|
CGAL 4.3 - Geometric Object Generators
|
Namespaces | |
| cpp11 | |
| IO | |
Typedefs | |
| typedef Interval_nt< false > | Interval_nt_advanced |
Functions | |
| NT | abs (const NT &x) |
| result_type | compare (const NT &x, const NT &y) |
| result_type | div (const NT1 &x, const NT2 &y) |
| void | div_mod (const NT1 &x, const NT2 &y, result_type &q, result_type &r) |
| result_type | gcd (const NT1 &x, const NT2 &y) |
| result_type | integral_division (const NT1 &x, const NT2 &y) |
| NT | inverse (const NT &x) |
| result_type | is_negative (const NT &x) |
| result_type | is_one (const NT &x) |
| result_type | is_positive (const NT &x) |
| result_type | is_square (const NT &x) |
| result_type | is_square (const NT &x, NT &y) |
| result_type | is_zero (const NT &x) |
| NT | kth_root (int k, const NT &x) |
| result_type | mod (const NT1 &x, const NT2 &y) |
| NT | root_of (int k, InputIterator begin, InputIterator end) |
| result_type | sign (const NT &x) |
| void | simplify (const NT &x) |
| NT | sqrt (const NT &x) |
| NT | square (const NT &x) |
| double | to_double (const NT &x) |
| std::pair< double, double > | to_interval (const NT &x) |
| NT | unit_part (const NT &x) |
| void | Assert_circulator (const C &c) |
| void | Assert_iterator (const I &i) |
| void | Assert_circulator_or_iterator (const IC &i) |
| void | Assert_input_category (const I &i) |
| void | Assert_output_category (const I &i) |
| void | Assert_forward_category (const IC &ic) |
| void | Assert_bidirectional_category (const IC &ic) |
| void | Assert_random_access_category (const IC &ic) |
| C::difference_type | circulator_distance (C c, C d) |
| C::size_type | circulator_size (C c) |
| bool | is_empty_range (const IC &i, const IC &j) |
|
iterator_traits< IC > ::difference_type | iterator_distance (IC ic1, IC ic2) |
| Iterator_tag | query_circulator_or_iterator (const I &i) |
| Circulator_tag | query_circulator_or_iterator (const C &c) |
| Mode | get_mode (std::ios &s) |
| Mode | set_ascii_mode (std::ios &s) |
| Mode | set_binary_mode (std::ios &s) |
| Mode | set_mode (std::ios &s, IO::Mode m) |
| Mode | set_pretty_mode (std::ios &s) |
| bool | is_ascii (std::ios &s) |
| bool | is_binary (std::ios &s) |
| bool | is_pretty (std::ios &s) |
| Output_rep< T > | oformat (const T &t) |
| Input_rep< T > | iformat (const T &t) |
| Output_rep< T, F > | oformat (const T &t, F) |
| ostream & | operator<< (ostream &os, Class c) |
| istream & | operator>> (istream &is, Class c) |
|
Polynomial_traits_d < Polynomial_d > ::Canonicalize::result_type | canonicalize (const Polynomial_d &p) |
|
Polynomial_traits_d < Polynomial_d > ::Compare::result_type | compare (const Polynomial_d &p, const Polynomial_d &q) |
|
Polynomial_traits_d < Polynomial_d > ::Degree::result_type | degree (const Polynomial_d &p, int i, index=Polynomial_traits_d< Polynomial_d >::d-1) |
|
Polynomial_traits_d < Polynomial_d > ::Degree_vector::result_type | degree_vector (const Polynomial_d &p) |
|
Polynomial_traits_d < Polynomial_d > ::Differentiate::result_type | differentiate (const Polynomial_d &p, index=Polynomial_traits_d< Polynomial_d >::d-1) |
|
Polynomial_traits_d < Polynomial_d > ::Evaluate_homogeneous::result_type | evaluate_homogeneous (const Polynomial_d &p, Polynomial_traits_d< Polynomial_d >::Coefficient_type u, Polynomial_traits_d< Polynomial_d >::Coefficient_type v) |
|
Polynomial_traits_d < Polynomial_d > ::Evaluate::result_type | evaluate (const Polynomial_d &p, Polynomial_traits_d< Polynomial_d >::Coefficient_type x) |
|
Polynomial_traits_d < Polynomial_d > ::Gcd_up_to_constant_factor::result_type | gcd_up_to_constant_factor (const Polynomial_d &p, const Polynomial_d &q) |
|
Polynomial_traits_d < Polynomial_d > ::get_coefficient::result_type | get_coefficient (const Polynomial_d &p, int i) |
