Using GPS

The GNAT Programming Studio

Version 5.0.1
Document revision level 168780
Date: 2011/01/05

AdaCore

Copyright (© 2001-2011, AdaCore.

Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.1 or any later version
published by the Free Software Foundation; with the Invariant Sections being
“GNU Free Documentation License”, with the Front-Cover Texts being “Using
the GNAT Programming Studio”, and with no Back-Cover Texts. A copy of the
license is included in the section entitled “GNU Free Documentation License”.

Table of Contents

1 Introduction........cooeeeieeeeeeeeeescocsscscannseses 1l

2 Description of the Main Windows 3

2.1 The Welcome Dialog. ...t 3
22 TheTipofthe Day.......ooiiriiiii e 5
23 TheMenuBar. ... e 5
24 TheTool Bar....... ..o i 6
25 The Work Space.........cooiiiiiiiiii i 6
2.6 The Project View 6

2.6.1 The configuration variables.................cccoiiiiiii ... 9

2.6.2 Icons for source language entities.............................. 10
2.7 TheFile VieW e 12
2.8 TheEntity View e 14
2.9 The Window VieW.couiiiiiiiiiii it iieanens 14
2.10 The Outline View....... ..ot 15
2.11 The Clipboard View.oiriiiniii it iie i 16
2.12 The Callgraph View ..ot 17
2.13 BooKmarks ... 18
2.14 The Messages Window.oouiiiiiiiiiiiii i aieannn.. 18
2.15 The Shell and Python Windows..................coiiiiiiiia..... 19
2.16 The Locations View.........c.iiiiiiitiiiiiiii it ieiiieiiaaenns 20
2.17 The Execution Window ...t 21
218 TheStatus Line....... ...t 21
2.19 The Task Manager...........oooviiiiiiii it i 22

3 OnlineHelp......ccoviiiiiiiiiiiiiiiiineeeennnnneess 23

3.1 TheHelp Menu......o.oouuiiiniiiii i i 23
3.2 AddingNew HelpFiles.........ccoiiiiiiiiiii i 24

4 Multiple Document Interface...................... 25

4.1 Selecting Windows.c.viriiiiiiiiii it 25
4.2 Closing WindowWs.ottt et e 25
4.3 Splitting Windowst 26
4.4 Floating Windows.ttt 27
4.5 Moving Windows. ..ot it 27
4.6 Perspectives. ...t 28

Using the GNAT Programming Studio

5

ii

Editing Files.......ccciiiiiiiiiiiiiiiieeeeeneeenaess 31
5.1 General Information.............. i 31
5.2 Editing Sources........c.oiiriiiiii i 36

5.2.1 Keybindings...........cooiiiiiiiiiiiii it 36
5.3 TheFile Selector........ ..ot 37
54 Menultems.ot 38

541 TheFileMenu..........oooiiiiiiiiiii i, 38

542 TheEdit Menu.............oiiiiiiiiii i 42
55 Rectangles.........coooiiiiiiiiii 48
5.6 Recording and replaying macros..............coviiiiiiiniiennnnnnn.. 50
5.7 Contextual Menus for Editing Files................................. 50
5.8 Handling of case exceptions.oviiiiiiiiiiiiiiieannn.. 51
5.9 Refactoring..........o.oiiiiiiiii i 52

59.1 Rename Entity............coiiii i 53

5.9.2 Name Parameters............ccoiiiiiiiiiiiiiiii i 53

5.9.3 Extract Subprogram............. ..o 53
5.10 Using an External Editor............ it 58
511 Usingthe Clipboard........ ... it 60
512 Saving Files 60
513 Remote Files...... ..o e 61

Source Navigation........ccoovvvvvveenecsesscssesss 65

6.1 Support for Cross-References................ccoiiiiiiiiii ... 65
6.1.1 Loading xrefinfoinmemory....................cccviiiin ... 66
6.1.2 Adaxrefsheuristics..............oiiiiiii i 66

6.2 The Navigate Menu.............c.oiiiiiiiiiiii it 66

6.3 Contextual Menus for Source Navigation........................... 68

6.4 Navigating with hyperlinks................ i i ... 72

6.5 Highlighting dispatchingcalls.......................coiiiiiii.... 73

Project Handlingccciiiiiiiiiiiinnnnn. 78

7.1 Description of the Projects.................o i 75
7.1.1 Project filesand GNAT tools............ccoviiiiiiii ... 75
7.1.2 Contents of project files...........cooiiiii .. 76

7.2 Supported Languages.couiiiiii i 78

7.3 Scenarios and Configuration Variables.............................. 78
7.3.1 Creating new configuration variables.......................... 79
7.3.2 Editing existing configuration variables....................... 81

7.4 Extending Projects............c.oiiiiiiiiiiiiiii i 82
7.4.1 Description of extending projectscccviiiii... 82
7.4.2 Creating extending projects.................ccoiiiiiiiiiinn... 82
7.4.3 Adding files to extending projects................ 82

7.5 The Project View.o e 83

7.6 Disabling Project Edition Features.................................. 84
7.7 TheProject Menu..........cooiiiiiii e 85
7.8 The Project Wizard.t 86
T.8.1 Project Type.uoit i e e 88
7.8.2 Project Namingooiiiiiiiiiiiiiii i 88
7.8.3 Languages Selection.................... i 89
7.8.4 VCS Selection........cooviiiiiiiiii i 89
7.8.5 Source Directories Selection.........................oiii.l. 89
7.8.6 Build Directorycooiiiiiiiiiiiii e 90
T7.87 Main Units.... ..ot e 90
T.8.8 Labrary.......cooiiiiiii i 90
7.8.9 Naming Scheme.............co i, 91
T.8.10 Switches. ... 93
7.9 The Project Dependencies Editorcoin... 95
7.10 The Project Properties Editor................t 97
7.11 The Switches Editor............ i 99
7.12 The Project Browser. ...t 100

8 Searching and Replacing......................... 103

9 Compilation/Build..............ccciiiiieeeeenna... 109

91 TheBuildMenu............oii i i 109
9.2 The Target Configuration Dialog.................................. 112
9.2.1 TheTargetstree.......c.c.ovviiriiiiiii .. 113
9.2.2 The configurationpanel................. ..., 114
9.2.3 Background compilations....................oiiiia 115
9.3 TheBuild Mode. ... e 115
9.4 Working with two compilers...................... 116
9.4.1 Interaction with the remotemode 117

10 Source Browsing...........cceeeveeeeenecceneee.. 119

10.1 General ISSUES.ottt 119
10.2 Call Graph 121
10.3 Dependency Browser.............ccoiiiiiiiiiiii i, 123
10.4 Entity Browser. ...t e 126

iii

Using the GNAT Programming Studio

11 Debugging......ccceevieieinieereneecceccecenaeees 129

11.1 TheDebug Menu..........couuiiriiiiii it 129
1111 Debug .o e 130
11.1.2 Data. ..o e e e e 131

11.2 The Call Stack Window.............ciiiiiiiiiiiiiiiiiii i, 133

11.3 TheData Window............coiiiiiiiiiiiii i 134
11.3.1 Description........c.oiiiiiiieiiii ittt e 134
11.3.2 Manipulatingitemsoiiiiiiiiii i 137

11.3.2.1 Moving items......covuiiiiiiii i 138
11.3.2.2 CO0l0rs. oottt e e 138
11.3.2.83 ICOMS. . oneti i e e e e 139

11.4 The Breakpoint Editor................co i 139
11.4.1 Scope/Action Settings for VxWorks AE 141

11.5 The Memory Window...........coiiiiiiiiiii i, 142

11.6 Using the Source Editor when Debugging........................ 143

11.7 The Assembly Window ..., 145

11.8 The Debugger Console..........c.coouiiiiiiiiii i, 147

11.9 Customizing the Debugger.............. 148

12 Version Control System...................ccc..... 151

12.1 The VCS ExXplorer....... ..ottt aens 152
12.2 The VCS Activities e 155
12.3 The VCS MenU.ouuiiit i e 158
12.4 The Version Control Contextual Menu.................coovvnn... 159
12.5 Working with global ChangeLogfile.............................. 163
12.6 The Revision View.oiiiiiiiiiiii e 164

13 A 0 Yo Y £ 1

iv

13.1 TheTools Menuovuiiuiiiiii i eiieiaeanns 167
13.2 Coding Standardcoiiiiiiiiiiii i 169
13.3 Visual CompariSonouuiiiiiiriiii ittt 170
134 Code Fixing. ..ot e e 171
13.5 Documentation Generation.......................ccciiiiiii.... 172
13.6 MetriCS . ..ottt e e e 176
13.6.1 The Metrics Menu...........cooiniiiiiiiit i, 176
13.6.2 The Contextual Menu...................oiiiiiiiiiii .. 176
13.7 Code CoVerage.vvuitiie ittt 177
13.7.1 Coverage Menu.ouviriiiiiii i, 177
13.7.2 The Contextual Menu................oiiiiiiiiiiiianan... 178
13.7.3 The Coverage Report............ooiiiiiiiiiiiiinn.n. 179
13.8 Stack Analysis..........c.iiiiiiiiiii i 180
13.8.1 The Stack AnalysisMenu...................ccoiiiiiinenn... 181

13.8.2 The Contextual Menu..................oiiiiiiiiiiii ... 181
13.8.3 The Stack Usage Report............. ..., 181
13.8.4 The Stack Usage Editor..................cooiiiiiiii ... 182

14 Working in a Cross Environment............... 183
14.1 Customizing your Projects............ ..., 183
14.2 Debugger ISSUes. ..ottt 184

15 Using GPS for Remote Development........... 185

15.1 Requirementscoiiiiiiiiiiiiiiii ittt 185
15.2 Setup the remote servers..............ccoiiiiiiiiiiiiiiiiinan.. 185
15.2.1 The remote configuration dialog............................. 186
15.2.2 Connection settings............cooiiiiiiiiiiiiiiiiaiean.. 187
15.2.3 Pathssettings...........cooiiiiiiiiiii i 188
15.3 Setup aremote project..............ooiiiiiiiiiii i 189
15.3.1 Remote operations...........coiiiiiiiiiiiiii i 189
15.3.2 Theremote VIEW.........oouiiiiiiit it 190
15.3.3 Loading aremote project..............ccviiiiiiiiiiii... 191
154 Limitations.o.onuinuini i e e 191

16 Customizing and Extending GPS............... 193

16.1 The Preferences Dialog..............coiiiiiii .. 193
16.2 GPS Themes.o.oiiiii i et 215
16.3 The Key Manager Dialog.................coiiiiiiiiiiiiiiinann. 216
16.4 The Plug-ins Editor............ i 217
16.5 Customizing through XML and Python files...................... 218
16.5.1 Customization filesand plugins............................. 218
16.5.1.1 Pythonfiles................iii i 220
16.5.1.2 XML fileS....ouiuiitiii e 221
16.5.2 Defining Actions..........ciiiiiiiiiiii i, 222
16.5.3 Macro arguments............cooitiiiiiiiiiiiii i, 227
16.5.4 Filtering actions...........c.ovuiiieiiiiii i ienneann. 233
16.5.4.1 Thefilterstags.........coiiiiiiiiiiii i 233
16.5.,5 Adding new menus..............oiuiiiiiiiiiiniianinannnaan. 236
16.5.6 Adding contextual menus.................... 239
16.5.7 Adding tool bar buttons i, 240
16.5.8 Binding actionstokeys.......... ... 241
16.5.9 Preferences support in custom files.......................... 242
16.5.9.1 Creating new preferences....................coovvinn... 242
16.5.9.2 Setting preferences values.............................. 244
16.5.10 Creatingthemes................oiiiiiiiiiiiiiii .. 245
16.5.11 Defining new search patterns.............................. 246

Using the GNAT Programming Studio

vi

16.5.12 Adding support for new languages......................... 247
16.5.13 Definingtextaliases..............coiiiiiiiiiiiiiiin... 252
16.5.14 Aliasesfiles.........oiuiiiiiiiii i 254
16.5.15 Defining project attributes...................ccocoiiiiaL. 255
16.5.15.1 Declaring the new attributes.......................... 256
16.5.15.2 Declaring the type of the new attributes.............. 258
16.5.15.3 Examples.........ccoiiiiiiiiiiiiii it 261
16.5.15.4 Accessing the project attributes....................... 263
16.5.16 Adding casing exceptions...........vviriiiniiieeenininennns 264
16.5.17 Adding documentation.................o, 264
16.5.18 Adding stockicons.............ciiiiiiiiiiii 266
16.5.19 Remote programming customization....................... 267
16.5.19.1 Defining a remote connection tool..................... 267
16.5.19.2 Definingashell................. 269
16.5.19.3 Configuring rsync uSage.cuveeeneeenneennens. 270
16.5.19.4 Definingaremoteserver...............cc.ovvveineenn.. 270
16.5.19.5 Defining a remote path translation.................... 271
16.5.20 Customizing build Targets and Models..................... 272
16.5.20.1 Defining new Target Models........................... 272
16.5.20.2 Definingnew Targets.............coiiiiiiiiiiin.n. 273
16.5.20.3 Definingnew Modes.............cccvvviiiiiinnennan... 274
16.5.21 Toolchains customization................................... 275
16.6 Adding support fornew tools..............o i, 276
16.6.1 Defining supported languages............................... 277
16.6.2 Defining default command line.............................. 278
16.6.3 Defining tool switches............ ..., 278
16.6.4 Executing externaltools................. 285
16.6.4.1 Chainingcommands...............ccoviiiiiiieennnennn.. 285
16.6.4.2 Saving open Windows............cuvieiiieennennneannn.. 286
16.6.4.3 Querying project switches.............................. 286
16.6.4.4 Querying switches interactively........................ 287
16.6.4.5 Redirecting the command output....................... 288
16.6.4.6 Processing the tooloutput.............................. 288
16.7 Customization examples...............ciiiiiiiiiiiiii i 290
16.7.1 Menu example........oouiiiiiiiiiiiii i 290
16.7.2 Tool exampleot 291
16.8 Scripting GPS e 291
16.8.1 SCrIPtS. .ottt 291
16.8.2 Scriptsand GPS actions.................... i, 293
16.8.3 The GPSShell.........coiiiiii i 293
16.8.4 The Python Interpreter.............. ... it 294
16.8.5 Pythonmodules................cooiiiiiiiiiiiiiiii.. 295
16.8.6 Subprogram parameters...............oiiiiiiiiiiiiiiiinn... 297

16.8.7 Python FAQ...... ... 301

16.8.7.1 Hello World! inpython................................. 301
16.8.7.2 Spawning external processes.............cooiiiiiiinnn. 301
16.8.7.3 Redirecting the output of spawned processes........... 302
16.8.7.4 Contextual menus on object directories only............ 303
16.8.7.5 Redirecting the output to specific windows............. 304
16.8.7.6 Reloading a python filein GPS......................... 305
16.8.7.7 Printing the GPS Python documentation............... 306
16.8.7.8 Automatically loading python files at startup.......... 306
16.8.7.9 Hiding contextual menus......................c..ouo... 307
16.8.7.10 Creating custom graphical interfaces................. 307
16.8.8 HOOKS. ..ottt 307
16.8.8.1 Adding commands to hooks............................. 308
16.8.8.2 Action hookS.........cooiiiiiiii i 309
16.8.8.3 Running hooksccoiiiiiiiiiiiiiinnn.. 310
16.8.8.4 Creatingnew hooks...................ciiiiiiiiia.. 310

16.9 Adding support for new Version Control Systems................ 312
16.9.1 Custom VCSinterfaces............cooiiiiiiiiiiiiiiinan... 312
16.9.2 Describing a VCS. i 312
16.9.2.1 TheVCSnode.........ouviiiiiiiiiiiiiiiiiiiiiaennn. 312
16.9.2.2 Associating actions to operations....................... 314
16.9.2.3 Defining revision information.......................... 315
16.9.2.4 Definingstatus................. i 315
16.9.2.5 Output parsers.........c.coeviiiiiiiiiiiiieannn.. 316
16.9.3 Implementing VCS actions.................ccooiiiiiiiiannn. 318
16.10 The Server Mode.oouiniiiiii i 321
16.11 Adding project templates................oiiiiiiiii 323

17 ENvIronment......cooeeeeeeeeeeeesescescscnncseses 32D

17.1 Command Line Options..........c.c.oviiriiiiiie ... 325
17.2 Environment Variables....................o i 325
17.3 Running GPSon MacOSX. ...t 326
174 FIleS. .ot 327
17.5 Reporting Suggestionsand Bugs................................. 330
17.6 Solving Problems........ ..ot 330

Appendix A GNU Free Documentation License .. 335

| s o = <SR, 7 3

vii

Using the GNAT Programming Studio

Chapter 1: Introduction

1 Introduction

GPS is a complete integrated development environment that gives access to a
wide range of tools and integrates them smoothly.

GPS gives access to built-in file editing; HTML based help system; com-
plete compile/build/run cycle; intelligent source navigation; project manage-
ment; general graph technology giving access to many different browsers such
as source dependency, project dependency, call graphs, entity view, etc. . .; fully
integrated visual debugger; generic version control system, providing access
to CVS, Subversion, ClearCase, GIT, and any other via xml plug-ins; many
other tools such as a visual comparison, automatic generation of files, source
reformatting.

GPS is fully customizable, providing several levels of customizations: a first
level, available through the preferences and key manager dialogs; a second level,
which allows you to customize your menu items, tool bar and key bindings; a
third level, which allows you to automate processing through scripts (via xml
and python scripting). See Chapter 16 [Customizing and Extending GPS],
page 193 for more details.

GPS also interacts with most versions of command-line tools such as gcc,
gdb, gnatmake, gprbuild, gcov, etc. . .

‘& GPS - (GPS project) - ves_module.adb (=R
File Edit MNavigate VCS Project Build Debug Tools Window Help @
DoB 9e B [AAae> &
[ER[B C:\unix\atic+gos ops HEAD ves brclves _modue. adb.
B 8ees = | are File_Filter, o
@ g ez a17 On_Menu Edit Log'Access, {Add, Commit));
o 478
@l o3 479 Register_Action Memu

80

Action Editor
- = 281

& ada_Module_UI 82
183
5
@ & Aliases 2 | dea e
& Aunit 185
. 186
{8 Browsers i g
& Builder ane n log corresponding to the current file",
. ass enove re og,
@ § Code_analyais 290 [File_rilter,
@ & Coderix UI 131 On_Menu Remove Log'Access, (Add, Remove, Commit)):
192 end if;
& completion_UI B =
8 Cpp_Module 494 Create_Separator;
195
& Custon 296 Register_Action_Menu
& Distrib 97 ("ada,
198 -"Bdd the current file to repositery”,
{8 Docgen2 s e adar,
8 pocs s00 File Filter,
501 On_Menu_Add'Access, (1 => Add));
8 criada 02
a@om 503 Register Action Menu
504 ("Add ne commit”, -
8 relp (P o=
| On_GPS Started Insert | Writable | Unmodified | 49013
& Hernel -
® load entity b 717/3297 Welcorme to GBS 5.0.0 (20101015) hosted on 1686-pc-mingwd2

the GNAT Programming Studio
{e) 2001-2010 AdaCore

[entity db717/3297

Using the GNAT Programming Studio

Chapter 2: Description of the Main Windows

2 Description of the Main Windows

2.1 The Welcome Dialog

& Welcome to GPS 5.0.0 (20101015) (3]

A |E} Welcome to GPS 5.0.0 (20101015)

The GNAT Pro Company .
() Create new project from template

(@ Start with default project in directory::
Chunixigtk+gps\gps\HEAD\gps

() Create new project with wizard

(7)) Open existing project:
Chunidgtk+gps\gps\HEAD\gps\gps.gpr - || Browse

Always show this dialog when GPS starts

When starting GPS, a welcome dialog is displayed by default, giving the follow-
ing choices:

Create new project from template
If you select this option and then click the ox button, GPS will launch
an assistant to create a project using one of the predefined project
templates.

Start with default project in directory
If you select this option and click on the ok button, GPS will first look
for a project called ‘default.gpr’ in the current directory and load
it if found. Otherwise, it will copy in the current directory the de-
fault project found under ‘<prefix>/share/gps/default.gpr and
load it. GPS will remove this copy when exiting or loading another
project, if the copy has not been modified during the session.

If the current directory is not writable, GPS will instead load directly
<prefix>/share/gps/readonly.gpr. In this case, GPS will work
in a degraded mode, where some capabilities will not work (such as
building and source navigation).

Using the GNAT Programming Studio

Create new project with wizard
Selecting this option and clicking on the ox button will start a wizard
allowing you to specify most of the properties for a new project. Once
the project is created, GPS will save it and load it automatically. See
Section 7.8 [The Project Wizard], page 86 for more details on the
project wizard.

Several kinds of wizard are available. Depending on the kind of
project, you will get asked different type of information. In the end,
GPS will create one or more project files, and automatically load
them.

One of the wizard, "From existing Ada sources", will try and import
a set of sources and object files, and attempt to create one or more
project files so that building your application through these project
files will put the objects in the same directory they are currently
in. If you have not compiled your application when launching this
wizard, GPS will create a single project file and all object files will be
put in the same object directory. This is the prefered method when
importing sources with duplicate file names, since the latter is only
authorized in a single project file, not across various project files.

Open existing project
You can select an existing project by clicking on the Browse button,
or by using a previously loaded project listed in the combo box. When
a project is selected, clicking on the ok button will load this project
and open the main window.

Always show this dialog when GPS starts

If unset, the welcome dialog won’t be shown in future sessions. In
this case, GPS will behave as follows: it will first look for a -p switch
on the command line, and load the corresponding project if present.
Then, it will look for a project file in the current directory and will
load the first project file found.

If no project file can be found in the current directory, GPS will start
with the default project.

To reset this property, go to the menu Edit->Preferences. See
Section 16.1 [The Preferences Dialogl, page 193.

Quit If you click on this button, GPS will terminate immediately.

When you specify a -P switch on the command line, or if there is only one
project file in the current directory, GPS will start immediately with the project
file specified, instead of displaying the welcome dialog.

In addition, if you specify source files on the command line, GPS will also
start immediately, using the default project if no project is specified.

Chapter 2: Description of the Main Windows

By default, files specified on the command line are taken as is and can be
absolute or relative pathnames. In addition, if you prepend a filename with
the = character, then GPS will look for the file in the source search path of the
project.

2.2 The Tip of the Day

This dialog displays short tips on how to make the most efficient use of GPS.
You can click on the previous and Next buttons to access all tips, and close the
dialog by either clicking on the close button or pressing the key.

You can also disable this dialog by unchecking the pisplay Tip of the Day
on startup check box. If you would like to reenable this dialog, you can go
to the Edit->Preferences dialog. See Section 16.1 [The Preferences Dialog],
page 193.

b= flrmntinm Cramea Tamd (Teaw o Fek Trwe Teawml mabees Danlaas $n

12 @ Tip of the Day

Multiple views of the same file

Lo MNeed to view multiple parts of the same file? Use the menu File-=New View,
1= or hold the shift key, click on the Editor's title bar and drag it to a
12 place where you'd like the new view to be created

L9 er

51 - [V] Display Tip of the Day on startup

22 -

2.3 The Menu Bar

This is a standard menu bar that gives access to all the global functionalities
of GPS. It is usually easier to access a given functionality using the various
contextual menus provided throughout GPS: these menus give direct access to
the most relevant actions given the current context (e.g. a project, a directory,
a file, an entity, . . .). Contextual menus pop up when the right mouse button is
clicked or when using the special (open contextual menu) key on most PC keyboards.

The menu bar gives access to the following items:
File See [The File Menul], page 38.

Using the GNAT Programming Studio

Edit See [The Edit Menul, page 42.
Navigate

See Section 6.2 [The Navigate Menul, page 66.
VCS See Section 12.3 [The VCS Menul], page 158.

Project See Section 7.7 [The Project Menul, page 85.
Build See Section 9.1 [The Build Menul, page 109.
Debug See Section 11.1 [The Debug Menul, page 129.
Tools See Section 13.1 [The Tools Menul, page 167.

SPARK If the SPARK toolset is installed on your system and available
on your PATH, then this menu is available. See Help->SPARK-
>Reference->Using SPARK with GPS for more details.

CodePeer
If the CodePeer toolset is installed on your system and available
on your PATH, then this menu is available. See your CodePeer
documentation for more details.

Window See Chapter 4 [Multiple Document Interface], page 25.
Help See Section 3.1 [The Help Menul, page 23.

