper command

Syntax:

temper N M temp fix−ID seed1 seed2 index

N = total # of timesteps to run•
M = attempt a tempering swap every this many steps•
temp = initial temperature for this ensemble•
fix−ID = ID of the fix that will control temperature during the run•
seed1 = random # seed used to decide on adjacent temperature to partner with•
seed2 = random # seed for Boltzmann factor in Metropolis swap•
index = which temperature (0 to N−1) I am simulating (optional)•

Examples:

temper 100000 100 $t tempfix 0 58728
temper 40000 100 $t tempfix 0 32285 $w

Description:

Run a parallel tempering (replica exchange) simulation of multiple ensembles of a system on multiple partitions
of processors. The processor partitions are defined using the −partition command−line switch (see this section).
Each ensemble's temperature is typically controlled at a different value by a fix with ID fix−ID that controls
temperature. Possible fix styles are nvt, temp/berendsen, langevin and temp/rescale. The desired temperature is
specified by temp, which is typically a variable previously set in the input script, so that each partition is assigned
a different temperature. See the variable command for more details. For example,

variable t world 300.0 310.0 320.0 330.0

As the tempering simulation runs for N timesteps, a swap between adjacent ensembles will be attempted every M
timesteps. If seed1 is 0, then the swap attempts will alternate between odd and even pairings. If seed1 is non−zero
then it is used as a seed in a random number generator to randomly choose an odd or even pairing each time. Each
attempted swap of temperatures is either accepted or rejected based on a Boltzmann−weighted Metropolis
criterion which uses seed2 in the random number generator.

The last argument index is optional and is used when restarting a tempering run from a set of restart files (one for
each replica) which had previously swapped to new temperatures. The index value (from 0 to N−1, where N is the
of replicas) identifies which temperature the replica was simulating on the timestep the restart files were written.
Obviously, this argument must be a variable so that each partition has the correct value. Set the variable to the N
values listed in the log file for the previous run for the replica temperatures at that timestep. For example if the log
file listed

500000 2 4 0 1 3

then a setting of

variable w proc 2 4 0 1 3

would be used to restart the run with a tempering command like the example above with $w as the last argument.

660

http://lammps.sandia.gov

Restrictions: none

Related commands:

variable

Default: none

661

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

thermo command

Syntax:

thermo N

N = output thermodynamics every N timesteps•

Examples:

thermo 100

Description:

Compute and print thermodynamic info (e.g. temperature, energy, pressure) on timesteps that are a multiple of N
and at the beginning and end of a simulation. A value of 0 will only print thermodynamics at the beginning and
end.

The content and format of what is printed is controlled by the thermo_style and thermo_modify commands.

Restrictions: none

Related commands:

thermo_style, thermo_modify

Default:

thermo 0

662

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

thermo_modify command

Syntax:

thermo_modify keyword value ...

one or more keyword/value pairs may be listed

keyword = lost or norm or flush or line or format or temp or press:l
lost value = error or warn or ignore
norm value = yes or no
flush value = yes or no
line value = one or multi
format values = int string or float string or M string

 M = integer from 1 to N, where N = # of quantities being printed
 string = C−style format string

temp value = compute ID that calculates a temperature
press value = compute ID that calculates a pressure

•

Examples:

thermo_modify lost ignore flush yes
thermo_modify temp myTemp format 3 %15.8g
thermo_modify line multi format float %g

Description:

Set options for how thermodynamic information is computed and printed by LAMMPS.

IMPORTANT NOTE: These options apply to the currently defined thermo style. When you specify a
thermo_style command, all thermodynamic settings are restored to their default values, including those previously
reset by a thermo_modify command. Thus if your input script specifies a thermo_style command, you should use
the thermo_modify command after it.

The lost keyword determines whether LAMMPS checks for lost atoms each time it computes thermodynamics
and what it does if atoms are lost. If the value is ignore, LAMMPS does not check for lost atoms. If the value is
error or warn, LAMMPS checks and either issues an error or warning. The code will exit with an error and
continue with a warning. This can be a useful debugging option.

The norm keyword determines whether various thermodynamic output values are normalized by the number of
atoms or not, depending on whether it is set to yes or no. Different unit styles have different defaults for this
setting (see below). Even if norm is set to yes, a value is only normalized if it is an "extensive" quantity, meaning
that it scales with the number of atoms in the system. For the thermo keywords described by the doc page for the
thermo_style command, all energy−related keywords are extensive, such as pe or ebond or enthalpy. Other
keywords such as temp or press are "intensive" meaning their value is independent (in a statistical sense) of the
number of atoms in the system and thus are never normalized. For thermodynamic output values extracted from
fixes and computes in a thermo_style custom command, the doc page for the individual fix or compute lists
whether the value is "extensive" or "intensive" and thus whether it is normalized. Thermodynamic output values
calculated by a variable formula are assumed to be "intensive" and thus are never normalized. You can always
include a divide by the number of atoms in the variable formula if this is not the case.

The flush keyword invokes a flush operation after thermodynamic info is written to the log file. This insures the

663

http://lammps.sandia.gov

output in that file is current (no buffering by the OS), even if LAMMPS halts before the simulation completes.

The line keyword determines whether thermodynamics will be printed as a series of numeric values on one line or
in a multi−line format with 3 quantities with text strings per line and a dashed−line header containing the timestep
and CPU time. This modify option overrides the one and multi thermo_style settings.

The format keyword sets the numeric format of individual printed quantities. The int and float keywords set the
format for all integer or floating−point quantities printed. The setting with a numeric value (e.g. format 5 %10.4g)
sets the format of the Mth value printed in each output line, the 5th column of output in this case. If the format for
a specific column has been set, it will take precedent over the int or float setting.

The temp keyword is used to determine how thermodynamic temperature is calculated, which is used by all
thermo quantities that require a temperature ("temp", "press", "ke", "etotal", "enthalpy", "pxx", etc). The specified
compute ID must have been previously defined by the user via the compute command and it must be a style of
compute that calculates a temperature. As described in the thermo_style command, thermo output uses a default
compute for temperature with ID = thermo_temp. This option allows the user to override the default.

The press keyword is used to determine how thermodynamic pressure is calculated, which is used by all thermo
quantities that require a pressure ("press", "enthalpy", "pxx", etc). The specified compute ID must have been
previously defined by the user via the compute command and it must be a style of compute that calculates a
pressure. As described in the thermo_style command, thermo output uses a default compute for pressure with ID
= thermo_press. This option allows the user to override the default.

IMPORTANT NOTE: If both the temp and press keywords are used in a single thermo_modify command (or in
two separate commands), then the order in which the keywords are specified is important. Note that a pressure
compute defines its own temperature compute as an argument when it is specified. The temp keyword will
override this (for the pressure compute being used by thermodynamics), but only if the temp keyword comes after
the press keyword. If the temp keyword comes before the press keyword, then the new pressure compute
specified by the press keyword will be unaffected by the temp setting.

Restrictions: none

Related commands:

thermo, thermo_style

Default:

The option defaults are lost = error, norm = yes for unit style of lj, norm = no for unit style of real and metal,
flush = no, temp/press = compute IDs defined by thermo_style.

The defaults for the line and format options depend on the thermo style. For styles "one" and and "custom" the
line and format defaults are "one", "%8d", and "%12.8g". For style "multi", the line and format defaults are
"multi", "%8d", and "%14.4f".

