What Does Object-Oriented Mean?	1
Objects Contain Data and Behavior	2
Encapsulation that Hides Implementation Details	2
Inheritance as a Type System and as Code Sharing	4
Using Trait Objects that Allow for Values of Different Types	5
Defining a Trait for Common Behavior	6
Implementing the Trait	9
Trait Objects Perform Dynamic Dispatch	12
Object Safety is Required for Trait Objects	13
Implementing an Object-Oriented Design Pattern	14
Defining Post and Creating a New Instance in the Draft State	16
Storing the Text of the Post Content	17
Ensuring the Content of a Draft Post is Empty	18
Requesting a Review of the Post Changes its State	19
Adding the approve Method that Changes the Behavior of content	21
Tradeoffs of the State Pattern	24
Encoding States and Behavior as Types	25
Implementing Transitions as Transformations into Different Types	27
Summary	30
17
Is Rust an Object-Oriented Programming Language?
Object-oOriented pProgramming (OOP) is a way of modeling programs. that originated withObjects came from Simula in the 1960s. Those objects influenced Alan Kay’s programming architecture where objects pass messages to each other. He coined the term object-oriented programming in 1967 to describe this architecture and became popular with C++ in the 1990s. There are mMany competing definitions describe for what counts as OOP is,; and under some definitions, would classify Rust ais object- oriented; but under other definitions, it is would not. In this chapter, we’ll explore somecertain characteristics that are commonly considered to be object -oriented and how those characteristics translate to idiomatic Rust. We’ll then show you how to implement an object-oriented design pattern in Rust and discuss the trade-offs of doing so versus implementing a solution using some of Rust’s strengths instead.
[bookmark: _Toc505073419]What Does Object -Oriented Mean?
There’ is no consensus in the programming community about what features a language needs in order to be callonsidered object -oriented. Rust is influenced by many different programming paradigms, including OOP; for example, we explored, for example, the features that came from functional programming in Chapter 13. Arguably, object-oriented programming OOP languages do tend to share certain common characteristics, namely objects, encapsulation, and inheritance. Let’s take a look at what each of those characteristics mean and whether Rust supports them.	Comment by AnneMarieW: Please confirm all chapter cross-refs.	Comment by Carol Nichols: confirmed
prod: confirm xref
[bookmark: _Toc505073420]Objects Contain Data and Behavior
The book “Design Patterns: Elements of Reusable Object-Oriented Software,” colloquially referred to as “The Gang of Four book,” is a catalog of object-oriented design patterns. It defines object-oriented programming in OOP this way:
Object-oriented programs are made up of objects. An object packages both data and the procedures that operate on that data. The procedures are typically called methods or operations.
Undersing this definition, then, Rust is object- oriented: structs and enums have data, and impl blocks provide methods on structs and enums. Even though structs and enums with methods aren’t called objects, they provide the same functionality, underaccording to the Gang of Four’s definition of objects.
[bookmark: _Toc505073421]Encapsulation that Hides Implementation Details
Another aspect commonly associated with object-oriented programming OOP is the idea of encapsulation, which means: that the implementation details of an object aren’t accessible to code using that object. Therefore, the only way to interact with an object therefore is through its public API; code using the object should no’t be able to reach into the object’s internals and change data or behavior directly. This enables the programmer to change and refactor an object’s internals without needing to change the code that uses the object.
We discussed an example ofhow to control this encapsulation in Chapter 7: wWe can use the pub keyword to decide whatich modules, types, functions, and methods in our code should be public, and by default everything else is private. For example, we can define a struct AveragedCollection that has a field containing a vector of i32 values. The struct can also have a field that contains the average of the values in the vector, meaning the average doesn’t have to be computed on-demand whenever anyone needs it. In other words, AveragedCollection will cache the calculated average for us. Listing 17-1 has the definition of the AveragedCollection struct:	Comment by AnneMarieW: Au: What does “this” refer to? encapsulation?	Comment by Carol Nichols: confirmed
prod: confirm xref
Filename: src/lib.rs
pub struct AveragedCollection {
 list: Vec<i32>,
 average: f64,
}
Listing 17-1: An AveragedCollection struct that maintains a list of integers and the average of the items in the collection.
The struct itself is marked pub so that other code maycan use it, but the fields within the struct remain private. This is important in this case because we want to ensure that whenever a value is added or removed from the list, the average is also updated. We do this by implementing add, remove, and average methods on the struct, as shown in Listing 17-2:
Filename: src/lib.rs
impl AveragedCollection {
 pub fn add(&mut self, value: i32) {
 self.list.push(value);
 self.update_average();
 }

 pub fn remove(&mut self) -> Option<i32> {
 let result = self.list.pop();
 match result {
 Some(value) => {
 self.update_average();
 Some(value)
 },
 None => None,
 }
 }

