NASM - The Netwide Assembler

version 2.14rc2

© 1996-2017 The NASM Development Team — All Rights Reserved

This document is redistributable under the license given in the file "LICENSE" distributed in the NASM
archive.

Contents

Chapter 1:Introduction L 17
L1WhatIsNASM?. . . . o e e e e e e e e e e e 17
1.1.1License Conditions e e 17
Chapter 2: Running NASM o o e e 19
2.1NASM Command-LineSyntax. L e 19
2.1.1 The —o Option: Specifying the Output FileName 19
2.1.2 The —f Option: Specifying the Output FileFormat 20
2.1.3The -1 Option: Generating a ListingFile 20
2.1.4The —M Option: Generate Makefile Dependencies. 20
2.1.5The —MG Option: Generate Makefile Dependencies. 20
2.1.6 The —MF Option: Set Makefile DependencyFile. 20
2.1.7 The —MD Option: Assemble and Generate Dependencies 20
2.1.8 The —MT Option: Dependency TargetName 21
2.1.9 The —-MQ Option: Dependency Target Name (Quoted) 21
2.1.10 The -MP Option: Emit phonytargets 21
2.1.11 The —-MW Option: Watcom Make quotingstyle. 21
2.1.12 The —F Option: Selecting a Debug Information Format 21
2.1.13 The —g Option: Enabling Debug Information. 21
2.1.14The —X Option: Selecting an Error ReportingFormat 21
2.1.15The -Z Option: Send ErrorstoaFile. 22
2.1.16 The -s Option: Send Errorstostdout 22
2.1.17 The —1 Option: Include File Search Directories 22
2.1.18 The -p Option: Pre-IncludeaFile. 22
2.1.19The -d Option: Pre-DefineaMacro 23
2.1.20 The —u Option: UndefineaMacro. 23
2.1.21The —-E Option: PreprocessOnly. v i i it iie e 23
2.1.22 The —a Option: Don’t Preprocess AtAll 23
2.1.23 The -0 Option: Specifying Multipass Optimization 23
2.1.24The —t Option: Enable TASM Compatibility Mode. 24
2.1.25The —~w and -W Options: Enable or Disable Assembly Warnings 24
2.1.26 The —v Option: Display VersionInfo. 25
2.1.27 The -y Option: Display Available Debug Info Formats. 25
2.1.28 The--prefixand ——postfixOptions. 26

2.1.29 The NASMENV EnvironmentVariable 26

2.2Quick Start for MASM USEIS v e e e e e e e e e e e e e e 26
22.1NASMIsCase-Sensitive. L L e 26
2.2.2 NASM Requires Square Brackets For Memory References. 26
2.2.3NASM Doesn’t Store Variable Types.« . 27
2.24NASMDoesn’t ASSUME. e e e 27
2.2.5NASM Doesn’t Support MemoryModels Lo 27
2.2.6 Floating-Point Differences L 27
2.2.70ther Differences. L 27

Chapter3: The NASM Language v v v v i i e e e e e e e e e e e 29

3.1LayoutofaNASM Sourceline. L e e e 29

3.2Pseudo-Instructions L. L e e 30
3.2.1DB and Friends: Declaring InitializedData 30
3.2.2RESB and Friends: Declaring UninitializedData 30
3.2.3 INCBIN: Including External Binary Files 30
3.24EQU: DefiningConstants L L e e e 31
3.2.5 TIMES: Repeating InstructionsorData. 31

33 Effective Addresses L e e 31

34Constants L L L e e e e e e 33
34 1NumericConstants. L. e 33
3.4.2Character Strings. L L e e e e 33
3.43CharacterConstants L. e e e e 34
3.4.4StringConstants L L e e e e e e e 34
3.45UnicodeStrings L e e e e 35
3.4.6 Floating-PointConstants. e 35
347PackedBCDConstants e e e e 36

35 EXPressionso e e e e e 36
3.5.1 |:Bitwise OROperator. v v v v i e e e e e 36
3.5.2 M Bitwise XOROperator oL 37
353 & Bitwise ANDOperator 37
3.5.4<<and >>:BitShiftOperators 37
3.5.5 + and —: Addition and Subtraction Operators. 37
3.5.6%,/,//,%and %%: Multiplication and Division 37
3.5.7UnaryOperators e e e e e e e e e e e e e e 37

3.6SEGandWRT L e e e e e e e 37

3.7 STRICT: Inhibiting Optimization 38

3.8Critical EXpressions e e e e e e e 38

39Locallabels. e 39
Chapter4: The NASM Preprocessor v v v v v v v i e e e e e e e e e e e e e e e e e e 41
4.1Single-LineMacros e e e e e e 41
4.1.1TheNormalWay:%define e 41
4.1.2Resolving%define:%xdefine. L 42
4.13MacroIndirection: %[...]. L 43
4.1.4 Concatenating Single Line Macro Tokens: %+. 43
4.1.5TheMacroNameltself: %2 and %272 i i e 43
4.1.6 Undefining Single-Line Macros: %undef. oo L. 44
4.1.7 Preprocessor Variables: %assign Lo 44
4.1.8 Defining Strings: %defstr. L 45
4.19 Defining Tokens: %deftok. L 45
4.2 String Manipulationin Macros. L 45
4.2.1 Concatenating Strings: %strcat oL o oo 45
422StringLength: %strlen. e 45
4.2.3 Extracting Substrings: %substr. L Lo 46
43 Multi-Line Macros: %macro. ot e e e e e e e 46
4.3.10verloading Multi-LineMacros. e 47
43.2Macro-LocalLabels L 47
433 Greedy MacroParameters e e e e 48
4.3.4Macro ParametersRange.o o o 48
4.3.5 Default Macro Parameters e e 49
4.3.6 %0: Macro ParameterCounter Lo e 50
4.3.7%00: Label PreceedingMacro 50
4.3.8%rotate: Rotating Macro Parameters. Lo oL 50
4.3.9 Concatenating Macro Parameters oo e 51
4.3.10 Condition Codes as Macro Parameters i 52
4.3.11 Disabling Listing Expansion L e e e 52
4.3.12 Undefining Multi-Line Macros: %unmacro oo e 53
4.4 Conditional Assembly L 53
4.4.1%7ifdef: Testing Single-Line Macro Existence 53
4.4.2 %7 fmacro: Testing Multi-Line MacroExistence 54
4.43%ifctx:TestingtheContextStack 54
4.4.4 %1 f: Testing Arbitrary Numeric Expressions 54
445%ifidnand %ifidni:TestingExactTextldentity 55

446%ifid,%ifnum,%ifstr:TestingTokenTypes. 55

44.7%iftoken:TestforaSingleToken o 56
4.48%ifempty: TestforEmpty Expansion o 56
4.49%ifenv: TestIf EnvironmentVariableExists. 56
4.5 PreprocessorLoOpS: Brep v o i i e e e e e e e e e e e e e e e e e e 56
4.6 Source Filesand Dependencieso e 57
4.6.1%include:IncludingOtherFiles, 57
4.6.2 %pathsearch: SearchthelncludePath. 58
4.6.3%depend: Add DependentFiles L 58
4.6.4%use: Include Standard MacroPackage oo oL 58
4.7TheContextStack. e e 58
4.7.1%push and %pop: Creatingand RemovingContexts 59
4.7.2 Context-LocalLabels. e 59
4.7.3 Context-Local Single-LineMacros e 59
4.7.4 Context Fall-Through Lookup (deprecated) 60
475%repl:RenamingaContext L 60
4.7.6 Example Use of the Context Stack:Block IFs, 61
4.8 Stack Relative Preprocessor Directives L e 62
4.8.1%argDirective. L e e e e e e e e e e e 62
48.2%stacksizeDirective e 63
4.83%LlocalDirective o i e 63
4.9 Reporting User-Defined Errors: %error,%warning,%fatal. 64
4.10 Other Preprocessor Directives o o i i i 64
4.10.1%lineDirective. L e e e 65
4.10.2%!variable: Read an EnvironmentVariable.., 65
4.11Standard Macros. e e e e e e e e e e e e e 65
411 1NASMVeErsion Macros v v v v i e e e e e e e e e e e e e e 65
4.11.2 __NASM_VERSION_ID__:NASMVersionID. 66
4.11.3 __NASM_VER__:NASMVersionstring o v v i i i 66
4114 __FILE__and __LINE__:FileNameandLineNumber. 66
4,115 __BITS__:CurrentBITSMode. i ittt et it 66
4.11.6 __OUTPUT_FORMAT__:CurrentQutputFormat. 66
4.11.7Assembly Dateand Time Macros i e 67
4.11.8 __USE_package__:PackagelIncludeTest 67

411.9 __PASS__:AssemblyPass e 67
4.11.10 STRUC and ENDSTRUC: Declaring Structure DataTypes. 68

4.11.11 ISTRUC, AT and IEND: Declaring Instances of Structures. 69

4.11.12 ALIGN and ALIGNB: Data Alignment o 69
4.11.13 SECTALIGN: SectionAlignment. i 70
Chapter 5: Standard MacroPackages 71
5.1altreg:Alternate RegisterNames 71
52smartalign:Smart ALIGNMacro o v i v i vt et e e e 71
5.3 fp: Floating-pointmacros L 72
544func:integerfunctions L 72
5.4.1Integerlogarithms L 72
Chapter 6: Assembler Directives L e e e e e e e 73
6.1 BITS: Specifying Target ProcessorMode 73
6.1.1USE16 & USE32: AliasesforBITS i 74
6.2 DEFAULT: Changethe assemblerdefaults 74
6.2.1 REL & ABS: RIP-relativeaddressing 74
6.22BND&NOBND: BND prefix o o i e e 74
6.3 SECTION or SEGMENT: Changing and Defining Sections 74
6.3.1The __SECT__MaCIO v v v v i it e e e e e e e e e e e s s e 74
6.4 ABSOLUTE: Defining Absolute Labels., 75
6.5 EXTERN: Importing Symbols from OtherModules. 76
6.6 GLOBAL: Exporting Symbolsto OtherModules 76
6.7 COMMON: DefiningCommon DataAreas.« . v v v v v i v i e e et e 7
6.8 CPU: Defining CPUDependencies i i it i i e 77
6.9 FLOAT: Handling of floating—pointconstants. 78
6.10 [WARNING]: Enableordisablewarnings 78
Chapter 7: Output Formats. e e e e e e e e e 79
7.1bin:Flat-Form Binary OQutput 79
7.1.10RG: Binary File Program Origin e 79
7.1.2 bin Extensionstothe SECTION Directive 79
7.1.3 Multisection Support forthebinFormat., 80
T.14AMapFiles. o o e 80
7.2h9th:IntelHexOutput. L o o e 80
7.3srec:MotorolaS-RecordsQutput L e 80
7.4 0bj: Microsoft OMF ObjectFiles. e 81
7.4.1 obj Extensions to the SEGMENT Directive 81
7.4.2 GROUP: Defining Groupsof Segments Lo 82
7.4.3 UPPERCASE: Disabling Case SensitivityinOutput 83

7.4.4 IMPORT: Importing DLLSymbols. 83

7.4.5 EXPORT: Exporting DLLSymbols. 83
7.4.6 . .start:Definingthe ProgramEntryPoint. 84
7.4.7 obj Extensions to the EXTERN Directive., 84
7.4.8 obj Extensions to the COMMON Directive. v v 84
7.4.9 Embedded File Dependency Information. L L. 85
7.5win32: Microsoft Win32 ObjectFiles 85
7.5.1win32 Extensions to the SECTION Directive 85
7.5.2win32: Safe Structured Exception Handling. 86
7.5.3 Debugging formatsforWindows Lo Lo 87
7.6 win64: Microsoft Win64 ObjectFiles 87
7.6.1win64: Writing Position—-IndependentCode 87
7.6.2win64: Structured Exception Handling oL 88
7.7coff:CommonObjectFileFormat 91
7.8macho32 and macho64: Mach ObjectFileFormat 91
7.8.1 macho extensionstothe SECTION Directive 91
7.8.2 Thread Local Storage in Mach-0: macho special symbolsandWRT 92
7.8.3 macho specfic directive subsections_via_symbols. 92
7.8.4macho specficdirectiveno_dead_strip oo L. 92
7.9elf32,elf64, elfx32: Executable and Linkable Format ObjectFiles 92
7.9.1ELF specificdirectiveosabi 92
7.9.2 elf extensionstothe SECTION D Directive 93
7.9.3 Position-Independent Code: macho Special SymbolsandWRT 93
7.9.4 Thread Local Storage in ELF: e Lf Special SymbolsandWRT 94
7.9.5 elf Extensions to the GLOBAL Directive. 94
7.9.6 el f Extensions to the COMMON Directive 95
7.9.716-bitcodeand ELF e 95
7.9.8Debugformatsand ELF L 95
7.10 aout:Linuxa.outObjectFiles. L 95
7.11 aoutb: NetBSD/FreeBSD/OpenBSD a.out ObjectFiles. 95
7.12 as86: Minix/Linux as86 ObjectFiles 96
7.13 rdf: Relocatable Dynamic Object FileFormat 96
7.13.1 Requiring a Library: The LIBRARY Directive 96
7.13.2 Specifying a Module Name: The MODULE Directive 96
7.13.3 rdf Extensions to the GLOBAL Directive 96

7.13.4 rdf Extensionstothe EXTERN Directive v v v .. 97

7.14dbg:DebuggingFormat 97

Chapter 8: Writing 16-bit Code (DOS, Windows 3/3.1) o v i v i v i vt et e 99
8.1Producing .EXEFiles e 99
8.1.1 Using the obj Format To Generate .EXEFiles. 99
8.1.2 Using the bin Format To Generate .EXEFiles. 100
8.2Producing .COMFiles L e 101
8.2.1 Using the bin Format To Generate .COMFiles. 101
8.2.2 Using the obj Format To Generate .COMFiles. 101
83Producing .SYSFiles. e 102
8.4 Interfacingto 16-bit CPrograms L e 102
8.4.1 External SymbolNames 102
8.4.2MemoryModels. e 103
8.4.3 Function Definitionsand FunctionCalls 104
8.4.4 AccessingDataltems. L L. e e e e 106
8.4.5 c16.mac: Helper Macros for the 16-bit CiInterface 106
8.5 Interfacing to Borland Pascal Programs.. Lo oo 107
8.5.1ThePascal CallingConvention it 108
8.5.2 Borland Pascal Segment Name Restrictions 109
8.5.3Usingcl6.mac With Pascal Programs. 109
Chapter 9: Writing 32-bit Code (Unix, Win32,DJGPP) 111
9.1Interfacingto 32-bit CPrograms e e 111
9.1.1 External SymbolNames 111
9.1.2 Function Definitionsand FunctionCalls 111
9.1.3AccessingDataltems. e e e 113
9.1.4 c32.mac: Helper Macros for the 32-bit CiInterface 113
9.2 Writing NetBSD/FreeBSD/OpenBSD and Linux/ELF Shared Libraries 114
9.2.1 Obtainingthe Addressofthe GOT 114
9.2.2 FindingYour LocalDataltems 115
9.2.3 Finding Externaland CommonDataltems 115
9.2.4 Exporting SymbolstotheLibraryUser 116
9.2.5 Calling Procedures Outside the Library. 117
9.2.6 GeneratingtheLibraryFile L 117
Chapter 10: Mixing16 and 32 BitCode i i e e e e e 119
10.1 Mixed-Size JumPS L e e e e e 119
10.2 Addressing Between Different-Size Segments Lo oL 119
10.3 Other Mixed-Size Instructions e e 120

Chapter 11: Writing 64-bit Code (Unix, Win64)« . o v i it it it et e 123

11.1 Register Namesin64-bitMode. 123
11.2 Immediates and Displacementsin 64-bitMode L. 123
11.3 Interfacing to 64-bit CPrograms (Unix) o . i e 124
11.4 Interfacing to 64-bit C Programs (Winb4). i i 125
Chapter 12: Troubleshooting. o 127
12.1Common Problems L e e e 127
12.1.1 NASM Generates InefficientCode L oL 127
12.12MyJumpsareOutofRange L 127
12.1.30RGDoesn’'tWork. L 127
12.14TIMES Doesn’tWork o o o o e e 128
Appendix A: Ndisasm. L e e 129
Allntroduction. L e e e e 129
A2Running NDISASM. L e e e e e e e e 129
A.2.1COM Files: Specifyingan Origin. i 129
A.2.2 Code Following Data: Synchronisation., 129
A.2.3 Mixed Code and Data: Automatic (Intelligent) Synchronisation 130
A2.40therOptions L e 130
Appendix B: Instruction List L L 133
B.lIntroduction. L e e e 133
B.1.1 Special instructions (pseudo-ops) Lo 133
B.1.2 Conventionalinstructions L 133
B.1.3 Katmai Streaming SIMD instructions (SSE —— a.k.a. KN, XMM, MMX2). 160
B.1.4 Introduced in Deschutes but necessary for SSEsupport 161
B.1.5 XSAVE group (AVX and extended state). L oL, 162
B.1.6 Genericmemoryoperations L Lo e e e e e e 162
B.1.7 New MMX instructions introduced inKatmai 162
B.1.8 AMD Enhanced 3DNow! (Athlon) instructions 162
B.1.9 Willamette SSE2 Cacheability Instructions 163
B.1.10 Willamette MMX instructions (SSE2 SIMD Integer Instructions) 163
B.1.11 Willamette Streaming SIMD instructions (SSE2). 165
B.1.12 Prescott New Instructions (SSE3) e 166
B.LL13VMX/SVM Instructions. e e e e 167
B.1.14 Extended Page Tables VMXinstructions. 167
B.1.15 Tejas New Instructions (SSSE3) i o i i e e e e 167

B.LIGAMD SSE4A L e e e e 168

B.1.17 New instructionsin Barcelona e 168

B.1.18 Penryn New Instructions (SSE4.1). o i e 168
B.1.19 Nehalem New Instructions (SSE4.2). i i i i e i e 169
B.1.20 Intel SMX e e e e 169
B.1.21 Geode (Cyrix) 3DNow! additions 169
B.1.22 Intel new instructionsin 222, L e e e e e e 170
B.1.23 Intel AESinstructions L e e e e e e e e e 170
B.1.24 Intel AVX AES instructions. L e e e e e e 170
B.1.25 Intel instruction extension based on pub number 319433-030 dated October 2017. . . .170
B.1.26 Intel AVXinstructions L e e e e e e 170
B.1.27 Intel Carry-Less Multiplication instructions (CLMUL) 183
B.1.28 Intel AVX Carry-Less Multiplication instructions (CLMUL) 183
B.1.29 Intel Fused Multiply-Add instructions (FMA) 184
B.1.30 Intel post-32 nm processorinstructions L oL 187
B.1.31VIA (Centaur) security instructions L e 188
B.1.32 AMD Lightweight Profiling (LWP) instructions. 188
B.1.33 AMD XOP and FMA4 instructions (SSE5) e 188
B.1.34 Intel AVX2 instructions L e e e e e e 191
B.1.35 Intel Transactional Synchronization Extensions (TSX). 194
B.1.36 Intel BMI1 and BMI2 instructions, AMD TBM instructions 195
B.1.37 Intel Memory Protection Extensions (MPX) 196
B.1.38 Intel SHA accelerationinstructions 196
B.1.39 AVX-512 mask registerinstructions. L L oo 196
B.1.40 AVX-512instructions L e e e e e e e e e 197
B.1.41 Intel memory protection keys for userspace (PKU aka PKEYs). 226
B.1.42Read ProcessorID. L e e e e e e e e e e e 226
B.1.43 New memory instructions. L Lo e 226
B.1.44 Systematic names for the hinting nop instructions 226
Appendix C: NASM Version History L o 231
CINASM2Series. . . o o v i e e e e e e e e e e e e e e e 231
C.L1Version2.13.04. o o i e e e e e e e e e 231
C.1l2Version2.13.03t e e e e e e e e e e e e e e e 231
C.1l3Version2.13.02. . . . o it e e e e e e e e e e e e e e 231
C.l4Version2.13.01. o o i e e e e e e e e e e e e e 231
C.L5Version2.13 L e e e e e e e e e e 232
C.1lBVersion2.12.02. ot e e e e e e e e e e e e e e e 233

12

C.L.7Version2.12.01. o e e e e e e e e e e e 233

C.LBVersion2.12 o o e e e e e e e e e e e e e e 233
C.19Version2.11.09. i i e e e e e e e e e e e e e e e 233
C.L10Version2.11.08 o o e e e e e e e e e e e e e e e 234
C.L11Version2.11.07 v v e 234
C.L12Version2.11.06 o v v e e e e e e e e e e e e e e e e e e 234
C.L13Version2.11.05 L e e e e e e e e e 234
C.L14Version 2.11.04 o o e e e e e e e e e e e e e 234
C.L15Version 2.11.03 o L e e e e e e e e e e e e e e e e e 234
C.L16Version 2.11.02 o ot e e e e e e e e e e e e e e e e e 234
C.L17Version2.11.01 o ot e e e e e e e e e e e e e e e e 235
C.LI8Version2.11. . . . o o it e e e e e e e e e e e e e e e e e 235
C.119Version2.10.09 e e e e e e e e e e e e e e 236
C.1.20Version 2.10.08 e e e e e e e e e e e e e e e 236
C.1.21Version 2.10.07 o o v e e e e e e e e e e e e e e e e e e 236
C.1.22Version 2.10.06 o o e e e e e e e e e e e e e e e e e 236
C.1.23Version2.10.05 e e e e e e e 236
C.1.24Version 2.10.04 e e e e e e e e e e e e 236
C.1.25Version 2.10.03 L e e e e e e e e e e e e e e e 237
C.1.26Version 2.10.02 e e e e e e e e e e e e e e e e 237
C.127Version 2.10.01 L o e e e e e e e e e e e e e e e 237
C.128Version2.10. o i e e e e e e e e e e e e e e e 237
C.1.29Version 2.09.10 o e e e e e e e e e e e e e e e 237
C.1.30Version2.09.09 e e e e e e e 237
C.1.31Version2.09.08 e e e e e e e e 237
C.1.32Version 2.09.07 o o e e e e e e e e e e e e e e e e 237
C.1.33Version2.09.06 e e e e e e e e e e e e 238
C.1.34Version 2.09.05 e e e e e e 238
C.1.35Version2.09.04 e e e e e e e e e 238
C.1.36Version2.09.03 L e e e e e e e e e e 238
C.137Version2.09.02 e e e e e e e e e e e 238
C.1.38Version 2.09.01 e e e e e e e e e e e e e 238
C.1.39Version2.09. L e e e e e e e e e e e e 238
C.140Version 2.08.02 e e e e e e e e e e e e e 239
C.141Version2.08.01 e e e e e e e e e e e 239
C.142Version2.08. e e e e e e e e e e e e e 239

C.143Version 2.07. v i e e e e e e e e e e e 240

C.L44Version2.06. i i e e e e e e e e e e e e e 240
C.1.45Version 2.05.01 e e e e e e e e e e e e e 241
C.LA46Version2.05. o i e e e e e e e e e e e e e 241
C.LATVersion2.04. o e e e e e e 241
C.1.48Version 2.03.01 e e e e e e e e e e e e 242
C.149Version2.03. i e e e e e e e e e e e e e 242
C.150Version2.02. L e e e e e e e e e e e e e 243
C.151Version2.01. o e e e e e e e e e e e e 243
C.1.52Version2.00. L e e e e e e e e e e e e 244
C2NASM0.98SEries v v o e e e e e e e e e e e e e e e e e e 244
C.2.1Version 0.98.39. L e e e e e e e 245
C.2.2Version 0.98.38 e e e e e 245
C.2.3Version 0.98.37 o i i e e e e e e e e e 245
C.2.4Version0.98.36. e e e e e e e e e 245
C.2.5Version 0.98.35. L e e e e e e e 246
C.2.6Version 0.98.34. L e e e e e 246
C.2.7Version 0.98.33 e e e e e e e 246
C.2.8Version 0.98.32. e e e e e e e 246
C.29Version 0.98.31. L e e e e e e e e e 247
C.2.10Version 0.98.30 e e e e e e e e e e 247
C.2.11Version 0.98.28 e e e e e e e e 247
C.2.12Version 0.98.26 e e e e e e e e e e e e e e 247
C.2.13Version 0.98.25alt. L 247
C.2.14Version 0.98.25 L L e e e e e e 247
C.2.15Version 0.98.24p1o e e e e e e e e e e e e 248
C.2.16Version 0.98.24 L e e e e e e e e e 248
C.2.17Version 0.98.23 L e e e e e e e e 248
C.2.18Version 0.98.22 L e e e e e e e e e 248
C.2.19Version 0.98.21 L e e e e e e e e e e e 248
C.2.20Version 0.98.20 e e e e e e e e e 248
C.2.21Version 0.98.19 L e e e e e e e 248
C.2.22Version 0.98.18 L e e e e e e e e e 248
C.2.23Version 0.98.17 o i e e e e e e e e e e e e e 248
C.2.24Version 0.98.16 e e e e e e e e e e e 248
C.2.25Version 0.98.15 L e e e e e 248

14

C.2.26Version 0.98.14 e e e e e e e e 248

C.2.27Version 0.98.13 L e e e e e e e e e e e 248
C.2.28Version 0.98.12 L e e e e e e e e e 248
C.2.29Version 0.98.11 e e e e e e e e e e e e 248
C.2.30Version 0.98.10 e e e e e e e e e e e e e 249
C.2.31Version0.98.09 L e e e e e e e 249
C.2.32Version 0.98.08 L e e e e e e e e 249
C.2.33 Version 0.98.09b with John Coffman patches released 28-Oct-2001 249
C.2.34Version 0.98.07released 01/28/01. o i v i i i e e 250
C.2.35Version 0.98.06f released 01/18/01 e 250
C.2.36 Version 0.98.06e released 01/09/01 o v i i i e 250
C.2.37Version 0.98pl L L e e e e e e e 250
C.2.38Version 0.98bf (bug-fixed). 250
C.2.39 Version 0.98.03 with John Coffman’s changes released 27-Jul-2000 250
C.2.40Version 0.98.03 L e e e e e e e e 251
C.2.41Version0.98. L e e e e e e e 254
C.2.42Version 0.98p9 e e e e e e e e 254
C.2.43Version 0.98p8 L e e e e 254
C.2.44Version 0.98p7 o o e e e e e e e e e 255
C.2.45Version 0.98p6 e e e e e e e e e e e 255
C.2.46Version 0.98p3.7 e e e e e e e e e 255
C.2.47Version 0.98p3.6 e e e e e e e e e e 255
C.2.48Version 0.98p3.5 L e e e e e 255
C.2.49Version 0.98p3.4 L e e e e e e e 256
C.2.50Version 0.98p3.3 e e e e e e e e 256
C.2.51Version 0.98p3.2 L e e e e e e e e e 256
C.2.52Version 0.98p3-hpa. e 257
C.2.53Version 0.98 pre-release3 e 257
C.2.54Version 0.98 pre-release2 e 257
C.2.55Version 0.98 pre-releasel e 257
C3NASMO.9Series. o i e e e e e e e e e e e e e 258
C.3.1Version 0.97 released December1997 e 258
C.3.2Version 0.96 released November1997 oo 259
C.3.3Version 0.95released July 1997 e 261
C.3.4Version 0.94 released April 1997 e 262
C.3.5Version 0.93 released January 1997ot e 263

C.3.6Version 0.92released January 1997o 263

C.3.7Version 0.91 released November1996 263
C.3.8Version 0.90released October1996 e 264
Appendix D: Building NASM from Source. L 265
D.1Buildingfroma SourceArchive L 265
D.2 Building fromthe git Repository. 265
Appendix E: Contact Information L L 267
E.lWebsite e 267
El.lUserForums o o o e 267

E.1.2 Development Community L e e 267
E2ReportingBugs L e e 267

15

16

1.1

1.1.1

Chapter 1: Introduction

What Is NASM?