2.4 The Tool Bar

The tool bar provides shortcuts via buttons to some typical actions: creating
a new file, opening a file, saving the current file; undo/redo last editing; go
to previous/next location; select build mode, compile file, build project, clean
project; start/continue the debugging session, step/next execution, finish current
procedure.

The icon on the far right of the tool bar will be animated to indicate that an
action (e.g. a build or a search) is going on in the background.

2.5 The Work Space

The whole work space is based on a multiple document interface, See Chapter 4
[Multiple Document Interfacel, page 25.

2.6 The Project View

The project view provides a representation of the various components of your
project hierarchy, as listed below. It is displayed by default on the left side of
the main window, and can be selected by using the Project->Project View or
Tools->Views—>Project menu items.

Chapter 2: Description of the Main Windows

Under Windows, it is possible to drop files (coming e.g. from the Explorer)
in the project view with the following behavior: a project file dropped will be
loaded; any other file will be opened in a new source editor.

o Project View

[ER= ek o
EEsre
= | dde.ads=

® package

subprogram

°sRegister_DDE_Server (Ferm
% Unregister DDE Server
[dde_default.adb
| “dde_win3Z.adb
| empty.adb
| gps-main.adb
| gps-menu. adb
F | gps-menu. ads
| gpslink.adb
| gpslink.ads
welcome.adh
| welcome.ads
aob]
EAction Editor
Hada Module
HgAliases
B SAunit
g Browsers
H & Bulilder

EHcode _Analysis

|:£

The project view, as well as the file and outline view provide an interactive
search capability allowing you to quickly search in the information currently
displayed. The default key to start an interactive search is (control-f). This will
open a small window at the bottom of the view where you can interactively type
names. The first matching name in the tree will be selected while you type it.

Using the GNAT Programming Studio

You can then also use the @p) and keys to navigate through all the items
matching the current text.

The various components that are displayed are:

projects All the sources you are working with are put under control of
projects. These projects are a way to store the switches to use for
the various tools, as well as a number of other properties.

They can be organized into a project hierarchy, where a root project
can import other projects, with their own set of sources.

Initially, a default project is created, that includes all the sources in
the current directory.

The Project view displays this project hierarchy: the top node is the
root project of your application (generally, this is where the source
file that contains the main subprogram will be located). Then a node
is displayed for each imported project, and recursively for their own
imported projects.

A given project might appear multiple times in the Project view, if
it is imported by several other projects.

There exists a second display for this project view, which lists all
projects with no hierarchy: all projects appear only once in the
view, at the top level. This display might be useful for deep project
hierarchies, to make it easier to find projects in the project view.

This display is activated through the contextual menu entry show
flat view, which acts as a switch between the two displays.

A special icon with a pen mark is displayed if the project was mod-
ified, but not saved yet. You can choose to save it at any time by
right-clicking on it. GPS will remind you to save it before any com-
pilation, or save it automatically, if the corresponding preference is
saved.

directories
The files inside a project can be organized into several physical
directories on the disk. These directories are displayed under each
project node in the Project View

You can chose whether you want to see the absolute path names for
the directories or paths relative to the location of the project. This
is done through the show absolute paths contextual menu.
Special nodes are created for object and executables directories. No
files are shown for these.

The contextual menu entry show hidden directories can be used
to filter the directories considered as hidden. This can be used to not
display the version control directories like ‘cvs’ or ‘. svn’ for example.

Chapter 2: Description of the Main Windows

files The source files themselves are stored in the directories, and dis-
played under the corresponding nodes. Note that only the source
files that actually belong to the project (i.e. are written in a lan-
guage supported by that project and follow its naming scheme) are
actually visible. For more information on supported languages, See
Section 7.2 [Supported Languages], page 78.

A given file might appear multiple times in the Project View, if the
project it belongs to is imported by several other projects.

If you left click on a file and keep the button pressed, you can drop
it anywhere in GPS to open an editor at that location.

entities If you open the node for a source file, the file is parsed by one of the
fast parsers integrated in GPS so that all entities declared in the
project can be shown. These entities are grouped into various cat-
egories, which depend on the language. Typical categories include
subprograms, packages, types, variables, tasks, . ..

Double-clicking on a file, or simple clicking on any entity will open a source
editor and display respectively the first line in this file or the line on which the
entity is defined.

You can also drag a file anywhere into GPS. This will open a new editor if
the file is not already edited, or move the existing editor otherwise. If you press
at the same time, and the file is already edited, a new view of the existing
editor is created instead.

If you open the search dialog through the Navigate->Find or Replace...
menu, you have the possibility to search for anything in the project view, either
a file or an entity. Note that searching for an entity can be slow if you have lots
of files, and/or big files.

A contextual menu, named Locate in Project View, is also provided when
inside a source editor. This will automatically search for the first entry for this
file in the project view. This contextual menu is also available in other modules,
e.g. when selecting a file in the Dependency Browser.

2.6.1 The configuration variables

As described in the GNAT User’s Guide, the project files can be configured
through external variables (typically environment variables). This means that
e.g. the exact list of source files, or the exact switches to use to compile the ap-
plication can be changed when the value of these external variables is changed.

Using the GNAT Programming Studio

GPS provides a simple access to these variables, through a window called
the scenario view. These variables are called Configuration Variables, since
they provide various scenarios for the same set of project files.

5} Scenario View E]E| E'

I Euild ' Debug =]
05 | Windows_NT =]
TP_¥MLADA | Disabled =]
TP_TASKING |Standard_Tasking [+ |

A combo box is displayed in this area for each environment variable the
project depends on. The current value of the variable can be set simply by
selecting it from the pop-down window that appears when you click on the
arrow on the right of the variable name

New variables can be added through the contextual menu Project->aAdd
Configuration Variable in the Project view. The list of possible values for a
variable can be changed by clicking on the button on the left of the variable’s
name.

Whenever you change the value of one of the variables, the project is au-
tomatically recomputed, and the list of source files or directories is changed
dynamically to reflect the new status of the project. Starting a new compila-
tion at that point will use the new switches, and all the aspects of GPS are
immediately affected according to the new setup.

2.6.2 Icons for source language entities

Entities in the source code are presented with representative icons within the
various GPS views (the Outline, Project, and Entity views, for example). These
icons indicate both the language categories of the entities, such as packages
and methods, as well as compile-time visibility. In addition, the icons dis-
tinguish entity declarations from other entities. The same icons are used for
all programming languages supported by the viewers, with language-specific
interpretations for both compile-time visibility and recognizing declarations.

There are five language categories used for all supported languages: pack-
age, subprogram, type, variable, and generic. The icons corresponding to these
language categories are as follows.

e The package category’s icon is a square.

10

Chapter 2: Description of the Main Windows

The subprogram category’s icon is a circle.

aQ

The type category’s icon is a triangle.

The variable category’s icon is a dot.

The generic category’s icon is a diamond.

v

These basic icons are enhanced with decorators, when appropriate, to indicate
compile-time visibility constraints and to distinguish declarations from comple-
tions. For example, the icons for entity declarations have a small “S” decorator
added, denoting a “spec”.

With respect to compile-time visibility, icons for “protected” and “private”
entities appear within an enclosing box indicating a visibility constraint. For
entities with “protected” visibility, this enclosing box is colored in gray. “Private”
entities are enclosed within a red box. The icons for “public” entities have no
such enclosing box. For example, a variable with “private” visibility would be
represented by an icon consisting of a dot enclosed within a red box.

These additional decorators are combined when appropriate. For example,
the icon corresponding to the “private” declaration of a “package” entity would
be a square, as for any package entity, with a small “S” added, all enclosed
within a red box.

Language constructs are mapped to the categories in a language-specific
manner. For example, C++ namespaces and Ada packages correspond to the
package category. C functions and Ada subprograms correspond to the method
category, and so on. The generic category is a general category representing
other language entities, but note that not all possible language constructs are
mapped to categories and icons. (Note also that the generic category does not
correspond to Ada generic units or C++ templates.)

The names of the categories should not be interpreted literally in terms of
language constructs because the categories are rather general, in order to limit

11

Using the GNAT Programming Studio

the number used. The variable category includes both constants and variables
in Ada, for example. Limiting the number of categories maintains a balance
between presentation complexity and the need to support distinct programming
languages.

Icons for a given entity may appear more than once within a view. For
example, an Ada private type will have both a partial view in the visible part of
the enclosing package as well as a full view in the private part of the package.
Two triangle icons will therefore appear for the two occurrences of the type
name, one with the additional decorator indicating the “private” compile-time
visibility.

12

Chapter 2: Description of the Main Windows

2.7 The File View

In addition to the Project view, GPS also provides a File view through the
Tools—->Views—>Files menu.

e =
15y File View

ldocs
H [examples
Clghuilder
® iglide
F Cignat
= ogps
® ICVS i
& Clobj
B Esrc
E ECYS
| .C¥signore
| dde.ads
| dde_default.adb
| dde_win32.adb
® |- gps-main.adb

= B gps-rmenu.adb

| gps-rnenu.ads
L gps.ico
L gps.rc
| gpslink.adb
1 gpslink.adb.in
® | gpslink.ads

| welcome,adb

|4

In this view, directories are displayed exactly as they are organized physically
on the disk (including Windows drives).

By default, the File view will display all the files that exist on the disk.
Filters can be set through the contextual menu to only show the files and
directories that belong to the project hierarchy by using the contextual menu
Show files from project only.

13

Using the GNAT Programming Studio

Each source file can also be explored as described in Section 2.6 [The Project
View], page 6. Drag and drop of files is also possible from the files view, to
conveniently open a file.

The contextual menu also allow you to create, rename and delete files and
directories. Some of those operations are also available from the Project View.

2.8 The Entity View

GPS provides an Entity view which allows you to browse and quickly find all
Ada entities referenced in the currently loaded project hierarchy. This view can
be accessed through the Tools->Views->Entities menu.

This view is divided in three parts: a rPattern entry, a tree view, and a
documentation view.

To query an entity, enter a search pattern in the pattern entry. The tree view
then shows a list of all known entities which start with this pattern. When an
entry is selected in the tree, the documentation view displays the documentation
corresponding to the selected entity.

When the File view has the focus, using the up/down arrow keys changes
the selection in the tree, and pressing the Enter key opens an editor to the
declaration of the selected entity. It is also possible to jump to this location by
double-clicking on the line in the tree, or by clicking on the hyperlink in the
documentation view.

Note that the view shows the entities that are currently loaded in memory,
see Section 6.1 [Support for Cross-References], page 65.

2.9 The Window View
The window view displays the currently opened windows. It is opened through
the Tools->Views->Windows menu.
It can display the opened windows in one of two ways:
e Sorted alphabetically

e Organized by notebooks, as in the GPS window itself. This latter view is
mostly useful if you have lots of windows open

14

Chapter 2: Description of the Main Windows

The mode is selected through the contextual menu.

You can also choose, through this contextual menu, whether only the source
editors should be visible, or whether all windows should be displayed.

This window allows you to quickly select and focus on a particular window,
by clicking on the corresponding line with the left mouse button. If you click
and leave the mouse button pressed, this starts a drag and drop operation so
that you can also move the window to some other place in the desktop (see the
description of the MDI earlier in this document).

Multiple windows can be selected by clicking with the mouse while pressing
the control or shift keys. The Window view provides a contextual menu to
easily close all selected windows at once, which is a very fast way to cleanup
your desktop after you have finished working on a task.

2.10 The Outline View

The Outline View, which you can choose to activate through the Tools->vViews-
>0utline menu, shows the contents of the current file.

¥ Clipboard Cormand

¥ Clipboard Kind

* GP3.Menu

@ Activate (Callback : access

% Activate (Callback : access

® Execute (Command : access

% Execute (Command : access

® on Change Dir (Widget : access
% On_Change Dir ([Widgst : access
® on_Exit (Uidger : access

% on_Exit (Vidget : access

On_Reopen: Item : String)

on_Reopen; Item : String)

Clipboard Comwand; Context @

Clipboard Command; Context :

GObject_Record!'Class
GObject_Record'Class
Gobject_Record'Class
Gobject_Record'Class:

° On_Open Project (Uidget : access

GObject Record'cClass

= Outline View @
~

Interactive Command Context)

Interactive Command Context)

: Kernel : Kernel Handle)
: Kernel : Kernel Handle)
; Fernel : Kernel Handle)
Kernel : Kernel Handle)

: Kernel : Kernel Handle)

The exact meaning of this depends on the language you are seeing. For Ada,
C and C++ files, this is the list of entities that are declared at the global level in
your current file (Ada packages, C++ classes, subprograms, Ada types, .. .).

Clicking on any entity in this view will automatically jump to the right line
in the file, including if your file has been slightly modified since the outline view
was last refreshed.

To refresh the contents of the view, select the Refresh entry in the contextual
menu (right-click anywhere in the outline view). The Outline View is updated
automatically after editing, saving the file, or switching to a different editor.

There are several preferences associated with the outline view, See [Outline
Preferences], page 214.

15

Using the GNAT Programming Studio

2.11 The Clipboard View

GPS has an advanced mechanism for handling copy/paste operations.

When you select the menus Edit->Copy or Edit->Cut, GPS adds the current
selection to the clipboard. As opposed to what lots of applications do, it doesn’t
discard the previous contents of the clipboard, but save it for future usage. It
saves a number of entries this way, up to 10 by default. This value is configurable
through the clipboard size preference.

When you select the menu Edit->Paste, GPS will paste the last entry made
in the clipboard at the current location in the editor.

If you immediately select Edit->Paste Previous, this newly inserted text
will be removed, and GPS will instead insert the second to last entry added
to the clipboard. You can keep selecting the same menu to get access to older
entries.

This is a very powerful mechanism, since it means you can copy several
distinct lines from a place in an editor, move to an other editor and paste all
these separate lines, without having to go back and forth between the two
editors.

The clipboard view provides a graphical mean of seeing what is currently
stored in the clipboard. It appears as a list of lines, each of which is associated
with one level of the clipboard. The text that shows in these lines is the first
line of the selection at that level that contains non blank characters. Leading
characters are discarded. [...] is prepended or appended in case the selection
has been truncated.

If you bring the mouse over a line in the Clipboard view, a tooltip will pop
up showing the entire selection corresponding to the line by opposition to the
possibly truncated one.

In addition, one of the lines has an arrow on its left. This indicates the line
that will be pasted when you select the menu Edit->Paste. If you select instead
the menu Edit->Paste Previous, then the line below that one will be inserted
instead.

If you double-click on any of these lines, GPS will insert the corresponding
text in the current editor, and make the line you clicked on the current line, so
that selecting Edit->Paste or the equivalent shortcut will now insert that line.

The contextual menu in the clipboard view provides one entry, which is
Append To Previous. If you select this entry, the select line will be append to
the one below, and removed from the clipboard. This means that selection Edit -
>paste will in fact paste the two entries at the same time. This is in particular
useful when you want to copy lines from separate places in the initial file, merge
them, and then paste them together one or more times later on, through a single
operation.

16

Chapter 2: Description of the Main Windows

The Clipboard View content is preserved between GPS sessions. As an
exception, huge entries are removed and replaced with an entry saying "[Big
entry has been removed]".

2.12 The Callgraph View

The callgraph view plays a role similar the callgraph browser. They display
the same information about entities, but in two different ways: the callgraph
view displays the information in a tree, easily navigable and perhaps easier to
manipulate when lots of entities are involved; the callgraph browser displays
the information as graphical boxes that can be manipulated on the screen, and
is best suited to generate a diagram that can be later exported to your own
documents.

This callgraph view is used to display the information about what subpro-
grams are called by a given entity, and, opposite, what entities are calling a
given entity.

Some references might be reported with an additional " (dispatching)" text.
In such a case, this indicates that the call to the entity is not explicit in the
sources, but could occur through dynamic dispatching. This of course depends
on what arguments are passed to the caller at run time, and it is possible that
the subprogram is in fact never dispatched to.

This view is automatically displayed when you select one of the contextual
menus ... calls and ... is called by. Every time you select one of these
menus, a new view is opened to display that entity.

Whenever you expand a node from the tree by clicking on the small expander
arrow on the left of the line, further callgraph information is computed for the
selected entity, which makes it very easy to get information for a full callgraph
tree.

Closing and expanding a node again will recompute the callgraph for the
entity.

On the right side of the main tree, a list displays the locations of calls for
the selected entity. Clicking on entries in this list opens editors showing the
corresponding location.

The Callgraph View supports keyboard navigation: Up and Down keys navi-
gate between listed locations, Left collapses the current level, Right expands
the current level, and Return jumps to the currently selected location.

The callgraph view is automatically saved in the desktop, and restored the
next time you restart GPS. However, the information displayed in these might
no longer be accurate at this stage, since it shows the status of the callgraph
during the last GPS session.

17

Using the GNAT Programming Studio

Left-clicking on a line in the Call Tree brings up a contextual menu with the
following entries:

Collapse all
Collapse all the entities in the Callgraph View.

Remove entity
Remove the selected entity from the Callgraph View.

Clear Call Trees
Remove all entries from the Callgraph View.

2.13 Bookmarks

Bookmarks are a convenient way to remember places in your code or in your
environment so that you can go back to them at any point in the future. These
bookmarks are saved automatically whenever they are modified, and restored
when GPS is reloaded, so that they exist across GPS sessions.

Bookmarks will automatically remember the exact location in an editor, not
in terms of line/column, but in terms of which word they point to. If you modify
the file through GPS, the bookmark will be automatically updated to keep
refering to the same place. Likewise if you close and reopen the file. However,
when the file is modified outside of GPS, the bookmark will not be aware of that
change, and will thus reference another place in the file.

The menu Edit->Create Bookmark allows you to create a bookmark at the
current location (either in the editor, or the browser for instance).

All the bookmarks you have created will be visible in the Tools->Views-
>Bookmarks window. Clicking on the small icon to the left side of each line will
immediately jump to that bookmark.

You can rename a bookmark so that it is easier to remember what it refers
to. To do so, open the Bookmarks window, and click twice on the line of the
bookmark. This will change the way the name is displayed, so that you can edit
it in place. Press when you are done modifying the name.

You can delete an existing bookmark by right clicking on the line, and select
Delete bookmark in the contextual menu.

18

Chapter 2: Description of the Main Windows

2.14 The Messages Window

The Messages window is used by GPS to display information and feedback about
operations, such as build output, information about processes launched, error
messages.

Welcome to GP5S 4.3.0 (20081101) hosted on i686-pc-mingw3Zmsv
the GMAT Programming Studio
(c) 2001-2008 AdaCore

|Messages Shell

This is a read-only window, which means that only output is available, no
input is possible.

For an input/output window, see Section 2.17 [The Execution Window],
page 21 and also Section 2.15 [The Shell and Python Windows], page 19.

2.15 The Shell and Python Windows

These windows give access to the various scripting languages supported by GPS,
and allow you to type commands such as editing a file or compiling without using
the menu items or the mouse.

An OS shell window is now also available in GPS, providing a simple access
to the underlying OS shell as defined by the SHELL or COMSPEC environment
variables.

To show the shell consoles, select the menu Tools->Consoles.

See Section 16.8 [Scripting GPS], page 291 for more information on using
scripting languages within GPS.

lsmod -
parse_xml T
pd

reset_xref db

zet_busy

supported languages
unset_busy
Twpe "help <cmd:"™ to get help shout a specific coneand.

GP3> pwd
Crhomph
GF3> | v

You can use the @p) and keys to navigate through the history of com-
mands.

19

Using the GNAT Programming Studio

2.16 The Locations View

The Location Tree is filled whenever GPS needs to display a list of locations in
the source files (typically, when performing a global search, compilation results,
and so on).

375:13 Starts_Word [declaration]
|l src_editer_buffer.adb (3 items)
= [Builder results (24 items)
= |l build command manager.adk (24 items)
20:6 "Ada_Unchecked Deallocation " is not a language defined unit
20:9 warning: unit "Unchecked Dezllocation " is not referenced

2n-32 identifiar ~annat end with underline

3£ Filter TR v [Regep o & | Hide matched

{Messages| Locations

The Locations View shows a hierarchy of categories, which contain files,
which contain locations. Clicking on a location item will bring up a file editor
at the requested place. Right-clicking on file or category items brings up a
contextual menu allowing you to remove the corresponding node from the view.
Placing the mouse over an item automatically pop up a tooltip window with full
text of the item if this text can’t be completely shown in the window.

Every time a new category is created, as a result of a compilation or a search
operation for example, the first entry of that category is automatically selected,
and the corresponding editor opened. This behavior can be controlled through
a preference Jump To First Location.

Closing the Locations view will remove from the editors locations that are
also visible in the Locations view. If the Locations View is present when exiting
GPS and the desktop is saved, the locations will be saved as part of the desktop
for the current project, and will be loaded the next time GPS is started on the
same project.

To navigate through the next and previous location (also called Tag), you can
use the menu items Navigate->Previous Tag and Navigate->Next Tag, or the
corresponding key bindings.

Left-clicking on a line in the Location Tree brings up a contextual menu with
the following entries:

Filter panel
Controls availability of the filter panel at the bottom of the window.

Sort by subcategory
Toggle the sorting of the entries by sub-categories. This is useful, for
example, for separating the warnings from the errors in the build
results.

20

Chapter 2: Description of the Main Windows

Expand category
Expand all the files in the current categories.

Collapse all
Collapse all the categories in the Locations View

Remove category/file/message
Remove the selected category, file or message from the Locations
View. Selected message can be removed using Locations view-
>Remove message key binding also.

Jump to location
Open the location contained in the message, if any.

Clear Locations View
Remove all entries from the Locations View.

In some cases, a wrench icon will be associated on the left of a compilation
message. See Section 13.4 [Code Fixing], page 171 for more information on how
to make advantage of this icon.

The filter panel can be used to filter messages which match (or do not match)
a text pattern or regular expression. As soon as you type in the text entry, the
filter is enabled. If you clear the text, the filter is disabled. The c1ose button
on the filter panel hides it and cancels the filter. The Regexp check button
specifies how to use the filter text entry: as plain text or regular expression.
The Hide matched check button reverts the filter, e.g. switch between matching
and non-matching items.

2.17 The Execution Window

Each time a program is launched using the menu Build->Run, a new execution
window is created to provide input and output for this program.

In order to allow post mortem analysis and copy/pasting, the execution win-
dows are not destroyed when the application terminates.

To close an execution window, click on the cross icon on the top right corner
of the window, or use the menu File->Close, or the menu Wwindow->Close or
the key binding (Cul-w).

If you close the execution window while the application is still running, a
dialog window is displayed, asking whether you want to kill the application, or
to cancel the close operation.

2.18 The Status Line

The status line is composed of two areas: on the left a status bar and on the
right a progress bar (displayed only when background tasks are running).

21

Using the GNAT Programming Studio

The progress bar is used to display information about on going operations
such as builds, searches, or VCS commands. These tasks operate in the back-
ground, and can be paused/resumed by double clicking on the progress bar: this
will open Section 2.19 [The Task Manager], page 22. In addition, you can click
on the close icon on the left of the progress bar to interrupt the running task.

2.19 The Task Manager

The Task Manager window lists all the currently running GPS operations that
run in the background, such as builds, searches or VCS commands.

The Task Manager is opened by double clicking on the progress bar or using
the Tools->Views—>Tasks menu, and can be put anywhere in your desktop.

For each of these tasks, the Task Manager shows the status of the task, and
the current progress. The execution of theses tasks can be suspended using a
contextual menu, brought up by right-clicking on a line.

When exiting GPS, if there are tasks running in the Task Manager, a window
will display those tasks. You can also bring up a contextual menu on the items
in this window. You can force the exit at any time by pressing the confirmation
button, which will kill all remaining tasks, or continue working in GPS by
pressing the Cancel button.

{} Tasks are running |Z]|E|rgl

The Following kasks are running, do you want to quit GPS?
warning: Quitting will kill all running tasks

Task. Status | Progress
Building running 107181
Query skatus unkpown (18 quewed)

i Guit l l Don't Quit]

22

Chapter 3: Online Help

3 Online Help

By default when you start GPS, the working area contains a welcome page
giving a few starting points in the online help.

Online help for the GNAT tools is available from the Help menu item. GPS
launches an external html browser to view these pages. (See Section 16.1 [The
Preferences Dialogl], page 193 on how to configure this under Unix. Under
Windows systems, the default HTML browser is used.)

3.1 The Help Menu
The Help menu item provides the following entries:
Welcome Open the GPS Welcome page.

Contents
Open a special HTML file that contains links for all the documenta-
tion files currently registered in GPS, See Section 3.2 [Adding New
Help Files], page 24.

