+$#KWinBoard: Chessboard for Windows

K# Description

WinBoard is a graphical user interface for chess. It displays a chessboard on the screen, accepts moves made with the mouse, and loads and saves game files in standard chess notation. WinBoard serves as a front-end for many different services, including:

· Chess engines that run on your PC. You can play a game against the machine, set up arbitrary positions, force variations, or watch a game between two machines. GNU Chess is supplied with WinBoard, and other free chess engines are available separately, including Crafty and The Crazy Bishop. See the separate Frequently Asked Questions!ExecFile(FAQ.html) document (FAQ.html) for instructions on installing Crafty.

· Chess servers on the Internet. You can play against other Internet Chess Server (ICS) users, observe games they are playing, review games in the ICS libraries, chat, and more.

· The Web and your own saved games. You can use WinBoard as a helper application to view files in your Web browser or the Explorer. You can use it to keep track of email postal games, browse games off the net, or review games you have saved.

Getting Started

WinBoard starts up in one of three major modes: chess engine mode, ICS client mode, or game viewer mode. You cannot change modes while WinBoard is running, but you can start another WinBoard process running in a different mode if you like, and you can access all the game viewer features directly from the other two modes. You will usually run WinBoard by choosing an item from the Windows Start menu that runs it in the mode you want. If you simply double-click on WinBoard.exe, you get a startup dialog asking you which mode you want.

After starting WinBoard, you can make K#moves in several different ways. To move by dragging, press the left mouse button while the cursor is on one of your pieces, move the cursor to another square, and release the button. You can also move by clicking the left mouse butoon once (down and up) over one of your pieces, moving the cursor to another square, and clicking again. You can drop new pieces on the board by selecting from a context menu. Press the right or middle mouse button over a square to bring up an appropriate menu; no menu will come up in modes where dropping a new piece is not permitted. In addition, in ICS mode, you can make moves by typing them into the ICS in standard algebraic chess notation.

When WinBoard is iconized, its K#icon is a white knight if it is White's turn to move, a black knight if it is Black's turn.

Additional Information

MenusMenus
Shortcut ButtonsButtons
Command Line OptionsOptions
Initialization FilesFiles
FirewallsFirewalls
LimitationsLimitations
AuthorsAuthors
CopyrightCopyright
Frequently Asked Questions!ExecFile(FAQ.html)
K#$+MENUS

File MenuFileMenu
Mode MenuModeMenu
Action MenuActionMenu
Step MenuStepMenu
Options MenuOptionsMenu
Help MenuHelpMenu
ICS Interaction Context MenuICSInteractionContextMenu
K#$+ File Menu

K# Reset

Resets WinBoard and the chess engine (if any) to the beginning of a new chess game. In Internet Chess Server mode, clears the current state of WinBoard, then resynchronizes with ICS by sending a refresh command. If you want to stop playing, observing, or examining a game on ICS, use an appropriate command from the ActionActionMenu menu, not Reset.

K# Load Game

Plays a game from a record file. A popup dialog prompts you for the filename. If the file contains more than one game, a second popup dialog displays a list of games (with information drawn from their PGN tags, if any), and you can select the one you want.

The game file parser will accept PGN (portable game notation), or in fact almost any file that contains moves in algebraic notation. Notation of the form P@f7 is accepted for piece-drops in bughouse games; this is a nonstandard extension to PGN. If the file includes a PGN position (FEN tag), or a WinBoard position diagram bracketed by "[--" and "--]" before the first move, the game starts from that position. Text enclosed in parentheses, square brackets, or curly braces is assumed to be commentary and is displayed in a pop-up window. Any other text in the file is ignored. PGN variations (enclosed in parentheses) are treated as comments; WinBoard is not able to walk variation trees.

K# Load Next Game

Loads the next game from the last game record file you loaded.

K# Load Previous Game

Loads the previous game from the last game record file you loaded. Not available if the last game was loaded from a pipe.

K# Reload Same Game

Reloads the last game you loaded. Not available if the last game was loaded from a pipe.

K# Save Game

Appends a record of the current game to a file. A popup dialog prompts you for the filename. If the game did not begin with the standard starting position, the game file includes the starting position used. Game files are saved in the PGN (portable game notation) format, unless the oldSaveStyleoldSaveStyle option is True, in which case they are saved in an older format that is specific to WinBoard. Both formats are human-readable, and both can be read back by the Load Game command. Notation of the form P@f7 is generated for piece-drops in bughouse games; this is a nonstandard extension to PGN.

K# Load Position

Sets up a position from a position file. A popup dialog prompts you for the filename. Position files must be in FEN (Forsythe-Edwards notation), or in the format that the Save Position command writes when oldSaveStyleoldSaveStyle is turned on.

K# Load Next Position

Loads the next position from the last position file you loaded.

K# Load Previous Position

Loads the previous position from the last position file you loaded. Not available if the last position was loaded from a pipe.

K# Reload Same Position

Reloads the last position you loaded. Not available if the last position was loaded from a pipe.

K# Save Position

Appends a diagram of the current position to a file. A popup dialog prompts you for the filename. Positions are saved in FEN (Forsythe-Edwards notation) format, unless the oldSaveStyleoldSaveStyle option is True, in which case they are saved in an older, human-readable format that is specific to WinBoard. Both formats can be read back by the Load Position command; however, currently Load Position can load only the first position in a file.

K# Exit

Exits from WinBoard.

K#$+ Mode Menu

K# Machine White

Forces the chess engine to play white.

K# Machine Black

Forces the chess engine to play black.

K# Two Machines

Starts a game between two chess engines.

K# Analysis Mode

In this mode, you can make moves for both sides on the board. After each move, the chess engine will think about possible replies and display its analysis in a separate window. This feature currently works only if Crafty is the chess engine.

K# Analyze File

In this mode, you can load a game from a file, and the chess engine will analyze each move as in Analysis Mode. This feature currently works only if Crafty is the chess engine.

K# ICS Client

This is the normal mode when WinBoard is connected to a chess server. If you have moved into Edit Game or Edit Position mode, you can select this option to get out.

When you run WinBoard in ICS mode, it starts up a console window in which you can type commands and receive text responses from the chess server. Useful ICS commands include who to see who is logged on, games to see what games are being played, match to challenge another player to a game, observe to observe an ongoing game, examine or smoves to review a recently completed game, and of course help.

Whenever you ask to observe an ongoing game, review a completed game, or resume an adjourned game, WinBoard retrieves and parses the list of past moves from the ICS, so you can review them with ForwardForward and BackwardBackward or save them with Save GameSaveGame.

Some special ICS Client features are activated when you are in examine or bsetup mode on ICS. See the descriptions of the menu commands ForwardForward, BackwardBackward, PausePause, and Stop ExaminingStopExamining below. You can also issue the ICS position-editing commands with the mouse. Move pieces by dragging with the left mouse button, or by left-clicking once on the starting square and once on the ending square. Press the right or middle button over a square for a context menu that lets you drop a new piece, empty the square, or clear the board. Click on the White or Black clock to set the side to play. You cannot set the side to play or drag pieces to arbitrary squares while examining on ICC, but you can do so in bsetup mode on FICS. You can also make moves by typing them into the ICS window; you may have to do this occasionally if you are playing a chess variant whose rules WinBoard does not understand, such as FischeRandom.

If you are playing a bughouse game on the ICS, a list of the offboard pieces that each player holds is shown in the window title bar. To drop an offboard piece, press the right or middle mouse button over an empty square to bring up a context menu.

K# Edit Game

Allows you to make moves for both Black and White, and to change moves after backing up with the BackwardBackward command. The clocks do not run.

In chess engine mode, the chess engine continues to check moves for legality but does not participate in the game. You can bring the chess engine back into the game by selecting Machine WhiteMachineWhite, Machine BlackMachineBlack, or Two MachinesTwoMachines.

In ICS mode, the moves are not sent to the ICS: Edit Game takes WinBoard out of ICS Client mode and lets you edit games locally. If you want to edit a game on ICS in a way that other ICS users can see, use the ICS examine command or start an ICS match against yourself.

