
NAME
archive_write — functions for creating archives

LIBRARY
Streaming Archive Library (libarchive, -larchive)

SYNOPSIS
#include <archive.h>

DESCRIPTION
These functions provide a complete API for creating streaming archive files. Thegeneral process is to first
create thestruct archive object, set any desired options, initialize the archive, append entries, then close the ar-
chive and release all resources.

Create archive object
Seearchive_write_new(3).

To write an archive, you must first obtain an initializedstruct archive object fromarchive_write_new().

Enable filters and formats, configure block size and padding
See archive_write_filter(3), archive_write_format(3) and
archive_write_blocksize(3).

You can then modify this object for the desired operations with the variousarchive_write_set_XXX()
functions. In particular, you will need to invoke appropriate archive_write_add_XXX() and
archive_write_set_XXX() functions to enable the corresponding compression and format support.

Set options
Seearchive_read_set_options(3).

Open archive
Seearchive_write_open(3).

Once you have prepared thestruct archive object, you callarchive_write_open() to actually open the
archive and prepare it for writing.There are several variants of this function; the most basic expects you to
provide pointers to several functions that can provide blocks of bytes from the archive. There are con-
venience forms that allow you to specify a filename, file descriptor, FILE ∗ object, or a block of memory
from which to write the archive data.

Produce archive
Seearchive_write_header(3) andarchive_write_data(3).

Individual archive entries are written in a three-step process: You first initialize astruct archive_entrystructure
with information about the new entry. At a minimum, you should set the pathname of the entry and provide
a struct stat with a valid st_mode field, which specifies the type of object andst_size field, which specifies
the size of the data portion of the object.

Release resources
Seearchive_write_free(3).

After all entries have been written, use thearchive_write_free() function to release all resources.

EXAMPLE
The following sketch illustrates basic usage of the library. In this example, the callback functions are simply
wrappers around the standardopen(2),write(2), andclose(2) system calls.

#ifdef __linux__
#define _FILE_OFFSET_BITS 64
#endif
#include <sys/stat.h>

BSD February2, 2012 1

ARCHIVE_WRITE (3) BSD Library Functions Manual ARCHIVE_WRITE (3)

#include <archive.h>
#include <archive_entry.h>
#include <fcntl.h>
#include <stdlib.h>
#include <unistd.h>

struct mydata {
const char ∗ name;
int fd;

};

int
myopen(struct archive ∗ a, void ∗ client_data)
{
struct mydata ∗ mydata = client_data;

mydata->fd = open(mydata->name, O_WRONLY | O_CREAT, 0644);
if (mydata->fd >= 0)
return (ARCHIVE_OK);

else
return (ARCHIVE_FATAL);

}

ssize_t
mywrite(struct archive ∗ a, void ∗ client_data, const void ∗ buff, size_t n)
{
struct mydata ∗ mydata = client_data;

return (write(mydata->fd, buff, n));
}

int
myclose(struct archive ∗ a, void ∗ client_data)
{
struct mydata ∗ mydata = client_data;

if (mydata->fd > 0)
close(mydata->fd);

return (0);
}

void
write_archive(const char ∗ outname, const char ∗∗ filename)
{
struct mydata ∗ mydata = malloc(sizeof(struct mydata));
struct archive ∗ a;
struct archive_entry ∗ entry;
struct stat st;
char buff[8192];
int len;
int fd;

BSD February2, 2012 2

ARCHIVE_WRITE (3) BSD Library Functions Manual ARCHIVE_WRITE (3)

a = archive_write_new();
mydata->name = outname;
archive_write_add_filter_gzip(a);
archive_write_set_format_ustar(a);
archive_write_open(a, mydata, myopen, mywrite, myclose);
while (∗ filename) {
stat(∗ filename, &st);
entry = archive_entry_new();
archive_entry_copy_stat(entry, &st);
archive_entry_set_pathname(entry, ∗ filename);
archive_write_header(a, entry);
if ((fd = open(∗ filename, O_RDONLY)) != -1) {
len = read(fd, buff, sizeof(buff));
while (len > 0) {
archive_write_data(a, buff, len);
len = read(fd, buff, sizeof(buff));

}
close(fd);

}
archive_entry_free(entry);
filename++;

}
archive_write_free(a);

}

int main(int argc, const char ∗∗ argv)
{
const char ∗ outname;
argv++;
outname = argv++;
write_archive(outname, argv);
return 0;

}

SEE ALSO
tar(1),libarchive(3),archive_write_set_options(3),cpio(5),mtree(5),tar(5)

HISTORY
Thelibarchive library first appeared inFreeBSD5.3.

AUTHORS
Thelibarchive library was written by Tim Kientzle〈kientzle@acm.org〉.

BUGS
There are many peculiar bugs in historic tar implementations that may cause certain programs to reject ar-
chives written by this library. For example, several historic implementations calculated header checksums
incorrectly and will thus reject valid archives; GNU tar does not fully support pax interchange format; some
old tar implementations required specific field terminations.

The default pax interchange format eliminates most of the historic tar limitations and provides a generic
key/value attribute facility for vendor-defined extensions. Oneoversight in POSIX is the failure to provide a
standard attribute for large device numbers. This library uses “SCHILY.devminor” and “SCHILY.devmajor”

BSD February2, 2012 3

ARCHIVE_WRITE (3) BSD Library Functions Manual ARCHIVE_WRITE (3)

for device numbers that exceed the range supported by the backwards-compatible ustar header. These keys
are compatible with Joerg Schilling’s star archiver. Other implementations may not recognize these keys
and will thus be unable to correctly restore device nodes with large device numbers from archives created by
this library.

BSD February2, 2012 4