GPS Submenu containing GPS documentation items.

GNAT Runtime
Submenu referencing all GNAT run-time files available, and a direct
access to the corresponding specs containing embedded documenta-
tion.

Python extensions
Gives access to the GPS API available via python.

About Display a dialog giving information about the versions of GPS and
GNAT used:

@ About.. >

GP55.0.0 (20101015) hosted on i686-pc-mingw32
GNAT Pro 6.3.2 (20100607 -43)

@ the GMNAT Programming Studio

(c) 2001-2010 AdaCore

23

Using the GNAT Programming Studio

This menu contains a number of additional entries, depending on what doc-
umentation packages were installed on your system. See the next section to see
how to add new help files.

3.2 Adding New Help Files

GPS will search for the help files in the list of directories set in the environment
variable Gps_poc_PATH (a colon-separated list of directories on Unix systems, or
semicolon-separated list of directories on Windows systems). In addition, the
default directory <prefix>/share/doc/gps/html is also searched. If the file
cannot be found in any of these directories, the corresponding menu item will
be disabled.

The environment variable GPs_DOC_PATH can either be set by each user in his
own environment, or can be set system-wide by modifying the small wrapper
script ‘gps’ itself on Unix systems.

It can also be set programmatically through the GPS shell or any of the
scripting languages. This is done with

GPS.add_doc_directory ("/home/foo")

The specific list of files shown in the menus is set by reading the index files
in each of the directories in Gps_poc_paATH. These index files must be called
‘gps_index.xml’.

The format of these index files is specified in see Section 16.5.17 [Adding
documentation], page 264.

24

Chapter 4: Multiple Document Interface

4 Multiple Document Interface

All the windows that are part of the GPS environment are under control of
what is commonly called a multiple document interface (MDI for short). This
is a common paradigm on windowing systems, where related windows are put
into a bigger window which is itself under control of the system or the windows
manager.

This means that, by default, no matter how many editors, browsers, views,

. windows you have opened, your system will still see only one window (On
Windows systems, the task bar shows only one icon). However, you can organize
the GPS windows exactly the way you want, all inside the GPS main window.

This section will show the various capacities that GPS provides to help you
organize your workspace.

4.1 Selecting Windows

At any time, there is only one selected window in GPS (the active window).
You can select a window either by clicking in its title bar, which will then get a
different color, or by selecting its name in the menu window.

Alternatively, windows can be selected with the keyboard. By default, the
selection key is (Ali-Tab). When you press it, a temporary dialog is popped-up on
the screen, with the name of the window that will be selected when the key is
released. If you press the selection key multiple times, this will iterate over all
the windows currently open in GPS.

This interactive selection dialog is associated with a filter, displayed below
the name of the selected window. If you maintain pressed while pressing
other keys than (Tab), this will modify the current filter. From then on, pressing
will only iterate through those windows that match the filter.

The filter is matched by any window whose name contains the letter you
have typed. For instance, if you are currently editing the files ‘unit1.adp’ and
‘file.adpb’, pressing () will only leave ‘unit1.adp’ selectable.

4.2 Closing Windows

Wherever the windows are displayed, they are always closed in the same man-
ner. In the right side of the title bar of the window, one small button is displayed,
looking like a cross. Clicking on this button will close the window.

An alternative way to close the window is to double-click on the icon to the
left of the title bar of the window. Not all windows have such an icon, but editors
do for instance.

When a window is closed, the focus is given to the window of the same part
of the MDI (each of the docks or the middle area) that previously had the focus.

25

Using the GNAT Programming Studio

Therefore, if you simply open an editor as a result of a cross-reference query,
you can simply close that editor to go back to where you were before.
Alternatively, you can also select the window by clicking anywhere in its title
bar, and then select the menu Wwindow->Close.
Finally, a window can be closed by right-clicking in the associated notebook
tab (if the tabs are visible), and select close in the contextual menu.

In the notebook tab (when you are in an editor), you will also find a close
all other editors menu, which, as its name implies, will keep a single editor
open, the one you are clicking on.

4.3 Splitting Windows

Windows can be split at will, through any combination of horizontal and vertical
splits. This feature requires at least two windows (text editors, browsers, . ..)
to be superimposed in the central area. Selecting either the Wwindow->split
Horizontally or Window—->Split Vertically menus will then split the selected
window in two. In the left (resp. top) pane, the currently selected window will
be left on its own. The rest of the previously superimposed windows will be put
in the right (resp. bottom) pane. You can then in turn split these remaining
windows to achieve any layout you want.

All split windows can be resized interactively by dragging the handles that
separate them. A preference (menu Edit->Preferences) controls whether this
resizing is done in opaque mode or border mode. In the latter case, only the new
handle position will be displayed while the mouse is dragged.

You may want to bind the key shortcuts to the menus window->split
Horizontally as well as Window->Split Vertically using the key manager.
In addition, if you want to achieve an effect similar to e.g. the standard Emacs
behavior (where splits a window horizontally, and splits a
window vertically), you can use the key manager (see Section 16.3 [The Key
Manager Dialog], page 216).

Section 4.5 [Moving Windows], page 27 will show how to do the splitting
through drag-and-drop and the mouse, which in general is the fastest way to
do.

Several editors or browsers can be put in the same area of the MDI. In such
a case, they will be grouped together in a notebook widget, and you can select
any of them by clicking on the corresponding tab. Note that if there are lots
of windows, two small arrows will appear on the right of the tabs. Clicking on
these arrows will show the remaining tabs.

In some cases GPS will change the color and size of the title (name) of a
window in the notebook tab. This indicates that the window content has been
updated, but the window wasn’t visible. Typically, this is used to indicate that
new messages have been written in the messages or console window.

26

Chapter 4: Multiple Document Interface

4.4 Floating Windows

Although the MDI, as described so far, is already extremely flexible, it is pos-
sible that you prefer to have several top-level windows under direct control of
your system or window manager. This would be the case for instance if you
want to benefit from some extra possibilities that your system might provide
(virtual desktops, different window decoration depending on the window’s type,
transparent windows, multiple screens, . . .).

GPS is fully compatible with this behavior, since windows can also be float-
ing windows. Any window that is currently embedded in the MDI can be
made floating at any time, simply by selecting the window and then selecting
the menu window->Floating. The window will then be detached, and can be
moved anywhere on your screen, even outside of GPS’s main window.

There are two ways to put a floating window back under control of GPS.
The more general method is to select the window through its title in the menu
Window, and then unselect Window->Floating.

The second method assumes that the preference Destroy Floats in the
menu Edit->Preferences has been set to false. Then, you can simply close the
floating window by clicking in the appropriate title bar button, and the window
will be put back in GPS. If you actually want to close it, you need to click once
again on the cross button in its title bar.

A special mode is also available in GPS, where all windows are floating. The
MDI area in the main window becomes invisible. This can be useful if you rely
on windows handling facilities supported by your system or window manager
but not available in GPS. This might also be useful if you want to have windows
on various virtual desktops, should your window manager support this.

This special mode is activated through a preference (menu Edit-
>Preferences). This preference is entitled All Floating.

4.5 Moving Windows

As we have seen, the organization of windows can be changed at any time by
selecting a notebook containing several editors or browsers, and selecting one
of the Split menus in the Wwindow menu.

A more intuitive method is also provided, based on the drag-and-drop par-
adigm. The idea is simply to select a window, wherever it is, and then, by
clicking on it and moving the mouse while keeping the left button pressed, drop
it anywhere else inside GPS.

Selecting an item so that it can be dragged is done simply by clicking with
the left mouse button in its title bar, and keep the button pressed while moving
the mouse.

27

Using the GNAT Programming Studio

If the window is inside a notebook, you can also choose to select the notebook
tab to start dragging the window around. In such a case, the windows within
the notebook can also be reordered: select the tab, then start moving left or
right to the new position the window should have. Note that your mouse must
remain within the tab area, since otherwise GPS will enter in the mode where
the window can be put in other notebooks.

If you want to move a window to another notebook by dragging its tab, you
should first move out of the tab area (vertically in general), and then anywhere
in GPS. That’s to distinguish between the mode where you want to reorder tabs
and the mode where you want to move windows.

While you keep the mouse button pressed, and move the mouse around, the
selected drop area is highlighted with a dashed border. This shows precisely
where the window would be put if you were to release the mouse button at that
point.

If you move your mouse all the way to the side of the desktop, and then drop
the window, that window will occupy the full width (resp. height) of the desktop
on that side.

Here are the various places where a window can be dropped:

Inside the MDI
The location of the current window is indicated by a dashed rectan-
gle, and the window you are dragging will be positioned at the same
location as that rectangle: either on top of the window on which you
dropped it (therefore they will both be put inside a notebook), or to
one of the sides of that window, splitting as needed.

System window
If you drop a window outside of GPS (for instance, on the background
of your screen), the window will be floated.

If you maintain the key pressed while dropping the window, this might
result in a copy operation instead of a simple move. For instance, if you are
dropping an editor, a new view of the same editor will be created, resulting in
two views present in GPS: the original one is left at its initial location, and a
second view is created at the new location.

If you maintain the key pressed while dropping the window, all the
windows that were in the same notebook are moved, instead of the single one
you selected. This is the fastest way to move a group of windows to a new
location, instead of moving them one by one.

28

Chapter 4: Multiple Document Interface

4.6 Perspectives

GPS supports the concept of perspectives. These are activity-specific desk-
tops, each with their own set of windows, but sharing some common windows
like the editors.

Depending on the activity you want to perform (debugging, version con-
trol,...) you could switch to another perspective. For instance, in the context of
the debugger, the new perspective would by default contain the call stack win-
dow, the data window, the debugger consoles,. .. each at your favorite location.
Whenever the debug starts, you therefore do not have to open these windows
again.

The perspectives have names, and you switch perspectives by selecting the
menu /Window/Perspectives/. You can also create a new perspective by selecting
the menu /Window/Perspectives/Create New.

GPS will sometimes automatically change perspectives. For instance, if
you start a debugger, it will switch to the perspective called "Debug" (if it
exists). When the debugger terminates, you are switched back to the "Default"
perspective (again, if it exists).

When you leave a perspective, GPS automatically saves its contents (which
windows are opened, their location,. . .), so that when you are going back to the
same perspective you find the same layout.

Likewise, when GPS exits, it will save the layout of all perspectives into a file
called ‘perspectives.xml’, so that it can restore them when you restart GPS.

This behavior is controlled by the "Save desktop on exit" preference, and can
be disabled.

One of the difficulties in working with perspectives is knowing which win-
dows will be preserved when you switch to another perspective, and which
windows will be hidden. There is a central area where all preserved windows
are found. Typically, it only contains editors (including if you have split them
side by side for instance). If you drag and drop another window on top or to the
sides of an editor, that window will be preserved when changing perspectives,
unless it was already found elsewhere in the new perspective. The small tooltip
that appears on the screen while you drag and drop will tell you whether the
window (if dropped at the current location) will be visible in other perspectives
or not.

29

Using the GNAT Programming Studio

30

5 Editing Files

5.1 General Information

Chapter 5: Editing Files

Source editing is one of the central parts of GPS, giving in turn access to many
other functionalities, including extended source navigation and source analyz-

ing tools.

& C:Abuild-gps\sources\gpsigpsisrcigps-main. adb

639"
640
f41
642
6435
644
645
646
647
646
£49
650
651
652
653
654
655
656
657
658
659
660
661
AR?
<

Init_Settings

if About Contents = null then
About_Contents := new String’(""):
end if;

if Is Regular File
{Directory Cperations.Format Pathname
{Prefix.all & "/share/gps/gps-pro.txt"})
then
GPS_Main.Public Version := False;
end if;

- BX

Reset Tlitle (EPS Main):
“ GPS.Main_window .Reset_Title

=P8 _Menu global procedure declared at gps-main_window.ads: 103

Reset the title of the main window.
Info is an extra information to be displayed, in addition of the neme
Kernej'_ca'of the root project which is always displayed.
(Get_MD:
Child gParameters:
Eernel CE, Window : access GP3_Window_Record
= [Info : in String :=-1"]

(Get MDD o oI s T o i T ST o T STy

Title Changed'Unrestricted Access, GPS Main.Kernel);

DDE.Register DDE Server (GE3 _Main.Kernel);
Parse Switches;

C¥5:1,99 Insert | Writable Unmodified

| >

630:14

The integrated source editor provides all the usual capabilities found in
integrated environments, including:

Title bar Showing the full name of the file including path information.

Line number information

This is the left area of the source editor.
disabled from the preferences. See Section 16.1 [The Preferences
Dialog], page 193. Note that this area can also display additional
information, such as the current line of execution when debugging,
or cvs annotations.

Scrollbar
Located on the right of the editor, it allows you to scroll through the
source file.

Line numbers can be

31

Using the GNAT Programming Studio

Speed column

This column, when visible, is located on the left of the editor. It
allows you to view all the highlighted lines in a file, at a glance. For
example, all the lines containing compilation errors are displayed
in the Speed Column. See Section 16.1 [The Preferences Dialog],
page 193 for information on how to customize the behavior of the
Speed Column.

Status bar

Giving information about the file. It is divided in two sections, one
on the left and one on the right of the window.

The left section

The first box on the left shows the current subprogram
name for languages that support this capability. Cur-
rently Ada, c and c++ have this ability. See Section 16.1
[The Preferences Dialog], page 193 to enable or disable
this feature.

The right section

32

If the file is maintained under version control, and ver-
sion control is supported and enabled in GPS, the first
box on the left will show VCS information on the file: the
VCS kind (e.g. CVS), followed by the revision number,
and if available, the status of the file.

The second box shows the current editing mode. This is
either Insert or Overwrite and can be changed using the
insert keyboard keys by default.

The third box shows the writable state of the file. You
can change this state by clicking on the label directly:
this will switch between Writable and Read Only. Note
that this will not change the permissions of the file on

disk, it will only change the writable state of the source
editor within GPS.

When trying to save a file which is read only on the disk,
GPS will ask for confirmation, and if possible, will force
saving of the file, keeping its read only state.

The fourth box shows whether the file has been modified
since the last save. The three possible states are:

Unmodified
The file has not been modified since the file
has been loaded or saved.

Chapter 5: Editing Files

Modified The file has been modified since last load or
save. Note that if you undo all the editing
operations until the last save operation, this
label will change to Unmodified.

Saved The file has been saved and not modified
since.

The fifth box displays the position of the cursor in the
file by a line and a column number.

Contextual menu

Displayed when you right-click on any area of the source editor. See
in particular Section 6.3 [Contextual Menus for Source Navigation],
page 68 for more details.

Syntax highlighting

Based on the programming language associated with the file, re-
served words and languages constructs such as comments and
strings are highlighted in different colors and fonts. See Section 16.1
[The Preferences Dialog], page 193 for a list of settings that can be
customized.

By default, GPS knows about many languages. You can also easily
add support for other languages through XML files. Most languages
supported by GPS will provide syntax highlighting in the editor.

Automatic indentation

Tooltips

When enabled, lines are automatically indented each time you press
the key, or by pressing the indentation key. The indentation
key is by default, and can be changed in the key manager
dialog, See Section 16.3 [The Key Manager Dialog], page 216.

If a set of lines is selected when you press the indentation key, this
whole set of lines will be indented.

When you leave the mouse over a word in the source editor, a small
window will automatically pop up if there are relevant contextual
information to display about the word.

The type of information displayed depends on the current state of
GPS.

In normal mode, the entity kind and the location of declaration is
displayed when this information is available. That is, when the
cross-reference information about the current file has been gener-
ated. If there is no relevant information, no tooltip is displayed.
See Section 6.1 [Support for Cross-References], page 65 for more
information.

33

Using the GNAT Programming Studio

In addition, the documentation for the entity is displayed. This is the
block of comments just before or just after the entity’s declaration
of body. There mustn’t be any blank line between the two. For
instance, the following are valid documentation for Ada and C:

--— A comment for A

A : Integer;

B : Integer;
-- A comment for B

C : Integer;

-- Not a comment for C, there is a blank linke

In debugging mode, the value of the variable under the mouse is
displayed in the pop up window if the variable is known to the
debugger. Otherwise, the normal mode information is displayed.

You can disable the automatic pop up of tool tips in the Editor section
of the preferences dialog. See Section 16.1 [The Preferences Dialog],
page 193.

Code completion

GPS provides two kinds of code completion: a smart code completion
based on semantic information (see [Smart Completion], page 43),
and a text completion.

It is useful when editing a file and using often the same words to get
automatic word completion. This is possible by typing the key
combination (customizable through the key manager dialog) after a
partial word: the next possible completion will be inserted in the
editor. Typing this key again will cycle through the list of possible
completions.

Text completions are searched in all currently open source files, by
first looking at the closest words and then looking further in the
source as needed.

Delimiter highlighting

34

When the cursor is moved before an opening delimiter or after a
closing delimiter, then both delimiters will be highlighted. The fol-
lowing characters are considered delimiters: ()[]{}. You can disable
highlighting of delimiters in the preferences.

You can also jump to a corresponding delimiter by using the
key, that can be configured in the preferences. Typing twice on this
key will move the cursor back to its original position.

Chapter 5: Editing Files

Current line highlighting
You can configure the editor to highlight the current line with a
certain color. See Section 16.1 [The Preferences Dialog], page 193.

Current block highlighting
If this preference is enabled, the editor will highlight the current
block of code, e.g. the current begin. . .end block, or loop statement,
ete. ..

The block highlighting will also take into account the changes made
in your source code, and will recompute automatically the current
block when needed.

This capability is currently implemented for Ada, C and C++ lan-
guages.

Block folding
When enabled, the editor will display - icons on the left side, cor-
responding to the beginning of subprograms. If you click on one of
these icons, all the lines corresponding to this subprogram are hid-
den, except the first one. As for the block highlighting, these icons
are recomputed automatically when you modify your sources and
are always kept up to date.

This capability is currently implemented for Ada, C and C++ lan-
guages.

Auto save
You can configure the editor to periodically save modified files. See
[autosave delay], page 198 for a full description of this capability.

Automatic highlighting of entities
When the cursor is positioned on an entity in the source editor, GPS
will highlight all references to this entity in the current editor.

When the cursor moves away from the entity, the highlighting is
removed.

This is controlled by the plugin auto_highlight_occurrences.py:
it can be deactivated by deactivating the plugin (see Section 16.4
[The Plug-ins Editor], page 217).

Details such as presence of indications in the Speed Column or
highlighting color can be customized in the P1ugins section of Sec-
tion 16.1 [The Preferences Dialog], page 193.

GPS also integrates with existing third party editors such as Emacs or vi.
See Section 5.10 [Using an External Editor], page 58.

35

Using the GNAT Programming Studio

5.2 Editing Sources

5.2.1 Key bindings

In addition to the standard keys used to navigate in the editor (up, down,
right, left, page up, page down), the integrated editor provides a number of key
bindings allowing easy navigation in the file.

There are also several ways to define new key bindings, see Section 16.5.13
[Defining text aliases], page 252 and Section 16.5.8 [Binding actions to keys],
page 241.

Pressing these three keys and then holding Ctrl-Shift allow you
to enter characters using their hexadecimal value. For example,
pressing will insert a space character (ASCII 32, which
is 20 in hexadecimal).

(Ctrl-x_/ Shift-delete)
Cut to clipboard

Ctrl-c / Ctrl-insert
Copy to clipboard

(Ctrl-v / Shift-insert)
Paste from clipboard

Save file to disk

Undo previous insertion/deletion
Redo previous insertion/deletion
Tnsert Toggle overwrite mode

Select the whole file

Go to the beginning of the line

(End / Ctrl-Pgdown)
Go to the end of the line

Cul-Home) Go to the beginning of the file
Ctrl-End Go to the end of the file

Ctrl-up Go to the beginning of the line, or to the previous line if already at
the beginning of the line.

Curl-down) Go to the end of the line, or to the beginning of the next line if already
at the end of the line.

Ctildelete) Delete end of the current word.

o

6

Ctrl-backspace

Delete beginning of the current word.

5.3 The File Selector

The file selector is a dialog used to select a file. Under Windows, the default is to
use the standard file selection widget. Under other platforms, the file selector
is a built-in dialog:

| Open File

@ B

Exploring : I fmpfsre/

(3 orbit-root

(O uscreens
= Eusr

O xiire

[@bin

O dict

Detc

O games

[gnat

O include

(3 kerberos

[Olb

O lbexec

O local

(3 sbin

[4]

[Tl | .

[=—]

|

|Name

Info

filz1.txt
file2 txt

helo.adb

|4l files

| « [

helo.adb

FoK

X Cancel |

This dialog provides the following areas and capabilities:

Chapter 5: Editing Files

e A tool bar on the top composed of five buttons giving access to common
navigation features:

left arrow

go back in the list of directories visited

right arrow

go forward

37

Using the GNAT Programming Studio

up arrow
go to parent directory

refresh refresh the contents of the directory

home go to home directory (value of the HOME environment variable,
or / if not defined)

A list with the current directory and the last directories explored. You can
modify the current directory by modifying the text entry and hitting Enter),
or by clicking on the right arrow and choose a previous directory in the pop
down list displayed.

A directory tree. You can open or close directories by clicking on the +
and - icons on the left of the directories, or navigate using the keyboard
keys: and to select the previous or the next directory, (+) and ¢ to
expand and collapse the current directory, and to select the parent
directory.

A file list. This area lists the files contained in the selected directory. If
a filter is selected in the filter area, only the relevant files for the given
filter are displayed. Depending on the context, the list of files may include
additional information about the files, e.g. the kind of a file, its size, etc. . .

A filter area. Depending on the context, one or several filters are available
to select only a subset of files to display. The filter All files which is always
available will display all files in the directory selected.

A file name area. This area will display the name of the current file selected,
if any. You can also type a file or directory name directly, and complete the
name automatically by using the key.

A button bar with the ok and cancel buttons. When you have selected the
right file, clock on Ok to confirm, or click on cancel at any time to cancel
and close the file selection.

5.4 Menu Items

The main menus that give access to extended functionalities related to source
editing are described in this section.

5.4.1 The File Menu

New Open a new untitled source editor. No syntax highlighting is per-

38

formed until the file is saved, since GPS needs to know the file name
in order to choose the programming language associated with a file.

When you save a new file for the first time, GPS will ask you to enter
the name of the file. In case you have started typing Ada code, GPS
will try to guess based on the first main entity in the editor and on

Chapter 5: Editing Files

New View

Open...

the current naming scheme, what should be the default name of this
new file.

Create a new view of the current editor. The new view shares the
same contents: if you modify one of the source views, the other view
is updated at the same time. This is particularly useful when you
want to display two separate parts of the same file, for example a
function spec and its body.

A new view can also be created by keeping the key pressed while
drag-and-dropping the editor (see Section 4.5 [Moving Windows],
page 27). This second method is preferred, since you can then specify
directly where you want to put the new view. The default when using
the menu is that the new view is put on top of the editor itself.

Open a file selection dialog where you can select a file to edit. Under
Windows, this is the standard file selector. Under other platforms,
this is a built-in file selector described in Section 5.3 [The File Se-
lector], page 37.

Open From Project...

Open a dialog where you can easily and rapidly select a source file
from your project.

%= Open file from project I:J@le

Enter file name {use <tab> For completion):

|gps-kﬁrnel| |
Completions - ki
|
gps-kernel-actions, adb c:huniigtktgpst, !

gps-kernel-actions, ads c:unixgtk+gps

gps-kernel-console, adb c:unixigtk+gpsh,

gps-kernel-console, ads cunixigtk+aps

gps-kernel-contexts,adb cunixigtk+apsh
gps-kernel-contexts,ads cHiunixhatk+aps, .

< [E,
&gl(I | x Cancel |

The first text area allows you to type a file name. You can start
the beginning of a file name, and use the key to complete the
file name. If there are several possible completions, the common

39

Using the GNAT Programming Studio

prefix will be displayed, and a list of all possible completions will be
displayed in the second text area.

You can then either complete the name by typing it, or continue
hitting the key to cycle through the possible completions, or
click on one of the completions in the list displayed.

If you press the down arrow key, the focus will move to the list of
completions, so that you can select a file from this list without using
the mouse.

Once you have made your choice, click on the ok button to validate.
Clicking on cancel or hitting the key will cancel the operation
and close the dialog.

This dialog will only show each file once. If you have extended
projects in your hierarchy, some files may be redefined in some ex-
tending project. In this case, only the files from the extending project
are shown, and you cannot have access through this dialog to the
overridden files of the extended project. Of course, you can still use
the project view or the standard File->Open menu to open these
files.