664

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

thermo_style command

Syntax:

thermo_style style args

style = one or multi or custom•
args = list of arguments for a particular style

one args = none
multi args = none
custom args = list of attributes

 possible attributes = step, atoms, cpu, temp, press,
 pe, ke, etotal, enthalpy,
 evdwl, ecoul, epair, ebond, eangle, edihed, eimp,
 emol, elong, etail,
 vol, lx, ly, lz, xlo, xhi, ylo, yhi, zlo, zhi,
 xy, xz, yz,
 pxx, pyy, pzz, pxy, pxz, pyz,
 c_ID, c_ID[I], c_ID[I][J],
 f_ID, f_ID[I], f_ID[I][J],
 v_name
 step = timestep
 atoms = # of atoms
 cpu = elapsed CPU time
 temp = temperature
 press = pressure
 pe = total potential energy
 ke = kinetic energy
 etotal = total energy (pe + ke)
 enthalpy = enthalpy (etotal + press*vol)
 evdwl = VanderWaal pairwise energy
 ecoul = Coulombic pairwise energy
 epair = pairwise energy (evdwl + ecoul + elong + etail)
 ebond = bond energy
 eangle = angle energy
 edihed = dihedral energy
 eimp = improper energy
 emol = molecular energy (ebond + eangle + edihed + eimp)
 elong = long−range kspace energy
 etail = VanderWaal energy long−range tail correction
 vol = volume
 lx,ly,lz = box lengths in x,y,z
 xlo,xhi,ylo,yhi,zlo,zhi = box boundaries
 xy,xz,yz = box tilt for triclinic (non−orthogonal) simulation boxes
 pxx,pyy,pzz,pxy,pxz,pyz = 6 components of pressure tensor
 c_ID = global scalar value calculated by a compute with ID
 c_ID[I] = Ith component of global vector calculated by a compute with ID
 c_ID[I][J] = I,J component of global array calculated by a compute with ID
 f_ID = global scalar value calculated by a fix with ID
 f_ID[I] = Ith component of global vector calculated by a fix with ID
 f_ID[I][J] = I,J component of global array calculated by a fix with ID
 v_name = scalar value calculated by an equal−style variable with name

•

Examples:

thermo_style multi
thermo_style custom step temp pe etotal press vol
thermo_style custom step temp etotal c_myTemp v_abc

665

http://lammps.sandia.gov

Description:

Set the style and content for printing thermodynamic data to the screen and log file.

Style one prints a one−line summary of thermodynamic info that is the equivalent of "thermo_style custom step
temp epair emol etotal press". The line contains only numeric values.

Style multi prints a multiple−line listing of thermodynamic info that is the equivalent of "thermo_style custom
etotal ke temp pe ebond eangle edihed eimp evdwl ecoul elong press". The listing contains numeric values and a
string ID for each quantity.

Style custom is the most general setting and allows you to specify which of the keywords listed above you want
printed on each thermodynamic timestep. Note that the keywords c_ID, f_ID, v_name are references to computes,
fixes, and equal−style variables that have been defined elsewhere in the input script or can even be new styles
which users have added to LAMMPS (see the Section_modify section of the documentation). Thus the custom
style provides a flexible means of outputting essentially any desired quantity as a simulation proceeds.

All styles except custom have vol appended to their list of outputs if the simulation box volume changes during
the simulation.

The values printed by the various keywords are instantaneous values, calculated on the current timestep.
Time−averaged quantities, which include values from previous timesteps, can be output by using the f_ID
keyword and accessing a fix that does time−averaging such as the fix ave/time command.

Options invoked by the thermo_modify command can be used to set the one− or multi−line format of the
print−out, the normalization of thermodynamic output (total values versus per−atom values for extensive
quantities (ones which scale with the number of atoms in the system), and the numeric precision of each printed
value.

IMPORTANT NOTE: When you use a "thermo_style" command, all thermodynamic settings are restored to their
default values, including those previously set by a thermo_modify command. Thus if your input script specifies a
thermo_style command, you should use the thermo_modify command after it.

Several of the thermodynamic quantities require a temperature to be computed: "temp", "press", "ke", "etotal",
"enthalpy", "pxx etc". By default this is done by using a temperature compute which is created when LAMMPS
starts up, as if this command had been issued:

compute thermo_temp all temp

See the compute temp command for details. Note that the ID of this compute is thermo_temp and the group is all.
You can change the attributes of this temperature (e.g. its degrees−of−freedom) via the compute_modify
command. Alternatively, you can directly assign a new compute (that calculates temperature) which you have
defined, to be used for calculating any thermodynamic quantity that requires a temperature. This is done via the
thermo_modify command.

Several of the thermodynamic quantities require a pressure to be computed: "press", "enthalpy", "pxx", etc. By
default this is done by using a pressure compute which is created when LAMMPS starts up, as if this command
had been issued:

compute thermo_press all pressure thermo_temp

See the compute pressure command for details. Note that the ID of this compute is thermo_press and the group is
all. You can change the attributes of this pressure via the compute_modify command. Alternatively, you can

666

directly assign a new compute (that calculates pressure) which you have defined, to be used for calculating any
thermodynamic quantity that requires a pressure. This is done via the thermo_modify command.

Several of the thermodynamic quantities require a potential energy to be computed: "pe", "etotal", "ebond", etc.
This is done by using a pe compute which is created when LAMMPS starts up, as if this command had been
issued:

compute thermo_pe all pe

See the compute pe command for details. Note that the ID of this compute is thermo_pe and the group is all. You
can change the attributes of this potential energy via the compute_modify command.

The kinetic energy of the system ke is inferred from the temperature of the system with 1/2 Kb T of energy for
each degree of freedom. Thus, using different compute commands for calculating temperature, via the
thermo_modify temp command, may yield different kinetic energies, since different computes that calculate
temperature can subtract out different non−thermal components of velocity and/or include different degrees of
freedom (translational, rotational, etc).

The potential energy of the system pe will include contributions from fixes if the fix_modify thermo option is set
for a fix that calculates such a contribution. For example, the fix wall/lj93 fix calculates the energy of atoms
interacting with the wall. See the doc pages for "individual fixes" to see which ones contribute.

A long−range tail correction etail for the VanderWaal pairwise energy will be non−zero only if the pair_modify
tail option is turned on. The etail contribution is included in evdwl, pe, and etotal, and the corresponding tail
correction to the pressure is included in press and pxx, pyy, etc.

The c_ID and c_ID[I] and c_ID[I][J] keywords allow global values calculated by a compute to be output. As
discussed on the compute doc page, computes can calculate global, per−atom, or local values. Only global values
can be referenced by this command. However, per−atom compute values can be referenced in a variable and the
variable referenced by thermo_style custom, as discussed below.

The ID in the keyword should be replaced by the actual ID of a compute that has been defined elsewhere in the
input script. See the compute command for details. If the compute calculates a global scalar, vector, or array, then
the keyword formats with 0, 1, or 2 brackets will reference a scalar value from the compute.

Note that some computes calculate "intensive" global quantities like temperature; others calculate "extensive"
global quantities like kinetic energy that are summed over all atoms in the compute group. Intensive quantities are
printed directly without normalization by thermo_style custom. Extensive quantities may be normalized by the
total number of atoms in the simulation (NOT the number of atoms in the compute group) when output,
depending on the thermo_modify norm option being used.

The f_ID and f_ID[I] and f_ID[I][J] keywords allow global values calculated by a fix to be output. As discussed
on the fix doc page, fixes can calculate global, per−atom, or local values. Only global values can be referenced by
this command. However, per−atom fix values can be referenced in a variable and the variable referenced by
thermo_style custom, as discussed below.

The ID in the keyword should be replaced by the actual ID of a fix that has been defined elsewhere in the input
script. See the fix command for details. If the fix calculates a global scalar, vector, or array, then the keyword
formats with 0, 1, or 2 brackets will reference a scalar value from the fix.

