
How to Write Tests	2
The Anatomy of a Test Function	2
Checking Results with the assert! Macro	6
Testing Equality with the assert_eq! and assert_ne! Macros	10
Custom Failure Messages	12
Checking for Panics with should_panic	14
Controlling How Tests are Run	19
Running Tests in Parallel or Consecutively	19
Showing Function Output	20
Running a Subset of Tests by Name	22
Running Single Tests	23
Filtering to Run Multiple Tests	24
Ignore Some Tests Unless Specifically Requested	24
Test Organization	26
Unit Tests	26
The Tests Module and #[cfg(test)]	26
Testing Private Functions	27
Integration Tests	28
The tests Directory	28
Submodules in Integration Tests	30
Integration Tests for Binary Crates	32
Summary	33

Chapter 11
Writing Automated Tests
Program testing can be a very effective way to show the presence of bugs, but it is hopelessly inadequate for showing their absence.	Comment by AnneMarieW: Quotes have not been used in other chapters.	Comment by janelle: Because this is the only quotation you’ve placed in front of a chapter like this, I’m concerned it will look strange. Do you think you can incorporate it into the first paragraph instead? Maybe something like “In his 1972 essay “The Humble Programmer,” Edsger W. Dijkstra said that “Program testing can be a very effective way to show the presence of bugs, but it is hopelessly inadequate for showing their absence.” Correctness in our programs is the extent…”
Edsger W. Dijkstra, “The Humble Programmer” (1972)
[bookmark: move479336209][bookmark: move4793362091]In his 1972 essay “The Humble Programmer,” Edsger W. Dijkstra said that “Program testing can be a very effective way to show the presence of bugs, but it is hopelessly inadequate for showing their absence.” That doesn’t mean we shouldn’t try to test as much as we can! Correctness in our programs means is the extent to which that our code does what we intend for it to do. Rust is a programming language that cares a lotdesigned with a high degree of concern about the correctness of programs, but correctness is a complex topic and isn’t not easy to prove. Rust’s type system shoulders a huge part of this burden, but the type system cannot catch every kind of incorrectness. As such, Rust includes support for writing automated software tests within the language itself.	Comment by AnneMarieW: Quotes have not been used in other chapters.	Comment by janelle: Because this is the only quotation you’ve placed in front of a chapter like this, I’m concerned it will look strange. Do you think you can incorporate it into the first paragraph instead? Maybe something like “In his 1972 essay “The Humble Programmer,” Edsger W. Dijkstra said that “Program testing can be a very effective way to show the presence of bugs, but it is hopelessly inadequate for showing their absence.” Correctness in our programs is the extent…”	Comment by Carol Nichols: Ok!	Comment by AnneMarieW: Au: Can you mention the word "automated" in this chapter introduction somewhere?	Comment by Carol Nichols: Done
As an example, say we write a function called add_two that adds two to whatever number is passed to it. This function’s signature accepts an integer as a parameter and returns an integer as a result. When we implement and compile that function, Rust will does all the type checking and borrow checking that weyou’ve seenlearned so far to make ensure that, for instance, we aren’t passing a String value or an invalid reference to this function. WhatBut Rust can’t check is that this function will do precisely what we intend:, which is return the parameter plus two, rather than, say, the parameter plus 10 or the parameter minus 50! That’s where tests come in.
We can write tests that assert, for example, that when we pass 3 to the add_two function, wethe returned value is get 5 back. We can run these tests whenever we make changes to our code to make sure any existing correct behavior has not changed.
Testing is a complex skill,: although and we canno’t hope to cover everything detail about how to write good tests in one chapter of a book, so here we’ll just discuss the mechanics of Rust’s testing facilities. We’ll talk about the annotations and macros available to you when writing your tests, the default behavior and options provided for running your tests, and how to organize tests into unit tests and integration tests.
[bookmark: how-to-write-tests][bookmark: _Toc494370187]How to Write Tests
Tests are Rust functions that verify that the non-test code is functioning in the expected manner. The bodies of test functions typically perform these three actions:
Set up any needed data or state some setup
Rde, run the code we want to test, then
Aassert whether the results are what we expect.
Let’s look at the features Rust provides specifically for writing tests that take these actions, which include: the test attribute, a few macros, and the should_panic attribute.
[bookmark: the-anatomy-of-a-test-function][bookmark: _Toc494370188]The Anatomy of a Test Function
At its simplest, a test in Rust is a function that’s annotated with the test attribute. Attributes are metadata about pieces of Rust code;: one example is the derive attribute that we used with structs in Chapter 5 is one example. To makechange a function into a test function, we add #[test] on the line before fn. When we run our tests with the cargo test command, Rust will builds a test runner binary that runs the functions annotated with the test attribute and reports on whether each test function passes or fails.
Prod: xref OK
We saw Iin Chapter 7, we saw that when youwe make a new library project with Cargo, a test module with a test function in it is automatically generated for us. This module is to helps us get started writing our tests so we don’t have to go look up the exact structure and syntax of test functions every time we start a new project. We can add as many additional test functions and as many test modules as we want, though!
Prod: xref OK
We’re going toll explore some aspects of how tests work by experimenting with the template test generated for us, without actually testing any code. Then we’ll write some real-world tests that call some code that we’ve written and assert that its behavior is correct.
Let’s create a new library project called adder:
$ cargo new adder
 Created library `adder` project
$ cd adder
The contents of the src/lib.rs file in your adder library should be aslook like follows Listing 11-1:
prod: remove “filename:” from margin filenames, global
Filename: src/lib.rs	Comment by janelle: The proofreader mentioned in her review of Chapters 2-4 that she doesn’t think saying “Filename” is necessary, and I agree, so I’ve deleted these.
#[cfg(test)]
mod tests {
 #[test]
 fn it_works() {
 assert_eq!(2 + 2, 4);
 }
}
Listing 11-1: The test module and function generated automatically for us by cargo new
For now, let’s ignore the top two lines and focus on the function to see how it works. Note the #[test] annotation before the fn line: this attribute indicates this is a test function, so that the test runner knows to treat this function as a test. We could also have non-test functions in the tests module to help set up common scenarios or perform common operations, so we need to indicate which functions are tests by with using the #[test] attribute.
The function currently has no body uses the assert_eq! macro to assert that 2 + 2 equals 4. This assertion serves as an example of the format for a typical test., which means there is no code to fail the test; an empty test is a passing test! Let’s run it andto see that this test passes.
The cargo test command runs all tests we have in our project, as shown in Listing 11-2:
$ cargo test
 Compiling adder v0.1.0 (file:///projects/adder)
 Finished dev [unoptimized + debuginfo] target(s) in 0.22 secs
 Running target/debug/deps/adder-ce99bcc2479f4607