The Netwide Assembler, NASM, is an 80x86 and x86-64 assembler designed for portability and
modularity. It supports a range of object file formats, including Linux and *BSD a.out, ELF, COFF,
Mach-0, 16-bit and 32-bit 0BJ (OMF) format, Win32 and Win64. It will also output plain binary files,
Intel hex and Motorola S-Record formats. Its syntax is designed to be simple and easy to understand,
similar to the syntax in the Intel Software Developer Manual with minimal complexity. It supports all
currently known x86 architectural extensions, and has strong support for macros.

NASM also comes with a set of utilities for handling the RDOFF custom object-file format.

License Conditions

Please see the file LICENSE, supplied as part of any NASM distribution archive, for the license
conditions under which you may use NASM. NASM is now under the so—called 2-clause BSD license,
also known as the simplified BSD license.

Copyright 1996-2017 the NASM Authors - All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

+ Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

+ Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

17

18

2.1

2.1.1

Chapter 2: Running NASM

NASM Command-Line Syntax

To assemble a file, you issue a command of the form

nasm -f <format> <filename> [-o0 <output>]

For example,

nasm -f elf myfile.asm

will assemble myfile.asminto an ELF object file myfile.o.And
nasm -f bin myfile.asm -o myfile.com

will assemble myfile.asminto araw binary filemyfile.com.

To produce a listing file, with the hex codes output from NASM displayed on the left of the original
sources, use the =1 option to give a listing file name, for example:

nasm -f coff myfile.asm -1 myfile.lst

To get further usage instructions from NASM, try typing

nasm -h

As —hf, this will also list the available output file formats, and what they are.

If you use Linux but aren’t sure whether your systemis a.out or ELF, type

file nasm

(in the directory in which you put the NASM binary when you installed it). If it says something like
nasm: ELF 32-bit LSB executable i386 (386 and up) Version 1

then your system is ELF, and you should use the option -f elf when you want NASM to produce
Linux object files. If it says

nasm: Linux/i386 demand-paged executable (QMAGIC)

or something similar, your system is a.out, and you should use -f aout instead (Linux a.out
systems have long been obsolete, and are rare these days.)

Like Unix compilers and assemblers, NASM is silent unless it goes wrong: you won’t see any output at
all, unless it gives error messages.

The —o Option: Specifying the Output File Name

NASM will normally choose the name of your output file for you; precisely how it does this is dependent
on the object file format. For Microsoft object file formats (obj, win32 and win64), it will remove the
. asm extension (or whatever extension you like to use - NASM doesn’t care) from your source file name
and substitute . obj. For Unix object file formats (aout, as86, coff, elf32,elf64, elfx32, ieee,
macho32 and macho64) it will substitute . o. For dbg, rdf, ith and srec, it will use .dbg, . rdf,
.ith and .srec, respectively, and for the bin format it will simply remove the extension, so that
myfile.asmproduces the output filemyfile.

If the output file already exists, NASM will overwrite it, unless it has the same name as the input file, in
which case it will give a warning and use nasm. out as the output file name instead.

19

2.1.2

2.1.3

214

2.1.5

2.1.6

2.1.7

20

For situations in which this behaviour is unacceptable, NASM provides the —o command-line option,
which allows you to specify your desired output file name. You invoke -o by following it with the name
you wish for the output file, either with or without an intervening space. For example:

nasm -f bin program.asm -o program.com
nasm -f bin driver.asm -odriver.sys

Note that this is a small o, and is different from a capital O , which is used to specify the number of
optimisation passes required. See section 2.1.23.

The - f Option: Specifying the Output File Format

If you do not supply the —f option to NASM, it will choose an output file format for you itself. In the
distribution versions of NASM, the default is always b-in; if you’'ve compiled your own copy of NASM,
you can redefine OF _DEFAULT at compile time and choose what you want the default to be.

Like —o, the intervening space between -f and the output file format is optional; so -f elf and
—-fe'lf are both valid.

A complete list of the available output file formats can be given by issuing the command nasm -hf.
The -1 Option: Generating a Listing File

If you supply the -1 option to NASM, followed (with the usual optional space) by a file name, NASM will
generate a source-listing file for you, in which addresses and generated code are listed on the left, and
the actual source code, with expansions of multi-line macros (except those which specifically request
no expansion in source listings: see section 4.3.11) on the right. For example:

nasm -f elf myfile.asm -1 myfile.lst

If a list file is selected, you may turn off listing for a section of your source with [1ist -], and turn it
back on with [1ist +], (the default, obviously). There is no "user form" (without the brackets). This
can be used to list only sections of interest, avoiding excessively long listings.

The -M Option: Generate Makefile Dependencies

This option can be used to generate makefile dependencies on stdout. This can be redirected to a file
for further processing. For example:

nasm -M myfile.asm > myfile.dep

The -MG Option: Generate Makefile Dependencies

This option can be used to generate makefile dependencies on stdout. This differs from the -M option
in that if a nonexisting file is encountered, it is assumed to be a generated file and is added to the
dependency list without a prefix.

The —MF Option: Set Makefile Dependency File

This option can be used with the =M or -MG options to send the output to a file, rather than to stdout.
For example:

nasm -M -MF myfile.dep myfile.asm

The —MD Option: Assemble and Generate Dependencies

The -MD option acts as the combination of the -M and -MF options (i.e. a filename has to be specified.)
However, unlike the -M or —MG options, -MD does not inhibit the normal operation of the assembler.
Use this to automatically generate updated dependencies with every assembly session. For example:

nasm -f elf -o myfile.o -MD myfile.dep myfile.asm

2.1.8 The -MT Option: Dependency Target Name

The —MT option can be used to override the default name of the dependency target. This is normally
the same as the output filename, specified by the —o option.

2.1.9 The -MQ Option: Dependency Target Name (Quoted)

The -MQ option acts as the —MT option, except it tries to quote characters that have special meaning in
Makefile syntax. This is not foolproof, as not all characters with special meaning are quotable in Make.
The default output (if no -MT or —MQ option is specified) is automatically quoted.

2.1.10 The —MP Option: Emit phony targets

2.1.11

2.1.12

2.1.13

2.1.14

When used with any of the dependency generation options, the ~MP option causes NASM to emit a
phony target without dependencies for each header file. This prevents Make from complaining if a
header file has been removed.

The —MW Option: Watcom Make quoting style

This option causes NASM to attempt to quote dependencies according to Watcom Make conventions
rather than POSIX Make conventions (also used by most other Make variants.) This quotes # as $#
rather than \#, uses & rather than \ for continuation lines, and encloses filenames containing
whitespace in double quotes.

The -F Option: Selecting a Debug Information Format

This option is used to select the format of the debug information emitted into the output file, to be used
by a debugger (or will be). Prior to version 2.03.01, the use of this switch did not enable output of the
selected debug info format. Use -g, see section 2.1.13, to enable output. Versions 2.03.01 and later
automatically enable —g if —F is specified.

A complete list of the available debug file formats for an output format can be seen by issuing the
command nasm -f <format> -y.Not all output formats currently support debugging output. See
section 2.1.27.

This should not be confused with the -f dbg output format option, see section 7.14.

The -g Option: Enabling Debug Information.

This option can be used to generate debugging information in the specified format. See section 2.1.12.
Using —g without —F results in emitting debug info in the default format, if any, for the selected output
format. If no debug information is currently implemented in the selected output format, —g is silently
ignored.

The —X Option: Selecting an Error Reporting Format

This option can be used to select an error reporting format for any error messages that might be
produced by NASM.

Currently, two error reporting formats may be selected. They are the —Xvc option and the -Xgnu
option. The GNU format is the default and looks like this:

filename.asm:65: error: specific error message

where filename. asmis the name of the source file in which the error was detected, 65 is the source
file line number on which the error was detected, error is the severity of the error (this could be
warning), and specific error message is a more detailed text message which should help
pinpoint the exact problem.

The other format, specified by —Xvc is the style used by Microsoft Visual C++ and some other programs.
It looks like this:

21

2.1.15

2.1.16

2.1.17

2.1.18

22

filename.asm(65) : error: specific error message
where the only difference is that the line number is in parentheses instead of being delimited by colons.

See also the Visual C++ outputformat, section 7.5.

The —Z Option: Send Errors to a File

Under MS-DOS it can be difficult (though there are ways) to redirect the standard-error output of a
program to a file. Since NASM usually produces its warning and error messages on stderr, this can
make it hard to capture the errors if (for example) you want to load them into an editor.

NASM therefore provides the -Z option, taking a filename argument which causes errors to be sent to
the specified files rather than standard error. Therefore you can redirect the errors into a file by typing

nasm -Z myfile.err -f obj myfile.asm

In earlier versions of NASM, this option was called -E, but it was changed since -E is an option
conventionally used for preprocessing only, with disastrous results. See section 2.1.21.

The —s Option: Send Errors to stdout

The -s option redirects error messages to stdout rather than stderr, so it can be redirected under
MS-DOS. To assemble the file my file.asmand pipe its output to the more program, you can type:

nasm -s -f obj myfile.asm | more

See also the -Z option, section 2.1.15.

The -1 Option: Include File Search Directories

When NASM sees the %include or %pathsearch directive in a source file (see section 4.6.1, section
4.6.2 or section 3.2.3), it will search for the given file not only in the current directory, but also in any
directories specified on the command line by the use of the -1 option. Therefore you can include files
from a macro library, for example, by typing

nasm -ic:\macrolib\ -f obj myfile.asm
(As usual, a space between -1 and the path name is allowed, and optional).

NASM, in the interests of complete source-code portability, does not understand the file naming
conventions of the OS it is running on; the string you provide as an argument to the -1 option will be
prepended exactly as written to the name of the include file. Therefore the trailing backslash in the
above example is necessary. Under Unix, a trailing forward slash is similarly necessary.

(You can use this to your advantage, if you’re really perverse, by noting that the option -1 foo will
cause ¥include '"bar.i" tosearch forthe file foobar.1..)

If you want to define a standard include search path, similar to /usr/include on Unix systems, you
should place one or more —1 directives in the NASMENV environment variable (see section 2.1.29).

For Makefile compatibility with many C compilers, this option can also be specified as - I.

The —p Option: Pre-Include a File

NASM allows you to specify files to be pre-included into your source file, by the use of the —p option. So
running

nasm myfile.asm -p myinc.inc

is equivalent to running nasm myfile.asmand placing the directive %include "myinc.inc" at
the start of the file.

For consistency with the —-I, -D and -U options, this option can also be specified as -P.

2.1.19

2.1.20

2.1.21

2.1.22

2.1.23

The -d Option: Pre-Define a Macro

Just as the —p option gives an alternative to placing %include directives at the start of a source file,
the —d option gives an alternative to placing a %define directive. You could code

nasm myfile.asm -dF00=100
as an alternative to placing the directive
%define FOO 100

at the start of the file. You can miss off the macro value, as well: the option —dFO0O is equivalent to
coding %define FO0O. This form of the directive may be useful for selecting assembly-time options
which are then tested using %1 fdef, for example ~dDEBUG.

For Makefile compatibility with many C compilers, this option can also be specified as -D.

The —u Option: Undefine a Macro

The -u option undefines a macro that would otherwise have been pre-defined, either automatically or
by a —p or —d option specified earlier on the command lines.

For example, the following command line:
nasm myfile.asm -dF00=100 -uF0O

would result in FOO not being a predefined macro in the program. This is useful to override options
specified at a different point in a Makefile.

For Makefile compatibility with many C compilers, this option can also be specified as -U.

The -E Option: Preprocess Only

NASM allows the preprocessor to be run on its own, up to a point. Using the —E option (which requires
no arguments) will cause NASM to preprocess its input file, expand all the macro references, remove all
the comments and preprocessor directives, and print the resulting file on standard output (or save it to
afile, if the —o option is also used).

This option cannot be applied to programs which require the preprocessor to evaluate expressions
which depend on the values of symbols: so code such as

%assign tablesize ($-tablestart)
will cause an error in preprocess—only mode.

For compatiblity with older version of NASM, this option can also be written —e. —E in older versions of
NASM was the equivalent of the current —Z option, section 2.1.15.

The —a Option: Don’t Preprocess At All

If NASM is being used as the back end to a compiler, it might be desirable to suppress preprocessing
completely and assume the compiler has already done it, to save time and increase compilation
speeds. The —a option, requiring no argument, instructs NASM to replace its powerful preprocessor
with a stub preprocessor which does nothing.

The -0 Option: Specifying Multipass Optimization
Using the -0 option, you can tell NASM to carry out different levels of optimization. The syntax is:

« —00: No optimization. All operands take their long forms, if a short form is not specified, except
conditional jumps. This is intended to match NASM 0.98 behavior.

+ —01: Minimal optimization. As above, but immediate operands which will fit in a signed byte are
optimized, unless the long form is specified. Conditional jumps default to the long form unless
otherwise specified.

23

2.1.24

2.1.25

24

+ -0x (where x is the actual letter x): Multipass optimization. Minimize branch offsets and signed
immediate bytes, overriding size specification unless the strict keyword has been used (see
section 3.7). For compatibility with earlier releases, the letter x may also be any number greater than
one. This number has no effect on the actual number of passes.

The —-0x mode is recommended for most uses, and is the default since NASM 2.09.

Note that this is a capital O, and is different from a small o, which is used to specify the output file
name. See section 2.1.1.

The -t Option: Enable TASM Compatibility Mode

NASM includes a limited form of compatibility with Borland’s TASM. When NASM’s —t option is used,
the following changes are made:

+ local labels may be prefixed with @@ instead of .

+ size override is supported within brackets. In TASM compatible mode, a size override inside square
brackets changes the size of the operand, and not the address type of the operand as it does in
NASM syntax. E.g. mov eax, [DWORD val] is valid syntax in TASM compatibility mode. Note that
you lose the ability to override the default address type for the instruction.

« unprefixed forms of some directives supported (arg, elif, else, endif, if, ifdef, ifdifi,
ifndef, include, local)

The -w and —-W Options: Enable or Disable Assembly Warnings

NASM can observe many conditions during the course of assembly which are worth mentioning to the
user, but not a sufficiently severe error to justify NASM refusing to generate an output file. These
conditions are reported like errors, but come up with the word ‘warning’ before the message. Warnings
do not prevent NASM from generating an output file and returning a success status to the operating
system.

Some conditions are even less severe than that: they are only sometimes worth mentioning to the user.
Therefore NASM supports the —w command-line option, which enables or disables certain classes of
assembly warning. Such warning classes are described by a name, for example orphan-Tlabe'ls; you
can enable warnings of this class by the command-line option ~-w+orphan-Tlabels and disable it by
-w-orphan-Tlabels.

The current warning classes are:
« other specifies any warning not otherwise specified in any class. Enabled by default.

+ macro-params covers warnings about multi-line macros being invoked with the wrong number of
parameters. Enabled by default; see section 4.3.1 for an example of why you might want to disable it.

« macro-selfref warns if a macro references itself. Disabled by default.

+ macro-defaults warns when a macro has more default parameters than optional parameters.
Enabled by default; see section 4.3.5 for why you might want to disable it.

+ orphan-Tlabels covers warnings about source lines which contain no instruction but define a
label without a trailing colon. NASM warns about this somewhat obscure condition by default; see
section 3.1 for more information.

+ number-over flow covers warnings about numeric constants which don’t fit in 64 bits. Enabled by
default.

+ gnu-elf-extensions warns if 8-bit or 16-bit relocations are used in -f elf format. The GNU
extensions allow this. Disabled by default.

+ float-overflowwarnsabout floating point overflow. Enabled by default.

2.1.26

2.1.27

+ float-denormwarns about floating point denormals. Disabled by default.

+ float-underflowwarns about floating point underflow. Disabled by default.

+ float-toolongwarnsabouttoo many digits in floating—point numbers. Enabled by default.
« user controls %warning directives (see section 4.9). Enabled by default.

+ lock warns about LOCK prefixes on unlockable instructions. Enabled by default.

+ h'lewarns aboutinvalid use of the HLE XACQUIRE or XRELEASE prefixes. Enabled by default.

« bnd warns about ineffective use of the BND prefix when a relaxed form of jmp instruction becomes
jmp short form. Enabled by default.

+ zext-reloc warns that a relocation has been zero—extended due to limitations in the output
format. Enabled by default.

« ptr warns about keywords used in other assemblers that might indicate a mistake in the source
code. Currently only the MASM PTR keyword is recognized. Enabled by default.

+ bad-pragma warns about a malformed or otherwise unparsable %pragma directive. Disabled by
default.

+ unknown-pragma warns about an unknown %pragma directive. This is not yet implemented.
Disabled by default.

+ not-my-pragma warns about a %pragma directive which is not applicable to this particular
assembly session. This is not yet implemented. Disabled by default.

+ unknown-warning warns about a -w or -W option or a [WARNING] directive that contains an
unknown warning name or is otherwise not possible to process. Disabled by default.

« allis an alias for all suppressible warning classes. Thus, -w+all enables all available warnings,
and —w-all disables warnings entirely (since NASM 2.13).

Since version 2.00, NASM has also supported the gcc-like syntax -Wwarning-class and
-Wno-warning-class instead of ~-w+warning-class and -w-warning-class, respectively;
both syntaxes work identically.

The option ~w+error or -Werror can be used to treat warnings as errors. This can be controlled on a
per warning class basis (~w+error=warning-class or -Wer ror=warning-class); if no warning-class is
specified NASM treats it as ~-w+error=all; the same applies to ~-w-error or -Wno-error, of
course.

In addition, you can control warnings in the source code itself, using the [WARNING] directive. See
section 6.10.

The -v Option: Display Version Info

Typing NASM -v will display the version of NASM which you are using, and the date on which it was
compiled.

You will need the version number if you report a bug.

For command-line compatibility with Yasm, the form —-v is also accepted for this option starting in
NASM version 2.11.05.

The -y Option: Display Available Debug Info Formats

Typing nasm -f <option> -y will display a list of the available debug info formats for the given
output format. The default format is indicated by an asterisk. For example:

nasm -f elf -y

25

2.1.28

2.1.29

2.2

2.2.1

2.2.2

26

valid debug formats for ’elf32’ output format are
(’*’ denotes default):
* stabs ELF32 (i386) stabs debug format for Linux
dwarf elf32 (i386) dwarf debug format for Linux

The --prefix and -—-postfix Options.

The —-prefix and —-postfix options prepend or append (respectively) the given argument to all
global or extern variables. E.g. ——prefix _ will prepend the underscore to all global and
external variables, as C requires it in some, but not all, system calling conventions.

The NASMENV Environment Variable

If you define an environment variable called NASMENV, the program will interpret it as a list of extra
command-line options, which are processed before the real command line. You can use this to define
standard search directories for include files, by putting -1 options in the NASMENV variable.

The value of the variable is split up at white space, so that the value -s -1ic:\nasmlib\ will be
treated as two separate options. However, that means that the value ~-dNAME="my name" won’t do
what you might want, because it will be split at the space and the NASM command-line processing will
get confused by the two nonsensical words —~dNAME="my and name".

To get round this, NASM provides a feature whereby, if you begin the NASMENV environment variable
with some character that isn’t a minus sign, then NASM will treat this character as the separator
character for options. So setting the NASMENV variable to the value !-s!-ic:\nasmlib\ is
equivalent to settingitto -s -ic:\nasmlib\, but ! ~dNAME="my name" will work.

This environment variable was previously called NASM. This was changed with version 0.98.31.

Quick Start for MASM Users

If you’re used to writing programs with MASM, or with TASM in MASM-compatible (non-Ideal) mode, or
with a86, this section attempts to outline the major differences between MASM’s syntax and NASM’s. If
you’re not already used to MASM, it’s probably worth skipping this section.

NASM Is Case—-Sensitive

One simple difference is that NASM is case-sensitive. It makes a difference whether you call your label
foo, Foo or FOO. If you’re assembling to DOS or 0S/2 .0BJ files, you can invoke the UPPERCASE
directive (documented in section 7.4) to ensure that all symbols exported to other code modules are
forced to be upper case; but even then, within a single module, NASM will distinguish between labels
differing only in case.

NASM Requires Square Brackets For Memory References

NASM was designed with simplicity of syntax in mind. One of the design goals of NASM is that it should
be possible, as far as is practical, for the user to look at a single line of NASM code and tell what opcode
is generated by it. You can’t do this in MASM: if you declare, for example,

foo equ 1
bar dw 2

then the two lines of code

mov ax, foo
mov ax,bar

generate completely different opcodes, despite having identical-looking syntaxes.

NASM avoids this undesirable situation by having a much simpler syntax for memory references. The
rule is simply that any access to the contents of a memory location requires square brackets around the

2.2.3

224

2.2.5

2.2.6

2.2.7

address, and any access to the address of a variable doesn’t. So an instruction of the form
mov ax,foo will always refer to a compile-time constant, whether it’s an EQU or the address of a
variable; and to access the contents of the variable bar, you must code mov ax, [bar].

This also means that NASM has no need for MASM’s OFFSET keyword, since the MASM code
mov ax,offset bar means exactly the same thing as NASM’s mov ax,bar. If you’re trying to get
large amounts of MASM code to assemble sensibly under NASM, you can always code
%idefine offsettomake the preprocessortreatthe OFFSET keyword as a no—-op.

This issue is even more confusing in a86, where declaring a label with a trailing colon defines it to be a
‘label’ as opposed to a ‘variable’ and causes a86 to adopt NASM-style semantics; so in a86,
mov ax,var has different behaviour depending on whether var was declared as var: dw 0 (a
label) orvar dw 0 (a word-size variable). NASM is very simple by comparison: everything is a label.

NASM, in the interests of simplicity, also does not support the hybrid syntaxes supported by MASM and
its clones, such as mov ax,table[bx], where a memory reference is denoted by one portion
outside square brackets and another portion inside. The correct syntax for the above is
mov ax, [table+bx]. Likewise,mov ax,es:[di]iswrongandmov ax,[es:di] isright.

NASM Doesn’t Store Variable Types

NASM, by design, chooses not to remember the types of variables you declare. Whereas MASM will
remember, on seeing var dw 0, that you declared var as a word-size variable, and will then be able
to fill in the ambiguity in the size of the instruction mov var,2, NASM will deliberately remember
nothing about the symbol var except where it begins, and so you must explicitly code
mov word [var],2.

For this reason, NASM doesn’t support the LODS, MOVS, STOS, SCAS, CMPS, INS, or OUTS
instructions, but only supports the forms such as LODSB, MOVSW, and SCASD, which explicitly specify
the size of the components of the strings being manipulated.

NASM Doesn’t ASSUME

As part of NASM’s drive for simplicity, it also does not support the ASSUME directive. NASM will not
keep track of what values you choose to put in your segment registers, and will never automatically
generate a segment override prefix.

NASM Doesn’t Support Memory Models

NASM also does not have any directives to support different 16-bit memory models. The programmer
has to keep track of which functions are supposed to be called with a far call and which with a near call,
and is responsible for putting the correct form of RET instruction (RETN or RETF; NASM accepts RET
itself as an alternate form for RETN); in addition, the programmer is responsible for coding CALL FAR
instructions where necessary when calling external functions, and must also keep track of which
external variable definitions are far and which are near.

Floating—Point Differences

NASM uses different names to refer to floating—point registers from MASM: where MASM would call
them ST (0), ST(1) and so on, and a86 would call them simply 0, 1 and so on, NASM chooses to call
them st0, st1 etc.

As of version 0.96, NASM now treats the instructions with ‘nowait’ forms in the same way as
MASM-compatible assemblers. The idiosyncratic treatment employed by 0.95 and earlier was based on
a misunderstanding by the authors.

Other Differences

For historical reasons, NASM uses the keyword TWORD where MASM and compatible assemblers use
TBYTE.

27

28

NASM does not declare uninitialized storage in the same way as MASM: where a MASM programmer
might use stack db 64 dup (?), NASM requires stack resb 64, intended to be read as
‘reserve 64 bytes’. For a limited amount of compatibility, since NASM treats ? as a valid character in
symbol names, you can code ? equ 0 and then writing dw ? will at least do something vaguely
useful. DUP is still not a supported syntax, however.

In addition to all of this, macros and directives work completely differently to MASM. See chapter 4 and
chapter 6 for further details.

Chapter 3: The NASM Language

3.1 Layout of a NASM Source Line

Like most assemblers, each NASM source line contains (unless it is a macro, a preprocessor directive or
an assembler directive: see chapter 4 and chapter 6) some combination of the four fields

label: instruction operands ; comment

As usual, most of these fields are optional; the presence or absence of any combination of a label, an
instruction and a comment is allowed. Of course, the operand field is either required or forbidden by
the presence and nature of the instruction field.

NASM uses backslash (\) as the line continuation character; if a line ends with backslash, the next line is
considered to be a part of the backslash-ended line.

NASM places no restrictions on white space within a line: labels may have white space before them, or
instructions may have no space before them, or anything. The colon after a label is also optional. (Note
that this means that if you intend to code lodsb alone on a line, and type lodab by accident, then
that’s still a valid source line which does nothing but define a label. Running NASM with the
command-line option ~w+orphan-Tlabels will cause it to warn you if you define a label alone on a
line without a trailing colon.)

