All the Places Patterns May be Used	2
match Arms	2
Conditional if let Expressions	3
while let Conditional Loops	4
for Loops	5
let Statements	5
Function Parameters	7
Refutability: Whether a Pattern Might Fail to Match	8
All the Pattern Syntax	10
Matching Literals	10
Matching Named Variables	10
Multiple Patterns	12
Matching Ranges of Values with ...	12
Destructuring to Break Apart Values	13
Destructuring Structs	13
Destructuring Enums	15
Destructuring References	17
Destructuring Structs and Tuples	18
Ignoring Values in a Pattern	18
Ignoring an Entire Value with _	18
Ignoring Parts of a Value with a Nested _	19
Ignoring an Unused Variable by Starting its Name with an Underscore	20
Ignoring Remaining Parts of a Value with ..	22
ref and ref mut to Create References in Patterns	24
Extra Conditionals with Match Guards	25
@ Bindings	28
Summary	29
18
Patterns and Matching
Patterns are a special syntax in Rust for matching against the structure of types, both complex and simple. Using patterns in conjunction with match expressions and other constructs gives you more control over a program’sthe control flow of a program. A pattern is made up consists of some combination of the following:
Lliterals
Ddestructured arrays, enums, structs, or tuples
Vvariables
Wwildcards
Pplaceholders
These piececomponents describe the shape of the data we’re working with, which we then match against values to determine whether our program has the correct data to continue running a particular bitpiece of code.
To use a pattern, we compare it to some value. If the pattern matches ourthe value, we use the value parts in our code. Recall ourthe match expressions fromin Chapter 6 that used patterns, such as like athe coin sorting machine example. If the value fits the shape of the pattern, we can use the named pieces. If it doesn’t, the code associated with the pattern won’t run.
prod: check xref
This chapter is a reference on all things related to patterns. We’ll cover the valid places to use patterns, the difference between refutable and irrefutable patterns, and the different kinds of pattern syntax that you might see. By the end of the chapter, you’ll seeknow how to use patterns to create powerful and clear code.express many concepts in a clear way.
[bookmark: _Toc508287964]All the Places Patterns MayCan Bbe Used
Patterns pop up in a number of places in Rust, and you’ve been using them a lot without realizing it! This section provides you withis a reference to all the places where patterns are valid.
[bookmark: _Toc508287965]match Arms
As we discussed in Chapter 6, we use patterns are used in the arms of match expressions. Formally, match expressions are defined as the keyword match, a value to match on, and one or more match arms that consist of a pattern and an expression to run if the value matches that arm’s pattern, like this:
prod: check xref
match VALUE {
 PATTERN => EXPRESSION,
 PATTERN => EXPRESSION,
 PATTERN => EXPRESSION,
}
One requirement for match expressions is that theyare need to be required to be exhaustive, in the sense that all possibilities for the value in the match expression must be accounted for. One way to ensure you ha’ve covered every possibility covered is to have a catch-all pattern for the last arm: ---for example, a variable name matching any value can never fail and thus covers every remaining case remaining.
There’s a A particular pattern _ that will match anything, but it never binds to a variable, and so iti’s often used in the last match arm. Thise _ pattern can be useful when you want to ignore any value not specified, for example. We’ll cover thise _ pattern in more detail later in this chapterin the “Ignoring Values in a Pattern” section on page XX.	Comment by AnneMarieW: Please provide the section name and the page number.
prod: check and fill xref (this chapter)
[bookmark: _Toc508287966]Conditional if let Expressions
In Chapter 6 we discussed how to use if let expressions are used mainly as a shorter way to write the equivalent of a match that only cares about matchesing one case. Optionally, if let can have a corresponding else withcontaining code to run if the pattern in the if let doesn’t match.
prod: check xref
Listing 18-1 shows that it’s also possible to mix and match if let, else if, and else if let expressions. Doing soThis gives us more flexibility than a match expression in which, where we can only express one value to compare with the patterns;. Also, tthe conditions in a series of if let, /else if, /else if let arms aren’t required to have any relation relate to each other.
The code in Listing 18-1 shows a series of checks for a bunch of several different conditions that decide what the background color should be. For the purposes of theis example, we’ve created variables with hardcoded values that a real program might getreceive from by asking the user input.
If the user has specifieds a favorite color, that color is used as is the background color. If today is Tuesday, the background color will be green. If the user has specifieds their age as a string and we can parse it as a number successfully, the color iswe’ll use either purple or orange depending on the value of the parsed number.
Finally, iIf none of these conditions apply, the background color will be blue:
Filename: src/main.rs
fn main() {
 let favorite_color: Option<&str> = None;
 let is_tuesday = false;
 let age: Result<u8, _> = "34".parse();

 if let Some(color) = favorite_color {
 println!("Using your favorite color, {}, as the background", color);
 } else if is_tuesday {
 println!("Tuesday is green day!");
 } else if let Ok(age) = age {
 if age > 30 {
 println!("Using purple as the background color");
 } else {
 println!("Using orange as the background color");
 }
 } else {
 println!("Using blue as the background color");
 }
}
Listing 18-1: Mixing if let, else if, else if let, and else
This conditional structure lets us support complex requirements. With the hardcoded values we have here, this example will print Using purple as the background color.
WeYou can see that if let can also introduce shadowed variables, in the same way that match arms can: the line if let Ok(age) = age introduces a new shadowed age variable that contains the value inside the Ok variant. This means we need to place the if age > 30 condition within that block;: we can’t combine these two conditions into if let Ok(age) = age && age > 30. because tThe shadowed age we want to compare to 30 isn’t valid until the new scope starts with the curly bracket.	Comment by AnneMarieW: Au: We’ve been using curly bracket in other chapters.	Comment by Carol Nichols: yes, good catch
The downside of using if let expressions iin this way is that the compiler doesn’t check exhaustiveness is not checked by the compiler, whereas with match expressions it isdoes. If we left offomitted the last else block and sotherefore missed handling some cases, the compiler would not alert us ofto the possible logic bug.	Comment by AnneMarieW: in which way? Please clarify.	Comment by Carol Nichols: Actually I don’t think we need this phrase, removing
[bookmark: _Toc508287967]while let Conditional Loops
Similar in construction to if let, the while let conditional loop allows youra while loop to run for as long as a pattern continues to match. The example in Listing 18-2 shows a while let loop that uses a vector as a stack and prints out the values in the vector in the opposite order in which they were pushed in:
let mut stack = Vec::new();

