Complex Event Processing
with Triceps CEP v1.0

Developer's Guide

Sergey A. Babkin

Complex Event Processing with Triceps CEP v1.0 : Developer's Guide

Sergey A. Babkin
Copyright © 2011, 2012 Sergey A. Babkin

All rights reserved.
Thismanual is apart of the Triceps project. It is covered by the same Triceps version of the LGPL v3 license as Triceps itself.
The author can be contacted by e-mail at <babkin@users.sf.net> or <sah123@hotmail.com>.

Many of the designations used by the manufacturers and sellersto distinguish their products are claimed as trademarks. Where those designations appear
in this manual, and the author was aware of a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this manual, the author assumes no responsibility for errors or omissions, or for damages
resulting from the use of the information contained herein.

Table of Contents

L1 THE FIEIA OF CEP ...ttt ettt e e et e et et e et et e e e e na s 1
L1 WHEE IS ThE CEP? ..o ettt e e e e e e 1
1.2, TRE USES OF CEP ...ttt e e et e ettt e e et e ettt e e e e e e e e ra s 2
1.3, SUrVEYing the CEP 8NGSTADEcccuuieiiiie ettt ettt e et e et e et et eeeenea s 2
1.4. Were not in 1950S @NY MOFE, OF @€ WE?uieueeit et et e et e e et e e et e e e tt e e e e e et e e et e ean e ean e aennaeeannas 3
A 0= I = oL ST PP UPPPTTSPUPPIN 7
P o= = o (o I | TSP SO UPPPTTRUPPIN 7
A o 1= o TR Yo g o | 8
N =W] o [T B I e = o T TSP OO UPUPTTRUPPIN 11
3.1, DOWNIOAOING TTICEDS ... eeeetti ettt ettt ettt ettt ettt ettt e et et e ettt e et e b e et e b e e e et 11
3.2. The referenCe ENVITONIMENTcoiiii ettt e et e et e et et e et e e e e et e e e eanaes 11
3.3 . ThE DESIC DU ... ettt et e e et e e e e 11
3.4. BUilding the dOCUMENTELIONiiiiii ettt e e ettt e e e et e e e et e e eenb e eeen 12
3.5. Running the examples and SIMPIE PrOOraMScieutuieiiii ettt ettt e e e e eeanns 13
3.6. Installation Of the Perl THOrary ... et 14
3.7. Instalation of the CH+ lIrary ... e 15
3.8. Disambiguation Of the C THDIarYuiiiiii e 16
3.9. BUIld CONFIQUIELION SELLINGSeevtn ettt e ettt e e et e e ettt e e e et e et e et e e e e et aeeeenbaaeeeees 17
A, APl FUNAMENTAISeeete ettt ettt e et et e et et e e et et e e et et e e e e et e e e e ena s 19
4.1, LangUAGgES AN TAYENS ...t 19
4.2. Errors, deaths and CONTESSIONScuiiriitiitii ettt et et e e e et et et e et eaeeaeeess 19
4.3. Memory management fUNCaMENTAIScviuueiiiii e 21
A4, TTICEPS CONSIAIES ... eettueetitt ettt ettt e ettt e ettt e e et et e e ettt e e ettt e e ettt b e e et e bb e et e eb e e e e nb e eeenna s 22
4.5. Printing the ODJECT CONTENESuui ittt e et e e e e et e e eaea e eenes 22
4.6. The HUNQAITAN NOLBLIONeeeteeiiiit ettt ettt et e et et e et et e e e e et e e e e ana e e eennans 24
LT {0 T S PRSPPI 25
I IS 110 L= Y o= PP TPPPPTPRPPPIN 25
5.2, ROW TYPES .. ie ittt ettt ettt ettt e s 25
5.3. ROW TYPES EQUIVBIEINCEttt ettt et e et e et e et e e e e an e e e eenans 27
5. ROWS ..ttt e et e et et et e e e 28
6. LabDE!S and ROW OPEIGLIONSuuieiiitieeeeit ettt ettt ettt e et e ettt e et et e et et r e et e e r e et e aaneeeenaaeeennans 31
B.1. LADEIS DBSICS ...ceeeiiieii e 31
6.2, LaADEl CONSITUCTION ...ttt ettt ettt e et e et et e ettt e e e et e e e era s 32
6.3. Other 1ahel MELNOOScoeiiiiee et e e e e s 33
B.4. ROW OPEIBIIONSeetteeeeti ettt ettt ettt e e ettt ettt et ettt et ettt e e et ettt e e e ettt e e eebt e e e eebb e eeeeneaeeees 34
B.5. OPICOTESeeeti ettt ettt ettt et e et e e e e e e eaaas 36
S o 11= o (U] 110 To [PPSR 39
7.1. Overview oOf the SChedUIINGi i e e 39
7.2, NO BUNAIING .. et ettt et et et e e e n e e eaaaas 39
7.3. BasiC SChEUIING 1N THICEPS ...eeeti ettt ettt ettt ettt e e et et e e et et e e e e et e e e eenba e eeens 40
7.4, LOOP SCHEAUIING ... eeetti ettt ettt e et e e et e e et e e e et e b e e e e e e e e e baa s 42
7.5, EXECULTON UNIT oottt ettt ettt ettt et e et e ettt s ettt e ettt e e e e b e e e et 46
7.6. Error handling during the EXECULTIONcoouuiiiiiiii e 50
7.7, THE MEIN TOOP .. eeetie ettt ettt ettt e ettt e et et e e e e e e e e e b e e eenans 50
7.8. Main [00P WIith @ SOCKELciiiiiie ittt e et 51
7.9. Example of atopologiCal 100Dceeuuiieiiii ettt 56
7.10. Issues with the TrcePs SChEAUIINGcoeeueiiii et e e 59
711, Trays, OF YES DUNIINGceeeeeieeeit ettt ettt ettt e et e e et eeeene s 60
7.12. TraCing the @XECULIONc.uuueiiiit ettt ettt e et e et e e ettt e e et et e et et e e et et e e e eran s 61
8. MEMOrY MaNAGEIMENT ... eeeiitii ettt ettt et e e ettt et n ettt e et e e et e et n et e et et e e en e e e aaes 69
8.1, REFEIENCE CYCIES ...ttt ettt e et e ettt e e e et e e e e e e 69
8.2. Clearing Of the TaEIS ... et 70
8.3. The Clearing TaDEIS ... e ettt e e e e een e e 71

S - o] L= PP PPPPTTTR 73

TS o = 1o T = o] = P 73
0.2, TADIES @NA TA0EIS ... e 74
9.3. Basic iteration through the tableoouiii e 77
LS 1= T i o = T o 77
9.5. A closer 100k at the ROWHANAIESuuiiiiiii e 78
9.6. A WINAOW 1S @ FIFO .ouiiiiiiiiiee e e e e et e et e e e et e e e et e e e eran s 80
0.7. SECONUAIY INUEXES .. cevueiiieeii e e e e e e e e e et e et e e et e et et e e et e e et e e e ta e e aa e e at e e st e astnaersneeennaees 84
SRS o 1 (o [T oo PR 87
R O 0 = o [T To = PP 90
S O I 0 TC T o (ot 1 = TSP 93
9.11. Table and indeX tyPe INtFOSPECLIONcuuuiiii e e e e e e e e et e e e e e e eanas 103
S N2 I o= ooV 1 - Y/ PPN 106
LS G T I o LT =0 oL o U 107
O 1= 0T (N 109
10.1. Comparative MOGUIAIILYuuueeeiieii e e e e e e e e e e e et e e e e et e e et e e et e etn e eaaneeennnns 109
O 1= 0410 = (A7 L= |/ PN 110
10.3. SIMPIE WIapPEr TEMPIBEES ... civi e e e e e e e e e et e et e e et e e et e e et e e et e e st e eetnaeeanaees 111
10.4. Templates of interconNECted COMPONENESuuiiiiieiiii e i et e e e e e e e e e e e et e e s e e e e aaeeaens 112
O 1= 0010 = (= o 1 o <P 117
10.6. Code generation in the tEMPIAEScoviiiiii e e e s 121
10.7. Result projection in the tEMPIAESoviiii e e e e e e e e e aaas 128
N0 o | = o (o o 133
11.1. The UbIQUITOUS VWA ...t e et s e e e e et e et a s e e e e e e eastaa e e aaeaeeaennes 133
A V= g TU T o o (=0 = 135
11.3. Introducing the Proper agQregalionccuueeiiieeii et e e e e e e e e e e e e et e e e e e et e e et e eaaeeeenns 139
11.4. Tricks with aggregation on a Sliding WINAOWcccuiiiiiiiiiiieiie e e e e e e e e e e 143
11.5. OptimiZEA DELETES ..iivvtiiiiii et eiiieeiiie s e e e e ettt s s s e e e e e e et s e e e e e e eae sttt e e e e eeeeaessstnnaaaaeeeeeesnnnes 147
SR Ao o [A== o o == 1 Lo 149
11.7. Computation fUNCLION @rQUMENESu.iiiiieii e e e e e e e e e e e e e e et e e et e e s e e et e e et e eenaas 153
11.8. USING MUILIPIE INOEXES ...ovniiiciii et e e e e e e e e et e e e e e e et e e et e e eanaas 155
IS TS T 0T o =70 o =0 = (o 159
11.10. The guts Of SIMPIEAGOIEIAONuuiiii e e e e e e e e e e e e r e et e et e e et e e st e e et e eeaneeaeneees 163
2N o 13RS 171
Nt T o1 R 7= S 171
2 o 1= o T o 1 P 171
12.3. The lookup join, done MaNUBITYc..uiiiiiiiiiii e e e e e e e e et e e e e e aaaees 172
12.4. The LooKUPJOIN tEBMPIALEviiii e e e e e e e e e e e e e e e e e e ean s 174
12.5. Manual iteration With LOOKUPJOINuuiiiiiiii e e e e e e e e e e e et e et e e ean e e aanees 178
12.6. The key fields Of LOOKUPJIOINuuiieiiiiieii e e e e e e e e e e e e e e e e e e et s e e e st e e e et e e eaneeeenss 180
12.7. A Peek iNSIAe LOOKUPIOIN . ..uuiieiiieii e e e et e e e e e e e e e e e et e e et e et e e et e e et e eeanaas 181
12.8. JOINTWO JOINS TWO tADIESuuiiie e e e e e e e e e e e e e et e e e e eaaas 185
12.9. The key field duplication iN JOINTWOciuueiii e e e e e e e e e e e e e e et eeaa e eaannas 192
12.10. The override optioNS iN JOINTWOiiutiiiii e e e e e e e e e e e e et e e e e et e e et e eeannas 193
12.11. JoinTWO iNPUE @VENE FIITEITNGeeei e e e e e e e e eeeen 193
12.12. Self-join done With JOINTWOciuniiii i e e e e e e e e et e e et e e et e e et e e eaaeeanaees 197
12.13. Self-join done MANUAITYuiiiiiei e e e e e e e e aaas 201
12.14. Self-join done With @ LOOKUPJOINuuiiiin i e e e e e e e e e e e et e e et e e et e e e e eanaeeeen 203
12.15. A glimpse inside JoinTwo and the hidden options of LOOKUPJOINceeviiiiiiiiiiiiecii e 205
G T 0 S o 0o o P 211
13.1. Time-limited PrOPagationccuueiii i e et e e e e e e e e e e e e e e e e et s e et eeaa e e et e eeanea st 211
T = oo (Yo U1 oo = (- 217
13.3. The general 1SSUES Of tiME PrOCESSING .. cvvuuiiineiiiieeii et e e e e e e e et e e e e e e e et e e et e e ean e e e e eanneeeenns 220
14. The other templateS and SOIULIONSuiiiiiiii e e e e e e e e e et e e et e e et e e et e e eteeeanaee 223
14.1. The dreaded GIAamMONGiiiiiiiiie e e e et e et e e e et e e e et e e e e etanaeeeesnnns 223

iv Complex Event Processing with Triceps CEP v1.0

14.2. CollaPSEA UPUBIES ... cevueiiiieeii ettt e e e e e e e e e e e e et e e et e e et e e aa e e et e e et eeaneeaes 227
14.3. Large deletes in SMall ChUNKSiiiiiii e e e e e e e e e e e aae e 233
15. Triceps Perl API REFEIENCEcouiiiiiiii et e e e e e e e e et e et e et e e et e e eaaaas 239
T I = o L= Y o L= €= (= 1 TS 239
T 1 1o Lo Y oL (== (= 1 TS 241
NS AAYoTo 1= o = (0Tl 1Y oLl = L= (= 11 243
SRS T o L=VaNe o | (0 = (0 g 1= (= (= o= Y 244
T = o L= (= = oot P 245
15.6. ROWHANAIE FEFEIENCE .. .eevviieiiiii e e e e e et e e e e st e e e eaaa s 248
15.7. AQQregatorCONLEXE FEFEIENCEuie i e e e e e e e e e e e e e e e et e e e an e e eanes 249
R T o R (= 1= (=10 250
e A T o Sy (= (= 0o T PP 251
15.10. LOOKUPJOIN TEFEIENCE .. et e it e e e e et e e e e e e e e e e e e e e e e e et e e et e e et e e et e e aaeeaens 252
15.11. JOINTWO FEFEIEINCE ...ieitiieeeeit ettt e et e e e ettt e e ettt e e et et e e e estneeeettn e e e eestnaeeeeaenaeaeees 255
T R 00 =01 SN 1= = (= o= 257
L = [== S o =S 259
30 = 1= 1 O USRI 259
I S = 1= = 0 5 USRS 259
T S (= 1= = 0 0 USRI 259
16.4. REIEESE 0.99 ...uiiiiiiii ittt et a e e s 260
2T 1 o] oo =" /R 261
g0 1= PP 263

Vi

List of Figures

6.1. Stateful elements wWith Chained 18DEIS.coouuiiiii e 32
7.1, LabelS fOrMING @ 100P. .. eeeeeiieieiii ettt ettt ettt et e et b e e e e e s 42
7.2. Proper CallS IN @ 100D, .. .eeuiieiiiii ettt ettt et et r e aee 44
O.1. DIrawWingS [EOBNG. ... ceeetiieieii ettt ettt ettt et e ettt n e e 94
L O 0T 1o (ST 1Y o PP SPPRTR 95
0.3, SHAIGNE NMESHING. ... eeeeti ettt ettt ettt ettt ettt e ettt e et e e et e e et a et et eena s 96
9.4. begi n(), begi nl dx($i t A) and begi nl dx($i t B) work the same for thistable.cccooceviiiiinns 97
9.5.findl dx($it A, $rh) goesthrough A and then switchesto the begi nl dx() 10giC.cccoevvvriiiiinnennn. 98
9.6. first O Groupl dX((Bi t B, I N . ittt eeeeeeeeeeneeeenne 99
9.7. next G oupl dX(Bi B, Br N) . oo 99
9.8. TWO TOP-1EVEl TNUEX TYPES. . etieeeiit ettt ettt ettt ettt e et et et e et e e e e ane e e ennans 100
9.9. A “primary” and “Secondary” INAEX TYPE.uu ittt ettt e e et e 101
9.10. TWO indeX tyPES NESLE UNUEN ONE.uiuiiiiti ettt e e et e e et e et et e e et et e e e e eaa s 102
14.1. The diamOond tOPOIOGY.ueeeetiee ittt ettt e e et e e et et e e et et e e e e et e e e e et e e e e era s 223

Vii

viii

Chapter 1. The field of CEP
1.1. What is the CEP?

CEP stands for the Complex Event Processing. If you look at Wikipedia, it has separate articles for the Event Stream
Processing and the Complex Event Processing. In redlity it's al the same thing, with the naming driven by the marketing.
| would not be surprised if someone invents yet another name, and everyone will start jumping on that bandwagon too.

In general a CEP system can be thought of as a black box, where the input events come in, propagate in some way through
that black box, and come out as the processed output events. There is also an idea that the processing should happen fast,
though the definitions of “fast” vary widely.

If we open the lid on the box, there are at least three ways to think of its contents:
* agpreadsheet on steroids
+ adataflow machine

» adatabase driven by triggers

Hopefully you've seen a spreadsheet before. The cells in it are tied together by formulas. Y ou change one cell, and the
machine goes and recal culates everything that depends on it. So does a CEP system. If we look closer, we can discern the
CEP engine (which is like the spreadsheet software), the CEP model (like the formulas in the spreadheet) and the state
(like the current values in the spreadsheet). An incoming event is like a change in an input cell, and the outgoing events
are the updates of the valuesin the spreadshest.

Only atypical CEP system is bigger: it can handle some very complicated formulas and many millions of records. There
actually are products that connect the Excel spreadsheets with the behind-the-curtain computations in a CEP system, with
the results coming back to the spreadsheet cells. Pretty much every commercial CEP provider has a product that does that
through the Excel RT interface. The way these models are written are not exactly pretty, but the results are, combining the
nice presentation of spreadsheets and the speed and power of CEP.

A dataflow machine, where the processing elements are exchanging messages, isyour typical academical ook at CEP. The
events represented as data rows are the messages, and the CEP model describes the connections between the processing
elements and their internal logic. This approach naturally maps to the multiprocessing, with each processing element be-
coming a separate thread. The hiccup is that the research in the dataflow machines tends to prefer the non-looped topol o-
gies. The loops in the connections complicate the things.

And many real-world relational databases already work very similarly to the CEP systems. They have the constraints
and triggers propagating these constraints. A trigger propagates an update on one table to an update on another table. It's
like aformulain a spreasheet or alogical connection in a dataflow graph. Y et the databases usually miss two things. the
propagation of the output events and the notion of being “fast”.

The lack of propagation of the output eventsis totally baffling to me: the RDBMS engines aready write the output event
stream as the redo log. Why not send them also in some generalized format, XML or something? Then people realize that
yes, they do want to get the output events and start writing some strange add-ons and aftermarket solutions like the log
scrubbers. Thishas been amystery to mefor some 15 years. | mean, how more obvious can it be? But nobody budges. Well,
with the CEP systems gaining popularity and the need to connect them to the databases, | think it will eventually grow on
the database vendors that a decent event feed is a competitive advantage, and | think it will happen somewhere soon.

The feeling of “fast” or lack thereof has to do with the databases being stored on disks. The growth of CEP has coincided
with the growth in RAM sizes, and the datais usually kept completely in memory. People who deploy CEP tend to want
the performance not of hundreds or thousands but hundreds of thousands events per second. The second part of “fast” is
connected with the transactions. In atraditional RDBMS a single event with all its downstream effects is one transaction.

Which is safe but may cause lots of conflicts. The CEP systems usually allow to break up the logic into multiple loose-
ly-dependent layers, thus cutting on the overhead.

1.2. The uses of CEP

Despite what Wikipedia says (and honestly, the Wikipedia articles on CEP and ESP are not exactly connected with reality),
the pattern detection is not your typical usage, by awide, wide margin. The typical usage is for the data aggregation: lots
and lots of individual events come in, and you want to aggregate them to keep a concise and consistent picture for the
decision-making. The actual decision making can be done by humans or again by the CEP systems. It may involve some
pattern recognition but usually even when it does, it doesn't look like patterns, it looks like conditions and joins on the
historical chains of events.

The usage in the cases | know of includes the ad-click aggregation, the decisions to make a market trade, the watching
whether the bank's end-of-day balance falls within the regulations, the choosing the APR for lending.

A related use would be for the general aert consoles. The data aggregation is what they do too. The last time | worked
with it up close (around 2006), the processing in the BMC Patrol and Nagios was just plain inadequate for anything useful,
and | had to hand-code the data collection and console logic. I've been touching this issue recently again at Google, and
apparently nothing has changed much since then. All the real monitoring is done with the systems devel oped in-house.

But the CEP would have been just the ticket. | think, the only reason why it has not been widespread yet is that the
commercial CEP licenses had cost alot. But with the all-you-can-eat pricing of Sybase, and with the Open Source systems,
thisis gradually changing.

Well, and there is al so the pattern matching. It has been lagging behind the aggregation but growing too.

1.3. Surveying the CEP langscape

What do we have in the CEP areanow? The sceneis pretty much dominated by Sybase (combining the former competitors
Aleri and Coral8) and StreamBase.

There seem to be two major approachesto the execution model. One was used by Aleri, another by Coral8 and StreamBase.
I'm not hugely familiar with StreamBase, but that's how it seems to me. Since I'm much more familiar with Coral8, I'll be
calling the second model the Coral8 model. If you find StreamBase substantially different, let me know.

The Aleri ideais to collect and keep al the data. The relational operators get applied on the data, producing the derived
data ("materialized views") and eventually the results. So, even though the Aleri models were usually expressed in XML
(though an SQL compiler was also available), fundamentally it's avery relational and SQLY approach.

This creates a few nice properties. All the steps of execution can be pipelined and executed in parallel. For persistence,
it's fundamentally enough to keep only the input data (what has been called BaseStreams and then SourceStreams), and al
the derived computations can be easily reprocessed on restart (it's funny but it turns out that often it's faster to read a small
state from the disk and recalculate the rest from scratch in memory than to load alarge state from the disk).

It also hasissues. It doesn't allow loops, and the procedural calculations aren't lways easy to express. And keeping all the
state requiresmore memory. Theissues of loopsand procedural computations have been addressed in Aleri by FlexStreams:
modul es that would perform the procedural computationsinstead of relational operations, written in SPLASH — avaguely
C-ish or Java-ish language. However this tends to break the relational properties: once you add a FlexStream, usually you
do it for the reasons that prevent the derived cal culations from being re-done, creating issues with saving and restoring the
state. Mind you, you can write a FlexStream that doesn't break any of them, but then it would probably be doing something
that can be expressed without it in the first place.

Coral8 has grown from the opposite direction: the idea has been to process the incoming data while keeping a minimal
state in the variables and short-term windows (limited sliding recordings of the incoming data). The language (CCL) is
very SQL-like. It relies on the state of variables and windows being pretty much global (module-wide), and allows the
statements to be connected in loops. Which means that the execution order matters alot. Which means that there are some

2 The field of CEP

quite extensive rules, determining this order. The logic ends up being very much procedural, but written in the peculiar
way of SQL statements and connecting streams.

The good thing is that all this allows to control the execution order very closely and write things that are very difficult
to express in the pure un-ordered relational operators. Which allows to aggregate the data early and creatively, keeping
less datain memory.

The bad news is that it limits the execution to a single thread. If you want a separate thread, you must explicitly make a
separate module, and program the communi cations between the modules, which is not exactly easy to get right. There are
lots of people who do it the easy way and then wonder, why do they get the occasional data corruption. Also, the ordering
rules for execution inside a module are quite tricky. Even for some fairly simple logic, it requires writing a lot of code,
some of which isjust bulky (try enumerating 90 fields in each statement), and some of which istricky to get right.

The summary is that everything is not what it seems: the Aleri models aren't usually written in SQL but are very declara-
tive in their meaning, while the Coral 8/StreamBase models are written in an SQL-like language but in reality are totally
procedural.

Sybaseisalso striking for amiddle ground, combining the featuresinherited from Aleri and Coral8 inits CEP R5 and | ater:
use the CCL language but relax the execution order rulesto the Aleri level, except for the explicit single-threaded sections
where the order is important. Include the SPLASH fragments for where the outright procedural logic is easy to use. Even
though it sounds hodgy-podgy, it actually came together pretty nicely. Forgive me for saying so myself since I've done a
fair amount of design and the execution logic implementation for it before I've |eft Sybase.

Still, not everything is perfect in this merged world. The SQLY syntax still requires you to drag around all your 90 fields
into nearly every statement. The single-threaded order of executionisstill non-obvious. It's possible to write the procedural
code directly in SPLASH but the boundary where the data passes between the SQLY and C-ish code till has a whole lot
of itsown kinks (lessthan in Aleri but still alot). And worst of all, thereis still no modular programming. Y eah, there are
“modules’ but they are not really reusable. They aretied too tightly to the schema of the data. What is needed, is morelike
C++ templates. Only preferrably something more flexible and less difficult to debug than the C++ templ ates.

StreamBase does have modules with parametrizable arguments (* capture fields”), somewhat like the C++ templates. The
limitation isthat you can say “and carry any additional fields through unchanged” but can't really specify subsets of fields
for a particular usage (“and use these fields as a key”). Or at least that's my understanding. | haven't used it in practice
and don't understand StreamBase too well.

1.4. We're not in 1950s any more, or are we”?

Part of the complexity with CCL programming is that the CCL programs tend to feel very broken-up, with the flow of
the logic jumping all over the place.

Consider a simple example: some incoming financia information may identify the securities by either RIC (Reutersiden-
tifier) or SEDOL or ISIN, and before processing it further we want to convert them al to ISIN (since the fundamentally
same security may beidentified in multiple wayswhen it'straded in multiple countries, ISIN isthe common denominator).

This can be expressed in CCL approximately like this (no guarantees about the correctness of this code, since | don't have
acompiler to try it out):

/1 the incom ng data

create schena s_incom ng (

id_type string, // identifier type: RIC, SEDCL or |ISIN
id_value string, // the value of the identifier

/1 add another 90 fields of payload...

)

/1 the normalized data
create schema s_normalized (
isin string, // the identity is nornmalized to | SIN

We're not in 1950s any more, or are we? 3

/1 add another 90 fields of payload..
);

/1l schema for the identifier translation tables
create schema s_translation (
fromstring, // external id value (RIC or SEDQL)
isin string, // the translation to ISIN

)

/1 the wi ndows defining the translations fromR C and SEDOL to | SIN
create wi ndow w_trans_ric schema s_translation

keep | ast per from
create wi ndow w_trans_sedol schema s_translation

keep | ast per from

create input streami _incom ng schema s_incomni ng
create streaminconming_ric schema s_incom ng

create streamincom ng_sedol schena s_incom ng
create streamincomng_isin schema s_inconing

create output streamo_nornalized schena s_nornalized

i nsert
when id_type = '"RIC then incoming_ric
when id_type = 'SEDOL' then incom ng_sedo
when id_type = '"ISIN then incom ng_isin

sel ect *

fromi_incom ng

insert into o_normalized

sel ect
W.isin,
i. ... /] the other 90 fields
from
incoming_ric as i join w_tranc_ric as w
on i.id_value = w.from

insert into o_normalized

sel ect
W.isin,
i. ... I/ the other 90 fields
from
incom ng_sedol as i join w_tranc_sedol as w
on i.id_value = w.from

insert into o_normalized
sel ect

i.id_val ue,

i. ... I/ the other 90 fields
from

i ncom ng_i sin;

Not exactly easy, isit, even with the copying of payload data skipped? Y ou may notice that what it does could also be
expressed as procedural pseudo-code:

/1 the incom ng data

struct s_incom ng (

string id_type, // identifier type: RIC, SEDOL or |ISIN
string id_value, // the value of the identifier

/1 add another 90 fields of payload..

)

/1 schemn for the identifier translation tables

4 The field of CEP

struct s_translation (
string from // external id value (R C or SEDCL)
string isin, // the translation to I SIN

)

/1 the wi ndows defining the translations fromR C and SEDOL to | SIN
table s_translation w trans_ric

key from

table s_translation w_trans_sedol
key from

s_incom ng i _inconi ng;

string isin;

if (i_incoming.id_type == "RIC) {
isin = |ookup(w_trans_ric,
w_trans_ric.from==i_incomn ng.id_val ue
).isin;
} elsif (i_incoming.id_type =="'SEDOL') {
isin = | ookup(w_trans_sedol,
w_trans_sedol . from == i _incom ng.id_val ue
).isin;
} elsif (i_incoming.id_type =="'I1SIN) {
isin = i_incomng.id_val ue;

}

if (isin != NULL) {
out put o_ nornalized(isin,
i _incomng. (* except (id_type, id_value))
)
}

Basically, writing in CCL feels like programming in Fortran in the 50s: lots of labels, lots of GOTOs. Each stream is
essentially alabel, when looking from the procedural standpoint. It's actually worse than Fortran, since all the labels have
to be pre-defined (with types!). And there isn't even the normal sequentia flow, each statement must be followed by a
GOTO, like on those machines with magnetic-drum main memory.

Thisisvery much like the examplein my book [Babkin10], in section 6.4. Queues as the sol e synchronization mechanism.
You can alook at the draft text online at http://web.newsguy.com/sab123/tpopp/O6odata.txt. This similarity is not acciden-
tal: the CCL streams are queues, and they are the only communication mechanism in CCL.

The SQL statement structure also adds to the confusion: each statement has the destination followed by the source of the
data, so each statement reads like it flows backwards.

We're not in 1950s any more, or are we? 5

http://web.newsguy.com/sab123/tpopp/06odata.txt

Chapter 2. Enter Triceps
2.1. What led to it

It had happened that I've worked for a while on and with the Complex Event Processing (CEP) systems. |'ve worked for
afew years on the internals of the Aleri CEP engine, then after Aleri acquired Coral8, some on the Coral8 engine, then
after Sybase gobbled up them both, I've designed and did the early implementation of a fair bit of the Sybase CEP R5.
After that I've moved on to Deutsche Bank and got the experience from the other side: using the CEP systems, primarily
the former Coral8, now known as Sybase CEP R4.

Thismade mefeel that writing the CEP modelsis unnecessarily difficult. Even the essentially simple things take too much
effort. I've had thisfeeling before aswell, but one thing isto haveit in abstract, and another isto grind against it every day.

Which in turn led me to thinking about making my own Open Source CEP system, where | could try out theideas| get, and
make the streaming models easier to write. | aim to do better than the 1950's style, to bring the advances of the structured
programming into the CEP world.

Thusthe Triceps project was born. For awhileit was called Biceps, until I've learned of the existence of arecearch project
called BiCEP. It's spelled differently, and isin asubstantially differnt areaof CEP work, but it's easier to avoid confusion,
so | went one better and renamed mine Triceps.

Since then I've moved on from DB, and I'm currently not using any CEP at work (though you never know what would
happen), but Triceps has already gained momentum by itself.

The Triceps development has been largely shaped by two considerations:

* It hasto be different from the Sybase products on which | worked. Thisis helpful from both legal standpoint and from
marketing standpoint: Sybase and StreamBase already have similar products that compete head to head. Thereisno use
getting into the same fray without some major resources.

* It hasto be small. I can't spend the same amount of effort on Triceps as alarge company, or even as a small one. Not
only this saves time but also allows the modifications to be easy and fast. The point of Tricepsisto experiment with the
CEP language to make it easy to use: try out the ideas, make sure that they work well, or replace them with other ideas.
The companies with a large established product can't really afford the radical changes: they have invested much effort
into the product, and are stuck with supporting it and providing compatibility into the future.

Both of these considerations point into the same direction: an embeddable CEP system. Adapting an integrated system for
an embedded usage is hot easy, so it'sagood open niche. Y eah, this niche is not empty either. There aready is Esper. But
from a cursory ook, it seems to have the same issues as Coral 8/StreamBase. It's also Java-centric, and Tricepsis aimed
for embeddability into different languages.

And an embeddable system saves on alot of components.

For starters, no IDE. Anyway, | find the IDEs pretty useless for development in general, and especially for the CEP devel-
opment. Though it comes handy once in awhile for the analysis of the code and debugging.

No new language, no need to devel op compilers, virtual machines, function libraries, external callout APIs. Well, the major
goa of Triceps actually is the development of a new and better language. But it's one of these paradoxes: Aleri does the
relational logic looking like procedural, Coral 8 and StreamBase do the procedural logic looking likerelational, and Triceps
isadesign of alanguage without alanguage. Eventually there probably will be alanguage, to be mixed with the parent one.
But for now alot can be done by simply using the Triceps library in an existing scripting language. The existing scripting
languages are aready powerful, fast, and also support the dynamic compilation.

No separate server executable, no need to control it, and no custom network protocols: the users can put the code directly
into their executables and devise any protocolsthey please. Well, it'snot areal good answer for the protocols, sinceit means

that everyone who wants to communicate the streaming data for Triceps over the network hasto implement these protocols
from scratch. So eventually Triceps will provide a default implementation. But it doesn't have to be done right away.

No data persistence for now either. It's a nice feature, and | have some ideas about it too, but it requires a large amount
of work, and doesn't really affect the API.

The language used to implement Triceps is C++, and the scripting language is Perl. Nothing really prevents embedding
Triceps into other languages but it's not going to happen anywhere soon. The reason being that extra code adds weight
and makes the changes more difficult.

The multithreading support has been a major consideration from the start. All the C++ code has been written with the
multithreading in mind. However for the first release the multithreading did not propagate into the Perl API yet.

Even though Tricepsis a system aimed for quick experimentation, that does not imply that it's of atoy quality. The code
is written in production quality to start with, with a full array of unit tests. In fact, the only way you can do the quick
experimentation is by setting up the proper testing from the scratch. The idea of “move fast and break things” is complete
rubbish.

2.2. Hello, world!

Let'sfinally get to business: write asimple “Hello, world!” program with Triceps. Since Tricepsis an embeddable library,
naturally, the smallest “Hello, world!” program would be in the host language without Triceps, but it would not be interest-
ing. So hereisthe abit contrived but more interesting Perl program that passes some data through the Triceps machinery:

use Triceps;
use Carp;

$hwunit = Triceps::Unit->new("hwnit") or die "$!";
$hw rt = Triceps:: RowType- >new

greeting => "string",

address => "string",
) or confess "$!";

ny $print_greeting = $hwunit->nakeLabel ($hw rt, "print_greeting", undef, sub {
ny ($l abel, $rowop) = @;
printf("%!\n", join(', ', $rowop->getRow()->toArray()));

}) or confess "$!";

$hwuni t - >cal | ($print_greeting- >makeRowop(&Tri ceps: : OP_| NSERT,
$hw_rt - >makeRowHash(
greeting => "Hello",
address => "world",

)

)) or confess "$!";

What happens there? First, we import the Triceps module and the Carp module. The Carp module isn't strictly necessary
but it makes the debugging easier by printing the whole stack trace, not just the line number when an error has happened.
The function conf ess isprovided by Carp, and works very much like di e only with the stack trace.

Then we create a Triceps execution unit. An execution unit keeps the Triceps context and controls the execution for one
thread. Nothing really stops you from having multiple execution unitsin the same thread. It might come handy if you want
to essentially make multiple ilogical user thread, each with its own unit in one kernel thread. But a single execution unit
must never ever be used in multiple threads. It's single-threaded by design and has no synchronization in it.

The argument of the constructor is the name of the unit, that can be used in printing messages about it. It doesn't have to
be the same as the name of the variable that keeps the reference to the unit, but it's a convenient convention to make the
debugging easier. Thisis a common idiom of Triceps: when you create something, you give it aname. If any errors occur

8 Enter Triceps

later with this object, the name will be present int the error message, and you'll be able to find easily, which object has
the issue and where it was created.

If something goes wrong, the constructor will return an undef and set the error message in $! . This actually has turned
out to be not such a good idea as it seemed, since writing “or conf ess” (or “or di e”) at every line quickly turns
tedious. And there is usually not much point in catching the errors of thistype, since they are essentially the compile-time
errors and should cause the program to die anyway.

In the upcoming versions this will be changed throughought the code to confess on any serious errors (and if it needsto be
caught, it can be caught with eval). Some methods have been already changed to this new convention, but most haven't
yet. At the moment it's a bit of amix.

The next statement creates the type for rows. For the simplest example, one row type is enough. It contains two string
fields. A row type does not belong to an execution unit. It may be used in parallel by multiple threads. Once a row type
is created, it'simmutable, and that's the story for pretty much all the Triceps objects that can be shared between multiple
threads: they are created, they become immutable, and then they can be shared. (Of course, the containers that facilitate
the passing of data between the threads would have to be an exception to thisrule).

Then we create alabel. If you look at the “ SQLY vs procedural” examplein Section 1.4: “We're not in 1950s any more, or
arewe?’ (p. 3) , you'll seethat the labels are analogs of streamsin Coral8. And that's what they arein Triceps. Of course,
now, in the days of the structured programming, we don't create labelsfor GOTOsall over the place. But we still uselabels.
The function names are essentially labels, the loops in Perl may have labels. So a Triceps label can often be seen kind of
like afunction definition, but so far only kind of. It takes a datarow as a parameter and does something with it. But unlikea
proper function it has no way to return the processed data back to the caller. It hasto either pass the processed datato other
labels or collect it in some hardcoded data structure, from which the caller can later extract it back. This means that until
this gets worked out better, a Triceps label is still much more like a GOTO label or Coral8 stream than a proper function.
Just like the unit, alabel may be used in only one thread.

A basic label takes arow type for the rows it accepts, a name (again, purely for the ease of debugging) and a reference
to a Perl function that will be handling the data. Extra arguments for the function can be specified as well, but there is
no use for them in this example.

Here it's a smple unnamed Perl function. Though of course a reference to a named function can be used instead, and the
same function may be reused for multiple labels. Whenever the label gets a row operation to process, its function gets
called with the reference to the label object, the row operation object, and whatever extra arguments were specified at the
label creation (none in this example). The example just prints a message combined from the data in the row.

Note that the label's handler function doesn't just get arow as an argument. It gets arow operation (“rowop” asit's called
throughout the code). It's an important distinction. A row just stores some data. As the row gets passed around, it gets
referenced and unreferenced, but it just stays the same until the last reference to it disappears, and then it gets destroyed. It
doesn't know what happens with the data, it just storesthem. A row may be shared between multiple threads. On the other
hand, a row operation says “take these data and do such and such a thing with them”. A row operation is a combination
of arow of data, an operation code, and alabel that has to carry out the operation. It is confined to a single thread. Inside
this thread a reference to arow operation may be kept and reused again and again, since the row operation object is also
immutable.

Triceps has the explicit operation codes, very much like Aleri (only Aleri doesn't differentiate between a row and row
operation, every row there has an opcodein it, and the Sybase CEP R5 does the same). It might be just my background, but
let metell you: the CEP systemswithout the explicit opcodes are apain. Thevisible opcodes makelifealot easier. However
unlike Aleri, thereisno UPDATE opcode. The available opcodes are INSERT, DELETE and NOP (no-operation). If you
want to update something, you send two operations: first DELETE for the old value, then INSERT for the new value. All
thiswill be described in more detail later.

For this simple example, the opcode doesn't really matter, so the label handler function quietly ignoresiit. It gets the row
from the row operation and extracts the data from it into the Perl representation, then prints them. The Triceps row data
may be represented in Perl in two ways: an array and a hash. In the array format, the array contains the values of the fields
in the order they are defined in the row type. The hash format consists of name-value pairs, which may be stored either

Hello, world! 9

in an actual hash or in an array. The conversion from arow to a hash actually returns an array of values which becomes
ared hash if it gets stored into a hash variable.

As aside note, this also suggests, how the systems without explicit opcodes came to be: they've been initialy built on the
simple stateless examples. And when the more complex examples have turned up, they've been aready stuck on this path,
and could not afford too deep aretrofit.

The final part of the example is the creation of arow operation for our label, with an INSERT opcode and arow created
from hash-formatted Perl data, and calling it through the execution unit. The row type provides a method to construct the
rows, and the label provides a method to construct the row operations for it. The cal | () method of the execution unit
does exactly what its name implies: it evaluates the label function right now, and returns after all its processing its done.

10 Enter Triceps

Chapter 3. Building Triceps

3.1. Downloading Triceps

The official Triceps siteislocated at SourceForge.

http://triceps.sf.net is the high-level page.

http://sf.net/projects/triceps is the SourceForge project page.

The official releases of Triceps can be downloaded from SourceForge.

The release policy of Triceps is aimed towards the easy development. As the new features are added (or sometimes re-
moved), they are checked into the SVN repository and documented in the blog form at http://babkin-cep.blogspot.com/.
Periodically the documentation updates are coll ected from the blog into this manual, and the official releases are produced.

If you want to try out the most bleeding-edge features that have been described on the blog but not officially released yet,
you can get the most recent code directly from the SVN repository. The SVN code can be checked out with

svn co https://triceps.svn.sourceforge. net/svnroot/triceps/trunk

Y ou don't need any login for check-out. Y ou can keep it current with latest changes by periodically runningsvn updat e.
After you've checked out the trunk, you can build it as usual.

3.2. The reference environment

The tested reference build environment is where | do the Triceps development, and currently it is Linux Fedora 11. The
build should work automatically on the other Linux systems as well but has not been tested much in practice.

The build should work on the other Unix environments too but would reguire some manual configuration for the available
libraries, and has not been tested either.

Currently you must use the GNU Linux toolchain: GNU make, GNU C++ compiler (version 4.4.1 has been tested), glibc,
valgrind. Y ou can build without valgrind by running only the non-valgrind tests.

Thetested Perl versionis’5.10.0, and should work on any later version aswell. With the earlier versionsyour luck may vary.
The Makefile.PL has been configured to require at least 5.8.0 but you may edit it and try building on the older versions.

| am interested in hearing the reports about builds in various environments.

The normal build expectation isfor the 64-bit machines. The 32-bit machines should work (and the code even includesthe
special cases for them) but have been untested at the moment. Some of the tests might fail of the 32-bit and/or big-endian
machines due to the different computation of the hash values, and thus producing a different row order in the result.

3.3. The basic build

If everything works, the basic build is simple, go to the Triceps directory and run:

make al
make test

That would build and test both the C++ and Perl portions of Triceps. The C++ librarieswill be created under cpp/ bui | d.
The Perl libraries will be created under per | / Tri ceps/ bl i b.

11

http://triceps.sf.net
http://sf.net/projects/triceps
http://babkin-cep.blogspot.com/

Thetestsare normally run with valgrind for the C++ part, without valgrind for the Perl part. Thereason isthat Perl produces
lots of false positives, and the suppressions depend on particular Perl versions and are not exactly reliable.

If your system differs substantially, you may need to adjust the configurable settings manually, since thereisno . / con-
fi gur e scriptintheTricepsbuild yet. Moreinformation about themisin the Section 3.9: “ Build configuration settings” (p.
17).

In some circumstances the Per unit test print the error messages as a normal part of running the test. Such messages are
prepended with a message that they are expected, for example:

Expect nessage(s) like: Error in Perl Sortedl ndex(bad) conparator: test a death in
Per | Sort edl ndex conpar at or

Error in Perl Sortedl ndex(bad) conparator: test a death in Perl Sortedl ndex conpar at or
Error in Perl Sortedl ndex(bad) conparator: test a death in Perl Sortedl ndex conpar at or

These messages come from the tests of the C++ code catching of the fatal errors in the Perl code. In the future all such
catching will be converted to the stack unwind and confession back to the surrounding Perl code. However for now there
till are the old-style handlers that ssimply print the error message.

The other interesting nake targets are:

cl ean
Remove dl the built files.

cl obber
Remove the object files, forcing the libraries to be rebuilt next time.

vt est
Run the unit tests with valgrind, checking for leaks and memory corruption.

gt est
Run the unit tests quickly, without valgrind.

rel ease
Export from SVN aclean copy of the code and create arelease package. The package name will be triceps-version.tgz,
wheretheversionistaken from the SV N directory name, from wherethe current directory ischecked out. Thisincludes
the build of the documentation.

3.4. Building the documentation

If you have downloaded the release package of Triceps, the documentation is aready included it in the built form. The
PDF and HTML versions are availablein doc/ pdf anddoc/ ht i . It is aso available online from http://triceps.sf.net.

The documentation is formatted in DocBook, that produces the PDF and HTML outputs. If you check out the source
from SVN and want to build the documentation, you need to download the DocBook tools needed to build it. | hate the
dependency situations, when to build something you need to locate, build and download dozens of other packages firsti,
and then the versions turn out to be updated, and don't want to work together, and all kinds of hell break loose. To make
things easier, I've collected the set of packages that I've used for the build and that are known to work. They've collected
in http://downloads.sourceforge.net/project/triceps/docbook-for-1.0/. The DocBook packages come originally from http://
docbook.sf.net, plusafew extra packagesthat by now | forgot wherel've got from. An excellent book on the DocBook tools
and their configuration is [Stayton07]. And if you're interested, the text formatting in Docbook is described in [Walsh99].

DocBook isgreat intheway it takes cary of great many thingsautomatically but configuringitisplainly abitch. Fortunately,
it's all already taken care of. I've reused the infrastructure I've built for my book [Babkin10] for Triceps. Though some
elements got dropped and some added.

Downloading and extraction of the DocBook tools gets taken care of by running

12 Building Triceps

http://triceps.sf.net
http://downloads.sourceforge.net/project/triceps/docbook-for-1.0/
http://docbook.sf.net
http://docbook.sf.net

make - C doc/ dbt ool s

These tools are written in Java, and the packages are already the compiled binaries, so they don't need to be built. Aslong
as you have the Java runtime environment, they just run. However like many Java packages, they are sloppy and often
don't return the correct return codes on errors. So the results of the build have to be checked visually afterwards.

The build also uses Ghostscript for converting the figues from the EPS format. The luck with Ghostscript versions also
varies. The version 8.70 works for me. I've seen some versions crash on this conversion. Fortunately, it was crashing after
the conversion actually succeeded, so aworkaround was to ignore the exit code from Ghostscript.

After the tools have been extracted, the build is done by

make -C doc/src

The temporary files are cleaned with

make -C doc/src cl eanwork
Theresultswill beindoc/ pdf anddoc/ ht n .

If like meyou plan to usethe DocBook toolsrepeatedly to build the docsfor different versions of Triceps, you can download
and extract them once in some other directory and then set the exported variable TRI CEPS_TOCLS_BASE to point to it.

3.5. Running the examples and simple programs

Overal, the exampleslivetogether with unit tests. The primary target languagefor Tricepsis Perl, so the examplesfromthe
manual are the Perl exampleslocatedinper | / Tri ceps/ t . Thefileswith names starting with “x” contain the examples
as such, like xW ndow. t . Usually there are multiple related examples in the same file.

The examples as shown in the manual usually read the inputs from stdin and print their results on stdout. The actua
examplesinper |/ Tri ceps/t arenot quite exactly the same because they are plugged into the unit test infrastructure.
The differenceislimited to theinput/output functions: rather than reading and writing on the stdin and stdout, they take the
inputs from variables, put the results into variables, and have the results checked for correctness. This way the examples
stay working and do not experience the bit rot when something changes.

Speaking of the examples outputs, the common convention in this manual isto show the lines entered from stdin as bold
and the lines printed on stdout as regular font. This way they can be easily told apart, and the effects can be connected
to their causes. Likethis:

OP_I NSERT, 1, AAA, 10, 10
Cont ent s:
id="1" synbol =" AAA" price="10" size="10"
| bAver age OP_I NSERT synbol =" AAA" id="1" price="10"
OP_I NSERT, 3, AAA, 20, 20
Cont ent s:
id="1" synbol =" AAA" price="10" size="10"
i d="3" synbol =" AAA" price="20" size="20"
| bAver age OP_I NSERT synbol =" AAA" id="3" price="15"

The other unit testsinthe . t files are interesting too, since they contain absolutely all the possible usages of everything,
and can be used as a reference. However they tend to be much more messy and hard to read, exactly because they contain
in them lots of tiny snippets that do everything.

The easiest way to start trying out your own small programsis to place them into the same directory per | / Tri ceps/ t
and run them from there. Just name them with the suffix . pl , so that they would not be picked up by the Perl unit test
infrastructre (or if you do want to run them as a part of unit tests, use the suffix . t).

To make your programs find the Triceps modules, start them with

Running the examples and simple programs 13

use ExtUils::testlib;
use Triceps;
use Carp;

Themodule Ext Uti | s:: testlib takes care of setting the include paths to find Triceps. Y ou can run them from the
parent directory, like:

perl t/xW ndow.t

The parent directory isthe only choice, since Ext Uti | s: : test i b can not set up the include paths properly from the
other directories.

3.6. Installation of the Perl library

If you have the root permissions on the machine and want to install Tricepsin the central location, just run

make -C perl/Triceps install

If you don't, there are multiple options. One is to create your private Perl hierarchy in the home directory. If you decide
to put it into SHOVE/ i nst , the installation there becomes

nkdir -p $HOWE i nst
cp -Rf perl/Triceps/blib/* $HOVE i nst/

Y ou can then set the environment variable
export PERL5LI B=$HOVE/ i nst/|i b: $HOVE/ i nst/ arch

to have your private hierarchy prepended to the Perl's standard library path. You can then insert “use Tri ceps; ” and
the Triceps module will be found. If you want to have the man pages from that directory working too, set

export MANPATH=$HOWE/ i nst : $MANPATH
Not that Triceps has any usable man pages at the moment.

However if you're building a package that uses Triceps and will be shipped to the customer and/or deployed to aproduction
machine, placing the libraries into the home directory is still not the best idea. Not only you don't want to pollute the
random home directories, you also want to make sure that your libraries get picked up, and not the ones that might happen
to beinstalled on the machine from some other sources (because they may be of different versions, or completely different
libraries that accidentaly have the same name).

The best idea then is to copy Triceps and all the other libraries into your distribution package, and have the binaries
(including the scripts) find them by arelative path.

Suppose you build the package prototype in the $PKGDI R, with the binaries and scripts located in the subdirectory bi n,
and the Triceps library located in the subdirectory bl i b. When you build your package, you install the Triceps library
in that prototype by

cp -Rf perl/Triceps/blib $PKGEI R/

Then this package gets archived, sent to the destination machine and unarchived. Whatever the packagetype, t ar , cpi o or
r pm doesn't matter. Therelative pathsunder it stay the same. For example, if it getsinstalled under / opt / ny_package,
the directory hierarchy would look like this:

[opt/ my_package

+- bin
| + my_program pl
+- blib
+- ... Triceps stuff

14 Building Triceps

The script my_pr ogr am pl can then use the following code at the top to load the Triceps package:

#! [usr/ bi n/ perl
use Fil e:: Basenane;

This is the magi c sequence that adds the relative include paths.
BEG N {

ny $nypath = dirname($0);

unshift @NC, "${nypath}/../blib/lib", "${nypath}/../blib/arch";
}

use Triceps;

It finds its own path from $0, by taking its directory name. Then it adds the relative directories for the Perl modules and
XS shared libraries to the include path. And finally loads Triceps using the modified include path. Of course, more paths
for more packages can be added as well. The script can also use that own directory (if saved into a global instead of ny
variable) to run the other programs later, find the configuration files and so on.

3.7. Installation of the C++ library

There are no special install scriptsfor the C++ libraries and includes. To build your C++ code with Triceps, simply specify
thelocation of Tricepssourcesand built librarieswith options- | and - L. For example, if you havebuilt Tricepsin $HOVE/
srcs/triceps-1.0. 0, youcan add the following to your Makefile:

TRI CEPSBASE=$(HOVE) / srcs/triceps-1.0.0
CFLAGS += -1 $(TRI CEPSBASE) / cpp - DTRI CEPS_NSPR4
LDFLAGS += -L$(TRI CEPSBASE)/cpp/build -Itriceps -Inspr4 -pthread

The Triceps include files expect that the Triceps C++ subdirectory is directly in the include path as shown.

The exact set of - Dflagsand extra- | libraries may vary with the Triceps configuration. To get the exact ones used in the
configuration, run the special configuration make targets:

make --quiet -f cpp/ Makefile.inc getconf
make --quiet -f cpp/Makefile.inc getxlib

The additions to CFLAGS are returned by get conf . The additional external libraries for LDFLAGS are returned by
get x| i b. It's important to use the same settings in the build of Triceps itself and of the user programs. The differing
settings may cause the program to crash.

If you build your code with the dynamic library, the best packaging practiceisto copy thel i bt ri ceps. so to the same
directory where your binary is located and specify its location with the build flags (for GCC, the flags of other compilers
may vary):

LDFLAGS += "-W,-rpath="$$ORIG N .""

Or any relative path would do. For example, if your binary package contains the binariesin the subdirectory bi n and the
librariesin the subdirectory | i b, the setting for the path of the libraries relative to the binaries will be:

LDFLAGS += "-W,-rpath="$$ORIAN ../lib""

But locating the binaries and the shared libraries won't work if Triceps and your program get ever ported to Windows.
Windows searches for the DLLs only in the same directory.

Or it might be easier to build your code with the static library: just instead of - | t r i ceps, link explicitly with $(TRI -
CEPSBASE) / cpp/ bui | d/ i btri ceps. a and thelibrariesit requires:

LDFLAGS += $(TRI CEPSBASE)/ cpp/ build/libtriceps.a -Ipthread -1 nspr4

Installation of the C++ library 15

3.8. Disambiguation of the C++ library

A problem with the shared libraries is that you never know, which exact library will end up linked at run time. The sys-
tem library path takes priority over the one specified in - r pat h. So if somene hasinstalled a Triceps shared library sys-
tem-wide, it would be found and used instead of your one. And it might be of a completely different version. Or some
other package might have messed with LD LI BRARY_PATHintheuser's. prof i | e, and inserted its path with its own
version of Triceps.

Messing with LD LI BRARY_PATH is bad. The good solution is to give your libraries some unique
name, so that it would not get confused. Instead of |ibtriceps.so, name it something like
libtriceps_ny _corp_ny_project_v_123.so.

Triceps can build the libraries with such names directly. To change the name, edit cpp/ Makef i | e. i nc and change
LI BRARY : = triceps

to

LI BRARY : = triceps_my_corp_my_project_v_123

and it will produce the custom-named library. The Perl part of the build detects this name change automatically and still
works (though for the Perl build it doesn't change much, the static C++ Triceps library gets linked into the X S-produced
shared library).

Thereisalso aspecia make target to get back the base name of the Triceps library:
make --quiet -f cpp/ Makefile.inc getlib

The other potential naming conflict could happen with both shared and dynamic libraries. It appears when you want to link
two different versions of the library into the same binary. Thisis needed rarely, but still needed. If nothing special isdone,
the symbol names in two libraries clash and nothing works. Triceps provides a way around it by having an opportunity
to rename the C++ namespaces, instead of the default namespace “Tri ceps”. It can be done again by editing cpp/
Makef i | e. i nc and modifying the setting TRI CEPS_CONF:

TRI CEPS_CONF += - DTRI CEPS_NS=Tri cepsMyVer si on

Suppose that you have two Triceps versions that you want both to use in the same binary. Suppose that you are building
themin$(HOVE) / srcs/triceps-1.0.0and $(HOVE) / srcs/triceps-2.0.0.

Thenyou edit $(HOVE) / srcs/tri ceps-1. 0. 0/ cpp/ Makefi |l e. i nc and put in there
TRI CEPS_CONF += - DTRI CEPS_NS=Tri cepsl

Andin$(HOVE) / srcs/triceps-2.0.0/ cpp/ Makefil e.inc put

TRI CEPS_CONF += - DTRI CEPS_NS=Tri ceps2

If you use the shared libraries, you need to disambiguate their names too, as described above, but for the static libraries
you don't have to.

Almost there, but you need to have your code use the different namespaces for different versions too. The good practice
isto includein your files

#i ncl ude <conmon/ Conf . h>

and then use everywhere the Triceps namespace TRI CEPS_NS instead of Tr i ceps. Then aslong asone sourcefile deals
withonly oneversion of Triceps, it can be easily manipulated to which version to use by providing that versionin theinclude
path. And you get your program to work with two versions of Triceps by linking the object files produces from these source
files together into one binary. Then you just build some of your fileswith- | $(HOVE) / srcs/triceps-1. 0. 0/ cpp
and somewith - | $(HOVE) / srcs/tri ceps- 2. 0. 0/ cpp and avoid any conflicts or code changes.

16 Building Triceps

At thelink time, you will need to link with the libraries from both versions.

3.9. Build configuration settings

Since Triceps has no autoconfiguration yet, it may need to be configured manually for the target operating system. The
same method is used for the build options.

The configuration optionsare set in thefilecpp/ Makef i | e. i nc. Theextradefinesare added in TRI CEPS_CONF, the
extralibrary dependenciesin TRI CEPS_XLI B.

So far the only such configurable library dependency is the NSPRA4 library. It's used for its implementation of the atomic
integers and pointers. Without it the code still works but uses a less efficient implementation of an integer or pointer
protected by a mutex. It is enabled by

TRI CEPS_CONF += - DTRI CEPS_NSPR4
TRI CEPS _XLIB += -1l nspr4

The other build options require only the - D settings.

TRI CEPS_CONF += - DTRI CEPS_NS=Tri cepsM/Ver si on
Changes the namespace of Triceps.

TRI CEPS_CONF += - DTRI CEPS_BACKTRACE=f al se

Disables the use of the glibc stack backtrace library (it's a standard part of glibc nowadays but if you use anon-GNU libc,
you might have to disable it). This library is used to make the messages on fatal errors more readable, and let you find
the location of the error easier.

Build configuration settings 17

18

Chapter 4. APl Fundamentals

4.1. Languages and layers

As mentioned before, at the moment Triceps provides the APIsin C++ and Perl. They are similar but not quite the same,
because the nature of the compiled and scripted languages is different. The C++ API is more direct and expects discipline
from the programmer: if some incorrect arguments are passed, everything might crash. The Perl API should never crash.
It should detect any incorrect use and report an orderly error. Besides, the idioms of the scripted languages are different
from the compiled languages, and different usages become convenient.

So far only the Perl API is documented in this manual. Itsis considered the primary one for the end users, and also richer
and easier to use. The C++ APl will be documented aswell, just it didn't make the cut for theversion 1.0. If you'reinterested
in the C++ API, read the Perl documentation first, to understand the ideas of Triceps, and then look in the source code.
The C++ classes have very extensive comments in the header files.

The Perl API isimplemented in XS. Some people, may wonder, why not SWIG? SWIG would automatically export the API
into many languages, not just Perl. The problem with SWIG isthat it just maps the API one-to-one. And this doesn't work
any good, it makes for some very ugly APIswith abilities to crash from the user code. Which then have to be wrapped into
more scripting code before they become usable. So then why bother with SWIG, it'seasier to just usethe scripting language's
native extension methods. Another benefit of the native XS support is the access to the correct memory management.

In general, I've tried to avoid the premature optimization. The idea is to get it working at all first, and then bother about
working fast. Except for the caseswhen the need for optimi zation |ooked obvious, and thelogic intertwined with the general
design strongly ehough, that if done one way, would be difficult to change in the future. We'll see, if these “obvious’ cases
really turn out to be the obvious wins, or will they become a premature-optimization mess.

There is usualy more than one way to do something in Triceps. It has been written in layers: Thereisthe C++ APl layer
on the bottom, then the Perl layer that closely parallelsit, then more of the niceties built in Perl. There is more than one
way to organize the manual, structuring it by features or by layers. Eventually | went in the order of the magjor features,
discussing each one of them at various layers.

I've also tried to show, how these layers are built on top of each other and connected. Which might be too much detail for
thefirst reading. If you feel that something is going over your head, just skim over it. It could be marked more clearly but
| don't like this kind of marking. | hate the side-panels in the magazines. | like the text to flow smoothly and sequentially.
| don't like the “simplifications’ that distort the real meaning and add all kinds of confusion. | like having all the details |
can get, and then | can skip over the ones that look too complicated (and read them again when they start making sense).

Also, amajor goal of Triceps is the extendability. And the best way to learn how to extend it, is by looking up close at
how it has already been extended.

4.2. Errors, deaths and confessions

In Perl, when a Triceps method detects an error, it has two ways of reporting it:

1. Set the error code in the special variable $! and return an undef . Thisisthe “traditional” approach that is gradually
replaced by the other one.

2. Settheerror codeinthespecial variable$@andalso $! , for compatibility with the other way) and tell the Perl interpreter
todie. Thisisthe“new” approach.

Currently most of the methods inplemented in C++ through XS return the errors in the first way but some have been
converted to the new second way. Changing all the code at onceisalot of work, so the code is being converted to the new
way gradually. The methods implemented in Perl use the second way. The methods using the second way are marked in

19

their documentation as such. | hesitate to give awholelist of them, because the list changes as more methods get converted
to the new way of error handling.

When you use the methods of the first group, you need to check their return code. The common idiomis:

nmy $table = $unit->nakeTabl e($tabType, "EM CALL", $nane)
or confess "$!'";

It checks the return value and dies with an error message. conf ess isanicer form of di e and comes from the module
Car p. Car p isastandard part of modern Perl, so all you need to doisjust say

use Carp;
No need to download and install anything.

The problem with thesimpledi e isthat it reports an error but prints only the location where it has been called, which may
beten layers deep inside alibrary, not afull stack trace. The functionsin Car p fix that. conf ess isthe most interesting
one of them. It works just likedi e but prints the whole stack trace.

The full description of Carp isavailable at http://perldoc.perl.org/Carp.html. It has more functions, however | find the full
stack trace the most helpful thing in any case.

The nice part abour writing or conf ess isthat the error message is fully controlled. If the error happensin atemplate,
the template can produce a smarter message, telling what was wrong with it arguments on the high level, for example:

ny $table = $unit->makeTabl e($tabType, "EM CALL", $nane)
or confess "Query2: bad table type, table creation failed: $!";

But the problem is that you need to not forget writing or conf ess after every call. Also, it's inconvenient when the
result of one call is passed directly to another one, like:

$sel f->{unit}->call(
$sel f - >{resLabel } - >makeRowop(" OP_I NSERT", $rh->getRow()));

Here cal | () is a method with the second way of the error reporting, and it doesn't need or conf ess. But
makeRowop() and get Row() use the first way. Writing or conf ess for each of them would work but would be
quite tedious:

$sel f->{unit}->call(
$sel f->{resLabel } - >makeRowop(
"OP_I NSERT", $rh->get Row() or confess "$!"
) or confess "$!"

)

Because of this, the error checking in such nested calls usually gets skipped and the error manifestsitself by the enveloping
call dying with the XS error of bad argument type. Which doesn't print the stack trace and loses the information about
the original error.

The “new” second way of error reporting is much better in this regard. It reports the error where and when it happens. It
executesconf ess directly, which includesthe stack trace into the error message and then proceedslike classic di e. This
includes the code implemented both in Perl and in C++ X S. With some exceptions though: the errors detected by the code
auto-generated in XS, such as bad call arguments, still report through the plain di e.

There are modules to make all the cases of di e work like conf ess, Devel : : Si npl eTr ace and Car p: : Al ways.
They work by intercepting the pseudo-signals _ WARN__and __ DI E__. Thelogic of Car p: : Al ways is pretty sim-
ple, see http://cpansearch.perl.org/src/FERREIRA/Carp-Always-0.11/lib/Carp/Always.pm, so if you're not fegling likein-
stalling the module, you can easily do the same directly in your code.

If you want to intercept the error to add more information to the message, use eval :

20 API Fundamentals

http://perldoc.perl.org/Carp.html
http://cpansearch.perl.org/src/FERREIRA/Carp-Always-0.11/lib/Carp/Always.pm

eval { $self->{unit}->call ($rowop) } or confess "Bad rowop argunent:\n$@;
| have some better ideas about reporting the errorsin the nested templated but they need to beimplemented and tried out yet.

When the Perl code inside a label or tracer or aggregator or index sorting handler dies, the C++ infrastructure around it
catches the error. Here Triceps also has the old and the new way of dealing with it. The old way just prints the error on
stderr and continues like nothing has happened. It's still used for the tracers, aggregators and index sorting. The new way
unrollsthe stack trace through the C++ code and passesthedi e request to the Perl code that called it. Thelabels have been
converted to this new way. When one Perl label calls another Perl 1abel that callsthe third Perl Iabel, the call sequence goes
in layers of Perl—C++—Perl—C++—Perl—C++—Perl. If that last label hasits Perl code die and there are no eval sin
between, the stack will be correctly unwound back through all these layers and reported in the error message. The C++
code will include the reports of al the chained label calls as well. If one of the intermediate Perl layers wraps the call in
eval , it will receive the error message with the stack trace up to that point.

4.3. Memory management fundamentals

The memory is managed in Triceps using the reference counters. Each Triceps object has a reference counter in it. In
C++ thisis done explicitly, in Perl it gets mostly hidden behind the Perl memory management that al so uses the reference
counters. Mostly.

In C++ the Autoref template is used to produce the reference objects. As the references are copied around between these
objects, the reference countsin the target objects are automatically adjusted. When the reference count dropsto 0, the target
object gets destroyed. While there are live references, the object can't get destroyed from under them. All nice and well
and simple, however still possible to get wrong.

The major problem with the reference counters is the reference cycles. If object A has a reference to object B, and object
B has areference (possibly, indirect) to object A, then neither of them will ever be destroyed. Many of these cases can be
resolved by keeping areference in one direction and a plain pointer in the other. This of course introduces the problem of
hanging pointers, so extra care has to be taken to not reference them. There also are the unpleasant situationswhen thereis
absolutely no way around the reference cycles. For example, the Triceps label's method may keep a reference to the next
label, whereto send its processed results. If the labels are connected into aloop (a perfectly normal occurrence), thiswould
cause a reference cycle. Here the way around is to know when all the labels are no longer used (before the thread exit),
and explicitly tell them to clear their references to the other labels. This breaks up the cycle, and then bits and pieces can
be collected by the reference count logic.

The reference cycle problem can be seen all the way up into the Perl level. However Triceps provides the ready solutions
for its typical occurences. To explain it, more about Triceps operation has to be explained first, so it's described in detail
later in Chapter 8: “Memory Management” (p. 69) .

The reference counting may be single-threaded or multi-threaded. If an object may only be used inside one thread, the
references to it use the faster single-threaded counting. In C++ it's real important to not access and not reference the
single-threaded objects from multiple threads. In Perl, when a new thread is created, only the multithreaded objects from
the parent thread become accessible for it, the rest become undefined, so theissue gets handled automatically (as of version
1.0 even the potentially multithreaded objects are still exported to Perl as single-threaded, with no connection between
threads yet).

The C++ objects are exported into Perl through wrappers. The wrappers perform the adaptation between Perl reference
counting and Triceps reference counting, and sometimes more of the helper functions. Perl sees them as blessed objects,
from which you can inherit and otherwise treat like normal objects.

When we say that a Perl variable $| abel contains a Triceps label object, it really means that it contains areferece to a
label object. When it gets copied like $| abel 2 = $I abel , this copies the reference and now both variables refer to
the same label object (more exactly, even to the same wrapper object). Any changes to the object's state done through one
reference will also be visible through the other reference.

When the Perl references are copied between the variables, this increases the Perl reference count to the same wrapper
object. However if an object goesinto the C++ land, and then is extracted back (such as, create a Rowop from a Row, and

Memory management fundamentals 21

then extract the Row from that Rowop), a brand new wrapper gets created. It's the same underlying C++ object but with
multiple wrappers. You can't tell that it's the same object by comparing the Perl references, because they may be pointing
to the different wrappers. However Triceps provides the method same() that compares the data inside the wrappers. It
can be used as

$r owl- >sane($r on2)
and if it returns true, then both $r owl and $r ow2 point to the same underlying row.

Note also that if you inherit from the Triceps objects and add some extra data to them, none of that data nor even your
derived classes identity will be preserved when a new wrapper is created from the underlying C++ object.

4.4. Triceps constants

Triceps has a number of symbolic constants that are grouped into essentially enums. The constants themselves will be
introduced with the classes that use them, but here is the general description common to them all.

In Perl they al are placed into the same namespace. Each group of constants (that can be thought of as an enum) getsits
name prefix. For example, the operation codes are all prefixed with OP_, the enqueueing modes with EM _, and so on.

Theunderlying constantsare all integer. The way to give symbolic namesto constantsin Perl isto define afunction without
arguments that would return the value. Each constant has such a function defined for it. For example, the opcode for the
“insert” operation isthe result of function Tr i ceps: : OP_| NSERT.

Most methods that take constants as arguments are also smart enough to recognise the constant names as strings, and
automatically convert them to integers. For example, the following calls are equivalent:

$l abel - >makeRowop(&Tri ceps: : OP_I NSERT, ...);
$l abel - >makeRowop(" OP_I NSERT", ...);

For a while I've thought that the version with Tri ceps: : OP_I NSERT would be more efficient and might check for
correctness of the name at compile time. But as it turns out, no, on both counts. The look-up of the function by name
happens at run time, so there is no compile-time check. And that look-up happensto be alittle slower than the one done by
the Triceps C++ code, so thereisno win there either. The string version isnot only shorter but a so more efficient. The only
win with the function isif you call it once, remember the result in a variable and then reuse. Unless you're chasing the last
few percent of performance in atight loop, it's not worth the trouble. Perhaps in the future the functions will be replaced
with the module-level variables: that would be both faster and allow the compile-time checking withuse stri ct.

What if you need to print out aconstant in amessage? Triceps providesthe conversion functionsfor each group of constants.
They generally arenamed Tr i ceps: : sonet hi ngSt ri ng. For example,

print &Triceps::opcodeString(&Triceps:: OP_|I NSERT) ;
would print “OP_INSERT” If the argument is out of range of the valid enums, it would return undef (but not set any
error messagein $! , sinceit's not afata error).

There dso are functions to convert from strings to constant values. They generaly are named
Tri ceps::stringSonet hi ng. For example,

&Triceps: :stringOpcode(" OP_I NSERT")

would return the integer value of Tri ceps: : OP_I NSERT. If the string name is not valid for this kind of constants, it
would also return undef .

4.5. Printing the object contents

22 API Fundamentals

When debugging the programs, it's important to find from the error messages, what is going on, what kinds of objects are
getting involved. Because of this, many of the Triceps objects provide away to print out their contentsinto a string. This
is done with the method pri nt () . Thesimplest useis asfollows:

$message = "Error in object " . $object->print();

Most of the objects tend to have a pretty complicated internal structure and are printed on multiple lines. They look better
when the components are appropriately indented. The default call printsasif the basic message is un-indented, and indents
every extralevel by 2 spaces.

This can be changed with extra arguments. The general format of pri nt () is:
$obj ect - >print ([$i ndent, [$subindent]])

where $indent istheinitial indentation, and $subindent is the additional indentation for every level. The default pri nt ()

isequivalenttoprint("", " ").

A special caseis

$obj ect - >pri nt (undef)

It prints the object in asingle line, without line breaks.

Here is an example of how arow type object would get printed. The details of the row types will be described later, for
now just assume that arow type is defined as:

$rtl = Triceps:: RowType- >new(
a => "uint8",

b => "int32",
c => "int64",
d => "fl| oat 64",
e => "string",

);
Then$rt 1->print () produces:

row {
uint8 a,
int32 b,
int64 c,
float64 d,
string e,

}
With extraarguments $r t 1- >print ("++", "--"):

row {
++--uint8 a,
++--int32 b,
++--int64 c,
++--fl oat64 d,
++--string e,
++}

Thefirst line doesn't have a“++" because the assumption is that the text gets appended to some other text aready on this
line, so any prefixes are used only for the following lines.

And finally with an undef argument $rt 1- >pri nt (undef):

row{ uint8 a, int32 b, inté64 c, float64 d, string e, }

Printing the object contents 23

The Rows and Rowops do not havethepri nt () method. That'slargely because the C++ code does not deal with printing
the actual data, thisis left to the Perl code. So instead they have the method pri nt P() that does a similar job. Only
it's simpler and doesn't have any of the indenting niceties. It always prints the data in asingle line. The “P” in “printP”
standsfor “Perl”. The name is also different because of thislack of indenting niceties. See more about it in the Section 5.4:
“Rows” (p. 28) .

4.6. The Hungarian notation

The Hungarian notation is the idea that the name of each variable should be prefixed with some abbreviation of itstype. It
has probably become most widely known from the Microsoft operating systems.

Overal it's a complete abomination and brain damage. But I'm using it widely in the examples in this manual. Why? The
problem isthat there usually too many components for one logical purpose. For atable, there would be arow type, atable
type, and the tableitself. Rather than inventing separate names for them, it's easier to have acommon name and an uniform
prefix. Eventually something better would have to be done but for now I've fallen back on the Hungarian notation. One
possibility isto just not give names to the intermediate entities. Say just have a named table, and then there would be the
the type of the table and the row type of the table.

Among the CEP systems, Tricepsis not unique in the Hungarian notation department. Coral 8/Sybase CCL has this mess of
lots of schemas, input streams, windows and output streams, with the same naming problems. The uniform naming prefixes
or suffixes help making this mess more navigable. | haven't actually used StreamBase but from reading the documentation
| get the feeling that the Hungarian notation is probably useful for its SQL aswell.

24 API Fundamentals

Chapter 5. Rows

In Triceps the relational datais stored and passed around as rows (once in awhile | call them records, which is the same
thing here). Each row belongs to a certain type, that defines the types of the fields. Each field may belong to one of the
simple types.

5.1. Simple types

The simple valuesin Triceps belong to one of the simple types:

e uint8

e int32

* int64

+ float64

e string

| like the explicit specification of the data size, so it's not some mysterious “ double” but an explicit “float64” .

When the datais stored in the rows, it's stored in the strongly-typed binary format. When it's extracted from the rows for
the Perl code to access, it gets converted into the Perl values. And the other way around, when stored into the rows, the
conversion is done from the Perl values.

ui nt 8 isthetypeintended to represent the raw bytes. So, for example, when they are compared, they should be compared
as raw bytes, not according to the locale. Since Perl stores the raw bytes in strings, and its pack() and unpack()

functions operate on strings, The Perl side of Triceps extracts the uint8 values from records into Perl strings, and the other
way around.

The string typeisintended to represent atext string in whatever current locale (at some point it may become always UTF-8,
this question is open for now).

Perl on the 32-bit machines has an issue with int64: it has no type to represent it directly. Because of that, when the int64
values are passed to Perl on the 32-bit machines, they are converted into the floating-point numbers. This gives only 54
bits (including sign) of precision, but that's close enough. Anyway, the 32-bit machines are obsolete by now, and Triceps
it targeted towards the 64-bit machines.

On the 64-bit machines both int32 and int64 transate to the Perl 64-hit integers.

Note that there is no specia type for timestamps. As of version 1.0 there is no time-based processing inside Triceps, but
that does not prevent you from passing around timestamps as data and use them in your logic. Just store the timestamps
asintegers (or, if you prefer, as floating point numbers). When the time-based processing will be added to Perl, the planiis
to till use the int64 to store the number of microseconds since the Unix epoch. My experience with the time typesin the
other CEP systemsis that they cause nothing but confusion. In the meantime, the time-based processing is still possible by
driving the notion of time explicitly. It's described in the Chapter 13: “Time processing” (p. 211) .

5.2. Row types

A row typeis created from a sequence of (field-name, field-type) string pairs, for example:

$rtl = Triceps:: Rowlype- >new
a => "uint8",
b => "int32",
c => "int64",

25

d => "float 64",
e => "string",

)

Even though the pairs ook like a hash, don't use an actual hash to create row types! The order of pairsin ahash is unpre-
dictable, while the order of fieldsin arow type usually matters.

In an actual row the field may have avalue or be NULL. The NULLs are represented in Perl asundef .

The real-world records tend to be pretty wide and contain repetitive data. Hundreds of fields are not unusual, and | know
of acasewhen an Aleri customer wanted to have records of two thousand fields (and succeeded). Thisjust begsfor arrays.
So the Triceps rows allow the array fields. They are specified by adding “[]” at the end of field type. The arrays may only
be made up of fixed-width data, so no arrays of strings.

$rt2 = Triceps:: RowType- >new(

=> "uint8[]",

=> "int32[]",

=> "int64[]",

= "float64[]",

=> "string", # no arrays of strings!
r confess "$!'";

O Md®QaooOTD

)

The arrays are of variable length, whatever array data passed when arow is created determines its length. The individual
elements in the array may not be NULL (and if undef s are passed in the array used to construct the row, they will be
replaced with 0s). The whole array field may be NULL, and this situation is equivalent to an empty array.

The type uint8 is typically used in arrays, “uint8[]” is the Triceps way to define a blob field. In Perl the “uint8[]” is
represented as a string value, same as a simple “unit8”.

Therest of array values are represented in Perl as references to Perl arrays, containing the actual values.

The row type objects provide away for introspection:
$rt->get def ()

returns back the array of pairs used to create this type. It can be used among other things for the schema inheritance. For
example, the multi-part messages with daily unique ids can be defined as:

$rtMsgKey = Triceps: : RowType- >new(
date => "string",
id=> "int32",

) or confess "$!";

$rtMsg = Triceps:: RowType- >new(
$rt MsgKey- >get def (),
from=> "string",
to => "string",
subj ect => "string",
) or confess "$!";

$rtMsgPart = Triceps:: RowlType- >new(
$rt MsgKey- >get def (),
type => "string",
payl oad => "string",

) or confess "$!";

The meaning here is the same asin the CCL example:

create schema rt MsgKey (
string date,
integer id

26 Rows

)
create schenma rtMsg inherits fromrtMgKey (
string from
string to,
string subject
)
create schema rtMsgPart inherits fromrtMgKey (
string type,
string payl oad
)

The grand plan is to provide some better ways of defining the commonality of fields between row types. It should include
the ability to rename fields, to avoid conflicts, and to remember this equivalence to be reused in the further joins without
the need to write it over and over again. But it has not come to the implementation stage yet.

The other methods are:

$rt->get Fi el dNanes()

returns the array of field namesonly.
$rt->get Fi el dTypes()

returns the array of field types only.
$rt - >get Fi el dMappi ng()

returns the array of pairs that map the field names to their indexes in the field definitions. It can be stored into a hash and
used for name-to-index translation. It's used mostly in the templates, to generate code that accesses data in the rows by
field index (which is more efficient than access by name). For example, for r t MsgKey defined above it would return
(date => 0, id =>1).

5.3. Row types equivalence

The Triceps objects are usually strongly typed. A label handles rows of a certain type. A table stores rows of a certain type.
However there may be multiple ways to check whether arow fits for a certain type:

It may be arow of the exact same type, created with the same RowType object.

It may be arow of another type but one with the exact same definition.

* It may be arow of another type that has the same number of fields and field types but different field names. The field
names (and everything else in Triceps) are case-sensitive.

The row types may be compared for these conditions using the methods:

$rtl->sanme($rt2)
$rt1->equal s($rt2)
$rt1->mat ch($rt2)

The comparisons are hierarchical: if two type references are the same, they would also be equal and matching; two equal
types are also matching.

Most of the objects would accept the rows of any matching type (this may change or become adjustable in the future).
However if the rows are not of the same type, this check involves a performance penalty. If the types are the same, the
comparison is limited to comparing the pointers. But if not, then the whole type definition has to be compared. So every
time arow of adifferent typeis passed, it would involve the overhead of type comparison.

For example:

Row types equivalence 27

ny @chema = (
a => "int32",
b => "string"

)

ny $rtl = Triceps:: RowType- >newm @chenma) or confess "$!";
$rt2 is equal to $rtl: sane field nanmes and field types
ny $rt2 = Triceps:: RowType- >newm @chenma) or confess "$!";
$rt3 matches $rtl and $rt2: sane field types but different nanes
ny $rt3 = Triceps:: RowType- >new(
A => "int32",
B => "string"
) or confess "$!";

ny $lab = $unit->nakeDummylLabel ($rtl, "lab") or confess "$!";
same type, efficient
ny $ropl = $l ab->makeRowop(&Tri ceps: : OP_I NSERT,
$rt 1- >makeRowArray(1, "x")) or confess "$!'";
different row type, involves a conparison overhead
ny $rop2 = $l ab- >makeRowop(&Tri ceps: : OP_I NSERT,
$rt 2- >makeRowArray(1, "x")) or confess "$!'";
different row type, involves a conparison overhead
ny $rop3 = $| ab- >makeRowop(&Tri ceps: : OP_I NSERT,
$rt 3- >makeRowArray(1, "x")) or confess "$!";

A dummy label used hereis alabel that does nothing (its usefulness will be explained later).

Once the Rowop is constructed, no further penalty is involved: the row in the Rowop is re-typed to the type of the label
from now on. It's physically still the same row with another reference to it, but when you get it back from the Rowop, it
will have the label's type. It's all a part of the interesting interaction between C++ and Perl. All the type checking is done
in the Perl XS layer. The C++ code just expects that the data is always right and doesn't carry the types around. When the
Perl code wants to get the row back from the Rowop, it wants to know the type of the row. The only way to get it isto
look, what is the label of this Rowop, and get the row type from the label. This is also the reason why the types have to
be checked when the Rowop is constructed: if awrong row is placed into the Rowop, there will be no later opportunity
to check it for correctness, and bad data may cause a crash.

5.4. Rows

The rows in Triceps always belong to some row type, and are always immutable. Once a row is created, it can not be
changed. This allows it to be referenced from multiple places, instead of copying the whole row value. Naturally, a row
may be passed and shared between multiple threads.

The row type provides the constructor methods for the rows:

$row
$row

$rowType- >nmakeRowArray(@i el dval ues) ;
$r owType- >makeRowHash($f i el dName => $fi el dvalue, ...);

Here $r ow is a reference to the resulting row. As usud, in case of error it will be left as undef , with the error message
in$!.

In the array form, the values for the fields go in the same order as they are specified in the row type (if there are too few
values, the rest will be considered NULL, having too many valuesis an error).

The Perl value of undef istreated as NULL.

In the hash form, the fields are specified as name-value pairs. If the same field is specified multiple times, the last value
will overwrite al the previous ones. The unspecified fields will be left as NULL. Again, the arguments of the function
actually are an array, but if you pass a hash, its contents will be converted to an array on the call stack.

28 Rows

If the performance is important, the array form is more efficient, since the hash form has to trandate internally the field
names to indexes.

The row itself and its type don't have any concept of keysin general and of the primary key in particular. So any fields
may beleft asNULL. Thereisno “NOT NULL" constraint.

Some examples:

$row = $rowType->makeRowArray(@ields) or die "$!'";

$row = $rowType- >nakeRowArray($a, $b, $c) or die "$!";
$row = $rowType->makeRowHash(%ields) or die "$!";

$row = $rowType- >nmakeRowHash(a => $a, b => $b) or die "$!";

The usua Perl conversions are applied to the values. So for example, if you pass an integer 1 for astring field, it will be
converted to the string “1”. Or if you passastring “” for an integer field, it will be converted to 0.

If afieldisan array (asalways, except for ui nt 8[]| whichisrepresented asaPerl string), itsvalueisaPerl array reference
(or undef). For example:

$rtl = Triceps:: RowlType- >new(
a =>"uint8[]",
b =>"int32[]",
) or confess "$!";
$row = $rtl->makeRowArray("abcd", [1, 2, 3]) or confess "$!";

An empty array will become a NULL value. So the following two are equivalent:

$row
$row

$rt 1- >makeRowArray("abcd", []) or die "$'";
$rt 1- >makeRowArray("abcd", undef) or die "$!";

Remember that an array field may not contain NULL values. Any undef sin the array fields will be silently converted
to zeroes (since arrays are supported only for the numeric types, a zero value would always be available for all of them).
The following two are equivalent:

$row
$row

$rt1- >makeRowArray("abcd", [undef, undef]) or die "$!";
$rt1- >makeRowArray("abcd", [0, 0]) or die "$!'";

Therow aso provides away to copy itself, modifying the values of selected fields:
$row2 = $rowl- >copynod($fi el dNane => $fiel dvalue, ...);

The fields that are not explicitly specified will be left unchanged. Since the rows are immutable, this is the closest thing
to the field assignment. copynod() is generally more efficient than extracting the row into an array or hash, replacing
afew of them with new values and constructing a new row. It bypasses the binary-to-Perl-to-binary conversions for the
unchanged fields.

The row knows its type, which can be obtained with
$row >get Type()

Note that thiswill create a new Perl wrapper to the underlying type object. So if you do:

$rtl1 = ...;
$row = $rt1->makeRow. . . ;
$rt2 = $row >get Type();

then $r t 1 will not be equal to $r t 2 by the direct Perl comparison ($rt1 ! = $rt 2). However both$rt 1 and $rt 2
will refer to the same row type object, so $rt 1- > ; same($rt 2) will betrue.

The row references can also be compared for sameness:

$rowl- >sane($r ow2)

Rows 29

The row contents can be extracted back into Perl representation as

@dat a
Uhdat a

$row >t oArray();
$r ow >t oHash() ;

Again, the NULL fields will become undef s, and the array fields (unless they are NULL) will become Perl array refer-
ences. Since the empty array fields are equivalent to NULL array fields, on extraction back they will be treated the same
as NULL fields, and become undef s.

Thereis also aconvenience function to get one field from arow at atime by name:
$val ue = $row >get ("fi el dNanme");

If you need to access only a few fields from a big row, get () is more efficient (and easier to write) that extracting the
whole row witht oHash() or evenwitht oArray() . But don't forget that every timeyou call get () , it creates anew
Perl value, which may be pretty involved if the value is an array. So the most efficient way then for the values that get
reused many timesisto cal get (), remember the result in a Perl variable, and then reuse that variable.