|
Polynomial_traits_d < Polynomial_d > ::get_innermost_coefficient::result_type | get_innermost_coefficient (const Polynomial_d &p, Exponent_vector ev) |
|
Polynomial_traits_d < Polynomial_d > ::Innermost_leading_coefficient::result_type | innermost_leading_coefficient (const Polynomial_d &p) |
|
Polynomial_traits_d < Polynomial_d > ::Integral_division_up_to_constant_factor::result_type | integral_division_up_to_constant_factor (const Polynomial_d &p, const Polynomial_d &q) |
|
Polynomial_traits_d < Polynomial_d > ::Invert::result_type | invert (const Polynomial_d &p, int index=Polynomial_traits_d< Polynomial_d >::d-1) |
|
Polynomial_traits_d < Polynomial_d > ::Is_square_free::result_type | is_square_free (const Polynomial_d &p) |
|
Polynomial_traits_d < Polynomial_d > ::Is_zero_at_homogeneous::result_type | is_zero_at_homogeneous (const Polynomial_d &p, InputIterator begin, InputIterator end) |
|
Polynomial_traits_d < Polynomial_d > ::Is_zero_at::result_type | is_zero_at (const Polynomial_d &p, InputIterator begin, InputIterator end) |
|
Polynomial_traits_d < Polynomial_d > ::Leading_coefficient::result_type | leading_coefficient (const Polynomial_d &p) |
|
Polynomial_traits_d < Polynomial_d > ::Make_square_free::result_type | make_square_free (const Polynomial_d &p) |
|
Polynomial_traits_d < Polynomial_d > ::Move::result_type | move (const Polynomial_d &p, int i, int j) |
|
Polynomial_traits_d < Polynomial_d > ::Multivariate_content::result_type | multivariate_content (const Polynomial_d &p) |
|
Polynomial_traits_d < Polynomial_d > ::Negate::result_type | negate (const Polynomial_d &p, int index=Polynomial_traits_d< Polynomial_d >::d-1) |
| int | number_of_real_roots (Polynomial_d f) |
| int | number_of_real_roots (InputIterator start, InputIterator end) |
|
Polynomial_traits_d < Polynomial_d > ::Permute::result_type | permute (const Polynomial_d &p, InputIterator begin, InputIterator end) |
| OutputIterator | polynomial_subresultants (Polynomial_d p, Polynomial_d q, OutputIterator out) |
| OutputIterator1 | polynomial_subresultants_with_cofactors (Polynomial_d p, Polynomial_d q, OutputIterator1 sres_out, OutputIterator2 coP_out, OutputIterator3 coQ_out) |
| OutputIterator | principal_sturm_habicht_sequence (typename Polynomial_d f, OutputIterator out) |
| OutputIterator | principal_subresultants (Polynomial_d p, Polynomial_d q, OutputIterator out) |
| void | pseudo_division (const Polynomial_d &f, const Polynomial_d &g, Polynomial_d &q, Polynomial_d &r, Polynomial_traits_d< Polynomial_d >::Coefficient_type &D) |
|
Polynomial_traits_d < Polynomial_d > ::Pseudo_division_quotient::result_type | pseudo_division_quotient (const Polynomial_d &p, const Polynomial_d &q) |
|
Polynomial_traits_d < Polynomial_d > ::Pseudo_division_remainder::result_type | pseudo_division_remainder (const Polynomial_d &p, const Polynomial_d &q) |
|
Polynomial_traits_d < Polynomial_d > ::Resultant::result_type | resultant (const Polynomial_d &p, const Polynomial_d &q) |
|
Polynomial_traits_d < Polynomial_d > ::Scale_homogeneous::result_type | scale_homogeneous (const Polynomial_d &p, const Polynomial_traits_d< Polynomial_d >::Innermost_coefficient_type &u, const Polynomial_traits_d< Polynomial_d >::Innermost_coefficient_type &v, int index=Polynomial_traits_d< Polynomial_d >::d-1) |
|
Polynomial_traits_d < Polynomial_d > ::Scale::result_type | scale (const Polynomial_d &p, const Polynomial_traits_d< Polynomial_d >::Innermost_coefficient_type &a, int index=Polynomial_traits_d< Polynomial_d >::d-1) |
|
Polynomial_traits_d < Polynomial_d > ::Shift::result_type | shift (const Polynomial_d &p, int i, int index=Polynomial_traits_d< Polynomial_d >::d-1) |
|