 running 1 test
 test tests::it_works ... ok

 test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out

 Doc-tests adder

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out
Listing 11-2: The output from running the one automatically generated test
Cargo compiled and ran ourthe test. After the Compiling, Finished, and Running lines, we seeis the line running 1 test . The next line  shows the name of the generated test function, called it_works, and the result of running that test, ok. Then we see the overall summary of running the tests appears next:. The text test result: ok. means that all the tests passed,. and the portion that reads 1 passed; 0 failed adds uptotals the number of tests that passed or failed.
[bookmark: _GoBack]Because Wwe don’t have any tests we’ve marked as ignored, so the summary sayshows 0 ignored. We also haven’t filtered the tests being run, so the end of the summary shows 0 filtered out. We’re going toll talk about ignoring and filtering out tests in the next section, “Controlling How Tests Are Run.”	Comment by janelle: Au: Can you use the name of the section?	Comment by Carol Nichols: Sure.
on different ways to run tests. The 0 measured statistic is for benchmark tests that measure performance. Benchmark tests are, as of this writing, only available in nightly Rust. See Appendix DChapter 1 on page XX for more information about nightly Rust.
prod: add xref
The next part of the test output , thatwhich starts with Doc-tests adder , is for the results of any documentation tests. We don’t have any documentation tests yet, but Rust can compile any code examples that appear in our API documentation. This feature helps us keep our docs and our code in sync! We’ll be talking about discuss how to write documentation tests in the the “Documentation Comments” section of Chapter 14 section on page XXof Chapter 14. For now, Wwe’re going toll ignore the Doc-tests output for now.	Comment by AnneMarieW: Spell out API on first instance?	Comment by Carol Nichols: We’ve been using API throughout the book, in just about every chapter, without spelling it out each time. Is it ok if we do that the first time we use it (which will be in Chapter 1) and not thereafter?
prod: add xref
Let’s change the name of our test and to see how that changes the test output. ChangeGive the it_works function to a different name, such as exploration, like so:
Filename: src/lib.rs
#[cfg(test)]
mod tests {
 #[test]
 fn exploration() {
 assert_eq!(2 + 2, 4);
 }
}
AndThen run cargo test again. In tThe output, we’ll now seeshows exploration instead of it_works:
running 1 test
test tests::exploration ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out
Let’s add another test, but this time we’ll make a test that fails! Tests fail when something in the test function panics. Each test is run in a new thread, and when the main thread sees that a test thread has died, the test is marked as failed. We talked about the simplest way to cause a panic in Chapter 9:, which is to call the panic! macro!. Type inEnter the new test, another, so that your src/lib.rs file now looks like Listing 11-3:	Comment by AnneMarieW: Do you really use the term “died” in this situation?	Comment by Carol Nichols: Yes.
prod: xref ok
Filename: src/lib.rs
#[cfg(test)]
mod tests {
 #[test]
 fn exploration() {
 assert_eq!(2 + 2, 4);
 }

 #[test]
 fn another() {
 panic!("Make this test fail");
 }
}
Listing 11-3: Adding a second test; one that will fail since because we call the panic! macro
And rRun the tests again withusing cargo test. The output should look like Listing 11-4, which shows that our exploration test passed and another failed:
running 2 tests
test tests::exploration ... ok
 test tests::another ... FAILED

 failures:

---- tests::another stdout ----
 thread 'tests::another' panicked at 'Make this test fail', src/lib.rs:10:89
note: Run with `RUST_BACKTRACE=1` for a backtrace.

 failures:
 tests::another

 test result: FAILED. 1 passed; 1 failed; 0 ignored; 0 measured; 0 filtered out

error: test failed
Listing 11-4: Test results when one test passes and one test fails
Instead of ok, the line test tests::another sayhows FAILED . We have tTwo new sections appear between the individual results and the summary: the first section  displays the detailed reason for the each test failures. In this case, another failed because it panicked at 'Make this test fail', which happened on src/lib.rs line 109 in the src/lib.rs file. The next section  lists just the names of all the failing tests, which is useful when there are lots of tests and lots of detailed failing test output. We can use the name of a failing test to run just that test in order to more easily debug it; we’ll talk more about ways to run tests in the “Controlling How Tests Are Run”next section.	Comment by janelle: Au: would it be useful to use wingdings in Listing 11-4 and the following explanation?	Comment by Carol Nichols: Yes, I added wingdings to 11-2 as well.
Finally, we have tThe summary line displays at the end : overall, our test result is FAILED. We had 1one test pass and 1one test fail.
Now that weyou’ve seen what the test results look like in different scenarios, let’s look at some macros other than panic! that are useful in tests.
[bookmark: checking-results-with-the-`assert!`-macr][bookmark: _Toc494370189]Checking Results with the assert! Macro
The assert! macro, provided by the standard library, is useful when you want to ensure that some condition in a test evaluates to true. We give the assert! macro an argument that evaluates to a boolean. If the value is true, assert! does nothing and the test passes. If the value is false, the assert! macro calls the panic! macro, which causes the test to fail. Using the assert!This is one macro that helps us check that our code is functioning in the way we intend.
Remember all the way back iIn Chapter 5, Listing 5-9 on page XX, where we hadused a Rectangle struct and a can_hold method, which are repeated here in Listing 11-5. Let’s put this code in the src/lib.rs file instead of src/main.rs and write some tests for it using the assert! macro.
Prod: fill page xref
Filename: src/lib.rs
#[derive(Debug)]
pub struct Rectangle {
 length: u32,
 width: u32,
}

impl Rectangle {
 pub fn can_hold(&self, other: &Rectangle) -> bool {
 self.length > other.length && self.width > other.width
 }
}
Listing 11-5: Using Tthe Rectangle struct and its can_hold method from Chapter 5
The can_hold method returns a boolean, which means it’s a perfect use case for the assert! macro. In Listing 11-6, let’s we write a test that exercises the can_hold method by creating a Rectangle instance that has a length of 8 and a width of 7, and asserting that it can hold another Rectangle instance that has a length of 5 and a width of 1:
Filename: src/lib.rs
#[cfg(test)]
mod tests {
 use super::*;