K# Edit Position

Lets you set up an arbitrary board position. Use the left mouse button to drag pieces to new squares, or to delete a piece by dragging it off the board or dragging an empty square on top of it. To drop a new piece on a square, press the middle or right mouse button over the square. This brings up a menu of pieces. If you have three mouse buttons, the middle button brings up white pieces, the right button black pieces; or vice versa if you hold down the Shift key. If you have only two mouse buttons, the right button brings up a menu with both colors. (If you get the wrong behavior, check that you have the correct mouse driver installed and that Windows is configured to know how many buttons you have.) Additional menu choices let you empty the square or clear the board. You can set the side to play next by clicking on the White or Black indicator at the top of the screen.

Selecting Edit Position causes WinBoard to discard all remembered moves in the current game.

In ICS mode, change made to the position by Edit Position are not sent to the ICS: Edit Position takes WinBoard out of ICS Client mode and lets you edit positions locally. If you want to edit positions on ICS in a way that other ICS users can see, use the ICS examine command, or start an ICS match against yourself. (See also ICS ClientICSClient above.)

K# Show Game List

Shows or hides the list of games generated by the last Load GameLoadGame command.

K# Edit Tags

Lets you edit the PGN (portable game notation) tags for the current game. After editing, the tags must still conform to the PGN tag syntax:

<tag-section> ::= <tag-pair> <tag-section>

 <empty>

<tag-pair> ::= [<tag-name> <tag-value>]

<tag-name> ::= <identifier>

<tag-value> ::= <string>
See the PGN Standard for full details. Here is an example:

[Event "Portoroz Interzonal"]

[Site "Portoroz, Yugoslavia"]

[Date "1958.08.16"]

[Round "8"]

[White "Robert J. Fischer"]

[Black "Bent Larsen"]

[Result "1-0"]

Any characters that do not match this syntax are silently ignored. Note that the PGN standard requires all games to have at least the seven tags shown above. Any that you omit will be filled in by WinBoard with "?" (unknown value) or "-" (inapplicable value).

K# Edit Comment

Adds or modifies a comment on the current position. Comments are saved by Save GameSaveGame and are displayed by Load GameLoadGame, ForwardForward, and BackwardBackward.

K# Pause

Pauses updates to the board, and if you are playing against a local chess engine, also pauses your clock. To continue, select Pause again, and the display will automatically update to the latest position. The P (or C) button is equivalent to selecting Pause.

If you select Pause when you are playing against a chess engine and it is not your move, the chess engine’s clock will continue to run and it will eventually make a move, at which point both clocks will stop. Since board updates are paused, however, you will not see the move until you exit from Pause mode (or select ForwardForward). This behavior is meant to simulate adjournment with a sealed move.

If you select Pause while you are in examine mode on ICS, you can step backward and forward in the current history of the examined game without affecting the other examiners or observers. Select Pause again to reconnect yourself to the current state of the game on ICS.

If you select Pause while you are loading a game, the game stops loading. You can load more moves one at a time by selecting ForwardForward, or resume automatic loading by selecting Pause again.

K#$+ Action Menu

Most of these commands are available in chess server mode only.

K# Accept

Accepts a pending match offer. If there is more than one offer pending, you will have to type in a more specific command instead of using this menu choice.

K# Decline

Declines a pending offer (match, draw, etc.). If there is more than one offer pending, you will have to type in a more specific command instead of using this menu choice.

K# Rematch

Issues the ICS rematch command, which asks for another game against your last opponent with the same time control and rule set.

K# Call Flag

Calls your opponent's flag, claiming a win on time, or claiming a draw if you are both out of time. You can also call your opponent's flag by clicking on his clock.

K# Draw

Offers a draw to your opponent, accepts a pending draw offer from your opponent, or claims a draw by repetition or the 50-move rule, as appropriate.

K# Adjourn

Asks your opponent to agree to adjourning the current game, or agrees to a pending adjournment offer from your opponent. An adjourned ICS game is continued by challenging the same player again with the ICS match command.

K# Abort

Asks your opponent to agree to abort the current game, or agrees to a pending abort offer from your opponent. An aborted ICS game ends immediately without affecting either player's rating.

K# Resign

Resigns the game to your opponent.

K# Stop Observing

Ends your participation in observing a game, by issuing the ICS unobserve command.

K# Stop Examining

Ends your participation in examining a game, by issuing the ICS unexamine command.

K#$+ Step Menu

K# Backward

Steps backward through a series of remembered moves. The < button is equivalent to selecting Backward.

In most modes, Backward only lets you look back at old positions; it does not retract moves. This is the case if you are playing against a chess engine, playing or observing a game on the ICS, or loading a game. If you select Backward in any of these situations, you will not be allowed to make a different move. Use Retract MoveRetractMove or Edit GameEditGame if you want to change past moves.

If you are examining a game on the ICS, the behavior of Backward depends on whether WinBoard is in PausePause mode. If Pause mode is off, Backward issues the ICS command backward, which backs up everyone's view of the game and allows you to make a different move. If Pause mode is on, Backward only backs up your local view.

K# Forward

Steps forward through a series of remembered moves (undoing the effect of BackwardBackward) or through a game file. The > button is equivalent.

If you are examining a game on the ICS, the behavior of Forward depends on whether WinBoard is in PausePause mode. If Pause mode is off, Forward issues the ICS command forward, which moves everyone's view of the game forward along the current line. If Pause mode is on, Forward only moves your local view forward, and it will not go past the position the game was in when you paused.

K# Back to Start

Jumps backward to the first remembered position in the game. The << button is equivalent.

In most modes, Back to Start only lets you look back at old positions; it does not retract moves. This is the case if you are playing against a chess engine, playing or observing a game on the ICS, or loading a game. If you select Back to Start in any of these situations, you will not be allowed to make a different move. Use Retract MoveRetractMove or Edit GameEditGame if you want to change past moves; or use ResetReset to start a new game.

If you are examining a game on the ICS, the behavior of Back to Start depends on whether WinBoard is in PausePause mode. If Pause mode is off, Backward issues the ICS command backward 999999, which backs up everyone's view of the game to the start and allows you to make different moves. If Pause mode is on, Back to Start only backs up your local view.

K# Forward to End

Jumps forward to the last remembered position in the game. The >> button is equivalent.

If you are examining a game on the ICS, the behavior of Forward to End depends on whether WinBoard is in PausePause mode. If Pause mode is off, Forward to End issues the ICS command forward 999999, which moves everyone's view of the game forward to the end of the current line. If Pause mode is on, Forward to End only moves your local view forward, and it will not go past the position the game was in when you paused.

K# Revert

If you are examining a game on the ICS, issues the ICS command revert.

K# Truncate Game

Discards all remembered moves of the game beyond the current position. Puts WinBoard into Edit GameEditGame mode if it was not there already.

K# Move Now

Forces the chess engine to move immediately. May not work with all chess engines.

K# Retract Move

Retracts your last move.

In chess engine mode, you can do this only after the chess engine has replied to your move. If the chess engine is still thinking, use Move NowMoveNow first.

In ICS mode, Retract Move issues the command takeback 1 or takeback 2, depending on whether it is your opponent's move or yours.

K#$+ Options Menu

General
K# Always On Top

If this option is on, WinBoard sets its chessboard to be a topmost window, meaning that it always appears on top of all ordinary windows on the screen.

K# Always Queen

If Always Queen is off, WinBoard brings up a dialog box whenever you move a pawn to the last rank, asking what piece you want to promote it to. If the option is on, your pawns are always promoted to queens. Your opponent can still underpromote, however.

K# Animate Dragging

If Animate Dragging is on while you are dragging a piece with the mouse, an image of the piece follows the mouse cursor. If Animate Dragging is off, there is no visual feedback while you are

dragging a piece, but if Animate Moving is on, the move will be animated when it is complete.

K# Animate Moving

If Animate Moving is on, all piece moves are animated. An image of the piece is shown moving from the old square to the new square when the move is completed (unless the move was already animated by Animate Dragging). If Animate Moving is off, a moved piece instantly disappears from its old square and reappears on its new square when the move is complete.

K# Auto Comment

If Auto Comment is on, any remarks made on ICS while you are observing or playing a game are recorded as a comment on the current move. This includes remarks made with the ICS commands say, tell, whisper, and kibitz. Limitation: remarks that you type yourself are not recognized; WinBoard scans only the output from ICS, not the input you type to it.