Open From Host...

Recent

Save
Save As...

Open a file selector dialog where you can specify a remote host, as de-
fined in Section 15.2.1 [The remote configuration dialog], page 186.
You have access to a remote host file system, can specify a file which
can be edited in GPS. When you hit the save button or menu, the
file will be saved on the remote host.

See also Chapter 15 [Using GPS for Remote Development], page 185
for a more efficient way to work locally on remote files.

Open a sub menu containing a list of the ten most recent files opened
in GPS, so that you can reopen them easily.

Save the current source editor if needed.

Same current file under a different name, using the file selector
dialog. See Section 5.3 [The File Selector], page 37.

Save More

Give access to extra save capabilities.

All Save all items, including projects, etc. . .

Desktop Save the desktop to a file. The desktop includes infor-

mation about files, graphs, ... and their window size
and position in GPS. The desktop is saved per top level

40

Chapter 5: Editing Files

project, so that if you reload the same project you get
back to the same situation you were in when you left
GPS. Instead, if you load a different project another desk-
top will be loaded (or the default desktop). Through the
preference "Save Desktop On Exit", you can also auto-
matically save this desktop when you quit GPS.

Change Directory...

Messages

Close

Print

Open a directory selection dialog that lets you change the current
working directory.

This sub menu gives access to functionalities related to the Messages
window. See Section 2.14 [The Messages Window], page 18.

Clear Clear the contents of the Messages window.

Save As... Save the contents of the Messages window to a file. A
file selector is displayed to choose the name and location
of the file.

Load Contents...
Open a file selector to load the contents of a file in the
Messages window. Source locations are identified and
loaded in Section 2.16 [The Locations View], page 20.

Export Locations to Editor
List the contents of the Locations view in a standard text
editor.

Close the current window. This applies to all GPS windows, not only
source editors.

Print the current window contents, optionally saving it interactively
if it has been modified. The Print Command specified in the prefer-
ences is used if it is defined. On Unix this command is required; on
Windows it is optional.

On Windows, if no command is specified in the preferences the stan-
dard Windows print dialog box is displayed. This dialog box allows
the user to specify the target printer, the properties of the printer,
which pages to print (all, or a specific range of pages), the number of
copies to print, and, when more than one copy is specified, whether
the pages should be collated. Pressing the Cancel button on the
dialog box returns to GPS without printing the window contents;
otherwise the specified pages and copies are printed on the selected
printer. Each page is printed with a header containing the name of
the file (if the window has ever been saved). The page number is
printed on the bottom of each page. See [Print Command], page 209.

41

Using the GNAT Programming Studio

Exit Exit GPS after confirmation and if needed, confirmation about sav-
ing modified windows and editors.

5.4.2 The Edit Menu

Undo Undo previous insertion/deletion in the current editor.
Redo Redo previous insertion/deletion in the current editor.
Cut Cut the current selection and store it in the clipboard.

Copy Copy the current selection to the clipboard.
Paste Paste the contents of the clipboard to the current cursor position.

Paste Previous
GPS stores a list of all the text that was previously copied into the
clipboard through the use of Copy or Cut.

By default, if you press Paste, the newest text will be copied at
the current position. But if you select Paste Previous immediately
after (one or more times) you can instead paste text that was copied
previously in the clipboard.

For instance, if you copy through Edit->Copy the text "First", then
copy the text "Second", you can then select Edit->Paste to insert
"Second" at the current location. If you then select Edit->Paste
Previous, "Second" will be replaced by "First".

Selecting this menu several times will replace the text previously
pasted by the previous one in the list saved in the clipboard. When
reaching the end of this list, GPS will started from the beginning,
and insert again the last text copied into the clipboard.

The size of this list is controlled by the c1ipboard size preference.

For more information, See Section 2.11 [The Clipboard Viewl],
page 16.

Select All
Select the whole contents of the current source editor.

Rectangles...
See the section see Section 5.5 [Rectangles], page 48 for more infor-
mation on rectangles.

Insert File...
Open a file selection dialog and insert the contents of this file in the
current source editor, at the current cursor location.

Insert Shell Output...
Open an input window at the bottom of the GPS window where you
can specify any external command. The output of the command will

42

Chapter 5: Editing Files

be inserted at the current editor location in case of success. If text
is selected, the text is passed to the external command and replaced
by the command’s output.

Format Selection
Indent and format the selection or the current line. See Section 16.1
[The Preferences Dialog], page 193, for preferences related to source
formatting.

Smart Completion

Complete the identifier prefix under the cursor, and list the results
in a pop-up list. This command can take advantage of an entity
database and offers completions from the entire project, along with
documentation extracted from comments surrounding declarations.
To take full advantage of this feature, the smart completion pref-
erence must be enabled, which will imply the computation of the
entity database at GPS startup.

In order to use this feature, open any Ada file, and begin to type an
identifier. It has to be an identifier declared either in the current file
(and accessible from the cursor location) or in one of the packages
of the project loaded. Move the cursor right after the last character
of the incomplete identifier and hit the completion key (which is
by default). GPS will open a popup displaying all the
known identifiers beginning with the prefix you typed. You can then
browse among the various proposals by clicking on the (up) and
keys, or using the left scrollbar. For each entity, a documentation
box is filled. If the location of the entity is known, it’s displayed as
an hyperlink, and you can jump directly to its declaration by clicking
on it.

Typing new letters will reduce the range of proposal, as long as there
remain solutions. Once you've selected the expected completion, you
can validate by pressing (Enter).
Typing control characters (ie, characters which cannot be used in
identifiers) will also validate the current selection.
GPS is also able to complete automatically subprogram parameter
or dotted notations. For example, if you type

with Ada.
the smart completion window will appear automatically, listing all
the child and nested packages of Ada. You can configure the time in-
terval after which the completion window appears (see Section 16.1
[The Preferences Dialog], page 193).

You can also write the beginning of the package, e.g.:

43

Using the GNAT Programming Studio

with Ada.Text
pressing the completion key will offer you Text_IO.

If you are in a code section, you will be able to complete the fields of
a record, or the contents of a package, e.g.:
type R is record
Fieldl : Integer;
Field2 : Integer;
end record;

V : R;
begin

V.
Completing V. will propose Field1 and Field2.

The smart completion can also give you the possible parameters of
a call you’re currently making. For example, in the following code:

procedure Proc (A, B, C : Integer);
begin

Proc (1,

If you hit the completion key after the comma, the smart completion
engine will propose you to complete with the named parameters "B
=>" "C =>" or directly to complete with all the remaining parame-
ters, which in this case will be "B =>, C =>).

procedure Ref (Entity : Entity Information; Reason : String) is
begin
Languages.
B ELUJCLL7E¢GLU

. . A * | Declaration at: language.ads: 253: 4
if Entity+ No_Project_Field

Trace 1 i Same as Skip To Current Comment Block Start, except we move forward
: ¥ Project Field Array Himcn = i = 3
end if; - — to the beginning of the last line of comments in the block.
Ref (Enti® Get Project Fields If Ignore Blank Lines is set to True, blocks separated from one another
end Ref; A — with blank lines are considered as a single one.
,,,,,,,,,,, * Language_Context Parameters:
-- Unref -- v Language Context Access Context :in Language Context
——————————— = - - Buffer : in String
® Getglanguage) Lontext Index : in out Natural
procedure Un® Skip To Current Comment Bl || [Ignors Blank Lines : in Boolean := False]
begin . @ Skip To Current Comment Bl
if Entity - = - -

Trace ° Skip_To_ Next Comment Start
{(Ref @ skip To Previous Comment 5
& M - - - S
& B
end if; * Indent Style w
Unref (En ¢ | 5
end Unref;

Source Location

44

Chapter 5: Editing Files

Limitations:

eThis feature is currently only available for Ada.
Using the smart completion on non Ada files behaves as
the identifier completion does. See [Complete Identifier],
page 45.

More Completion

Selection

This submenu contains more ways to automatically complete code

eExpand Alias
Consider the current word as an alias and expand ac-
cording to aliases defined in Section 16.5.13 [Defining
text aliases], page 252.

eComplete Identifier
Complete the identifier prefix under the cursor. This
command will cycle through all identifiers starting with
the given prefix.

eComplete Block
Close the current statement (if, case, loop) or unit (pro-

cedure, function, package). This action works only on an
Ada buffer.

eComment Lines
Comment the current selection or line based on the cur-
rent programming language syntax.

eUncomment Lines
Remove the comment delimiters from the current selec-
tion or line.

eRefill Refill text on the selection or current line according to the
right margin as defined by the right margin preference
(see Section 16.1 [The Preferences Dialog], page 193).

eRefill with fmt
Refill text on the selection or current line using the ex-
ternal utility fmt. If fmt is not found on your system,
this menu will not be displayed.

eSort Sort the selected lines alphabetically. This is particu-
larly useful when editing non source code, or for specific
parts of the code, like with clauses in Ada.

eSort Reverse
Sort the selected lines in reverse alphabetical order

45

Using the GNAT Programming Studio

46

ePipe in external program...

eSerialize

Open an input window at the bottom of the GPS window
where you can specify any external command, which will
take the current selection as input. The output of the
command will replace the contents of the selection on
success.

Increment a set of numbers found on adjacent lines. The
exact behavior depends on whether there is a current
selection or not.

If there is no selection, then the set of lines considered is
from the current line on and includes all adjacent lines
that have at least one digit in the original columns. In
the following example, ’|” marks the place where the
cursor is at the beginning:

AAA |10 AAA

CCC 34567 CCC
DDD DDD

then only the first two lines will be modified, and will
become
AAA 10 AAA

CCC 11 CCC
DDD DDD

If there is a selection, all the lines in the selection are
modified. For each line, the columns that had digits in
the first line are modified, no matter what they actually
contain. In the example above, if you select all three
lines, the replacement becomes

AAA 10 AAA

CCC 11567 CCC
DDD 12D

ie only the fifth and sixth columns are modified since
only those columns contained digits in the first line. This
feature assumes that you are selecting a relevant set of
lines. But it allows you to transform blank lines more
easily. For instance, if you have

AAA 1

BBB

cce
this is transformed into

AAA 1
BBB 2
CccC 3

Chapter 5: Editing Files

eUntabify Replace all tabs in the current selection (or in the whole
buffer if there is no selection) by the appropriate number
of spaces

eMove Right
eMove Left
Shift the currently selected lines (or the current line if

there is no selection) one character to the right or to the
left

Fold all blocks
Collapse all the blocks in the current file.

Unfold all blocks
Uncollapse all the blocks in the current file.

Create Bookmark
Creates a new Bookmark at cursor position. For more information,
See Section 2.13 [Bookmarks], page 18.

Pretty Print
Pretty print the current source editor by calling the external tool
gnatpp. It is possible to specify gnatpp switches in the switch editor.
See Section 7.11 [The Switches Editor], page 99.

Generate Body
Generate Ada body stub for the current source editor by calling the
external tool gnatstub.

Unit Testing
This sub menu gives access to dialogs that make it easy to generate
AUnit stubs. AUnit is an Ada unit testing framework.

New Test Case...
Create a new test case. See AUnit documentation for
more details.

New Test Suite...
Create a new test suite. See AUnit documentation for
more details.

New Test Harness...
Create a new test harness. See AUnit documentation for
more details.

Edit with external editor
See Section 5.10 [Using an External Editor], page 58.

Aliases Display the Aliases editor. See Section 16.5.13 [Defining text
aliases], page 252.

47

Using the GNAT Programming Studio

Key shortcuts
Give access to the key manager dialog, to associate commands with
special keys. See Section 16.3 [The Key Manager Dialog], page 216.

Preferences
Give access to the preferences dialog. See Section 16.1 [The Prefer-
ences Dialog], page 193.

5.5 Rectangles

Rectangle commands operate on a rectangular area of the text, that is all the
characters between two columns in a certain range of lines.

A rectangle is selected using the standard selection mechanism. You can
therefore use either the mouse to highlight the proper region, or and the
cursor keys to extend the selection, or the Emacs selection (with the mark and
the current cursor location) if you have activated the ‘emacs.py’ plugin.

Visually, a selected rectangle is exactly the same as the standard selection.
In particular, the characters after the last column, on each line, will also be
highlighted. The way the selection is interpreted (either as a full text or as a
rectangle) depends on the command you then chose to manipulate the selection.

If you chose one of the commands from the /Edit/Rectangles menu, the
actual rectangle will extend from the top-left corner down to the bottom-right
corner. All characters to the right of the right-most column, although they are
highlighted, are not part of the rectangle.

Consider for instance the following initial text:

package A is
procedure P;

procedure Q;
end A;
and assume we have selected from the character "p" in "procedure P, down
to the character "c" in "procedure Q".

The following commands can then be used (either from the menu, or you can
assign key shortcuts to them via the usual /Edit/Key shortcuts menu.

e cut or Delete These commands will remove the selected text (and have
no effect on empty lines within the rectangle). The former will in addition
copy the rectangle to the clipboard, so that you can paste it later. In our
example, we end up with

package A is
edure P;

edure Q;
end A;

48

Chapter 5: Editing Files

e Copy This command has no visual effect, but copies the contents of the
rectangle into the clipboard.

e paste Pastes the contents of the clipboard as a rectangle: each line from the
clipboard is treated independently, and inserted on successive lines in the
current editor. They all start in the same column (the one where the cursor
is initially in), and existing text in the editor lines is shifted to the right). If
for instance you now place the cursor in the second line, first column, and
paste, we end up with:

package A is
proc edure P;

proc edure Q;
end A;

e Clear Replaces the contents of the selected rectangle with spaces. If we
start from our initial exmaple, we end up with the following. Note the
difference with Delete.

package A is
edure P;

edure Q;
end A;
e Open Replaces the contents of the selected rectangle with spaces, but shifts
the lines to the right to do so. Note the difference with clear.
package A is
procedure P;

procedure Q;
end A;

e Replace With Text This is similar to clear, but the rectangle is replaced
with user-defined text. The lines will be shifted left or right if the text
you insert is shorter (resp. longer) than the width of the rectangle. If for
instance we replace our initial rectangle with the text TMP, we end up with
the following. Note that the character "c" has disappeared, since TMP is
shorter than our rectangle width (4 characters). This command will impact
lines that are empty in the initial rectangle.

package A is
TMPedure P;
TMP
TMPedure Q;
end A;

e Insert Text This inserts a text to the left of the rectangle on each line.
The following example inserts TMP. Note the difference with Replace with
Text. This command will also insert the text on lines that are empty in the
initial rectangle.

49

Using the GNAT Programming Studio

package A is
TMPprocedure P;
TMP
TMPprocedure Q;
end A;

5.6 Recording and replaying macros

It is often convenient to be able to repeat a given key sequence a number of
times.

GPS supports this with several different methods:

e Repeat the next action

50

If there is a single key press that you wish to repeat a number of times, you
should first use the GPS action "Repeat Next" (bound by default to ontrol-u),
but this can be changed as usual through the /Edit /Key Shortcuts menu),
then entering the number of times you wish to repeat, and finally pressing
the key you want.

For instance, the following sequence will insert 79 characters ’-’
in the current editor. This proves often useful to insert separators.

If you are using the emacs mode (see /Tools/Plug-ins menu), you can also
use the sequence (control-u 30 control-k) to delete 30 lines.

Recording macros

If you wish to repeat a sequence of more than 1 key, you should record this
sequence as a macro. All macro-related menus are foundin /Tools/Macros,
although it is often more convenient to use these through key bindings,
which you can of course override.

You must indicate to GPS that it should start recording the keys you are
pressing. This is done through the /Tools/Macros/Start Keyboard Macro
menu. As its name indicates, this only records keyboard events, not mouse
events. Until you select /Tools/Macros/Stop Macro, GPS will keep record-
ing the events.

In Emacs mode, the macro actions are bound to (controlx (), {control-x)) and
key shortcuts. For instance, you can execute the following to
create a very simple macro that deletes the current line, wherever your
cursor initially is on that line:

start recording

go to beginning of line
delete line

stop recording

Chapter 5: Editing Files

5.7 Contextual Menus for Editing Files

Whenever you ask for a contextual menu (using e.g. the third button on your
mouse) on a source file, you will get access to a number of entries, displayed or
not depending on the current context.

Menu entries include the following categories:

Source Navigation
See Section 6.3 [Contextual Menus for Source Navigation], page 68.

Dependencies
See Section 10.3 [Dependency Browser], page 123.

Entity browsing
See Section 10.4 [Entity Browser], page 126.

Project view
See Section 2.6 [The Project View], page 6.

Version control
See Section 12.4 [The Version Control Contextual Menu], page 159.

Debugger
See Section 11.6 [Using the Source Editor when Debugging],
page 143.

Case exceptions
See Section 5.8 [Handling of case exceptions], page 51.

Refactoring
See Section 5.9 [Refactoring], page 52.

In addition, an entry Properties... is always visible in this contextual
menu. When you select it, a dialog pops up that allows you to override the
language used for the file, or the character set.

This can be used for instance if you want to open a file that does not belong to
the current project, but where you want to benefit from the syntax highlighting
that GPS knows how to.

It is not recommended to override the language for source files that belong to
the project. Instead, you should use the Project Properties dialog and change
the naming scheme if appropriate. This will ensure better consistency between
GPS and the compiler in the way they manipulate the file.

5.8 Handling of case exceptions

GPS keeps a set of case exceptions that is used by all case insensitive languages.
When editing or reformatting a buffer for such a language the case exception
dictionary will be checked first. If an exception is found for this word or a

51

Using the GNAT Programming Studio

substring of the word, it will be used; otherwise the specified casing for keywords
or identifiers is used. A substring is defined as a part of the word separated by
underscores.

Note that this feature is not activated for entities (keywords or identifiers)
for which the casing is set to Unchanged. See see Section 16.1 [The Preferences
Dialog], page 193.

A contextual menu named Casing has the following entries:

Lower entity
Set the selected entity in lower case.

Upper entity
Set the selected entity in upper case.

Mixed entity
Set the selected entity in mixed case (set the first letter and letters
before an underscore in upper case, all other letters are set to lower
case).

Smart Mixed entity
Set the selected entity in smart mixed case. Idem as above except
that upper case letters are kept unchanged.

Add exception for entity
Add the current entity into the case exception dictionary.

Remove exception for entity
Remove the current entity from the case exception dictionary.

To add or remove a substring exception into/from the dictionary you need
to first select the substring on the editor. In this case the last two contextual
menu entries will be:

Add substring exception for str
Add the selected substring into the case substring exception dictio-
nary.

Remove substring exception for str
Remove the selected substring from the case substring exception
dictionary.

5.9 Refactoring

GPS includes basic facilities for refactoring your code. Refactoring is the stan-
dard term used to describe manipulation of the source code that do not affect
the behavior of the application, but help reorganize the source code to make it
more readable, more extendable, . ..

52

Chapter 5: Editing Files

Refactoring technics are generally things that programmers are used to do
by hand, but which are faster and more secure to do automatically through a
tool.

One of the basic recommendations when you refactor your code is to recom-
pile and test your application very regularly, to make sure that each of the
small modifications you made to it didn’t break the behavior of your applica-
tion. This is particularly true with GPS, since it relies on the cross-references
information that is generated by the compiler. If some of the source files have
not been recompiled recently, GPS will print warning messages indicating that
the renaming operation might be dangerous and/or only partial.

One of the reference books that was used in the choice of refactoring methods
to implement is "Refactoring", by Martin Fowler (Addison Wesley).

5.9.1 Rename Entity

Clicking on an entity in a source file and selecting the Refactoring/Rename
menu will open a dialog asking for the new name of the entity. GPS will rename
all instances of the entity in your application. This includes the definition of the
entity, its body, all calls to it, etc. .. Of course, no comment is updated, and you
should probably check manually that the comment for the entity still applies.
GPS will handle primitive operations by also renaming the operations it
overrides or that overrides it. This means that any dispatching call to that
operation will also be renamed, and the application should still work as be-
fore. If you are renaming a parameter to a subprogram, GPS can also rename
parameters with similar names in overriding or overridden subprograms.

The behavior when handling read-only files can be specified: by default, GPS
will not do any refactoring in these files, and will display a dialog listing all of
them; but you can also choose to make them writable just as if you had clicked
on the "Read-Only" button in the status bar of the editor and then have GPS
perform the renaming in them as well.

5.9.2 Name Parameters

If you are editing Ada code and click on a call to a subprogram, GPS will
display a contextual menu Refactoring/Name parameters, which will replace
all unnamed parameters by named parameters, as in:

Call (1, 2)
=>
Call (Paraml => 1, Param2 => 2);

5.9.3 Extract Subprogram

This refactoring is used to move some code from one place to a separate sub-
program. The goal is to simplify the original subprogram, by moving part of its
code elsewhere.

53

Using the GNAT Programming Studio

Here is an example from the "Refactoring" book. The refactoring will take
place in the body of the package ‘vkg.adp’, but the spec is needed so that you can
compile the source code (a preliminary step mandatory before you can refactor

the code).
pragma Ada_05;

with Ada.Containers.Indefinite_Doubly_Linked_Lists;
with Ada.Strings.Unbounded;

package Pkg is

type Order is tagged null record;
function Get_Amount (Self : Order) return Integer;

package Order_Listsis new
Ada.Containers.Indefinite_Doubly_Linked_Lists (Order);

type Invoice is tagged record

Orders : Order_Lists.List;

Name : Ada.Strings.Unbounded.Unbounded_String;
end record;

procedure Print_Owing (Self : Invoice);

end Pkg;
The initial implementation for this code is given by the following code:

pragma Ada_05;
with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
with Ada.Text_I0; use Ada.Text_I0;

package body Pkg is
use Order_Lists;

function Get_Amount (Self : Order) return Integer is
begin

return O;
end Get_Amount;

procedure Print_Owing (Self : Invoice) is
E : Order_Lists.Cursor := First (Self.Orders);

54

Chapter 5: Editing Files

Outstanding : Natural := O;
Each : Order;
begin
— << line 30
— Print Banner

Put_Line ("sokskskokskokskokokokskokoskokskoksdokskokokokskoksfokskokokkok 1) 5

Put_Line ("#**x* Customer Owes H*kkk")
Put_Line ("skkkkkskkskokkokkokkokkkkkkkkkkkkkkkkkx") ;. — << [ine 35

— Calculate Outstanding

while Has_Element (E) loop
Each := Element (E);
Outstanding := Outstanding + Each.Get_Amount;
Next (E);

end loop;

— Print Details

Put_Line ("Name: " & To_String (Self.Name));
Put_Line ("Outstanding:" & Outstanding’Img);
end Print_Owing;
end Pkg;

The procedure Print_oOwingis toolong and does several independent actions.
We will perform a series of three successive refactoring steps to extract the code
and move it elsewhere.

The first is the code that prints the banner. Moving it is easy, since this
code does not depend on any context. We could just do a copy-paste, but then
we would have to create the new subprogram. Instead, we select lines 30 to
35, and then select the contextual menu Refactoring/Extract Subprogram.
GPS will then automatically change print_owing and create a new procedure
Print_Banner (the name is specified by the user, GPS does not try to guess
it). Also, since the chunk of code that is extracted starts with a comment, GPS
automatically uses that comment as the documentation for the new subprogram.
Here is part of the resulting file:

package body Pkg is

procedure Print_Banner;
— Print Banner

procedure Print_Banner is

55

Using the GNAT Programming Studio

begin
Put_Line (Mkkkksksksokskokkkkksokkokkorkodkkokokokkokkonk) §
Put_Line ("#**x* Customer Owes *kkk")

Put_Limne ("skkskkskokskorskorskokskokkskokskokskokkokkokkorskrkrk) ;
end Print_Banner;

(code not shown)

procedure Print_Owing (Self : Invoice) is
E : Order_Lists.Cursor := First (Self.Orders);
Outstanding : Natural := O;
Each : Order;
begin
Print_Banner;

— Calculate Outstanding

while Has_Element (E) loop
Each := Element (E);
Outstanding := Outstanding + Each.Get_Amount;
Next (E);

end loop;

— Print Details <<< line 5/

Put_Line ("Name: " & To_String (Self.Name));
Put_Line ("Outstanding:" & Outstanding’Img); — line 57
end Print_Owing;

end Pkg;

A more interesting example is when we want to extract the code to print the
details of the invoice. This code depends on one local variable and the parameter
to Print_Owing. When we select lines 54 to 57 and extract it into a new Print_
Details subprogram, we get the following result. GPS automatically decides
which variables to extract, and whether they should become parameters of the
new subprogram, or local variables. In the former case, it will also automatically
decide whether to create "in", "out" or "in out" parameters. If there is a
single "out" parameter, it will automatically create a function rather than a
procedure.