 #[test]
  fn larger_can_hold_smaller() {
  let larger = Rectangle { length: 8, width: 7 };
 let smaller = Rectangle { length: 5, width: 1 };

  assert!(larger.can_hold(&smaller));
 }
}
Listing 11-6: A test for can_hold that checks that a larger rectangle can indeed holds a smaller rectangle
Note that we’ve added a new line inside the tests module: the use super::*; line . The tests module is a regular module that follows the usual visibility rules we covered in Chapter 7 in the “Privacy Rules” section on page XXChapter 7. Because we’re inthe tests module is an inner module, we need to bring the code under test in the outer module into the scope of the inner module. We’ve chosen to use a glob here so that anything we define in the outer module is available to this tests module.	Comment by janelle: Au: more specific xref OK? I think it would be useful to point to the page the rules are discussed.	Comment by Carol Nichols: I think it would be more consistent with what we’ve been doing throughout if we had the chapter mentioned in there too, but I’m ok having the page number there as well.	Comment by AnneMarieW: Au: Do you mean “Because the tests module is an inner module, we need to . . . “	Comment by Carol Nichols: Yes, that works
prod: fill/link xref
We’ve named our test larger_can_hold_smaller , and we’ve created the two Rectangle instances that we need . Then we called the assert! macro and passed it the result of calling larger.can_hold(&smaller) . This expression is supposed to return true, so our test should pass. Let’s find out!
running 1 test
test tests::larger_can_hold_smaller ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out
It does pass! Let’s add another test, this time asserting that a smaller rectangle cannot hold a larger rectangle:
Filename: src/lib.rs
#[cfg(test)]
mod tests {
 use super::*;

 #[test]
 fn larger_can_hold_smaller() {
 // ...snip...let larger = Rectangle { length: 8, width: 7 };
 let smaller = Rectangle { length: 5, width: 1 };

 assert!(larger.can_hold(&smaller));
 }

 #[test]
 fn smaller_cannot_hold_larger() {
 let larger = Rectangle { length: 8, width: 7 };
 let smaller = Rectangle { length: 5, width: 1 };

 assert!(!smaller.can_hold(&larger));
 }
}
Because the correct result of the can_hold function in this case is false, we need to negate that result before we pass it to the assert! macro. This way As a result, our test will pass if can_hold returns false:
running 2 tests
test tests::smaller_cannot_hold_larger ... ok
test tests::larger_can_hold_smaller ... ok

test result: ok. 2 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out
Two passing tests that pass! Now let’s see what happens to our test results ifwhen we introduce a bug in our code. Let’s change the implementation of the can_hold method by replacing the greater-than sign to with have a less-than sign when it compares the lengths where it’s supposed to have a greater-than sign:
// ...snip...
#[derive(Debug)]
pub struct Rectangle {
 length: u32,
 width: u32,
}

impl Rectangle {
 pub fn can_hold(&self, other: &Rectangle) -> bool {
 self.length < other.length && self.width > other.width
 }
}
Running the tests now produces the following:
running 2 tests
test tests::smaller_cannot_hold_larger ... ok
test tests::larger_can_hold_smaller ... FAILED

failures:

---- tests::larger_can_hold_smaller stdout ----
 thread 'tests::larger_can_hold_smaller' panicked at 'assertion failed:
 larger.can_hold(&smaller)', src/lib.rs:22:8
note: Run with `RUST_BACKTRACE=1` for a backtrace.

failures:
 tests::larger_can_hold_smaller

test result: FAILED. 1 passed; 1 failed; 0 ignored; 0 measured; 0 filtered out
Our tests caught the bug! SincBecause larger.length is 8 and smaller.length is 5, the comparison of the lengths in can_hold now returns false : since 8 is not less than 5.
[bookmark: testing-equality-with-the-`assert_eq!`-a][bookmark: _Toc494370190]Testing Equality with the assert_eq! and assert_ne! Macros
A common way to test functionality is to takecompare the result of the code under test andto the value we expect the code to return and check that to make sure they’re equal. We could do this using the assert! macro and passing it an expression using the == operator. However, this is such a common test that the standard library provides a pair of macros—assert_eq! and assert_ne! —to perform this test more conveniently: assert_eq! and assert_ne!. These macros compare two arguments for equality or inequality, respectively. They’ll also print out the two values if the assertion fails, which makes so that it’s easier to see why the test failed,; while conversely, the assert! macro only tells us indicates that it got a false value for the == expression, not the values that lead to the false value.
In Listing 11-7, let’s we write a function named add_two that adds two2 to its parameter and returns the result. Then let’swe test this function using the assert_eq! macro:.
Filename: src/lib.rs
pub fn add_two(a: i32) -> i32 {
 a + 2
}

#[cfg(test)]
mod tests {
 use super::*;

 #[test]
 fn it_adds_two() {
 assert_eq!(4, add_two(2));
 }
}
Listing 11-7: Testing the function add_two using the assert_eq! macro
Let’s check that it passes!
running 1 test
test tests::it_adds_two ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out
The first argument we gave to the assert_eq! macro, 4, is equal to the result of calling add_two(2). We see a The line for this test that saysis test tests::it_adds_two ... ok, and the ok text indicates that our test passed!
Let’s introduce a bug into our code to see what it looks like when a test that uses assert_eq! fails. Change the implementation of the add_two function to instead add 3:
pub fn add_two(a: i32) -> i32 {
 a + 3
}
And rRun the tests again:
running 1 test
test tests::it_adds_two ... FAILED

failures:

---- tests::it_adds_two stdout ----
  thread 'tests::it_adds_two' panicked at 'assertion failed: `(left == right)`
v left: `4`,
w right: `5`', src/lib.rs:11:8
thread 'tests::it_adds_two' panicked at 'assertion failed: `(left ==
 right)` (left: `4`, right: `5`)', src/lib.rs:11
note: Run with `RUST_BACKTRACE=1` for a backtrace.