Note that some fixes calculate "intensive" global quantities like timestep size; others calculate "extensive" global
quantities like energy that are summed over all atoms in the fix group. Intensive quantities are printed directly

667

without normalization by thermo_style custom. Extensive quantities may be normalized by the total number of
atoms in the simulation (NOT the number of atoms in the fix group) when output, depending on the
thermo_modify norm option being used.

The v_name keyword allow the current value of a variable to be output. The name in the keyword should be
replaced by the actual name of the variable that has been defined elsewhere in the input script. Only equal−style
variables can be referenced. See the variable command for details. Variables of style equal can reference
per−atom properties or thermodynamic keywords, or they can invoke other computes, fixes, or variables when
evaluated, so this is a very general means of creating thermodynamic output.

See this section for information on how to add new compute and fix styles to LAMMPS to calculate quantities
that can then be referenced with these keywords to generate thermodynamic output.

Restrictions:

This command must come after the simulation box is defined by a read_data, read_restart, or create_box
command.

Related commands:

thermo, thermo_modify, fix_modify, compute temp, compute pressure

Default:

thermo_style one

668

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

timestep command

Syntax:

timestep dt

dt = timestep size (time units)•

Examples:

timestep 2.0
timestep 0.003

Description:

Set the timestep size for subsequent molecular dynamics simulations. See the units command for a discussion of
time units. The default value for the timestep also depends on the choice of units for the simulation; see the
default values below.

When the run style is respa, dt is the timestep for the outer loop (largest) timestep.

Restrictions: none

Related commands:

fix dt/reset, run, run_style respa, units

Default:

timestep = 0.005 tau for units = lj
timestep = 1.0 fmsec for units = real
timestep = 0.001 psec for units = metal
timestep = 1.0e−8 sec (10 nsec) for units = si or cgs

669

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

uncompute command

Syntax:

uncompute compute−ID

compute−ID = ID of a previously defined compute•

Examples:

uncompute 2
uncompute lower−boundary

Description:

Delete a compute that was previously defined with a compute command. This also wipes out any additional
changes made to the compute via the compute_modify command.

Restrictions: none

Related commands:

compute

Default: none

670

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

undump command

Syntax:

undump dump−ID

dump−ID = ID of previously defined dump•

Examples:

undump mine
undump 2

Description:

Turn off a previously defined dump so that it is no longer active. This closes the file associated with the dump.

Restrictions: none

Related commands:

dump

Default: none

671

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

unfix command

Syntax:

unfix fix−ID

fix−ID = ID of a previously defined fix•

Examples:

unfix 2
unfix lower−boundary

Description:

Delete a fix that was previously defined with a fix command. This also wipes out any additional changes made to
the fix via the fix_modify command.

Restrictions: none

Related commands:

fix

Default: none

672

http://lammps.sandia.gov

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

units command

Syntax:

units style

style = lj or real or metal or si or cgs•

Examples:

units metal
units lj

Description:

This command sets the style of units used for a simulation. It determines the units of all quantities specified in the
input script and data file, as well as quantities output to the screen, log file, and dump files. Typically, this
command is used at the very beginning of an input script.

For all units except lj, LAMMPS uses physical constants from www.physics.nist.gov. For the definition of Kcal in
real units, LAMMPS uses the thermochemical calorie = 4.184 J.

For style lj, all quantities are unitless. Without loss of generality, LAMMPS sets the fundamental quantities mass,
sigma, epsilon, and the Boltzmann constant = 1. The masses, distances, energies you specify are multiples of
these fundamental values. The formulas relating the reduced or unitless quantity (with an asterisk) to the same
quantity with units is also given. Thus you can use the mass &sigma &epsilon values for a specific material and
convert the results from a unitless LJ simulation into physical quantities.

mass = mass or m•
distance = sigma, where x* = x / sigma•
time = tau, where tau = t* = t (epsilon / m / sigma^2)^1/2•
energy = epsilon, where E* = E / epsilon•
velocity = sigma/tau, where v* = v tau / sigma•
force = epsilon/sigma, where f* = f sigma / epsilon•
torque = epsilon, where t* = t / epsilon•
temperature = reduced LJ temperature, where T* = T Kb / epsilon•
pressure = reduced LJ pressure, where P* = P sigma^3 / epsilon•
dynamic viscosity = reduced LJ viscosity, where eta* = eta sigma^3 / epsilon / tau•
charge = reduced LJ charge, where q* = q / (4 pi perm0 sigma epsilon)^1/2•
dipole = reduced LJ dipole, moment where *mu = mu / (4 pi perm0 sigma^3 epsilon)^1/2•
electric field = force/charge, where E* = E (4 pi perm0 sigma epsilon)^1/2 sigma / epsilon•

For style real, these are the units:

mass = grams/mole•
distance = Angstroms•
time = femtoseconds•
energy = Kcal/mole•
velocity = Angstroms/femtosecond•
force = Kcal/mole−Angstrom•

673

http://lammps.sandia.gov

torque = Kcal/mole•
temperature = degrees K•
pressure = atmospheres•
dynamic viscosity = Poise•
charge = multiple of electron charge (+1.0 is a proton)•
dipole = charge*Angstroms•
electric field = volts/Angstrom•

For style metal, these are the units:

mass = grams/mole•
distance = Angstroms•
time = picoseconds•
energy = eV•
velocity = Angstroms/picosecond•
force = eV/Angstrom•
torque = eV•
temperature = degrees K•
pressure = bars•
dynamic viscosity = Poise•
charge = multiple of electron charge (+1.0 is a proton)•
dipole = charge*Angstroms•
electric field = volts/Angstrom•

For style si, these are the units:

mass = kilograms•
distance = meters•
time = seconds•
energy = Joules•
velocity = meters/second•
force = Newtons•
torque = Newton−meters•
temperature = degrees K•
pressure = Pascals•
dynamic viscosity = Pascal*second•
charge = Coulombs•
dipole = Coulombs*meters•
electric field = volts/meter•

For style cgs, these are the units:

mass = grams•
distance = centimeters•
time = seconds•
energy = ergs•
velocity = centimeters/second•
force = dynes•
torque = dyne−centimeters•
temperature = degrees K•
pressure = dyne/cm^2 or barye = 1.0e−6 bars•
dynamic viscosity = Poise•

674

charge = statcoulombs or esu•
dipole = statcoul−cm = 10^18 debye•
electric field = statvolt/cm or dyne/esu•

The units command also sets the timestep size and neighbor skin distance to default values for each style. For
style lj these are dt = 0.005 tau and skin = 0.3 sigma. For style real these are dt = 1.0 fmsec and skin = 2.0
Angstroms. For style metal these are dt = 0.001 psec and skin = 2.0 Angstroms. For style si these are dt = 1.0e−8
sec and skin = 0.001 meters. For style cgs these are dt = 1.0e−8 sec and skin = 0.1 cm.

Restrictions:

This command cannot be used after the simulation box is defined by a read_data or create_box command.