Polynomial_traits_d < Polynomial_d > ::Sign_at_homogeneous::result_type | sign_at_homogeneous (const Polynomial_d &p, InputIterator begin, InputIterator end) |
|
Polynomial_traits_d < Polynomial_d > ::Sign_at::result_type | sign_at (const Polynomial_d &p, InputIterator begin, InputIterator end) |
| OutputIterator | square_free_factorize (const Polynomial_d &p, OutputIterator it, Polynomial_traits_d< Polynomial >::Innermost_coefficient &a) |
| OutputIterator | square_free_factorize (const Polynomial_d &p, OutputIterator it) |
| OutputIterator | square_free_factorize_up_to_constant_factor (const Polynomial_d &p, OutputIterator it) |
| OutputIterator | sturm_habicht_sequence (Polynomial_d f, OutputIterator out) |
| OutputIterator1 | sturm_habicht_sequence_with_cofactors (Polynomial_d f, OutputIterator1 stha_out, OutputIterator2 cof_out, OutputIterator3 cofx_out) |
|
CGAL::Coercion_traits < Polynomial_traits_d < Polynomial_d > ::Innermost_coefficient, std::iterator_traits < Input_iterator >::value_type > ::Type | substitute_homogeneous (const Polynomial_d &p, InputIterator begin, InputIterator end) |
|
CGAL::Coercion_traits < Polynomial_traits_d < Polynomial_d > ::Innermost_coefficient, std::iterator_traits < Input_iterator >::value_type > ::Type | substitute (const Polynomial_d &p, InputIterator begin, InputIterator end) |
|
Polynomial_traits_d < Polynomial_d > ::Swap::result_type | swap (const Polynomial_d &p, int i, int j) |
|
Polynomial_traits_d < Polynomial_d > ::Total_degree::result_type | total_degree (const Polynomial_d &p) |
|
Polynomial_traits_d < Polynomial_d > ::Translate_homogeneous::result_type | translate_homogeneous (const Polynomial_d &p, const Polynomial_traits_d< Polynomial_d >::Innermost_coefficient_type &u, const Polynomial_traits_d< Polynomial_d >::Innermost_coefficient_type &v, int index=Polynomial_traits_d< Polynomial_d >::d-1) |
|
Polynomial_traits_d < Polynomial_d > ::Translate::result_type | translate (const Polynomial_d &p, const Polynomial_traits_d< Polynomial_d >::Innermost_coefficient_type &a, int index=Polynomial_traits_d< Polynomial_d >::d-1) |
|
Polynomial_traits_d < Polynomial_d > ::Univariate_content::result_type | univariate_content (const Polynomial_d &p) |
|
Polynomial_traits_d < Polynomial_d > ::Univariate_content_up_to_constant_factor::result_type | univariate_content_up_to_constant_factor (const Polynomial_d &p) |
| bool | has_in_x_range (const Circular_arc_2< CircularKernel > &ca, const Circular_arc_point_2< CircularKernel > &p) |
| bool | has_in_x_range (const Line_arc_2< CircularKernel > &ca, const Circular_arc_point_2< CircularKernel > &p) |
| bool | has_on (const Circle_2< CircularKernel > &c, const Circular_arc_point_2< CircularKernel > &p) |
| OutputIterator | make_x_monotone (const Circular_arc_2< CircularKernel > &ca, OutputIterator res) |
| OutputIterator | make_xy_monotone (const Circular_arc_2< CircularKernel > &ca, OutputIterator res) |
|
Circular_arc_point_2 < CircularKernel > | x_extremal_point (const Circle_2< CircularKernel > &c, bool b) |
| OutputIterator | x_extremal_points (const Circle_2< CircularKernel > &c, OutputIterator res) |
|
Circular_arc_point_2 < CircularKernel > | y_extremal_point (const Circle_2< CircularKernel > &c, bool b) |
| OutputIterator | y_extremal_points (const Circle_2< CircularKernel > &c, OutputIterator res) |
| CGAL::Comparison_result | compare_y_to_right (const Circular_arc_2< CircularKernel > &ca1, const Circular_arc_2< CircularKernel > &ca2, Circular_arc_point_2< CircularKernel > &p) |
| bool | is_finite (double x) |
| bool | is_finite (float x) |
| bool | is_finite (long double x) |
| OutputIterator | compute_roots_of_2 (const RT &a, const RT &b, const RT &c, OutputIterator oit) |
| Root_of_traits< RT >::Root_of_2 | make_root_of_2 (const RT &a, const RT &b, const RT &c, bool s) |