K# Auto Flag

If this option is on and one player runs out of time before the other, WinBoard will automatically call his flag, claiming a win on time. In ICS mode, Auto Flag will only call your opponent's flag, not yours, and the ICS may award you a draw instead of a win if you have insufficient mating material. On most chess servers, you can now do set autoflag 1 instead and have the server call the flag. In local chess engine mode, WinBoard may call either player's flag and will not take material into account.
K# Auto Observe

If Auto Observe is on and you add a player to your gnotify list on ICS, WinBoard will automatically observe all of that player's games, unless you are doing something else (such as observing or playing a game of your own) when one starts. On most chess servers, you can now do follow player instead, and the server will automatically observe all of player’s games.

K# Flip View

Inverts your view of the chessboard for the duration of the current game. Starting a new game returns the board to normal.

If you are playing a game on the ICS, the board is always oriented at the start of the game so that your pawns move from the bottom of the window towards the top. Otherwise, the starting position is determined by the flipViewflipViewOption command line option.

K# Get Move List

If Get Move List is on, whenever WinBoard receives the first board of a new ICS game (or a different ICS game from the one it is currently displaying), it retrieves the list of past moves from the server. You can then review the moves with the Forward and Backward commands or save them with Save Game. You might want to turn off this option if you are observing several blitz games at once, to keep from wasting time and network bandwidth fetching the move lists over and over. If you turn this option on while a game is in progress, WinBoard immediately fetches the current move list.

K# Highlight Dragging

If Highlight Dragging is on while you are dragging a piece with the mouse, the starting square and the square that the mouse cursor is over are highlighted. This option works even if Animate Dragging is off.

K# Highlight Last Move

If Highlight Last Move is on, after a move is made, the starting and ending squares remain highlighted. In addition, after you use BackwardBackward or Back to StartBackToStart, the starting and ending squares of the last move to be unmade are highlighted.

K# Local Line Editing

If Local Line Editing is on, your machine handles echoing, backspacing, etc., for the characters that you type into the ICS Interaction window. Output is forwarded to the ICS only when you hit Enter.The Enter key produces a newline character, also known as Ctrl+J, \n, LF, linefeed, or decimal ASCII code 10. In this mode you can force a control character into the edit buffer by preceding it with Ctrl+Q (“quote”); however, the edit buffer will not accept certain control characters even when they are quoted in this way. You can force a control character to be sent immediately to ICS, bypassing the edit buffer, by preceding it with Ctrl+S (“send”).

WinBoard keeps a history of lines you recently typed in Local Line Editing mode. You can bring back old lines by pressing the cursor up key in the text entry box. Press the cursor down key to go back down to newer lines.

If Local Line Editing is off, all characters are sent to ICS as you type them. The Enter key produces a carriage return character, also known as Ctrl+M, \r, CR, or decimal ASCII code 13. Use Ctrl+Backspace if you need the ASCII DEL character. You can enter any character code by holding down the Alt key and typing its decimal value (always beginning with 0) on the numeric keypad; this is a little-known standard feature of Windows.

In both modes, if WinBoard’s internal telnet protocol implementation is active, it translates all \n characters to the standard telnet end-of-line sequence \r\n just before sending them out to ICS; see telnetProgramtelnetProgram.

It is generally not a good idea to turn off this option while connected to ICS. If you are tempted to do so because everything you type is being echoed an extra time, see the paragraph about extra echoes under LIMITATIONSLIMITATIONS below.

K# Periodic Updates

If Periodic Updates is on, the Analysis window is updated every two seconds. If not, it is updated only when the best move found changes. The Analysis window currently works only with Crafty, and Periodic Updates may not work with all versions of Crafty.

K# Popup Move Errors

If this option is off, when you make an error in moving (such as attempting an illegal move or moving the wrong color piece), the error message is displayed in the message area. If the option is on, move errors are displayed in small popup windows like other errors. You can dismiss an error popup either by clicking its OK button or by clicking anywhere on the board, including downclicking to start a move.

K# Quiet Play

If Quiet Play is on, WinBoard will automatically issue an ICS set shout 0 command whenever you start a game and a set shout 1 command whenever you finish one. Thus you will not be distracted by shouts from other ICS users while playing.

K# Show Coords

If Show Coords is on, WinBoard displays algebraic coordinates along the board's left and bottom edges.

K# Show Thinking

If this option is set, WinBoard displays the chess engine’s current search depth and its notion of the score and best line of play from the current position as it is thinking. The score indicates how many pawns ahead (or if negative, behind) the engine thinks it is. In matches between two machines, the score is prefixed by W or B to indicate whether it is showing White's thinking or Black's.

K# Test Legality

If Test Legality is on, WinBoard tests whether the moves you enter with the mouse or read from game files are legal, and displays an error if they are not. Turn this option off if you are playing a chess variant that WinBoard does not understand. (Bughouse, suicide, and wild variants where the king may castle after starting on the d file are generally supported with Test Legality on.)

Others

K# Board Size

Determines how large the board will be and what piece bitmaps will be used. On a Large board the piece bitmaps are 80x80 pixels, on Bulky they are 72x72, Medium 64x64, Moderate 58x58, Average 54x54, Middling 49x49, Mediocre 45x45, Small 40x40, Slim 37x37, Petite 33x33, Dinky 29x29, Teeny 25x25, and Tiny 21x21. The smaller boards have no system menu, but you can minimize or close them from the File menu.

You can also change the board size by dragging the window edges or corners with the mouse. The board will snap to the largest size that fits into the area you outline.

K# Board Colors

Lets you change the colors WinBoard is using to draw the board and pieces.

K# ICS Interaction Colors

Lets you change the colors and type styles that WinBoard uses to distinguish between different types of messages in the ICS Interaction window. The types distinguished are: shout, sshout, channel 1 tell, other channel tell, kibitz (or whisper), personal tell (or new message notification), challenge, request (including abort, adjourn, draw, pause, and takeback), and normal (all other messages).

K# Fonts

Lets you change the fonts WinBoard is using.

K# Sounds

Lets you change the sounds that WinBoard plays for various events.

K#If the Move sound is on, WinBoard alerts you by playing a sound after each of your opponent's moves (or after every move if you are observing a game on the Internet Chess Server). The sound is not played after moves you make or moves read from a saved game file. If you turn on the Move sound when using WinBoard with the Internet Chess Server, you will probably want to give the set bell 0 command to the ICS, since otherwise the ICS will send a bell character after every move (not just yours), causing WinBoard to play the ICS Bell sound too. Alternatively, you could turn off the ICS Bell sound in WinBoard, but that might cause you to miss ICS alerts for other interesting events

The other sound events correspond directly to the types of messages that the ICS Interaction Colors option knows how to colorize.

K# Communications

Lets you change the communication port parameters when the internetChessServerComPortinternetChessServerComPort option is in use.

K# Load Game

Lets you change options used while loading games (timeDelaytimeDelay option).

K# Save Game

Lets you change options used for saving games (autoSaveGamesautoSaveGames, oldSaveStyleoldSaveStyle, and saveGameFilesaveGameFile options).

K# Time Control

Lets you change the time control to be used in games against a chess engine. Two types of timing are available.

With conventional chess clocks, each player begins with his clock set to the timeControltimeControl period. When both players have made movesPerSessionmovesPerSession moves, a new time control period begins. The time in the new period is added to whatever time the players have left on their clocks.

With incremental clocks, each player is given an initial time allotment, and a timeIncrementtimeIncrement is added to his clock after every move. The increment may be zero, in which case the entire game must be finished within the initial time allotment.

K# Save Settings Now

Save the current option settings to a file, along with the current window sizes and positions, to be automatically reloaded next time WinBoard is run. See SettingsSettings for the fine points.

K# Save Settings on Exit

If this option is on, the current settings are automatically saved when WinBoard exits, as with Save Settings Now.

K# $+ Help Menu

K# Help Contents

Brings up this help file, starting at the Contents page.

K# Help Index

Brings up this help file, starting at the Index/Find dialog.

K# How to Use Help

Brings up the standard help file that explains how to use Windows Help.

K# Hint

Displays a move hint from the chess engine.

K# Book

Displays a list of possible moves from the chess engine’s opening book. The first column gives moves, the second column gives one possible response for each move, and the third column shows the number of lines in the book that include the move from the first column. If you select this option and nothing happens, the engine is out of its book or does not support the book command.

K# About WinBoard

Displays the WinBoard version number.

K# $+ICS Interaction Context Menu

To see this menu, press the right mouse button anywhere in the output (upper) pane of the ICS Interaction window. Pressing the right mouse button in the input (lower) pane gives a standard editing context menu, not described here.