Related commands: none

Default:

units lj

675

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

variable command

Syntax:

variable name style args ...

name = name of variable to define•
style = delete or index or loop or world or universe or uloop or equal or atom

delete = no args
index args = one or more strings
loop args = N = integer size of loop
world args = one string for each partition of processors
universe args = one or more strings
uloop args = N = integer size of loop
equal or atom args = one formula containing numbers, thermo keywords, math operations, group functions, atom values and vectors, compute/fix/variable references

 numbers = 0.0, 100, −5.4, 2.8e−4, etc
 thermo keywords = vol, ke, press, etc from thermo_style
 math operations = (), −x, x+y, x−y, x*y, x/y, x^y,
 sqrt(x), exp(x), ln(x), log(x),
 sin(x), cos(x), tan(x), asin(x), acos(x), atan(x),
 ceil(x), floor(x), round(x)
 group functions = count(group), mass(group), charge(group),
 xcm(group,dim), vcm(group,dim), fcm(group,dim),
 bound(group,xmin), gyration(group), ke(group)
 region functions = count(group,region), mass(group,region), charge(group,region),
 xcm(group,dim,region), vcm(group,dim,region), fcm(group,dim,region),
 bound(group,xmin,region), gyration(group,region), ke(group,reigon)
 atom value = mass[i], type[i], x[i], y[i], z[i], vx[i], vy[i], vz[i], fx[i], fy[i], fz[i]
 atom vector = mass, type, x, y, z, vx, vy, vz, fx, fy, fz
 compute references = c_ID, c_ID[i], c_ID[i][j]
 fix references = f_ID, f_ID[i], f_ID[i][j]
 variable references = v_name, v_name[i]

•

Examples:

variable x index run1 run2 run3 run4 run5 run6 run7 run8
variable LoopVar loop $n
variable beta equal temp/3.0
variable b1 equal x[234]+0.5*vol
variable b1 equal "x[234] + 0.5*vol"
variable b equal xcm(mol1,x)/2.0
variable b equal c_myTemp
variable b atom x*y/vol
variable temp world 300.0 310.0 320.0 ${Tfinal}
variable x universe 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
variable x uloop 15
variable x delete

Description:

This command assigns one or more strings to a variable name for evaluation later in the input script or during a
simulation.

Variables can be used in several ways in LAMMPS. A variable can be referenced elsewhere in an input script to
become part of a new input command. For variable styles that store multiple strings, the next command can be
used to increment which string is assigned to the variable. Variables of style equal store a formula which when

676

http://lammps.sandia.gov

evaluated produces a single numeric value which can be output either directly (see the print, fix print, and run
every commands) or as part of thermodynamic output (see the thermo_style command), or used as input to an
averaging fix (see the fix ave/time command). Variables of style atom store a formula which when evaluated
produces one numeric value per atom which can be output to a dump file (see the dump custom command) or
used as input to an averaging fix (see the fix ave/spatial and fix ave/atom commands).

In the discussion that follows, the "name" of the variable is the arbitrary string that is the 1st argument in the
variable command. This name can only contain alphanumeric characters and underscores. The "string" is one or
more of the subsequent arguments. The "string" can be simple text as in the 1st example above, it can contain
other variables as in the 2nd example, or it can be a formula as in the 3rd example. The "value" is the numeric
quantity resulting from evaluation of the string. Note that the same string can generate different values when it is
evaluated at different times during a simulation.

IMPORTANT NOTE: When the input script line that defines a variable of style equal or atom that contain a
formula is encountered, the formula is NOT immediately evaluated and the result stored. See the discussion below
about "Immediate Evaluation of Variables" if you want to do this.

IMPORTANT NOTE: When a variable command is encountered in the input script and the variable name has
already been specified, the command is ignored. This means variables can NOT be re−defined in an input script
(with 2 exceptions, read further). This is to allow an input script to be processed multiple times without resetting
the variables; see the jump or include commands. It also means that using the command−line switch −var will
override a corresponding index variable setting in the input script.

There are two exceptions to this rule. First, variables of style equal and atom ARE redefined each time the
command is encountered. This only changes their associated formula if the formula contains a substitution for
another variable, e.g. $x. But that can be useful, for example, in a loop.

Second, as described below, if a variable is iterated on to the end of its list of strings via the next command, it is
removed from the list of active variables, and is thus available to be re−defined in a subsequent variable
command. The delete style does the same thing.

This section of the manual explains how occurrences of a variable name in an input script line are replaced by the
variable's string. The variable name can be referenced as $x if the name "x" is a single character, or as
${LoopVar} if the name "LoopVar" is one or more characters.

As described below, for variable styles index, loop, universe, and uloop, which string is assigned to a variable can
be incremented via the next command. When there are no more strings to assign, the variable is exhausted and a
flag is set that causes the next jump command encountered in the input script to be skipped. This enables the
construction of simple loops in the input script that are iterated over and then exited from.

As explained above, an exhausted variable can be re−used in an input script. The delete style also removes the
variable, the same as if it were exhausted, allowing it to be redefined later in the input script or when the input
script is looped over. This can be useful when breaking out of a loop via the if and jump commands before the
variable would become exhausted. For example,

label loop
variable a loop 5
print "A = $a"
if $a > 2 then "jump in.script break"
next a
jump in.script loop
label break
variable a delete

677

For the index style, one or more strings are specified. Initially, the 1st string is assigned to the variable. Each time
a next command is used with the variable name, the next string is assigned. All processors assign the same string
to the variable.

Index style variables with a single string value can also be set by using the command−line switch −var; see this
section for details.

The loop style is identical to the index style except that the strings are the integers from 1 to N. This allows
generation of a long list of runs (e.g. 1000) without having to list N strings in the input script. Initially, the string
"1" is assigned to the variable. Each time a next command is used with the variable name, the next string ("2",
"3", etc) is assigned. All processors assign the same string to the variable.

For the world style, one or more strings are specified. There must be one string for each processor partition or
"world". See this section of the manual for information on running LAMMPS with multiple partitions via the
"−partition" command−line switch. This variable command assigns one string to each world. All processors in the
world are assigned the same string. The next command cannot be used with equal style variables, since there is
only one value per world. This style of variable is useful when you wish to run different simulations on different
partitions, or when performing a parallel tempering simulation (see the temper command), to assign different
temperatures to different partitions.

For the universe style, one or more strings are specified. There must be at least as many strings as there are
processor partitions or "worlds". See this page for information on running LAMMPS with multiple partitions via
the "−partition" command−line switch. This variable command initially assigns one string to each world. When a
next command is encountered using this variable, the first processor partition to encounter it, is assigned the next
available string. This continues until all the variable strings are consumed. Thus, this command can be used to run
50 simulations on 8 processor partitions. The simulations will be run one after the other on whatever partition
becomes available, until they are all finished. Universe style variables are incremented using the files
"tmp.lammps.variable" and "tmp.lammps.variable.lock" which you will see in your directory during such a
LAMMPS run.

The uloop style is identical to the universe style except that the strings are the integers from 1 to N. This allows
generation of long list of runs (e.g. 1000) without having to list N strings in the input script.

For the equal and atom styles, a single string is specified which represents a formula that will be evaluated afresh
each time the variable is used. If you want spaces in the string, enclose it in double quotes so the parser will treat
it as a single argument. For equal style variables the formula computes a scalar quantity, which becomes the value
of the variable whenever it is evaluated. For atom style variables the formula computes one quantity for each atom
whenever it is evaluated.

Note that equal and atom variables can produce different values at different stages of the input script or at
different times during a run. For example, if an equal variable is used in a fix print command, different values
could be printed each timestep it was invoked. If you want a variable to be evaluated immediately, so that the
result is stored by the variable instead of the string, see the section below on "Immediate Evaluation of Variables".

The next command cannot be used with equal or atom style variables, since there is only one string.

The formula for an equal or atom variable can contain a variety of quantities. The syntax for each kind of quantity
is simple, but multiple quantities can be nested and combined in various ways to build up formulas of arbitrary
complexity. For example, this is a valid (though strange) variable formula:

variable x equal "pe + c_MyTemp / vol^(1/3)"

678

Specifically, an formula can contain numbers, thermo keywords, math operations, group functions, atom values,
atom vectors, compute references, fix references, and references to other variables.