Valid characters in labels are letters, numbers, _, $, #, @, ~, ., and ?. The only characters which may be
used as the first character of an identifier are letters, . (with special meaning: see section 3.9), _ and ?.
An identifier may also be prefixed with a $ to indicate that it is intended to be read as an identifier and
not a reserved word; thus, if some other module you are linking with defines a symbol called eax, you
can refer to $Seax in NASM code to distinguish the symbol from the register. Maximum length of an
identifier is 4095 characters.

The instruction field may contain any machine instruction: Pentium and P6 instructions, FPU
instructions, MMX instructions and even undocumented instructions are all supported. The instruction
may be prefixed by LOCK, REP, REPE/REPZ, REPNE/REPNZ, XACQUIRE/XRELEASE or BND/NOBND,
in the usual way. Explicit address-size and operand-size prefixes A16, A32, A64, 016 and 032, 064
are provided - one example of their use is given in chapter 10. You can also use the name of a segment
register as an instruction prefix: coding es mov [bx],ax is equivalent to coding
mov [es:bx],ax. We recommend the latter syntax, since it is consistent with other syntactic
features of the language, but for instructions such as LODSB, which has no operands and yet can
require a segment override, there is no clean syntactic way to proceed apart fromes lodsb.

An instruction is not required to use a prefix: prefixes such as CS, A32, LOCK or REPE can appear on a
line by themselves, and NASM will just generate the prefix bytes.

In addition to actual machine instructions, NASM also supports a number of pseudo-instructions,
described in section 3.2.

Instruction operands may take a number of forms: they can be registers, described simply by the
register name (e.g. ax, bp, ebx, cr0: NASM does not use the gas-style syntax in which register names
must be prefixed by a % sign), or they can be effective addresses (see section 3.3), constants (section
3.4) or expressions (section 3.5).

For x87 floating—point instructions, NASM accepts a wide range of syntaxes: you can use two-operand
forms like MASM supports, or you can use NASM’s native single-operand forms in most cases. For
example, you can code:

fadd stl ; this sets stO := st0O + stl
fadd sto,stl ; so does this

29

3.2

3.2.1

3.2.2

3.2.3

30

fadd stl,st0 ; this sets stl := stl + stoO
fadd to stl ; so does this

Almost any x87 floating—point instruction that references memory must use one of the prefixes DWORD,
QWORD or TWORD to indicate what size of memory operand it refers to.

Pseudo-Instructions

Pseudo-instructions are things which, though not real x86 machine instructions, are used in the
instruction field anyway because that’s the most convenient place to put them. The current
pseudo-instructions are DB, DW, DD, DQ, DT, DO, DY and DZ; their uninitialized counterparts RESB,
RESW, RESD, RESQ, REST, RESO, RESY and RESZ; the INCBIN command, the EQU command, and the
TIMES prefix.

DB and Friends: Declaring Initialized Data

DB, DW, DD, DQ, DT, DO, DY and DZ are used, much as in MASM, to declare initialized data in the output
file. They can be invoked in a wide range of ways:

dd 0x12345678
dd 1.234567e20
dq 0x123456789abcdefo
dq 1.234567e20
dt 1.234567e20

Ox78 Ox56 0x34 0x12
floating-point constant
eight byte constant
double-precision float
extended-precision float

db 0x55 ; just the byte 0x55
db 0x55,0x56,0x57 ; three bytes in succession
db ’a’,0x55 ; character constants are OK
db ’hello’,13,10,’S’ ; so are string constants
dw 0x1234 ; Ox34 0x12
dw ’a’ ; Ox61 Ox00 (it’s just a number)
dw ’ab’ ; Ox61 Ox62 (character constant)
dw >abc’ ; Ox61 Ox62 Ox63 Ox00 (string)
5
)
)
)
)

DT, DO, DY and DZ do not accept numeric constants as operands.

RESB and Friends: Declaring Uninitialized Data

RESB, RESW, RESD, RESQ, REST, RESO, RESY and RESZ are designed to be used in the BSS section of
a module: they declare uninitialized storage space. Each takes a single operand, which is the number of
bytes, words, doublewords or whatever to reserve. As stated in section 2.2.7, NASM does not support
the MASM/TASM syntax of reserving uninitialized space by writing DW ? or similar things: this is what it
does instead. The operand to a RESB-type pseudo-instruction is a critical expression: see section 3.8.

For example:

buffer: resb 64 ; reserve 64 bytes
wordvar: resw 1 ; reserve a word
realarray resq 10 ; array of ten reals
ymmval: resy 1 ; one YMM register
zmmvals: resz 32 ; 32 ZMM registers
INCBIN: Including External Binary Files

INCBIN is borrowed from the old Amiga assembler DevPac: it includes a binary file verbatim into the
output file. This can be handy for (for example) including graphics and sound data directly into a game
executable file. It can be called in one of these three ways:

incbin "file.dat" ; include the whole file
incbin "file.dat",1024 ; skip the first 1024 bytes

3.24

3.25

3.3

incbin "file.dat",1024,512 ; skip the first 1024, and
; actually include at most 512

INCBIN is both a directive and a standard macro; the standard macro version searches for the file in
the include file search path and adds the file to the dependency lists. This macro can be overridden if
desired.

EQU: Defining Constants

EQU defines a symbol to a given constant value: when EQU is used, the source line must contain a label.
The action of EQU is to define the given label name to the value of its (only) operand. This definition is
absolute, and cannot change later. So, for example,

message db ’hello, world’
msglen equ $-message

defines msglen to be the constant 12. msglen may not then be redefined later. This is not a
preprocessor definition either: the value of msglen is evaluated once, using the value of $ (see section
3.5 for an explanation of $) at the point of definition, rather than being evaluated wherever it is
referenced and using the value of $ at the point of reference.

TIMES: Repeating Instructions or Data

The TIMES prefix causes the instruction to be assembled multiple times. This is partly present as
NASM’s equivalent of the DUP syntax supported by MASM-compatible assemblers, in that you can code

zerobuf: times 64 db 0

or similar things; but TIMES is more versatile than that. The argument to TIMES is not just a numeric
constant, but a numeric expression, so you can do things like

buffer: db ’hello, world’
times 64-$+buffer db * °

which will store exactly enough spaces to make the total length of buffer up to 64. Finally, TIMES
can be applied to ordinary instructions, so you can code trivial unrolled loops in it:

times 100 movsb

Note that there is no effective difference between times 100 resb 1and resb 100, except that
the latter will be assembled about 100 times faster due to the internal structure of the assembler.

The operand to TIMES is a critical expression (section 3.8).

Note also that TIMES can’t be applied to macros: the reason for this is that TIMES is processed after
the macro phase, which allows the argument to TIMES to contain expressions such as 64-$+buffer
as above. To repeat more than one line of code, or a complex macro, use the preprocessor %rep
directive.

Effective Addresses

An effective address is any operand to an instruction which references memory. Effective addresses, in
NASM, have a very simple syntax: they consist of an expression evaluating to the desired address,
enclosed in square brackets. For example:

wordvar dw 123
mov ax, [wordvar]
mov ax, [wordvar+1]
mov ax, [es:wordvar+bx]

Anything not conforming to this simple system is not a valid memory reference in NASM, for example
es:wordvar [bx].

31

32

More complicated effective addresses, such as those involving more than one register, work in exactly
the same way:

mov eax, [ebx*2+ecx+offset]
mov ax, [bp+di+8]

NASM is capable of doing algebra on these effective addresses, so that things which don’t necessarily
look legal are perfectly all right:

mov eax, [ebx*5] ; assembles as [ebxx4+ebx]
mov eax, [labell*x2-Tlabel2] ; ie [labell+(labell-label2)]

Some forms of effective address have more than one assembled form; in most such cases NASM will
generate the smallest form it can. For example, there are distinct assembled forms for the 32-bit
effective addresses [eax*2+0] and [eax+eax], and NASM will generally generate the latter on the
grounds that the former requires four bytes to store a zero offset.

NASM has a hinting mechanism which will cause [eax+ebx] and [ebx+eax] to generate different
opcodes; this is occasionally useful because [esi+ebp] and [ebp+esi] have different default
segment registers.

However, you can force NASM to generate an effective address in a particular form by the use of the
keywords BYTE, WORD, DWORD and NOSPLIT. If you need [eax+3] to be assembled using a
double-word offset field instead of the one byte NASM will normally generate, you can code
[dword eax+3]. Similarly, you can force NASM to use a byte offset for a small value which it hasn’t
seen on the first pass (see section 3.8 for an example of such a code fragment) by using
[byte eax+offset]. Asspecial cases, [byte eax] will code [eax+0] with a byte offset of zero,
and [dword eax] will code it with a double-word offset of zero. The normal form, [eax], will be
coded with no offset field.

The form described in the previous paragraph is also useful if you are trying to access data in a 32-bit
segment from within 16 bit code. For more information on this see the section on mixed-size
addressing (section 10.2). In particular, if you need to access data with a known offset that is larger than
will fit in a 16-bit value, if you don’t specify that it is a dword offset, nasm will cause the high word of
the offset to be lost.

Similarly, NASM will split [eax*2] into [eax+eax] because that allows the offset field to be absent
and space to be saved; in fact, it will also split [eax*2+offset] into [eax+eax+offset]. Youcan
combat this behaviour by the use of the NOSPLIT keyword: [nosplit eax*2] will force
[eax*2+0] to be generated literally. [nosplit eaxx1] also has the same effect. In another way, a
split EA form [0, eax*2] can be used, too. However, NOSPLIT in [nosplit eax+eax] will be
ignored because user’s intention here is considered as [eax+eax].

In 64-bit mode, NASM will by default generate absolute addresses. The REL keyword makes it produce
RIP-relative addresses. Since this is frequently the normally desired behaviour, see the DEFAULT
directive (section 6.2). The keyword ABS overrides REL.

A new form of split effective addres syntax is also supported. This is mainly intended for mib operands
as used by MPX instructions, but can be used for any memory reference. The basic concept of this form
is splitting base and index.

mov eax, [ebx+8,ecx*4] ; ebx=base, ecx=index, 4=scale, 8=disp

For mib operands, there are several ways of writing effective address depending on the tools. NASM
supports all currently possible ways of mib syntax:

; bndstx

; next 5 lines are parsed same

; base=rax, index=rbx, scale=1, displacement=3
bndstx [rax+0x3,rbx], bndo ; NASM - split EA

3.4

3.4.1

3.4.2

bndstx [rbx*1+rax+0x3], bnd0O
bndstx [rax+rbx+3], bnd0

bndstx [rax+0x3], bnd®, rbx
bndstx [rax+0x3], rbx, bndo

GAS - ’*1’ +dindecates an 1index reg
GAS - without hints

ICC-1

ICC-2

.
>
.
>
.
>
.
>

When broadcasting decorator is used, the opsize keyword should match the size of each element.

VDIVPS zmm4, zmm5, dword [rbx]{ltol6} ; single-precision float
VDIVPS zmm4, zmm5, zword [rbx] ; packed 512 bit memory

Constants

NASM understands four different types of constant: numeric, character, string and floating—point.

Numeric Constants

A numeric constant is simply a number. NASM allows you to specify numbers in a variety of number
bases, in a variety of ways: you can suffix H or X, D or T, Q or O, and B or Y for hexadecimal, decimal,
octal and binary respectively, or you can prefix 0x, for hexadecimal in the style of C, or you can prefix $
for hexadecimal in the style of Borland Pascal or Motorola Assemblers. Note, though, that the $ prefix
does double duty as a prefix on identifiers (see section 3.1), so a hex number prefixed with a $ sign must
have a digit after the $ rather than a letter. In addition, current versions of NASM accept the prefix Oh
for hexadecimal, @d or 0t for decimal, ®o or Oq for octal, and @b or @y for binary. Please note that
unlike C, a 0 prefix by itself does not imply an octal constant!

Numeric constants can have underscores (_) interspersed to break up long strings.
Some examples (all producing exactly the same code):

mov ax,200 ; decimal
mov ax,0200 still decimal

)
)
mov ax,0200d ; explicitly decimal
mov ax,0d200 ; also decimal
mov ax,0c8h ; hex
mov ax,$0c8 ; hex again: the 0 is required
mov ax,0xc8 ; hex yet again
mov ax,0hc8 ; still hex
mov ax,310q ; octal
mov ax,3100 ; octal again
mov ax,00310 ; octal yet again
mov ax,0q310 ; octal yet again
mov ax,11001000b ; binary
mov ax,1100_1000b ; same binary constant
mov ax,1100_1000y ; same binary constant once more
mov ax,0bl100_1000 ; same binary constant yet again
mov ax,0yl100_1000 ; same binary constant yet again

Character Strings

A character string consists of up to eight characters enclosed in either single quotes (’ . .. ’), double
quotes ("...") or backquotes (¢ ... ¢). Single or double quotes are equivalent to NASM (except of
course that surrounding the constant with single quotes allows double quotes to appear within it and
vice versa); the contents of those are represented verbatim. Strings enclosed in backquotes support
C-style \-escapes for special characters.

The following escape sequences are recognized by backquoted strings:

\’ single quote (’)
\" double quote (")

33

\ ¢ backquote (*)

\\ backslash (\)

\? question mark (?)

\a BEL (ASCII 7)

\b BS (ASCII 8)

\t TAB (ASCII 9)

\n LF (ASCII 10)

\V VT (ASCII 11)

\f FF (ASCII 12)

\r CR (ASCII 13)

\e ESC (ASCII 27)

\377 Up to 3 octal digits - literal byte

\xFF Up to 2 hexadecimal digits - literal byte
\ul234 4 hexadecimal digits - Unicode character

\U12345678 8 hexadecimal digits - Unicode character

All other escape sequences are reserved. Note that \ @, meaning a NUL character (ASCII 0), is a special
case of the octal escape sequence

Unicode characters specified with \u or \U are converted to UTF-8. For example, the following lines
are all equivalent:

db ¢\u263a‘ ; UTF-8 smiley face

db ¢\xe2\x98\xba*“ ; UTF-8 smiley face
db OE2h, 098h, 0BAh ; UTF-8 smiley face

3.4.3 Character Constants

A character constant consists of a string up to eight bytes long, used in an expression context. It is
treated as if it was an integer.

A character constant with more than one byte will be arranged with little-endian order in mind: if you
code

mov eax,’abcd’

then the constant generated is not 0x61626364, but ©x64636261, so that if you were then to store
the value into memory, it would read abcd rather than dcba. This is also the sense of character
constants understood by the Pentium’s CPUID instruction

3.4.4 String Constants

34

String constants are character strings used in the context of some pseudo-instructions, namely the DB
family and INCBIN (where it represents a filename.) They are also used in certain preprocessor
directives.

A string constant looks like a character constant, only longer. It is treated as a concatenation of
maximum-size character constants for the conditions. So the following are equivalent:

db ’hello’ ; string constant
db *h?,’e’,’17,°1,’0’ ; equivalent character constants

And the following are also equivalent:

dd ’ninechars’ ; doubleword string constant
dd ’nine’,’char’,’s’ ; becomes three doublewords
db ’ninechars’,0,0,0 ; and really looks like this

Note that when used in a string-supporting context, quoted strings are treated as a string constants
even if they are short enough to be a character constant, because otherwise db ’ab’ would have the

3.4.5

3.4.6

same effect as db ’a’, which would be silly. Similarly, three-character or four-character constants
are treated as strings when they are operands to DW, and so forth.

Unicode Strings

The special operators __utfl6__, __utflele__, __utflebe__, __utf32__, __utf32le__
and __utf32be__ allows definition of Unicode strings. They take a string in UTF-8 format and
converts it to UTF-16 or UTF-32, respectively. Unless the be forms are specified, the output is

littleendian.
For example:

%define u(x) __utfle__(x)
%define w(x) __utf32__(x)
dw u(’C:\WINDOWS’), © ; Pathname in UTF-16
dd w(‘A + B = \u206a‘), 0 ; String in UTF-32

The UTF operators can be applied either to strings passed to the DB family instructions, or to character
constants in an expression context.

Floating—-Point Constants

Floating—point constants are acceptable only as arguments to DB, DW, DD, DQ, DT, and DO, or as
arguments to the special operators __float8__, __floatl6__, __float32__, __float64__,
__float86om float80e floatl1281__,and __floatl28h__.

—_—— —— —_—— —— —_——)

Floating—point constants are expressed in the traditional form: digits, then a period, then optionally
more digits, then optionally an E followed by an exponent. The period is mandatory, so that NASM can
distinguish between dd 1, which declares an integer constant, and dd 1.0 which declares a
floating—point constant.

NASM also support C99-style hexadecimal floating-point: 0x, hexadecimal digits, period, optionally
more hexadeximal digits, then optionally a P followed by a binary (not hexadecimal) exponent in
decimal notation. As an extension, NASM additionally supports the ©h and $ prefixes for hexadecimal,
as well binary and octal floating—point, using the b or @y and Qo or 0q prefixes, respectively.

Underscores to break up groups of digits are permitted in floating—point constants as well.
Some examples:

db -0.2 ; "Quarter precision"

dw -0.5 IEEE 754r/SSE5 half precision
dd 1.2 an easy one

dd 1.222_222_222 underscores are permitted
dd Ox1lp+2 1.0x2722 = 4.0

dq Ox1p+32 1.0x27232 = 4 294 967 296.0
dq 1.el0 10 000 OO0 000.0

l.e+10 synonymous with 1.e10

dq l.e-10 0.000 000 000 1
3.141592653589793238462 pi

do 1.e+4000 IEEE 754r quad precision

e we we e We Wwe We we We we

The 8-bit "quarter-precision" floating—point format is sign:exponent:mantissa = 1:4:3 with an exponent
bias of 7. This appears to be the most frequently used 8-bit floating—point format, although it is not
covered by any formal standard. This is sometimes called a "minifloat."

The special operators are used to produce floating—point numbers in other contexts. They produce the
binary representation of a specific floating—point number as an integer, and can use anywhere integer
constants are used in an expression. __float80m__ and __float80e__ produce the 64-bit

35

3.4.7

3.5

3.5.1

36

mantissa and 16-bit exponent of an 80-bit floating-point number, and __float1281__ and
__float128h__ produce the lower and upper 64-bit halves of a 128-bit floating-point number,
respectively.

For example:
mov rax,__float64__(3.141592653589793238462)

... would assign the binary representation of pi as a 64-bit floating point number into RAX. This is
exactly equivalent to:

mov rax,0x400921fb54442d18

NASM cannot do compile-time arithmetic on floating—point constants. This is because NASM is
designed to be portable - although it always generates code to run on x86 processors, the assembler
itself can run on any system with an ANSI C compiler. Therefore, the assembler cannot guarantee the
presence of a floating—point unit capable of handling the Intel number formats, and so for NASM to be
able to do floating arithmetic it would have to include its own complete set of floating-point routines,
which would significantly increase the size of the assembler for very little benefit.

The special tokens __Infinity__, __QNaN__ (or __NaN__) and __SNaN__ can be used to
generate infinities, quiet NaNs, and signalling NaNs, respectively. These are normally used as macros:

%define Inf __Infinity__
%define NaN __QNaN__
dq +1.5, -Inf, NaN ; Double-precision constants

The %use fp standard macro package contains a set of convenience macros. See section 5.3.

Packed BCD Constants

x87-style packed BCD constants can be used in the same contexts as 80-bit floating—point numbers.
They are suffixed with p or prefixed with @p, and can include up to 18 decimal digits.

As with other numeric constants, underscores can be used to separate digits.
For example:

dt 12_345_678_901_245_678p
dt -12_345_678_901_245_678p
dt +0p33

dt 33p

Expressions

Expressions in NASM are similar in syntax to those in C. Expressions are evaluated as 64-bit integers
which are then adjusted to the appropriate size.

NASM supports two special tokens in expressions, allowing calculations to involve the current assembly
position: the $ and $$ tokens. $ evaluates to the assembly position at the beginning of the line
containing the expression; so you can code an infinite loop using IMP $. $$ evaluates to the beginning
of the current section; so you can tell how far into the section you are by using ($-$$).

The arithmetic operators provided by NASM are listed here, in increasing order of precedence.
| : Bitwise OR Operator

The | operator gives a bitwise OR, exactly as performed by the OR machine instruction. Bitwise OR is
the lowest-priority arithmetic operator supported by NASM.

3.5.2

3.5.3

3.54

3.5.5

3.5.6

3.5.7

3.6

A: Bitwise XOR Operator

A provides the bitwise XOR operation.

&: Bitwise AND Operator

& provides the bitwise AND operation.

<< and >>: Bit Shift Operators

<< gives a bit-shift to the left, just as it does in C. So 5<<3 evaluates to 5 times 8, or 40. >> gives a
bit-shift to the right; in NASM, such a shift is always unsigned, so that the bits shifted in from the
left-hand end are filled with zero rather than a sign—extension of the previous highest bit.

+ and -: Addition and Subtraction Operators
The + and - operators do perfectly ordinary addition and subtraction.
*, [/, //,%and %%: Multiplication and Division

* is the multiplication operator. / and // are both division operators: / is unsigned division and // is
signed division. Similarly, % and %% provide unsigned and signed modulo operators respectively.

NASM, like ANSI C, provides no guarantees about the sensible operation of the signed modulo operator.

Since the % character is used extensively by the macro preprocessor, you should ensure that both the
signed and unsigned modulo operators are followed by white space wherever they appear.

Unary Operators

The highest-priority operators in NASM’s expression grammar are those which only apply to one
argument. These are +, -, ~, |, SEG, and the integer functions operators.

- negates its operand, + does nothing (it’s provided for symmetry with -), ~ computes the one’s
complement of its operand, ! is the logical negation operator.

SEG provides the segment address of its operand (explained in more detail in section 3.6).

A set of additional operators with leading and trailing double underscores are used to implement the
integer functions of the i func macro package, see section 5.4.

SEG and WRT

When writing large 16-bit programs, which must be split into multiple segments, it is often necessary to
be able to refer to the segment part of the address of a symbol. NASM supports the SEG operator to
perform this function.

The SEG operator returns the preferred segment base of a symbol, defined as the segment base relative
to which the offset of the symbol makes sense. So the code

mov ax,seg symbol
mov es,ax
mov bx,symbol

will load ES : BX with a valid pointer to the symbol symbol.

Things can be more complex than this: since 16-bit segments and groups may overlap, you might
occasionally want to refer to some symbol using a different segment base from the preferred one.
NASM lets you do this, by the use of the WRT (With Reference To) keyword. So you can do things like

mov ax,weird_seg ; weird_seg is a segment base
mov es,ax
mov bx,symbol wrt weird_seg

37

3.7

3.8

38

to load ES: BX with a different, but functionally equivalent, pointer to the symbol symbo.

NASM supports far (inter-segment) calls and jumps by means of the syntax call segment:offset,
where segment and offset both represent immediate values. So to call a far procedure, you could
code either of

call (seg procedure) :procedure
call weird_seg: (procedure wrt weird_seg)

(The parentheses are included for clarity, to show the intended parsing of the above instructions. They
are not necessary in practice.)

NASM supports the syntax call far procedure as a synonym for the first of the above usages.
JMP works identically to CALL in these examples.

To declare a far pointer to a data item in a data segment, you must code
dw symbol, seg symbol
NASM supports no convenient synonym for this, though you can always invent one using the macro
processor.
STRICT: Inhibiting Optimization

When assembling with the optimizer set to level 2 or higher (see section 2.1.23), NASM will use size
specifiers (BYTE, WORD, DWORD, QWORD, TWORD, OWORD, YWORD or ZWORD), but will give them the
smallest possible size. The keyword STRICT can be used to inhibit optimization and force a particular
operand to be emitted in the specified size. For example, with the optimizer on,and in BITS 16 mode,

push dword 33
is encoded in three bytes 66 6A 21, whereas
push strict dword 33
is encoded in six bytes, with a full dword immediate operand 66 68 21 00 00 00.
With the optimizer off, the same code (six bytes) is generated whether the STRICT keyword was used
or not.
Critical Expressions

Although NASM has an optional multi-pass optimizer, there are some expressions which must be
resolvable on the first pass. These are called Critical Expressions.

The first pass is used to determine the size of all the assembled code and data, so that the second pass,
when generating all the code, knows all the symbol addresses the code refers to. So one thing NASM
can’t handle is code whose size depends on the value of a symbol declared after the code in question.
For example,

times (label-$) db 0
label: db ’Where am I7?°

The argument to TIMES in this case could equally legally evaluate to anything at all; NASM will reject
this example because it cannot tell the size of the TIMES line when it first sees it. It will just as firmly
reject the slightly paradoxical code

times (label-$+1) db 0
label: db ’NOW where am I?’

in which any value for the TIMES argument is by definition wrong!

3.9

NASM rejects these examples by means of a concept called a critical expression, which is defined to be
an expression whose value is required to be computable in the first pass, and which must therefore
depend only on symbols defined before it. The argument to the TIMES prefix is a critical expression.

Local Labels

NASM gives special treatment to symbols beginning with a period. A label beginning with a single
period is treated as a local label, which means that it is associated with the previous non-local label.
So, for example:

labell ; some code

. loop
; some more code
jne . loop
ret

label2 ; some code

. loop
; some more code
jne . loop
ret

In the above code fragment, each INE instruction jumps to the line immediately before it, because the
two definitions of .loop are kept separate by virtue of each being associated with the previous
non-local label.

This form of local label handling is borrowed from the old Amiga assembler DevPac; however, NASM
goes one step further, in allowing access to local labels from other parts of the code. This is achieved by
means of defining a local label in terms of the previous non-local label: the first definition of . Loop
above is really defining a symbol called 1abell.loop, and the second defines a symbol called
label2.loop. So, if you really needed to, you could write

label3 ; some more code
; and some more

jmp labell.loop

Sometimes it is useful - in a macro, for instance - to be able to define a label which can be referenced
from anywhere but which doesn’t interfere with the normal local-label mechanism. Such a label can’t
be non-local because it would interfere with subsequent definitions of, and references to, local labels;
and it can’t be local because the macro that defined it wouldn’t know the label’s full name. NASM
therefore introduces a third type of label, which is probably only useful in macro definitions: if a label
begins with the special prefix . . @, then it does nothing to the local label mechanism. So you could code

labell: ; a non-local label

.local: ; this dis really labell.local

..@foo: ; this is a special symbol

label2: ; another non-local label

.local: ; this is really label2.local
jmp ..@foo ; this will jump three lines up

NASM has the capacity to define other special symbols beginning with a double period: for example,
..start is used to specify the entry point in the obj output format (see section 7.4.6),

39

40

. .imagebase is used to find out the offset from a base address of the current image in the win64
output format (see section 7.6.1). So just keep in mind that symbols beginning with a double period are
special.