Thereis aso away to conveniently print arows contents, usually for the debugging purposes:

$result = $row >printP();

Thename pr i nt Pisan artifact of implementation: it shows that this method isimplemented in Perl and uses the default
Perl conversions of values to strings. The ui nt 8[] arrays are printed directly as strings. The result is a sequence of

nane="val ue" or nane=["val ue", "value", "value"] foral the non-NULL fields. The backslashes and
double quotes inside the values are escaped by backslashesin Perl style. For example, reusing the row type above,

$row = $rtl->makeRowArray('ab\ "cd"', [0, 0]) or die "$'";
print $row>printP(), "\n";

will produce

a="ab\\ \"cd\"" b=["0", "0"]
Finally, there is a deep debugging method:
$result = $row >hexdunp()

That dumps the raw bytes of the row's binary format, and is useful only to debug the more weird issues.

30 Rows

Chapter 6. Labels and Row Operations

6.1. Labels basics

In each CEP engine there are two kinds of logic: One is to get some request, look up some state, maybe update some
state, and return the result. The other has to do with the maintenance of the state: make sure that when one part of the
state is changed, the change propagates consistently through the rest of it. If we take acommon RDBM S for an analog, the
first kind would be like the ad-hoc queries, the second kind will be like the triggers. The CEP engines are very much like
database engines driven by triggers, so the second kind tends to account for alot of code.

Thefirst kind of logic is often very nicely accommodated by the procedural logic. The second kind often (but not always)
can benefit from amore relational, SQLY definition. However the SQLY definitions don't stay SQLY for long. When every
every SQL statement executes, it getscompiled first into the procedural form, and only then executes asthe procedural code.

The Triceps approach is tilted toward the procedural execution. That is, the procedural definitions come out of the box,
and then the high-level relational logic can be defined on top of them with the templates and code generators.

These bits of code, especially where the first and second kind connect, need some way to pass the data and operations
between them. In Triceps these connection points are called Labels.

The streaming data rows enter the procedural logic through a label. Each row causes one call on the label. From the
functional standpoint they are the same as Coral8 Streams, as has been shown in Section 1.4: “We're not in 1950s any
more, or are we?’ (p. 3) . Except that in Triceps the labels receive not just rows but operations on rows, as in Aleri: a
combination of arow and an operation code.

They are named “labels’ because Triceps has been built around the more procedural ideas, and when looked at from that
side, the labels are targets of calls and GOTOs.

If the streaming model is defined as a data flow graph, each arrow in the graph is essentially a GOTO operation, and each
nodeisalabel.

A Tricepslabel isnot quiteaGOTO label, sincethe actual procedural control always returns back after executing the label's
code. It can be thought of as alabel of afunction or procedure. But if the caller does nothing but immedially return after
getting the control back, it works very much like a GOTO label.

Each label accepts operations on rows of a certain type.

Each label belongs to a certain execution unit, so alabel can be used only strictly inside one thread and can not be shared
between threads.

Each label may have some code to execute when it receives arow operation. The labels without code can be useful too.

A Triceps model contains the straightforward code and the mode complex stateful elements, such as tables, aggregators,
joiners (which may be implemented in C++ or in Perl, or created as user templates). These stateful elements would have
some input labels, where the actions may be sent to them (and the actions may also be done as direct method calls), and
output labels, where they would produce the indications of the changed state and/or responses to the queries. Thisis shown
inthe diagramin Figure 6.1 . The output labels are typically the ones without code (* dummy labels™). They do nothing by
themselves, but can pass the data to the other labels. This passing of data is achieved by chaining the labels: when alabel
iscalled, it will first execute its own code (if it has any), and then call the same operation on whatever labels are chained
fromit. Which may have more labels chained from them in turn. So, to pass the data, chain the input label of the following
element to the output label of the previous element.

31

Input label

Element A

Output label

chaining

Input label Input label

Element B Element C

Output label Output label

Figure6.1. Stateful elementswith chained labels.

The make things clear, alabel doesn't have to be a part of a stateful element. The labels absolutely can exist by themselves.
It'sjust that the stateful elements can use the labels as their endpoints.

6.2. Label construction

The execution unit provides methods to construct labels. A dummy label is constructed as:
$l abel = $unit->makeDummyLabel ($rowType, "name") or confess "$!";

It takes as arguments the type of rows that the label will accept and the symbolic name of the label. Asusual, the name can
be any but for the ease of debugging it's better to give the same name as the label variable.

The label with Perl code is constructed as follows:

$l abel = $unit->nmakelLabel ($rowType, "nane", \&cl ear Sub,
\ &execSub, @rgs);

The row type and name arguments are the same as for the dummy label. The following arguments provide the references
to the Perl functions that perform the actions. exec Sub isthe function that executes to handle the incoming rows. It gets
the arguments:

execSub($l abel , $rowop, @rgs)

Here $l abel isthislabel, $r owop isthe row operation, and @r gs are the same as extra arguments specified at the
label creation.

The row operation actually contains the label reference, so why pass it the second time? The reason lies in the chaining.
The current label may be chained, possibly through multiple levels, to some original label, and the rowop will refer to that
original label. The extra argument lets the code find the current label.

cl ear Sub isthe function that clears the label. It will be explained in the Section 8.2: “Clearing of the labels’ (p. 70)
Either of execSub and cl ear Sub can be specified as undef . Though alabel with an undefined exec Sub makes the

32 Labels and Row Operations

label useless for anything other than clearing. On an attempt to send data to it, it will complain that the label has been
cleared. The undefined cl ear Sub causes the function Tri ceps: : cl ear Args() to be used as the default, which
provides the correct reaction for most situations.

There is a special convenience constructor for the labels that are used only for clearing an object (their usefulness is
discussed in Section 8.2: “Clearing of the labels” (p. 70)).

$I b = $unit->makeC earinglLabel ("nanme", @rgs);

The arguments would be the references to the objects that need clearing, usually the object's $sel f . They will be cleared
with Tri ceps: : cl ear Ar gs() when thelabel clearing gets called.

6.3. Other label methods

The chaining of labelsis done with the call:
$l abel 1- >chai n($l abel 2) or confess "$!'";

$l abel 2 becomeschained to $| abel 1. A label can not be chained to itself, neither directly nor through other interme-
diate labels. The row types of the chained labels must be equal (thisis more strict than for queueing up the row operations
for labels, and might change one or the other way in the future).

A label's chainings can be cleared with

$l abel 1- >cl ear Chai ned() ;

It returns nothing, and clears the chainings from this label. There is no way to unchain only some selected labels.
To check if there are any |abels chained from this one, use:

$result = $l abel - >hasChai ned();

The same check can be done with

@hai n = $l abel - >get Chai n();

if ($#chain >=0) { ... }

but hasChai ned() ismore efficient since it doesn't have to construct that intermediate array.
The whole label can be cleared with

$l abel - >cl ear ();

Thisis fully equivalent to what happens when an execution unit clears the labels: it calls the clear function (if any) and
clears the chainings. Note that the labels that used to be chained from this one do not get cleared themselves, they're only
unchained from this one.

Labels have the usual way of comparing the references:

$l abel 1- >sane($l abel 2)

returns true if both references point to the same label object.
The labels introspection can be done with the methods:
$rowType = $l abel - >get Type();

$rowType = $l abel - >get RowType() ;

$unit = $l abel ->get Unit();
$name = $l abel - >get Nane() ;

Other label methods 33

@hai nedLabel s = $l abel - >get Chai n();
$execSubRef = $l abel - >get Code() ;

The methods get Type() and get RowType() are the same, they both return the row type of the label. get Type()
is shorter, which looked convenient for awhile, but get RowType() hasthe name consistent with the rest of the classes.
This consistency comes useful when passing the objects of various typesto the same methods, using the Perl's name-based
polymorphism. For now both of them are present, but get Type() will likely be deprecated in the future.

If the label has been cleared, get Uni t () will return an undef . get Chai n() returns an array of references to the
chainedlabels. get Code() isactually half-donebecauseit returnsjust the Perl function reference to the execution handler
but not itsarguments, nor referenceto the clearing function. 1t will be changed in the futureto fix theseissues. get Code()
is not applicable to the dummy labels, and would return an undef for them.

The labels actually exist in multiple varieties. The underlying common denominator isthe C++ class Label. This class may
be extended and the resulting label s embedded into the C++ objects. These labels can be accesses and controlled from Perl
but their logic is hardcoded in their objects and is not directly visible from Perl. The dummy labels are a subclass of labels
in general, and can be constructed directly from Perl. Another subclass is the labels with the Perl handlers. They can be
constructed from Perl, and really only from Perl. The C++ code can access and control them, in a symmetrical relation.
The method get Code() has meaning only on these Perl 1abels. Finally, the clearing labels also get dreated from Perl,
and fundamentally are Perl labels with many settings hardcoded in the constructor. get Code() can be used on them too
but since they have no handler code, it would always return undef .

Thereis also away to change alabel's name:
$l abel - >set Name($nane) ;
It returns nothing, and there is probably no reason to call it. It will likely be removed in the future.

Thelabel also provides the constructor methods for the row operations, which are described below.

6.4. Row operations

A row operation (also known as rowop) in Triceps is an unit of work for alabel. It's always destined for a particular |abel
(which could also pass the rowop to its chained labels), and has a row to process and an opcode. The opcodes will be
described momentarily in the Section 6.5: “Opcodes’ (p. 36) .

A row operation is constructed as:
$rowop = $l abel - >makeRowop($opcode, $row);

Theopcode may be specified aninteger or asastring. Historically, thereisal so an optional extraargument for the enqueuing
mode but it's already obsolete, so | don't show it here.

Since the labels are single-threaded, the rowops are single-threaded too. The rowops are immutable, just as the rows are.
It's possible to keep arowop around and call it over and over again.

A rowop can be created from abunch of fieldsin an array or hash form in two steps:

$rowop = $l abel - >makeRowop($opcode, $rt - >makeRowHash(
$fi el dName => $fieldvalue, ...));
$rowop = $l abel - >makeRowop($opcode, $rt->makeRowArray(@i el ds));

Since this kind of creation happens fairly often, writing out these calls every time becomes tedious. The Label provides
the combined constructors to make life easier:

$r owop
$r owop

$l abel - >makeRowopHash($opcode, $fi el dName => $fiel dvalue, ...);
$l abel - >makeRowopAr r ay($opcode, @i el ds);

34 Labels and Row Operations

Note that they don't need the row type argument any more, because the label knows the row type and providesit. Internally
these methods are currently implemented in Perl, and just wrap the two callsinto one. They also use the new error handling
convention, and confess on any errors. Thereis normally no need to check their result. In the future they will be rewritten
in C++ for greater efficiency.

There a so are the methods that create arowop and immediately call it. They will be described with the execution unit.

A copy of rowop (not just another reference but an honest separate copied object) can be created with:
$rowop2 = $rowopl- >copy();

However, since the rowops are immutable, a reference is just as good as a copy. This method is historic and will likely
be removed or modified.

A more interesting operation is the rowop adoption: it is a way to pass the row and opcode from one rowop to another
new one, with adifferent label.

$rowop2 = $l abel - >adopt ($r owopl);

It is very convenient for building the label handlers that pass the rowops to the other labels unchanged. For example, a
label that filters the data and passesit to the next label, can be implemented as follows:

nmy $labl = $unit->makelLabel ($rt1, "labl", undef, sub {
ny ($l abel, $rowop) = @;
if ($rowop->get Rowm)->get("a") > 10) {
$uni t - >cal | ($l ab2- >adopt ($r owop)) ;
}

}) or confess "$!";

This code doesn't even look at the opcode in the rowop, it just passes it through and lets the next label worry about it. The
functionality of adopt () aso can beimplemented with

$rowop2 = $l abel - >makeRowop($r owopl- >get Opcode(), $rowopl->get Row());

But adopt () iseasier to call and also more efficient, because less of the intermediate data surfaces from the C++ level
to the Perl level.

The references to rowops can be compared as usual:
$r owopl- >sanme($r onop2)
returns true if both point to the same rowop object.

The rowop data can be extracted back:

$l abel = $rowop- >get Label ();
$opcode = $rowop- >get Opcode() ;
$row = $rowop- >get Row() ;

A Rowop can be printed (usually for debugging purposes) with
$string = $rowop->printP();

Just as with arow, the method pri nt P() isimplemented in Perl. In the future apri nt () done right in C++ may be
added, but for now | try to keep all the interpretation of the data on the Perl side. Even though pr i nt P() isimplemented
in Perl, it can print the rowops for any kinds of labels. The following example gives an idea of the format in which the
rowops get printed:

$l b = $unit->makeDunmyLabel ($rt, "1b");
$rowop = $l b- >makeRowop(&Tri ceps: : OP_| NSERT, $row);
print $rowop->printP(), "\n";

Row operations 35

would produce

I'b OP_I NSERT a="123" b="456" c="3000000000000000" d="3.14" e="text"

The row contents is printed through Row: : pri nt P() , so it has the same format.

6.5. Opcodes

The defined opcodes are:

e &Tri ceps:: OP_NOPor " OP_NOP"

e &Triceps:: OP_I NSERT or " OP_I NSERT"
e &Triceps:: OP_DELETEor" OP_DELETE"

The meaning is straightforward: NOP does nothing, INSERT insertsarow, DELETE deletesarow. Thereis no opcode to
replace or update a row. The updates are done as two separate operations: first DELETE the old value then INSERT the
new value. The order isimportant: the old value has to be deleted before inserting the new one. But there is no requirement
that these operations must go one after another. If you want to update ten rows, you can first delete al ten and then insert
the new ten. In the normal processing the end result will be the same, even though it might go through some different
intermediate states. It's agood ideato write your models to follow the same principle.

Internally an opcode is always represented as an integer constant. The same constant value can be obtained by calling
the functions &Tr i ceps: : OP_*. However when constructing the rowops, you can aso use the string literals " OP_* "
with the same result, they will be automatically transtaled to the integers. In fact, the string literal form is dightly faster
(unless you save the result of the function in a variable and then use the integer value from that variable for the repeated
construction).

But when you get the opcodes back from rowops, they are always returned as integers. Triceps provides functions that
convert the opcodes between the integer and string constants:

$opcode = &Triceps::stringOpcode($opcodeNane);
$opcodeNane = &Tri ceps:: opcodeString($opcode);

They come handy for al kinds of print-outs. If you passtheinvalid values, the conversion to integerswill returnanundef .

The conversion of the invalid integers to strings is more interesting. And by the way, you can pass the invalid integer
opcodes to the rowop construction too, and they won't be caught. The way they will be processed is a bit of alottery. The
proper integer values are actually bitmasks, and they are nicely formatted to make sense. The invalid values would make
some random bitmasks, and they will get processed in some unpredictable way. When converting an invalid integer to
astring, opcodesSt ri ng tries to predict and show thisway in a set of letters | and D in sguare brackets, for INSERT
and DELETE flags. If both are present, usually the INSERT flag wins over the DELETE in the processing. If none are
present, it'sa NOP.

In the normal processing you don't normally read the opcode and then compare it with different values. Instead you check
the meaning of the opcode (that isinternally a bitmask) directly with the rowop methods:

$r owop- >i sNop()
$r owop- >i sl nsert ()
$r owop- >i sDel et e()

The typical idiom for the label's handler function is:

if ($rowop->islnsert()) {
handle the insert logic ...
} elsif($rowop->isbDelete()) {
handl e the delete logic...

}

36 Labels and Row Operations

The NOPs get silently ignored in thisidiom, as they should be. Generally there is no point in creating the rowops with the
OP_NOP opcode, unless you want to use them for some weird logic.

The main Triceps package also provides functions to check the integer opcode values directly:
Triceps::isNop($opcode)

Triceps::islnsert($opcode)

Triceps::isDel et e($opcode)

The same-named methods of Rowop are just the more convenient and efficient way to say
Triceps::isNop($rowop->get Qpcode())
Triceps::islnsert($rowp->get Opcode())
Triceps::isDel et e($r onwop- >get Opcode())

They handle the whole logic directly in C++ without an extra Perl conversion of the values.

Opcodes 37

38

Chapter 7. Scheduling

7.1. Overview of the scheduling

The scheduling determines, in which order the row operations are processed. If there are multiple operations available,
which one should be processed first? The schedul er keeps a queue of the operations and selects, which one to execute next.
This has amajor effect on the logic of a CEP model.

Therearemultiple approachesto scheduling. Aleri essentially doesn't have any, except for theflow control between threads,
because each its element is a separate thread. Coral8 has an intricate scheduling algorithm. Sybase R5 has the same logic
as Coral8 inside each thread. StreamBase presumably also has some.

The scheduling logic in Triceps is different from the other CEP systems. The Coral8 logic looks at first like the only
reasonable way to go, but could not be used in Tricepsfor threereasons: First, it'satrade secret, soit can't be simply reused.
If I'd never seen it, that would not be an issue but I've worked on it and implemented its version for R5. Second, it relies
on the properties that the compiler computes from the model graph analysis. Triceps has no compiler, and could not do
this. Third, in reality it simply doesn't work that well. There are quite a few cases when the Coral8 scheduler comes up
with a strange and troubl esome execution order.

For awhilel've hoped that Tricepswould need no scheduler at al, and everything would be handled by the procedural calls.
This has proved to have its own limitations, and thus the labels and their scheduling were born. The Triceps scheduling
still has issues to resolve, but overall it till feels much better than the Coral8 one.

7.2. No bundling

Themost important principle of Triceps schedulingis: No Bundling. Every rowop isfor itself. The bundling iswhat messes
up the Coral8 scheduler the most.

What is a bundle? It's a set of records that go through the execution together. If you have a model consisting of two
functional elements F1 and F2 connected in a sequential fashion

F1->F2
and afew loose records R1, R2, R3, the normal execution order without bundling will be:
F1(R1), F2(R1), F1(R2), F2(R2), F1(R3), F2(R3)

Each row goes through the whole model (area simple onein this case) before the next one is touched. This allows F2 to
takeinto accont the state of F1 exactly asit wasright after processing the samerecord, without any interventionsin between.

If the same records are placed in abundle (R1, R2, R3), the execution order will be different:
F1(Rl), F1(R2), F1(R3), F2(Rl), F2(R2), F2(R3)
The whole bundle goes through F1 before the rows go to F2.

That would not be a problem, and even could be occasionally useful, if the bundles were always created explicitly. In the
reality of Coral8, every time a statement produces multiple record from a single one (think of ajoin that picks multiple
records from ancther side), it creates a bundle and messes up all the logic after it. Some logic gets affected so badly that
afew statementsin CCL (like ON UPDATE) had to be designated as always ignoring the bundles, otherwise they would
not work at al. At DB | wrote a CCL pattern for breaking up the bundles. It's rather heavyweight and thus could not be
used all over the place but provides a generic solution for the most unpleasant cases.

Worseyet, the bundles may get created in Coral 8 absolutely accidentally: if two records happen to have the sametimestamp,
for al practical purposes they would act as a bundle. In the models that were designed without the appropriate guards,
this leads to the time-based bugs that are hard to catch and debug. Writing these guards correctly is hard, and testing them
is even harder.

39

Another issue with bundlesis that they make the large queries slower. Suppose you do a query from awindow that returns
amillion records. All of themwill be collected in abundle, then the bundle will be sent to the interface gateway that would
build one huge protocol packet, which will then be sent to the client, which will receive the whole packet and then finally
iterate on the records in it. Assuming that nothing runs out of memory along the way, it will be along time until the client
seesthefirst record. Very, very annoying.

Aleri also has its own version of bundles, called transactions, but a more smart one. Aleri always relies on the primary
keys. The condition for a transaction is that it must never contain multiple modification for the same primary key. Since
there are no execution order guarantees between the functional elements, in this respect the transactions work in the same
way as loose records, only with a more efficient communication between threads. Still, if the primary key changesin an
element (say, an aggregator), the condition does not propagate through it. Such elements have to internally collapse the
outgoing transactions along the new key, adding overhead.

7.3. Basic scheduling in Triceps

In Triceps the scheduling is done by the execution unit, or simply “unit” asit's often referred to. It provides 3 basic ways
of executing of arowop:

Call:
Execute the label right now, including all the nested calls. All of thiswill be completed after the call returns.
Fork:

Execute the label after the current label returns but before anything else is done. Obvioudly, if multiple labels are
forked, they will executein order after the current label returns (but beforeits caller getsthe control back). Thismethod
has looked promising at one point but has currently fallen out of favor and will likely be removed in the future.

Schedule:
Execute the label after everything else is done.

Thisiskind of intuitively clear but the details might sometimes be a bit surprising. So let uslook in detail at how it works
inside on an example of afairly convoluted scheduling sequence.

A scheduler in the execution unit keeps a stack of queues. Each queue is essentially a stack frame, so I'll be using the
terms queue and f r ame interchangeably. The stack always contains at least one queue, which is called the outermost
stack frame.

When the new rowops come from the outside world, they are added with schedul e() to that stack frame. That's what
schedul e() does: always adds rowops to the outermost stack frame. If rowops 1, 2 and 3 are added, the stack looks
like this (the brackets denote a stack frame):

[1, 2, 3]

The unit method dr ai nFr ame() isthen used to run the scheduler and process the rowops. It makes the unit call each
rowop on the innermost frame (which isinitially the same as outermost frame, since there is only one frame) in order.

First it callsthe rowop 1. It's removed from the queue, then a new frame is pushed onto the stack:

[] ~1
[2, 3]

This new frame is the rowop 1's frame, which is marked on the diagram by “~1". The diagram shows the most recently
pushed, innermost, frame on the top, and the oldest, outermost frame on the bottom. The concepts of “innermost” and
“outermost” come from the nested calls: the most recent call is nested the deepest in the middle and is the innermost one.

Then the rowop 1 executes. If it calls rowop 4, another frame is pushed onto the stack for it:

[1 ~4

40 Scheduling

[] ~1
[2, 3]

Then the rowop 4 executes. The rowop 4 never gets onto any of the queues. The call just pushes a new frame and executes
the rowop right away. The identity of rowop being processed is kept in the call context. A call also involves adirect C++
call on the thread stack, and if any Perl code isinvolved, a Perl call too. Because of this, if you nest the calls too deeply,
you may run out of the thread stack space and get it to crash.

After the rowop 4 isfinished (not calling any other rowops), theinnermost empty frame is popped before the execution of
rowop 1 continues. The queue stack reverts to the previous state.

[1 ~1
[2, 3]

Suppose then rowop 1 forks rowops 5 and 6. They are appended to the innermost frame in the order they are forked.

[5 6] ~1
[2, 3]

If rowop 1 then calls rowop 7, again aframe is pushed onto the stack before it executes:
[1 -~7

[5, 6] ~1

[2, 3]

The rowops 5 and 6 still don't execute, they keep sitting on the queue until the rowop 1 would return. After the call of
rowop 7 completes, the scheduler stack returns to the previous state.

Suppose now the execution of rowop 1 completes. But its stack frame can not be popped yet, because it is not empty. The
scheduler callsdr ai nFrame() recursively, which picks the next rowop from the innermost queue (rowop 5), and calls
it, pushing a new stack frame and executing the rowop 5 code:

[1 -5

[6] ~1*

[2, 3]

The former rowop 1's frameis now marked with “~1*" for the ease of tracking, even though it has compl eted.

If rowop 5 forks rowop 8, the stack becomes:

[8] ~5
[6] ~1*
[2, 3]

When the execution of rowop 5 returns, its queue is also not empty. So the scheduler starts draining the innermost frame
again, and calls rowop 8. During its execution the stack is:

————
—_—
i
a
*

6
2, 3]

Suppose the rowop 8 doesn't call or fork anything else and returns. Its innermost queue is empty, so the call completes
and pops the stack frame:

[] ~5*

[6] ~1%

[2, 3]

Now the queue of rowop 5 is also empty, so its draining completes and pops the drained frame;

[6] ~1*
[2, 3]

Basic scheduling in Triceps 41

The draining of the rowop 1's frame continues by picking the rowop 6 from the queue and calling it:
[1 ~6

[1 ~1*

[2, 3]

Suppose rowop 6 callsschedul e() of rowop 9. Rowop 9 is then added to the outermost queue:

[] -6

[] ~1*

[2, 3, 9]

Rowaop 6 then returns, its queue is empty, so it's popped and its call compl etes.

[1 ~1*
[2, 3, 9]

Now the queue of rowop 1 has become empty, so it's popped from the stack and the call of rowop 1 completes:
[2, 3, 9]

The unit method dr ai nFr ame() keeps running on the outermost frame, now taking the rowop 2 and executing it, and
so on, until the outermost queue becomes empty, and dr ai nFr ame() returns.

An interesting question is, what happens with the chained labels? Where do they fit in the order of execution? It turns out
to be abit of amix betweenacal | () andaf or k() . They get checked after the original label completes its execution
and has its frame drained but before that frame gets popped.

If any chained labels are found, they are called one by one. But they don't get anew frame created. They all reusethe frame
left over from the parent label. The frame gets popped only after al the chained labels have completed.

7.4. Loop scheduling

The easiest and most efficient way to schedule the loopsisto do it procedurally, something like this:

foreach ny $row (@owset) {
$uni t - >cal | ($l bA- >nakeRowop(&Tri ceps: : OP_I NSERT, $row));

}

However the labels topologically connected into aloop can come handy as well. Some logic may be easier to express this
way. Suppose the model contains the labels connected in aloop, asin Figure 7.1 .

Figure7.1. Labelsforming aloop.

42 Scheduling

But if handled simple-mindedly, it can use a lot of stack space. Suppose some rowop X1 is scheduled for label X, and
causes the loop to be executed twice, with rowops X1, A2, B3, C4, A5, B6, C7, Y 8. If each operationisdoneasacal | (),
the stack grows like this: It starts with X1 schedul ed.

[X1]
Which then gets executed, with its own execution frame (marked as such for clarity):

[] ~X1
[]

Which then calls A2:

[] ~A2
[1 -x1
[]

By the time the execution comesto Y 8, the stack looks like this:

~Y8
~C7
~B6
~AS5
~C4
~B3
~A2
~X1

—— ——— — ———
[O S Oy Sy Sy —'

The loop has been converted into recursion, and the whole length of execution is the depth of the recursion. If the loop
executes a million times, the stack will be three million levels deep. Worse yet, it's not just the Triceps scheduler stack
that grows, it's also the process (C++) stack.

Which iswhy this kind of recursive calls are explicitly forbidden in Triceps. If you try to do it, on the first recursive call
the execution will die with an error.

Would things be better with f or k() instead of cal | () used throughout the loop? It starts the same way:
[X1]
Then X1 executes, getsits own frame and forks A2:

[A2] ~X1
[]

Then A2 executes, getsits own frame and forks B3:

[B3] ~A2
[] —-X1*
[]

Even though X1 has completed, its stack frame stays until all the rowops forked in it complete too. By the end of the loop
the stack picture becomes exactly the same aswith cal | () . For awhile I've thought that optimizing out the empty stack
frames would solve the problem, but no, that doesn't work: the problem is that the C++ process stack keeps growing no
matter what. The jump back in the loop needs to be placed into an earlier stack frame to prevent the stack from growing.

One way to do it would be to use the schedul e() operation in C to jump back to A, placing the rowop A5 back onto
the outermost frame. The scheduler stack at the end of C4 would look like:

[] -G
[] ~B3
[] ~A2

Loop scheduling 43

[] X1
[AS]

Then the stack would unwind back to:
[A5]

And the next iteration of the loop will start afresh. The problem hereisthat if X1 wanted to compl ete the loop and then do
something, it can't. By the time the second iteration of the loop starts, X1 is completely gone. It would be better to be able
to enqueue the next execution of the loop at the specific point of the stack.

Here the concept of the frame mark comesin. A frame mark is a token object, completely opague to the program. It can
be used only in two operations:

» set Mar k() remembers the position in the frame stack, just outside the current frame.
* | oopAt () enqueuesarowop at the marked frame.

Then the loop wold have its mark object M. The label A will execute set Mar k(M , and the label C will execute
| oopAt (M rowop(A)) . Therest of the execution can aswell usecal | (), asshowninFigure7.1.

call call call call
X —» A —» B —» C Y
setMark
loopAt

Figure7.2. Proper callsin aloop.

When A2 calls setMark(M), the stack will look like this:

[] ~A2
[1 ~X1, mark M
[]

The mark M remembers the frame one outer to the current one. The stack at the end of C4, after it hascaled | oopAt (M
Ab) ,is:

[] ¢4

[] -B3

[] ~-A2

[A5] ~X1, mark M
[]

The stack then unwinds until A5 startsits execution:
[1T ~A5

[1 ~X1*, mark M

[]

Each iteration starts with afresh stack, and the stack depth islimited to one iteration. The nested |oops can also be properly
executed.

44 Scheduling

Now, why does the mark get placed on the frame that is one out from the current one? After all, this means that X1 can
not wait for the loop to complete. It has to return before the second iteration of the loop can start. And then the rest of the
loop will run before the control returns to X1's caller. At least the caller of X1 can wait for the loop to complete before
continuing its execution. Why all this trouble? Its the result of a compromise. Suppose that it did remember the current
frame. Then at the end of C4 the stack will be:

[] ¢4
[1 ~-B3
[A5] ~A2, mark M
[1 X1

[]

The stack will unwind until A5. Which would then have its own frame pushed onto the stack, and the code in the label A
will call set Mar k(M again, moving the mark to A5's own frame because it's the topmost frame now:

So on each iteration of the loop one extra frame will be pushed onto the stack, and the mark moved by one level. A loop
executing a million times will push a million frames, which is bad. Marking the next outer frame prevents this. Another
option would have been to put the mark operation in X, but that would mean that every loop must have a preceding label
that just marks the frame (well, and potentially could do the other initializations too), which seems to be too annoying.

It's one problem or the other, and the lesser problem won. To further reduce the complexity, |'ve also added the methods
makelLoopHead() and makeLoopAr ound() that take care of constructing the whole front part of the loop, including
the setting of the mark. They will be described below in Section 7.5: “Execution unit” (p. 46). Thisis still messy, and
I'm still thinking about the ways to improve the situation.

What happens after the stack unwinds past the mark? The mark gets unset. When someone calls| oopAt () with an unset
mark, the rowop is enqueued in the outermost frame, having the same effect as schedule() .

This handling of an unset mark comes handy in case if the loop execution takes a pause in the middle. Suppose the label B
findsthat it can't process the rowop B3 until some other data has arrived. What it can do then isremember B3 somewhere
in the thread state and return. The loop has not completed but it can't progress either, so the call unrolls until it becomes
empty. Since the frame of X1 is popped off the stack, the mark M gets unset. The knowledge that the loop needs to be
continued stays remembered in the state.

After sometimethat awaited data arrives, as some other rowop. When that rowop gets processed, it finds that remembered
state with B3 and makes it continue, maybe by calling cal | (B3) again. So now thelogic in B finds al the data it needs
and continues with the loop, calling C4. C4 will do its job and call | oopAt (M A5) . But the mark M has been unset
awhile ago! Scheduling A5 at the outermost frame seemsto be alogical thing to do at this point. Then whatever current
processing will complete and unwind, and the loop will continue after it.

What if set Mar k() iscalled when thereis only one frame on the stack? Then there is no second frame outer to it. The
mark will simply be left unset.

But overall pausing and then restarting aloop like thisis not such agood idea. The caller of the loop normally expects that
it can wait for the loop to complete, and that when the loop returns, it's all done. If aloop may decide to bail out now and
continue later, the caller has to be prepared for it.

And the sequence of execution when the loop continues might not be direct. In the normal execution one iteration of the
loop follows directly after the previous one because of the orchestration by the label at the head of the loop (X in this
example). When C calls| oopAt () , the rowop gets pushed onto the stack frame of X. It would execute immediately only
if X isdraining itsframe, and only if there are no other rowops queued on that frame in front of this one. I've been seeing
it as afeature: X can easily be careful and make sure that the whole loop executes in one go without any interruptions.
makelLoopHead() and makeLoopAr ound() create such careful labels. But it may also decide to run multiple loops
interleaved, with each one making oneiteration at atime. To do that, al it needsisfork the rowops to start all these loops

Loop scheduling 45

and then drain the frame (directly or by returning from its own code). This way you can for example make a batch of
records run through the loop (or even through the different loops) with the whole batch going throgh one iteration before
the another iteration starts, achieving a kind of bundling. Though, if fork gets removed, this would not be possible any
more. Maybe is's areason for fork to stay, maybe it's a usel ess feature.

However if aloop decides to pause and then continues on some other event, itsfollowing I oopAt () pushing the rowop
onto the outermost frame, there is no caring parent to do the careful orchestration. There is no way to tell, which other
rowops have been pushed onto the outermust frame by thistime. Theloop won't continue until these rowops execute. They
may change the state of the model, so if the loop code expectsit to stay the same, it will be mightily surprised.

7.5. EXxecution unit

After discussing the principles of scheduling in Triceps, let's get down to the nuts and bolts.
A unit is created as:
$myUnit = Triceps::Unit->new"nane") or confess "$!";

The name argument is as usual used for later debugging, and by convention should be the same as the name of the unit
variable (“myUnit” in this case). The name can a so be changed later:

$myUni t - >set Nanme(" newNane") ;

It returns no value. Though in practice there is no good reason for changing names, and this call will likely be removed
in the future. The name can be read back:

$name = $nyUnit - >get Nane();

Also, asusual, the variable $myName here contains areferenceto the actual unit object, and two references can be compared
for whether they refer to the same object:

$result = $unitl->sane($unit?2);

A unit also keeps an empty row type (one with no fields), primarily for the creation of the clearing labels, but you can use
it for any other purposestoo. You can get it with the method:

$rt = $unit->get Enpt yRowType();

Each unit has its own instance of an empty row type. Its purely for the conveniece of memory management, they are all
equivalent.

The rowops are enqueued with the calls:

$unit->call ($rowop, ...);
$uni t - >f ork($rowop, ...);
$uni t - >schedul e($rowop, ...);

“Enqueued” is an ugly word but since I've already used the word “ schedule” for a specific purpose, | needed another word
to name all these operations together. Hence “ enqueue”.

The“...” shows that multiple rowops may be passed as arguments. So the real signature of these methodsis:

$uni t->cal | (@ owops) ;
$uni t - >f or k(@ owops) ;
$uni t - >schedul e(@ owops) ;

But this way it loos more confusing. Calling these functions with multiple arguments produces the same result as doing
multiple calls with one argument at a time. Not only rowops but also trays (to be discussed later) of rowops can be used
as arguments.

46 Scheduling

These methods are among those that use the new error handling, that makes the operation to confess on any fatal errors.
So there is no need to check their resultswith “or conf ess”.

Also thereisacall that selects the enqueueing mode by argument:
$uni t - >enqueque($node, @ owops);

The calling rules are exactly the same for the other enqueueing methods, may have multiple rowops or trays as arguments,
no need to check the result. The $node argument is one of:

e &Triceps:: EM CALL or"EM CALL"
e &Triceps:: EM FORKor"EM FORK"
e &Tri ceps: : EM SCHEDULE or " EM_SCHEDULE"

Asusual, there are calls to convert between the integer constant and string representations:

$string = &Triceps::enBtring($val ue);
$val ue = &Triceps::stringEm $string);

And as usual, if the value can not be translated, they return undef .

The frame marks for looping are created as their own class:

$mark = Triceps:: FrameMar k- >new("nane") or confess "$!";
The name can be obtained back from the mark:

$nanme = $mar k- >get Nanme() ;

Other than that, the frame marks are completely opaque, and can be used only for the loop scheduling. Not eventhesane()
method is supported for them at the moment, though it probably will be in the future. The mark gets set and used as:

$uni t - >set Mar k($mar k) ;
$uni t - > oopAt ($mark, @ owops);

The rowop arguments of the | oopAt () are the same as for the other enqueueing functions, and as for other functions
they may happen to be trays. These methods also use the new error handling scheme, and will confess on errors. No need
to check the resullts.

There aso are the convenience methods that create the rowops from the field values and immediately enqueue them:

$uni t - >makeHashCal | ($l abel , $opcode,
$fi el dName => $fieldvalue, ...);
$uni t - >makeArrayCal | ($l abel , $opcode, @i el dval ues);

$uni t - >makeHashSchedul e($l abel , $opcode,
$fi el dName => $fieldvalue, ...);
$uni t - >makeAr r aySchedul e($l abel , $opcode, @i el dval ues);

$uni t - >makeHashLoopAt ($mar k, $l abel , $opcode,
$fiel dName => $fieldvalue, ...);
$uni t - >makeAr r ayLoopAt ($mar k, $I abel, $opcode, @i el dVval ues);

These are essentially the shorter ways to make the rowops and enqueue them without the three-deep calls. Only the methods
for the most frequently used enqueueing modes are provided, not for all of them. All these methods also confess on errors.

The methods for creation of labels have been already discussed in Section 6.2: “Label construction” (p. 32) . Hereistheir
recap along with the similar methods for creation of tables and trays that will be discussed later:

$l abel = $unit - >makeDummyLabel ($rowType, "name")
or confess "$!'"

Execution unit 47

$l abel = $unit->nakelLabel ($rowlType, "nane",
$cl ear Sub, $execSub, @rgs) or confess "$!'";

$l abel = $unit->nakeC eari ngLabel ("nane", @rgs);

$tabl e = $unit->makeTabl e($t abl eType, $enghbde, "nane")
or confess "$!'";

$tray = $unit->nakeTray(@owops) or confess "$!";

Of them makeCl eari ngLabel () usesthe new error handling convention, confessing by itself, and the rest return
an undef on errors that has to be checked. It's actualy real difficult to make makeC eari nglLabel () fail, only by
corrupting some of the Triceps internal variables, and it was a late additiion, so going straight with the new convention
for it made sense.

A special thing about the labels is that when a unit creates alabel, it keeps a reference to it, for clearing. A label keeps a
pointer back to the unit but not areference (if you call get Uni t () on alabel, the returned value becomes a reference).
For atable or atray, the unit doesn't keep a reference to them. Instead, they keep a reference to the unit. With the tables,
it can get pretty involved: A table has labels associated with it. When atable is created, it also creates these labels. The
unit keeps references of these labels. The table also keeps references of these labels. The table keeps a reference of the
unit. The labels (they are at the C++ level, not Perl level) have pointers to the unit and the table but not references, to
avoid the reference cycles.

See more on the memory management and label clearing in the Chapter 8: “Memory Management” (p. 69) .

The convenience methods to create the whole front part of the topological |oop are:

($l abel Begi n, $l abel Next, $frameMark) = $unit->nakelLoopHead(
$rowType, "nanme", $clear Sub, $execSub, @rgs);

($l abel Begi n, $I abel Next, $frameMark) = $unit->nakeLoopAr ound(
"name", $label First);

Y ou don't haveto use them, you can create the loops manually. These methods merely makeit more convenient. Remember
also that a procedural loop is usually much easier to write and debug and read later than atopological one.

These methods use the new error handling convention, confessing on the errors. Thereis no need to check the result.

makelLoopHead() createsthe front part of the loop that starts with a Perl label. It gets the arguments for that label and
creates it among the other things. makeLoopAr ound() creates the front part of the loop around an existing label that
will be the first one executed in the loop. makeLoopHead() isreally redundant and can be replaced with a combination
of makeLabel () and makeLoopAr ound() .

They both return the same results, atriplet:

» The label where you send a rowop to initiate the loop (remember that the loop consists of one row going through the
loop at atime), $I abel Begi n.

« Thelabel that you use at the end of the loop inthe | oopAt () to do the next iteration of the loop, $I abel Next .

» The frame mark that you use in | oopAt (), $f r ameMar k. You don't need to set the frame mark, it will be set for
you in the wrapper logic.

The name is used to construct the names of the elements by adding a dotted suffix: “name.begin”, “name.next” for
makelLoopHead() or “namewrapnext” for makeLoopAr ound() , “name.mark”.

nmakelLoopAr ound() takestherow typefor its created labels from the first label that is given to it as an argument.

The makel.oop methods may be easier to understand if you look at their source code:

48 Scheduling

sub makelLoopHead # ($self, $rt, $name, $clearSub, $execSub, @rgs)

{
ny ($self, $rt, $nane, $clear, $exec, @rgs) = @;

ny $mark = Triceps:: FrameMar k- >new $nane . ".mark") or confess "$!'";
ny $l bNext = $sel f->makelLabel ($rt, $nanme . ".next", $clear, sub {
$sel f - >set Mar k($mar k) ;
&Sexec(@) ;

}, @rgs) or confess "$!'";

ny $l bBegi n = $sel f - >makeLabel ($rt, $name . ".begin", undef, sub {
$sel f->cal | ($] bNext - >adopt ($_[1]));
}) or confess "$!'";

return ($l bBegin, $IbNext, $mark);
}

sub makeLoopAround # ($self, $name, $I bFirst)

{
ny ($self, $nane, $lbFirst) = @;
ny $rt = $I bFirst->get RowType();

ny $mark = Triceps:: FrameMar k- >new $nane . ".mark") or confess "$!'";

ny $l bW apNext = $sel f->makelLabel ($rt, $nane . ".wapnext", undef, sub {
$sel f - >set Mar k($mar k) ;

}) or confess "$!'";

$l bW apNext - >chai n($l bFirst) or confess "$!";

ny $l bBegi n = $sel f - >makeLabel ($rt, $name . ".begin", undef, sub {
$sel f->cal | ($] bW apNext - >adopt ($_[1]));
}) or confess "$!'";

return ($l bBegi n, $l bWapNext, $mark);
}

The label execution handlersinthem use $_[1] to get their rowop argument, without assigning it to a variable first. An
extended example of them will aso be shown in Section 7.9: “Example of atopological loop” (p. 56) .

The unit can be checked for the emptiness of its queues:

$result = $unit->enpty();

Also the current depth of the call stack (the number of the stack frames on the queue) can be found with:
$result = $unit->get StackDepth();

It isn't of any use for the model logic as such but comes handy for debugging, to check in the loops that you haven't
accidentally created a stack growing with iterations. When the unit is not running, the stack depth is 1, since the outermost
frame always stays on the stack. When arowop is being executed, the stack depth is at least 2.

The functions for execution from the queues are;

$uni t->cal | Next ();
$uni t - >drai nFrame() ;

cal | Next () takes one label from the top (innermost) stack frame queue and calls it. If the innermost frame happens
to be empty, it does nothing. dr ai nFr ane() calls the rowops from the top stack frame until it becomes empty. This
includes any rowops that may be created and enqueued as part of the execution of the previous rowops. But it doesn't pop
the frame from the stack. And of course the method cal | () causes the argument rowops to be executed immediately,
without even being technically enqueued.

Execution unit 49

7.6. Error handling during the execution

When the labels execute, they may produce errors in one of two ways:
e The Perl codein the label might die.
e Thecall topology might violate the rules.

Therulesarebasically that you can't maketherecursive calls. A label may not make callsdirectly or through other 1abelsto
itself. Theideaisto catch the call sequencesthat are likely to go into the deep recursion and overflow the stack. It catches
them early, on the first attempt of recursion. If you need to do the recursion, useschedul e() or | oopAt () . That way
you avoid overrunning the stack.

Whichever way the error is detected, it causes the Triceps call stack to be unwound. The Perl error messages from di e
or conf ess and the C++ tracing of rowop calls and label chainings get combined into a common stack trace. When the
code gets back to Perl, the XS codetriggersaconf ess. If that happensto bein the handler of another rowop, it continues
the Triceps hybrid stack unwinding. If not caught by eval , it keeps going to the topmost cal | () or dr ai nFrame()
and causes the whole program to die. Which is a reasonable reaction most of the time.

Remember, the root cause is a serious error that is likely to leave the model in an inconsistent state, and it should usually
be considered asfatal. If you want to catch the errors, nip them in the bud by wrapping your Perl codein eval . Then you
can handle the errors before thay have a chance to propagate.

Aninteresting question is, what happensto the rowops that werein the Triceps stack frames when the stack gets unwound?
They get thrown away. The memory gets collected thanks to the reference counting, but the rowops and their sequence
order get thrown away. The reason is basically that there may be no catching of the errors until unwinding to thedr ai n-
Fr ame() . Thechoiceisto either throw away everything after thefirst error or keep trying to execute the following rowops,
collecting the errors. And that might become alot of errors. I've taken the choice of stopping as early as possible, because
the state of the model will probably be corrupted anyway and nothing but garbage would be coming out (if anything would
be coming at all and not be stuck in an endless loop).

7.7. The main loop

The execution unit doesn't magically process the data by itself. The data needs to be pushed into it, and the unit has to be
told to processit. There has to be some internal code to drive it, that would continuously read the data, schedule, drain.

A typical way of processing the incoming rowopsin aloopis:

$stop = O;

while (!'$stop) {
$rowop = & eadRowop(); # some user-defined function
$uni t - >cal | ($r owop) ;
$uni t - >dr ai nFrane() ;

}

The rowops coming from the outside get executed as they are received, and then any rows left over from them get handled
by dr ai nFrane() before the next incoming rowop isread. Some of the executed rowops may set $st op, and themain
loop will exit.

There is aso another version of the main loop that has been more historic:

$stop = 0;

while (!$stop) {
$rowop = & eadRowop(); # some user-defined function
$uni t - >schedul e($r owop) ;
$uni t - >dr ai nFrame() ;

50 Scheduling

}

Itusesschedul e() instead of cal | () for therowop. Aslong asonly onerowop isscheduled before draining the frame,
both versionswork equally well. But if you schedule multiple rowops before draining the frame, you can introduce a subtle
unpredictability in the execution order. It is described in detail in Section 7.10: “Issues with the Triceps scheduling” (p.
59) . Actualy, you can have the same problem if you don't drain the frame after each top-level cal | () too. But
mentally cal | () kind of reminds better to feed the rowops one at atime, and also is dlightly more efficient, so now |
prefer the version with it.

Many of the examplesin this manual use the main loop along the following lines (with variations, to fit the examples, and
as the main loop was refined over time):

whi | e(<STDI N>) {

chonp;
ny @ata = split(/,/); # starts with a command, then string opcode
ny $type = shift @lata;

if ($type eq "IbCur") {

$uni t - >makeArrayCal | ($l bCur, @lata);
} elsif ($type eq "I bPos") {

$uni t - >makeArrayCal | ($l bPos, @lata);
}

$uni t - >dr ai nFrame() ;

}

It reads the CSV (Comma-Separated Values) data from stdin, with the label name in the first column, the opcode in the
second, and the data fieldsin the rest. Then dispatches according to the label. Doingacal | () instead of schedul e()
works just aswell, and the following dr ai nFr ame() takes care of any rowops scheduled from the call.

Many variations are possible. It can be generalized to look up the labels from the hash:

whi | e(<STDI N>) {
chonp;
ny @ata = split(/,/); # starts with a cormand, then string opcode
ny $type = shift @lata;
$uni t - >makeAr rayCal | ($l abel s{$type}, @ata);
$uni t - >dr ai nFrane() ;

}
Or call the procedural functions for some types:

whi | e(<STDI N>) {

chonp;
my @ata = split(/,/); # starts with a command, then string opcode
ny $type = shift @lata;

if ($type eq "IbCur") {
$uni t - >makeArrayCal | ($l bCur, @lata);

} elsif ($type eq "I bPos") {
$uni t - >makeArrayCal | ($l bPos, @lata);

} elsif ($type eq "clear") { # clear the previous day
&cl ear ByDat e($t Positi on, @ata);

}

$uni t - >dr ai nFrane() ;

}

Though none of these small examples are production-ready. At the very least, their parsing of the CSV datais primitive.
It can't handle the quoting properly and can't parse the data with commasiin it.

A better ready way to parse the datawill be provided in the future. For now, make your own.

7.8. Main loop with a socket

Main loop with a socket 51

A fairly typical situation is when a CEP model has to run in a daemon process, receiving and sending data through the
network sockets. Here goes an example that does this. It's not production-ready either. It still has the issue with the pars-
ing of the CSV data, its handling of the errors is not well-tested, and it makes a few simplifying assumptions about the
buffering (more on this below). Other than that, it's a decent starting point. If you want to copy-and-paste this code for your
experiments, it canbefoundinper | / Tri ceps/t/ xQuery. t.

use Triceps;

use Carp;

use Errno gw(El NTR EAGAI N) ;

use G :Poll gwPOLLIN POLLOUT POLLHUP)
use | O : Socket ;

use | O : Socket:: | NET

the socket and buffering control for the nmain |oop;

they are all indexed by a unique id

our %lients; # client sockets

our % nbufs; # input buffers, collecting the whole Iines

our %outbufs; # output buffers

our $poll; # the poll object

our $cur_cli; # the id of the current client being processed

our $srv_exit; # exit when all the client connections are cl osed

witing to the output buffers
sub outBuf # ($id, $string)

{
ny $id = shift;
ny $line = shift;
$out buf s{$i d} .= $line;
If there is anything to wite on a buffer, stop reading fromit.
$pol | - >mask($clients{$id} => POLLOUT);
}

sub out CurBuf # ($string)

out Buf ($cur _cli, @);
}

sub closeCient # ($id, $h)
{
ny $id = shift;
ny $h = shift;
$pol | - >mask($h, 0);
$h->cl ose() ;
delete $clients{$id}; # OK perl Perl manual even when iterating
del ete $i nbuf s{$i d};
del et e $out buf s{$i d};
}

The server main loop. Runs with the specified server socket.
Uses the | abels hash to send the incoming data to Triceps.
sub mai nLoop # ($srvsock, $% abel s)
{

ny $srvsock = shift;

ny $l abels = shift;

ny $client_id = 0; # unique strings
our $poll =10C:Poll->new);

$srvsock->bl ocki ng(0) ;
$pol | - >mask($srvsock => POLLIN);

52 Scheduling

$srv_exit = 0;

while(!$srv_exit || keys %lients !'= 0) {
nmy $r = $poll->poll();
confess "poll failed: $!'" if ($r < 0 && ! $!{EAGAIN} &&

if ($poll->events($srvsock)) {
while(1l) {
ny $client = $srvsock->accept();
if (defined $client) {
$cl i ent - >bl ocki ng(0);
$clients{++Sclient_id} = $client;
print("Accepted client $client_id\n");
$pol | - >mask($client => (POLLI N POLLHUP));
} elsif(${EAGAIN} || $!'{EINTR}) {
| ast;
} else {
confess "accept failed: $!'";
}
}
}

ny ($id, $h, $nask, $n, $s);
while (($id, $h) = each %lients) {
$cur_cli = $id;
$mask = $pol | - >event s($h) ;
if (($nask & POLLHUP) && !defined $outbufs{$id}) {
print("Lost client $client_id\n");
closedient($id, $h);
next ;

}
if ($mask & POLLOUT) {
$s = $out buf s{$i d};
$n = $h->syswrite($s);
if (defined $n) {
if ($n >= length($s)) {
del et e $out buf s{$i d};
now can accept nore input
$pol | - >mask($h => (POLLI N POLLHUP));
} else {
substr ($out buf s{$id}, 0, $n) ="";

}

} elsif(! $'{EAGAIN} && ! $!{EINTR}) {
warn "wite to client $id failed: $!'";
closedient($id, $h);
next ;

}

}
if ($mask & POLLIN) {

$n = $h- >sysread($s, 10000);

if ($n == 0) {

print("Lost client $client_id\n");
closedient($id, $h);
next ;

} elsif ($n > 0) {
$i nbuf s{$i d} .= $s;

} elsif(! ${EAGAIN} && ! $!{EINTR}) {
warn "read fromclient $id failed: $!";
closedient($id, $h);
next ;

$! {EINTR});

Main loop with a socket

53

}
The way this works, if there is no '\n' before ECF,
the last line won't be processed.
Al so, the whole output for all the input will be buffered
before it can be sent.
whi | e($i nbuf s{$id} =~ s/~(.*)\n//) {
ny $line = $1;
chonp $line;
local $/ = "\r"; # take care of a possible CRLF
chonp $line;
ny @ata = split(/,/, $line);
ny $l nane = shift @lata;
ny $l abel = $I abel s->{$l nane};
if (defined $label) {
ny $unit = $l abel ->get Unit();
confess "label '$lnane' received fromclient $id has been cl eared"
unl ess defined $unit;
eval {
$uni t - >makeArrayCal | ($l abel, @lata);
$uni t - >dr ai nFrane() ;

}s
warn "input data error: $@nfromdata: $line\n" if $@
} else {
warn "unknown | abel '$lnane' received fromclient $id: $line "

The general outlinefollowsthe single-threaded multiplexing server described in [Babkin10]. mai nLoop() getstheserver
socket and a dispatch table of labels as its arguments. It then proceeds with waiting for connections.

Once aconnectionisreceived, it gets added to the set of active connections, to get included in the waiting for theinput data.
The input datais read as simplified CSV (no commas in the middle of values, and no way to reprsent the NULL values
othar than for those omitted at the end of the line). It's expected to have the format:

name, opcode, dat a. . .

Such as:

wi ndow, OP_| NSERT, 5, AAA, 30, 30
wi ndow. query, OP_| NSERT
exit, OP_NOP

The name part is then used to find a label in the dispatch table. The rest of the data is used to create a rowop for that
label and executeit.

The datais sent back to the client through buffering. To send some datato aclient, use
&out Buf ($i d, S$text);

The $i d isthe unique id of the client. How do you find, what is the id of the client you want to send the data to? When
aninput line is processed, the main loop knows, from what client it was received. It putstheid of that client in the global
variable $cur _cl i . You can take it from there and remember. If you want to reply to the current client, you don't need
to bother yourself with theid at all, just call

&out Cur Buf ($t ext);

If you remember an id for the future use, you'd probably need to check that the client hasn't disconnected before sending
datatoit:

54 Scheduling

if (exists $clients{$id}) {
&out Buf ($i d, $text);
}

Otherwise your output attempts would be leaking memory in the output buffer. In any case, if a client has disconnected,
the further processing of its requests shoud! usually be stopped. The client ids are not reused, so this check is always safe.

Once some output is buffered to send to a client, the further input from that client stops being accepted until the output
buffer drains. But the processing in the Triceps unit scheduler keeps running until it runs out of things to do before it
returns to the main loop. All this time the output buffer keeps collecting data without sending it to the client. Also, the
input buffer might happen to already contain multiple lines. Then all these lines will be processed before the data from the
output buffer starts being sent to the client. If arequest produces alarge amount of data, all thisdatawill be buffered first.
It'sasimplification but really the commercial CEP systems aren't doing awhole ot better: when asked for the contents of a
table/window/materliaized view, Coral8 and Aleri and Sybase (don't know about StreamBase but it might be not different
either) would make a copy of it first before sending the data. In some cases the copy is more efficient because it references
the rows rather than copying the whole byte data, but in the grand scheme of thingsit's all the same.

Internally the information about the client sockets and their buffersis kept in the global hashes %! i ent s, % nbuf s,
%out buf s. It could be done aasingle hash of objects but thiswas simpler.

The loop exits when the global variable $srv_exi t gets set (synchronously, i.e. by one of the label handlers) to 1 and
all the clients disconnect. The requirement for disconnection of all the clients makes sure that all the output buffers get
flushed before exit, and that was the easiest way to achieve this goal.

mai nLoop() reliesonthelistening socket being already created, bound and given to it as a parameter. Hereisafunction
used in the examples to create this socket and run the server in a separate process:

sub startServer # (3l abels)

{
ny $l abels = shift;

ny $srvsock = 1O : Socket:: | NET->new
Proto => "tcp",
Local Port => 0,
Li sten => 10,
) or confess "socket failed: $!'";
ny $port = $srvsock->sockport() or confess "sockport failed: $!"
ny $pid = fork();
confess "fork failed: $!" unless defined $pid;
if ($pid) {
parent
$srvsock->cl ose();
} else {
child
&mai nLoop($srvsock, $l abel s);
exit(0);
}
return ($port, $pid);
}

It binds the socket to the port O to request that the OS bind it to a randum unused port. The port number is then read back
withsockport () . The pair of the port numer and the server's child processid is then returned as the result. The process
where the server runsisin this case just a child process, it's not properly daemonized.

For a simple complete example, |et's make an echo server that would print back the rows it receives:

ny $uEcho = Triceps:: Unit->new("uEcho");

ny $l bEcho = $uEcho- >nmekelLabel ($rt Trade, "echo", undef, sub {
&out CurBuf ($_[1]->printP() . "\n");

1

Main loop with a socket 55

ny $l bEcho2 = $uEcho- >nakelLabel ($rt Trade, "echo2", undef, sub {
&out Cur Buf (join(",", "echo", &Triceps::opcodeString($_[1]->get Opcode()),
$ [1]->getRow()->toArray()) . "\n");
1)
ny $l bExit = $uEcho->nekelLabel ($rtTrade, "exit", undef, sub {
$srv_exit = 1;

1)

ny %di spatch;

$di spat ch{"echo"} = $Il bEcho;
$di spat ch{"echo2"} = $l bEcho2;
$di spatch{"exit"} = $I bExit;

ny ($port, $pid) = &start Server (\%li spatch);
print STDERR "port=$port pid=$pid\n";

wai t pi d($pi d, 0);

exit(0);

It starts the server and waits for it to exit. wai t pi d() isused herein asimplified way too, it should properly be donein
aloop until it succeeds or an error other than El NTRis returned.

$rt isthe row type for the expected data. It's not particularly important here, so | didn't show its definition. Two labels,
“echo” and “echo2” differ in the way they print the data back: “echo” printsit in the symbolic form while “echo2” prints
in CSV. The label “exit” setsthe exit flag.

The names in the dispatch table don't have to be the same as the names of the labels. It's often convenient to have them
the same but not mandatory.

7.9. Example of a topological loop

How to build the models with the topological loop is much easier to understand with an example. So let's make an example
that computes the Fibonacci numbers. It's areal overcomplicated and perverse way of calculating the Fibonacci numbers.
But it also isagreat fit to the type of problems that get solved with the topological loop, one of asimple kind.

First, aquick reminder of what is a Fibonacci number. Historically it's a solution to the problem of breeding the spherical
rabbits in vacuum. But in the mathematical reality it's the sequence of numbers where each number is a sum of the two
previous ones. Two initial elements are defined to be equal to 1, and it goes from there:

Fi=F.1+F2
Fi=1F=1

The Fibonacci numbers are often used as an example of recursive computations in the beginner's books on programming.
The computation of the n-th Fibonacci number is usually shown computed like this:

sub fibl # ($n)

{
ny $n = shift;
if ($n <= 2) {
return 1;
} else {
return & ibl($n-1) + &fibl($n-2);
}
}

However that's not a good way to compute in the real world. When afunction callsitself recursively once, its complexity

is linear, O(n). When a function calls itself twice or more, its complexity becomes exponential, O(€"). At first you might
think that it's only quadratic O(nz) because it forks two ways on each step. But these two ways keep forking and forking
on each step, and it compounds to exponential. Which isareal bad thing.

56 Scheduling

To think of it, it's a huge waste, since the (n-2)—th number is calculated anyway for the (n-1)—th number. Why calculate
it separately the second time? We could as well have saved and reused it. The Lisp people have figured this out a long
time ago, and the Lisp books (if you can read Finnish or Russian, [Hyvonen86] is aclassical one) are full of examples that
do exactly that. However I'm too lazy to explain how they work, so we're going to skip it together with the conversion
of atail recursion into aloop and get directly to the loop version. | find the loop version more natural and easier to write
than arecursion anyway.

sub fibStep2 # ($prev, $preprev)

return ($.[0] + $ [1], $[0]);

}
sub fib2 # ($n)
{

my $n = shift;

ny @rev = (1, 0); # n and n-1

while ($n > 1) {
@rev = & i bStep2(@rev);
$n--;

}

return $prev[0];

}

The split into two functions is not mandatory for the loop version, it just does the clean separation of the loop counter logic
and of the computation of the next step of the function. (But for the recursion version if would be mandatory).

I'm going to take this procedural loop version and transform it into a topological loop. It actually happens to be a rea
good match for the topological loop. In atopological loop arecord keeps traveling through it and being transformed until
it satisfies the loop exit condition. Here @r ev is the record contents, and the iteration count will be added to them to
keep track of the exit condition.

$uFib = Triceps::Unit->new("uFib") or confess "$!";

ny $rtFib = Triceps:: RowType->new
iter => "int32", # iteration nunber
cur => "int64", # current nunber
prev => "int64", # previous nunber
) or confess "$!";

ny $l bPrint = $uFi b->nakelLabel ($rtFi b, "Print", undef, sub {
print($_[1]->get Row()->get("cur"));
1

ny $l bConpute; # will fill in later

ny ($l bBegin, $IbNext, $markFib) = $uFi b- >makelLoopHead(
$rtFib, "Fib", undef, sub {
nmy Siter = $ [1]->get Row()->get("iter");
if ($iter <= 1) {
$uFi b->cal | ($I bPrint->adopt ($_[1]));
} else {
$uFi b->cal | ($l bConput e- >adopt ($_[1]));
}

}
)

$l bConput e = $uFi b->makeLabel ($rtFi b, "Conpute", undef, sub {
ny $row = $_[1] ->get Row();
ny $cur $row >get ("cur");
$uFi b- >makeHashLoopAt ($mar kFi b, $I bNext, $_[1]->get Opcode(),

Example of atopological loop 57

iter => $row>get("iter") - 1,
cur => $cur + $row >get("prev"),
prev => $cur,

)

}) or confess "$!'";

ny $l bMai n = $uFi b- >makelLabel ($rtFi b, "Miin", undef, sub {
ny $row = $_[1]->get Row();
$uFi b- >makeHashCal | ($l bBegin, $_[1]->get Opcode(),
iter => $row >get("iter"),

cur => 1,
prev => 0,
)
print(" is a Fibonacci nunber ", $row >get("iter"), "\n");

}) or confess "$!'";

whi | e(<STDI N>) {
chonp;
ny @ata = split(/,/);
$uFi b- >makeAr rayCal | ($l bMai n, @lat a) ;
$uFi b->drai nFrane(); # just in case, for conpleteness

}

You can see that it has grown quite a bit. That's why the procedural loops are generally a better idea. However if the
computation involves alot of the SQLY logic, the topological loops are still beneficial. Also, the Tricepscal | () isat the
moment not areal cal: you pass the arguments, you call the code but you don't directly get the results. You could pass
them back through some static variables, or you could use the topological loop to pass them directly to the next iteration
of the loop.

The main loop reads the CSV lines with opcodes (which aren't really used here, just passed through and then thrown away
before printing) and calls $| bMai n. Here is an example of an input and output as they would intermix if the input was
typed from the keyboard. Asin the rest of this manual, the input lines are shown in bold.

OP_I NSERT, 1
1 is a Fibonacci nunber 1
OP_DELETE, 2
1 is a Fibonacci nunber 2
OP_I NSERT, 5
5 is a Fibonacci nunber 5
OP_I NSERT, 6
8 is a Fibonacci nunber 6

Theinput lines contain the values only for thefieldi t er , which intentionally happensto bethefirst field in the row type.
The other fields will be reset anyway in $I bMai n, so they are left asNULL.

The point of $| bMai n isto call theloop beginlabel $I bBegi n and then print the message about which Fibonacci number
was requested. The value of the computed number is printed at the end of the loop, so when the words “is a Fibonacci
number” are printed after it, that demonstrates that the execution of $| bMai n continues only after the loop is completed.

Theloop logic issplit into two labels $1 bNext and $| bConput e purely to show that it can be split like this. $I bNext
handles the loop termination condition, and $| bConput e does essentially the work of fi bSt ep2() . After the loop
terminates, it passes the result row to $I bPr i nt for the priniting of the value.

When the code for $| bNext is created, it contains the call of $| bConput e. However the label $I bConput e has not
been created at thistime yet! Not a problem, creating in advance an empty variable $I bConput e is enough. The closure
in $I bNext will keep areference to that variable, and the variable will be filled with the reference to the label later (but
before the main loop executes).

And hereisthe version with makeLoopAr ound() :

ny ($! bBegin, $IbNext, $markFib); # will fill in later

58 Scheduling

$l bConput e = $uFi b->makeLabel ($rtFi b, "Conpute", undef, sub {
ny $row = $_[1] ->get Row();
ny $cur = $row >get ("cur");
ny $iter = $row>get("iter");
if ($iter <= 1) {
$uFi b->cal | ($l bPrint->adopt ($_[1]));
} else {
$uFi b- >makeHashLoopAt ($mar kFi b, $I bNext, $_[1]->get Opcode(),
iter => $row>get("iter") - 1,
cur => $cur + $row >get ("prev"),
prev => $cur,
)
}

}) or confess "$!'";

(%l bBegi n, $l bNext, $markFi b) = $uFi b->makeLoopAr ound(
"Fib", $IbConpute
)

The unit, row type, $1 bPri nt , $I bMai n and the main loop have stayed the same, so they are omitted from this example.
The whole loop logic, both the termination condition and the computation step, have been collected into one label $I b-
Conput e, to show that it can be done this way too. Then the loop head is created around $1 bConput e.

7.10. Issues with the Triceps scheduling

As much as | like it, the Triceps scheduling is not perfect, and has some open issues at the moment. Some of them have
been aready mentioned in the description of the loop scheduling: it's a bit confusing that the frame mark is placed on the
next outer scheduling stack frame and not on the current one. This leads to the interesting effects in execution order.

The other one has been mentioned inthe main|oop discussion: theschedul e() call, when used frominsidethe scheduled
code, may introduce unpredictability in the execution order. It puts the rowop after the last rowop in the outermost stack
frame. But the outermost stack frame may contain a whole queue of rowops that come from the outside. This means that
the exact order of execution will depend on the timing of the rowops arriving from outside.

Let me demonstrate it with an example. Suppose the main loop tries to optimize by collecting and schedulng as many
incoming rowops as it can before running them:

$stop = 0;
while (!$stop) {
&nai t For | nconi ngDat a(); # some user-defined function
while ($rowop = & eadRowop()) { # sone user-defined function
$uni t - >schedul e($r owop) ;
}
$uni t - >dr ai nFrame() ;

}

Suppose the rowops A, B, C, D are being received from the outside. When the rowop A executes, it schedules the rowop
E. Then depending on the timing of the packets in the network, the call sequence may be

schedul e(A)
dr ai nFrame()
schedul e(B)
dr ai nFrame()
schedul e(Q)
dr ai nFrame()
schedul e(D)
dr ai nFrame()

or

Issues with the Triceps scheduling 59

schedul e(A)
schedul e(B)
dr ai nFrame()
schedul e(©)
schedul e(D)
dr ai nFrame()

or

schedul e(A)
schedul e(B)
schedul e(Q)
schedul e(D)
dr ai nFrane()

or a few other combinations. In the first case the actual execution order will be A, E, B, C, D. That's because when A
schedules E, E will be picked up and executed by the first following frame drain. In the second case the execution order
will be A, B, E, C, D. Here when E gets scheduled, B is already on the queue in front of it. In the third case the order will
be A, B, C, D, E. And it will fluctuate at random between the runs.

If the repeatable execution order isimportant (and usualy it is), the solution if to feed the rowops one by one and drain the
frame right afterwards. Then the execution order will alwaysbe A, E, B, C, D. When feeding one by one, cal | () canbe
used instead of schedul e(), and even dightly more efficient. Just don't forget to drain the frame after each call.

The same issue happens with the topological loops that have been temporarily stopped and then resumed on arrival of
more data from outside. The mark of such aloop will be unset when the loop continues, and looping at this mark will be
equivalent to schedul e() , having the same repeatability problem. The same solution works for this issue too.

The method f or k() is not exactly useful. It was created when I've thought that it's the solution to the problem of the
loops. Which it has turned out to not solve, and another solution had to be devised. Now it really doesn't have much use,
and will probably be removed in the future.

| have afew ideasfor better solutions of these issues, but they will need a bit more experimentation. Just keep in mind that
the scheduling will be refined in the future. 1t will still have the same general shape but differ in detail.

7.11. Trays, or yes bundling

Even though Triceps does no bundling in scheduling, there still is a need to store the sequences of row operations. Thisis
an important distinction, since the stored sequences are to be scheduled somewhere in the future (or maybe not scheduled
at al, but iterated through manually). If and when they get scheduled, they will be unbundled. The ordered storage only
provides the order for that future scheduling or iteration.

The easiest way to store rowops is to put them into the Perl arrays, like:

ny @ps = ($rowopl, $rowop2);

push @ps, $rowop3;

However the C++ internals of Triceps do not know about the Perl arrays. And some of them can work directly with the

seguences of rowops. So Triceps defines an internal sort-of-equivalent of Perl array for rowops, called a Tray.

The trays have first been used to “catch” the side effects of operations on the stateful elements, so the name “tray” came
from the metaphor “put a tray under it to catch the drippings”’.

The trays get created as.
$tray = $unit->makeTray(@owops) or confess "$!";

A tray always stores rowops for only one unit. It can be only used in one thread. A tray can be used in all the enqueueing
methods, just like the direct rowops:

60 Scheduling

$unit->call ($tray);
$unit->fork(S$tray);

$uni t - >schedul e($tray);

$uni t - >enqueue($node, S$tray);
$uni t - > oopAt ($mark, S$tray);

Moreover, multiple trays may be passed, and the loose rowops and trays can be mixed in the multiple arguments of these
functions, for example:

$uni t->cal | ($rowopSt art Pkg, S$tray, $rowopEndPkg);
In this example nothing really stops you from placing the start and end rowops into the tray too. A tray may contain the
rowops of any types mixed in any order. Thisis by design, and it's an important feature that allows to build the protocol

blocks out of rowops and perform an orderly data exchange. This feature is an absolute necessity for proper inter-process
and inter-thread communication.

The ability to send the rows of multiple types through the same channel in order isamust, and its lack makes the commu-
nication with some other CEP systems exceedingly difficult. Coral8 supports only one stream per connection. Aleri (and |
believe Sybase R5) allows to send multiple streams through the same connection but has no guarantees of order between
them. | don't know about the others, check yourself.

To iterate on atray in the Perl code, it can be converted to a Perl array:
@rray = $tray->toArray();
The size of the tray (the count of rowopsin it) can be read directly without a conversion, and the unit can be read back too:

$si ze = $tray->size();
$traysUnit = $tray->getUnit();

Another way to create atray is by copying an existing one:
$tray2 = $trayl->copy();

This copiesthe contents (which isthe referencesto the rowops) and does not create any ties between the trays. The copying
isredly just amore efficient way to do

$tray2 = $trayl->get Unit()->makeTray($trayl->toArray());
The tray references can be compared for whether they point to the same tray object:
$result = $trayl->sanme(Stray?2);

The contents of atray may be cleared. Which is more convenient and more efficient than discarding a tray and creating
another one:

$tray->clear();
The data may be added to the back of atray:
$t ray- >push(@ owops) ;

Multiple rowops can be pushed in asingle call. There are no other Perl-like operations on atray: it's either create from a
set of rowops, push, or convert to a Perl array.

Note that the trays are mutable, unlike the rows and rowops. Multiple references to atray will see the same contents. If a
tray is changed through one reference, the others will see the changestoo.

7.12. Tracing the execution

Tracing the execution 61

When devel oping the CEP models, there always comes the question: WTF had just happened? How did it manage get this
result? Followed by subscribing to many intermediate results and trying to piece together the execution order.

Triceps providestwo solutionsfor thissituation: First, the procedural approach should makethelogic much easier tofollow.
Second, it has a ready way to trace the execution and then read the trace in one piece. It can also be used to analyze any
variables on the fly, and possibly stop the execution and enter some manual mode.

Theideahereissimple: provide the Unit with amethod that will be called:

before alabel executes,

after the label executes but before draining its frame,

after the frame is drained but before the chained |abels execute,

after all the execution caused by the label is completed.

For the simple tracing, there is a small simple tracer provided. It actually executes directly as compiled in C++ so it's
quite efficient:

$tracer = Triceps::UnitTracerStringNane(option => $value, ...)
or confess "$!'";

The arguments are specified as the option name-value pairs.

The only option supportedisver bose, which may be 0 (default) or non-0. If it's O (false), the tracer will record amessage
only beforeexecuting each label. If true, it will record amessage after each stage. The classisnamed UnitTracerStringName
because it records the execution trace in the string format, including the names of the labels. The tracer is set into the unit:

$uni t - >set Tracer ($tracer);

The unit's current tracer can also be read back:

$ol dTracer = $unit->get Tracer();

If no tracer was previoudly set, get Tr acer () will return undef . And undef can also be used as an argument of

set Tracer (), to cancel any previously set tracing. set Tr acer () hasthe new-style error handling and confesses on
errors.

The tracer references can be compared for whether they refer to the same underlying object:
$result = $tracerl->sane($tracer2);

There are multiple kinds of tracer abjects, and sane() can be caled safely for either kind of tracer, including mixing
them together. Of course, the tracers of different kinds definitely would not be the same tracer object.

Asthe unit runs, the tracing information gets collected in the tracer object. It can be extracted back with:
$data = Stracer->print();

This does not reset the trace. To reset it, use:

$tracer->cl earBuffer();

Here is a code sequence designed to produce afairly involved trace:

$sntr = Triceps::UnitTracerStringName- >new(verbose => 1);
$ul- >set Tracer ($sntr);

62 Scheduling

$c_l abl = $ul- >nmakeDunmylLabel ($rt1, "labl")

or confess "$!'";

$c_l ab2 = $ul- >nmakeDunmylLabel ($rt1, "l ab2")

or confess "$!'";

$c_l ab3 = $ul- >nakeDunmylLabel ($rt1, "l ab3")

or confess "$!'";

$c_opl = $c_| abl- >nakeRowop(&Tri ceps: : OP_I NSERT, $rowl)

or confess "$!'";

$c_op2 = $c_l abl- >makeRowop(&Tri ceps: : OP_DELETE, $rowl)

or confess "$!'";
$v = $c_l abl->chai n($c_l ab2) or
$v = $c_l abl->chai n($c_l ab3) or
$v = $c_l ab2->chai n($c_l ab3) or

confess "$!I'";
confess "S$!'";
confess "S$!'";

$ul- >schedul e($c_opl);
$ul- >schedul e($c_op2);

$ul- >dr ai nFrane() ;
Thetraceis:

unit 'ul' before label 'labl' op OP_I NSERT {

unit 'ul' drain |abel 'labl" op OP_I NSERT

unit 'ul' before-chained | abel 'labl" op OP_I NSERT

unit 'ul' before label 'lab2' (chain 'labl") op OP_I NSERT {
unit 'ul' drain |abel 'lab2" (chain 'labl') op OP_I NSERT
unit 'ul' before-chained | abel 'lab2'" (chain 'labl') op OP_I NSERT
unit 'ul' before label 'lab3" (chain 'lab2') op OP_I NSERT {
unit 'ul' drain |abel 'lab3" (chain 'lab2') op OP_I NSERT
unit 'ul' after label 'lab3" (chain 'lab2') op OP_I NSERT }
unit 'ul' after label 'lab2" (chain 'labl') op OP_I NSERT }
unit 'ul' before label 'lab3" (chain 'labl") op OP_I NSERT {
unit 'ul' drain |abel 'lab3" (chain 'labl') op OP_I NSERT
unit 'ul' after label 'lab3" (chain 'labl') op OP_I NSERT }
unit 'ul' after |abel 'labl" op OP_I NSERT }

unit 'ul' before label 'labl" op OP_DELETE {

unit 'ul' drain |abel 'labl" op OP_DELETE

unit 'ul' before-chained | abel 'labl" op OP_DELETE

unit 'ul' before label 'lab2' (chain 'labl") op OP_DELETE {
unit 'ul' drain |abel 'lab2" (chain 'labl') op OP_DELETE
unit 'ul' before-chained | abel 'lab2' (chain 'labl') op OP_DELETE
unit 'ul' before label 'lab3" (chain 'lab2') op OP_DELETE {
unit 'ul' drain |abel 'lab3" (chain 'lab2') op OP_DELETE
unit 'ul' after label 'lab3" (chain 'lab2') op OP_DELETE }
unit 'ul' after |abel 'lab2" (chain 'labl') op OP_DELETE }
unit 'ul' before label 'lab3" (chain 'labl") op OP_DELETE {
unit 'ul' drain |abel 'lab3" (chain 'labl') op OP_DELETE
unit 'ul' after label 'lab3" (chain 'labl') op OP_DELETE }
unit 'ul' after |abel 'labl' op OP_DELETE }

In non-verbose mode the same trace would be:

unit 'ul' before label 'labl" op OP_I NSERT

unit 'ul' before label 'lab2' (chain 'labl') op OP_I NSERT
unit 'ul' before label 'lab3" (chain 'lab2') op OP_I NSERT
unit 'ul' before label 'lab3" (chain 'labl') op OP_I NSERT
unit 'ul' before label 'labl" op OP_DELETE

unit 'ul' before label 'lab2' (chain 'labl') op OP_DELETE
unit 'ul' before label 'lab3" (chain 'lab2') op OP_DELETE
unit 'ul' before label 'lab3" (chain 'labl') op OP_DELETE

Tracing the execution

63

Theverbosetrace hasthe “before” and “ after” lines marked with the curly braces, so that when it getsloaded into an editor,
it can be navigated relatively easily.

The actual contents of the rowsisnot printed in either case. Thisisbasically because the tracer isimplemented in C++, and
I've been trying to keep the knowledge of the meaning of the simple data types out of the C++ code as much as possible
for now. But it can be implemented with a Per| tracer.

A Perl tracer is created with:

$tracer = Triceps:: UnitTracerPerl->new $sub, @rgs)
or confess "$!'";

The arguments are areference to a function, and optionally arguments for it. The resulting tracer can be used in the unit's
set Tracer () asusual.

The function of the Perl tracer gets called as:

&Bsub($unit, $label, $fronlabel, $rowop, $when, @rgs)
The arguments are:

* $uni t istheusual unit reference.

» $l abel isthe current label being traced.

o $f romLabel istheparentlabel inthe chaining (would beundef if thecurrent label iscalled directly, without chaining
from anything).

* $r owop isthe current row operation.

* $when is an integer constant showing the point when the tracer is being caled. It's vaue may be
one of &Tri ceps:: TW BEFORE, &Tri ceps: : TW BEFORE DRAI N, &Tri ceps: : TW BEFORE_CHAI NED,
&Tri ceps: : TW AFTER,; the prefix TWstands for “tracer when”.

» @ar gs arethe extra arguments passed from the tracer creation.

The TW * constants can as usua be converted to and from strings with the calls

$string = &Triceps::tracerWenString($val ue);
$val ue = &Triceps::stringTracerWen($string);

There aso are the conversion functions with strings more suitable for the human-readable messages: “before”, “drain”,
“before-chained”, “drain”. These are actually the conversions used in the UnitTracerStringName. The functions for them
are:

$string = &Triceps::tracer WienHumanSt ri ng($val ue);
$val ue = &Triceps::humanStri ngTracer When($string);

The Perl tracers allow to execute any arbitrary actions when tracing. They can act as breakpoints by looking for certain
conditions and opening a debugging session when those are met.

For an example of a Perl tracer, let's start with atracer function that works like UnitTracerStringName:

sub tracer Ch()

{
my ($unit, $label, $from $rop, $when, @xtra) = @;
our $history;

ny $nsg = "unit '" . $unit->get Nane()
Triceps::tracerWenHumanStri ng($when) . " | abel

64 Scheduling

}

. $l abel ->get Name() . "' ";
if (defined $frontabel) {

$nsg .= "(chain '" . S$fronmLabel ->getNanme() . "') ";
}
$nsg .= "op " . Triceps::opcodeString($rop->get Opcode());
if ($when == &Triceps:: TWBEFORE) ({
$nsg .= " {";
} elsif ($when == &Triceps:: TWAFTER) {
$nsg .= " }";
}
$nsg .= "\n";

$history .= $nsQ;

undef $history;
$ptr = Triceps::UnitTracerPerl->new(\& racerCh);
$ul- >set Tracer ($ptr);

It'sdlightly different, intheway that it always producesthe verbose trace, and that it collectesthe tracein the global variable
$hi st or y. But the resulting text is the same as with UnitTracerStringName.

Now let'simprove on it by printing the whole rowop contentstoo. In a*“ proper” way this advanced tracer would be defined
as a class constructing the tracer objects. But to reduce the amount of code let's just make it a standalone function to be
used with the Perl tracer constructor.

And for extranicety let's make the result nicely indented, with two spaces per the indenting level. The indenting is actually
not such agreat idea: with the long sequences of the calls between the labels, the nesting levelswould also be deep, and the
output would be indented way off the right end of the screen. That's why it's not done in UnitTracerStringName (though
it might be a good idea as an option). But for the small short examples it works well. The function would take 3 extra
arguments:

Verbosity, a boolean value.

Reference to an array variable where to append the text of the trace. This is more flexible than the fixed $hi st ory.
The array will contain the lines of the trace as its elements. And appending to an array should be more efficient than

appending to the end of a potentially very long string.

Reference to ascalar variable that would be used to keep the indenting level. The value of that variable will be updated
as the tracing happens. Itsinitial value will determine the initial indenting level. Keeping the indenting is actually not
easy because the indenting level can be changed for two reasons, the label chaining and the label calls. To get the logic
working, oneindenting level getsadded beforein advance, infront of the outermost trace lines. So, to make the outermost

lines appear with no indenting, initialize this variable to -1 and not 0.

sub traceStri ngRowop

{

my ($unit, $label, $fronLabel, $rowop, $when,
$verbose, $rlog, $rnest) = @;

if ($verbose) {
${$rnest}++ if ($when == &Triceps:: TW BEFORE) ;
${$rnest}-- if ($when == &Triceps:: TWAFTER);

} else {
return if ($when != &Triceps:: TW BEFORE);
}
ny $nsg = "unit '" . $unit->getName() . "' "
Triceps::tracerWenHumanStri ng($when) . " |abel '"

$l abel - >get Name() . "' ";
if (defined $froniLabel) {

Tracing the execution

65

$nmsg .= "(chain '" . $fronlabel ->getName() . "') "“;

}
ny $tail ="";
if ($when == &Triceps:: TWBEFORE) ({
$tail =" {";
} elsif ($when == &Triceps:: TWAFTER) {
$tail =" }";
}
push (@$%$rlog}, (" " x ${$rnest}) . $nsg . "op "

$rowop->printP() . $tail);

if ($verbose) {
${$rnest}++ if ($when == &Triceps:: TW BEFORE)
${$rnest}-- if ($when == &Triceps:: TWAFTER)
}
}

undef @i story;

my $tnest = -1, # keeps track of the tracing nesting |evel

$ptr = Triceps::UnitTracerPerl->new(\ & raceStri ngRowop, 1, \@istory, \$tnest);
$ul- >set Tracer ($ptr);

For the same call sequence as before, the output will be asfollows (I've tried to wrap the long linesin alogically consistent
way but it still spoils the effect of indenting a bit):

unit 'ul' before label 'labl" op | abl OP_I NSERT a="123" b="456"
c="789" d="3.14" e="text" ({
unit 'ul' drain label 'labl" op |abl OP_I NSERT a="123" b="456"
c="789" d="3.14" e="text"
unit 'ul' before-chained | abel 'labl' op |abl OP_I NSERT a="123"
b="456" c="789" d="3.14" e="text"
unit 'ul' before label 'lab2' (chain 'labl') op |abl OP_I NSERT
a="123" b="456" c="789" d="3.14" e="text" {
unit 'ul' drain |label 'lab2' (chain 'labl') op |abl OP_I NSERT
a="123" b="456" c="789" d="3.14" e="text"
unit 'ul' before-chained | abel 'lab2' (chain 'labl') op |abl
OP_I NSERT a="123" b="456" c="789" d="3.14" e="text"
unit 'ul' before label 'lab3" (chain 'lab2') op | abl OP_I NSERT
a="123" b="456" c="789" d="3.14" e="text" {
unit 'ul' drain label 'lab3" (chain 'lab2') op |abl
OP_I NSERT a="123" b="456" c="789" d="3.14" e="text"
unit 'ul' after label 'lab3" (chain 'lab2') op |abl OP_I NSERT
a="123" b="456" c="789" d="3.14" e="text" }
unit 'ul' after label 'lab2' (chain 'labl') op |abl OP_I NSERT
a="123" b="456" c="789" d="3.14" e="text" }
unit 'ul' before label 'lab3" (chain 'labl') op |abl OP_I NSERT
a="123" b="456" c="789" d="3.14" e="text" {
unit 'ul' drain label 'lab3" (chain 'labl') op |abl OP_I NSERT
a="123" b="456" c="789" d="3.14" e="text"
unit 'ul' after label 'lab3" (chain 'labl') op |abl OP_I NSERT
a="123" b="456" c="789" d="3.14" e="text" }
unit 'ul' after label 'labl' op |abl OP_I NSERT a="123" b="456" c="789"
d="3.14" e="text" }
unit 'ul' before label 'labl' op |l abl OP_DELETE a="123" b="456"
c="789" d="3.14" e="text" ({
unit 'ul' drain |abel 'labl'" op |labl OP_DELETE a="123" b="456"
c="789" d="3.14" e="text"
unit 'ul' before-chained | abel 'labl' op |abl OP_DELETE a="123"
b="456" c="789" d="3.14" e="text"
unit 'ul' before label 'lab2' (chain 'labl') op | abl OP_DELETE
a="123" b="456" c="789" d="3.14" e="text" {
unit 'ul' drain label 'lab2'" (chain 'labl') op |abl OP_DELETE

66 Scheduling

a="123" b="456" c="789" d="3.14" e="text"
unit 'ul' before-chained | abel 'lab2' (chain 'labl') op |abl
OP_DELETE a="123" b="456" c="789" d="3.14" e="text"
unit 'ul' before label 'lab3" (chain 'lab2') op | abl OP_DELETE
a="123" b="456" c="789" d="3.14" e="text" {
unit 'ul' drain label 'lab3" (chain 'lab2') op |abl
OP_DELETE a="123" b="456" c="789" d="3.14" e="text"
unit 'ul' after label 'lab3" (chain 'lab2') op |abl OP_DELETE
a="123" b="456" c="789" d="3.14" e="text" }
unit 'ul' after label 'lab2'" (chain 'labl') op |abl OP_DELETE
a="123" b="456" c="789" d="3.14" e="text" }
unit 'ul' before label '"lab3" (chain 'labl') op | abl OP_DELETE
a="123" b="456" c="789" d="3.14" e="text" {
unit 'ul' drain |label 'lab3" (chain 'labl') op |abl OP_DELETE
a="123" b="456" c="789" d="3.14" e="text"
unit 'ul' after label 'lab3" (chain 'labl') op |abl OP_DELETE
a="123" b="456" c="789" d="3.14" e="text" }
unit 'ul' after label 'labl' op |abl OP_DELETE a="123" b="456" c="789"
d="3.14" e="text" }

As mentioned before, each label produces two levels of indenting: one for everything after “before”,

nested |abels.