Number 0.2, 100, 1.0e20, −15.4, etc

Thermo
keywords

vol, pe, ebond, etc

Math operations
(), −x, x+y, x−y, x*y, x/y, x^y, sqrt(x), exp(x), ln(x), log(x), sin(x), cos(x), tan(x), asin(x),
acos(x), atan(x), ceil(x), floor(x), round(x)

Group functions
count(ID), mass(ID), charge(ID), xcm(ID,dim), vcm(ID,dim), fcm(ID,dim), bound(ID,dir),
gyration(ID), ke(ID)

Region
functions

count(ID,IDR), mass(ID,IDR), charge(ID,IDR), xcm(ID,dim,IDR), vcm(ID,dim,IDR),
fcm(ID,dim,IDR), bound(ID,dir,IDR), gyration(ID,IDR), ke(ID,IDR)

Atom values mass[i], type[i], x[i], y[i], z[i], vx[i], vy[i], vz[i], fx[i], fy[i], fz[i]

Atom vectors mass, type, x, y, z, vx, vy, vz, fx, fy, fz

Compute
references

c_ID, c_ID[i], c_ID[i][j]

Fix references f_ID, f_ID[i], f_ID[i][j]

Other variablesv_name, v_name[i]
Most of the formula elements generate scalar values. The exceptions are those that represent a per−atom vector of
values. These are the atom vectors, compute references that represent a per−atom vector, fix references that
represent a per−atom vector, and variables that are atom−style variables.

A formula for equal−style variables cannot use any formula element that generates a per−atom vector. A formula
for an atom−style variable can use formula elements that produce either scalar values or per−atom vectors.

The thermo keywords allowed in a formula are those defined by the thermo_style custom command. Thermo
keywords that require a compute to calculate their values such as "temp" or "press", use computes stored and
invoked by the thermo_style command. This means that you can only use those keywords in a variable if the style
you are using with the thermo_style command (and the thermo keywords associated with that style) also define
and use the needed compute. Note that some thermo keywords use a compute indirectly to calculate their value
(e.g. the enthalpy keyword uses temp, pe, and pressure). If a variable is evaluated directly in an input script (not
during a run), then the values accessed by the thermo keyword must be current. See the discussion below about
"Variable Accuracy".

Math operations are written in the usual way, where the "x" and "y" in the examples above can be another section
of the formula. Operators are evaluated left to right and have the usual precedence: unary minus before
exponentiation ("^"), exponentiation before multiplication and division, and multiplication and division before
addition and subtraction. Parenthesis can be used to group one or more portions of a formula and enforce a
desired order of operations. Additional math operations can be specified as keywords followed by a parenthesized
argument, e.g. sqrt(v_ke). Note that ln() is the natural log; log() is the base 10 log. The ceil(), floor(), and round()
operations are those in the C math library. Ceil() is the smallest integer not less than its argument. Floor() if the
largest integer not greater than its argument. Round() is the nearest integer to its argument.

Group functions take one or two arguments in a specific format. The first argument is the group−ID. The dim
argument, if it exists, is x or y or z. The dir argument, if it exists, is xmin, xmax, ymin, ymax, zmin, or zmax. The
group function count() is the number of atoms in the group. The group functions mass() and charge() are the total
mass and charge of the group. Xcm() and vcm() return components of the position and velocity of the center of
mass of the group. Fcm() returns a component of the total force on the group of atoms. Bound() returns the
min/max of a particular coordinate for all atoms in the group. Gyration() computes the radius−of−gyration of the
group of atoms. See the fix gyration command for a definition of the formula.

679

Region functions are exactly the same as group functions except they take an extra argument which is the region
ID. The function is computed for all atoms that are in both the group and the region. If the group is "all", then the
only criteria for atom inclusion is that it be in the region.

Atom values take a single integer argument I from 1 to N, where I is the an atom−ID, e.g. x[243], which means
use the x coordinate of the atom with ID = 243.

Atom vectors generate one value per atom, so that a reference like "vx" means the x−component of each atom's
velocity will be used when evaluating the variable. Note that other atom attributes can be used as inputs to a
variable by using the compute property/atom command and then specifying a quantity from that compute.

Compute references access quantities calculated by a compute. The ID in the reference should be replaced by the
ID of a compute defined elsewhere in the input script. As discussed in the doc page for the compute command,
computes can produce global, per−atom, or local values. Only global and per−atom values can be used in a
variable. Computes can also produce a scalar, vector, or array. An equal−style variable can use scalar values,
which means a scalar itself, or an element of a vector or array. Atom−style variables can use either scalar or
vector values. A vector value can be a vector itself, or a column of an array. See the doc pages for individual
computes to see what kind of values they produce.

Examples of different kinds of compute references are as follows. There is no ambiguity as to what a reference
means, since computes only produce global or per−atom quantities, never both.

c_ID global scalar, or per−atom vector

c_ID[I]
Ith element of global vector, or atom I's value in per−atom vector, or Ith column from per−atom
array

c_ID[I][J] I,J element of global array, or atom I's Jth value in per−atom array
If a variable containing a compute is evaluated directly in an input script (not during a run), then the values
accessed by the compute must be current. See the discussion below about "Variable Accuracy".

Fix references access quantities calculated by a fix. The ID in the reference should be replaced by the ID of a fix
defined elsewhere in the input script. As discussed in the doc page for the fix command, fixes can produce global,
per−atom, or local values. Only global and per−atom values can be used in a variable. Fixes can also produce a
scalar, vector, or array. An equal−style variable can use scalar values, which means a scalar itself, or an element
of a vector or array. Atom−style variables can use either scalar or vector values. A vector value can be a vector
itself, or a column of an array. See the doc pages for individual fixes to see what kind of values they produce.

The different kinds of fix references are exactly the same as the compute references listed in the above table,
where "c_" is replaced by "f_".

f_ID global scalar, or per−atom vector

f_ID[I]
Ith element of global vector, or atom I's value in per−atom vector, or Ith column from per−atom
array

f_ID[I][J] I,J element of global array, or atom I's Jth value in per−atom array
If a variable containing a fix is evaluated directly in an input script (not during a run), then the values accessed by
the fix should be current. See the discussion below about "Variable Accuracy".

Note that some fixes only generate quantities on certain timesteps. If a variable attempts to access the fix on
non−allowed timesteps, an error is generated. For example, the fix ave/time command may only generate
averaged quantities every 100 steps. See the doc pages for individual fix commands for details.

680

Variable references access quantities calulated by other variables, which will cause those variables to be
evaluated. The name in the reference should be replaced by the name of a variable defined elsewhere in the input
script. As discussed on this doc page, atom−style variables generate a per−atom vector of values; all other
variable styles generate a single scalar value. An equal−style variable can use scalar values produce by another
variable, but not per−atom vectors. Atom−style variables can use either scalar or per−atom vector values.

Examples of different kinds of variable references are as follows. There is no ambiguity as to what a reference
means, since variables only produce scalar or per−atom vectors, never both.

v_name scalar, or per−atom vector

v_name[I] atom I's value in per−atom vector
IMPORTANT NOTE: If you define variables in circular manner like this:

variable a equal v_b
variable b equal v_a
print $a

then LAMMPS may run for a while when the print statement is invoked!

Immediate Evaluation of Variables:

There is a difference between referencing a variable with a leading $ sign (e.g. $x or ${abc}) versus with a
leading "v_" (e.g. v_x or v_abc). The former can be used in any command, including a variable command, to
force the immediate evaluation of the referenced variable and the substitution of its value into the command. The
latter is a required kind of argument to some commands (e.g. the fix ave/spatial or dump custom or thermo_style
commands) if you wish it to evaluate a variable periodically during a run. It can also be used in a variable formula
if you wish to reference a second variable. The second variable will be evaluated whenever the first variable is
evaluated.

