NCO User’s Guide

A suite of netCDF operators
Edition 4.3.4, for NCO Version 4.3.4
July 2013

by Charlie Zender
Department of Earth System Science
University of California, Irvine

Copyright (© 1995-2013 Charlie Zender.

This is the first edition of the NCO User’s Guide,
and is consistent with version 2 of ‘texinfo.tex’.

Published by Charlie Zender
Department of Earth System Science
3200 Croul Hall

University of California, Irvine
Irvine, CA 92697-3100 USA

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the Free
Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. The license is available online at http://www.gnu.org/copyleft/fdl.html

The original author of this software, Charlie Zender, wants to improve it with the help of
your suggestions, improvements, bug-reports, and patches.

Charlie Zender <surname at uci dot edu> (yes, my surname is zender)

Department of Earth System Science

3200 Croul Hall

University of California, Irvine

Trvine, CA 92697-3100

http://www.gnu.org/copyleft/fdl.html

Foreword 1

Foreword

NCO is the result of software needs that arose while I worked on projects funded by NCAR,
NASA, and ARM. Thinking they might prove useful as tools or templates to others, it
is my pleasure to provide them freely to the scientific community. Many users (most of
whom I have never met) have encouraged the development of NCO. Thanks espcially to Jan
Polcher, Keith Lindsay, Arlindo da Silva, John Sheldon, and William Weibel for stimulating
suggestions and correspondence. Your encouragment motivated me to complete the NCO
User’s Guide. So if you like NCO, send me a note! I should mention that NCO is not
connected to or officially endorsed by Unidata, ACD, ASP, CGD, or Nike.

Charlie Zender
May 1997
Boulder, Colorado

Major feature improvements entitle me to write another Foreword. In the last five years
a lot of work has been done to refine NCO. NCO is now an open source project and appears
to be much healthier for it. The list of illustrious institutions that do not endorse NCO
continues to grow, and now includes UCI.

Charlie Zender
October 2000
Irvine, California

The most remarkable advances in NCO capabilities in the last few years are due to con-
tributions from the Open Source community. Especially noteworthy are the contributions
of Henry Butowsky and Rorik Peterson.

Charlie Zender
January 2003
Irvine, California

NCO was generously supported from 2004-2008 by US National Science Foundation
(NSF) grant 1IS-0431203. This support allowed me to maintain and extend core NCO code,
and others to advance NCO in new directions: Gayathri Venkitachalam helped implement

http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=0431203

2 NCO 4.3.4 User’s Guide

MPI; Harry Mangalam improved regression testing and benchmarking; Daniel Wang de-
veloped the server-side capability, SWAMP; and Henry Butowsky, a long-time contributor,
developed ncap2. This support also led NCO to debut in professional journals and meetings.
The personal and professional contacts made during this evolution have been immensely
rewarding.

Charlie Zender
March 2008
Grenoble, France

The end of the NSF SEI grant in August, 2008 curtailed NCO development. Fortunately
we could justify supporting Henry Butowsky on other research grants until May, 2010 while
he developed the key ncap2 features used in our climate research. And recentely the NASA
ACCESS program commenced funding NCO support for netCDF4 group functionality.
Thus NCO will grow and evade bit-rot for the foreseeable future.

On a personal level, I continue to receive with gratitude the thanks of NCO users at
nearly every scientific meeting I attend. People introduce themselves, shake my hand and
extol, sometimes rather effusively, these time-saving tools. These exchanges lighten me like
anti-gravity. Sometimes I daydream how many hours NCO has turned from grunt work to
productive research, or from research into early happy hours. It’s a cool feeling.

Charlie Zender
2012
Irvine, California

Summary 3

Summary

This manual describes NCO, which stands for netCDF Operators. NCO is a suite of programs
known as operators. Each operator is a standalone, command line program executed at
the shell-level like, e.g., 1s or mkdir. The operators take netCDF files (including HDF5
files constructed using the netCDF API) as input, perform an operation (e.g., averaging or
hyperslabbing), and produce a netCDF file as output. The operators are primarily designed
to aid manipulation and analysis of data. The examples in this documentation are typical
applications of the operators for processing climate model output. This stems from their
origin, though the operators are as general as netCDF itself.

Chapter 1: Introduction 5)

1 Introduction

1.1 Availability

The complete NCO source distribution is currently distributed as a compressed tarfile from
http://sf.net/projects/nco and from http://dust.ess.uci.edu/nco/nco.tar.gz.
The compressed tarfile must be uncompressed and untarred before building NCO. Uncom-
press the file with ‘gunzip nco.tar.gz’. Extract the source files from the resulting tarfile
with ‘tar -xvf nco.tar’. GNU tar lets you perform both operations in one step with ‘tar
-xvzf nco.tar.gz’.

The documentation for NCO is called the NCO User’s Guide. The User’s Guide is
available in Postscript, HTML, DVI, TgXinfo, and Info formats. These formats are in-
cluded in the source distribution in the files ‘nco.ps’, ‘nco.html’, ‘nco.dvi’, ‘nco.texi’,
and ‘nco.info*’; respectively. All the documentation descends from a single source file,
‘nco.texi’t. Hence the documentation in every format is very similar. However, some of
the complex mathematical expressions needed to describe ncwa can only be displayed in
DVI, Postscript, and PDF formats.

