Setting Up a New Project

 HYPERLINK \l "__RefHeading___Toc459901372" \n _blank

1
Processing a Guess

 HYPERLINK \l "__RefHeading___Toc459901373" \n _blank

2
Storing Values with Variabl

 HYPERLINK \l "__RefHeading___Toc459901374" \n _blank

 HYPERLINK \l "__RefHeading___Toc459901374" \n _blank

 HYPERLINK \l "__RefHeading___Toc459901374" \n _blank

 HYPERLINK \l "__RefHeading___Toc459901374" \n _blank

 HYPERLINK \l "__RefHeading___Toc459901374" \n _blank

 HYPERLINK \l "__RefHeading___Toc459901374" \n _blank

 HYPERLINK \l "__RefHeading___Toc459901374" \n _blank

 HYPERLINK \l "__RefHeading___Toc459901374" \n _blank

 HYPERLINK \l "__RefHeading___Toc459901374" \n _blank
es

 HYPERLINK \l "__RefHeading___Toc459901374" \n _blank

4
Handling Potential Failure with the

 HYPERLINK \l "__RefHeading___Toc459901375" \n _blank
Result

 HYPERLINK \l "__RefHeading___Toc459901375" \n _blank
 Type

 HYPERLINK \l "__RefHeading___Toc459901375" \n _blank

6
Printing Values with

 HYPERLINK \l "__RefHeading___Toc459901376" \n _blank
println!

 HYPERLINK \l "__RefHeading___Toc459901376" \n _blank

 HYPERLINK \l "__RefHeading___Toc459901376" \n _blank

 HYPERLINK \l "__RefHeading___Toc459901376" \n _blank
 Placeholders

 HYPERLINK \l "__RefHeading___Toc459901376" \n _blank

7
Testing the First Part

 HYPERLINK \l "__RefHeading___Toc459901377" \n _blank

7
Generating a Secret Number

 HYPERLINK \l "__RefHeading___Toc459901378" \n _blank

7
Using a Crate to Get More Functionality

 HYPERLINK \l "__RefHeading___Toc459901379" \n _blank

8
The Cargo.lock File

 HYPERLINK \l "__RefHeading___Toc459901380" \n _blank

 HYPERLINK \l "__RefHeading___Toc459901380" \n _blank

 HYPERLINK \l "__RefHeading___Toc459901380" \n _blank

 HYPERLINK \l "__RefHeading___Toc459901380" \n _blank

 HYPERLINK \l "__RefHeading___Toc459901380" \n _blank

 HYPERLINK \l "__RefHeading___Toc459901380" \n _blank
 Ensures Reproducible Builds

 HYPERLINK \l "__RefHeading___Toc459901380" \n _blank

9
Updating a Crate to Get a New Version

 HYPERLINK \l "__RefHeading___Toc459901381" \n _blank

10
Generating a Random Number

 HYPERLINK \l "__RefHeading___Toc459901382" \n _blank

11
Comparing

 HYPERLINK \l "__RefHeading___Toc459901383" \n _blank

 HYPERLINK \l "__RefHeading___Toc459901383" \n _blank

 HYPERLINK \l "__RefHeading___Toc459901383" \n _blank

 HYPERLINK \l "__RefHeading___Toc459901383" \n _blank
 the Guess

 HYPERLINK \l "__RefHeading___Toc459901383" \n _blank

 HYPERLINK \l "__RefHeading___Toc459901383" \n _blank
 to the Secret Number
13
Allowing Multiple Guesses with Looping