As an example, suppose you use this command in your input script to define the variable "v" as

variable v equal vol

before a run where the simulation box size changes. You might think this will assign the initial volume to the
variable "v". That is not the case. Rather it assigns a formula which evaluates the volume (using the thermo_style
keyword "vol") to the variable "v". If you use the variable "v" in some other command like "fix ave/time" then the
current volume of the box will be evaluated continuously during the run.

If you want to store the initial volume of the system, you can do it this way:

variable v equal vol
variable v0 equal $v

The second command will force "v" to be evaluated (yielding the initial volume) and assign that value to the
variable "v0". Thus the command

thermo_style custom step v_v v_v0

would print out both the current and initial volume periodically during the run.

Note that it is a mistake to enclose a variable formula in double quotes if it contains variables preceeded by $
signs. For example,

681

variable vratio equal "${vfinal}/${v0}"

This is because the quotes prevent variable substitution (see this section on parsing input script commands), and
thus an error will occur when the formula for "vratio" is evaluated later.

Variable Accuracy:

Obviously, LAMMPS attempts to evaluate variables containing formulas (equal and atom style variables)
accurately whenever the evaluation is performed. Depending on what is included in the formula, this may require
invoking a compute, either directly or indirectly via a thermo keyword, or accessing a value previously calculated
by a compute, or accessing a value calculated and stored by a fix. If the compute is one that calculates the
pressure or energy of the system, then these quantities need to be tallied during the evaluation of the interatomic
potentials (pair, bond, etc) on timesteps that the variable will need the values.

LAMMPS keeps track of all of this during a run or energy minimization. An error will be generated if you attempt
to evaluate a variable on timesteps when it cannot produce accurate values. For example, if a thermo_style custom
command prints a variable which accesses values stored by a fix ave/time command and the timesteps on which
thermo output is generated are not multiples of the averaging frequency used in the fix command, then an error
will occur.

An input script can also request variables be evaluated before or after or in between runs, e.g. by including them
in a print command. In this case, if a compute is needed to evaluate a variable (either directly or indirectly),
LAMMPS will not invoke the compute, but it will use a value previously calculated by the compute if it is
current. Fixes will always provide a quantity needed by a variable, but the quantity may or may not be current.
This leads to one of three kinds of behavior:

(1) The variable may be evaluated accurately. If it contains references to a compute or fix, and these values were
calculated on the last timestep of a preceeding run, then they will be accessed and used by the variable and the
result will be accurate.

(2) LAMMPS may not be able to evaluate the variable and generate an error. For example, if the variable requires
a quantity from a compute that is not current, LAMMPS will not do it. This means, for example, that such a
variable cannot be evaluated before the first run has occurred.

One way to get around this problem is to perform a 0−timestep run before using the variable. For example, these
commands

variable t equal temp
print "Initial temperature = $t"
run 1000

will generate an error if the run is the first run specified in the input script, because generating a value for the "t"
variable requires a compute for calculating the temperature to be invoked.

However, this sequence of commands would be fine:

run 0
variable t equal temp
print "Initial temperature = $t"
run 1000

The 0−timestep run initializes and invokes various computes, including the one for temperature, so that the value
it stores is current and can be accessed by the variable "t" after the run has completed. Note that a 0−timestep run
does not alter the state of the system, so it does not change the input state for the 1000−timestep run that follows.

682

Also note that the 0−timestep run must actually use and invoke the compute in question (e.g. via thermo or dump
output) in order for it to enable the compute to be used in a variable after the run.

Unlike computes, fixes will never generate an error if their values are accessed by a variable in between runs.
They always return some value to the variable. However, the value may not be what you expect if the fix has not
yet calculated the quantity of interest or it is not current. For example, the fix indent command stores the force on
the indenter. But this is not computed until a run is performed. Thus if a variable attempts to print this value
before the first run, zeroes will be output. Again, performing a 0−timestep run before printing the variable has the
desired effect.

(3) The variable may be evaluated incorrectly. And LAMMPS may have no way to detect this has occurred.
Consider the following sequence of commands:

pair_coeff 1 1 1.0 1.0
run 1000
pair_coeff 1 1 1.5 1.0
variable e equal pe
print "Final potential energy = $e"

The first run is performed using one setting for the pairwise potential defined by the pair_style and pair_coeff
commands. The potential energy is evaluated on the final timestep and stored by the compute pe compute (this is
done by the thermo_style command). Then a pair coefficient is changed, altering the potential energy of the
system. When the potential energy is printed via the "e" variable, LAMMPS will use the potential energy value
stored by the compute pe compute, thinking it is current. There are many other commands which could alter the
state of the system between runs, causing a variable to evaluate incorrectly.

The solution to this issue is the same as for case (2) above, namely perform a 0−timestep run before the variable is
evaluated to insure the system is up−to−date. For example, this sequence of commands would print a potential
energy that reflected the changed pairwise coefficient:

pair_coeff 1 1 1.0 1.0
run 1000
pair_coeff 1 1 1.5 1.0
run 0
variable e equal pe
print "Final potential energy = $e"

Restrictions:

Indexing any formula element by global atom ID, such as an atom value, requires the atom style to use a global
mapping in order to look up the vector indices. By default, only atom styles with molecular information create
global maps. The atom_modify map command can override the default.

All universe− and uloop−style variables defined in an input script must have the same number of values.

Related commands:

next, jump, include, temper, fix print, print

Default: none

683

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

velocity command

Syntax:

velocity group−ID style args keyword value ...

group−ID = ID of group of atoms whose velocity will be changed•
style = create or set or scale or ramp or zero

create args = temp seed
 temp = temperature value (temperature units)
 seed = random # seed (positive integer)

set args = vx vy vz
 vx,vy,vz = velocity value or NULL (velocity units)

scale arg = temp
 temp = temperature value (temperature units)

ramp args = vdim vlo vhi dim clo chi
 vdim = vx or vy or vz
 vlo,vhi = lower and upper velocity value (velocity units)
 dim = x or y or z
 clo,chi = lower and upper coordinate bound (distance units)

zero arg = linear or angular
linear = zero the linear momentum
angular = zero the angular momentum

•

zero or more keyword/value pairs may be appended•
keyword = dist or sum or mom or rot or temp or loop or units

dist value = uniform or gaussian
sum value = no or yes
mom value = no or yes
rot value = no or yes
temp value = temperature ID
loop value = all or local or geom
units value = box or lattice

•

Examples:

velocity all create 300.0 4928459 rot yes dist gaussian
velocity border set NULL 4.0 3.0 sum yes units box
velocity flow scale 300.0
velocity flow ramp lattice vx 0.0 5.0 y 5 25 temp mytemp
velocity all zero linear

Description:

Set or change the velocities of a group of atoms in one of several styles. For each style, there are required
arguments and optional keyword/value parameters. Not all options are used by each style. Each option has a
default as listed below.

The create style generates an ensemble of velocities using a random number generator with the specified seed as
the specified temperature.

The set style sets the velocities of all atoms in the group to the specified values. If any component is specified as
NULL, then it is not set.

684

http://lammps.sandia.gov

The scale style computes the current temperature of the group of atoms and then rescales the velocities to the
specified temperature.