stack.push(1);
stack.push(2);
stack.push(3);

while let Some(top) = stack.pop() {
 println!("{}", top);
}
Listing 18-2: Using a while let loop to print out values for as long as stack.pop() returns Some
This example will prints 3, 2, and then 1. The pop method takes the last element out of the vector and returns Some(value). If the vector is empty, it pop returns None. The while loop will continues running the code in its block as long as pop is returnsing Some. OnceWhen pop it returns None, the loop stops. We can use while let to pop every element off our stack.	Comment by AnneMarieW: Au: Does “it” refer to pop?
[bookmark: _Toc508287968]for Loops
In Chapter Chapter 3 we mentioned that the for loop is the most common loop construction in Rust code, but we haven’t yet discussed the pattern that for takes. In a for loop, the pattern is the value that directly follows the keyword for, so the x in for x in y the x is the pattern.	Comment by AnneMarieW: Au: Should this be Chapter 3?	Comment by Carol Nichols: Yes, I don’t know how this got changed to x?
prod: confirm xref
Listing 18-3 demonstrates how to use a pattern in a for loop to destructure, or break apart, a tuple as part of the for loop:
let v = vec!['a'1, 2'b', 'c'3];

for (index, value) in v.iter().enumerate() {
 println!("{} is at index {}", value, index);
}
Listing 18-3: Using a pattern in a for loop to destructure a tuple
This The code in Listing 18-3 will print the following:
1 a is at index 0
2 b is at index 1
3 c is at index 2
We use the enumerate method to adapt an iterator to produce a value and that value’s index in the iterator, placed into a tuple. The first call to enumerate produces the tuple (0, 1'a'). When this value is matched to the pattern (index, value), index will be 0 and value will be '1a', printing ourthe first line of the output.
[bookmark: _Toc508287969]let Statements
BeforePrior to this chapter, we’ had only explicitly discussed using patterns with match and if let, but in fact, we’ve used patterns in other places tooas well, including in let statements. For example, consider this straightforward variable assignment with let:
let x = 5;
Throughout this book, Wwe’ve doneused let like this hundreds of times throughout this book, and although you mayight not have realized it, you were using patterns! More formally,A a let statement looks like this, more formally:
let PATTERN = EXPRESSION;
In statements like let x = 5; with a variable name in the PATTERN slot, the variable name is just a particularly simphumble form of a pattern. We Rust compares the expression against the pattern, and assigns any names we it finds. So for ourin the let x = 5; example, x is a pattern that saymeans “bind what matches here to the variable x.” And sincBecause the name x is the whole pattern, this pattern effectively means “bind everything to the variable x, whatever the value is.”	Comment by AnneMarieW: Do you mean simple?	Comment by Carol Nichols: sure	Comment by AnneMarieW: we find or Rust finds?	Comment by Carol Nichols: rust, fixed	Comment by AnneMarieW: Would it be more than one thing?	Comment by Carol Nichols: potentially, if the right hand side is a tuple made up of multiple pieces, x would get the value of the entire tuple. I’m not sure what you’re asking? Or what you’d suggest as a change to this text?
To see the pattern matching aspect of let a bit more clearly, consider Listing 18-4, which where we’re usesing a pattern with let to destructure a tuple:
let (x, y, z) = (1, 2, 3);
Listing 18-4: Using a pattern to destructure a tuple and create three variables at once
Here, we match a tuple against a pattern. Rust compares the value (1, 2, 3) to the pattern (x, y, z) and sees that the value matches the pattern, so Rust will binds 1 to x, 2 to y, and 3 to z. You can think of this tuple pattern as nesting three individual variable patterns inside of it.
If the number of elements in the pattern doesn’t match the number of elements in the tuple, the overall type won’t match and we’ll get a compiler error. For example, Listing 18-5 shows an attempt to destructure a tuple with three elements into two variables, which won’t work:
let (x, y) = (1, 2, 3);
Listing 18-5: Incorrectly constructing a pattern whose variables don’t match the number of elements in the tuple
Attempting to compile this code gives usresults in this type error:
error[E0308]: mismatched types
 --> src/main.rs:2:9
 |
2 | let (x, y) = (1, 2, 3);
 | ^^^^^^ expected a tuple with 3 elements, found one with 2 elements
 |
 = note: expected type `({integer}, {integer}, {integer})`
 found type `(_, _)`
If we wanted to ignore one or more of the values in the tuple, we could use _ or .. as weyou’ll see in the “Ignoring Values in a Pattern” section on page XX. If ourthe problem is that we have too many variables in the pattern, the solution would beis to make the types match by removing variables so that the number of variables is equals to the number of elements in the tuple.
prod: check & fill xref (this chapter)