 HYPERLINK \l "__RefHeading___Toc459901384" \n _blank

18
Quitting

 HYPERLINK \l "__RefHeading___Toc459901385" \n _blank

 HYPERLINK \l "__RefHeading___Toc459901385" \n _blank

 HYPERLINK \l "__RefHeading___Toc459901385" \n _blank

 HYPERLINK \l "__RefHeading___Toc459901385" \n _blank
After a Correct Guess

 HYPERLINK \l "__RefHeading___Toc459901385" \n _blank

 HYPERLINK \l "__RefHeading___Toc459901385" \n _blank

 HYPERLINK \l "__RefHeading___Toc459901385" \n _blank

20
Handling Invalid Input

 HYPERLINK \l "__RefHeading___Toc459901386" \n _blank

21

 HYPERLINK \l "__RefHeading___Toc459901387" \n _blank

 HYPERLINK \l "__RefHeading___Toc459901387" \n _blank

 HYPERLINK \l "__RefHeading___Toc459901387" \n _blank

 HYPERLINK \l "__RefHeading___Toc459901387" \n _blank

 HYPERLINK \l "__RefHeading___Toc459901387" \n _blank

 HYPERLINK \l "__RefHeading___Toc459901387" \n _blank

 HYPERLINK \l "__RefHeading___Toc459901387" \n _blank

 HYPERLINK \l "__RefHeading___Toc459901387" \n _blank
Summary
24

2
Guessing Game
Let’s jump into Rust by working through a hands-on project together! This chapter introduces you to a few common Rust concepts by showing you how to use them in a real program. You’ll learn about let, match, methods, associated functions, using external crates, and more! The following chapters will explore these ideas in more detail. In this chapter, you’ll practice the fundamentals.
We’ll implement a classic beginner programming problem: a guessing game. Here’s how it works: the program will generate a random integer between 1 and 100. It will then prompt the player to enter a guess. After entering a guess, it will indicate whether the guess is too low or too high. If the guess is correct, the game will print congratulations and exit.
Setting Up a New Project
To set up a new project, go to the projects directory

 that you created in Chapter 1, and make a new project using Cargo, like so:
$ cargo new guessing_game --bin

$ cd guessing_game

The first command, cargo new, takes the name of the project (guessing_game) as the first argument. The --bin flag tells Cargo to make a binary project, similar to the one in Chapter 1. The second command changes to the new project’s directory.
Look at the generated Cargo.toml file:
Filename: Cargo.toml
[package]

name = "guessing_game"

version = "0.1.0"

authors = ["Your Name <you@example.com>"]

[dependencies]

If the author information that Cargo obtained from your environment is not correct, fix that in the file and save it again.
As you saw in Chapter 1, cargo new generates a “Hello, world!” program for you. Check out the src/main.rs file:
Filename: src/main.rs
fn main() {

 println!("Hello, world!");

}

Now let’s compile this “Hello, world!” program
 and run it in the same step using the cargo run command:
$ cargo run

 Compiling guessing_game v0.1.0 (file:///projects/guessing_game)

 Running `target/debug/guessing_game`

Hello, world!

The run command comes in handy when you need to rapidly iterate on a project, and this game is
 such a project: we want to quickly test each iteration before moving on to the next one.
Reopen the src/main.rs file. You’ll be writing all the code in this file.
Processing a Guess
The first part of the program will ask for user input, process that input, and check that the input is in the expected form. To start, we’ll allow the player to input a guess. Enter the code in Listing 2-1

 into src/main.rs.
Filename: src/main.rs
use std::io;

fn main() {

 println!("Guess the number!");

 println!("Please input your guess.");

 let mut guess = String::new();

 io::stdin().read_line(&mut guess)

 .expect("Failed to read line");

 println!("You guessed: {}", guess);

}

Listing 2
-1: Code to get a guess from the user and print it out
This code contains a lot of information, so let’s go over it bit by bit. To obtain
 user input and then print the result as output, we need to import the io (input/output) library from the standard library (which is known as std):
use std::io;

By default, Rust imports only a few types into every program in the prelude. If a type you want to use isn’t in the prelude, you have to import that type into your program explicitly with a use statement. Using the std::io library provides you with a number of useful io-related features, including the functionality to accept user input.
As you saw in Chapter 1, the main
 function is the entry point into the program:
fn main() {

The fn syntax declares a new function, the () indicate there are no arguments, and { starts the body of the function.
As you also learned in Chapter 1, println! is a macro that prints a string to the screen:
println!("Guess the number!");

println!("Please input your guess.");

This code is just printing a prompt stating what the game is and requesting input from the user.
Storing Values with Variables
Next, we’ll create a place to store the user input, like this:
let mut guess = String::new();

Now the program is getting interesting! There’s a lot going on in this little line. Notice that this is a let statement, which is used to create variables. Here’s another example:
let foo = bar;

This line will create a new variable named foo and bind it to the value bar. In Rust, variables are immutable by default. The following example shows how to use mut before the variable name to make a variable mutable:

let foo = 5; // immutable
let mut bar = 5; // mutable

Note: The // syntax starts a comment that continues until the end of the line. Rust ignores everything in comments.
Now you know that let mut guess will introduce a mutable variable named guess. On the other side of the equal sign (=) is the value that guess is bound to, which is the result of calling String::new, a function that returns a new instance of a String. String is a string type provided by the standard library that is a growable, UTF-8 encoded bit of text.
The :: syntax in the ::new line indicates that new is an associated function of the String type. An associated function is implemented on a type, in this case String, rather than on a particular instance of a String. Some languages call this a static method.
This new function creates a new, empty String. You’ll find a new function on many types, because it’s a common name for a function that makes a new value of some kind.
To summarize, the let mut guess = String::new(); line has created a mutable variable that is currently bound to a new, empty instance of a String. Whew!
Recall that we included the input/output functionality from the standard library with use std::io; on the first line of the program. Now we’ll call an associated function, stdin, on io:
io::stdin().read_line(&mut guess)