 pub fn average(&self) -> f64 {
 self.average
 }

 fn update_average(&mut self) {
 let total: i32 = self.list.iter().sum();
 self.average = total as f64 / self.list.len() as f64;
 }
}
Listing 17-2: Implementations of the public methods add, remove, and average on AveragedCollection
The public methods add, remove, and average are the only ways to modify an instance of AveragedCollection. When an item is added to list using the add method or removed using the remove method, the implementations of each call the private update_average method that takes care of handles updating the average field as well.
We leave the list and average fields private so that there’ is no way for external code to add or remove items to the list field directly,; otherwise, the average field might become out of sync when the list changes. The average method returns the value in the average field, allowing external code to read the average but not modify it.
Because we’ve encapsulated the implementation details of AveragedCollection, we can easily change aspects, such as like the data structure, in the future. For instance, we could use a HashSet instead of a Vec for the list field. As long as the signatures of the add, remove, and average public methods stay the same, code using AveragedCollection wouldn’t need to change. If we made list public instead, this wouldn’t necessarily be the case: HashSet and Vec have different methods for adding and removing items, so the external code would likely have to change if it was modifying list directly.
If encapsulation is a required aspect for a language to be considered object- oriented, then Rust meets that requirement. The option to use pub or not for different parts of code enables encapsulation of implementation details.
[bookmark: _Toc505073422]Inheritance as a Type System and as Code Sharing
Inheritance is a mechanism whereby an object can inherit from another object’s definition, thus gaining the parent object’s data and behavior without you having to define them again.
If a language must have inheritance to be an object-oriented language, then Rust is not. There is no way to define a struct that inherits the parent struct’s fields and method implementations. However, if you’re used to having inheritance in your programming toolbox, there are you can use other solutions in Rust depending on your reason for reaching for inheritance in the first place.
You choose inheritance There are for two main reasons to choose inheritance. The first One is for re-use of code: you can implement particular behavior for one type, and inheritance enables you to re-use that implementation for a different type. You can share Rust code can be shared using default trait method implementations instead, which weyou saw in Listing 10-15 14 when we added a default implementation of the summary summarize method on the Summarizable Summary trait. Any type implementing the Summarizable Summary trait would have the summary summarize method available on it without any further code. This is similar to a parent class having an implementation of a method, and an inheriting child class then also having the implementation of the method. We can also choose to override the default implementation of the summarizey method when we implement the Summaryizable trait, which is similar to a child class overriding the implementation of a method inherited from a parent class.	Comment by AnneMarieW: Please confirm cross-ref	Comment by Carol Nichols: Confirmed as of edits to chapter 10 that we’re sending back soon
The second other reason to use inheritance relates to the type system: to enable a child type to be used in the same places as the parent type. This is also called polymorphism, which means that you can substitute multiple objects can be substituted for each other at runtime if they share certain characteristics.
PROD: START BOX
Polymorphism
To many people, polymorphism is synonymous with inheritance. But it’s actually a more general concept that refers to code that can work with data of multiple types. For inheritance, those types are generally subclasses.
Rust instead uses generics to abstract over different possible types, and trait bounds to impose constraints on what those types must provide. This is sometimes called bounded parametric polymorphism.
PROD: END BOX
Inheritance has recently fallen out of favor as a programming design solution in many programming languages because it’s often at risk of sharing more code than needs be. Subclasses shouldn’t always share all characteristics of their parent class, but will do so with inheritance. This can make a program’s design less flexible, and introduces the possibility of calling methods on subclasses that don’t make sense or that cause errors because the methods don’t actually apply to the subclass. Some languages will also only allow a subclass to inherit from one class, further restricting the flexibility of a program’s design.
For these reasons, Rust chose to takes a different approach, using trait objects instead of inheritance. Let’s take a look at how trait objects enable polymorphism in Rust.
[bookmark: _Toc505073423]Using Trait Objects that Allow for Values of Different Types
In Chapter 8, we mentioned that one limitation of vectors is that they can only store elements of one type. We created a workaround in Listing 8-10 where we defined a SpreadsheetCell enum that had variants to hold integers, floats, and text. This meant we could store different types of data in each cell and still have a vector that represented a row of cells. This is a perfectly good solution when our interchangeable items are a fixed set of types that we know when our code getis compiled.	Comment by AnneMarieW: Please confirm cross-ref	Comment by Carol Nichols: Confirmed as of the first page review of chapter 8
prod: confirm xrefs
However, Ssometimes, however, we want our librarythe user of our library to be able to extend the set of types that are valid in a particular situation. To show how we might achieve this, we’ll create an example gGraphical uUser iInterface (GUI) tool that iterates through a list of items, calling a draw method on each one to drawn it to the screen; —a common technique for GUI tools. We’re going toll create a library crate called gui that containsing the structure of a GUI library called rust_gui. This crate might include some types for people to use, such as Button or TextField. On top of theseIn addition, users of rust_gui users will want to create their own types that can be drawn on the screen: for instance, one programmer might add an Image, and another might add a SelectBox. 	Comment by AnneMarieW: Au: I assume that rust_gui is the name of the crate so I changed this sentence.	Comment by Carol Nichols: Correct, this is fine	Comment by Carol Nichols: Actually we’ve decided to rename the crate just “gui”, the sentence structure here is still correct though
We won’t implement a fully- fledged GUI library for this example, but will show how the pieces would fit together. At the time of writing the library, we can’t know and define all the types other programmers willmight want to create. ButWhat we do know is that rust_gui needs to keep track of a bunch of many values that are of different types, and it needs to be able to call a draw method on each of these differently -typed values. It doesn’t need to know exactly what will happen when we call the draw method, just that the value will have that method available for us to call.
To do this in a language with inheritance, we might define a class named Component that has a method named draw on it. The other classes, such as like Button, Image, and SelectBox , would inherit from Component and thus inherit the draw method. They could each override the draw method to define their custom behavior, but the framework could treat all of the types as if they were Component instances and call draw on them. But because Rust doesn’t have inheritance, so we need another way to structure the gui library to allow users to extend it with new types.	Comment by AnneMarieW: Another way to? Do you mean “to extend the set of types that are valid in a particular situation”? Please clarify.	Comment by Carol Nichols: So clarified
[bookmark: _Toc505073424]Defining a Trait for Common Behavior
To implement the behavior we want rust_gui to have, we’ll define a trait named Draw that will have one method named draw. Then we can define a vector that takes a trait object. A trait object points to an instance of a type that implements the trait we specify. We create a trait object by specifying some sort of pointer, such as a & reference or a Box<T> smart pointer, and then specifying the relevant trait (we’ll talk about the reason trait objects have to must use a pointer in Chapter 19 in the section on “Dynamically Sized Types & SizedDynamically Sized Types” on page XX). We can use trait objects in place of a generic or concrete type. Wherever we use a trait object, Rust’s type system will ensure at compile- time that any value used in that context will implement the trait object’s trait. This way Consequently, we don’t need to know all the possible types at compile time.	Comment by AnneMarieW: Please provide the exact section name and page.	Comment by Carol Nichols: Section is currently titled “Dynamically Sized Types & Sized” but chapter 19 is still early in the process so this might change
prod: fill xref
We’ve mentioned that in Rust we refrain from calling structs and enums “objects” to distinguish them from other languages’ objects. In a struct or enum, the data in the struct fields and the behavior in impl blocks isare separated, whereas in other languages the data and behavior combined into one concept is often labeled an object. However, Ttrait objects, though, are more like objects in other languages, in the sense that they combine both data and behavior. However,But trait objects differ from traditional objects in that we can’t add data to a trait object. Trait objects aren’t as generally useful as objects in other languages: their specific purpose is to allow abstraction across common behavior.
Listing 17-3 shows how to define a trait named Draw with one method named draw:
Filename: src/lib.rs
pub trait Draw {
 fn draw(&self);
}
Listing 17-3: Definition of the Draw trait
This syntax should look familiar from our discussions on how to define traits in Chapter 10. Next comes something some new syntax: Listing 17-4 defines a struct named Screen that holds a vector named components. This vector is of type Box<Draw>, which is a trait object: it’s a stand-in for any type inside a Box that implements the Draw trait.	Comment by Carol Nichols: confirmed
prod: confirm xref
Filename: src/lib.rs
pub struct Screen {
 pub components: Vec<Box<Draw>>,
}
Listing 17-4: Definition of the Screen struct with a components field holding a vector of trait objects that implement the Draw trait
On the Screen struct, we’ll define a method named run that will call the draw method on each of its components, as shown in Listing 17-5:
Filename: src/lib.rs
impl Screen {
 pub fn run(&self) {
 for component in self.components.iter() {
 component.draw();
 }
 }
}
Listing 17-5: Implementing a run method on Screen that calls the draw method on each component
This works differently tothan defining a struct that uses a generic type parameter with trait bounds. A generic type parameter can only be substituted with one concrete type at a time, whilereas trait objects allow for multiple concrete types to fill in for the trait object at runtime. For example, we could have defined the Screen struct using a generic type and a trait bound as in Listing 17-6:
Filename: src/lib.rs
pub struct Screen<T: Draw> {
 pub components: Vec<T>,
}