GPS will use, for the parameters, the same name that was used for the
local variable. Very often, it will make sense to recompile the new version of
the source, and then apply the Rename Ent ity refactoring to have more specific
names for the parameters, or the Name Parameters refactoring so that the call
to the new method uses named parameters to further clarify the code.

. code not shown

56

procedure Print_Details
(Self : Invoice’Class;
Outstanding : Natural);
— Print Details

— Print_Details —

procedure Print_Details
(Self : Invoice’Class;
Outstanding : Natural)
is
begin
Put_Line ("Name: " & To_String (Self.Name));
Put_Line ("Outstanding:" & Outstanding’Img);
end Print_Details;

procedure Print_Owing (Self : Invoice) is
E : Order_Lists.Cursor := First (Self.Orders);
Outstanding : Natural := O;
Each : Order;
begin
Print_Banner;

— Calculate Outstanding

while Has_Element (E) loop
Each := Element (E);
Outstanding := Outstanding + Each.Get_Amount;
Next (E);

end loop;

Print_Details (Self, Outstanding);
end Print_Owing;

. code not shown

Chapter 5: Editing Files

Finally, we want to extract the code that computes the outstanding amount.
When this code is moved, the variables E and Each become useless in Print_
owing and are moved into the new subprogram (which we will call Get_
outstanding. Here is the result of that last refactoring (the initial selection
should include the blank lines before and after the code, to keep the resulting
Print_Owing simpler). GPS will automatically ignore those blank lines.

procedure Get_QOutstanding (Outstanding : in out Natural);

— Clalculate Outstanding

57

Using the GNAT Programming Studio

- Get_QOutstanding —

procedure Get_Outstanding (Outstanding : in out Natural) is
E : Order_Lists.Cursor := First (Self.Orders);
Each : Order;
begin
while Has_Element (E) loop
Each := Element (E);
Outstanding := Outstanding + Each.Get_Amount;
Next (E);
end loop;
end Get_Qutstanding;

procedure Print_Owing (Self : Invoice) is
Outstanding : Natural := O;
begin
Print_Banner;
Get_Outstanding (Outstanding) ;
Print_Details (Self, Outstanding);
end Print_Owing;

Note that the final version of Print_owing is not perfect. For instance,
passing the initial value 0 to Get_outstanding is useless, and in fact that
should probably be a function with no parameter. But GPS already saves a lot
of time and manipulation.

Finally, a word of caution: this refactoring does not check that you are giving
a valid input. For instance, if the text you select includes a declare block, you
should always include the full block, not just a part of it (or select text between
begin and end). Likewise, GPS does not expect you to select any part of the
variable declarations, just the code.

5.10 Using an External Editor

GPS is integrated with a number of external editors, in particular Emacs and
vi. The choice of the default external editor is done in the preferences. See
Section 16.1 [The Preferences Dialog], page 193. The following values are
recognized:

gnuclient
This is the recommended client. It is based on Emacs, but needs an
extra package to be installed. This is the only client that provides
a full integration in GPS, since any extended lisp command can be
sent to the Emacs server.

By default, gnuclient will open a new Emacs frame for every file
that is opened. You might want to add the following code to your

58

Chapter 5: Editing Files

‘.emacs’ file (create one if needed) so that the same Emacs frame is
reused every time:

(setq gnuserv-frame (car (frame-list)))

See http://www.hpl.hp.com/personal/ange/gnuserv/home.html
for more information.

emacsclient

emacs

vim

vi

custom

none

This is a program that is always available if you have installed
Emacs. As opposed to starting a new Emacs every time, it will reuse
an existing Emacs session. It is then extremely fast to open a file.

This client will start a new Emacs session every time a file needs
to be opened. You should use emacsclient instead, since it is much
faster, and makes it easier to copy and paste between multiple files.
Basically, the only reason to use this external editor is if your system
doesn’t support emacsclient.

vim is a vi-like editor that provides a number of enhancements,
for instance syntax highlighting for all the languages supported by
GPS. Selecting this external editor will start an xterm (or command
window, depending on your system) with a running vim process
editing the file.

Note that one limitation of this editor is that if GPS needs to open
the same file a second time, it will open a new editor, instead of
reusing the existing one.

To enable this capability, the xterm executable must be found in
the PATH, and thus is not supported on Windows systems. Under
Windows systems, you can use the custom editor instead.

This editor works exactly like vim, but uses the standard vi com-
mand instead of vim.

You can specify any external editor by choosing this item. The
full command line used to call the editor can be specified in the
preferences (see [custom editor command], page 199).

No external editor is used, and the contextual menus simply won’t
appear.

In the cases that require an Emacs server, GPS will try several solutions
if no already running server was found. It will first try to spawn the glide
environment distributed with GNAT. If not found in the PATH, it will then
start a standard Emacs. The project file currently used in GPS will be set
appropriately the first time Emacs is spawned. This means that if you load a
new project in GPS, or modify the paths of the current project, you should kill

59

http://www.hpl.hp.com/personal/ange/gnuserv/home.html

Using the GNAT Programming Studio

any running Emacs, so that a new one is spawned by GPS with the appropriate
project.

Alternatively, you can reload explicitly the project from Emacs itself by using
the menu Project->Load

In the preferences, there are three settings that allow you to select the
external editor (if left to an empty string, GPS will automatically select the
first editor available on your system), to specify the custom editor command, in
case you've selector this item, and whether this editor should always be used
every time you double-click on a file, or whether you need to explicitly select the
contextual menu to open the external editor.

5.11 Using the Clipboard

This section concerns X-Window users who are used to cutting and pasting
with the middle mouse button. In the GPS text editor, as in many recent X
applications, the GPS clipboard is set by explicit cut/copy/paste actions, either
through menu items or keyboard shortcuts, and the primary clipboard (i.e. the
“middle button” clipboard) is set by the current selection.

Therefore, copy/paste between GPS and other X applications using the pri-
mary clipboard will still work, provided that there is some text currently se-
lected. The GPS clipboard, when set, will override the primary clipboard.

Seehttp://standards.freedesktop.org/clipboards-spec/clipboards-latest.txt
for more information.

5.12 Saving Files

After you have finished modifying your files, you need to save them. The basic
method to do that is to select the menu File->save, which saves the currently
selected file.

You can also use the menu File->Save As. .. if you want to save the file
with another name, or in another directory.

If you have multiple files to save, another possibility is to use the menu
File->Save More—>Al1l. This will open a dialog listing all the currently modified
editors that need saving. You can then select individually which one should be
saved, and click on save to do the actual saving.

When calling external commands, such as compiling a file, if the Auto save
preference is disabled, this same dialog is also used, to make sure that e.g. the

60

http://standards.freedesktop.org/clipboards-spec/clipboards-latest.txt

Chapter 5: Editing Files

compiler will take into account your local changes. If the preference is enabled,
the saving is performed automatically.

= Saving files El [El gl

Do yiou want to save the Following Files 7
Clicking on the Seiectlabel will selectfunselect all

Select Title

| c:unixigtk+gpsi gps\HEAD gpst srolgps-main. adb
& c:unixigtk+apsigpsi\HEADVkernelisrolgps-kernel . ads

Egave | l Mone l l X cancel

You can conveniently select or unselect all the files at once by clicking on the
title of the first column (labeled Select). This will toggle the selection status of
the first line, and have the same status for all other editors.

If you press cancel instead of save, no saving will take place, and the action
that displayed this dialog is also canceled. Such actions can be for instance
starting a compilation command, a VCS operation, or quitting GPS with un-
saved files.

5.13 Remote Files

GPS has a basic support for working with files on remote hosts. This includes
a number of protocols, described below, which allow you to read a file from a
remote host, edit it locally, and then save it transparently to the remote machine.

For now, the support for remote files is only available through the GPS shell
window. You start editing a remote file by typing a line similar to

Editor.edit protocol://user@machine/full/path

where "protocol" should be replaced by the name of the protocol you want
to use, "user" is the login name you wish to use on the remote "machine", and
v/full/path" is the full path on the remote machine to access the file.

The user name is optional. If it is the same as on the local machine, you can
omit the user name as well as the "e" sign.

Likewise, the machine name is optional, if you want to get a file from the
local host. This can be used to access files belonging to another user. In this

61

Using the GNAT Programming Studio

case, you need to specify the "e" sign, but do not insert a machine name right

after it.

Remote files can also be used if you want to work with GPS, but the machine
on which the files are found isn’t supported by GPS.

The following protocols are supported:

ssh

rsh

telnet

scp

62

This protocol is based on the ssh command line tool, which must
therefore be available in the path. It provides encrypted and secure
connections to the remote host. Files are transfered in-line, that is
the connection is established the first time you access the remote
host, and kept open for all further access.

Although ssh can be setup not to require a password, GPS will
automatically detect if a password is asked and open a dialog to
query it.

The remote system must be a Unix-like system with support for
standard Unix commands like test, echo, rm and 1s.

In the sample shell command above, you would replace the word
"protocol” with "ssh" to use this protocol.

This protocol behaves like ssh, except that the connections are not
encrypted. However, this protocol is generally available on all Unix
machines by default.

It has the same requirements that the ssh protocol. To use it, sub-
stitute the word "rsh" to "protocol" in the example above.

This protocol is based on the standard telnet protocol. It behaves
much like the two protocols above, with an unencrypted connection.

To use it, substitute the word "telnet" to "protocol" in the example
above.

This protocol is also based on one of the tools of the ssh suite. It
provides encrypted connections, and uses a mixture of ssh and scp
connections. Various commands like querying the time stamp of a
file are executed through a permanent ssh connection, whereas files
are downloaded and uploaded through a one-time scp command.

It basically has the same behavior as the ssh protocol, although it
might be slightly slower since a new connection has to be established
every time a file is fetched from, or written to the remote host.
However, it might work better than ssh if the file contains 8 bit
characters.

To use it, substitute the word "scp" to "protocol" in the example
above.

Chapter 5: Editing Files

rsync

ftp

http

Just like scp is based on ssh, this protocol is based on either rsh or
ssh. It depends on the external tool rsync, and uses a mixture of a
rsh/ssh connection for commands like querying the time stamp of a
file, and one-time connections with rsync to transfer the files.

Rsync is specially optimized to transfer only the parts of a file that
are different from the one already on the remote host. Therefore,
it will generally provide the best performance when writing the file
back to the remote host.

If you set up the environment variable RSYNC_RSH to ssh before
starting gps, the connection will then be encrypted when transfer-
ring the files, and the connection will be performed using ssh instead
of rsh.

To use this protocol, substitute the word "rsync" to "protocol" in the
example above.

This protocol provides only limited capabilities, but can be used to
retrieve or write a file back through an ftp connection, possibly even
through an anonymous ftp connection.

To use this protocol, substitute the word "ftp" to "protocol" in the
example above.

This is the usual http protocol to download documents from the web.
It is in particular useful for documentation

63

Using the GNAT Programming Studio

64

Chapter 6: Source Navigation

6 Source Navigation

6.1 Support for Cross-References

GPS provides cross-reference navigation for program entities, such as types,
procedures, functions, variables, ..., defined in your application. The cross-
reference support in GPS relies on the compiler generated xref information,
which means that you need to either compile your project first before being
able to navigate, or use the menu Build->Recompute Xref info. Similarly
when your sources have been modified, you need to rebuild and recompute xref
information so that your changes are taken into account.

Here are language specific information about source navigation:

Ada The GNAT compiler is used to generate the cross-references infor-
mation needed by GPS by default, unless you are using the —gnatbD
or —gnatx switches, in which case no cross reference information
will be available.

If you need to navigate through sources that do not compile (e.g after
modifications, or while porting an application), GNAT can still gen-
erate partial cross-reference information if you specify the —-gnato
compilation option. Along with the -k option of gnatmake, it is then
possible to generate as much relevant information as possible for
your non compilable sources.

There are a few special cases where GPS cannot find the external
file (called ‘AL.T file’) that contains the cross-reference information.
Most likely, this is either because you haven’t compiled your sources
yet, or because the source code has changed since the ‘ALI file’ was
generated.

It could also be that you haven’t included in the project the object
directories that contain the ‘ALT files’.

In addition, one special case cannot be handled automatically. This
is for separate units, whose file names have been crunched through
the gnatkr command. To handle this, you should force GPS to parse
all the ‘ALT files’ in the appropriate object directory. This is done
by right-clicking on the object directory in the project view (left-side
panel on the main window), and selecting the menu "Parse all xref
information™.

C/C++ The GCC C and C++ compilers that come with GNAT need to be
used to generate the cross-references information needed by GPS,
via the —-fdump-xref switch. This means that you need to first add
the -fdump-xref switch to your project’s switches for C and C++

65

Using the GNAT Programming Studio

sources, and compile your application before you browse through
the cross-references or view various graphs in GPS. If sources have
been modified, you should recompile the modified files.

6.1.1 Loading xref info in memory

The cross-reference information, as mentioned above, is generated either by the
compiler when you recompile your sources, or explicitly when you select the
menu Build->Recompute Xref info.

This information will be loaded in memory automatically by GPS when it
needs it, and as little as possible, to limit the memory footprint. However, this
means that some operations, for instance searching for all the references to a
global entity, will need to parse most, if not all, of the cross-reference informa-
tion. This will slow done the search the first time (and then the information
is in memory and the search is fast, unless the cross-reference information has
been regenerated on the disk).

You can select the menu Build->Load xref info in memory to force GPS to
load all the available information immediately in memory. This will speed up
future queries.

Note that GPS always loads all xref information for C and C++ sources in
order to provide accurate source navigation, so this menu is mainly relevant for
Ada sources.

A preference can be set to have GPS load the cross-information automatically
on startup, See Section 16.1 [The Preferences Dialog], page 193.

6.1.2 Ada xrefs heuristics

GPS is able to provide some basic navigation support for Ada sources in the
absence of information coming from the compiler. It uses a built-in Ada parser
parsing the Ada files at startup and allowing navigation in simple cases.

In this mode, GPS is able to navigate to an entity body from the declaration,
and to an entity declaration from the body. In case of other references, GPS will
navigate to the declaration on simple cases, namely if the heuristics provide an
information without ambiguity. In particular, it may not work with overloaded
entities.

These heuristics are not used in global reference searching operations or call
graphs.

Note that this parser is also used to provide the Ada outline view, code
completion and entity view.

6.2 The Navigate Menu

66

Chapter 6: Source Navigation

Find or Replace...
Open the find and replace dialog. See Chapter 8 [Searching and
Replacing], page 103.

Find Next
Find next occurrence of the current search. See Chapter 8 [Search-
ing and Replacing], page 103.

Find Previous
Find previous occurrence of the current search. See Chapter 8
[Searching and Replacing], page 103.

Find All References
Find all the references to the current entity in the project. The
search is based on the semantic information extracted from the
sources, this is not a simple text search. The result of the search
is displayed in the location window, see Section 2.16 [The Locations
View], page 20.

Goto Declaration
Go to the declaration/spec of the current entity. The current entity
is determined by the word located around the cursor. This item is
also accessible through the editor’s contextual menu directly. This
capability requires the availability of cross-reference information.
See Section 6.1 [Support for Cross-References], page 65.

Goto Body
Go to the body/implementation of the current entity. This item is
also accessible through the editor’s contextual menu directly. This
capability requires the availability of cross-reference information.
See Section 6.1 [Support for Cross-References], page 65.

Goto Matching Delimiter
Go to the delimiter matching the one right before (for a closing
delimiter) or right after (for an opening delimiter) the cursor if any.

Goto Line...
Open a dialog where you can type a line number, in order to jump to
a specific location in the current source editor.

Goto Entity...
Open a dialog allowing browsing of the entities loaded in the project.
This dialog functions similarly to Section 2.8 [The Entity View],
page 14.

Goto File Spec<->Body
Open the corresponding spec file if the current edited file is a body
file, or body file otherwise. This option is only available for the Ada

67

Using the GNAT Programming Studio

language. Thisitem is also accessible through the editor’s contextual
menu

This capability requires support for cross-references. This item is
also accessible through the editor’s contextual menu

Start Of Statement
Move the cursor position to the start of the current statement, move
to the start of the enclosing statement if the cursor position is al-
ready at the start of the statement.

End Of Statement
Move the current cursor position to the end of the statement, move
to the end of the enclosing statement if the cursor position is already
at the end of the statement.

Previous Subprogram
Move the current cursor position to the start of the previous proce-
dure, function, task, protected record or entry.

Next Subprogram
Move the current cursor position to the start of the next procedure,
function, task, protected record or entry.

Previous Tag
Go to previous tag/location. See Section 2.16 [The Locations View],

page 20.

Next Tag Go to next tag/location. See Section 2.16 [The Locations View],
page 20.

Back Go to previous location.

Forward Go to next location.

6.3 Contextual Menus for Source Navigation

This contextual menu is available from any source editor. If you right click over
an entity, or first select text, the contextual menu will apply to this selection or
entity.

Goto declaration of entity
Go to the declaration/spec of entity. The current entity is determined
by the word located around the cursor or by the current selection if
any. This capability requires support for cross-references.

Goto full declaration of entity
This contextual menu appears for a private or limited private types.
Go to the full declaration/spec of entity. The current entity is deter-

68

Chapter 6: Source Navigation

mined by the word located around the cursor or by the current se-
lection if any. This capability requires support for cross-references.

Goto type declaration of entity
Go to the type declaration of entity. The current entity is determined
by the word located around the cursor or by the current selection if
any. This capability requires support for cross-references.

Display type hierarchy for entity
This contextual menu appears for derived or access types. Output
the type hierarchy for entity into the location view. The current
entity is determined by the word located around the cursor or by
the current selection if any. This capability requires support for
cross-references.

Goto body of entity
Go to the body/implementation of entity. This capability requires
support for cross-references.

Goto declarations of entity

This contextual menu appears when you are clicking on a subpro-
gram call that is a dispatching call. In such a case, there is no
possibility for GPS to know what subprogram will actually be called
at run time, since that depends on dynamic information. It there-
fore gives you a list of all entities in the tagged type hierarchy,
and lets you choose which of the declarations you want to jump to.
See also the ‘methods.py’ plug-in (enabled by default) which, given
an object, lists all its primitive operations in a contextual menu so
that you can easily jump to them. See also the contextual menu
‘References/Find References To... which allows you to find all
calls to a subprogram or to one of its overriding subprograms.

Goto bodies of entity
This is similar to Goto declarations of, but applies to the bodies of
the entities.

Goto file spec/body
Open the corresponding spec file if the current edited file is a body
file, or body file otherwise. This option is only available for the Ada
language.

Entity calls
Display a list of all subprograms called by entity in a tree view.
This is generally more convenient than using the corresponding
Browsers/ submenu if you expect lots of references, See Section 2.12
[The Callgraph View], page 17.

69

Using the GNAT Programming Studio

Entity is called by
Display a list of all subprograms calling entity in a tree view. This is
generally more convenient than using the correponding Browsers/
submenu if you expect lots of references, See Section 2.12 [The Call-
graph View], page 17.

References
This item gives access to different capabilities related to listing or
displaying references to the current entity or selection.

70

Find all references to entity

Find all references to entity in all the files in the project,
See [Find All References], page 67.

Find all references...

This menu is similar to the one above, except it is possi-
ble to select more precisely what kind of reference should
be selected. It is also possible to indicate the scope of
the search, and whether the context (or caller) at each
reference should be displayed. Computing the caller in-
formation will take slightly longer though.

This dialog has an option Include overriding and
overriden operations, which, when activated, will
include references to overriden or overriding entities of
the one you selected.

This is particularly useful when you are wondering
whether you can easily modify the profile of a primitive
operation, since you can then see what other entities will
also be impacted. If you select only the declaration
check box, you will see the list of all related primitive
operations.

This dialog also allows you to find out which entities are
imported from a given file/unit. Click on any entity from
that file (for instance on the with line for Ada code),
then select the A1l entities imported from same file
toggle button. This will display in the location window
the list of all entities imported from the same file as the
entity selected.

In addition, if you have selected the show context option,
you will get a list of all the exact references to these
entities within the file. Otherwise, you just get a pointer
to the declaration of the imported entities.

Chapter 6: Source Navigation

Find all local references to entity
Find all references to entity in the current file (or in the
current top level unit for Ada sources). See [Find All
References], page 67 for more details.

Variables used in entity
Find all variables (local or global) used in entity and list
each first reference in the locations window.

Non Local variables used in entity
Find all non-local variables used in the entity.

Methods of entity
This submenu is only visible if you have activated the plug-in
‘methods.py’ (which is the case by default), and when you click on a
tagged type or an instance of a tagged type. This menu lists all the
primitive operations of that type, and you can therefore easily jump
to the declaration of any of these operations.

Browsers
This item gives access to graph representations of callers and callees
for subprograms.

Entity calls
Open or raise the call graph browser on the specified
entity and display all the subprograms called by entity.
See Section 10.2 [Call Graphl], page 121.

Entity calls (recursively)

Open or raise the call graph browser on the specified
entity and display all the subprograms called by entity,
transitively for all subprograms. Since this can take a
long time to compute and generate a very large graph,
an intermediate dialog is displayed to limit the number
of subprograms to display (1000 by default). See Sec-
tion 10.2 [Call Graphl], page 121.

Entity is called by
Open or raise the call graph browser on the specified
entity and display all the subprograms calling entity.
See Section 10.2 [Call Graphl], page 121.

Note that this capability requires a global look up in the
project cross-references, which may take a significant
amount of time the first time. After a global look up,
information is cached in memory, so that further global
queries will be faster.

71

Using the GNAT Programming Studio

Expanded code
Present for Ada files only. This menu generates a .dg file using your
gnat compiler (using the -gnatGL switch) and displays the expanded
code. This can be useful when investigating low-level issues and
tracing precisely how the source code is transformed by the GNAT
front-end.

Show subprogram
Display expanded code for the current subprogram in
the current editor.

Show file
Display expanded code for the current file in the current
editor.

Show in separate editor
Display expanded code for the current file in a new editor.

Clear Remove expanded code from the current editor.

For Ada files only, this entry will generate, and will open this file at
the location corresponding to the current source line.

Open <filename>
When you click on a filename (for instance a C’ #include, or an
error message in a log file), this menu gives you a way to open the
corresponding file. If the file name was followed by ":" and a line
number, the corresponding line is activated.

6.4 Navigating with hyperlinks

When the Control key is pressed and you start moving the mouse, entities in
the editors under the mouse cursor become hyperlinks and the mouse cursor
aspect changes.

Left-clicking on a reference to an entity will open a source editor on the
declaration of this entity, and left-clicking on an entity declaration will open an
editor on the implementation of this entity.

Clicking with the middle button on either a reference to an entity or the
declaration of an entity will jump directly to the implementation or type com-
pletion) of this entity.

Note that for efficiency, GPS may create hyperlinks for some entities which
have no associated cross reference. In this case, clicking will have no effect,
even though an hyperlink may have been displayed.

This behavior is controlled by the Hyper 1inks preference.

72

Chapter 6: Source Navigation

6.5 Highlighting dispatching calls

Dispatching calls in Ada and C++ source code are highlighted by default in GPS
via the dispatching.py plug-in.

Based on the cross-reference information, this plug-in will highlight (with a
special color that you can configure in the preferences dialog) all calls that are
dispatching (or calls to virtual methods in C++). A dispatching call, in Ada, is a
subprogram call where the actual subprogram that is called is not known until
run time, and is chosen based on the tag of the object (so this of course only
exists when you are using object-oriented programming).

To disable this highlighting (which might sometimes be slow if you are using
big sources, even though the highlighting itself is done in the background), you
can go to the /Tools/Plug-ins menu, and disable the dispatching.py plug-in.

73

Using the GNAT Programming Studio

74

Chapter 7: Project Handling

7 Project Handling

The section on the project view (Section 2.6 [The Project View], page 6) has
already given a brief overview of what the projects are, and the information
they contain.

This chapter provides more in-depth information, and describes how such
projects can be created and maintained.

7.1 Description of the Projects

7.1.1 Project files and GNAT tools

This section describes what the projects are, and what information they contain.

The most important thing to note is that the projects used by GPS are the
same as the ones used by GNAT. These are text files (using the extension ‘. gpr’)
which can be edited either manually, with any text editor, or through the more
advanced GPS interface.