You can customize the lower part of this menu (below the Paste option) by setting the icsMenuicsMenu option. The easiest way to accomplish this is to edit your settings filesettings with Notepad or another plain text editor. Sorry, there is no graphical user interface for customizing the menu.

K# Copy and Paste

Copies the current selection to the clipboard, then pastes it to the input box. As a shortcut to this function, you can press the middle mouse button, or Shift plus the right mouse button.

K# Copy

Copies the current selection to the clipboard.

K# Paste

Pastes the clipboard contents to the input box.

K# Tell

Inserts “tell arg ” into the input box. The string arg is the current selection if it is not empty. Otherwise arg is the word surrounding the mouse position, where a “word” is a string of letters, digits, or hypens (-), such as an ICS user handle or game number.

K# Message

Inserts “message arg ” into the input box, where arg is as defined above.

K# Finger

Sends the command “finger arg” to ICS, where arg is as defined above.

K# Vars

Sends the command “vars arg” to ICS, where arg is as defined above.

K# Observe

Sends the command “observe arg” to ICS, where arg is as defined above.

K# Match

Sends the command “match arg” to ICS, where arg is as defined above.

K#$+ BUTTONS

K <<

Same as Back to StartBacktoStart.

K <

Same as BackwardBackward.

K P

Same as PausePause. The button label changes to C while WinBoard is pausing.

K >

Same as ForwardForward.

K >>

Same as Forward to EndForwardtoEnd.

KK # $ + COMMAND LINE OPTIONS

All WinBoard options can be set either on the command line (if you start WinBoard by typing into an MSDOS Prompt box), in the Properties/Shortcut/Target box of a Windows shortcut, or in a settings filesettings. Exactly the same syntax is used in all three places. Most options can also be set from the menus and saved using Save Settings NowSaveSettings or Save Settings on ExitSaveSettingsOnExit, so most people will not need to read this section.

Most options have two names, a long one that is easy to read and a short one that is easy to type. To turn on a boolean (true/false) option opt, you can just give its short name preceded by a minus sign or slash (-opt or /opt); to turn one off, prefix the short name by an “x” or an extra minus sign (-xopt or /-opt). To set any other kind of option, or to set a boolean option using its long name, give the value after the name, separated by a space, colon, or equal sign. (-opt 23 or /option:true). If a string option contains spaces or special characters, enclose it in double quotes and use the \ quoting convention of C to name the special characters. If a filename option contains spaces, enclose it in either single or double quotes. In filename options, the \ character is not treated specially, so use single quotes around the outside of the value if it has double quotes inside (and vice versa).

Chess Engine OptionsChessEngineOptions
Internet Chess Server OptionsInternetChessServerOptions
Load and Save OptionsLoadAndSaveOptions
User Interface OptionsUserInterfaceOptions
Other OptionsOtherOptions
K$#+ Chess Engine Options

K#/cp or K#/chessProgram
Puts WinBoard in chess engine mode. In this mode, you can play against a chess program running on your PC or use it as an analysis partner.

K#/tc or K#/timeControl minutes[:seconds]

Each player begins with his clock set to the timeControl period. Default: 5 minutes. The additional options movesPerSession and timeIncrement are mutually exclusive.

K#/mps or K#/movesPerSession moves
When both players have made movesPerSession moves, a new timeControl period is added to both clocks. Default: 40 moves.

K#/inc or K#/timeIncrement seconds

If this option is specified, movesPerSession is ignored. Instead, after each player's move, timeIncrement seconds are added to his clock. Use -timeIncrement 0 if you want to require the entire game to be played in one timeControl period, with no increment. Default: -1, which specifies movesPerSession mode.

K# /clock or K# /clockMode

Determines whether or not to display the chess clocks. If clockMode is False, the clocks are not shown, but the side that is to play next is still highlighted. Also, unless searchTime or searchDepth is set, the chess engine still keeps track of the clock time and uses it to determine how fast to make its moves.

K# /st or K# /searchTime minutes[:seconds]
Tells the chess engine to spend at most the given amount of time searching for each of its moves. Without this option, the engine chooses its search time based on the number of moves and amount of time remaining until the next time control. Setting this option also sets clockMode to False.

K# /sd or K# /searchDepth number
Tells the chess engine to look ahead at most the given number of moves when searching for a move to make. Without this option, the engine chooses its search depth based on the number of moves and amount of time remaining until the next time control. Setting this option also sets clockMode to False.

K# /thinking or K# /showThinking

Sets the Show ThinkingshowThinkingCmd menu option. Default: False.

K# /periodic or K# /periodicUpdates

Sets the Periodic UpdatesperiodicUpdatesCmd menu option. Default: True.

K# /mg or K# /matchGames n

Automatically runs an n-game match between two chess engines, with alternating colors. If the loadGameFileloadGameFile or loadPositionFileloadPositionFile option is set, WinBoard will start each game with the given opening moves or the given position; otherwise, the games will start with the standard initial chess position. If the saveGameFilesaveGameFile option is set, a move record for the match will be appended to the specified file. If the savePositionFilesavePositionFile option is set, the final position reached in each game of the match will be appended to the specified file. When the match is over, WinBoard will exit. Default: 0 (do not run a match).

K# /mm or K# /matchMode

Abbreviation for /matchGames=1.

K# /fd or K# /firstDirectory dir
K# /sd or K# /secondDirectory dir
K# /fcp or K# /firstChessProgram command
K# /scp or K# /secondChessProgram command
Names of the chess engines and working directories in which they are to be run. The second chess engine is started only in Two Machines (match) mode. These arguments are parsed as filenames; that is, the \ character is interpreted literally, not as a C-style escape.

The dir argument specifies the initial working directory for the chess engine. It should usually be the directory where the engine and its working files are installed. If dir is not an absolute pathname, it is interpreted relative to the directory from which WinBoard.exe itself was loaded. The default value for dir is "", meaning that the chess engine is expected to be installed in the same directory as WinBoard. The dir argument is ignored if the chess engine is being run on a remote machine (see firstHost and secondHost below).

The command argument is actually the command line to the chess engine, so if the engine itself needs command line arguments, you can include them by enclosing command in single or double quotes. If the engine name or an engine argument has a space in it, use single quotes around the whole command, and inside them use double quotes around each item that contains spaces. The default value for command is “GNUChess”.

Examples:

WinBoard /cp /fd="C:\Program Files\Crafty" /fcp="wcrafty-15_9 winboard"
WinBoard /cp /fd="C:\Miracle Games" /fcp='"Miracle Chess.exe" amazing=true'

K# /fh or K# /firstHost host
K# /sh or K# /secondHost host
Hosts on which the chess engines are to run. The default for each is "localhost". If you specify another host, WinBoard uses rshrsh to run the chess program there.

K# /initString string
The string that is sent to initialize the first chess program. Default: "new\nbeep\nrandom\nhard\n". The "\n" sequences represent newlines. You can type "\n" on the command line or in a settings filesettings, and WinBoard will convert it to a newline.

GNU Chess requires the "new" and "beep" commands. You can remove the "random" command if you like; including it causes GNU Chess to randomize its move selection slightly so that it doesn't play the same moves in every game. Even without "random", GNU Chess randomizes its choice of moves from its opening book. You can also remove "hard" if you like. “Hard” mode means that GNU Chess will think on your time. You can also try adding other commands to the initString; see the GNU Chess documentation (gnuchess.txt) for details.

Crafty also requires the “new” command, but it ignores the other commands. See its documentation to find out what other commands you can add, either here or in the /firstChessProgram and /secondChessProgram options.

K# /secondInitString string
The string that is sent to initialize the second chess program. Default: the value of /initString.

K# /fb or K# /firstPlaysBlack

In games between two chess programs, the firstChessProgram normally plays white. (This is a change from earlier versions of WinBoard.) If this option is True, firstChessProgram plays black. In a multi-game match, this option affects the colors only for the first game; they still alternate in subsequent games.

K#/reuse or K#/reuseChessPrograms

If this option is True (the default), WinBoard uses the same chess engine process repeatedly when playing multiple games. (In Two Machines mode, it uses the same two chess engine processes repeatedly.) If the option is False, WinBoard kills off the chess engine after every game and starts a fresh one for the next game. Starting a fresh chess engine can be slow, so it is not recommended. However, some chess engines may not work properly when reused, such as versions of Crafty earlier than 12.0.