impl<T> Screen<T>
 where T: Draw {
 pub fn run(&self) {
 for component in self.components.iter() {
 component.draw();
 }
 }
}
Listing 17-6: An alternate implementation of the Screen struct and its run method using generics and trait bounds
This restricts us to a Screen instance that has a list of components all of type Button or all of type TextField. If you’ll only ever have homogeneous collections, using generics and trait bounds is preferable sincbecause the definitions will be monomorphized at compile time to use the concrete types.
On the other hand, Wwith the the method using trait objects, on the other hand, one Screen instance can hold a Vec that contains a Box<Button> as well as a Box<TextField>. Let’s seelook at how thatis works, and then we’ll talk about the runtime performance implications.
[bookmark: _Toc505073425]Implementing the Trait
Now we’ll add some types that implement the Draw trait. We’rell going to provide the Button type. Again, actually implementing a GUI library is out ofbeyond the scope of this book, so the draw method won’t have any useful implementation in its body. To imagine what the implementation might look like, a Button struct might have fields for width, height, and label, as shown in Listing 17-7:
Filename: src/lib.rs
pub struct Button {
 pub width: u32,
 pub height: u32,
 pub label: String,
}

impl Draw for Button {
 fn draw(&self) {
 // Code to actually draw a button
 }
}
Listing 17-7: A Button struct that implements the Draw trait
The width, height, and label fields on Button will differ from the fields on other components, such as a TextField type, that might have those fields plus a placeholder field instead. Each of the types we want to draw on the screen will implement the Draw trait but will use, with different code in the draw method to define how to draw that particular type, like Button has here (without the actual GUI code that’s is beyond the out of scope of this chapter). Button, for instance, might have an additional impl block containing methods related to what happens ifwhen a user clicks the button is clicked. These kinds of methods won’t apply to types like TextField.	Comment by AnneMarieW: that might have those fields?	Comment by Carol Nichols: Correct, so added
If sSomeone using our library has decideds to implement a SelectBox struct that has width, height, and options fields., t They implement the Draw trait on the SelectBox type as well, as shown in Listing 17-8:
Filename: src/main.rs
extern crate rust_gui;
use rust_gui::Draw;

struct SelectBox {
 width: u32,
 height: u32,
 options: Vec<String>,
}

impl Draw for SelectBox {
 fn draw(&self) {
 // Code to actually draw a select box
 }
}
Listing 17-8: Another crate using rust_gui and implementing the Draw trait on a SelectBox struct
Our library’sThe user of our library can now write their main function to create a Screen instance. To thisthe Screen instance, they can add a SelectBox and a Button by putting each in a Box<T> to become a trait object. They can then call the run method on the Screen instance, which will call draw on each of the components. Listing 17-9 shows this implementation:	Comment by AnneMarieW: Is “this” the main function or the Screen instance?
Filename: src/main.rs
use rust_gui::{Screen, Button};

fn main() {
 let screen = Screen {
 components: vec![
 Box::new(SelectBox {
 width: 75,
 height: 10,
 options: vec![
 String::from("Yes"),
 String::from("Maybe"),
 String::from("No")
],
 }),
 Box::new(Button {
 width: 50,
 height: 10,
 label: String::from("OK"),
 }),
],
 };