Eventually this tracing should become another standard classin Triceps.

another one for the

Tracing the execution

67

68

Chapter 8. Memory Management

8.1. Reference cycles

Remember that the Triceps memory management uses the reference counting, which does not like the reference cycles, as
has been mentioned in Section 4.3: “Memory management fundamentals’ (p. 21) . The reference cycles cause the objects
to be never freed. It's no big deal if the data structures exist until the program exit anyway but it becomes a memory leak
if they keep being created and deleted dynamically.

The problems come not with the data that goes through the models but with the models themselves. The data gets refer-
ence-counted without any issues. The reference cycles can get formed only between the elements of the models: labels,
tables etc. If you don't need them destroyed until the program exits (or more exactly, until the Perl interpreter instance
exits), there is no problem. The leaks could happen only if the model elements get created and destroyed as the program
runs, such asif you use them to parse and process the short-lived ad-hoc queries.

These leaks are pretty hard to diagnose. There are some packages, like Devel::Cycle, but they won't detect the loops that
involve a reference at C++ level. And when the Perl interpreter exits, it clears up all the variables used, even the ones
involved in theloops, soif you runit under valgrind, valgrind doesn't show any leaks. Thereisapackage Devel::LeakTrace
that should be able to detect all these left-over variables. However | can't tell for sure yet, so far | haven't had enough
patience to build al the dependenciesfor it.

One possibility isto use the weak references (using the module Scalar::Util). But the problem is that you need to not forget
weakening the references manually. Too much work, too much attention, too easy to forget.

The mechanism used in Tricepsworks by breaking up the reference cycleswhen the data needsto be cleared. The execution
unit keeps track of all its labels, and when it gets destoryed, clears them up, breaking up the cycles. It's also possible to
clear the labelsindividually, by amanual call.

The clearing of alabel clears all the chainings. The chained labels get cleared too in their turn, and eventually the whole
chain clears up. This removes the links in the forward direction, and if any cycles were present, they become open. More
on the details of label clearing in the Section 8.2: “Clearing of the labels’ (p. 70) .

Another potential for reference cyclesis between the execution unit and thelabels. A unit keepsareferenceto all itslabels.
So the labels can not keep a reference to the unit. And they don't. Internally they have a plain C++ pointer to the unit.
However the Perl level may present a problem.

In many cases the |abels have a Perl reference to the template object where they belong. And that object islikely to havea
Per| reference to the unit. It's one more opportunity for the reference cycle. This code usually looks like this:

package MyTenpl at e;

sub new # ($class, $unit, $nane, $rowlype, ...)
{

ny $class = shift;

ny $unit = shift;

ny $nanme = shift;

ny $rowlype = shift;

ny $self = {};

$sel f->{unit} = $Sunit;
$sel f->{i nput Label } = $unit->nmakelLabel ($rowlType, $name . ".in",
sub { ... }, sub { ... }, $self);

69

bl ess $sel f, $cl ass;
return $sel f;

}

So the unit refers to the label at the C++ level, the label has a $sel f reference to the Perl object that owns it, and the
object's$sel f->{uni t} refersback to the unit. Once the label clearing happens, the link from the unit will disappear
and the cyclewould unroll. But the clearing would not happen by itself because the unit can't get automatically defererenced
and destroyed.

Because of this, the unit provides an explicit way to trigger the clearing:
$uni t - >cl ear Label s();

If you want to get rid of an execution unit with all its components without exiting the whole program, use this call. It will
start the chain reaction of destruction. Of course, don't forget to undefine all the other referencesin your program to these
objects being destroyed.

Thereisalso away to trigger this chain reaction automatically. It's done with a helper object that is created as follows:
ny $clearUnit = $unit->maked earingTrigger();

When the referenceto $cl ear Uni t gets destroyed, it will call $uni t - >cl ear Label s() and trigger the destruction
of thewhole unit. Obviously, don't copy the $cl ear Uni t variable, keep it on one place.

If you put it into a block variable, the unit will get destroyed on exiting the block. If you put it into a global variable in
athread, the unit will get destroyed when the thread exits (though I'm a bit hazy on the Perl memoery management with
threads yet, it might get all cleared by itself without any special tricks too).

8.2. Clearing of the labels

To remind, alabel that executes the Perl code is created with:

$l abel = $unit->makeLabel ($rowType, "nanme", \&cl ear Sub,
\ &xecSub, @rgs);

The function ¢l ear Sub deals with the destruction.

Theclearing of alabel dropsall the referencesto execSub, ¢l ear Sub and arguments, and clears all the chainings. And
of course the chained labels get cleared too. But before anything else is done, ¢l ear Sub gets a chance to execute and
clear any application-level data. It gets asits arguments all the arguments from the label constructor, same as exec Sub:

cl ear Sub($l abel , @rgs)
A typical caseisto keep the state of a stateful element in a hash:
package MyTenpl at e;

sub new # ($class, $unit, $nane, $rowlype, ...)
{

ny $class = shift;

ny $unit = shift;

ny $nanme = shift;

ny $rowlype = shift;

ny $self = {};

$sel f->{unit} = $unit;
$sel f->{i nput Label } = $unit->nmakelLabel ($rowType, $name . ".in",
\ &l ear, \ &handle, $self);

70 Memory Management

bl ess $sel f, $cl ass;
return $sel f;

}

These elements may end up pointing to the other elements. It's fairly common to keep the pointers to the other elements
(especially tables) that provide inputs to this one. In general, these references “up” should be safe because the clearing of
the labels would destroy the references “down” and open the cycles. But the way things get connected in the heat of the
moment, you never know. It's better to be safe than sorry. To be on the safe side, the clearing function can wipe out the
whole state of the element by undefining its hash:

sub clear # ($label, $self)

my ($label, $self) = @;
undef %sel f;

}

The whole contents of the hash becomes lost, all the refrences from it disappear. And if you use this approach in every
object, the complete destruction reigns and everything is nicely laid to waste.

Writing these clear methods for each class quickly becomes tedious and easy to forget. Tricepsis a step ahead: it provides
aready function Tr i ceps: : cl ear Args() that doesall thisdestruction. It can undefine the contents of various things
passed as its arguments, and then al so undefines these arguments themselves. Just reuse it:

$sel f->{i nput Label } = $unit->nmakeLabel ($rowType, $nane . ".in",

\ &Triceps::clearArgs, \&handle, $self);

But that's not all. Tricepsisactually two stepsahead. If thecl ear Sub isspecified asundef , Triceps automatically treats
ittobeTri ceps: : cl ear Args() . Thelast snippet and the following one are equivalent:

$sel f->{i nput Label } = $unit->nmakeLabel ($rowType, $nane . ".in",
undef, \&handl e, $self);

No need to think, the default will do the right thing for you. Of course, if by some reason you don't want this destruction
to happen, you'd have to override it with an empty function “sub {}”.

8.3. The clearing labels

Some templates don't have their own input labels, instead they just combine and tie together a few internal objects, and
use the input labels of some of these internal objects as their inputs. Among the templates included with Triceps, JoinTwo
is one of them, it just combines two LookupJoins. Without an input label, there would be no clearing, and the template
object would never get undefined.

This can be solved by creating an artificial label that isnot connected anywhere and has no code to execute. Itsonly purpose
in life would be to clear the object when told so. To make life easier, rather than abusing makelLabel (), thereisaway
to create the special clearing-only labels:

$l b = $unit->maked earingLabel ("name", @rgs);

The arguments would be the references to the objects that need clearing, usually $sel f . For a concrete usage example,
here is how JoinTwo usesit:

$sel f->{cl eari ngLabel} = $sel f->{unit}->naked earingLabel (
$sel f->{nane} . ".clear", $self);

Since this call “should never fail”, on any errors it will confess. There is no need to check the result. The result can be
saved in avariable or can be simply ignored. If you throw away the result, you won't be able to access that |abel from the
Perl code but it won't be lost: it will be still referenced from the unit, until the unit gets cleared.

The clearing labels 71

Note how the clearing label doesn't have arow type. Inreality every label doeshow arow type, just it would besilly to abuse
therandom row typesto create the clearing-only labels. Because of this, the clearing labels are created with aspecial empty
row typethat hasnofieldsinit. If you ever want to use thisrow type for any other purposes, you can get it with the method

$rt = $unit - >get Enpt yRowType() ;

Under the hood, the clearing label is the same as a normal label with Perl code, only with the special default values used
for its construction. The normal Perl label methods would work on it like on a normal label.

72 Memory Management

Chapter 9. Tables
9.1. Hello, tables!

The tables are the fundamental elements of state-keeping in Triceps. Let's start with a basic example:

nmy $hwunit = Triceps::Unit->new("hwinit") or confess "$'";
ny $rtCount = Triceps:: RowType- >new

address => "string",

count => "int32",
) or confess "$!";

ny $ttCount = Triceps:: Tabl eType- >new($rt Count)
- >addSubl ndex(" byAddr ess",
Triceps:: | ndexType- >newHashed(key => ["address"])
)
or confess "$!";
$ttCount->initialize() or confess "$!";

nmy $t Count = $hwunit->nmakeTabl e($tt Count, &Triceps:: EM CALL, "tCount")
or confess "$!'";

whi | e(<STDI N>) {
chonp;
ny @ata = split(/\W/);

the common part: find if there already is a count for this address
ny $rhFound = $t Count - >fi ndBy(
address => $dat a[1]
)
ny $cnt = 0;
if (!$rhFound->isNull()) {
$cnt = $rhFound- >get Row) - >get ("count ") ;
}

if ($data[0] =~ /"hello$/i) {
ny $new = $rt Count - >makeRowHash(
address => $data[1],
count => $cnt +1,
) or confess "$!";
$t Count - >i nsert ($new) ;
} elsif ($data[0] =~ /~count$/i) ({
print("Received '", $data[1], "' ", $cnt + 0, " tines\n");
} else {
print("Unknown conmand ' $data[0]'\n");
}

}

What happens here? The main loop reads the lines from standard input, splits into words and uses the first word as a
command and the second word as a key. Note that it's not CSV format, it's words with the non-alphanumeric characters
separating thewords. “Hello, table!”, “helloworld”, “count world” are examples of thevalid inputs. For someting different,
the commands are compared with their case ignored (but the case matters for the key).

The example counts, how many times each key has been hel | 0-ed, and prints this count back on the command count .
Hereisasample, with theinput lines printed in bold:

Hel | o, table!
Hel | o, worl d!

73

Hel | o, tabl e!

count world

Received "world' 1 tines
Count table

Received 'table' 2 tines

In this example the table is read and modified using the direct procedural calls. Asyou can see, there isn't even any need
for unit scheduling and such. There is a scheduler-based interface to the tables too, it will be shown soon. But in many
cases the direct access is easier. Indeed, this particular example could have been implemented with the plain Perl hashes.
Nothing wrong with that either. Well, the Perl tables provide many more intersting ways of indexing the data. But if you
don't need them, they don't matter. And at some future point the tables will be supporting the on-disk persistence, but no
reason to bother much about that now: things are likely to change a dozen times yet before that happens. Feel free to just
use the Perl data structuresif they make the code easier.

A table is created through atable type. This allows to stamp out duplicate tables of the same type, which can get handy
when the multithreading will be added. A tableis local to athread. A table type can be shared between threads. To look
up something in another thread's table, you'd either have to ask it through a request-reply protocol or to keep alocal copy
of the table. Such a copy can be easily done by creating a copy table from the same type.

In reality, right now all the business with table types separated from the tables is more pain than gain. It not only adds
extra steps but also makes difficult to define a template that acts on a table by defining extra features on it. Something
will be done about it, | have afew ideas.

Thetable type getsfirst created and configured, then initialized. After atable typeisinitialized, it can not be changed any
more. That'sthe point of theinitialization call: tell thetypethat all the configuration has been done, and it can go immutable
now. Fundamentally, configuting a table type just makes it collect bits and pieces. Nothing but the most gross errors can
be detected at that point. At initialization time everything comes together and everything gets checked for consistency. A
table type must be fully initialized in one thread before it can be shared with other threads. The historic reason for this API
isthat it mirrors the C++ API, which has turned out not to look that good in Perl. It's another candidate for a change.

A table type getsthe row type and at least oneindex. Hereit's a hashed index by the key field addr ess. "Hashed" means
that you can look up the rows by the key value but there are no promises about any specific row order. And the hashing is
used to make the key comparisons more efficient. The key of a hashed index may consist of multiple fields.

Thetableisthen created from thetabl e type, enqueueing mode (another hold-over, just alwaysuse EM_CALL, thisargument
will be removed in the future), and given a name.

The rows can then be inserted into the table (and removed too, not shown in this example yet). The default behavior of the
hashed index isto replace the old row if a new row with the same key isinserted.

The search in the table is done by the method f i ndBy() with the key fields of the index. Which returns a RowHandle
object. A RowHandleis essentially an iterator in the table. Even if the row is not found, a RowHandle will be still returned
but it will be NULL, whichis checked for by $r h- >i sNul | ().

No matter which command will be used, it's always useful to look up the previous row for the key: its contents would be
either printed or provide the previous value for the increase. So the model does it first and gets the count from it. If it's
not found, then the count is set to O.

Then it looks at the command and does what it's been told. Updating the count amounts to cresating a new row with the
new values and inserting it into the table. It replaces the previous one.

Thisisjust thetip of the iceberg. Thetablesin Triceps have alot more features.

9.2. Tables and labels

A table does not have to be operated in a procedural way. It can be plugged into the the scheduler machinery. Whenever
atableiscreated, three labels are created with it.

74 Tables

» Theinput label is for sending the modification rowops to the table. The table provides the handler for it that applies
the incoming rowops to the table.

» The output label propagates the modifications done to the table. It is a dummy label, and does nothing by itself. It's
there for chaining the other labels to it. The output rowop comes quite handy to propagate the table's modifications to
the rest of the state.

» The pre-modification label is also a dummy label, for chaining other labels to it. It sends the rowops right before they
are applied to the table. This comes very handy for the elements that need to act depending on the previous state of the
table, such as joins. The pre-modification label doesn't simply mirror the input label. The rows received on the input
label may trigger the automatic changesto the table, such asan old row being del eted when anew row with the same key
isinserted. All these modifications, be they automatic or explicit, will be reported to the pre-modification label. Since
the pre-modification label isused relatively rarely, it contains aspecial optimization: if thereisno label chained to it, no
rowop will be sent to it in the first place. Don't be surprised if you enable the tracing and don't see it in the trace.

Again, the rowops coming through these labels aren't necessarily the same. If a DELETE rowop comes to the input label,
referring to arow that isnot in the table, it will not propagate anywhere. If an INSERT rowop comesin and causes another
row to be replaced, the replaced row will be sent to the pre-modification and output labels as a DELETE rowop first.

Anf of course the table may be modified through the procedural interface. These modifications also produce rowops on
the pre-modification and output 1abels.

The labels of the table have names. They are produced by adding suffixes to the table name. They are "tablename.in”,
"tablename.pre” and "tablename.out”.

In the “no bundling” spirit, a rowop is sent to the pre-modification label right before it's applied to the table, and to the
output label right after it's applied. If the labels executed from there need to read the table, they can, and will find the table
in the exact state with no intervening modifications. However, they can't modify the table neither directly nor by calling
its input label. When these |abels are called, the table is in the middle of a modification and it can't accept another one.
Such attempts are treated as recursive modifications, forbidden, and the program will die on them. If you need to modify
the table, use schedul e() or | oopAt () to have the next modification done later. However there are no guarantees
about other modifications getting done in between. When the looped rowop executes, it might need to check the state of
the table again and decide if its operation still makes sense.

So, let's make a version of “Hello, table” example that passes the modification regquests as rowops through the labels. It
will print the information about the updates to the table as they happen, so there is no more use having a separate command
for that. But for another demonstration let's add a command that would clear the counter of hellos. Here isits code:

ny $hwunit = Triceps::Unit->new("hwinit") or confess "$!";
ny $rtCount = Triceps:: RowType- >new(

address => "string",

count => "int32",
) or confess "$!";

ny $ttCount = Triceps:: Tabl eType- >new($rt Count)
- >addSubl ndex(" byAddr ess",
Triceps:: | ndexType- >newHashed(key => ["address"])
)
or confess "$!";
$ttCount->initialize() or confess "$!";

ny $t Count = $hwunit->nekeTabl e($tt Count, "EM CALL", "tCount") or confess "$!'";

nmy $I bPri nt Count = $hwuni t - >makeLabel ($t Count - >get RowType(),
"1 bPrint Count", undef, sub { # (|abel, rowop)
ny ($l abel, $rowop) = @;
nmy $row = $rowop- >get Row() ;

Tables and labels 75

print (&Triceps::opcodeString($rowop->get Opcode), " '",
$row >get ("address"), "', count ", $row >get("count"), "\n");
}) or confess "$!'";

$t Count - >get Qut put Label () ->chai n($l bPri nt Count) or confess "$!'";

the updates will be sent here, for the tables to process
ny $l bTabl el nput = $t Count - >get | nput Label ();

whi | e(<STDI N>) {
chonp;
ny @ata = split(/\W/);

the common part: find if there already is a count for this address
ny $rhFound = $t Count - >fi ndBy(
address => $dat a[1]
)
ny $cnt = 0;
if (!$rhFound->isNull()) {
$cnt = $rhFound- >get Row() - >get ("count");
}

if ($data[0] =~ /"~hello$/i) {
$hwuni t - >makeHashSchedul e($! bTabl el nput, " OP_I NSERT",
address => $data[1],
count => $cnt +1,
)
} elsif ($data[0] =~ /~clear$/i) {
$hwuni t - >makeHashSchedul e($I bTabl el nput, "OP_DELETE",
address => $dat a[1]
)
} else {
print("Unknown conmand ' $data[0]'\n");
}

$hwuni t - >dr ai nFrane() ;

}

The table creation is the same as last time. The only difference is that it uses "EM CALL" instead of
&Tri ceps: : EM _CALL, both being equivalent. The row finding in the tableis also the same.

The printing of the modifications to the table is done with $| bPr i nt Count , which is connected to the table's output
label. It prints the opcode, the address of the greeting, and the count of greetings. It will show us what is happening to
the table as soon as it happens. An unit trace could be used instead but a custom printout contains less noise. The pre-
modification label is of no interest here, so it's not used.

The references to the labels of atable are gotten with:

$l abel = $tabl e- >get | nput Label ();
$l abel = $t abl e- >get PrelLabel ();
$l abel = $t abl e- >get Qut put Label ();

The deletion does not require an exact row to be sent in. All it needs is a row with the keys for deletion, the rest of the
fieldsinit areignored. So the “clear” command puts only the key field in it.

Here is an example of input (in bold) and output:

Hel | o, tabl e!
OP_I NSERT 'table', count 1
Hel | o, worl d!
OP_I NSERT 'world', count 1
Hel | o, tabl e!

OP_DELETE 'table', count 1

76 Tables

OP_I NSERT 'table', count 2
clear, table
OP_DELETE 'table', count 2
Hel | o, tabl e!
OP_I NSERT 'table', count 1

An interesting thing happens after the second “Hello, table!”: the code send only an OP_I NSERT but the output shows an
OP_DELETE and OP_| NSERT. The OP_DELETE for the old row gets automatically generated when arow with repeated
key isinserted. Now, depending on what you want, just sending in the first place the consequent inserts of rows with the
same keys, and relying on the table's internal consistency to turn them into updates, might be a good thing or not. Overall
it's adirty way to write but sometimes it comes convenient. The clean way is to send the explicit deletes first. When the
data goes through the table, it gets automatically cleaned. The subscribers to the table's output and pre-modification labels
get the clean and consistent picture: arow never gets simply replaced, they always see an OP_DELETE first and only then
an OP_I| NSERT.

9.3. Basic iteration through the table

Let's add a dump of the table contents to the "Hello, table" example, either version of it. For that, the code needs to go
through every record in the table:

el sif ($data[0] =~ /~dunp$/i) {
for (ny $rhi = $tCount->begin(); !$rhi->isNull(); $rhi = $rhi->next()) {
print($rhi->getRow>printP(), "\n");
}
}

As you can see, the row handle works kind of like an STL iterator. Only the end of iteration is detected by receiving a
NULL row handle. Calling next () onaNULL row handleis OK but it would just return another NULL handle. And
there is no decrementing the iterator, you can only go forward with next () . The backwards iteration is in the plans but
not implemented yet.

An example of this fragment's output would be:

Hel | o, table!

Hel | o, worl d!

Hel | o, table!

count world

Received '"world" 1 tines

Count table
Received 'table' 2 tines
dunp

address="wor | d" coun

t=
address="t abl " count=

wqn
" on

The order of the rows in the printout is the same as the order of rows in the table's index. Which is no particular order,
sinceit's a hashed index. Aslong as you stay with the same 64-bit AM D64 architecture (with L SB-first byte order), it will
stay the same on consecutive runs. But switching to a 32-bit machine or to an MSB-first byte order (such as a SPARC, if
you can still find one) will change the hash calculation, and with it the resulting row order. There are the ordered indexes
aswell, they will be described later.

9.4. Deleting a row

Deleting a row from a table through the input label is smple: send a rowop with OP_DELETE, it will find the row
with the matching key and delete it, as was shown above. In the procedural way the same can be done with the method
del et eRow() . The added row deletion code for the main loop of “Hello, table” (either version, but particularly relevant
for the one from Section 9.1: “Hello, tables!” (p. 73)) is:

Basic iteration through the table 77

elsif ($data[0] =~ /"delete$/i) {
ny $res = $t Count - >del et eRow($rt Count - >makeRowHash(
address => $data[1],

). o

print("Address , $data[1l], "' is not found\n") unless $res;

}

The result allows to differentiate between the situations when the row was found and deleted and the row was not found.
On any error the call confesses. Thei nsert () method also follows this new convention and confesses on errors.

However we aready find the row handle in advance in $r hFound. For this case a more efficient form is available, and
it can be added to the example as:

elsif ($data[0] =~ /~renove$/i) {
if (!$rhFound->i sNull()) {
$t Count - >r enove($r hFound) ;
} else {
print("Address '", $data[1], "' is not found\n");
}

}

It removes a specific row handle from the table. In whichever way you find it, you can remove it. An attempt to remove
aNULL handle would be an error (and this method also confesses on errors).

The reason why r enove() is more efficient than del et eRow() isthat del et eRow() amounts to finding the row
handle by key and then removing it. And the OP_DEL ETE rowop sent to the input label callsdel et eRow() .

del et eRow() never deletes more than one row, even if multiple rows match (yes, the indexes don't have to be unique).
There isn't any method to delete multiple rows at once. Every row has to be deleted by itself. As an example, here is the
implementation of the command “clear” for “Hello, table” that clears all the table contents by iterating through it:

elsif ($data[0] =~ /"clear$/i) {
nmy $rhi = $t Count - >begi n();
while (!'$rhi->isNull()) {
ny $rhnext = $rhi->next();
$t Count - >r enove($rhi);
$rhi = $rhnext;
}
}

After ahandleisremoved from the table, it continuesto exist, aslong as there are referencesto it. It could even beinserted
back into the table. However until (and unless) it'sinserted back, it can not be used for iteration any more. Calling next ()
on a handle that is not in the table would just return a NULL handle. So the next row has to be found before removing
the current one.

9.5. A closer look at the RowHandles

A few uses of the RowHandles have been shown by now. So, what is a RowHandle? As Captain Obvious would say,
RowHandleis a class (or package, in Perl terms) implementing arow handle.

A row handle keeps a tabl€e's service information (including the index data) for a single data row, including of course a
reference to the row itself. Each row is stored in the table through its handle. The row handle is also an iterator in the
table, and a specia one: it's an iterator for all the tabl€e's indexes at once. For you SQLY people, an iterator is essentially
acursor on an index. For you Java people, an iterator can be used to do more than step sequentially through rows. So far
only the table types with one index have been shown, but in reality multiple indexes are supported, potentially with quite
complicated arrangements. More on the indexes later, for now just keep it in mind. A row handle can be found through

78 Tables

one index and then used to iterate through another one. Or you can iterate through oneindex, find a certain row handle and
continue iterating through another index starting from that handle. If you remember areference on aparticular row handle,
you can always continue iteration from that point later. (unless the row handle gets removed from the table).

A RowHandle always belongs to a particular table, the RowHandles can not be shared nor moved between two tables,
even if the tables are of the same type. Since the tables are single-threaded, obviously the RowHandles may not be shared
between the threads either.

However a RowHandle may exist without being inserted into atable. In this case it still has a spiritual connection to that
table but is not included in the index (the iteration attempts with it would just return “end of the index”), and will be
destroyed as soon as all the references to it disappear.

Theinsertion of arow into atable actually happens in two steps:
1. A RowHandleis created for arow.
2. Thisnew handleisinserted into the table.

Thisis done with the following code:

$rh = $tabl e- >makeRowHandl e($row) or confess "$!";
$t abl e- >i nsert ($rh);

Only it just so happens that to make life easier, the method i nsert () has been made to accept either a row handle or
directly arow. If it finds a row, it makes a handle for it behind the curtains and then proceeds with the insertion of that
handle. Passing arow directly isalso more efficient (if you don't have ahandle already created for it for some other reason)
because the row handle creation then happens entirely in the C++ code, without surfacing into Perl.

A handle can be created for any row of atype matching the table's row type. For awhile it was accepting only equal types
but that was not consistent with what the labels are doing, so I've changed it.

Themethodi nsert () hasareturnvalue. It's often ignored but occasionally comes handy. 1 meansthat the row has been
inserted successfully, and O means that the row has been rejected. On errors it confesses. An attempt to insert a NULL
handle or a handle that is already in the table will cause argjection, not an error. Also the tabl€e's index may reject arow
with duplicate key (though right now this option is not implemented, and the hash index silently replaces the old row with
the new one).

Thereisamethod to find out if arow handleisin the table or not:
$result = $rh->islnTable();
Though it's used mostly for debugging, when some strange things start going on.

The searching for rows in the table by key has been previously shown with the method f i ndBy () . Which happensto be
awrapper over amore general method f i nd() : it constructs arow from its argument fields and then callsf i nd() with
that row as a sample of datato find. The method f i nd() issimilartoi nsert () inthe handling of its arguments: the
“proper” way isto giveit arow handle argument, but the more efficient way isto giveit arow argument, and it will create
the handle for it as needed before performing a search.

Now you might wonder: huh, f i nd() takesarow handle and returns a row handle? What's the point? Why not just use
the first row handle? Well, those are different handles:

» Theargument handleis normally not in thetable. It's created brand new from arow that contains the keys that you want
to find, just for the purpose of searching.

e Thereturned handle is always in the table (of course, unlessit's NULL). It can be further used to extract back the row
data, and/or for iteration.

A closer look at the RowHandles 79

Though nothing really prevents you from searching for a handle that is already in the table. You'll just get back the same
handle, after gratuitously spending some CPU time. (There are exceptionsto this, with the more complex indexes that will
be described |ater).

Why do you need to create new arow handle just for the search? Due to the internal mechanics of the implementation. A
handle stores the helper information for the index. For example, the hash index calculates the hash value of all the row's
key fieldsonce and storesit in therow handle. Despiteit being called ahash index, it really storesthe datain atree, with the
hash value used to speed up the comparisons for the tree order. It's much easier to make both thei nsert () andfi nd()
work with the hash value and row reference stored in the same way in ahandle than to implement them differently. Because
of this, fi nd() usesthe exactly same row handle argument format asi nsert ().

Can you create multiple row handles referring to the same row? Sure, knock yourself out. From the table's perspective it's
the same thing as multiple row handles for multiple copies of the row with the same valuesin them, only using lessmemory.

There is more to the row handles than has been touched upon yet. It will al be revealed when more of the table features
aredescribed. Theinterna structure of the row handles will be described in the Section 9.10: “Theindex tree” (p. 93) .

9.6. A window is a FIFO

A fairly typical situation in the CEP world iswhen amodel needsto keep alimited history of events. For asimple example,
let's discuss, how to remember the last two trades per stock symbol. The size of two has been chosen to keep the sample
input and outputs small.

Thisisnormally called awindow logic, with adliding window. Y ou can think of it in a mechanical analogy: as the trades
become available, they get printed on a long tape. However the tape is covered with a masking plate. The plate has a
window cut in it that lets you see only the last two trades.

Some CEP systems have the special data structures that implement thislogic, that are called windows. Triceps has afeature
on atable instead that makes a table work as a window. It's not unique in this department: for example Coral8 does the
opposite, calls everything awindow, even if some windows are really tablesin every regard but name.

Here is a Triceps example of keeping the window for the last two trades and iteration over it:

our $uTrades = Triceps::Unit->new "uTrades") or confess "$!";
our $rtTrade = Triceps:: RowType- >new(

id=>"int32", # trade unique id

synbol => "string", # synbol traded

price => "fl oat 64",

size => "float64", # nunber of shares traded
) or confess "$!";

our $ttWndow = Triceps:: Tabl eType->new $rt Tr ade)
- >addSubl ndex(" bySynbol ",
Triceps:: I ndexType->newHashed(key => ["synbol" 1)
- >addSubl ndex("| ast 2",
Triceps:: I ndexType->newFi fo(linmt => 2)
)
)

or confess "$!'";

$ttWndow >initialize() or confess "$!";

our $t Wndow = $uTrades- >nmakeTabl e($tt W ndow,
&Triceps:: EM CALL, "tWndow') or confess "$!";

renenber the index type by synbol, for searching on it

our $itSynbol = $ttW ndow >fi ndSubl ndex("bySynbol") or confess "$!";
renenber the FIFO index, for finding the start of the group

our $itlLast2 = $itSynbol ->findSubl ndex("last2") or confess "$!";

print out the changes to the table as they happen

80 Tables

our $l bW ndowPrint = $uTrades->nakelLabel ($rt Trade, "| bW ndowPrint",
undef, sub { # (label, rowop)
print($_[1]->printP(), "“\n"); # print the change
}) or confess "$!'";
$t W ndow >get Qut put Label () - >chai n($| bW ndowPrint) or confess "$!'";

whi | e(<STDI N>) {
chonp;
ny $rTrade = $rtTrade- >makeRowArray(split(/,/)) or confess "$!'";
ny $rhTrade = $t W ndow >nakeRowHandl e($r Trade) or confess "$!'";
$t W ndow >i nsert ($rhTr ade) ;
There are two ways to find the first record for this
synmbol . Use one way for the synmbol AAA and the other for the rest.
ny $rhFirst;
if (%rTrade->get("synbol") eq "AAA") {
$rhFirst = $t W ndow >fi ndl dx($i t Synbol, $rTrade);
} else {
$rhTrade is nowin the table but it's the last record
$rhFirst = $rhTrade->firstOf Goupldx($itLast2) or confess "$!";

ny $rhEnd = $rhFirst->next Goupldx($itLast2) or confess "$!";
print("New contents:\n");
for (my $rhi = $rhFirst;
1 $r hi - >sanme($rhEnd); $rhi = $rhi->nextldx($itLast2)) {
print(" ", $rhi->getRowm)->printP(), "\n");
}
}

This example reads the trade records in CSV format, inserts them into the table, and then prints the actual modifications
reported by the table and the new state of the window for this symbol. And hereisasamplelog, with theinput linesin bold:

1, AAA 10, 10
t W ndow. out OP_I NSERT i d="1" synbol =" AAA" price="10" size="10"
New cont ent s:
id="1" synbol =" AAA" price="10" size="10"
2, BBB, 100, 100
t W ndow. out OP_I NSERT i d="2" symnbol ="BBB" price="100" size="100"
New cont ent s:
id="2" synbol ="BBB" price="100" size="100"
3, AAA 20, 20
t W ndow. out OP_I NSERT i d="3" synbol =" AAA" price="20" size="20"
New cont ent s:
id="1" synbol
i d="3" synbol
4, BBB, 200, 200
t W ndow. out OP_I NSERT i d="4" synbol ="BBB" price="200" size="200"
New cont ent s:

"AAA" price="10" size="10"
"AAA" price="20" size="20"

id="2" synbol ="BBB" price="100" size="100"
i d="4" synbol ="BBB" price="200" size="200"
5, AAA, 30, 30

t W ndow. out OP_DELETE id="1" synbol
t W ndow. out OP_I NSERT i d="5" synbol
New cont ent s:
id="3" synbol
i d="5" synbol
6, BBB, 300, 300
t W ndow. out OP_DELETE id="2" synbol
t W ndow. out OP_I NSERT i d="6" synbol
New cont ent s:
i d="4" synbol
i d="6" synbol

="AAA" price="10" size="10"
="AAA" price="30" size="30"
="AAA" price="20" size="20"
="AAA" price="30" size="30"
="BBB" price="100" size="100"
="BBB" price="300" size="300"
price="200" size="200"

=" BBB"
="BBB" price="300" size="300"

A window is a FIFO 81

Y ou can see that the window logic works: at no time is there more than two rows in each group. As more rows are inserted,
the oldest rows get deleted.

Now let'sdig into the code. Thefirst thing to noticeisthat the table type has two indexes (strictly speaking, index types, but
most of the time they can be called indexes without creating a confusion) in it. Unlike your typical database, the indexes
in this example are nested.

Tabl eType
+- 1 ndexType Hash "bySynbol "
+- 1 ndexType Fifo "l ast2"

If you follow the nesting, you can see, that the first call addSubl ndex () adds an index type to the table type, while the
textually second addSubl ndex () adds an index to the previous index.

The same can also be written out in multiple separate calls, with the intermediate results stored in the variables:

$itLast2 = Triceps::|ndexType->newrifo(limt => 2);

$it Synbol = Triceps::|ndexType->newHashed(key => ["synbol"]);
$i t Synbol - >addSubl ndex("| ast 2", $itlLast2);

$tt Wndow = Triceps:: Tabl eType- >new($rt Tr ade) ;

$t t W ndow >addSubl ndex(" bySynbol ", $it Synbol);

I'm not perfectly happy with the way the table types are constructed with the index types right now, since the parenthesis
levels have turned out a bit hard to track. This is another example of following the C++ APl in Perl that didn't work out
too well, and it will change in the future. But for now please bear with it.

The index nesting is kind of intuitively clear, but the details may take some time to get your head wrapped around them.
Y ou can think of it asthe inner index type creating the miniature tables that hold the rows, and then the outer index holding
not individual rows but those miniature tables. So, to find the rows in the table you go through two levels of indexes: first
through the outer index, and then through the inner one. The table takes care of these details and makes them transparent,
unless you want to stop your search at an intermediate level: such as, to find all the transactions with a given symbol, you
need to do a search in the outer index, but then from that point iterate through all rows in the found inner index. For this
you obviously have to tell the table, where do you want to stop in the search.

The outer index is the hash index that we've seen before, the inner index is a FIFO index. A FIFO index doesn't have any
key, it just keeps the rowsin the order they were inserted. Y ou can search in aFIFO index but most of the timeit's not the
best idea: sinceit has no keys, it searcheslinearly through al itsrows until it finds an exact match (or runs out of rows). It's
areasonable last-resort way but it's not fast and in many cases not what you want. This also sends afew ripples through the
row deletion. Remember that the method del et eRow() and sending the OP_DELETE to the table's input label invoke
find(),whichwould cause the linear search on the FIFO indexes. So when you use a FIFO index, it's usually better to
find the row handle you want to deletein some other way and then call r enmove() onit, or use another approach that will
be shown later. Or just keep inserting the rows and never delete them, like this example does.

A FIFO index may contain multiple copies of an exact same row. It doesn't care, it just keeps whatever rows were given
to it in whatever order they were given.

By default a FIFO index just keeps whatever rows come to it. However it may have a few options. Setting the option
i mt limitsthe number of rows stored in the index (not per the whole table but per one of those “miniature tables").
When you try to insert one row too many, the oldest row gets thrown out, and the limit stays unbroken. That's what creates
the window behavior: keep the most recent N rows.

If you look at the sample output, you can see that inserting the rows with ids 1-4 generates only the insert events on the
table. But the rows 5 and 6 start overflowing their FIFO indexes, and cause the oldest row to be automatically deleted
before completing the insert of the new one.

A FIFO index doesn't have to be nested inside a hash index. If you put a FIFO index at the top level, it will control the
whole table. So it would be not two last record per key but two last records inserted in the whole table.

82 Tables

Continuing with the example, the table gets created, and then the index types get extracted back from the table type.
Now, why not just write out the table type creation with intermediate variables as shown above and remember the index
references? At some point in the past this actually would have worked but not any more. It has to do with the way the table
type and its index types are connected. It's occasionally convenient to create one index type and then reuse it in multiple
tabletypes. However for the whole thing to work, the index type must betied to its particul ar table type. Thistying together
happens when the table type is initialized. If you put the same index type into two table types, then when the first table
type is initialized, the index type will get tied to it. The second table type would then fail to initialize because an index
initisalready tied elsewhere. To get around this dilemma, now when you call addSubl ndex() , it doesn't connect the
original index type, instead it makes a copy of it. That copy then gets tied with the table type and later gets returned back
with f i ndSubl ndex() .

The table methods that take an index type argument absolutely require that the index type must be tied to that tabl€'s type.
If you try to pass a seemingly the same index type that has not been tied, or has been tied to a different table type, that
isan error.

One last note on this subject: there is no interdependency between the methodsnmakeTabl e() andf i ndSubl ndex(),
they can be donein either order.

The exampl e output comes from two sources. The running updates on the table's modifications (the lineswith OP_| NSERT
and OP_DELETE) are printed fromthelabel $I bW ndowPr i nt . The new window contentsis printed from the main loop.

The main loop reads the trade records in the simple CSV format without the opcode, and for simplicity inserts directly into
the table with the procedural API, bypassing the scheduler. After the row is inserted, the contents of itsindex group (that
“miniaturetable”) gets printed. Theinsertion could as well have been done with passing directly the row reference, without
explicitly creating a handle. But that handle will be used to demonstrate an interesting point.

To print the contents of an index group, we need to find its boundaries. In Triceps these boundaries are expressed as the
first row handle of the group, and as the row handle right after the group. There is an internal logic to that, and it will be
explained later, but for now just take it on faith.

With the information we have, there are two ways to find the first row of the group:

» With the table's method f i ndl dx() . It's very much like f i nd() , only it has an extra argument of a specific index
type. If the index type given has no further nesting in it, f i ndl dx() works exactly likefi nd() . Infact, fi nd()
is exactly such a special case of fi ndl dx() with an automatically chosen index type. If you use an index type with
further nesting under it, f i ndl dx() will return the handle of the first row in the group under it (or the usual NULL
row handle if not found).

« If we create the row handle explicitly before inserting it into the table, as was done in the example, that will be the
exact row handle inserted into the table. Not a copy or anything but this particular row handle. After arow handle gets
inserted into the table, it knows its position in the indexes. It knows, in which group it is. And we still have areference
to it. So then we can use this knowledge to navigate within the group, jump to the first row handle in the group with
firstOf Goupl dx().Italsotakesanindex type but in this caseit'sthe type that controls the group, the FIFO index
in out case.

The example shows both ways. As a demonstration, it uses the first way if the symbol is“AAA” and the second way for
all the other symbols.

The end boundary isfound by calling next G- oupl dx() onthefirst row's handle. The handle of the newly inserted row
could have also been used for next G oupl dx () , or any other handlein the group. For any handle belonging to the same
group, theresult is exactly the same.

Andfinally, after theiteration boundaries have been found, theiteration on the group can run. The end condition comparison
is done with sane() , to compare the row handle references and not just their Perl-level wrappers. The stepping is done
with next | dx() , withisexactly like next () but according to a particular index, the FIFO one. This has actually been

A window is a FIFO 83

done purely to show off this method. In this particular case the result produced by next (), next 1 dx() on the FIFO
index type and next | dx() on the outer hash index type is exactly the same. We'll come to the reasons of that yet.

Checking the results of find and iteration methods by or conf ess would be quite inconvenient, so these methods have
been already made to confess on errors.

Looking forward, as you iterate through the group, you could do some manual aggregation along the way. For example,
find the average price of the last two trades, and then do something useful with it.

Thereis also apiece of information that you can find without iteration: the size of the group.
$si ze = $tabl e- >groupSi zel dx($i dxType, $row or_rh);

Thisinformation is important for the joins, and iterating every time through the group isinefficient if all you want to get
is the group size. Since when you need this data you usually have the row and not the row handle, this operation accepts
either and implicitly performsaf i ndl dx() ontherow to find the row handle. Moreover, even if it receivesthe argument
of arow handlethat isnot in the table, it will also automatically perform af i ndl dx() onit (though calling it for arow
handle in the table is more efficient because the group would not need to be looked up first).

If there is no such group in the table, the result will be 0.

The $i dxType argument is the non-leaf parent index of the group. (Using aleaf index typeis not an error but it always
returns 0, because there are no groups under it). It's basically the same index type as you would use in f i ndl dx() to
find the first row of thegroup orinfi r st Of G oupl dx() or next Groupl dx() to find the boundaries of thr group.
Remember, a non-leaf index type defines the groups, and the nested index types under it define the order in those groups
(and possibly further break them down into sub-groups).

It'sabit confusing, so let's recap with another example. If you have a table type defined as:

our $ttPosition = Triceps:: Tabl eType->new $rt Position)
- >addSubl ndex (" pri mary",
Triceps:: I ndexType- >newHashed(key => ["date", "custoner", "synbol"])

- >addSubl ndex("currencyLookup”, # for joining with currency conversion
Triceps:: I ndexType->newHashed(key => ["date", "currency"])
- >addSubl ndex(" groupi ng", Triceps::IndexType->newrifo())

- >addSubl ndex("byDate", # for cleaning by date
Tri ceps:: Si npl eOr der edl ndex- >new(date => "ASC")
- >addSubl ndex(" groupi ng", Triceps::I|ndexType->newrifo())

)

or confess "$!";

thenit would make sensetocal gr oupSi zel dx() ,fi rst OF Groupl dx() andnext Gr oupl dx() withtheindexes
“currencyLookup” or “byDate” but not with “primary”, “ currencyL ookup/grouping” nor “byDate/grouping”. Y ou can call
findl dx() with any index, but for “currencyLookup” or “byDate” it would return the first row of the group while
for “primary”, “currencyL ookup/grouping” or “byDate/grouping” it would return the only matching row. On the other
hand, for iteration in a group, it makes sense to call next |1 dx() only on “primary”, “currencyL ookup/grouping” or
“byDate/grouping”. Calling next | dx() on the non-leaf index typesis not an error but it would in effect resolve to the
same thing as using their first leaf sub-indexes.

9.7. Secondary indexes

Thelast example dealt only with the row inserts, because it could not handle the del etions that well. What if the trades may
get cancelled and have to be removed from the table? There is a solution to this problem: add one more index. Only this
time not nested but in parallel. The indexes in the table type become tree-formed:

Tabl eType

84 Tables

+- I ndexType Hash "byld" (id)
+- I ndexType Hash "bySynbol " (synbol)
+- 1 ndexType Fifo "l ast2"

It'svery much like the common relational databases where you can define multiple indexes on the same table. Both indexes
byl d and by Synbol (together with its nested sub-index) refer to the same set of rows stored in the table. Only byl d
allowsto easily find the records by the uniqueid, while by Synbol isresponsible for keeping then grouped by the symboal,
in FIFO order. It could be said that by d isthe primary index (since it has a unique key) and by Synbol isasecondary
one (since it does the grouping) but from the Triceps'es standpoint they are pretty much equal and parallel to each other.

Toillustrate the point, hereisamodified version of the previous example. Not only doesit manage the deletes but also com-
putes the average price of the collected transactions as it iterates through the group, thus performing a manual aggregation.

our $uTrades = Triceps::Unit->new "uTrades") or confess "$!";
our $rtTrade = Triceps:: RowType- >new(

id=>"int32", # trade unique id

synbol => "string", # synbol traded

price => "fl oat 64",

size => "float64", # nunber of shares traded
) or confess "$!";

our $ttWndow = Triceps:: Tabl eType->new($rt Tr ade)
- >addSubl ndex(" byl d",
Triceps:: I ndexType->newHashed(key => ["id"])

)
- >addSubl ndex(" bySynbol ",
Triceps:: I ndexType->newHashed(key => ["synbol" 1)
- >addSubl ndex("| ast 2",
Triceps:: I ndexType->newFi fo(linmt => 2)
)
)

or confess "$!'";

$ttWndow >initialize() or confess "$!";

our $t W ndow = $uTrades- >nmakeTabl e($tt W ndow,
&Triceps:: EM CALL, "tWndow') or confess "$!";

renenber the index type by synmbol, for searching on it

our $itSynbol = $ttW ndow >findSubl ndex("bySynbol") or confess "$!";
renenber the FIFO index, for finding the start of the group

our $itlLast2 = $itSynbol ->findSubl ndex("last2") or confess "$!";

renenber, which was the last row nodified
our $rLast Mod;
our $l bRenenber Last Mod = $uTr ades- >nakelLabel ($rt Trade, "I bRenenber Last Mbd",
undef, sub { # (label, rowop)
$rLastMod = $_[1] ->get Row() ;
}) or confess "$!'";
$t W ndow >get Qut put Label () - >chai n($l bRenenber Last Mod) or confess "$!";

Print the average price of the synbol in the last nodified row
sub printAverage # (row
{

return unl ess defined $rLast Mod;

nmy $rhFirst = $t W ndow >findl dx($itSynbol, $rlLastMd);

ny $rhEnd = $rhFirst->next Goupldx($itLast2) or confess "$!";

print("Contents:\n");

ny $avg;

ny ($sum $count);

for (my $rhi = $rhFirst;

1 $r hi - >sanme($rhEnd); $rhi = $rhi->nextldx($itLast2)) {
print(" ", $rhi->getRowm)->printP(), "\n");

Secondary indexes

85

$count ++;
$sum += $rhi - >get Row() - >get ("price");

}
if ($count) {

$avg = $suni $count ;
}

print("Average price: ", (defined $avg? $avg: "Undefined"), "\n");
}

whi | e(<STDI N>) {
chonp;
ny @ata = split(/,/);
ny $op = shift @lata; # string opcode, if incorrect then will die later
ny $rTrade = $rtTrade- >makeRowArray(@lata) or confess "$!'";
ny $rowop = $t W ndow >get | nput Label () - >makeRowop($op, $r Tr ade)
or confess "$!'";
$uTr ades->cal | ($rowop) or confess "$!";
&print Aver age() ;
undef $rlLastMd; # clear for the next iteration
$uTrades->drai nFrane(); # just in case, for conpleteness

}
And an example of its work, with the input lines shown in bold:

OP_I NSERT, 1, AAA, 10, 10
Cont ent s:
id="1" synbol =" AAA" price="10" size="10"
Average price: 10
OP_| NSERT, 2, BBB, 100, 100
Cont ent s:
id="2" synbol ="BBB" price="100" size="100"
Average price: 100
OP_I NSERT, 3, AAA, 20, 20
Cont ent s:
id="1" synbol =" AAA" price="10" size="10"
id="3" synbol =" AAA" price="20" size="20"
Average price: 15
OP_| NSERT, 4, BBB, 200, 200
Cont ent s:
id="2" synbol ="BBB" price="100" size="100"
id="4" synbol ="BBB" price="200" size="200"
Average price: 150
OP_I NSERT, 5, AAA, 30, 30
Cont ent s:
id="3" synbol =" AAA" price="20" size="20"
id="5" synbol =" AAA" price="30" size="30"
Average price: 25
OP_I| NSERT, 6, BBB, 300, 300
Cont ent s:
id="4" synbol ="BBB" price="200" size="200"
id="6" synbol ="BBB" price="300" size="300"
Average price: 250
OP_DELETE, 3
Cont ent s:
i d="5" synbol =" AAA" price="30" size="30"
Average price: 30
OP_DELETE, 5
Cont ent s:
Average price: Undefined

Theinput has changed: now an extra column is prepended to it, containing the opcode for the row. The updatesto the table
are not printed any more, but the calculated average price is printed after the new contents of the group.

86 Tables

In the code, the first obvious addition is the extraindex in the table type. The label that used to print the updates is gone,
and replaced with another one, that remembers the last modified row in aglobal variable.

That last modified row isthen used in thefunction pri nt Aver age() tofind the group for iteration. Why? Could not we
just remember the symbol from theinput data? Not always. Asyou can see from the last two input rowswith OP_DELETE,
thetrade id isthe only field required to find and delete arow using the index by| d. So these trade cancellation rows take
a shortcut and only provide the trade id, not the rest of the fields. If we try to remember the symbol fields from them,
we'd remember an undef . Can we just look up the row by id after the incoming rowop has been processed? Not after the
deletion. If we try to find the symbol by looking up the row after the deletion, we will find nothing, because the row will
already be deleted. We could look up the row in the table before the del etion, and remember it, and afterwards do the look-
up of the group by it. But since on deletion the row with will come to the tabl€'s output label anyway, we can just ride the
wave and remember it instead of doing the manual look-up. And this also spares the need of creating arow with the last
symbol for searching: we get aready pre-made row with the right symbol init.

Note that in this example, unlike the previous one, there are no two ways of finding the group any more: after deletion
the row handle will not be in the table any more, and could not be used to jump directly to the beginning of its group.
fi ndl dx() hasto beused to find the group.

By thetime pri nt Aver age() executes, it could happen that all the rows with that symbol will be gone, and the group
will disappear. This situation is handled nicely in an automatic way: fi ndl dx() will return a NULL row handle, for
which then next G- oupl dx() will alsoreturnaNULL row handle. The for-loop will immediately satisfy the condition
of $r hi - >same($r hEnd) , it will make no iterations, the $count and $avg will be left undefined. In result no rows
will be printed and the average value will be printed as “Undefined”, as you can see in the reaction to the last input row
in the sample output.

The main loop becomes reduced to reading theinput, splitting the line, separating the opcode, calling the table'sinput |abel,
and printing the average. The auto-conversion from the opcode name is used when constructing the rowop. Normally it's
not a good practice, since the program will dieif it finds a bad rowop in the input, but good enough for a small example.
Thedirect use of $uTr ades- >cal | () guaranteesthat by thetimeit returns, the last modified row will be remembered
in$r Last Mod, availablefor pri nt Aver age() touse.

After the averageiscalculated, $r Last Mod isreset to prevent it from accidentally affecting the next row. If the next row
isan attempt to delete atrade id that is not in the table any more, the DEL TE operation will have no effect on the table, and
nothing will be sent from the table's output label. $r Last Mod will stay undefined, and pri nt Aver age() will check
it and immediately return. An attempt to passan undef argumenttofi ndl dx() would be an error.

The final $uTr ades- >dr ai nFrane() is there purely for completeness. In this case we know that nothing will be
scheduled by the labels downstream from the table, and there will be nothing to drain.

Now, an interesting question is. how does the table know, that to delete a row, it has to find it using the field i d? Or,
since the deletion internally uses f i nd() , the more precise question is; how does fi nd() know that it has to use the
index byl d? It doesn't use any magic. It smply goes by the first index defined in the table. That's why the index by d
has been very carefully placed before by Synbol . The same principle appliesto all the other functionslike next () , that
use an index but don't receive one as an argument: the first index is always the default index. There is a bit more detail
to it, but that's the rough principle.

9.8. Sorted index

The hashed index provides a way to store rows indexed by a key. It is fast but it has a price to pay for that speed: when
iterating through it, the records comein an unpredictable (though repeatabl e, within a parti cular machine architecture) order
determined by the hash function. If the order doesn't matter, that's fine. But often the order does matter, and is desirable
even at the tradeoff of the reduced performance.

The sorted index provides a solution for this problem. It is created with:

$it = Triceps::|ndexType->newPer| Sort ed($sort Nane,

Sorted index 87

\ & ni t Func, \&conpareFunc, @rgs);
The*Perl” in “newPerlSorted” refers to the fact that the sorting order is specified as a Perl comparison function.

$sor t Nane isjust asymbolic name for printouts. It'sused whenyoucall $i t - >pri nt () (directly or asarecursivecall
from thetable type print) to let you know what kind of index typeit s, sinceit can't print the compiled comparison function.
It is aso used in the error messages if something dies inside the comparison function: the comparison is executed from
deep inside the C++ code, and by that time the $sor t Narre isthe only way to identify the source of the problems. It's not
the same name as used to connect the index type into the table type hierarchy with addSubl ndex() . Asusual, an index
type may be reused in multiple hierarchies, with different names, but in al casesit will also keep the same $sor t Nane.
Thismay be easier to show with an example:

$rtl = Triceps:: RowType- >new(
a => "int32",
b => "string",

) or confess "$!";

$itl = Triceps::|ndexType->newPer| Sorted("basic", undef, \&conpBasic)
or confess "$!'";

$ttl = Triceps:: Tabl eType->new($rt 1)
->addSubl ndex("primary", $it1l)
or confess "$!'";

$tt2 = Triceps:: Tabl eType- >new($rt 1)
->addSubl ndex("first", $itl)
or confess "$!'";

print $ttil->print(), "\n";
print $tt2->print(), "\n";

Theprint callsin it will produce:

table (

row {
int32 a,
string b,

}
) 1

i
}
table (

row {

int32 a,
string b,

ndex Perl Sortedl ndex(basic) prinmary,

}
) 4

|
}

ndex Perl Sortedl ndex(basic) first,

Both the name of the index type in the table type and the name of the sorted index type are printed, but in different spots.

Thei ni t Func and/or conpar eFunc references specify the sorting order. One of them may be left undefined but not
both. @r gs are the optional arguments that will be passed to both functions.

The easiest but least flexible way is to just use the conpar eFunc. It gets two Rows (not RowHandles!) as arguments,
plus whatever is specified in @r gs. It returns the usual Perl-style “<=>" result. For example:

sub conmpBasic # ($rowl, $row2)
{

88 Tables

return $_[0]->get("a") <=> $_[1]->get("a");
}

Don't forget to use “<=>" for the numbers and “cmp” for the strings. The typical Perl idiom for sorting by more than one
field isto connect them by “||”.

Or, if we want to specify the field names as arguments, we could define a sort function that sorts first by a numeric field
in ascending order, then by a string field in descending order:

sub conpAscDesc # ($rowl, $row2, $nuntl dAsc, $strFl dDesc)

{
ny ($rowl, $row2, $nunf, $strf) = @;
return $rowl->get ($nunf) <=> $row2->get ($nunf)
|| $row2->get ($strf) cnp $rowl->get ($strf); # backwards for descending

}

ny $sit = Triceps::|IndexType->newPer| Sorted("by_a_b", undef,
\ &onpAscDesc, "a", "b") or confess "$!";

This assumes that the row type will have a numeric field “a” and a string field “b”. The problem is that if it doesn't then
thiswill not be discovered until you create atable and try to insert somerowsinto it, which will finally call the comparison
function. Even then it won't be exactly obvious because this comparison function never checks " $! " after get (), and
you'll see no failures but all the rows will be considered equal and will replace each other.

You could check that the arguments match the row type ($r owl- >get Type()) in the comparison function but that
would add extra overhead, and the Perl comparisons are slow enough as they are.

Thei ni t Func provides away to do that check and more. It iscalled at the table type initialization time. By thistime all
this extra information is known, and it gets the references to the table type, index type (itself, but with the class stripped
back to Triceps::IndexType), row type, and whatever extra arguments that were passed. It can do all the checks once.

Theinit function's return value iskind of backwards to everything else: on successit returnsundef , on error it returnsthe
error message. It could dietoo, but simply returning an error message is somewhat nicer. The returned error messages may
contain multiple lines separated by “\n”, so it should try to collect all the error information it can.

Theinit function that would check the arguments for the last example can be defined as:

sub initNuntr # ($tabt, $idxt, $row, @rgs)

{
my ($tabt, $idxt, $rowmt, @rgs) = @Q;
my %ef = $rowt->getdef(); # the field definition
ny $errors; # collect as nany errors as possible

my $t;

if ($#args = 1) {
$errors .= "Received " . ($#args + 1)
} else {
$t = $def{Pargs[0]};
if ($t '~ /int32%]int64$|float64$/) {
$errors .= "Field '" . $args[O0] "

argunments, nust be 2.\n

is not of nuneric type.\n"

}

$t = $def {S$args[1]};

if ($t '~ /string$luint8/) {
$errors .= "Field '" . $args[1]

}

}

if (defined $errors) {
help with diagnostics, append the row type to the error listing
$errors .= "the row type is:\n";

is not of string type.\n"

Sorted index 89

$errors .= $rowm->print();

}

return $errors;

}

ny $sit = Triceps::|ndexType->newPerl| Sorted("by_a_b", \& nitNunStr,

\ &onpAscDesc, "a", "b") or confess "$!";
Theinit function can do even better: it can create and set the comparison function. It's done with:

$i dxt - >set Conpar at or (\ & onpar eFunc)
or return "Failed to set conparator: $!'";

Instead of the usual “or conf ess”, this snippet shows“or r et ur n” because thisis the error indication convention
of theinit function. But “or conf ess” woudl work too.

When theinit function sets the comparator, the compare function argument innewPer | Sor t ed() can beleft undefined,
because set Conpar at or () would override it anyway. But one way or the other, the compare function must be set, or
the index type initialization and with it the table type initialization will fail.

By the way, the sorted index type init function is not of the same kind as the aggregator type init function. The aggregator
type could use an init function of this kind too, but at the time it looked like too much extra complexity. It probably will
be added in the future. But more about aggregators later.

A fancier example of the init function will be shown in the next section.

Internally the implementation of the sorted index shares much with the hashed index. They both are implemented as trees
but they compare the rows in different ways. The hashed index is aimed for speed, the sorted index for flexibility. The
common implementation means that they share certain traits. Both kinds have the unique keys, there can not be two rows
with the same key in an index of either kind. Both kinds allow to nest other indexesin them.

9.9. Ordered Iindex

To specify the sorting order in a more SQL-like fashion, Triceps has the class SimpleOrderedindex. It's implemented
entirely in Perl, on top of the sorted index. Besides being useful by itself, it shows off two concepts: the initialization
function of the sorted index, and the template with code generation on the fly.

First, how to create an ordered index:

$it = Triceps::SinpleOderedl ndex->new $fi el dNanme => $order, ...)
or confess "$!'";

Theargumentsarethekey fields. $or der isoneof " ASC" for ascendingand " DESC" for descending. Hereisan example
of atable with thisindex:

ny $tabType = Triceps:: Tabl eType- >new($r owType)
- >addSubl ndex("sorted",
Tri ceps: : Si npl eOr der edl ndex- >new(
a => "ASC',
b => "DESC',
)

) or confess "$!";

When it gets translated into a sorted index, the comparison function gets generated automatically. It's smart enough to
generate the string comparisons for the st r i ng and ui nt 8 fields, and the numeric comparisons for the numeric fields.
It's not smart enough to do the local e-specific comparisons for the strings and locale-agnostic for the ui nt 8, it just uses
whatever you have set up in cnp for both. It treats the NULL field values as numeric O or empty strings. It doesn't handle
the array fields at all but can at least detect such attempts and flag them as errors.

90 Tables

A weird artifact of the boundary between C++ and Perl is that when you get the index type back from the table type like

$sortldx = $tabType->fi ndSubl ndex("sorted") or confess "$!'";

the reference stored in $sor t | dx will be of the base type Triceps::IndexType. That's because the C++ internals of the
TableType object know nothing about any derived Perl types. But it's no big deal, since there are no other useful methods

for SimpleOrderedindex anyway. For the future, | have an idea of aworkaround, but it has to wait for the future.

If youcall $sort | dx->pri nt (), itwill giveyou anideaof how it was constructed:

Per | Sort edl ndex(Si npl eOrder a ASC, b DESC,)

The contents of the parenthesis is a sort name from the sorted index'es standpoint. It's an arbitrary string. But when the

ordered index prepares this string to pass to the sorted index, it puts its arguments into it.

Now theinteresting part, | want to show the implementation of the ordered index. It's not too big and it showsthe flexibility

and the extensibility of Triceps:

package Triceps:: Si npl eOr der edl ndex;
use Carp;

our @SA = gwWTriceps::IndexType);

Create a new ordered index. The order is specified
as pairs of (fieldNane, direction) where direction is a string
"ASC' or "DESC'.
sub new # ($cl ass, $fiel dName => $direction...)
{
ny $class = shift;
ny @rgs = @; # save a copy

build a descriptive sortNane
ny $sortNanme = 'SinpleOrder ';
while ($#_ >= 0) {

ny $fld = shift;

ny $dir shift;

$sort Nane .= quot enet a($fl d)

quoteneta($dir) . ', ';
}

$sel f = Triceps::|ndexType->newPer| Sort ed(
$sort Nane, \& nit, undef, @rgs

) or confess "$!";

bl ess $sel f, $cl ass;

return $sel f;

}

The initialization function that actually parses the args.
sub init # ($tabt, $idxt, $row, @rgs)
{
ny ($tabt, $idxt, $rowt, @rgs) = @;
my %def = $rowt->getdef(); # the field definition
ny $errors; # collect as nany errors as possible
ny $conpare = "sub {\n"; # the generated conparison function
ny $connector = "return"; # what goes between the conpari son operators

while ($#args >= 0) {
ny $f = shift @rgs;
ny $dir = uc(shift @rgs);

ny ($left, $right); # order the operands depending on sorting direction
if ($dir eq "ASC') {

Ordered index

91

$left = 0; $right =1
} elsif ($dir eq "DESC') {
$left = 1; $right = 0;

} else {
$errors .= "unknown direction '$dir' for field '$f', use "ASC or 'DESC\n";
keep going, may find nore errors

}

ny $type = $def {$f};

if (!defined $type) {
$errors .= "no field "$f' in the row type\n";
next ;

}

ny $cnp = "<=>"; # the conparison operator
if ($type eq "string"
|| $type =~ /"*uint8.*/) {
$cnmp = "cnp"; # string version
} elsif($type =~ /\1%/) {

$errors .= "can not order by the field "$f', it has an array type '$type', not
supported yet\n";
next ;
}
ny $getter = "->get(\"" . quoteneta($f) . "\")";
$conmpare .= " S$connector \$_[$left] $getter $cnp \$_[$right] $getter\n”;
$connector = "||";
}
$conpare .= " ;\n";
$conpare .= "}";

if (defined $errors) {
help with diagnostics, append the row type to the error listing

$errors .= "the row type is:\n";
$errors .= $rowt ->print();
} else {

conpil e the conparison
#print STDERR "DEBUG Tri ceps:: Sinpl eOrderedlndex::init: conparison function:\n$conpare
\n";
ny $cnpfunc = eval $conpare
or return "Triceps::SinpleOrderedlndex::init: internal error when conpiling the
conpare function:\n"
"$@n"
"The generated conparator was:\n"
$conpare;
$i dxt - >set Conpar at or ($cnpf unc)
or return "Triceps::SinpleOrderedindex::init: internal error: can not set the
conpare function:\n"
"$'\n";
}

return $errors;

}

The class constructor simply builds the sort name from the arguments and offloads the rest of logic to the init function. It
can't really do much more: when the index type object is constructed, it doesn't know yet, where it will be used and what
row type it will get. It tries to enquote nicely the weird characters in the arguments when they go into the sort name. Not
that much useis coming from it at the moment: the C++ code that prints the table type information doesn't do the same, so
there still is a chance of mishalanced quotes in the result. But perhaps the C++ code will be fixed at some point too.

92 Tables

The init function is called at the table type initialization time with all the needed information. It goes through all the
arguments, looks up the fields in the row type, and checks them for correctness. It tries to collect as much of the error
information as possible. The returned error messages may contain multiple lines separated by “\n”, and the ordered index
makes use of it. The error messages get propagated back to the table type level, nicely indented and returned from the table
initialization. If the init function finds any errors, it appends the printout of the row type too, to make finding what went
wrong easier. A result of a particularly bad call to atable typeinitialization may look like this:

i ndex error:
nested index 1 'sorted':
unknown direction ' XASC for field 'z', use 'ASC or 'DESC
no field 'z' in the row type
can not order by the field 'd', it has an array type 'float64[]', not supported yet
the row type is:
row {
uint8 a,
uint8[] b,
int64 c,
float64[] d,
string e,

}

Also astheinit goes through the arguments, it constructs the text of the compare function in the variable $conpar e. Here
the use of quot enet a() for the user-supplied strings isimportant to avoid the syntax errorsin the generated code. If no
errors are found in the arguments, the compare function gets compiled with eval . There should not be any errors, but it's
always better to check. Finally the compiled compare function is set in the sorted index with

$i dxt - >set Conpar at or ($cnpf unc)

If you uncomment the debugging printout line (and run “rmake”, and maybe “nmake i nst al | ” afterwards), you can see
the auto-generated code printed on stderr when you use the simple ordered index. It will look somewhat like this:

sub {
return $_[0]->get("a") cnp $_[1]->get("a")
[$_[1]->get("c") &l t;=> $_[0]->get("c")
[l $_[0]->get("b") cnp $_[1]->get("b")

}

That's it! An entirely new piece of functionality added in a smallish Perl snippet. Thisis your typical Triceps template:
collect the arguments, use them to build Perl code, and compile it. Of course, if you don't want to deal with the code
generation and compilation, you can just call your class methods and whatnot to interpret the arguments. But if the code
will be reused, the compilation is more efficient.

9.10. The index tree

The index typesin atable type can form a pretty much arbitrary tree. Following the common tree terminology, the index
types that have no other index types nested in them, are called the leaf index types. Since there seems to be no good one-
word naming for the index types that have more index types nested in them (“inner"? "nested" is too confusing), | simply
call them non-leaf.

At the moment the Hashed, Sorted and Ordered index types can be used only in both |eaf and non-leaf positions. The FIFO
index types must always be in the leaf position, they don't allow the further nesting.

Now isthe timeto look deeper into what is going on inside atable. Note that I've been very carefully talking about “index
types’” and not “indexes’. In this section the difference matters. The index types are in the table type, the indexes are in
the table. One index type may generate multiple indexes.

Thiswill become clearer after you see the illustrations. First, the legend in the Figure 9.1 .

The index tree 93

TableType

IndexType

Index

Position in an Index

Reference to a Row

Index Iterator in a RowHandle

A RENN

Reference to a Row in a RowHandle

Figure 9.1. Drawings legend.

The nodes belonging to the table type are shown in red, the nodes belonging to the table are shown in blue, and the contents
of the RowHandleis shown separately in yellow. The lines on the drawings represent not exactly pointers as such but more
of the logical connections that may be more complicated than the simple pointers.

The lines in the RowHandle don't mean anything at all, they just show that the parts go together. In reality a RowHandle
is a chunk of memory, with various elements placed in that memory. As far as indexes are concerned, the RowHandle
contains an iterator for every index where it belongs. Thisletsit know its position in the table, to iterate along every index,
and, most importantly, to be removed quickly from every index. A RowHandle belongs to one index of each index type,
and contains the matching number of iteratorsin it.

The table type is shown as a normal flat tree. But the table itself is more complex and becomes 3-dimensional. Its “view
from above’ matches the table type's tree but the data grows “up” in the third dimension.

Let's start with the simplest case: a table type with only one index type. Whether the index type is hash or FIFO, doesn't
matter here.

Tabl eType
+- 1 ndexType "A"

Figure 9.2 shows the table structure.

94 Tables

row handle < 7

Figure9.2. Oneindex type.

The table here always contains exactly one index, matching the one defined index type, and the root index. The root index
isvery dumb, its only purpose isto tie together the multiple top-level indexesinto atree.

The only index of type A provides an ordering of the records, and this ordering is used for the iteration on the table.

For the next example let's ook at the straight nesting in Figure 9.3 .

Tabl eType
+- 1 ndexType "A"
+- 1 ndexType "B"

The index tree 95

root A

A B
row handle T N A

Figure 9.3. Straight nesting.

The stack of row referencesis shown visually divided to match the indexing, but in reality thereisno specia division. This
was done purely to make the picture easier to read.

Thereis still only one index of type A. And this is always the case with the top-level indexes, there is only one of them.
This index divides the rows into 3 groups. Just like the rows in a leaf index, the groups in a non-leaf index are ordered
in some index-specific way.

Each group then has its own second-level index of type B. Which then defines an order for therowsin it. To reiterate: the
index of type A splits the rows by groups, then the group's index of type B defines the order of the rows in the group.

So what happens when we iterate through the table and ask for the next row handle? The current row handle contains the
iterators in the indexes of types A and B. The easy thing is to advance the iterator of type B. Yeah, but in which index?
The Figure 9.3 shows three indexes of type B, let's call them B1, B2 and B3. Theiterator of type B in the row handletells
the relative position in the index, but it doesn't tell, which index it is. We need to step back and look at the index type A.
It'sthe top-level index type, so thereis always only one index for it. Then we take the iterator of type A and find thisrow's
group in the index A. The group contains the index of type B, say B1. We can then take thisindex B1, take the iterator of
type B from the row handle, and advance thisiterator in thisindex. If the advance succeeded, then great, we've got the next
row handle. But if the current row was the last row in B1, we need to step back to the index A again, advance the current
row handle's iterator of type A there, find itsindex B2, and pick the first row handle of B2.

This processiswhat happenswhenweuse $r h- >next | dx($i t B) . Theiteration goes by theleaf index type B, however
it relieson all theindex typesin the path from the table type to B. If we do $r h- >next () , theresult is the same because
thefirst leaf index type is used as the default index type for the iteration.

If we do $r h- >next ($i t A), the semanticsis till the same: return the next row handle (not the next group). Thereis
no way to get to the row handle without going all the way through aleaf index. So when a non-leaf index typeis used for
the iteration, it getsimplicitly extended to itsfirst nested |leaf index type.

What would happen if anew row getsinserted, and theindex type A determinesthat it does not belong to any of the existing
groups? A new group will be created and inserted in the appropriate positionin A'sorder. This group will have anew index
of type B created, and the new row inserted in that index.

96 Tables

What would happen if both rowsin B1 are removed? B1 will become empty and will be collapsed. Theindex A will delete
the B1's group and B1 itself, and will remain with only two groups. The effect propagates upwards: if all the rows are
removed, the last index of type B will collapse, then theindex A will become empty and also collapse and be deleted. The
only thing left will be the root index that stays in the existence no matter what.

When atable is first created, it has only the root index. The rest of the indexes pop into the existence as the rows get
inserted. If you wonder, yes, this does apply to atable type with only one index type as well. Just this point has not been
brought up until now.

Among all this froth of creation and collapse the iterators stay stable. Once arow isinserted, the indexes leading to it are
not going anywhere (at least until that row gets removed). But since other rows and groups may be inserted around it, the
notion of what row is next, will change over time.

Let's go through how the other index-related operations work.

The iteration through the whole table starts with begi n() or begi nl dx(), the first being a form of the second that
always uses the first leaf index type. begi nl dx() isfairly straightforward: it just follows the path from the root to the
leaf, picking the first position in each index along the way, until it hits the RowHandle, asis shown in Figure 9.4 . That
found RowHandle becomes its result. If the tableis empty, it returns the NULL row handle.

A B
o»
B
|
root A
> |
A B

row handle

Figure9.4. begi n(), begi nl dx($i t A) and begi nl dx($i t B) work the samefor thistable.

Thenext pair isfi nd() andfi ndl dx() (andfi ndBy() andfi ndl dxBy() arewrappersaround those). As usual,
find() isthesamethingasfi ndl dx() onthetable'sfirst leaf index type. It also follows the path from the root to the
target index type. On each step it tries to find a matching position in the current index. If the position could not be found,
the search failsand aNULL row handleis returned. If found, it is used to progress to the next index.

As has been mentioned in Section 9.5: “A closer look at the RowHandles’ (p. 78) the search aways works internally

on a RowHandle argument. If a plain Row is used as an argument, a new temporary RowHandle will be created for it,
searched, and then freed after the search. Thisworkswell for two reasons. First, the indexes already have the functions for
comparing two row handlesto build their ordering. The same functions are reused for the search. Second, the row handles
contain not only the index iterators but also the cached information from the rows, to make the comparisons faster. The
exact kind of cached information varies by the index type. The FIFO, Sorted and Ordered indexes use none. The Hashed

The index tree 97

indexes calculate a hash of the key field values, that will be used as a quick differentiator for the search. Thisinformation
gets created when the row handle gets created. Whether the row handle is then used to insert into the table or to search in
it, the hash is then used in the same way, to speed up the comparisons.

Infindl dx(),thenon-leaf index type arguments behave differently than the leaf ones: up to and including the index of
the target type, the search works as usual. But then at the next level the logic switches to the same asin begi nl dx(),
going for the first row handle of the first leaf sub-index. This lets you find the first row handle of the matching group
under the target index type.

If you use $t abl e- >fi ndl dx($i t A, $rh), onFigure 9.5 it will go through the root index to the index A. There
it will try to find the matching position. If none is found, the search ends and returns a NULL row handle. If the position
is found, the search progresses towards the first leaf sub-index type. Which is the index type B, and which conveniently
sitsin this case right under A. The position in the index A determines, which index of type B will be used for the next
step. Suppose it's the second position, so the second index of type B is used. Since we're now past the target index A, the
logic used isthe same asfor begi nl dx () , and thefirst positionin B2 is picked. Which then leads to the first row handle
of the second sub-stack of handles.

root

A B
row handle e

Figure9.5.fi ndl dx($i t A, $rh) goesthrough A and then switchestothebegi nl dx() logic.

Themethod fi rst Of Groupl dx() alowsto navigate within agroup, to jump from some row somewhere in the group
to the first one, and then from there iterate through the group. The example in Section 9.6: “A window is a FIFO" (p.
80) made use of it.

The Figure 9.6 shows an example of $t abl e- >fi rst Of G oupl dx($i t B, $rh), where $r h is pointing to the
third record in B2. What it needs to do is go back to B2, and then execute the begi n() logic from there on. However,
remember, the row handle does not have a pointer to the indexes in the path, it only has the iterators. So, to find B2, the
method does not really back up from the original row. It has to start all the way back from the root and follow the path
to B2 using the iterators in $r h. Since it uses the ready iterators, this works fast and requires no row comparisons. But
logically it's equivalent to backing up by onelevel, and I'll continue calling it that for simpicity. Once B2 (an index of type
B) isreached, thebegi n() logic goesfor thefirst row in there.

firstOf Groupl dx() works on both leaf and non-leaf index type arguments in the same way: it backs up from the
reference row to the index of that type and executesthe begi n() logic from there. Obviously, if you use it on a non-leaf
index type, the begi n() -like part will follow itsfirst leaf index type.

98 Tables

row handle

Figure9.6.fi rst O Groupl dx($itB, $rh).

The method next Groupl dx() jumps to the first row of the next group, according to the argument index
type. To do that, it has to retrace one level higher than first Of Groupl dx() . Figure 9.7 shows that $t a-
bl e- >next Groupl dx($i t B, $rh) that starts from the same row handle asin Figure 9.6 , has to logically back up
to theindex A, go to the next iterator there, and then follow to the first row of B3.

row handle

Figure9.7. next Groupl dx($i t B, $rh).

The index tree 99

As before, in redlity there is no backing up, just the path is retraced from the root using the iterators in the row handle.
Once the parent of index type B is reached (which is the index of type A), the path follows not the iterator from the row
handle but the next one (yes, copied from the row handle, increased, followed). This givesthe index of type B that contains
the next group. And from there the same begi n() -likelogic findsitsfirst row.

Sameasfirst O Groupl dx(),next G oupl dx() may beused on both the leaf and non-leaf indexes, with the same
logic.

It's kind of annoying that fi r st OF Gr oupl dx() and next Gr oupl dx() take the index type inside the group while
findl dx() usestakesthe parent index type to act on the same group. But as you can see, each of them follows its own
internal logic, and I'm not sure if they can be reconciled to be more consistent.

At the moment the only navigation isforward. Thereisno matching | ast (), prev() orl ast Groupl dx() or pre-
vG oupl dx() . They areintheplan, but so far they arethevictimsof corner-cutting. Thoughthereisaversionof | ast ()
in the AggregatorContext, since it happens to be particularly important for the aggregation.

Continuing our excursion into the index nesting topologies, the next exampleis of two parallel leaf index types:
Tabl eType

+- I ndexType A

+- 1 ndexType B

Theresulting internal arrangement is shown in Figure 9.8 .

A

B

A
root

B

A B
row handle

Figure 9.8. Two top-level index types.

Each index type produces exactly one index under the root (since the top-level index types always produce one index).
Both indexes contain the same number of rows, and exactly the same rows. When arow is added to the table, it's added

100 Tables

to al the leaf index types (one actual index of each type). When arow is deleted from the table, it's deleted from al the
leaf index types. So the total is always the same. However the order of rows in the indexes may differ. The drawing shows
the row references stacked in the same order asthe index A because theindex A is of thefirst leaf index type, and as such
isthe default one for the iteration.

The row handle contains the iterators for both paths, A and B. It's pretty normal to find a row through one index type and
then iterate from there using the other index type.

The next examplein Figure 9.9 hasa“primary” index with aunique key and a*“ secondary” index that groups the records:

Tabl eType

+- I ndexType A

+- 1 ndexType B
+- I ndexType C

owhandle <> >

Figure9.9. A “primary” and “secondary” index type.

The index type A still produces one index and references all the rows directly. The index of type B produces the groups,
with each group getting an index of type C. The total set of rows referrable through A and through B is till the same but
through B they are split into multiple groups.

And Figure 9.10 shows two leaf index types nested under one non-leaf.

Tabl eType

+- I ndexType A
+- 1 ndexType B
+- I ndexType C

The index tree 101

root A

A B C

row handle

Figure 9.10. Two index types nested under one.

As usud, there is only one index of type A, and it splits the rows into groups. The new item in this picture is that each
group hastwo indexesin it: one of type B and one of type C. Both indexes in the group contain the same rows. They don't
decide, which rowsthey get. Theindex A decides, which rows go into which group. Then if the group 1 contains two rows,
indexes B1 and C1, would both contain two rows each, the exact same set. The stack of row references has been visually
split by groups to make this point more clear.

Thishappensto be apretty useful arrangement: for example, B might be ahash index type, or asorted index type, allowing
to find the records by the key (and for the sorted index, to iterate in the order of keys), while C might be a FIFO index,
keeping the insertion order, and maybe keeping the window size limited.

That's pretty much it for the basic index topologies. Some much more complex index trees can be created, but they would
be the combinations of the examples shown. Also, don't forget that every extraindex type adds overhead in both memory
and CPU time, so avoid adding indexes that are not needed.

One more fine point has to do with the replacement policies. Consider that we have a table that contains the rows with
asinglefield:

idint32

And the table type has two indexes:

102 Tables

Tabl eType
+- 1 ndexType "A" Hashl ndex key=(id)
+- 1 ndexType "B" Fifolndex limt=3

And we send there the rowops:

I NSERT id
I NSERT id
I NSERT id
I NSERT id

N WN

The last rowop that inserts the row with id=2 for the second time triggers the replacement policy in both index types. In
the index A it is a duplicate key and will cause the removal of the previous row with id=2. In the index B it overflows
the limit and pushes out the oldest row, the one with id=1. If both records get deleted, the resulting table contents will be
2 rows (shown in FIFO order):

i d=3
i d=2

Which is probably not the best outcome. It might be tolerable with a FIFO index and a hashed index but gets even more
annoying if there are two FIFO index typesin the table: onetop-level limiting the total number of rows, another one nested
under a hashed index, limiting the number of rows per group, and they start conflicting this way with each other.

The Triceps FIFO index is actually smart enough to avoid such problems: it looks at what the preceding indexes have
decided to remove, checksif any of these rows belong to its group, and adjusts its calcul ation accordingly. In this example
theindex B will find out that the row with id=2 is aready displaced by the index A. That leaves only 2 rows in the index
B, so adding a new one will need no displacement. The resulting table contents will be

id=1
id=3
id=2

However here the order of index typesisimportant. If the table were to be defined as
Tabl eType

+- 1 ndexType "B" Fifolndex |imt=3

+- 1 ndexType "A" Hashl ndex key=(i d)

then the replacement policy of the index type B would run first, find that nothing has been displaced yet, and displace the
row id=1. After that the replacement policy of theindex type A will run, and being a hashed index, it doesn't have a choice,
it has to replace the row id=2. And both rows end up displaced.

If the situations with automatic replacement of rows by the keyed indexes may arise, always make sure to put the keyed
leaf index types before the FIFO leaf index types. However if you always diligently send a DELETE before the INSERT
of the new version of the recond, then this problem won't occur and the order of index types will not matter.

9.11. Table and index type introspection

A lot of information about atable type and the index typesin it can be read back from them.

$resul t
$resul t

= $tabType->islnitialized();

= $i dxType->islnitialized();

return whether atable or index type hasbeeninitialized. Theindex type getsinitialized when the table type where it belongs
gets initialized. After a table or index type has been initialized, it can not be changed any more, and any methods that
changeit will return an error. When an index type becomes initialized, it becomestied to a particular table type. Thistable
type can be read with

$t abType = $i dxType- >get Tabtype() or confess "$!'";

Table and index type introspection 103

Even though an initialized index type can't be tied to another table, when you add it to another table or index type, a deep
copy with all its sub-indexes will be made automatically, and that copy will be uninitialized. So it will be able to get
initialized and tied to the new table. However if you want to add more sub-indexes to it, do a manual copy first:

$i dxTypeCopy = $i dxType->copy();
The information about the nested indexes can be found with:

$i t Sub = $t abType->fi ndSubl ndex("i ndexNane") or confess "$!";
@t Subs = $tabType- >get Subl ndexes();

$i t Sub = $i dxType->fi ndSubl ndex("i ndexNane") or confess "$!";
@t Subs = $i dxType- >get Subl ndexes();

The fi ndSubl ndex() has been aready shown in Section 9.7: “Secondary indexes’ (p. 84). It alows to find the
index types on the next level of nesting, starting down from the table, and going recursively into the sub-indexes. get -
Subl ndexes() returnsthe information about the index types of the next level at once, as the name => value pairs. The
result array can be placed into ahash but that would losethe order of the sub-indexes, and the order isimportant for thelogic.

Thisfindstheindex types step by step. An easier way to find an index type in atable type by the “ path of the index” iswith

$i dxType = $tabType->fi ndl ndexPat h(\ @ dxNamnes) ;

The argumentsin the array form apath of namesin theindex typetree. If the path is not found, the function would confess.

An empty path is also illegal and would cause the same result. Y es, the argument is not an array but a reference to array.