4.1
4.1.1

Chapter 4: The NASM Preprocessor

NASM contains a powerful macro processor, which supports conditional assembly, multi-level file
inclusion, two forms of macro (single-line and multi-line), and a ‘context stack’ mechanism for extra
macro power. Preprocessor directives all begin with a % sign.

The preprocessor collapses all lines which end with a backslash (\) character into a single line. Thus:

%define THIS_VERY_LONG_MACRO_NAME_IS_DEFINED_TO \
THIS_VALUE

will work like a single-line macro without the backslash-newline sequence.

Single-Line Macros

The Normal Way: %define

Single-line macros are defined using the %define preprocessor directive. The definitions work in a
similar way to C; so you can do things like

%define ctrl OXx1F &
%define param(a,b) ((a)+(a)x(b))

mov byte [param(2,ebx)], ctrl ’D’
which will expand to

mov byte [(2)+(2)*(ebx)], Ox1F & ’D’

When the expansion of a single-line macro contains tokens which invoke another macro, the expansion
is performed at invocation time, not at definition time. Thus the code

%define a(x) 1+b(x)
%define b(x) 2%X
mov ax,a(8)

will evaluate in the expected way to mov ax,1+2%8, even though the macro b wasn’t defined at the
time of definition of a.

Macros defined with %define are case sensitive: after %define foo bar, only foo will expand to
bar: Foo or FOO will not. By using %idefine instead of %define (the ‘i’ stands for ‘insensitive’) you
can define all the case variants of a macro at once, so that %idefine foo bar would cause foo,
Foo, FOO, fO0 and so on all to expand to bar.

There is a mechanism which detects when a macro call has occurred as a result of a previous expansion
of the same macro, to guard against circular references and infinite loops. If this happens, the
preprocessor will only expand the first occurrence of the macro. Hence, if you code

%define a(x) 1+a(x)

mov ax,a(3)

the macro a(3) will expand once, becoming 1+a(3), and will then expand no further. This behaviour
can be useful: see section 9.1 for an example of its use.

You can overload single-line macros: if you write

%define foo(x) 1+x
%define foo(x,y) 1l+xx*y

41

4.1.2

42

the preprocessor will be able to handle both types of macro call, by counting the parameters you pass;
so foo (3) will become 1+3 whereas foo (ebx,2) will become 1+ebx*2. However, if you define

%define foo bar

then no other definition of foo will be accepted: a macro with no parameters prohibits the definition of
the same name as a macro with parameters, and vice versa.

This doesn’t prevent single-line macros being redefined: you can perfectly well define a macro with
%define foo bar

and then re—define it later in the same source file with

%define foo baz

Then everywhere the macro foo is invoked, it will be expanded according to the most recent
definition. This is particularly useful when defining single-line macros with %assign (see section
4.1.7).

You can pre-define single-line macros using the ‘-d’ option on the NASM command line: see section
2.1.19.

Resolving %define: %$xdefine

To have a reference to an embedded single-line macro resolved at the time that the embedding macro
is defined, as opposed to when the embedding macro is expanded, you need a different mechanism to
the one offered by %define. The solution is to use %xdefine, or it’s case-insensitive counterpart
%ixdefine.

Suppose you have the following code:

%define 1disTrue 1
%define -isFalse isTrue
%define 1isTrue 0

vall: db isFalse
%define 1disTrue 1

val2: db isFalse

In this case, vall is equal to 0, and val2 is equal to 1. This is because, when a single-line macro is
defined using %define, it is expanded only when it is called. As isFalse expands to isTrue, the
expansion will be the current value of isTrue. The first time it is called that is 0, and the second time it
is 1.

If you wanted isFalse to expand to the value assigned to the embedded macro isTrue at the time
that isFalse was defined, you need to change the above code to use %xdefine.

%xdefine isTrue 1
%xdefine isFalse isTrue
%xdefine isTrue 0
vall: db isFalse

%xdefine isTrue 1

val2: db isFalse

4.1.3

4.1.4

4.1.5

Now, each time that isFalse is called, it expands to 1, as that is what the embedded macro isTrue
expanded to at the time that i sFalse was defined.

Macro Indirection: %[.. .]

The %[...] construct can be used to expand macros in contexts where macro expansion would
otherwise not occur, including in the names other macros. For example, if you have a set of macros
named Foo16, Foo32 and Foo64, you could write:

mov ax,Foo%[__BITS__] ; The Foo value

to use the builtin macro __BITS__ (see section 4.11.5) to automatically select between them.
Similarly, the two statements:

%xdefine Bar Quux ; Expands due to %xdefine
%define Bar %[Quux] ; Expands due to %[...]

have, in fact, exactly the same effect.

%[...] concatenates to adjacent tokens in the same way that multi-line macro parameters do, see
section 4.3.9 for details.

Concatenating Single Line Macro Tokens: %+

Individual tokens in single line macros can be concatenated, to produce longer tokens for later
processing. This can be useful if there are several similar macros that perform similar functions.

Please note that a space is required after %+, in order to disambiguate it from the syntax %+1 used in
multiline macros.

As an example, consider the following:

%define BDASTART 400h ; Start of BIOS data area
struc tBIOSDA ; its structure

.COMladdr RESW 1

.COM2addr RESW 1

; ..and so on
endstruc

Now, if we need to access the elements of tBIOSDA in different places, we can end up with:

mov ax,BDASTART + tBIOSDA.COMladdr
mov bx,BDASTART + tBIOSDA.COM2addr

This will become pretty ugly (and tedious) if used in many places, and can be reduced in size
significantly by using the following macro:

; Macro to access BIOS variables by their names (from tBDA):
%define BDA(x) BDASTART + tBIOSDA. %+ X
Now the above code can be written as:

mov ax,BDA(COMladdr)
mov bx,BDA(COM2addr)

Using this feature, we can simplify references to a lot of macros (and, in turn, reduce typing errors).

The Macro Name Itself: %? and %??

The special symbols %? and %?? can be used to reference the macro name itself inside a macro
expansion, this is supported for both single-and multi-line macros. %? refers to the macro name as

43

4.1.6

4.1.7

44

invoked, whereas %?7? refers to the macro name as declared. The two are always the same for
case-sensitive macros, but for case-insensitive macros, they can differ.

For example:

%idefine Foo mov %?,%??
foo
FOO

will expand to:

mov foo,Foo
mov FOO, Foo

The sequence:
%idefine keyword $%?

can be used to make a keyword "disappear", for example in case a new instruction has been used as a
label in older code. For example:

%idefine pause $%? ; Hide the PAUSE -dinstruction

Undefining Single-Line Macros: %undef
Single-line macros can be removed with the %undef directive. For example, the following sequence:
%define foo bar
%undef foo
mov eax, foo

will expand to the instruction mov eax, foo, since after %undef the macro foo is no longer
defined.

Macros that would otherwise be pre-defined can be undefined on the command-line using the ‘-u’
option on the NASM command line: see section 2.1.20.

Preprocessor Variables: %assign

An alternative way to define single-line macros is by means of the %assign command (and its
case-insensitive counterpart %iassign, which differs from %assign in exactly the same way that
%idefine differs from %define).

%assign is used to define single-line macros which take no parameters and have a numeric value.
This value can be specified in the form of an expression, and it will be evaluated once, when the
%assign directive is processed.

Like %define, macros defined using %ass1gn can be re-defined later, so you can do things like
%assign i i+l
to increment the numeric value of a macro.

%assign is useful for controlling the termination of %rep preprocessor loops: see section 4.5 for an
example of this. Another use for %ass1ign is given in section 8.4 and section 9.1.

The expression passed to %assign is a critical expression (see section 3.8), and must also evaluate to a
pure number (rather than a relocatable reference such as a code or data address, or anything involving
aregister).

4.1.8

4.1.9

4.2

4.2.1

Defining Strings: %defstr

%defstr, and its case-insensitive counterpart %idefstr, define or redefine a single-line macro
without parameters but converts the entire right-hand side, after macro expansion, to a quoted string
before definition.

For example:

%defstr test TEST

is equivalent to

%define test ’TEST’

This can be used, for example, with the %! construct (see section 4.10.2):

%defstr PATH %!PATH ; The operating system PATH variable
Defining Tokens: %deftok

%deftok, and its case-insensitive counterpart %ideftok, define or redefine a single-line macro
without parameters but converts the second parameter, after string conversion, to a sequence of
tokens.

For example:
%deftok test ’TEST’
is equivalent to

%define test TEST

String Manipulation in Macros

It’s often useful to be able to handle strings in macros. NASM supports a few simple string handling
macro operators from which more complex operations can be constructed.

All the string operators define or redefine a value (either a string or a numeric value) to a single-line
macro. When producing a string value, it may change the style of quoting of the input string or strings,
and possibly use \-escapes inside ¢ -quoted strings.

Concatenating Strings: %strcat

The %strcat operator concatenates quoted strings and assign them to a single-line macro.
For example:

%strcat alpha "Alpha: ", 12" screen’

... would assign the value ’Alpha: 12" screen’ to alpha. Similarly:

%strcat beta ’"foo"\’, "’bar’"

... would assign the value ¢"foo'"\\’bar’ ¢ to beta.

The use of commas to separate strings is permitted but optional.

4.2.2 String Length: %strlen

The %strlen operator assigns the length of a string to a macro. For example:
%strlen charcnt ’my string’

In this example, charcnt would receive the value 9, just as if an %assign had been used. In this
example, "my string’ was a literal string but it could also have been a single-line macro that
expands to a string, as in the following example:

45

4.2.3

4.3

46

%define sometext ’my string’
%strlen charcnt sometext

As in the first case, this would result in charcnt being assigned the value of 9.

Extracting Substrings: %substr

Individual letters or substrings in strings can be extracted using the %substr operator. An example of
its use is probably more useful than the description:

%substr mychar ’xyzw’ 1 ; equivalent to %define mychar ’x’
%substr mychar ’xyzw’ 2 ; equivalent to %define mychar ’y’
%substr mychar ’xyzw’ 3 ; equivalent to %define mychar ’z’
%substr mychar ’xyzw’ 2,2 ; equivalent to %define mychar ’yz’
%substr mychar ’xyzw’ 2,-1 ; equivalent to %define mychar ’yzw’
%substr mychar ’xyzw’ 2,-2 ; equivalent to %define mychar ’yz’

As with %strlen (see section 4.2.2), the first parameter is the single-line macro to be created and the
second is the string. The third parameter specifies the first character to be selected, and the optional
fourth parameter preceeded by comma) is the length. Note that the first index is 1, not 0 and the last
index is equal to the value that %str1len would assign given the same string. Index values out of range
result in an empty string. A negative length means "until N-1 characters before the end of string", i.e.
-1 means until end of string, —2 until one character before, etc.

Multi-Line Macros: %macro

Multi-line macros are much more like the type of macro seen in MASM and TASM: a multi-line macro
definition in NASM looks something like this.

%macro prologue 1

push ebp

mov ebp,esp

sub esp,%l
%endmacro

This defines a C-like function prologue as a macro: so you would invoke the macro with a call such as
myfunc: prologue 12
which would expand to the three lines of code

myfunc: push ebp
mov ebp,esp
sub esp,12

The number 1 after the macro name in the %macro line defines the number of parameters the macro
prologue expects to receive. The use of %1 inside the macro definition refers to the first parameter to
the macro call. With a macro taking more than one parameter, subsequent parameters would be
referred to as %2, %3 and so on

Multi-line macros, like single-line macros, are case-sensitive, unless you define them using the
alternative directive %imacro.

If you need to pass a comma as part of a parameter to a multi-line macro, you can do that by enclosing
the entire parameter in braces. So you could code things like

%macro silly 2

%2: db %1

4.3.1

4.3.2

%endmacro

silly ’a’, letter_a ; letter_a: db ’a’
silly ’ab’, string_ab ; string_ab: db ’ab’
silly {13,100}, crlf ; crlif: db 13,10

Overloading Multi-Line Macros

As with single-line macros, multi-line macros can be overloaded by defining the same macro name
several times with different numbers of parameters. This time, no exception is made for macros with no
parameters at all. So you could define

%macro prologue 0

push ebp
mov ebp,esp
%endmacro

to define an alternative form of the function prologue which allocates no local stack space.

Sometimes, however, you might want to ‘overload’ a machine instruction; for example, you might want
to define

%macro push 2

push %1
push %2
%endmacro

so that you could code

push ebx ; this 1line is not a macro call
push eax,ecx ; but this one is

Ordinarily, NASM will give a warning for the first of the above two lines, since push is now defined to be
a macro, and is being invoked with a number of parameters for which no definition has been given. The
correct code will still be generated, but the assembler will give a warning. This warning can be disabled
by the use of the -w-macro-params command-line option (see section 2.1.25).

Macro-Local Labels

NASM allows you to define labels within a multi-line macro definition in such a way as to make them
local to the macro call: so calling the same macro multiple times will use a different label each time.
You do this by prefixing %% to the label name. So you can invent an instruction which executes a RET if
the Z flag is set by doing this:

%macro retz 0
jnz %%skip
ret
%%skip:
%endmacro

You can call this macro as many times as you want, and every time you call it NASM will make up a
different ‘real’ name to substitute for the label %%skip. The names NASM invents are of the form
..@2345.skip, where the number 2345 changes with every macro call. The ..@ prefix prevents

47

4.3.3

4.3.4

48

macro-local labels from interfering with the local label mechanism, as described in section 3.9. You
should avoid defining your own labels in this form (the . . @ prefix, then a number, then another period)
in case they interfere with macro-local labels.

Greedy Macro Parameters

Occasionally it is useful to define a macro which lumps its entire command line into one parameter
definition, possibly after extracting one or two smaller parameters from the front. An example might be
a macro to write a text string to a file in MS—-DOS, where you might want to be able to write

writefile [filehandle],"hello, world",13,10

NASM allows you to define the last parameter of a macro to be greedy, meaning that if you invoke the
macro with more parameters than it expects, all the spare parameters get lumped into the last defined
one along with the separating commas. So if you code:

%macro writefile 2+

jmp %%endstr
%%str: db %2
%%endstr:
mov dx,%%str
mov cXx,%%endstr-%%str
mov bx,%1
mov ah,0x40
int 0x21
%endmacro

then the example call to writefile above will work as expected: the text before the first comma,
[filehandle],is used as the first macro parameter and expanded when %1 is referred to, and all the
subsequent text is lumped into %2 and placed after the db.

The greedy nature of the macro is indicated to NASM by the use of the + sign after the parameter count
on the %macro line.

If you define a greedy macro, you are effectively telling NASM how it should expand the macro given
any number of parameters from the actual number specified up to infinity; in this case, for example,
NASM now knows what to do when it sees a call to writefile with 2, 3, 4 or more parameters. NASM
will take this into account when overloading macros, and will not allow you to define another form of
writefile taking 4 parameters (for example).

Of course, the above macro could have been implemented as a non-greedy macro, in which case the
call to it would have had to look like

writefile [filehandle], {"hello, world",13,10}

NASM provides both mechanisms for putting commas in macro parameters, and you choose which one
you prefer for each macro definition.

See section 6.3.1 for a better way to write the above macro.

Macro Parameters Range

NASM allows you to expand parameters via special construction %{x :y} where x is the first parameter
index and y is the last. Any index can be either negative or positive but must never be zero.

For example

%macro mpar 1l-x
db %{3:5}

4.3.5

%endmacro

mpar 1,2,3,4,5,6
expandsto 3,4, 5 range.
Even more, the parameters can be reversed so that
%macro mpar 1l-x
db %{5:3%}
%endmacro
mpar 1,2,3,4,5,6
expandsto 5,4, 3 range.

But even this is not the last. The parameters can be addressed via negative indices so NASM will count
them reversed. The ones who know Python may see the analogue here.

%macro mpar 1l-x
db %{-1:-3}
%endmacro
mpar 1,2,3,4,5,6
expandsto 6,5, 4 range.
Note that NASM uses comma to separate parameters being expanded.

By the way, here is a trick - you might use the index %{-1:-1} which gives you the last argument
passed to a macro.

Default Macro Parameters

NASM also allows you to define a multi-line macro with a range of allowable parameter counts. If you
do this, you can specify defaults for omitted parameters. So, for example:

%macro die 0-1 "Painful program death has occurred."

writefile 2,%1

mov ax,0x4col
int Ox21
%endmacro

This macro (which makes use of the writefile macro defined in section 4.3.3) can be called with an
explicit error message, which it will display on the error output stream before exiting, or it can be called
with no parameters, in which case it will use the default error message supplied in the macro definition.

In general, you supply a minimum and maximum number of parameters for a macro of this type; the
minimum number of parameters are then required in the macro call, and then you provide defaults for
the optional ones. So if a macro definition began with the line

%macro foobar 1-3 eax,[ebx+2]

then it could be called with between one and three parameters, and %1 would always be taken from
the macro call. %2, if not specified by the macro call, would default to eax, and %3 if not specified
would defaultto [ebx+2].

You can provide extra information to a macro by providing too many default parameters:

%macro quux 1 something

49

4.3.6

4.3.7

4.3.8

50

This will trigger a warning by default; see section 2.1.25 for more information. When quux is invoked, it
receives not one but two parameters. something can be referred to as %2. The difference between
passing something this way and writing something in the macro body is that with this way
somethingis evaluated when the macro is defined, not when it is expanded.

You may omit parameter defaults from the macro definition, in which case the parameter default is
taken to be blank. This can be useful for macros which can take a variable number of parameters, since
the %0 token (see section 4.3.6) allows you to determine how many parameters were really passed to
the macro call.

This defaulting mechanism can be combined with the greedy-parameter mechanism; so the die
macro above could be made more powerful, and more useful, by changing the first line of the definition
to

%macro die 0-1+ "Painful program death has occurred.”,13,10

The maximum parameter count can be infinite, denoted by *. In this case, of course, it is impossible to
provide a full set of default parameters. Examples of this usage are shown in section 4.3.8.

%0: Macro Parameter Counter

The parameter reference %0 will return a numeric constant giving the number of parameters received,
that is, if %0 is n then %n is the last parameter. %0 is mostly useful for macros that can take a variable
number of parameters. It can be used as an argument to %rep (see section 4.5) in order to iterate
through all the parameters of a macro. Examples are given in section 4.3.8.

%00: Label Preceeding Macro

%00 will return the label preceeding the macro invocation, if any. The label must be on the same line as
the macro invocation, may be a local label (see section 3.9), and need not end in a colon.

%rotate: Rotating Macro Parameters

Unix shell programmers will be familiar with the shift shell command, which allows the arguments
passed to a shell script (referenced as $1, $2 and so on) to be moved left by one place, so that the
argument previously referenced as $2 becomes available as $1, and the argument previously
referenced as $1 is no longer available at all.

NASM provides a similar mechanism, in the form of %rotate. As its name suggests, it differs from the
Unix shift in that no parameters are lost: parameters rotated off the left end of the argument list
reappear on the right, and vice versa.

%rotate is invoked with a single numeric argument (which may be an expression). The macro
parameters are rotated to the left by that many places. If the argument to %rotate is negative, the
macro parameters are rotated to the right.

So a pair of macros to save and restore a set of registers might work as follows:
%macro multipush 1-x%
%rep %0
push %1
%rotate 1
%endrep
%endmacro

This macro invokes the PUSH instruction on each of its arguments in turn, from left to right. It begins by
pushing its first argument, %1, then invokes %rotate to move all the arguments one place to the left,
so that the original second argument is now available as %1. Repeating this procedure as many times as

4.3.9

there were arguments (achieved by supplying %0 as the argument to %rep) causes each argument in
turn to be pushed.

Note also the use of * as the maximum parameter count, indicating that there is no upper limit on the
number of parameters you may supply to the multipush macro.

It would be convenient, when using this macro, to have a POP equivalent, which didn’t require the
arguments to be given in reverse order. Ideally, you would write the multipush macro call, then
cut-and-paste the line to where the pop needed to be done, and change the name of the called macro
to multipop, and the macro would take care of popping the registers in the opposite order from the
one in which they were pushed.

This can be done by the following definition:
%macro multipop 1-*
%rep %0
%rotate -1
pop %1
%endrep
%endmacro

This macro begins by rotating its arguments one place to the right, so that the original last argument
appears as %1. This is then popped, and the arguments are rotated right again, so the second-to-last
argument becomes %1. Thus the arguments are iterated through in reverse order.

Concatenating Macro Parameters

NASM can concatenate macro parameters and macro indirection constructs on to other text
surrounding them. This allows you to declare a family of symbols, for example, in a macro definition. If,
for example, you wanted to generate a table of key codes along with offsets into the table, you could
code something like

%macro keytab_entry 2

keypos%1 equ $-keytab
db %2
%endmacro
keytab:

keytab_entry F1,128+1
keytab_entry F2,128+2
keytab_entry Return,13

which would expand to

keytab:

keyposF1 equ $-keytab
db 128+1

keyposF2 equ $-keytab
db 128+2

keyposReturn equ $-keytab
db 13

You can just as easily concatenate text on to the other end of a macro parameter, by writing %1 foo.

51

4.3.10

4.3.11

52

If you need to append a digit to a macro parameter, for example defining labels fool and foo2 when
passed the parameter foo, you can’t code %11 because that would be taken as the eleventh macro
parameter. Instead, you must code %{1}1, which will separate the first 1 (giving the number of the
macro parameter) from the second (literal text to be concatenated to the parameter).

This concatenation can also be applied to other preprocessor in-line objects, such as macro-local
labels (section 4.3.2) and context-local labels (section 4.7.2). In all cases, ambiguities in syntax can be
resolved by enclosing everything after the % sign and before the literal text in braces: so %{%foo}bar
concatenates the text bar to the end of the real name of the macro-local label %%foo. (This is
unnecessary, since the form NASM uses for the real names of macro-local labels means that the two
usages %{%foo}bar and %%foobar would both expand to the same thing anyway; nevertheless, the
capability is there.)

The single-line macro indirection construct, %[. ..] (section 4.1.3), behaves the same way as macro
parameters for the purpose of concatenation.

See also the %+ operator, section 4.1.4.

Condition Codes as Macro Parameters

NASM can give special treatment to a macro parameter which contains a condition code. For a start,
you can refer to the macro parameter %1 by means of the alternative syntax %+1, which informs NASM
that this macro parameter is supposed to contain a condition code, and will cause the preprocessor to
report an error message if the macro is called with a parameter which is not a valid condition code.

Far more usefully, though, you can refer to the macro parameter by means of %-1, which NASM will
expand as the inverse condition code. So the retz macro defined in section 4.3.2 can be replaced by a
general conditional-return macro like this:

%macro retc 1
j%-1 %%skip
ret
%%skip:
%endmacro

This macro can now be invoked using calls like retc ne, which will cause the conditional-jump
instruction in the macro expansion to come out as JE, or retc po which will make the jump a JPE.

The %+1 macro—parameter reference is quite happy to interpret the arguments CXZ and ECXZ as valid
condition codes; however, %-1 will report an error if passed either of these, because no inverse
condition code exists.

Disabling Listing Expansion

When NASM is generating a listing file from your program, it will generally expand multi-line macros by
means of writing the macro call and then listing each line of the expansion. This allows you to see which
instructions in the macro expansion are generating what code; however, for some macros this clutters
the listing up unnecessarily.

NASM therefore provides the .nol1ist qualifier, which you can include in a macro definition to inhibit
the expansion of the macro in the listing file. The . nol1 st qualifier comes directly after the number of
parameters, like this:

%macro foo l.nolist
Or like this:

%macro bar 1-5+.nolist a,b,c,d,e,f,g,h

4.3.12

4.4

44.1

Undefining Multi-Line Macros: %unmacro

Multi-line macros can be removed with the %unmacro directive. Unlike the %undef directive,
however, %unmacro takes an argument specification, and will only remove exact matches with that
argument specification.

For example:

%macro foo 1-3

; Do something
%endmacro
%unmacro foo 1-3

removes the previously defined macro foo, but

%macro bar 1-3

; Do something
%endmacro
%unmacro bar 1

does not remove the macro bar, since the argument specification does not match exactly.

Conditional Assembly

Similarly to the C preprocessor, NASM allows sections of a source file to be assembled only if certain
conditions are met. The general syntax of this feature looks like this:

%if<condition>

; some code which only appears 1if <condition> is met
%elif<condition2>

; only appears if <condition> is not met but <condition2> ds
%else

; this appears if neither <condition> nor <condition2> was met
%endif

The inverse forms %1 fn and %el1 fn are also supported.

The %else clause is optional, as is the %el1f clause. You can have more than one %elif clause as
well.

There are a number of variants of the %1 f directive. Each has its corresponding %elif, %ifn, and
%elifn directives; for example, the equivalents to the %ifdef directive are %elifdef, %ifndef,
and %elifndef.

%ifdef: Testing Single-Line Macro Existence

Beginning a conditional-assembly block with the line %ifdef MACRO will assemble the subsequent
code if, and only if, a single-line macro called MACRO is defined. If not, then the %el1if and %else
blocks (if any) will be processed instead.

For example, when debugging a program, you might want to write code such as

; perform some function
%ifdef DEBUG

writefile 2,"Function performed successfully",13,10
%endif

; go and do something else

Then you could use the command-line option ~dDEBUG to create a version of the program which
produced debugging messages, and remove the option to generate the final release version of the
program.

53

4.4.2

4.4.3

4.4.4

54

You can test for a macro not being defined by using %1 fndef instead of %1 fdef. You can also test for
macro definitions in %el1 f blocks by using %eli fdef and %elifndef.

%ifmacro: Testing Multi-Line Macro Existence

The %ifmacro directive operates in the same way as the %1 fdef directive, except that it checks for
the existence of a multi-line macro.

For example, you may be working with a large project and not have control over the macros in a library.
You may want to create a macro with one name if it doesn’t already exist, and another name if one with
that name does exist.