| Root_of_traits< RT >::Root_of_2 | make_root_of_2 (RT alpha, RT beta, RT gamma) |
| Root_of_traits< RT >::Root_of_2 | make_sqrt (const RT &x) |
| Rational | simplest_rational_in_interval (double d1, double d2) |
| Rational | to_rational (double d) |
| bool | is_valid (const T &x) |
| T | max (const T &x, const T &y) |
| T | min (const T &x, const T &y) |
| template<class ForwardIterator , class Creator > | |
| void | perturb_points_2 (ForwardIterator first, ForwardIterator last, double xeps, double yeps=xeps, Random &rnd=default_random, Creator creator=Creator_uniform_2< Kernel_traits< P >::Kernel::RT, P >) |
| perturbs each point in a given range of points by a random amount. More... | |
| template<class P , class OutputIterator > | |
| OutputIterator | points_on_segment_2 (const P &p, const P &q, std::size_t n, OutputIterator o) |
| generates a set of points equally spaced on a segment given the endpoints of the segment. More... | |
| template<class OutputIterator , class Creator > | |
| OutputIterator | points_on_square_grid_2 (double a, std::size_t n, OutputIterator o, Creator creator=Creator_uniform_2< Kernel_traits< P >::Kernel::RT, P >) |
| generates a given number of points on a square grid whose size is determined by the number of points to be generated. More... | |
| template<class RandomAccessIterator , class OutputIterator , class Creator > | |
| OutputIterator | random_collinear_points_2 (RandomAccessIterator first, RandomAccessIterator last, std::size_t n, OutputIterator first2, Random &rnd=default_random, Creator creator=Creator_uniform_2< Kernel_traits< P >::Kernel::RT, P >) |
randomly chooses two points from the range [first,last), creates a random third point on the segment connecting these two points, writes it to first2, and repeats this \( n\) times, thus writing \( n\) points to first2 that are collinear with points in the range [first,last). More... | |
| template<class OutputIterator , class Creator > | |
| OutputIterator | points_on_cube_grid_3 (double a, std::size_t n, OutputIterator o, Creator creator=Creator_uniform_3< Kernel_traits< Point_3 >::Kernel::RT, Point_3 >) |
| generates a given number of points on a cubic grid whose size is determined by the number of points to be generated. More... | |
| template<class OutputIterator , class Creator > | |
| OutputIterator | points_on_cube_grid_d (int dim, double a, std::size_t n, OutputIterator o, Creator creator) |
| generates a given number of points on a cubic grid in any dimension whose size is determined by the number of points to be generated. More... | |
| template<class OutputIterator , class PointGenerator , class Traits > | |
| OutputIterator | random_convex_set_2 (std::size_t n, OutputIterator o, const PointGenerator &pg, Traits t=Random_convex_set_traits_2) |
| computes a random convex planar point set of given size where the points are drawn from a specific domain. More... | |
| template<class OutputIterator , class PointGenerator , class Traits > | |
| OutputIterator | random_polygon_2 (std::size_t n, OutputIterator result, const PointGenerator &pg, Traits t=Default_traits) |
computes a random simple polygon by writing its vertices (oriented counterclockwise) to result. More... | |
| template<class RandomAccessIterator , class Size , class OutputIterator , class Random > | |
| OutputIterator | random_selection (RandomAccessIterator first, RandomAccessIterator last, Size n, OutputIterator result, Random &rnd=default_random) |
chooses n items at random from a random access iterator range which is useful to produce degenerate input data sets with multiple entries of identical items. More... | |
Variables | |
| Random | default_random |
The variable default_random is the default random numbers generator used for the generator functions and classes. | |