+K$# Internet Chess Server Options

K# /ics or K# /internetChessServerMode

Connect with an Internet Chess Server to play chess against its other users, observe games they are playing, or review games that have recently finished. See ICS ClientICSClient Default: False.

You can create a script file containing ICS commands that WinBoard will type in for you whenever you connect to the ICS. See ICS LogonICSLogon.

K# /icshost or K# /internetChessServerHost hostname
The host name or numeric address of the Internet Chess Server to connect to when in ICS mode. The default is the empty string, which causes WinBoard to pop up a menu of known ICS sites. The file ics-addresses.txt in the WinBoard distribution gives slightly more information on these sites. It includes their numeric addresses, which you can use if your site does not have a working name server.

K# /icsport or K# /internetChessServerPort portnumber
The port number to use when connecting to a chess server in ICS mode. Default: 5000.

K#/icshelper program
An external helper program used to communicate with the chess server. Typically Ktimestamp for the ICC (chessclub.com) or Ktimeseal for FICS (freechess.org, eics.daimi.aau.dk, etc.). This option is shorthand for “/useTelnet /telnetProgram program”.

K#/telnet or K#/useTelnet

This option is poorly named; it should be called /useHelper. If set to True, it instructs WinBoard to use an external helper program to communicate with the ICS, as specified by the telnetProgram option. The external program must be a pure console application that can communicate with WinBoard through pipes; the Windows telnet application is not suitable. If the option is False (the default), WinBoard communicates with the ICS by opening a Winsock TCP socket and using its own internal implementation of the telnet protocol.

K#/gateway hostname
If this option is set to a host name, WinBoard uses rshrsh to run the telnetProgram remotely on the given host to communicate with the Internet Chess Server instead of using its own internal implementation of the telnet protocol. See the FIREWALLSFIREWALLS section below for an explanation of when this option is useful.

K#/telnetProgram program
This option is poorly named; it should be called /helperProgram. It gives the name of the remote or external helper program to be used with the gateway or useTelnet option. The default is "telnet". The telnet program is invoked with the value of internetChessServer as the first argument and the value of internetChessServerPort as the second argument on its command line.

K#/icscom or K#/internetChessServerComPort name
If this option is set, WinBoard communicates with the Internet Chess Server using a serial communication port instead of a network connection. Use this option if your machine is not connected to a network (not even via SLIP or PPP), but you do have Internet access through another machine by dialing in using a modem or by connecting directly to a serial terminal port. Example:

WinBoard /ics /icscom:com1

After you start WinBoard in this way, type whatever modem commands are necessary to dial out to your Internet provider and log in. You may need to turn off Local Line EditingLocalLineEditing on the Options menu while typing commands to the modem, but turn it on again afterwards. Then telnet to the ICS, using a command like "telnet chessclub.com 5000". Important: See the paragraph in the LIMITATIONSLIMITATIONS section below about extra echoes.

K# /comPortSettings “dataRate,dataBits,parity,stopBits,flow”

This option allows serial port parameters to be set from the command line or a settings file. The values are simply filled in to the CommunicationsCommunications dialog.

K# /icslogon or K# /internetChessServerLogonScript filename

This option lets you change the name used for the ICS LogonICSLogon file. Default: "ICS.ini". The filename is interpreted relative to WinBoard's installation directory (the directory containing WinBoard.exe).

K# /autocomm or K# /autoComment

Sets the Auto CommentAutoCommentCmd menu option. Default: False.

K# /autoflag or K# /autoCallFlag

Sets the Auto FlagAutoFlag menu option. Default: False.

K# /autobs or K# /autoObserve

Sets the Auto ObserveautoObserveCmd menu option. Default: False.

K# /moves or K# /getMoveList

Sets the Get Move ListgetMoveListCmd menu option. Default: True.

K# /edit or K# /localLineEditing

Sets the Local Line EditinglocalLineEditing menu option. Default: True.

K# /quiet or K# /quietPlay

Sets the Quiet PlayquietPlayCmd menu option. Default: False

+K$# Load and Save Options

K# /lgf or K# /loadGameFile filename
K# /lgi or K# /loadGameIndex N
If loadGameFile is set, WinBoard reads the specified game file at startup. You can leave out the name of this option and give just the file name, which is handy if you want to configure WinBoard as a game viewer with a browser such as the Windows Explorer or Netscape. The filename is interpreted relative to WinBoard's initial working directory. The filename "-" specifies the standard input. If there is more than one game in the file, WinBoard pops up a menu of the available games, with entries based on their PGN tags. If loadGameIndex is set to N, the menu is suppressed and the Nth game found in the file is loaded immediately.

K# /td or K# /timeDelay seconds
Time delay between moves during Load GameLoadGame. Fractional seconds are allowed; try 0.4. A time delay value of -1 tells WinBoard not to step through game files automatically. Default: 1 second.

K# /sgf or K# /saveGameFile filename
If this option is set, WinBoard appends a record of every game played to the specified file. The filename is interpreted relative to WinBoard's initial working directory. The filename "-" specifies the standard output.

K# /autosave or K# /autoSaveGames

If this option is True, at the end of every game WinBoard prompts you for a filename and appends a record of the game to the file you specify. Ignored if saveGameFile is set. Default: False.

K# /lpf or K# /loadPositionFile filename
K# /lpi or K# /loadPositionIndex N
If loadPositionFile is set, WinBoard loads the specified position file at startup. The filename is interpreted relative to WinBoard's initial working directory. The filename "-" specifies the standard input. If loadPositionIndex is set to N, the Nth position found in the file is loaded; otherwise the first is loaded.

K# /spf or K# /savePositionFile filename
If this option is set, WinBoard appends the final position reached in every game played to the specified file. The filename is interpreted relative to WinBoard's initial working directory. The file name "-" specifies the standard output.

K# /oldsave or K# /oldSaveStyle

If this option is False (the default), WinBoard saves games in PGN (portable game notation) and positions in FEN (Forsythe-Edwards notation). If the option is True, a save style that is compatible with older versions of WinBoard (and of xboard) is used instead.

+K$# User Interface Options

K# /top or K# /alwaysOnTop

Sets the Always On TopAlwaysOnTop menu option. Default: False.

K# /queen or K# /alwaysPromoteToQueen

Sets the Always QueenAlwaysQueen menu option. Default: False.

K#/drag or K#/animateDragging

Sets the Animate DragginganimateDragging menu option. Default: True.

K#/animate or K#/animateMoving

Sets the Animate MovinganimateMoving menu option. Default: True.

K# /flip or K# /flipView

If you are playing a game on the ICS, the board is always oriented at the start of the game so that your pawns move from the bottom of the window towards the top. Otherwise, the starting orientation is determined by the flipView option. If it is False (the default), White's pawns move from bottom to top at the start of each game; if it is True, Black's pawns move from bottom to top. See also the Flip ViewFlipView menu command.

K#/highdrag or K#/highlightDragging

Sets the Highlight DragginghighlightDragging menu option. Default: False.

K#/highlight or K#/highlightLastMove

Sets the Highlight Last MovehighlightLastMove menu option. Default: False.

K# /popup or K# /popupMoveErrors

Sets the Popup Move ErrorspopupMoveErrorsCmd menu option. Default: False.

K# /coords or K# /showCoords

Sets the Show CoordsshowCoords menu option. Default: False.

K# /legal or K# /testLegality

Sets the Test LegalitytestLegalityCmd option. Default: True.

K# /size or K# /boardSize sizename
Sets the Board SizeBoardSizeCmd menu option. Also chooses which board size any following Font options will affect. The default is the largest size that will fit on your screen.

K# /whitePieceColor color
K# /blackPieceColor color
K# /lightSquareColor color
K# /darkSquareColor color
Color specifications for white pieces, black pieces, light squares, and dark squares. Colors can be specified only by red/green/blue intensity, either in hexadecimal (as #rrggbb) or in decimal (as rrr,ggg,bbb). In the latter format, you must enclose the string in quotation marks if you leave spaces after the commas. The defaults are respectively #FFFFCC, #202020, #C8C365, and #77A26D. Available on the Board ColorsBoardColors menu.

If you are using a K# grayscale monitor, try setting the colors to:

-whitePieceColor:#FFFFFF
-blackPieceColor:#000000
-lightSquareColor:#CCCCCC
-darkSquareColor:#999999

K# /mono or K# /monoMode

Determines whether WinBoard displays its pieces and squares in black and white (True) or color (False, the default). Available on the Board ColorsBoardColors menu.