 screen.run();
}
Listing 17-9: Using trait objects to store values of different types that implement the same trait
When we wrote the library, we didn’t know that someone wouldmight add the SelectBox type someday, but our Screen implementation was able to operate on the new type and draw it because SelectBox implements the Draw type, which means it implements the draw method.
This concept—of being concerned only with the messages a value responds to, rather than the value’s concrete type—is similar to athe concept duck typing in dynamically typed languages called duck typing: if it walks like a duck, and quacks like a duck, then it must be a duck! In the implementation of run on Screen in Listing 17-5, run doesn’t need to know what the concrete type of each component is. It doesn’t check to see if whether a component is an instance of a Button or a SelectBox, it just calls the draw method on the component. By specifying Box<Draw> as the type of the values in the components vector, we’ve defined Screen to need values that we can call the draw method on.
The advantage of using trait objects and Rust’s type system to write code do something similar to code using duck typing is that we never have to check that a value implements a particular method at runtime or worry about getting errors if a value doesn’t implement a method, but we call it anyway. Rust won’t compile our code if the values don’t implement the traits that the trait objects need.
For example, Listing 17-10 shows what happens if we try to create a Screen with a String as a component:
Filename: src/main.rs
extern crate rust_gui;
use rust_gui::DrawScreen;

fn main() {
 let screen = Screen {
 components: vec![
 Box::new(String::from("Hi")),
],
 };

 screen.run();
}
Listing 17-10: Attempting to use a type that doesn’t implement the trait object’s trait
We’ll get this error because String doesn’t implement the Draw trait:
error[E0277]: the trait bound `std::string::String: gui::Draw` is not satisfied
 --> src/main.rs:7:13
 |
 4 7 | Box::new(String::from("Hi")),
 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ the trait gui::Draw is not
 implemented for `std::string::String`
 |
 = note: required for the cast to the object type `gui::Draw`
This error lets us know that either we’re passing something to Screen we didn’t mean to pass, and we should pass a different type,, or we should implement Draw on String so that Screen is able to call draw on it.
[bookmark: _Toc505073426]Trait Objects Perform Dynamic Dispatch
Recall fromin the “Performance of Code Using Generics” section in Chapter 10 our discussion on the monomorphization process performed by the compiler when we use trait bounds on generics: the compiler generates non-generic implementations of functions and methods for each concrete type that we use in place of a generic type parameter. The code that results from monomorphization is doing static dispatch. Static dispatch, which is the term for when the compiler knows what method you’re calling at compile time. This is opposed to dynamic dispatch, which is when the compiler can’t tell at compile time which method you’re calling. In thesedynamic dispatch cases, the compiler emits code that at runtime will figure out which method to call.
prod: confirm xref
When we use trait objects, Rust has to must use dynamic dispatch. The compiler doesn’t know all the types that might be used with the code that’ is using trait objects, so it doesn’t know which method implemented on which type to call. Instead, at runtime, Rust uses the pointers inside of the trait object to know which specific method to call. There ’is a runtime cost when this lookup happens, that doesn’t occur with static dispatch. Dynamic dispatch also prevents the compiler from choosing to inline a method’s code, which in turn prevents some optimizations. However, wWe did get extra flexibility in the code that we wrote in Listing 17-5 and were able to support in Listing 17-9, though, so it’s a trade-off to consider.	Comment by AnneMarieW: in Chapter 10? Best to provide the Listing number here as a cross-ref	Comment by Carol Nichols: So added
[bookmark: _Toc505073427]Object Safety Iis Required for Trait Objects
You can Oonly make object safe traits can be made into trait objects. There are sSome complex rules aroundgovern all the properties that make a trait object safe, but in practice, there are only two rules that are relevant. A trait is object safe if all of the methods defined in the trait have the following properties:	Comment by AnneMarieW: Or perhaps regulate, affect, govern, control
The return type isn’t Self.
There aren’t any no generic type parameters.
The Self keyword is an alias for the type we’re implementing the traits or methods on. Trait objects must be Oobject safety is required for trait objects because once you’ have used a trait object, you Rust no longer knows what the concrete type that’s implementing that trait is. If a trait method returns the concrete Self type, but a trait object forgets the exact type that it Self isis, there ’is no way that the method can use the original concrete type that it’s forgottentype. The Ssame with is true of generic type parameters that are filled in with concrete type parameters when the trait is used: the concrete types become part of the type that implements the trait. When the type is erased byforgotten through the use of a trait object, there ’is no way to know what types to fill in the generic type parameters with.	Comment by Liz Chadwick: “you” the programmer, or Rust?
An example of a trait whose methods are not object safe is the standard library’s Clone trait. The signature for the clone method in the Clone trait looks like this:
pub trait Clone {
 fn clone(&self) -> Self;
}
The String type implements the Clone trait, and when we call the clone method on an instance of String we get back an instance of String. Similarly, if we call clone on an instance of Vec, we get back an instance of Vec. The signature of clone needs to know what type will stand in for Self, sincbecause that’s the return type.	Comment by AnneMarieW: Au: We need to avoid starting a sentence with a Literal.	Comment by Carol Nichols: done
The compiler will tell you if indicate when you’re trying to do something that violates the rules of object safety in regards to trait objects. For example, let’s sayif we had tried to implement the Screen struct in Listing 17-4 to hold types that implement the Clone trait instead of the Draw trait, like this:
pub struct Screen {
 pub components: Vec<Box<Clone>>,
}
We’ll would get this error:
error[E0038]: the trait `std::clone::Clone` cannot be made into an object
 --> src/lib.rs:2:5
 |
2 | pub components: Vec<Box<Clone>>,
 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ the trait `std::clone::Clone` cannot be
 made into an object
 |
 = note: the trait cannot require that `Self : Sized`
This error means you can’t use this trait as a trait object in this way. If you’re interested in more details on object safety, see Rust RFC 255 at https://github.com/rust-lang/rfcs/blob/master/text/0255-object-safety.md/.
[bookmark: _Toc505073428]Implementing an Object-Oriented Design Pattern
The state pattern is an object-oriented design pattern. The crux of the pattern is that a value has some internal state, which is represented by a set of state objects, and the value’s behavior changes based on the internal state. The state objects share functionality: —in Rust, of course, we use structs and traits rather than objects and inheritance. Each state object representing the state is responsible for its own behavior and for governing when it should change into another state. The value that holds a state object knows nothing about the different behavior of the states or when to transition between states.
Using the state pattern means when the business requirements of the program change, we won’t need to change the code of the value holding the state or the code that uses the value. We’ll only need to update the code inside one of the state objects to change its rules, or perhaps add more state objects. Let’s look at an example of the state design pattern and how to use it in Rust.
To explore this idea, wWe’ll implement a blog post workflow in an incremental way. The blog’s final functionality will look like this:
A blog post starts as an empty draft.
OnceWhen the draft is done, a review of the post is requested.
OnceWhen the post is approved, it gets published.
Only published blog posts return content to print, so unapproved posts can’t accidentally be published.
Any other changes attempted on a post should have no effect. For example, if we try to approve a draft blog post before we’ve requested a review, the post should stayremain an unpublished draft.
Listing 17-11 shows this workflow in code form.: Tthis is an example usage of the API we’re going toll implement in a library crate named blog. This won’t compile yet because we haven’t implemented the blog crate yet:
Filename: src/main.rs
extern crate blog;
use blog::Post;