The %ifmacro is considered true if defining a macro with the given name and number of arguments
would cause a definitions conflict. For example:

%ifmacro MyMacro 1-3
%error "MyMacro 1-3" causes a conflict with an existing macro.
%else
%macro MyMacro 1-3
; insert code to define the macro
%endmacro

%endif

This will create the macro "MyMacro 1-3" if no macro already exists which would conflict with it, and
emits a warning if there would be a definition conflict.

You can test for the macro not existing by using the %ifnmacro instead of %ifmacro. Additional
tests can be performed in %e 11 f blocks by using %elifmacro and %elifnmacro.

%1 fctx: Testing the Context Stack

The conditional-assembly construct %7 fctx will cause the subsequent code to be assembled if and
only if the top context on the preprocessor’s context stack has the same name as one of the arguments.
As with %ifdef, the inverse and %elif forms %ifnctx, %elifctx and %elifnctx are also
supported.

For more details of the context stack, see section 4.7. For a sample use of %1 fctx, see section 4.7.6.

%1 f: Testing Arbitrary Numeric Expressions

The conditional-assembly construct %if expr will cause the subsequent code to be assembled if and
only if the value of the numeric expression expr is non-zero. An example of the use of this feature is in
deciding when to break out of a %rep preprocessor loop: see section 4.5 for a detailed example.

The expression given to %1 f, and its counterpart %el1 f, is a critical expression (see section 3.8).

%1f extends the normal NASM expression syntax, by providing a set of relational operators which are
not normally available in expressions. The operators =, <, >, <=, >= and <> test equality, less-than,
greater-than, less-or-equal, greater-or-equal and not-equal respectively. The C-like forms == and ! =
are supported as alternative forms of = and <>. In addition, low-priority logical operators &&, ** and
| | are provided, supplying logical AND, logical XOR and logical OR. These work like the C logical
operators (although C has no logical XOR), in that they always return either 0 or 1, and treat any
non-zero input as 1 (so that A7, for example, returns 1 if exactly one of its inputs is zero, and 0
otherwise). The relational operators also return 1 for true and 0 for false.

4.4.5

4.4.6

Like other %1 f constructs, %1 f has a counterpart %e 11 f, and negative forms %1 fn and %eli fn.
%ifidnand %1 fidni: Testing Exact Text Identity

The construct %ifidn textl,text2 will cause the subsequent code to be assembled if and only if
textl and text2, after expanding single-line macros, are identical pieces of text. Differences in white
space are not counted.

%1 fidni issimilarto %1 fidn, butis case-insensitive.

For example, the following macro pushes a register or number on the stack, and allows you to treat IP
as a real register:

%macro pushparam 1

%ifidni %1,1ip

call %%label
%%label:
%else

push %1
%endif

%endmacro

Like other %1 f constructs, %1 fidn has a counterpart %el1 fidn, and negative forms %1ifnidn and
%elifnidn. Similarly, %1 fidni has counterparts %elifidni,%ifnidniand %elifnidni.

%ifid, %ifnum,%ifstr: Testing Token Types

Some macros will want to perform different tasks depending on whether they are passed a number, a
string, or an identifier. For example, a string output macro might want to be able to cope with being
passed either a string constant or a pointer to an existing string.

The conditional assembly construct %1 f-id, taking one parameter (which may be blank), assembles
the subsequent code if and only if the first token in the parameter exists and is an identifier. %i fnum
works similarly, but tests for the token being a numeric constant; %1 fstr tests for it being a string.

For example, the writefile macro defined in section 4.3.3 can be extended to take advantage of
%1 fstrinthe following fashion:

%macro writefile 2-3+

%ifstr %2

jmp %%endstr
%if %0 = 3
%%str: db %2 ,%3
%else
%%str: db %2
%endif
%%endstr: mov dx,%%str
mov cX,%%endstr-%%str
%else
mov dx,%2
mov CX,%3
%endif
mov bx,%1
mov ah,0x40
int 0Ox21

55

4.4.7

4.4.8

4.4.9

4.5

56

%endmacro
Then the writefile macro can cope with being called in either of the following two ways:

writefile [file], strpointer, length
writefile [file], "hello", 13, 10

In the first, strpointer is used as the address of an already-declared string, and length is used as
its length; in the second, a string is given to the macro, which therefore declares it itself and works out
the address and length for itself.

Note the use of %7 f inside the %1 fstr: this is to detect whether the macro was passed two arguments
(so the string would be a single string constant, and db %2 would be adequate) or more (in which case,
all but the first two would be lumped together into %3, and db %2 ,%3 would be required).

Theusual %el1if..., %1 fn..., and %el1 fn... versions exist for each of %1 fid, %ifnumand %ifstr.

%1 ftoken: Test for a Single Token

Some macros will want to do different things depending on if it is passed a single token (e.g. paste it to
something else using %+) versus a multi-token sequence.

The conditional assembly construct %7 ftoken assembles the subsequent code if and only if the
expanded parameters consist of exactly one token, possibly surrounded by whitespace.

For example:

%iftoken 1

will assemble the subsequent code, but

%iftoken -1

will not, since —1 contains two tokens: the unary minus operator -, and the number 1.
The usual %el1 ftoken, %ifntoken, and %elifntoken variants are also provided.
%ifempty: Test for Empty Expansion

The conditional assembly construct %ifempty assembles the subsequent code if and only if the
expanded parameters do not contain any tokens at all, whitespace excepted.

The usual %el1ifempty, %ifnempty, and %elifnempty variants are also provided.

%1 fenv: Test If Environment Variable Exists

The conditional assembly construct %ifenv assembles the subsequent code if and only if the
environment variable referenced by the %! variable directive exists.

The usual ¥el1ifenv, %ifnenv, and %elifnenv variants are also provided.

Just as for %! variable the argument should be written as a string if it contains characters that would
not be legal in an identifier. See section 4.10.2.

Preprocessor Loops: %rep

NASM’s TIMES prefix, though useful, cannot be used to invoke a multi-line macro multiple times,
because it is processed by NASM after macros have already been expanded. Therefore NASM provides
another form of loop, this time at the preprocessor level: %rep.

The directives %rep and %endrep (%rep takes a numeric argument, which can be an expression;
%endrep takes no arguments) can be used to enclose a chunk of code, which is then replicated as
many times as specified by the preprocessor:

4.6

4.6.1

%assign 1 0
%rep 64
inc word [table+2x1i]
%assign i i+l
%endrep

This will generate a sequence of 64 INC instructions, incrementing every word of memory from
[table] to [table+126].

For more complex termination conditions, or to break out of a repeat loop part way along, you can use
the %ex trep directive to terminate the loop, like this:

fibonacci:

%assign 1 0

%assign j 1

%rep 100

%if j > 65535
%exitrep

%endif

%assign
%assign
%assign
%endrep

w J
i

O x a

j+i
J
k

fib_number equ ($-fibonacci)/2

This produces a list of all the Fibonacci numbers that will fit in 16 bits. Note that a maximum repeat
count must still be given to %rep. This is to prevent the possibility of NASM getting into an infinite loop
in the preprocessor, which (on multitasking or multi-user systems) would typically cause all the system
memory to be gradually used up and other applications to start crashing.

Note a maximum repeat count is limited by 62 bit number, though it is hardly possible that you ever
need anything bigger.

Source Files and Dependencies

These commands allow you to split your sources into multiple files.

%include: Including Other Files

Using, once again, a very similar syntax to the C preprocessor, NASM’s preprocessor lets you include
other source files into your code. This is done by the use of the %include directive:

%include "macros.mac"

will include the contents of the file macros.mac into the source file containing the %include
directive.

Include files are searched for in the current directory (the directory you’re in when you run NASM, as
opposed to the location of the NASM executable or the location of the source file), plus any directories
specified on the NASM command line using the - option.

The standard C idiom for preventing a file being included more than once is just as applicable in NASM:
if the file macros . mac has the form

%ifndef MACROS_MAC

%define MACROS_MAC

; now define some macros
%endif

57

4.6.2

4.6.3

4.6.4

4.7

58

then including the file more than once will not cause errors, because the second time the file is
included nothing will happen because the macro MACROS_MAC will already be defined.

You can force a file to be included even if there is no %include directive that explicitly includes it, by
using the —p option on the NASM command line (see section 2.1.18).

%pathsearch: Search the Include Path

The %pathsearch directive takes a single-line macro name and a filename, and declare or redefines
the specified single-line macro to be the include—path-resolved version of the filename, if the file exists
(otherwise, it is passed unchanged.)

For example,
%pathsearch MyFoo "foo.bin"

...with -Ibins/ in theinclude path may end up defining the macro MyFoo to be "bins/foo.bin".

%depend: Add Dependent Files

The %depend directive takes a filename and adds it to the list of files to be emitted as dependency
generation when the —M options and its relatives (see section 2.1.4) are used. It produces no output.

This is generally used in conjunction with %pathsearch. For example, a simplified version of the
standard macro wrapper for the INCBIN directive looks like:

%imacro incbin 1-2+ 0
%pathsearch dep %1
%depend dep

incbin dep,%2
%endmacro

This first resolves the location of the file into the macro dep, then adds it to the dependency lists, and
finally issues the assembler-level INCBIN directive.

%use: Include Standard Macro Package

The %use directive is similar to %include, but rather than including the contents of a file, it includes a
named standard macro package. The standard macro packages are part of NASM, and are described in
chapter 5.

Unlike the %include directive, package names for the %use directive do not require quotes, but
quotes are permitted. In NASM 2.04 and 2.05 the unquoted form would be macro-expanded; this is no
longer true. Thus, the following lines are equivalent:

%use altreg
%use ’altreg’

Standard macro packages are protected from multiple inclusion. When a standard macro package is
used, a testable single-line macro of the form __USE_package__ is also defined, see section 4.11.8.

The Context Stack

Having labels that are local to a macro definition is sometimes not quite powerful enough: sometimes
you want to be able to share labels between several macro calls. An example might be a REPEAT ...
UNTIL loop, in which the expansion of the REPEAT macro would need to be able to refer to a label
which the UNTIL macro had defined. However, for such a macro you would also want to be able to
nest these loops.

NASM provides this level of power by means of a context stack. The preprocessor maintains a stack of
contexts, each of which is characterized by a name. You add a new context to the stack using the %push

4.7.1

4.7.2

4.7.3

directive, and remove one using %pop. You can define labels that are local to a particular context on
the stack.

%push and %pop: Creating and Removing Contexts

The %push directive is used to create a new context and place it on the top of the context stack. %push
takes an optional argument, which is the name of the context. For example:

%push foobar

This pushes a new context called foobar on the stack. You can have several contexts on the stack with
the same name: they can still be distinguished. If no name is given, the context is unnamed (this is
normally used when both the %push and the %pop are inside a single macro definition.)

The directive %pop, taking one optional argument, removes the top context from the context stack and
destroys it, along with any labels associated with it. If an argument is given, it must match the name of
the current context, otherwise it will issue an error.

Context-Local Labels

Just as the usage %%foo defines a label which is local to the particular macro call in which it is used,
the usage %$foo is used to define a label which is local to the context on the top of the context stack.
So the REPEAT and UNTIL example given above could be implemented by means of:

%macro repeat 0

%push repeat
%$begin:

%endmacro
%macro until 1

j%-1 %$begin
%pop
%endmacro

and invoked by means of, for example,

mov cx,string
repeat

add cx,3
scasb

until e

which would scan every fourth byte of a string in search of the byte in AL.

If you need to define, or access, labels local to the context below the top one on the stack, you can use
%$$foo, or %$$S$foo for the context below that, and so on.

Context-Local Single-Line Macros

NASM also allows you to define single-line macros which are local to a particular context, in just the
same way:

%define %Slocalmac 3

will define the single-line macro %$localmac to be local to the top context on the stack. Of course,
after a subsequent %push, it can then still be accessed by the name %$$1localmac.

59

4.7.4 Context Fall-Through Lookup (deprecated)

4.7.5

60

Context fall-through lookup (automatic searching of outer contexts) is a feature that was added in
NASM version 0.98.03. Unfortunately, this feature is unintuitive and can result in buggy code that would
have otherwise been prevented by NASM’s error reporting. As a result, this feature has been
deprecated. NASM version 2.09 will issue a warning when usage of this deprecated feature is detected.
Starting with NASM version 2.10, usage of this deprecated feature will simply result in an expression
syntaxerror.

An example usage of this deprecated feature follows:

%macro ctxthru 0
%push ctx1
%assign %$external 1
%push ctx2
%assign %$internal 1
mov eax, %$external
mov eax, %$internal
%pop
%pop
%endmacro
As demonstrated, %Sexternal is being defined in the ctx1 context and referenced within the ctx2
context. With context fall-through lookup, referencing an undefined context-local macro like this
implicitly searches through all outer contexts until a match is made or isn’t found in any context. As a
result, %$Sexternal referenced within the ctx2 context would implicitly use %$external as
defined in ctxl. Most people would expect NASM to issue an error in this situation because
%$external was never defined within ctx2 and also isn’t qualified with the proper context depth,
%$$external.

Here is a revision of the above example with proper context depth:

%macro ctxthru 0
%push ctx1l
%assign %$external 1
%push ctx2
%assign %$internal 1
mov eax, %$Sexternal
mov eax, %$internal
%pop
%pop
%endmacro
As demonstrated, %$external is still being defined in the ctx1 context and referenced within the
ctx2 context. However, the reference to %$externa’l within ctx2 has been fully qualified with the
proper context depth, %$$external, and thus is no longer ambiguous, unintuitive or erroneous.

%repl: Renaming a Context

If you need to change the name of the top context on the stack (in order, for example, to have it
respond differently to %1 fctx), you can execute a %pop followed by a %push; but this will have the
side effect of destroying all context-local labels and macros associated with the context that was just

popped.

NASM provides the directive %repl, which replaces a context with a different name, without touching
the associated macros and labels. So you could replace the destructive code

%pop
%push newname

with the non-destructive version %repl newname.

4.7.6 Example Use of the Context Stack: Block IFs

This example makes use of almost all the context-stack features, including the conditional-assembly
construct %1 fctx, to implement a block IF statement as a set of macros.

%macro if 1

%push if
j%-1 %S$ifnot

%endmacro
%macro else 0

%ifctx if
%repl else

jmp %$1ifend
%$ifnot:
%else
%error '"expected ‘if’ before ‘else’"
%endif
%endmacro

%macro endif 0

%ifctx if
%$ifnot:
%pop
%elifctx else
%$1ifend:
%pop
%else
%error "expected ‘if’ or ‘else’ before ‘endif’"
%endif

%endmacro

This code is more robust than the REPEAT and UNTIL macros given in section 4.7.2, because it uses
conditional assembly to check that the macros are issued in the right order (for example, not calling
endi f before 1 f) and issues a %error if they’re not.

In addition, the endif macro has to be able to cope with the two distinct cases of either directly
following an 1if, or following an else. It achieves this, again, by using conditional assembly to do
different things depending on whether the context on top of the stackis i f orelse.

The else macro has to preserve the context on the stack, in order to have the %$1fnot referred to by
the i f macro be the same as the one defined by the endif macro, but has to change the context’s
name so that end f will know there was an intervening else. It does this by the use of %rep1.

A sample usage of these macros might look like:

cmp ax,bx

if ae

61

cmp bx,cx

if ae
mov ax,cx
else
mov ax,bx
endif
else
cmp ax,cx
if ae
mov ax,cx
endif
endif

The block-IF macros handle nesting quite happily, by means of pushing another context, describing
the inner i f, on top of the one describing the outer i f; thus else and end-i f always refer to the last
unmatched i f orelse.

4.8 Stack Relative Preprocessor Directives

The following preprocessor directives provide a way to use labels to refer to local variables allocated on
the stack.

+ %arg (seesection 4.8.1)
+ %stacksize (seesection 4.8.2)

+ %local (seesection 4.8.3)

4.8.1 %arg Directive

The %arg directive is used to simplify the handling of parameters passed on the stack. Stack based
parameter passing is used by many high level languages, including C, C++ and Pascal.

While NASM has macros which attempt to duplicate this functionality (see section 8.4.5), the syntax is
not particularly convenient to use and is not TASM compatible. Here is an example which shows the use
of %ar g without any external macros:

some_function:

%push mycontext ; save the current context
%stacksize large ; tell NASM to use bp
%arg i:word, j_ptr:word
mov ax, [1]
mov bx, [j_ptr]
add ax, [bx]
ret
%pop ; restore original context

This is similar to the procedure defined in section 8.4.5 and adds the value in i to the value pointed to by
j_ptr and returns the sum in the ax register. See section 4.7.1 for an explanation of push and pop and
the use of context stacks.

62

4.8.2

4.8.3

%stacksize Directive

The %stacksize directive is used in conjunction with the %arg (see section 4.8.1) and the %local
(see section 4.8.3) directives. It tells NASM the default size to use for subsequent %arg and %local
directives. The %stacksize directive takes one required argument which is one of flat, flat64,
largeorsmall.

%stacksize flat

This form causes NASM to use stack-based parameter addressing relative to ebp and it assumes that a
near form of call was used to get to this label (i.e. that eip is on the stack).

%stacksize flat64

This form causes NASM to use stack-based parameter addressing relative to rbp and it assumes that a
near form of call was used to get to this label (i.e. that rip is on the stack).

%stacksize large

This form uses bp to do stack-based parameter addressing and assumes that a far form of call was
used to get to this address (i.e. that ip and cs are on the stack).

%stacksize small

This form also uses bp to address stack parameters, but it is different from large because it also
assumes that the old value of bp is pushed onto the stack (i.e. it expects an ENTER instruction). In other
words, it expects that bp, ip and cs are on the top of the stack, underneath any local space which may
have been allocated by ENTER. This form is probably most useful when used in combination with the
%local directive (see section 4.8.3).

%local Directive

The %1local directive is used to simplify the use of local temporary stack variables allocated in a stack
frame. Automatic local variables in C are an example of this kind of variable. The %1local directive is
most useful when used with the %stacksize (see section 4.8.2 and is also compatible with the %arg
directive (see section 4.8.1). It allows simplified reference to variables on the stack which have been
allocated typically by using the ENTER instruction. An example of its use is the following:

silly_swap:

%push mycontext ; save the current context
%stacksize small ; tell NASM to use bp
%assign %$localsize 0 ; see text for explanation

%local old_ax:word, old_dx:word

enter %$localsize,0 ; see text for explanation

mov [old_ax],ax ; swap ax & bx
mov [old_dx] ,dx ; and swap dx & cx
mov ax,bx
mov dx,cx
mov bx, [old_ax]
mov cx, [old_dx]
leave ; restore old bp
ret H
%pop ; restore original context

The %$1localsiize variable is used internally by the %local directive and must be defined within the
current context before the %1loca'l directive may be used. Failure to do so will result in one expression

63

4.9

4.10

64

syntax error for each %local variable declared. It then may be used in the construction of an
appropriately sized ENTER instruction as shown in the example.

Reporting User-Defined Errors: %error,%warning, %fatal

The preprocessor directive %error will cause NASM to report an error if it occurs in assembled code.
So if other users are going to try to assemble your source files, you can ensure that they define the right
macros by means of code like this:

%ifdef F1
; do some setup
%elifdef F2
; do some different setup
%else
%error "Neither F1 nor F2 was defined."
%endif

Then any user who fails to understand the way your code is supposed to be assembled will be quickly
warned of their mistake, rather than having to wait until the program crashes on being run and then
not knowing what went wrong.

Similarly, %warning issues a warning, but allows assembly to continue:

%ifdef F1
; do some setup
%elifdef F2
; do some different setup
%else
%warning "Neither F1 nor F2 was defined, assuming F1."
%define F1
%endif

%error and %warning are issued only on the final assembly pass. This makes them safe to use in
conjunction with tests that depend on symbol values.

%fatal terminates assembly immediately, regardless of pass. This is useful when there is no point in
continuing the assembly further, and doing so is likely just going to cause a spew of confusing error
messages.

It is optional for the message string after %error, %warning or %fatal to be quoted. If it is not, then
single-line macros are expanded in it, which can be used to display more information to the user. For
example:

%if foo > 64

%assign foo_over foo-64

%error foo is foo_over bytes too large
%endif

Other Preprocessor Directives

NASM also has preprocessor directives which allow access to information from external sources.
Currently they include:

+ %1line enables NASM to correctly handle the output of another preprocessor (see section 4.10.1).

+ %! enables NASM to read in the value of an environment variable, which can then be used in your
program (see section 4.10.2).

4.10.1

4.10.2

4.11

4.11.1

%11 ne Directive

The %1ine directive is used to notify NASM that the input line corresponds to a specific line number in
another file. Typically this other file would be an original source file, with the current NASM input being
the output of a pre—processor. The %11ine directive allows NASM to output messages which indicate
the line number of the original source file, instead of the file that is being read by NASM.

This preprocessor directive is not generally of use to programmers, by may be of interest to
preprocessor authors. The usage of the %11 ne preprocessor directive is as follows:

%line nnn[+mmm] [filename]

In this directive, nnn identifies the line of the original source file which this line corresponds to. mmm is
an optional parameter which specifies a line increment value; each line of the input file read in is
considered to correspond to mmm lines of the original source file. Finally, filename is an optional
parameter which specifies the file name of the original source file.

After reading a %l1ine preprocessor directive, NASM will report all file name and line numbers relative
to the values specified therein.
% ! variable: Read an Environment Variable.

The %! variable directive makes it possible to read the value of an environment variable at assembly
time. This could, for example, be used to store the contents of an environment variable into a string,
which could be used at some other point in your code.

For example, suppose that you have an environment variable FOO, and you want the contents of FOO
to be embedded in your program as a quoted string. You could do that as follows:

%defstr FOO %! FOO
See section 4.1.8 for notes on the %defstr directive.

If the name of the environment variable contains non-identifier characters, you can use string quotes
to surround the name of the variable, for example:

%defstr C_colon %!°C:?

Standard Macros

NASM defines a set of standard macros, which are already defined when it starts to process any source
file. If you really need a program to be assembled with no pre-defined macros, you can use the
%clear directive to empty the preprocessor of everything but context-local preprocessor variables
and single-line macros.

Most user-level assembler directives (see chapter 6) are implemented as macros which invoke
primitive directives; these are described in chapter 6. The rest of the standard macro set is described
here.

NASM Version Macros
_NASM_MAJOR__, __NASM_MINOR

The single-line macros _ _ NASM_SUBMINOR__ and
___NASM_PATCHLEVEL__ expand to the major, minor, subminor and patch level parts of the version
number of NASM being used. So, under NASM 0.98.32p1 for example, __NASM_MAJOR__ would be
defined to be 0, __NASM_MINOR__ would be defined as 98 NASM_SUBMINOR__ would be defined
to32,and ___NASM_PATCHLEVEL__ would be defined as 1.

_NASM_SNAPSHOT_

—_ —

) ——

Additionally, the macro
releases only.

is defined for automatically generated snapshot

65

4.11.2

4.11.3

4.11.4

4.11.5

4.11.6

66

__NASM_VERSION_ID__: NASM Version ID

The single-line macro __NASM_VERSION_ID__ expands to a dword integer representing the full
version number of the version of nasm being used. The value is the equivalent to __NASM_MAJOR__,

__NASM_MINOR__, __NASM_SUBMINOR__ and ___NASM_PATCHLEVEL__ concatenated to
produce a single doubleword. Hence, for 0.98.32p1, the returned number would be equivalent to:

dd 0x00622001
or

db 1,32,98,0

Note that the above lines are generate exactly the same code, the second line is used just to give an
indication of the order that the separate values will be present in memory.

__NASM_VER__: NASM Version string

The single-line macro __NASM_VER__ expands to a string which defines the version number of nasm
being used. So, under NASM 0.98.32 for example,

db __NASM_VER__
would expand to

db "0.98.32"
__FILE__and __LINE__:File Name and Line Number

Like the C preprocessor, NASM allows the user to find out the file name and line number containing the
current instruction. The macro __FILE__ expands to a string constant giving the name of the current
input file (which may change through the course of assembly if %include directives are used), and
__LINE__ expands to a numeric constant giving the current line number in the input file.

These macros could be used, for example, to communicate debugging information to a macro, since
invoking __LINE__ inside a macro definition (either single-line or multi-line) will return the line
number of the macro call, rather than definition. So to determine where in a piece of code a crash is
occurring, for example, one could write a routine stillhere, which is passed a line number in EAX
and outputs something like ‘line 155: still here’. You could then write a macro

%macro notdeadyet 0

push eax

mov eax,__LINE__

call stillhere

pop eax
%endmacro

and then pepper your code with calls to notdeadyet until you find the crash point.

__BITS__:CurrentBITS Mode

The __BITS__ standard macro is updated every time that the BITS mode is set using the BITS XX or
[BITS XX] directive, where XX is a valid mode number of 16, 32 or 64. __BITS__ receives the

specified mode number and makes it globally available. This can be very useful for those who utilize
mode-dependent macros.

__OUTPUT_FORMAT__: Current Output Format

The __OUTPUT_FORMAT__ standard macro holds the current Output Format, as given by the -f
option or NASM’s default. Type nasm -hf fora list.

4.11.7

4.11.8

4.11.9

%ifidn __OUTPUT_FORMAT__, win32
%define NEWLINE 13, 10

%elifidn __OUTPUT_FORMAT__, elf32
%define NEWLINE 10

%endif

Assembly Date and Time Macros

NASM provides a variety of macros that represent the timestamp of the assembly session.

+ The __DATE__ and __TIME__ macros give the assembly date and time as strings, in 1SO 8601
format ("YYYY-MM-DD" and "HH:MM:SS", respectively.)

+ The __DATE_NUM__ and __TIME_NUM__ macros give the assembly date and time in numeric
form; in the format YYYYMMDD and HHMMSS respectively.

+ The __UTC_DATE__ and __UTC_TIME__ macros give the assembly date and time in universal
time (UTC) as strings, in ISO 8601 format ("YYYY-MM-DD" and "HH:MM:SS", respectively.) If the
host platform doesn’t provide UTC time, these macros are undefined.

« The __UTC_DATE_NUM__ and __UTC_TIME_NUM__ macros give the assembly date and time
universal time (UTC) in numeric form; in the format YYYYMMDD and HHMMSS respectively. If the host
platform doesn’t provide UTC time, these macros are undefined.

+ The __POSIX_TIME__ macro is defined as a number containing the number of seconds since the
POSIX epoch, 1 January 1970 00:00:00 UTC; excluding any leap seconds. This is computed using UTC
time if available on the host platform, otherwise it is computed using the local time as if it was UTC.