K# /colorShout “effects color”
K# /colorSShout “effects color”
K# /colorChannel1 “effects color”
K# /colorChannel “effects color”
K# /colorKibitz “effects color”
K# /colorTell “effects color”
K# /colorChallenge “effects color”
K# /colorRequest “effects color”
K# /colorNormal “effects color”

Select colors and effects to colorize messages in the ICS Interaction window. The effects may be any combination of bold, italic, underline, and strikeout. Colors are specified as for squares and pieces. Available on the ICS Interaction ColorsICSInteractionColors menu. Limitation: On 256 color displays, Windows chooses the nearest solid color from the system palette, which will not always be close to the color you selected.

K# /colorBackground color

Sets the background color for the ICS Interaction window. Available on the ICS Interaction ColorsICSInteractionColors menu.

K# /colorize or K# /colorizeMessages

If True, WinBoard colorizes messages in the ICS Interaction window with the colors listed above. Default: True. Available on the ICS Interaction ColorsICSInteractionColors menu.

K# /clockFont “fontname:size effects”
K# /messageFont “fontname:size effects”
K# /coordFont “fontname:size effects”
K# /tagsFont “fontname:size effects”
K# /commentFont “fontname:size effects”
K# /icsFont “fontname:size effects”

The fonts used respectively for the clocks, the message display line, rank and file coordinate labels, the Edit Tags dialog, the Edit Comment dialog, and the ICS Interaction window. These options may be given more than once. Each occurrence affects the fonts for the current board size; that is, the size given in the last preceding /boardSize option, if any, or else the default size. The font size may contain a decimal point, and the effects may be any combination of bold, italic, underline, and strikeout. Example: /clockFont="Arial:20.0 bi". Available on the FontsFonts menu.
K# /soundShout sound
K# /soundSShout sound
K# /soundChannel1 sound
K# /soundChannel sound
K# /soundKibitz sound
K# /soundTell sound
K# /soundChallenge sound
K# /soundRequest sound
K# /soundNormal sound
K# /soundMove sound
K# /soundBell sound

Associate sounds with WinBoard events. Most of the events are the same ones that cause text colorization. In addition, soundMove is played if a chess engine or another player makes a move. Finally, soundBell is played if the chess server sends an ASCII BEL character (Ctrl+G). Available on the Soundssounds menu.

The sound argument may be one of the following:

· The name of a .wav file. The filename is interpreted relative to WinBoard's installation directory (the directory containing WinBoard.exe).

· $, indicating the default system sound.

· ! followed by the name of a built-in WinBoard wave resource.

· ! alone, or “” (empty string), indicating silence.

The default for soundMove and soundBell is $, while the others default to silence.

K#/icsMenu=“entries”
This option lets you customize the right-button context menuICSInteractionContextMenu that is available in the upper (output) pane of the ICS Interaction window. It consists of a list of menu entries, one per line. Each entry contains either four fields separated by commas or the single character “-“. The fields are (1) menu text, (2) text to insert into the input pane, (3) a flag (1 or 0) saying whether or not to insert a space and arg (see aboveTell) afterwards, and (4) a flag (1 or 0) saying whether the result should be sent immediately to ICS or left in the input pane for further editing. If the menu text begins with “|”, the item begins a new column in the menu and the “|” is not shown. The entry “-“ produces a separator line in the menu. The top three menu entries are always Copy and Paste, Copy, and Paste, but you have full control over the rest of the menu.

The default menu is:

–
&Tell,tell,1,0
Messa&ge,message,1,0
–
&Finger,finger,1,1
&Vars,vars,1,1
&Observe,observe,1,1
&Match,match,1,1

K#/icsNames=“names”
This option lets you customize the drop-down list of ICS names that appears in the WinBoard startup dialog. It consists of a list of strings, one per line. When you select a string from the drop-down list, WinBoard prepends the text ”/ics /icsHost=” and adds the result to the command-line options.

K#/firstChessProgramNames=“names”
This option lets you customize the first drop-down list of chess engine names that appears in the WinBoard startup dialog. It consists of a list of strings, one per line. When you select a string from the drop-down list, WinBoard prepends the text ”/firstChessProgram=” and adds the result to the command-line options. You can add other options, but remember to use an extra level of quoting if their values contain quotation marks or backslashes. Example:

/firstChessProgramNames="GNUChess

Wcrafty-15_11 /fd=\"C:\\Program Files\\Crafty\"

"

K#/secondChessProgramNames=“names”
This option lets you customize the second drop-down list of chess engine names that appears in the WinBoard startup dialog. It consists of a list of strings, one per line. When you select a string from the drop-down list, WinBoard prepends the text ”/secondChessProgram=” and adds the result to the command-line options.

K#/x=xcoord /y=ycoord

Sets the initial location of the board window, giving the screen coordinates of the upper left-hand corner. Both arguments must be given together.

K#/analysisX=xcoord /analysisY=ycoord /analysisW=width /analysisH=height

Sets the initial location and size of the Analysis window, giving the screen coordinates of the upper left-hand corner, the width, and the height. All four arguments must be given together.

K#/commentX=xcoord /commentY=ycoord /commentW=width /commentH=height

Sets the initial location and size of the Comment window, giving the screen coordinates of the upper left-hand corner, the width, and the height. All four arguments must be given together.

K#/gameListX=xcoord /gameListY=ycoord /gameListW=width /gameListH=height

Sets the initial location and size of the Game List window, giving the screen coordinates of the upper left-hand corner, the width, and the height. All four arguments must be given together.

K#/icsX=xcoord /icsY=ycoord /icsW=width /icsH=height

Sets the initial location and size of the ICS Interaction window, giving the screen coordinates of the upper left-hand corner, the width, and the height. All four arguments must be given together.

K#/tagsX=xcoord /tagsY=ycoord /tagsW=width /tagsH=height

Sets the initial location and size of the Tags window, giving the screen coordinates of the upper left-hand corner, the width, and the height. All four arguments must be given together.

+K$# Other Options

K# /ncp or K# /noChessProgram

If this option is True, WinBoard acts as a passive chessboard; it does not start a chess program or connect to ICS. This option also sets clockMode to False. Default: False.

K# /debug or K# /debugMode

Writes debugging information to the file “WinBoard.debug”, including all commands sent to the chess engine, all output received from it, and all commands sent to ICS. You can press Ctrl+Alt+F12 to turn this option on or off while WinBoard is running. Each time you turn it on, any existing debug file is overwritten.

K# /rsh or K# /remoteShell shellname
Name of the command used to run programs remotely. If this option is not given, WinBoard uses its own built-in implementation of the Unix rcmd protocol (the protocol used by rsh).

K# /ruser or K# /remoteUser username
User name on the remote system when running programs with the remoteShell. The default is your local user name.

K# /ini or K# /settingsFile filename
K#@ file-name

See SettingsSettings.

KK$#+ INITIALIZATION FILES

K # Settings

When WinBoard starts up, it reads option settings from a file named WinBoard.ini in its installation directory (the directory containing WinBoard.exe). Options in this file have exactly the same format as command line optionsOptions, except that you do not have to put all the options on a single line. The WinBoard.ini file is read before the command line is processed, so any options you give on the command line override options in the file.

If WinBoard encounters a /settingsFilesettingsFile filename or @atsignfilename option while reading settings (whether from the command line or a file), it reads more settings from the given file before reading the next option.

The Save Settings NowSaveSettings menu command writes the current values of most options to a file. The settings are written to the last file named in an /ini or /settingsFile command, if any; otherwise to WinBoard.ini. The @ option does not affect which file settings are saved to.

You can put a comment in a settings file by preceding it with a semicolon (;).

K# ICS Logon

Whenever WinBoard connects to the Internet Chess Server, if it finds a file called ICS.ini in its installation directory, it feeds the file's contents to the ICS as commands. Usually the first two lines of the file should be your ICS user name and password. You can specify a different name instead of ICS.ini by using the icslogonicslogon command line option.

K#$+ FIREWALLS

By default, "WinBoard /ics" communicates with an Internet Chess Server by opening a TCP socket directly from the machine it is running on to the ICS. If there is a firewall between your machine and the ICS, this won't work. Here are some recipes for getting around common kinds of firewalls using special options to WinBoard. Important: See the paragraph in the LIMITATIONSLIMITATIONS section below about extra echoes.