[bookmark: _Toc508287970]Function Parameters
Function parameters can also be patterns. The code in Listing 18-6, which declaresing a function named foo that takes one parameter named x of type i32, should by now look familiar:
fn foo(x: i32) {
 // code goes here
}
Listing 18-6: A function signature uses patterns in the parameters
The x part is a pattern! LikeAs we did with let, we could match a tuple in a function’s arguments to the pattern. Listing 18-7 splits apart the values in a tuple as we pass it to a function:
Filename: src/main.rs
fn print_coordinates(&(x, y): &(i32, i32)) {
 println!("Current location: ({}, {})", x, y);
}

fn main() {
 let point = (3, 5);
 print_coordinates(&point);
}
Listing 18-7: A function with parameters that destructure a tuple
This willcode prints Current location: (3, 5). The values &(3, 5) match the pattern &(x, y), so x getis the value 3, and y getis the value 5.
We can also use patterns in closure parameter lists in the same way as in function parameter lists, too, because closures are similar to functions, as we discussed in Chapter 13.	Comment by AnneMarieW: Au: Can you be more explicit here. What is “the same way”?	Comment by Carol Nichols: clarified
prod: confirm xref
At this point, Weyou’ve seen several ways of using patterns now, but patterns do no’t work the same in every place we can use them;. iIn some places, the patterns must be irrefutable, meaning they must match any value provided. In other circumstances, they maycan be refutable. Let’s discuss thatese two concepts next.
[bookmark: _Toc508287971]Refutability: Whether a Pattern Might Fail to Match
Patterns come in two forms: refutable and irrefutable. Patterns that will match for any possible value passed are said to be irrefutable. An example would be x in the statement let x = 5; because x matches anything and sotherefore cannot fail to match. Patterns that maycan fail to match for some possible value are said to be refutable. An example of this would be Some(x) in the expression if let Some(x) = a_value; if the value in the a_value variable is None rather than Some, then the Some(x) pattern would not match.
Function parameters, let statements, function parameters, and for loops can only accept irrefutable patterns, because the program cannot continue do anything meaningful withhen values that don’t match. The if let and while let expressions are restricted to only accept refutable patterns, because by definition they’re intended to handle possible failure: ---the functionality of a conditional is in its ability to perform differently depending upon success andor failure.
In general, you shouldn’t have to worry about the distinction between refutable and irrefutable patterns,; buthowever, you do need to be familiar with the concept of refutability so you can respond when you see it in an error message. In those cases, you’ll need to change either the pattern or the construct you’re using the pattern with, depending on yourthe intendtedions for the behavior of the code.
Let’s look at an example of what happens ifwhen we try to use a refutable pattern where Rust requires an irrefutable pattern and vice versa. In Listing 18-8, we have shows a let statement, but for the pattern we’ve specified Some(x), a refutable pattern. As you might expect, this code will error:
let Some(x) = some_option_value;
Listing 18-8: Attempting to use a refutable pattern with let
If some_option_value was a None value, it would fail to match the pattern Some(x), meaning the pattern is refutable. However, Tthe let statement, however, can only accept an irrefutable patterns because there’ is nothing valid the code couldan do with a None value. At compile time, Rust will complain that we’ve tried to use a refutable pattern where an irrefutable pattern is required:
error[E0005]: refutable pattern in local binding: `None` not covered
 --> <anon>:3:5
 |
3 | let Some(x) = some_option_value;
 | ^^^^^^^ pattern `None` not covered
Because Wwe didn’t cover (and couldn’t cover!) every valid value with the pattern Some(x), so Rust will rightfully complainproduces a compiler error.
To fix the problemcase where we have a refutable pattern in a place where an irrefutable pattern is needed, we can change the code that uses the pattern: instead of using let, we can use if let. That way,en if the pattern doesn’t match, the code will just skip the code in the curly brackets, giving it a way to continue validly. Listing 18-9 shows how to fix the code in Listing 18-8.:
if let Some(x) = some_option_value {
 println!("{}", x);
}
Listing 18-9: Using if let and a block with refutable patterns instead of let
We’ve given the code an out! This code is perfectly valid, although does now of courseit means we cannot use an irrefutable pattern without receiving an error. If we give if let a pattern that will always match, such as x , as shown in Listing 18-10, it will error:
if let x = 5 {
 println!("{}", x);
};
Listing 18-10: Attempting to use an irrefutable pattern with if let
Rust complains that it doesn’t make sense to use if let with an irrefutable pattern:
error[E0162]: irrefutable if-let pattern
 --> <anon>:2:8
 |
2 | if let x = 5 {
 | ^ irrefutable pattern
For this reason, match arms must use refutable patterns, except for the last arm, which that should match any remaining values with an irrefutable pattern. Rust allows us to Usinguse an irrefutable pattern in a match with only one arm is allowed, but this syntax isn’t particularly useful and could be replaced with a simpler let statement.
Now that you knowwe’ve discussed where to use patterns can be used and the difference between refutable and irrefutable patterns, let’s go overcover all the syntax we can use to create patterns.
[bookmark: _Toc508287972]All the Pattern Syntax
Throughout the book, yWeou’ve seen examples of many different kinds of patterns throughout the book,. In this section, so wwe’ll gather all the syntax valid in patterns in one place here, and discuss why you might want to use each of them.
[bookmark: _Toc508287973]Matching Literals
As weyou saw in Chapter 6, you can match patterns against literals directly. Thise following code gives some examples:
prod: confirm xref
let x = 1;