 .expect("Failed to read line");

If we didn’t have the use std::io line at the beginning of the program, we could have written this function call as std::io::stdin. The stdin function returns an instance of std::io::Stdin, which is a type that represents a handle to the standard input for your terminal.
The next part of the code, .read_line(&mut guess), calls the read_line method on the standard input handle to get input from the user. We’re also passing one argument to read_line: &mut guess.
The job of read_line is to take whatever the user types into standard input and place that into a string, so it takes that string as an argument. The string argument needs to be mutable so the method can change the string’s content by adding the user input.
The & indicates that this argument is a reference, which gives you a way to let multiple parts of your code access one piece of data without needing to copy that data into memory multiple times. References are a complex feature, and one of Rust’s major advantages is how safe and easy it is to use references. You don’t need to know a lot of those details to finish this program: Chapter 4 will explain references more thoroughly. For now, all you need to know is that like variables, references are immutable by default. Hence, we need to write &mut guess rather than &guess to make it mutable.
We’re not quite done with this line of code. Although it’s a single line of text, it’s only the first part of the single logical line of code. The second part is this method:
.expect("Failed to read line");

When you call a method with the .foo() syntax, it’s often wise to introduce a newline and other whitespace to help break up long lines. We could have written this code as:
io::stdin().read_line(&mut guess).expect("Failed to read line");

However, one long line is difficult to read, so it’s best to divide it, two lines for two method calls. Now let’s discuss what this line does.
Handling Potential Failure with the Result Type
As mentioned earlier, read_line puts what the user types into the string we’re passing it, but it also returns a value—in this case, an io::Result. Rust has a number of types named Result in its standard library: a generic Result as well as specific versions for submodules, such as io::Result.
The Result types are enumerations, often referred to as enums. An enumeration is a type that can have a fixed set of values, and those values are called the enum’s variants. Chapter 6 will cover enums in more detail.
For Result, the variants are Ok or Err. Ok indicates the operation was successful, and inside the Ok variant is the successfully generated value. Err means the operation failed, and Err contains information about how or why the operation failed.
The purpose of these Result types is to encode error handling information. Values of the Result type, like any type, have methods defined on them. An instance of
 io::Result has an expect method that you can call. If this instance of io::Result is an Err value, expect will cause the program to crash and display the message that you passed as an argument to expect. If the read_line method returns an Err, it would likely be the result of an error coming from the underlying operating system. If this instance of io::Result is an Ok value, expect will take the return value that Ok is holding and return just that value to you so you could use it. In this case, that value is the number of characters the user entered into standard input.

If we don’t call expect, the program will compile, but we’ll get a warning:
$ cargo build
 Compiling guessing_game v0.1.0 (file:///projects/guessing_game)

src/main.rs:10:5: 10:39 warning: unused result which must be used,

#[warn(unused_must_use)] on by default

src/main.rs:10 io::stdin().read_line(&mut guess);

 ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Rust warns that we haven’t used the Result value returned from read_line, indicating that the program hasn’t handled a possible error. The right way to suppress the warning is to actually write error handling, but since we just want to crash this program when a problem occurs, we can use expect. You’ll learn about recovering from errors in Chapter 9.
Printing Values with println! Placeholders
Aside from the closing curly brace, there’s only one more line to discuss in the code added so far, which is the following:
println!("You guessed: {}", guess);

This line prints out the string we saved the user’s input in. The set of {} is a placeholder
 that holds a value in place. You can print more than one value using {}: the first set of {} holds the first value listed after the format string, the second set holds the second value, and so on. Printing out multiple values in one call to println! would look like this:
let x = 5;

let y = 10;

println!("x = {} and y = {}", x, y);

This code would print out x = 5 and y = 10
.
Testing the First Part
Let’s test the first part of the guessing game. You can run it using cargo run:
$ cargo run
 Compiling guessing_game v0.1.0 (file:///projects/guessing_game)

 Running `target/debug/guessing_game`

Guess the number!

Please input your guess.

6

You guessed: 6

At this point, the first part of the game is done: we’re getting input from the keyboard and then printing it.
Generating a Secret Number
Next, we need to generate a secret number that the user will try to guess. The secret number should be different every time so the game is fun to play more than once. Let’s use a random number between 1 and 100 so the game isn’t too difficult. Rust doesn’t yet include random number functionality in its standard library. However, the Rust team does provide a rand crate

at https://crates.io/crates/rand.
Using a Crate to Get More Functionality
Remember that a crate is a package of Rust code. The project we’ve been building is a binary crate, which is an executable. The rand crate is a library crate, which contains code intended to be used in other programs.
Cargo’s use of external crates is where it really shines. Before we can write code that uses rand, we need to modify the Cargo.toml file to include the rand crate as a dependency. Open that file now and add the following line to the bottom beneath the [dependencies] section header that Cargo created for you:
Filename: Cargo.toml
[dependencies]

rand = "0.3.14"