All instances of time and date macros in the same assembly session produce consistent output. For
example, in an assembly session started at 42 seconds after midnight on January 1, 2010 in Moscow
(timezone UTC+3) these macros would have the following values, assuming, of course, a properly
configured environment with a correct clock:

__DATE__ "2010-01-01"
__TIME__ "00:00:42"
__DATE_NUM__ 20100101
__TIME_NUM__ 000042
__UTC_DATE__ "2009-12-31"
__UTC_TIME__ "21:00:42"
__UTC_DATE_NUM__ 20091231
__UTC_TIME_NUM__ 210042
__POSIX_TIME__ 1262293242

__USE_package__: Package Include Test

When a standard macro package (see chapter 5) is included with the %use directive (see section 4.6.4),
a single-line macro of the form __USE_package__ is automatically defined. This allows testing if a
particular package is invoked or not.

For example, if the altreg package is included (see section 5.1), then the macro __USE_ALTREG__
is defined.

__PASS__:Assembly Pass

The macro __PASS__ is defined to be 1 on preparatory passes, and 2 on the final pass. In
preprocess—only mode, it is set to 3, and when running only to generate dependencies (due to the -M
or —MG option, see section 2.1.4) it is set to 0.

Avoid using this macro if at all possible. It is tremendously easy to generate very strange errors by
misusing it, and the semantics may change in future versions of NASM.

67

4.11.10 STRUC and ENDSTRUC: Declaring Structure Data Types

68

The core of NASM contains no intrinsic means of defining data structures; instead, the preprocessor is
sufficiently powerful that data structures can be implemented as a set of macros. The macros STRUC
and ENDSTRUC are used to define a structure data type.

STRUC takes one or two parameters. The first parameter is the name of the data type. The second,
optional parameter is the base offset of the structure. The name of the data type is defined as a symbol
with the value of the base offset, and the name of the data type with the suffix _size appended to it is
defined as an EQU giving the size of the structure. Once STRUC has been issued, you are defining the
structure, and should define fields using the RESB family of pseudo-instructions, and then invoke
ENDSTRUC to finish the definition.

For example, to define a structure called mytype containing a longword, a word, a byte and a string of
bytes, you might code

struc mytype

mt_long: resd 1

mt_word: resw 1

mt_byte: resb 1

mt_str: resb 32
endstruc

The above code defines six symbols: mt_long as 0 (the offset from the beginning of a mytype
structure to the longword field), mt_word as 4, mt_byte as 6, mt_str as 7, mytype_size as 39,
and mytype itself as zero.

The reason why the structure type name is defined at zero by default is a side effect of allowing
structures to work with the local label mechanism: if your structure members tend to have the same
names in more than one structure, you can define the above structure like this:

struc mytype

.long: resd 1

.word: resw 1

.byte: resb 1

.str: resb 32
endstruc

This defines the offsets to the structure fields as mytype.long, mytype.word, mytype.byte and
mytype.str.

NASM, since it has no intrinsic structure support, does not support any form of period notation to refer
to the elements of a structure once you have one (except the above local-label notation), so code such
asmov ax,[mystruc.mt_word] is not valid. mt_word is a constant just like any other constant,
so the correct syntaxismov ax, [mystruc+mt_word] ormov ax,[mystruc+mytype.word].

Sometimes you only have the address of the structure displaced by an offset. For example, consider
this standard stack frame setup:

push ebp
mov ebp, esp
sub esp, 40

In this case, you could access an element by subtracting the offset:

mov [ebp - 40 + mytype.word], ax

However, if you do not want to repeat this offset, you can use -40 as a base offset:
struc mytype, -40
And access an element this way:
mov [ebp + mytype.word], ax
4.11.11 ISTRUC, AT and IEND: Declaring Instances of Structures

Having defined a structure type, the next thing you typically want to do is to declare instances of that
structure in your data segment. NASM provides an easy way to do this in the ISTRUC mechanism. To
declare a structure of type mytype in a program, you code something like this:

mystruc:
istruc mytype

at mt_long, dd 123456

at mt_word, dw 1024

at mt_byte, db ’x?

at mt_str, db ’hello, world’, 13, 10, 0

iend

The function of the AT macro is to make use of the TIMES prefix to advance the assembly position to
the correct point for the specified structure field, and then to declare the specified data. Therefore the
structure fields must be declared in the same order as they were specified in the structure definition.

If the data to go in a structure field requires more than one source line to specify, the remaining source
lines can easily come after the AT line. For example:

at mt_str, db 123,134,145,156,167,178,189
db 190,100,0

Depending on personal taste, you can also omit the code part of the AT line completely, and start the
structure field on the next line:

at mt_str
db ’hello, world’
db 13,10,0

4.11.12 ALIGN and ALIGNB: Data Alignment

The ALIGN and ALIGNB macros provides a convenient way to align code or data on a word, longword,
paragraph or other boundary. (Some assemblers call this directive EVEN.) The syntax of the ALIGN and
ALIGNB macrosis

align 4 ; align on 4-byte boundary
align 16 align on 16-byte boundary
align 8,db 0 pad with 0s rather than NOPs
align 4,resb 1 align to 4 in the BSS

alignb 4 equivalent to previous line

e we we we W

Both macros require their first argument to be a power of two; they both compute the number of
additional bytes required to bring the length of the current section up to a multiple of that power of
two, and then apply the TIMES prefix to their second argument to perform the alignment.

If the second argument is not specified, the default for ALIGN is NOP, and the default for ALIGNB is
RESB 1. So if the second argument is specified, the two macros are equivalent. Normally, you can just
use ALIGN in code and data sections and ALIGNB in BSS sections, and never need the second
argument except for special purposes.

69

ALIGN and ALIGNB, being simple macros, perform no error checking: they cannot warn you if their
first argument fails to be a power of two, or if their second argument generates more than one byte of
code. In each of these cases they will silently do the wrong thing.

ALIGNB (or ALIGN with a second argument of RESB 1) can be used within structure definitions:
struc mytype2

mt_byte:

resb 1

alignb 2
mt_word:

resw 1

alignb 4
mt_long:

resd 1
mt_str:

resb 32

endstruc

This will ensure that the structure members are sensibly aligned relative to the base of the structure.

A final caveat: ALIGN and ALIGNB work relative to the beginning of the section, not the beginning of
the address space in the final executable. Aligning to a 16-byte boundary when the section you’re in is
only guaranteed to be aligned to a 4-byte boundary, for example, is a waste of effort. Again, NASM does
not check that the section’s alignment characteristics are sensible for the use of ALIGN or ALIGNB.

Both ALIGN and ALIGNB do call SECTALIGN macro implicitly. See section 4.11.13 for details.

See also the smartalign standard macro package, section 5.2.

4.11.13 SECTALIGN: Section Alighment

70

The SECTALIGN macros provides a way to modify alignment attribute of output file section. Unlike the
a'lign= attribute (which is allowed at section definition only) the SECTALIGN macro may be used at
any time.

For example the directive
SECTALIGN 16

sets the section alignment requirements to 16 bytes. Once increased it can not be decreased, the
magnitude may grow only.

Note that ALIGN (see section 4.11.12) calls the SECTALIGN macro implicitly so the active section
alignment requirements may be updated. This is by default behaviour, if for some reason you want the
ALIGN do not call SECTALIGN at all use the directive

SECTALIGN OFF
It is still possible to turn in on again by

SECTALIGN ON

5.1

5.2

Chapter 5: Standard Macro Packages

The %use directive (see section 4.6.4) includes one of the standard macro packages included with the
NASM distribution and compiled into the NASM binary. It operates like the %include directive (see
section 4.6.1), but the included contents is provided by NASM itself.

The names of standard macro packages are case insensitive, and can be quoted or not.

altreg: Alternate Register Names

The altreg standard macro package provides alternate register names. It provides numeric register
names for all registers (not just R8-R15), the Intel-defined aliases R8L-R15L for the low bytes of
register (as opposed to the NASM/AMD standard names R8B-R15B), and the names ROH-R3H (by
analogy with ROL-R3L) for AH, CH, DH, and BH.

Example use:

%use altreg

proc:
mov r0@1l,r3h ; mov al,bh
ret

See also section 11.1.

smartalign: Smart ALIGN Macro

The smarta'lign standard macro package provides for an ALIGN macro which is more powerful than
the default (and backwards—-compatible) one (see section 4.11.12). When the smarta'lign package is
enabled, when ALIGN is used without a second argument, NASM will generate a sequence of
instructions more efficient than a series of NOP. Furthermore, if the padding exceeds a specific
threshold, then NASM will generate a jump over the entire padding sequence.

The specific instructions generated can be controlled with the new ALIGNMODE macro. This macro
takes two parameters: one mode, and an optional jump threshold override. If (for any reason) you need
to turn off the jump completely just set jump threshold value to -1 (or set it to nojmp). The following
modes are possible:

+ generic: Works on all x86 CPUs and should have reasonable performance. The default jump
threshold is 8. This is the default.

+ nop: Pad out with NOP instructions. The only difference compared to the standard ALIGN macro is
that NASM can still jump over a large padding area. The default jump threshold is 16.

+ k7:Optimize for the AMD K7 (Athlon/Althon XP). These instructions should still work on all x86 CPUs.
The default jump threshold is 16.

+ k8: Optimize for the AMD K8 (Opteron/Althon 64). These instructions should still work on all x86
CPUs. The default jump threshold is 16.

+ p6: Optimize for Intel CPUs. This uses the long NOP instructions first introduced in Pentium Pro. This
is incompatible with all CPUs of family 5 or lower, as well as some VIA CPUs and several virtualization
solutions. The default jump threshold is 16.

The macro __ALIGNMODE__ is defined to contain the current alignment mode. A number of other
macros beginning with __ALIGN_ are used internally by this macro package.

71

5.3

5.4

54.1

72

fp: Floating—point macros

This packages contains the following floating—point convenience macros:

%define Inf __Infinity__
%define NaN __ONaN__
%define QNaN __ONaN__
%define SNaN __SNaN__
%define float8(x) __float8__(x)
%define floatl6(x) __floati6__(x)
%define float32(x) __float32__(x)
%define float64(x) __float64__(x)
%define float80m(x) __float80m__(x)
%define float80e(x) __float80e__(x)

%define floatl281(x)
%define floatl28h(x)

_float1281__(x)
_float128h__(x)

ifunc: Integer functions

This package contains a set of macros which implement integer functions. These are actually
implemented as special operators, but are most conveniently accessed via this macro package.

The macros provided are:

Integer logarithms

These functions calculate the integer logarithm base 2 of their argument, considered as an unsigned
integer. The only differences between the functions is their respective behavior if the argument
provided is not a power of two.

The function ilog2e () (alias ilog2 ()) generates an error if the argument is not a power of two.

The function ilog2f () rounds the argument down to the nearest power of two; if the argument is
zero it returns zero.

The function ilog2c () rounds the argument up to the nearest power of two.

The functions ilog2fw() (alias ilog2w()) and ilog2cw() generate a warning if the argument is
not a power of two, but otherwise behaves like ilog2f () and ilog2c (), respectively.

6.1

Chapter 6: Assembler Directives

NASM, though it attempts to avoid the bureaucracy of assemblers like MASM and TASM, is nevertheless
forced to support a few directives. These are described in this chapter.

NASM’s directives come in two types: user-level directives and primitive directives. Typically, each
directive has a user-level form and a primitive form. In almost all cases, we recommend that users use
the user-level forms of the directives, which are implemented as macros which call the primitive forms.

Primitive directives are enclosed in square brackets; user-level directives are not.

In addition to the universal directives described in this chapter, each object file format can optionally
supply extra directives in order to control particular features of that file format. These format-specific
directives are documented along with the formats that implement them, in chapter 7.

BITS: Specifying Target Processor Mode

The BITS directive specifies whether NASM should generate code designed to run on a processor
operating in 16-bit mode, 32-bit mode or 64-bit mode. The syntax is BITS XX, where XX is 16, 32 or 64.

In most cases, you should not need to use BITS explicitly. The aout, coff, elf, macho, win32 and
win64 object formats, which are designed for use in 32-bit or 64-bit operating systems, all cause
NASM to select 32-bit or 64-bit mode, respectively, by default. The obj object format allows you to
specify each segment you define as either USE16 or USE32, and NASM will set its operating mode
accordingly, so the use of the BITS directive is once again unnecessary.

The most likely reason for using the BITS directive is to write 32-bit or 64-bit code in a flat binary file;
this is because the bin output format defaults to 16-bit mode in anticipation of it being used most
frequently to write DOS . COM programs, DOS . SYS device drivers and boot loader software.

The BITS directive can also be used to generate code for a different mode than the standard one for
the output format.

You do not need to specify BITS 32 merely in order to use 32-bit instructions in a 16-bit DOS
program; if you do, the assembler will generate incorrect code because it will be writing code targeted
at a 32-bit platform, to be run on a 16-bit one.

When NASM is in BITS 16 mode, instructions which use 32-bit data are prefixed with an 0x66 byte,
and those referring to 32-bit addresses have an 0x67 prefix. In BITS 32 mode, the reverse is true:
32-bit instructions require no prefixes, whereas instructions using 16-bit data need an 0x66 and those
working on 16-bit addresses need an 0x67.

When NASM is in BITS 64 mode, most instructions operate the same as they do for BITS 32 mode.
However, there are 8 more general and SSE registers, and 16-bit addressing is no longer supported.

The default address size is 64 bits; 32-bit addressing can be selected with the 0x67 prefix. The default
operand size is still 32 bits, however, and the 0x66 prefix selects 16-bit operand size. The REX prefix is
used both to select 64-bit operand size, and to access the new registers. NASM automatically inserts
REX prefixes when necessary.

When the REX prefix is used, the processor does not know how to address the AH, BH, CH or DH (high
8-bit legacy) registers. Instead, it is possible to access the the low 8-bits of the SP, BP S| and DI
registers as SPL, BPL, SIL and DIL, respectively; but only when the REX prefix is used.

The BITS directive has an exactly equivalent primitive form, [BITS 16], [BITS 32] and
[BITS 64]. The user-level formis a macro which has no function other than to call the primitive form.

Note that the space is neccessary, e.g. BITS32 will not work!

73

6.1.1

6.2

6.2.1

6.2.2

6.3

6.3.1

74

USE16 & USE32: Aliases for BITS

The ‘USE16’ and ‘USE32’ directives can be used in place of ‘BITS 16’ and ‘BITS 32’, for
compatibility with other assemblers.

DEFAULT: Change the assembler defaults

The DEFAULT directive changes the assembler defaults. Normally, NASM defaults to a mode where the
programmer is expected to explicitly specify most features directly. However, this is occasionally
obnoxious, as the explicit form is pretty much the only one one wishes to use.

Currently, DEFAULT can set REL & ABS and BND & NOBND.
REL & ABS: RIP-relative addressing

This sets whether registerless instructions in 64-bit mode are RIP-relative or not. By default, they are
absolute unless overridden with the REL specifier (see section 3.3). However, if DEFAULT REL is
specified, REL is default, unless overridden with the ABS specifier, except when used with an FS or GS
segment override.

The special handling of FS and GS overrides are due to the fact that these registers are generally used
as thread pointers or other special functions in 64-bit mode, and generating RIP-relative addresses
would be extremely confusing.

DEFAULT REL isdisabled with DEFAULT ABS.

BND & NOBND: BND prefix

If DEFAULT BND is set, all bnd—prefix available instructions following this directive are prefixed with
bnd. To override it, NOBND prefix can be used.

DEFAULT BND
call foo ; BND will be prefixed
nobnd call foo ; BND will NOT be prefixed

DEFAULT NOBND can disable DEFAULT BND and then BND prefix will be added only when explicitly
specified in code.

DEFAULT BND is expected to be the normal configuration for writing MPX-enabled code.

SECTION or SEGMENT: Changing and Defining Sections

The SECTION directive (SEGMENT is an exactly equivalent synonym) changes which section of the
output file the code you write will be assembled into. In some object file formats, the number and
names of sections are fixed; in others, the user may make up as many as they wish. Hence SECTION
may sometimes give an error message, or may define a new section, if you try to switch to a section that
does not (yet) exist.

The Unix object formats, and the bin object format (but see section 7.1.3), all support the standardized
section names . text, .data and .bss for the code, data and uninitialized-data sections. The obj
format, by contrast, does not recognize these section names as being special, and indeed will strip off
the leading period of any section name that has one.

The __SECT__ Macro

The SECTION directive is unusual in that its user-level form functions differently from its primitive
form. The primitive form, [SECTION xyz], simply switches the current target section to the one
given. The user-level form, SECTION xyz, however, first defines the single-line macro __SECT__ to
be the primitive [SECTION] directive which it is about to issue, and then issues it. So the user-level
directive

6.4

SECTION .text
expands to the two lines

%define SECT [SECTION .text]

[SECTION .text]

Users may find it useful to make use of this in their own macros. For example, the writefile macro
defined in section 4.3.3 can be usefully rewritten in the following more sophisticated form:

%macro writefile 2+
[section .data]

%%str: db %2
%%endstr:

__SECT__
mov dx,%%str
mov cXx,%%endstr-%%str
mov bx,%1
mov ah,0x40
int 0Ox21
%endmacro

This form of the macro, once passed a string to output, first switches temporarily to the data section of
the file, using the primitive form of the SECTION directive so as not to modify __SECT__. It then
declares its string in the data section, and then invokes __SECT__ to switch back to whichever section
the user was previously working in. It thus avoids the need, in the previous version of the macro, to
include a JMP instruction to jump over the data, and also does not fail if, in a complicated OBJ format

module, the user could potentially be assembling the code in any of several separate code sections.

ABSOLUTE: Defining Absolute Labels

The ABSOLUTE directive can be thought of as an alternative form of SECTION: it causes the
subsequent code to be directed at no physical section, but at the hypothetical section starting at the
given absolute address. The only instructions you can use in this mode are the RESB family.

ABSOLUTE is used as follows:
absolute 0Ox1A

kbuf_chr resw 1
kbuf_free resw 1
kbuf resw 16

This example describes a section of the PC BIOS data area, at segment address 0x40: the above code
defines kbuf_chr to be 0x1A, kbuf_free to be 0x1C, and kbuf to be Ox1E.

The user-level form of ABSOLUTE, like that of SECTION, redefines the __SECT__ macro when it is
invoked.

STRUC and ENDSTRUC are defined as macros which use ABSOLUTE (and also __SECT__).

ABSOLUTE doesn’t have to take an absolute constant as an argument: it can take an expression
(actually, a critical expression: see section 3.8) and it can be a value in a segment. For example, a TSR
can re-use its setup code as run-time BSS like this:

75

6.5

6.6

76

org 100h ; 1t’s a .COM program
jmp setup ; setup code comes last
; the resident part of the TSR goes here

setup:

; now write the code that installs the TSR here

absolute setup

runtimevarl resw 1
runtimevar2 resd 20
tsr_end:

This defines some variables ‘on top of’ the setup code, so that after the setup has finished running, the
space it took up can be re-used as data storage for the running TSR. The symbol ‘tsr_end’ can be used
to calculate the total size of the part of the TSR that needs to be made resident.

EXTERN: Importing Symbols from Other Modules

EXTERN is similar to the MASM directive EXTRN and the C keyword extern: it is used to declare a
symbol which is not defined anywhere in the module being assembled, but is assumed to be defined in
some other module and needs to be referred to by this one. Not every object-file format can support
external variables: the b1in format cannot.

The EXTERN directive takes as many arguments as you like. Each argument is the name of a symbol:

extern _printf
extern _sscanf,_fscanf

Some object-file formats provide extra features to the EXTERN directive. In all cases, the extra features
are used by suffixing a colon to the symbol name followed by object-format specific text. For example,
the obj format allows you to declare that the default segment base of an external should be the group
dgroup by means of the directive

extern _variable:wrt dgroup

The primitive form of EXTERN differs from the user-level form only in that it can take only one
argument at a time: the support for multiple arguments is implemented at the preprocessor level.

You can declare the same variable as EXTERN more than once: NASM will quietly ignore the second and
later redeclarations. You can’t declare a variable as EXTERN as well as something else, though.

GLOBAL: Exporting Symbols to Other Modules

GLOBAL is the other end of EXTERN: if one module declares a symbol as EXTERN and refers to it, then
in order to prevent linker errors, some other module must actually define the symbol and declare it as
GLOBAL. Some assemblers use the name PUBLIC for this purpose.

The GLOBAL directive applying to a symbol must appear before the definition of the symbol.

GLOBAL uses the same syntax as EXTERN, except that it must refer to symbols which are defined in the
same module as the GLOBAL directive. For example:

global _main
_main:
; some code

6.7

6.8

GLOBAL, like EXTERN, allows object formats to define private extensions by means of a colon. The el f
object format, for example, lets you specify whether global data items are functions or data:

global hashlookup:function, hashtable:data

Like EXTERN, the primitive form of GLOBAL differs from the user-level form only in that it can take
only one argument at a time.

COMMON: Defining Common Data Areas

The COMMON directive is used to declare common variables. A common variable is much like a global
variable declared in the uninitialized data section, so that

common ‘intvar 4
is similar in function to
global Hintvar
section .bss
intvar resd 1

The difference is that if more than one module defines the same common variable, then at link time
those variables will be merged, and references to intvar in all modules will point at the same piece of
memory.

Like GLOBAL and EXTERN, COMMON supports object-format specific extensions. For example, the obj
format allows common variables to be NEAR or FAR, and the elf format allows you to specify the
alignment requirements of a common variable:

common commvar 4:near ; works in OBJ
common intarray 100:4 ; works in ELF: 4 byte aligned

Once again, like EXTERN and GLOBAL, the primitive form of COMMON differs from the user-level form
only in that it can take only one argument at a time.

CPU: Defining CPU Dependencies

The CPU directive restricts assembly to those instructions which are available on the specified CPU.
Options are:

« CPU 8086 Assemble only 8086 instruction set

« CPU 186 Assembleinstructions up to the 80186 instruction set
+ CPU 286 Assemble instructions up to the 286 instruction set

« CPU 386 Assemble instructions up to the 386 instruction set

« CPU 486486 instruction set

« CPU 586 Pentium instruction set

« CPU PENTIUM Same as 586

+ CPU 686 P6instruction set

« CPU PPRO Same as 686

« CPU P2 Same as 686

o CPU P3 Pentium Il (Katmai) instruction sets

« CPU KATMAI Same as P3

77

6.9

6.10

78

« CPU P4 Pentium 4 (Willamette) instruction set

« CPU WILLAMETTE Same as P4

+ CPU PRESCOTT Prescott instruction set

« CPU X64 x86-64 (x64/AMD64/Intel 64) instruction set
« CPU IA641A64 CPU (in x86 mode) instruction set

All options are case insensitive. All instructions will be selected only if they apply to the selected CPU or
lower. By default, all instructions are available.

FLOAT: Handling of floating-point constants

By default, floating-point constants are rounded to nearest, and IEEE denormals are supported. The
following options can be set to alter this behaviour:

+ FLOAT DAZ Flush denormals to zero

+ FLOAT NODAZ Do not flush denormals to zero (default)
« FLOAT NEAR Round to nearest (default)

+ FLOAT UP Round up (toward +Infinity)

« FLOAT DOWN Round down (toward -Infinity)

« FLOAT ZERO Round toward zero

+ FLOAT DEFAULT Restore default settings

The standard macros __FLOAT_DAZ__, __FLOAT_ROUND and __FLOAT__ contain the current
state, as long as the programmer has avoided the use of the brackeded primitive form, ([FLOAT]).

—_—

__FLOAT__ contains the full set of floating—point settings; this value can be saved away and invoked
later to restore the setting.

[WARNING]: Enable or disable warnings

The [WARNING] directive can be used to enable or disable classes of warnings in the same way as the
-w option, see section 2.1.25 for more details about warning classes.

+ [warning +warning—class] enables warnings for warning—class.
+ [warning -warning—class] disables warnings for warning-class.

+ [warning #*warning-class] restores warning-class to the original value, either the default value
or as specified on the command line.

The [WARNING] directive also acceptsthe all, error and error=warning—class specifiers.

No "user form" (without the brackets) currently exists.

7.1

7.1.1

7.1.2

Chapter 7: Output Formats

NASM is a portable assembler, designed to be able to compile on any ANSI C-supporting platform and
produce output to run on a variety of Intel x86 operating systems. For this reason, it has a large number
of available output formats, selected using the —f option on the NASM command line. Each of these
formats, along with its extensions to the base NASM syntax, is detailed in this chapter.

As stated in section 2.1.1, NASM chooses a default name for your output file based on the input file
name and the chosen output format. This will be generated by removing the extension (.asm, . s, or
whatever you like to use) from the input file name, and substituting an extension defined by the output
format. The extensions are given with each format below.

b1in: Flat-Form Binary Output

The bin format does not produce object files: it generates nothing in the output file except the code
you wrote. Such ‘pure binary’ files are used by MS-DOS: . COM executables and . SYS device drivers are
pure binary files. Pure binary output is also useful for operating system and boot loader development.

The bin format supports multiple section names. For details of how NASM handles sections in the bin
format, see section 7.1.3.

Using the bin format puts NASM by default into 16-bit mode (see section 6.1). In order to use bin to
write 32-bit or 64-bit code, such as an OS kernel, you need to explicitly issue the BITS 32 or
BITS 64 directive.

b1in has no default output file name extension: instead, it leaves your file name as it is once the original
extension has been removed. Thus, the default is for NASM to assemble binprog.asm into a binary
file called binprog.

ORG: Binary File Program Origin

The bin format provides an additional directive to the list given in chapter 6: ORG. The function of the
ORG directive is to specify the origin address which NASM will assume the program begins at when it is
loaded into memory.

For example, the following code will generate the longword 0x00000104:

org 0x100
dd label
label:

Unlike the ORG directive provided by MASM-compatible assemblers, which allows you to jump around
in the object file and overwrite code you have already generated, NASM’s ORG does exactly what the
directive says: origin. Its sole function is to specify one offset which is added to all internal address
references within the section; it does not permit any of the trickery that MASM’s version does. See
section 12.1.3 for further comments.

b1in Extensions to the SECTION Directive

The bin output format extends the SECTION (or SEGMENT) directive to allow you to specify the
alignment requirements of segments. This is done by appending the ALIGN qualifier to the end of the
section—definition line. For example,

section .data align=16
switches to the section . data and also specifies that it must be aligned on a 16-byte boundary.

The parameter to ALIGN specifies how many low bits of the section start address must be forced to
zero. The alignment value given may be any power of two.