This array is used essentially as a path object. For example the index from the Section 9.7: “ Secondary indexes’ (p. 84)
could be found as:

$itLast2 = $ttW ndow >fi ndl ndexPat h(["bySynbol", "last2"]);

The key (the set of fields that uniquely identify the rows) of the index type can be found with
@Gxeys = $it->getKey();

It can be used on any kind of index types but actually returns the data only for the Hashed index types. On the other index
typesit returns an empty array, though a better support will be available for the Sorted and Ordered indexes in the future.

A fairly common need is to find an index by its name path, and also al the key fields that are used by al the indexesin
this path. It's used for such purposes as joins, and it allows to treat a nested index pretty much as a composition of al the
indexesin its path. The method

($i dxType, @eys) = $tabl eType->fi ndl ndexKeyPat h(\ @at h) ;

solves this problem and finds by path an index type that allows the direct look-up by key fields. It requiresthat every index
typein the path returns anon-empty array of fieldsin get Key () . In practice it meansthat every index in the path must be
a Hashed index. Otherwise the method confesses. When the Sorted and maybe other index typeswill support get Key () ,
they will be usable with this method too.

Besides checking that each index typein the path works by keys, this method builds and returnsthelist of all the key fields
required for alook-up in thisindex. Note that @eys is an actua array and not a reference to array. The return protocol
of this method is alittle weird: it returns an array of values, with the first value being the reference to the index type, and
the rest of them the names of the key fields. If the table type were defined as

$tt = Triceps:: Tabl eType->new($rt)
- >addSubl ndex (" byCcy1",
Triceps:: I ndexType->newHashed(key => ["ccyl" 1)
- >addSubl ndex("byCcy12",

104 Tables

Triceps:: I ndexType->newHashed(key => ["ccy2" 1)
)
)
- >addSubl ndex(" byCcy2",
Triceps:: I ndexType->newHashed(key => ["ccy2" 1)

- >addSubl ndex(" groupi ng", Triceps::|ndexType->newFifo())
)

or confess "$!'";

then $tt->fi ndl ndexkKeyPat h(["byCcyl", "byCcyl2" 1) would return ($i xtref, "ccyl",
"ccy2"),where$i xtref isthereference to the index type. When assigned to ($i xt, @eys), $i xtref would
gointo$i xt,and ("ccyl", "ccy2") wouldgointo @eys.

The key field namesin the result go in the order they occurred in the definition, from the outermost to the innermost index.
The key fields must not duplicate. It's possible to define the index types where the key fields duplicate in the path, say:
$tt = Triceps:: Tabl eType- >new($rt)
- >addSubl ndex(" byCcy1",
Triceps:: |l ndexType- >newHashed(key => ["ccyl"])
- >addSubl ndex("byCcyl12",
Tri ceps:: | ndexType- >newHashed(key => ["ccy2", "ccyl"])
)
)

or confess "$!'";

And they would even work fine, with just a little extra overhead from duplication. But f i ndl ndexKeyPat h() will
refuse such indexes and confess.

Thekind of the index typeis aso known as the typeid. It can be found for an index type with
$id = $i dxType- >get | ndex!| d();

It's an integer constant, matching one of the values:

e &Triceps:: | T _HASHED

e &Triceps::IT_FIFO

e &Triceps:: | T_SORTED

There is no different id for the ordered index, because it's built on top of the sorted index, and would return
&Triceps:: |1 T_SORTED.

The conversion between the strings and constants for index typeidsis done with

$intld = &Triceps::stringlndexld($stringld);
$stringld = &Triceps::indexldString($intld);

If aninvalid value is supplied, the conversion functions will return undef .
Thereisaso away to find the first index type of a particular kind. It's called somewhat confusingly
$it Sub = $i dxType- >fi ndSubl ndexByl d($i ndexTypel d) or confess "$!";

where $i ndexTypel d is one of either of Triceps constants or the matching strings " | T_HASHED", " | T_FI FO',
"1 T_SORTED'.

Technically, thereisalso IT_ROOT but it's of little use for this situation since it's the root of the index type tree hidden
inside the table type, and would never be a sub-index type. It's possible to iterate through all the possible index type ids as

for ($i =0; $i < &Triceps::IT_LAST;, $i++) { ... }

Table and index type introspection 105

Thefirst leaf sub-index type, that is the default for iteration, can be found explicitly as

$i t Sub
$i t Sub

$t abType- >get Fi rst Leaf () ;
$i dxType- >get Fi rst Leaf () ;

If anindex isalready aleaf, get Fi r st Leaf () onitwill returnitself. The“leaf-ness’ of anindex type can be found with:
$result = $idxType->isLeaf();

The usual reference comparison methods are:

$result = $tabTypel->same($tabType2);
$result = $tabTypel->equal s($tabType2);
$result = $tabTypel->mat ch($t abType2);
$result = $idxTypel->same($i dxType2);
$result = $idxTypel->equal s($i dxType2);
$result = $idxTypel->mat ch($i dxType2);

Two table types are considered equal when they have the equal row types, and exactly the same set of index types, with
the same names.

Two tabletypes are considered matching when they have the matching row types, and matching set of index types, although
the names of the index types may be different.

Two index types are considered equal when they are of the same kind (type id), their type-specific parameters are equal,
they have the same number of sub-indexes, with the same names, and equal pair-wise. They must also have the equal
aggregators, which will be described in detail in the Chapter 11: “ Aggregation” (p. 133) .

Two index types are considered matching when they are of the same kind, have matching type-specific parameters, they
have the same number of sub-indexes, which are matching pair-wise, and the matching aggregators. The names of the sub-
indexes may differ. As far as the type-specific parameters are concerned, it depends on the kind of the index type. The
FIFO type considers any parameters matching. For a Hashed index the key fields must be the same. For a Sorted index the
sorted condition must also be the same, and by extension this means the same condition for the Ordered index.

9.12. The copy tray

Thetable methodsi nsert (), renove() anddel et eRow() have an extraoptional argument: the copy tray.

If used, it will put acopy of all the rowops produced during the operation (including the output of the aggregators, which
will be described in Chapter 11: “Aggregation” (p. 133)) into that tray. The idea here is to use it in cases if you don't
want to connect the output labels of the table directly, but instead collect and process the rows from the tray manually
afterwards. Like this:

$ctr = $unit->makeTray();
$t abl e- >i nsert ($row, S$ctr);
foreach my $rop ($ctr->toArray()) {

}..

However in reality it didn't work out so well. The processing loop would have to have al the lengthy if-else sequences
to branch first by the label (if there are any aggregators) and then by opcode. It looks too difficult. Well, it could work in
the simple situations but not more than that.

In the future this feature will likely be deprecated unless it proves itself useful, and | already have a better idea. Because
of this, | see no point in going into the more extended examples.

106 Tables

9.13. Table wrap-up

Not all of thetable'sfeatures have been shown yet. Thetable classisthe cornerstone of Triceps, and everything isconnected
to it. The aggregators work with the tables and are a whole separate big subject with their own chapter. There also are
many more options and small methods that haven't been touched upon yet. They are enumerated in the reference chapter,
please refer there.

Table wrap-up 107

108

Chapter 10. Templates

10.1. Comparative modularity

The templates are the Triceps term for the reusable program modules. |'ve adopted the term from C++ because that was
my inspiration for flexibility. But the Triceps templates are much more flexible yet. The problem with the C++ templates
isthat you have to writein them likein afunctional language, substituting loops with recursion, with perverse nested calls
for branching, and the result is quite hard to diagnose. Triceps uses the Perl's compilation on the fly to make things easier
and more powerful.

Tricepsis not unique in the desire for modularity. The other CEP systems have it too, but they tend to have it even more
rigid than the C++ templates. Let me show on a simple example.

Coral8 doesn't provide a way to query the windows directly, especially when the CCL is compiled without debugging.
So you're expected to make your own. People at a company where |'ve worked have developed a nice pattern that goes
approximately like this:

/1 some wi ndow that we want to namke queryable
create wi ndow w_ny schema s_ny

keep | ast per key_a per key_ b

keep 1 week;

/1l the streamto send the query requests
/1 (the schema can be shared by all sinple queries)
create schema s_query (

qqq_id string // unique id of the query

create input stream query_ny schema s_query;

/1 the streamto return the results
/1 (all result streanms will inherit a partial schenm)
create schema s_result (
qqq_id string, // returns back the id received in the query
gqq_end boolean, // will be TRUE in the special end indicator record

create output streamresult_ny schema inherits froms_result, s_ny;

/1 now process the query
insert into result_ny

select g.qgq_id, NULL, w*
froms_query as q, w.ny as w,

/1 the end marker

insert into result_ny (qqg_id, qgg_end)
sel ect qqg_id, TRUE

froms_query;

To query the window, a program would select a unique query id, subscribe to result_my with a filter (qgqq_id =
uni que_i d) andsendarecord of (uni que_i d) intoquery_ny. Thenitwould sit and collect theresult rows. Finally
it would get arow with qqgq_end = TRUE and disconnect.

Thisisafairly large amount of code to be repeated for every window. What | would like to to instead isto just write:
create wi ndow w_ny schema s_ny

keep | ast per key_a per key_b

keep 1 week;

make_queryabl e(w_ny);

109

and have the template make_quer yabl e expand into the rest of the code (obviously, the schema definitions would not
need to be expanded repeatedly, they would go into an includefile).

To make things more interesting, it would be nice to have the query filter the results by somefield values. Nothing as fancy
as SQL, just by equality to some fields. Suppose, s my includes the fields field ¢ and field_d, and we want to be able to
filter by them. Then the query can be done as:

create input stream query_mny schema inherits froms_query (
field_c integer,

field_d string

)

/1 result_ny is the sane as before...

/1 query with filtering (in a rather inefficient way)
insert into result_ny
select g.qqq_id, NULL, w*
froms_query as q, w_nny as w
wher e
(g.field_c is null or g.field_c = wfield_c)
and (q.field_d is null or g.field d = wfield_d);

/1 the end marker is as before

insert into result_mny (qqqg_id, qqg_end)
sel ect qqg_id, TRUE

froms_query;

It would be nice then to create this kind of query as atemplate instantiation
nmake_query(w_ny, (field_c, field_d));
Or even better, have the template determine the non-NULL fieldsin the query record and compiletheright query onthefly.

But the Coral8 modules (nor the later Sybase CEP R5) aren't flexible enough to do any of it. A CCL modulerequiresafixed
schemafor all itsinterfaces. The StreamBase language ismoreflexible and allowsto achieve some of theflexibility through
the capture fields, where the “logically unimportant” fields are carried through the modul e as one combined payload field.
But they don't allow the variable lists of fields as parameters either, nor generation of different model topologies depending
on the parameters.

10.2. Template variety

A templatein Tricepsisgenerally afunction or classthat creates afragment of the model based on itsarguments. It provides
the access points used to connect this fragment to the rest of the model.

There are different ways do do this. They can be broadly classified in the order of increasing complexity as:

A function that creates asingle Triceps object and returnsit. The benefit is that the function would automatically choose
some complex object parameters based on the function parameters, thus turning a complex creation into a simple one.

» A classthat similarly creates multiple fixed objects and interconnects them properly. It would a so provide the accessor
methods to export the access points of this sub-model. Since the Perl functions may return multiple values, this func-
tionality sometimes can be conveniently done with a function as well, returning the access pointsin the return array.

» A class or function that creates multiple objects, with their number and connections dependent on the parameters. For
asimple example, atemplate might receive multiple functions/closures as arguments and then create a pipeline of com-
putational labels, each of them computing one function (of course, this really makes sense only when each label runs
in a separate thread).

» A class or function that automatically generates the Perl code that will be used in the created objects. For a smple
example, given the pairs of field names and values, a template can generate the code for afilter label that would pass

110 Templates

only the rows where these fields have these values. The same effect can often be achieved by the interpretation as well:
keep the arguments until the evaluation needs to be done, and then interpret them. But the early code generation with
compilation improves the efficiency of the computation. It's the same idea as in the C++ templates; do more of the hard
work at the compile time and then run faster.

The more complex and flexible is the template, the more difficult it's generally to write and debug, but then it just works,
encapsulating a complex problem with a simpler interface. There is also the problem of user errors: when the user gives
an incorrect argument to a complex template, understanding what exactly went wrong when the error manifests itself,
may be quite difficult. The C++ templates are a good example of this. However the use of Perl, a general programming
language, as atemplate language in Triceps provides a good solution for this problem: just check the arguments early in
the template and produce the meaningful error messages. It may be a bit cumbersome to write but then easy to use. | also
have plans for improving the automatic error reports, to make tracking through the layers of templates easier with minimal
code additions in the templates.

I will show the examples of all the template types by implementing the table querying, the same | have shown in CCL in
Section 10.1: “Comparative modularity” (p. 109) , only now in Triceps.

10.3. Simple wrapper templates

The query examples will be using the main loop with sockets from the Section 7.8: “Main loop with a socket” (p. 51) . It
has two repeating tasks: requesting the socket server to exit, and sending the rows from some label back into the socket.
These tasks can be nicely handled with the simple templates:

package Server Hel pers;
use Carp;

Exiting the server.
sub nakeExitLabel # ($unit, $nane)
{
ny $unit = shift;
ny $nanme = shift;
return $unit->makelLabel ($unit->get Enpt yRowType(), $nanme, undef, sub {
$srv_exit = 1;
1
}

Sending of rows to the server output.
sub makeServer Qut Label # ($fromlLabel)
{
ny $fronLabel = shift;
my $unit = $fronlLabel - >get Unit();
ny $f romName = $fronlabel - >get Nanme() ;
ny $l bQut = $unit->makelLabel ($fronlabel - >get Type(),
$fromNane . ".serverQut", undef, sub {
&mai n: : out Cur Buf (join(",", $fromNane,
&Tri ceps: :opcodeString($_[1] - >get Opcode()),
$ [1]->getRow()->toArray()) . "\n");
1
$f ronmLabel - >chai n($l bQut) or confess "$!";
return $l bQut;

}

Each function is a separate template, they're wrapped into a common package only for the packaging reasons.

nmakeExi t Label () isquitesimple, it createsalabel with hardcoded function of setting thevariable $srv_exi t . Even
its row typeis hardcoded to the empty rows.

makeSer ver Qut Label () ismoreinteresting. It printsthe rowsreceived from another 1abel into the socket inthesimple
CSV (as usua, no commas in the values) format, the same as is expected by the socket server. It finds the unit and row

Simple wrapper templates 111

type from that parent label, creates the printing label and chainsit off the parent label. The newly created label is returned.
The return value can be kept in a variable or immediately discarded; since the created label is already chained, it won't
disappear. Tha name of the new label is produced from the name of the parent label by appending “.serverOut” to it.

Another similar template that is used throughout the following chapters creates alabel that prints the rowop contents:

a tenplate to make a | abel that prints the data passing through another | abel
sub mekePrint Label ($$) # ($print_| abel _nane, $parent_| abel)

{
ny $nane = shift;
ny $l bParent = shift;
my $l b = $l bParent - >get Uni t () - >makeLabel ($| bPar ent - >get Type(), $nane
undef, sub { # (label, rowop)
print($_[1]->printP(), "\n");
}) or die "$!";
$l bPar ent - >chain($l b) or die "$!'";
return $l b;

}

It works very much the same asmakeSer ver Qut Label (), only printsto a different destination.

10.4. Templates of interconnected components

Let'smoveonto the query template. It will work alittle differently than the CCL version. First, the socket main loop allows
to send the response directly to the same client who issued the request. So there is no need for adding the request id field
in the response and for the client filtering by it. Second, Triceps rows have the opcode field, which can be used to signal
the end of the response. For example, the data rows can be sent with the opcode INSERT and the indication of the end of
response can be sent with the opcode NOP and all fields NULL. The query template can then be made as follows:

package Queryl;

sub new # ($cl ass, $table, $nane)

{
ny $class = shift;
ny $table = shift;
ny $nanme = shift;
ny $unit = $table->getUnit();
ny $rt = $tabl e- >get RowType();
ny $self = {};
$sel f->{unit} = $unit;
$sel f - >{nanme} = $nane;

$sel f->{tabl e} = $table;
$sel f->{inLabel} = $unit->makeLabel ($rt, $name . ".in", undef, sub {
This version ignores the row contents, just dunps the table.
ny ($label, $rop, $self) = @;
ny $rh = $sel f->{tabl e}->begin();
for (; !'$rh->isNull(); $rh = $rh->next()) {
$sel f->{unit}->call(
$sel f - >{ out Label } - >nakeRowop(" OP_I NSERT", $rh->getRow()));
}
The end is signaled by OP_NOP with enpty fields.
$sel f->{unit}->makeArrayCal | ($sel f->{outLabel}, "OP_NOP");
}, $self);
$sel f->{out Label } = $unit->makeDumyLabel ($rt, $name . ".out");

bl ess $sel f, $cl ass;
return $sel f;

112 Templates

sub get | nputLabel # ($self)

ny $self = shift;
return $sel f->{inLabel };

}

sub get Qut put Label # ($self)

ny $self = shift;
return $sel f->{out Label };

}
sub get Nane # ($sel f)
ny $self = shift;

return $sel f->{nane};

}

It creates the input label that does the work and the dummy output label that is used to send the result. The logic is easy:
whenever arowop is received on the input label, iterate through the table and send the contents to the output label. The

contents of that received rowop doesn't even matter. The getter methods allow to get the endpoints.

Now this example can be used in a program. Most of it is the example infrastructure: the function to start the server in
background and connect a client to it, the creation of the row type and table type to query, and then finally near the end

the interesting part: the usage of the query template.

The common client that connects to the port,
and waits for the server to exit.
sub run # (%l abel s)

{
ny $l abels = shift;

ny ($port, $pid) = startServer($l abel s);
ny $sock = 1O : Socket: : | NET->new

Proto => "tcp",

Peer Addr => "l ocal host ",

Peer Port => $port,
) or confess "socket failed: $!'"
whi | e(<STDI N>) {

$sock->print ($);

$sock->fl ush();
}
$sock->print("exit, OP_I NSERT\n");
$sock->fl ush();
$sock- >shut down(1); # SHUT_WR
whi | e(<$sock>) {

print($.);

}
wai t pi d($pi d, 0);
}

The basic table type to be used as tenplate argunent.

our $rtTrade = Triceps:: RowType- >new(
id=>"int32", # trade unique id
synbol => "string", # synbol traded
price => "fl oat 64",
size => "float64", # nunber of shares traded
) or confess "$!";

sends and recei ves data,

Templates of interconnected components

113

our $ttWndow = Triceps:: Tabl eType->new($rt Tr ade)
- >addSubl ndex(" bySynbol ",
Tri ceps:: Si npl eOr der edl ndex- >new(synbol => "ASC")
- >addSubl ndex("| ast 2",
Triceps:: I ndexType->newFi fo(linmt => 2)
)
)

or confess "$!'";
$ttWndow >initialize() or confess "$!";

ny $uTrades = Triceps:: Unit->new"uTrades");
ny $t W ndow = $uTrades->makeTabl e($tt Wndow, "EM CALL", "tW ndow")
or confess "$!'";
ny $query = Queryl->new $t W ndow, "qW ndow');
ny $srvout = &Server Hel pers:: makeServer Qut Label ($query- >get Qut put Label ());

ny %di spatch;

$di spat ch{ $t W ndow >get Nane()} = $t W ndow- >get | nput Label () ;

$di spat ch{$query->get Name()} = $query->get| nput Label ();

$di spatch{"exit"} = &ServerHel pers:: makeExitLabel ($uTrades, "exit");

run(\ %di spat ch);

Thefunctionr un() takes care of making the example easier to run: it starts the server in the background, reads the input
dataand sendsit to the server, then reads the responses and prints them back, and finally waits for the server processto exit.
It also takes care of sending the exit request to the server when the input reaches EOF. The approach with first sending all
the data there and then reading all the responses back is not very good. It works only if either the data gets sent without any
responses, or asmall amount of data (not to overflow the TCP buffersa ong the way) gets sent and then it'sall the responses
coming back. But it'ssimple, and it works good enough for the small examples. And actually many of the commercial CEP
interfaces work exacly like this: they either publish the data to the model or send a small subscription request and print
the data received from the subscription.

The row type and table type have been just copied from some other example. Thereis no particular meaning to why such
fields were selected or why the table has such indexes. They have been selected semi-randomly. The only triucky thing
that affects the result isthat this table implements a window with alimit of 2 rows per symbol.

After thetableis created, the template instantiation isasingle call, Quer y1- >new() . Then the output label of the query
template gets connected to alabel that sends the output back to the client, and that's it.

Hereis an example of arun, with the input rows printed as alwaysin bold.

t W ndow, OP_I NSERT, 1, AAA 10, 10

t W ndow, OP_I NSERT, 3, AAA, 20, 20

gW ndow, OP_I NSERT

t W ndow, OP_I NSERT, 5, AAA, 30, 30

gW ndow, OP_I NSERT

gW ndow. out , OP_I| NSERT, 1, AAA, 10, 10
gW ndow. out , OP_I| NSERT, 3, AAA, 20, 20
gW ndow. out , OP_NCP, , , ,

gW ndow. out , OP_I| NSERT, 3, AAA, 20, 20
gW ndow. out , OP_I| NSERT, 5, AAA, 30, 30
gW ndow. out , OP_NCP, , , ,

Because of theway r un() works, all theinput rows are printed before the output ones. If it were smarter and knew, when
to expect the responses before sending more inputs, the output would have been:

t W ndow, OP_I NSERT, 1, AAA, 10, 10

t W ndow, OP_I NSERT, 3, AAA, 20, 20

gW ndow, OP_I NSERT

gW ndow. out , OP_| NSERT, 1, AAA, 10, 10

114 Templates

gW ndow. out , OP_| NSERT, 3, AAA, 20, 20
gW ndow. out , OP_NCP, , , ,

t W ndow, OP_I NSERT, 5, AAA, 30, 30

gW ndow, OP_I NSERT

gW ndow. out , OP_| NSERT, 3, AAA, 20, 20
gW ndow. out , OP_I NSERT, 5, AAA, 30, 30
gW ndow. out , OP_NCP, , , ,

Two rows get inserted into the table, then a query is done, then one more row is inserted, then another query sent. When
the third row is inserted, the first row gets thrown away by the window limit, so the second query also returns two rows
albeit different than the first query does.

It is possible to fold the table and the client send label creation into the template as well. It will then be used as follows:

nmy $wi ndow = $uTrades- >makeTabl eQuer y2($tt W ndow, "wi ndow");

ny %li spat ch;

$di spat ch{ $wi ndow >get Nane()} = $w ndow >get | nput Label ();

$di spat ch{$w ndow >get QueryLabel ()->get Name()} = $w ndow >get QueryLabel ();
$di spatch{"exit"} = &ServerHel pers:: makeExit Label ($uTrades, "exit");

The rest of the infrastructure would stay unchanged. Just to show how it can be done, I've even added a factory method
Uni t:: makeTabl eQuery2() . Theimplementation of thistemplateis:

package Tabl eQuery2
use Carp;

sub new # ($class, $unit, $tabType, $nane)
{

ny $class = shift;

ny $unit = shift;

ny $tabType = shift;

ny $nanme = shift;

ny $table = $unit->nekeTabl e($t abType, "EM CALL", $nane)
or confess "Query2 table creation failed: $!'";
ny $rt = $tabl e- >get RowType();

ny $self = {};
$sel f->{unit} = $Sunit;
$sel f - >{nanme} = $nane;

$sel f->{tabl e} = $table;
$sel f->{gLabel } = $unit->nakeLabel ($rt, $name . ".query", undef, sub {
This version ignores the row contents, just dunps the table.
ny ($label, $rop, $self) = @;
ny $rh = $sel f->{tabl e}->begin();
for (; !'$rh->isNull(); $rh = $rh->next()) {
$sel f->{unit}->call(
$sel f->{resLabel } - >nakeRowop(" OP_I NSERT", $rh->getRow()));
}
The end is signaled by OP_NOP with enpty fields.
$sel f->{unit}->makeArrayCal | ($sel f->{resLabel}, "OP_NOP");
}, $self);
$sel f->{resLabel } = $unit->makeDumyLabel ($rt, $name . ".response");

$sel f->{sendLabel } = &Server Hel pers:: nakeServer Qut Label ($sel f->{resLabel });

bl ess $sel f, $cl ass;
return $sel f;

}

sub get Nane # ($sel f)

Templates of interconnected components 115

{
ny $self = shift;
return $sel f->{nane};

}
sub get QueryLabel # ($self)

ny $self = shift;
return $sel f->{qgLabel };
}

sub get ResponselLabel # ($self)

ny $self = shift;
return $sel f->{resLabel };

}

sub get SendLabel # ($self)

ny $self = shift;
return $sel f->{sendLabel };

}
sub get Table # ($sel f)

ny $self = shift;
return $sel f->{tabl e};

}

sub get |l nputLabel # ($self)

ny $self = shift;
return $sel f->{tabl e}->get | nputLabel ();
}

sub get Qut put Label # ($self)

ny $self = shift;
return $sel f->{tabl e}->get Qut put Label ();
}

sub get PreLabel # ($self)

ny $self = shift;
return $sel f->{tabl e}->get PreLabel ();
}

add a factory to the Unit type
package Triceps::Unit;

sub makeTabl eQuery2 # ($self, $tabType, $nane)

{
return Tabl eQuery2->new(@) ;

}

The meat of the logic stays the same. The creation of the table and of the client sending label are added around it, as well
as abunch of getter methods to get access to the components.

The output of this example isthe same, with the only difference that it expects and sends different label names:

wi ndow, OP_I NSERT, 1, AAA, 10, 10
wi ndow, OP_I NSERT, 3, AAA, 20, 20

116 Templates

ndow. query, OP_| NSERT

ndow, OP_I NSERT, 5, AAA, 30, 30

ndow. query, OP_| NSERT

ndow. r esponse, OP_| NSERT, 1, AAA, 10, 10
ndow. r esponse, OP_| NSERT, 3, AAA, 20, 20
ndow. r esponse, OP_NOP, , , ,

ndow. r esponse, OP_| NSERT, 3, AAA, 20, 20
ndow. r esponse, OP_| NSERT, 5, AAA, 30, 30
ndow. r esponse, OP_NOP, , , ,

£ 22222 s

10.5. Template options

Often the arguments of the template constructor become more convenient to organize in the option name-value pairs. It
becomes particularly useful when there are many arguments and/or when some of them really are optional. For our little
query template this is not the case but it can be written with options nevertheless (a modification of the original version,
without the table in it):

package Query3;

sub new # ($cl ass, $opti onName => $opti onVal ue ...)
{

ny $class = shift;

ny $self = {};

&Triceps:: Opt::parse($class, $self, {

name => [undef, \&Triceps:: Opt::ck_mandatory],

table => [undef, sub { &Triceps::Opt::ck_mandatory(@); &Triceps::Opt::ck ref(@,
"Triceps::Table") } 1],
b @);

my $nanme = $sel f->{name};

ny $table = $sel f->{table};
my $unit = $table->getUnit();
nmy $rt = $tabl e- >get RowType();

$sel f->{unit} = $Sunit;
$sel f->{nane} = $nane;
$sel f->{inLabel } = $unit->makeLabel ($rt, $name . ".in", undef, sub {
This version ignores the row contents, just dunps the table
ny ($label, $rop, $self) = @;
ny $rh = $sel f->{tabl e}->begin();
for (; !'$rh->isNull(); $rh = $rh->next()) {
$sel f->{unit}->call(
$sel f - >{ out Label } - >makeRowop(" OP_I NSERT", $rh->get Row)));
}
The end is signaled by OP_NOP with enpty fields.
$sel f->{unit}->makeArrayCal | ($sel f->{outLabel }, "OP_NOP");
}, S$self);
$sel f->{out Label } = $uni t->makeDummyLabel ($rt, $nanme . ".out");

bl ess $sel f, $cl ass;

return $sel f;

}
The getter methods stayed the same, so I've skipped them here. The call has changed:
ny $query = Query3->new(table => $tWndow, nane => "qW ndow');

The output stayed the same.

Template options 117

The class Triceps::Opt is used to parse the arguments formatted as options. There is actually a similar option parser in
CPAN but it didn't do everything | wanted, and considering how tiny it is, it's easier to write a new one from scratch than
to extend that one. | also like to avoid the extra dependencies.

The heart of it is the method Tri ceps: : Opt: : parse(). It's normally called from a class constructor to parse the
constructor's options, but can be called from the other functions as well. It does the following:

» Checksthat all the options are known.

» Checksthat the values are acceptable.

» Copiesthe valuesinto the instance hash of the calling class.

 Provides the default values for the unspecified options.

If anything goeswrong, it confesses with a reasonable message. The argumentstell the class name for the messages (since,

remember, it is normally called from the class constructor), the reference to the object instance hash where to copy the

options, the descriptions of the supported options, and the actual key-value pairs.

At the end of it, if all went well, the query's $sel f will have the values at keys “name” and “table”.

The options descriptions go in pairs of option name and an array reference with description. The array contains the default

value and the checking function, either of which may be undef . The checking function returnsif everything went fine or

confesses on any errors. To die happily with a proper message, it gets not only the value to check but more, altogether:

* Thevalue to check.

» The name of the option.

» The name of the class, for error messages.

» Theobject instance ($sel), justin case.

If you want to do multiple checks, you just make a closure and call all the checksin sequence, passing @ to them al, like

shown here for the option “table”. If more arguments need to be passed to the checking function, just add them after @

(or, if you prefer, beforeit, if you write your checking function that way).

Y ou can create any checking functions, but afew ready ones are provided:

e Triceps::Opt::ck_mandat ory checksthat the valueis defined.

e Triceps:: Opt::ck_ref checksthatthevalueisareferenceto aparticular class, or aclassderived fromit. Just give
the class name as the extra argument. Or, to check that the reference isto array or hash, make the argument " ARRAY"
or "HASH' . Or an empty string " " to check that it's not a reference at all. For the arrays and hashes it can also check
the values contained in them for being references to the correct types: give that type as the second extra argument. But

it doesn't go deeper than that, just one nesting level. It might be extended later, but for now one nesting level has been
enough.

e Triceps::Opt::ck_refscal ar checks that the value is a reference to a scalar. This is designed to check the
arguments which are used to return data back to the caller, and it would accept any previous value in that scalar: an
actual scalar value, an undef or areference, sinceit's about to be overwritten anyway.

Theck _ref () andck_refscal ar () alow thevalueto be undefined, so they can safely be used on the truly optional
options. When | come up with more of the useful check functions, I'll add them.

Triceps::Opt provides more helper functions to deal with options after they have been parsed. One of them is handl e-
Uni t TypeLabel () that handles a very specific but frequently occuring case: Depending on the usage, sometimes it's

118 Templates

more convenient to give the template theinput row type and unit, and later chain itsinput to another |abel; and sometimesit's
more convenient to give it another ready label and have the template find out the row type and unit from it, and chainitsin-
put to that label automatically, like Ser ver Hel per s: : nakeSer ver Qut Label () wasshown doingin Section 10.3:
“Simple wrapper templates’ (p. 111) . It's possible if the unit, row type and source label are made the optional options.

Triceps:: Opt:: handl eUnit TypeLabel () takes care of sorting out what information is available, that enough
of it isavailable, that exactly one of row type or source label optionsis specified, and fillsin the unit and row type values
from the source label (specifying the unit option along with the source label is OK aslong asthe unit isthe same). To show
it off, | reewrote the Ser ver Hel per s: : makeSer ver Qut Label () asaclasswith options:

package Server Qut put;

use Carp;

Sending of rows to the server output.
sub new # ($cl ass, $option => $value, ...)
{

}

ny $class = shift;
ny $self = {};

&Triceps:: Opt:: parse($class, S$self, {
name => [undef, undef],
unit => [undef, sub { &Triceps::Opt::ck_ref(@, "Triceps::Unit") }],
rowlType => [undef, sub { &Triceps::Opt::ck_ref(@, "Triceps::RowType") } 1,
fromLabel => [undef, sub { &Triceps::Opt::ck_ref(@, "Triceps::Label") }]
@),

&Triceps:: Opt:: handl eUni t TypeLabel (" $cl ass: : new'
unit => \$sel f->{unit},
rowType => \$sel f->{rowType},
fromLabel => \$sel f->{fronLabel}

)
ny $fronLabel = $sel f->{fronlLabel};

if (!defined $self->{nane}) {
confess "$cl ass::new nust specify at |east one of the options nane and fronliabel"
unl ess (defined $sel f->{fronlabel });
$sel f->{nane} = $fronlLabel ->get Nane() . ".serverQut";

}

ny $lb = $sel f->{unit}->nmakelLabel ($sel f->{rowType},
$sel f->{nane}, undef, sub {
&mai n: : out Cur Buf (join(",",
$fronliabel ? $fronlLabel - >get Nane() : $sel f->{nane},
&Triceps: :opcodeString($_[1] - >get Opcode()),
$ [1]->get Rowm) ->t0Array()) . "\n");
}, $self # $self is not used in the function but used for cleaning
)
$sel f->{inLabel} = $I b;
if (defined $froniLabel) {
$f ronLabel - >chai n($l b) or confess "$!'";

}

bl ess $sel f, $cl ass;
return $sel f;

sub get |l nputlLabel () # ($self)

}

ny $self = shift;
return $sel f->{inLabel };

Template options

119

Theargumentsto Tri ceps: : Opt : : handl eUni t TypelLabel () arethecaler function namefor the error messages,
and the pairs of option name and reference to the option value for the unit, row type and the source label.

The new class also hasthe optional option “name”. If it's not specified and “fromLabel” is specified, the nameis generated
by appending a suffix to the name of the source label. The new class can be used in one of two ways, either

nmy $srvout = Server Qut put - >new(fronlLabel => $query->get Qut put Label ());
or

my $srvout = Server Qut put - >new(

nane => "out",

unit => $uTrades,

rowType => $t W ndow >get RowType(),

);
$quer y- >get Qut put Label () - >chai n($srvout - >get | nput Label ())
or confess "$!'";

The second form comes handy if you want to create it before creating the query.

The other helper function is Tri ceps: : Opt:: checkMit ual | yExcl usi ve() . It checks that no more than one
option from the list is specified. The joins use it to allow multiple ways to specify the join condition. For now I'll show a
bit contrived example, rewriting the last example of ServerOutput with it:

package Server Qut put 2;

use Carp;
Sending of rows to the server output.
sub new # ($cl ass, $option => $value, ...)
{

ny $class = shift;

ny $self = {};

&Triceps:: Opt:: parse($class, $self, {

name => [undef, undef],

unit => [undef, sub { &Triceps::Opt::ck_nandatory; &Triceps::Opt::ck_ref(@,
"Triceps::Unit") } 1,

rowlType => [undef, sub { &Triceps::Opt::ck_ref(@, "Triceps::RowlType") } 1,

fromLabel => [undef, sub { &Triceps::Opt::ck_ref(@, "Triceps::Label") }],
b@);

ny $fronLabel = $sel f->{fronlLabel};
if (&Triceps::Opt::checkMitual | yExcl usive("$cl ass::new', 1,
rowlype => $sel f->{rowType},
fromLabel => $sel f->{fronlLabel }
) eq "fronlLabel"

) |
$sel f->{rowType} = $fronlabel - >get RowType();
}

if (!defined $self->{nane}) {
confess "$cl ass::new nust specify at |east one of the options nane and fronliabel"
unl ess (defined $sel f->{fronlLabel });
$sel f->{nane} = $fronlabel ->get Nane() . ".serverQut";
}

ny $lb = $sel f->{unit}->nakelLabel ($sel f->{rowType},
$sel f->{nane}, undef, sub {
&mai n: : out Cur Buf (j oin(",",
$froniabel ? $fronlLabel - >get Nane() : $sel f->{nane},
&Triceps: :opcodeString($_[1] - >get Opcode()),
$ [1]->getRow()->toArray()) . "\n");

120 Templates

}, $self # $self is not used in the function but used for cleaning
);
$sel f->{inLabel} = $I b;
if (defined $froniabel) {

$f ronLabel - >chai n($l b) or confess "$!'";

}

bl ess $sel f, $cl ass;
return $sel f;

}

Theargumentsof theTr i ceps: : Opt: : checkMut ual | yExcl usi ve() arethecaller namefor error messages, flag
whether one of the mutually exclusive options must be specified, and the pairs of option names and values (this time not
references, just values). It returns the name of the only option specified by the user, or undef if none were. If more than
one option was used, or if none were used and the mandatory flag is set, the function will confess.

The way this version of the code works, the option “unit” must be specified in any case, so the use case with the source
label becomes:

nmy $srvout = Server Qut put 2- >new(
unit => $uTrades,
fromLabel => $query->get Qut put Label ()

)

The use case with the independent creation is the same as with the previous version of the Ser ver Qut put .

10.6. Code generation in the templates

Suppose we want to filter the result of the query by the equality to the fields in the query request row. Thelist of thefields
would be given to the query template. The query code would check if these fields are not NULL (and since the simplistic
CSV parsing is not good enough to tell between NULL and empty values, not an empty value either), and pass only the
rows that match it. Here we go (skipping the methods that are the same as before):

package Query4;

use Carp;
sub new # ($cl ass, $opti onName => $optionValue ...)
{

ny $class = shift;

ny $self = {};

&Triceps:: Opt::parse($class, $self, {

name => [undef, \&Triceps::Opt::ck_nmandatory],

table => [undef, sub { &Triceps::Opt::ck_nmandatory(@); &Triceps::Opt::ck ref(@,
"Triceps::Table") } 1],

fields => [undef, sub { &Triceps::Opt::ck_ref(@, "ARRAY') } 1,

b@);

ny $nane = $sel f->{nane};

ny $table = $sel f->{table};

ny $unit = $table->getUnit();
ny $rt = $tabl e- >get RowType();
ny $fields = $sel f->{fields};

—h

(defined $fields) {
ny %tdef = $rt->getdef();
foreach ny $f (@fields) {
ny $t = $rtdef{$f};
confess "$cl ass::new. unknown field '$f', the row type is:\n"
$rt->print()

Code generation in the templates 121

unl ess defined $t;

}
}

$sel f->{unit} = $Sunit;
$sel f ->{nane} = $nane;
$sel f->{inLabel} = $unit->makeLabel ($rt, $name . ".in", undef, sub {
ny ($label, $rop, $self) = @;
ny $query = $rop->get Row();
ny $cnp = $sel f->{conpare};
ny $rh = $sel f->{tabl e}->begin();
ITER for (; !'$rh->isNull(); $rh = $rh->next()) {
if (defined $self->{fields}) {
ny $data = $rh->get Row();
ny %tdef = $sel f->{tabl e}->get RowType()->getdef();
foreach ny $f (@$self->{fields}}) {
ny $v = $query->get ($f);
Since the sinplified CSV parsing in the mai nLoop() provides
no easy way to send NULLs, consider any enpty or 0 val ue
in the query row equival ent to NULLs.
if ($v
&& (&Triceps::Fields::isStringType($rtdef{$f})
? $query->get ($f) ne $dat a- >get ($f)
$query- >get ($f) ! = $dat a- >get ($f)
)

) |
next | TER,
}

}

$sel f->{unit}->call(
$sel f - >{ out Label } - >nakeRowop(" OP_I NSERT", $rh->getRow()));

}
The end is signaled by OP_NOP with enpty fields.

$sel f->{unit}->makeArrayCal |l ($sel f->{out Label}, "OP_NOP");
}, $self);
$sel f->{out Label } = $uni t->makeDumyLabel ($rt, $nane . ".out");

bl ess $sel f, $cl ass;
return $sel f;

}
Used as:

nmy $query = Query4d->new(table => $t Wndow, nane => "qW ndow',
fields => ["synbol", "price"]);

The field names get checked up front for correctness. And then a run time the code iterates through them
and does the checking. Since the comparisons have to be done differently for the string and numeric values,
Triceps::Fields::isStringType() isusedtocheck thetypeof thefields. Triceps::Fieldsisacollection of func-
tionsthat help dealing with fieldsin thetemplates. Another similar functionisTri ceps: : Fi el ds: :i sArrayType()

If the option “fields” is not specified, it would work the same as before and produce the same result. For the filtering by
symbol and price, a sample output is:

t W ndow, OP_I NSERT, 1, AAA, 10, 10
t W ndow, OP_I NSERT, 3, AAA, 20, 20
t W ndow, OP_I NSERT, 4, BBB, 20, 20
gW ndow, OP_I NSERT

t W ndow, OP_I NSERT, 5, AAA, 30, 30
gW ndow, OP_I NSERT, 5, AAA, 0, 0
gW ndow, OP_I NSERT, O, , 20, 0

122 Templates

gW ndow. out , OP_| NSERT, 1, AAA, 10, 10
gW ndow. out , OP_| NSERT, 3, AAA, 20, 20
gW ndow. out , OP_| NSERT, 4, BBB, 20, 20
gW ndow. out , OP_NCP, , , ,

gW ndow. out , OP_| NSERT, 3, AAA, 20, 20
gW ndow. out , OP_I NSERT, 5, AAA, 30, 30
gW ndow. out , OP_NCP, , , ,

gW ndow. out , OP_| NSERT, 3, AAA, 20, 20
gW ndow. out , OP_| NSERT, 4, BBB, 20, 20
gW ndow. out , OP_NCP, , , ,

The table data now has one more row of data added to it, with the symbol “BBB”. The first query has no values to filter
init, so it just dumps the whole table as before. The second query filters by the symbol “AAA”. Thefield for priceis0, so
it gets treated as empty and excluded from the comparison. The fields for id and size are not in the fields option, so they
get ignored even if the value of id is 5. The third query filters by the price equal to 20. The symbol field is empty in the
guery, so it does not participate in the filtering.

Looking at the query execution code, now there is a lot more going on in it. And quite a bit of it is static, that could
be computed at the time the query object is created. The next version does that, building and compiling the comparator
function in advance:

package Querys;

use Carp;
sub new # ($cl ass, $opti onName => $optionVal ue ...)
{

ny $class = shift;

ny $self = {};

&Triceps:: Opt:: parse($class, $self, {

name => [undef, \&Triceps::Opt::ck_mandatory],

table => [undef, sub { &Triceps::Opt::ck_nmandatory(@); &Triceps::Opt::ck ref(@,
"Triceps::Table") } 1],

fields => [undef, sub { &Triceps::Opt::ck_ref(@, "ARRAY') } 1,

saveCodeTo => [undef, \&Triceps::Opt::ck_refscalar],

@)
nmy $name = S$sel f->{nane};

ny $table = $sel f->{table};
nmy $unit = $table->getUnit();
ny $rt = $tabl e- >get RowType();

ny $fields = $sel f->{fields};
if (defined $fields) {
ny %tdef = $rt->getdef();

Generate the code of the conparison function by the fields
Since the sinplified CSV parsing in the mai nLoop() provides
no easy way to send NULLs, consider any enpty or 0 val ue
in the query row equival ent to NULLs.
ny $gencnp =
sub # ($query, $data)
{
use strict;
my ($query, $data) = @;'
foreach ny $f (@fields) {
ny $t = $rtdef{$f};
confess "$cl ass::new. unknown field "$f', the row type is:\n"
$rt->print() . " "
unl ess defined $t;

Code generation in the templates 123

$gencnp . =

ny $v = $query->get ("' . quoteneta($f) . '");
if (sv) {";
if (&Triceps::Fields::isStringType($t)) {
$gencnp . ="'
return 0 if ($v ne $data->get ("' . quoteneta(S$f) . ""));';
} else {
$gencnp . ="'
return 0 if ($v != $data->get ("' . quotenmeta(S$f) . ""));';
}
$gencnp . ="'
s
}
$gencnp . ="'
return 1; # all succeeded
s

${ $sel f - >{saveCodeTo}} = $gencnp if (defined(S$self->{saveCodeTo}));

$sel f->{conpare} = eval $gencnp;

confess("Internal error: $class failed to conpile the conparator:\n$@nfunction text:
\ n$gencnp ")

if $@
}
$sel f->{unit} = $unit;
$sel f - >{nane} = $nane;

$sel f->{inLabel} = $unit->makeLabel ($rt, $name . ".in", undef, sub {

ny ($label, $rop, $self) = @;
ny $query = $rop->get Row();
ny $cnp = $sel f->{conpare};
ny $rh = $sel f->{tabl e}->begin();
for (i !'$rh->isNull(); $rh = $rh->next()) {

if (!defined $cnp || &bcnp($query, $rh->getRow())) {

$sel f->{unit}->call(
$sel f - >{ out Label } - >nakeRowop(" OP_I NSERT", $rh->getRow()));
}

}
The end is signaled by OP_NOP with enpty fields.
$sel f->{unit}->makeArrayCal |l ($sel f->{out Label }, "OP_NOP");
}, $self);
$sel f->{out Label } = $unit->makeDumyLabel ($rt, $name . ".out");

bl ess $sel f, $cl ass;
return $sel f;

}

The code of the anonymous comparison function gets generated in $gencnp and then compiled by using eval . eval
returns the pointer to the compiled function which is then used at run time. The generation uses all the same logic to
decide on the string or numeric comparisons, and aso effectively unrolls the loop. When generating the string constants
in functions from the user-supplied values, it's important to enquote them with quot enet a() . Even when we're talking
about the field names, they still could have some funny characters in them. The option “saveCodeTo” can be used to get
the source code of the comparator, it gets saved at the reference after it gets generated.

If thefilter field option is not used, the comparator remains undefined.

The use of this version is the same as of the previous one, but to show the source code of the comparator, |'ve added its
printout:

nmy $cnpcode;
ny $query = Query5->new(table => $t W ndow, nane => "qW ndow"',
fields => ["synbol ", "price"], saveCodeTo => \$cnpcode);

124 Templates

as a denonstration
print("Code:\n$cnpcode\n");

This produces the resullt:

Code:

sub # ($query, $data)
{
use strict;
ny ($query, $data) = @;
nmy $v = $query->get ("synbol ") ;
if ($v) {
return 0 if ($v ne $data->get ("synbol "));

}
ny $v = $query->get ("price");
if ($v) {
return 0 if ($v != $data->get("price"));
}
return 1; # all succeeded

}
t W ndow, OP_I NSERT, 1, AAA 10, 10
t W ndow, OP_I| NSERT, 3, AAA, 20, 20
t W ndow, OP_I| NSERT, 4, BBB, 20, 20
gW ndow, OP_| NSERT
t W ndow, OP_I| NSERT, 5, AAA, 30, 30
gW ndow, OP_I| NSERT, 5, AAA 0, 0
gW ndow, OP_I| NSERT, 0, , 20,0

gW ndow. out ,
gW ndow. out ,
gW ndow. out ,
gW ndow. out ,
gW ndow. out ,
gW ndow. out ,
gW ndow. out ,
gW ndow. out ,
gW ndow. out ,
gW ndow. out ,

OP_| NSERT,
OP_| NSERT,
OP_NOP, , ,,

20

OP_I NSERT, 1,
3

4

OP_| NSERT, 3,
OP_| NSERT, 5,

OP_NOP, , ,

OP_| NSERT, 3,
OP_| NSERT, 4,

OP_NOP, , ,

AAA 10,
, AAA, 20,
, BBB, 20,

AAA, 20,
AAA, 30,

AAA, 20,
BBB, 20,

10
20
20

20
30

20
20

Besides the code printout, the result is the same as last time.

Now, why list the fieldsin an option? Why not just take them all? After all, if the user doesn't want filtering on some field,
he can always simply not set it in the query row. If the efficiency is a concern, with possibly hundreds of fieldsin the row
with only few of them used for filtering, we can do better: we can generate and compile the comparison function after we
see the query row. Here goes the next version that does all this:

package Query®6;
use Carp;

sub new # ($cl ass, $optionNane => $optionValue ...)
{

ny $class = shift;

ny $self = {};

&Triceps:: Opt:: parse($class, $self, {
name => [undef, \&Triceps::Opt::ck_mandatory],
table => [undef, sub { &Triceps::Opt::ck_nmandatory(@); &Triceps::Opt::ck_ref(@,
"Triceps::Table") } 1],

}, @)

ny $nane = $sel f->{nane};

Code generation in the templates

125

ny $table = $sel f->{table};
ny $unit = $table->getUnit();
ny $rt = $tabl e- >get RowType();

$sel f->{unit} = $Sunit;
$sel f ->{nane} = $nane;
$sel f->{inLabel} = $unit->nakeLabel ($rt, $nane . "

b,
$s

ny ($label, $rop, $self) = @;
ny $query = $rop->get Row();
ny $cnp = $sel f->genConpari son($query);
ny $rh = $sel f->{tabl e}->begin();
for (i !'$rh->isNull(); $rh = $rh->next()) {
if (&cmp($query, $rh->getRow())) {
$sel f->{unit}->call(

.in",

undef ,

sub {

$sel f - >{ out Label } - >nakeRowop(" OP_I NSERT", $rh->getRow()));

}
}

The end is signaled by OP_NOP with enpty fields.
$sel f->{unit}->makeArrayCal |l ($sel f->{out Label}, "OP_NOP");

$sel f);

el f->{out Label } = $unit->makeDunmyLabel ($rt, S$nane

".Out");

bl ess $sel f, $cl ass;
return $sel f;
}
Generate the conparison function on the fly fromthe fields in the
query row.
Since the sinplified CSV parsing in the mai nLoop() provides
no easy way to send NULLs, consider any enpty or 0 val ue
in the query row equival ent to NULLs.
sub genConparison # ($self, $query)
{
ny $self = shift;
ny $query = shift;
ny %hash = $query- >t oHash();
ny %tdef = $sel f->{tabl e}->get RowType()->getdef();
nmy ($f, $v);
ny $gencnp =
sub # ($query, $data)
{
use strict;";
while (($f, $v) = each %ghash) {
next unless($v);
ny $t = $rtdef {$f};
if (&Triceps::Fields::isStringType($t)) {
$gencnp . ="
return 0 if ($_[0]->get("' . quoteneta($f) D
ne $ [1]->get("' . quotemeta($f) . "'"));';
} else {
$gencnp . ="
return 0 if ($_[0]->get("' . quoteneta($f) D
1= $ [1]->get("" . quotemeta($f) . "'"));';
}
}
$gencnp . ="'
return 1; # all succeeded
126

Templates

I

ny $conpare = eval $gencnp;
confess("Internal error: Query '" . $sel f->{nane}
. "' failed to conpile the conparator:\n$@nfunction text:\n$gencnmp ")
if $@

for debugging
&mai n: : out Cur Buf (" Conpi | ed conparat or:\n$gencnmp\n");

return $conpare;

}

Thieoption “fields” isgone, and the code generation has moved into the method genConpar i son() , that getscalled for
each query. I've inserted the sending back of the comparison source code at the end of it, to make it easier to understand.
Obvioudly, if this code were used in production, this would have to be commented out, and maybe some better option
added for debugging. An example of the output is:

t W ndow, OP_I NSERT, 1, AAA, 10, 10
t W ndow, OP_I| NSERT, 3, AAA, 20, 20
t W ndow, OP_I| NSERT, 4, BBB, 20, 20
gW ndow, OP_I NSERT

t W ndow, OP_I| NSERT, 5, AAA, 30, 30
gW ndow, OP_I NSERT, 5, AAA, 0, 0
gW ndow, OP_I NSERT, 0, , 20,0
Conpi | ed conparator:

sub # ($query, $data)
{
use strict;
return 1; # all succeeded
}
gW ndow. out , OP_I NSERT, 1, AAA 10, 10
gW ndow. out , OP_I NSERT, 3, AAA, 20, 20
gW ndow. out , OP_I| NSERT, 4, BBB, 20, 20
gW ndow. out , OP_NOPR, , , ,
Conpi | ed conparator:

sub # ($query, $data)
{
use strict;
return 0 if ($_[0]->get("synbol")
ne $_[1]->get("synbol"));
return O if ($_[0]->get("id")
I'=$_[1]->get("id"));
return 1; # all succeeded
}
gW ndow. out , OP_I| NSERT, 5, AAA, 30, 30
gW ndow. out , OP_NCP, , , ,
Conpi | ed conparator:

sub # ($query, $data)
{
use strict;
return O if ($_[O0]->get("price")
1= $ [1]->get("price"));
return 1; # all succeeded
}
gW ndow. out , OP_I NSERT, 3, AAA, 20, 20
gW ndow. out , OP_I| NSERT, 4, BBB, 20, 20
gW ndow. out , OP_NOPR, , , ,

Code generation in the templates 127

Thefirst query contains no filter fields, so the function compiles to the constant 1. The second query has the fieldsid and
symbol not empty, so the filtering goes by them. The third query has only the price field, and it is used for filtering.

The code generation on the fly is a powerful tool and is used throughout Triceps.

10.7. Result projection in the templates

The other functionality provided by the Triceps::Fields is the filtering of the fields in the result row type, also known as
“projection”. You can select which fields you want and which you don't want, and rename the fields.

To show how it's done, | took the Query3 example from Section 10.5: “Template options’ (p. 117) and added the result
field filtering to it. I've a'so changed the format in which it returns the resultsto pr i nt P() , to show the field names and
make the effects of the field renaming visible.

package Query7

sub new # ($cl ass, $opti onName => $optionVal ue ...)
{

ny $class = shift;

ny $self = {};

&Triceps:: Opt:: parse($class, $self, {

name => [undef, \&Triceps::Opt::ck_nmandatory],

table => [undef, sub { &Triceps::Opt::ck_nmandatory(@); &Triceps::Opt::ck_ref(@,
"Triceps::Table") } 1],

resultFields => [undef, sub { &Triceps::Opt::ck_ref(@, "ARRAY', ""); }],
@),

ny $nane = $sel f->{nane};

ny $table = $sel f->{table};

ny $unit = $table->getUnit();

ny $rtln = $tabl e->get RowType();
ny $rtQut = $rtin;

if (defined $self->{resultFields}) {
ny @nFields = $rtln->getFiel dNanes();
ny @airs = &Triceps::Fields::filterToPairs($class, \@nFields, $self-
>{resul tFields});
($rtQut, $self->{projectFunc}) = &Triceps::Fields::mkeTransl ation(
rowlypes => [$rtin],
filterPairs => [\@airs],

} else {
$sel f->{project Func} = sub {
return $_[0];
}
}

$sel f->{unit} = $unit;
$sel f - >{nane} = $nane;
$sel f->{inLabel} = $unit->nakeLabel ($rtIn, $name . ".in", undef, sub {

This version ignores the row contents, just dunps the table.

ny ($label, $rop, $self) = @;

ny $rh = $sel f->{tabl e}->begin();

for (i !'$rh->isNull(); $rh = $rh->next()) {

$sel f->{unit}->call(
$sel f - >{ out Label } - >makeRowop(" OP_I NSERT",
&{ $sel f->{proj ect Func}}($rh->getRow())));

128 Templates

The end is signaled by OP_NOP with enpty fields.
$sel f->{unit}->makeArrayCal |l ($sel f->{out Label}, "OP_NOP");
}, $self);
$sel f->{out Label } = $unit->makeDumylLabel ($rtCQut, $name . ".out");

bl ess $sel f, $cl ass;
return $sel f;

}

sub get | nputLabel # ($self)

ny $self = shift;
return $sel f->{inLabel };

}

sub get Qut put Label # ($self)

ny $self = shift;
return $sel f->{out Label };

}

sub get Nane # ($sel f)

ny $self = shift;
return $sel f->{nane};

}
package mai n;

ny $uTrades = Triceps:: Unit->new"uTrades");

ny $t W ndow = $uTrades->makeTabl e($tt Wndow, "EM CALL", "tW ndow")
or confess "$!'";

ny $query = Query7->new(table => $t W ndow, nane => "qW ndow"',
resultFields => ['lid, 'size/lot_$&, '.*" 1],

)

print in the tokenized format

ny $srvout = $uTrades->makelLabel ($query- >get Qut put Label () - >get Type(),
$query- >get Qut put Label ()->get Name() . ".serverQut", undef, sub {

&mai n: :outCurBuf ($_[1]->printP() . "\n");

1)

$quer y- >get Qut put Label () - >chai n($srvout) or confess "$!";

ny %di spatch;

$di spat ch{ $t W ndow >get Nane()} = $t W ndow- >get | nput Label () ;

$di spat ch{$query->get Name()} = $query->get| nput Label ();

$di spatch{"exit"} = &ServerHel pers:: makeExitLabel ($uTrades, "exit");

run(\ %di spat ch);
The query now has the new option “resultFields’ that defines the projection. That option accepts a reference to an array

of pattern strings. If present, it gives the patterns of the fields to let through. The patterns may be either the explicit field
names or regular expressions implicitly anchored at both front and back. Thereis also a hit of extra modification possible:

I pattern
Skip the fields matching the pattern.

pattern / substitution
Pass the matching fields and rename them according to the substitution.

Sointhisexample['!'id', 'size/lot_$&, '.*'] means skipthefield“id”", rename the field “size” by
prepending “lot_" to it, and pass through the rest of the fields. In the renaming pattern, $& is the reference to the whole

Result projection in the templates 129

original field name. If you use the parenthesised groups, they are referred to as $1, $2 and so on. But if you use any of
those, don't forget to put the pattern into single quotes to prevent the unwanted expansion in the double quotes before the
projection gets achance to seeiit.

For an example of why the parenthesised groups can be useful, suppose that the row type has multiple account-related el e-
mentsthat all start with “acct”: acct src,accti nt er nal ,acct ext er nal . Suppose we want to insert an underscore
after “acct”. This can be achieved with the pattern* acct (. *)/acct _$1' . Asusual in the Perl regexps, the parenthe-
sised groups are numbered left to right, starting with $1.

If a specification element refersto alitera field, like here “id” and “size”, the projection checks that the field is actually
present in the original row type, catching the typos. For the general regular expressionsit doesn't check whether the pattern
matched anything. It's not difficult to check but that would preclude the reuse of the same patterns on the varying row
types, and I'm not sure yet, what is more important.

The way this whole thing works is that each field gets tested against each pattern in order. The first pattern that matches
determines what happens to this field. If none of the patterns matches, the field gets ignored. An important consequence
about the skipping patterns is that they don't automatically pass through the non-matching fields. You need to add an
explicit positive pattern at the end of the list to pass the fields through. ' . *' servesthis purpose in the example.

A consequenceis that the order of the fields can't be changed by the projection. They are tested in the order they appear in
the original row type, and are inserted into the projected row type in the same order.

Another important point is that the field names in the result must not duplicate. It would be an error. Be careful with the
substitution syntax to avoid creating the duplicate names.

A run example from this version, with the same input as before:

t W ndow, OP_I NSERT, 1, AAA 10, 10
t W ndow, OP_I| NSERT, 3, AAA, 20, 20
gW ndow, OP_I| NSERT

t W ndow, OP_I| NSERT, 5, AAA, 30, 30
gW ndow, OP_| NSERT

gW ndow. out OP_I NSERT synbol
gW ndow. out OP_I NSERT synbol
gW ndow. out OP_NOP

gW ndow. out OP_I NSERT synbo
gW ndow. out OP_I NSERT synbo
gW ndow. out OP_NOP

"AAA" price="10" |ot_size="10"
"AAA" price="20" |ot_size="20"

price="20" |ot_size="20"
price="30" |ot_size="30"

| =" AAA"
| =" AAA"

The rows returned are the same, but projected and printed inthe pr i nt P() format.
Inside the template the projection works in three steps:

» Triceps::Fields::filterToPairs() doesthe projection of the field names and returns its result as an array
of names. The namesinthearray go in pairs: the old name and the new name in each pair. The fields that got skipped do
not get included inthelist. Inthisexamplethearray wouldbe("synbol ", "synbol ™, "price", "price",
"size", "lot_size").

e Triceps::Fields::makeTransl ati on() thentakesthisarray along with the original row type and produces
the result row type and afunction reference that does the projection by converting an original row into the projected one.

» Thetemplate execution then calls this projection function for the result rows.

The split of work between fi | t er ToPai r s() and makeTr ansl ati on() has been done partially historically and
partially because sometimes you may want to just get the pair names array and then use them on your own instead of
caling makeTr ansl ati on() . There is one more function that you may find useful if you do the handling on your
own: filter().Ittakesthe samearguments and doesthe samethingasfi | t er ToPai r s() but returnstheresultina
different format. It's still an array of strings but it contains only the names of the translated field namesinstead of the pairs,

130 Templates

in the order matching the order of the original fields. For the fields that have been skipped it contains an undef . For this
exampleit wouldreturn (undef, "synbol", "price", "lot_size").

Thecallsare:

@ields = &Triceps::Fields::filter(
$caller, \@nFields, \@ranslation);

@airs = &Triceps::Fields::filterToPairs(
$caller, \@nFields, \@ranslation);

($rowType, $projectFunc) = &Triceps:: Fields:: mkeTransl ation(
$opt Nane => $opt Value, ...);

All of them confess on errors, and the argument $cal | er isused for building the error messages. The options of nake-
Transl ations() are

“rowTypes’ isareferenceto an array of original row types. “filterPairs’ isareferenceto an array of filter pair arrays. Both
of these options are mandatory. And that'sright, makeTr ansl at i ons() can accept and merge more than one original
row type, with a separate projection specification for each of them. It's not quite asflexible as1'd want it to be, not allowing
to reorder and mix thefields from different originals (now thefields go in sequence: from thefirst original, from the second
original, and so on), but it's a decent start. When you combine multiple original row types, you need to be particularly
careful with avoiding the duplicate field names in the result.

The option “saveCodeTo” aso alows to save the source code of the generated function, same as in the Query5 example
in Section 10.6: “ Code generation in the templates’ (p. 121) .

The general call form of makeTr ansl ati ons() is:

($rowType, $projectFunc) = &Triceps:: Fields::makeTransl ati on(
rowlTypes => [$rtl1, $rt2, ..., $rtN],
filterPairs => [\@airsl, \@airs2, ..., \@airsN],
saveCodeTo => \ $codeVar,

)

One of the result type or projection function referece could have aso been returned to a place pointed to by an option, like
“saveCodeTo”, but since Perl supports returning multiple values from a function, that looks simpler and cleaner.

The projection function is then called:
$row = &$proj ect Func($ori gRowl, $ori gRow2, ..., $ori gRowN);
Naturally, makeTr ansl ati ons() isatemplateitself. Let'slook at its source code, it shows a new trick.

package Triceps:: Fields;

use Carp;
use strict;
sub nmakeTransl ation # (opt Name => optValue, ...)
{ ny $opts = {}; # the parsed options
ny $nmyname = "Triceps:: Fields::mkeTransl ati on";

&Triceps:: Opt::parse("Triceps::Fields", $opts, {
rowlypes => [undef, sub { &Triceps:: Opt::ck_nandatory(@);
&Triceps::Opt::ck_ref(@, "ARRAY', "Triceps::RowlType") }],
filterPairs => [undef, sub { &Triceps::Opt::ck_mandatory(@);
&Triceps:: Opt::ck _ref(@, "ARRAY', "ARRAY") }],
saveCodeTo => [undef, sub { &Triceps::Opt::ck_refscalar(@) } 1],
@),

reset the saved source code

Result projection in the templates 131

${ $opt s- >{ saveCodeTo}} = undef if (defined($opts->{saveCodeTo}));

$opt s- >{rowTypes};
$opt s->{filterPairs};

ny $rts
ny $fps

confess "$nyname: the arrays of row types and filter pairs nust be of the sane size, got
oL ($#{Srts}+1l) . " and " . ($#{$fps}+l) . " elenents”
unl ess ($#{$rts} == $#{$fps});
ny $gencode =
sub { # (@ ows)
use strict;
use Carp;
confess "tenplate internal error in $nynane . ': result translation expected
oL ($#{Srts}+1) . ' row args, received " . ($#_+1)
unless ($#_ ==" . $#{$rts} . ');
$result_rt cones at conpile time from Triceps:: Fields::makeTransl ation
return $result_rt->makeRowArray(';

ny @owdef; # of the result row type
for (nmy $i = 0; $i <= $#{$rts}; $i++) {
ny %origdef = $rts->[$i]->getdef();
ny @p = @$fps->[$i]}; # copy the array, because it will be shifted
while ($#fp >= 0) {
ny $from= shift @p;
ny $to = shift @p;
ny $type = $origdef{$fron};
confess "$myname: unknown original field '$from in the original row type $i:\n
$rts->[$i]->print() . " "
unl ess (defined $type);
push(@ owdef, $to, $type);
$gencode . ="
$[' . $i . '"]->get("" . quoteneta($from . '"),';

}
}

$gencode . =
)
L
ny $result_rt = Triceps:: RowlType- >new(@ owdef)
or confess "$nynane: Invalid result row type specification: $!' ";

${ $opt s- >{ saveCodeTo}} = $gencode if (defined($opts->{saveCodeTo}));

conpile the translation function
ny $func = eval $gencode
or confess "$nynane: error in conpilation of the function:\n $@nfunction text:\n

$gencode ";
return ($result_rt, $func);

}

By now almost all the parts of the implementation should look familiar to you. It builds the result row definition and the
projection function code in parallel by iterating through the originals. An interesting trick is done with passing the result
row type into the projection function. The function needs it to create the result rows. But it can't be easily placed into the
function source code. So the closure property of the projection function is used: whatever outside “my” variables occur
in the function at the time when it's compiled, will have their values compiled hardcoded into the function. So the “my”
varigble $resul t _rt is set with the result row type, and then the projection function gets compiled. The projection
function refersto $r esul t _rt , which gets picked up from the parent scope and hardcoded in the closure.

132 Templates

Chapter 11. Aggregation
11.1. The ubiquitous VWAP

Every CEP supplier loves an example of VWARP calculation: it's small, it's about that quintessential CEP activity: aggre-
gation, and it sounds like something from the real world.

A quick sidebar: what isthe VWAP? It'sthe Vaue-Weighted Average Price: the average price for the shares traded during
some period of time, usually a day. If you take the price of every share traded during the day and calculate the average,
you get the VWAP. What is the value-weighted part? The shares don't usually get sold one by one. They're sold in the
variable-sized lots. If you think in the terms of lots and not individual shares, you have to weigh the trade prices (not to be
confused with costs) for the lots proportional to the number of sharesin them.

I'vebeen using VWAPfor trying out the different approachesto the aggregation. There are multiplewaysto doit, from fully
manual, to the aggregator infrastructure with manual computation of the aggregations, to the simple aggregation functions.
The cutest version of VWAP so far isimplemented as a user-defined aggregation function for the SimpleAggregator. Here
ishow it goes:

VWAP function definition
nmy $nyAggFunctions = {
nmyvwap => {
vars => { sum=> 0, count => 0, size => 0, price => 0 },
step => ' ($%i ze, $%price) = @%argiter; '
"if (defined $%ize && defined $%price)
"{$%ount += $%ize; $¥%um += $%ize * $%price;}"',
result =>"'($%ount == 0? undef : $%um/ $%ount)’',
H
s

ny $uTrades = Triceps:: Unit->new"uTrades");

the input data
ny $rtTrade = Triceps:: RowType- >new
id=>"int32", # trade unique id
synbol => "string", # synbol traded
price => "fl oat 64",
size => "float64", # nunber of shares traded
) or confess "$!";

ny $ttWndow = Triceps:: Tabl eType- >new($rt Tr ade)
- >addSubl ndex(" byl d",
Triceps:: I ndexType->newHashed(key => ["id"])

)

- >addSubl ndex(" bySynbol "
Triceps:: I ndexType->newHashed(key => ["synbol" 1)
->addSubl ndex("fifo", Triceps::|ndexType->newrifo())

)

or confess "$!'";

the aggregation result
ny $rtWwap;
ny $conpText; # for debuggi ng

Tri ceps: : Si npl eAggr egat or: : nake(
tabType => $tt W ndow,
nane => "aggrWwap",
idxPath => ["bySynbol", "fifo"],

133

result => |
synbol => "string", "last", sub {$_[0]->get("synbol");},
id=>"int32", "last", sub {$_[0]->get("id");},
volune => "float64", "sunm', sub {$_[0]->get("size");},
vwap => "float64", "nmyvwap", sub { [$_[0]->get("size"), $_[0]->get("price")];},
1,
functi ons => $nyAggFuncti ons,
saveRowTypeTo => \ $rt VWwap,
saveConput eTo => \ $conpText,

)

$ttWndow >initialize() or confess "$!";
ny $t W ndow = $uTrades->nmakeTabl e($t t W ndow,
&Triceps:: EM CALL, "tWndow') or confess "$!";

label to print the result of aggregation
ny $l bPrint = $uTrades->nakelLabel ($rtVWwap, "IbPrint",
undef, sub { # (label, rowop)
print($_[1]->printP(), "\n");
}) or confess "$!'";
$t W ndow >get Aggr egat or Label ("aggr Vwap") - >chai n($! bPri nt)
or confess "$!'";

whi | e(<STDI N>) {
chonp;
ny @ata = split(/,/); # starts with a string opcode
$uTr ades- >nmakeArrayCal | ($t W ndow >get | nput Label (), @lata);
$uTrades->drai nFrane(); # just in case, for conpleteness

}

The aggregators get defined as parts of the table type. Tri ceps: : Si npl eAggr egat or: : make() isakind of a
template that adds an aggregator definition to the table type that is specified in the option “tabType”. An aggeragtor doesn't
livein avacuum, it alwaysworks as a part of the table type. Asthe table gets modified, the aggregator al so re-computesits
aggregation results. The fine distinction isthat the aggregator is a part of the table type, and is common for all the tables of
thistype. But the table stores its aggregation state, and when an aggregator runs on atable, it uses and modifies that state.

The name of the aggregator is how you can find its result later in the table: each aggregator has an output label created for
it, that can befound with $t abl e- >get Aggr egat or Label () . The option “idxPath” defines both the grouping of the
rows for this aggregator and their order in the group. The index type at the path determines the order and its parent defines
the groups. In this case the grouping happens by symbol, and the rowsin the groups go in the FIFO order. This means that
the aggregation function | ast will be selecting the row that has been inserted last, in the FIFO order.

The option “result” defines both the row type of the result and the rules for its computation. Each field is defined there
with four elements: name, type, aggregation function name, and the function reference to select the value to be aggregated
from the row. Triceps provides a bunch of pre-defined aggregation functionslikef i r st,| ast, sum count, avg and
so on. But VWAP is not one of them (well, maybe now it should be, but then this example would be lessinteresting). Not
to worry, the user can add custom aggregation functions, and that's what this example does.

The option “functions’ contains the definitions of such user-defined aggregation functions. Here it defines the function
nmyvwap. It defines the state variables that will be used to keep the intermediate values for a group, a step computation,
and the result computation. Whenever the group changes, the aggregator will reset the state variables to the default values
and iterate through the new contents of the group. It will perform the step computation for each row and collect the datain
the intermediate variables. After theiteration it will perform the result computation and produce the final value.

The VWAP computation in aweird one, taking two fields as arguments. Thesetwo fields get packed into an array reference
by

sub { [$_[0]->get("size"), $ [0]->get("price")];}

134 Aggregation

and then the step computation unpacks and handles them. In the aggregator computations the syntax $%mane refers to
the intermediate variables and aso to a few pre-defined ones. $%ar gi t er is the value extracted from the current row

during the iteration.

And that's pretty much it: send the rows to the table, the iterator state gets updated to match the table contents, computes

the results and sends them. For example:

OP_I NSERT, 11, abc, 123, 100

t W ndow. aggr Vwap OP_| NSERT
vwap="123"

OP_I NSERT, 12, abc, 125, 300

t W ndow. aggr Vwap OP_DELETE
vwap="123"

t W ndow. aggr Vwap OP_| NSERT
vwap="124. 5"

OP_I NSERT, 13, def, 200, 100

t W ndow. aggr Vwap OP_| NSERT
vwap="200"

OP_| NSERT, 14, f gh, 1000, 100

t W ndow. aggr Vwap OP_| NSERT
vwap="1000"

OP_I NSERT, 15, abc, 128, 300

t W ndow. aggr Vwap OP_DELETE
vwap="124. 5"

t W ndow. aggr Vwap OP_| NSERT
vwap="126"

OP_I NSERT, 16, f gh, 1100, 25

t W ndow. aggr Vwap OP_DELETE
vwap="1000"

t W ndow. aggr Vwap OP_| NSERT
vwap="1020"

OP_| NSERT, 17, def, 202, 100

t W ndow. aggr Vwap OP_DELETE
vwap="200"

t W ndow. aggr Vwap OP_| NSERT
vwap="201"

OP_| NSERT, 18, def, 192, 1000

t W ndow. aggr Vwap OP_DELETE
vwap="201"

t W ndow. aggr Vwap OP_| NSERT
vwap="193. 5"

When agroup gets modified, the aggregator first sendsa DELETE of the old contents, then an INSERT of the new contents.
But when thefirst row getsinserted in agroup, thereis nothing to delete, and only INSERT is sent. And the opposite, when

synbol =" abc"

synbol =" abc"

synbol =" abc"

synbol =" def "

synbol ="f gh"

synbol =" abc"

synbol =" abc"

synmbol ="f gh"

synmbol ="f gh"

synbol =" def "

synbol =" def "

synbol =" def "

synbol =" def "

id="11"

id="11"

id="12"

id="13"

i d="14"

i d="12"

i d="15"

i d="14"

id="16"

id="13"

id="17"

id="17"

id="18"

the last row is deleted from a group, only the DELETE is sent.

vol ume="100"

vol ume="100"

vol ume="400"

vol ume="100"

vol ume="100"

vol ume="400"

vol ume="700"

vol ume="100"

vol une=" 125"

vol ume="100"

vol ume="200"

vol ume="200"

vol ume="1200"

After this highlight, let'slook at the aggregators from the bottom up.

11.2. Manual aggregation

The table exanmple in Section 9.7: “Secondary indexes’ (p. 84) prints the aggregated information (the average price
of two records). This can be fairly easily changed to put the information into the rows and send them on as labels. The
function pri nt Aver age() has morphed into cormput eAver age() , while the rest of the example stayed the same
and is omitted:

our $rtAvgPrice = Triceps:: RowType->new
synbol => "string", # synmbol traded
id=>"int32", # last trade's id
price => "float64", # avg price of the last 2 trades

Manual aggregation 135

) or confess "$!";

place to send the average: could be a dumy | abel, but to keep the
code snuller also print the rows here, instead of in a separate | abel
our $l bAverage = $uTrades- >nakelLabel ($rt AvgPrice, "Il bAverage",
undef, sub { # (label, rowop)
print($_[1]->printP(), "\n");
}) or confess "$!'";

Send the average price of the synbol in the last nodified row
sub conput eAverage # (row)

{
return unl ess defined $rlLast Mod;
ny $rhFirst = $t Wndow >fi ndl dx($it Synbol, $rlLastMd) or confess "$!'";
ny $rhEnd = $rhFirst->next Goupldx($itLast2) or confess "$!";
print("Contents:\n");
ny $avg = O;
ny ($sum $count);
ny $rhLast;
for (my $rhi = $rhFirst;
1 $r hi - >sanme($rhEnd); $rhi = $rhi->nextldx($itLast2)) {
print(" ", $rhi->getRowm)->printP(), "\n");
$rhLast = $rhi;
$count ++;
$sum += $rhi - >get Row() - >get ("price");
}
if ($count) {
$avg = $suni $count ;
$uTr ades->cal | ($l bAver age- >makeRowop(&Tri ceps: : OP_I NSERT,
$rt AvgPri ce- >makeRowHash(
synbol => $rhLast - >get Rowm) - >get (" synbol "),
id => $rhLast->get Row()->get ("id"),
price => $avg
)
));
}
}
whi | e(<STDI N>) {
chonp;
ny @ata = split(/,/);
$uTr ades- >nmakeArrayCal | ($t W ndow >get | nput Label (), @lata);
&conput eAver age() ;
undef $rlLastMd; # clear for the next iteration
$uTrades->drai nFrane(); # just in case, for conpleteness
}

For the demonstration, the aggregated rows sent to $I bAver age get printed. The rows being aggregated are printed
during theiteration too, indented after “Contents.”. And hereis a sample run'sresult, with the input records shown in bold:

OP_I NSERT, 1, AAA, 10, 10
Content s:
id="1" synbol =" AAA" price="10" size="10"
| bAver age OP_I NSERT synbol =" AAA" i d="1" price="10"
OP_I NSERT, 3, AAA, 20, 20
Content s:
id="1" synbol ="AAA" price="10" size="10"
i d="3" synbol =" AAA" price="20" size="20"
| bAver age OP_I| NSERT synbol =" AAA" i d="3" price="15"
OP_I NSERT, 5, AAA, 30, 30
Content s:
i d="3" synbol =" AAA" price="20" size="20"

136 Aggregation

i d="5" synbol =" AAA" price="30" size="30"
| bAver age OP_I NSERT synbol =" AAA" id="5" price="25"
OP_DELETE, 3
Contents:

i d="5" synbol =" AAA" price="30" size="30"
| bAver age OP_I NSERT synbol =" AAA" id="5" price="30"
OP_DELETE, 5
Contents:

There are a couple of things to notice about it: it produces only the INSERT rowops, no DELETES, and when the last
record of the group is removed, that event produces nothing.

Thefirst itemismildly problematic because the processing downstream from here might not be able to handle the updates
properly without the DELETE rowops. It can be worked around fairly easily by connecting another table to store the ag-
gregation results, with the same primary key asthe aggregation key. That table would automatically transform the repeated
INSERTSs on the same key to a DELETE-INSERT sequence.

The second item is actually pretty bad because it means that the last record deleted gets stuck in the aggregation results.
The Coral8 solution for this situation isto send arow with all non-key fields set to NULL, to reset them (interestingly, it's
arelatively recent addition, that bug took Coral8 years to notice). But with the opcodes available, we can as well send a
DELETE rowop with the key fields filled, the helper table will fill in the rest of the fields, and produce a clean DELETE.

All this can be done by the following changes. Add the table, remember itsinput label in $I bAvgPr i ceHel per . It will
be used to send the aggregated rows instead of $t AvgPr i ce. Then still use $t AvgPr i ce to print the records coming
out, but now connect it after the helper table. Andin conput eAver age() changethe destination label and add the case
for when the group becomes empty ($count == 0). Therest of the example stays the same.

our $ttAvgPrice = Triceps:: Tabl eType->new $rt AvgPri ce)
- >addSubl ndex(" bySynbol ",
Triceps:: I ndexType->newHashed(key => ["synbol" 1)
)

or confess "$!'";
$ttAvgPrice->initialize() or confess "$!";
our $t AvgPrice = $uTrades->nakeTabl e($tt AvgPri ce,
&Triceps:: EM CALL, "tAvgPrice") or confess "$!";
our $l bAvgPri ceHel per = $t AvgPri ce->get | nput Label () or confess "$!";

place to send the average: could be a dumy | abel, but to keep the
code snuller also print the rows here, instead of in a separate | abel
our $l bAverage = nakePrintLabel ("I bAverage", $tAvgPrice->get QutputLabel ());

Send the average price of the synbol in the last nodified row
sub conput eAverage2 # (row)
{
return unl ess defined $rLast Mod;
ny $rhFirst = $t Wndow >fi ndl dx($it Synbol, $rlLastMd) or confess "$!'";
ny $rhEnd = $rhFirst->next Goupldx($itLast2) or confess "$!";
print("Contents:\n");
ny $avg = O;
ny ($sum $count);
ny $rhLast;
for (my $rhi = $rhFirst;
1 $r hi - >sanme($rhEnd); $rhi = $rhi->nextldx($itLast2)) {

print(" ", $rhi->getRow()->printP(), "\n");
$rhLast = $rhi;
$count ++;

$sum += $rhi - >get Row() - >get ("pri ce");

}
if ($count) {
$avg = $suni $count ;
$uTr ades- >makeHashCal | ($| bAvgPri ceHel per, &Triceps:: OP_I NSERT,

Manual aggregation 137

synbol => $rhLast - >get Rowm) - >get (" synbol "),

id => $rhLast->get Row()->get ("id"),
price => $avg
)

} else {

$uTr ades- >nakeHashCal | ($| bAvgPri ceHel per, &Triceps:: OP_DELETE,

synbol => $rlLast Mod- >get ("synbol "),

)
}

}

The change is straightforward. Thelabel $I bAver age now revertsto just printing the rowops going through it, so it can
be created with the template makePr i nt Label () described in Section 10.3: “ Simple wrapper templates’ (p. 111) .

Then the output for the same input becomes:

OP_I NSERT, 1, AAA, 10, 10
Cont ent s:

id="1" synbol =" AAA" price="10" size="10"
t AvgPri ce. out OP_I NSERT synbol =" AAA" id="1"
OP_I NSERT, 3, AAA, 20, 20
Cont ent s:

id="1" synbol =" AAA" price="10" size="10"

id="3" synbol =" AAA" price="20" size="20"
t AvgPri ce. out OP_DELETE synbol =" AAA" id="1"
t AvgPri ce. out OP_I NSERT synbol =" AAA" id="3"
OP_I NSERT, 5, AAA, 30, 30
Cont ent s:

id="3" synbol =" AAA" price="20" size="20"

i d="5" synbol =" AAA" price="30" size="30"
t AvgPri ce. out OP_DELETE synbol =" AAA" id="3"
t AvgPri ce. out OP_I NSERT synbol =" AAA" id="5"
OP_DELETE, 3
Cont ent s:

i d="5" synbol =" AAA" price="30" size="30"
t AvgPri ce. out OP_DELETE synbol =" AAA" id="5"
t AvgPri ce. out OP_I NSERT synbol =" AAA" id="5"
OP_DELETE, 5
Cont ent s:
t AvgPri ce. out OP_DELETE synbol =" AAA" id="5"

price="10"

price="10"
price="15"

price="15"
price="25"

price="25"
pri ce="30"

pri ce="30"

All fixed, the proper DELETES are coming out. The last line shows the empty group contentsin the table but the DELETE

row is still coming out.

Why should we worry so much about the DELETES? Because without them, relying on just INSERTS for updates, it's
easy to create bugs. The last example still has an issue with handling the row replacement by INSERTS. Can you spot it

from reading the code?

Here is run example that highlights the issue (as usual, the input lines are in bold):

OP_I NSERT, 1, AAA, 10, 10
Cont ent s:
id="1" synbol ="AAA" price="10" size="10"
t AvgPri ce. out OP_I NSERT synbol =" AAA" id="1"
OP_I NSERT, 3, AAA, 20, 20
Content s:
id="1" synbol ="AAA" price="10" size="10"
id="3" synbol =" AAA" price="20" size="20"
t AvgPri ce. out OP_DELETE synbol =" AAA" id="1"
t AvgPri ce. out OP_I NSERT synbol =" AAA" id="3"
OP_I NSERT, 5, AAA, 30, 30

price="10"

price="10"
price="15"

138

Aggregation

Contents

i d="3" synbol ="AAA" price="20" size="20"

i d="5" synbol =" AAA" price="30" size="30"
t AvgPri ce. out OP_DELETE synbol =" AAA" id="3" price="15"
t AvgPri ce. out OP_I NSERT synbol =" AAA" id="5" price="25"
OP_I NSERT, 5, BBB, 30, 30
Contents

i d="5" synbol ="BBB" price="30" size="30"
t AvgPri ce. out OP_I NSERT synbol ="BBB" i d="5" price="30"
OP_I NSERT, 7, AAA, 40, 40
Contents

i d="3" synbol ="AAA" price="20" size="20"

id="7" synbol ="AAA" price="40" size="40"
t AvgPri ce. out OP_DELETE synbol =" AAA" id="5" price="25"
t AvgPri ce. out OP_I NSERT synbol =" AAA" id="7" price="30"

The row with id=5 has been replaced to change the symbol from “AAA” to “BBB”. This act changes both the groups
of “AAA” and of “BBB”, removing the row from the first one and inserting it into the second one. Y et only the output
for “BBB” came out. The printout of the next row with id=7 and symbol="AAA” shows that the row with id=5 has been
indeed removed from the group “AAA”. It even corrects the result. But until that row camein, the average for the symbol
“AAA” remained unchanged and incorrect.

There are multiple ways to fix thisissue but first it had to be noticed. Which requires alot of attention to detail. It's much
better to avoid these bugs in the first place by sending the clean and nice input.

11.3. Introducing the proper aggregation

Since the manual aggregation is error-prone, Triceps can manage it for you and do it right. The only thing you need to do
is do the actud iteration and computation. Here is the rewrite of the same example with a Triceps aggregator:

ny $uTrades = Triceps::Unit->new("uTrades") or confess "$!'";

the input data
ny $rtTrade = Triceps:: RowType- >new
id=>"int32", # trade unique id
synbol => "string", # synbol traded
price => "fl oat 64",
size => "float64", # nunber of shares traded
) or confess "$!";

the aggregation result
ny $rtAvgPrice = Triceps:: RowType- >new(

synbol => "string", # synbol traded

id=>"int32", # last trade's id

price => "float64", # avg price of the last 2 trades
) or confess "$!";

aggregation handler: recal cul ate the average each tine the easy way
sub conput eAveragel # (table, context, aggop, opcode, rh, state, args...)