failures:
 tests::it_adds_two

test result: FAILED. 0 passed; 1 failed; 0 ignored; 0 measured; 0 filtered out
Our test caught the bug! The it_adds_two test failed, displaying with the message assertion failed: `(left == right)` and showing that (left: was `4`,  and right: was `5`). This message is useful and helps us get started debugging: it saymeans the left argument to assert_eq! was 4, but the right argument, where we had add_two(2), was 5.
Note that in some languages and test frameworks, the parameters to the functions that assert two values are equal are called expected and actual , and the order in which we specify the arguments matters. However, in Rust, they’re called left and right instead, and the order in which we specify the value we expect and the value that the code under test produces doesn’t matter. We could write the assertion in this test as assert_eq!(add_two(2), 4), which would result in a failure message that sadisplays assertion failed: `(left == right)` and that (left: was `5`, and right: was `4`).
The assert_ne! macro will pass if the two values we give to it are not equal and fail if they a’re equal. This macro is most useful for cases when we’re not sure exactly what a value will be, but we know what the value definitely won’t be, if our code is functioning as we intend. For example, if we’re testing have a function that is guaranteed to change its input in some way, but the way in which the input is changed depends on the day of the week that we run our tests, the best thing to assert might be that the output of the function is not equal to the input.
Under the surface, the assert_eq! and assert_ne! macros use the operators == and !=, respectively. When the assertions fail, these macros print their arguments using debug formatting, which means the values being compared must implement the PartialEq and Debug traits. All of the primitive types and most of the standard library types implement these traits. For structs and enums that you define, you’ll need to implement PartialEq in order to be able to assert that values of those types are equal or not equal. You’ll need to implement Debug in order to be able to print out the values in the case when that the assertion fails. Because both of these traits are derivable traits, as we mentioned in Listing 5-12 in Chapter 5, this is usually as straightforward as adding the #[derive(PartialEq, Debug)] annotation to your struct or enum definition. See Appendix C on page XX for more details about these and other derivable traits.	Comment by janelle: Au: Can we have a more specific xref, perhaps a Listing number? Would it make sense to point to Listing 5-12?	Comment by Carol Nichols: Yep!
prod: link xrefs
[bookmark: custom-failure-messages][bookmark: _Toc494370191]Adding Custom Failure Messages
We can also add a custom message to be printed with the failure message as optional arguments to the assert!, assert_eq!, and assert_ne! macros. Any arguments specified after the one required argument to assert! or the two required arguments to assert_eq! and assert_ne! are passed along to the format! macro that we talked about (discussed in Chapter 8 in the “Concatenation with the + Operator or the format! Macro” section on page XX), so you can pass a format string that contains {} placeholders and values to go in theose placeholders. Custom messages are useful in order to document what an assertion means,; so that when the a test fails, we’ll have a better idea of what the problem is with the code.
prod: Check/link xref
For example, let’s say we have a function that greets people by name, and we want to test that the name we pass into the function appears in the output:
Filename: src/lib.rs
pub fn greeting(name: &str) -> String {
 format!("Hello {}!", name)
}

#[cfg(test)]
mod tests {
 use super::*;

 #[test]
 fn greeting_contains_name() {
 let result = greeting("Carol");
 assert!(result.contains("Carol"));
 }
}
The requirements for this program haven’t been agreed upon yet, and we’re pretty sure the Hello text at the beginning of the greeting will change. We decided we don’t want to have to update the test for the name when that happens, so instead of checking for exact equality to the value returned from the greeting function, we’rell just going to assert that the output contains the text of the input parameter.
Let’s introduce a bug into this code by changing greeting to not include name to see what this test failure looks like, by changing greeting to not include name:
pub fn greeting(name: &str) -> String {
 String::from("Hello!")
}
Running this test produces the following:
running 1 test
test tests::greeting_contains_name ... FAILED

failures:

---- tests::greeting_contains_name stdout ----
 thread 'tests::greeting_contains_name' panicked at 'assertion failed:
 result.contains("Carol")', src/lib.rs:12:8
note: Run with `RUST_BACKTRACE=1` for a backtrace.

failures:
 tests::greeting_contains_name
This result just tells us indicates that the assertion failed and which line the assertion is on. A more useful failure message in this case would print the value we did goet from the greeting function. Let’s change the test function, giving it to have a custom failure message made from a format string with a placeholder filled in with the actual value we got from the greeting function:
#[test]
fn greeting_contains_name() {
 let result = greeting("Carol");
 assert!(
 result.contains("Carol"),
 "Greeting did not contain name, value was `{}`", result
);
}
Now ifwhen we run the test again, we’ll get a much more informative error message:
---- tests::greeting_contains_name stdout ----
 thread 'tests::greeting_contains_name' panicked at 'Greeting did not contain
 name, value was `Hello!`', src/lib.rs:12:8
note: Run with `RUST_BACKTRACE=1` for a backtrace.
We can see the value we actually got in the test output, which would help us debug what happened instead of what we were expecting to happen.
[bookmark: checking-for-panics-with-`should_panic`][bookmark: _Toc494370192]Checking for Panics with should_panic
In addition to checking that our code returns the correct values we expect, it’s also important to check that our code handles error conditions as we expect. For example, consider the Guess type that we created in Chapter 9, Chapter 9 in Listing 9-89 on page XX. Other code that uses Guess is dependsing on the guarantee that Guess instances will only contain values between 1 and 100. We can write a test that ensures that attempting to create a Guess instance with a value outside that range panics.	Comment by janelle: Au: please confirm listing number. I think the numbering shifted in Chapter 9.	Comment by Carol Nichols: Updated, it is indeed 9-9 now, but chapter 9 isn’t frozen yet, will check again next time we look at this chapter
prod: fill/link xref
We can do this by adding another attribute, should_panic, to our test function. This attribute makes a test pass if the code inside the function panics,; and the test will fail if the code inside the function doesn’t panic.
Listing 11-8 shows how we’d write a test that checks that the error conditions of Guess::new happen when we expect:
Filename: src/lib.rs
pub struct Guess {
 value: u32,
}

impl Guess {
 pub fn new(value: u32) -> Guess {
 if value < 1 || value > 100 {
 panic!("Guess value must be between 1 and 100, got {}.", value);
 }

 Guess {
 value
 }
 }
}

#[cfg(test)]
mod tests {
 use super::*;

 #[test]
 #[should_panic]
 fn greater_than_100() {
 Guess::new(200);
 }
}
Listing 11-8: Testing that a condition will cause a panic!
We place Tthe #[should_panic] attribute goes after the #[test] attribute and before the test function it applies to. Let’s seelook at the resultwhat it looks like when this test passes:
running 1 test
test tests::greater_than_100 ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out
Looks good! Now let’s introduce a bug in our code, by removing the condition that the new function will panic if the value is greater than 100:
// ...snip...