In the Cargo.toml file, everything that follows a header is part of a section that continues until another section starts. The [dependencies] section is where you tell Cargo

 which external crates your project depends on and which versions of those crates you require. In this case, we’ll specify the rand crate with the semantic version specifier 0.3.14. Cargo understands Semantic Versioning (sometimes called SemVer), which is a standard for writing version numbers. The number 0.3.14 is actually shorthand for ^0.3.14, which means “any version that has a public API compatible with version 0.3.14.”
Now, without changing any of the code, let’s build the project, as shown in Listing 2-2:
$ cargo build
 Updating registry `https://github.com/rust-lang/crates.io-index`

 Downloading rand v0.3.14

 Downloading libc v0.2.14

 Compiling libc v0.2.14

 Compiling rand v0.3.14

 Compiling guessing_game v0.1.0 (file:///projects/guessing_game)

Listing 2-2
: The output from running cargo build after adding the rand crate as a dependency
You may see different version numbers (but they will all be compatible with the code, thanks to SemVer!), and the lines may be in a different order.
Now that we have an external dependency, Cargo fetches the latest versions of everything from the registry, which is a copy of data from https://crates.io. Crates.io is where people in the Rust ecosystem post their open source Rust projects for others to use.
After updating the registry, Cargo checks the [dependencies] section and downloads any you don’t have yet. In this case, although we only listed rand as a dependency, Cargo also grabbed a copy of libc, because rand depends on libc to work. After downloading them, Rust compiles them and then compiles the project with the dependencies available.
If you immediately run cargo build again without making any changes, you won’t
 get any output. Cargo knows it has already downloaded and compiled the dependencies, and you haven't changed anything about them in your Cargo.toml file. Cargo also knows that you haven't changed anything about your code, so it doesn't recompile that either. With nothing to do, it simply exits. If you open up the src/main.rs file, make a trivial change, then save it and build again, you’ll only see one line of output:

$ cargo build
 Compiling guessing_game v0.1.0 (file:///projects/guessing_game)

This line shows Cargo only updates the build with your tiny change to the src/main.rs file. Your dependencies haven't changed, so Cargo knows it can reuse what it has already downloaded and compiled for those. It just rebuilds your part of the code.
The Cargo.lock File Ensures Reproducible Builds
Cargo has a mechanism that ensures you can rebuild the same artifact every time you or anyone else builds your code: Cargo will use only the versions of the dependencies you specified until you indicate otherwise. For example, what happens if next week version v0.3.15 of the rand crate comes out and contains an important bug fix but also contains a regression that will break your code?
The answer to this problem is the Cargo.lock file, which was created the first time you ran cargo build and is now in your guessing_game directory. When you build a project for the first time, Cargo figures out all the versions of the dependencies that fit the criteria and then writes them to the Cargo.lock file. When you build your project in the future, Cargo will see that the Cargo.lock file exists and use the versions specified there rather than doing all the work of figuring out versions again. This lets you have a reproducible build automatically. In other words, your project will remain at 0.3.14 until you explicitly upgrade, thanks to the Cargo.lock file.
Updating a Crate to Get a New Version
When you do want to update a crate, Cargo provides another command, update, which will
:
Ignore the Cargo.lock file and figure out all the latest versions that fit your specifications in Cargo.toml.
If that works, Cargo will write those versions to the Cargo.lock file.

But by default, Cargo will only look for versions larger than 0.3.0 and smaller
 than 0.4.0. If the rand crate has released two new versions, 0.3.15 and 0.4.0, you would see the following if you ran cargo update:
$ cargo update
 Updating registry `https://github.com/rust-lang/crates.io-index`

 Updating rand v0.3.14 -> v0.3.15

At this point, you would also notice a change in your Cargo.lock file noting that the version of the rand crate you are now using is 0.3.15.
If you wanted to use rand version 0.4.0 or any version in the 0.4.x series, you’d have to update the Cargo.toml file to look like this instead:
[dependencies]

rand = "0.4.0"