match x {
 1 => println!("one"),
 2 => println!("two"),
 3 => println!("three"),
 _ => println!("anything"),
}
This code prints one sincbecause the value in x is 1. This syntax is useful when you want your code to take somean action if it gets a particular if you get a concrete value in particular.	Comment by AnneMarieW: Do you mean “you need your code to take an action”?	Comment by Carol Nichols: sure
[bookmark: _Toc508287974]Matching Named Variables
Named variables are irrefutable patterns that match any value, and which we’ have used them many times beforein the book. However, Tthere is a complication, however, when you used named variables in match expressions. Because match starts a new scope, variables declared as part of a pattern inside the match expression will shadow those with the same name outside the match construct, ---as is the case with all variables. In Listing 18-11, we declare a variable named x with the value Some(5) and a variable y with the value 10. We then create a match expression on the value x. Take a lLook at the patterns in the match arms and println! at the end, and try to figure out what the code will be printed before running this code or reading further:
Filename: src/main.rs
fn main() {
 let x = Some(5);
 let y = 10;

 match x {
 Some(50) => println!("Got 50"),
 Some(y) => println!("Matched, y = {:?}", y),
 _ => println!("Default case, x = {:?}", x),
 }

 println!("at the end: x = {:?}, y = {:?}", x, y);
}
Listing 18-11: A match expressionstatement with an arm that introduces a shadowed variable y
Let’s walk through what happens when the match statement expression runs. The pattern in the first match arm does no’t match the defined value of x, so wethe code continues.
The pattern in the second match arm introduces a new variable named y that will match any value inside a Some value. Because we’re in a new scope inside the match expression, this is a new y variable, and not the y we declared at the beginning with the value 10. This new y binding will match any value inside a Some, which is what we have in x. Therefore, this new y binds to the inner value of the Some in x. That value is 5, and so the expression for that arm executes and prints Matched, y = 5.
If x had been a None value instead of Some(5), the patterns in the first two arms would no’t have matched, so we the value would have matched to the underscore. We did no’t introduce the x variable in the pattern of that the underscore arm, so the x in the expression is still the outer x that has no’t been shadowed. In this hypothetical case, the match would print Default case, x = None.	Comment by AnneMarieW: Do you mean the code?	Comment by Carol Nichols: reworded	Comment by AnneMarieW: Which are you referring to here?	Comment by Carol Nichols: clarified
OnceWhen the match expression is overdone, its scope ends, and so does the scope of the inner y. The last println! produces at the end: x = Some(5), y = 10.	Comment by AnneMarieW: over or done?	Comment by Carol Nichols: I don’t understand the distinction but it sounds like you’d prefer “done” so I’ve changed it
To create a match expression that compares the values of the outer x and y, rather than introducing a shadowed variable, we would need to use a match guard conditional instead. We’ll be talking about match guards later in thise section“Extra Conditionals with Match Guards” section on page XX.
prod: check & fill xref (this chapter)
[bookmark: _Toc508287975]Multiple Patterns
In match expressions, you can match multiple patterns using the | syntax, which means or. For example, the following code matches the value of x against the match arms, the first of which has an or option, meaning if the value of x matches either of the values in that arm, itthat arm’s code will run: 	Comment by AnneMarieW: Does “it” refer to the arm?
let x = 1;

match x {
 1 | 2 => println!("one or two"),
 3 => println!("three"),
 _ => println!("anything"),
}
This code will prints one or two.
[bookmark: _Toc508287976]Matching Ranges of Values with ...
The ... syntax allows you us to match to an inclusive range of values. In the following code, when a pattern matches any of the values within the range, that arm will execute:
let x = 5;

match x {
 1 ... 5 => println!("one through five"),
 _ => println!("something else"),
}
If x is 1, 2, 3, 4, or 5, the first arm will match. This syntax is more convenient than using the | operator to express the same idea; instead of 1 ... 5 , we would have to specify 1 | 2 | 3 | 4 | 5 if we usinged |. Specifying a range instead is much shorter, especially if we wanted to match, say, any number between 1 and 1,000!
Ranges are only allowed with numeric values or char values, because the compiler checks that the range isn’t empty at compile time. The only types Rust for which Rust can tell if a range is empty or not are char and numeric values.
Here’ is an example using ranges of char values:
let x = 'c';

match x {
 'a' ... 'j' => println!("early ASCII letter"),
 'k' ... 'z' => println!("late ASCII letter"),
 _ => println!("something else"),
}
Rust can tell that c is within the first pattern’s range, and this will prints early ASCII letter.
[bookmark: _Toc508287977]Destructuring to Break Apart Values
We can also use patterns to destructure structs, enums, tuples, and references in order to use different parts of these values. Let’s gowalk through each of those value!.
[bookmark: _Toc508287978]Destructuring Structs
Listing 18-12 shows a Point struct with two fields, x and y, that we can break apart using a pattern with a let statement:
Filename: src/main.rs
struct Point {
 x: i32,
 y: i32,
}

fn main() {
 let p = Point { x: 0, y: 7 };

 let Point { x: a, y: b } = p;
 assert_eq!(0, a);
 assert_eq!(7, b);
}
Listing 18-12: Destructuring a struct’s fields into separate variables
 This code creates the variables a and b that match the values of the x and y fields of the p variable.
This example shows that the names of the variables in the pattern don’t have to match the field names of the struct,. bBut it’s common to want the variable names to match the field names to make it easier to remember which variables came from which fields.
Because having variable names match the fields is common, and because writing let Point { x: x, y: y } = p; contains a lot of duplication, there’ is a shorthand for patterns that match struct fields: you only need to list the name of the struct field, and the variables created from the pattern will have the same names. Listing 18-13 shows code that behaves in the same way as the code in Listing 18-12, but the variables created in the let pattern are x and y instead of a and b:
Filename: src/main.rs
struct Point {
 x: i32,
 y: i32,
}