Suppose that you can't telnet directly to ICS, but you can telnet to a firewall host, log in, and then telnet from there to ICS. Let's say the firewall is called fire.wall.com. Set command-line options as follows:

WinBoard -ics -icshost fire.wall.com -icsport 23

Then when you run WinBoard in ICS mode, you will be prompted to log in to the firewall host. (This works because port 23 is the standard telnet login service.) Do so, then telnet to ICS, using a command like "telnet chessclub.com 5000", or whatever command the firewall provides for telnetting to port 5000.

If your firewall lets you telnet (or rlogin) to remote hosts, but doesn't let you telnet to port 5000, you will have to find some other host outside the firewall that does let you do this, and hop through it. For instance, suppose you have an account at foo.edu. Follow the recipe above, but instead of typing "telnet chessclub.com 5000" to the firewall, type "telnet foo.edu" (or "rlogin foo.edu"), log in there, and then type "telnet chessclub.com 5000".

Exception: chessclub.com itself lets you connect to the chess server on the default telnet port (23), which is what you get if you don’t specify a port to the telnet program. But the other chess servers don’t allow this.

Suppose that you can't telnet directly to ICS, but you can use rsh to run programs on a firewall host, and that host can telnet to ICS. Let's say the firewall is called rsh.wall.com. Set command-line options as follows:

WinBoard -ics -gateway rsh.wall.com -icshost chessclub.com

Then when you run WinBoard in ICS mode, it will connect to the ICS by using rsh to run the command "telnet chessclub.com 5000" on host rsh.wall.com.

ICC timestamp and FICS timeseal do not work through many firewalls. You can use them only if your firewall gives a clean TCP connection with a full 8-bit wide path. If your firewall allows you to get out only by running a special telnet program, you can't use timestamp or timeseal across it. But if you have access to a computer just outside your firewall, and you have much lower netlag when talking to that computer than to the ICS, it might be worthwhile running timestamp there. Follow the instructions above for hopping through a host outside the firewall (foo.edu in the example), but run timestamp or timeseal on that host instead of telnet.

Suppose that you have a SOCKS firewall that requires you to go through some extra level of authentication, but after that will give you a clean 8-bit wide TCP connection to the chess server. In that case, if you are using timestamp or timeseal, you need to somehow socksify it; if not, you need to socksify WinBoard itself. Socksification is beyond the scope of this document, but see the SOCKS Web site at http://www.socks.nec.com/how2socksify.html.

K#$+ LIMITATIONS

WinBoard is a Win32 application. It runs only on Windows NT and Windows 95. It does not work on Windows 3.11 or earlier, even with the Win32s compatibility package.

CMail, the companion program to xboard for playing electronic mail correspondence chess, has not been ported to Win32.

There is no way for two people running copies of WinBoard to play each other without going through the Internet Chess Server.

Under some circumstances, your ICS password may be echoed when you log on.

If you are connecting to the ICS by running telnet, timestamp, or timeseal on an Internet provider host, you may find that each line you type is echoed back an extra time after you hit Enter. You can probably turn this echo off. If your Internet provider is a Unix system, type "stty -echo" after you log in to the provider but before you run telnet, timestamp, or timeseal. In addition, you may need to type the sequence “Ctrl+Q Ctrl+E Enter“ after you have finished logging in to ICS. On VMS, type “set terminal /noecho /nowrap”, and after you telnet to the ICS, type “Ctrl+Q Ctrl+] Enter set mode char Enter Enter”. It is a good idea to turn off the extra remote echo if you can, because otherwise it can get interleaved with output from the ICS and confuse WinBoard's parsing routines. Don’t just turn off Local Line EditinglocalLineEditing so that you see only the remote echo and not the local one; that will make the interleaving problem worse.

The game parser recognizes only algebraic notation.

The internal move legality tester does not look at the game history, so in some cases it misses illegal castling or en passant captures. It permits castling with the king on the d file because this is possible in some "wild 1" games on ICS. It does not check piece drops in bughouse to see if you actually hold the piece you are trying to drop. However, if you attempt an illegal move when using a chess engine or the ICS, WinBoard will accept the error message that comes back, undo the move, and let you try another. Warning: this feature currently does not work with Crafty. If you make an illegal castling move, WinBoard will get out of synch with Crafty.

FEN positions saved by WinBoard do not include correct information about whether castling or en passant are legal.

The mate detector does not understand that non-contact mate is not really mate in bughouse. The only problem this causes while playing is minor: a "#" (mate indicator) character will show up after a non-contact mating move in the move list. WinBoard will not assume the game is over at that point.

Edit Game mode always uses non-bughouse rules. Although you can load and edit games that contain piece drops, the piece menus are not active, so you cannot insert piece drops. Also, WinBoard thinks an edited game is over when a mating move is inserted, even if the mate is non-contact.

FischeRandom castling is not supported.

The ICS logonICSLogon file does not work properly when you connect to ICS through a Unix gateway host by setting icsPorticsPort to 23. The Unix login process apparently discards type-ahead.

Some WinBoard functions may not work with versions of GNU Chess earlier than 4.0, patchlevel 73. The current version of WinBoard works best with Crafty version 12.0 or later.

K#$+ AUTHORS AND CONTRIBUTORS

WinBoard is partly based on xboard, a chessboard program for Unix and the X Window System. Tim Mann has been responsible for all versions of WinBoard, and for xboard versions 1.3 and beyond. Chris Sears and Dan Sears wrote the original xboard. They were responsible for xboard versions 1.0 through 1.2.

Hugh Fischer added piece animation to xboard, and Henrik Gram added it to WinBoard. Frank McIngvale contributed many xboard user interface improvements and improved Crafty support. Jochen Wiedmann ported xboard to the Amiga, creating AmyBoard, and converted the documentation to texinfo. Elmar Bartel contributed the new piece bitmaps for version 3.2. Evan Welsh wrote CMail. John Chanak contributed the initial implementation of ICS mode. The color scheme and the old 80x80 piece bitmaps (available in the WinBoard distribution in subdirectory "bitmaps.xchess") were taken from Wayne Christopher's XChess program.

Send bug reports to <bug-gnu-chess@prep.ai.mit.edu>. Please run WinBoard with the /debug option and include the output from the resulting WinBoard.debug file in your message.

K#$+ COPYRIGHT

Copyright 1991 by Digital Equipment Corporation, Maynard, Massachusetts.
Enhancements Copyright 1992-98 Free Software Foundation, Inc.

WinBoard's alternative piece bitmaps (bitmaps.xchess) are derived from the bitmaps in the XChess program, which was written and is copyrighted by Wayne Christopher.

The following terms apply to Digital Equipment Corporation's copyright interest in WinBoard:

All Rights Reserved

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and this permission notice appear in supporting documentation, and that the name of Digital not be used in advertising or publicity pertaining to distribution of the software without specific, written prior permission.

DIGITAL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL DIGITAL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

The following terms apply to the enhanced version of WinBoard distributed by the Free Software Foundation:

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

+ main

$ Contents

Contents

K Contents

K Description

Description

K move

move

K icon

icon

K Menus

Menus

$ Menus

+ main

KFile Menu

#FileMenu

$File Menu

+ main

K Reset

Reset

K Load Game

LoadGame

K Load Next Game

LoadNextGame

K Load Previous Game

LoadPreviousGame

K Reload Same Game

ReloadSameGame

K Save Game

SaveGame

K Load Position

LoadPosition

K Load Next Position

LoadNextPosition

K Load Previous Position

LoadPreviousPosition

K Reload Same Position

ReloadSamePosition

K Save Position

SavePosition

K Exit

Exit

K Mode Menu

ModeMenu

$ Mode Menu

+ main

K Machine White

MachineWhite

K Machine Black

MachineBlack

K Two Machines

TwoMachines

K Analysis Mode

AnalysisMode

K Analyze File

AnalyzeFile

K ICS Client

ICSClient

K Edit Game

EditGame

K Edit Position

EditPosition

K Show Game List

ShowGameList

K Edit Tags

EditTags

K Edit Comment

EditComment

K Pause

Pause

K Action Menu

ActionMenu

$ Action Menu

+ main

K Accept

Accept

K Decline

Decline

K Rematch

Rematch

K Call Flag

CallFlag

K Draw

Draw

K Adjourn

Adjourn

K Abort

Abort

K Resign

Resign

K Stop Observing

StopObserving

K Stop Examining

StopExamining

K Step Menu

StepMenu

$ Step Menu

+ main

K Backward

Backward

K Forward

Forward

K Back to Start

BacktoStart

K Forward to End

ForwardtoEnd

K Revert

Revert

K Truncate Game

TruncateGame

K Move Now

MoveNow

K Retract Move

RetractMove

K Options Menu

OptionsMenu

$ Options Menu

+ main

K Always On Top

AlwaysOnTop

K Always Queen

AlwaysQueen

K Animate Dragging

AnimateDragging

K Animate Moving

AnimateMoving

K Auto Comment

AutoCommentCmd

K Auto Flag

AutoflagCmd

K Auto Observe

AutobsCmd

K Flip View

FlipView

K Get Move List

GetMoveListCmd

K Highlight Dragging

HighlightDragging

K Highlight Last Move

HighlightLastMove

K Local Line Editing

LocalLineEditing

K Periodic Updates

PeriodicUpdatesCmd

K Popup Move Errors

PopupMoveErrorsCmd

K Quiet Play

QuietPlayCmd

K Show Coords

ShowCoordsCmd

K Show Thinking

ShowThinkingCmd

K Test Legality

TestLegalityCmd

K Board Size

BoardSizeCmd

K Board Colors

BoardColors

K ICS Interaction Colors

ICSInteractionColors

K Fonts

Fonts

K Sounds

Sounds

K Move Sound

MoveSound

K Communications

Communications

K Load Game

LoadGameOptns

K Save Game

SaveGameOptns

K Time Control

TimeControlCmd

K Save Settings Now

SaveSettings

K Save Settings on Exit

SaveSettingsOnExit

K Help Menu

HelpMenu

$ Help Menu

+ main

K Help Contents

HelpContents

K Search for Help on

SearchHelp

K How to Use Help

HelpHelp

K Hint

Hint

K Book

Book

K About WinBoard

AboutWinBoard

K ICS Interaction Context Menu

ICSInteractionContextMenu

$ ICS Interaction Context Menu

+ main

K Copy and Paste

CopyAndPaste

K Copy

Copy

K Paste

Paste

K Tell

Tell

K Message

Message

K Finger

Finger

K Vars

Vars

K Observe

Observe

K Match

Match

K Buttons

Buttons

$ Buttons

+ main

K Back to Start

K Backward

K Pause

K Forward

K Forward to End

K Command Line Options

K Options

Options

$ Command Line Options

+ main

K Chess Engine Options

$ Chess Engine Options

ChessEngineOptions

+ main

K cp

cp

K chessProgram

chessProgram

K tc

tc

K timeControl

timeControl

K mps

mps

K movesPerSession

movesPerSession

K inc

inc

K timeIncrement

timeIncrement

K clock

clock

K clockMode

clockMode

K st

st

K searchTime

searchTime

K sd

sd

K searchDepth

searchDepth

K thinking

thinking

K showThinking

showThinking

K periodic

periodic

K periodicUpdates

periodicUpdates

K mg

mg

K matchGames

matchGames

K mm

mm

K matchMode

matchMode

K fd

fd

K firstDirectory

firstDirectory

K sd

sd

K secondDirectory

secondDirectory

K fcp

fcp

K firstChessProgram

firstChessProgram

K scp

scp

K secondChessProgram

secondChessProgram

K fh

fh

K firstHost

firstHost

K sh

sh

K secondHost

secondHost

K initString

initString

K secondInitString

secondInitString

K fb

fb

K firstPlaysBlack

firstPlaysBlack

K reuse

reuse

K reuseChessPrograms

reuseChessPrograms

+ main

K Internet Chess Server Options

$ Internet Chess Server Options

InternetChessServerOptions

K ics

ics

K internetChessServerMode

internetChessServerMode

K icshost

icshost

K internetChessServerHost

internetChessServerHost

K icsport

icsport

K internetChessServerPort

internetChessServerPort

K via

via

K timestamp

K timeseal

K telnet

telnet

K useTelnet

useTelnet

K gateway

gateway

K telnetProgram

telnetProgram

K icscom

icscom

K internetChessServerComPort

internetChessServerComPort

K comPortSettings

comPortSettings

K icslogon

icslogon

K internetChessServerLogonScript

internetChessServerLogonScript

K autocomm

autocomm

K autoComment

autoComment

K autoflag

autoflag

K autoCallFlag

autoCallFlag

K autobs

autobs

K autoObserve

autoObserveCmd

K moves

moves

K getMoveList

getMoveList

K edit

edit

K localLineEditing

localLineEditingOption

K quiet

quiet

K quietPlay

quietPlay

+ main

K Load and Save Options

$ Load and Save Options

LoadandSaveOptions

K lgf

lgf

K loadGameFile

loadGameFile

K lgi

lgi

K loadGameIndex

loadGameIndex

K td

td

K timeDelay

timeDelay

K sgf

sgf

K saveGameFile

saveGameFile

K autosave

autosave

K autoSaveGames

autoSaveGames

K lpf

lpf

K loadPositionFile

loadPositionFile

K lpi

lpi

K loadPositionIndex

loadPositionIndex

K spf

spf

K savePositionFile

savePositionFile

K oldsave

oldsave

K oldSaveStyle

oldSaveStyle

+ main

K User Interface Options

$ User Interface Options

UserInterfaceOptions

K top

top

K alwaysOnTop

alwaysOnTopOpt

K queen

queen

K alwaysPromoteToQueen

alwaysPromoteToQueen

K drag

drag

K animateDragging		

animateDraggingOpt

K animate

animate

K animateMoving		

animateMovingOpt

K flip

flip

K flipView

flipViewOption

K highdrag

highdrag

K highlightDragging		

highlightDraggingOpt

K highlight

highlight

K highlightLastMove		

highlightLastMoveOpt

K popup

popup

K popupMoveErrors

popupMoveErrorsOpt

K coords

coords

K showCoords

showCoords

K legal

legal

K testLegality

testLegality

K size

size

K boardSize

boardSize

K whitePieceColor

whitePieceColor

K blackPieceColor

blackPieceColor

K lightSquareColor

lightSquareColor

K darkSquareColor

darkSquareColor

K grayscale

grayscale

K mono

mono

K monoMode

monoMode

K colorShout

colorShout

K colorSShout

colorSShout

K colorChannel1

colorChannel1

K colorChannel

colorChannel

K colorKibitz

colorKibitz

K colorTell

colorTell

K colorChallenge

colorChallenge

K colorRequest

colorRequest

K colorNormal

colorNormal

K colorBackground

colorBackground

K colorize

colorize

K colorizeMessages

colorizeMessages

K clockFont

clockFont

K messageFont

messageFont

K coordFont

coordFont

K tagsFont

tagsFont

K commentFont

commentFont

K icsFont

icsFont

K soundShout

soundShout

K soundSShout

soundSShout

K soundChannel1

soundChannel1

K soundChannel

soundChannel

K soundKibitz

soundKibitz

K soundTell

soundTell

K soundChallenge

soundChallenge

K soundRequest

soundRequest

K soundNormal

soundNormal

K soundMove

soundMove

K soundBell

soundBell

K icsMenu

icsMenu

K icsNames

icsNames

K firstChessProgramNames

firstChessProgramNames

K secondChessProgramNames

secondChessProgramNames

K xy coordinates of board

xy

K xywh coordinates of Analysis window

xywh

K xywh coordinates of Comment window

xywh

K xywh coordinates of Game List window

xywh

K xywh coordinates of ICS Interaction window

xywh

K xywh coordinates of Tags window

xywh

+ main

K Other Options

$ Other Options

OtherOptions

K ncp

ncp

K noChessProgram

noChessProgram

K debug

debug

K debugMode

debugMode

K rsh

rsh

K remoteShell

remoteShell

K ruser

ruser

K remoteUser

remoteUser

K ini

ini

K settingsFile

settingsFile

Kat sign

atsign

K Initialization files

K Files

$ Files

Files

+ main

K Settings

Settings

K ICS Logon

ICSLogon

K Firewalls

Firewalls

$ Firewalls

+ main

K Limitations

Limitations

$ Limitations

+ main

K Authors

Authors

$ Authors

+ main

K Copyright

Copyright

$ Copyright

+ main