{
ny ($table, $context, $aggop, $opcode, $rh, $state, @rgs) = @;

don't send the NULL record after the group becones enpty
return i f ($context->groupSi ze()==
| | $opcode == &Triceps:: OP_NOP);

ny $sum= 0

ny $count = O;

for (nmy $rhi = $context->begin(); !$rhi->isNull();
$rhi = $context->next ($rhi)) {

Introducing the proper aggregation 139

$count ++;

$sum += $rhi - >get Row() - >get ("price");
}
ny $rlLast = $context->last()->getRow() or confess "$!";
ny $avg = $sum $count ;

ny $res = $context->result Type() - >makeRowHash(
synbol => $rlLast->get("synbol"),
id => $rLast->get("id"),
price => $avg

) or confess "$!";

$cont ext - >send($opcode, $res);

}

ny $ttWndow = Triceps:: Tabl eType- >new($rt Tr ade)
- >addSubl ndex(" byl d",
Triceps:: I ndexType->newHashed(key => ["id"])

)
- >addSubl ndex(" bySynbol ",
Triceps:: I ndexType->newHashed(key => ["synbol" 1)
- >addSubl ndex("| ast 2",
Triceps:: I ndexType->newFi fo(linmt => 2)
->set Aggregator (Tri ceps: : Aggr egat or Type- >new
$rt AvgPrice, "aggrAvgPrice", undef, \&conputeAveragel)
)
)
)
or confess "$!'";
$ttWndow >initialize() or confess "$!";
ny $t Wndow = $uTrades->nmakeTabl e($t t W ndow,
&Triceps:: EM CALL, "tWndow') or confess "$!";

label to print the result of aggregation
ny $l bAverage = nakePrintLabel ("I bAver age",
$t W ndow >get Aggr egat or Label ("aggr AvgPrice"));

whi | e(<STDI N>) {
chonp;
ny @ata = split(/,/); # starts with a string opcode
$uTr ades- >nmakeArrayCal | ($t W ndow >get | nput Label (), @lata);
$uTrades->drai nFrane(); # just in case, for conpleteness

}

What has changed in this code? The things got rearranged a bit. The aggregator is now defined as a part of the table type,
so the aggregation result row type and its computation function had to be moved up.

The AggregatorType object holds the information about the aggregator. In the table type, the aggregator type gets attached
to anindex typewith set Aggr egat or () . Inthiscase, to the FIFO index type. The parent of that index type determines
the aggregation groups, grouping happening by its combined key fields (that is, all the key fields of al the indexesin the
path starting from the root). For aggregation the working or non-working method get Key () doesn't matter, so any of the
Hashed, Ordered and Sorted index types can be used. The index type where the aggregator type is attached determines the
order of the rowsin the groups. If you use FIFO, the rows will be in the order of arrival. If you use Ordered or Sorted, the
rows will be in the sort order. If you use Hashed, the rows will be in some random order, which is not particularly useful.

At present an index type may have no more than one aggregator type attached to it. There is no particular reason for
that, other than that it was slightly easier to implement, and that | can't think yet of a real-word situation where multiple
aggregators on the same index would be needed. If this situation will ever occur, this support can be added. However a
table type may have multiple aggregator typesin it, on different indexes. Y ou can save a reference to an aggregator type
in a variable and reuse it in the different table types too (though not multiple times in the same table, since that would
cause a naming conflict).

140 Aggregation

The aggregator type is created with the arguments of

* result row type,

* aggregator name,

 group initialization Perl function (which may be undef , asin this example),
 group computation Perl function,

» the optional arguments for the functions.

Note that there is a difference in naming between the aggregator types and index types. an aggregator type knows its name,
while an index type does not. An index type is given a name only in its hierarchy inside the table type, but it does not
know its name.

When atable is created, it finds all the aggregator typesin it, and creates an output label for each of them. The names of
the aggregator types are used as suffixes to the table name. In this exampl e the aggregator will haveits output label named
“tWindow.aggrAvgPrice’. This puts all the aggregator types in the table into the same namespace, so make sure to give
them different names in the same table type. Also avoid the names “in”, “out” and “pre” because these are already taken
by the table's own labels. The aggregator labels in the table can be found with

$agglLabel = $t abl e- >get Aggr egat or Label ("aggNane") or confess "$!'";

Theaggregator typesaretheoretically multithreaded, but for al | cantell, they will not integrate with the Perl multithreading
well, due to the way the Perl objects (the execution methods!) are tied to each thread's separate interpreter. In the future
expect that the table types with aggregators could not be shared between the threads. But then again, maybe they could be
copied between the threads and that would work just as well.

After the logic is moved into a managed aggregator, the main loop becomes simpler.

The computation function gets alot more arguments than it used to. The most interesting and most basic ones are $con-
t ext , $opcode, and $r h. Therest are useful in the more complex cases only.

The aggregator typeis exactly that: atype. It doesn't know, on which table or index, or evenindex typeit will be used. And
indeed, it might be used on multiple tables and index types. But to do the iteration on the rows, the computation function
needs to get this information somehow. And it does, in the form of aggregator context. The manual aggregation used the
last table output row to find, on which exact group to iterate. The managed aggregator gets the last modified row handle as
the argument $r h. But our simple aggregator doesn't even need to consult $r h because the context takes care of finding
the group too: it knows the exact group and exact index that needs to be aggregated (look at the index tree drawingsin
Section 9.10: “The index tree” (p. 93) for the difference between an index type and an index).

All the aggregator context methods use the new error handling, confessing on errors.

Thecontext providesitsownbegi n() andnext () methods. They areactually slightly more efficient than the usual table
iteration methods because they take advantage of that exact known index. The most important part, they work differently.

$rhi = $cont ext - >next ($rhi);

returns a NULL row handle when it reaches the end of the group. Do not, | repeat, DO NOT use the $r hi - >next ()
in the aggregators, or you'll get some very wrong results.

The context also has a bit more of its own magic.

$rh = $context->last();

returns the last row handle in the group. This comes very handy because in most of the cases you want the data from the
last row to fill the fields that haven't been aggregated as such. This is like the SQL function LAST() . Using the fields
from the argument $r h, unless they are the key fields for this group, is generally not a good idea because it adds an extra

Introducing the proper aggregation 141

dependency on the order of modificationsto thetable. The FI RST() or LAST() (i.e. thecontext'sbegi n() orl ast())
are much better and not any more expensive.

$si ze = $cont ext - >groupSi ze() ;

returns the number of rows in the group. It's your value of COUNT(*) in SQL terms, and if that's all you need, you don't
need to iterate.

$cont ext - >send($opcode, $row);

constructs a result rowop and sends it to the aggregator's output label. Remember, the aggregator type as such knows
nothing about this label, so the path through the context is the only path. Note also that it takes a row and not a rowop,
because alabel is needed to construct the rowop in the first place.

$rt = $context->resul t Type();

provides the result row type needed to construct the result row. There also are a couple of convenience methods that
combine the row construction and sending, that can be used instead:

$cont ext - >nakeHashSend ($opcode, $fiel dName => $fiel dvalue, ...);
$cont ext - >nakeArraySend($opcode, @i el dVval ues);

The final thing about the aggregator context: it works only inside the aggregator computation function. Once the function
returns, all its methods start returning undef . So thereisno point in trying to saveit for later in aglobal variable or such,
don't do that.

Asyou can see, conput eAver age() hasthe same logic as before, only now it uses the aggregation context. And I've
removed the debugging printout of the rows in the group.

Thelast unexplained pieceisthe opcode handling and that comparison to OP_NOP. Basically, the table callsthe aggregator
computation every time something changes in its index. It describes the reason for the call in the argument $aggop
(“aggregation operation™). Depending on how clever an aggregator wants to be, it may do something useful on al of these
occasions, or only on some of them. The simple aggregator that doesn't try any smart optimizationsbut just goesand iterates
through the rows every time only needs to react in some of the cases. To make its life easier, Triceps pre-computes the
opcode that should be used for the result and puts it into the argument $opcode. So to ignore the non-interesting calls,
the simple aggregator computation can just return if it sees the opcode OP_NOP.

Why does it also check for the group size being 0? Again, Triceps provides flexibility in the aggregators. Among other
things, it allowsto implement thelogic like Coral 8, when on deletion of the last row in the group the aggregator would send
arow with all non-key fieldsset to NULL (it cantakethe key fieldsfrom the argument $r h). So for this specific purposethe
computation function gets called with al rows del eted from the group, and $opcode setto OP_I NSERT. And, by theway,
atrue Coral8-styled aggregator would ignore all the calls where the $opcode isnot OP_I NSERT. But the normal aggre-
gators need to avoid doing this kind of crap, so they have to ignore the calls where $cont ext - >gr oupSi ze() ==0.

And hereis an example of the output from that code (as usual, the input lines are in bold):

OP_I NSERT, 1, AAA, 10, 10

t W ndow. aggr AvgPri ce OP_I NSERT synbol =" AAA" id="1" price="10"
OP_I NSERT, 3, AAA, 20, 20

t W ndow. aggr AvgPri ce OP_DELETE synbol =" AAA" id="1" price="10"
t W ndow. aggr AvgPri ce OP_I NSERT synbol =" AAA" id="3" price="15"
OP_I NSERT, 5, AAA, 30, 30

t W ndow. aggr AvgPri ce OP_DELETE synbol =" AAA" id="3" price="15"
t W ndow. aggr AvgPri ce OP_I NSERT synbol =" AAA" id="5" price="25"
OP_DELETE, 3

t W ndow. aggr AvgPri ce OP_DELETE synbol =" AAA" id="5" price="25"
t W ndow. aggr AvgPri ce OP_I NSERT synbol =" AAA" id="5" price="30"
OP_DELETE, 5

t W ndow. aggr AvgPri ce OP_DELETE synbol =" AAA" id="5" price="30"

142 Aggregation

Asyou can seg, it's exactly the same as from the manual aggregation example with the helper table, minus the debugging
printout of the group contents. However here it's done without the helper table: instead the aggregation function is called
before and after each update.

This presents amemory vs CPU compromise: a hel per table uses more memory but requires less CPU for the aggregation
computations (presumably, theinsertion of therow into thetableisless computationally intensive than the iteration through
the original records).

The managed aggregators can be made to work with a helper table too: just chain a helper table to the aggregator's |abel,
and in the aggregator computation add

return if ($opcode == &Triceps:: OP_DELETE
&& $cont ext - >groupSi ze() !'= 1);

Thiswould skip all the DELETES except for the last one, before the group collapses.

Thereisaso away to optimize thislogic right inside the aggregator: remember the last INSERT row sent, and on DELETE
just resend the same row, as will be shown in Section 11.5: “Optimized DELETES’ (p. 147). This remembered last

state can also be used for the other interesting optimizations that will be shown in Section 11.6: “ Additive aggregation” (p.
149) .

Which approach is better, depends on the particular case. If you need to store the results of aggregation in a table for
the future look-ups anyway, then that table is no extra overhead. That's what the Aleri system does internally: since each
element initsmodel keeps a primary-indexed table (“materialized view”) of the result, that tableis used whenever possible
to generatethe DEL ETEswithout involving any logic. Or the extraoptimization inside the aggregator can seriously improve
the performance on the large groups. Sometimes you may want both.

Now let'slook at the run with the same input that went wrong with the manual aggregation:

OP_I NSERT, 1, AAA, 10, 10
t W ndow. aggr AvgPri ce OP_I NSERT synbol =" AAA" id="1" price="10"
OP_I NSERT, 3, AAA, 20, 20

t W ndow. aggr AvgPri ce OP_DELETE synbo
t W ndow. aggr AvgPri ce OP_I NSERT synbo
OP_I NSERT, 5, AAA, 30, 30

t W ndow. aggr AvgPri ce OP_DELETE synbo
t W ndow. aggr AvgPri ce OP_I NSERT synbo
OP_I NSERT, 5, BBB, 30, 30

t W ndow. aggr AvgPri ce OP_DELETE synbol =" AAA" id="5" price="25"
t W ndow. aggr AvgPri ce OP_I NSERT synbol =" AAA" id="3" price="20"
t W ndow. aggr AvgPri ce OP_I NSERT synbol ="BBB" id="5" price="30"
OP_I NSERT, 7, AAA, 40, 40

t W ndow. aggr AvgPri ce OP_DELETE synbo
t W ndow. aggr AvgPri ce OP_I NSERT synbo

"AAA" id="1" price="10"
"AAA" id="3" price="15"

"AAA" id="3" price="15"
"AAA" i d="5" price="25"

"AAA" id="3" price="20"
"AAA" i d="7" price="30"

Here it goes right. Triceps recognizes that the second INSERT with id=5 moves the row to another group. So it performs
the aggregation logic for both groups. First for the group where the row gets removed, it updates the aggregator result with
aDELETE and INSERT (note that id became 3, since it's now the last row left in that group). Then for the group where
the row gets added, and since there was nothing in that group before, it generates only an INSERT.

11.4. Tricks with aggregation on a sliding
window

Now it all works as it should, but there is still some room for improvement, related to the way the sliding window limits
are handled.

Let'slook again at the sample aggregation output with row deletion, copied here for convenience:

Tricks with aggregation on a sliding window 143

OP_I NSERT, 1, AAA, 10, 10

t W ndow. aggr AvgPri ce OP_I NSERT synbol =" AAA" id="1" price="10"
OP_I NSERT, 3, AAA, 20, 20

t W ndow. aggr AvgPri ce OP_DELETE synbol =" AAA" id="1" price="10"
t W ndow. aggr AvgPri ce OP_I NSERT synbol =" AAA" id="3" price="15"
OP_I NSERT, 5, AAA, 30, 30

t W ndow. aggr AvgPri ce OP_DELETE synbol =" AAA" id="3" price="15"
t W ndow. aggr AvgPri ce OP_I NSERT synbol =" AAA" id="5" price="25"
OP_DELETE, 3

t W ndow. aggr AvgPri ce OP_DELETE synbol =" AAA" id="5" price="25"
t W ndow. aggr AvgPri ce OP_I NSERT synbol =" AAA" id="5" price="30"
OP_DELETE, 5

t W ndow. aggr AvgPri ce OP_DELETE synbol =" AAA" id="5" price="30"

When the row with id=3 is deleted, the average price revertsto 30, which isthe price of the trade with id=5, not the average
of tradeswithid 1 and 5.

Thisis because the table is actually a sliding window, with the FIFO index having alimit of 2 rows

ny $ttWndow = Triceps:: Tabl eType- >new($rt Tr ade)
- >addSubl ndex(" byl d",
Triceps:: I ndexType->newHashed(key => ["id"])

)
- >addSubl ndex(" bySynbol ",
Triceps:: I ndexType->newHashed(key => ["synbol" 1)
- >addSubl ndex("| ast 2",
Triceps:: I ndexType->newFi fo(linmt => 2)
- >set Aggr egat or (Tri ceps: : Aggr egat or Type- >new(
$rt AvgPrice, "aggrAvgPrice", undef, \&conputeAveragel)
)
)
)

or confess "$!'";

When the row with id=5 was inserted, it pushed out the row with id=1. Deleting the record with id=3 does not put that
row with id=1 back. Y ou can see the group contents in an even earlier printout with the manual aggregation, also copied
here for convenience:

OP_I NSERT, 1, AAA, 10, 10
Cont ent s:
id="1" synbol =" AAA" price="10" size="10"
| bAver age OP_I NSERT synbol =" AAA" id="1" price="10"
OP_I NSERT, 3, AAA, 20, 20
Cont ent s:
id="1" synbol ="AAA" price="10" size="10"
id="3" synbol =" AAA" price="20" size="20"
| bAver age OP_I NSERT synbol =" AAA" id="3" price="15"
OP_I NSERT, 5, AAA, 30, 30
Cont ent s:
i d="3" synbol =" AAA" price="20" size="20"
id="5" synbol =" AAA" price="30" size="30"
| bAver age OP_I NSERT synbol =" AAA" id="5" price="25"
OP_DELETE, 3
Cont ent s:
i d="5" synbol =" AAA" price="30" size="30"
| bAver age OP_I NSERT synbol =" AAA" id="5" price="30"
OP_DELETE, 5
Cont ent s:

Like the toothpaste, once out of the tube, it's not easy to put back. But for this particular kind of toothpaste thereis atrick:
keep morerowsinthegroup just in case but use only thelast few for the actual aggregation. To allow an occasional deletion
of asingle row, we can keep 3 rowsinstead of 2.

144 Aggregation

So, change the table definition:

Triceps:: I ndexType->newFi fo(linmt => 3)

and modify the aggregator function to use only the last 2 rows from the group, even if more are available:

sub comput eAverage2 # (table, context, aggop, opcode, rh, state, args...)

{
nmy ($table, $context, $aggop, $opcode, $rh, $state, @rgs) = @;

don't send the NULL record after the group beconmes enpty
return if ($context->groupSi ze()==
|| $opcode == &Triceps:: OP_NOP);

my $skip = $cont ext->groupSi ze() - 2;
ny $sum = 0;
ny $count = O;
for (ny $rhi = $context->begin(); !$rhi->isNull();
$rhi = $context->next($rhi)) {
if ($skip > 0) {
$ski p--;
next ;
}
$count ++;
$sum += $rhi - >get Row() - >get ("price");
}
ny $rlLast = $context->l ast()->get Row() or confess "$!";
my $avg = $suni $count;

ny $res = $context->resul t Type() - >makeRowHash(
synbol => $rlLast->get ("synbol "),
id => $rLast->get("id"),
price => $avg

) or confess "$!";

$cont ext - >send($opcode, $res);

}
The output from this version becomes:

OP_I NSERT, 1, AAA 10, 10
t W ndow. aggr AvgPri ce OP_I NSERT synbol =" AAA" id="1" price="10"
OP_I NSERT, 3, AAA, 20, 20

t W ndow. aggr AvgPri ce OP_DELETE synbo
t W ndow. aggr AvgPri ce OP_I NSERT synbo
OP_I NSERT, 5, AAA, 30, 30

t W ndow. aggr AvgPri ce OP_DELETE synbo
t W ndow. aggr AvgPri ce OP_I NSERT synbo
OP_DELETE, 3

t W ndow. aggr AvgPri ce OP_DELETE synbo
t W ndow. aggr AvgPri ce OP_I NSERT synbo
OP_DELETE, 5

t W ndow. aggr AvgPri ce OP_DELETE synbo
t W ndow. aggr AvgPri ce OP_I NSERT synbo

"AAA" id="1" price="10"
"AAA" id="3" price="15"

"AAA" id="3" price="15"
"AAA" id="5" price="25"

"AAA" id="5" price="25"
"AAA" id="5" price="20"

"AAA" id="5" price="20"
"AAA" id="1" price="10"

Now after OP_DELETE, 3 the average price becomes 20, the average of 10 and 30, because the row with id=1 comesinto
play again. Can you repeat that in the SQLY languages?

This version stores one extrarow and thus can handle only one deletion (until the deleted row's spot gets pushed out of the
window naturally, then it can handle another). It can not handle the arbitrary modifications properly. If you insert another
row with id=3 for the same symbol “AAA”, the new version will be placed again at the end of the window. If it was the

Tricks with aggregation on a sliding window 145

last row anyway, that isfine. But if it was not the last, asin this example, that would be an incorrect order that will produce
incorrect results.

But just change the table type definition to aggregate on a sorted index instead of FIFO and it becomes able to handle the
updates while keeping the rows in the order of their ids:

nmy $ttWndow = Triceps:: Tabl eType->new $rt Tr ade)
- >addSubl ndex(" byl d",
Triceps:: | ndexType- >newHashed(key => ["id"])
)

- >addSubl ndex(" bySynbol ",
Tri ceps:: | ndexType- >newHashed(key => ["synbol"])
- >addSubl ndex(" or der Byl d",
Tri ceps:: Si npl eOrder edl ndex->new(id => "ASC',)
->set Aggregator (Tri ceps: : Aggr egat or Type- >new
$rt AvgPrice, "aggrAvgPrice", undef, \&conputeAverage3)
)

)
- >addSubl ndex(" | ast 3",

Triceps::IndexType->newFi fo(limt => 3))
)

or confess "$!'";

The FIFO index is till there, in parallel, but it doesn't determine the order of rows for aggregation any more. Here is a
sample of this version's work:

OP_I NSERT, 1, AAA, 10, 10
t W ndow. aggr AvgPri ce OP_I NSERT synbol =" AAA" id="1" price="10"
OP_I NSERT, 3, AAA, 20, 20

t W ndow. aggr AvgPri ce OP_DELETE synbo
t W ndow. aggr AvgPri ce OP_I NSERT synbo
OP_I NSERT, 5, AAA, 30, 30

t W ndow. aggr AvgPri ce OP_DELETE synbo
t W ndow. aggr AvgPri ce OP_I NSERT synbo
OP_DELETE, 3

t W ndow. aggr AvgPri ce OP_DELETE synbo
t W ndow. aggr AvgPri ce OP_I NSERT synbo
OP_I NSERT, 3, AAA, 20, 20

t W ndow. aggr AvgPri ce OP_DELETE synbo
t W ndow. aggr AvgPri ce OP_I NSERT synbo
OP_I NSERT, 7, AAA, 40, 40

t W ndow. aggr AvgPri ce OP_DELETE synbo
t W ndow. aggr AvgPri ce OP_I NSERT synbo

"AAA" id="1" price="10"
"AAA" i d="3" price="15"

"AAA" id="3" price="15"
"AAA" id="5" price="25"

"AAA" i d="5" price="25"
"AAA" i d="5" price="20"

"AAA" i d="5" price="20"
"AAA" i d="5" price="25"

"AAA" id="5" price="25"
"AAA" id="7" price="35"

When the row with id=3 gets deleted, the average reverts to the rows 1 and 5. When the row 3 gets inserted back, the
average works on rows 3 and 5 again. Then when the row 7 isinserted, the aggregation moves up to therows 5 and 7.

The row expiration is still controlled by the FIFO index. So after the row 3 isinserted back, the order of rowsin the FIFO
becomes

1, 5, 3
Then when the row 7 isinserted, it advances to
5 3, 7

At this point, until the row 3 gets naturally popped out of the FIFQ, it's best not to have other deletions nor updates, or
the group contents may become incorrect.

The FIFO and Ordered index typeswork in parallel on the same group, and the Ordered index always keepstheright order:

1, 3, 5

146 Aggregation

3, 5 7

At long as the records with the two highest ids are in the group at all, the Ordered index will keep them in the right position
at the end.

In this case we could even make a bit of optimization: turn the sorting order around, and have the Ordered index arrange
the rows in the descending order. Then instead of skipping the rows until the last two, just take the first two rows of the
reverse order. They'll be iterated in the opposite direction but for the averaging it doesn't matter. And instead of the last
row take the first row of the opposite order. Thisis asimple modification and is left as an exercise for the reader.

Thinking further, the sensitivity to the ordering comes largely from the FIFO index. If the replacement policy could be
done directly on the Ordered index, it would become easier. Would be a good thing to add in the future. Also, if you keep
all the day's trades anyway, you might not need to have a replacement policy at all: just pick the last 2 records for the
aggregation. Thereis currently no way to iterate back from the end (another thing to add in the future) but the same trick
with the opposite order would work.

For anew subject, thistabletypeindexesby id twice: onceasaprimary index, another time asanested one. Are both of them
really necessary or would just the nested one be good enough? That depends on your input data. If you get the DELETESlike
OP_DELETE, 3 with al the other fieldsas NULL, then a separate primary index is definitely needed. But if the DELETESs
come exactly asthe samerecordsthat were inserted, only with adifferent opcode, like OP_DELETE, 3, AAA, 20, 20 then
the primary index can be skipped because the nested sorted index will be able to find the rows correctly and handle them.
The bottom lineis, the fully correct DELETE records are good.

11.5. Optimized DELETEs

I've already mentioned that the DEL ETEs coming out of an aggregator do not haveto berecal culated every time. Instead the
rows can be remembered from the insert time, and simply re-sent with the new opcode. That allows to trade the CPU time
for the extra memory. Of course, this works best when there are many rows per aggregation group, then more CPU time
is saved on not iterating through them. How many is “many”? It depends on the particular cases. Y ou'd have to measure.
Anyway, hereis how it's done:

sub conput eAverage4 # (table, context, aggop, opcode, rh, state, args...)

{
ny ($table, $context, $aggop, $opcode, $rh, $state, @rgs) = @;

don't send the NULL record after the group becones enpty
return i f ($context->groupSi ze()==

| | $opcode == &Triceps:: OP_NOP);
if ($opcode == &Triceps:: OP_DELETE) ({

$cont ext - >send($opcode, $Pstate);

return;

}

ny $sum = O;
ny $count = O;
for (ny $rhi = $context->begin(); !$rhi->isNull();
$rhi = $context->next ($rhi)) {

$count ++;

$sum += $r hi - >get Row() - >get (" price");
}
ny $rlLast = $context->last()->getRow() or confess "$!";
ny $avg = $sunl $count;

ny $res = $context->result Type() - >makeRowHash(
synbol => $rlLast->get("synbol"),
id => $rLast->get("id"),
price => $avg

) or confess "$!";

${$state} = $res;

Optimized DELETEs 147

$cont ext - >send($opcode, $res);

}

sub initRenmenberLast # (@rgs)

{
ny $refvar;
return \ $refvar;

}

ny $ttWndow = Triceps:: Tabl eType- >new($rt Tr ade)
- >addSubl ndex(" byl d",
Triceps:: I ndexType->newHashed(key => ["id"])

)
- >addSubl ndex(" bySynbol ",
Triceps:: I ndexType->newHashed(key => ["synbol" 1)
- >addSubl ndex("| ast 2",
Triceps:: I ndexType->newFi fo(linmt => 2)
->set Aggregator (Tri ceps: : Aggr egat or Type- >new
$rt AvgPrice, "aggrAvgPrice", \& nitRenmenberlLast, \&conputeAverage4)

)
)
)

or confess "$!";
Therest of the example stays the same, so it's not shown. Even in the part that is shown, very little has changed.

The aggregator type now has an initialization function. (Thisfunction isnot of the samekind as for the sorted index!) This
function gets called every time a new aggregation group gets created, before the first row isinserted into it. It initializes
the aggregator group's Perl state by creating and returning the state value (the state is per aggregator type, so if there are
two parallel index types, each with an aggregator, each aggregator will have its own group state).

The state is stored in the group as a single Perl variable. So it usually is areference to a more complex object. In this case
the value returned is areference to a variable that would contain a Row reference. (Ironically, the simplest case looks a bit
more confusing than if it were a reference to an array or hash). Returning a reference to any variable is away to create
areference to an anonymous value: each time my executes, it creates a new value. Which is then kept in areference after
the initialization function returns. The next time the function executes, my would create another new value.

The computation function has that state passed as an argument and now makes use of it. It has two small additions. Before
sending a new result row, that row gets remembered in the state reference. And then before doing any computation the
function checks, whether the required opcodeis DELETE, and if so then simply resendsthelast result with the new opcode.
Remember, the rows are not copied but reference-counted, so thisisfairly cheap.

The extralevel of referencing is used because simply assigning to $st at e would only change the local variable and not
the value kept in the group.

However if you change the argument of the function directly, that would change the value kept in the group (similar to
changing the loop variable in a foreach loop). So you can save a bit of overhead by eliminating the extraindirection. The
modified version will be:

sub conput eAverage5 # (table, context, aggop, opcode, rh, state, args...)

{
ny ($table, $context, $aggop, $opcode, $rh, $state, @rgs) = @;

don't send the NULL record after the group becones enpty
return i f ($context->groupSi ze()==

| | $opcode == &Triceps:: OP_NOP);
if ($opcode == &Triceps:: OP_DELETE) ({

$cont ext - >send($opcode, $state);

return;

}

148 Aggregation

ny $sum = 0;
ny $count = O;
for (ny $rhi = $context->begin(); !$rhi->isNull();
$rhi = $context->next ($rhi)) {

$count ++;

$sum += $r hi - >get Row() - >get (" price");
}
ny $rlLast = $context->last()->getRow() or confess "$!";
ny $avg = $sum $count ;

ny $res = $context->result Type() - >makeRowHash(
synbol => $rlLast->get("synbol"),
id => $rLast->get("id"),
price => $avg

) or confess "$!";

$_[5] = $res;

$cont ext - >send($opcode, $res);
}
sub initRenmenberlLast5 # (@args)
{

return undef;
}

Even though the initialization function returnsundef , it still must be present. If it's not present, the state argument of the
comparison function will contain a special hardcoded and unmodifiable undef constant, and nothing could be remem-
bered.

And hereis an example of its work:

OP_I NSERT, 1, AAA, 10, 10

t W ndow. aggr AvgPri ce OP_I NSERT synbol =" AAA" id="1" price="10"
OP_I NSERT, 2, BBB, 100, 100

t W ndow. aggr AvgPri ce OP_I NSERT synbol ="BBB" id="2" price="100"
OP_I NSERT, 3, AAA, 20, 20

t W ndow. aggr AvgPri ce OP_DELETE synbo
t W ndow. aggr AvgPri ce OP_I NSERT synbo
OP_| NSERT, 4, BBB, 200, 200

t W ndow. aggr AvgPri ce OP_DELETE synbo
t W ndow. aggr AvgPri ce OP_I NSERT synbo
OP_I NSERT, 5, AAA, 30, 30

t W ndow. aggr AvgPri ce OP_DELETE synbo
t W ndow. aggr AvgPri ce OP_I NSERT synbo
OP_DELETE, 3

t W ndow. aggr AvgPri ce OP_DELETE synbo
t W ndow. aggr AvgPri ce OP_I NSERT synbo
OP_DELETE, 5

t W ndow. aggr AvgPri ce OP_DELETE synbol =" AAA" id="5" price="30"

"AAA" id="1" price="10"
"AAA" id="3" price="15"

"BBB" id="2" price="100"
"BBB" id="4" price="150"

"AAA" id="3" price="15"
"AAA" i d="5" price="25"

"AAA" id="5" price="25"
"AAA" id="5" price="30"

Since the rows are grouped by the symbol, the symbols“AAA” and “BBB” will have separate aggregation states.

11.6. Additive aggregation

In some cases the aggregation values don't have to be calculated by going through al the rows from scratch every time.
If you do a sum of afield, you can as well add the value of the field when a row is inserted and subtract when arow is
deleted. Not surprisingly, thisis called an “ additive aggregation”.

The averaging can also be done as an additive aggregation: it amounts to asum divided by a count. The sum can obviously
be done additively. The count is potentially additive too, but even better, we have the shortcut of $cont ext - >gr oup-

Additive aggregation 149

Si ze() . Wdll, at least for the same definition of count that has been used previoudly in the non-additive example. The
SQL definition of count (and of average) includes only the non-NULL values, but in the next example we will go with the
Perl approach where a NULL is taken to have the same meaning as 0. The proper SQL count could not use that shortcut

but would still be additive.

Triceps provides away to implement the additive aggregation too. It calls the aggregation computation function for each
changed row, giving it an opportunity to react. The argument $aggop indicates, what has happened. Here is the same
example from Section 11.3: “Introducing the proper aggregation” (p. 139) rewritten in an additive way:

aggregation handl er: recal cul ate the average additively

sub comput eAverage7 # (table, context, aggop, opcode, rh, state, args...)

{
ny ($table, $context, $aggop, $opcode, $rh, $state, @rgs)
my $rowchg;

if ($aggop == &Triceps:: AO BEFORE_MXD) {
$cont ext - >send($opcode, $state->{l astrow});

return;

} elsif ($aggop == &Triceps:: AO AFTER DELETE) {
$rowchg = -1;

} elsif ($aggop == &Triceps:: AO AFTER | NSERT) {
$rowchg = 1,

} else { # AO COLLAPSE, al so has opcode OP_DELETE
return

}

$state->{price_sun} += $rowchg * $rh->get Row)->get ("price");

return if ($context->groupSi ze()==
|| $opcode == &Triceps:: OP_NOP);

my $rlLast = $context->last()->getRow() or confess "$!";
nmy $count = $cont ext - >groupSi ze();
nmy $avg = $state->{price_sun}/$count;
my $res = $context->resul t Type() - >makeRowHash(
synbol => $rlLast->get ("synbol "),
id=> $rlLast->get ("id"),
price => $avg
) or confess "$!";
$state->{l astrow} = $res;

$cont ext - >send($opcode, $res);

}
sub initAverage7 # (@rgs)
{
return { lastrow => undef, price_sum=> 0 };
}

@,

The tricks of keeping an extra row from Section 11.4: “Tricks with aggregation on a dliding window” (p. 143)could
not be used with the additive aggregation. An additive aggregation relies on Triceps to tell it, which rows are deleted and
which inserted, so it can not do any extra skipping easily. The index for the aggregation has to be defined with the correct

limits. If we want an average of the last 2 rows, we set the limit to 2:

ny $ttWndow = Triceps:: Tabl eType- >new($rt Tr ade)
- >addSubl ndex(" byl d",
Triceps:: I ndexType->newHashed(key => ["id"])

)

- >addSubl ndex(" bySynbol ",
Triceps:: I ndexType->newHashed(key => ["synbol" 1)
- >addSubl ndex(" | ast 2",

150

Aggregation

Triceps:: I ndexType->newFi fo(linmt => 2)
->set Aggregator (Tri ceps: : Aggr egat or Type- >new
$rt AvgPrice, "aggrAvgPrice", \& nitAverage7, \&conputeAverage7)

)
)
)

or confess "$!'";

The aggregation state has grown: now it includes not only the last sent row but also the sum of the price, which is used
for the aggregation, kept together in ahash. The last sent row doesn't really have to be kept, and I'll show another example
without it, but for now let's look at how things are done when it is kept.

The argument $aggop describes, why the computation is being called. Note that Triceps doesn't know if the aggregation
is additive or not. It does the calls the same in every case. Just in the previous examples we weren't interested in this
information and didn't look at it. $aggop contains one of the constant values:

* &Tri ceps:: AO BEFORE_MOD: the group is about to be modified, need to send a DELETE of the old aggregated
row. The argument $opcode will always be OP_DELETE.

e &Triceps:: AO AFTER DELETE: the group has been modified by deleting a row from it. The argument $r h will
refer to the row handle being deleted. The $opcode may be either OP_NOP or OP_| NSERT. A single operation on a
table may affect multiple rows: an insert may trigger the replacement policy in the indexes and cause one or more rows
to be deleted. If there are multiple rows deleted or inserted in agroup, the additive aggregator needsto know about all of
them to keep its state correct but does not need (and even must not) send a new result until the last one of them has been
processed. Thecall for the last modification will have the opcode of OP_| NSERT. The preceding intermediate oneswill
have the opcode of OP_NOP. An important point, even though a row is being deleted from the group, the aggregator
opcodeis OP_I NSERT, because it inserts the new aggregator state!

* &Tri ceps:: AO AFTER | NSERT: the group has been modified by inserting a row into it. Same as for
AO AFTER _DELETE, $r h will refer to therow handle being inserted, and $opcode will be OP_NOP or OP_| NSERT.

* &Tri ceps:: AO COLLAPSE: caled after the last row is deleted from the group, just before the whole group is col-
lapsed and deleted. This allows the aggregator to destroy its state properly. For most of the aggregators there is nothing
special to be done. The only case when you want to do something isif your state causes some circular references. Perl
doesn't free the circular references until the whole interpreter exits, and so you'd have to break the circle to let them be
freed immediately. The aggregator should not produce any results on thiscall. The $opcode will be OP_NOP.

The computation reacts accordingly: for the before-modification it re-sends the old result with the new opcode, for the
collapse it does nothing, and for after-modification it calculates the sign, whether the value from $r h needs to be added
or subtracted from the sum. I'm actually thinking, maybe this sign should be passed as a separate argument too, and then
both the aggregation operation constants AO_AFTER_* can be merged into one. We'll see, maybe it will be changed in
the future.

Then the addition/subtraction is done and the state updated.

After that, if the row does not need to be sent (opcode is OP_NOP or group size is 0), the function can aswell return here
without constructing the new row.

If the row needsto be produced, continue with the same | ogic as the non-additive aggregator, only without iteration through
the group. Theid field in the result is produced by essentially the SQL LAST() operator. LAST() and FI RST() arenot
additive, they refer to the valuesin thelast or first row in the group's order, and simply can not be calculated from looking
at which rows are being inserted and deleted without knowing their order in the group. But they are fast as they are, and
do not require iteration. The same goes for the row count (as long as we don't care about excluding NULLSs, violating the
SQL semantics). And for averaging there is the last step to do after the additive part is done: divide the sum by the count.

All these non-additive steps are done in this last section, then the result row is constructed, remembered and sent.

Additive aggregation 151

Not all the aggregation operations can be expressed in an additive way. It may even vary by the data. For MAX() , the
insertion of a row can be always done additively, just comparing the new value with the remembered maximum, and
replacing it if the new value is greater. The deletion can also compare the deleted value with the remembered maximum.
If the deleted value is less, then the maximum is unchanged. But if the deleted value is equal to the maximum, MAX() has
to iterate through all the values and find the new maximum.

There is also an issue with the floating point precision in the additive aggregation. It's not such a big issue if the rows are
only added and never deleted from the group, but can get much worse with the deletion. Let me show it with a sample
run of the additive code:

OP_I NSERT, 1, AAA 1, 10

t W ndow. aggr AvgPri ce OP_I NSERT synbol =" AAA" id="1" price="1"
OP_I NSERT, 2, AAA, 1e20, 20

t W ndow. aggr AvgPri ce OP_DELETE synbol =" AAA" id="1" price="1"

t W ndow. aggr AvgPri ce OP_I NSERT synbol =" AAA" id="2" price="5e+19"
OP_I NSERT, 3, AAA, 2, 10

t W ndow. aggr AvgPri ce OP_DELETE synbol
t W ndow. aggr AvgPri ce OP_I NSERT synbol
OP_I NSERT, 4, AAA, 3, 10

t W ndow. aggr AvgPri ce OP_DELETE synbol =" AAA" id="3" price="5e+19"
t W ndow. aggr AvgPri ce OP_I NSERT synbol =" AAA" id="4" price="1.5"

"AAA" i d="2" price="5e+19"
"AAA" i d="3" price="5e+19"

Why isthelast result 1.5 whileit had to be (2+3)/2 = 2.5? Because adding together 1620 and 2 had pushed the 2 beyond the
precision of floating-point number. 1e20+2 = 1e20. So when the row with 120 was del eted from the group and subtracted
form the sum, that left 0. Which got then averaged with 3, producing 1.5.

Of course, with the real stock prices there won't be that much variation. But the subtler errors will till accumulate over
time, and you have to expect them and plan accordingly.

Switching to a different subject, the additive aggregation contains enough information in its state to generate the result
rows quickly without an iteration. This means that keeping the saved result row for DELETESs doesn't give awhole lot of
advantage and adds at least alittle memory overhead. We can change the code and avoid keeping it:

sub conput eAverage8 # (table, context, aggop, opcode, rh, state, args...)
{

ny ($table, $context, $aggop, $opcode, $rh, $state, @rgs) = @;

ny $rowchg;

if (%aggop == &Triceps:: AO COLLAPSE) {
return
} elsif ($aggop == &Triceps:: AO AFTER DELETE) {
$state->{price_sunt -= $rh->get Row()->get ("price");
} elsif ($aggop == &Triceps:: AO AFTER | NSERT) {
$state->{price_sunt += $rh->get Row()->get ("price");
}
on AO_BEFORE_MOD do not hi ng

return i f ($context->groupSi ze()==
| | $opcode == &Triceps:: OP_NOP);

$cont ext - >l ast () ->get Row() or confess "$!"
$cont ext - >gr oupSi ze() ;

ny $rlLast =
ny $count =
$cont ext - >makeHashSend($opcode,

synbol => $rlLast->get("synbol"),

id => $rLast->get("id"),

price => $state->{price_sun}/$Scount,
)
}

sub initAverage8 # (@rgs)

152 Aggregation

{

return { price_sum=> 0 };

}

On AO BEFORE_MOD it doesn't do any change to the additive state but then produces the result row from that state as
usual, using the supplied $opcode vaue of OP_DELETE. The other change in this example is that the sum gets directly
added or subtracted in AO_AFTER * instead of computing the sign first. It'sall pretty much self-explanatory.

11.7. Computation function arguments

Let'slook up close at what calls are done to the aggregation computation function. Just make a“computation” that prints
the call arguments:

sub conput eAverage9 # (table, context, aggop, opcode, rh, state, args...)
ny ($table, $context, $aggop, $opcode, $rh, $state, @rgs) = @;

print (&Triceps::aggOpString($aggop), " ", &Triceps::opcodeString($opcode), " ",
$cont ext ->groupSi ze(), " ", (!$rh->isNull()? $rh->getRow)->printP(): "NULL"), "\n");
}

It prints the aggregation operation, the result opcode, row count in the group, and the argument row (or “NULL"). The
aggregation is done as before, on the same FIFO index with the size limit of 2.

To show the order of aggregator cals relative to the table label calls, I've added the labels that print the updates form
the table:

ny $I bPre
ny $I bQut

makePrint Label ("1 bPre", $tW ndow >get PrelLabel ());
makePrint Label ("1 bQut", $tW ndow >get Qut put Label ());

To make keeping track of the printout easier, | broke up the sequence into multiple fragments, with a description after
each fragment:

OP_I NSERT, 1, AAA, 10, 10

t Wndow. pre OP_I NSERT id="1" synbol =" AAA" price="10" size="10"

t W ndow. out OP_I NSERT i d="1" synbol =" AAA" price="10" size="10"
AO_AFTER_I NSERT OP_INSERT 1 id="1" synbol ="AAA" price="10" size="10"
OP_I NSERT, 2, BBB, 100, 100

t W ndow. pre OP_I NSERT i d="2" symnbol ="BBB" price="100" size="100"

t W ndow. out OP_I NSERT i d="2" synbol ="BBB" price="100" size="100"
AO_AFTER_I NSERT OP_I NSERT 1 id="2" synbol ="BBB" price="100" size="100"

The INSERT of the first row in each group causes only one call. There is no previous value to delete, only a new one to
insert. The call happens after the row has been inserted into the group.

OP_I NSERT, 3, AAA, 20, 20

AO_BEFORE_MOD OP_DELETE 1 NULL

t Wndow. pre OP_I NSERT i d="3" synbol =" AAA" price="20" size="20"

t W ndow. out OP_I NSERT i d="3" synbol =" AAA" price="20" size="20"
AO_AFTER_|I NSERT OP_I NSERT 2 id="3" synbol =" AAA" price="20" size="20"

Adding the second record in a group means that the aggregation result for this group is modified. So first the aggregator
is caled to delete the old result, then the new row gets inserted, and the aggregator is called the second time to produce
its new result.

OP_I NSERT, 5, AAA, 30, 30

AO_BEFORE_MOD OP_DELETE 2 NULL

t Wndow. pre OP_DELETE id="1" synbol =" AAA" price="10" size="10"
t W ndow. out OP_DELETE id="1" synbol =" AAA" price="10" size="10"
t Wndow. pre OP_I NSERT i d="5" synbol =" AAA" price="30" size="30"

Computation function arguments 153

t W ndow. out OP_I NSERT i d="5" synbol =" AAA" price="30" size="30"
AO_AFTER DELETE OP_NOP 2 id="1" synbol ="AAA" price="10" size="10"
AO_AFTER_I NSERT OP_I NSERT 2 id="5" synbol =" AAA" price="30" size="30"

Theinsertion of the third row in a group triggers the replacement policy in the FIFO index. The replacement policy causes
the row with id=1 to be deleted before the row with id=5 isinserted. For the aggregator result it's still asingle delete-insert
pair: First, before modification, the old aggregation result is deleted. Then the contents of the group gets modified with
both the delete and insert. And then the aggregator gets told, what has been modified. The deletion of the row with id=1
is not the last step, so that call gets the opcode of OP_NOP. Note that the group size with it is 2, not 1. That's because
the aggregator gets notified only after all the modifications are already done. So the additive part of the computation must
never read the group size or do any kind of iteration through the group, because that would often cause an incorrect result:
it has no way to tell, what other modifications have been already done to the group. The last AO_AFTER | NSERT gets
the opcode of OP_| NSERT which tells the computation to send the new result of the aggregation. When the opcode is
OP_| NSERT, reading the group size and the other group information becomes safe, because by thistime all the modifica
tions are guaranteed to be done, and the additive notifications have caught up with all the changes.

OP_I NSERT, 3, BBB, 20, 20

AO_BEFORE_MOD OP_DELETE 2 NULL

AO_BEFORE_MOD OP_DELETE 1 NULL

t W ndow. pre OP_DELETE id="3" synbol =" AAA" price="20" size="20"

t W ndow. out OP_DELETE i d="3" synbol =" AAA" price="20" size="20"

t W ndow. pre OP_I NSERT i d="3" synbol ="BBB" price="20" size="20"

t W ndow. out OP_I NSERT i d="3" synbol ="BBB" price="20" size="20"
AO_AFTER _DELETE OP_I NSERT 1 id="3" synbol ="AAA" price="20" size="20"
AO_AFTER_I NSERT OP_I NSERT 2 i d="3" synbol ="BBB" price="20" size="20"

Thisinsert is of a“dirty” kind, the one that replaces the row using the replacement policy of the hashed primary index,
without deleting its old state first. It also moves the row from one aggregation group to another. So the table logic cals
AO BEFORE_MODfor each of the modified groups, then modifies the contents of the groups, then tells both groups about
the modifications. In this case both callswith AO_ AFTER_* havethe opcode of OP_| NSERT because each of them isthe
last and only change to a separate aggregation group.

OP_DELETE, 5

AO_BEFORE_MOD OP_DELETE 1 NULL

t W ndow. pre OP_DELETE id="5" synbol =" AAA" price="30" size="30"

t Wndow. out OP_DELETE id="5" synbol =" AAA" price="30" size="30"
AO_AFTER_DELETE OP_I NSERT 0 id="5" synbol =" AAA" price="30" size="30"
AO_COLLAPSE OP_NOP 0 NULL

This operation removesthelast row in agroup. It starts as usual with deleting the old state. Thenext AO_AFTER_DELETE
with OP_| NSERT isintended for the Coral 8-style aggregatorsthat produce only the rowswith the INSERT opcodes, never
DELETEsS, to let them insert the NULL (or zero) valuesin all the non-key fields. For the normal aggregators the work is
all done after OP_DELETE. That's why al the shown examples were checking for $cont ext - >gr oupSi ze() ==
and returning if so. The group size will be zero in absolutely no other case than after the deletion of the last row. Finally
AO_COLLAPSE allowsto clean up the aggregator's group stateif it needs any cleaning. It hasthe opcode OP_NOP because
no rows need to be sent.

To recap, the high-level order of the table operation processing is:

1. Execute the replacement policies on all theindexes to find all the rows that need to be deleted first.
2. If any of theindex policies forbid the modification, return O.

3. Call al the aggregators with AO_BEFORE_MOD on all the affected rows.

4. Send these aggregator results.

5. For each affected row:

a. Call the"pre" label (if it has any labels chained to it).

154 Aggregation

b. Modify the row in the table.

c. Call the"out" label.

6. Call al the aggregators with AO_AFTER *, on al the affected rows.

7. Send these aggregator results.

11.8. Using multiple indexes

I've mentioned before that the floating numbers are tricky to handle. Even without additive aggregation the result depends
on the rounding. Which in turn depends on the order in which the operations are done. Let's look at a version of the
aggregation code that highlights this issue.

sub conmput eAveragelO # (table, context, aggop, opcode, rh, stat

{

}

ny ($table, $context, $aggop, $opcode, $rh, $state, @rgs) =

don't send the NULL record after the group becones enpty
return i f ($context->groupSize()==
|| $opcode != &Triceps:: OP_I NSERT);

ny $sum = 0;
ny $count = O;
for (my $rhi = $context->begin(); !$rhi->isNull();
$rhi = $context->next($rhi)) {

$count ++;

$sum += $rhi - >get Row() - >get (" price");
}
ny $rlLast = $context->last()->getRow() or confess "$!";
ny $avg = $sunm $count;

ny $res = $context->result Type() - >makeRowHash(
synbol => $rlLast->get("synbol"),
id => $rlLast->get("id"),
price => $avg

) or confess "$!";

$cont ext - >send($opcode, $res);

ny $ttWndow = Triceps:: Tabl eType- >new($rt Tr ade)

- >addSubl ndex(" byl d",
Triceps:: I ndexType->newHashed(key => ["id"])
)
- >addSubl ndex(" bySynbol ",
Triceps:: | ndexType- >newHashed(key => ["synbol"])
- >addSubl ndex("| ast 4",
Triceps:: |l ndexType->newFi fo(limt => 4)
->set Aggregator (Tri ceps: : Aggr egat or Type- >new
$rt AvgPrice, "aggrAvgPrice", undef, \&conputeAveragelO)
)
)
)

or confess "$!'";
$ttWndow >initialize() or confess "$!";
ny $t Wndow = $uTrades->makeTabl e($t t W ndow,

&Triceps::EM CALL, "tWndow') or confess "$!'";

label to print the result of aggregation

e, args...)

@,

Using multiple indexes

155

ny $l bAverage = $uTrades- >makelLabel ($rt AvgPrice, "I bAverage",
undef, sub { # (label, rowop)
printf("% 17g\n", $_[1]->get Row()->get("price"));
}) or confess "$!'";
$t W ndow >get Aggr egat or Label (" aggr AvgPri ce") - >chai n($l bAver age)
or confess "$!'";

The differences from the previously shown basic aggregation are:
* the FIFO limit has been increased to 4;

« the only result value printed by the $| bAver age handler isthe price, and it's printed with a higher precision to make
the difference visible;

* the aggregator computation only does the inserts, to reduce the clutter in the results and highlight the issue.

And hereis an example of how the order of computation matters:

OP_I NSERT, 1, AAA, 1, 10

1

OP_I NSERT, 2, AAA, 1, 10

1

OP_I NSERT, 3, AAA, 1, 10

1

OP_I NSERT, 4, AAA, 1el6, 10
2500000000000001

OP_I NSERT, 5, BBB, 1e16, 10
10000000000000000

OP_I NSERT, 6, BBB, 1, 10
5000000000000000

OP_I NSERT, 7, BBB, 1, 10
3333333333333333. 5

OP_I NSERT, 8, BBB, 1, 10
2500000000000000

Of course, the real prices won't vary so wildly. But the other values could. This example is specially stacked to demon-
strate the point. The final results for “AAA” and “BBB” should be the same but aren't. Why? The precision of the 64-bit
floating-point numbers is such that adding 1 to 1e16 makes this 1 fall beyond the precision, and the result is still 1e16.
On the other hand, adding 3 to 1e16 makes at least a part of it stick. 1 still falls off but the other 2 of 3 sticks on. Next
look at the data sets: if you add 1e16+1+1+1, that's adding 1e16+1 repeated three times, and the result is till the same
unchanged 1e16. But if you add 1+1+1+1€e16, that's adding 3+1€16, and now the result is different and more correct. When
the averages get computed from these different values by dividing the sums by 4, the results are also different.

Overdl the rule of thumb for adding the floating point numbers is this: add them up in the order from the smallest to
the largest. (What if the numbers can be negative too? | don't know, that goes beyond my knowledge of floating point
calculations. My guess is that you still arrange them in the ascending order, only by the absolute value.) So let'sdo it in
the aggregator.

our $i dxByPrice;

aggregation handler: sumin proper order
sub conmput eAveragell # (table, context, aggop, opcode, rh, state, args...)
{

ny ($table, $context, $aggop, $opcode, $rh, $state, @rgs) = @;

our $i dxByPrice;

don't send the NULL record after the group becones enpty
return if ($context->groupSize()==
| | $opcode != &Triceps:: OP_I NSERT);

ny $sum = O;

156 Aggregation

ny $count = O;
ny $end = $cont ext - >endl dx($i dxByPri ce);
for (nmy $rhi = $context->begi nl dx($i dxByPrice); !$rhi->sane($end);
$rhi = $rhi->next!dx($i dxByPrice)) {
$count ++;
$sum += $rhi - >get Row() - >get ("pri ce");
}
ny $rlLast = $context->last()->getRow() or confess "$!";
ny $avg = $sum $count ;

ny $res = $context->result Type() - >makeRowHash(
synbol => $rlLast->get("synbol"),
id => $rLast->get("id"),
price => $avg

) or confess "$!";

$cont ext - >send($opcode, $res);

}

ny $ttWndow = Triceps:: Tabl eType- >new($rt Tr ade)
- >addSubl ndex(" byl d",
Triceps:: I ndexType->newHashed(key => ["id"])

)
- >addSubl ndex(" bySynbol ",
Triceps:: I ndexType->newHashed(key => ["synbol" 1)
- >addSubl ndex(" | ast 4",
Triceps:: I ndexType->newFi fo(linmt => 4)
->set Aggregat or (Tri ceps: : Aggr egat or Type- >new
$rt AvgPrice, "aggrAvgPrice", undef, \&conputeAveragell)
)

)

- >addSubl ndex("byPrice",
Tri ceps:: Si npl eOrder edl ndex- >new(pri ce => "ASC',)
->addSubl ndex("multi", Triceps::|ndexType->newrifo())

)
)

or confess "$!'";

$ttWndow >initialize() or confess "$!";

ny $t W ndow = $uTr ades->nmakeTabl e($t t W ndow,
&Triceps:: EM CALL, "tWndow') or confess "$!";

$i dxByPrice = $tt W ndow >fi ndl ndexPat h("bySynbol ", "byPrice");

Here another index type is added, ordered by price. It has to be non-leaf, with a FIFO index type nested in it, to alow
for multiple rows having the same price in them. That would work out more efficiently if the ordered index could have a
multimap mode, but that is not supported yet.

When the compute function does its iteration, it now goes by that index. The aggregator can't be simply moved to that
new index type, because it still needs to get the last trade id in the order in which the rows are inserted into the group.
Instead it hasto work with two index types:. the one on which the aggregator is defined, and the additional one. The callsfor
iteration on an additional index are different. $cont ext - >begi nl dx() issimilar to $cont ext - >begi n() but the
end condition and the next step are done differently. When $r hi - >next | dx() reachesthe end of the group, it returns
not a NULL row handle but a handle value that has to be found in advance with $cont ext - >endl dx() . Perhaps the
consistency in this department can be improved in the future.

And finally, the reference to that additional index type has to make it somehow into the compute function. It can't be given
as an argument because it's not known yet at the time when the aggregator is constructed (and no, reordering the index
types won't help because the index types are copied when connected to their parents, and we need the exact index type that
ends up in the assembled table type). So a global variable $i dxByPri ce isused. The index type referenceis found and
placed there, and later when the compute function runs, it takes the reference from the global variable.

Using multiple indexes 157

The printout from this version on the sameinput is:

OP_I NSERT, 1, AAA, 1, 10

1

OP_I NSERT, 2, AAA, 1, 10

1

OP_I NSERT, 3, AAA, 1, 10

1

OP_| NSERT, 4, AAA, 1e16, 10
2500000000000001

OP_| NSERT, 5, BBB, 1e16, 10
10000000000000000

OP_| NSERT, 6, BBB, 1, 10
5000000000000000

OP_| NSERT, 7, BBB, 1, 10
3333333333333334

OP_| NSERT, 8, BBB, 1, 10
2500000000000001

Now no matter what the order of the row arrival, the prices get added up in the same order from the smallest to the largest
and produce the same correct (inasmuch the floating point precision allows) resullt.

Which index typeis used to put the aggregator on, doesn't matter awhole lot. The computation can be turned around, with
the ordered index used asthe main one, and the last value from the FIFO index obtained with $cont ext - >l ast | dx():

our $i dxByOrder;

aggregation handler: sumin proper order
sub conput eAveragel2 # (table, context, aggop, opcode, rh, state, args...)
{

ny ($table, $context, $aggop, $opcode, $rh, $state, @rgs) = @;

our $i dxByOrder;

don't send the NULL record after the group becones enpty
return i f ($context->groupSize()==
| | $opcode != &Triceps:: OP_I NSERT);

ny $sum= 0
ny $count = O;
for (ny $rhi = $context->begin(); !'$rhi->isNull();
$rhi = $context->next ($rhi)) {

$count ++;

$sum += $rhi - >get Row() - >get ("price");
}
ny $rlLast = $context->l astl dx($i dxByOrder)->get Row() or confess "$!";
ny $avg = $sum $count;

ny $res = $context->result Type() - >makeRowHash(
synbol => $rlLast->get("synbol"),
id => $rLast->get("id"),
price => $avg

) or confess "$!";

$cont ext - >send($opcode, $res);

}

ny $ttWndow = Triceps:: Tabl eType- >new($rt Tr ade)
- >addSubl ndex(" byl d"
Triceps:: I ndexType->newHashed(key => ["id"])

)

- >addSubl ndex(" bySynbol "
Triceps:: I ndexType->newHashed(key => ["synbol" 1)
- >addSubl ndex("| ast 4",

158 Aggregation

Triceps:: I ndexType->newFi fo(linmt => 4)

)

- >addSubl ndex("byPrice",
Tri ceps:: Si npl eOrder edl ndex- >new(pri ce => "ASC',)
->addSubl ndex("multi", Triceps::|ndexType->newrifo())
->set Aggregator (Tri ceps: : Aggr egat or Type- >new

$rt AvgPrice, "aggrAvgPrice", undef, \&conputeAveragel?)

)

)

)

or confess "$!'";

$ttWndow >initialize() or confess "$!";

ny $t W ndow = $uTrades->nmakeTabl e($t t W ndow,
&Triceps:: EM CALL, "tWndow') or confess "$!";

$i dxByOrder = $tt W ndow >fi ndl ndexPat h("bySynbol ", "last4");

The last important note: when aggregating with multiple indexes, always use the sibling index types forming the same
group or their nested sub-indexes (since the actual order is defined by the first leaf sub-index anyway). But don't use the
random unrelated index types. If you do, the context would return some unexpected values for those, and you may end
up with endless loops.

11.9. SimpleAggregator

Even though the writing the aggregation computation functions manually gives the flexibility, it's too much work for the
simple cases. The SimpleAggregator template takes care of most of that work and allows you to specify the aggregation in
away similar to SQL. It has been aready shown on the VWAP example, ans here is the trade aggregation example from
Section 11.3: “Introducing the proper aggregation” (p. 139) rewritten with SimpleAggregator:

ny $ttWndow = Triceps:: Tabl eType- >new($rt Tr ade)
- >addSubl ndex(" byl d",
Triceps:: I ndexType->newHashed(key => ["id"])

)
- >addSubl ndex(" bySynbol ",
Triceps:: I ndexType->newHashed(key => ["synbol" 1)
- >addSubl ndex("| ast 2",
Triceps:: I ndexType->newFi fo(linmt => 2)
)
)

or confess "$!'";

the aggregation result
ny $rtAvgPrice;
ny $conpText; # for debuggi ng

Tri ceps: : Si npl eAggr egat or: : nake(
tabType => $tt W ndow,
name => "aggrAvgPrice",

idxPath => ["bySynbol", "last2"],

result => |
synbol => "string", "last", sub {$_[0]->get("synbol");},
id=>"int32", "last", sub {$_[0]->get("id");},

price => "float64", "avg", sub {$_[O0]->get("price");},
1.
saveRowTypeTo => \ $rt AvgPri ce,
saveConput eTo => \ $conpText,
)

$ttWndow >initialize() or confess "$!";
ny $t W ndow = $uTr ades->nmakeTabl e($t t W ndow,

SimpleAggregator 159

&Triceps:: EM CALL, "tWndow') or confess "$!";

label to print the result of aggregation
ny $l bAverage = nakePrintLabel ("I bAver age",
$t W ndow >get Aggr egat or Label ("aggr AvgPrice"));

The main loop and the printing is the same as before. The result produced is a so exactly the same as before.

But theaggregator iscreatedwith Tr i ceps: : Si npl eAggr egat or : : make() . [tsargumentsarein the option format:
the option name-value pairs, in any order.

$tabType = Triceps:: Sinpl eAggregat or: : make($opt Name => $opt Val ue, ...);

It returns back the table type that it received as an option on success or confesses on errors. But most of the time there is
not awhole lot of use to that return value, and it gets simply ignored. Most of the “options’ are actually mandatory. The
aggregator type is connected to the table type with the options:

tabType
Table type to put the aggregator on. It must be un-initialized yet.

idxPath
A reference to an array of index names, forming the path to the index where the aggregator type will be set.

name
The aggregator type name.

The result row type and computation is defined with the option “result”: each group of four values in that array defines
one result field:

e Thefield name.
» Thefield type.

» The aggregation function name used to compute thefield. There is no way to combine multiple aggregation functions or
even an aggregation function and any arithmetics in a field computation. The workaround is to compute each function
in aseparate field, and then send the result rows to a computational label that would arithmetically combine these fields
into one.

» A closure that extracts the aggregation function argument from the row (well, it can be any function reference, doesn't
have to be an anonymous closure). That closure gets the row as the argument $_[0] and returns the extracted value
to run the aggregation on.

The field name is by convention separated from its definition fields by =>. Remember, it's just a convention, for Perl a
=> jsjust as good as a comma.

Si npl eAggr egat or: : make() automatically generates the result row type and aggregation function, creates an ag-
gregator type from them, and sets it on the index type. The information about the aggregation result can be found by
traversing through the index typetree, or by constructing atable and getting the row type from the aggregator result label.
However it's often easier to save it during construction, and the option (this time an optional one!) “saveRowTypeTo”
allowsto do this. Giveit areference to avariable, and the row type will be placed into that variable.

Most of the time the things would just work. However if they don't and something dies in the aggregator, you will need
the source code of the compute function to make sense of these errors. The option saveConput eTo gives a variable
to save that source code for future perusal and other entertainment. Here is the compute function that gets produced by
the example above:

sub {
use strict;
ny ($table, $context, $aggop, $opcode, $rh, $state, @rgs) = @;
return i f ($context->groupSize()==0 || $opcode == &Triceps:: OP_NOP);

160 Aggregation

ny $v2_count = O;
ny $v2_sum = O;
ny $npos = 0;
for (ny $rhi = $context->begin(); !'$rhi->isNull(); $rhi = $context->next($rhi)) {
ny $row = $rhi->get Row();
field price=avg
ny $a2 = $args[2] ($row);
{ if (defined $a2) { $v2_sum += $a2; $v2_count++; }; }
$npos++;
}
ny $rowlLast = $context->last()->get Row);
my $10 = $args[0] ($rowLast);
ny $I1 = $args[1] ($rowLast);
$cont ext - >makeAr r aySend($opcode,
($10), # synbol
(811, #id
(($v2_count == 0? undef : $v2_sum/ $v2_count)), # price
)
}

At the moment the compute function is quite straightforward and just does the aggregation from scratch every time. It
doesn't support the additive aggregation nor the DEL ETE optimization. It's only smart enough to skip theiteration if all the
result consists of only aggregation functionsf i r st, | ast and count _st ar . It receives the closures for the argument
extraction as argumentsin @r gs, SimpleAggregator arranges these arguments when it creates the aggregator.

The aggregation functions available at the moment are:

first
Vaue from the first row in the group.

| ast
Vaue from the last row in the group.

count _star
Number of rows in the group, like SQL COUNT(*) . Since thereis no argument for this function, useundef instead
of the argument closure.

sum
Sum of the values.

max
The maximal value.

mn
The minimal value.

avg
The average of al the non-NULL values.

avg_per|
Theaverage of all values, with NULL valuestreated in Perl fashion as zeroes. So, technically when the example above
used avg, it works the same as the previous versions only for the non-NULL fields. To be really the same, it should
haveused avg_perl .

nth_sinple
The Nth value from the start of the group. This is a tricky function because it needs two arguments: the value of
N and the field selector. Multiple direct arguments will be supported in the future but right now it works through a
workaround: the argument closure must return not just the extracted field but a reference to array with two values, the
N andthefield. Forexample,sub { [1, $ _[0]->get("id")];}.TheN iscounted startingfrom 0, sothevalue
of 1 will return the second record. This function worksin afairly simple-minded and inefficient way at the moment.

SimpleAggregator 161

Asusual in Triceps and Perl, the case of the aggregation function name matters. The names have to be used in lowercase as
shown. There will be more functions to come, and you can even already add your own, as has been shown in Section 11.1:
“The ubiquitous VWAP” (p. 133) .

The user-defined aggregation functions are defined with the option “functions’. Let's take another look at the code from
the VWAP example:

VWAP function definition
my $myAggFunctions = {
myvwap => {
vars => { sum=> 0, count => 0, size => 0, price => 0 },
step => ' ($%i ze, $%price) = @%argiter;
"if (defined $%ize && defined $%price) '
"{$%ount += $%ize; $%um += $%ize * $%rice;}",
result =>"'($%ount == 0? undef : $%um/ $%ount)',
|
b

Tri ceps:: Si nmpl eAggr egat or : : nake(
functions => $nyAggFuncti ons,

)

The definition of the functions is a reference to a hash, keyed by the function name. Each function definition in order is
a hash of options, keyed by the option name. When the SimpleAggregator builds the common computation function, it
assembl es the code by tying together the code fragments from these options. Whenever the group changes, the aggregator
will reset the function state variables to the default values and iterate through the new contents of the group. It will perform
the step computation for each row and collect the data in the intermediate variables. After the iteration it will perform the
result computation of all the functions and produce the final value.

The expected format of the values of these options varies with the option. The option “result” is mandatory, the rest can
be skipped if not needed. The supported options are:

ar gcount
Integer. Defines the number of arguments of the function, which may currently be O or 1, with 1 being the default. If
this option is 0, SimpleAggregator will check that the argument closureis undef . If the aggregation function needs
more argumentsthan one, they haveto be packed into an array or hash, and thenitsreference used asasingle argument.
The standard function nt h_si npl e and the VWAP function provide the examples of how to do this.

vars
Reference to a hash. Defines the variables used to keep the context of this function during the iteration (the hash keys
are the variable names) and their initial values (specified as the valuesin the hash).

step
String. The code fragment to compute a single step of iteration. It can refer to the variables defined in var s and to
afew of the pre-defined values using the syntax $%mane (which has been chosen because it'sillega in the normal
Perl variable syntax). When SimpleAggregator generates the code, it creates the actual scope variables for everything
definedinvar s, then substitutesthem for the $%syntax in the string and inserts the result into its group iteration code.

If thisoption is not defined, SimpleAggregator assumes that this function doesn't need it. If no functionsin the aggre-
gation define the st ep, theiteration does not get included into the generated code atogether.

The defined special values are:
» $%r gi t er - Thefunction's argument extracted from the current row.
* $%ni t er - The number of the current row in the group, starting from O.

e $%gr oupsi ze - Thesize of the group ($cont ext - >gr oupSi ze()).

162 Aggregation

result
String. The code fragment to compute the result of the function. This option is mandatory. Works in the same way as
st ep, only gets executed once per call of the computation function, and the defined special values are different:

* $%ar gf i r st - Thefunction's argument extracted from the first row.
» $%r gl ast - Thefunction's argument extracted from the last row.
» $%gr oupsi ze - Thesize of the group ($cont ext - >gr oupSi ze()).

I can think of many ways the SimpleAggregator can be improved, but for now they have been pushed into the future to
keep it simple.

11.10. The guts of SimpleAggregator

The implementation of the SimpleAggregator has turned out to be surprisingly small. Not quite tiny but still small. I've
liked it so much that I've even saved the original small version in the file xSi npl eAggr egat or . t . As more features
will be added, the “official” version of the SimpleAggregator will grow (and already did) but that example file will stay
small and simple.

It's a nice example of yet another kind of template that | want to present. I'm going to go through it, interlacing the code
with the commentary.

package MySi npl eAggr egat or;
use Carp;

use strict;

our $FUNCTI ONS = {

first => {

result => "'"$%rgfirst’,
}
last => {

result =>"'$%rglast',
H

count _star => {
argcount => 0,
result => "'$%roupsize',
H
count => {
vars => { count => 0 },
step => '$%ount++ if (defined $%rgiter);"',
result =>"'$%ount"',
H
sum => {
vars => { sum=> 0 },
step => '$%um += $%argiter;"',
result =>"'3$%um,
H
max => {
vars => { max => 'undef' },
step => '$%mx = $%argiter if (!defined $%max || $%rgiter > $%max);"',
result =>"'$%max',
H
mn => {
vars => { min => "undef' },
step => '"$%nin = $%argiter if (!defined $%rin || $%rgiter < $%rin);"',
result =>"'$%rn",
H

avg => {

The guts of SimpleAggregator 163

vars => { sum=> 0, count => 0 },
step => 'if (defined $%rgiter) { $%um += $%rgiter; $%ount++; }',

result =>"'($%ount == 0? undef : $%um/ $%ount)',
b,
avg perl =>{ # Perl-like treat the NULLs as Os

vars => { sum=> 0 },

step => '$%um += $%argiter;"',

result =>"'$%um/ $%groupsize',
b,

nth_sinple => { # inefficient, need proper nulti-args for better efficiency
vars => { n => 'undef', tnp => "undef', val => "undef' },
step => ' ($%, $% nmp) = @%argiter; if ($% == $%iter) { $Wal = $%np; }',
result =>"'3$Wwal",
}
i

The package name of this saved simple version is MySimpleAggregator, to avoid confusion with the “official” SimpleAg-
gregator class. First goesthe definition of the aggregation functions. They are defined in exactly the same way asthe vwap
function has been shown before. They arefairly straightforward. Y ou can use them asthe starting point for adding your own.

sub make # (optName => optValue, ...)
{
ny $opts = {}; # the parsed options
ny $nynane = "MSi npl eAggr egat or: : make";

&Triceps:: Opt:: parse("M/Si npl eAggregator”, S$opts, {

tabType => [undef, sub { &Triceps::Opt::ck_nandatory(@); &Triceps::Opt::ck_ref(@,
"Triceps::Tabl eType") } 1],

name => [undef, \&Triceps:: Opt::ck_mandatory],

idxPath => [undef, sub { &Triceps::Opt::ck_mandatory(@); &Triceps::Opt::ck_ref(@,
"ARRAY", "") }],

result => [undef, sub { &Triceps::Opt::ck_nmandatory(@); &Triceps::Opt::ck_ref(@,
"ARRAY") }],

saveRowTypeTo => [undef, sub { &Triceps::Opt::ck _refscalar(@) } 1],

savelnitTo => [undef, sub { &Triceps:: Opt::ck_refscalar(@) } 1,

saveComput eTo => [undef, sub { &Triceps::Opt::ck _refscalar(@) } 1],

b @);

The options get parsed. Sinceit's not a proper object constructor but afactory, it usesthe hash $opt s instead of $sel f to
save the processed copy of the options. Thisearly version doesn't have an option for the user-supplied aggregation function
definitions.

reset the saved source code

${ $opt s- >{savel nit To}} = undef if (defined($opts->{savelnitTo}));

${ $opt s- >{ saveConput eTo}} = undef if (defined($opts->{saveConputeTo}));
${ $opt s- >{ saveRowTypeTo}} undef if (defined($opts->{saveRowTypeTo}));

The generated source code will not be placed into the save* references until the table type gets initialized, so for the
meantime they get filled with undef s.

find the index type, on which to build the aggregator
nmy $idx = $opts->{tabType}->findl ndexPat h(@ $opt s->{i dxPath}});
confess "$nmynane: the index type is already initialized, can not add an aggregator on
it"
if ($idx->islnitialized());

Since the SimpleAggregator uses an existing table with existing index, it doesn't require the aggregation key: it just takes
an index that forms the group, and whatever key that leads to this index becomes the aggregation key.

check the result definition and build the result row type and code snippets for the
conputation
ny $rtRes;

164 Aggregation

ny $needlter = 0; # flag: sone of the functions require iteration

ny $needfirst = 0; # the result needs the first row of the group

ny $needlast = 0; # the result needs the |last row of the group

ny $codelnit ="''; # code for function initialization

ny $codeStep = ''; # code for iteration

ny $codeResult ="''; # code to conpute the internedi ate values for the result
ny $codeBuild = "''; # code to build the result row

ny @onpArgs; # the field functions are passed as args to the conputation

{

ny $grpstep 4; # definition grouped by 4 itens per result field
ny @esopt = @%$opts->{result}};

ny @tdefRes; # field definition for the result

ny $id = 0; # nuneric id of the field

while ($#resopt >= 0) {
confess "$nmynanme: the values in the result definition nmust go in groups of 4"
unl ess ($#resopt >= 3);
ny $fld = shift @esopt;
ny $type = shift @esopt;
ny $func = shift @esopt;
ny $funcarg = shift @esopt;

confess("$nyname: the result field name nust be a string, got a " . ref($fld) . " ")
unl ess (ref($fld) eq '");
confess("$nyname: the result field type nust be a string, got a " . ref($type) "

for field "$fld ")
unl ess (ref($type) eq '');
confess("$nyname: the result field function nmust be a string, got a " . ref($func)
" for field "$f1d ")
unl ess (ref($func) eq '');

This starts the loop that goes over the result fields and builds the code to create them. The code will be built in multiple
snippets that will eventually be combined to produce the compute function. Since the arguments go in groups of 4, it
becomesfairly easy to missone element somewhere, and then everything getsreal confusing. So the code attemptsto check
the types of the arguments, in hopes of catching these off-by-ones as early as possible. The variable $i d will be used to
produce the unique prefixes for the function's variables.

nmy $funcDef = $FUNCTI ONS- >{ $f unc}
or confess("$nynane: function '" . $func . "' is unknown");

ny $argCount = $funcDef->{argcount};
$argCount = 1 # 1 is the default val ue
unl ess defi ned($ar gCount);
confess("$nyname: in field '$fld function '$func' requires an argunent conputation
that nmust be a Perl sub reference")
unl ess ($argCount == 0 || ref $funcarg eq ' CODE');
confess("$nyname: in field '$fld function '$func' requires no argunent, use undef
as a pl acehol der")
unl ess ($argCount !'= 0 || !defined $funcarg);

push(@tdef Res, $fld, $type);

push(@onpArgs, $funcarg)
if (defined $funcarg);

The function definition for afield gets pulled out by name, and the arguments of the field are checked for correctness. The
types of the fields get collected for the row definition, and the aggregation argument computation closures (or, technically,
functions) get also collected, to pass later as the arguments of the compute function.

add to the code snippets

The guts of SimpleAggregator 165

initialization
ny $vars = $f uncDef->{vars};
if (defined $vars) {
foreach ny $v (keys %vars) {
the variabl e nanes are given a uni que prefix;
the initialization values are constants, no substitutions

$codelnit . =" nmy \$v¥{id}_${v} =" . $vars->{$v} . ";\n";
} else {
$vars = { }; # a dummy

}

The initialization fragment gets processed if defined. The unique names for variables are generated from the $i d and
the variable name in the definition, so that there would be no interference between the result fields. And the initialization
snippets are collected in $codel ni t . The initialization values are not enquoted because they are expected to be strings
suitable for such use. That's why the undefined values in the function defnitions are not undef but ' undef ' . If you'd
want to initialize avariable asastring " x" , you'd useitas' " x" "' . For the numbers it doesn't really matter, the numbers
just get converted to strings as needed, so the zeroes are simply 0s without quoting.

Another possibility would be to have the actual values as-isin the hash and then either put these values into the argument
array passed to the computation function or use the closure trick from Tri ceps: : Fi el ds: : nakeTr ansl ati on()
described in Section 10.7: “Result projection in the templates’ (p. 128) .

iteration
ny $step = $f uncDef - >{step};
if (defined $step) {
$needlter = 1;
$codeStep .= " # field $fl d=$f unc\n";
if (defined $funcarg) {
compute the function argunment fromthe current row
$codeStep .= " ny \$a${id} = \$args[" . $#conpArgs ."]1(\$row);\n";
}
substitute the variables in $step
$step =~ s/\$\ %\ w+)/ & epl aceSt ep($1, $func, $vars, $id, $argCount)/ge;
$codeStep .= " { $step; }\n";
}

Then the iteration fragment gets processed. The logic remembersin $needl t er if any of the functions involved needs
iteration. Before the iteration snippet gets collected, it has the $%names substitutted, and placed into a block, just in case
if it wants to define some local variables. An extra“;” is added just in case, it doesn't hurt and helps if it was forgotten
in the function definition.

result building
ny $result = $funcDef->{result};
confess "MSi npl eAggregator: internal error in definition of aggregation function
"$func', mssing result conputation”
unl ess (defined $result);
substitute the variables in $result
if ($result =~ /\$\%rgfirst/) {
$needfirst = 1;

$codeResult .= " ny \$f${id} = \S$args[" . S#conpArgs ."](\$rowFirst);\n";
if ($result =~ /\$\%rglast/) {

$needl ast = 1;

$codeResult .= " ny \$I ${id} = \S$args[" . S#conpArgs ."](\$rowLast);\n";
}
$result =~ s/\$\ %\ w+)/ & epl aceResul t ($1, $func, $vars, $id, $argCount)/ge;
$codeBuild .= " ($result), # $fld\n";
$i d++,

166 Aggregation

$rtRes = Triceps:: RowType->new @t def Res)
or confess "$nynanme: invalid result row type definition: $!'";

}
${ $opt s- >{ saveRowTypeTo}} = $rtRes if (defined($opts->{saveRowTypeTo}));

In the same way the result computation is created, and remembers if any function wanted the fields from the first or last
row. And eventualy after all the functions have been processed, the result row type is created. If it was asked to save,
it gets saved.

build the conputation function
ny $conpText = "sub {\n";
$conpText .= " use strict;\n";

$conpText ny (\$table, \$context, \$aggop, \$opcode, \$rh, \$state, \@rgs) = \@;
\n";
$conpText .= return if (\$context->groupSize()==0 || \$opcode == &Triceps:: OP_NOP);
\n";
$conpText .= $codelnit;
if ($needliter) {
$conpText .= " nmy \$npos = 0;\n";
$conpText .= " for (my \$rhi = \$context->begin(); !'\$rhi->isNull(); \$rhi =\
$cont ext - >next (\$rhi)) {\n";
$conpText .= " my \$row = \ $rhi->get Row();\n";
$compText .= $codeSt ep;
$conpText .= \ $npos++;\ n";
$compText .= I\n";
}
if ($needfirst) {
$conpText .= " ny \$rowFirst = \$context->begin()->get Rowm);\n";
}
if ($needlast) {
$conpText .= " ny \$rowLast = \$context->last()->getRow();\n";
}
$conpText .= $codeResul t;
$conpText .= \ $cont ext - >nakeAr r aySend(\ $opcode, \ n";
$conpText .= $codeBuil d;
$conpText .=);\n";
$compText .= "}\n";

${ $opt s- >{ saveConput eTo}} = $conpText if (defined($opts->{saveConputeTo}));

The compute function gets assembled from the collected fragments. The optional parts get included only if some of the
functions needed them.

conpil e the conputation function
ny $conpFun = eval $conpText
or confess "$nynanme: error in conpilation of the aggregation conputation:\n $@
\' nfunction text:\n$conpText

build and add the aggregator
my $agg = Triceps:: Aggregat or Type- >new $rt Res, $opts->{nane}, undef, $conpFun,

@onpAr gs)
or confess "$nynanme: internal error: failed to build an aggregator type: $!

$i dx- >set Aggr egat or ($agg)
or confess "$nynanme: failed to set the aggregator in the index type: $!

return $opts->{tabType};
}

Then the compute function is compiled. In caseif the compilation fails, the error message will include both the compilation
error and the text of the auto-generated function. Otherwise there would be no way to know, what exactly went wrong.

The guts of SimpleAggregator 167

WEell, since no user codeisincluded into the auto-generated function, it should never fail. Except if there is some bad code
in the aggregation function definitions. The compiled function and collected closures are then used to create the aggregator,
which should also never fail.

Thefunctionsthat translatethe$%var i abl e namesarebuilt after the same pattern but havethe different built-in variables:

sub replaceStep # ($varname, $func, $vars, $id, $argCount)

{
ny ($varnanme, $func, $vars, $id, $argCount) = @;

if ($varnanme eq 'argiter') {
confess "MSi npl eAggregator: internal error in definition of aggregation function
"$func', step conputation refers to '"argiter' but the function declares no argunents"
unl ess ($argCount > 0);
return "\ a{id}";
} elsif ($varname eq 'niter') {
return "\ $npos";
} elsif ($varnanme eq 'groupsize') {
return "\ $cont ext->groupSi ze()";
} elsif (exists $vars->{$varnane}) ({
return "\ v{id}_${varnane}"
} else {
confess "M/Si npl eAggregator: internal error in definition of aggregation function
"$func', step conputation refers to an unknown vari abl e ' $varnane'"
}
}

sub replaceResult # ($varnanme, $func, $vars, $id, $argCount)

{
ny ($varnanme, $func, $vars, $id, $argCount) = @;

if ($varname eq 'argfirst') {
confess "MSi npl eAggregator: internal error in definition of aggregation function
"$func', result conputation refers to '$varname' but the function declares no argunments"
unl ess ($argCount > 0);
return "\ f{id}";
} elsif ($varnanme eq 'arglast') {
confess "MSi npl eAggregator: internal error in definition of aggregation function
"$func', result conputation refers to '$varnanme' but the function declares no argunments"
unl ess ($argCount > 0);
return "\ $l ${id}";
} elsif ($varnanme eq 'groupsize') {
return "\ $cont ext - >groupSi ze()";
} elsif (exists $vars->{$varnane}) ({
return "\ v{id}_${varnane}"
} else {
confess "M/Si npl eAggregator: internal error in definition of aggregation function
"$func', result conputation refers to an unknown variable '$varnanme'"
}
}

They check for the references to the undefined variables and confess if any are found. That's it, the whole aggregator
generation.

Now let's look back at the printout of a generated computation function that has been shown above.. The aggregation
results were;

result => |
synbol => "string", "last", sub {$_[0]->get("synbol");},
id=>"int32", "last", sub {$_[0]->get("id");},
price => "float64", "avg", sub {$_[O0]->get("price");},

168 Aggregation

I,
Which produced the function:

sub {
use strict;
ny ($table, $context, $aggop, $opcode, $rh, $state, @rgs) = @;
return if ($context->groupSize()==0 || $opcode == &Triceps:: OP_NOP);
ny $v2_count = O;
ny $v2_sum = 0;
ny $npos = O;
for (ny $rhi = $context->begin(); !'$rhi->sNull(); $rhi = $context->next($rhi)) {
ny $row = $rhi->get Row();
field price=avg
ny $a2 = $args[2] ($row);
{ if (defined $a2) { $v2_sum += $a2; $v2_count++; }; }
$npos++;
}
ny $rowLast = $context->| ast ()->get Row();
ny $10 = $args[0] ($rowLast);
ny $11 = $args[1] ($rowLast);
$cont ext - >makeAr r aySend($opcode,
($10), # synbol
($11), #id
(($v2_count == 0? undef : $v2_sum/ $v2_count)), # price
)
}

The fields get assigned the ids 0, 1 and 2. avg for the pri ce field is the only function here that requires the iteration,
and its variables are defined with the prefix $v2_. In the loop the function argument closureis called from $ar gs|[2] ,
and itsresult isstored in $a2 (again, 2 hereistheid of thisfield). Then a copy of the step computation for avg is copied
in a block, with the variables substituted. $%ar gi t er becomes $a2, $¥%sumbecomes $v2_sum $%ount becomes
$v2_count . Then the loop ends.

The functions make use of the last row, so $r owLast is computed. The values for the $%ar gl ast fields0 and 1 are
calculated in $1 0 and $I 1. Then the result row is created and sent from an array of substituted result snippets from all
thefields. That's how it all works together.

The guts of SimpleAggregator 169

170

Chapter 12. Joins

12.1. Joins variety

The joins are quite important for the relational data processing, and come in many varieties. And the CEP systems have
their own specifics. Basically, in CEP you want the joins to be processed fast. The CEP systems deal with the changing
model state, and have to process these changes incrementally.