The ramp style is similar to that used by the compute temp/ramp command. Velocities ramped uniformly from
vlo to vhi are applied to dimension vx, or vy, or vz. The value assigned to a particular atom depends on its relative
coordinate value (in dim) from clo to chi. For the example above, an atom with y−coordinate of 10 (1/4 of the
way from 5 to 25), would be assigned a x−velocity of 1.25 (1/4 of the way from 0.0 to 5.0). Atoms outside the
coordinate bounds (less than 5 or greater than 25 in this case), are assigned velocities equal to vlo or vhi (0.0 or
5.0 in this case).

The zero style adjusts the velocities of the group of atoms so that the aggregate linear or angular momentum is
zero. No other changes are made to the velocities of the atoms.

All temperatures specified in the velocity command are in temperature units; see the units command. The units of
velocities and coordinates depend on whether the units keyword is set to box or lattice, as discussed below.

For all styles, no atoms are assigned z−component velocities if the simulation is 2d; see the dimension command.

The keyword/value option pairs are used in the following ways by the various styles.

The dist option is used by create. The ensemble of generated velocities can be a uniform distribution from some
minimum to maximum value, scaled to produce the requested temperature. Or it can be a gaussian distribution
with a mean of 0.0 and a sigma scaled to produce the requested temperature.

The sum option is used by all styles, except zero. The new velocities will be added to the existing ones if sum =
yes, or will replace them if sum = no.

The mom and rot options are used by create. If mom = yes, the linear momentum of the newly created ensemble
of velocities is zeroed; if rot = yes, the angular momentum is zeroed.

The temp option is used by create and scale to specify a compute that calculates temperature in a desired way. If
this option is not specified, create and scale calculate temperature using a compute that is defined as follows:

compute velocity_temp group−ID temp

where group−ID is the same ID used in the velocity command. i.e. the group of atoms whose velocity is being
altered. This compute is deleted when the velocity command is finished. See the compute temp command for
details. If the computed temperature should have degrees−of−freedom removed due to fix constraints (e.g.
SHAKE or rigid−body constraints), then the appropriate fix command must be specified before the velocity
command is issued.

The loop option is used by create in the following ways.

If loop = all, then each processor loops over all atoms in the simulation to create velocities, but only stores
velocities for atoms it owns. This can be a slow loop for a large simulation. If atoms were read from a data file,
the velocity assigned to a particular atom will be the same, independent of how many processors are being used.
This will not be the case if atoms were created using the create_atoms command, since atom IDs will likely be
assigned to atoms differently.

If loop = local, then each processor loops over only its atoms to produce velocities. The random number seed is
adjusted to give a different set of velocities on each processor. This is a fast loop, but the velocity assigned to a
particular atom will depend on which processor owns it. Thus the results will always be different when a

685

simulation is run on a different number of processors.

If loop = geom, then each processor loops over only its atoms. For each atom a unique random number seed is
created, based on the atom's xyz coordinates. A velocity is generated using that seed. This is a fast loop and the
velocity assigned to a particular atom will be the same, independent of how many processors are used. However,
the set of generated velocities may be more correlated than if the all or local options are used.

Note that the loop geom option will not necessarily assign identical velocities for two simulations run on different
machines. This is because the computations based on xyz coordinates are sensitive to tiny differences in the
double−precision value for a coordinate as stored on a particular machine.

The units option is used by set and ramp. If units = box, the velocities and coordinates specified in the velocity
command are in the standard units described by the units command (e.g. Angstroms/fmsec for real units). If units
= lattice, velocities are in units of lattice spacings per time (e.g. spacings/fmsec) and coordinates are in lattice
spacings. The lattice command must have been previously used to define the lattice spacing.

Restrictions: none

Related commands:

fix shake, lattice

Default:

The option defaults are dist = uniform, sum = no, mom = yes, rot = no, temp = full style on group−ID, loop = all,
and units = lattice.

686

LAMMPS WWW Site − LAMMPS Documentation − LAMMPS Commands

write_restart command

Syntax:

write_restart file

file = name of file to write restart information to•

Examples:

write_restart restart.equil
write_restart poly.%.*

Description:

Write a binary restart file of the current state of the simulation. See the read_restart command for information
about what is stored in a restart file.

During a long simulation, the restart command is typically used to dump restart files periodically. The
write_restart command is useful after a minimization or whenever you wish to write out a single current restart
file.

Similar to dump files, the restart filename can contain two wild−card characters. If a "*" appears in the filename,
it is replaced with the current timestep value. If a "%" character appears in the filename, then one file is written by
each processor and the "%" character is replaced with the processor ID from 0 to P−1. An additional file with the
"%" replaced by "base" is also written, which contains global information. For example, the files written for
filename restart.% would be restart.base, restart.0, restart.1, ... restart.P−1. This creates smaller files and can be a
fast mode of output on parallel machines that support parallel I/O for output.

Restart files can be read by a read_restart command to restart a simulation from a particular state. Because the file
is binary (to enable exact restarts), it may not be readable on another machine. In this case, the restart2data
program in the tools directory can be used to convert a restart file to an ASCII data file. Both the read_restart
command and restart2data tool can read in a restart file that was written with the "%" character so that multiple
files were created.

Restrictions:

This command requires inter−processor communication to migrate atoms before the restart file is written. This
means that your system must be ready to perform a simulation before using this command (force fields setup,
atom masses set, etc).

Related commands:

restart, read_restart

Default: none

687...1

http://lammps.sandia.gov

	Table of Contents
	
	LAMMPS Documentation
	1. Introduction
	1.1 What is LAMMPS
	1.2 LAMMPS features
	General features
	Particle and model types
	Force fields
	Atom creation
	Ensembles, constraints, and boundary conditions
	Integrators
	Diagnostics
	Output
	Pre- and post-processing
	Specialized features
	1.3 LAMMPS non-features
	1.4 Open source distribution
	1.5 Acknowledgments and citations

	2. Getting Started
	2.1 What's in the LAMMPS distribution
	2.2 Making LAMMPS
	2.3 Making LAMMPS with optional packages
	2.4 Building LAMMPS as a library
	2.5 Running LAMMPS
	2.6 Command-line options
	2.7 LAMMPS screen output
	2.8 Running on GPUs
	GPU hardware
	GPU single vs double precision
	GPU Memory
	2.9 Tips for users of previous LAMMPS versions

	3. Commands
	3.1 LAMMPS input script
	3.2 Parsing rules
	3.3 Input script structure
	3.4 Commands listed by category
	3.5 Individual commands
	Fix styles
	Compute styles
	Pair_style potentials
	Bond_style potentials
	Angle_style potentials
	Dihedral_style potentials
	Improper_style potentials
	Kspace solvers

	4. How-to discussions
	4.1 Restarting a simulation
	4.2 2d simulations
	4.3 CHARMM and AMBER force fields
	4.4 Running multiple simulations from one input script
	4.5 Parallel tempering
	4.6 Granular models
	4.7 TIP3P water model
	4.8 TIP4P water model
	4.9 SPC water model
	4.10 Coupling LAMMPS to other codes
	4.11 Visualizing LAMMPS snapshots
	4.12 Non-orthogonal simulation boxes
	4.13 NEMD simulations
	4.14 Extended spherical and aspherical particles
	4.15 Output from LAMMPS (thermo, dumps, computes, fixes, variables)
	4.16 Thermostatting, barostatting, and computing temperature
	4.16 Walls

	5. Example problems
	6. Performance &scalability
	7. Additional tools
	amber2lmp tool
	binary2txt tool
	ch2lmp tool
	chain tool
	data2xmovie tool
	eam generate tool
	lmp2arc tool
	lmp2cfg tool
	lmp2traj tool
	lmp2vmd tool
	matlab tool
	micelle2d tool
	msi2lmp tool
	pymol_asphere tool
	python tool
	restart2data tool
	thermo_extract tool
	vim tool
	xmovie tool