impl Guess {
 pub fn new(value: u32) -> Guess {
 if value < 1 {
 panic!("Guess value must be between 1 and 100, got {}.", value);
 }

 Guess {
 value
 }
 }
}
IfWhen we run the test fromin Listing 11-8, it will fail:
running 1 test
test tests::greater_than_100 ... FAILED

failures:

failures:
 tests::greater_than_100

test result: FAILED. 0 passed; 1 failed; 0 ignored; 0 measured; 0 filtered out
We don’t get a very helpful message in this case, but oncewhen we look at the test function, we can see that it’s annotated with #[should_panic]. The failure we got means that the code in the test function function, Guess::new(200), did not cause a panic.
Tests that use should_panic tests can be imprecise, however, because they only tell usindicate that the code has caused some panic. A should_panic test would pass even if the test panics for a different reason than the one we were expecting to happen. To make should_panic tests more precise, we can add an optional expected parameter to the should_panic attribute. The test harness will make sure that the failure message contains the provided text. For example, consider the modified code for Guess in Listing 11-9 where the new function panics with different messages depending on whether the value was too small or too large:
Filename: src/lib.rs
// ...snip...
struct Guess {
 value: u32,
}

impl Guess {
 pub fn new(value: u32) -> Guess {
 if value < 1 {
 panic!("Guess value must be greater than or equal to 1, got {}.",
 value);
 } else if value > 100 {
 panic!("Guess value must be less than or equal to 100, got {}.",
 value);
 }

 Guess {
 value
 }
 }
}

#[cfg(test)]
mod tests {
 use super::*;

 #[test]
 #[should_panic(expected = "Guess value must be less than or equal to 100")]
 fn greater_than_100() {
 Guess::new(200);
 }
}
Listing 11-9: Testing that a condition will cause a panic! with a particular panic message
This test will pass, because the value we put in the should_panic attribute’sthe expected parameter of the should_panic attribute is a substring of the message that the Guess::new function panics with. We could have specified the wholeentire panic message that we expect, which in this case would be Guess value must be less than or equal to 100, got 200. What you choose to specify in the expected parameter for should_panic It depends on how much of the panic message is unique or dynamic and how precise you want your test to be. In this case, a substring of the panic message is enough to ensure that the code in the test function that gets run isexecutes the else if value > 100 case.	Comment by AnneMarieW: Does “it” refer to the message we receive?
To see what happens when a should_panic test with an expected message fails, let’s again introduce a bug into our code by swapping the bodies of the if value < 1 and the else if value > 100 blocks:
if value < 1 {
 panic!("Guess value must be less than or equal to 100, got {}.", value);
} else if value > 100 {
 panic!("Guess value must be greater than or equal to 1, got {}.", value);
}
This time when we run the should_panic test, it will fail:
running 1 test
test tests::greater_than_100 ... FAILED

failures:

---- tests::greater_than_100 stdout ----
 thread 'tests::greater_than_100' panicked at 'Guess value must be greater
 than or equal to 1, got 200.', src/lib.rs:11:120
note: Run with `RUST_BACKTRACE=1` for a backtrace.
note: Panic did not include expected string 'Guess value must be less than or
equal to 100'

failures:
 tests::greater_than_100

test result: FAILED. 0 passed; 1 failed; 0 ignored; 0 measured; 0 filtered out
The failure message indicates that this test did indeed panic as we expected, but the panic message did not include the expected string 'Guess value must be less than or equal to 100'. We can see tThe panic message that we did get, which in this case was Guess value must be greater than or equal to 1, got 200. Now Wwe could thenan start figuring out where our bug wais!
Now that we’ve gone over you know several ways to write tests, let’s look at what is happening when we run our tests and talk about explore the different options we can use with cargo test.
[bookmark: controlling-how-tests-are-run][bookmark: _Toc494370193]Controlling How Tests Aare Run
Just as cargo run compiles your code and then runs the resulting binary, cargo test compiles your code in test mode and runs the resulting test binary. There are You can specify command line options you can use to change the default behavior of cargo test. For example, the default behavior of the binary produced by cargo test is to run all the tests in parallel and capture output generated during test runs, preventing it the output from being displayed to makeand making it easier to read the output related to the test results. You can change this default behavior by specifying command line options.	Comment by AnneMarieW: Au: What does “it” refer to here?	Comment by Carol Nichols: the output, I’ve clarified
SomeSome command line options go can be passed to cargo test, and some go need to be passed instead to the resulting test binary. To separate these two types of arguments, you list the arguments that go to cargo test, followed bythen the separator --, and then the arguments that go to the test binary. Running cargo test --help will tell you about displays the options that goyou can use with cargo test, and running cargo test -- --help will tell you about displays the options that go you can use after the separator --.
[bookmark: running-tests-in-parallel-or-consecutive][bookmark: _Toc494370194]Running Tests in Parallel or Consecutively
When you run multiple tests are run, by default they run in parallel using threads. This means the tests will finish running faster, so that weyou can get faster feedback quicker on whether or not your code is working. SincBecause the tests are running at the same time, you should take care that make sure your tests do n’ot depend on each other or on any shared state, including a shared environment, such as the current working directory or environment variables.
For example, say each of your tests runs some code that creates a file on disk named test-output.txt and writes some data to that file. Then each test reads the data in that file and asserts that the file contains a particular value, which is different in each test. Because the tests are all run at the same time, one test might overwrite the file between when another test writes and reads the file. The second test will then fail, not because the code is incorrect, but because the tests have interfered with each other while running in parallel. One solution would be is to make sure each test writes to a different file; another solution is to run the tests one at a time.
If you don’t want to run the tests in parallel, or if you want more fine-grained control over the number of threads used, you can send the --test-threads flag and the number of threads you want to use to the test binary. Take a look at the followingFor example:
$ cargo test -- --test-threads=1
We set the number of test threads to 1, telling the program not to use any parallelism. Running the tests using one threadThis will take longer than running them in parallel, but the tests won’t be potentially interfereing with each other if they share state.
[bookmark: showing-function-output][bookmark: _Toc494370195]Showing Function Output
By default, if a test passes, Rust’s test library captures anything printed to standard output. For example, if we call println! in a test and the test passes, we won’t see the println! output in the terminal: we’ll only see the line that saysindicates the test passed. If a test fails, we’ll see whatever was printed to standard output with the rest of the failure message.
For As an example, Listing 11-10 has a silly function that prints out the value of its parameter and then returns 10, as well as. We then have a test that that passes and a test thatthat fails:.
Filename: src/lib.rs
fn prints_and_returns_10(a: i32) -> i32 {
 println!("I got the value {}", a);
 10
}