fn main() {
 let mut post = Post::new();

 post.add_text("I ate a salad for lunch today");
 assert_eq!("", post.content());

 post.request_review();
 assert_eq!("", post.content());

 post.approve();
 assert_eq!("I ate a salad for lunch today", post.content());
}
Listing 17-11: Code that demonstrates the desired behavior we want our blog crate to have
We want to allow the user to create a new draft blog post with Post::new . Then, we want to allow text to be added to the blog post while it’s in the draft state . If we try to get the post’s content immediately, before approval, nothing should happen because the post is still a draft. We’ve added an assert_eq! herein the code for demonstration purposes . An excellent unit test for this would be to assert that a draft blog post returns an empty string from the content method, but we’re not going to write tests for this example.
Next, we want to enable a request for a review of the post , and we want content to return an empty string while waiting for the review . Lastly, wWhen the post receives approval , it should get published, meaning the text of the post will be returned when content is called .
Notice that the only type we’re interacting with from the crate is the Post type. This type will use the state pattern and will hold a value that will be one of three state objects representing the various states a post can be in—draft, waiting for review, or published. Changing from one state to another will be managed internally within the Post type. The states change in response to the methods called by our library’s users of our library call on the Post instance, but they don’t have to manage the state changes directly. This aAlso, means users can’t make a mistake with the states, like publishing a post before it i’s reviewed.
[bookmark: _Toc505073429]Defining Post and Creating a New Instance in the Draft State
Let’s get started on the implementation of the library! We know we need a public Post struct that holds some content, so let’s we’ll start with the definition of the struct and an associated public new function to create an instance of Post, as shown in Listing 17-12. We’ll also make a private State trait. Then Post will hold a trait object of Box<State> inside an Option in a private field named state. WeYou’ll see why the Option is necessary in a bit.
The State trait defines the behavior shared by different post states, and the Draft, PendingReview, and Published states will all implement the State trait. For now, the trait does no’t have any methods, and we’re going toll start by defining just the Draft state sincbecause that’ is the state we want a post to start in:
Filename: src/lib.rs
pub struct Post {
 state: Option<Box<State>>,
 content: String,
}

impl Post {
 pub fn new() -> Post {
 Post {
 state: Some(Box::new(Draft {})),
v content: String::new(),
 }
 }
}

trait State {}

struct Draft {}

impl State for Draft {}
Listing 17-12: Definition of a Post struct and a new function that creates a new Post instance, a State trait, and a Draft struct
When we create a new Post, we set its state field to a Some value that holds a Box . This Box points to a new instance of the Draft struct. This ensures whenever we create a new instance of Post, it’ will start out as a draft. Because the state field of Post is private, there ’is no way to create a Post in any other state!
[bookmark: _Toc505073430]Storing the Text of the Post Content
In the Post::new function, we set the content field to a new, empty String v. Listing 17-11 showed that we want to be able to call a method named add_text and pass it a &str that’ is then added to the text content of the blog post. We implement this as a method rather than exposing the content field as pub. This means we can implement a method later that will control how the content field’s data is read. The add_text method is pretty straightforward, so let’s add the implementation in Listing 17-13 to the impl Post block:
Filename: src/lib.rs
impl Post {
 // ...--snip--...
 pub fn add_text(&mut self, text: &str) {
 self.content.push_str(text);
 }
}
Listing 17-13: Implementing the add_text method to add text to a post’s content
The add_text method takes a mutable reference to self, sincbecause we’re changing the Post instance that we’re calling add_text on. We then call push_str on the String in content and pass the text argument to add to the saved content. This behavior doesn’t depend on the state the post is in so it’s not part of the state pattern. The add_text method doesn’t interact with the state field at all, but it is part of the behavior we want to support.
[bookmark: _Toc505073431]Ensuring the Content of a Draft Post Iis Empty
Even after we’ve called add_text and added some content to our post, we still want the content method to return an empty string slice sincebecause the post is still in the draft state, as shown on line 8 of Listing 17-11. For now, let’s implement the content method with the simplest thing that will fulfill this requirement: always returning an empty string slice. We’re going toll change this later once we implement the ability to change a post’s state so it can be published. So far, though, posts can only be in the draft state, so the post content should always be empty. Listing 17-14 shows this placeholder implementation:
Filename: src/lib.rs
impl Post {
 // ...--snip--...
 pub fn content(&self) -> &str {
 ""
 }
}
Listing 17-14: Adding a placeholder implementation for the content method on Post that always returns an empty string slice
With this added content method, everything in Listing 17-11 up to line 8 works as we intended.
[bookmark: _Toc505073432]Requesting a Review of the Post Changes Iits State
Next, up we need to add functionality to request a review of a post, which should change its state from Draft to PendingReview. We want to give Post a public method named request_review that will take a mutable reference to self. Then we’re going to call an internal request_review method on the current state of Post, and this second request_review method will consume the current state and return a new state. Listing 17-15 shows this code:
DE/AU: We might want to move this explanation to after the code if you want to add wingdings, we can see once we transfer it to Word	Comment by Carol Nichols: Moved as suggested
Filename: src/lib.rs
impl Post {
 // ...--snip--...
u pub fn request_review(&mut self) {
v if let Some(s) = self.state.take() {
 self.state = Some(s.request_review())
 }
 }
}