fn main() {
 let p = Point { x: 0, y: 7 };

 let Point { x, y } = p;
 assert_eq!(0, x);
 assert_eq!(7, y);
}
Listing 18-13: Destructuring struct fields using struct field shorthand
This code creates the variables x and y that match the x and y fields of the p variable. The outcome is that the variables x and y contain the values from the p struct.
We can also destructure with literal values as part of the struct pattern rather than creating variables for all of the fields. Doing soThis allows us to test some of the fields for particular values while creating variables to destructure the other fields.
Listing 18-14 shows a match expressionstatement that separates Point values into three cases: points that lie directly on the x axis (which is true when y = 0), on the y axis (x = 0), or neither :
Filename: src/main.rs
fn main() {
 let p = Point { x: 0, y: 7 };

 match p {
 Point { x, y: 0 } => println!("On the x axis at {}", x),
 Point { x: 0, y } => println!("On the y axis at {}", y),
 Point { x, y } => println!("On neither axis: ({}, {})", x, y),
 }
}
Listing 18-14: Destructuring and matching literal values in one pattern
The first arm will match any point that lies on the x axis by specifying that the y field matches if its value matches the literal 0. The pattern still creates an x variable that we can use in the code for this arm.
Similarly, the second arm matches any point on the y axis by specifying that the x field matches if its value is 0, and creates a variable y for the value of the y field. The third arm doesn’t specify any literals, so it matches any other Point and creates variables for both the x and y fields.
In this example, the value p matches the second arm by virtue of x containing a 0, so this code will print On the y axis at 7.
[bookmark: _Toc508287979]Destructuring Enums
We’ve destructured enums beforeearlier in this book, for example, when we destructured Option<i32>like in Listing 6-5 in Chapter 6 when we destructured an Option<i32>. One detail we haven’t mentioned explicitly is that the pattern to destructure an enum should correspond to the way the data stored within the enum is defined. ForAs an example, in Listing 18-15 let’swe takeuse the Message enum from Listing 6-2 and write a match with patterns that will destructure each inner value in Listing 18-15:
prod: check xrefs
Filename: src/main.rs
enum Message {
 Quit,
 Move { x: i32, y: i32 },
 Write(String),
 ChangeColor(i32, i32, i32),
}

fn main() {
 let msg = Message::ChangeColor(0, 160, 255);

 match msg {
 Message::Quit => {
 println!("The Quit variant has no data to destructure.")
 },
 Message::Move { x: x, y: y } => {
 println!(
 "Move in the x direction {} and in the y direction {}",
 x,
 y
);
 }
 Message::Write(text) => println!("Text message: {}", text),
 Message::ChangeColor(r, g, b) => {
 println!(
 "Change the color to red {}, green {}, and blue {}",
 r,
 g,
 b
)
 }
 }
}
Listing 18-15: Destructuring enum variants that hold different kinds of values
This code will print Change the color to red 0, green 160, and blue 255. Try changing the value of msg to see the code from the other arms run.
For enum variants without any data, like Message::Quit, we can’t destructure the value any further. We can only match on the literal Message::Quit value, and there are no variables are in that pattern.	Comment by AnneMarieW: without any values, variables, patterns?	Comment by Carol Nichols: This said “data” when I sent it over, not sure where that went but I’ve put it back
For struct-like enum variants, such as Message::Move, we can use a pattern similar to the pattern we specify to match structs. After the variant name, we place curly brackets and then list the fields with variables so that we break apart the pieces to use in the code for this arm. Here we use the shorthand form as we did in Listing 18-13.
For tuple-like enum variants, like Message::Write that holds a tuple with one element, and Message::ChangeColor that holds a tuple with three elements, the pattern is similar to the pattern we specify to match tuples. The number of variables in the pattern must match the number of elements in the variant we’re matching.
[bookmark: _Toc508287980]Destructuring References
When the value we’re matching to our pattern contains a reference, we need to destructure the reference from the value, which we can do can by specifying a & in the pattern. Doing soThis lets us get a variable holding the value that the reference points to rather than getting a variable that holds the reference.
This technique is especially useful in closures where we have iterators that iterate over references, but we want to use the values in the closure rather than the references.
The example in Listing 18-16 iterates over references to Point instances in a vector, and destructures both the reference and the struct so we can perform calculations on the x and y values easily:
let points = vec![
 Point { x: 0, y: 0 },
 Point { x: 1, y: 5 },
 Point { x: 10, y: -3 },
];