The exact syntax of the project files is fully described in the GNAT User’s
Guide (gnat_ug.html) and GNAT Reference Manual (gnat_rm.html). This is
recommended reading if you want to use some of the more advanced capabilities
of project files which are not yet supported by the graphical interface.

GPS can load any project file, even those that you have been edited manually.
Furthermore, you can manually edit project files created by GPS.

Typically you will not need to edit project files manually, since several graph-
ical tools such as the project wizard (Section 7.8 [The Project Wizard], page 86)
and the properties editor(Section 7.10 [The Project Properties Editor], page 97)
are provided.

GPS doesn’t preserve the layout nor comments of manually created projects
after you have edited them in GPS. For instance, multiple case statements in
the project will be coalesced into a single case statement. This normalization is
required for GPS to be able to preserve the previous semantic of the project in
addition to the new settings.

All command-line GNAT tools are project aware, meaning that the notion of
project goes well beyond GPS’ user interface. Most capabilities of project files
can be accessed without using GPS itself, making project files very attractive.

GPS uses the same mechanisms to locate project files as GNAT itself:
e absolute paths

e relative paths. These paths, when used in a with line as described below,
are relative to the location of the project that does the with.

75

gnat_ug.html
gnat_rm.html

Using the GNAT Programming Studio

e ADA_PROJECT_PATH. If this environment variable is set, it contains a
colon-separated (or semicolon under Windows) list of directories in which
the project files are searched.

e predefined project path. The compiler itself defines a predefined project
path, in which standard libraries can be installed, like XML/Ada for in-
stance.

7.1.2 Contents of project files

Project files contain all the information that describe the organization of your
source files, object files and executables.

A project file can contain comments, which have the same format as in
Ada, that is they start by "—" and extend to the end of the line. You can add
comments when you edit the project file manually. GPS will attempt to preserve
them when you save the project through the menu, but this will not always be
possible. It helps if the comments are put at the end of the line, as in

project Default is
for Source_Dirs use (); -- No source in this project
end Default;

Generally, one project file will not be enough to describe a complex organiza-
tion. In this case, you will create and use a project hierarchy, with a root project
importing other sub projects. Each of the projects and sub projects is respon-
sible for its own set of sources (compiling them with the appropriate switches,
put the resulting files in the right directories, . . .).

Each project contains the following information (see the GNAT user’s guide
for the full list)

e List of imported projects: When you are compiling sources from this
project, the compiler (either through GNAT or the automatically generated
Makefiles) will first make sure that all the imported projects have been
correctly recompiled and are up-to-date. This way, dependencies between
source files are properly handled.

If one of the source files of project A depends on some source files from
project B, then B must be imported by A. If this isn’t the case, the compiler
will complain that some of the source files cannot be found.

One important rule is that each source file name must be unique in the
project hierarchy (i.e. a file cannot be under control of two different
projects). This ensures that the same file will be found no matter what
project is managing the source file that uses

e List of source directories: All the sources managed by a project are
found in one or more source directories. Each project can have multiple
source directories, and a given source directory might be shared by multiple
projects.

76

Chapter 7: Project Handling

Object directory: When the sources of the project are compiled, the re-
sulting object files are put into this object directory. There exist exactly one
object directory for each project. If you need to split the object files among
multiple object directories, you need to create multiple projects importing
one another as appropriate.

When sources from imported sub-projects are recompiled, the resulting
object files are put in the sub project’s own object directory, and will never
pollute the parent’s object directory.

Exec directory: When a set of object files is linked into an executable, this
executable is put in the exec directory of the project file. If this attribute is
unspecified, the object directory is used.

List of source files: The project is responsible for managing a set of source
files. These files can be written in any programming languages. Currently,
the graphical interface supports Ada, C and C++.

The default to find this set of source files is to take all the files in the source
directories that follow the naming scheme (see below) for each language.
In addition if you edit the project file manually, it is possible to provide an
explicit list of source files.

This attribute cannot be modified graphically yet.

List of main units: The main units of a project (or main files in some lan-
guages) are the units that contain the main subprogram of the application,
and that can be used to link the rest of the application.

The name of the file is generally related to the name of the executable.

A given project file hierarchy can be used to compile and link several ex-
ecutables. GPS will automatically update the Compile, Run and Debug
menu with the list of executables, based on this list.

Naming schemes: The naming scheme refers to the way files are named
for each languages of the project. This is used by GPS to choose the language
support to use when a source file is opened. This is also used to know what
tools should be used to compile or otherwise work with a source file.

Embedded targets and cross environments: GPS supports cross envi-
ronment software development: GPS itself can run on a given host, such as
GNU/Linux, while compilations, runs and debugging occur on a different
remote host, such as Sun/Solaris.

GPS also supports embedded targets (VxWorks, . . .) by specifying alternate
names for the build and debug tools.

The project file contains the information required to log on the remote host.

Tools: Project files provide a simple way to specify the compiler and de-
bugger commands to use.

77

Using the GNAT Programming Studio

e Switches: Each tool that is used by GPS (compiler, pretty-printer, debug-
ger, .. .) has its own set of switches. Moreover, these switches may depend
on the specific file being processed, and the programming language it is
written in.

7.2 Supported Languages

Another information stored in the project is the list of languages that this project
knows about. GPS support any number of language, with any name you choose.
However, advanced support is only provided by default for some languages (Ada,
C and C++), and you can specify other properties of the languages through
customization files (see Section 16.5.12 [Adding support for new languages],
page 247).

By default, the graphical interface will only give you a choice of languages
among the ones that are known to GPS at that point, either through the default
GPS support or your customization files. But you can also edit the project files
by hand to add support for any language.

Languages are a very important part of the project definition. For each
language, you should specify a naming scheme that allows GPS to associate
files with that language. You would for instance specify that all ‘. adb’ files are
Ada, all ‘. txt’ files are standard text files, and so on.

Only the files that have a known language associated with them are displayed
in the Project view, or available for easy selection through the File->0Open
From Project menu. Similarly, only these files are shown in the Version Control
System interface.

It is therefore important to properly setup your project to make these files
available conveniently in GPS, although of course you can still open any file
through the File->0Open menu.

If your project includes some README files, or other text files, you should
add "txt" as alanguage (or any other name you want), and make sure that these
files are associated with that language in the Project properties editor.

By default, GPS provides support for a number of languages. In most cases,
this support takes the form of syntax highlighting in the editor, and possibly
the Outline View. Other languages have advanced cross-references available.

All the supported languages can be added to the project, but you can also add
your own languages as you need (either by editing the project files by hand, or
by creating XML files to add GPS support for these languages, which will then
show in the project properties editor graphically).

7.3 Scenarios and Configuration Variables

The behavior of projects can be further tailored by the use of scenarios.

78

Chapter 7: Project Handling

All the attributes of a project, except its list of imported projects, can be
chosen based on the value of external variables, whose value is generally coming
from the host computer environment, or directly set in GPS. The interface to
manipulate these scenarios is the scenario view, which can be displayed by
selecting the menu Tools->Views->Scenario. It can be convenient to drag this
window with your mouse, and drop it above the project view, so that you can see
both at the same time.

This area allows you to select new values for the scenario variables defined
in your project, and thus change dynamically the view GPS has of your project
and your source files.

This facility can for instance be used to compile all the sources either in debug
mode (so that the executables can be run in the debugger), or in optimized mode
(to reduce the space and increase the speed when delivering the software).
In this configuration scenario, all the attributes (source directories, tools, .. .)
remain the same, except for the compilation switches. It would be more difficult
to maintain a completely separate hierarchy of project, and it is much more
efficient to create a new configuration variable and edit the switches for the
appropriate scenario (Section 7.10 [The Project Properties Editor], page 97).

There is one limitation in what GPS can do with scenario variables: although
gnatmake and gprbuild have no problem dealing with scenario variables whose
default value is not a static string (for instance a concatenation, or the value of
another scenario variable), GPS will not be able to edit such a project graphically.
Such projects will load fine in GPS though.

79

Using the GNAT Programming Studio

7.3.1 Creating new configuration variables

Creating a new scenario variable is done through the contextual menu (right-
click) in the Project View or the Scenario View itself. Select the menu Project-
>Add Configuration vVariable. This opens the following dialog:

{3 Creating a new variable El[ﬁl[‘&_?l

Mame: i il |E]

Possible walues: Default | Value

O Production

| e || rename |

l = Remove

l @QK l l & cancel

There are two main areas in this dialog: in the top line, you specify the name
of the variable. This name is used for two purposes:

e It is displayed in the scenario view

e This is the name of the environment variable from which the initial value
is read. When GPS is started, all configuration variables are initialized
from the host computer environment, although you can of course change its
value later on inside GPS. Note that selecting a new value for the scenario
variable does not change the actual value of the environment variable,
which is only used to get the default initial value of the scenario variable.

When you spawn external tools like gnatmake for instance, you can also
specify the value they will use for the scenario variable by using a command
line switch, typically -x.

If you click on the arrow on the right of this name area, GPS will display the
list of all the environment variables that are currently defined. However, you
don’t need to pick the name of an existing variable, neither must the variable
exist when GPS is started.

The second part of this dialog is the list of authorized value for this variable.
Any other value will generate an error reported by GPS, and the project won’t
be loaded as a result.

80

Chapter 7: Project Handling

One of these values is the default value (the one whose button in the Default
column is selected). This means that if the environment variable doesn’t exist
when GPS is started, GPS will behave as if it did exist with this default value.

The list of possible values can be edited by right-clicking on the name of the
variable, and selecting one of Edit properties or Delete variable.

7.3.2 Editing existing configuration variables

If at least one configuration variable is defined in your project, the scenario view
will contain something similar to:

x
Os [Windows_NT v

Build|Debug v

This screen shot shows two configuration variables, named Build and 0s,
with their current value (resp. Debug and Unix).

You can easily change the current value of any of these variables by clicking
on the arrow on the right of the value. This will display a pop-up window with
the list of possible values, from which you select the one you wish to use.

As soon as a new value is selected, GPS will recompute the project view (in
case source directories, object directories or list of source files have changed). A
number of things will also be updated (like the list of executables in the compile,
Run and Debug menus).

Currently, GPS will not recompute the contents of the various browsers (call
graph, dependencies, . . .) for this updated project. This would be too expensive
to do every time the value changes, and therefore you need to explicitly request
an update.

You can change the list of possible values for a configuration variable at any
time by clicking on the button to the far left of the variable’s name. This will
pop up the same dialog that is used to create new variables. This dialog also
allows you to change the name of the scenario variable. This name is the same
as the environment variable that is used to set the initial value of the scenario
variable.

Removing a variable is done by clicking on the button immediately to the left
of the variable’s name. GPS will then display a confirmation dialog.

If you confirm that you want to delete the variable, GPS will simply remove
the variable, and from now on act as if the variable always had the value it had
when it was deleted.

81

Using the GNAT Programming Studio

7.4 Extending Projects

7.4.1 Description of extending projects

The project files were designed to support big projects, with several hundreds
or thousands of source files. In such contexts, one developer will generally work
on a subset of the sources. It is also not rare for such a project to take several
hours to fully compile. Most developers therefore do not need to have the full
copy of the project compiled on their own machine or personal disk space.

However, it is still useful to be able to access other source files of the applica-
tion, for instance to find out whether a subprogram can be changed and where
it is currently called.

Such a setup can be achieved through extending projects. These are special
types of projects that inherit most of their attributes and source files from
another project, and can have, in their source directories, some source files that
hide/replace those inherited from the original project.

When compiling such projects, the compiler will put the newly created project
files in the extending project’s directory, and will leave the original untouched.
As a result, the original project can be shared read-only among several develop-
ers (for instance, it is usual for this original project to be the result of a nightly
build of the application).

7.4.2 Creating extending projects

This project wizard allows you to easily create extending projects. You should
select an empty directory (which will be created automatically if needed), as
well as a list of source files you want to work on initially. New files can also be
added later.

As aresult, GPS will copy the selected source files to the new directory (if you
so decided), and create a number of project files there. It will then load a new
project, which has the same properties as the previous one, except that some
files are found transparently in the new directory, and object files resulting from
the compilation are create into that directory as opposed to the object directory
of the original project.

7.4.3 Adding files to extending projects

Once you have loaded an extending project in GPS, things work mostly trans-
parently. If you open a file through the File->0Open From Project dialog, the
files found in the local directory of your extending project will be picked up first.
The build actions will create object files in the extending project’s directory,
leaving the original project untouched.
It might happen that you want to start working on a source file that you
had not added in the extending project when it was created. You can of course

82

Chapter 7: Project Handling

edit the file found in the original project, provided you have write access to it.
However, it is generally better to edit it in the context of the extending project,
so that the original project can be shared among developers.

This can be done by clicking on the file in the Project view, then selecting
the menu Add To Extending Project. This will popup a dialog asking whether
you want GPS to copy the file to the extending project’s directory for you. GPS
might also create some new project files in that directory if necessary, and
automatically reload the project as needed. From then on, if you use the menu
File->Open From Project, GPS will first see the file from the extending project.

Note that open editors will still be editing the same file they were before, so
you should open the new file if needed.

7.5 The Project View

The project view, as mentioned in the general description of the GPS window,
is one of the views found by default on the left of the window. It shows in a tree
structure the project hierarchy, along with all the source files belonging to the
project, and the entities declared in the source files.

It is worth noting that the project view provides a tree representation of
the project hierarchy. If a project is imported by multiple other projects in the
hierarchy, then this project will appear multiple times in the project view.

Likewise, if you have edited the project manually and have used the 1imited
with construct to have cycles in the project dependencies, the cycle will expand
infinitely. For instance, if project ‘a’ imports project ‘v’, which in turns imports
project ‘a’ through a 1imited with clause, then expanding the node for ‘a’ will
show ‘©v’. In turn, expanding the node for ‘v’ will show a node for ‘a’, and so on.

The contextual menu in this project view provides a number of items to mod-
ify the project hierarchy (what each project imports), as well as to visualize and
modify the attributes for each projects (compilation switches, naming scheme,

.2

The following entries are available in the contextual menu:

Show Projects Imported by. ..
This item will open a new window in GPS, the project browser, which
displays graphically the relationships between each project in the
hierarchy.

Save The Project...
This item can be selected to save a single project in the hierarchy
after it was modified. Modified but unsaved projects in the hierarchy
have a special icon (a pen mark is drawn on top of the standard icon).
If you would rather save all the modified projects in a single step,
use the menu bar item Project->Save A11.

83

Using the GNAT Programming Studio

Project/Properties
This item will open a new dialog, and give access to all the attributes
of the project: tool switches, naming schemes, source directories, . . .
See Section 7.10 [The Project Properties Editor], page 97.

Project/Edit source file
This menu will load the project file into an editor, so that you can
manually edit it. This should be used if you need to access some fea-
tures of the project files that are not accessible graphically (renames
statements, variables, .. .)

Project/Dependencies...
This opens the dependencies editor (see Section 7.9 [The Project
Dependencies Editor], page 95).

Add Configuration Variable
This menu item should be used to add new configuration variables,
as described in Section 7.3 [Scenarios and Configuration Variables],
page 78.

Build This menu offers the submenu "Clean" which remove all object files
and other compilation artifacts associated to the current project.

Any time one or several projects are modified, the contents of the project view
is automatically refreshed. No project is automatically saved. This provides a
simple way to temporarily test new values for the project attributes. Unsaved
modified projects are shown with a special icon in the project view, displaying a
pen mark on top of the standard icon:

= 8s5dc

Note that in all tree views in GPS, you can use the () and ¢ keys to expand
and collapse nodes (e.g. projects and directories).

7.6 Disabling Project Edition Features

The project files should generally be considered as part of the sources, and thus
be put under control of a version control system. As such, you might want to
prevent accidental editing of the project files, either by you or some other person
using the same GPS installation.

The main thing to do to prevent such accidental edition is to change the write
permissions on the project files themselves. On Unix systems, you could also
change the owner of the file. When GPS cannot write a project file, it will report
an error to the user.

84

Chapter 7: Project Handling

However, the above doesn’t prevent a user from trying to do some modifica-
tions at the GUI level, since the error message only occurs when trying to save
the project (this is by design, so that temporary modification can be done in
memory).

You can disable all the project editing related menus in GPS by adding special
startup switches. The recommended way is to create a small batch script that
spawns GPS with these switches. You should use the following command line:

gps --traceoff=MODULE.PROJECT_VIEWER --traceoff=MODULE.PROJECT_PROPERTIES

What these do it prevent the loading of the two GPS modules that are re-
sponsible for project edition. However, this also has an impact on the python
functions that are exported by GPS, and thus could break some plug-ins. An-
other solution which might apply in your case is simply to hide the corresponding
project-editing menus and contextual menus. This could be done by creating a
small python plugin for GPS (see Section 16.5 [Customizing through XML and
Python files], page 218, which contains the following code:

import GPS

GPS.Menu.get ("/Project/Edit Project Properties").hide()
GPS.Contextual (’Edit project properties’).hide()
GPS.Contextual (’Save project’).hide()

GPS.Contextual (’Add configuration variable’).hide()

7.7 The Project Menu

The menu bar item Project contains several commands that generally act on
the whole project hierarchy. If you only want to act on a single project, use the
contextual menu in the project view.

Some of these menus apply to the currently selected project. This notion
depends on what window is currently active in GPS: if it is the project view,
the selected project is either the selected node (if it is a project), or its parent
project (for a file, directory, . . .). If the currently active window is an editor, the
selected project is the one that contains the file.

In all cases, if there is no currently selected project, the menu will apply to
the root project of the hierarchy.

These commands are:

New This menu will open the project wizard (Section 7.8 [The Project
Wizard], page 86), so that you can create new project. On exit, the
wizard asks whether the newly created project should be loaded.
If you select ves, the new project will replace the currently loaded
project hierarchy.

You will get asked what information you would like to create the
project from. In particular, you can create a set of project files from
existing Ada sources.

85

Using the GNAT Programming Studio

New from template
This menu will open the project template wizard, allowing you to
create a new project using one of the project templates defined in
GPS. See Section 16.11 [Adding project templates], page 323.

Open This menu opens a file selection dialog, so that any existing project
can be loaded into GPS. The newly loaded project replaces the cur-
rently loaded project hierarchy. GPS works on a single project hier-
archy at a time.

Recent This menu can be used to easily switch between the last projects
that were loaded in GPS.

Edit Project Properties
This menu applies to the currently selected project, and will open
the project properties dialog for this project.

save All This will save all the modified projects in the hierarchy.

Edit File Switches
This menu applies to the currently selected project. This will open a
new window in GPS, listing all the source files for this project, along
with the switches that will be used to compile them, See Section 7.11
[The Switches Editor], page 99.

Reload Project
Reload the project from the disk, to take into account modifications
done outside of GPS. In particular, it will take into account new
files added externally to the source directories. This isn’t needed for
modifications made through GPS.

Project View
Open (or raise if it is already open) the project view on the left side
of the GPS window.

7.8 The Project Wizard

The project wizard allows you to create in a few steps a new project file. It has
a number of pages, each dedicated to editing a specific set of attributes for the
project.

The typical way to access this wizard is through the project->New. .. menu.

86

Chapter 7: Project Handling

The project wizard is also launched when a new dependency is created be-
tween two projects, through the contextual menu in the project view.

I

'ﬁ’ Create Mew Project

Ada

Project type
Marning the project |

[

Select the type of project(s) to ereate

The GMAT Pro Company (@i Single Prl:leCt

Create a new project file, with full control of the properties

") Project Tree

Create a new set of projects given an existing build environment.
GPS will try to preserve the build structure you already have

) Convert GLIDE Project (.adp)

Converts a .adp file into a project file. adp files are simple
project files used in the Emacs based GLIDE environment

~) Library Project

Create a new project file, defining a library rather than an
executable

") Extending Project

Create an extending project that allows you to work on a copy of
some sources and recomnpile them locally without affecting the
project’s build

Apply

-

The wizard gives access to the following list of pages:

Project type
Project Naming

Languages Selection
Version Control System Selection
Source Directories Selection

Build Directory
Main Units
Library
Naming Scheme
Switches

87

Using the GNAT Programming Studio

7.8.1 Project Type

Several types of project wizards are provided in GPS. Depending on the infor-
mation you have or your current setup, you will choose one or the other.

e Single Project

This is likely the wizard you will use most often. It creates a project file
from scratch, and asks you for the location of source directories, the object
directory, . . .; The rest of this chapter describes this wizard in more details

e Project Tree

This wizard will attempt to create a set of one or more project files to rep-
resent your current build environment. It will analyze what your sources
are, where the corresponding object files are, and will try and find some
possible setup for the project files (remember that a given ‘. gpr’ project file
can be associated with a single object directory.

This wizard might not work in all cases, but is worth a try to get you started
if you already have an existing set of sources

e Convert GLIDE Project (.adp)

This wizard will help you convert a ‘. adp’ project file that is used by the
GLIDE environment. The same restrictions apply as above, except that
the list of source directories, object directories and tool switches are read
directly from that file.

e Library Project

This specialized wizard is similar to the Single Project wizard, except it
adds one extra page, the Library page. The output of the compilation of
this project is a library (shared or static), as opposed to an executable in
the case of single Project.

e Extending Project

This specialized wizard allows you to easily create extending projects (see
Section 7.4 [Extending Projects], page 82).

7.8.2 Project Naming

This is the first page displayed by any of the wizard.

You must enter the name and location of the project to create. This name
must be a valid Ada identifier (i.e. start with a letter, optionally followed by
a series of digits, letters or underscores). Spaces are not allowed. Likewise,
reserved Ada keywords must be avoided. If the name is invalid, GPS will
display an error message when you press the Forward button.

Child projects can be created from this dialog. These are project whose name
is of the form Parent.child. GPS will automatically generate the dependency
to the parent project so as to make the child project valid.

88

Chapter 7: Project Handling

In this page, you should also select what languages the source files in this
project are written in. Currently supported languages are Ada, ¢ and C++.
Multiple languages can be used for a single project.

The last part of this page is used to indicate how the path should be stored in
the generated project file. Most of the time, this setting will have no impact on
your work. However, if you wish to edit the project files by hand, or be able to
duplicate a project hierarchy to another location on your disk, it might be useful
to indicate that paths should be stored as relative paths (they will be relative
to the location of the project file).

7.8.3 Languages Selection

This page is used to select the programming languages used for the sources of
this project. By default, only Ada is selected. New languages can be added to this
list by using XML files, see the section on customizing GPS (see Section 16.5.12
[Adding support for new languages], page 247).

Additionally, this page allows you to select the toolchain used when working
on your project. There you can select one of the pre-defined toolchains or scan
your system for installed toolchains. You can also manually define some of the
tools in the toolchain such as the debugger to use, the gnat driver to use or the
gnatls tool to use.

If you need to select a toolchain for a cross environment, you should have a
look at Chapter 14 [Working in a Cross Environment], page 183 for more info
on this subject.

7.8.4 VCS Selection

The second page in the project wizard allows you to select which Version Control
system is to be used for the source files of this project.

GPS doesn’t attempt to automatically guess what it should use, so you must
specify it if you want the VCS operations to be available to you.

The two actions Log checker and File checker are the name and location
of programs to be run just prior an actual commit of the files in the Version
Control System. These should be used for instance if you wish to enforce style
checks before a file is actually made available to other developers in your team.

If left blank, no program will be run.

7.8.5 Source Directories Selection

This page lists and edits the list of source directories for the project. Any number
of source directory can be used (the default is to use the directory which contains
the project file, as specified in the first page of the wizard).

If you do not specify any source directory, no source file will be associated
with the project, since GPS wouldn’t know where to look for them.

89

Using the GNAT Programming Studio

To add source directories to the project, select a directory in the top frame,
and click on the down arrow. This will add the directory to the bottom frame,
which contains the current list of source directories.

You can also add a directory and all its subdirectories recursively by using
the contextual menu in the top frame. This contextual menu also provides an
entry to create new directories, if needed.

To remove source directories from the project, select the directory in the
bottom frame, and click on the up arrow, or use the contextual menu.

All the files in these directories that match one of the language supported by
the project are automatically associated with that project.

The relative sizes of the top and bottom frame can be changed by clicking on
the separation line between the two frames and dragging the line up or down.

7.8.6 Build Directory

The object directory is the location where the files resulting from the compilation
of sources (e.g. ‘.o’ files) are placed. One object directory is associated for each
project.

The exec directory is the location where the executables are put. By default,
this is the same directory as the object directory.

7.8.7 Main Units

The main units of a project are the files that should be compiled and linked to
obtain executables.

Typically, for C applications, these are the files that contain the main () func-
tion. For Ada applications, these are the files that contain the main subprogram
each partition in the project.