#[cfg(test)]
mod tests {
 use super::*;

 #[test]
 fn this_test_will_pass() {
 let value = prints_and_returns_10(4);
 assert_eq!(10, value);
 }

 #[test]
 fn this_test_will_fail() {
 let value = prints_and_returns_10(8);
 assert_eq!(5, value);
 }
}
Listing 11-10: Tests for a function that calls println!
The output we’ll see Wwhen we run these tests with cargo test , we’ll see the following outputis:
running 2 tests
test tests::this_test_will_pass ... ok
test tests::this_test_will_fail ... FAILED

failures:

---- tests::this_test_will_fail stdout ----
 I got the value 8
thread 'tests::this_test_will_fail' panicked at 'assertion failed: `(left == right)`
 left: `5`,
 right: `10`', src/lib.rs:19:8
thread 'tests::this_test_will_fail' panicked at 'assertion failed: `(left ==
right)` (left: `5`, right: `10`)', src/lib.rs:19
note: Run with `RUST_BACKTRACE=1` for a backtrace.

failures:
 tests::this_test_will_fail

test result: FAILED. 1 passed; 1 failed; 0 ignored; 0 measured; 0 filtered out
Note that nowhere in this output do we see I got the value 4, which is what getis printed when the test that passes runs. That output has been captured. The output from the test that failed, I got the value 8 , appears in the section of the test summary output, which that also shows the cause of the test failure.
If we want to be able to see printed values for passing tests as well, we can disable the output capture behavior can be disabled by using the --nocapture flag:
$ cargo test -- --nocapture
When we Rrunning the tests fromin Listing 11-10 again with the --nocapture flag, we now showssee the following output:
running 2 tests
I got the value 4
I got the value 8
test tests::this_test_will_pass ... ok
thread 'tests::this_test_will_fail' panicked at 'assertion failed: `(left == right)`
 left: `5`,
 right: `10`', src/lib.rs:19:8
thread 'tests::this_test_will_fail' panicked at 'assertion failed: `(left ==
right)` (left: `5`, right: `10`)', src/lib.rs:19
note: Run with `RUST_BACKTRACE=1` for a backtrace.
test tests::this_test_will_fail ... FAILED

failures:

failures:
 tests::this_test_will_fail

test result: FAILED. 1 passed; 1 failed; 0 ignored; 0 measured; 0 filtered out
Note that the output for the tests and the test results isare interleaved; thise reason is becausethat the tests are running in parallel, as we talked about in the previous section. Try using both the --test-threads=1 option and the --nocapture functionflag, and see what the output looks like then!
[bookmark: running-a-subset-of-tests-by-name][bookmark: _Toc494370196]Running a Subset of Tests by Name
Sometimes, running a full test suite can take a long time. If you’re working on code in a particular area, you might want to run only the tests pertaining to that code. You can choose which tests to run by passing cargo test the name or names of the test(s) you want to run as an argument.
To demonstrate how to run a subset of tests, we’ll create three tests for our add_two function, as shown in Listing 11-11, and choose which ones to run:
Filename: src/lib.rs
pub fn add_two(a: i32) -> i32 {
 a + 2
}

#[cfg(test)]
mod tests {
 use super::*;

 #[test]
 fn add_two_and_two() {
 assert_eq!(4, add_two(2));
 }

 #[test]
 fn add_three_and_two() {
 assert_eq!(5, add_two(3));
 }

 #[test]
 fn one_hundred() {
 assert_eq!(102, add_two(100));
 }
}
Listing 11-11: Three tests with a variety ofthree different names	Comment by AnneMarieW: a variety of names or three different names?	Comment by Carol Nichols: three different names is fine
If we run the tests without passing any arguments, as we’ve already seen saw earlier, all the tests will run in parallel:
running 3 tests
test tests::add_two_and_two ... ok
test tests::add_three_and_two ... ok
test tests::one_hundred ... ok

test result: ok. 3 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out
[bookmark: running-single-tests][bookmark: _Toc494370197]Running Single Tests
We can pass the name of any test function to cargo test to run only that test:
$ cargo test one_hundred
 Finished dev [unoptimized + debuginfo] target(s) in 0.0 secs
 Running target/debug/deps/adder-06a75b4a1f2515e9

running 1 test
test tests::one_hundred ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 2 filtered out
Only the test with the name one_hundred ran; the other two tests didn't match that name. The test output lets us know we had more tests than what this command ran by displaying 2 filtered out at the end of the summary line.
We can’t specify the names of multiple tests in this way;, only the first value given to cargo test will be used. But there is a way to run multiple tests.
[bookmark: filtering-to-run-multiple-tests][bookmark: _Toc494370198]Filtering to Run Multiple Tests
However, wWe can specify part of a test name, and any test whose name matches that value will get be run. For example, sincbecause two of our tests’ names contain add, we can run those two by running cargo test add:
$ cargo test add
 Finished dev [unoptimized + debuginfo] target(s) in 0.0 secs
 Running target/debug/deps/adder-06a75b4a1f2515e9

running 2 tests
test tests::add_two_and_two ... ok
test tests::add_three_and_two ... ok

test result: ok. 2 passed; 0 failed; 0 ignored; 0 measured; 1 filtered out
This command ran all tests with add in the name and filtered out the test named one_hundred. Also note that the module in which tests appear becomes part of the test’s name, so we can run all the tests in a module by filtering on the module’s name.
[bookmark: ignore-some-tests-unless-specifically-re][bookmark: _Toc494370199]Ignoring Some Tests Unless Specifically Requested
Sometimes a few specific tests can be very time-consuming to execute, so you might want to exclude them during most runs of cargo test. Rather than listing as arguments all tests you do want to run, weyou can instead annotate the time- consuming tests withusing the ignore attribute to exclude them, as shown here:
Filename: src/lib.rs
#[test]
fn it_works() {
 assert_eq!(true2 + 2, 4);
}