let sum_of_squares: i32 = points
 .iter()
 .map(|&Point { x, y }| x * x + y * y)
 .sum();
Listing 18-16: Destructuring a reference to a struct into the struct field values
This code gives us the variable sum_of_squares holding the value 135, which is the result from of squaring the x value and the y value, adding those together, and then adding the result for each Point in the points vector to get one number.
If we had not included the & in &Point { x, y } we’d get a type mismatch error, because iter would then iterate over references to the items in the vector rather than the actual values themselves. The error would look like this:
error[E0308]: mismatched types
 -->
 |
14 | .map(|Point { x, y }| x * x + y * y)
 | ^^^^^^^^^^^^ expected &Point, found struct `Point`
 |
 = note: expected type `&Point`
 found type `Point`
This error tells usindicates that Rust was expecting our closure to match &Point, but we tried to match directly to a Point value, and not a reference to a Point.
[bookmark: _Toc508287981]Destructuring Structs and Tuples
We can mix, match, and nest destructuring patterns in even more complex ways. The followingHere’s an example ofshows a complicated destructure, where we nest structs and tuples inside a tuple, and destructure all the primitive values out:
let ((feet, inches), Point {x, y}) = ((3, 10), Point { x: 3, y: -10 });
This code lets us break complex types into their component parts so that we can use the values we’re interested in separately.
Destructuring with patterns is a convenient way to use pieces of values, such as the value from each field in a struct, separately from each other.
[bookmark: _Toc508287982]Ignoring Values in a Pattern
WeYou’ve seen that it’s sometimes useful to ignore values in a pattern, such as in the last arm of a match , to give uset a catch-all that doesn’t actually do anything, but does account for all remaining possible values. There are a few ways to ignore entire values or parts of values in a pattern: using the _ pattern (which weyou’ve seen), using the _ pattern within another pattern, using a name that starts with an underscore, or using .. to ignore remaining parts of a value. Let’s explore how and why to do use each of these patterns.
[bookmark: _Toc508287983]Ignoring an Entire Value with _
We’ve used the underscore _ as a wildcard pattern that will match any value but not bind to the value. WhileAlthough the underscore _ pattern is especially useful as the last arm in a match expression, we can use it in any pattern, including function parameters, as shown in Listing 18-17:
Filename: src/main.rs
fn foo(_: i32, y: i32) {
 println!("This code only uses the y parameter: {}", y);
}

fn main() {
 foo(3, 4);
}
Listing 18-17: Using _ in a function signature
This code will completely ignore the value passed as the first argument, 3, and will print out This code only uses the y parameter: 4.
In most cases when you no longer need a particular function parameter, you would change the signature so it doesn’t include the unused parameter. Ignoring a function parameter can be especially useful in some cases ,: for example, such as when implementing a trait, when you need a certain type signature but the function body in your implementation doesn’t need one of the parameters. The compiler will then not warn about unused function parameters, as it would if weyou used a name instead.
[bookmark: _Toc508287984]Ignoring Parts of a Value with a Nested _
We can also use _ inside of another pattern to ignore just part of a value: for example , when we only want to test for part of a value but have no use for the other parts in the corresponding code we want to run. Listing 18-18 shows code responsible for managing a setting’s a value. The business requirements are that the user should not be allowed to overwrite an existing customization of a setting, but can unset the setting and can give the setting a value if it is currently unset.
let mut setting_value = Some(5);
let new_setting_value = Some(10);

match (setting_value, new_setting_value) {
 (Some(_), Some(_)) => {
 println!("Can't overwrite an existing customized value");
 }
 _ => {
 setting_value = new_setting_value;
 }
}

println!("setting is {:?}", setting_value);
Listing 18-18: Using an underscore within patterns that match Some variants when we don’t need to use the value inside the Some
 This code will print Can't overwrite an existing customized value and then setting is Some(5). In the first match arm, we don’t need to match on or use the values inside either Some variant, but we do need to test for the case when both setting_value and new_setting_value are the Some variant. In that case, we print out why we’re not changing setting_value, and it doesn’t get changed.
In all other cases (if either setting_value or new_setting_value are None), expressed by the _ pattern in the second arm, we do want to allow new_setting_value to become setting_value.
We can also use underscores in multiple places within one pattern to ignore particular values,. as shown in Listing 18-19 shows where we’rean example of ignoring the second and fourth values in a tuple of five items:
let numbers = (2, 4, 8, 16, 32);

match numbers {
 (first, _, third, _, fifth) => {
 println!("Some numbers: {}, {}, {}", first, third, fifth)
 },
}
Listing 18-19: Ignoring multiple parts of a tuple
This code will print Some numbers: 2, 8, 32, and the values 4 and 16 will be ignored.
[bookmark: _Toc508287985]Ignoring an Unused Variable by Starting Iits Name with an Underscore
If you create a variable but don’t use it anywhere, Rust will usually issue a warning, sinc because that could be a bug. But sSometimes, though, it’s useful to create a variable you won’t use yet, likesuch as when if you’re prototyping or just starting a project. In this situation, you’ll want to can tell Rust not to warn you about the unused variable, which you can do by starting the name of the variable with an underscore. In Listing 18-20, we create two unused variables, but when we run this code, we should only get a warning about one of them.:
src/main.rs
fn main() {
 let _x = 5;
 let y = 10;
}
Listing 18-20: Starting a variable name with an underscore in order to avoidnot getting unused variable warnings
Here we get a warning about not using the variable y, but we don’t get a warningnot about not using the variable preceded by the underscore.
Note that there is a subtle difference between using only _ and using a name that starts with an underscore. The syntaxSomething like _x still binds the value to the variable, whereas _ doesn’t bind at all. To show a case where this distinction matters, Listing 18-21 will provide us with an error.:
let s = Some(String::from("Hello!"));

if let Some(_s) = s {
 println!("found a string");
}

println!("{:?}", s);
Listing 18-21: An unused variable starting with an underscore still binds the value, which mayight take ownership of the value
We’ll receive an error because the s value will still be moved into _s, which prevents us from using s again. However, Uusing the underscore by itself, however, doesn’t ever bind to the value. Listing 18-22 will compile without any errors sincbecause s does no’t get moved into _:
let s = Some(String::from("Hello!"));

if let Some(_) = s {
 println!("found a string");
}

println!("{:?}", s);
Listing 18-22: Using an underscore does not bind the value
This code works just fine; because we never bind s to anything,; it isn’t moved.
[bookmark: _Toc508287986]Ignoring Remaining Parts of a Value with ..
With values that have many parts, we can use the .. syntax to use only a few parts and ignore the rest,, while and avoiding having to list underscores for each ignored value. The .. pattern will ignores any parts of a value that we haven’t explicitly matched in the rest of the pattern. In Listing 18-23, we have a Point struct that holds a coordinate in three- dimensional space. In the match expression, we want to operate only on the x coordinate and ignore the values in the y and z fields:
struct Point {
 x: i32,
 y: i32,
 z: i32,
}