A small change should be handled fast. It hasto use theindexesto find and update all the related result rows. Even though
you can make it just go sequentially through all the rows and find the relevant ones, like in a common database, that's not
what you normally want. When something like this happens, the usual reaction is “wtf is my model suddenly so slow?”’
following by an annoyingly long investigation into the reasons of the slowness, and then rewriting the model to make it
work faster. It's better to just prevent the slowness in the first place and make sure that the joins always use an index. And
since you don't have to deal much with the ad-hoc queries when you write a CEP model, you can provide all the needed
indexes in advance very easily.

A particularly interesting kind of joinsin thisregard is the equi-joins. ones that join the rows by the equality of the fields
in them. They alow a very efficient index look-up. Because of this, they are popular in the CEP world. Some systems,
like Aleri, support only the equi-joins to start with. The other systems are much more efficient on the equi-joins than on
the other kinds of joins. At the moment Triceps follows the fashion of having the advanced support only for the equi-
joins. Even though the Sorted/Ordered indexes in Triceps should allow the range-based comparisons to be efficient too,
at the moment there are no table methods for the look-up of ranges, they are left for the future work. Of course, nothing
stops you from copying an equi-join template and modifying it to work by a dumb iteration. Just it would be slow, and
| didn't see much point in it.

There aso are three common patterns of the join usage.

In the first pattern the rows sort of go by and get enriched by looking up some information from a table and tacking it
onto these rows. Sometimes not even tacking it on but maybe just filtering the data: passing through some of the rows
and throwing away the rest, or directing the rows into the different kinds of processing, based on the looked-up data. For
areference, in the Coral8 CCL this situation is called “ stream-to-window joins’. In Triceps there are no streams and no
windows, so | just call them the “lookup joins”.

In the second pattern multiple stateful tables are joined together. Whenever any of the tables changes, the join result also
changes, and the updates get propagated through. This can be done through lookups, but in reality it turns out that defining
manually the lookups for the every possible table change becomes tedious pretty quickly. This has to be addressed by the
automation.

In the third pattern the same table gets joined recursively, essentially traversing a representation of a tree stored in that
table. This actually doesn't work well with the classic SQL unless the recursion depth is strictly limited. There are SQL
extensions for the recursive self-joins in the modern databases but | haven't seen them in the CEP systems yet. Anyway,
the procedural approach tends to work for this situation much better than the SQLY one, so the templates tend to be of not
much help. I'll show atemplated and a manual example of this kind for comparison.

12.2. Hello, joins!

As usual, let me show a couple of little teasers before starting the long bottom-up discussion. We'll eventually get by the
long way to the same examples, so here I'll show only some very short code snippets and basic explanations.

our $join = Triceps::LookupJoi n->new
name => "join",
| eft FronLabel => $I bTrans,
ri ght Tabl e => $t Account s,
rightldxPath => ["] ookupSrcExt"],

171

leftFields => ["lacct.*", ".*"],
rightFields => ["internal/acct"],
by => ["acctSrc" => "source", "acctXtrld" => "external"],

)

This is a lookup join that gets the incoming rows with transactions data from the label $I bTr ans, finds the account
translation in the table $t Account s, and trand ates the external account representation to internal one on its output. The
join condition is an equivalent of the SQLy

on
| bTrans. acct Src = t Accounts. source
and | bTrans.acctXtrld = t Accounts. external

The condition looks up the rowsin $t Account s using the index “lookupSrcExt” that must have the key fieldssour ce
and ext er nal .

The result fields will contain all the fields from $| bTr ans except those starting with “acct” plus the field i nt er nal
from $t Account s that becomes renamed to acct .

Next goes atablejoin;

our $join = Triceps::Joi nTwo- >new(
name => "join",
| eft Tabl e => $t Position,
leftldxPath => ["currencyLookup"],
ri ght Tabl e => $t ToUsd,
rightldxPath => ["primry"],
type => "inner",

It joins the tables $t Posi t i on and $t ToUsd, with the inner join logic. The table $t Posi t i on usesitsindex “cur-
rencyLookup”, and $t ToUsd usesitsindex “primary”. The join condition is determined by pairing the key fields of the
indexes.

12.3. The lookup join, done manually

First let'slook at alookup done manually. It would also establish the baseline for the further joins.

For the background of the model, |et's consider the trade information coming in from multiple sources. Each source system
has its own designation of the accounts on which the trades happen but ultimately they are the same accounts. So thereis
atablethat contains the translation from the account designations of various external systemsto our system's own internal
account identifier. This gets described with the row types:

our $rtinTrans = Triceps:: RowlType->new(# a transaction received
id=>"int32", # the transaction id
acctSrc => "string", # external systemthat sent us a transaction
acctXtrld => "string", # its nane of the account of the transaction
amount => "int32", # the anount of transaction (int is easier to check)
) or confess "$!";

our $rtAccounts = Triceps:: RowType->new # account translation map
source => "string", # external systemthat sent us a transaction
external => "string", # its nanme of the account in the transaction
internal => "int32", # our internal account id

) or confess "$!";

Other than those basics, the rest of information is only minimal, to keep the examples smaller. Even the trade ids are
expected to be global and not per the source systems (which is not realistic but saves another little bit of work).

172 Joins

The accounts table can be indexed in multiple ways for multiple purposes, say:

our $ttAccounts = Triceps:: Tabl eType->new($rt Account s)
- >addSubl ndex(" | ookupSrcExt", # quick |ook-up by source and external id
Triceps:: I ndexType->newHashed(key => ["source", "external"])

->addSubl ndex("iterateSrc", # for iteration in order grouped by source
Triceps:: I ndexType->newHashed(key => ["source"])
- >addSubl ndex("iterateSrcExt",
Triceps:: I ndexType->newHashed(key => ["external"])

)

- >addSubl ndex(" | ookupl nt Group”, # quick |ook-up by internal id (to multiple externals)
Triceps:: I ndexType->newHashed(key => ["internal"])
- >addSubl ndex ("1 ookuplnt", Triceps::|ndexType->newrifo())

)
or confess "$!'";
$tt Accounts->initialize() or confess "$!'";

For our purpose of joining, thefirst, primary key isthe way to go. Using the primary key also has the advantage of making
sure that there is no more than one row for each key value.

The first manual lookup example will just do the filtering: find, whether there is a match in the trandation table, and if so
then pass the row through. The example goes as follows:

our $uJoin = Triceps::Unit->new "udJoin");

our $t Accounts = $uJoi n- >makeTabl e($tt Account s,
"EM CALL", "tAccounts") or confess "$!'";

ny $l bFilterResult = $uJoi n->makeDummyLabel ($rtinTrans, "I bFilterResult");
nmy $l bFilter = $uJoi n->makelLabel ($rt1nTrans, "lIbFilter", undef, sub {
ny ($l abel, $rowop) = @;
ny $row = $rowop->get Row() ;
ny $rh = $t Account s->fi ndBy(
source => $row >get ("acctSrc"),
external => $row >get ("acctXtrld"),

)
if ('$rh->isNull()) {

$uJoi n->cal | ($I bFi | t er Resul t - >adopt ($r owop)) ;
}

}) or confess "$!";

label to print the changes to the detailed stats
makePrint Label ("I bPrint", $IbFilterResult);

whi | e(<STDI N>) {

chonp;
nmy @ata = split(/,/); # starts with a command, then string opcode
ny $type = shift @at a;

if ($type eq "acct") {

$uJoi n- >makeAr rayCal | ($t Account s->get | nput Label (), @lata);
} elsif ($type eq "trans") {

$uJoi n- >makeArrayCal | ($l bFilter, @lata);

}

$uJoi n->drai nFranme(); # just in case, for conpleteness

}

Thefi ndBy() iswherethejoin actually happens. the lookup of the datain a table by values from another row. Very
similar to what the basic window example in Section 9.1: “Hello, tables!” (p. 73) was doing before. It's f i ndBy(),
without the need for f i ndBy| dx () , becausein this case the index type used in the accountstable isitsfirst leaf index, to

The lookup join, done manually 173

whichf i ndBy() defaults. After that the fact of successful or unsuccessful lookup is used to passthe original row through
or throw it away. If the found row were used to pick some fields from it and stick them into the result, that would be a
more complete join, more like what you often expect to see.

And hereis an example of the input processing:

acct, OP_I NSERT, sourcel, 999, 1

acct, OP_I NSERT, sour cel, 2011, 2

acct, OP_I NSERT, sour ce2, ABCD, 1

trans, OP_I NSERT, 1, sour cel, 999, 100

I bFilterResult OP_INSERT id="1" acctSrc="sourcel" acctXtrld="999"
anmount =" 100"

trans, OP_I NSERT, 2, sour ce2, ABCD, 200

| bFilterResult OP_I NSERT id="2" acctSrc="source2" acctXtrl|d="ABCD'
anmount =" 200"

trans, OP_I NSERT, 3, sour ce2, QAERTY, 200

acct, OP_I NSERT, sour ce2, QAERTY, 2

trans, OP_DELETE, 3, sour ce2, QAERTY, 200

I bFilterResult OP_DELETE id="3" acctSrc="source2" acctXtrld="Q\ERTY"
anmount =" 200"

acct, OP_DELETE, sourcel, 999, 1

It starts with populating the accounts table. Then the transactions that find the match pass, and those who don't find don't
pass. If more of the account translations get added later, the transactions for them start passing but as you can see, the
result might be slightly unexpected: you may get a DELETE that had no matching previous INSERT, as happened for
the row with id=3. This happens because the lookup join keeps no history on its left side and can't react properly to the
changes to the table on the right. Because of this, the lookup joins work best when the reference table gets pre-popul ated
in advance and then stays stable.

12.4. The LookupJoin template

When ajoin hasto produce the new rows, with the data from both the incoming row and the oneslooked up in the reference
table, this can aso be done manually but may be more convenient to do with the LookupJoin template. The translation of
account to the internal ids can be done like this:

our $join = Triceps:: LookupJoi n->new(
unit => $udoin,
name => "join",
| ef t RowType => $rtlnTrans,
ri ght Tabl e => $t Accounts,
rightldxPath => ["] ookupSrcExt"],
rightFields => ["internal/acct"],
by => ["acctSrc" => "source", "acctXtrld" => "external"],
isLeft => 1,
); # would confess by itself on an error

label to print the changes to the detailed stats
nakePri nt Label ("I bPrint", $join->getQutputLabel ());

whi | e(<STDI N>) {

chonp;
ny @ata = split(/,/); # starts with a command, then string opcode
ny $type = shift @lata;

if ($type eq "acct") {

$uJoi n- >makeArrayCal | ($t Account s->get | nput Label (), @lata);
} elsif ($type eq "trans") {

$uJoi n- >makeAr rayCal | ($j oi n- >get | nput Label (), @lata);
}

$uJoi n->drai nFrane(); # just in case, for conpleteness

174 Joins

Thejoin gets defined in the option name-value format. The options “unit” and “name” are as usual.

The incoming rows are always on the left side, the table on the right. LookupJoin can do either the inner join or the left
outer join (since it does not react to the changes of the right table and has no access to the past data from the left side, the
full and right outer joins are not available). In this case the option “isLeft => 1" selects the left outer join. The left outer
join also happens to be the default if this option is not used.

Theleft sideis described by the option “leftRowType’, and causes thejoin'sinput label of this row typeto be created. The
input label can be found with $j oi n- >get | nput Label ().

Theright sideisatable, specified in the option “rightTable’. The lookups in the table are done using a combination of an
index and the field pairing. The option “by” provides the field pairing. It contains the pairs of field names, one from the
left, and one from the right, for the equal fields. They can be separated by “, " too, but “=>" feels more idiomatic to me.
These fields from the left are trandlated to the right and are used for lookup through the index. The index is specified with
the path in the option “rightldxPath”. If this option is missing, LookupJoin will just try to find the first top-level Hashed

index. Either way, the index must be a Hashed index.

Thereisno particular reason for it not being a Sorted/Ordered index, other that theget Key() call doesnot work for these
indexes yet, and that's what the LookupJoin uses to check that the right-side index key matches the join key in “by”. The
order of thefieldsin the option “by” and in the index may vary but the set of the fields must be the same.

The index may be either a leaf (as in this example) or non-leaf. If it's aleaf, it could look up no more than one row per
key, and LookupJoin uses thisinternally for alittle optimization. Otherwise LookupJoin is capable of producing multiple
result rows for one input row.

Finally, thereisthe result row. It is built out of the two original rows by picking the fields according to the options “|eft-
Fields” and “rightFields’. If either option is missing, that means “take all the fields’. The format of these options is from
Triceps::Fields::filterToPairs() that has been described in Section 10.7: “Result projection in the tem-
plates’ (p. 128) . Sointhisexample["internal /acct"] means: passthefieldi nt er nal but renameittoacct.

Remember that the field names in the result must not duplicate. It would be an error. So if the duplications happen, use
the substitution syntax to rename some of the fields.

A fairly common usageinjoinsisto just give the unique prefixesto the left-side and right-side fields. This can be achieved
with:

leftFields => ['.*/left_$&],
rightFields => ['.*/right_$& 1],

The $& in the substitution gets replaced with the whole matched field name.

The option “fieldsLeftFirst” determines, which side will go first in the result. By default it's set to 1 (asin this example),
and the left side goes first. If set to 0, the right side would go first.

This setup for the result row typesis somewhat clumsy but it's a reasonable first attempt.

Now, having gone through the description, an example of how it works:

acct, OP_I NSERT, sour cel, 999, 1

acct, OP_I NSERT, sour cel, 2011, 2

acct, OP_I NSERT, sour ce2, ABCD, 1

trans, OP_I NSERT, 1, sour cel, 999, 100

join.out OP_INSERT id="1" acct Src="sourcel" acctXtrld="999"
amount =" 100" acct="1"

trans, OP_I NSERT, 2, sour ce2, ABCD, 200

join.out OP_INSERT id="2" acct Src="source2" acctXtrl|d="ABCD"
amount =" 200" acct="1"

trans, OP_I NSERT, 3, sour ce2, QAERTY, 200

join.out OP_INSERT id="3" acctSrc="source2" acctXtrld="QN\ERTY"
amount =" 200"

The LookupJoin template 175

acct, OP_I NSERT, sour ce2, Q\ERTY, 2

trans, OP_DELETE, 3, sour ce2, QAERTY, 200

join.out OP_DELETE id="3" acctSrc="source2" acctXtrld="QN\ERTY"
amount =" 200" acct="2"

acct, OP_DELETE, sourcel, 999, 1

Same as before, first the accounts table gets populated, then the transactions are sent. If an account is not found, this left
outer join still passes through the original fields from the left side. Adding an account later doesn't help the rowops that
already went through but the new rowops will see it. The same goes for deleting an account, it doesn't affect the past
rowops either.

The |eft-side data can a so be specified in another way: the option “leftFromLabel” provides alabel which in turn provides
both the input row type and the unit. Y ou can still specify the unit option as well but it must match the one in the label.
This is driven internally by Tri ceps: : Opt : : handl eUni t TypeLabel (), described in Section 10.5: “Template
options” (p. 117) , so it follows the same rules. The join still has its own input label but it gets automatically chained to
the one in the option. For an example of such ajoin:

our $l bTrans = $uJoi n- >makeDunmyLabel ($rtInTrans, "I bTrans");

our $join = Triceps::LookupJoi n->new
name => "join",
| eft FronLabel => $I bTrans,
ri ght Tabl e => $t Account s,
rightldxPath => ["] ookupSrcExt"],
leftFields => ["id", "anmount"],
fieldsLeftFirst => 0,
rightFields => ["internal/acct"],
by => ["acctSrc" => "source", "acctXtrld" => "external"],
isLeft => 0,

); # would confess by itself on an error

label to print the changes to the detailed stats
makePri nt Label ("I bPrint", $j oi n->get Qut put Label ());

whi | e(<STDI N>) {

chonp;
ny @ata = split(/,/); # starts with a command, then string opcode
ny $type = shift @lata;

if ($type eq "acct") {

$uJoi n- >makeAr rayCal | ($t Account s->get | nput Label (), @lata);
} elsif ($type eq "trans") {

$uJoi n- >nmakeArrayCal | ($l bTrans, @lata);
}

$uJoi n->drai nFrane(); # just in case, for conpleteness

}

The other options demonstrate the possibilities described in the last post. Thistimeit'san inner join, theresult hasthe right-
sidefields going first, and the left-side fields are filtered in the result by an explicit list of fieldsto pass.

Another way to achieve the samefiltering of the left-side fieldswould be by throwing away everything starting with “acct”
and passing through the rest:

leftFields => ["lacct.*", ".*"],
And hereis an example of arun:

acct, OP_I NSERT, sour cel, 999, 1

acct, OP_I NSERT, sour cel, 2011, 2

acct, OP_I NSERT, sour ce2, ABCD, 1

trans, OP_I NSERT, 1, sour cel, 999, 100

join.out OP_INSERT acct="1" id="1" anount="100"

176 Joins

trans, OP_I NSERT, 2, sour ce2, ABCD, 200

join.out OP_INSERT acct="1" id="2" anount="200"
trans, OP_I NSERT, 3, sour ce2, QAERTY, 200

acct, OP_I NSERT, sour ce2, Q\ERTY, 2

trans, OP_DELETE, 3, sour ce2, QAERTY, 200

join.out OP_DELETE acct="2" id="3" anopunt="200"
acct, OP_DELETE, sourcel, 999, 1

Theinput dataisthe same asthelast time, but theresult isdifferent. Sinceit'san inner join, the rowsthat don't find amatch
don't pass through. And of course the fields are ordered and subsetted differently in the result.

The next example loses all connection with reality, it just serves to demonstrate another ability of LookupJoin: matching
multiple rows on the right side for an incoming row. The situation itself is obviously useful and normal, just it's not what
normally happens with the account id trandlation, and | was too lazy to invent another realistically-looking example.

our $ttAccounts2 = Triceps:: Tabl eType- >new($rt Account s)
- >addSubl ndex("iterateSrc", # for iteration in order grouped by source
Tri ceps:: | ndexType- >newHashed(key => ["source"])
- >addSubl ndex(" | ookupSr cExt ",
Triceps:: | ndexType- >newHashed(key => ["external"])
- >addSubl ndex(" groupi ng", Triceps::IndexType->newrifo())
)
)

or confess "$!'";
$tt Accounts2->initialize() or confess "$!";

our $tAccounts = $uJoi n->makeTabl e($tt Account s2,
"EM CALL", "tAccounts") or confess "$!";

our $join = Triceps:: LookupJoi n->new(
unit => $uJdoin,
nane => "join",
| ef t RowType => $rtInTrans,
ri ght Tabl e => $t Accounts,

rightldxPath => ["iterateSrc", "l|ookupSrcExt"],
rightFields => ["internal/acct"],
by => ["acctSrc" => "source", "acctXtrld" => "external"],

); # would confess by itself on an error

The main loop is unchanged from the first LookupJoin example, so | wont' copy it here. Just for something different, the
joinindex hereis nested, and its path consists of two elements. It's not a leaf index either, with one FIFO level under it.
And when the “isLeft” is not specified explicitly, it defaultsto 1, making it aleft join.

The example of arun uses adightly different input, highlighting the ability to match multiple rows:

acct, OP_I NSERT, sour cel, 999, 1

acct, OP_I NSERT, sour cel, 2011, 2

acct, OP_I NSERT, sour ce2, ABCD, 1

acct, OP_I NSERT, sour ce2, ABCD, 10

acct, OP_I NSERT, sour ce2, ABCD, 100

trans, OP_I NSERT, 1, sour cel, 999, 100

join.out OP_INSERT id="1" acct Src="sourcel" acctXtrld="999"
amount =" 100" acct="1"

trans, OP_I NSERT, 2, sour ce2, ABCD, 200

join.out OP_INSERT id="2" acctSrc="source2" acctXtrl d="ABCD"
amount =" 200" acct="1"

join.out OP_INSERT id="2" acctSrc="source2" acctXtrl d="ABCD"
amount =" 200" acct="10"

join.out OP_INSERT id="2" acctSrc="source2" acctXtrld="ABCD"
amount =" 200" acct ="100"

trans, OP_I NSERT, 3, sour ce2, QAERTY, 200

The LookupJoin template 177

join.out OP_INSERT id="3" acctSrc="source2" acctXtrld="QN\ERTY"
amount =" 200"

acct, OP_I NSERT, sour ce2, Q\ERTY, 2

trans, OP_DELETE, 3, sour ce2, QAERTY, 200

join.out OP_DELETE id="3" acctSrc="source2" acctXtrld="QN\ERTY"
amount =" 200" acct="2"

acct, OP_DELETE, sourcel, 999, 1

When arow matches multiple rows in the table, it gets multiplied. The join function iterates through the whole matching
row group, and for each found row creates aresult row and calls the output label with it.

Now, what if you don't want to get multiple rows back even if they are found? Of course, the best way is to just use a
leaf index. But once in awhile you get into situations with the denormalized data in the lookup table. Y ou might know in
advance that for each row in an index group a certain field would be the same. Or you might not care, what exact value
you get aslong asit's from the right group. But you might really not want the input rows to multiply when they go through
the join. LookupJoin has a solution:

our $join = Triceps::LookupJoi n->new
unit => $udoin,
name => "join",
| ef t RowType => $rtlnTrans,
ri ght Tabl e => $t Account s,

rightldxPath => ["iterateSrc", "lookupSrcExt"],
rightFields => ["internal/acct"],

by => ["acctSrc" => "source", "acctXtrld" => "external"],
limtOne => 1,

); # would confess by itself on an error

The option “limitOne” changes the processing logic to pick only the first matching row. It also optimizes the join function.
If “limitOne” is not specified explicitly, the join constructor deduces it magically by looking at whether the join index isa
leaf or not. Actually, for aleaf index it would always override “limitOne” to 1, even if you explicitly set it to O.

With the limit, the same input produces a different output:

acct, OP_I NSERT, sourcel, 999, 1

acct, OP_I NSERT, sour cel, 2011, 2

acct, OP_I NSERT, sour ce2, ABCD, 1

acct, OP_I NSERT, sour ce2, ABCD, 10

acct, OP_I NSERT, sour ce2, ABCD, 100

trans, OP_I NSERT, 1, sour cel, 999, 100

join.out OP_I NSERT id="1" acct Src="sourcel"” acct Xtrl d="999"
anmount =" 100" acct="1"

trans, OP_I NSERT, 2, sour ce2, ABCD, 200

join.out OP_INSERT id="2" acctSrc="source2" acctXtrld="ABCD"
anmount =" 200" acct="1"

trans, OP_I NSERT, 3, sour ce2, QAERTY, 200

join.out OP_I NSERT id="3" acctSrc="source2" acctXtrl d="Q\ERTY"
amount =" 200"

acct, OP_I NSERT, sour ce2, QA\ERTY, 2

trans, OP_DELETE, 3, sour ce2, QAERTY, 200

join.out OP_DELETE id="3" acctSrc="source2" acctXtrld="Q\ERTY"
amount =" 200" acct="2"

acct, OP_DELETE, sourcel, 999, 1

Now it just picks the first matching row instead of multiplying the rows.

12.5. Manual iteration with LookupJoin

Sometimes you might want to just get the list of the resulting rows from LookupJoin and iterate over them by yourself,
rather than have it call the labels. To be honest, thislooked kind of important when | wrote LookupJoin first, but by now |

178 Joins

don't see awholelot of useinit. By now, if you want to do amanual iteration, callingf i ndBy() and then iterating looks
like amore useful option. But at thetimetherewasno f i ndBy() , and this feature came to exist. Here is an example:

our $join = Triceps::LookupJoi n->new(
unit => $udoin,
name => "join",
| ef t RowType => $rtlInTrans,
ri ght Tabl e => $t Accounts,
rightldxPath => ["] ookupSrcExt"],
rightFields => ["internal/acct"],
by => ["acctSrc" => "source", "acctXtrld" => "external"],
automatic => 0,
); # would confess by itself on an error

label to print the changes to the detailed stats
ny $l bPrint = nakePrintLabel ("I bPrint", $join->getCutputlLabel ());

whi | e(<STDI N>) {

chonp;
ny @ata = split(/,/); # starts with a command, then string opcode
ny $type = shift @lata;

if ($type eq "acct") {
$uJoi n- >makeArrayCal | ($t Account s->get | nput Label (), @lata);
} elsif ($type eq "trans") {
ny $op = shift @lata; # drop the opcode field
ny $trans = $rtlnTrans- >nmakeRowArray(@ata) or confess "$!'";
ny @ows = $j oin->l ookup($trans);
foreach ny $r (@ows) {
$uJoi n->cal | ($I bPrint - >makeRowop($op, $r)) or confess "$!";
}
}

$udoi n->drai nFrane(); # just in case, for conpleteness

}

It copies the first LookupJoin example, only now with a manual iteration. Once the option “automatic” is set to O for the
join, the method $j oi n- >l ookup() becomes availableto perform the lookup and return the result rowsin an array (the
data sent to the input label keeps working as usual, sending the result rows to the output label). This involves the extra
overhead of keeping all the result rows (and there might be lots of them) in an array, so by default the join is compiled
in an automatic-only mode.

Since | ookup() returns rows, not rowops, and knows nothing about the opcodes, those had to be handled separately
around the lookup.

Theresult is the same as for the first example, only the name of the result label differs:

acct, OP_I NSERT, sour cel, 999, 1

acct, OP_I NSERT, sour cel, 2011, 2

acct, OP_I NSERT, sour ce2, ABCD, 1

trans, OP_I NSERT, 1, sour cel, 999, 100

I bPrint OP_INSERT id="1" acct Src="sourcel" acctXtrld="999"
amount =" 100" acct="1"

trans, OP_I NSERT, 2, sour ce2, ABCD, 200

I bPrint OP_I NSERT id="2" acctSrc="source2" acctXtrl d="ABCD"
amount =" 200" acct="1"

trans, OP_I NSERT, 3, sour ce2, QAERTY, 200

I bPrint OP_I NSERT id="3" acctSrc="source2" acctXtrld="QNERTY"
amount =" 200"

acct, OP_I NSERT, sour ce2, Q\ERTY, 2

trans, OP_DELETE, 3, sour ce2, QAERTY, 200

| bPrint OP_DELETE id="3" acctSrc="source2" acctXtrld="QNERTY"
amount =" 200" acct="2"

acct, OP_DELETE, sourcel, 999, 1

Manual iteration with LookupJoin 179

The print label is still connected to the output label of the LookupJoin, but it's done purely for the convenience of its
creation. Since no rowops get sent to the LookupJoin's input, none get to its output, and none get from there to the output
label. Instead the main loop creates and sends the rowops directly to the output label when it iterates through the lookup
results. Because of this the label name in the output is the name of the output label.

12.6. The key fields of LookupJoin

Thekey fields are the onesthat participate in the join condition. | use these termsinterchangeably because by the definition
of LookupJoin, these fields must be the key fields in the join index in the right-side table. LookupJoin has a few more
facilities for their handling that haven't been shown yet.

First, the join condition can be specified as the Tri ceps: : Fiel ds::filterToPairs() patternsin the option
“byLeft”. The options “by” and “byL eft” are mutually exclusive and one of them must be present. The condition

by => ["acctSrc" => "source", "acctXtrld" => "external"],
can be also specified as:
byLeft => ["acctSrc/source", "acctXtrld/external"],

The option name “byLeft” says that the pattern specification is for the fields on the left side (there is no symmetric
“byRight”). The substitutions produce the matching field names for the right side. Unlike the result pattern, here the fields
that do not find a match do not get included in the key. It'sasif animplicit"! . *" gets added at theend. In fact,"! . **"

really does get added implicitly at the end.

Of course, for the example above either option doesn't make much difference. It starts making the difference when the
key fields follow a pattern. For example, if the key fields on both sides have the namesacct Src and acct Xt r | d, the
specification with the “ byL eft” becomes a little simpler:

byLeft => ["acctSrc", "acctXtrld"],

Even more so if the key islong, common on both sides, and al the fields have a common prefix. Such as:

k_Account Syst em
k_Account | d

k_I nstrument System
k_lI nstrumentld
k_Transacti onDat e
k_Settl ement Dat e

Then the join condition can be specified simply as:

byLeft => ["k_.*"],

If say the settlement date doesn't matter for a particular join, it can be excluded:

byLeft => ["!k_SettlenmentDate", "k_.*"],

If the right side represents a swap of securities, it might have two partsto it, each describing its half with its key:

Bor r owAccount Syst em
Bor r owAccount I d

Bor r oM nst r ument Syst em
Bor r ow nst runent | d
Bor r owTr ansact i onDat e
Bor r owSet t | enent Dat e
LoanAccount Syst em
LoanAccount | d

Loanl nst runment Syst em
Loanl nstrunent | d
LoanTr ansacti onDat e
LoanSett | enent Dat e

180 Joins

Then the join of the one-sided rows with the borrow part condition can be done using:
byLeft => ['k _(.*)/Borrow$l'],
The key patterns make the long keys easier to drag around.

Second, key fields of LookupJdoin don't have to be of the same type on the left and on theright side. Since the key building
for lookup is done through Perl, the key values get automatically converted as needed.

A caveat is that the conversion might be not exactly direct. If a string gets converted to a number, then any string values
that do not look like numbers will be converted to 0. A conversion between a string and a floating-point number, in either
direction, islikely to lose precision. A conversion between int64 and int32 may cause the upper bits to be truncated. So
what gets looked up may be not what you expect.

I'm not sureyet if | should add the requirement for the types being exactly the same. The automatic conversions seem to be
convenient, just usethemwith care. | suppose, whenthejoinswill get eventually implemented in the C++ code, thisfreedom
would go away becauseit's much easier and more efficient in C++ to copy the field values as-is than to convert them.

The only thing currently checked is whether afield is represented in Perl as a scalar or an array, and that must match on
the left and on the right. Note that the array ui nt 8]] getsrepresented in Perl asa scalar string, soanui nt 8[] field can
be matched with other scalars but not with the other arrays.

Third, the key fields have the problem of duplication. The LookupJoin is by definition an equi-join, it joins together the
rows that have the same values in a set of key fields. If all the fields from both sides are to be included in the result, they
key values will be present in it twice, once from the left side, once from the right side. Thisis not what is usually wanted,
and the good practice isto let these fields through from one side and filter out from the other side.

Letting these fields through on the left side is usually the better choice. For the inner joins it doesn't really matter but for
the left outer joins it works much better than the with letting through the fields from the right side. The reason isthat when
the join doesn't find the match on the right side, all the right-side fields will be NULL. If you pass through the key fields
only from the right side, they will contain NULL, and thisis probably not what you want.

However if for some reason, be it the order of the fields or the better field types on the right side, you really want to pass
the key fields only from the right side, you can. LookupJoin provides a special magic act enabled by the option

fieldsMrrorKey => 1

Then if the row is not found on the right side, a special right-side row will be created with the key fields copied from the
left side, and it will be used to produce the result row. With “fieldsMirrorKey” you are guaranteed to always have the key
values present on the right side.

12.7. A peek inside LookupJoin

| won't be describing in the details the internals of LookupJoin. They seem a bit too big and complicated. Partially it's
because the code is of an older origin, and not using all the newer calls. Partially it's because when | wrote it, I've tried
to optimize by translating the rows to an array format instead of referring to the fields by names, and that made the code
more tricky. Partialy, the code has grown more complex due to all the added options. And partialy the functionality just
isalittle tricky by itself.

But, for debugging purposes, the LookupJoin constructor can return the auto-generated code of the joiner function. It's
done with the option “saveJoinerTo":

saveJoi ner To => \ $code,

This will cause the auto-generated code to be placed into the variable $code. I've collected a few such examplesin this
section. They provide aglimpseinto theinternal workings of thejoiner. It's definitely a quite advanced topic, but it'shel pful
if you want to know, what isreally going on in there.

Thejoiner code from the example

A peek inside LookupJoin 181

our $join = Triceps:: LookupJoi n- >new(
unit => $udoin,
name => "join",
| ef t RowType => $rtlnTrans,
ri ght Tabl e => $t Accounts,
rightldxPath => ["] ookupSrcExt"],
rightFields => ["internal/acct"],
by => ["acctSrc" => "source", "acctXtrld" => "external"],
isLeft => 1,
); # would confess by itself on an error

that was shown first in the Section 12.4: “ The LookupJoin template” (p. 174) isthis:

sub # ($inLabel, $rowop, $self)

{
ny ($inLabel, $rowop, $self) = @;
#print STDERR "DEBUGX LookupJoin " . $self->{name} . " in: ", $rowop->printP(), "\n";
my $opcode = $rowop- >get Opcode(); # pass the opcode
ny $row = $rowop- >get Row() ;
ny @eftdata = $row >toArray();
ny $resRowType = $sel f->{resul t RowType};
ny $resLabel = $sel f->{out putLabel };
my $l ookuprow = $sel f->{ri ght RowType} - >makeRowHash(
source => $leftdataf1],
external => $leftdatal?2],
);
#print STDERR "DEBUGX " . $sel f->{nanme} . " lookup: ", $lookuprow >printP(), "\n";
ny $rh = $sel f->{rightTabl e}->findl dx($sel f->{rightldxType}, $I ookuprow);
Carp::confess("$!") unless defined $rh;
my @ightdata; # fields fromthe right side, defaults to all-undef, if no data found
my @esult; # the result rows will be collected here
if ('$rh->isNull()) {
#print STDERR "DEBUGX " . $self->{nanme} . " found data: " . $rh->get Row)->printP()
"\'n";
@ightdata = $rh->get Row()->toArray();
}
ny @esdata = ($leftdata[O0],
$l eftdatal 1],
$l eftdataf 2],
$leftdata[3],
$rightdatal 2],
);
ny $resrowop = $reslLabel - >makeRowop($opcode, $resRowType- >makeRowAr ray(@ esdat a)) ;
#print STDERR "DEBUGKX " . $self->{nane} . " +out: ", $resrowop->printP(), "\n";
Carp::confess("$!") unless defined $resrowop;
Carp::confess("$!'")
unl ess $resLabel ->get Unit ()->cal | ($resrowop);
}

From the example with the manual iteration:

our $join = Triceps::LookupJoi n->new(
uni t => $udoin,

182

Joins

name => "join",
| ef t RowType => $rtlInTrans,
ri ght Tabl e => $t Account s,
rightldxPath => ["] ookupSrcExt"],
rightFields => ["internal/acct"],
by => ["acctSrc" => "source", "acctXtrld" => "external"],
automatic => 0,
); # would confess by itself on an error

comes this code:

sub # ($self, $row

{
nmy ($self, $row) = @;
#print STDERR "DEBUGX LookupJoin " . $self->{name} . " in: ", $row>printP(), "\n";
nmy @eftdata = $row >toArray();
ny $l ookuprow = $sel f->{ri ght RowType} - >nmakeRowHash(
source => $leftdataf 1],
external => $leftdata[?2],
)
#print STDERR "DEBUGX " . $self->{nane} . " lookup: ", $lookuprow >printP(), "\n";
my $rh = $sel f->{right Tabl e}->findl dx($sel f->{rightldxType}, $l ookuprow);
Carp::confess("$!") unless defined $rh;
nmy @ightdata; # fields fromthe right side, defaults to all-undef, if no data found
nmy @esult; # the result rows will be collected here
if ('$rh->isNull()) {
#print STDERR "DEBUGKX " . $self->{nane} . " found data: " . $rh->get Row)->printP()
"\ n";
@ightdata = $rh->get Row()->toArray();
}
nmy @esdata = ($l eftdata[0],
$l eftdatal 1],
$l eftdatal 2],
$l eftdatal 3],
$rightdatal 2],
p'ush @esult, $sel f->{result RowType}->nmakeRowArray(@ esdat a) ;
#print STDERR "DEBUGX " . $self->{name} . " +out: ", $result[$#result]->printP(),
"\ n";
return @esult;
}

It takes different arguments because now it's not an input label handler but a common function that gets called from both
the label handler and the | ookup() method. And it collects the rows in an array to be returned instead of immediately

passing them on.
From the example with multiple rows matching on the right side

our $join = Triceps::LookupJoi n- >new(
unit => $udoin,
name => "join",
| ef t RowType => $rtlnTrans,
ri ght Tabl e => $t Accounts,
rightldxPath => ["iterateSrc", "lookupSrcExt"],
rightFields => ["internal/acct"],

A peek inside LookupJoin

183

by => ["acctSrc" => "source", "acctXtrld" => "external"],
); # would confess by itself on an error

comes this code:

sub # ($inLabel, $rowop, $self)
{
ny ($inLabel, $rowop, $self) = @;
#print STDERR "DEBUGX LookupJoin " . $self->{name} . " in: ", $rowop->printP(), "\n";

ny $opcode = $rowop->get OQpcode(); # pass the opcode
$row = $r owop- >get Row() ;

@eftdata = $row >t oArray();

ny
ny
ny $resRowType = $sel f->{resul t RowType};
ny $reslLabel = $sel f->{outputLabel };
ny $l ookuprow = $sel f->{ri ght RowType} - >makeRowHash(
source => $leftdata[1],
external => $leftdatal 2],

)

#print STDERR "DEBUGX " . $self->{nane} . " lookup: ", $lookuprow>printP(), "\n";
ny $rh = $sel f->{rightTabl e}->findl dx($sel f->{rightldxType}, $l ookuprow);
Carp::confess("$!") unless defined $rh;

ny @ightdata; # fields fromthe right side, defaults to all-undef, if no data found
ny @esult; # the result rows will be collected here

if ($rh->isNull()) {
#print STDERR "DEBUGX " . $sel f->{name} . " found NULL\n";

ny @esdata = ($leftdata[0],
$l eftdata[1],
$l ef t dat a[2],
$l ef t dat a[3],
$rightdatal 2],

ny $resrowop = $reslLabel - >makeRowop($opcode, $resRowType- >nakeRowArray(@ esdata)) ;
#print STDERR "DEBUGX " . $self->{name} . " +out: ", $resrowop->printP(), "\n";
Carp::confess("$!'") unless defined $resrowop;
Carp::confess("$!'")

unl ess $reslLabel ->get Unit ()->cal |l ($resrowop);

} else {

#print STDERR "DEBUGX " . $self->{name} . " found data: " . $rh->getRow()->printP()
II\ nl!;

ny $endrh = $sel f->{right Tabl e} - >next G oupl dx($sel f->{iterl dxType}, $rh);

for (; !$rh->sane($endrh); $rh = $sel f->{right Tabl e}->next|dx($sel f->{rightldxType},
$rh)) {

@ightdata = $rh->get Rowm)->t oArray();

ny @esdata = ($leftdata[0],

$l eftdata[1],

$l eftdatal 2],

$l ef t dat a[3],

$rightdatal 2],

ny $resrowop = $reslLabel - >makeRowop($opcode, $resRowType- >nakeRowArray(@ esdata)) ;
#print STDERR "DEBUGX " . $self->{name} . " +out: ", $resrowop->printP(), "\n";
Carp::confess("$!'") unless defined $resrowop;

Carp::confess("$!'")

184 Joins

unl ess $reslLabel ->get Unit ()->cal | ($resrowop);

}
}
}

It'smore complicated in two ways: If amatch isfound, it hasto iterate through the whole matching group. And if the match
isnot found, it still has to produce aresult row for the left join with a separate code fragment.

12.8. JoinTwo joins two tables

Fundamentally, joining the two tablesis kind of like the two symmetrical copies of LookupJoin, each of them reacting to
the changes in one table and doing look-upsin another table. For all | can tell, the CEP systemswith the insert-only stream
model tend to start with the assumption that the LookupJdoin (or whetever they call it) is good enough. Then it turns out
that manually writing the join twice where it can be done once is a pain. So the table-to-table join gets added. Then the
interesting nuances crop up, since a correct table-to-table join has more to it than just two stream-to-table joins. Then it
turns out that it would be real convenient to propagate the deletes through the join, and that gets added as a specia feature
behind the scenes.

In Triceps, JoinTwo isthe template for joining the tables. And actually it is translated under the hood to two L ookupJoins,
but it has more on top of them.

In acommon database ajoin query causes ajoin plan to be created: on what table to iterate, and in which to look up next.
A CEP system deals with the changing data, and ajoin has to react to the data changes on each of itsinput tables. It must
have multiple plans, one for starting from each of the tables. And essentially a LookupJoin embodies such a plan, and
JoinTwo makes two of them.

Why only two? Because it's the minimal usable number. The join logic is tricky, so it's better to work out the kinks on
something simpler first. And it still can be scaled to many tables by joining them in stages. It's not quite as efficient as a
direct join of multiple tables, because the result of each stage has to be put into atable, but it does the job.

I'll be doing the demonstrations of the table joins on an application example from the area of stock lending. Think of a
large multinational broker that wantsto keep track of itslending activities. It has many customersto whom the stock can be
loaned or from whom it can be borrowed. Thisinformation comesastherecords of positions, of how many sharesareloaned
or borrowed for each customer, and at what contractual price. And sincethe clients are from all around the world, the prices
may bein different currencies. A simplified and much shortened version of the position information may ook like this:

our $rtPosition = Triceps::RowlType->new # a custoner account position
date => "int32", # as of which date, in format YYYYMVDD
custoner => "string", # custoner account id
synbol => "string", # stock synbol
quantity => "float64", # nunber of shares
price => "float64", # share price in |ocal currency
currency => "string", # currency code of the price
) or confess "$!";

Then we want to aggregate these data in different ways, getting the broker-wide summaries by the symbol, by customer
etc. The aggregation is updated as the business day goes on. At the end of the business day the state of the day freezes,
and the new day's initial data isloaded. That's why the business date is part of the schema. If you wonder, the next day's
initial data is usually the same as at the end of the previous day, except where some contractual conditions change. The
detailed position datais thrown away after afew days, or even right at the end of the day, but the aggregation results from
the end of the day are kept for alonger history.

There is a problem with summing up the monetary values: they come in different currencies and can not be added up
directly. If wewant to get thiskind of summaries, we haveto translate al of them to asinglereference currency. That'swhat
the sample joins will be doing: finding the translation rates to the US dollars. The currency rates come in the translation
schema:

our $rtToUsd = Triceps:: RowlType->new(# a currency conversion to USD

JoinTwo joins two tables 185

date => "int32", # as of which date, in format YYYYMVDD

currency => "string", # currency code

toUsd => "float64", # nultiplier to convert this currency to USD
) or confess "$!";

Since the currency rates change al the time, to make sense of a previous day's position, the previous day's rates need to

be kept around, and so the rates are also marked with a date.

Having the mood set, here isthe first example of amodel with an inner join:

exchange rates, to convert all currencies to USD
our $ttToUsd = Triceps:: Tabl eType- >new($rt ToUsd)
- >addSubl ndex("pri mary",
Triceps:: | ndexType- >newHashed(key => ["date", "currency"])

)
- >addSubl ndex("byDate", # for cleaning by date
Triceps:: Sinpl eOrder edl ndex- >new(date => "ASC")
- >addSubl ndex(" groupi ng", Triceps::I|ndexType->newFifo())
)
or confess "$!'";
$tt ToUsd->initialize() or confess "$!";

the positions in the original currency
our $ttPosition = Triceps:: Tabl eType->new $rt Positi on)
- >addSubl ndex("pri mary",
Triceps:: | ndexType- >newHashed(key => ["date", "custoner", "synbol"])

- >addSubl ndex("currencyLookup", # for joining with currency conversion
Tri ceps:: | ndexType- >newHashed(key => ["date", "currency"])
- >addSubl ndex(" groupi ng", Triceps::|ndexType->newFifo())

)
- >addSubl ndex("byDate", # for cleaning by date
Tri ceps:: Si npl eOr der edl ndex- >new(date => "ASC")
- >addSubl ndex(" groupi ng", Triceps::|ndexType->newFifo())
)
or confess "$!'";
$ttPosition->initialize() or confess "$!";

our $uJoin = Triceps::Unit->new"udoin");

our $t ToUsd = $uJoi n->nmakeTabl e($tt ToUsd,
"EM CALL", "tToUsd") or confess "$!'";

our $tPosition = $uJoi n->makeTabl e($tt Position,
"EM CALL", "tPosition") or confess "$!";

our $join = Triceps::Joi nTwo- >new(
name => "join",
| eft Tabl e => $t Position,
leftldxPath => ["currencyLookup"],
ri ght Tabl e => $t ToUsd,
rightldxPath => ["primry"],
type => "inner",
); # would confess by itself on an error

label to print the changes to the detailed stats
nakePri nt Label ("I bPrint", $join->get QutputLabel ());

whi | e(<STDI N>) {

chonp;
ny @ata = split(/,/); # starts with a command, then string opcode
ny $type = shift @lata;

if ($type eq "cur") {

186

Joins

$uJoi n- >makeArrayCal | ($t ToUsd- >get | nput Label (), @ata);
} elsif ($type eq "pos") {

$uJoi n- >makeArrayCal | ($t Posi ti on->get | nput Label (), @lata);
}

$udoi n->drai nFrane(); # just in case, for conpleteness

}

The example just does the joining, leaving the aggregation to the imagination of the reader. The result of a JoinTwo is not
stored in atable. It isastream of ephemeral updates, same as for LookupJoin. If you want to keep them, you can put them
into atable yourself (and maybe do the aggregation in the same table).

Both the joined tables must provide a Hashed index for the efficient joining. The index may be leaf (selecting one row per
key) or non-leaf (containing multiple rows per key) but it must be there. This makes sure that the joins are always efficient
and you don't have to hunt for why your model is suddenly so slow.

Theindexes also provide the default way of finding the join condition: the key fields in the indexes are paired up together,
in the order they go in the index specifications. Once again, the fields are paired not by name but by order. If the indexes
are nested, the outer indexes precede in the order. For example, the $t t ToUsd could have the same index donein anested
way and it would work just aswell:

- >addSubl ndex(" byDat e",
Triceps:: I ndexType->newHashed(key => ["date"])
- >addSubl ndex("pri mary",
Triceps:: I ndexType->newHashed(key => ["currency"])

)
)

Same as with LookupJoin, currently only the Hashed indexes are supported, and must go through all the path. The outer
index “byDate” here can not be a Sorted/Ordered index, that would be an error and the join will refuse to accept it.

But if the order of key fieldsin the $t t ToUsd index were changed to be different from $t t Posi t i on, likethis

- >addSubl ndex("pri mary",
Triceps:: | ndexType- >newHashed(key => ["currency", "date"])

)

then it would be a mess. The wrong fields would be matched up in the join condition, which would become
(tPosition.date == tToUsd.currency && tPosition.currency == tToUsd. date), and every-
thing would go horribly wrong.

Incidentally, this situation in this particular case would be caught because JoinTwo is much less lenient than LookupJoin
as the key field types go. It requires the types of the matching fields to be exactly the same. Partially, for the reasons of
catching thewrong order, partially for the sake of the result consistency. JoinTwo does the look-upsin both directions. And
think about what happensif astring field and an int32 field get matched up, and then the non-numeric stringsturn up in the
string field, containing thingslike “abc” and “qwerty”. Those strings on the left side will match the rows with numeric 0 on
theright side. But then if the row with O on the right side changes, it would look for the string “0” on the left, which would
not find either “abc” or “qwerty”. The state of the join will become a mess. So no automatic key type conversions here.

By the way, even though JoinTwo doesn't refuse to have the float64 key fields, using them isabad idea. The floating-point
values are subject to non-obvious rounding. And if you have two floating-point valuesthat print the same, this doesn't mean
that they are internally the same down to the last bit (because the printing involves the conversion to decimal that involves
rounding). The joining requires that the values are exactly equal. Because of thisthe joining on afloating-point field isrife
with unpleasant surprises. Better don't do it. A possible solution isto round values by converting them to integers (scaled
by multiplying by a fixed factor to get essentially afixed-point value). Y ou can even convert them back from fixed-point
to floating-point and still join on these floating-point values, because the same values would always be produced from
integers in exactly the same way, and will be exactly the same.

If you wonder, there are ways to specify the key fields pairing explicitly, with the option “by” or “byLeft”, sasme asfor the
LookupJoin. But that's all they can do: change the pairing of the key fields. Y ou can't specify any other fields. And since
they are optional for JoinTwo, they get usually skipped.

JoinTwo joins two tables 187

More of the JoinTwo options closely parallel those in LookupJdoin. Obviously, “name’, “rightTable” and “rightldxPath”
arethe same, with the added symmetrical “leftTable’ and “leftldxPath”. Thereisno “unit” option though, the unitisalways
taken from the tables (which must belong to the same unit). The option to save the source code of the generated joiner
code has been split in two: “leftSaveJoinerTo” and “rightSaveJoinerTo”. Since JoinTwo has to react to the updates from
both sides, is has to have two handlers. And since internally it uses two LookupJoin for this purpose, these happen to be
the joiner functions of the left and right LookupJoin.

The option “type” selects the inner join mode. The inner join is the default, and would have been used even if this option
was not specified.

The options controlling the result are also the same as in LookupJoin: “leftFields’, “rightFields’, “fieldsLeftFirst”. The
results in this example include all the fields from both sides by default. JoinTwo is smart and knows how to exclude the
duplicate key fields automatically.

Thejoinsare currently not equipped to actually compute thetranslated pricesdirectly. They can only look up theinformation
for it, and the computation can be done later, before or during the aggregation.

That's enough explanations for now, let'slook at the result. The input rows are shown as usual in bold, and to make keeping
track easier, | broke up the output into short snippets with commentary after each one.

cur, OP_I NSERT, 20120310, USD, 1
cur, OP_I NSERT, 20120310, GBP, 2
cur, OP_I NSERT, 20120310, EUR, 1. 5

Inserting the reference currencies produces no result, since it's an inner join and they have no matching positions yet.

pos, OP_I NSERT, 20120310, one, AAA, 100, 15, USD
join.leftLookup. out OP_I NSERT dat e="20120310" cust oner="one"
synbol =" AAA" quantity="100" price="15" currency="USD' toUsd="1"
pos, OP_| NSERT, 20120310, t wo, AAA, 100, 8, GBP
join.leftLookup. out OP_I NSERT date="20120310" custoner="two"
synbol =" AAA" quantity="100" price="8" currency="GBP" toUsd="2"

Now the positions arrive and find the matching translationsto USD. Thelabel names on the output are an interesting artifact
of all the chained labels receiving the original rowop that refers to the first label in the chain. Which happens to be the
output label of a LookupJoin inside JoinTwo. It works conveniently for the demonstrational purposes, since the name of
that LookupJoin shows whether the row that triggered the result came from the left or right side of the JoinTwo.

pos, OP_I NSERT, 20120310, t hr ee, AAA, 100, 300, RUR

This position is out of luck: no tranglation for its currency. Theinner join isactually not agood choice here. If arow does
not pass through because of the lack of trandlation, it gets excluded even from the aggregations that do not require the
trang ation, such as those that total up the quantity of a particular symbol across all the customers. A left outer join would
have been suited better.

pos, OP_I NSERT, 20120310, t hr ee, BBB, 200, 80, GBP
join.leftLookup.out OP_I NSERT dat e="20120310" custoner="t hree"
synbol ="BBB" quantity="200" price="80" currency="GBP" toUsd="2"

Another position arrives, same as before.

cur, OP_I NSERT, 20120310, RUR, 0. 04

join.rightLookup. out OP_| NSERT dat e="20120310" customer="t hree"
synbol =" AAA" quantity="100" price="300" currency="RUR'
t oUsd="0. 04"

The trandation for RUR finally comesin. The position in RUR can now find its match and propagate through.

cur, OP_DELETE, 20120310, GBP, 2

join.rightLookup. out OP_DELETE date="20120310" customer="two"
synbol =" AAA" quantity="100" price="8" currency="GBP" toUsd="2"

join.rightLookup. out OP_DELETE date="20120310" customer="t hree"
synbol ="BBB" quantity="200" price="80" currency="GBP" toUsd="2"

188 Joins

cur, OP_I NSERT, 20120310, GBP, 2. 2
join.rightLookup. out OP_I NSERT dat e="20120310" custoner="two"
synbol =" AAA" quantity="100" price="8" currency="GBP" toUsd="2.2"
join.rightLookup. out OP_|I NSERT dat e="20120310" customer="t hree"
synbol ="BBB" quantity="200" price="80" currency="GBP" toUsd="2.2"

An exchange rate update for GBP arrives. It amounts to “delete the old tranglation and then insert a new one”. Each of
these operations updates the state of the join: the disappearing translation causes all the GBP positions to be deleted from
the result, and the new tranglation inserts them back, with the new value of toUsd. Which is the correct behavior: to make
an up date to the result positions, they have to be deleted and then inserted witn the new values.

pos, OP_DELETE, 20120310, one, AAA, 100, 15, USD
join.leftLookup. out OP_DELETE date="20120310" cust omner="one"
synbol =" AAA" quantity="100" price="15" currency="USD" toUsd="1"
pos, OP_I NSERT, 20120310, one, AAA, 200, 16, USD
join.leftLookup. out OP_I NSERT dat e="20120310" cust omner="one"
synbol =" AAA" quantity="200" price="16" currency="USD" toUsd="1"

A position update arrives. Again, it's a del ete-and-insert, and propagates through the join as such.

That's the end of the first example. The commentary said that the left outer join would have been better for the logic, so
let's make one for the left outer join. All we need to change is the join type option:

our $join = Triceps::Joi nTwo- >new(
name => "join",
| eft Tabl e => $t Position,
leftldxPath => ["currencyLookup"],
ri ght Tabl e => $t ToUsd,
rightldxPath => ["primry"],
type => "left",
); # would confess by itself on an error

Now the positions would pass through even if the currency trandation is not available. The same input now produces a
different result:

cur, OP_I NSERT, 20120310, USD, 1
cur, OP_I NSERT, 20120310, GBP, 2
cur, OP_I NSERT, 20120310, EUR, 1.5
pos, OP_| NSERT, 20120310, one, AAA, 100, 15, USD
join.leftLookup. out OP_I NSERT dat e="20120310" cust omer="one"
synbol =" AAA" quantity="100" price="15" currency="USD"' toUsd="1"
pos, OP_I NSERT, 20120310, t wo, AAA, 100, 8, GBP
join.leftLookup. out OP_I NSERT dat e="20120310" customer="two"
synbol =" AAA" quantity="100" price="8" currency="GBP" toUsd="2"

So far things are going the same as for the inner join.

pos, OP_I NSERT, 20120310, t hr ee, AAA, 100, 300, RUR
join.leftLookup.out OP_I NSERT dat e="20120310" custoner="t hree"
synbol =" AAA" quantity="100" price="300" currency="RUR'

Thefirst difference: even though there is no translation for RUR, the row still passes through (with thefield t oUsd being
NULL).

pos, OP_| NSERT, 20120310, t hr ee, BBB, 200, 80, GBP
join.leftLookup.out OP_I NSERT dat e="20120310" customer="t hree"
synbol ="BBB" quantity="200" price="80" currency="GBP" toUsd="2"

Thisis aso unchanged.

cur, OP_I NSERT, 20120310, RUR, 0. 04
join.rightLookup. out OP_DELETE date="20120310" customer="t hree"
synbol =" AAA" quantity="100" price="300" currency="RUR'

JoinTwo joins two tables 189

join.rightLookup. out OP_I NSERT dat e="20120310" customer="t hree"
synbol =" AAA" quantity="100" price="300" currency="RUR'
t oUsd="0. 04"

The second difference: since this row from the left side has already passed through, just sending another INSERT for it
would make the datainconsistent. The original result without the translation must be deleted first, and then anew one, with
trand ation, inserted. JoinTwo is smart enough to figure it out all by itself.

cur, OP_DELETE, 20120310, GBP, 2

join.rightLookup.out OP_DELETE date="20120310" custoner="two"
synmbol =" AAA" quantity="100" price="8" currency="GBP" toUsd="2"

join.rightLookup.out OP_I NSERT dat e="20120310" custoner ="t wo"
synbol =" AAA" quantity="100" price="8" currency="GBP"

join.rightLookup. out OP_DELETE dat e="20120310" custoner="three"
synbol =" BBB" quantity="200" price="80" currency="GBP" toUsd="2"

join.rightLookup. out OP_I NSERT dat e="20120310" custoner="t hree"
synbol ="BBB" quantity="200" price="80" currency="G3P"

The same logic works for the deletes, only backwards: when the trandation for GBP is deleted, the result rows that used
it change to the lose the trand ation.

cur, OP_I NSERT, 20120310, GBP, 2. 2
join.rightLookup. out OP_DELETE date="20120310" customer="two"
synbol =" AAA" quantity="100" price="8" currency="GBP"
join.rightLookup. out OP_| NSERT dat e="20120310" customer="two"
synbol =" AAA" quantity="100" price="8" currency="GBP" toUsd="2.2"
join.rightLookup. out OP_DELETE date="20120310" customer="t hree"
synbol ="BBB" quantity="200" price="80" currency="GBP"
join.rightLookup. out OP_| NSERT dat e="20120310" customer="t hree"
synbol ="BBB" quantity="200" price="80" currency="GBP" toUsd="2.2"

And again, when the new translation for GBP comesin, the DELETE-INSERT sequence is done for each of the rows. As
you can see, the update of the GBP tranglation in the last two snippets worked in not the most efficient way. Fundamentally,
if weknew that aDELETE of GBPwill beimmediately followed by an INSERT, we could skip inserting and then deleting
the rows with the NULL int oUsd. But we don't know, and in Triceps there is no way to know it.

If you readlly, really want to avoid the propagation of these intermediate changes, insert after the join a Collapse template
described in Section 14.2: “Collapsed updates’ (p. 227), and flush it only after the whole update has been processed.
Therewill be more overhead in the Collapseitself, but al thelogic below it will skip the intermediate changes. If thislogic
below is heavy-weight, that might be an overall win. A caveat though: a Collapse requires that the data has a primary key,
a JoinTwo doesn't require its result (nor its inputs) to have a primary key. Because of this, the collapse might not work
right with every possible join, you'd have to limit yourself to the joins that produce the data with a primary key.

pos, OP_DELETE, 20120310, one, AAA, 100, 15, USD
join.leftLookup. out OP_DELETE date="20120310" cust omer="one"
synbol =" AAA" quantity="100" price="15" currency="USD"' toUsd="1"
pos, OP_| NSERT, 20120310, one, AAA, 200, 16, USD
join.leftLookup. out OP_I NSERT dat e="20120310" cust omer="one"
synbol =" AAA" quantity="200" price="16" currency="USD"' toUsd="1"

And the rest is again the same as with an inner join.

JoinTwo can do aright outer join too, just use the type “right”. It works in exactly the same way as the |eft outer join, just
with a different table. So much the same that it's not even worth a separate example.

Now, the full outer join. The full outer joins usually get used with a variation of the “fork-join” topology described in
the Section 14.1: “The dreaded diamond” (p. 223). In it the processing of a row can be forked into multiple parallel

paths, each path doing an optional part of the comuptation and either providing aresult row or not, eventually with all the
parts merged back together into one row. The full outer join is a convenient way to do this merge: the paths that didn't
produce the result get quietly ignored, and the results that were produced get merged back into a single row. The row in
such situations is usually identified by a primary key, so the partial results can find each other. This scheme makes the

190 Joins

most sense when the paths are executed in the parallel threads, or when the processing on some paths may get delayed and
then continued later. If the processing is single-threaded and fast, Triceps provides a more convenient procedural way of
getting the same result: just call every path in order and merge the results from them procedurally, and you won't have to
keep the intermediate resultsin their tables forever, nor delete them manually.

Even though that useistypical, it has only the 1:1 record matching and does not highlight all the abilities of the JoinTwo.
So, let's come up with another example that does.

The positions-and-currencies do not lend itself easily to afull outer join but we'll make them do. Suppose that you want to
get thetotal count of positions (per symbol, or altogether), or maybe the total value, for every currency. Including those for
which we have the exchange rates but no positions, for them the count should simply be 0 (or maybe NULL). And thosefor
which there are positions but no exchange rate tranglations. Thisisajob for afull outer join, followed by an aggregation.
The join has the type “outer” and looks like this:

our $join = Triceps::Joi nTwo- >new(
name => "join",
| ef t Tabl e => $t Posi ti on,
leftldxPath => ["currencyLookup"],
ri ght Tabl e => $t ToUsd,
rightldxPath => ["primry"],
type => "outer",
); # would confess by itself on an error

As before, the aggregation part will be left to the imagination of the reader. This join has the many-to-one (M:1) row
matching, since there might be multiple positions on the left matching one currency rate translation on the right. Thiswill
create interesting effectsin the output, let'slook at it:

cur, OP_I NSERT, 20120310, GBP, 2
join.rightLookup. out OP_I NSERT dat e="20120310" currency="GBP"
t oUsd="2"

Thefirst trand ation gets through, even though there is no position for it yet.

pos, OP_I NSERT, 20120310, t wo, AAA, 100, 8, GBP
join.leftLookup. out OP_DELETE date="20120310" currency="GBP" toUsd="2"
join.leftLookup. out OP_I NSERT date="20120310" custoner="two"

synbol =" AAA" quantity="100" price="8" currency="GBP" toUsd="2"

Thefirst position for an existing translation comesin. Now the GBP row has a match, so the unmatched row gets deleted
and a matched one gets inserted instead.

pos, OP_I NSERT, 20120310, t hr ee, BBB, 200, 80, GBP
join.leftLookup. out OP_I NSERT dat e="20120310" custoner="t hree"
synbol ="BBB" quantity="200" price="80" currency="GBP" toUsd="2"

The second position for GBP works differently: since there is no unmatched row any more (it was taken care of by the first
position), there is nothing to delete. Just the second matched row gets inserted.

pos, OP_I NSERT, 20120310, t hr ee, AAA, 100, 300, RUR
join.leftLookup.out OP_I NSERT dat e="20120310" customner="t hree"
synbol =" AAA" quantity="100" price="300" currency="RUR'

The position without a matching currency get through as well.

cur, OP_I NSERT, 20120310, RUR, 0. 04

join.rightLookup. out OP_DELETE dat e="20120310" customner="t hree"
synbol =" AAA" quantity="100" price="300" currency="RUR'

join.rightLookup. out OP_I NSERT dat e="20120310" customer="t hree"
synbol =" AAA" quantity="100" price="300" currency="RUR'
t oUsd="0. 04"

Now the RUR translation becomes available and it has to do the same things as we've seen before, only on the other side:
delete the unmatched record and replace it with the matched one.

JoinTwo joins two tables 191

cur, OP_DELETE, 20120310, GBP, 2

join.rightLookup. out OP_DELETE dat e="20120310" custoner="two"
synbol =" AAA" quantity="100" price="8" currency="GBP" toUsd="2"

join.rightLookup. out OP_I NSERT dat e="20120310" custoner="two"
synbol =" AAA" quantity="100" price="8" currency="GBP"

join.rightLookup. out OP_DELETE date="20120310" customer="t hree"
synbol ="BBB" quantity="200" price="80" currency="GBP" toUsd="2"

join.rightLookup. out OP_I NSERT dat e="20120310" customer="t hree"
synbol ="BBB" quantity="200" price="80" currency="GBP"

cur, OP_I NSERT, 20120310, GBP, 2. 2

join.rightLookup. out OP_DELETE dat e="20120310" custoner="two"
synbol =" AAA" quantity="100" price="8" currency="GBP"

join.rightLookup. out OP_I NSERT dat e="20120310" custoner="two"
synbol =" AAA" quantity="100" price="8" currency="GBP" toUsd="2.2"

join.rightLookup. out OP_DELETE date="20120310" customer="t hree"
synbol ="BBB" quantity="200" price="80" currency="GBP"

join.rightLookup. out OP_|I NSERT dat e="20120310" customer="t hree"
synbol ="BBB" quantity="200" price="80" currency="GBP" toUsd="2.2"

Then the GBP trandlation gets updated. First the old trandlation gets deleted and then the new one inserted. When the
trang ation gets deleted, all the positions in GBP lose their match. So the matched rows gets deleted and replaced with the
unmatched ones. When the new GBP trandlation isinserted, the replacement goes in the other direction.

pos, OP_DELETE, 20120310, t hr ee, BBB, 200, 80, GBP
join.leftLookup. out OP_DELETE date="20120310" customner="t hree"
synbol ="BBB" quantity="200" price="80" currency="GBP" toUsd="2.2"

When this position goes away, the row gets deleted from the result as well. However it was not the only position in GBP,
so thereis no need to insert an unmatched record for GBP.

pos, OP_DELETE, 20120310, t hr ee, AAA, 100, 300, RUR
join.leftLookup. out OP_DELETE date="20120310" customner="t hree"
synbol =" AAA" quantity="100" price="300" currency="RUR'
t oUsd="0. 04"
join.leftLookup. out OP_I NSERT dat e="20120310" currency="RUR'
t oUsd="0. 04"

This position was the last one in RUR. So when it gets deleted, the RUR translation has no match any more. That means,
after deleting the matched row from the results, the unmatched row has to be inserted to keep the balance right.

This business with keeping track of the unmatched rowsis not unique to the full outer joins. Remember, it was showing in
the left outer joins too, and the right outer joins are no exception either. When the first matching row gets inserted or the
last matching row gets deleted on the side that is opposite to the "outer side”, the unmatched rows have to be handled in
the result. (That would be the right side for the left outer joins, the left side for the right outer joins, and either side for the
full outer joins). The special thing about the M:1 (and 1:M and M:M) joins is that there may be more than one matching
row. On insertion, the second and following matching rows produce a different effect than the first one. On deletion, the
opposite: al the rows but the last work differently from the last one. It's not limited to the full outer joins. M:1 or M:M
with aright outer join, and 1:M or M:M with aleft outer join will do it too.

If you're like me, by now you'd be wondering, how does it work? If the “opposite side” isof “one” variety (:1 or 1:), which
can be known from it using aleaf index for the join, then every insert isthe first insert of amatching row for this key, and
every deleteis the delete of the last row for this key. Which means, do the empty-match business every time.

If the “opposite side” is of the “many” variety (:M or M:), with a non-leaf index, then things get more complicated. The

join works by processing the rowops coming out of the argument tables. When it gets the rowop in such a situation, it goes
to the table and checks, wasiit the first (or last) row for this key? And then uses this knowledge to act.

12.9. The key field duplication in JoinTwo

192 Joins

JoinTwo in its raw form has the same problem of the key field duplication as L ookupJoin (described in Section 12.6: “The
key fields of LookupJoin” (p. 180)), only worse because the table-to-table outer joins must work with the updates from
any side. So JoinTwo has more magic built into it: it knows how to recognize this situation and have the key fields copied
into the result from whatever side happensto be present for a particular row, and does this by default. It makesthesefields
always available on both sides. And along the way it also takes care of modifying the option “rightFields’ or “leftFields’
to actually pass through only one of the copies.

The default behavior is good enough for most situations. But if you want more control, it's done with the option “field-
sUnigKey”. The default value of this option is “first”. It means: Enable the magic for copying the fields from the non-
NULL side to the NULL side. Look at the option “fieldsLeftFirst” and figure out, which side goes first in the result. Let
the key fields pass on that side unchanged (though the user can block them on that side manually too, or possibly rename
them, it's his choice). On the other side, automatically generate the blocking specs for the key fields and prepend them to
that side'sresult specification. It's smart enough to know that an undefined “leftFields’ or “rightFields’ means the same as
“*” s0 an undefined result spec is replaced by the blocking specs followed by “.*”. If you later call the methods

$f spec
$f spec

= $j oi n->get Left Fi el ds();
= $j oi n->get Ri ght Fi el ds();

then you will actually get back the modified field specs.

If you want the key fieldsto be present in adifferent location in the result, you can set “fieldsUnigKey” to “left” or “right”.
That will make them pass through on the selected side, and the blocking would be automatically added on the other side.

For more control yet, set this option to “manual”. The magic for making the key fields available on both sides will still be
enabled, but no automatic blocking. You can pick and choose the result fields manually, exactly as you want. Remember
though that there can't be multiple fields with the same name in the result, so if both sides have these fields named the
same, you've got to block or rename one of the two copies.

Thefina choiceis“none’: it simply disables the key field magic.

12.10. The override options in JoinTwo

Normally JoinTwo triesto work in a consistent manner, refusing to do the unsafe things that might corrupt the data. But if
you readlly, really want, and are really sure of what you're doing, there are options to override these restrictions.

If you set
overrideSi npl eM nded => 1,
then the logic that produces the DELETE-INSERT sequences for the outer joins gets disabled. The only reason | can think

of to usethisoptionisif you want to simulate a CEP system that has no concept of opcodes. So if your dataisINSERT-only
and you want to produce the INSERT-only data too, and want the dumbed-down logic, this option is your solution.

The option
overri deKeyTypes => 1,

disablesthe check for the exact match of the key field types. This might come helpful for exampleif you haveanint32 field
on one side and an int64 field on the other side, and you know that in reality they would aways stay within the int32 range.
Or if you have an integer on one side and a string that always contains an integer on the other side. Since you know that the
type conversions can always be done with no loss, you can safely override the type check and still get the correct resuilt.

12.11. JoinTwo input event filtering

Let'slook at how the businessday logic interactswith thejoins. It'stypical for the business applicationsto keep thefull data
for the current day, or afew recent days, then clear the data that became old and maybe keep it only in an aggregated form.

So, let'sadd the business day logic to theleft join example. It usestheindexes by dateto find the rowsthat have become ol d:

The override options in JoinTwo 193

exchange rates, to convert all currencies to USD
our $ttToUsd = Triceps:: Tabl eType- >new($rt ToUsd)
- >addSubl ndex("pri mary",
Triceps:: | ndexType- >newHashed(key => ["date", "currency"])

)
- >addSubl ndex("byDate", # for cleaning by date
Tri ceps:: Si npl eOr der edl ndex- >new(date => "ASC")
- >addSubl ndex(" groupi ng", Triceps::|ndexType->newFifo())
)
or confess "$!'";
$tt ToUsd->initialize() or confess "$!";

the positions in the original currency
our $ttPosition = Triceps:: Tabl eType->new $rt Positi on)
- >addSubl ndex("pri mary",
Tri ceps:: | ndexType- >newHashed(key => ["date", "custoner", "synbol"])

- >addSubl ndex("currencyLookup", # for joining with currency conversion
Triceps:: | ndexType- >newHashed(key => ["date", "currency"])
- >addSubl ndex(" groupi ng", Triceps::|ndexType->newFifo())

)
- >addSubl ndex("byDate", # for cleaning by date
Triceps:: Sinpl eOrder edl ndex- >new(date => "ASC")
- >addSubl ndex(" groupi ng", Triceps::|ndexType->newFifo())
)
or confess "$!";
$ttPosition->initialize() or confess "$!";

renenber the indexes for the future use
our $i xt ToUsdByDate = $tt ToUsd- >fi ndSubl ndex("byDate") or confess "$!";
our $i xtPositionByDate = $ttPosition->findSubl ndex("byDate") or confess "$!";

Go through the table and clear all the rows where the field "date"
is less than the date argunent. The index type orders the table by date
sub cl earByDat e($$$) # ($table, $ixt, $date)

nmy ($table, $ixt, $date) = @;

ny $next;
for (my $rhit = $tabl e->beginldx($ixt); !'$rhit->isNull(); $rhit = $next) {
last if (($rhit->getRow()->get("date")) >= $date);
$next = $rhit->nextldx($ixt); # advance before renova
$t abl e- >renove($rhit);
}
}

The table types are the same as have been already shown before, they've been copied here for convenience. cl ear By-
Dat e() isanuniversa function that can clear the contents of any table by date, provided that the dateisin the field “ date”
and the index type on this table that orders the rows by dateis given as an argument. The index with ordering by date must
be not just a leaf Ordered index, but have a FIFO index nested in it. Without that FIFO index, the Ordered index would
allow only one row for each date.

The main loop gets extended with a few more commands:
our $busi nessDay = undef;

our $join = Triceps::Joi nTwo- >new(
name => "join",
| ef t Tabl e => $t Posi ti on,
leftldxPath => ["currencyLookup"],
ri ght Tabl e => $t ToUsd,

194 Joins

rightldxPath => ["primry"],
type => "left",
); # would confess by itself on an error

label to print the changes to the detailed stats
nakePri nt Label ("I bPrint", $join->getQutputLabel ());

whi | e(<STDI N>) {

chonp;
ny @ata = split(/,/); # starts with a command, then string opcode
ny $type = shift @lata;

if ($type eq "cur") {
$uJoi n- >makeArrayCal | ($t ToUsd- >get | nput Label (), @ata);
} elsif ($type eq "pos") {
$uJoi n- >makeArrayCal | ($t Posi ti on->get | nput Label (), @lata);
} elsif ($type eq "day") { # set the business day
$busi nessDay = $data[0] + O; # convert to an int
} elsif ($type eq "clear") { # clear the previous day
flush the left side first, because it's an outer join
&cl ear ByDat e($t Posi ti on, $i xt PositionByDate, $businessbDay);
&cl ear ByDat e($t ToUsd, $i xt ToUsdByDat e, $busi nessDay);
}

$udoi n->drai nFrane(); # just in case, for conpleteness

}
Theroll-over to the next business day (after the input data previously shown with theleft join example) then lookslike this:

day, 20120311
cl ear
join.leftLookup. out OP_DELETE date="20120310" customer="two"
synbol =" AAA" quantity="100" price="8" currency="GBP" toUsd="2.2"
join.leftLookup. out OP_DELETE date="20120310" customner="t hree"
synbol =" AAA" quantity="100" price="300" currency="RUR'
t oUsd="0. 04"
join.leftLookup. out OP_DELETE date="20120310" customner="t hree"
synbol =" BBB" quantity="200" price="80" currency="GBP" toUsd="2.2"
join.leftLookup. out OP_DELETE dat e="20120310" cust omer="one"
synbol =" AAA" quantity="200" price="16" currency="USD"' toUsd="1"

Clearing theleft-side table before the right-side oneis more efficient than the other way around, sincethisisaleft outer join,
and sinceit'san M:1 join. If the right-side table were cleared first, it would first update all the result records to change all
theright-side fieldsin them to NULL, and then the clearing of the |eft-side table would finally delete these rows. Clearing
the left side first removes this churn: it deletes all the rows from the result right away, and then when the right side is
cleared, it still triesto look up the matching rows but finds nothing and produces no result. For aninner join the order would
not matter: either one would produce the same amount of churn. For afull outer join, the M:1 consideration would come
into play, and removing the rows from the left side first would still be more efficient. This way when it removes multiple
position rowsthat match the same currency, all of them but one generate the smple DELETES, and only the last onewould
follow up with an INSERT that has only the right-side data in it. That row with the right-side data will get deleted when
the currency row gets deleted from the right side. If the right side were deleted first, deleting each row on the right side
would cause an output of a DELETE-INSERT result pair for each of its matching position rows from the left side, and
would produce more churn. For the 1:1 or M:M full outer joins, the order would not matter.

If you don't want these deletions to propagate though the rest of your model, you can just put a filtering logic after the
join, to throw away all the modifications for the previous days. Through don't forget that you would have then to delete
the previous-day data from the rest of the model's tables manually.

If you want to keep only the aggregated data, you may want to pass the join output to the aggregator without filtering and
then filter the aggregator's output, thus stopping the updates to the aggregation results. Y ou may even have a specia logic
in the aggregator, that would ignore the groups of the previous days. Such optimization of the aggregation filtering will
be shown in the Section 13.1: “Time-limited propagation” (p. 211). And they aren't any less efficient than filtering on

JoinTwo input event filtering 195

the output of the join, because if you filter after the join, you'd still have to remove the rows from the aggregation table,
and would still have to filter after the aggregation too.

Now, suppose that you want to be extra optimal and don't want any join look-ups to happen at all when you delete the old
data. JoinTwo has a feature that lets you do that. Y ou can make it receive the events not directly from the tables but after
filtering, using the options “leftFromLabel” and “rightFromLabel”:

our $l bPositionCurrent = $uJoi n- >makeDummyLabel (
$t Posi ti on- >get RowType, "l bPositionCurrent”) or confess "$!";
our $l bPositionFilter = $uJoi n->makelabel ($t Posi ti on- >get RowType,
"I bPositionFilter", undef, sub {
if ($_[1]->get Row()->get("date") >= $businessDay) {
$uJoi n->cal | ($l bPosi ti onCurrent->adopt ($_[1]));
}

}) or confess "$!";
$t Posi ti on- >get Qut put Label ()->chai n($l bPositionFilter) or confess "$!";

our $l bToUsdCurrent = $udoi n- >makeDummyLabel (
$t ToUsd- >get RowType, "l bToUsdCurrent”) or confess "$!";
our $l bToUsdFilter = $uJoi n- >makelLabel ($t ToUsd- >get RowType,
"I bToUsdFilter", undef, sub {
if ($_[1]->get Row()->get("date") >= $businessDay) {
$uJoi n->cal | ($l bToUsdCur rent - >adopt ($_[1]));
}

}) or confess "$!";
$t ToUsd- >get Qut put Label () - >chai n($l bToUsdFi Il ter) or confess "$!";

our $join = Triceps::Joi nTwo- >new(
name => "join",
| ef t Tabl e => $t Posi ti on,
| ef t From_abel => $l bPositi onCurrent,
leftldxPath => ["currencyLookup"],
ri ght Tabl e => $t ToUsd,
ri ght FronLabel => $l bToUsdCurrent,
rightldxPath => ["primry"],
type => "left",
); # would confess by itself on an error

The same clearing now looks like this:

day, 20120311
cl ear

No output is coming from the join whatsoever. It all gets cut off before it reachesthe join. It's not such a great gain though.
Remember that if you want to keep the aggregated data, you would still have to delete the original rows manually from the
aggregation table afterwards. And the filtering logic will add overhead, not only during the clearing but al the time.

If you're not careful with the filtering conditions, it's also easy to make the results of the join inconsistent. This example
filters both input tables on the same key field, with the same condition, so the output will stay always consistent. But if
any of these elements were missing, it becomes possible to produce inconsistent output that has the DELETESs of different
rows than INSERTS, and deletions of the rows that haven't been inserted in the first place. The reason is that even though
the input events are filtered, the table look-ups done by JoinTwo aren't. If some row comes from the right side and gets
thrown away by the filter, and then another row comes on the left side, passes the filter, and then finds a match in that
thrown-away right-side row, it will use that row in the result. And the join would think that the right-side row has already
been seen, and would produce an incorrect update.

So these options don't make a whole lot of a win but make a major opportunity for a mess, and probably should never
be used. And will probably be deleted in the future, unless someone finds a good use for them. They have been added
because at the time they provided a roundabout way to do a self-join. But the later fixes to the Table logic make the self-
joins possible without this kind of perversions.

196 Joins

12.12. Self-join done with JoinTwo

The self-joins happen when atable is joined to itself. For an example of a model with self-joins, let's look at the Forex
trading. People exchange the currencies in every possible direction in multiple markets. The Forex exchange rates are
quoted for every pair of currencies, in every direction.

Naturally, if you exchange one currency into another and then back into thefirst one, you normally end up with less money
than you've started with. The rest becomes the transaction cost and lines the pockets of the brokers, market makers and
exchanges.

However once in a while some interesting things happen. If the exchange rates between the different currencies become
dishalanced, you may be able to exchange the currency A for currency B for currency C and back for currency A, and
end up with more money than you've started with. (You don't have to do it in sequence, you would normally do all three
transactions in parallel). However it's a short-lived opportunity: as you perform the transactions, you'll be changing the
involved exchange rates towards the balance, and you won't be the only one exploiting this opportunity, so you better act
fast. This activity of bringing the market into balance while simultaneously extracting profit is called “arbitration”.

So let's make amodel that will detect such arbitration opportunities, for the following automated execution. Mind you, it's
all grossly smplified, but it shows the gist of it. And most importantly, it uses the self-joins. Here we go:

our $rtRate = Triceps:: RowType->new(# an exchange rate between two currencies
ccyl => "string", # currency code
ccy2 => "string", # currency code
rate => "float64", # multiplier when exchanging ccyl to ccy2

) or confess "$!";

all exchange rates
our $ttRate = Triceps:: Tabl eType- >new($rt Rat e)
- >addSubl ndex (" byCcy1l",
Triceps:: I ndexType->newHashed(key => ["ccyl" 1)
- >addSubl ndex("byCcy12",
Triceps:: I ndexType->newHashed(key => ["ccy2" 1)
)

)
- >addSubl ndex(" byCcy2",
Triceps:: | ndexType- >newHashed(key => ["ccy2"])
- >addSubl ndex(" groupi ng", Triceps::I|ndexType->newFifo())
)
or confess "$!'";
$ttRate->initialize() or confess "$!";

our $uArb = Triceps::Unit->new "uArb");

our $tRate = $uArb->makeTabl e($tt Rat e,
&Triceps:: EM CALL, "tRate") or confess "$!'";

our $joinl = Triceps::Joi nTwo- >new(
name => "joi nl",
| eft Tabl e => $tRate,
leftldxPath => ["byCcy2"],
leftFields => ["ccyl", "ccy2", "ratel/ratel"],
ri ght Table => $tRate,
rightldxPath => ["byCcyl" 1,
rightFields => ["ccy2/ccy3", "rate/rate2"],
); # would die by itself on an error
our $ttJoinl = Triceps:: Tabl eType- >new $j oi n1- >get Resul t RowType())
- >addSubl ndex("byCcy123",
Triceps:: | ndexType- >newHashed(key => ["ccyl", "ccy2", "ccy3"])
)

Self-join done with JoinTwo 197

- >addSubl ndex("byCcy31",
Tri ceps:: | ndexType- >newHashed(key => ["ccy3", "ccyl"])
- >addSubl ndex(" groupi ng", Triceps::|ndexType->newFifo())
)
or confess "$!'";
$ttJoinl->initialize() or confess "$!";
our $tJoinl = $uArb->nakeTabl e($ttJoinl,
&Triceps:: EM CALL, "tJoinl") or confess "$!";
$j oi nl- >get Qut put Label () - >chai n($t Joi nl- >get | nput Label ()) or confess "$!";

our $join2 = Triceps::Joi nTwo- >new(
name => "joi n2",
| eft Tabl e => $tJoinl,
leftldxPath => ["byCcy31"],
ri ght Table => $tRate,
rightldxPath => ["byCcyl", "byCcyl2"],
rightFields => ["rate/rate3"],
the field ordering in the indexes is already right, but
for clarity add an explicit join condition too
byLeft => ["ccy3/ccyl", "ccyl/ccy2"],

); # would die by itself on an error

now conpute the resulting circular rate and filter the profitable | oops
our $rtResult = Triceps:: RowType- >new
$j oi n2- >get Resul t RowType() - >get def (),
| ooprate => "fl oat 64",
) or confess "$!";
ny $l bResult = $uArb->makeDumryLabel ($rt Result, "l bResult");
ny $l bConput e = $uArb->makelabel ($j oi n2- >get Resul t RowType(), "I bConpute", undef, sub {
ny ($label, $rowop) = @;
ny $row = $rowop->get Row() ;
ny $looprate = $row>get("ratel") * $row >get("rate2") * $row >get("rate3");

if ($looprate > 1) {
$uAr b- >makeHashCal | ($l bResul t, $rowop->get Opcode(),
$r ow >t oHash(),
| ooprate => $l ooprate,
)
} else {
print("__", $rowop->printP(), "looprate=$looprate \n"); # for debuggi ng
}

}) or confess "$!'";
$j 0i n2- >get Qut put Label () - >chai n($l bConput e) or confess "$!";

label to print the changes to the detailed stats
makePri nt Label ("I bPrint", $l bResult);

#makePri nt Label ("I bPri ntJoi n1", $j oi nl->get Qut put Label ());
#makePri nt Label ("I bPri ntJoi n2", $j oi n2->get Qut put Label ());

whi | e(<STDI N>) {

chonp;
ny @ata = split(/,/); # starts with a command, then string opcode
ny $type = shift @lata;

if ($type eq "rate") {
$UAr b- >makeAr rayCal | ($t Rat e- >get | nput Label (), @lata);
}

$UAr b->drai nFrame(); # just in case, for conpleteness

}

The rate quotes will be coming into $t Rat e. The indexes are provided to both work with the self-joins and to have a
primary index asthefirst leaf.

198 Joins

Thereareno specia optionsfor the self-join in JoinTwo: just use the sametable for both theleft and right side. Thefirst join
represents two exchange transactions, so it's done by matching the second currency of the first quote to the first currency
of the second quote. The result contains three currency names and two rate multipliers. The second join adds one more rate
multiplier, returning back to the first currency. Now to learn the effect of the circular conversion we only need to multiply
all the multipliers. If it comes out below 1, the cycling transaction would return aloss, if above 1, a profit.

The label $1 bConput e with Perl handler performs the multiplication, and if the result is over 1, passes the result to the
next label $I bResul t, from which then the data gets printed. I've also added a debugging printout in case if the row
doesn't get through. That one startswith“__ " and hel ps seeing what goes on inside when no result is coming out.