trait State {
 fn request_review(self: Box<Self>) -> Box<State>;
}

struct Draft {}

impl State for Draft {
 fn request_review(self: Box<Self>) -> Box<State> {
y Box::new(PendingReview {})
 }
}

struct PendingReview {}

impl State for PendingReview {
 fn request_review(self: Box<Self>) -> Box<State> {
z self
 }
}
Listing 17-15: Implementing request_review methods on Post and the State trait
We give Post a public method named request_review that will take a mutable reference to self u. Then we call an internal request_review method on the current state of Post , and this second request_review method consumes the current state and return a new state.
We’ve added the request_review method to the State trait ; all types that implement the trait will now need to implement the request_review method. Note that rather than having self, &self, or &mut self as the first parameter of the method, we have self: Box<Self>. This syntax means the method is only valid when called on a Box holding the type. This syntax takes ownership of Box<Self>, invalidating the old state so that the state value of the Post can transform itself into a new state.
[bookmark: _GoBack]To consume the old state, the request_review method needs to take ownership of the state value. This is where the Option in the state field of Post comes in: we call the take method to take the Some value out of the state field and leave a None in its place, sincbecause Rust doesn’t let us have unpopulated fields in structs v. This lets us move the state value out of Post rather than borrowing it. Then we’ll set the post’s state value to the result of this operation.
We need to set state to None temporarily, rather than setting it directly with code like self.state = self.state.request_review(); that would set the state field directly, to get ownership of the state value. This ensures Post can’t use the old state value after we’ve transformed it into a new state.
The request_review method on Draft needs to return a new, boxed instance of a new PendingReview struct y, which represents the state when a post is waiting for a review. The PendingReview struct also implements the request_review method, but doesn’t do any transformations z. Rather, it returns itself, sincbecause when we request a review on a post already in the PendingReview state, it should stay in the PendingReview state.
Now we can start seeing the advantages of the state pattern: the request_review method on Post is the same no matter its state value. Each state is responsible for its own rules.
We’re going toll leave the content method on Post as it is, returning an empty string slice. We can now have a Post in the PendingReview state as well as in the Draft state, but we want the same behavior in the PendingReview state. Listing 17-11 now works up untilto line 11!
[bookmark: _Toc505073433]Adding the approve Method that Changes the Behavior of content
The approve method will be similar to the request_review method: it will set state to the value that the current state says it should have when that state is approved, as shown in Listing 17-16:.
Filename: src/lib.rs
impl Post {
 // ...--snip--...
 pub fn approve(&mut self) {
 if let Some(s) = self.state.take() {
 self.state = Some(s.approve())
 }
 }
}

trait State {
 fn request_review(self: Box<Self>) -> Box<State>;
 fn approve(self: Box<Self>) -> Box<State>;
}

struct Draft {}

impl State for Draft {
 // ...--snip--...
 fn approve(self: Box<Self>) -> Box<State> {
u self
 }
}

struct PendingReview {}

impl State for PendingReview {
 // ...--snip--...
 fn approve(self: Box<Self>) -> Box<State> {
v Box::new(Published {})
 }
}

struct Published {}

impl State for Published {
 fn request_review(self: Box<Self>) -> Box<State> {
 self
 }

 fn approve(self: Box<Self>) -> Box<State> {
 self
 }
}
Listing 17-16: Implementing the approve method on Post and the State trait
We add the approve method to the State trait, and add a new struct that implements State, the Published state.
Similar to request_review, if we call the approve method on a Draft, it will have no effect sincbecause it will return self u. When we call approve on PendingReview, it returns a new, boxed instance of the Published struct v. The Published struct implements the State trait, and for both the request_review method and the approve method, it returns itself, sincbecause the post should stay in the Published state in those cases.
Now we need to update the content method on Post: if the state is Published , we want to return the value in the post’s content field; otherwise, we want to return an empty string slice, as shown in Listing 17-17:
Filename: src/lib.rs
impl Post {
 // ...--snip--...
 pub fn content(&self) -> &str {
 self.state.as_ref().unwrap().content(&self)
 }
 // ...--snip--...
}
Listing 17-17: Updating the content method on Post to delegate to a content method on State
Because the goal is to keep all these rules inside the structs that implement State, we call a content method on the value in state and pass the post instance (that is, self) as an argument. Then we return the value that ’is returned from using the content method on the state value.
We call the as_ref method on the Option because we want a reference to the value inside the Option rather than ownership of the valueit. Because state is an Option<Box<State>>, calling when we call as_ref , returns an Option<&Box<State>> is returned. If we didn’t call as_ref, we’ would get an error because we can’t move state out of the borrowed &self of the function parameter.
We’re then calling the unwrap method, which we know will never panic, because we know the methods on Post ensure that state will always contain a Some value when those methods are done. This is one of the cases we talked about in the “Cases When You Have More Information Than the Compiler” section of Chapter 912 when we know that a None value is never possible, even though the compiler isn’t able to understand that.
prod: confirm xref
So then At this point, when we call content on the we have a &Box<State>, and when we call the content on it, deref coercion will take effect on the & and the Box so that the content method will ultimately be called on the type that implements the State trait.
That means we need to add content to the State trait definition, and that ’is where we’ll put the logic for what content to return depending on which state we have, as shown in Listing 17-18:
Filename: src/lib.rs
trait State {
 // ...--snip--...
 fn content<'a>(&self, post: &'a Post) -> &'a str {
u ""
 }
}