79

7.1.3

7.1.4

7.2

7.3

80

Multisection Support for the bin Format

The bin format allows the use of multiple sections, of arbitrary names, besides the "known" . text,
.data,and .bss names.

+ Sections may be designated progbits or nob-its. Default is progbits (except .bss, which
defaults to nobits, of course).

+ Sections can be aligned at a specified boundary following the previous section with align=, or at
an arbitrary byte-granular position with start=.

+ Sections can be given a virtual start address, which will be used for the calculation of all memory
references within that section with vstart=.

+ Sections can be ordered using follows=<section> or vfollows=<section> as an
alternative to specifying an explicit start address.

« Arguments to org, start, vstart, and align= are critical expressions. See section 3.8. E.g.
align=(1 << ALIGN_SHIFT) - ALIGN_SHIFT must be defined before it is used here.

+ Any code which comes before an explicit SECTION directive is directed by default into the . text
section.

+ If an ORG statement is not given, ORG 0 is used by default.

+ The .bss section will be placed after the last progbits section, unless start=, vstart=,
follows=,or vfollows= has been specified.

+ All sections are aligned on dword boundaries, unless a different alignment has been specified.
+ Sections may not overlap.

+ NASM creates the section.<secname>.start for each section, which may be used in your
code.

Map Files

Map files can be generated in —f b1in format by means of the [map] option. Map types of all
(default), brief, sections, segments, or symbols may be specified. Output may be directed to
stdout (default), stderr, or a specified file. E.g. [map symbols myfile.map]. No "user form"
exists, the square brackets must be used.

ith: Intel Hex Output

The 1 th file format produces Intel hex-format files. Just as the b1in format, this is a flat memory image
format with no support for relocation or linking. It is usually used with ROM programmers and similar
utilities.

All extensions supported by the b1 n file format is also supported by the 1 th file format.

ith provides a default output file-name extension of . i th.

srec: Motorola S-Records Output

The srec file format produces Motorola S-records files. Just as the bin format, this is a flat memory
image format with no support for relocation or linking. It is usually used with ROM programmers and
similar utilities.

All extensions supported by the b1 n file format is also supported by the srec file format.

srec provides a default output file-name extension of . srec.

7.4

7.4.1

obj: Microsoft OMF Object Files

The obj file format (NASM calls it obj rather than omf for historical reasons) is the one produced by
MASM and TASM, which is typically fed to 16-bit DOS linkers to produce . EXE files. It is also the format
used by 0S/2.

obj provides a default output file-name extension of . obj.

obj is not exclusively a 16-bit format, though: NASM has full support for the 32-bit extensions to the
format. In particular, 32-bit obj format files are used by Borland’s Win32 compilers, instead of using
Microsoft’s newer win32 object file format.

The obj format does not define any special segment names: you can call your segments anything you
like. Typical names for segments in obj format files are CODE, DATA and BSS.

If your source file contains code before specifying an explicit SEGMENT directive, then NASM will invent
its own segment called __NASMDEFSEG for you.

When you define a segment in an obj file, NASM defines the segment name as a symbol as well, so that
you can access the segment address of the segment. So, for example:

segment data
dvar: dw 1234
segment code

function:

mov ax,data ; get segment address of data
mov ds,ax ; and move it into DS

inc word [dvar] ; now this reference will work
ret

The obj format also enables the use of the SEG and WRT operators, so that you can write code which
does things like

extern foo

mov ax,seg foo ; get preferred segment of foo
mov ds,ax

mov ax,data ; a different segment

mov es,ax

mov ax, [ds:foo] ; this accesses ‘foo’

mov [es:foo wrt data],bx ; so does this

obj Extensions to the SEGMENT Directive

The obj output format extends the SEGMENT (or SECTION) directive to allow you to specify various
properties of the segment you are defining. This is done by appending extra qualifiers to the end of the
segment-definition line. For example,

segment code private align=16

defines the segment code, but also declares it to be a private segment, and requires that the portion of
it described in this code module must be aligned on a 16-byte boundary.

The available qualifiers are:

+ PRIVATE, PUBLIC, COMMON and STACK specify the combination characteristics of the segment.
PRIVATE segments do not get combined with any others by the linker; PUBLIC and STACK

81

7.4.2

82

segments get concatenated together at link time; and COMMON segments all get overlaid on top of
each other rather than stuck end-to-end.

« ALIGN is used, as shown above, to specify how many low bits of the segment start address must be
forced to zero. The alignment value given may be any power of two from 1 to 4096; in reality, the
only values supported are 1, 2, 4, 16, 256 and 4096, so if 8 is specified it will be rounded up to 16, and
32,64 and 128 will all be rounded up to 256, and so on. Note that alignment to 4096-byte boundaries
is a PharLap extension to the format and may not be supported by all linkers.

+ CLASS can be used to specify the segment class; this feature indicates to the linker that segments of
the same class should be placed near each other in the output file. The class name can be any word,
e.g. CLASS=CODE.

+ OVERLAY, like CLASS, is specified with an arbitrary word as an argument, and provides overlay
information to an overlay-capable linker.

+ Segments can be declared as USE16 or USE32, which has the effect of recording the choice in the
object file and also ensuring that NASM’s default assembly mode when assembling in that segment
is 16-bit or 32-bit respectively.

+ When writing 0S/2 object files, you should declare 32-bit segments as FLAT, which causes the
default segment base for anything in the segment to be the special group FLAT, and also defines the
group if it is not already defined.

+ The obj file format also allows segments to be declared as having a pre-defined absolute segment
address, although no linkers are currently known to make sensible use of this feature; nevertheless,
NASM allows you to declare a segment such as SEGMENT SCREEN ABSOLUTE=0xB800 if you
need to. The ABSOLUTE and ALIGN keywords are mutually exclusive.

NASM’s default segment attributes are PUBLIC, ALIGN=1, no class, no overlay, and USE16.

GROUP: Defining Groups of Segments

The obj format also allows segments to be grouped, so that a single segment register can be used to
refer to all the segments in a group. NASM therefore supplies the GROUP directive, whereby you can
code

segment data
; some data
segment bss
; some uninitialized data

group dgroup data bss

which will define a group called dgroup to contain the segments data and bss. Like SEGMENT,
GROUP causes the group name to be defined as a symbol, so that you can refer to a variable var in the
data segment as var wrt dataorasvar wrt dgroup, depending on which segment value is
currently in your segment register.

If you just refer to var, however, and var is declared in a segment which is part of a group, then NASM
will default to giving you the offset of var from the beginning of the group, not the segment. Therefore
SEG var, also, will return the group base rather than the segment base.

NASM will allow a segment to be part of more than one group, but will generate a warning if you do this.
Variables declared in a segment which is part of more than one group will default to being relative to
the first group that was defined to contain the segment.

7.4.3

7.4.4

7.4.5

A group does not have to contain any segments; you can still make WRT references to a group which
does not contain the variable you are referring to. 0S/2, for example, defines the special group FLAT
with no segmentsin it.

UPPERCASE: Disabling Case Sensitivity in Output

Although NASM itself is case sensitive, some OMF linkers are not; therefore it can be useful for NASM to
output single-case object files. The UPPERCASE format-specific directive causes all segment, group
and symbol names that are written to the object file to be forced to upper case just before being
written. Within a source file, NASM is still case-sensitive; but the object file can be written entirely in
upper case if desired.

UPPERCASE is used alone on a line; it requires no parameters.

IMPORT: Importing DLL Symbols

The IMPORT format-specific directive defines a symbol to be imported from a DLL, for use if you are
writing a DLL’s import library in NASM. You still need to declare the symbol as EXTERN as well as using
the IMPORT directive.

The IMPORT directive takes two required parameters, separated by white space, which are
(respectively) the name of the symbol you wish to import and the name of the library you wish to
import it from. For example:

import WSAStartup wsock32.d1ll

A third optional parameter gives the name by which the symbol is known in the library you are
importing it from, in case this is not the same as the name you wish the symbol to be known by to your
code once you have imported it. For example:

import asyncsel wsock32.d1ll WSAAsyncSelect
EXPORT: Exporting DLL Symbols

The EXPORT format-specific directive defines a global symbol to be exported as a DLL symbol, for use
if you are writing a DLL in NASM. You still need to declare the symbol as GLOBAL as well as using the
EXPORT directive.

EXPORT takes one required parameter, which is the name of the symbol you wish to export, as it was
defined in your source file. An optional second parameter (separated by white space from the first)
gives the external name of the symbol: the name by which you wish the symbol to be known to
programs using the DLL. If this name is the same as the internal name, you may leave the second
parameter off.

Further parameters can be given to define attributes of the exported symbol. These parameters, like
the second, are separated by white space. If further parameters are given, the external name must also
be specified, even if it is the same as the internal name. The available attributes are:

+ resident indicates that the exported name is to be kept resident by the system loader. This is an
optimisation for frequently used symbols imported by name.

+ nodata indicates that the exported symbol is a function which does not make use of any initialized
data.

« parm=NNN, where NNN is an integer, sets the number of parameter words for the case in which the
symbol is a call gate between 32-bit and 16-bit segments.

+ An attribute which is just a number indicates that the symbol should be exported with an identifying
number (ordinal), and gives the desired number.

For example:

83

7.4.6

1.4.7

7.4.8

84

export myfunc

export myfunc TheRealMoreFormalLookingFunctionName
export myfunc myfunc 1234 ; export by ordinal
export myfunc myfunc resident parm=23 nodata

. . start: Defining the Program Entry Point

OMF linkers require exactly one of the object files being linked to define the program entry point, where
execution will begin when the program is run. If the object file that defines the entry point is assembled
using NASM, you specify the entry point by declaring the special symbol . .start at the point where
you wish execution to begin.

obj Extensions to the EXTERN Directive
If you declare an external symbol with the directive
extern foo

then references such as mov ax, foo will give you the offset of foo from its preferred segment base
(as specified in whichever module foo is actually defined in). So to access the contents of foo you will
usually need to do something like

mov ax,seg foo ; get preferred segment base
mov es,ax ; move it into ES
mov ax, [es:foo] ; and use offset ‘foo’ from it

This is a little unwieldy, particularly if you know that an external is going to be accessible from a given
segment or group, say dgroup. So if DS already contained dgroup, you could simply code

mov ax, [foo wrt dgroup]

However, having to type this every time you want to access foo can be a pain; so NASM allows you to
declare foo in the alternative form

extern foo:wrt dgroup

This form causes NASM to pretend that the preferred segment base of foo is in fact dgroup; so the
expression seg foo will now return dgroup, and the expression foo is equivalent to
foo wrt dgroup.

This default-WRT mechanism can be used to make externals appear to be relative to any group or
segment in your program. It can also be applied to common variables: see section 7.4.8.

obj Extensions to the COMMON Directive

The obj format allows common variables to be either near or far; NASM allows you to specify which
your variables should be by the use of the syntax

common nearvar 2:near ; ‘nearvar’ is a near common
common farvar 10:far ; and ‘farvar’ is far

Far common variables may be greater in size than 64Kb, and so the OMF specification says that they are
declared as a number of elements of a given size. So a 10-byte far common variable could be declared
as ten one-byte elements, five two—-byte elements, two five-byte elements or one ten-byte element.

Some OMF linkers require the element size, as well as the variable size, to match when resolving
common variables declared in more than one module. Therefore NASM must allow you to specify the
element size on your far common variables. This is done by the following syntax:

common c¢_5by2 10:far 5 ; two five-byte elements
common c¢_2by5 10:far 2 ; five two-byte elements

7.4.9

7.5

7.5.1

If no element size is specified, the default is 1. Also, the FAR keyword is not required when an element
size is specified, since only far commons may have element sizes at all. So the above declarations could
equivalently be

common c_5by2 10:5 ; two five-byte elements
common c_2by5 10:2 ; five two-byte elements

In addition to these extensions, the COMMON directive in obj also supports default-WRT specification
like EXTERN does (explained in section 7.4.7). So you can also declare things like

common foo 10:wrt dgroup
common bar l16:far 2:wrt data
common baz 24:wrt data:6

Embedded File Dependency Information

Since NASM 2.13.02, obj files contain embedded dependency file information. To suppress the
generation of dependencies, use

%pragma obj nodepend

win32: Microsoft Win32 Object Files

The win32 output format generates Microsoft Win32 object files, suitable for passing to Microsoft
linkers such as Visual C++. Note that Borland Win32 compilers do not use this format, but use obj
instead (see section 7.4).

win32 provides a default output file—name extension of . obj.

Note that although Microsoft say that Win32 object files follow the COFF (Common Object File Format)
standard, the object files produced by Microsoft Win32 compilers are not compatible with COFF linkers
such as DJGPP’s, and vice versa. This is due to a difference of opinion over the precise semantics of
PC-relative relocations. To produce COFF files suitable for DJGPP, use NASM’s coff output format;
conversely, the coff format does not produce object files that Win32 linkers can generate correct
output from.

win32 Extensions to the SECTION Directive

Like the obj format, win32 allows you to specify additional information on the SECTION directive
line, to control the type and properties of sections you declare. Section types and properties are
generated automatically by NASM for the standard section names . text, .data and .bss, but may
still be overridden by these qualifiers.

The available qualifiers are:

« code, or equivalently text, defines the section to be a code section. This marks the section as
readable and executable, but not writable, and also indicates to the linker that the type of the
section is code.

+ data and bss define the section to be a data section, analogously to code. Data sections are
marked as readable and writable, but not executable. data declares an initialized data section,
whereas bss declares an uninitialized data section.

+ rdata declares an initialized data section that is readable but not writable. Microsoft compilers use
this section to place constants in it.

« info defines the section to be an informational section, which is not included in the executable file
by the linker, but may (for example) pass information to the linker. For example, declaring an
info-type section called .drectve causes the linker to interpret the contents of the section as
command-line options.

85

7.5.2

86

« align=, used with a trailing number as in obj, gives the alignment requirements of the section.
The maximum you may specify is 64: the Win32 object file format contains no means to request a
greater section alignment than this. If alignment is not explicitly specified, the defaults are 16-byte
alignment for code sections, 8-byte alignment for rdata sections and 4-byte alignment for data (and
BSS) sections. Informational sections get a default alignment of 1 byte (no alignment), though the
value does not matter.

The defaults assumed by NASM if you do not specify the above qualifiers are:

section .text code align=16
section .data data align=4
section .rdata rdata align=8
section .bss bss align=4

Any other section name is treated by default like . text.

win32: Safe Structured Exception Handling

Among other improvements in Windows XP SP2 and Windows Server 2003 Microsoft has introduced
concept of "safe structured exception handling." General idea is to collect handlers’ entry points in
designated read-only table and have alleged entry point verified against this table prior exception
control is passed to the handler. In order for an executable module to be equipped with such "safe
exception handler table," all object modules on linker command line has to comply with certain
criteria. If one single module among them does not, then the table in question is omitted and above
mentioned run-time checks will not be performed for application in question. Table omission is by
default silent and therefore can be easily overlooked. One can instruct linker to refuse to produce
binary without such table by passing /safeseh command line option.

Without regard to this run—-time check merits it’s natural to expect NASM to be capable of generating
modules suitable for /safeseh linking. From developer’s viewpoint the problem is two-fold:

+ how to adapt modules not deploying exception handlers of their own;

+ how to adapt/develop modules utilizing custom exception handling;

Former can be easily achieved with any NASM version by adding following line to source code:
$@feat.00 equ 1

As of version 2.03 NASM adds this absolute symbol automatically. If it’s not already present to be
precise. l.e. if for whatever reason developer would choose to assign another value in source file, it
would still be perfectly possible.

Registering custom exception handler on the other hand requires certain "magic." As of version 2.03
additional directive is implemented, safeseh, which instructs the assembler to produce appropriately
formatted input data for above mentioned "safe exception handler table." Its typical use would be:

section .text
extern _MessageBoxA@l6

%if __NASM_VERSION_ID__ >= 0x02030000

safeseh handler ; register handler as "safe handler"
%endif

handler:

push DWORD 1 ; MB_OKCANCEL

push DWORD caption

push DWORD text

push DWORD 0

call _MessageBoxA@1l6

sub eax,l ; incidentally suits as return value
; for exception handler

7.5.3

7.6

7.6.1

ret
global _main

_main:
push DWORD handler
push DWORD [fs:0]
mov DWORD [fs:0],esp ; engage exception handler
xor eax,eax
mov eax ,DWORD[eax] ; cause exception
pop DWORD [fs:0] ; disengage exception handler
add esp,4
ret
text: db 0K to rethrow, CANCEL to generate core dump’,0
caption:db >SEGV’ ,0

section .drectve 1info
db > /defaultlib:user32.1lib /defaultlib:msvcrt.lib ’

As you might imagine, it’s perfectly possible to produce .exe binary with "safe exception handler table"
and yet engage unregistered exception handler. Indeed, handler is engaged by simply manipulating
[fs:0] location at run-time, something linker has no power over, run-time that is. It should be
explicitly mentioned that such failure to register handler’s entry point with safeseh directive has
undesired side effect at run-time. If exception is raised and unregistered handler is to be executed, the
application is abruptly terminated without any notification whatsoever. One can argue that system
could at least have logged some kind "non-safe exception handler in x.exe at address n" message in
event log, but no, literally no notification is provided and user is left with no clue on what caused
application failure.

Finally, all mentions of linker in this paragraph refer to Microsoft linker version 7.x and later. Presence
of @feat.00 symbol and input data for "safe exception handler table" causes no backward
incompatibilities and "safeseh" modules generated by NASM 2.03 and later can still be linked by earlier
versions or non-Microsoft linkers.

Debugging formats for Windows

The win32 and win64 formats support the Microsoft CodeView debugging format. Currently
CodeView version 8 format is supported (cv8), but newer versions of the CodeView debugger should be
able to handle this format as well.

win64: Microsoft Win64 Object Files

The win64 output format generates Microsoft Win64 object files, which is nearly 100% identical to the
win32 object format (section 7.5) with the exception that it is meant to target 64-bit code and the
x86-64 platform altogether. This object file is used exactly the same as the win32 object format
(section 7.5), in NASM, with regard to this exception.

win64: Writing Position-Independent Code

While REL takes good care of RIP-relative addressing, there is one aspect that is easy to overlook for a
Win64 programmer: indirect references. Consider a switch dispatch table:

jmp gqword [dsptch+raxx*8]
dsptch: dq case0
dq casel

Even a novice Win64 assembler programmer will soon realize that the code is not 64-bit savvy. Most
notably linker will refuse to link it with

87

7.6.2

88

>ADDR32’ relocation to ’.text’ dinvalid without /LARGEADDRESSAWARE:NO
So [s]he will have to split jmp instruction as following:

lea rbx, [rel dsptch]
jmp gword [rbx+rax*8]

What happens behind the scene is that effective address in lea is encoded relative to instruction
pointer, or in perfectly position-independent manner. But this is only part of the problem! Trouble is
that in .dll context caseN relocations will make their way to the final module and might have to be
adjusted at .dll load time. To be specific when it can’t be loaded at preferred address. And when this
occurs, pages with such relocations will be rendered private to current process, which kind of
undermines the idea of sharing .dll. But no worry, it’s trivial to fix:

lea rbx, [rel dsptch]
add rbx, [rbx+rax*8]
jmp rbx
dsptch: dq caseO-dsptch
dq casel-dsptch
NASM version 2.03 and later provides another alternative, wrt ..imagebase operator, which

returns offset from base address of the current image, be it .exe or .dll module, therefore the name. For
those acquainted with PE-COFF format base address denotes start of IMAGE_DOS_HEADER structure.
Here is how to implement switch with these image-relative references:

lea rbx, [rel dsptch]
mov eax, [rbx+raxx4]
sub rbx,dsptch wrt ..imagebase
add rbx,rax
jmp rbx
dsptch: dd case0® wrt ..imagebase
dd casel wrt ..imagebase

One can argue that the operator is redundant. Indeed, snippet before last works just fine with any
NASM version and is not even Windows specific.. The real reason for implementing
wrt ..imagebase will become apparent in next paragraph.

It should be noted thatwrt . .imagebase is defined as 32-bit operand only:

dd label wrt ..imagebase ; ok
dq label wrt ..imagebase ; bad
mov eax, label wrt ..imagebase ; ok
mov rax,label wrt ..imagebase ; bad

win64: Structured Exception Handling

Structured exception handing in Win64 is completely different matter from Win32. Upon exception
program counter value is noted, and linker-generated table comprising start and end addresses of all
the functions [in given executable module] is traversed and compared to the saved program counter.
Thus so called UNWIND_INFO structure is identified. If it’s not found, then offending subroutine is
assumed to be "leaf" and just mentioned lookup procedure is attempted for its caller. In Win64 leaf
function is such function that does not call any other function nor modifies any Win64 non-volatile
registers, including stack pointer. The latter ensures that it’s possible to identify leaf function’s caller by
simply pulling the value from the top of the stack.

While majority of subroutines written in assembler are not calling any other function, requirement for
non-volatile registers’ immutability leaves developer with not more than 7 registers and no stack
frame, which is not necessarily what [s]he counted with. Customarily one would meet the requirement
by saving non-volatile registers on stack and restoring them upon return, so what can go wrong? If [and
only if] an exception is raised at run-time and no UNWIND_INFO structure is associated with such
"leaf" function, the stack unwind procedure will expect to find caller’s return address on the top of
stack immediately followed by its frame. Given that developer pushed caller’s non-volatile registers on
stack, would the value on top point at some code segment or even addressable space? Well, developer
can attempt copying caller’s return address to the top of stack and this would actually work in some
very specific circumstances. But unless developer can guarantee that these circumstances are always
met, it’s more appropriate to assume worst case scenario, i.e. stack unwind procedure going berserk.
Relevant question is what happens then? Application is abruptly terminated without any notification
whatsoever. Just like in Win32 case, one can argue that system could at least have logged "unwind
procedure went berserk in x.exe at address n" in event log, but no, no trace of failure is left.

Now, when we understand significance of the UNWIND_INFO structure, let’s discuss what’s in it and/or
how it’s processed. First of all it is checked for presence of reference to custom language-specific
exception handler. If there is one, then it’s invoked. Depending on the return value, execution flow is
resumed (exception is said to be "handled"), or rest of UNWIND_INFO structure is processed as
following. Beside optional reference to custom handler, it carries information about current callee’s
stack frame and where non-volatile registers are saved. Information is detailed enough to be able to
reconstruct contents of caller’s non-volatile registers upon call to current callee. And so caller’s context
is reconstructed, and then unwind procedure is repeated, i.e. another UNWIND_INFO structure is
associated, this time, with caller’s instruction pointer, which is then checked for presence of reference
to language-specific handler, etc. The procedure is recursively repeated till exception is handled. As
last resort system "handles" it by generating memory core dump and terminating the application.

As for the moment of this writing NASM unfortunately does not facilitate generation of above
mentioned detailed information about stack frame layout. But as of version 2.03 it implements building
blocks for generating structures involved in stack unwinding. As simplest example, here is how to
deploy custom exception handler for leaf function:

default rel
section .text
extern MessageBoxA

handler:
sub rsp,40
mov rcx, 0
lea rdx, [text]
lea r8, [caption]
mov ro,1 ; MB_OKCANCEL
call MessageBoxA
sub eax,l ; incidentally suits as return value
; for exception handler
add rsp,40
ret
global main
main:
xor rax,rax
mov rax,QWORD[rax] ; cause exception
ret
main_end:
text: db 0K to rethrow, CANCEL to generate core dump’,0
caption:db >SEGV’ ,0

89

90

section .pdata rdata align=4

dd main wrt ..imagebase
dd main_end wrt ..imagebase
dd xmain wrt ..imagebase
section .xdata rdata align=8
xmain: db 9,0,0,0
dd handler wrt ..imagebase
section .drectve 1info
db > /defaultlib:user32.1lib /defaultlib:msvcrt.lib ’

What you see in .pdata section is element of the "table comprising start and end addresses of
function" along with reference to associated UNWIND_INFO structure. And what you see in .xdata
section is UNWIND_INFO structure describing function with no frame, but with designated exception
handler. References are required to be image-relative (which is the real reason for implementing
wrt ..imagebase operator). It should be noted that rdata align=n, as well as
wrt ..imagebase, are optional in these two segments’ contexts, i.e. can be omitted. Latter means
that all 32-bit references, not only above listed required ones, placed into these two segments turn out
image-relative. Why is it important to understand? Developer is allowed to append handler-specific
data to UNWIND_INFO structure, and if [s]he adds a 32-bit reference, then [s]he will have to remember
to adjust its value to obtain the real pointer.

As already mentioned, in Win64 terms leaf function is one that does not call any other function nor
modifies any non-volatile register, including stack pointer. But it’s not uncommon that assembler
programmer plans to utilize every single register and sometimes even have variable stack frame. Is
there anything one can do with bare building blocks? l.e. besides manually composing fully-fledged
UNWIND_INFO structure, which would surely be considered error-prone? Yes, there is. Recall that
exception handler is called first, before stack layout is analyzed. As it turned out, it’s perfectly possible
to manipulate current callee’s context in custom handler in manner that permits further stack
unwinding. General idea is that handler would not actually "handle" the exception, but instead restore
callee’s context, as it was at its entry point and thus mimic leaf function. In other words, handler would
simply undertake part of unwinding procedure. Consider following example:

function:

mov rax,rsp ; copy rsp to volatile register

push ris ; save non-volatile registers

push rbx

push rbp

mov ril,rsp ; prepare variable stack frame

sub ril,rcx

and rll,-64

mov QWORD[rl1],rax ; check for exceptions

mov rsp,rill ; allocate stack frame

mov QWORD[rsp],rax ; save original rsp value
magic_point:

mov r11,QWORD[rsp] ; pull original rsp value

mov rbp,QWORD[r11-24]

mov rbx,QWORD[r11-16]

mov r15,QWORD[r11-8]

mov rsp,rill ; destroy frame

ret

The keyword is that up to magic_point original rsp value remains in chosen volatile register and no
non-volatile register, except for rsp, is modified. While past magic_point rsp remains constant till
the very end of the function. In this case custom language-specific exception handler would look
like this:

1.7

7.8

7.8.1

EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
CONTEXT *context,DISPATCHER_CONTEXT xdisp)
{ ULONG64 *rsp;
if (context->Rip<(ULONG64)magic_point)
rsp = (ULONG64 x*)context->Rax;
else
{ rsp = ((ULONG64 *x)context->Rsp)[0];
context->Rbp = rsp[-3];
context->Rbx = rsp[-2];
context->R15 rsp[-1];

}
context->Rsp = (ULONG64)rsp;

memcpy (disp->ContextRecord,context,sizeof (CONTEXT));

RtlVirtualUnwind (UNW_FLAG_NHANDLER,disp->ImageBase,
dips->ControlPc,disp->FunctionEntry,disp->ContextRecord,
&disp->HandlerData,&disp->EstablisherFrame,NULL) ;

return ExceptionContinueSearch;

}

As custom handler mimics leaf function, corresponding UNWIND_INFO structure does not have to
contain any information about stack frame and its layout.

coff: Common Object File Format
The coff output type produces COFF object files suitable for linking with the DJGPP linker.
coff provides a default output file-name extension of . o.