Finally, the main loop reads the data and putsiit into the rates table, thus driving the logic.

Now let's take alook at an example of arun, with interspersed commentary.

rat e, OP_I NSERT, EUR, USD, 1. 48
rat e, OP_| NSERT, USD, EUR, 0. 65
rat e, OP_I NSERT, GBP, USD, 1. 98
rat e, OP_I NSERT, USD, GBP, 0. 49

The rate quotes start coming in. Note that the rates are separate for each direction of exchange. So far nothing happens
because there aren't enough quotes to complete aloop of three steps.

rat e, OP_| NSERT, EUR, GBP, 0. 74

__join2.leftLookup. out OP_I NSERT ccyl="EUR' ccy2="GBP" ratel="0.74"
ccy3="USD' rate2="1.98" rate3="0.65" | ooprate=0.95238

__join2.leftLookup. out OP_I NSERT ccyl="USD"' ccy2="EUR' ratel="0.65"
ccy3="GBP" rate2="0.74" rate3="1.98" | ooprate=0.95238

__join2.rightLookup. out OP_I NSERT ccyl="GBP" ccy2="USD' ratel="1.98"
ccy3="EUR' rate2="0.65" rate3="0.74" |ooprate=0.95238

rat e, OP_| NSERT, GBP, EUR, 1. 30

__join2.leftLookup. out OP_I NSERT ccyl="GBP" ccy2="EUR' ratel="1.3"
ccy3="USD' rate2="1.48" rate3="0.49" | ooprate=0.94276

__join2.leftLookup. out OP_I NSERT ccyl="USD"' ccy2="GBP" ratel="0.49"
ccy3="EUR' rate2="1.3" rate3="1.48" |ooprate=0.94276

__join2.rightLookup. out OP_I NSERT ccyl="EUR' ccy2="USD' ratel="1.48"
ccy3="GBP" rate2="0.49" rate3="1.3" |ooprate=0.94276

Now there are enough currencies in play to complete the loop. None of them get the loop rate over 1 though, so the only
printouts are from the debugging logic. There are only two loops, but each of them is printed three times. Why? It's aloop,
S0 you can start from each of its elements and come back to the same element. One row for each starting point. And the
joinsfind all of them.

To find and eliminate the duplicates, the order of currencies in the rows can be rotated to put the alphabetically lowest
currency code first. Note that they can't be just sorted because the relative order matters. Trading in the order GBP-USD-
EUR will give a different result than GBP-EUR-USD. The relative order has to be preserved. | didn't put any such elimi-
nation into the example to keep it smaller.

rat e, OP_DELETE, EUR, USD, 1. 48

__join2.leftLookup.out OP_DELETE ccyl="EUR' ccy2="USD"' ratel="1.48"
ccy3="GBP" rate2="0.49" rate3="1.3" | ooprate=0.94276

__join2.leftLookup.out OP_DELETE ccyl="GBP" ccy2="EUR"' ratel="1.3"
ccy3="USD"' rate2="1.48" rate3="0.49" | ooprate=0.94276

__join2.rightlLookup. out OP_DELETE ccyl="USD' ccy2="GBP" ratel="0.49"
ccy3="EUR' rate2="1.3" rate3="1.48" | ooprate=0.94276

rat e, OP_I NSERT, EUR, USD, 1. 28

__join2.leftLookup.out OP_I NSERT ccyl="EUR' ccy2="USD"' ratel="1.28"
ccy3="GBP" rate2="0.49" rate3="1.3" | ooprate=0.81536

__join2.leftLookup.out OP_I NSERT ccyl="GBP" ccy2="EUR' ratel="1.3"
ccy3="USD' rate2="1.28" rate3="0.49" | ooprate=0.81536

__join2.rightlLookup. out OP_I NSERT ccyl="USD' ccy2="GBP" ratel="0.49"
ccy3="EUR' rate2="1.3" rate3="1.28" | ooprate=0.81536

Self-join done with JoinTwo 199

Someone starts changing lots of euros for dollars, and the rate moves. No good news for us yet though.

rat e, OP_DELETE, USD, EUR, 0. 65

__join2.leftLookup. out OP_DELETE ccyl="USD"' ccy2="EUR' ratel="0.65"
ccy3="GBP" rate2="0.74" rate3="1.98" | ooprate=0.95238

__join2.leftLookup. out OP_DELETE ccyl="GBP" ccy2="USD' ratel="1.98"
ccy3="EUR' rate2="0.65" rate3="0.74" |ooprate=0.95238

__join2.rightLookup. out OP_DELETE ccyl="EUR' ccy2="GBP" ratel="0.74"
ccy3="USD' rate2="1.98" rate3="0.65" | ooprate=0.95238

rat e, OP_| NSERT, USD, EUR, 0. 78

| bResul't OP_I NSERT ccyl="USD' ccy2="EUR' ratel="0.78" ccy3="GBP"
rate2="0.74" rate3="1.98" |ooprate="1.142856"

| bResul't OP_I NSERT ccyl="GBP" ccy2="USD' ratel="1.98" ccy3="EUR'
rate2="0.78" rate3="0.74" |ooprate="1.142856"

| bResul't OP_I NSERT ccyl="EUR' ccy2="GBP" ratel="0.74" ccy3="USD"
rate2="1.98" rate3="0.78" |ooprate="1.142856"

The rate for dollars-to-euros follows its opposite. This creates an arbitration opportunity! Step two: trade in the direction
USD-EUR-GBP-USD, step three: PROFIT!!!

rate, OP_DELETE, EUR, GBP, 0. 74

| bResult OP_DELETE ccyl="EUR' ccy2="GBP" ratel="0.74" ccy3="USD"
rate2="1.98" rate3="0.78" | ooprate="1.142856"

| bResult OP_DELETE ccyl="USD' ccy2="EUR' ratel="0.78" ccy3="GBP"
rate2="0.74" rate3="1.98" | ooprate="1.142856"

| bResult OP_DELETE ccyl="GBP" ccy2="USD"' ratel="1.98" ccy3="EUR'
rate2="0.78" rate3="0.74" | ooprate="1.142856"

rat e, OP_I NSERT, EUR, GBP, 0. 64

__join2.leftLookup.out OP_I NSERT ccyl="EUR' ccy2="GBP" ratel="0.64"
ccy3="USD"' rate2="1.98" rate3="0.78" | ooprate=0.988416

__join2.leftLookup.out OP_I NSERT ccyl="USD' ccy2="EUR' ratel="0.78"
ccy3="GBP" rate2="0.64" rate3="1.98" | ooprate=0.988416

__join2.rightLookup. out OP_I NSERT ccyl="GBP" ccy2="USD"' ratel="1.98"
ccy3="EUR' rate2="0.78" rate3="0.64" | ooprate=0.988416

Our trading (and perhaps other people's trading too) moves the exchange rate of euros to pounds. And with that the balance
of currenciesisrestored, and the arbitration opportunity disappears.

Now let's have a look inside JoinTwo. What is so special about the self-join? Normally the join works on two separate
tables. They get updated one at atime. Even if some common reason causes both tables to be updated, the update arrives
from onetable first. The join sees thisincoming update, looks in the unchanged second table, produces an updated result.
Then the update from the second table comes to the join, which takes it, looks in the already modified first table, and
produces another updated result.

If both inputs are from the same table, this logic breaks. Two copies of the updates will arrive, but by the time the first
one arrives, the contents of the table has been aready changed. When the join looks in the table, it gets the unexpected
results and creates a mess.

But JoinTwo has afix for this. It makes use of the Pre label of the table for its left-side update (the right side would have
worked just as good, it's just arandom choice):

ny $sel fJoin = $sel f->{leftTabl e}->sanme($sel f->{right Tabl e});

if ($selfJoin && !defined $sel f->{leftFronLabel}) {
one side nust be fed fromPre |abel (but still let the user override)
$sel f->{l eft FronLabel } = $sel f->{l eft Tabl e} - >get PrelLabel ();

}

This way when the join sees the first update, the table hasn't changed yet. And then the second copy of that update comes
though the normal output label, after the table has been modified. Everything just works out as normal and the self-joins
produce the correct result.

200 Joins

Normally you don't need to concern yourself with this, except if you're trying to filter the data coming to the join. Then
remember that for “leftFromLabel” you have to receive the data from the table's get Pr eLabel (), not get Qut put -
Label ().

12.13. Self-join done manually

In many cases the self-joins are better suited to be done by the manual looping through the data. Thisis especially true if
the table represents a tree, linked by the parent-child node id and the processing has to navigate through the tree. Indeed,
if the tree may be of an arbitrary depth, there is no way to handle if with the common joins, you will need as many joins
as the depth of the tree (through there are some SQL extensions for the recursive self-joins).

The arbitration example can also be conveniently rewritten through the manual loops. Theinput row type, table type, table,
unit, and the main loop do not change, so | won't copy them the second time. The rest of the code is:

our $rtResult = Triceps:: RowType- >new
ccyl => "string", # currency code
ccy2 => "string", # currency code
ccy3 => "string", # currency code
ratel => "f| oat 64",
rate2 => "f| oat 64",
rate3 => "fl| oat 64",
| ooprate => "fl oat 64",
) or confess "$!";
ny $i xtCcyl = $ttRate->findSubl ndex("byCcyl") or confess "$!'";
nmy $ixtCcyl2 = $ixt Ccyl->findSubl ndex("byCcyl12") or confess "$!";

ny $l bResult = $uArb->makeDumryLabel ($rt Result, "l bResult");
ny $l bConpute = $uArb->makelLabel ($rtRate, "I bConpute", undef, sub {

ny ($label, $rowop) = @;

ny $row = $rowop->get Row() ;

ny $ccyl = $row >get ("ccyl");

ny $ccy2 = $row >get ("ccy2");

ny $ratel = $row >get("rate");

ny $rhi = $tRate->findl dxBy($ixtCcyl, ccyl => $ccy2);
ny $rhi End = $rhi->next Goupl dx($i xt Ccyl2)

or confess "$!'";
for (; !$rhi->same($rhiEnd); $rhi = $rhi->next!|dx($ixtCcyl2)) {
my $row2 = $rhi->get Row();
ny $ccy3 = $row2->get ("ccy2");
ny $rate2 = $row2->get("rate");

ny $rhj = $tRate->findl dxBy($i xtCcyl2, ccyl => $ccy3, ccy2 => $ccyl);
#it's a leaf primary index, so there nay be no nore than one match
next

if ($rhj->isNull());
ny $row3 = $rhj->get Row();
ny $rate3 = $row3->get("“rate");
ny $looprate = $ratel * $rate2 * $rate3;

now build the row in nornalized order of currencies
print("____Order before: $ccyl, $ccy2, $ccy3\n");
ny $result;
if ($ccy2 It $ccy3) {
if ($ccy2 It $ccyl) { # rotate left
$result = $l bResul t - >makeRowopHash($r owop- >get Opcode(),
ccyl => $ccey2,
ccy2 => $ccy3,
ccy3 => $cceyl,
ratel => $rate2,

Self-join done manually 201

rate2 => $rates,
rate3 => $ratel,
| ooprate => $l ooprate,

)

} else {
if ($ccy3 It $ccyl) { # rotate right
$result = $l bResul t - >makeRowopHash($r owop- >get Opcode(),

ccyl => $ccy3,
ccy2 => $cceyl,
ccy3 => $ccey2,

ratel => $rate3,
rate2 => $ratel,
rate3 => $rate2,
| ooprate => $l ooprate,

)

if (!defined $result) { # use the straight order
$result = $l bResul t - >makeRowopHash($r owop- >get Opcode(),

ccyl => $cceyl,

ccy2 => $ccy2,

ccy3 => $ccy3,

ratel => $ratel,

rate2 => $rate2,

rate3 => $rate3,

| ooprate => $l ooprate,

)

}
if ($looprate > 1) {
$SUArb->cal | ($resul t);
} else {
print("_", $result->printP(), "\n"); # for debugging
}
}
}) or confess "$!'";
$t Rat e- >get Qut put Label () - >chai n($l bConput e) or confess "$!";
makePri nt Label ("I bPrint", $l bResult);

Whenever a new rowop is processed in the table, it goes to the label $| bConput e. The row in this rowop is the first
leg of the triangle. The loop then finds al the possible second legs that can be connected to the first leg. And then for
each second leg it checks whether it can make the third leg back to the original currency. If it can, good, we've found a
candidate for aresult row.

The way the loops work, this time there is no triplication. But the same triangle still can be found starting from any of
its three currencies. This means that to keep the data consistent, no matter what was the first currency in a particular run,
it still must produce the exact same result row. To achieve that, the currencies get rotated as explained in the previous
section, making sure that the first currency is has the lexically smallest name. These if-el se statements do that by selecting
the direction of rotation (if any) and build the result record in one of three ways.

Finally it compares the combined rate to 1, and if greater then sends the result. If not, a debugging printout starting with
“__” printsthe row, so that is can be seen. Another debugging printout prints the original order of the currencies, letting
us check that the rotation was performed correctly.

On feeding the same input data this code produces the result:

rate, OP_I NSERT, EUR, USD, 1. 48
rate, OP_I NSERT, USD, EUR, 0. 65
rate, OP_I NSERT, GBP, USD, 1. 98
rate, OP_I NSERT, USD, GBP, 0. 49
rate, OP_I NSERT, EUR, GBP, 0. 74

202 Joins

____Oder before: EUR GBP, USD

__ I bResult OP_INSERT ccyl="EUR' ccy2="GBP" ccy3="USD"' ratel="0.74"
rate2="1.98" rate3="0.65" | ooprate="0.95238"

rat e, OP_| NSERT, GBP, EUR, 1. 30

____Oder before: @GP, EUR, USD

__ I bResult OP_INSERT ccyl="EUR' ccy2="USD"' ccy3="GBP" ratel="1.48"
rate2="0.49" rate3="1.3" | ooprate="0.94276"

rat e, OP_DELETE, EUR, USD, 1. 48

____Oder before: EUR USD, GBP

__ I bResult OP_DELETE ccyl="EUR' ccy2="USD"' ccy3="GBP" ratel="1.48"
rate2="0.49" rate3="1.3" | ooprate="0.94276"

rat e, OP_I NSERT, EUR, USD, 1. 28

____Oder before: EUR USD, GBP

__ I bResult OP_INSERT ccyl="EUR' ccy2="USD"' ccy3="GBP" ratel="1.28"
rate2="0.49" rate3="1.3" | ooprate="0.81536"

rat e, OP_DELETE, USD, EUR, 0. 65

____Oder before: USD, EUR GBP

__ I bResult OP_DELETE ccyl="EUR' ccy2="GBP" ccy3="USD"' ratel="0.74"
rate2="1.98" rate3="0.65" | ooprate="0.95238"

rat e, OP_| NSERT, USD, EUR, 0. 78

____Oder before: USD, EUR GBP

| bResult OP_I NSERT ccyl="EUR' ccy2="GBP" ccy3="USD' ratel="0.74"
rate2="1.98" rate3="0.78" | ooprate="1.142856"

rat e, OP_DELETE, EUR, GBP, 0. 74

_____Oder before: EUR GBP, USD

| bResult OP_DELETE ccyl="EUR' ccy2="GBP" ccy3="USD' ratel="0.74"
rate2="1.98" rate3="0.78" | ooprate="1.142856"

rat e, OP_| NSERT, EUR, GBP, 0. 64

____Oder before: EUR GBP, USD

__ I bResult OP_INSERT ccyl="EUR' ccy2="GBP" ccy3="USD"' ratel="0.64"
rate2="1.98" rate3="0.78" | ooprate="0.988416"

It's the same result as before, only without the triplicates. And you can see that the rotation logic works right. The manual
self-joining has produced the result without triplicates, without an intermediate table, and for me writing and understanding
itslogic is much easier than with the “proper” joins. I'd say that the manual self-joinisawinner in every respect.

Aninteresting thing isthat this manual logic produces the same result independently of whether it's connected to the Output
or Prelabel of thetable. Try changing it, it worksthe same. Thisis because the original row istaken directly from the input
rowop, and never participatesin thejoin again; it's never read from the table by any of the loops. If it were read again from
the table by the loops, the table connection would matter. And the correct one would be fairly weird: the INSERT rowops
would have to be processed coming from the Output label, the DELETE rowops coming from the Pre label.

Thisis because the row hasto bein the table to be found. And for an INSERT the row gets there only after it goes through
the table and comes out on the Output label. But for a DELETE the row would get already deleted from the table by that
time. Instead it has to be handled before that, on the Pre label, when the table only prepares to delete it.

If you look at the version with JoinTwo, that's also how an inner self-join works. Sinceit's an inner join, both rows on both
sides must be present to produce aresult. An INSERT first arrives from the Pre label on the left side, doesn't find itself in
thetable, and produces no result (again, we're talking here about the situation when arow hasto get joined to itself; it might
well find the other pairsfor itself and produce aresult for them but not for itself joined with itself). Thenit arrivesthe second
time from the Output |abel on theright side. Now it looksin the table, and findsitself, and produces the result (an INSERT
coming form the join). A DELETE aso first arrives from the Pre label on the left side. It finds its copy in the table and
produces the result (a DELETE coming from the join). When the second copy of the row arrives from the Output label on
theright side, it doesn't find its copy in the table any more, and produces nothing. In the end it'sthe samething, an INSERT
comes out of thejoin triggered by the table Output label, a DELETE comes out of the join triggered by the table Pre label.
It's not awhimsy, it's caused by the requirements of the correctness. The manual self-join would have to mimic this order
to produce the correct result. In such a situation perhaps JoinTwo would be easier to use than doing things manually.

12.14. Self-join done with a LookupJoin

Self-join done with a LookupJoin 203

The experience with the manual join has made me think about using a similar approach to avoid triplication of the datain
the version with join templates. And after some false-starts, I've realized that what that version needs is the LookupJoins.
They replace the loops. So, one more version is:

our $joinl = Triceps::LookupJoi n->new(
name => "joi nl",
| ef t FromLabel => $t Rat e- >get Qut put Label (),
leftFields => ["ccyl", "ccy2", "ratel/ratel"],
ri ght Table => $tRate,
rightldxPath => ["byCcyl" 1,
rightFields => ["ccy2/ccy3", "rate/rate2"],
byLeft => ["ccy2/ccyl"],
isLeft => 0,

); # would die by itself on an error

our $join2 = Triceps:: LookupJoi n- >new(
name => "joi n2",
| ef t FromLabel => $j oi nl1- >get Qut put Label (),
ri ght Table => $tRate,
rightldxPath => ["byCcyl", "byCcyl2"],
rightFields => ["rate/rate3"],
byLeft => ["ccy3/ccyl", "ccyl/ccy2"],
isLeft => 0,

); # would die by itself on an error

now conpute the resulting circular rate and filter the profitable | oops
our $rtResult = Triceps:: RowType- >new
$j oi n2- >get Resul t RowType() - >get def (),
| ooprate => "fl oat 64",
) or confess "$!";
ny $l bResult = $uArb->makeDumryLabel ($rt Result, "l bResult");
ny $I bConput e = $uArb->makelabel ($j oi n2- >get Resul t RowType(), "I bConpute", undef, sub {

ny ($label, $rowop) = @;

ny $row = $rowop->get Row() ;

ny $ccyl = $row >get ("ccyl");

ny $ccy2 = $row >get ("ccy2");

ny $ccy3 = $row >get ("ccy3");

nmy $ratel = $row >get ("ratel");

ny $rate2 = $row >get ("rate2");

ny $rate3 = $row >get("rate3d");

ny $looprate = $ratel * $rate2 * $rate3;

now build the row in nornalized order of currencies
print("____Order before: $ccyl, $ccy2, $ccy3\n");
ny $result;

if ($ccy2 It $ccy3) {
if ($ccy2 It $ccyl) { # rotate left
$result = $l bResul t - >makeRowopHash($r owop- >get Opcode(),

ccyl => $ccey2,
ccy2 => $ccy3,
ccy3 => $cceyl,

ratel => $rate2,
rate2 => $rate3,
rate3 => $ratel,
| ooprate => $l ooprate,
)
}
} else {
if ($ccy3 It $ccyl) { # rotate right

204 Joins

$result = $l bResul t - >makeRowopHash($r owop- >get Opcode(),
ccyl => $ccy3,
ccy2 => $cceyl,
ccy3 => $ccey2,
ratel => $rates,
rate2 => $ratel,
rate3 => $rate2,
| ooprate => $l ooprate,

)

}

if (!defined $result) { # use the straight order
$result = $l bResul t - >makeRowopHash($r owop- >get Opcode(),

ccyl => $cceyl,

ccy2 => $ccey2,

ccy3 => $ccy3,

ratel => $ratel,

rate2 => $rate2,

rate3 => $rates3,

| ooprate => $l ooprate,

)

}
if ($looprate > 1) {
$SUArb->cal | ($resul t);
} else {
print("__", $result->printP(), "\n"); # for debugging
}

}) or confess "$!'";
$j 0i n2- >get Qut put Label () - >chai n($l bConput e) or confess "$!";

It produces the exact same result as the version with the manual loops, with the only minor difference of the field order
in the result rows.

And, in retrospect, | should have probably made a function for the row rotation, so that | would not have to copy that
code here.

WEell, it works the same as the version with the loops and maybe even looks a little bit neater, but in practice it's much
harder to write, debug and understand. The cavest for the situation where the incoming row might participate in the join
the second time appliesto this version of the code as well. The same thing about the Pre and Output labels would have to
be done, resulting in four LookupJoins instead of two. Each pair would become a manually-built analog of JoinTwo, and
probably it's easier to use a JoinTwo to start with.

12.15. A glimpse inside JoinTwo and the hidden
options of LookupJoin

The internals of JoinTwo provide an interesting example of atemplate that builds upon other template (LookupJoin). For
a while JoinTwo was compact and straightforward, and easy to demonstrate. Then it has grown all these extra features,
optionsand error checks, and became quite complicated. So I'll show only the selected portions of the JoinTwo constructor,
with the gist of its functionality:

ny $sel fJoin = $sel f->{leftTabl e}->sanme($sel f->{rightTable});

if ($selfJoin && !defined $sel f->{leftFronLabel}) {
one side nust be fed fromPre |abel (but still let the user override)
$sel f->{l eft FronLabel } = $sel f->{l eft Tabl e} - >get PreLabel ();

}

my ($leftLeft, $rightlLeft);

A glimpse inside JoinTwo and the hidden options of LookupJoin 205

if ($self->{type} eq "inner") {
$leftLeft = O;
$rightLeft = 0;

} elsif ($self->{type} eq "left") {
$leftLeft = 1;
$rightLeft = 0;

} elsif ($self->{type} eq "right") {
$leftLeft = O;
$rightLeft = 1;

} elsif ($self->{type} eq "outer") {
$leftlLeft = 1;
$rightLeft = 1;

} else {
Car p: : confess("Unknown value '" . $self->{type} . "' of option 'type', must be one of
inner|left|right|outer");
}

$sel f->{| ef t RowType} = $sel f->{I| ef t Tabl e} - >get RowType();
$sel f->{ri ght RowType} = $sel f->{ri ght Tabl e} - >get RowType();

for my $side (("left", "right")) {
if (defined $sel f->{"${side}FronlLabel"}) {

} else {
$sel f->{"${side}FronlLabel "} = $sel f->{"${si de} Tabl e"}->get Qut put Label ();
}

ny @eys;

($sel f->{"${side}l dxType"}, @keys) = $sel f->{"${side} Tabl e"}->get Type() -
>f i ndl ndexKeyPat h(@ $sel f->{"${side}l dxPath"}});

woul d already confess if the index is not found

if (!$self->{overrideSi npl eM nded}) {
if (!$self->{"${side}ldxType"}->isLeaf()

&& ($sel f->{type} ne "inner" && $sel f->{type} ne $side)) {
ny $table = $sel f->{"${side}Table"};
ny $ixt = $sel f->{"${side}l dxType"};
if ($selfloin & & $side eq "left") {
the special case, reading fromthe table's Pre | abel;
nmust adjust the count for what will happen after the row gets processed
$sel f->{"${side} G oupSi zeCode"} = sub { # (opcode, row)
if (&Triceps::islnsert($_[0])) {
$t abl e- >gr oupSi zel dx($i xt, $_[1])+1;
} else {
$t abl e- >gr oupSi zel dx($i xt, $ [1])-1;
}
s
} else {
$sel f->{"${side} G oupSi zeCode"} = sub { # (opcode, row)
$t abl e- >groupSi zel dx($i xt, $_[1]);
s
}
}
}

ny $fieldsMrrorKey = 1;
ny $uniq = $sel f->{fiel dsUni gKey};
if ($uniq eq "first") {

206 Joins

$uniq = $sel f->{fieldsLeftFirst} ? "left" : "right";
}
if ($uniqg eq "none") ({
$fieldsMrrorKey = 0;
} elsif ($uniq eq "manual ") {
nothing to do
} elsif ($uniqg =~ /~(left|right)$/) {
ny($si de, @eys);
if ($uniq eq "left") {

$side = "right";

@eys = @i ghtkeys;
} else {

$side = "left";

@eys = @eftkeys;

}
if ('defined $sel f->{"${side}Fields"}) {
$sel f->{"${side}Fields"} =[".*"], # the inplicit pass-all

}
unshift (@ $sel f->{"${side}Fields"}}, map("'!$_", @xeys));

} else {
Car p: : conf ess("Unknown value '" . $self->{fieldsUnigKey} . "' of option
"fieldsUni gkey', must be one of none|nmanual |left|right|first");
}

now create the LookupJoins

$sel f->{l eft Lookup} = Triceps:: LookupJoi n->new
unit => $sel f->{unit},
name => $sel f->{nanme} . ".|eftLookup",
| ef t RowType => $sel f->{| ef t RowType},
ri ght Tabl e => $sel f->{ri ght Tabl e},
rightldxPath => $sel f->{rightldxPath},
leftFields => $sel f->{leftFields},
rightFields => $sel f->{rightFields},
fieldsLeftFirst => $sel f->{fieldsLeftFirst},
fieldsMrrorKey => $fiel dsMrrorKey,
by => \ @eft by,
isLeft => $leftlLeft,
automatic => 1,
oppositeQuter => ($rightLeft && !$sel f->{overrideSi npl eM nded}),
groupSi zeCode => $sel f->{| ef t G oupSi zeCode},
savelJoi ner To => $sel f->{l| ef t SaveJoi ner To},

)

$sel f->{right Lookup} = Triceps:: LookupJoi n->new
unit => $sel f->{unit},
name => $sel f->{nanme} . ".rightLookup",
| ef t RowType => $sel f->{ri ght RowType},
right Tabl e => $sel f->{l eft Tabl e},
rightldxPath => $sel f->{|eftldxPath},
leftFields => $sel f->{rightFields},
rightFields => $sel f->{leftFields},
fieldsLeftFirst => ! $self->{fieldsLeftFirst},
fieldsMrrorKey => $fiel dsMrrorKey,
by => \ @i ght by,
isLeft => $rightLeft,
automatic => 1,
oppositeQuter => ($leftLeft && !$sel f->{overrideSi npl eM nded}),
groupSi zeCode => $sel f->{ri ght G oupSi zeCode},
savelJoi ner To => $sel f->{ri ght SaveJoi ner To},

)

create the output | abel

A glimpse inside JoinTwo and the hidden options of LookupJoin 207

$sel f->{out put Label } = $sel f->{unit}->makeDunmyLabel ($sel f->{l ef t Lookup} -
>get Resul t RowType(), $self->{nane} . ".out");
Carp::confess("$!") unless (ref $self->{outputlLabel} eq "Triceps::Label");

and connect them together

$sel f->{I| ef t FronlLabel } - >chai n($sel f->{I ef t Lookup}- >get | nput Label ());
$sel f->{ri ght FronlLabel }->chai n($sel f->{ri ght Lookup}->get | nput Label ());
$sel f->{| ef t Lookup} - >get Qut put Label () - >chai n($sel f - >{ out put Label });
$sel f->{ri ght Lookup}->get Qut put Label () ->chai n($sel f->{out put Label });

In the end it boils down to two L ookupJoins, with the options computed from the JoinTwo's options. But you might notice
that there are afew LookupJoin options that haven't been described before.

Despitethetitle of the section, these optionsaren't really hidden, just they aren't particularly useful unlessyou want to usea
LookupJoin as apart of amulti-sided join, like JoinTwo does. It's even hard to explain what do they do without explaining
the JoinTwo first. If you're not interested in such details, you can as well skip them.

So, setting
oppositeCuter => 1,

tells that this LookupJoin is a part of an outer join, with the opposite side (right side, for this LookupJoin) being an outer
one (well, thisside might be outer too if i sLeft => 1, but that's awhole separate question). This enables the logic that
checks whether the row inserted here isthe first one that matches arow in the right-side table, and whether the row deleted
here was the last one that matches. If the condition is satisfied, not asimple INSERT or DELETE rowop is produced but a
correct DELETE-INSERT pair that replacesthe old state with the new one. It has been described in detail in Section 12.8:
“JoinTwo joins two tables’ (p. 185) .

But how does it know whether the current row if the first one or last one or neither? After all, LookupJoin doesn't have
any accessto the left-side table.

It has two ways to know. First, by default it smply assumes that it's an one-to-something (1:1 or 1:M) join. Then there
may be no more than one matching row on this side, and every row inserted is the first one, and every row deleted is the
last one. Then it does the DELETE-INSERT trick every time.

Second, the option
groupSi zeCode => \ &groupSi zeConput ati on,

can be used to compute the current group size for the current row. It provides a function that does the computation and
getscaled as

$gsz = & $sel f->{groupSi zeCode}} ($opcode, $row);

Note that it doesn't get the table reference nor the index type reference as arguments, so it has to be a closure with the
references compiled into it. JoinTwo does it with the definition

sub { # (opcode, row)
$t abl e- >groupSi zel dx($i xt, $_[1]);
}

Why not just pass the table and index type references to JoinTwo and let it do the same computation without the mess of
the closure references? Because the group size computation may need to be different. When the JoinTwo doesa self-join, it
feeds the left side from the table's Pre label, and the normal group size computation would be incorrect because the rowop
didn't get applied to the table yet. Instead it has to predict what will happen when the rowop will get applied:

sub { # (opcode, row)
if (&Triceps::islnsert($_[0])) {
$t abl e- >gr oupSi zel dx($i xt, $_[1])+1;
} else {

208 Joins

$t abl e- >gr oupSi zel dx($i xt, $ [1])-1;
}
}

If you set the option “groupSizeCode’ to undef , that's the default value that triggers the one-to-something behavior.

The option
fieldsMrrorKey => 1,

hasbeen aready described. It enablesanother magic behavior: mirroring thevaluesof key fieldsto both sidesbeforethey are
used to produce theresult row. Thisisthe heavy machinery that underliesthe JoinTwo's high-level option“fieldsUnigKey”.
But it hasn't been described yet that the mirroring goes both ways: If thisis aleft join and no matching row is found on
the right, the values of the key fields will be copied from the left to the right. If the option “oppositeQuter” is set and
causes a row with the empty left side to be produced as a part of DELETE-INSERT pair, the key fields will be copied
from the right to the left.

A glimpse inside JoinTwo and the hidden options of LookupJoin 209

210

Chapter 13. Time processing
13.1. Time-limited propagation

When aggregating data, often the results of the aggregation stay relevant longer than the original data.

For example, in the financials the data gets collected and aggregated for the current business day. After the day is closed,
the day's detailed data are not interesting any more, and can be deleted in preparation for the next day. However the daily
results stay interesting for along time, and may even be archived for years.

Thisis not limited to the financials. A long time ago, in the times of slow and expensive Internet connections, I've done
atraffic accounting system. It did the same: as the time went by, less and less detail was kept about the traffic usage. The
modern accounting of the click-through advertisement also worksin asimilar way.

An easy way to achieve this result is to put afilter on the way of the aggregation results. It would compare the current
idea of time and the time in the rows going by, and throw away the rows that are too old. This can be done as a label
that gets the data from the aggregator and then forwards or doesn't forward the data to the real destination, and has been
already shown. This solves the propagation problem but as the obsolete original data gets deleted, the aggregator will still
be churning and producing the updates, only to have them thrown away at the filter. A more efficient way is to stop the
churn by placing the filter right into the aggregator.

The next example demonstrates such an aggregator, in asimplified version of that traffic accounting system that |'ve once
done. The example is actually about more than just stopping the data propagation. That stopping accounts for about three
linesinit. But | also want to show a simple example of traffic accounting as such. And to show that the lack of the direct
time support in Triceps does not stop you from doing any time-based processing. Because of this I'll show the whole
example and not just snippetsfrom it. But since the exampleishbiggish, I'll pasteit into thetext in pieceswith commentaries
for each piece.

our $uTraffic = Triceps::Unit->new("uTraffic");

one packet's header

our $rtPacket = Triceps:: RowType->new
time => "int64", # packet's tinestanp, mcroseconds
local _ip => "string", # string to nake easier to read
renote_ip => "string", # string to make easier to read
I ocal _port => "int32",
renote_port => "int32",
bytes => "int32", # size of the packet

) or confess "$!";

an hourly sunmary

our $rtHourly = Triceps:: RowType->new(
time => "int64", # hour's tinmestanp, m croseconds
local _ip => "string", # string to nake easier to read
renote_ip => "string", # string to make easier to read
bytes => "int64", # bytes sent in an hour

) or confess "$!";

The router to the ISP forwards us the packet header information from all the packets that go though the outside link. The
| ocal _i p isaways the address of a machine on our network, r enpt e_i p outside our network, no matter in which
direction the packet went. With a slow and expensive connection, we want to know two things: First, that the provider's
billing at the end of the month is correct. Second, to be able to find out the high traffic users, when was the traffic used,
and then maybe look at the remote addresses and decide whether that traffic was used for the business purposes or not.
This example goes up to aggregation of the hourly summaries and then stops, since the further aggregation by days and
months is straightforward to do.

211

If thereis no traffic for awhile, the router is expected to periodically communicate its changing idea of time as the same
kind of records but with the non-timestamp fields as NULLs. That by the way is the right way to communicate the time-
based information between two machines: do not rely on any local synchronization and timeouts but have the master send
the periodic time updates to the slave even if it has no data to send. The logic is then driven by the time reported by the
master. A nice side effect isthat thelogic can also easily bereplayed later, using these timestamps and without any concern
of the real time. If there are multiple masters, the slave would have to order the data coming from them according to the
timestamps, thus synchronizing them together.

The hourly data drops the port information, and sums up the traffic between two addresses in the hour. It still has the
timestamp but now this timestamp is rounded to the start of the hour:

conpute an hour-rounded timestanp
sub hourStanmp # (tine)

{
}

return $.[0] - ($_[0] % (1000*1000*3600));

Next, to the aggregation. The SimpleAggregator has no provision for filtering in it, the aggregation has to be done raw.

the current hour stanp that keeps bei ng updated
our $current Hour;

aggregation handler: recal culate the summary for the | ast
sub conmputeHourly # (table, context, aggop, opcode, rh, state

{

}

ny ($table, $context, $aggop, $opcode, $rh, $state, @rgs)
our S$current Hour;

don't send the NULL record after the group becones enpty
return i f ($context->groupSi ze()==
| | $opcode == &Triceps:: OP_NOP);

ny $rhFirst = $context->begin();
ny $rFirst = $rhFirst->get Row();
ny $hourstanp = &hour Stanp($rFirst->get ("tinme"));

return i f ($hourstanp < S$currentHour);

if ($opcode == &Triceps:: OP_DELETE) ({
$cont ext - >send($opcode, $$state) or confess "$!";
return;

}

ny $bytes = 0;
for (nmy $rhi = $rhFirst; !$rhi->isNull();
$rhi = $context->next ($rhi)) {
$bytes += $rhi ->get Row() - >get (" bytes");
}

ny $res = $context->result Type() - >makeRowHash(
time => $hour st anp,
local _ip => $rFirst->get("local _ip"),
renote_ip => $rFirst->get("remote_ip"),
bytes => $bhytes,

) or confess "$!";

${$state} = $res;

$cont ext - >send($opcode, $res) or confess "$!";

sub initHourly # (@args)

hour
args...)

@,

212

Time processing

{
ny $refvar;
return \ $refvar;

}

The aggregation doesn't try to optimize by being additive, to keep the example simpler. The model keeps the notion of the
current hour. As soon as the hour stops being current, the aggregation for it stops. The result of that aggregation will then
be kept unchanged in the hourly result table, no matter what happens to the original data.

The tables are defined and connected thusly:

the full stats for the recent tine
our $ttPackets = Triceps:: Tabl eType->new($rt Packet)
- >addSubl ndex(" byHour ",
Triceps:: |1 ndexType->newPer | Sort ed("byHour", undef, sub {
return &hour Stanp($_[0]->get ("tine")) <=> &hour Stanp($_[1]->get("tine"));
})
- >addSubl ndex(" byl P",
Triceps:: | ndexType- >newHashed(key => ["local _ip", "renote_ip"])
- >addSubl ndex(" gr oup",
Triceps:: | ndexType->newFi f o()
- >set Aggregat or (Tri ceps: : Aggr egat or Type- >new
$rtHourly, "aggrHourly", \& nitHourly, \&conputeHourly)
)
)
)
)

or confess "$!'";

$tt Packets->initialize() or confess "$!";
our $tPackets = $uTraffic->makeTabl e($tt Packets,
&Triceps:: EM CALL, "tPackets") or confess "$!";

the aggregated hourly stats, kept |onger
our $ttHourly = Triceps:: Tabl eType->new $rt Hourl y)
- >addSubl ndex(" byAggr",
Tri ceps:: Si npl eOr der edl ndex- >new(
time => "ASC', local _ip => "ASC', renote_ip => "ASC")
)

or confess "$!'";

$ttHourly->initialize() or confess "$!";
our $tHourly = $uTraffic->makeTabl e($ttHourly,
&Triceps:: EM CALL, "tHourly") or confess "$!";

connect the tables
$t Packet s- >get Aggr egat or Label ("aggr Hour | y") - >chai n($t Hour | y- >get | nput Label ())
or confess "$!'";

Thetable of incoming packets hasa3-level index: it starts with being sorted by the hour part of the timestamp, then goes by
the ip addresses to complete the aggregation key, and then a FIFO for each aggregation group. Arguably, maybe it would
have been better to include theip addresses straight into the top-level sorting index, | don't know, and it doesn't seem worth
measuring. The top-level ordering by the hour isimportant, it will be used to delete the rows that have become old.

The table of hourly aggregated stats uses the same kind of index, only now there is no need for a FIFO because there is
only one row per this key. And the timestamp is already rounded to the hour right in the rows, so a SimpleOrderedindex
can be used without writing a manual comparison function, and the ip fields have been merged into it too.

The output of the aggregator on the packets table is connected to the input of the hourly table.

label to print the changes to the detailed stats

Time-limited propagation 213

nmakePri nt Label ("1 bPri nt Packet s", $tPackets->get Qut putLabel ());
label to print the changes to the hourly stats
nmakePri nt Label ("1 bPri nt Hourl y", $tHourly->get Qut put Label ());

dunp a table's contents
sub dunpTabl e # ($table)

ny $table = shift;

for (nmy $rhit = $table->begin(); !'$rhit->isNull(); $rhit = $rhit->next()) {
print($rhit->getRow()->printP(), "\n");

}

}

how long to keep the detail ed data, hours
our $keepHours = 2;

flush the data ol der than $keepHours from $t Packets
sub flushd dPackets

{
ny $earliest = $currentHour - $keepHours * (1000*1000*3600);
ny $next;
the default iteration of $tPackets goes in the hour stanp order
for (ny $rhit = $tPackets->begin(); !$rhit->isNull(); $rhit = $next) {
last if (&hourStanp($rhit->getRow)->get("time")) >= $earliest);
$next = $rhit->next(); # advance before renova
$t Packet s->renmove($rhit);
}
}

The print labels generate the debugging output that shows what is going on with both tables. Next go a couple of helper
functions.

ThedunpTabl e() isastraightforward iteration through atable and print. It can be used on any table, pri nt P() takes
care of any differences.

The flushing goes through the packets table and deletes the rows that belong to an older hour than the current one or
$keepHour s beforeit. For this to work right, the rows must go in the order of the hour stamps, which the outer index
“byHour” takes care of.

All the time-related logic expects that the time never goes backwards. Thisisasimplification to make the exampl e shorter,
a production code can not assume this.

whi | e(<STDI N>) {

chonp;
ny @ata = split(/,/); # starts with a command, then string opcode
ny $type = shift @ata

if ($type eq "new') {
ny $rowop = $t Packet s->get | nput Label () - >makeRowopAr r ay(@lat a) ;
update the current notion of time (sinplistic)
$current Hour = &hour St anmp($r owop- >get Row() - >get ("time"));
if (defined($rowop->get Rowm)->get("local _ip"))) {
$uTraffic->call ($rowop) or confess "$!";

}
&f I ushd dPackets(); # flush the packets
$uTraffic->drainFrane(); # just in case, for conpleteness
} elsif ($type eq "dunpPackets") {
&JunpTabl e($t Packet s) ;
} elsif ($type eq "dunpHourly") {
&JunpTabl e($t Hour | y) ;

214 Time processing

Thefinal part is the main loop. The input comes in the CSV form as a command followed by more data. If the command
is“new” then the dataiis the opcode and data fields, as it would be sent by the router. The commands “ dumpPackets’ and
“dumpHourly” are used to print the contents of the tables, to see, what is going on in them.

In an honest implementation there would be a separate label that would differentiate between a reported packet and just a
time update from the router. Here for simplicity thislogic is placed right into the main loop. On each input record it updates
the model's idea of the current timestamp, then if there is a packet data, it gets processed, and finally the rows that have
become too old for the new timestamp get flushed.

Now arun of the model. Its printout is also broken up into the separately commented pieces. Of course, it's not like areal
run, it just contains one or two packets per hour to show how things work.

new, OP_| NSERT, 1330886011000000, 1. 2. 3. 4, 5. 6. 7. 8, 2000, 80, 100

t Packets. out OP_I NSERT ti ne="1330886011000000" I ocal _i p="1.2.3.4"
renote_i p="5.6.7.8" local _port="2000" renote_port="80" bytes="100"

t Hourly. out OP_I NSERT ti me="1330884000000000" | ocal _ip="1.2. 3. 4"
renote_i p="5.6.7.8" bytes="100"

new, OP_| NSERT, 1330886012000000, 1. 2. 3. 4, 5. 6. 7. 8, 2000, 80, 50

t Hourly. out OP_DELETE ti ne="1330884000000000" | ocal _ip="1.2.3.4"
renote_i p="5.6.7.8" bytes="100"

t Packets. out OP_I NSERT ti ne="1330886012000000" I ocal _i p="1.2.3.4"
renote_i p="5.6.7.8" local _port="2000" renote_port="80" bytes="50"

t Hourly. out OP_I NSERT ti me="1330884000000000" | ocal _ip="1.2. 3. 4"
renote_i p="5.6.7.8" bytes="150"

The two input rows in the first hour refer to the same connection, so they go into the same group and get aggregated
together in the hourly table. The rows for the current hour in the hourly table get updated immediately as more data comes
in. Thet Hour | y. out OP_DELETE comes out even beforet Packet s. out OP_I NSERT becauseit's driven by the
output of the aggregator on $t Packet s, and the operation AO_BEFORE_MOD on the aggregator that drives the deletion
is executed before $t Packet s gets modified.

new, OP_| NSERT, 1330889811000000, 1. 2.3.4,5.6.7.8, 2000, 80, 300

t Packets. out OP_I NSERT ti nme="1330889811000000" | ocal _i p="1.2. 3. 4"
renote_i p="5.6.7.8" |ocal _port="2000" renote_port="80" bytes="300"

t Hourly. out OP_I NSERT tinme="1330887600000000" | ocal _ip="1.2.3.4"
renote_i p="5.6.7.8" bytes="300"

Only one packet arrives in the next hour.

new, OP_| NSERT, 1330894211000000, 1. 2.3.5,5.6. 7.9, 3000, 80, 200

t Packets. out OP_I NSERT ti nme="1330894211000000" | ocal _ip="1.2.3.5"
renote_i p="5.6.7.9" local _port="3000" renote_port="80" bytes="200"

t Hourly. out OP_I NSERT tinme="1330891200000000" | ocal _ip="1.2.3.5"
renote_i p="5.6.7.9" bytes="200"

new, OP_I NSERT, 1330894211000000, 1. 2. 3.4,5.6. 7.8, 2000, 80, 500

t Packets. out OP_I NSERT ti nme="1330894211000000" | ocal _i p="1.2.3.4"
renote_i p="5.6.7.8" local _port="2000" renote_port="80" bytes="500"

t Hourly. out OP_I NSERT tinme="1330891200000000" | ocal _i p="1.2.3.4"
renote_i p="5.6.7.8" bytes="500"

And two more packets in the next hour. They are for the different connections, so they do not get summed together in the
aggregation. When the hour changes again, the old data will start being deleted (because of $keepHours = 2, which
ends up keeping the current hour and two before it), so let's take a snapshot of the tables' contents.

dunpPacket s

time="1330886011000000" | ocal _ip="1.2.3.4" renpte_i p="5.6.7.8"
| ocal _port="2000" renote_port="80" bytes="100"

time="1330886012000000" | ocal _ip="1.2.3.4" renpte_i p="5.6.7.8"
| ocal _port="2000" renote_port="80" bytes="50"

time="1330889811000000" | ocal _ip="1.2.3.4" renpte_i p="5.6.7.8"
| ocal _port="2000" renote_port="80" bytes="300"

Time-limited propagation 215

time="1330894211000000" | ocal _ip="1.2.3.4" renpte_i p="5.6.7.8"
| ocal _port="2000" renote_port="80" bytes="500"

time="1330894211000000" | ocal _ip="1.2.3.5" renpte_i p="5.6.7.9"
| ocal _port="3000" renote_port="80" bytes="200"

dunpHour |y

ti me="1330884000000000" | ocal _ip="1.2.3.4" renpte_i p="5.6.7.8"
byt es=" 150"

ti me="1330887600000000" | ocal _ip="1.2.3.4" renpte_i p="5.6.7.8"
byt es="300"

time="1330891200000000" | ocal _ip="1.2.3.4" renpte_i p="5.6.7.8"
byt es="500"

time="1330891200000000" | ocal _ip="1.2.3.5" renpte_i p="5.6.7.9"
byt es="200"

The packets table shows all the 5 packets received so far, and the hourly aggregation results for al 3 hours (with two
separate aggregation groups in the same last hour, for different ip pairs).

new, OP_| NSERT, 1330896811000000, 1. 2. 3.5, 5. 6. 7. 9, 3000, 80, 10

t Packets. out OP_I NSERT ti ne="1330896811000000" |ocal _i p="1.2.3.5"
renote_i p="5.6.7.9" local _port="3000" renote_port="80" bytes="10"

t Hourly. out OP_I NSERT tine="1330894800000000" |ocal _ip="1.2.3.5"
renote_i p="5.6.7.9" bytes="10"

t Packets. out OP_DELETE ti ne="1330886011000000" |ocal _i p="1.2.3.4"
renote_i p="5.6.7.8" local _port="2000" renote_port="80" bytes="100"

t Packets. out OP_DELETE ti ne="1330886012000000" | ocal _i p="1.2.3.4"
renote_i p="5.6.7.8" local _port="2000" renote_port="80" bytes="50"

When the next hour's packet arrives, it gets processed as usual, but then the removal logic finds the packet rows that
have become too old to keep. It kicks in and deletes them. But notice that the deletions affect only the packets table, the
aggregator ignores this activity as too old and does not propagate it to the hourly table.

new, OP_| NSERT, 1330900411000000, 1. 2. 3. 4, 5. 6. 7. 8, 2000, 80, 40

t Packets. out OP_I NSERT ti nme="1330900411000000" | ocal _i p="1.2.3.4"
renote_i p="5.6.7.8" local _port="2000" renote_port="80" bytes="40"

t Hourly. out OP_I NSERT tinme="1330898400000000" | ocal _i p="1.2.3.4"
renote_i p="5.6.7.8" bytes="40"

t Packets. out OP_DELETE tinme="1330889811000000" | ocal _ip="1.2.3.4"
renote_i p="5.6.7.8" |ocal _port="2000" renote_port="80" bytes="300"

One more hour's packet, flushes out the data for another hour.

new, OP_| NSERT, 1330904011000000

t Packets. out OP_DELETE tinme="1330894211000000" | ocal _i p="1.2.3.4"
renote_i p="5.6.7.8" local _port="2000" renote_port="80" bytes="500"

t Packets. out OP_DELETE ti nme="1330894211000000" | ocal _i p="1.2.3.5"
renote_i p="5.6.7.9" local _port="3000" renote_port="80" bytes="200"

And just atime update for another hour, when no packets have been received. The removal logic still kicks in and works
the same way, deleting raw data for one more hour. After all this activity let's dump the tables again:

dunpPacket s

ti me="1330896811000000" | ocal _ip="1.2.3.5" renote_i p="5.6.7.9"
| ocal _port="3000" renote_port="80" bytes="10"

time="1330900411000000" | ocal _ip="1.2.3.4" renpte_i p="5.6.7.8"
| ocal _port="2000" renote_port="80" bytes="40"

dunmpHour |y

ti me="1330884000000000" | ocal _ip="1.2.3.4" renpte_i p="5.6.7.8"
byt es=" 150"

ti me="1330887600000000" | ocal _ip="1.2.3.4" renpte_i p="5.6.7.8"
byt es="300"

time="1330891200000000" | ocal _ip="1.2.3.4" renpte_i p="5.6.7.8"
byt es="500"

216 Time processing

time="1330891200000000" | ocal _ip="1.2.3.5" renpte_i p="5.6.7.9"

byt es="200"

time="1330894800000000" | ocal _ip="1.2.3.5" renpte_i p="5.6.7.9"
byt es="10"

ti me="1330898400000000" | ocal _ip="1.2.3.4" renpte_i p="5.6.7.8"
byt es=" 40"

The packetstable only has the data for the last 3 hours (there are no rows for the last hour because none have arrived). But
the hourly table contains all the history. The rows weren't getting deleted here.

13.2. Periodic updates

In the previous example if we keep aggregating the data from hours to days and the days to months, then the arrival of each
new packet will update the whole chain. Sometimes that's what we want, sometimes it isn't. The daily stats might be fed
into some complicated computation, with nobody |ooking at the results until the next day. In this situation each packet will
trigger these complicated computations, for no good reason, since nobody cares for them until the day is closed.

These unnecessary computations can be prevented by disconnecting the daily data from the hourly data, and performing
the manual aggregation only when the day changes. Then these complicated computations would happen only once a day,
not many times per second.

Here is how the last example gets amended to produce the once-a-day daily summaries of al the traffic (as before, in
multiple snippets, this time showing only the added or changed code):

an hourly summary, now with the day extracted

our $rtHourly = Triceps:: RowType- >new(
time => "int64", # hour's timestanp, m croseconds
day => "string", # in YYYYMVDD
local _ip => "string", # string to nake easier to read
renote_ip => "string", # string to make easier to read
bytes => "int64", # bytes sent in an hour

) or confess "$!";

a daily summary: just all traffic for that day
our $rtDaily = Triceps:: RowType- >new(

day => "string", # in YYYYMVDD

bytes => "int64", # bytes sent in an hour
) or confess "$!";

The hourly rows get an extra field, for convenient aggregation by day. And the daily rows are introduced. The notion of
the day is calculated as:

conpute the date of a timestanp, a string YYYYMVDD
sub dateStanp # (tine)

{
ny @s = gntine($_[0]/1000000); # mcroseconds to seconds
return sprintf("994d902d902d", $ts[5]+1900, $ts[4]+1, $ts[3]);

}

the current hour stanp that keeps bei ng updated
our $current Hour = undef;
the current day stanp that keeps bei ng updated
our $currentDay = undef;

The calculation isdonein GMT, so that the code produces the same result all around the world. If you're doing this kind of
project for real, you may want to use the local time zone instead (but be careful with the changing daylight saving time).

And the model keeps a global notion of the current day in addition to the current hour.

aggregation handler: recal culate the summary for the |ast hour

Periodic updates 217

sub conmput eHour | ywDay # (table, context, aggop, opcode, rh, state, args...)
{

ny $res = $context->result Type() - >makeRowHash(
time => $hour st anp,
day => &dat eSt anp($hour st anp),
local _ip => $rFirst->get("local _ip"),
renote_ip => $rFirst->get("renote_ip"),
bytes => $bhytes,

) or confess "$!";

${$state} = $res;

$cont ext - >send($opcode, $res) or confess "$!";

}
The packets-to-hour aggregation function now populates this extrafield, the rest of it stays the same.

the aggregated hourly stats, kept |onger
our $ttHourly = Triceps:: Tabl eType->new $rt Hourl y)
- >addSubl ndex(" byAggr",
Tri ceps:: Si npl eOr der edl ndex- >new(
time => "ASC', local _ip => "ASC', renote_ip => "ASC")

)
- >addSubl ndex(" byDay",
Tri ceps:: 1 ndexType- >newHashed(key => ["day"])
- >addSubl ndex(" gr oup",
Triceps:: 1 ndexType->newFi f o()
)
)

or confess "$!'";

$ttHourly->initialize() or confess "$!";
our $tHourly = $uTraffic->makeTabl e($ttHourly,
&Triceps:: EM CALL, "tHourly") or confess "$!";

renenber the daily secondary index type

our $idxHourlyByDay = $ttHourly->findSubl ndex("byDay")
or confess "$!";

our $i dxHourl yByDayG oup = $i dxHour | yByDay->fi ndSubl ndex("group")
or confess "$!";

The hourly table type grows an extra secondary index for the manuall aggregation into the daily data.
the aggregated daily stats, kept even |onger
our $ttDaily = Triceps:: Tabl eType->new($rt Dai | y)

- >addSubl ndex(" byDay",

Triceps:: | ndexType- >newHashed(key => ["day"])

)
or confess "$!";
$ttDaily->initialize() or confess "$!";
our $tDaily = $uTraffic->makeTabl e($ttDaily,

&Triceps:: EM CALL, "tDaily") or confess "$!";

label to print the changes to the daily stats
mekePri nt Label ("I bPrintDaily", $tDaily->getCQutputLabel ());

And atable for the daily datais created but not connected to any other tables.

Instead it gets updated manually with the function that performs the manual aggregation of the hourly data:

sub conput eDay # ($dat eSt anp)
{

218 Time processing

our $uTraffic;
ny $bytes = 0;

ny $rhFirst = $t Hourl y->findl dxBy($i dxHourl yByDay, day => $_[0]);
ny $rhEnd = $rhFirst->next Goupl dx($i dxHour | yByDayG oup)

or confess "$!'";
for (my $rhi = $rhFirst;

1$rhi ->same($rhEnd); $rhi = $rhi->next!dx($i dxHourl yByDay)) {

$bytes += $rhi ->get Row() - >get (" byt es");
}
$uTraffic->nmakeHashCal | ($t Dai | y->get | nput Label (), "OP_I NSERT",
day => $_[0],
bytes => $bhytes,
)
}

This logic doesn't check whether any data for that day existed. If none did, it would just produce a row with traffic of 0
bytes anyway. Thisis different from the normal aggregation but here may actually be desirable: it shows for sure that yes,
the aggregation for that day really did happen.

whi | e(<STDI N>) {

chonp;
ny @ata = split(/,/); # starts with a command, then string opcode
ny $type = shift @lata;

if ($type eq "new') {
ny $rowop = $t Packet s->get | nput Label () - >makeRowopAr r ay(@lat a) ;
update the current notion of time (sinplistic)
$current Hour = &hour St anp($r owop- >get Row() - >get ("time"));
ny $l astDay = $current Day;
$current Day = &dateSt anp($current Hour);
if (defined($rowop->get Rowm)->get("local _ip"))) {
$uTraffic->call ($rowop) or confess "$!";

&f 1 ushd dPackets(); # flush the packets
if (defined $l astDay && $l ast Day ne $current Day) ({
&conput eDay($l ast Day); # manual aggregation

}

$uTraffic->drainFrane(); # just in case, for conpleteness
} elsif ($type eq "dunpPackets") {

&JunpTabl e($t Packet s) ;
} elsif ($type eq "dunpHourly") {

&dunmpTabl e($t Hour | y) ;
} elsif ($type eq "dunpbDaily") {

&dunmpTabl e($t Dai l y) ;

}

The main loop gets extended with the day-keeping logic and with the extra command to dump the daily data. It now
maintains the current day, and after the packet computation is done, looks, whether the day has changed. If it did, it calls
the manual aggregation of the last day.

And hereis an example of its work:

new, OP_I NSERT, 1330886011000000, 1. 2. 3.4,5.6. 7.8, 2000, 80, 100
t Packets. out OP_I NSERT tine="1330886011000000" | ocal _i p="1.2.3.4"
renote_i p="5.6.7.8" |ocal _port="2000" renote_port="80" bytes="100"
t Hourly. out OP_I NSERT tine="1330884000000000" day="20120304"
local _ip="1.2.3.4" renpte_i p="5.6.7.8" bytes="100"
new, OP_| NSERT, 1330886012000000, 1. 2. 3. 4, 5. 6. 7. 8, 2000, 80, 50
t Hourly. out OP_DELETE tine="1330884000000000" day="20120304"
local _ip="1.2.3.4" renpte_i p="5.6.7.8" bytes="100"

Periodic updates 219

t Packets. out OP_I NSERT ti ne="1330886012000000" | ocal _i p="1.2.3.4"
renote_i p="5.6.7.8" local _port="2000" renote_port="80" bytes="50"
t Hourly. out OP_I NSERT tine="1330884000000000" day="20120304"
local _ip="1.2.3.4" renpte_i p="5.6.7.8" bytes="150"
new, OP_| NSERT, 1330889811000000, 1. 2. 3.4,5.6. 7.8, 2000, 80, 300
t Packets. out OP_I NSERT ti nme="1330889811000000" | ocal _i p="1.2.3.4"
renote_i p="5.6.7.8" |ocal _port="2000" renote_port="80" bytes="300"
t Hourly. out OP_I NSERT tine="1330887600000000" day="20120304"
local _ip="1.2.3.4" renpte_i p="5.6.7.8" bytes="300"

So far all the 3 packets are for the same day, and nothing new has happened.

new, OP_I NSERT, 1330972411000000, 1. 2. 3.5,5.6. 7.9, 3000, 80, 200
t Packets. out OP_I NSERT tinme="1330972411000000" |ocal _ip="1.2.3.5"
renote_i p="5.6.7.9" local _port="3000" renote_port="80" bytes="200"
t Hourly. out OP_I NSERT tinme="1330970400000000" day="20120305"
local _ip="1.2.3.5" remote_i p="5.6.7.9" bytes="200"
t Packets. out OP_DELETE tinme="1330886011000000" |ocal _ip="1.2.3.4"
renote_i p="5.6.7.8" local _port="2000" renote_port="80" bytes="100"
t Packets. out OP_DELETE tinme="1330886012000000" | ocal _i p="1.2.3.4"
renote_i p="5.6.7.8" local _port="2000" renote_port="80" bytes="50"
t Packets. out OP_DELETE tine="1330889811000000" |ocal _i p="1.2.3.4"
renote_i p="5.6.7.8" local _port="2000" renote_port="80" bytes="300"
tDaily. out OP_I NSERT day="20120304" byt es="450"

When a packet for the next day arrives, it has three effects:
1. inserts the packet data as usual,
2. findsthat the previous packet data is obsolete and flushes it (without upsetting the hourly summaries), and
3. findsthat the day has changed and performs the manual aggregation of last day's hourly datainto daily.
new, OP_| NSERT, 1331058811000000
t Packets. out OP_DELETE ti ne="1330972411000000" |ocal _i p="1.2.3.5"
renote_i p="5.6.7.9" |ocal _port="3000" renote_port="80" bytes="200"
tDai | y. out OP_I NSERT day="20120305" byt es="200"

A time update for the yet next day flushes out the previous day's detailed packets and again builds the daily summary of
that day.

new, OP_I NSERT, 1331145211000000
tDai | y. out OP_| NSERT day="20120306" bytes="0"

Y et another day's time roll now has no old data to delete (since none arrived in the previous day) but still produces the
daily summary of O bytes.

dunpDai | y

day="20120305" byt es="200"
day="20120304" byt es="450"
day="20120306" byt es="0"

This shows the eventual contents of the daily summaries. The order of the rows is fairly random, because of the hashed
index. Note that the hourly summariesweren't flushed either, they areall till theretoo. If you want them eventually deleted
after some time, you would need to provide more of the manual logic for that.

13.3. The general issues of time processing

After acoupleof examples, it'stimeto do some generalizations. What these exampl es did manually, with the data expiration
by time, the more mature CEP systems do internally, using the statements for the time-based work.

220 Time processing

Which isn't always better though. The typical issues are with:
« fast replay of data,
» order of execution,

* synchronization between modules.

The problem with the fast replay is that those time based-statements use the real time and not the timestamps from the
incoming rows. Sure, in Coral8 you can use the incoming row timestamps but they still are expected to have the time
generally synchronized with thelocal clock (they are an attempt to solve the inter-modul e synchronization problem, not fast
replay). Y ou can't run them fast. And considering the Coral 8 fashion of dropping the datawhen the input buffer overflows,
you don't want to feed the dataiinto it too fast to start with. In the Aleri system you can accelerate thetime but it's by afixed
factor. Y ou can run the logical time there say 10 times faster and feed the data 10 times faster but there are no timestamps
in the input rows, and you simply can't feed the data precisely enough to reproduce the exact timing. And 10 times faster
is not the same thing as just as fast as possible. | don't know for sure what the StreamBase does, it seems to have the time
acceleration by afixed rate too. Esper apparently allows the full control over timing, but | don't know much about it.

Y our typical problem with fast replay in Coral8/CCL isthis: you create atime limited window
create wi ndow ... keep 3 hours;

and then feed the data for a couple of days in say 20 minutes. Provided that you don't feed it too fast and none of it gets
dropped, all of the data ends up in the window and none of it expires, since the window goes by the physical time, and the
physical time was only 20 minutes. Thefirst issue isthat you may not have enough memory to store the data for two days,
and everything would run out of memory and crash. The second issueisthat if you want to do some time-based aggregation
relying on the window expiration, you're out of luck.

Why would you want to feed the data so fast in the first place? Two reasons:

1. Testing. When you test your time-based logic, you don't want your unit test to take 3 hours, let alone multiple days. Y ou
also want your unit tests to be fully repeatable, without any fuzz.

2. Staterestoration after aplanned shutdown or crash. No matter what everyone says, the built-in persistence featureswork
right only for asmall subset of the simple models. Getting the persistence work for the more complex modelsisdifficult,
and for al | know nobody has bothered to get it working right. The best approach in reality isto preserve a subset of the
state, and get therest of it by replaying the recent input data after restart. The faster you re-feed the data, the faster your
model comes back online. (Incidentally, that's what Aleri does with the “persistent source streams’, only losing al the
timing information of the rows and having the same above-mentioned issue as CCL).

Next issue, the execution order. The last example was relying on $cur r ent Hour being updated before f | ushQ d-

Packet s() runs. Otherwise the deletions would propagate through the aggregator where they should not. In a system
like Aleri with each element running in its own thread there is no way to ensure any particular timing between the threads.
In a system with single-threaded logic, like Coral8/Sybase or StreamBase, there is a way. But getting the order right is
tricky. It depends on what the compiler and scheduler decide, and may require afew attempts to get the order right. Well,
technically, Aleri can control the time too: you can runin artificia time, setting and stopping it. So you can stop the time,
set to record timestamp, feed the record, wait for processing to complete, advance time, wait for any time-based processing
to complete, and so on. I'm not sureif it made to Sybase R5, but it definitely worked on Aleri. However there was no tool
that did it for you easily, and also all these synchronous calls present a pretty high overhead.

The procedura execution makes things much more straightforward.

Now, the synchroni zation between modul es. When the data i s passed between multiple threads or processes, thereisaways
ajigger in the way the data goes through the inter-process communications and even more so through the network. Relying
on the timing of the data after it arrivesis usually abad ideaif you want to get any repeatability and precision. Instead the
data has to be timestamped by the sender and then these timestamps used by the receiver instead of the real time.

The general issues of time processing 221

And Coral8 allows you to do so. But what if there is no data coming? What do you do with the time-based processing?
The Coral8 approach is to allow some delay and then proceed at the rate of the local clock. Note that the logical time
is not exactly the same as the local clock, it generally gets behind the local clock by no more than the delay amount, or
might go faster if the sender's clock goes faster. The question is, what delay amount do you choose? If you make it too
short, the small hiccups in the data flow throw the timing off, the local clock runs ahead, and then the incoming data gets
thrown away because it'stoo old. If you makeit too long, you potentially add alarge amount of latency. Asit turns out, no
reasonable amount of delay works well with Coral8. To get things working at least sort of reliably, you need horrendous
delays, on the order of 10 seconds or more. Even then the sender may get hit by along-running request and the connection
would go haywire anyway.

The only reliable solution is to drive the time completely by the sender. Even if there is no datato send, it must still send
the periodic time updates, and the receiver must use the incoming timestamps for its time-based processing. Sending one
or even ten time-update packets per second is hot awhole lot of overhead, and sure works much better than the 10-second
delays. And along the way it gives the perfect repeatability and fast replay for the unit testing. So unless your CEP system
can be controlled in this way, getting any decent distributed timing control requires doing it manually. The reality is that
Aleri can't, Coral8 can't, the Sybase R4/R5 descended from them can't, and | could not find anything related to the time
control in the StreamBase documentation, so my guessisthat it can't either.

And if you have to control the time-based processing manually, doing it in the procedural way is at least easier.

An interesting side subject is the relation of the logical time to the real time. If the input data arrives faster than the CEP
model can processit, thelogical time will be getting behind the real time. Or if the dataisfed at the artificially accelerated
rate, thelogical timewill be getting ahead of thereal time. There could even be acombination thereof: making the"real" time
also artificial (driven by the sender) and artificially make the data get behind it for the testing purposes. The getting-behind
can be detected and used to change the algorithm. For example, if we aggregate the traffic data in multiple stages, to the
hour, to the day and to the month, the whole chain does not have to be updated on every packet Just update the first level
on every packet, and then propagate further when the traffic burst subsides and gives the model a breather.

So far the magjor CEP systems don't seem to have awhole lot of direct support for it. There are ways to reduce the load by
reducing the update frequency to afixed period (like the OUTPUT EVERY statement in CCL, or periodic subscription in
Aleri), but not much of theload-based kind. If the system provideswaysto get both thereal time and logical time of therow,
the logic can be implemented manually. But the optimizations of the time-reading, likein Coral8, might make it unstable.

Theway todoitin Tricepsis by handling it in the Perl (or C++) code of the main event loop. When it has no data to read,
it can create an “idle” row that would push through the results as a more efficient batch.

222 Time processing

Chapter 14. The other templates and
solutions

14.1. The dreaded diamond

The “diamond” is a particular topology of the data flow, when the computation separates based on some condition and
then merges again. Likein Figure 14.1 . It is also known as “fork-join” (the “join” here has nothing to do with the SQL
join, it just means that the arrows merge to the same block).

Figure 14.1. The diamond topology.

This topology is a known source of two problems. The first problem is about the execution order. To make things easier
to see, let's consider a simple example. Suppose the rows come into the block A with the schema:

key => string,
val ue => int 32,

And come out of the blocks B and C into D with schema

key => string,

223

val ue => int 32,
negative => int32,

With the logic in the blocks being:

A

if value < 0 then Belse C
B:

negative = 1
C.

negative = 0

Yes, thisis a very dumb example that can usually be handled by a conditional expression in a single block. But that's to
keep it small and simple. A real example would often include some SQL joins, with different joins done on condition.

Suppose A then gets the input, in CSV form:

| NSERT, key1, 10
DELETE, key1, 10
| NSERT, key1, 20
DELETE, key1, 20
| NSERT, key1, - 1

Wheat arrives at D should be

| NSERT, key1, 10, 0
DELETE, key1, 10, 0
| NSERT, key1, 20, 0
DELETE, key1, 20, 0
| NSERT, key1, -1, 1

And with the first four rows this is not a problem: they follow the same path and are queued sequentially, so the order is
preserved. But the last row follows a different path. And the last two rows logically represent a single update and would
likely arrive closely together. Thelast row might happen to overtake the one beforeit, and D would see the incorrect result:

I NSERT, key1, 10, 0
DELETE, key1, 10,0
I NSERT, key1, 20,0
I NSERT, key1, -1, 1
DELETE, key1, 20,0

If all these input rows arrive closely one after another, the last row might overtake even more of them and produce an
even more disturbing result like

I NSERT, key1, -1, 1
| NSERT, key1, 10,0
DELETE, key1, 10,0
I NSERT, key1, 20,0
DELETE, key1, 20,0

Such misorderings may also happen between the rows with different keys. Those are usually less of a problem, because
usually if D keeps a table, the rows with different keys may be updated in any order without losing the meaning. But in
caseif D keeps a FIFO index (say, for awindow based on arow count), and the two keys fall into the same FIFO bucket,
their misordering would also affect the logic.

The reasons for this can be subdivided further into two classes:

* asynchronous execution,

« incorrect scheduling in the synchronous execution.

224 The other templates and solutions

If each block executes asynchronously in its own thread, there is no way to predict, in which order they will actually
execute. |If some datais sent to B and C at about the same time, it becomes a race between them. One of the paths might
also be longer than the other, making one alternative always win the race. This kind of problemsisfairly common for the
Aleri system that is highly multithreaded. But this is the problem of absolutely any CEP engine if you split the execution
by multiple threads or processes.

But the single-threaded execution is not necessarily a cure either. Then the order of execution is up to the scheduler. And
if the scheduler gets all these rows close together, and then decides to process all the input of A, then all the input of B,
of C and of D, then D will receive the rowsin the order:

I NSERT, key1, -1, 1
I NSERT, key1, 10,0
DELETE, key1, 10,0
I NSERT, key1, 20,0
DELETE, key1, 20,0

Whichistypical for, say, Cora8if all theinput rows arrive in asingle bundle (see also the Section 7.2: “No bundling” (p.
39)).

At the moment Triceps does not directly support the multithreaded execution, so that renders the first sub-case moot for
now. But the multithreading will be added soon, and then I'll return to this aspect.

When the single-threaded scheduling is concerned, Triceps provides two answers.

First, the conditional logic can often be expressed procedurally:

if ($a->get("value") < 0) {

D($rt D- >makeRowHash($a- >t oHash(), negative => 1));
} else {

D($rt D- >makeRowHash($a- >t oHash(), negative => 0));

}

The procedural if-else logic can easily handle not only the simple expressions but things like look-ups and modifications
in the tables.

Second, if the logic is broken into the separate labels, the label call semantics provides the same ordering as well:

$l bA = $unit->makelLabel ($rtA, "A", undef, sub {
ny $rop = $_[1];
ny $op = $rop->get Opcode(); ny $a = $rop->get Row();
if ($a->get("value") < 0) {
$uni t - >cal | ($I bB- >nmakeRowop($op, $a));
} else {
$uni t - >cal | ($l bC- >makeRowop($op, $a));

}
}) or die "$!";

$l bB = $unit->makelLabel ($rtA, "B", undef, sub {
ny $rop = $_[1];
ny $op = $rop->get Opcode(); ny $a = $rop->get Row();
$uni t - >makeHashCal | ($l bD, $op, $a->toHash(), negative => 1)
or die "$!";
}) or die "$!";

$l bC = $unit->makelLabel ($rtA, "C', undef, sub {
ny $rop = $_[1];
ny $op = $rop->get Opcode(); ny $a = $rop->get Row();
$uni t - >makeHashCal | ($l bD, $op, $a->toHash(), negative => 0)

The dreaded diamond 225

or die "$!'";
}) or die "$!";

When the label A calls the label B or C, which calls the label D, A does not get to see its next input row until the whole
chain of callsto D and beyond completes. B and C may be replaced with the label chains of arbitrary complexity, including
loops, without disturbing the logic.

The second problem with the diamond topology happens when the blocks B and C keep the state, and the input data gets
updated by simply re-sending a record with the same key. Thiskind of updatesistypical for the systems that do not have
the concept of opcodes.

Consider a CCL example (approximate, since | can't test it) that gets the reports about borrowing and loaning securities,
using the sign of the quantity to differentiate between borrows (-) and loans (+). It then sums up the borrows and loans

Sseparately:

create schema s_A (
idinteger,

synbol string,
quantity | ong

)

create input streami_A schema s_A;

create schema s_D (

synbol string,

borrowed bool ean, // flag: |oaned or borrowed
quantity | ong

)
/1 aggregated data

create public wi ndow w D schema s_D
keep | ast per synbol, borrowed;

/1 collection of borrows

create public wi ndow w B schema s_A keep | ast per id;
/1 collection of |oans

create public wi ndow w_C schema s_A keep | ast per id;

insert when quantity <0
then w B
else wC

select * fromi_A

/1 borrows aggregation
insert into wD
sel ect

synbol ,

true,

sun(quantity)
group by synbol
fromw_B;

/1 1 oans aggregation
insert into wD
sel ect
synbol ,
fal se,
sun(quantity)
group by synbol
fromwC,

It works OK until arow with the same id gets updated to a different sign of quantity:

226 The other templates and solutions

1, AAA, 100
1, AAA, - 100

If the quantity kept the same sign, the new row would simply replacethe old oneinw_B or w_C, and the aggregation result
would be right again. But when the sign changes, the new row goes into a different direction than the previous one. Now
it ends up with both w_B and w_C having rows with the sasme id: one old and one new!

Inthiscasereally theproblemisat the“fork” part of the“diamond”, the merging part of it isjust along for theride, carrying
theincorrect results.

This problem does not happen in the systems that have both inserts and deletes. Then the data sequence becomes
| NSERT, 1, AAA 100

DELETE, 1, AAA, 100
I NSERT, 1, AAA, - 100

The DELETE goes aong the same branch as the first insert and undoes its effect, then the second INSERT goes into the
other branch.

Since Triceps has both INSERT and DELETE opcodes, it's immune to this problem, as long as the input data has the
correct DELETEsin it.

If you wonder, the CCL example can be fixed too but in a more round-about way, by adding a couple of statements before
the"insert-when” statement:

on w_A
delete fromw B
where w Aid = wB.id;

on w_A
delete fromw C
where w Aid = wCid;

This generates the matching DELETES. Of course, if you want, you can use this way with Triceps too.

14.2. Collapsed updates

First, anote: the collapse described here has nothing to do with the collapsing of the aggregation groups. It's just the same
word reused for a different purpose.

Sometimes the exact sequence of how arow at a particular key was updated does not matter, the only interesting part is
the end result. Like the OUTPUT EVERY statement in CCL or the pulsed subscription in Aleri. It doesn't have to be time-
driven either: if the data comesin as batches, it makes sense to collapse the modifications from the whole batch into one,
and send it at the end of the batch.

To do thisin Triceps, I've made atemplate. Here is an example of its use with interspersed commentary:

our $rtData = Triceps:: RowType- >new
nostly copied fromthe traffic aggregati on exanple
local _ip => "string",
renmbte_ip => "string",
bytes => "int64",
) or confess "$!";

The meaning of therowsis not particularly important for this example. It just usesapair of the | P addresses as the collapse
key. The collapse absolutely needs a primary key, sinceit hasto track and collapse multiple updates to the same row.

Collapsed updates 227

ny $unit = Triceps::Unit->new("unit");

ny $col |l apse = Triceps:: Col | apse->new(
unit => $unit,
name => "col | apse",
data => |
name => "idata",
rowlype => $rt Dat a,
key => ["local _ip", "renote_ip"],
1,
)

Most of the options are self-explanatory. The dataset is defined with nested options to make the API extensible, to allow
multiple datasets to be defined in the future. But at the moment only one is allowed. A dataset collapses the data at one
label: an input label and an output label get defined for it, just as for the table. The data arrives at the input label, gets
collapsed by the primary key, and then staysin the Collapse until the flush. When the Collapse gets flushed, the dataiis sent
out of its output label. After the flush, the Collapse has no datain it, and starts collecting the updates again from scratch.
Thelabels gets named by connecting the names of the Collapse element, of the dataset, and “in” or “out”. For this Collapse,
the label names will be “collapse.idata.in” and “ collapse.idata.out”.

Note that the dataset options are specified in a referenced array, not a hash! If you try to use a hash, it will fail. When
specifying the dataset options, put the “name” first. It's used in the error messages about any issues in the dataset, and the
code really expects the nameto go first.

Like with the other shown templates, if something goes wrong, Collapse will confess. No need to follow its methods with
or confess.

ny $l bPrint = nekePrintLabel ("print", $coll apse->get Qut put Label ("idata"));

The print label gets connected to the Collapse's output 1abel. The method to get the collapse's output label is very much
like table's. Only it gets the dataset name as an argument.

sub mai nl oop($$$) # (Sunit, $datal abel, S$col |l apse)
{

ny $unit = shift;

ny $dat al abel = shift;

ny $col | apse = shift;

whi | e(<STDI N>) {

chonp;
ny @ata = split(/,/); # starts with a cormmand, then string opcode
ny $type = shift @lata;

if ($type eq "data") {
my $rowop = $dat al abel - >makeRowopAr r ay(@lat a) ;
$uni t - >cal | ($r owop) ;
$unit->drai nFrame(); #

} elsif ($type eq "flush
$col | apse->flush();

}

}
}

&mai nl oop($unit, $col |l apse- >get | nput Label ($col | apse- >get Dat asets()), $col |l apse);

ust in case, for conpleteness

jus
") A

There will be a second example, so I've placed the main loop into afunction. It worksin the same way asin the examples

before: extractsthe datafrom the CSV format and sendsit to alabel. Thefirst column contains the command: “ data”’ sends

the data, and “flush” performs the flush from the Collapse. The flush marks the end of the batch. Here is an example of

arun, with the input lines shown as usua in bold:

dat a, OP_I NSERT, 1. 2. 3.4,5. 6.
1.2.3.4,6.7.

7.8,100
dat a, OP_I| NSERT, 1. 2. , 8.9

, 1000

228 The other templates and solutions

data, OP_DELETE, 1. 2. 3. 4,6.7.8.9, 1000

flush
col | apse.idata.out OP_I NSERT | ocal _ip="1.2.3.4" remote_i p="5.6.7.8"
byt es="100"

The row for (1.2.3.4, 5.6.7.8) gets plainly inserted, and goes through on the flush. The row for (1.2.3.4, 6.7.8.9) getsfirst
inserted and then deleted, so by the flush time it becomes a no-operation.

data, OP_DELETE, 1. 2.3.4,5.6.7.8, 100

data, OP_I NSERT, 1. 2. 3. 4,5.6.7.8, 200

data, OP_I NSERT, 1. 2. 3. 4, 6. 7. 8.9, 2000

flush

col | apse.idata.out OP_DELETE | ocal _ip="1.2.3.4" rempte_i p="5.6.7.8"
byt es="100"

col | apse.idata.out OP_I NSERT | ocal _ip="1.2.3.4" rempte_i p="5.6.7.8"
byt es="200"

col | apse.idata.out OP_I NSERT | ocal _ip="1.2.3.4" renote_i p="6.7.8.9"
byt es="2000"

Theorigina row for (1.2.3.4, 5.6.7.8) gets modified, and the modification goes through. The new row for (1.2.3.4, 6.7.8.9)
gets inserted now, and also goes through.

dat a, OP_DELETE, 1. 2. 3. 4,6.7.8.9, 2000

dat a, OP_I NSERT, 1. 2. 3. 4, 6.7.8.9, 3000

dat a, OP_DELETE, 1. 2. 3. 4,6.7.8.9, 3000

data, OP_I NSERT, 1. 2. 3. 4, 6. 7. 8.9, 4000

dat a, OP_DELETE, 1. 2. 3. 4,6.7.8.9, 4000

flush

col | apse. i data.out OP_DELETE local _ip="1.2.3.4" renote_i p="6.7.8.9"

byt es="2000"

Therow for (1.2.3.4, 6.7.8.9) now gets modified twice, and after that deleted. After collapse it becomes the deletion of the
original row, the one that was inserted before the previous flush.

The Collapse also alows to specify the row type and the input connection for a dataset in a different way:
ny $| bl nput = $unit->nakeDumylLabel ($rtData, "I blnput");

ny $col |l apse = Triceps:: Col | apse- >new(
name => "col | apse",
data => |
name => "idata",
froniLabel => $I bl nput,
key => ["local _ip", "renote_ip"],
1,
)

&mai nl oop($unit, $I bl nput, $coll apse);

Normally $I bl nput would be not adummy label but the output Iabel of some element. The dataset option “fromLabel”
tellsthat the dataset input will be coming from that label. So the Collapse can automatically both copy its row type for the
dataset, and also chain the dataset's input label to that label. And also allowing to skip the option “unit” at the main level.
It's a pure convenience, allowing to skip the manual steps. In the future a Collapse dataset should probably take a whole
list of source labelsand chainitself to all of them, but for now only one.

This example produces exactly the same output as the previous one, so there isno use in copying it again.

Another item that hasn't been shown yet, you can get the list of dataset names (well, currently only one name):

@nanmes = $col | apse- >get Dat aset s() ;

Collapsed updates 229

The Collapse implementation is reasonably small, and is another worthy example to show. It's a common template, with
no code generation whatsoever, just acombination of ready components. As with SimpleAggregator, the current Collapse
is quite simple and will grow more features over time, so I've copied the original smple versionintot / xCol | apse. t
to stay there unchanged.

The most notable thing about Collapse isthat it took just about an hour to write the first version of it and another three or
so hoursto test it. Which isalot less than the similar code in the Aleri or Coral8 code base took. The reason for thisis that
Triceps provides the fairly flexible base data structures that can be combined easily directly in a scripting language. There
isno need to re-do alot from scratch every time, just take something and add alittle bit on top.

So hereit is, with the interspersed commentary.

sub new # ($cl ass, $optNane => S$opt Val ue, ...)
{

ny $class = shift;

my $self = {};

&Triceps:: Opt:: parse($class, $self, {
unit => [undef, sub { &Triceps::Opt::ck_ref(@, "Triceps::Unit") } 1],
name => [undef, \&Triceps:: Opt::ck_mandatory],
data => [undef, sub { &Triceps::Opt::ck_nmandatory(@); &Triceps::Opt::ck_ref(@,
"ARRAY") }],
}o@);

parse the data el ement
my $dataref = $sel f->{data};
my $dataset = {};
dataref->[1] is the best guess for the dataset nane, in case if the option "name" goes
first
&Triceps:: Opt::parse("$class data set (" . $dataref->[1] . ")", $dataset, {
name => [undef, \&Triceps:: Opt::ck_mandatory],
key => [undef, sub { &Triceps::Opt::ck_mandatory(@); &Triceps::Opt::ck_ref(@,
"ARRAY", ") }],
rowlType => [undef, sub { &Triceps::Opt::ck_ref(@, "Triceps::RowType");
fromLabel => [undef, sub { &Triceps::Opt::ck_ref(@, "Triceps::Label");
}, @dataref);

Pl
}]

The options parsing goes as usual. The option “data’ is parsed again for the options inside it, and those are places into
the hash %%dat aset .

save the dataset for the future

$sel f - >{ dat aset s} {$dat aset - >{ nane}} = $dat aset;

check the options

&Triceps:: Opt:: handl eUni t TypeLabel ("Triceps:: Coll apse data set (". $dataset->{nane}

"y
"unit at the main level", \$self->{unit},
"rowType", \$dataset->{rowType},
"fronlLabel ", \$dataset->{fronlLabel});

ny $l bFrom = $dat aset - >{fronlLabel };

If “fromLabel” is used, the row type and possbly unit ae found from it by
Triceps:: Opt:: handl eUni t TypeLabel (). Orif theunit was specified explicitly, it gets checked for consistency
with the label's unit. See Section 10.5: “Template options” (p. 117) for more detail. The early version of Collapseint /
xCol | apse.t actually pre-dates Tri ceps: : Opt : : handl eUni t TypeLabel (), and there the similar functional-
ity is done manually.

create the tables
$dat aset->{tt} = Triceps:: Tabl eType- >new($dat aset - >{r owType})
- >addSubl ndex("pri mary",
Triceps:: | ndexType- >newHashed(key => $dat aset - >{ key})
)

230 The other templates and solutions

$dataset->{tt}->initialize()
or confess "Col |l apse table type creation error for dataset

$dat aset - >{ nane}

\n$! "
$dat aset ->{tblnsert} = $sel f->{unit}->makeTabl e($dat aset->{tt}, "EM CALL", $self-
>{ nane} "o $dat aset->{name} . ".tblnsert")
or confess "Col lapse internal error: insert table creation for dataset '" . $dataset-
>{nane} . "':\n$! ";
$dat aset - >{t bDel ete} = $sel f->{unit}->makeTabl e($dat aset->{tt}, "EM CALL", $self-
>{ nane} "o $dat aset->{name} . ".tblnsert")
or confess "Col lapse internal error: delete table creation for dataset '" . $dataset-
>{nane} . "':\n$! ";

The state is kept in two tables. The reason for their existence is that after collapsing, the Collapse may send for each key
one of:

» asingle INSERT rowop, if the row was not there before and became inserted,

» aDELETE rowop if the row was there before and then became deleted,

» aDELETE followed by an INSERT if the row was there but then changed its value,

« or nothing if the row was not there before, and then was inserted and deleted, or if there was no change to the row.