// ...--snip—
...
struct Published {}

impl State for Published {
 // ...--snip--...
 fn content<'a>(&self, post: &'a Post) -> &'a str {
v &post.content
 }
}
Listing 17-18: Adding the content method to the State trait
We add a default implementation for the content method that returns an empty string slice u. That means we don’t need to implement content on the Draft and PendingReview structs. The Published struct will override the content method and return the value in post.content v.
Note that we need lifetime annotations on this method, likeas we discussed in Chapter 10. We’re taking a reference to a post as an argument, and returning a reference to part of that post, so the lifetime of the returned reference is related to the lifetime of the post argument.	Comment by Carol Nichols: confirmed
prod: confirm xref
And we’re done—all of Listing 17-11 now works! We’ve implemented the state pattern with the rules of the blog post workflow. The logic around related to the rules lives in the state objects rather than being scattered throughout Post.	Comment by AnneMarieW: related to?
[bookmark: _Toc505073434]Trade-offs of the State Pattern
We’ve shown that Rust is capable of implementing the object-oriented state pattern to encapsulate the different kinds of behavior a post should have in each state. The methods on Post know nothing about the different kinds of various behaviors. The way we organized thise code is organized, we only have to look in one place to know the different ways a published post can behave: the implementation of the State trait on the Published struct.
If we were to create an alternative implementation that didn’t use the state pattern, we might instead use match statements in the methods on Post, or even in the main code that checks the state of the post and changes behavior in those places instead. That would mean we’ would have to look in a lot of several places to understand all the implications of a post being in the published state! This would only increase the more states we added: each of those match statements would need another arm.
With the state pattern, the Post methods and the places we use Post don’t need match statements, and to add a new state, we would only need to add a new struct and implement the trait methods on that one struct.
This The implementation using the state pattern is easy to extend to add more functionality. To see the simplicity of maintaining code that uses the statese patterns, try out a few of these suggestions:	Comment by AnneMarieW: Which one are you referring to?	Comment by Carol Nichols: clarified	Comment by AnneMarieW: these state patterns?	Comment by Carol Nichols: clarified
Allow users to add text content only when a post is in the Draft state .
Add a reject method that changes the post’s state from PendingReview back to Draft.
Require two calls to approve before the state can be changed to Published.
Allow users to add text content only when a post is in the Draft state. Hint: have the state object responsible for what might change about the content, but not responsible for modifying the Post.

One downside of the state pattern is that, because the states implement the transitions between states, some of the states are coupled to each other. If we add another state between PendingReview and Published, such as Scheduled, we would have to change the code in PendingReview to transition to Scheduled instead. It would be less work if PendingReview wouldidn’t need to change with the addition of a new state, but that would mean switching to another design pattern.
Another downside is that we’ve duplicatedfind ourselves with a few bits ofsome duplicated logic. To eliminate thissome of the duplication, we might try to make default implementations for the request_review and approve methods on the State trait that return self,; buthowever, this would violate object safety, sincbecause the trait doesn’t know what the concrete self will be exactly. We want to be able to use State as a trait object, so we need its methods to be object safe.	Comment by AnneMarieW: a few or two?	Comment by AnneMarieW: one duplication
The oOther duplication is includes the similar implementations of the request_review and approve methods on Post. Both methods delegate to the implementation of the same method on the value in the state field of Option, and set the new value of the state field to the result. If we had a lot of methods on Post that followed this pattern, we might consider defining a macro to eliminate the repetition (see Appendix ED, Macros on macros).	Comment by janelle: Is this Appendix D now?
prod: confirm xref
By implementing this the state pattern exactly as it’s defined for object-oriented languages, we’re not taking full advantage of Rust’s strengths as much as we could. Let’s take a look at some changes we can make to the blog crateis code that can make invalid states and transitions into compile time errors.	Comment by AnneMarieW: the state pattern?	Comment by Carol Nichols: Yep	Comment by AnneMarieW: Best to cross-ref the Listing number here. Listing 17-11?	Comment by Carol Nichols: There isn’t one listing for the final implementation of the library
[bookmark: _Toc505073435]Encoding States and Behavior as Types
We’re going toll show you how to rethink the state pattern to get a different set of trade-offs. Rather than encapsulating the states and transitions completely so that outside code has no knowledge of them, we’re going toll encode the states into different types. Like this Consequently, Rust’s type checking system will prevent make attemptss to use draft posts where only published posts are allowed by issuing into a compiler error.
Let’s consider the first part of main fromin Listing 17-11:
Filename: src/main.rs
fn main() {
 let mut post = Post::new();

 post.add_text("I ate a salad for lunch today");
 assert_eq!("", post.content());
}
We still enable the creation of new posts in the draft state using Post::new, and the ability to add text to the post’s content. But instead of having a content method on a draft post that returns an empty string, we’ll make it so that draft posts don’t have the content method at all. That way, if we try to get a draft post’s content, we’ll get a compiler error telling us the method doesn’t exist. As a result,This will make it will be impossible for us to accidentally display draft post content in production, sincebecause that code won’t even compile. Listing 17-19 shows the definition of a Post struct, a DraftPost struct, and methods on each:
Filename: src/lib.rs
pub struct Post {
 content: String,
}