The coff format supports the same extensions to the SECTION directive as win32 does, except that
the align qualifier and the info section type are not supported.

macho32 and macho64: Mach Object File Format

The macho32 and macho64 output formts produces Mach-0 object files suitable for linking with the
MacOS X linker. macho is a synonym for macho32.

macho provides a default output file-name extension of . o

macho extensions to the SECTION Directive

The macho output format specifies section names in the format "segment,section". No spaces are
allowed around the comma. The following flags can also be specified

» data - this section contains initialized data items

+ text -this section contains code exclusively

+ mixed - this section contains both code and data

+ bss - this section is uninitialized and filled with zero

+ zerofill-sameasbss

+ no_dead_strip - inhibit dead code stripping for this section
+ Llive_support - set the live support flag for this section

+ strip_static_syms - strip static symbols for this section
» debug - this section contains debugging information

« align=alignment - specify section alignment

91

7.8.2

7.8.3

7.8.4

7.9

7.9.1

92

The default is data, unless the section nameis __text or __bss in which case the default is text or
bss, respectively.

For compatibility with other Unix platforms, the following standard names are also supported:

.text = __TEXT,__text text
.rodata = __DATA,__const data
.data = __DATA,__data data
.bss = __DATA,__bss bss

If the . rodata section contains no relocations, it is instead put into the __TEXT,__const section
unless this section has already been specified explicitly. However, it is probably better to specify
__TEXT constand __DATA const explicitly as appropriate.

y——

) ——

Thread Local Storage in Mach—0: macho special symbols and WRT

Mach-0O defines the following special symbols that can be used on the right-hand side of the WRT
operator:

« ..tlvpisused to specify access to thread-local storage.

+ ..gotpcrelis used to specify references to the Global Offset Table. The GOT is supported in the
macho64 format only.

macho specfic directive subsections_via_symbols

The directive subsections_via_symbols sets the MH_SUBSECTIONS_VIA_SYMBOLS flagin the
Mach-0 header, which tells the linker that the symbols in the file matches the conventions required to
allow for link-time dead code elimination.

This directive takes no arguments.

This is a macro implemented as a %pragma. It can also be specified in its %pragma form, in which case
it will not affect non-Mach-0 builds of the same source code:

%pragma macho subsections_via_symbols

macho specfic directive no_dead_strip

The directive no_dead_strip sets the Mach-O SH_NO_DEAD_STRIP section flag on the section
containing a a specific symbol. This directive takes a list of symbols as its arguments.

This is a macro implemented as a %pragma. It can also be specified in its %pragma form, in which case
it will not affect non-Mach-0 builds of the same source code:

%pragma macho no_dead_strip symbol...

elf32,elf64, elfx32: Executable and Linkable Format Object Files

The elf32, elf64 and elfx32 output formats generate ELF32 and ELF64 (Executable and
Linkable Format) object files, as used by Linux as well as Unix System V, including Solaris x86, UnixWare
and SCO Unix. el f provides a default output file-name extension of . 0. e1f is a synonym for e1f32.

The e1fx32 format is used for the x32 ABI, which is a 32—-bit ABI with the CPU in 64-bit mode.

ELF specific directive osabi

The ELF header specifies the application binary interface for the target operating system (OSABI). This
field can be set by using the osabi directive with the numeric value (0-255) of the target system. If this
directive is not used, the default value will be "UNIX System V ABI" (0) which will work on most systems
which support ELF.

7.9.2

7.9.3

elf extensions to the SECTION Directive

Like the obj format, elf allows you to specify additional information on the SECTION directive line,
to control the type and properties of sections you declare. Section types and properties are generated
automatically by NASM for the standard section names, but may still be overridden by these qualifiers.

The available qualifiers are:

+ alloc defines the section to be one which is loaded into memory when the program is run.
noalloc defines it to be one which is not, such as an informational or comment section.

+ exec defines the section to be one which should have execute permission when the program is run.
noexec defines it as one which should not.

« write defines the section to be one which should be writable when the program is run. nowr-ite
defines it as one which should not.

+ progbits defines the section to be one with explicit contents stored in the object file: an ordinary
code or data section, for example, nob1its defines the section to be one with no explicit contents
given, such as a BSS section.

« align=,used with atrailing number as in ob7j, gives the alignment requirements of the section.
+ t's defines the section to be one which contains thread local variables.

The defaults assumed by NASM if you do not specify the above qualifiers are:

section .text progbits alloc exec nowrite align=16
section .rodata progbits alloc noexec nowrite align=4
section .lrodata progbits alloc noexec nowrite align=4

section .data progbits alloc noexec write align=4
section .ldata progbits alloc noexec write align=4
section .bss nobits alloc noexec write align=4
section .lbss nobits alloc noexec write align=4
section .tdata progbits alloc noexec write align=4 tls
section .tbss nobits alloc noexec write align=4 tls
section .comment progbits noalloc noexec nowrite align=1
section other progbits alloc noexec nowrite align=1

(Any section name other than those in the above table is treated by default like other in the above
table. Please note that section names are case sensitive.)

Position-Independent Code: macho Special Symbols and WRT

Since ELF does not support segment-base references, the WRT operator is not used for its normal
purpose; therefore NASM’s el f output format makes use of WRT for a different purpose, namely the
PIC-specific relocation types.

elf defines five special symbols which you can use as the right-hand side of the WRT operator to
obtain PIC relocation types. They are ..gotpc, ..gotoff, ..got, ..plt and ..sym. Their
functions are summarized here:

+ Referring to the symbol marking the global offset table base usingwrt . .gotpc will end up giving
the distance from the beginning of the current section to the global offset table.
(_GLOBAL_OFFSET_TABLE_ is the standard symbol name used to refer to the GOT.) So you would
then need to add $$ to the result to get the real address of the GOT.

+ Referring to a location in one of your own sections usingwrt . .gotoff will give the distance from
the beginning of the GOT to the specified location, so that adding on the address of the GOT would
give the real address of the location you wanted.

93

+ Referring to an external or global symbol usingwrt . .got causes the linker to build an entry in the
GOT containing the address of the symbol, and the reference gives the distance from the beginning
of the GOT to the entry; so you can add on the address of the GOT, load from the resulting address,
and end up with the address of the symbol.

+ Referring to a procedure name using wrt ..plt causes the linker to build a procedure linkage
table entry for the symbol, and the reference gives the address of the PLT entry. You can only use
this in contexts which would generate a PC-relative relocation normally (i.e. as the destination for
CALL or IMP), since ELF contains no relocation type to refer to PLT entries absolutely.

+ Referring to a symbol name using wrt ..sym causes NASM to write an ordinary relocation, but
instead of making the relocation relative to the start of the section and then adding on the offset to
the symbol, it will write a relocation record aimed directly at the symbol in question. The distinction
is a necessary one due to a peculiarity of the dynamic linker.

A fuller explanation of how to use these relocation types to write shared libraries entirely in NASM is
given in section 9.2.

7.9.4 Thread Local Storage in ELF: e'Lf Special Symbols and WRT

+ In ELF32 mode, referring to an external or global symbol usingwrt ..tlsie causes the linker to
build an entry in the GOT containing the offset of the symbol within the TLS block, so you can access
the value of the symbol with code such as:

mov eax,[tid wrt ..tlsie]
mov [gs:eax],ebx

+ In ELF64 or ELFx32 mode, referring to an external or global symbol usingwrt ..gottpoff causes
the linker to build an entry in the GOT containing the offset of the symbol within the TLS block, so
you can access the value of the symbol with code such as:

mov rax, [rel tid wrt ..gottpoff]
mov rex, [fs:rax]

7.9.5 elf Extensions to the GLOBAL Directive

94

ELF object files can contain more information about a global symbol than just its address: they can
contain the size of the symbol and its type as well. These are not merely debugger conveniences, but
are actually necessary when the program being written is a shared library. NASM therefore supports
some extensions to the GLOBAL directive, allowing you to specify these features.

You can specify whether a global variable is a function or a data object by suffixing the name with a
colon and the word functionordata. (objectisasynonym for data.) For example:

global hashlookup: function, hashtable:data
exports the global symbol hashlookup as a function and hashtab'le as a data object.

Optionally, you can control the ELF visibility of the symbol. Just add one of the visibility keywords:
default, internal, hidden, or protected. The default is default of course. For example, to
make hashlookup hidden:

global hashlookup: function hidden

You can also specify the size of the data associated with the symbol, as a numeric expression (which
may involve labels, and even forward references) after the type specifier. Like this:

global hashtable:data (hashtable.end - hashtable)

hashtable:
db this,that,theother ; some data here
.end:

7.9.6

71.9.7

7.9.8

7.10

7.11

This makes NASM automatically calculate the length of the table and place that information into the
ELF symbol table.

Declaring the type and size of global symbols is necessary when writing shared library code. For more
information, see section 9.2.4.

elf Extensions to the COMMON Directive

ELF also allows you to specify alignment requirements on common variables. This is done by putting a
number (which must be a power of two) after the name and size of the common variable, separated (as
usual) by a colon. For example, an array of doublewords would benefit from 4-byte alignment:

common dwordarray 128:4

This declares the total size of the array to be 128 bytes, and requires that it be aligned on a 4-byte
boundary.

16-bit code and ELF

The ELF32 specification doesn’t provide relocations for 8- and 16-bit values, but the GNU 1d linker
adds these as an extension. NASM can generate GNU-compatible relocations, to allow 16-bit code to
be linked as ELF using GNU 1d. If NASM is used with the -w+gnu-elf-extensions option, a
warning is issued when one of these relocations is generated.

Debug formats and ELF

ELF provides debug information in STABS and DWARF formats. Line number information is generated
for all executable sections, but please note that only the ".text" section is executable by default.

aout: Linux a.out Object Files

The aout format generates a.out object files, in the form used by early Linux systems (current Linux
systems use ELF, see section 7.9.) These differ from other a. out object files in that the magic number
in the first four bytes of the file is different; also, some implementations of a.out, for example
NetBSD’s, support position-independent code, which Linux’s implementation does not.

a.out provides a default output file-name extension of . o.

a.out is a very simple object format. It supports no special directives, no special symbols, no use of
SEG or WRT, and no extensions to any standard directives. It supports only the three standard section
names .text, .dataand .bss.

aoutb: NetBSD/FreeBSD/OpenBSD a.out Object Files

The aoutb format generates a.out object files, in the form used by the various free BSD Un-ix
clones, NetBSD, FreeBSD and OpenBSD. For simple object files, this object format is exactly the
same as aout except for the magic number in the first four bytes of the file. However, the aoutb
format supports position-independent code in the same way as the elf format, so you can use it to
write BSD shared libraries.

aoutb provides a default output file-name extension of . o.

aoutb supports no special directives, no special symbols, and only the three standard section names
.text, .data and .bss. However, it also supports the same use of WRT as elf does, to provide
position-independent code relocation types. See section 7.9.3 for full documentation of this feature.

aoutb also supports the same extensions to the GLOBAL directive as elf does: see section 7.9.5 for
documentation of this.

95

7.12

7.13

7.13.1

7.13.2

7.13.3

96

as86: Minix/Linux as86 Object Files

The Minix/Linux 16-bit assembler as86 has its own non-standard object file format. Although its
companion linker 1d86 produces something close to ordinary a. out binaries as output, the object file
format used to communicate between as86 and 1d86 is notitself a. out.

NASM supports this format, just in case it is useful, as as86. as86 provides a default output file-name
extension of . o.

as86 is a very simple object format (from the NASM user’s point of view). It supports no special
directives, no use of SEG or WRT, and no extensions to any standard directives. It supports only the
three standard section names .text, .data and .bss. The only special symbol supported is
..Start.

rdf: Relocatable Dynamic Object File Format

The rdf output format produces RDOFF object files. RDOFF (Relocatable Dynamic Object File Format)
is a home-grown object-file format, designed alongside NASM itself and reflecting in its file format the
internal structure of the assembler.

RDOFF is not used by any well-known operating systems. Those writing their own systems, however,
may well wish to use RDOFF as their object format, on the grounds that it is designed primarily for
simplicity and contains very little file~header bureaucracy.

The Unix NASM archive, and the DOS archive which includes sources, both contain an rdoff
subdirectory holding a set of RDOFF utilities: an RDF linker, an RDF static-library manager, an RDF file
dump utility, and a program which will load and execute an RDF executable under Linux.

rdf supports only the standard section names . text, .dataand .bss.

Requiring a Library: The LIBRARY Directive

RDOFF contains a mechanism for an object file to demand a given library to be linked to the module,
either at load time or run time. This is done by the LIBRARY directive, which takes one argument
which is the name of the module:

library mylib.rdl
Specifying a Module Name: The MODULE Directive

Special RDOFF header record is used to store the name of the module. It can be used, for example, by
run-time loader to perform dynamic linking. MODULE directive takes one argument which is the name
of current module:

module mymodname

Note that when you statically link modules and tell linker to strip the symbols from output file, all
module names will be stripped too. To avoid it, you should start module names with $, like:

module S$kernel.core

rdf Extensions to the GLOBAL Directive

RDOFF global symbols can contain additional information needed by the static linker. You can mark a
global symbol as exported, thus telling the linker do not strip it from target executable or library file.
Like in ELF, you can also specify whether an exported symbol is a procedure (function) or data object.

Suffixing the name with a colon and the word export you make the symbol exported:
global sys_open:export

To specify that exported symbol is a procedure (function), you add the word proc or function after
declaration:

7.13.4

7.14

global sys_open:export proc
Similarly, to specify exported data object, add the word data or object to the directive:

global kernel_ticks:export data

rdf Extensions to the EXTERN Directive

By default the EXTERN directive in RDOFF declares a "pure external" symbol (i.e. the static linker will
complain if such a symbol is not resolved). To declare an "imported" symbol, which must be resolved
later during a dynamic linking phase, RDOFF offers an additional import modifier. As in GLOBAL, you
can also specify whether an imported symbol is a procedure (function) or data object. For example:

library $libc

extern _open:import

extern _printf:import proc
extern _errno:import data

Here the directive LIBRARY is also included, which gives the dynamic linker a hint as to where to find
requested symbols.

dbg: Debugging Format

The dbg format does not output an object file as such; instead, it outputs a text file which contains a
complete list of all the transactions between the main body of NASM and the output-format back end
module. It is primarily intended to aid people who want to write their own output drivers, so that they
can get a clearer idea of the various requests the main program makes of the output driver, and in what
order they happen.

For simple files, one can easily use the dbg format like this:
nasm -f dbg filename.asm

which will generate a diagnostic file called filename.dbg. However, this will not work well on files
which were designed for a different object format, because each object format defines its own macros
(usually user-level forms of directives), and those macros will not be defined in the dbg format.
Therefore it can be useful to run NASM twice, in order to do the preprocessing with the native object
format selected:

nasm -e -f rdf -o rdfprog.i rdfprog.asm
nasm -a -f dbg rdfprog.i

This preprocesses rdfprog.asminto rdfprog. i, keeping the rdf object format selected in order
to make sure RDF special directives are converted into primitive form correctly. Then the preprocessed
source is fed through the dbg format to generate the final diagnostic output.

This workaround will still typically not work for programs intended for obj format, because the obj
SEGMENT and GROUP directives have side effects of defining the segment and group names as
symbols; dbg will not do this, so the program will not assemble. You will have to work around that by
defining the symbols yourself (using EXTERN, for example) if you really need to get a dbg trace of an
obj-specific source file.

dbg accepts any section name and any directives at all, and logs them all to its output file.
dbg accepts and logs any %pragma, but the specific %pragma:
%pragma dbg maxdump <size>

where <size> is either a number or unlimited, can be used to control the maximum size for
dumping the full contents of a rawdata output object.

97

98

8.1

8.1.1

Chapter 8: Writing 16-bit Code (DOS, Windows 3/3.1)

This chapter attempts to cover some of the common issues encountered when writing 16-bit code to
run under MS-DOS or Windows 3.x. It covers how to link programs to produce . EXE or .COM files,
how to write .SYS device drivers, and how to interface assembly language code with 16-bit C
compilers and with Borland Pascal.

Producing . EXE Files

Any large program written under DOS needs to be built as a .EXE file: only .EXE files have the
necessary internal structure required to span more than one 64K segment. Windows programs, also,
have to be built as . EXE files, since Windows does not support the . COM format.

In general, you generate . EXE files by using the obj output format to produce one or more . 0BJ files,
and then linking them together using a linker. However, NASM also supports the direct generation of
simple DOS . EXE files using the bin output format (by using DB and DW to construct the . EXE file
header), and a macro package is supplied to do this. Thanks to Yann Guidon for contributing the code
for this.

NASM may also support . EXE natively as another output format in future releases.

Using the obj Format To Generate . EXE Files
This section describes the usual method of generating . EXE files by linking . OBJ files together.

Most 16-bit programming language packages come with a suitable linker; if you have none of these,
there is a free linker called VAL, available in LZH archive format from x2ftp.oulu.f1i. An LZH
archiver can be found at ftp.simtel.net. There is another ‘free’ linker (though this one doesn’t
come with sources) called FREELINK, available from www. pcorner . com. A third, dj 1ink, written by
DJ Delorie, is available at www.delorie.com. A fourth linker, ALINK, written by Anthony A.J.
Williams, is available at alink.sourceforge.net.

When linking several .0BJ files into a . EXE file, you should ensure that exactly one of them has a start
point defined (using the . .start special symbol defined by the obj format: see section 7.4.6). If no
module defines a start point, the linker will not know what value to give the entry-point field in the
output file header; if more than one defines a start point, the linker will not know which value to use.

An example of a NASM source file which can be assembled to a .0B3J file and linked on its own to a
. EXE is given here. It demonstrates the basic principles of defining a stack, initialising the segment
registers, and declaring a start point. This file is also provided in the test subdirectory of the NASM
archives, under the name objexe.asm.

segment code

..start:
mov ax,data
mov ds,ax
mov ax,stack
mov ss,ax
mov sp,stacktop

This initial piece of code sets up DS to point to the data segment, and initializes SS and SP to point to
the top of the provided stack. Notice that interrupts are implicitly disabled for one instruction after a
move into SS, precisely for this situation, so that there’s no chance of an interrupt occurring between
the loads of SS and SP and not having a stack to execute on.

99

ftp://x2ftp.oulu.fi/pub/msdos/programming/lang/
ftp://ftp.simtel.net/pub/simtelnet/msdos/arcers
http://www.pcorner.com/tpc/old/3-101.html
http://www.delorie.com/djgpp/16bit/djlink/
http://alink.sourceforge.net

8.1.2

100

Note also that the special symbol . . start is defined at the beginning of this code, which means that
will be the entry point into the resulting executable file.

mov dx,hello
mov ah,9
int 0x21

The above is the main program: load DS:DX with a pointer to the greeting message (hello is
implicitly relative to the segment data, which was loaded into DS in the setup code, so the full pointer
is valid), and call the DOS print-string function.

mov ax,0x4c00
int 0x21

This terminates the program using another DOS system call.

segment data

hello: db ’hello, world’, 13, 10, °’$’
The data segment contains the string we want to display.

segment stack stack
resb 64
stacktop:

The above code declares a stack segment containing 64 bytes of uninitialized stack space, and points
stacktop at the top of it. The directive segment stack stack defines a segment called stack,
and also of type STACK. The latter is not necessary to the correct running of the program, but linkers
are likely to issue warnings or errors if your program has no segment of type STACK.

The above file, when assembled into a . 0BJ file, will link on its own to a valid . EXE file, which when
run will print ‘hello, world’ and then exit.

Using the bin Format To Generate . EXE Files

The . EXE file format is simple enough that it’s possible to build a . EXE file by writing a pure-binary
program and sticking a 32-byte header on the front. This header is simple enough that it can be
generated using DB and DW commands by NASM itself, so that you can use the bin output format to
directly generate . EXE files.

Included in the NASM archives, in the misc subdirectory, is a file exebin.mac of macros. It defines
three macros: EXE_begin, EXE_stack and EXE_end.

To produce a .EXE file using this method, you should start by using %include to load the
exebin.mac macro package into your source file. You should then issue the EXE_begin macro call
(which takes no arguments) to generate the file header data. Then write code as normal for the bin
format - you can use all three standard sections . text, .data and .bss. At the end of the file you
should call the EXE_end macro (again, no arguments), which defines some symbols to mark section
sizes, and these symbols are referred to in the header code generated by EXE_begin.

In this model, the code you end up writing starts at x100, just like a . COM file - in fact, if you strip off
the 32-byte header from the resulting . EXE file, you will have a valid . COM program. All the segment
bases are the same, so you are limited to a 64K program, again just like a . COM file. Note that an ORG
directive is issued by the EXE_begin macro, so you should not explicitly issue one of your own.

You can’t directly refer to your segment base value, unfortunately, since this would require a relocation
in the header, and things would get a lot more complicated. So you should get your segment base by
copying it out of CS instead.

8.2

8.2.1

8.2.2

On entry to your . EXE file, SS: SP are already set up to point to the top of a 2Kb stack. You can adjust
the default stack size of 2Kb by calling the EXE_stack macro. For example, to change the stack size of
your program to 64 bytes, you would call EXE_stack 64.

A sample program which generates a .EXE file in this way is given in the test subdirectory of the
NASM archive, as binexe.asm.

Producing . COM Files

While large DOS programs must be written as . EXE files, small ones are often better written as . COM
files. . COM files are pure binary, and therefore most easily produced using the b1 n output format.

Using the bin Format To Generate . COM Files

. COM files expect to be loaded at offset 100h into their segment (though the segment may change).
Execution then begins at 100h, i.e. right at the start of the program. So to write a . COM program, you
would create a source file looking like

org 100h
section .text

start:
; put your code here

section .data
; put data items here
section .bss

; put uninitialized data here

The bin format puts the . text section first in the file, so you can declare data or BSS items before
beginning to write code if you want to and the code will still end up at the front of the file where it
belongs.

The BSS (uninitialized data) section does not take up space in the . COM file itself: instead, addresses of
BSS items are resolved to point at space beyond the end of the file, on the grounds that this will be free
memory when the program is run. Therefore you should not rely on your BSS being initialized to all
zeros when you run.

To assemble the above program, you should use a command line like
nasm myprog.asm -fbin -o myprog.com

The bin format would produce a file called myprog if no explicit output file name were specified, so
you have to override it and give the desired file name.

Using the obj Format To Generate . COM Files

If you are writing a . COM program as more than one module, you may wish to assemble several .0BJ
files and link them together into a . COM program. You can do this, provided you have a linker capable
of outputting .COM files directly (TLINK does this), or alternatively a converter program such as
EXE2BIN to transform the . EXE file output from the linker into a . COM file.

If you do this, you need to take care of several things:

+ The first object file containing code should start its code segment with a line like RESB 100h. This
is to ensure that the code begins at offset 100h relative to the beginning of the code segment, so

101

8.3

8.4

8.4.1

102

that the linker or converter program does not have to adjust address references within the file when
generating the . COM file. Other assemblers use an ORG directive for this purpose, but ORG in NASM
is a format-specific directive to the b1in output format, and does not mean the same thing as it does
in MASM-compatible assemblers.

» Youdon't need to define a stack segment.

+ All your segments should be in the same group, so that every time your code or data references a
symbol offset, all offsets are relative to the same segment base. This is because, when a . COM file is
loaded, all the segment registers contain the same value.

Producing . SYS Files

MS-DOS device drivers - . SYS files - are pure binary files, similar to . COM files, except that they start
at origin zero rather than 100h. Therefore, if you are writing a device driver using the bin format, you
do not need the ORG directive, since the default origin for b1in is zero. Similarly, if you are using obj,
you do not need the RESB 100h at the start of your code segment.

. SYS files start with a header structure, containing pointers to the various routines inside the driver
which do the work. This structure should be defined at the start of the code segment, even though it is
not actually code.

For more information on the format of . SYS files, and the data which has to go in the header structure,
a list of books is given in the Frequently Asked Questions list for the newsgroup
comp.os.msdos.programmer.

Interfacing to 16-bit C Programs

This section covers the basics of writing assembly routines that call, or are called from, C programs. To
do this, you would typically write an assembly module as a . OBJ file, and link it with your C modules to
produce a mixed-language program.

External Symbol Names

C compilers have the convention that the names of all global symbols (functions or data) they define
are formed by prefixing an underscore to the name as it appears in the C program. So, for example, the
function a C programmer thinks of as printf appears to an assembly language programmer as
_printf. This means that in your assembly programs, you can define symbols without a leading
underscore, and not have to worry about name clashes with C symbols.

If you find the underscores inconvenient, you can define macros to replace the GLOBAL and EXTERN
directives as follows:

%macro cglobal 1

global _%1
%define %1 _%1

%endmacro
%macro cextern 1

extern _%1
%define %1 _%1
%endmacro
(These forms of the macros only take one argument at a time; a %rep construct could solve this.)

If you then declare an external like this:

news:comp.os.msdos.programmer

8.4.2

cextern printf
then the macro will expand it as

extern _printf
%define printf _printf

Thereafter, you can reference printf as if it was a symbol, and the preprocessor will put the leading
underscore on where necessary.

The cglobal macro works similarly. You must use cgloba'l before defining the symbol in question,
but you would have had to do that anyway if you used GLOBAL.

Also see section 2.1.28.

Memory Models

NASM contains no mechanism to support the various C memory models directly; you have to keep track
yourself of which one you are writing for. This means you have to keep track of the following things:

+ In models using a single code segment (tiny, small and compact), functions are near. This means
that function pointers, when stored in data segments or pushed on the stack as function arguments,
are 16 bits long and contain only an offset field (the CS register never changes its value, and always
gives the segment part of the full function address), and that functions are called using