Accordingly, this state is kept in two tables: one contains the DELETE part, another the INSERT part for each key, and
either part may be empty (or both, if the row at that key has not been changed). After each flush both tables become empty,
and then start collecting the modifications again.

create the | abels
$dat aset - >{I bl n} = $sel f->{unit}->makelLabel ($dat aset - >{rowType}, $sel f->{nane}

$dat aset ->{nane} . ".in",

undef, \& handl el nput, $self, $dataset)

or confess "Col lapse internal error: input |abel creation for dataset '" . $dataset-
>{name} . "':\n$! “;
$dat aset - >{I bOQut} = $sel f->{unit}->makeDunmyLabel ($dat aset - >{rowType}, $sel f->{nane}

" $dat aset ->{nane} . ".out")

or confess "Col |l apse internal error: output |abel creation for dataset '" . $dataset-
>{name} . "':\n$! “;

The input and output labels get created. The input label has the function with the processing logic set as its handler. The
output label isjust adummy. Note that the tables don't get connected anywhere, they are just used as storage, without any
immediate reactions to their modifications.

chain the input label, if any
if (defined $l bFrom ({
$I bFr om >chai n($dat aset - >{1 bl n})
or confess "Collapse internal error: input |abel chaining for dataset
>{nane} . "' to '" . $lbFrom>getNane() . "' failed:\n$! "
del ete $dataset->{fronlLabel}; # no need to keep the reference any nore, avoid a
reference cycle

}

And if the “fromLabel” was used, the Collapse gets connected to it. After that there is no good reason to keep a separate
reference to that 1abel, especially considering that it creates areference loop that would not be cleaned until the input 1abel
get cleaned by the unit. So it gets deleted early instead.

$dat aset -

bl ess $sel f, $cl ass;
return $sel f;

}

The final blessing is boilerplate. The constructor creates the data structures but doesn't implement any logic. The logic
goes next:

Collapsed updates 231

(protected)
handl e one incoming row on a dataset's input | abel
sub _handl el nput # ($l abel, $rop, $self, $dataset)
{
ny $l abel = shift;
ny $rop = shift;
ny $self = shift;
ny $dataset = shift;

if ($rop->islnsert()) {
Sinmply add to the insert table: the effect is the same, independently of
whether the row was previously deleted or not. This also handles correctly
multiple inserts without a delete between them even though this kind of
input is not really expected.
$dat aset - >{t bl nsert}->i nsert ($rop->get Row());

The Collapse object knows nothing about the data that went through it before. After each flush it starts again from scratch.
It expects that the stream of rows is self-consistent, and makes the conclusions about the previous data based on the new
data it sees. An INSERT rowop may mean one of two things:. either there was no previous record with this key, or there
was a previous record with this key and then it got deleted. The Delete table can be used to differentiate between these
situations: if there was arow that was then deleted, the Delete table would contain that row. But for the INSERT it doesn't
matter: in either case it just inserts the new row into the Insert table. If there was no such row before, it would be the new
INSERT. If there was such arow before, it would be an INSERT following a DELETE.

} elsif($rop->isbDelete()) {
If there was a rowin the insert table, delete that row (undoi ng the previous
insert).
Oherwise it neans that there was no previous insert seen in this round, so this
must be a
deletion of a rowinserted in the previous round, so insert it into the delete
t abl e.
if (! $dataset->{tblnsert}->del et eRow $r op->get Row())) {
$dat aset - >{t bDel et e} - >i nsert ($r op- >get Row()) ;
}
}
}

The DELETE caseismoreinteresting. If we seea DELETE rowop, thismeansthat either therewas an INSERT sent before
the last flush and now that INSERT becomes undone, or that there was an INSERT after the flush, which also becomes
undone. The actions for these cases are different: if the INSERT was before the flush, this row should go into the Delete
table, and eventually propagate as a DELETE during the next flush. If the last INSERT was after the flush, then its row
would be stored in the Insert table, and now we just need to delete that row and pretend that it has never been.

That'swhat the logic does: first it triesto remove from the Insert table. If succeeded, then it wasan INSERT after the flush,
that became undone now, and there is nothing more to do. If there was no row to delete, this means that the INSERT must
have happened before the last flush, and we need to remember thisrow in the Delete table and pass it on in the next flush.

Thislogicis not resistant to the incorrect data sequences. If there ever are two DELETEs for the same key in arow (which
should never happen in a correct sequence), the second DELETE will end up in the Delete table.

Unlatch and flush the collected data, then |atch again.
sub flush # ($sel f)
{

ny $self = shift;

my $unit = $sel f->{unit};

nmy $OP_I NSERT = &Tri ceps: : OP_| NSERT;

ny $OP_DELETE = &Tri ceps: : OP_DELETE;

foreach ny $dataset (values % $sel f->{datasets}}) {

ny $tblns = $dataset->{tblnsert};
ny $tbDel = $dataset->{tbDel ete};
ny $l bQut = $dataset->{IbQut};

232 The other templates and solutions

ny $next;

send the del etes always before the inserts

for (ny $rh = $tbDel ->begin(); !$rh->isNull(); $rh = $next) {
$next = $rh->next(); # advance the irerator before renoving
$t bDel - >r enove($rh);
$uni t - >cal | ($l bQut - >makeRowop($OP_DELETE, $rh->getRow()));

}

for (nmy $rh = $thlns->begin(); !$rh->isNull(); $rh = $next) {
$next = $rh->next(); # advance the irerator before renoving
$t bl ns- >renove($rh);
$uni t->cal | ($I bQut - >makeRowop($OP_I NSERT, $rh->get Row()));

}

}
}

The flushing is fairly straightforward: first it sends on all the DELETEs, then all the INSERTS, clearing the tables along
the way. At first I've though of matching the DELETES and INSERTS together, sending them next to each other in case
if both are available for some key. It's not that difficult to do. But then I've realized that it doesn't matter and just did it
the simple way.

Get the input |abel of a dataset.
Confesses on error.
sub getl nput Label ($$) # ($self, $dset name)

ny ($self, $dsetnane) = @;
confess "Unknown dataset '$dsetnane'"

unl ess exists $sel f->{dat aset s}{$dset nane};
return $sel f->{dat aset s}{$dset nane}{l bl n};

}

Get the output |abel of a dataset.
Confesses on error.
sub get Qut put Label ($$) # ($self, $dsetnane)

ny ($self, $dsetnane) = @;
confess "Unknown dataset '$dsetnane'"

unl ess exists $sel f->{dat aset s}{$dset nane};
return $sel f->{dat aset s}{$dset nane}{l bQut};

}

Get the lists of datasets (currently only one).
sub getDatasets($) # ($self)

ny $self = shift;
return keys % $sel f->{datasets}};

}

The getter functions are fairly simple. The only catch isthat the code hasto check for exi st s beforeit reads the value of
$sel f - >{ dat aset s} {$dset nane} {| bQut } . Otherwise, if an incorrect $dset nanme is used, the reading would
return an undef but along the way would create an unpopulated $sel f - >{ dat aset s} { $dset nanme} . Whichwould
then cause acrash when f | ush() triesto iterate through it and finds the dataset options missing.

That'sit, Collapse in a nutshell!

14.3. Large deletes in small chunks

If you have worked with Coral8 and similar CEP systems, you should be familiar with the situation when you ask it to del ete
amillion rows from the table and the model goes into self-contemplation for half an hour, not reacting to any requests. It
starts responding again only when the deletes are finished. That's because the execution is single-threaded, and deleting
amillion rows takestime.

Large deletes in small chunks 233

Tricepsissucceptibleto the sameissue. So, how to avoid it? Even better, how to makethe deleteswork “inthe background”,
at alow priority, kicking in only when there is no other pending requests?

Thesolutionisdo doitinsmaller chunks. Deleteafew rows (say, athousand or so) then check if there areany other requests.
K eep processing these other request until the model becomesidle. Then continue with deleting the next chunk of rows.

Let's make asmall example of it. First, let's make atable.
our $uChunks = Triceps::Unit->new "uChunks");

data is just some dunb easily-generated filler
our $rtData = Triceps:: RowType- >new(

s => "string",

i => "int32",
) or confess "$!";

the data is auto-generated by a sequence
our $seq = O;

our $ttData = Triceps:: Tabl eType- >new($rt Dat a)
->addSubl ndex("fifo", Triceps::|ndexType->newrifo())
or confess "$!";
$ttData->initialize() or confess "$!";
our $tData = $uChunks->nmakeTabl e($tt Dat a,
&Triceps:: EM CALL, "tJoinl"
) or confess "$!";
makePri nt Label ("1 bPrint Data", $tData->get Qut putLabel ());

The data in the table is completely silly, just something to put in there. Even the index is a simple FIFO, just something
to keep the table together.

Next, the clearing logic.

notifications about the clearing

our $rtNote = Triceps:: RowType- >new(
text => "string",

) or confess "$!";

rowops to run when the nodel is otherwi se idle
our $trayldl e = $uChunks->makeTray();

our $l bReport Not e = $uChunks- >makeDummyLabel ($rt Note, "Il bReport Not e"
) or confess "$!";
nmakePri nt Label ("1 bPrintNote", $l bReport Note);

code that clears the table in small chunks
our $l bC ear = $uChunks->makelLabel ($rtNote, "I bC ear", undef, sub {
ny $limt = 2; # no nore than 2 rows per run
ny $next;
for (ny $rhit = $tData->begin(); !$rhit->isNull(); $rhit = $next) {
if ($limt-- <=0) {
request to be called again when the nodel becones idle
$trayl dl e->push($_[0] - >adopt ($_[1]));
return;
}
$next = $rhit->next(); # advance before renoval
$t Dat a- >renove($rhit);
}
$uChunks- >makeHashCal | ($l bReport Not e, "OP_I NSERT",
text => "done clearing",

)

234 The other templates and solutions

}) or confess "$!'";

We want to get a notification when the clearing is done. This notification will be sent as arowop with row type $r t Not e
to the label $I bRepor t Not e. Which then just gets printed, so that we can see it. In a production system it would be
sent back to the requestor.

The clearing isinitiated by sending arow (of the same type $r t Not e) to the label $I b ear . Which does the job and
then sends the notification of completion. In the real world not the whole table would probably be erased but only the old
data, from before a certain date, like was shown in the Section 12.11: “JoinTwo input event filtering” (p. 193) . Here for
simplicity all the data get wiped out.

But the loop stops after the number of deleted rows reaches the limit. Since it's real inconvenient to play with a million
rows, we'll play with just afew rows. And so the chunk sizelimit isalso set smaller, to just two rows instead of athousand.
When the limit is reached, the code pushes the command row into the idle tray for later rescheduling and returns. The
adoption part is not strictly necessary, and this small example would work fine without it. But it's a safeguard for the
more complicated programs that may have the labels chained, with our clearing label being just one link in a chain. If the
incoming rowop gets rescheduled asis, the whole chain will get executed again. which might not be desirable. Re-adopting
it to our label will cause only our label (okay, and everything chained from it) to be executed.

How would the rowopsin the idle tray get executed? In the real world, the main loop logic would be like this pseudocode:

while(l) {
if (idle tray is enpty)
timeout = infinity;
el se

timeout = O;
pol |l (file descriptors, timeout);
if (poll timed out)

run the idle tray;
el se

process the incom ng data;

}

The example from Section 7.8: “Main loop with a socket” (p. 51) can be extended to work like this. But it's hugely
inconvenient for atoy demonstration, getting the timing right would be amajor pain. So instead let's just add the command
“idle” to the main loop, to trigger the idle logic at will. The main loop of the exampleis:

whi | e(<STDI N>) {

chonp;
ny @ata = split(/,/); # starts with a command, then string opcode
ny $type = shift @lata;

if ($type eq "data") ({
ny $count = shift @lat a;
for (; $count > 0; $count--) {

++$seq;

$uChunks- >nakeHashCal | ($t Dat a- >get | nput Label (), "OP_I NSERT",
s => ("data_" . $seq),
i => $seq,

)

}
} elsif ($type eq "dump") {
for (ny $rhit = $tData->begin(); !'$rhit->isNull(); $rhit = $rhit->next()) {

print("dunp: ", $rhit->getRow()->printP(), "\n");
}
for my $r (S$trayldle->toArray()) {

print("when idle: ", $r->printP(), "\n");

}
} elsif ($type eq "clear") {
$uChunks- >makeHashCal | ($l bCl ear, "OP_| NSERT",
text => "clear",

Large deletes in small chunks 235

)

} elsif ($type eq "idle") {
$uChunks- >schedul e($trayl dl e);
$trayl dl e->cl ear ();

}

$uChunks->drai nFrane(); # just in case, for conpleteness

}

The datais put into the table by the main loop in a silly way: When we send the command like “dat a, 3", the mail loop
will insert 3 new rows into the table. The contents is generated with sequential numbers, so the rows can be told apart. As
the table gets changed, the updates get printed by the label | bPr i nt Dat a.

The command “dump” dumps the contents of both the table and of theidle tray.

The command “clear” issues aclearing request by calling the label $I bCl ear . Thefirst chunk gets cleared right away but
then the control returns back to the mainloop. If not al the datawere cleared, anidle rowop will be placed into theidletray.

The command “idle” that simulates the input idleness will then pick up that rowop from the idle tray and reschedul e it.

All the pieces have been put together, let's run the code. The commentary are interspersed, and as usual, the input lines
are shown in bold:

data, 1

tJoi nl. out OP_I NSERT s="data_ 1" i="1"
cl ear

tJoi nl. out OP_DELETE s="data_ 1" i="1"

| bReport Not e OP_I NSERT t ext ="done cl eari ng"

Thisis pretty much adry run: put in one row (less than the chunk size), see it deleted on clearing. And see the completion
reported afterwards.

data, 5

tJoi nl. out OP_I NSERT s="data_ 2" i
tJoi nl. out OP_I NSERT s="data_3" i
tJoi nl. out OP_I NSERT s="data_4" i
tJoi nl. out OP_I NSERT s="data_ 5" i
tJoi nl. out OP_I NSERT s="data_6" i

TR
QAR N

Add more data, which will be enough for three chunks.

cl ear
tJoinl.out OP_DELETE s="data_2" i="2"
tJoi nl. out OD_DELETE s="dat a_3" j="3"

Now the clearing does one chunk and stops, waiting for the idle condition.

dunp

dunmp: s="data_4" i="4"
dunp: s="data_5" i="5"
dunp: s="data_6" i="6"

when idle: | bCear OP_I NSERT text="clear"

Seewhat'sinside: the remaining 3 rows, and arow in the idle tray saying that the clearing isin progress.

ide
tJoi nl. out OP_DELETE s="data_4" i="4"
tJoi nl. out OP_DELETE s="data_5" i="5"

The model goes idle once more, one more chunk of two rows gets del eted.

data, 1
tJoi nl. out OP_I NSERT s="data_ 7" i="7"

236 The other templates and solutions

dunp

dunp: s="data_6" i="6"

dunmp: s="data_7" i="7"

when idle: | bCear OP_INSERT text="clear"

What will happen if we add more data in between the chunks of clearing? Let's see, let's add one more row. It shows up
in the table as usual.

ide

tJoi nl. out OP_DELETE s="data_6" i="6"

tJoi nl. out OP_DELETE s="data_ 7" i="7"

| bReport Not e OP_I NSERT t ext="done cl eari ng"
dunp

ide

On the next idle condition the clearing picks up whatever was in the table for the next chunk. Since there were only two
rows left, it's the last chunk, and the clearing reports a successful completion. And a dump shows that there is nothing left
in the table nor in the idle tray. The next idle condition does nothing, because the idle tray is empty.

Thedeletion could a so beinterrupted and cancelled, by removing therow from theidletray. That would involve converting
the tray to an array, finding and deleting the right rowop, and converting the array back into the tray. Overall it's fairly
straightforward. The search in the array is linear but there should not be that many idle requests, so it should be quick
enough.

The delete-by-chunks logic can be made into atemplate, just I'm not sure yet what is the best way to do it. It would have
to have alot of configurable parts.

On another subject, scheduling the thingsto be done onidle adds an element of unpredictability to themodel. It'simpossible
to predict the exact timing of the incoming requests, and the idle work may get inserted between any of them. Presumably
it's OK because the data being deleted should not be participating in any logic at thistime any more. For repeatability in the
unit tests, make the chunk size adjustable and adjust it to asize larger than the biggest amount of data used in the unit tests.

A similar logic can also be used in querying the data. But it's more difficult. For deletion the continuation is easy: just
take the first row in the index, and it will be the place to continue (because the index is ordered correctly, and because
the previous rows are getting deleted). For querying you would have to remember the next row handle and continue from
it. Which is OK if it can not get deleted in the meantime. But if it can get deleted, you'll have to keep track of that too,
and advance to the next row handle when this happens. And if you want to receive a full snapshot with the following
subscription to al updates, you'd have to check whether the modified rows are before or after the marked handle, and pass
them through if they are before it, letting the user see the updates to the data already received. And since the datais being
sent to the user, filling up the output buffer and stopping would stop the whole model too, and not restart until the user reads
the buffered data. So there hasto be aflow control logic that would stop the query when output buffer fills up, return to the
normal operation, and then rescheduletheidlejob for the query only when the output buffer drainsdown. I'vekind of started
on doing an example of the chunked query too, but then because of all these complications decided to leaveit for later.

Large deletes in small chunks 237

238

Chapter 15. Triceps Perl APl Reference

There are two distinct ways to descibe something, a“guide” and a“reference”. Most of this manual is a guide: it goes by
describing things by examples, together with the idioms of their usage, and with the explanation of the internal structure
and underlying reasons. However if you aready know how things work and need to look up the trivia, a reference with
its short and dry descriptions comes handy. Besides, some methods of the classes essentially are the trivia, and there is
no point in making elaborate examples about them. The reference for the whole Perl APl is collected here, organized by
classes. Eventually it should be placed into the man pages aswell, but so far | haven't got around to do it.

Some of the classes are so fundamental that the guide sections about them were essentially of the reference type, with the
use being shown in al the examples of the manual. In such cases I'm not copying them here, instead please refer to the
relevant chapters:

Simple field typesin Section 5.1: “ Simple types” (p. 25) .
RowTypein Section 5.2; “Row types’ (p. 25) .

Row in Section 5.4: “Rows’ (p. 28) .

Label in Chapter 6: “Labels and Row Operations’ (p. 31) .
Rowop in Section 6.4: “Row operations’ (p. 34) .

Unit in Section 7.5: “Execution unit” (p. 46) .

15.1. TableType reference

The TableTypeisthe information about the structure of a Table. It can be used to create multiple Tablesin the same mold.
$tt = Triceps:: Tabl eType- >new $rowType) or confess "$!";

Constructs the TableType. The TableType is anonymous, it has no string name. After that it can be configured by adding
the index types. Eventually it has to be initialized and that freezes the table type and makes it immutable. All the steps
up to and including the initialization must be done from a single thread, after initialization a table type may be shared
between multiple threads.

$tt->addSubl ndex("i ndexNane", $indexType) or confess "$!";

Adds an index type, naming it within the scope of the table type. The result is the same table type (unlessiit's an undef
signifying an error), so the index type additions can be chained with each other and with the construction:

$tt = Triceps:: Tabl eType- >new($r owType)
- >addSubl ndex("i ndexNanel", $indexTypel)
- >addSubl ndex("i ndexNane2", $i ndexType2)
or confess "$!'";

The table type initialization freezes not only the table type itself but also al the index typesin it. Also, the index types
become permanently tied to this one table type. That would make things difficult if the same index type is added to two
table types. To avoid these issues, addSubl ndex() adds not the actual argument index type but first creates a fresh
uninitialized deep copy of it, and then addsit.

$tt->initialize() or confess "$!";

Initializes the table type. The index types check most of their arguments at the initialization time, so that's where most of
the errors will be reported. Callingi niti ali ze() repeatedly will have no effect and just return the same result again
and again.

$result = $tt->islnitialized();

239

Checks whether the table type has been initialized.

$r owType
$r owType

$tt->rowType();
$t t - >get RowType() ;

Returns the row type. One method name is historic, the other has been added for consistency.
$i ndexType = $tt->findSubl ndex("i ndexNane") or confess "$!";

Finds an index type by name. Thisis symmetric with addSubl ndex() , so it works only for the top-level index types.
To get the nested ones, repeat the same call on the found index types or see the following methods.

$i ndexType = $tt->findl ndexPath(["indexNane", "nestedl ndexNane"]);

Finds an index type by the path of names leading to it in the index type tree. If the path is not found, the function would
confess. An empty path is aso illegal and would cause the same result. The argument is not an array but a reference to
array of names.

($i ndexType, @eys) = $tt->findl ndexkeyPat h(["indexNane", "nestedl ndexNanme"]);

Finds by path an index type that allows the direct look-up by key fields. It requiresthat every index typein the path returns
a non-empty array of fields in get Key() . In practice it means that every index in the path must be a Hashed index.
Otherwise the method confesses. When the Sorted and maybe other index types will support get Key() , they will be
usable with this method too. The argument is not an array but areferenceto array of names.

Besides checking that each index type in the path works by keys, this method builds and returnsthelist of all the key fields
required for alook-up in thisindex. Note that @xeys is an actua array and not a reference to array. The return protocol
of this method is alittle weird: it returns an array of values, with the first value being the reference to the index type, and
the rest of them the names of the key fields.

$i ndexType = $tt-findSubl ndexByl d($i ndexTypel d) or confess "$!";

Finds the first top-level index type of a particular kind. The $i ndexTypel d isone of thel T_* constantsin integer or
string form.

$i ndexType = $tt->getFirstLeaf();
Returnsthe first leaf index type (the one used for the default 1ook-ups and iteration on the tables of this type).

@ ndexTypes
% ndexTypes

= $tt->get Subl ndexes();

= $tt->get Subl ndexes();

Returns all the top-level index types. The resulting array contains the pairs of names and index types. If the order is not
important but you want to perform the look-ups by name, the result can be stored directly into a hash. However if you
plan to use the data to add index types to another table type, don't use the hash because the order of indexes is important
and the hash losesit.

$result = $ttl->sane($tt2);
$result = $ttl->equal s($tt2);
$result = $ttl->match($tt2);

The usua reference comparison methods.

Two table types are considered equal when they have the equal row types, and exactly the same set of index types, with
the same names.

Two table types are considered matching when they have the matching row types, and matching set of index types, although
the names of the index types may be different.

$res = $tt->print();

240 Triceps Perl APl Reference

Presents the content of a table type as a human-readable description. Acceptsthe usual pri nt () arguments.

15.2. IndexType reference

The IndexType is a part of TableType and defines the structuring of rows in the table. It provides the order of rows and
optionally away to find them quickly by the key. The configuration of the index type defines the parametersfor each index
instance, i.e. each row group in an index of this type, not for the whole table. The difference between indexes and index
typesis explained in the Section 9.10 . The index types are connected in atable type to form atree.

Theindex typesin Triceps are available in the following kinds:

Hashed
Provides quick random access based on the key formed from the fields of the row in the table. May be leaf or non-
leaf. The order of the rowsin the index will be repeatable between the runs of the same program on the same machine
architecture, but not easily predictable. Internally the rows are stored in a tree but the comparisons of the rows are
accelerated by pre-calculating a hash value from the key fields and keeping it in the row handle.

FIFO
Keeps the rows in the order they were received. There is no efficient way to find a particular row in this index, the
search in it works by going through al the rows sequentially and comparing the rows for exact equality. It provides
the expiration policies based on the row count. It may only be aleaf.

Per| Sorted
Provides random access based on the key field comparison, expressed as a Perl function. Thisresultsin a predictable
order of rows but the execution of the Perl code makesit slower than the Hashed index. May be leaf or non-leaf. Often
also called simply “ Sorted”.

SimpleQrdered
A Perl template on top of the PerlSorted index, that allows to specify the keys in a more convenient way. Often also
called simply “Ordered”.

$it = Triceps::IndexType- >newHashed($opti onName => $opti onVal ue, ...)
or confess "$!'";

Creates a Hashed index type. The only available option is “key”, and it's mandatory. It's argument is the reference to an
array of strings that specify the names of the key fields (key => ["f1", "f2"]).

$it = Triceps::|IndexType->newri f o($opti onName => $optionVal ue, ...)
or confess "$!'";

Creates a FIFO index type. The options are:

limt
Setsthelimit value for the replacement policy. Once the number of rows attemptsto grow beyond this value, the older
records get removed. Setting it to O disables the replacement policy, which isthe default. Don't try to set it to negative
values, they will be treated as unsigned, and thus become some very large positive ones.

j unpi ng
Determinesthe variation of the replacement policy in effect. If set to 0 (default), implementsthe sliding window policy,
removing the older rows one by one. If non-0, implements the jumping window policy, removing all the older rows
when anew row causes the limit overflow.

reverse
Definestheiteration order. If non-0, theiteration on thisindex goesin the reverse order. However the expiration policy
till worksin the direct order! The default is 0.

$it = Triceps::|ndexType->newPer| Sorted($sort Nane, \&i nitFunc,

IndexType reference 241

\ &onpar eFunc, @rgs...) or confess "$!";
Creates a PerlSorted index type. The arguments are:

$sort Nane
astring describing the sorting order, used in pr i nt () and error messages.

\ & ni t Func
afunction reference that can be used to generate the comparison function dynamically at the table type initialization
time (or use undef with afixed comparison function).

\ &onpar eFunc
afunction reference to the fixed comparison function, if preferred (or use undef if it will be generated dynamically
by the init function).

@r gs
optional extra arguments for the initialization and/or comparison function.

See the detailsin Section 9.8: “ Sorted index” (p. 87) .

$it = Triceps:: SinpleOderedl ndex- >new $fi el dNane => $order, ...)
or confess "$!'";

Creates a SimpleOrdered index type. The arguments arethe key fields. $or der isoneof the constants" ASC" for ascend-
ing or " DESC" for descending.

$i ndexType2- >addSubl ndex("i ndexNane", $i ndexTypel) or confess "$!";

Attaches the nested $i ndexTypel under $i ndexType2. More exactly, attaches an uninitialized deep copy of $i n-
dexTypel, the sameaswhen adding an index type under atabletype. It returnsthereferencetothesame$i ndexType2,
so these calls can be conveniently chained, to add multiple sub-indexes under it. If $i ndexType2 can not be non-leaf,
the call will fail.

$i t Sub
$i t Sub

$i t - >f i ndSubl ndex("i ndexNane") or confess "$!";
$i t - >f i ndSubl ndexByl d($i ndexTypel d) or confess "$!";

@t Subs = $it->get Subl ndexes();
$itSub = $it->getFirstLeaf();

Perform the same actions as the same-named methods in the TableType. If the index type is already a leaf, get -
Fi rst Leaf () will return itself.

$i t - >set Aggr egat or ($aggType) or confess "$!";

Sets an aggregator type on an index type. It will create aggregators that run on the rows stored withing the index-
es of this type. The value returned is the same index type reference $i t , alowing the chaining calls, aong with the
addSubl ndex() . Only one aggregator typeis allowed on an index type. Calling set Aggr egat or () repeatedly will
replace the aggregator type.

$aggType = $it->get Aggregator();

Returns the aggregator type set on this index type. The returned value may be undef (but $! not set) if no aggregator
type has been set.

$result = $it->islnitialized();

Returns, whether this type has been initialized. The index type gets initialized when the table type where it belongs gets
initialized. After an index type has been initialized, it can not be changed any more, and any methods that change it will
return an error.

$itCopy = $it->copy();

242 Triceps Perl APl Reference

Creates a copy of the index type. The copy reverts to the un-initialized state. It's always a deep copy, with all the nested
index and aggregator types copied. All of these copies are un-initialized.

$t abType = $it->get Tabtype() or confess "$!";

Returns the table type, to which this index type is tied. When an index type becomes initialized, it becomes tied to a
particular table type. If theindex typeis not initialized yet, thiswill return an error.

$result = $itl->same($it2);
$result = $itl->equal s($it2);
$result = $itl->match($it2);
$result = $it->print();

The usual sameness comparisons and print methods.

Two index types are considered equal when they are of the same kind (type id), their type-specific parameters are equal,
they have the same number of sub-indexes, with the same names, and equal pair-wise. They must also have the equal

aggregators.

Two index types are considered matching when they are of the same kind, have matching type-specific parameters, they
have the same number of sub-indexes, which are matching pair-wise, and the matching aggregators. The names of the sub-
indexes may differ. As far as the type-specific parameters are concerned, it depends on the kind of the index type. The
FIFO type considers any parameters matching. For a Hashed index the key fields must be the same. For a Sorted index the
sorted condition must also be the same, and by extension this means the same condition for the Ordered index.

$result = $it->isLeaf();
Returns 1 if theindex typeisaleaf, O if not.
@Gxeys = $it->getKey();

Returnsthearray of field namesforming thekey of thisindex. Currently works only on the Hashed index types. On the other
index typesit returns an empty array, though probably abetter support would be avail ablefor the Perl Sorted/SimpleOrdered
indexes in the future.

$i t - >set Conpar at or (\ &onpar eFunc, @rgs...) or confess "$!";

A special method that works only on the Perl Sorted index types. Setsan auto-generater comparator function anditsoptional
arguments from an initializer function at the tableinitialization time. On success it returns 1. For all other index typesthis
method returns an error.

15.3. AggregatorType reference

The aggregator type describes an aggregation. It gets connected to an index type which defines the grouping for the aggre-
gator. Whenever the aggregation is performed, the code from the aggregator type receivesthe group context asits argument.

$at = Triceps:: Aggregat or Type- >new($r esul t RowType, "aggNane", \& nitFunc,
\ &handl er Func, @rgs) or die "$!'";

Creates an aggregator type. The rows created by the aggregator will be of $r esul t RowType. The aggregator name is

used to name the aggregator result label in the table, “tableName.aggName”. It is also used to get the reference of that
label from the table.

The optiona @r gs are passed to both the init and handler functions (to which \ & ni t Func and \ &andl er Func
arereferences). Theinit function is called when the row group (contained in an index of the type, on which this aggregator
type is set) is created. It initializes the group's aggregation state. The handler function gets called on the changes to the
group. See the details in Section 11.5: “Optimized DELETES” (p. 147) , Section 11.6: “Additive aggregation” (p. 149) .
and Section 11.7: “Computation function arguments’ (p. 153) .

AggregatorType reference 243

$resul t $at 1- >sane($at 2) ;

$result = $at 1- >equal s($at 2);
$result = $at1->mat ch($at 2);
$result = $at->print();
$at Copy = $at - >copy();

The methods for comparison, printing and copying work similarly to the index types.

The equal aggregator typeshavetheequal result row types, same names, sameinitialization and handler function references,
same arguments.

The matching aggregator types may differ in the aggregator name and in the field names of the result row type. However
the function references and their arguments must still be the same.

15.4. SimpleAggregator reference

SimpleAggregator providesan easier way to describe aggregationswith the SQL -like aggregation functions. It al so supports
the user-defined aggregation functions.

$tabType = Triceps:: Si npl eAggregat or: : make($opt Nane => S$opt Val ue, ...);

Creates an aggregator type from the high-level description and sets it on an index type in the table type. Returns back
the table type passed as an option argument. Confesses on errors. This is not a class constructor. It creates a common
AggregatorType with the automatically generated code for the initialization and handler functions.

Most of the options are mandatory, unless noted otherwise. The options are:

name
The aggregator type hame.
tabType
Table type to put the aggregator on. It must be un-initialized yet.
i dxPat h
A reference to an array of index names, forming the path to the index where the aggregator type will be set. For
example, ["1 ndex", "sublndex"].
result

A reference to an array defining the result of the aggregation. It consists of the repeating groups of four elements:

fieldNanme => type, function, \&argFunc,

Here the typeisthe field type name, the function is the name of the aggregtion function (case-sensitive, seethelist in
Section 11.9; “ SimpleAggregator” (p. 159)), andthe\ &ar gFunc computesthe argument of the aggregation function.
It's areference to a function that receives the current row being aggregated as$ [0] and computes avalue from its
fields. These valuesfrom all the rows in the group then get fed to the aggregation function. If the aggregation function
requires no argument, ar gFunc must be undef . For example:

result => |
synbol => "string", "last", sub {$_[0]->get("synbol");},
count => "int32", "count_star", undef,

cost => "float64", "sunl', sub {$_[0]->get("size") * $_[0]->get("price")];},
vwap => "float64", "nth_sinple", sub { [1, $_[0]->get("price")];},
1,

saveRowTypeTo
Optional. A reference to a scaar where to save the result row type. It will be avalable when
Tri ceps:: Si npl eAggr egat or : : make() returns. Later when atable with this aggregator type gets construct-

244 Triceps Perl APl Reference

ed, its result row type may aso be found with $t abl e- >get Aggr egat or Label (" aggNane") - >get Row
Type().

savelnitTo
Optional. A reference to a scalar where to save the auto-generated source code of the initialization function for diag-
nostics.

saveConput eTo
Optional. A referenceto a scalar where to save the auto-generated source code of the handler function for diagnostics.

functions
Optional. The additional user-defined aggregation functions. See the description of their structure in Section 11.9:
“SimpleAggregator” (p. 159) .

The aggregator types produced by the SimpleAggregator would be equal and matching only if they have been produced
by copying (you can aso copy atable type or index type with an AggregatorTypein it).

15.5. Table reference

The Table provides the structured data storage in Triceps.

$t = $unit->makeTabl e($t abType, $engMde, "tabl eNane") or confess "$!";

Creates a table of a given table type. The table type must be initialized before it can be used to create tables. The tables
are strictly single-threaded.

The enqueueing mode defines, how the rows will be enqueued to the output label. It can be specified as a string or Tri-
ceps constant. However in the modern reality you should use" EM CALL" or &Tri ceps: : EM CALL. This argument
is likely to be removed altogether in the future and become fixed to " EM CALL" . For the Pre label, it is aready fixed
to"EM _CALL".

The table nameis used for the error messages and as a base for the names of the table labels.
$result = $t1->sane($t2);

The usual comparison for sameness. (There is no comparison for equality and mathicng, use the table type for that; nor
printing, use the table name and/or table type for that).

$l b = $t->get | nput Label ();

$l b = $t->get PreLabel ();

$l b = $t->get CQut put Label ();

$l b = $t->get Aggr egat or Label ("aggNane") or confess "$!";

Get the labels that are creates as a part of the table. With an invalid name for an argument, get Aggr egat or Label ()
returns an undef .

$tt = $t->get Type();

$u = $t->getUnit();

$rt = $t->get RowType();

$nanme = $t->get Nane();

Get back the information about the table configuration.
$result = $t->size();

Returns the number of rowsin the table.

$rh = $t->makeRowHandl e($row) or confess "$!"

Table reference 245

$rh = $t->makeNul | RowHandl e();

Create the row handles. The row must be of amatching type, and it will be cast to the table'srow type: when read back from
therow handle, the row will have the table's row type asits type. The casting does not involve any copying or modification
of the row, it's still shared by reference counting. And the original row asit waswould still return the same type. Basically,
the row itself is untyped, itstype is determined by the container where it is stored. The requirement for the matching types
ensures that when arow is passed between the containers, they have a compatible notion of the row type.

A NULL row handle is a handle without a row in it. It can not be placed into a table but this kind of row handle gets
returned by table operations to indicate things not found. In case if you want to fool some of your code by slipping it a
NULL handle, makeNul | RowHand| e() provides away to do it. The row handles belong to a particular table and can
not be mixed between them, even if the tables are of the same type.

Thetable operations can be done by either sending the rowopsto the table'sinput |abel or by calling the operations directly.

$resul t
$resul t

= $t->insert($row or_rh);

= $t->insert($row or_rh, $copyTray);

Inserts arow or row handle into the table. The row handle must not be in the table before the call, it may be either freshly
created or previously removed from thetable. If arow isused asan argument, it isinternally wrapped in afresh row handle,
and then that row handle inserted. An insert may trigger the replacement policy in the tabl€e's indexes and have some rows
removed before the insert is done. The optional copy tray can be used to collect a copy of all the row updates that happen
in the table as aresult of the insert, both on the table output label and on all its aggregator labels. Returns 1 on success, 0
if the insert can not be done (the row handle is aready in the table or NULL), confesses on an incorrect argument.

$resul t
$resul t

$t - >renove($rh);
$t - >renove($rh, $copyTray);

Removes arow handle from the table. The row handle must be previoudly inserted in the table, and either found in it or a
referenceto it remembered from before. An attempt to remove anewly created row handle will have no effect. The optional
copy tray worksin the sasmeway asfori nsert () . Theresultis 1 on success (even if the row handle was not in thetable),
confesses on an incorrect argument.

$resul t = $t->del et eRow $row) ;
$resul t = $t - >del et eRow $row, $copyTray);

Finds the handle of the matching row by the tabl€'s first leaf index and removes it. Returns 1 on success, 0 if the row was
not found, confesses on an incorrect argument. Unlikei nsert (), the deletion methods for arow handle and arow are
named differently to emphasize their difference. The method r enove() must get a reference to the exactly same row
handle that was previously inserted. The method del et eRow() does not have to get the same row as was previously
inserted, instead it will find a row handle of the row that has the same key as the argument, according to the first leaf
index. del et eRow() never deletes more than one row. If the index contains multiple matching rows (for example, if
the first leaf is a FIFO index), only one of them will be removed, usually the first one (the exact choice depends on what
row gets found by the index).

$rh
$rh

= $t->find($row or_rh);

= $t->findl dx($i dxType, $row or_rh);

Find the row handle the table by indexes. If the row is not found, return aNULL row handle. If the row is of an incorrect
type or the index type is incorrect, confesses. The index type must be exactly the one belonging to the type of this table
(not its copy nor the original from which it was copied into the table's type), so the only way to get it isto find it in the
table's type after it has been constructed. The default f i nd() works using the first leaf index type, i.e. the following two
are equivalent:

$t->find($r);
$t - >f i ndl dx($t - >get Type() - >get First Leaf (), $r);

but the fi nd() version is dlightly more efficient because it handles the index types inside the C++ code and does not
create the Perl wrappers for them.

246 Triceps Perl APl Reference

Thefi nd() operationisaso used internally by del et eRow() and to process the rowops received at the table's input
label.

If arow isused asan argument for f i nd, atemporary row handleisinternally created for it, and then thefind is performed
on it. Note that if you have arow handle that is aready in the table, there is generally no use calling f i nd on it, you will
just get the same row handle back (well, except for the case of multi-valued indexes, then you will get back some matching
row handle, usually the first one, which may be the same or not).

A findl dx() with anon-leaf index argument is a special case: it returns the first row handle of the group that has the
key matching the argument. The order of “first” in this case is defined according to that index'es first leaf sub-index.

$rh
$rh

$t->findBy("fiel dNanme" => $fieldvalue, ...);
$t->fi ndl dxBy($i dxType, "fiel dNanme" => $fieldvalue, ...);

Convenience methods that construct arow from the field arguments and then find it. They confess on incorrect arguments.

$rh = $t->begin();

$rh = $t->next ($rh);

$rh = $t->begi nl dx($i dxType);

$rh = $t->next!dx($i dxType, $rh);

Iteration on the table. The methods next () and next | dx() areequivalent to the same methods of the row handle. As
usual, the versions without an explicit index type use the first leaf index type. The begi n methods return the first row
handle according to an index'es order, the next methods advance to the next row handle. When the end of the table is
reached, these methods return aNULL row handle. The next methods also return aNULL row handle if their argument
row handleisaNULL or not in the table. So, if you iterate and remove the row handles, make sure to advance the iterator
first and only then remove the current row handle. If an error is detected, these methods confess.

If the index argument is non-leaf, it's equivalent to its first |leaf.
$endrh = $t->next G oupl dx($subl dxType, $rh_in_group);

Findsthefirst row handle of the next group, where $subl dx Ty pe isthefirst index inside the group (not its parent index!).
Confesses on errors. The result also works as the end marker handle of the current group.

To iterate through only agroup, usef i ndl dx() on the parent index type of the group to find the first row of the group.
Then things become tricky: take the first index type one level below it to determine the iteration order (a group may have
multiple indexes in it, defining different iteration orders, the first one will give the group's default order). Use that index
type with next Gr oupl dx () to find the first row handle past the end of the group, and with the usual next | dx() to
advance the iterator. However the end of the group will not be signaled by a NULL row handle. It will be signaled by
next | dx() returning the same row handle as previously returned by next Gr oupl dx() (compare them with $en-

drh->sane($itrh)).

The value returned by next G- oupl dx() is actually the first row handle of the next group, so it can aso be used to
jump quickly to the next group, and essentially iterate by groups. After the last group, next G- oupl dx() will return a
NULL row handle. Which is OK for iteration, because at the end of the last group next | dx() will also return aNULL
row handle.

What if agroup has awhole sub-tree of indexesin it, and you want to iterate it by the order of not the first sub-index? Still
use fi ndl dx() inthe same way to find a row handle in the desired group. But then convert it to the first row handle
in the desired order:

$beginrh = $t->firstOf Goupl dx($subl dxType, $rh);

The $subl dxType is the same as used in next Gr oupl dx() . After that proceed as before: get the end marker with
next G oupl dx() on the same sub-index, and iterate with next | dx() onit.

This group iteration is somewhat messy and tricky, and maybe something better can be done with it in the future. If you
look closely, you can also see that it doesn't allow to iterate the groups in every possible order. For example, if you have
an index type hierarchy

Table reference 247

+———— + >
+T T+
m+ + 0O
Ioe

(@)

and you want to iterate on the group inside B, you can go in the order of D or G (whichisthe same as D, since G isthefirst
leaf of D) or of E, but you can not go in the order of H. But for most of the practical purposesit should be good enough.

$size = $tabl e- >groupSi zel dx($i dxType, $row or_rh);

Finds the size of a group without iteration on it. $i dxType is the parent index of the group (the same as would be used
withf i ndl dx()). Naturally, it must be anon-leaf index. (Using anon-leaf index typeisnot an error but it always returns
0, because there are no groups under it). Confesses on errors. The argument may be arow or row handle that identifies any
row in the group. If the argument isarow, it gets handled similarly tof i ndl dx() : atemporary row handle gets created,
used to find the result, and then destroyed. If there is no such group in the table, the result will be 0. If the argument is a
row handle, that handle may bein the table or not in the table, either will be handled transparently (though calling it for a
row handle that isin the table is more efficient because the group would not need to be found first).

15.6. RowHandle reference

A RowHandle is essentially the glue that keeps a row in the table. A row's handle keeps the position of the row in the
table and alows to navigate from it in the direction of every index. It also keeps the helper information for the indexes.
For exampl e, the Hashed index calculates the has value for the row's fields once and remembersit in the handle. The table
operates aways on the handles, never directly on the rows. The table methods that accept rows as arguments, implicitly
wrap them into handles before doing any operations.

A row handle always belongs to a particular table, and can not be mixed between the tables, even if the tables are of the
same type. Even before arow handle has been inserted into the table and after it has been removed, it still belongs to that
table and can not be inserted into any other one.

Just as the tables are single-threaded, the row handles are single-threaded.
$rh = $tabl e- >makeRowHandl e($row) or confess "$!";

Creates the RowHandle. The newly created row handle is not inserted in the table. The type of the argument row must
be matching the table's row type.

$result = $rh->islnTabl e();
Finds out, whether the row handleisinserted in the table.
$result = $rh->isNull();

Findsout if the RowHandleisNULL. A RowHandle may be NULL toindicate the specia conditions. It pretty much means
that there is only the Perl wrapper layer of RowHandle but no actual RowHandle under it. This happens to be much more
convenient than dealing with undefined values at Perl level. The NULL row handles are returned by the certain table calls
to indicate that the requested data was not found in the table.

$rh = $t abl e- >makeNul | RowHandl e() ;
CreatesaNULL RowHandle.
$result = $rhil->sane($rh2);

The usua comparison for sameness.

248 Triceps Perl APl Reference

$row = $rh->get Row() or confess "$!";

Extracts the row from the handle. The row will have the type of the table's row type. A row can not be extracted from
aNULL row handle.

$rh = $rh->next();

$rh = $rh->next | dx(3$i dxType);

$rh = $rh->firstOf Goupl dx(3$i dxType);
$rh = $rh->next G oupl dx($i dxType);

These methods work exactly the same as the same-named table methods. They confess on errors. They are essentially
syntactic sugar over the table methods.

15.7. AggregatorContext reference

AggregatorContext is one of the arguments passed to the aggregator computation function. It encapsulates the iteration
through the aggregation group, in the order of the index on which the aggregator is defined. After the computation function
returns, the context becomes invalidated and stops working, so thereisno point in saving it between the calls. Thereisno
way to construct the aggregator context directly.

All the methods of the AggregatorContext confess on errors.

An aggregator must never change the table. Any attempt to change the table is afatal error.

$result = $ctx->groupSi ze();

Returns the number of rowsin the group.

$rowType = $ctx->resul t Type();

Returns the row type of the aggregation result.

$rh = $ct x->begin();

Returns the first row handle of theiteration. In case of an empty group it would return aNULL handle.
$rh = $ctx->next ($rh);

Returns the next row handle in order. If the argument handle was the last row in the group, returns a NULL handle. So
the iteration through the group with a context is similar to iteration through the whole table: it ends when begi n() or
next () returnsaNULL handle.

$rh = $ct x->begi nl dx($i dxType) ;

Returns the first row in the group, according to a specific index type's order. The index type must belong to the group,
otherwise the result is undefined. If the group is empty, will return the same value asendl dx() . If $i dxType isnhon-
leaf, the effect isthe same asiif itsfirst leaf were used.

$rh = $ct x->endl dx($i dxType);

Returns the handle past the last row in the group, according to a specific index type's order. The index type must belong to
the group, otherwise the result is undefined and might even result in an endless iteration loop. If $i dxType is non-leaf,
the effect is the same as if itsfirst leaf were used. This kind of iteration uses the table's $t - >next | dx($i dxType,

$rh) or $r h- >next ($i dxType) toadvancethe position. Unlikethe general group iteration described in Section 15.5:
“Table reference” (p. 245), the aggregator context does allow the iteration by every index in the group. You can pick
any index in the group and iterate in its order. And aggregation is where this ability counts the most.

If the group happens to be the last group of thisindex type (not of $i dx Ty pe but of the index on which the aggregator is
defined) in the table, endl dx () would return aNULL row handle. If it's also empty, begi nl dx() would also return a

AggregatorContext reference 249

NULL handle, and in general, for an empty group begi nl dx() would return the samevalueasend! dx() . If the group
isnot thelast one, endl dx() returnsthe handle of the first row in the next group.

$rh = $ctx->l ast | dx($i dxType);

Returns the last row in the group according to a particular index type's order. The index type must belong to the group,
otherwise the result is undefined. If the group is empty, returnsa NULL handle.

$ct x- >send($opcode, $row);

Constructs a result rowop for the aggregator and arranges for it to be sent to the aggregator's output label. The actual
sending is delayed: it will be done only after all the aggregators run. The runs before and after the table modifications
are separate. The aggregator's output label is not directly visible in the computation function, so the rowop can not be
constructed directly. Instead send() takescareof it. The row must be of atype matching the aggregator's result type (and
of course the normal practice is to use the aggregator's result type to construct the row). On success returns 1, on error
returnsundef and the error message.

$ct x- >makeHashSend($opcode, $fi el dName => $fiel dvalue, ...);

A convenience method that produces the row from pairs of field names and values and sends it. A combination of
makeRowHash() andsend() .

$ct x- >makeArr aySend($opcode, @i el ds);

A convenience function that produces the row from the array of field values and sendsit. A combination of nak e ROwAr -
ray() andsend() .

15.8. Opt reference

Triceps::Opt is not a class but a package with a set of functions that help with processing the arguments to the class
constructors and other functions when these arguments are represented as options.

&Triceps:: Opt::parse($class, \% nstance, \%ptdescr, @pts);

Checks the options and copies their values into a class instance (or generally into a hash). Usually used with the class
constructors, so the semantics of the argumentsis oriented towards this usage. Confesses on errors. $cl ass isthecalling
class name, for the error messages. \ % nst ance isthe reference to the object instance where to copy the options to. \
%opt descr isthe reference to a hash describing the valid options. @pt s (al the remaining arguments) are the option
name-value pairs passed through from the class constructor.

The entriesin\ %opt descr arereferences to arrays, each of them describing an option. They are usually written in the
form:

opti onNane => [$defaul t Val ue, \&heckFunc],

If there is no default value, it can be set to undef .\ & heckFunc is areference to a function that is used to check the
option value. If the valueis correct, the function returns, if incorrect, it confesses with a descriptive message. The default
valueisfilled in for the missing options before the check functioniscalled. If no checking is needed, the function reference
may be undef . The check functionis called as:

&ScheckFunc($opti onVal ue, $opti onNanme, $cl ass, $instance);

The class and instance are passed through from the arguments of par se() .

A user-defined anonymous function can be used to combine multiple checking functions, for example:
table => [undef, sub {

&Triceps:: Opt::ck_mandatory(@) ;
&Triceps::Opt::ck_ref(@, "Triceps:: Table");

250 Triceps Perl APl Reference

Pl

A number of ready checking function is provided. When these functions require extra arguments, by convention they go
after the common arguments, as shown for ck_r ef () above.

e Triceps::Opt::ck_mandat ory checksthat the valueis defined.

» Triceps:: Opt::ck_ref checksthat thevalueisareferenceto aparticular class, or aclassderived fromit. Just give
the class name as the extra argument. Or, to check that the reference is to array or hash, make the argument " ARRAY"
or "HASH' . Or an empty string " " to check that it's not a reference at all. For the arrays and hashes it can aso check
the values contained in them for being references to the correct types: give that type as the second extra argument. But
it doesn't go deeper than that, just one nesting level. It might be extended later, but for now one nesting level has been
enough.

e Triceps::Opt::ck_refscal ar checks that the value is a reference to a scalar. This is designed to check the
arguments which are used to return data back to the caller, and it would accept any previous value in that scalar: an
actual scalar value, an undef or areference, since it's about to be overwritten anyway.

Theck_ref () andck_refscal ar () alow thevalueto be undefined, so they can safely be used on the truly optional
options. When | come up with more of the useful check functions, I'll add them.

&Triceps:: Opt:: handl eUni t TypeLabel ($cal |l er,
$nanmeUnit, \$reflnit,
$nanmeRowType, \ $ref RowType,
$naneLabel , \ $ref Label);

A specia post-processing that takes care of sorting out the compatibility of the options for the unit, input row type and the
input label. Usually called after par se() . Confesses on errors.

$cal | er isthedescription of thecaller, for the error messages. Therest arethe pairs of the option names and thereferences
to the option values in the instance hash.

Treats the options for input row type and input label as mutually exclusive but with exactly one of them required. If the
input row typeis used then the unit option is also required. If theinput label is used, the unit isoptional, but if it's specified
anyway, the unit in the option must match the unit of the input label. If the input label is used, the values for the input row
type and the unit are extracted from the input label and set into the references.

$whi ch = &Triceps:: Opt::checkMitual | yExcl usi ve(
$cal l er, $mandatory, $optNanel, optValuel, ...);

Checks a set of mutually exclusive options. Usually called after par se() . Confesses on errors, returns the name of the
only defined option on success. If no options are defined, returnsundef .

$cal | er isthedescription of the caller, for the error messages. $mandat or y isaflagtelling that exactly one of the op-
tions must be defined; or the check will confess. Therest are the option name-value pairs (unlike handl eUni t TypelLa-
bel (), these are values, not references to them).

15.9. Fields reference

Triceps::Fields is a package with a set of functions that help with handling the variable sets of fieldsin the templates.

@ields = &Triceps::Fields::filter(
$caller, \@nFields, \@ranslation);

Filters and renames the incoming set of fields from \ @ nFi el ds (usually coming from some row type) according to
\ @r ansl at i on. Returnsthe array of filtered names, positionally matching the namesin the original array. When some
field gets thrown away by filtering, its entry in the array will be undef . Confesses on errors. $cal | er isthe caler's
description for the error messages.

Fields reference 251

See the description of the trandation format in Section 10.7: “Result projection in the templates’ (p. 128) .

@airs = &Triceps::Fields::filterToPairs(
$caller, \@nFields, \@ranslation);

Performs the same actions asfi | t er () but returns the result in a different format: an array of pairs of field names,
where the old field name is paired with the new one. The field names that gets thrown away by filtering do not appear
in the result array.

($rowType, $projectFunc) = &Triceps:: Fiel ds::makeTransl ati on(
$opt Name => $opt Val ue, ...);

Generates and compilesafunction that performsthefiltering of rowsand createsthe rows of thefiltered type (a“ projection”
in SQL terms). It accepts multiple input row types, each with its own trandlation specification, and creates the result row
type by combining them all. Returns two elements: the result row type and the reference to the compiled function. The
function can then be called to perform the projection and combining of the original rows:

$resul t Row = &$proj ect Func($ori gRowl, $origRow2, ..., $ori gRowN);
If some of the original rows are not available, they may be passed as undef . The options are:

rowTypes
Reference to an array of row types for the original rows.

filterPairs
Reference to an array of arrays returned by filterPairs() for the original rows. Obviously, each of the original rows
requires its own filter. The sizes of “rowTypes’ and “filterPairs’ arrays must match. The field names in the results
must not have any duplicates.

saveCodeTo
Optional. Referenceto ascalar whereto save the auto-generated source code of the projection function, for debugging.

$result = &Triceps::Fields::isArrayType($typeNane);
Checks whether asimple typeisrepresented in Perl asan array. Sinceui nt 8[] isrepresented asastring, it will return O.
$result = &Triceps::Fields::isStringType($typeNane);

Checks whether asimple typeis represented in Perl asastring. st ri ng, ui nt 8 and ui nt 8[] will return 1.

15.10. LookupJoin reference

LookupJoin receives the incoming rows and looks up the matches for them from a table, producing the joined rows.
$j oi ner = Triceps:: LookupJoi n->new(opti onNane => optionValue, ...);
Constructs the L ookupJoin template. Confesses on any errors. The options are:

unit
Scheduling unit object where this template belongs. May be skipped if “leftFromLabel” is used.

nane
Name of this LookupJoin object. Will be used as a prefix to create the names of internal objects. The input label will
be named “name.in” and the output label “name.out”.

| ef t RowType
Type of the rows that will be coming in at the left side of the join, and will be used for lookup. Mutually exclusive
with “leftFromLabel”, one must be present.

252 Triceps Perl APl Reference

| ef t Fr onLabel
Source of rows for the left side of the join; implies their type and the scheduling unit where this object belongs.
Mutually exclusive with “leftRowType”, one must be present.

ri ght Tabl e
Table object where to do the look-ups.

ri ghtldxPat h
Array reference containing the path name of index type in table used for the look-up. The index absolutely must be a
Hash (leaf or non-leaf), not of any other kind. Optional. Default: first top-level Hash index type.

| eftFiel ds
Reference to an array of patterns for the left-side fields to pass through. Syntax as described in
Triceps::Fields::filter().Optiond. If not defined then pass everything.

rightFields
Reference to an array of patterns for the right-side fields to pass through. Syntax as described in
Triceps::Fields::filter().Optional.lf notdefined then passeverything (whichisprobably abadideasince
it would include the second copy of the key fields, so better override at least one of the “leftFields’ or “rightFields’).

fieldsLeftFirst
Flag: in the resulting rows put the fields from the left side first, then from right side. If 0, then opposite. Optional.
Default: 1.

fiel dsM rrorKey
Flag: even if thejoin isan outer join and the row on one side is absent, when generating the result row, the key fields
init will still be present by mirroring them from the other side. Used by JoinTwo. Optional. Default: O.

by
Reference to an array containing pairs of field namesused for look-up, [| ef t FI d1, right Fl d1, |eftFl d2,
right Fl d2, ...].Thesetof right-sidefieldsmust match the keysof theindex path from the option “ rightl dxPath”,
though possibly in adifferent order. Mutually exclusive with “byL eft”, one must be present.

byLeft
Reference to an array containing the patterns in the syntax of Tri ceps: : Fields::filter (). It getsapplied
to the left-side fields, the fields that pass through become the key fields, and their trandlations are the names of the
matching fields on the right side. The set of right-side fields must match the keys of the index path from the option
ri ght | dxPat h, though possibly in a different order. Mutually exclusive with “by”, one must be present.

i sLeft
Flag: 1 for left outer join, O for inner join. Optional. Default: 1.

[inmtOne
Flag: 1 to return no more than one row even if multiple rows have been found by the look-up, 0 to return all the found
matches. Optional. Default: O for the non-leaf right index, 1 for leaf right index. If the right index is leaf, this option
will be always automatically set to 1, even if the user specified otherwise, since there is no way to look up more than
one matching row in it.

automatic
Flag: 1 meansthat the manual | ookup() method will never be called. Thisallowsto optimize the [abel handler code
and always take the opcode into account when processing the rows. 0 meansthat | ookup() will be used. Optional.
Default: 1.

opposi teQut er
Flag: 1 for theright outer join, O for inner join. If both options “isLeft” and “ oppositeOuter” are set to 1, then thisisa
full outer join. If set to 1, each update that finds a match in theright table, may produce aDELETE-INSERT sequence
that keeps the state of the right or full outer join consistent. The full outer or right outer join logic makes sense only if
this LookupJoin is one of a pair in a bigger JoinTwo object. Each of these LookupJoins thinks of itself as “left” and

LookupJoin reference 253

of the other one as “right”, while JoinTwo presents a consistent whole picture to the user. Used by JoinTwo. May be
used only when “automatic” is 1. Optional. Default: O.

groupSi zeCode
Reference to a function that would compute the group size for this side's table. Optional, used only when “opposite-
Outer” is 1.

The group size together with the opcode is then used to decide if a DELETE-INSERT sequence needs to be produced
instead of aplain INSERT or DELETE. It is needed when this side'sindex (not visible here in LookupJoin but visible
in the JoinTwo that envelopesit) is non-leaf, so multiple rows on this side may match each row on the other side. The
DELETE-INSERT pair needs to be generated only if the current rowop was a deletion of the last matching row or
insertion of thefirst matching row onthisside. If “ groupSizeCode” isnot defined, the DELETE-INSERT pair isalways
generated (which isappropriateif thisside'sindex isleaf, and every row isthelast or first one). If “groupSizeCode” is
defined, it should return the group size in the left table by the left index for the input row. If the operation is INSERT,
the size of 1 would mean that the DELETE-INSERT pair needs to be generated. If the operation is DELETE, the size
of 0 would mean that the DELETE-INSERT pair needs to be generated. Called as:

&3$gr oupSi zeCode($opcode, $I ef t Row)
The default undefined “groupSizeCode’ is equivalent to
sub { &Triceps::islnsert($_[0]); }

but leaving it undefined is more efficient since alows to hardcode this logic at compile time instead of calling the
function for every rowop.

saveJoi ner To
Reference to a scalar where to save a copy of the joiner function source code. Optional.

@ows = $j oi ner->l ookup($l ef t Row) ;

L ooks up the matches for the $1 ef t Rowand return the array of the result rows. If the option “isLeft” is 0, the array may
be empty. If the option “limitOne” is 1, the array will contain no more than one row, and may be assigned directly to a
scalar. May be used only when the option “automatic” is 0.

$rt = $j oi ner->get Resul t RowType();
Returns the row type of the join result.
$l b = $j oi ner->get | nput Label ();

Returns the input label of the joiner. The rowops sent there will be processed as coming on the left side of the join. The
result will be produced on the output 1abel.

$l b = $j oi ner->get Qut put Label ();

Returnsthe output label of the joiner. The results from processing of the input rowops come out here. Note that the results
of thel ookup() calsdo not come out at the output label, they are only returned to the caller.

$res = $joiner->getUnit();

$res = $j oi ner->get Nanme() ;

$res = $j oi ner->get Lef t RowType();
$res = $j oi ner->get Ri ght Tabl e();

$res = $j oi ner->get Ri ght!| dxPath();
$res = $joi ner->get LeftFields();

$res = $joi ner->get Ri ght Fi el ds();
$res = $joiner->getFieldsLeftFirst();
$res = $joi ner->getFi el dsMrrorKey();
$res = $j oi ner->get By();

$res = $j oi ner->get ByLeft();

$res = $joi ner->getlsLeft();

254 Triceps Perl APl Reference

$res = $joi ner->getLinitOne();

$res = $j oi ner->get Automatic();
$res = $j oi ner->get Opposi teQuter();
$res = $j oi ner->get G oupSi zeCode() ;

Get back the values of the options use to construct the object. If such an option was not set, returns the default value, or the
automatically calculated value. Sometimes an automatically calculated value may even override the user-specified value.
There is no way to get back “leftFromLabel”, it is discarded after the LookupJoin is constructed and chained.

15.11. JoinTwo reference

JoinTwo is atemplate that joins two tables. As the tables are modified, the updates propagate through the join. The join
itself keeps no state (other than the state of its input tables), so if it needs to be kept, it has to be saved into another table.
Thereisno requirement of a primary key on either the input tables nor the join result. However if theresult issaved into a
table, that table would have to have a primary key, so by extension the join would have to produce the result with aprimary
key, or the table contents will become incorrect. The JoinTwo isinternally implemented as a pair of LookupJoins.

$j oi ner = Triceps::Joi nTwo- >new opti onNarme => optionValue, ...);
Creates the JoinTwo object. Confesses on any errors. The options are:

nane
Name of this object. Will be used to create the names of internal objects.

| ef t Tabl e
Table object to join, for the left side. Both tables must be of the same unit.

ri ght Tabl e
Table object to join, for the right side. Both tables must be of the same unit.

| ef t Fr onLabel
Thelabel from which to receive the rows on the | eft side. Optional. Default: the Output label of “leftTable” unlessit's
aself-join; for aself-join the Pre label of “leftTable’.

Can be used to introduce alabel that would filter out some of the input. THIS IS DANGEROUS! To preserve consis-
tency, aways filter by the key field(s) only, and apply the same condition on the left and right.

ri ght FronlLabel
The label from which to receive the rows on the right side. Optional. Default: the Output label of “rightTable”.

Can be used to introduce alabel that would filter out some of the input. THIS IS DANGEROUS! To preserve consis-
tency, aways filter by the key field(s) only, and apply the same condition on the left and right.

| ef t 1 dxPath
An array reference containing the path name of an index type in the |eft table used for look-up. The index absolutely
must be a Hash (leaf or not), not of any other kind. The number and order of key fields in the left and right indexes
must match, since indexes define the fields used for the join. The types of key fields have to match exactly unlessthe
auto-casting is allowed by the option “overrideK ey Types’ being set to 1.

ri ghtldxPath
An array reference containing the path name of an index typein the right table used for look-up. The index absolutely
must be a Hash (leaf or not), not of any other kind. The number and order of key fields in the left and right indexes
must match, since indexes define the fields used for the join. The types of key fields have to match exactly unlessthe
auto-casting is allowed by the option “overrideKeyTypes’ being set to 1.

| eft Fi el ds
Reference to an array of patterns for the left-side fields to pass through to the result rows, with the syntax of
Triceps::Fields::filter().Optiona. If notdefined then pass everything.

JoinTwo reference 255

rightFields

Reference to an array of patterns for the right-side fields to pass through to the result rows, with the syntax of
Triceps::Fields::filter().Optiond. If not defined then pass everything.

fieldsLeftFirst

Flag: if 1, in the result rows put the fields from the left side first, then from the right side; if O, then in the opposite
order. Optional. Default: 1.

fiel dsUni gKey

by

Controls the logic that prevents the duplication of the key fields in the result rows (since by definition their originals
are present in both the left and right tables). Optional.

This is done by setting the option “fieldsMirrorKey” of the underlying LookupJoins to 1 and by manipulating the
left/rightFields options: one side is left unchanged, and thus lets the user pass the key fields as usual, while the other
sidegets' ! key' specs prepended to the front of it for each key field, thus blocking these fields and removing the
duplication.

The enumerated values of this option are one of:

“none’
Do not change either of the “left/rightFields’, and do not enable the key mirroring at all.

“ mar]ual ”
Enable the key mirroring; do not change either of the “left/rightFields’, leaving the full control to the user.

“left”
Enable the key mirroring; do not change “leftFields’ (and thus pass the key fields in there), block the keys from
“rightFields’.

“right”
Enable the key mirroring; do not change “rightFields” (and thus pass the key fieldsin there), block the keys from
“leftFields’.

“first”
The default value. Enable the key mirroring; do not change whatever side goes first according to the option
“fieldsLeftFirst” (and thus pass the key in there), block the keys from the other side.

Reference to an array containing pairs of field namesused for look-up, [| ef t FI d1, rightFl dl, |eftFl d2,

rightFl d2, ...].Optiona. Theoptions“by” and “byLeft” are mutually exclusive. If none of them is used, by
default the field lists are taken from the index type keys, matched up in the order they appear in the indexes. But if
a different order is desired, this option can be used to override it. The fields must still be the same, just the order
may change.

byLeft

Reference to an array containing the patterns in the syntax of Tri ceps:: Fields::filter (). It getsapplied
to the left-side fields, the fields that pass through become the key fields, and their translations are the names of the
matching fields on the right side. Optional. The options “by” and “byL eft” are mutually exclusive. If none of them is
used, by default the field lists are taken from the index type keys, matched up in the order they appear in the indexes.
But if a different order is desired, this option can be used to override it. The fields must still be the same, just the
order may change.

type

Thetype of join from theinner/outer classification, one of: “inner”, “left” for left outer, “right” for right outer, “ outer”
for full outer. Optional. Default: “inner”.

| ef t SaveJoi ner To

Reference to a scalar where to save a copy of the joiner function source code for the left side. Optional.

256

Triceps Perl APl Reference

ri ght SaveJoi ner To
Reference to a scalar where to save a copy of the joiner function source code for the right side. Optional.

overri deSi npl eM nded
Flag: if 1, do not try to create the correct DELETE-INSERT sequence for the updates, just produce the rows with the
same opcode as the incoming ones. The only possible usage of this option might be to simulate the CEP systems that
do not support the opcodes and treat averything as an INSERT. The data produced is outright garbage. It can also be
used for the entertainment value, to show, why it's garbage. Optional. Default: O.

overri deKeyTypes
Flag: if 1, allow the key field types to be not exactly the same. Optional. Default: O.

$rt = $j oi ner->get Resul t RowType();
Returns the row type of the join result.
$l b = $j oi ner->get Qut put Label ();

Returnsthe output label of the joiner. The results from processing of the input rowops come out here. Note that thereis no
input label, the join isfed by connecting to the tables (with the possible override with the options “left/rightFromLabel”).

$res = $joiner->getUnit();

$res = $j oi ner->get Nane();

$res = $j oi ner->get Left Tabl e();

$res = $j oi ner->get Ri ght Tabl e();

$res = $j oi ner->get Left | dxPath();

$res = $j oi ner->get Ri ght | dxPat h();
$res = $j oi ner->get LeftFi el ds();

$res = $j oi ner->get RightFiel ds();

$res = $joiner->getFieldsLeftFirst();
$res = $j oi ner->get Fi el dsUni gKey();
$res = $j oi ner->get By();

$res = $j oi ner->get ByLeft();

$res = $j oi ner->get Type();

$res = $j oi ner->get Overri deSi npl eM nded() ;
$res = $j oi ner->get Overri deKeyTypes();

Get back the values of the options use to construct the object. If such an option was not set, returns the default value, or the
automatically calculated value. Sometimes an automatically calculated value may even override the user-specified value.
Thereis no way to get back “left/rightFromLabel”, they are discarded after the JoinTwo is constructed and chained.

15.12. Collapse reference

The Collapse template collapses multiple sequential modifications per primary key into one. On flush it sends out that
single modification.

$col | apse = Triceps:: Col | apse- >new($opt Nane => $opt Val ue, ...);
Creates anew Collapse object. Confesses on errors. The options are:

nane
Name of this object. Will be used to create the names of internal objects.

unit
The unit where this object belongs.

dat a
Thedata set description. Each dataset hasan input label and an output label, and collapses one stream of modifications.
Currently only one data set is supported, the options have been structured like this to allow for the future extension.
Thisoption'svalueis areference to an array (not a hash!) that isitself structured as the nested option-value pairs.

Collapse reference 257

The nested optionsin “data” are:

nane
The name of the data set. Used for the error messages. Put it first, thiswould let the constructor report nicely the errors
in the other data set options.

rowType
The row type of the data in this set. Mutually exclusive with “fromLabel”, one must be used.

fromLabel
The source label for the data set, its input will be chained to thislabel. Mutually exclusive with “rowType’, one must
be used.

key
The primary key of the data. A referenceto an array of strings with field names, same as for the Hash index type.

$col | apse->fl ush();

Sends out the collected modifications to the output label(s) and clears the state of the collapse.
$l b = $col | apse- >get | nput Label ($set Nane) ;

Returns the input label of a data set. Confesses if there is no data set with this name.

$l b = $col | apse- >get Qut put Label ($set Nane) ;

Returns the output label of a data set. Confessesif there is no data set with this name.

@et Nanmes = $col | apse- >get Dat aset s() ;

Returnsthe names of all the data sets (though since currently only one data set is supported, only one namewill be returned).

258 Triceps Perl APl Reference

Chapter 16. Release Notes
16.1. Release 1.1.0

Documentation for the C++ API.
Streaming functions.

No more copy trays in the tables, they got replaced by treating the table as a streaming function (the automatically
generated FnReturn).

When a hashed index typeisinitialized, its match() method takes the field name-to-index trandlation into account, and
matches even if the key field names are different but trandating to the same indexes.

The recusrion is now permitted, and the limits on it can be adjusted per-unit (the defaults till forbid it). The labels can
be marked non-re-entrant to forbid the recursion on them.

The execution of rowops enqueued by fork() and loopAt() has changed: now they reuse the parent's stack frame. This
changed the looping logic: the marks are now set on the current, not parent's frame, and the makel oop* calls don't need,
don't create and don't return the begin label.

The changein the execution of forked rowops|ed to the different trace sequence, and amodified set of TraceWhen states.
The“before” and “after” states now always comein pairs, and there are methods to generally differentiate between them.

The Labelsare marked as cleared before their subclass clearing functionis called, not after it. The repeated callsto clear
them are ignored.

The Unit ignores the attempts to remember, forget or clear labels whileit's already clearing labels.
Added Tabl e: : cl ear ().

Added handling of the broken Perl versions that return spurious errors on the command execution.
Better C++ NameSet constructors.

The C++ API always throws Exceptions instead of direct abort().

In the C++ API AggregatorType accept the NULL result row type until the initialization is completed.
In C++ added a Rhref constructor directly from FdataVec.

In C++ added the method Label : : adopt (), making it easier to remember.

16.2. Release 1.0.1

Fixed the version information that was left incorrect, as 0.99.

Added the scripts to check the version and Perl MANIFEST before doing a release, script to set the version (ckversion,
setversion), explicit version option -v to mkrelease.

Added the Release Notes.

16.3. Release 1.0.0

Thefirst official release with full documentation.

259

« Many additional examples, code clean-upsand small featuresresulting from the experience of writing the documentation.

16.4. Release 0.99

e Thefirst published pre-release. Basic functionality, no documentation.

260 Release Notes

Bibliography
[Babkin10] BABKIN, Sergey A. The practice of parallel programming. Createspace, ©2010. ISBN 1-451-53661-5.

[Esper] ESPERTECH INC.. Esper Tutorials: http://esper.codehaus.org/tutorials/tutorials.html .

[Hyvoneng86] HYVONEN, Eero and SEPPANEN, Jouko. Lisp-maailma: Johdatus kieleen ja ohjelmointiin. (Lisp
World: Introduction to Language and Programming).: Russia Edition: Mir Lispa . Kirjayhtym&, ©1986. ISBN
9512627876.

[Stayton07] STAYTON, Bob. DocBook XSL.: The Complete Guide (4th Edition): http://www.sagehill.net/docbookxsl/ .
Sagehill Enterprises, ©2007. ISBN 0-974-15213-7.

[StreamBase] STREAMBASE INC.. StreamBase Documentation: http://docs.streambase.conv .

[Aleri] SYBASE INC.. Sybase Aleri Sreaming Platform 3.2: http://infocenter.sybase.com/hel p/index.jsp?docset=/
com.sybase.infocenter.help.aleri.3.2/title.htm& docSetiD=1733 .

[Cora8] SYBASE |INC.. Sybase CEP Option R4: http://infocenter.sybase.com/hel p/index.jsp?docset=/
com.sybase.infocenter.help.cep.4.0/doc/htmi/title.html & docSetI D= 1659 .

[SybaseR5] SYBASE INC.. Sybase Event Stream Processor 5.0: http://infocenter.sybase.comvhel p/index.jsp?docset=/
com.sybase.infocenter.hel p.esp.5.0/doc/html/title.html & docSetID=1788 .

[Walsh99] WAL SH, Norman and MUELLNER, Leonard. DocBook: The Definitive Guide: http://www.oasis-open.org/
docbook/documentation/reference/html/ . O'Reilly Media, ©1999. ISBN 156592-580-7.

261

http://esper.codehaus.org/tutorials/tutorials.html
Russia Edition: Mir Lispa
http://www.sagehill.net/docbookxsl/
http://docs.streambase.com/
http://infocenter.sybase.com/help/index.jsp?docset=/com.sybase.infocenter.help.aleri.3.2/title.htm&docSetID=1733
http://infocenter.sybase.com/help/index.jsp?docset=/com.sybase.infocenter.help.aleri.3.2/title.htm&docSetID=1733
http://infocenter.sybase.com/help/index.jsp?docset=/com.sybase.infocenter.help.cep.4.0/doc/html/title.html&docSetID=1659
http://infocenter.sybase.com/help/index.jsp?docset=/com.sybase.infocenter.help.cep.4.0/doc/html/title.html&docSetID=1659
http://infocenter.sybase.com/help/index.jsp?docset=/com.sybase.infocenter.help.esp.5.0/doc/html/title.html&docSetID=1788
http://infocenter.sybase.com/help/index.jsp?docset=/com.sybase.infocenter.help.esp.5.0/doc/html/title.html&docSetID=1788
http://www.oasis-open.org/docbook/documentation/reference/html/
http://www.oasis-open.org/docbook/documentation/reference/html/

262

Index

A
aggregation, 84, 90, 133, 211

additive, 149

arguments, 153

context, 141

count, 142

first, 141

floating point error, 152, 155

helper table, 137, 143

initialization, 148

iteration, 141

last, 141

manual, 85, 135, 217

multiple indexes, 155

of DELETEs, 138

opcode, 142

optimization, 143, 147, 149

state, 148, 151
AggregatorContext, 141, 249
AqggregatorType, 140, 243
Aleri, 2, 31, 39, 55, 61, 143, 171, 221, 225, 227
arrays, 26

empty, 26
Autoref, 21

B
batch, 45, 227
build, 11
documentation, 12
environment, 11
bundling, 39, 45, 60, 75, 225

C

C++,19

cal, 40

Carp, 20

case sensitivity, 27

CCL, 2, 3, 109, 226, 227
CEP, 1

chunks, 233

closure, 132

code generation, 90, 123
Collapse, 227, 257
confess, 8, 20

constants, 22, 36, 47, 64, 105
copy tray, 106

Coral8, 2, 31, 39, 55, 61, 80, 109, 137, 142, 171, 193, 221

D

dataflow, 1, 31
diamond, 190, 223

die, 20

dispatch table, 54, 55
DocBook, 12
download, 11
draining, 40, 50

E

enqueue, 46

error handling, 9, 19, 22, 34, 46, 50, 62, 78, 79, 84, 104,

131, 141

ESP, 1

Esper, 7, 221

examples, 13

execution model, 2
execution order, 221, 223

F

Fields, 251

FIFO, 80

filter, 173, 211
fork, 40, 45
fork-join, 190, 223
Fortran, 5

frame, 40

frame mark, 44, 47

G
GOTO, 5,9, 31

I
index
aggregation, 140
copy, 104
default, 87, 96, 106
FIFO, 82, 146, 157
find, 83
group, 81, 83, 96
group size, 84
hashed, 74, 84, 90, 175, 187
initialization, 83
key, 104
leaf, 93
multimap, 157
non-leaf, 93
order, 87
ordered, 90, 146, 157, 213
path, 104
primary, 87
root, 95
secondary, 84
sorted, 87, 171, 175
tree, 84
typeid, 105
IndexType, 241

263

equals, 106, 244
match, 106, 244
installation, 14, 15

J
join, 171
equi-join, 171
filter, 173
full outer, 190, 193
inner, 176, 188
input filtering, 193
key field duplication, 181, 188, 192
key field order, 187
key field types, 181, 187, 193
left outer, 175, 189, 193
lookup, 171, 172, 173
manual, 201
manual iteration, 178
manual lookup, 173
no primary key, 190
override, 193
right outer, 190, 193
self, 171, 197, 201, 203
stream-to-window, 171
tables, 171, 172, 185
to-many, 192
with collapse, 190
JoinTwo, 185, 203, 205, 255

L
label, 5,9, 21, 31, 74
adoption, 35, 235
chaining, 31, 32, 42, 70, 235
clearing, 33, 70, 71
dummy, 32
Perl, 32, 70
table, 75
LookupJoin, 174, 178, 204, 252
code generation, 181
keys, 175, 180

M

main loop, 50, 51, 59

materiaized view, 2

memory management, 21, 48, 69, 151
model, 1, 39, 69

O

opcode, 9, 36
operation code, 9
Opt, 250

P

persistence, 221

print, 22, 30

printP, 23
projection, 128, 175
protocol, 61

Q

queue, 40

R

recursion, 43, 75
regular expression, 129
restart, 221
result filtering, 128, 175
Row, 28

re-typing, 28
row operation, 9, 34, 40
row type, 9
RowHandle, 74, 78, 83, 94, 248
Rowop, 9, 34
RowType, 25

equals, 27

match, 27

S
schedule, 40, 45

loop, 75
scheduling, 39, 226

loop, 42, 48, 56, 60

loop interleaving, 45

recursion, 43, 75
SimpleAggregator, 134, 159, 163, 244
socket, 52
SPLASH, 2
spreadshest, 1
SQL, 2, 5, 141, 149, 151, 159, 172
stack, 40

unwinding, 50
StreamBase, 2, 39, 55, 110, 193, 221
SWIG, 19
Sybase, 2, 2, 39, 55, 61, 110

T

table, 73
execution order, 154
find, 74, 79, 83, 87, 97
insert, 73, 79, 96
iteration, 77, 78, 83, 83, 96, 97
label API, 75
procedural API, 74, 78
remove row, 78, 147, 233
replacement, 74, 75, 79, 82, 102
Table, 245
TableType, 239
equals, 106

264

Index

match, 106
template, 90, 109, 163, 174, 205
time, 25, 211, 217, 220
time synchronization, 212
topological loop, 42, 56
tracing, 61, 62, 75
traffic accounting, 211
tray, 46, 60, 106
trigger, 1
type

array, 26

equals, 27

index, 82, 83

match, 27

row, 25

simple, 25

table, 82

U
unit, 8, 40, 46, 62

\Y
VWAP, 133

W

window, 80
wrapper, 21

X
XS, 19, 19, 28, 50

265

266

Colophon

This manual has been typeset using the Docbook tools.

267

268

	Complex Event Processing with Triceps CEP v1.0
	Table of Contents
	Chapter 1. The field of CEP
	1.1. What is the CEP?
	1.2. The uses of CEP
	1.3. Surveying the CEP langscape
	1.4. We're not in 1950s any more, or are we?

	Chapter 2. Enter Triceps
	2.1. What led to it
	2.2. Hello, world!

	Chapter 3. Building Triceps
	3.1. Downloading Triceps
	3.2. The reference environment
	3.3. The basic build
	3.4. Building the documentation
	3.5. Running the examples and simple programs
	3.6. Installation of the Perl library
	3.7. Installation of the C﻿+﻿+ library
	3.8. Disambiguation of the C﻿+﻿+ library
	3.9. Build configuration settings

	Chapter 4. API Fundamentals
	4.1. Languages and layers
	4.2. Errors, deaths and confessions
	4.3. Memory management fundamentals
	4.4. Triceps constants
	4.5. Printing the object contents
	4.6. The Hungarian notation

	Chapter 5. Rows
	5.1. Simple types
	5.2. Row types
	5.3. Row types equivalence
	5.4. Rows

	Chapter 6. Labels and Row Operations
	6.1. Labels basics
	6.2. Label construction
	6.3. Other label methods
	6.4. Row operations
	6.5. Opcodes

	Chapter 7. Scheduling
	7.1. Overview of the scheduling
	7.2. No bundling
	7.3. Basic scheduling in Triceps
	7.4. Loop scheduling
	7.5. Execution unit
	7.6. Error handling during the execution
	7.7. The main loop
	7.8. Main loop with a socket
	7.9. Example of a topological loop
	7.10. Issues with the Triceps scheduling
	7.11. Trays, or yes bundling
	7.12. Tracing the execution

	Chapter 8. Memory Management
	8.1. Reference cycles
	8.2. Clearing of the labels
	8.3. The clearing labels

	Chapter 9. Tables
	9.1. Hello, tables!
	9.2. Tables and labels
	9.3. Basic iteration through the table
	9.4. Deleting a row
	9.5. A closer look at the RowHandles
	9.6. A window is a FIFO
	9.7. Secondary indexes
	9.8. Sorted index
	9.9. Ordered index
	9.10. The index tree
	9.11. Table and index type introspection
	9.12. The copy tray
	9.13. Table wrap-up

	Chapter 10. Templates
	10.1. Comparative modularity
	10.2. Template variety
	10.3. Simple wrapper templates
	10.4. Templates of interconnected components
	10.5. Template options
	10.6. Code generation in the templates
	10.7. Result projection in the templates

	Chapter 11. Aggregation
	11.1. The ubiquitous VWAP
	11.2. Manual aggregation
	11.3. Introducing the proper aggregation
	11.4. Tricks with aggregation on a sliding window
	11.5. Optimized DELETEs
	11.6. Additive aggregation
	11.7. Computation function arguments
	11.8. Using multiple indexes
	11.9. SimpleAggregator
	11.10. The guts of SimpleAggregator

	Chapter 12. Joins
	12.1. Joins variety
	12.2. Hello, joins!
	12.3. The lookup join, done manually
	12.4. The LookupJoin template
	12.5. Manual iteration with LookupJoin
	12.6. The key fields of LookupJoin
	12.7. A peek inside LookupJoin
	12.8. JoinTwo joins two tables
	12.9. The key field duplication in JoinTwo
	12.10. The override options in JoinTwo
	12.11. JoinTwo input event filtering
	12.12. Self-join done with JoinTwo
	12.13. Self-join done manually
	12.14. Self-join done with a LookupJoin
	12.15. A glimpse inside JoinTwo and the hidden options of LookupJoin

	Chapter 13. Time processing
	13.1. Time-limited propagation
	13.2. Periodic updates
	13.3. The general issues of time processing

	Chapter 14. The other templates and solutions
	14.1. The dreaded diamond
	14.2. Collapsed updates
	14.3. Large deletes in small chunks

	Chapter 15. Triceps Perl API Reference
	15.1. TableType reference
	15.2. IndexType reference
	15.3. AggregatorType reference
	15.4. SimpleAggregator reference
	15.5. Table reference
	15.6. RowHandle reference
	15.7. AggregatorContext reference
	15.8. Opt reference
	15.9. Fields reference
	15.10. LookupJoin reference
	15.11. JoinTwo reference
	15.12. Collapse reference

	Chapter 16. Release Notes
	16.1. Release 1.1.0
	16.2. Release 1.0.1
	16.3. Release 1.0.0
	16.4. Release 0.99

	Bibliography
	Index