#[test]
#[ignore]
fn expensive_test() {
 // code that takes an hour to run
}
After #[test] Wwe add the #[ignore] line to the test we want to exclude, after #[test]. Now ifwhen we run our tests, we’ll see it_works runs, but expensive_test does no’t:
$ cargo test
 Compiling adder v0.1.0 (file:///projects/adder)
 Finished dev [unoptimized + debuginfo] target(s) in 0.24 secs
 Running target/debug/deps/adder-ce99bcc2479f4607

running 2 tests
test expensive_test ... ignored
test it_works ... ok

test result: ok. 1 passed; 0 failed; 1 ignored; 0 measured; 0 filtered out

 Doc-tests adder

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured
The expensive_test function is listed as ignored. If we want to run only the ignored tests, we can ask for them to be run withuse cargo test -- --ignored:
$ cargo test -- --ignored
 Finished dev [unoptimized + debuginfo] target(s) in 0.0 secs
 Running target/debug/deps/adder-ce99bcc2479f4607

running 1 test
test expensive_test ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 1 filtered out
By controlling which tests run, you can make sure your cargo test results will be fast. When you’re at a point thatwhere it makes sense to check the results of the ignored tests and you have time to wait for the results, you can choose to run cargo test -- --ignored instead.
[bookmark: test-organization][bookmark: _Toc494370200]Test Organization
As mentioned at the start of the chapter, testing is a largcomplexe discipline, and different people use different terminology and organization. The Rust community tends to thinks about tests in terms of two main categories: unit tests and integration tests. Unit tests are smaller and more focused, testing one module in isolation at a time, and can test private interfaces. Integration tests are entirely external to your library, and use your code in the same way any other external code would, using only the public interface and potentially exercising multiple modules per test.	Comment by AnneMarieW: Au: Not sure where you mentioned this at the beginning of the chapter. Also, by “large” do you mean in size or scope, or both? You did mention that it was complex.	Comment by Carol Nichols: complex is fine
Writing both kinds of tests is important to ensure that the pieces of your library are doing what you expect them to separately and together.
[bookmark: unit-tests][bookmark: _Toc494370201]Unit Tests
The purpose of unit tests is to test each unit of code in isolation from the rest of the code, in order to be able to quickly pinpoint where code is and is no’t working as expected. We put unit tests in the src directory, in each file with the code that they’re testing. The convention is that we create a module named tests in each file to contain the test functions, and we annotate the module with cfg(test).
[bookmark: the-tests-module-and-`#[cfg(test)]`][bookmark: _Toc494370202]The Tests Module and #[cfg(test)]
The #[cfg(test)] annotation on the tests module tells Rust to compile and run the test code only when we run cargo test, andbut not when we run cargo build. This saves compile time when we only want to build the library, and saves space in the resulting compiled artifact sincbecause the tests are not included. WeYou’ll see that sincbecause integration tests go in a different directory, they don’t need the #[cfg(test)] annotation. However, Bbecause unit tests go in the same files as the code, though, we use #[cfg(test)] to specify that they should no’t be included in the compiled result.
Remembercall that when we generated the new adder project in the first section of this chapter, Cargo generated this code for us:
Filename: src/lib.rs
#[cfg(test)]
mod tests {
 #[test]
 fn it_works() {
 assert_eq!(2 + 2, 4);
 }
}
This code is the automatically generated test module. The attribute cfg stands for configuration, and tells Rust that the following item should only be included given a certain configuration option. In this case, the configuration option is test, which is provided by Rust for compiling and running tests. By using thise cfg attribute, Cargo only compiles our test code only if we actively run the tests with cargo test. This includes any helper functions that might be within this module, in addition to the functions annotated with #[test].
[bookmark: testing-private-functions][bookmark: _Toc494370203]Testing Private Functions
There’s debate within the testing community about whether or not private functions should be tested directly or not, and other languages make it difficult or impossible to test private functions. Regardless of which testing ideology you adhere to, Rust’s privacy rules do allow you to test private functions. Consider the code in Listing 11-12 with the private function internal_adder:
Filename: src/lib.rs
pub fn add_two(a: i32) -> i32 {
 internal_adder(a, 2)
}

fn internal_adder(a: i32, b: i32) -> i32 {
 a + b
}

#[cfg(test)]
mod tests {
 use super::*;

 #[test]
 fn internal() {
 assert_eq!(4, internal_adder(2, 2));
 }
}
Listing 11-12: Testing a private function
Note that the internal_adder function is not marked as pub, but because tests are just Rust code and the tests module is just another module, we can import and call internal_adder in a test just fine. If you don’t think private functions should be tested, there’s nothing in Rust that will compel you to do so.
[bookmark: integration-tests][bookmark: _Toc494370204]Integration Tests
In Rust, integration tests are entirely external to your library. They use your library in the same way any other code would, which means they can only call functions that are part of your library’s public API. Their purpose is to test that many parts of your library work correctly together correctly. Units of code that work correctly by themselves on their own could have problems when integrated, so test coverage of the integrated code is important as well. To create integration tests, you first need a tests directory.
[bookmark: the-*tests*-directory][bookmark: _Toc494370205]The tests Directory
To write integration tests for our code, wWe need to make create a tests directory at the top level of our project directory, next to src. Cargo knows to look for integration test files in this directory. We can then make as many test files as we’d like want to in this directory, and Cargo will compile each of the files as an individual crate.
Let’s give it a try create an integration test!. KeepWith the code from in Listing 11-12 still in the src/lib.rs file, m. Make a tests directory, then makecreate a new file named tests/integration_test.rs, and enter the code in Listing 11-13.:
Filename: tests/integration_test.rs
extern crate adder;

#[test]
fn it_adds_two() {
 assert_eq!(4, adder::add_two(2));
}
Listing 11-13: An integration test of a function in the adder crate
We’ve added extern crate adder at the top of the code, which we didn’t need in the unit tests. The reason is is becausthate each test in the tests directory is an entirely separate crate, so we need to import our library into each of them. Integration tests use the library like any other consumer of it would, by importing the crate and using only the public API.
We don’t need to annotate any code in tests/integration_test.rs with #[cfg(test)]. Cargo treats the tests directory specially and will only compiles files in this directory only ifwhen we run cargo test. Let’s try rRunning cargo test now:
$ cargo test
 Compiling adder v0.1.0 (file:///projects/adder)
 Finished dev [unoptimized + debuginfo] target(s) in 0.31 secs
 Running target/debug/deps/adder-abcabcabc

 running 1 test
test tests::internal ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out