These files are treated specially by GPS. Some sub-menus of Bui1d and bebug
will have predefined entries for the main units, which makes it more convenient
to compile and link your executables.

To add main units click on the Add button. This opens a file selection dialog.
No check is currently done that the selected file belongs to the project, but GPS
will complain later if it doesn’t.

When compiled, each main unit will generate an executable, whose name is
visible in the second column in this page. If you are using a recent enough ver-
sion of GNAT (3.16 or more recent), you can change the name of this executable
by clicking in the second column and changing the name interactively.

7.8.8 Library

This page allows you to configure your project so that the output of its compila-
tion is a library (shared or static), as opposed to an executable or a simple set

90

Chapter 7: Project Handling

of objet files. This library can then be linked with other executables (and will
be automatically if the project is imported by another one.

You need to define the attributes in the top box to transform your project into
a library project. See the tooltips that appear when you leave your mouse on
top of the label to the left of each field.

If you define any of the attributes in the Standalone Library box, you will
compile a standalone library. This is a library that takes care of its elaboration
by itself, instead of relying on its caller to elaborate it as is standard in Ada.
You also have more control over what files make up the public interface to the
library, and what files are private to the library and invisible from the outside.

7.8.9 Naming Scheme

A naming scheme indicates the file naming conventions used in the different
languages supported by a given project. For example, all ‘. adp’ files are Ada
files, all ‘. ¢’ files are C files.

GPS is very flexible in this respect, and allows you to specify the default ex-
tension for the files in a given programming language. GPS makes a distinction
between spec (or header) files, which generally contain no executable code, only
declarations, and body files which contain the actual code. For languages other
than Ada, this header file is used rather than the body file when you select Go
To Declaration in the contextual menu of editors.

In a language like Ada, the distinction between spec and body is part of
the definition of the language itself, and you should be sure to specify the
appropriate extensions.

The default naming scheme for Ada is GNAT’s naming scheme (‘. ads’ for
specs and ‘.adp’ for bodies). In addition, a number of predefined naming
schemes for other compilers are available in the first combo box on the page.

91

Using the GNAT Programming Studio

You can also create your own customized scheme by entering a free text in the
text entries.

{5} Create New Pro ject |Z|IE| [3__<|

A Ia Please select the naming scheme to use

The GNAT Pro Company ada

Project type Marming scheme: GMAT default HZ]
Maming the project

Details

Languages : :

Filename casing: lowercase ”3
WS

Dk replacement: - |
Sources &
OhjECtS Spec exkensions: \ads B
Wain files Body extensions: .adb E
Libraries Separate extensions: .adhb B

Naming scheme)
Exceptions

Switches
Unit name * | Spec filename | Body filename

<unit_name > | ! <spec_file: | | <hody_File: | ’Update]

[Qﬁack] | Qﬁorward | l VEDDIV l l xgancel

For all languages, GPS accepts exceptions to this standard naming scheme.
For instance, this let you specify that in addition to using . adb’ for Ada body
files, the file ‘foo.ada’ should also be considered as an Ada file.

The list of exceptions is displayed in the bottom list of the naming scheme
editor. To remove entries from this list, select the line you want to remove, and
then press the key. The contents of the lines can be edited interactively, by
double-clicking on the line and column you want to edit.

To add new entries to this list, use the fields at the bottom of the window,
and press the update button.

92

Chapter 7: Project Handling

GNAT and GPS both support Ada source files that contain multiple Ada
units (typically a single file would contain both the spec and the body of the unit
for instance). This is not a recommend approach if you can avoid it, since that
might trigger unnecessary recompilation of your source files. Such source files
are always handled as naming scheme exceptions, and you can specify those in
the editor by adding "at 1", "at 2",... after the file name for either the spec,
the body or both. The digit after "at" is the index (starting at 1) of the unit in
the source file.

For instance, specifying "file.ada at 1" for the spec and "file.ada at 2" for the
body of the unit "unit" indicates that the two components of the unit are in the
same file, first the spec, followed by the body.

93

7.8.10 Switches

Using the GNAT Programming Studio

The last page of the project wizard is used to select the default switches to be
used by the various tools that GPS calls (compiler, linker, binder, pretty printer,
).

- 7 — —
& Create New Project |__|IE| rX|
A Ia Please select the switches to build the project
e SMTPoComeIny I5is | Ada | Binder | Adalinker | Prethy Prinker
|]
Project type Code generation Run-time checks
Maming the praject | ull optimization| "3 [[] @wverflow checking
Languages [tnlining [Suppress all checks
YCS [Unrall laops [] Stack checking
Sources [Position independent code [[] Dynamic elabaration
Objects [] Code coverage
Main files [Instrument arcs

Libraries [] Ahways generate ALT File

MNaming scheme
Switches

Messages Debugging
[] Full errors Debug Information
’Warnings:] [] Enable assertions

"v'alidity checking mode:]

’Style checks:]
Synkax
[] Ada 83 mode
[] Ada 05 mode
-02-g |

Qi Back. @ sard v Apply x Cancel
[vem] |

This page appears as a notebook, where each page is associated with a specific
tool. All these pages have the same structure:

Graphical selection of switches
The top part of each page contains a set of buttons, combo boxes,
entry fields, ... which give fast and intuitive access to the most
commonly used switches for that tool.

94

Chapter 7: Project Handling

Textual selection of switches
The bottom part is an editable entry field, where you can directly
type the switches. This makes it easier to move from an older setup
(e.g. Makefile, script) to GPS, by copy-pasting switches.

The two parts of the pages are kept synchronized at any time: clicking on a
button will edit the entry field to show the new switch; adding a new switch by
hand in the entry field will activate the corresponding button if there is one.

Any switch can be added to the entry field, even if there is no corresponding
button. In this case, GPS will simply forward it to the tool when it is called,
without trying to represent it graphically.

7.9 The Project Dependencies Editor

You can edit the dependencies between projects through the contextual menu
Project->Dependencies. .. in the Project View.

This view makes it easy to indicate that your project depends on external
libraries, or other modules in your source code. For instance, you can give access
to the GtkAda graphical library in your project by adding a project dependency
to gtkada.gpr, assuming GtkAda has been installed in your system.

95

Using the GNAT Programming Studio

The dependencies also determine in what order your application is built.
When you compile a project, the builder will first make sure that the projects it
depends on are up-to-date, and otherwise recompile them.

& Project Dependencies |:”E| E]
Ada Dependencies for this project
The GNAT Pro Company Sources in a project can have references to files in other projects.
Such a relation is represented as a project dependency.
Dependencies P irmi ’_‘_il add From File]
action_Editar [‘
Ada_ Module O il Add From Wizard]
Aliases O ’ add From Known Projects]
it O
Browsers O l == RBemove]
Builder O
Codefix O
Cpp_Madule O
Cuskam O
Docgen O
Gtkada |
G0 O
Help O
kKernel O
keyManager O
Metrics O
Mawigation O
Pri_Editor O 3
l f &pply l l x Cancel

When you select that contextual menu, GPS will open a dialog that allows
you to add or remove dependencies to your project. New dependencies are added
by selecting a project file name from one of several sources:

e One of the loaded project from the current project tree
e One of the predefined projects

These are the projects that are found in one of the directories referenced
in the ADA_PROJECT_PATH environment variable. Typically, these include
third party libraries, such as GtkAda, win32ada, . . .

e A new project created through the project wizard
e Any project file located on the disk

In all these cases, you will generally be able to choose whether this should
be a simple dependency, or a limited dependency. The latter allows you to have

96

Chapter 7: Project Handling

mutually dependent projects (A depends on B, which in turns depends on A
even indirectly), although you cannot reference the attribute of such a project
in the current project (for instance to indicate that the compiler switches to use
for A are the same as for B — you need to duplicate that information).

In some cases, GPS will force a limited dependency on you to avoid loops in
the dependencies that would make the project tree illegal.

7.10 The Project Properties Editor

The project properties editor gives you access at any time to the properties
of your project. It is accessible through the menu pProject->Edit Project
Properties, and through the contextual menu Edit project properties on
any project item, e.g. from the Project View or the Project Browser.

If there was an error loading the project (invalid syntax, non-existing di-
rectories, . ..), a warning dialog is displayed when you select the menu. This
reminds you that the project might be only partially loaded, and editing it might
result in the loss of data. In such cases, it is recommended that you edit the
project file manually, which you can do directly from the pop-up dialog.

97

Using the GNAT Programming Studio

Fix the project file as you would for any text file, and then reload it manually
(through the Project->0Open... or Project->Recent menus.

) Properties for GPS

General Mame & Location %pl;;hange;.tn: B
— | | ow as hierarchy
Languages Name:) EEH | Proiact ~
EEsateen e rojec 3
VCS Path: |c:'l,home'l,user'l,gps'l,snurces |[Brnwse] 0)
. Shated
G Paths should be relative paths F cuat
Chjects External configuration O Gtkada
Main files (Global pragmas:| gnat_debug. adc |[Browse] O commen
Mrsualirsii] O widget
Libraries Local pragmas: | |[Br-:-wse] no-s
| O ternel
m Cross environmmenk O Sackst
Switches Tools host: | | O action_Editor
Prograrm host: | | O Rrefactoring
O Theme_m
Protocal: | |E el
O kevManager
O shel
O python hs'
SCenatio
O Build
=0 os
m O TP _sMLADS
m O TP_TAsknG
[@QK l l x Cancel

The project properties editor is divided in three parts:

The attributes editor
The contents of this editor are very similar to that of the project
wizard (see Section 7.8 [The Project Wizard], page 86). In fact, all
pages but the General page are exactly the same, and you should
therefore read the description for these in the project wizard chapter.

98

Chapter 7: Project Handling

See also Chapter 14 [Working in a Cross Environment], page 183
for more info on the cross environment attributes.

The project selector
This area, in the top-right corner of the properties editor, contains a
list of all the projects in the hierarchy. The value in the attributes
editor is applied to all the selected projects in this selector. You
cannot unselect the project for which you activated the contextual
menu.

Clicking on the right title bar (project) of this selector will sort the
projects in ascending or descending order.

Clicking on the left title bar (untitled) will select or unselect all the
projects.

This selector has two different possible presentations, chosen by
the toggle button on top: you can either get a sorted list of all the
projects, each one appearing only once. Or you can have the same
project hierarchy as displayed in the project view.

The scenario selector
This area, in the bottom-right corner of the properties editor, lists
all the scenario variables declared for the project hierarchy. By
selecting some or all of their values, you can chose to which scenario
the modifications in the attributes editor apply.

Clicking on the left title bar (untitled, on the left of the scenario
label) will select or unselect all values of all variables.

To select all values of a given variable, click on the corresponding
check button.

7.11 The Switches Editor

The switches editor, available through the menu Project->Edit Switches, lists
all the source files associated with the selected project.

For each file, the compiler switches are listed. These switches are displayed
in gray if they are the default switches defined at the project level (see Sec-
tion 7.10 [The Project Properties Editor], page 97). They are defined in black if
they are specific to a given file.

Double-clicking in the switches column allows you to edit the switches for
a specific file. It is possible to edit the switches for multiple files at the same
time by selecting them before displaying the contextual menu (Edit switches
for all selected files).

When you double-click in one of the columns that contain the switches, a

new dialog is opened that allows you to edit the switches specific to the selected
files.

99

Using the GNAT Programming Studio

This dialog has a button titled revert. Clicking on this button will cancel
any file-specific switch, and revert to the default switches defined at the project
level.

O Editing switches for specific file

| I‘:’Iake | Ada |éinder- | .C-\da Linker '-F‘retty Printer Scenario
Code generation Run-time checks U guild
| Some optimization |E] I:‘ Crverflow checking O os
[] Inlining [] Suppress all checks g IE—::;:IDP‘J'Z
[Unrall loops [stack checking -
[] Pasition independent code [[] Dynamic elaboration

[] Code coverage
[] Instrument arcs

Ahways generake ALI file

Messages Debugging
[] Full errors g I ;
[Warnings: l Enable assertions

[\-‘alidity checking mode: l

[Style checks: l

Synkax
[] Ada 83 mode

[] Ada 05 mode

-1 -gnatd -g -gnata |

l ‘@QK l l mﬁevert l I M cancel

7.12 The Project Browser

The project graph is a special kind of browser (see Chapter 10 [Source Browsing],
page 119). It shows the dependencies between all the project in the project

100

Chapter 7: Project Handling

hierarchy. Two items in this browser will be linked if one of them imports the
other.

It is accessed through the contextual menu in the project view, by selecting
the show projects imported by. .. item, when right-clicking on a project node.

Clicking on the left arrow in the title bar of the items will display all the
projects that import that project. Similarly, clicking on the right arrow will
display all the projects that are imported by that project.

The contextual menu obtained by right-clicking on a project item contains
several items. Most of them are added by the project editor, and gives direct
access to editing the properties of the project, adding dependencies. . . See Sec-
tion 2.6 [The Project View], page 6.

Some new items are added to the menu:

Locate in Project View
Selecting this item will switch the focus to the project view, and
highlight the first project node found that matches the project in the
browser item. This is a convenient way to get information like the
list of directories or source files for that project.

Show dependencies
This item plays the same role as the right arrow in the title bar, and
display all the projects in the hierarchy that are imported directly
by the selected project

101

Using the GNAT Programming Studio

Show recursive dependencies
This item will display all the dependencies recursively for the project
(i.e. the projects it imports directly, the projects that are imported
by them, and so on).

Show projects depending on
This item plays the same role as the left arrow in the title bar, and
displays all the projects that directly import the selected project.

102

Chapter 8: Searching and Replacing

8 Searching and Replacing

GPS provides extensive search capabilities among its different elements. For
instance, it is possible to search in the currently edited source file, or in all the
source files belonging to the project, even those that are not currently open. It
is also possible to search in the project view (on the left side of the main GPS
window), . ..

All these search contexts are grouped into a single graphical window, that
you can open either through the menu Navigate->Find/Replace..., or the
shortcut (CulF).

By default, the search window is floating, ie appears as a dialog on top of GPS.
You can choose to put it inside the multiple document interface permanently
for easier access. This can be done by selecting the menu window->Floating,
and then drag-and-dropping the search window in a new location if you wish
(for instance above the Project View).

Selecting either of these two options will pop up a dialog on the screen,
similar to the following:

X

Search ﬁar:‘ string |E]

Replace: ‘

Look in: “Current File E]

[Eind H Previous ”Find&ll]
Repl All

B Options

On this screen shot, you can see three entry fields:

Search for
This is the location where you type the string or pattern you are
looking for. The search widget supports two modes, either fixed
strings or regular expressions. You can commute between the two
modes by either clicking on the options button and selecting the
appropriate check box, or by opening the combo box (click on the
arrow on the right of the entry field).

In this combo box, a number of predefined patterns are provided.
The top two ones are empty patterns, that automatically set up

103

Using the GNAT Programming Studio

the appropriate fixed strings/regular expression mode. The other
regular expressions are language-specific, and will match patterns
like Ada type definition, C++ method declaration, . ..

Replace with

Look in

This field should contain the string that will replace the occurrences
of the pattern defined above. The combo box provides a history of
previously used replacement strings.

This field defines the context in which the search should occur. GPS
will automatically select the most appropriate context when you
open the search dialog, depending on which component currently
has the focus. If several contexts are possible for one component
(for example, the editor has "Current_File", "Files from Project",
"Files..." and "Open Files"), then the last one you’ve been using will
be selected. You can of course change the context to another one if
needed.

Clicking on the arrow on the right will display the list of all possible
contexts. This list includes:

Project View
Search in the project view. An extra Scope box will be
displayed where you can specify the scope of your search,
which can be a set of: Projects, Directories, Files,
Entities. The search in entities may take a long time,
search each file is parsed during the search.

Open Files
Search in all the files that are currently open in the
source editor. The Scope entry is described in the
Files... section below.

Files... Search in a given set of files. An extra Files box will be

displayed where you can specify the files by using stan-
dard shell (Unix or Windows) regular expression, e.g.
*.ad? for all files ending with .ad and any trailing char-
acter. The directory specified where the search starts,
and the Recursive search button whether sub directories
will be searched as well.

The Scope entry is used to restrict the search to a set of
language constructs, e.g. to avoid matching on comments
when you are only interested in actual code, or to only
search strings and comments, and ignore the code.

104

Chapter 8: Searching and Replacing

Files From Project
Search in all the files from the project, including files
from project dependencies. The Scope entry is described
in the Files. .. section above.

Current File
Search in the current source editor. The Scope entry is
described in the Files. .. section above.

Project Browser
Search in the project browser (see Section 7.12 [The
Project Browser], page 100).

The default value for Look In is set through various means: by
default, GPS will select a context that matches the currently selected
window. For instance, if you are in an editor and open the search
dialog, the context will be set to Current File. But if the project
view is the active window, the context will be set to Project View.
Optionally, GPS can remember the last context that was set (see
the preference search/Preserve Search Context. Ifthisis set, and
an editor is selected, GPS will remember whether the last time you
started a search from an editor you decided to search in Current
File or Files From Project for instance.

Finally, you can create key shortcuts (through the /Edit/Key
Shortcuts menu, in the search category) to open the search dia-
log and set the context to a specific value.

105

Using the GNAT Programming Studio

The second part of the window is a row of buttons, to start the search (or
continue to the next occurrence), and to display the options.

s} Search R|

Search for: string

Replace: B
2

Lok in: |Files...

Find Al

Repl All

= QOptions

Files: | |E]
Directory: | |[E

Scope: |Whn|e Text |E]
[] Recursive Search
] Regexp [] Case Sensitive

[1 whole Word Select on Match
Clase on Match

Close

There are five check boxes in this options box.

"Regexp" This button commutes between fixed string patterns and regular
expressions. You can also commute between these two modes by se-
lecting the arrow on the right of the search for: field. The grammar
followed by the regular expressions is similar to the Perl and Python
regular expressions grammar, and is documented in the GNAT run
time file ‘g-regpat.ads’. To open it from GPS, you can use the
open from project dialog (File->0Open From Project...) and type g-
regpat.ads. See [Open From Project], page 39 for more information
on this dialog.

"Whole Word"
If activated, this check box will force the search engine to ignore
substrings. "sensitive" will no longer match "insensitive".

106

Chapter 8: Searching and Replacing

Select on Match
When this button is selected, the focus is given to the editor that
contains the match, so that you can start editing the text immediatly.
If the button is not selected, the focus is left on the search window,
so that you can press Enter to search for the next occurrence.

Close on Match
This button only appears if the search window is floating. If this
button is enabled, the search window will be automatically closed
when an occurrence of the search string is found.

"Case Sensitive Search"
By default, patterns are case insensitive (upper-case letters and
lower-case letters are considered as equivalent). You can change
this behavior by clicking on this check box.

"Case Preserving Replace"
When this is checked, replacements preserve casing. Three casings
are detected and preserved: all lower, all UPPER, and Mixed_Case
where the first character of each word is capitalized. Note that
when the replace pattern is not all lower case, replacement is never
case-preserving, the original casing of the replace pattern is used.

Pressing the Find / Previous buttons performs an interactive search. It
stops as soon as one occurrence of the pattern is found. search. Once a first
occurrence has been found, the Find button is renamed to Next. You then have
to press the Next button (or the equivalent shortcut (Cul-N)) to go to the next
occurrence.

If you use the Find a1l button, the search widget will start searching for all
occurrences right away, and put the results in a new window called Locations,
See Section 2.16 [The Locations View], page 20.

The Replace and Replace & Find buttons are grayed out as long as no oc-
curence of the pattern is found. In order to enable them, you have to start a
search, e.g. by pressing the rFind button. Pressing Replace will replace the cur-
rent occurence (and therefore the two buttons will be grayed out), and Replace
& Find will replace the occurence and then jump to the next one, if any. If you
don’t want to replace the current occurence, you can jump directly to the next
one by pressing Next.

The Repl all button will replace all the occurences found. By default, a
popup is displayed and ask for confirmation. It’s possible to disable this popup
by either checking the box "Do not ask this question again", or by going in
the Search pannel of the preferences pages, and unchecking "Confirmation for
'Replace all’". The confirmation popup can be reenabled through this checkbox.

107

Using the GNAT Programming Studio

As most GPS components, the search window is under control of the multiple
document interface, and can thus be integrated into the main GPS window
instead of being an external window.

To force this behavior, open the menu window, select search in the list at the
bottom of the menu, and then select either Floating or Docked.

If you save the desktop (File->Save More->Desktop, GPS will automatically
reopen the search dialog in its new place when it is started next time.

108

Chapter 9: Compilation/Build

9 Compilation/Build

This chapter describes how to compile files, build executables and run them.
Most capabilities can be accessed through the Build menu item, or through the
Build and Run contextual menu items, as described in the following section.

When compiler messages are detected by GPS, an entry is added in the
Locations View, allowing you to easily navigate through the compiler messages
(see Section 2.16 [The Locations View], page 20), or even to automatically correct
some errors or warnings (see Section 13.4 [Code Fixing], page 171).

Compiler messages also appear as icons on the side of lines in the source
editors. When the mouse pointer is left on these icons, a tooltip appears, listing
the error messages found on this line. When GPS is capable of automatically
correcting the errors, clicking on the icon will apply the fix to the source code.
The icons on the side of editors are removed when the corresponding entries are
removed from Section 2.16 [The Locations View], page 20.

9.1 The Build Menu

The build menu gives access to capabilities related to checking, parsing and
compiling files, as well as creating and running executables. note that this
menu is fully configurable via the Targets dialog, so what is documented in
this manual are the default menus.

See Section 9.2 [The Target Configuration Dialog], page 112.

Check Syntax
Check the syntax of the current source file. Display an error message
in the Messages window if no file is currently selected.

Check Semantic
Check the semantic of the current source file. Display an error
message in the Messages window if no file is currently selected.

Compile File
Compile the current file. By default, will display an intermediate
dialog where you can add extra switches, or simply press to
get the standard (or previous) switches. Display an error message
in the Messages window if no file is selected.

If errors or warnings occur during the compilation, the correspond-
ing locations will appear in the Locations View. If the corresponding
Preference is set, the source lines will be highlighted in the editors
(see Section 16.1 [The Preferences Dialog], page 193). To remove the
highlighting on these lines, remove the files from the Locations View
using either the contextual menu (Remove category) or by closing
the Locations View.

109

Using the GNAT Programming Studio

Project

Clean

Makefile

Run

110

Build <main>
The menu will list of all mains defined in your project
hierarchy. Each menu item will build the selected main.

Build All Build and link all main units defined in your project. If
no main unit is specified in your project, build all files
defined in your project and subprojects recursively. For
a library project file, compile sources and recreate the
library when needed.

Compile All Sources
Compile all source files defined in the top level project.

Build <current file>
Consider the currently selected file as a main file, and
build it.

Custom Build...

Display a text entry where you can enter any external
command. This menu is very useful when you already
have existing build scripts, make files, ... and want to
invoke them from GPS. If the sHELL environment vari-
able is defined (to e.g. /bin/sh), then the syntax used
to execute the command is the one for this shell. Oth-
erwise, the command will be spawned directly by GPS
without any shell interpretation.

Clean All Remove all object files and other compilation artifacts
associated to all projects related to the current one. It
allows to restart a complete build from scratch.

Clean Root
Remove all object files and other compilation artifacts
associated to the root project. It does not clean objects
from other related projects.

If you have a file called ‘Makefile’ in the same directory as your
project file is, or if you've set the makefile property in the Make
section of the project properties (see Section 7.10 [The Project Prop-
erties Editor], page 97), this menu will be displayed, giving access
to all the targets defined in your makefile.

Chapter 9: Compilation/Build

main For each main source file defined in your top level project,
an entry is listed to run the executable associated with
this main file. Running an application will first open a
dialog where you can specify command line arguments to
your application, if needed. You can also specify whether
the application should be run within GPS (the default),
or using an external terminal.

When running an application from GPS, a new execu-
tion window is added in the bottom area where input
and output of the application is handled. This window
is never closed automatically, even when the application
terminates, so that you can still have access to the ap-
plication’s output. If you explicitly close an execution
window while an application is still running, a dialog
window will be displayed to confirm whether the appli-
cation should be terminated.

When using an external terminal, GPS launches an ex-
ternal terminal utility that will take care of the execution
and input/output of your application. This external util-
ity can be configured in the preferences dialog (External
Commands->Execute command).

The GPS execution windows have several limitations
compared to external terminals. In particular, they do
not handle signals like and (control-c). In general, if
you are running an interactive application, we strongly
encourage you to run in an external terminal.