let origin = Point { x: 0, y: 0, z: 0 };

match origin {
 Point { x, .. } => println!("x is {}", x),
}
Listing 18-23: Ignoring all fields of a Point except for x by using ..
We list the x value, and then just include the .. pattern. This is quicker than having to list out y: _ and z: _, particularly when we’re working with structs that have lots of fields, in situations where only one or two fields are relevant.
The syntax .. will expand to as many values as it needs to be. Listing 18-24 shows how toa use of .. with a tuple:
src/main.rs
fn main() {
 let numbers = (2, 4, 8, 16, 32);

 match numbers {
 (first, .., last) => {
 println!("Some numbers: {}, {}", first, last);
 },
 }
}
Listing 18-24: Matching only the first and last values in a tuple and ignoring all other values
In this codeHere, we have the first and last value are matched with first and last. The .. will match and ignore everything in the middle.
However, Uusing .. must be unambiguous, however. If it is not unclear which values are intended for matching, and which toshould be ignored, Rust will error. Listing 18-25 shows an example of using .. ambiguously, so itthat will not compile due to this ambiguity:
src/main.rs
fn main() {
 let numbers = (2, 4, 8, 16, 32);

 match numbers {
 (.., second, ..) => {
 println!("Some numbers: {}", second)
 },
 }
}
Listing 18-25: An attempt to use .. in an ambiguous way that is ambiguous
IfWhen we compile this example, we get this error:
error: `..` can only be used once per tuple or tuple struct pattern
 --> src/main.rs:5:22
 |
5 | (.., second, ..) => {
 | ^^
It’s not impossible for Rust to determine how many values in the tuple to ignore before matching a value with second, and then how many further values to ignore thereafter that. This code could mean that we intendwant to ignore 2, bind second to 4, and then ignore 8, 16, and 32; or we could mean that we want to ignore 2 and 4, bind second to 8, and then ignore 16 and 32,; and so forth. The variable name second doesn’t mean anything special to Rust, so we get a compiler error sincbecause using .. in two places like this is ambiguous.
[bookmark: _Toc508287987]ref and ref mut to Create References in Patterns
Here we’ll Let’s look at using ref to make references so ownership of the values isn’t moved to variables in the pattern. Usually, when you match against a pattern, the variables introduced by the pattern are bound to a value. Rust’s ownership rules mean the value will be moved into the match, or wherever you’re using the pattern. Listing 18-26 shows an example of a match that has a pattern with a variable, and then usage of the entire value in the println!() statement later, after the match. This code will fail to compile because ownership of part of the robot_name value is transferred to the name variable in the pattern of the first match arm:
let robot_name = Some(String::from("Bors"));

match robot_name {
 Some(name) => println!("Found a name: {}", name),
 None => (),
}

println!("robot_name is: {:?}", robot_name);
Listing 18-26: Creating a variable in a match arm pattern takes ownership of the value
Because ownership of part of robot_name has been moved to name, we can no longer use robot_name in the println! after the match because robot_name no longer has ownership.
 In order tTo fix this code, we want to make the Some(name) pattern borrow that part of robot_name rather than taking ownership. WeYou’ve already seen that, outside of patterns, the way to borrow a value is to create a reference using &, so you mayight think the solution is changing Some(name) to Some(&name).
However, weas you saw in the section “Destructuring to Break Apart Values” sectionon page XX, that the syntax & in patterns does not create a reference, but matches an existing reference in the value. Because & already has that meaning in patterns, we can’t use & to create a reference in a pattern.
Instead, to create a reference in a pattern, we do this by useing the ref keyword before the new variable, as shown in Listing 18-27:
prod: check & fill xref (this chapter)
let robot_name = Some(String::from("Bors"));

match robot_name {
 Some(ref name) => println!("Found a name: {}", name),
 None => (),
}

println!("robot_name is: {:?}", robot_name);
Listing 18-27: Creating a reference so that a pattern variable does not take ownership of a value
This example will compile because the value in the Some variant in robot_name is not moved into the match; the match only took a reference to the data in robot_name rather than moving it.
To create a mutable reference so that we a’re able to mutate a value matched in a pattern, we use ref mut instead of &mut,. The reason is, again, that because in patterns, the latter is for matching existing mutable references, not creating new ones. Listing 18-28 shows an example of a pattern creating a mutable reference:
let mut robot_name = Some(String::from("Bors"));

match robot_name {
 Some(ref mut name) => *name = String::from("Another name"),
 None => (),
}

println!("robot_name is: {:?}", robot_name);
Listing 18-28: Creating a mutable reference to a value as part of a pattern using ref mut
This example will compile and print robot_name is: Some("Another name"). Because name is a mutable reference, we need to dereference within the match arm code using the * operator in order to be able to mutate the value.
[bookmark: _Toc508287988]Extra Conditionals with Match Guards
A match guard is an additional if condition specified after the pattern in a match arm that must also match, alongside with the pattern matching, in order for that arm to be chosen. Match guards are useful for expressing more complex ideas than a pattern alone allows.
The condition can use variables created in the pattern. Listing 18-29 shows a match where the first arm has the pattern Some(x) and then also has a match guard of if x < 5:
let num = Some(4);