  Running target/debug/deps/integration_test-ce99bcc2479f4607

running 1 test
 test it_adds_two ... ok

 test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out

 Doc-tests adder

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out
Now we have The three sections of output: include the unit tests, the integration test, and the doc tests. The first section for the unit tests  is the same as we ha’ve been seeing: one line for each unit test (we have one named internal that we added in Listing 11-12), and then a summary line for the unit tests.	Comment by janelle: AU: I think this preceding listing and explanation is another section could benefit from wingdings—it would make it easier to understand which section of code you’re referencing.	Comment by Carol Nichols: Added
The integration tests section starts with the line that says Running target/debug/deps/integration-test-ce99bcc2479f4607  (the hash at the end of your output will be different). Then there’sNext, there is a line for each test function in that integration test,  and a summary line for the results of the integration test  just before the Doc-tests adder section starts.
RecallNote that adding more unit test functions in any src file will adds more test result lines to the unit tests section. Adding more test functions to the integration test file we created will adds more lines to the that file’s integration test section. Each integration test file getshas its own section, so if we add more files in the tests directory, there will be more integration test sections.
We can still run a particular integration test function by specifying the test function’s name as an argument to cargo test. To run all of the tests in a particular integration test file, use the --test argument of cargo test followed by the name of the file:
$ cargo test --test integration_test
 Finished dev [unoptimized + debuginfo] target(s) in 0.0 secs
 Running target/debug/integration_test-952a27e0126bb565

running 1 test
test it_adds_two ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out
This command runs only the tests only the file that we specified from the tests directoryin the tests/integration_test.rs file.
[bookmark: submodules-in-integration-tests][bookmark: _Toc494370206]Submodules in Integration Tests
As you add more integration tests, you mayight want to make more than one file in the tests directory to help organize them; for example, you canto group the test functions by the functionality they’re testing. As we mentioned earlier, each file in the tests directory is compiled as its own separate crate.
Treating each integration test file as its own crate is useful to create separate scopes that are more like the way end users will be using your crate. However, this means files in the tests directory don’t share the same behavior as files in src do, which that we you learned about in Chapter 7 regarding how to separate code into modules and files.
prod: xref ok
The different behavior of files in the tests directory is usually most noticeable ifwhen you have a set of helper functions that would be useful in multiple integration test files, and you try to follow the steps from in the “Moving Modules to Other Files” section of Chapter 7 to extract them into a common module. For example, if we create tests/common.rs and place thisa function named setup in it, where we couldan addput some code to setup that we want to be able to call from multiple test functions in multiple test files:	Comment by janelle: Au: Is there a specific section/listing where these steps are explained in Chapter 7, or are they discussed throughout the entire chapter? If the steps are in one section/listing, please create an xref to that section/listing. If not, OK as is.	Comment by Carol Nichols: Added!
prod: check xref
Filename: tests/common.rs
pub fn setup() {
 // setup code specific to your library's tests would go here
}
IfWhen we run the tests again, we’ll see a new section in the test output for the common.rs file, even though this file doesn’t contain any test functions, nor didare we calling the setup function from anywhere:
running 1 test
test tests::internal ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out

 Running target/debug/deps/common-b8b07b6f1be2db70

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out

 Running target/debug/deps/integration_test-d993c68b431d39df

running 1 test
test it_adds_two ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out

 Doc-tests adder

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out
Having common show upappear in the test results with running 0 tests displayed for it is not what we wanted;. wWe just wanted to be able to share some code with the other integration test files.
In order tTo avoid not haveing common show upappear in the test output, we need to use the other method of extracting code into a file that we learned about in Chapter 7: instead of creating tests/common.rs, we’ll create tests/common/mod.rs. In the “Rules of Module Filesystems” section of Chapter 7, we used the naming convention module_name/mod.rs for files of modules that have submodules, and we don’t have submodules for common here, but naming the file this way tells Rust not to treat the common module as an integration test file. When we move the setup function code into tests/common/mod.rs and get rid of delete the tests/common.rs file, the section in the test output will no longer show up appear. Files in subdirectories of the tests directory do n’ot get compiled as separate crates or have sections in the test output.
prod: check xref
OnceAfter we ha’ve created tests/common/mod.rs, we can use it from any of the integration test files as a module. Here’s an example of calling the setup function from the it_adds_two test in tests/integration_test.rs:
Filename: tests/integration_test.rs
extern crate adder;

mod common;

#[test]
fn it_adds_two() {
 common::setup();
 assert_eq!(4, adder::add_two(2));
}
Note that the mod common; declaration is the same as the module declarations we did in Chapter 7we demonstrated in Listing 7-4 on page XX. Then in the test function, we can call the common::setup() function.	Comment by janelle: OK? Please confirm these listings are correct.	Comment by Carol Nichols: It’s more like a code example that doesn’t have a listing number. It’s the code after Listing 7-3 that appears after the text “First, replace the client module code with only the declaration of the client module, so that your src/lib.rs looks like the following:”, so it’ll be Listing 7-4, and I will add that listing number and a caption as I page review chapter 7.

prod: check xref
[bookmark: integration-tests-for-binary-crates][bookmark: _Toc494370207]Integration Tests for Binary Crates
If our project is a binary crate that only contains a src/main.rs file and does no’t have a src/lib.rs file, we aren’t able to can’t create integration tests in the tests directory and use extern crate to import functions defined in the src/main.rs file. Only library crates expose functions that other crates are able tcan o call and use; binary crates are meant to be run on their own.
This is one of the reasons Rust projects that provide a binary have a straightforward src/main.rs file that calls logic that lives in the src/lib.rs file. WithUsing that structure, integration tests can test the library crate by using extern crate to covexerciser the important functionality. If the important functionality works, the small amount of code in the src/main.rs file will work as well, and that small amount of code does no’t need to be tested.	Comment by AnneMarieW: Au: What do you mean by “cover” here?	Comment by Carol Nichols: “test coverage” is a common term but since we haven’t defined it ourselves I reworded, is this clearer?
[bookmark: summary][bookmark: _Toc494370208]Summary
Rust’s testing features provide a way to specify how code should function to ensure it continues to work as we expect even as we make changes. Unit tests exercise different parts of a library separately and can test private implementation details. Integration tests covercheck that the use of many parts of the library working together correctly, and they use the library’s public API to test the code in the same way external code will use it. Even though Rust’s type system and ownership rules help prevent some kinds of bugs, tests are still important to help reduce logic bugs having to do with how your code is expected to behave.
Let’s put together combine the knowledge you learned infrom this chapter and other in previous chapters and work on a project in the next chapter!