The next time you run cargo build,
 Cargo will update the registry of crates available and reevaluate your rand requirements according to the new version you specified.
There’s a lot more to say about Cargo and its ecosystem that Chapter XX

 will discuss, but for now, that’s all you need to know. Cargo makes it very easy to reuse libraries, so Rustaceans

 are able to write smaller projects that are assembled from a number of packages.
Generating a Random Number
Let’s start using rand. The next step is to update src/main.rs, as shown in Listing 2-3:
Filename: src/main.rs
 extern crate rand;

use std::io;
 use rand::Rng;

fn main() {
 println!("Guess the number!");
  let secret_number = rand::thread_rng().gen_range(1, 101);

 println!("The secret number is: {}", secret_number);

 println!("Please input your guess.");
 let mut guess = String::new();
 io::stdin().read_line(&mut guess)
 .expect("Failed to read line");
 println!("You guessed: {}", guess);
}
Listing 2
-3: Code changes needed in order to generate a random number
We’re adding a line to the top  that lets Rust know we’ll be using that external dependency. This also does the equivalent of calling use rand, so now we can call anything in the rand crate by prefixing it with rand::.
Next, we’re adding another use line: use rand::Rng . Rng is a trait that defines methods that random number generators implement, and this trait must be in scope for us to use those methods. Chapter 10
will cover traits in detail.
Also, we’re adding two more lines in the middle .
The rand::thread_rng function will give us the particular random number generator that we’re going to use: one that is local to the current thread of execution and seeded by the operating system. Next, we call the gen_range method on the random number generator. This method is defined by the Rng trait that we brought into scope with the use rand::Rng statement. The gen_range method takes two numbers as arguments and generates a random number between them. It’s inclusive on the lower bound but exclusive on the upper bound, so we need to specify 1 and 101 to request a number between 1 and 100.
Knowing which traits to import and which functions and methods to use from a crate isn’t something that you’ll just know. Instructions for using a crate are in each crate’s documentation. Another neat feature of Cargo is that you can run the cargo doc --open command that will build documentation provided by all of your dependencies locally and open it in your browser. If you’re interested in other functionality in the rand crate, for example, run cargo doc --open and click rand in the sidebar on the left.
The second line that we added to the code prints the secret number. This is useful while we’re developing the program to be able to test it, but we’ll delete it from the final version. It’s not much of a game if the program prints the answer as soon as it starts!
Try running the program a few times:
$ cargo run
 Compiling guessing_game v0.1.0 (file:///projects/guessing_game)

 Running `target/debug/guessing_game`

Guess the number!

The secret number is: 7

Please input your guess.

4

You guessed: 4

$ cargo run

 Running `target/debug/guessing_game`

Guess the number!

The secret number is: 83

Please input your guess.

5

You guessed: 5

You should get different random numbers, and they should all be numbers between 1 and 100. Great job!
Comparing the Guess to the Secret Number
Now that we have user input and a random number, we can compare them. That step is shown in Listing 2-4:
Filename: src/main.rs
extern crate rand;
use std::io;
 use std::cmp::Ordering;

use rand::Rng;
fn main() {
---snip---
 println!("You guessed: {}", guess);
 match guess.cmp(&secret_number) {

 Ordering::Less => println!("Too small!"),

 Ordering::Greater => println!("Too big!"),

 Ordering::Equal => println!("You win!"),

 }

}
Listing 2-
4: Handling the possible return values of comparing two numbers
The first new bit here is another use , bringing a type called std::cmp::Ordering into scope from the standard library. Ordering is another enum, like Result, but the variants for Ordering are Less, Greater, and Equal. These are the three outcomes that are possible when you compare two values.
Then we add five new lines at the bottom that use the Ordering type. The cmp method  compares two values and can be called on anything that can be compared. It takes a reference to whatever you want to compare with: here it’s comparing the guess to the secret_number. cmp returns a variant of the Ordering enum we imported with the use statement
. We use a match expression
  to decide what to do next based on which variant of Ordering was returned from the call to cmp with the values in guess and secret_number.
A match expression is made up of arms. An arm consists of a pattern and the code that should be run if the value given to the beginning of the match expression fits that arm’s pattern. Rust takes the value given to match and looks through each arm’s pattern in turn. The match construct and patterns are powerful
 features in Rust that let you express a variety of situations your code might encounter and helps ensure that you handle them all. These features will be covered in detail in Chapter 6 and Chapter XX

, respectively.
Let’s walk through an example of what would happen with the match expression used here. Say that the user has guessed 50, and the randomly generated secret number this time is 38. When the code compares 50 to 38, the cmp method will return Ordering::Greater, because 50 is greater than 38. Ordering::Greater is the value that the match expression gets. It looks at the first arm’s pattern, Ordering::Less, but the value Ordering::Greater does not match Ordering::Less. So it ignores the code in that arm and moves to the next arm. The next arm’s pattern, Ordering::Greater, does match Ordering::Greater! The associated code in that arm will execute and print Too big! to the screen. The match expression ends because it has no need to look at the last arm in this particular scenario.
However, the code in Listing 2-4 won’t compile yet. Let’s try it:
$ cargo build
 Compiling guessing_game v0.1.0 (file:///projects/guessing_game)

error[E0308]: mismatched types

 --> src/main.rs:23:21
 |
23 | match guess.cmp(&secret_number) {
 | ^^^^^^^^^^^^^^ expected struct `std::string::String`, found integral variable
 |
 = note: expected type `&std::string::String`
 = note: found type `&{integer}`
error: aborting due to previous error
Could not compile `guessing_game`.