pub struct DraftPost {
 content: String,
}

impl Post {
u pub fn new() -> DraftPost {
 DraftPost {
 content: String::new(),
 }
 }

v pub fn content(&self) -> &str {
 &self.content
 }
}

impl DraftPost {
w pub fn add_text(&mut self, text: &str) {
 self.content.push_str(text);
 }
}
Listing 17-19: A Post with a content method and a DraftPost without a content method
Both the Post and DraftPost structs have a private content field that stores the blog post text. The structs no longer have the state field sincbecause we’re moving the encoding of the state to the types of the structs. The Post struct will represent a published post, and it has a content method that returns the content v.
We still have a Post::new function, but instead of returning an instance of Post, it returns an instance of DraftPost u. Because content is private, and there aren’t any functions that return Post, it’s not possible to create an instance of Post right now.
The DraftPost struct has an add_text method so we can add text to content as before w, but note that DraftPost does not have a content method defined! So now the program ensures all posts start as draft posts, and draft posts don’t have their content available for display. Any attempt to get around these constraints will result in a compiler error.
[bookmark: _Toc505073436]Implementing Transitions as Transformations into Different Types
So how do we get a published post then? We want to enforce the rule that a draft post has to be reviewed and approved before it can be published. A post in the pending review state should still not display any content. Let’s implement these constraints by adding another struct, PendingReviewPost, defining the request_review method on DraftPost to return a PendingReviewPost, , and defining an approve method on PendingReviewPost to return a Post , as shown in Listing 17-20:
Filename: src/lib.rs
impl DraftPost {
 // ...--snip--...

 pub fn request_review(self) -> PendingReviewPost {
 PendingReviewPost {
 content: self.content,
 }
 }
}

pub struct PendingReviewPost {
 content: String,
}

impl PendingReviewPost {
 pub fn approve(self) -> Post {
 Post {
 content: self.content,
 }
 }
}
Listing 17-20: A PendingReviewPost that gets created by calling request_review on DraftPost, and an approve method that turns a PendingReviewPost into a published Post
The request_review and approve methods take ownership of self, thus consuming the DraftPost and PendingReviewPost instances and transforming them into a PendingReviewPost and a published Post, respectively. This way, we won’t have any lingering DraftPost instances lingering around after we’ve called request_review on them, and so forth. The PendingReviewPost struct doesn’t have a content method defined on it, so attempting to read its content results in a compiler error, as with DraftPost. Because the only way to get a published Post instance that does have a content method defined is to call the approve method on a PendingReviewPost, and the only way to get a PendingReviewPost is to call the request_review method on a DraftPost, we’ve now encoded the blog post workflow into the type system.
But we alsoThis does mean we have to make some small changes to main. The request_review and approve methods return new instances rather than modifying the struct they’re called on, so we need to add more let post = shadowing assignments to save the returned instances. We also can’t have the assertions about the draft and pending review post’s contents being empty strings, nor do we need them: we can’t compile code that tries to use the content of posts in those states any longer. The updated code in main is shown in Listing 17-21:
Filename: src/main.rs
extern crate blog;
use blog::Post;

fn main() {
 let mut post = Post::new();

 post.add_text("I ate a salad for lunch today");

 let post = post.request_review();

 let post = post.approve();

 assert_eq!("I ate a salad for lunch today", post.content());
}
Listing 17-21: Modifications to main to use the new implementation of the blog post workflow
These changes we needed to make to main to reassign post means that this implementation doesn’t quite follow the object-oriented state pattern anymore: the transformations between the states are no longer encapsulated entirely within the Post implementation. However, our gain is that invalid states are now impossible because of the type system and the type checking that happens at compile time! This ensures that certain bugs, such as the content of an unpublished post being displayed, will be discovered before they make it to production.
Try the tasks suggested for additional requirements that we mentioned at the start of this section on theis codeblog crate as it is after Listing 17-20, to see what you think about the design ofhow working with this version of the code feels. Note that some of the tasks might be completed already in this design!	Comment by AnneMarieW: Do you mean Listing 17-21?	Comment by Carol Nichols: No, again, we mean the blog library crate which isn’t encompassed in just one listing. I’ve tried clarify as much as I can given that constraint
We’ve seen that even though Rust is capable of implementing object-oriented design patterns, other patterns, likesuch as encoding state into the type system, are also available in Rust. These patterns have different trade-offs. WhileAlthough you mayight be very familiar with object-oriented patterns, rethinking the problem in order to take advantage of Rust’s features can provide benefits, such as like preventing some bugs at compile- time. Object-oriented patterns won’t always be the best solution in Rust, because of the due to certain features, like ownership, that object-oriented languages don’t have.
[bookmark: _Toc505073437]Summary
No matter whether or not you think Rust is an object-oriented language or not after reading this chapter, you’ve now knowseen that you can use trait objects are a way to get some object-oriented features in Rust. Dynamic dispatch can give your code some flexibility in exchange for a bit of runtime performance. You can use Tthis flexibility can be used to implement object-oriented patterns that can help your code’swith the maintainability of your code. Rust also has other different features, like ownership, that object-oriented languages don’t have. An object-oriented pattern won’t always be the best way to take advantage of Rust’s strengths, but is an available option.
Next, let’swe’ll look at patterns, which are another of Rust’s features of Rust that enables lots of flexibility: patterns. We’ve looked at them briefly throughout the book, but haven’t seen their fulleverything they’re capableility of yet. Let’s go!