match num {
 Some(x) if x < 5 => println!("less than five: {}", x),
 Some(x) => println!("{}", x),
 None => (),
}
Listing 18-29: Adding a match guard to a pattern
This example will print less than five: 4. When num is compared to the pattern in the first arm, it matches, sincbecause Some(4) matches Some(x). Then the match guard checks to see ifwhether the value in x is less than 5, and because it is, the first arm is selected.
 If num had been Some(10) instead, the match guard in the first arm would have been false sincbecause 10 is not less than 5. Rust would then go to the second arm, which would match because the second arm does no’t have a match guard and therefore matches any Some variant.
There’ is no way to express the if x < 5 condition within a pattern, so the match guard has givens us the ability to express this logic.
In Listing 18-11, we mentioned that we could use match guards to solve our pattern shadowing problem. Recall that, where a new variable was created inside the pattern in the match expression instead of using the variable outside the match. That new variable meant we couldn’t test against the value of the outer variable. Listing 18-30 shows how we can use a match guard to fix this problem:
src/main.rs
fn main() {
 let x = Some(5);
 let y = 10;

 match x {
 Some(50) => println!("Got 50"),
 Some(n) if n == y => println!("Matched, n = {:?}", n),
 _ => println!("Default case, x = {:?}", x),
 }

 println!("at the end: x = {:?}, y = {:?}", x, y);
}
Listing 18-30: Using a match guard to test for equality with an outer variable
This code will now print Default case, x = Some(5). The pattern in the second match arm is doesno’t introduceing a new variable y that would shadow the outer y, meaning we can use the outer y in the match guard. Instead of specifying the pattern as Some(y), which would have shadowed the outer y, we specify Some(n). This creates a new variable n that does no’t shadow anything because there is no n variable outside the match.
TIn the match guard , if n == y, this is not a pattern and therefore does no’t introduce new variables. This y is the outer y rather than a new shadowed y, and we can look for a value that has the same value as the outer y by comparing n to y.	Comment by Liz Chadwick: Au: missing word here? “if n==y, it means this is not a pattern”? 	Comment by Carol Nichols: “if” is part of the code, I’ve fixed and reworded
You can also use the or operator | in a match guard to specify multiple patterns,; and the match guard condition will apply to all of the patterns. Listing 18-31 shows the precedence of combining a match guard with a pattern that uses |. The important part of this example is that the if y match guard applies to 4, 5, and 6, even though it might look like if y only applies to 6:
let x = 4;
let y = false;

match x {
 4 | 5 | 6 if y => println!("yes"),
 _ => println!("no"),
}
Listing 18-31: Combining multiple patterns with a match guard
The match condition states that the arm only matches if the value of x is equal to 4, 5, or 6 and if y is true. When this code runs, is that the pattern of the first arm matches because x is 4, but the match guard if y is false, so the first arm is not chosen. The code moves on to the second arm, which does match, and this program prints no.
Thise reason is becausethat the if condition applies to the whole pattern 4 | 5 | 6, and not only to the last value 6. In other words, the precedence of a match guard in relation to a pattern behaves like this:
 (4 | 5 | 6) if y => ...
rather than this:
4 | 5 | (6 if y) => ...
After running the code, the precedence behavior is evidentWe can tell this from what happened when we ran the code: if the match guard was only applied to the final value in the list of values specified using the | operator, the arm would have matched and the program would have printed yes.
[bookmark: _Toc508287989]@ Bindings
The at operator, @, lets us create a variable that holds a value at the same time we’re testing that value to see ifwhether it matches a pattern. Listing 18-32 shows an example where we want to test that a Message::Hello id field is within the range 3...7. bBut we also wantbe able to bind the value to the variable id_variable so that we can use it in the code associated with the arm. We could have named this variable simply id, the same as the field, but for the purposes of this example we’llve chosen to give it use a different name:
enum Message {
 Hello { id: i32 },
}

let msg = Message::Hello { id: 5 };

match msg {
 Message::Hello { id: id_variable @ 3...7 } => {
 println!("Found an id in range: {}", id_variable)
 },
 Message::Hello { id: 10...12 } => {
 println!("Found an id in another range")
 },
 Message::Hello { id } => {
 println!("Found some other id: {}", id)
 },
}
Listing 18-32: Using @ to bind to a value in a pattern while also testing it
This example will print Found an id in range: 5. By specifying id_variable @ before the range 3...7, we’re capturing whatever value matched the range while also testing that the value matched the range pattern.
In the second arm where we only have a range specified in the pattern, the code associated with the arm doesn’t have a variable that contains the actual value of the id field. The id field’s value could have been 10, 11, or 12, but the code that goes with that pattern doesn’t know which it is. The pattern code isn’t able to use the value from the id field, because we haven’t saved the id value in a variable .
In the last arm where we’ve specified a variable without a range, we do have the value available to use in the arm’s code in a variable named id . The reason is thatbecause we’ve used the struct field shorthand syntax. But wWe haven’t applied any test to the value in the id field in this arm, though, like we did with the first two arms: any value would match this pattern.
Using @ lets us test a value and save it in a variable within one pattern.
[bookmark: summary][bookmark: _Toc508287990]Summary
[bookmark: _GoBack]Rust’s Ppatterns are a useful feature are very useful in of Rust that they help distinguish between different kinds of data. When used in match expressionstatements, Rust makes ensures your patterns cover every possible value, or your program will notwon’t compile. Patterns in let statements and function parameters make those constructs more powerfuluseful, enabling the destructuring of values into smaller parts at the same time as assigning to variables. We can create simple or complex patterns to suit our needs.
Nowext, for the penultimate chapter of the book, let’s takewe’ll a look at some advanced aspectsparts of a variety of Rust’s features.