	8. Modifying &extending LAMMPS
	Atom styles
	Bond, angle, dihedral, improper potentials
	Compute styles
	Dump styles
	Dump custom output options
	Fix styles
	Input script commands
	Kspace computations
	Minimization solvers
	Pairwise potentials
	Region styles
	Thermodynamic output options
	Variable options
	Submitting new features to the developers to include in LAMMPS

	9. Errors
	9.1 Common problems
	9.2 Reporting bugs
	9.3 Error &warning messages
	Errors:
	Warnings:

	10. Future and history
	10.1 Coming attractions
	10.2 Past versions

	angle_style charmm command
	angle_style class2 command
	angle_style cg/cmm command
	angle_coeff command
	angle_style cosine command
	angle_style cosine/delta command
	angle_style cosine/squared command
	angle_style harmonic command
	angle_style hybrid command
	angle_style none command
	angle_style command
	angle_style table command
	atom_modify command
	atom_style command
	bond_style class2 command
	bond_coeff command
	bond_style fene command
	bond_style fene/expand command
	bond_style harmonic command
	bond_style hybrid command
	bond_style morse command
	bond_style none command
	bond_style nonlinear command
	bond_style quartic command
	bond_style command
	bond_style table command
	boundary command
	change_box command
	clear command
	communicate command
	compute command
	compute ackland/atom command
	compute angle/local command
	compute bond/local command
	compute centro/atom command
	compute cna/atom command
	compute com command
	compute com/molecule command
	compute coord/atom command
	compute damage/atom command
	compute dihedral/local command
	compute displace/atom command
	compute erotate/asphere command
	compute erotate/sphere command
	compute event/displace command
	compute group/group command
	compute gyration command
	compute gyration/molecule command
	compute heat/flux command
	Sample LAMMPS input script

	compute improper/local command
	compute ke command
	compute ke/atom command
	compute_modify command
	compute msd command
	compute msd/molecule command
	compute pair/local command
	compute pe command
	compute pe/atom command
	compute pressure command
	compute property/atom command
	compute property/local command
	compute property/molecule command
	compute rdf command
	compute reduce command
	compute reduce/region command
	compute stress/atom command
	compute temp command
	compute temp/asphere command
	compute temp/com command
	compute temp/deform command
	compute temp/partial command
	compute temp/profile command
	compute temp/ramp command
	compute temp/region command
	compute temp/sphere command
	create_atoms command
	create_box command
	delete_atoms command
	delete_bonds command
	dielectric command
	dihedral_style charmm command
	dihedral_style class2 command
	dihedral_coeff command
	dihedral_style harmonic command
	dihedral_style helix command
	dihedral_style hybrid command
	dihedral_style multi/harmonic command
	dihedral_style none command
	dihedral_style opls command
	dihedral_style command
	dimension command
	dipole command
	displace_atoms command
	displace_box command
	dump command
	dump_modify command
	echo command
	fix command
	fix addforce command
	fix atc command
	fix ave/atom command
	fix ave/histo command
	fix ave/spatial command
	fix ave/time command
	fix aveforce command
	fix bond/break command
	fix bond/create command
	fix bond/swap command
	fix box/relax command
	fix deform command
	fix deposit command
	fix drag command
	fix dt/reset command
	fix efield command
	fix enforce2d command
	fix evaporate command
	fix freeze command
	fix gravity command
	fix heat command
	fix imd command
	fix indent command
	fix langevin command
	fix lineforce command
	fix_modify command
	fix momentum command
	fix move command
	fix nph command
	fix npt command
	fix npt/asphere command
	fix npt/sphere command
	fix nve command
	fix nve/asphere command
	fix nve/limit command
	fix nve/noforce command
	fix nve/sphere command
	fix nvt command
	fix nvt/asphere command
	fix nvt/sllod command
	fix nvt/sphere command
	fix orient/fcc command
	fix planeforce command
	fix poems
	fix pour command
	fix press/berendsen command
	fix print command
	fix reax/bonds command
	fix recenter command
	fix rigid
	fix setforce command
	fix shake command
	fix smd command
	fix spring command
	fix spring/rg command
	fix spring/self command
	fix store/coord command
	fix store/force command
	fix temp/berendsen command
	fix temp/rescale command
	fix thermal/conductivity command
	fix tmd command
	fix ttm command
	fix viscosity command
	fix viscous command
	fix wall/lj93 command
	fix wall/lj126 command
	fix wall/colloid command
	fix wall/harmonic command
	fix wall/gran command
	fix wall/reflect command
	fix wall/region command
	fix wiggle command
	group command
	if command
	improper_style class2 command
	improper_coeff command
	improper_style cvff command
	improper_style harmonic command
	improper_style hybrid command
	improper_style none command
	improper_style command
	include command
	jump command
	kspace_modify command
	kspace_style command
	label command
	lattice command
	log command
	mass command
	min_modify command
	min_style command
	minimize command
	neigh_modify command
	neighbor command
	newton command
	next command
	orient command
	origin command
	pair_style airebo command
	pair_style born/coul/long command
	pair_style buck command
	pair_style buck/coul/cut command
	pair_style buck/coul/long command
	pair_style buck/coul command
	pair_style lj/charmm/coul/charmm command
	pair_style lj/charmm/coul/charmm/implicit command
	pair_style lj/charmm/coul/long command
	pair_style lj/charmm/coul/long/opt command
	pair_style lj/class2 command
	pair_style lj/class2/coul/cut command
	pair_style lj/class2/coul/long command
	pair_style cg/cmm command
	pair_style cg/cmm/coul/cut command
	pair_style cg/cmm/coul/long command
	pair_coeff command
	pair_style colloid command
	pair_style coul/cut command
	pair_style coul/debye command
	pair_style coul/long command
	pair_style dipole/cut command
	pair_style dpd command
	pair_style dsmc command
	pair_style eam command
	pair_style eam/opt command
	pair_style eam/alloy command
	pair_style eam/alloy/opt command
	pair_style eam/cd command
	pair_style eam/fs command
	pair_style eam/fs/opt command
	pair_style gayberne command
	pair_style gayberne/gpu command
	pair_style gran/hooke command
	pair_style gran/hooke/history command
	pair_style gran/hertz/history command
	pair_style lj/gromacs command
	pair_style lj/gromacs/coul/gromacs command
	pair_style hybrid command
	pair_style hybrid/overlay command
	pair_style lj/cut command
	pair_style lj/cut/gpu command
	pair_style lj/cut/opt command
	pair_style lj/cut/coul/cut command
	pair_style lj/cut/coul/debye command
	pair_style lj/cut/coul/long command
	pair_style lj/cut/coul/long/tip4p command
	pair_style lj96/cut command
	pair_style lj/coul command
	pair_style lj/expand command
	pair_style lj/smooth command
	pair_style lubricate command
	pair_style meam command
	pair_modify command
	pair_style morse command
	pair_style morse/opt command
	pair_style none command
	pair_style peri/pmb command
	pair_style reax command
	pair_style resquared command
	pair_style soft command
	pair_style command
	pair_style sw command
	pair_style table command
	pair_style tersoff command
	pair_style tersoff/zbl command
	pair_write command
	pair_style yukawa command
	pair_style yukawa/colloid command
	prd command
	print command
	processors command
	read_data command
	read_restart command
	region command
	replicate command
	reset_timestep command
	restart command
	run command
	run_style command
	set command
	shape command
	shell command
	special_bonds command
	temper command
	thermo command
	thermo_modify command
	thermo_style command
	timestep command
	uncompute command
	undump command
	unfix command
	units command
	variable command
	velocity command
	write_restart command