The core of the error states that there are mismatched types. Rust has a strong, static type system. However, it also has type inference. When we wrote let guess = String::new(), Rust was able to infer that guess should be a String and didn’t make us write the type. The secret_number, on the other hand, is a number type. A few number types can have a value between 1 and 100: i32, a 32-bit number; u32, an unsigned 32-bit number; i64, a 64-bit number; as well as others. Rust defaults to an i32, which is the type of secret_number unless we add type information elsewhere that would cause Rust to infer a different numerical type. The reason for the error is that Rust will not compare a string and a number type.
Ultimately, we want to convert the String the program reads as input into a real number type so
we can compare it to the guess numerically. We can do that by adding the following two lines to the main function body:
Filename: src/main.rs
---snip---
 let mut guess = String::new();
 io::stdin().read_line(&mut guess)
 .expect("Failed to read line");
 let guess: u32 = guess.trim().parse()
 .expect("Please type a number!");
 println!("You guessed: {}", guess);
 match guess.cmp(&secret_number) {
 Ordering::Less => println!("Too small!"),
 Ordering::Greater => println!("Too big!"),
 Ordering::Equal => println!("You win!"),
 }
}
We create a variable named guess. B
ut wait, doesn’t the program already have a variable named guess? It does, but Rust allows us to shadow the previous value of guess with a new one. This feature is often used in similar situations in which you want to convert a value from one type to another type. Shadowing lets us reuse the guess variable name rather than forcing us to create two unique variables, like guess_str and guess for example. (Chapter 3 covers shadowing in more detail.)
We bind guess to the expression guess.trim().parse(). The guess in the expression refers to the original guess that was a String with the input in it. The trim method on a String instance will eliminate any whitespace at the beginning and end. u32 can only contain numerical characters, but the user must press the Return key to satisfy read_line. When the user presses Return, a newline character is added to the string. For example, if the user types 5 and presses return, guess looks like this: 5\n. The \n represents “newline,” the return key. The trim method eliminates \n, resulting in just 5.
The parse method on strings parses a string into some kind of number. Because this method can parse a variety of number types, we need to tell Rust the exact number type we want by using let guess: u32. The colon (:) after guess tells Rust we’ll annotate the variable’s type. Rust has a few built-in number types; the u32 seen here is an unsigned, 32-bit integer. It’s a good default choice for a small positive number. You’ll learn about other number types in Chapter 3. Additionally, the u32 annotation in this example program and the comparison with secret_number means that Rust will infer that secret_number should be a u32 as well. So now the comparison will be between two values of the same type!
The call to parse could easily cause an error. If, for example, the string contained A👍%, there would be no way to convert that to a number. Because it might fail, the parse method returns a Result type, much like the read_line method does as discussed earlier in “Handling Potential Failure with the Result Type” on page XX.
 We’ll treat this Result the same way by using the expect method again. If parse returns an Err Result variant because it couldn’t create a number from the string, the expect call will crash the game and print the message we give it. If parse can successfully convert the string to a number, it will return the Ok variant of Result, and expect will return the number that we want from the Ok value.
Production: See the cross-reference above.
Let’s run the program now!
$ cargo run
 Compiling guessing_game v0.1.0 (file:///projects/guessing_game)

 Running `target/guessing_game`

Guess the number!

The secret number is: 58

Please input your guess.

 76

You guessed: 76

Too big!

Nice! Even though spaces were added before the guess, the program still figured out that the user guessed 76. Run the program a few times to verify the different behavior with different kinds of input: guess the number correctly, guess a number that is too high, and guess a number that is too low.
We have most of the game working now, but the user can make only one guess. Let’s change that by adding a loop!
Allowing Multiple Guesses with Looping
The loop keyword gives us an infinite loop. Add that now to give users more chances at guessing the number:
Filename: src/main.rs
---snip---
 println!("The secret number is: {}", secret_number);
 loop {

 println!("Please input your guess.");
 ---snip---
 match guess.cmp(&secret_number) {
 Ordering::Less => println!("Too small!"),
 Ordering::Greater => println!("Too big!"),
 Ordering::Equal => println!("You win!"),
 }
 }

}
As you can see, we’ve moved everything into a loop from the guess input prompt onward. Be sure to indent those lines another four spaces each, and run the program again. Notice that there is a new problem because the program is doing exactly what we told it to do: ask for another guess forever! It doesn’t seem like the user can quit!
The user could always halt the program by using the keyboard shortcut Ctrl-C. But there’s another way to escape this insatiable monster that we mentioned in the parse discussion in “Comparing the Guesses” on page XX: if the user enters a non-number answer, the program will crash. The user can take advantage of that in order to quit, as shown here:
Production: See the cross-reference above.
$ cargo run
 Compiling guessing_game v0.1.0 (file:///projects/guessing_game)

 Running `target/guessing_game`

Guess the number!