Similarly, the run contextual menu accessible from a
project entity contains the same entries.

Custom... Similar to the entry above, except that you can run any
arbitrary executable. If the SHELL environment variable
is defined (to e.g. /bin/sh), then the syntax used to
execute the command is the one for this shell. Otherwise,
the command will be spawned directly by GPS without
any shell interpretation.

Recompute Xref info
Recompute the cross-reference information for Ada, C and C++
source files. See Section 6.1 [Support for Cross-References], page 65.

Load xref info in memory
Load all the cross-reference information in memory. This
menu is generally not needed, See Section 6.1 [Support for
Cross-References], page 65.

111

Using the GNAT Programming Studio

Settings

Targets This opens the Target Configuration Dialog. See Sec-
tion 9.2 [The Target Configuration Dialog], page 112.

Toolchains
Open a dialog allowing the configuration of GPS for
working with two compilation toolchains. This is partic-
ulary useful when compiling a project with an old com-
piler, while wanting up-to-date functionalities from the
associated tools (gnatmetric, gnatcheck and so on). See
Section 9.4 [Working with two compilers], page 116.

The Tools->Interrupt menu can be used to interrupt the last compilation or
run command. Once you have interrupted that last operation, you can interrupt
the previous one by selecting the same menu again.

However, the easiest way to interrupt a specific operation, no matter if it
was started last or not, is to use the Task Manager, through the Tools->views-
>Tasks menu. It will show one line per running process, and right-clicking on
any of these lines gives the possibility to interrupt that process.

If your application is build through a Makefile, you should probably load the
‘Makefile.py startup script (see the menu /Tools/Plug-ins).

9.2 The Target Configuration Dialog

GPS provides an interface for launching operations like building projects, com-
piling individual files, performing syntax or semantic checks, and so on. All
these operations have in common that they involve launching an external com-
mand, and parsing the output for error messages. In GPS, these operations are
called "Targets", and can be configured either through the Target Configuration

112

Chapter 9: Compilation/Build

dialog, or through XML configuration. See Section 16.5.20 [Customizing build
Targets and Models], page 272.

5 Target Configuration

+ =t

2 & Fle Target model ‘ gnatmake e He Revert l

I I Check Syntax Options

|4 Check Semantic

Launch made |Manua|l\,r with no dialog V| [Display button in toclbar
“ C.Umplle o Icon e~ [] pisplay item in menu
= [Project
#2 Build Main TR | |
£ Build Al Command line
4 Compile All Sources Dependencies Compilation
@ Build <current file> o Fecompis ¥ stikhes changed B Rcesid A

[Minimal recompilation [] Progress bar

© Custom Build... [Keep going Compile only
= [Clean Quiet mode
@ Clean All [] bebug information
4§ Clean Root
4@ Clean Project
Checks Project
B [Makefile Syntax check [] Create object dirs
& Make [] Semantic check Project verhosityi

%agnatmake -q -c -u %el -P%PP %X %fp -gnats |

Lok J[zeey J[concer |

This dialog is divided in two areas: on the left, a tree listing Targets, and, in

the main area, a panel for configuring the Target which is currently selected in
the tree.

9.2.1 The Targets tree
The Tree contains a list of targets, organized by categories.
On top of the tree are three buttons:
e The Add button creates a new target.

e The Remove button removes the currently selected target. Note that only

user-defined targets can be removed, the default targets created by GPS
cannot be removed.

e The Clone button creates a new user-defined target which is identical to
the currently selected target.

113

Using the GNAT Programming Studio

9.2.2 The configuration panel

On top of the configuration panel, one can select the Target model. The Model
determines the graphical options available in the "Command line" frame.

The "Revert" button resets all target settings to their original value.

The "Options" frame contains a number of options that are available for all
Targets.

e The Launch mode indicates the way the target is launched:

e Manually: the target is launched when clicking on the corresponding
icon in the toolbar, or when activating the corresponding menu item. In
the latter case, a dialog is displayed, allowing last-minute modifications
of the command line.

e Manually with dialog: same as Manually, but the dialog is always
displayed, even when clicking on the toolbar icon.

e Manually with no dialog: same as Manually, but the dialog is never
displayed, even when activating the menu item.

e On file save: the Target is launched automatically by GPS when a file
is saved. The dialog is never displayed.

e In background: the Target is launched automatically in the back-
ground after each modification in the source editor. See Background
compilations below.

e Target type: type of target described. If empty, or set to Normal, represents
a simple target. If set to another value, represents multiple subtargets.
For example, if set to main, each subtarget corresponds to a Main source
as defined in the currently loaded project. Other custom values may be
defined, and then handled via the compute_build_targets hook.

The "Display" frame indicates where the launcher for this target should be
visible.

e in the toolbar: when active, a button is displayed in the main toolbar,
allowing to quickly launch a Target.

e in the main menu: whether to display a menu item corresponding to the
Target in the main GPS menu. By default, Targets in the "File" category
are listed directly in the Build menu, and Targets in other categories are
listed in a submenu corresponding to the name of the category.

e in contextual menus for projects: whether to display an item in the contex-
tual menu for projects in the Project View

e in contextual menus for files: whether to display an item in the contextual
menus for files, for instance in file items in the Project View or directly on
source file editors.

114

Chapter 9: Compilation/Build

The "Command line" contains a graphical interface for some configurable
elements of the Target, which are specific to the Model of this Target.

The full command line is displayed at the bottom. Note that it may contain
Macro Arguments. For instance if the command line contains the string "%PP",
GPS will expand this to the full path to the current project. For a full list of
available Macros, see Section 16.5.3 [Macro arguments], page 227.

9.2.3 Background compilations

GPS is capable of launching compilation targets in the background. This means
that GPS will launch the compiler on the current state of the file in the editor.

Error messages resulting from background compilations are not listed in the
Locations view or the Messages window. The full messages are listed in the
Background Build console, accessible from the menu Tools->Console. Error
messages which contain a source location indication are shown as icons on the
side of lines in editors, and the exact location is highlighted directly in the editor.
On both of these places, tooltips show the contents of the error messages.

Messages from background compilations are removed automatically either
when a new background compilation has finished, or when a non-background
compilation is launched.

GPS will launch background compilations for all targets that have a Launch
mode set to In background, after modifications occur in a source editor. Back-
ground compilation is useful mostly for targets such as compile File or Check
syntax. For targets that work on Mains, the last main that was used in a non-
background is considered, defaulting to the first main defined in the project
hierarchy.

Background compilations are not launched while GPS is already listing re-
sults from non-background compilations, ie as long as there are entries in the
Locations View showing entries in the Builder results category.

9.3 The Build Mode

GPS provides an easy way to build your project with different options, through
the Mode selection, located in the main toolbar.

When the Mode selection is set to default, the build is done using the
switches defined in the project. When the Mode selection is set to another
value, then specialized parameters are passed to the builder. For instance,
the gcov Mode adds all the compilation parameters needed to instrument the
produced objects and executables to work with the gcov tool.

In addition to changing the build parameters, the Mode selection has the ef-
fect of changing the output directory for objects and executables. For instance,
objects produced under the debug mode will be located in the debug subdirec-
tories of the object directories defined by the project. This allows switching

115

Using the GNAT Programming Studio

from one Mode to another without having to erase the objects pertaining to a
different Mode.

It is possible to define new Modes using XML customization, see Sec-
tion 16.5.20 [Customizing build Targets and Models], page 272.

Note that the Build Mode affects only builds done using recent versions
of gnatmake and gprbuild. The Mode selection has no effect on builds done
through Targets that launch other builders.

9.4 Working with two compilers

This functionality is intended for people whose projects need to be compiled
with a specific (old) version of the GNAT toolchain, while still desiring to take
full advantage of up-to-date associated tools for non-compilation actions, such
as checking the code against a coding standard, getting better cross-reference
browsing in GPS, computing metrics and so on.

GPS now allows you to handle this case. To configure GPS to make it handle
two compiler toolchains, you need to use the Build->Settings—>Toolchains
menu. This will open a dialog where you can activate the multiple-toolchains
mode.

5} Toolchains Configuration

Activate multiple toolchains setup
Paths

Compiler path|c:'\gnat-E.lﬁal'\bin'-\ |l_

Tools path| c:\gnat-6.2.14bin}, |l_

Use the compiler in tools path to generate cross-reference files

| oK |[Cancel]

In this dialog, two paths need to be configured: the compiler path and the
tools path. The first one is used to actually compile the code, while the second
one is used to run up-to-date tools to get more functionalities or accurate results.

Note that GPS will only enable the ok button when the two paths are set to
different location, since otherwise it does not make sense to enable the multiple
toolchains set up.

From this dialog, you can also activate an automated cross-reference genera-
tion. The cross-reference files are the .ali files generated by the GNAT compiler
together with the compiled object. Those files are used by GPS for several
functionalities, such as cross-reference browsing or documentation generation.

116

Chapter 9: Compilation/Build

Having those .ali files produced by a recent compiler helps having more accu-
rate results with those functionalities, but might interract badly with an old
compiler also reading those .ali files for compiling a project.

If the automated xref generation is activated, then GPS will generate those
.ali files using the compiler found in the tools path, and place them in a directory
distinct from the one used by the actual compiler. This allows GPS to take full
benefit of up-to-date cross-reference files, while keeping the old toolchain happy
as its .ali files remain untouched.

Note that the cross-reference files generation does not output anything in
the "Messages" window, so as to not confuse the output of the regular build
process. If needed, you can see the output of the cross-ref generation command
by selecting the Tools->Consoles->Auxiliary Builds menu.

9.4.1 Interaction with the remote mode

The ability to work with two compilers has impacts on the remote mode con-
figuration: paths defined here are local paths, so they have no meaning on the
server side.

To handle the case of using a specific compiler version on the remote side
while still wanting up-to-date tools, the following behavior is applied when both
a remote compilation server is defined, and the multiple toolchains mode is
activated:

e The compiler path is ignored when a remote build server is defined. All
compilation actions are then performed normally on the build server.

e The tools path is however taken into account, and all related actions are
performed on the local machine using this path.

e The cross-reference files are taken care of by the rsync mechanism so that
they don’t get overwritten during local and remote host synchronisations,
as build and cross-reference generation actions occur at the same time, on
the local machine and on the distant server.

117

Using the GNAT Programming Studio

118

Chapter 10: Source Browsing

10 Source Browsing

10.1 General Issues

GPS contains several kinds of browsers, that have a common set of basic func-
tionalities. There are currently four such browsers: the project browser (see
Section 7.12 [The Project Browser], page 100), the call graph (see Section 10.2
[Call Graph], page 121), the dependency browser (see Section 10.3 [Dependency
Browser], page 123) and the entity browser (see Section 10.4 [Entity Browser],
page 126).

All these browsers are interactive viewers. They contain a number of items,
whose visual representation depends on the type of information displayed in
the browser (they can be projects, files, entities, . . .).

In addition, the following capabilities are provided in all browsers:

Scrolling
When a lot of items are displayed in the canvas, the currently visible
area might be too small to display all of them. In this case, scrollbars
will be added on the sides, so that you can make other items visible.
Scrolling can also be done with the arrow keys.

Layout A basic layout algorithm is used to organize the items. This algo-
rithm is layer oriented: items with no parents are put in the first
layer, then their direct children are put in the second layer, and so on.
Depending on the type of browser, these layers are organized either
vertically or horizontally. This algorithm tries to preserve as much
as possible the positions of the items that were moved interactively.

The Refresh layout menu item in the background contextual menu
can be used to recompute the layout of items at any time, even for
items that were previously moved interactively.

Interactive moving of items
Items can be moved interactively with the mouse. Click and drag
the item by clicking on its title bar. The links will still be displayed
during the move, so that you can check whether it overlaps any other
item. If you are trying to move the item outside of the visible part
of the browser, the latter will be scrolled.

Links Items can be linked together, and will remain connected when items
are moved. Different types of links exist, see the description of the
various browsers.

By default, links are displayed as straight lines. You can choose to
use orthogonal links instead, which are displayed only with verti-

119

Using the GNAT Programming Studio

cal or horizontal lines. Select the entry orthogonal links in the
background contextual menu.

Exporting
The entire contents of a browser can be exported as a PNG image us-
ing the entry Export to PNG. .. in the background contextual menu.
It can also be exported in svG format using the Export to SVG. ..
entry.

Zooming Several different zoom levels are available. The contextual menu in
the background of the browser contains three entries: zoom in, zoom
out and zoom. The latter is used to select directly the zoom level you
want.

This zooming capability is generally useful when lots of items are
displayed in the browser, to get a more general view of the layout
and the relationships between the items.

Selecting items
Items can be selected by clicking inside them. Multiple items can be
selected by holding the key while clicking in the item. Alter-
natively, you can click and drag the mouse inside the background of
the browser. All the items found in the selection rectangle when the
mouse is released will be selected.

Selected items are drawn with a different title bar color. All items
linked to them also use a different title bar color, as well as the links.
This is the most convenient way to understand the relationships
between items when lots of them are present in the browser.

Hyper-links
Some of the items will contain hyper links, displayed in blue by
default, and underlined. Clicking on these will generally display
new items.

Two types of contextual menus are available in the browsers: the back-
ground contextual menu is available by right-clicking in the background area
(i.e. outside of any item). As described above, it contains entries for the zoom-
ing, selecting of orthogonal links, and refresh; the second kind of contextual
menu is available by right-clicking in items.

The latter menu contains various entries. Most of the entries are added by
various modules in GPS (VCS module, source editor, . . .). In addition, each kind
of browser also has some specific entries, which is described in the corresponding
browser’s section.

There are two common items in all item contextual menus:

120

Chapter 10: Source Browsing

Hide Links
Browsers can become confusing if there are many items and many
links. You can lighten them by selecting this menu entry. As a
result, the item will remain in the canvas, but none of the links to or
from it will be visible. Selecting the item will still highlight linked
items, so that this information remains available.

Remove unselected items
Selecting this menu will remove all the items that are not currently
selected. This is a convenient method to clean up the contents of the
browser.

Remove selected items
Selecting this menu will remove all the items that are currently
selected.

10.2 Call Graph

The call graph shows graphically the relationship between subprogram callers
and callees. A link between two items indicate that one of them is calling the
other.

A special handling is provided for renaming entities (in Ada): if a subprogram
is a renaming of another one, both items will be displayed in the browser, with
a special hashed link between the two. Since the renaming subprogram doesn’t

121

Using the GNAT Programming Studio

have a proper body, you will then need to ask for the subprograms called by the
renamed to get the list.

02 Gall graph Browser
do_cleanups & 59 X

(Decl) gps.adb:163
gps: 1364:4

main_processing
(Decl) gps.adb:159
gps: 1363:4 S

(Decl) g-tasloc.ads: 52
traces.log: 414:7 416:10 420:10

init_settings <&@ & X &
{Delclzjgg;-;db 156 (Decl) a-textio ads: 143
gps: B tracesJog: 412:7
get_p =T (Decl) tracesadb:125
(Decl) os_utils.adsB3 traceslog: 403:10

gps: 11655

(Decl) gpsadbi111 {Dech) tiacesadbi121

image o 2 x traceslog: 391:10
(Decl) string_utils.ads: 181
gps: 116:48

(Decl) tracesadb:117

traces.log: 387:10

(Decl) traces.ads:90
. . . 3 . - (Decl) a-textio.ads: 208
gps: 114:41 115:41 118:45 119:45 120:45 trace!.fﬂig 3847

exception_information &4 (Decl) a-textio.ads: 166
(Decl) a-exceptads: 79 traces.log: 370:10 410:7
gps: 1368:45

trace. = X
(Decl) traces.ads: 111
gps: 1368:7 S

(Decly g-tasloc.ads:47
traces.log: 332:7

(Decl) g-souinf.ads:52
traces.trace: 228:59
traces.log: 321:57

In this browser, clicking on the right arrow in the title bar will display all
the entities that are called by the selected item.

Clicking on the left arrow will display all the entities that call the selected
item (i.e. its callers).

This browser is accessible through the contextual menu in the project view
and source editor, by selecting one of the items:

All boxes in this browser list several information: the location of their decla-
ration, and the list of all their references in the other entities currently displayed
in the browser. If you close the box for an entity that calls them, the matching
references are also hidden, to keep the contents of the browser simpler.

122

Chapter 10: Source Browsing

Browsers->Entity calls
Display all the entities called by the selected entity. This has the
same effect as clicking on the right title bar arrow if the item is
already present in the call graph.

Browsers—->Entity is called by
Display all the entities called by the selected entity. This has the
same effect as clicking on the left title bar arrow if the item is already
present in the call graph.

The contextual menu available by right-clicking on the entities in the browser
has the following new entries, in addition to the ones added by other modules
of GPS.

Entity calls
Same as described above.

Entity is called by
Same as described above.

Go To Spec
Selecting this item will open a source editor that displays the decla-
ration of the entity.

Go To Body
Selecting this item will open a source editor that displays the body
of the entity.

Locate in Project View
Selecting this menu entry will move the focus to the project view,
and select the first node representing the file in which the entity
is declared. This makes it easier to see which other entities are
declared in the same file.

123

Using the GNAT Programming Studio

10.3 Dependency Browser

The dependency browser shows the dependencies between source files. Each
item in the browser represents one source file.

=] Dependency Browser

|sdcadbsa x|

In this browser, clicking on the right arrow in the title bar will display the
list of files that the selected file depends on. A file depend on another one if it
explicitly imports it (with statement in Ada, or #include in C/C++). Implicit
dependencies are currently not displayed in this browser, since the information
is accessible by opening the other direct dependencies.

Clicking on the left arrow in the title bar will display the list of files that
depend on the selected file.

This browser is accessible through the contextual menu in the project view
and the source editor, by selecting one of the following items:

Show dependencies for file
This has the same effect as clicking on the right arrow for a file

already in the browser, and will display the direct dependencies for
that file.

124

Chapter 10: Source Browsing

Show files depending on file
This has the same effect as clicking on the left arrow for a file already
in the browser, and will display the list of files that directly depend
on that file.

The background contextual menu in the browser adds a few entries to the
standard menu:

Open file...
This menu entry will display an external dialog in which you can
select the name of a file to analyze.

Recompute dependencies
This menu entry will check that all links displays in the dependency
browser are still valid. If not, they are removed. The arrows in the
title bar are also reset if necessary, in case new dependencies were
added for the files.

The browser is not refreshed automatically, since there are lots of
cases where the dependencies might change (editing source files,
changing the project hierarchy or the value of the scenario variables,

It also recomputes the layout of the graph, and will change the
current position of the boxes.

Show system files
This menu entry indicates whether standard system files (runtime
files for instance in the case of Ada) are displayed in the browser.
By default, these files will only be displayed if you explicitly select
them through the open file menu, or the contextual menu in the
project view.

Show implicit dependencies

This menu entry indicates whether implicit dependencies should
also be displayed for the files. Implicit dependencies are files that
are required to compile the selected file, but that are not explicitly
imported through a with or #include statement. For instance, the
body of generics in Ada is an implicit dependency. Any time one
of the implicit dependencies is modified, the selected file should be
recompiled as well.

The contextual menu available by right clicking on an item also adds a
number of entries:

Analyze other file
This will open a new item in the browser, displaying the complement
file for the selected one. In Ada, this would be the body if you clicked

125

Using the GNAT Programming Studio

on a spec file, or the opposite. In C, it depends on the naming
conventions you specified in the project properties, but you would
generally go from a ‘. 1n’ file to a ‘. ¢’ file and back.

Show dependencies for ﬁle
These play the same role as in the project view contextual menu

10.4 Entity Browser

The entity browser displays static information about any source entity.
The exact content of the items depend on the type of the item. For instance:
Ada record / C struct

The list of fields, each as an hyper link, is displayed. Clicking on
one of the fields will open a new item for the type.

Ada tagged type / C++ class
The list of attributes and methods is displayed. They are also click-
able hyper-links.

Subprograms

The list of parameters is displayed

packages The list of all the entities declared in that package is displayed

126

Chapter 10: Source Browsing

and more. ..

commands_list: list

modules_list: list

main_window: atl:_window

tooltips: agtl_toaltips

registry: project_registry_access
gnat_version: string_access
gnatls_cache: string_access
source_info_list: i_file_list

preferences: preferences_manager
last_context_for contextual: selection_context access
current_context: selection_context_access
horne_dir: string_access
logs_mapper: fle_mapper_access access type

lang_handier: language_handler access to lernel_hande_record
default_desktop: node_ptr

rmodules_data: lernel_module_data
open_fies: list
history: history

gide_window_recard 1 B x|
of by SCCESS type record type
of type: dide_window access to glide_window_record kernel: kernel_hande

toclbar: gtl._toolbar
animation_frame: gtl<_frame
animation: gdi_pixbuf_animation
animation_iter: gdk_pixbuf_animation_iter
animation_image: gtl-_image
timeout_id: timeout_handler_id
state_level: integer
busy_level: integer
interrupted: boolean
desktop_loaded: boolean

This browser is accessible through the contextual menu in the project view
and source editor, when clicking on an entity:

Browsers/Examine entity entity
Open a new item in the entity browser that displays information for
the selected entity.

Most information in the items are click-able (by default, they appear as
underlined blue text). Clicking on one of these hyper links will open a new item
in the entity browser for the selected entity.

This browser can display the parent entities for an item. For instance, for a
C++ class or Ada tagged type, this would be the types it derives from. This is
accessible by clicking on the up arrow in the title bar of the item.

Likewise, children entities (for instance types that derive from the item) can
be displayed by clicking on the down arrow in the title bar.

127

Using the GNAT Programming Studio

An extra button appear in the title bar for the C++ class or Ada tagged types,
which toggles whether the inherited methods (or primitive operations in Ada)
should be displayed. By default, only the new methods, or the ones that override
an inherited one, are displayed. The parent’s methods are not shown, unless
you click on this title bar button.

128

Chapter 11: Debugging

11 Debugging

GPS is also a graphical front-end for text-based debuggers such as GDB. A
knowledge of the basics of the underlying debugger used by GPS will help
understanding how GPS works and what kind of functionalities it provides.

Please refer to the debugger-specific documentation - e.g. the GDB documen-
tation - for more details.

Debugging is tightly integrated with the other components of GPS. For exam-
ple, it is possible to edit files and navigate through your sources while debugging.

To start a debug session, go to the menu Debug->Initialize, and choose
either the name of your executable, if you have specified the name of your main
program(s) in the project properties, or start an empty debug session using the
<nomain file> item. It is then possible to load any file to debug, by using the
menu Debug->Debug->Load File. ..

Note that you can create multiple debuggers by using the Initialize menu
several times: this will create a new debugger each time. All the debugger-
related actions (e.g. stepping, running) are performed on the current debugger,
which is represented by the current debugger console. To switch between de-
buggers, simply select its corresponding console.

After the debugger has been initialized, you have access to two new win-
dows: the data window (in the top of the working area), and the debugger
console (in a new page, after the Messages and Shell windows). All the menus
under Debugger are now also accessible, and you also have access to additional
contextual menus, in particular in the source editor where it is possible to easily
display variables, set breakpoints, and get automatic display (via tool tips) of
object values.

When you want to quit the debugger without quitting GPS, go to the menu
Debug->Terminate Current, that will terminate your current debug session,
or the menu Debug->Terminate that will terminate all your debug sessions at
once.

11.1 The Debug Menu

The pebug entry in the menu bar provides operations that act at a global level.
Key shortcuts are available for the most common operations, and are displayed
in the menus themselves. Here is a detailed list of the menu items that can be
found in the menu bar:

Run... Opens a dialog window allowing you to specify the arguments to pass
to the program to be debugged, and whether this program should be
stopped at the beginning of the main subprogram. If you confirm by
clicking on the OK button, the program will be launched according
to the arguments entered.

129

Using the GNAT Programming Studio

Step Execute the program until it reaches a different source line.

Step Instruction
Execute the program for one machine instruction only.

Next Execute the program until it reaches the next source line, stepping
over subroutine calls.

Next Instruction
Execute the program until it reaches the next machine instruction,
stepping over subroutine calls.

Finish Continue execution until selected stack frame returns.

Continue
Continue execution of the program being debugged.

Interrupt

Asynchronously interrupt the program being debugged. Note that
depending on the state of the program, you may stop it in low-
level system code that does not have debug information, or in some
cases, not even a coherent state. Use of breakpoints is preferable
to interrupting programs. Interrupting programs is nevertheless
required in some situations, for example when the program appears
to be in an infinite (or at least ver