The secret number is: 59

Please input your guess.

45
You guessed: 45

Too small!

Please input your guess.

60
You guessed: 60

Too big!

Please input your guess.

59
You guessed: 59

You win!

Please input your guess.

quit
thread 'main' panicked at 'Please type a number!: ParseIntError { kind: InvalidDigit }', src/libcore/result.rs:785

note: Run with `RUST_BACKTRACE=1` for a backtrace.

error: Process didn't exit successfully: `target/debug/guess` (exit code: 101)

Typing quit actually quits the game, but so will any other non-number input. However, this is suboptimal to say the least. We want the game to automatically stop when the correct number is guessed.
Quitting After a Correct Guess
Let’s program the game to quit when the user wins by adding a break:
Filename: src/main.rs
---snip---
 match guess.cmp(&secret_number) {
 Ordering::Less => println!("Too small!"),
 Ordering::Greater => println!("Too big!"),
 Ordering::Equal => {

 println!("You win!");

 break;

 }

 }
 }
}
By adding the break line after You win!, the program will exit the loop when the user guesses the secret number correctly. Exiting the loop also means exiting the program, because the loop is the last part of main.
Handling Invalid Input
To further refine the game’s behavior, rather than crashing the program when the user inputs a non-number, let’s make the game ignore a non-number so the user can continue guessing. We can do that by altering the line where guess is converted from a String to a u32:
---snip---
io::stdin().read_line(&mut guess)
 .expect("Failed to read line");
let guess: u32 = match guess.trim().parse() {

 Ok(num) => num,

 Err(_) => continue,

};

println!("You guessed: {}", guess);
---snip---
Switching from an expect call to a match expression is how you generally move from crash on error to actually handling the error.

 Remember that parse returns a Result type, and Result is an enum that has the variants Ok or Err. We’re using a match expression here, like we did with the Ordering result of the cmp method.
If parse is able to successfully turn the string into a number, it will return an Ok value that contains the resulting number. That Ok value will match the first arm’s pattern, and the match expression will just return the num value that parse produced and put inside the Ok value. That number will end up right where we want it in the new guess variable we’re creating

.
If parse is not able to turn the string into a number, it will return an Err value that contains more information about the error. The Err value does not match the Ok(num) pattern in the first match arm, but it does match the Err(_) pattern in the second arm. The _ is a catchall value; in this example, we’re saying we want to match all Err values, no matter what information they have inside them. So the program will execute the second arm’s code, continue, which means to go to the next iteration of the loop and ask for another guess. So effectively, the program ignores all errors that parse might encounter!
Now everything in the program should work as expected. Let’s try it by running cargo run:
$ cargo run
 Compiling guessing_game v0.1.0 (file:///projects/guessing_game)

 Running `target/guessing_game`

Guess the number!

The secret number is: 61

Please input your guess.

10

You guessed: 10

Too small!

Please input your guess.

99

You guessed: 99

Too big!

Please input your guess.

foo

Please input your guess.

61

You guessed: 61

You win!

Awesome! With one tiny final tweak, we will finish the guessing game: recall that the program is still printing out the secret number. That worked well for testing, but it ruins the game. Let’s delete the println! that outputs the secret number. Listing 2-5 shows the final code:
Filename: src/main.rs
extern crate rand;

use std::io;

use std::cmp::Ordering;

use rand::Rng;

fn main() {

 println!("Guess the number!");

 let secret_number = rand::thread_rng().gen_range(1, 101);

 loop {

 println!("Please input your guess.");

 let mut guess = String::new();

 io::stdin().read_line(&mut guess)

 .expect("Failed to read line");

 let guess: u32 = match guess.trim().parse() {

 Ok(num) => num,

 Err(_) => continue,

 };

 println!("You guessed: {}", guess);

 match guess.cmp(&secret_number) {

 Ordering::Less => println!("Too small!"),

 Ordering::Greater => println!("Too big!"),

 Ordering::Equal => {

 println!("You win!");

 break;

 }

 }

 }

}

Listing 2-5
: Complete code of the guessing game
Summary

At this point, you’ve successfully built the guessing game! Congratulations!
This project was a hands-on way to introduce you to many new Rust concepts: let, match, methods, associated functions, using external crates, and more. In the next few chapters, you’ll learn about these concepts in more detail. Chapter 3 covers concepts that most programming languages have, such as variables, data types, and functions, and shows how to use them in Rust. Chapter 4 explores ownership, which is a Rust feature that is most different from other languages. Chapter 5 discusses structs and method syntax, and Chapter 6 endeavors to explain enums.
�Au: I’ll assume that all directories should be EmphasisItalic.

�Yes, this is our house style.

�Is this the Hello World program?

�Reply to AnneMarieW (09/29/2016, 11:39): "..."

Yes, I can make this clearer

�I don’t really like the word “represents” here, it implies that there’s something not real about this project. The process of writing, running, and iterating on code that we’re walking the reader through in this chapter is exactly like the process you’d use for a more “real” program.

�Au: I added listing numbers in cases where code is a bit lengthy. This will help readers and you reference the code within this chapter or from other chapters if need be.

�Reply to AnneMarieW (09/29/2016, 11:40): "..."

Sounds good.

�Au: Please add a listing caption to each listing.

�Au: I moved this text here because we need to introduce the code first, show the code, and then explain it. I’ve done this a few times throughout this chapter.

�Au: What kind of things?

�Au: What does “it’s” refer to?

�Au: What does “it” refer to?

�functions? features?

�Since we sent this chapter over, we’ve decided to change our convention to not have parentheses when discussing functions inline, so I’ve removed those throughout.

�Au: What does “this” refer to? The binding, the line, foo?

�Au: Can you use another word in this definition? Perhaps links to or correlates to?

�Au: Please fill in chapter number.

�Au: Please fill in chapter number.

�Trying not to say “in this case” three times in one paragraph, oops

�This was a factual error we made that someone found

�Awwww you don’t like the crab pincers?? :(:(:(

�Au: It prints out the quotes too? If not, perhaps just make style the printout as Literal style.

�Au: I assume you discussed what a crate is in Chapter 1, right?

�Reply to AnneMarieW (09/29/2016, 11:39): "..."

Yes, we do.

�Au: Can we say “to reference” here?

�Reply to AnneMarieW (09/29/2016, 11:39): "..."

Not really… I’ve tried rewording to not use “to know”, does this work?

�Please add caption.

�We got some feedback that this section was not clear, so we reworked it a bit. We’re trying to illustrate that cargo does not download and rebuild your dependencies every time you build, only when something changes.

�Au: Please use a more descriptive word here. Stuff is a bit vague.

�I changed the following to a numbered list because it’s a sequence.

�It’s entirely possible that versions get released “out of order” timewise, if a library is maintaining a version that gets bug fixes while simultaneously working on a new version. I don’t want to confuse people into thinking that there’s a temporal aspect to the way Cargo resolves versions...

�On rereading, this sounds like it’s implying cargo will only update the registry if a new version has been released, which it doesn’t (it would have to update the registry to know whether or not a new version had been released!), so i’m taking this out.

�Au: Please fill in chapter number.

�Reply to AnneMarieW (09/29/2016, 11:39): "..."

We’re not sure which chapter number this will be yet.

�What a great nickname! :-)

�Reply to AnneMarieW (09/29/2016, 11:39): "..."

:)

�Please add a caption.

�Au: Please fill in chapter number.

�Please add a caption.

�No, it’s the use statement referred to by the “1” wingding in this listing. I’ve just removed the word “earlier” to hopefully make this clearer?

�Au: Was this in Listing 2-1? If so, please reference that listing here.

�We weren’t being very diligent about using “statement” and “expression” correctly (there is nuance that we get into in chapter 3); we’re trying to fix that.

�Au: Can you use a more descriptive word here. Powerful in what way?

�Au: Please fill in chapter numbers.

�Reply to AnneMarieW (09/29/2016, 11:39): "..."

We’re not sure what the chapter number will be for patterns yet

�Error messages recently got redone to be MUCH better, we definitely want to have the new error display in the book. For other chapters, we should be able to update these before we get the chapters to you.

�Example here of how we might snip

�Since there is only really one new line, we probably don't need to use a wingding number to reference it here in the text, but if you think it'd help do put one in.

�Au: Should this be singular String?

�Au: Please fill in the chapter number.

�Au: Best to cross-reference the section name and page where this was discussed.

�Au: Are quotation marks needed here?

�Reply to AnneMarieW (09/29/2016, 11:39): "..."

Not really, removed!

�“you’re creating” or should this be “you’ve created”?

�Reply to AnneMarieW (09/29/2016, 11:39): "..."

“you’re creating” is fine

�Please add caption.

�Au: This is sort of a wrap up/summary of the chapter. Will you have this section in every chapter? If so, it’s best to name it the same in every chapter. Will Complete! work in every chapter?

�Reply to AnneMarieW (09/29/2016, 11:39): "..."

I think we’re starting to have “Summary” at the end of every chapter.	