A complete list of papers and publications on/about NCO is available on the NCO home-
page. Most of these are freely available. The primary refereed publications are ZeM06 and
Zen08. These contain copyright restrictions which limit their redistribution, but they are
freely available in preprint form from the NCO.

If you want to quickly see what the latest improvements in NCO are (without downloading
the entire source distribution), visit the NCO homepage at http://nco.sf.net. The HTML
version of the User’s Guide is also available online through the World Wide Web at URL
http://nco.sf.net/nco.html. To build and use NCO, you must have netCDF installed.
The netCDF homepage is http://www.unidata.ucar.edu/packages/netcdf.

New NCO releases are announced on the netCDF list and on the nco-announce mailing
list http://1lists.sf.net/mailman/listinfo/nco-announce.

1.2 Operating systems compatible with NCO

NCO has been successfully ported and tested and is known to work on the following 32- and
64-bit platforms: IBM AIX 4.x, 5.x, FreeBSD 4.x, GNU/Linux 2.x, LinuxPPC, LinuxAlpha,
LinuxARM, LinuxSparc64, SGI IRIX 5.x and 6.x, MacOS X 10.x, NEC Super-UX 10.x, DEC
OSF, Sun SunOS 4.1.x, Solaris 2.x, Cray UNICOS 8.x-10.x, and MS Windows95 and all later
versions. If you port the code to a new operating system, please send me a note and any
patches you required.

The major prerequisite for installing NCO on a particular platform is the successful,
prior installation of the netCDF library (and, as of 2003, the UDUnits library). Unidata
has shown a commitment to maintaining netCDF and UDUnits on all popular UNIX plat-
forms, and is moving towards full support for the Microsoft Windows operating system (OS).

I To produce these formats, ‘nco.texi’ was simply run through the freely available programs texi2dvi,

dvips, texi2html, and makeinfo. Due to a bug in TEX, the resulting Postscript file, ‘nco.ps’, contains
the Table of Contents as the final pages. Thus if you print ‘nco.ps’, remember to insert the Table of
Contents after the cover sheet before you staple the manual.

http://sf.net/projects/nco
http://dust.ess.uci.edu/nco/nco.tar.gz
http://nco.sf.net
http://nco.sf.net/nco.html
http://www.unidata.ucar.edu/packages/netcdf
http://lists.sf.net/mailman/listinfo/nco-announce

6 NCO 4.3.4 User’s Guide

Given this, the only difficulty in implementing NCO on a particular platform is standard-
ization of various C-language API system calls. NCO code is tested for ANSI compliance
by compiling with C99 compilers including those from GNU (‘gcc -std=c99 -pedantic
-D_BSD_SOURCE -D_POSIX_SOURCE’ -Wall)?, Comeau Computing (‘como --c99’), Cray
(‘cc’), HP/Compaq/DEC (‘cc’), IBM (‘xlc -c -qlanglvl=extc99’), Intel (‘icc -std=c99’),
LLVM (‘clang’), NEC (‘cc’), PathScale (QLogic) (‘pathcc -std=c99’), PGI (‘pgcc -c9x’),
SGI (‘cc =c99’), and Sun (‘cc’). NCO (all commands and the libnco library) and
the C++ interface to netCDF (called libnco_c++) comply with the ISO C++ stan-
dards as implemented by Comeau Computing (‘como’), Cray (‘CC’), GNU (‘g++ -Wall’),
HP/Compaq/DEC (‘cxx’), IBM (‘x1C’), Intel (‘icc’), Microsoft (‘MVS’), NEC (‘c++’), Path-
Scale (Qlogic) (‘pathCC’), PGI (‘pgCC’), SGI (‘CC -LANG:std’), and Sun (‘CC -LANG:std’).
See ‘nco/bld/Makefile’ and ‘nco/src/nco_c++/Makefile.old’ for more details and exact
settings.

Until recently (and not even yet), ANSI-compliant has meant compliance with the 1989
ISO C-standard, usually called C89 (with minor revisions made in 1994 and 1995). C89 lacks
variable-size arrays, restricted pointers, some useful printf formats, and many mathemat-
ical special functions. These are valuable features of C99, the 1999 ISO C-standard. NCO
is C99-compliant where possible and C89-compliant where necessary. Certain branches in
the code are required to satisfy the native SGI and SunOS C compilers, which are strictly
ANST C89 compliant, and cannot benefit from C99 features. However, C99 features are fully
supported by modern AIX, GNU, Intel, NEC, Solaris, and UNICOS compilers. NCO requires
a C99-compliant compiler as of NCO version 2.9.8, released in August, 2004.

The most time-intensive portion of NCO execution is spent in arithmetic operations,
e.g., multiplication, averaging, subtraction. These operations were performed in Fortran
by default until August, 1999. This was a design decision based on the relative speed of
Fortran-based object code vs. C-based object code in late 1994. C compiler vectorization ca-
pabilities have dramatically improved since 1994. We have accordingly replaced all Fortran
subroutines with C functions. This greatly simplifies the task of building NCO on nominally
unsupported platforms. As of August 1999, NCO built entirely in C by default. This al-
lowed NCO to compile on any machine with an ANSI C compiler. In August 2004, the first
C99 feature, the restrict type qualifier, entered NCO in version 2.9.8. C compilers can
obtain better performance with C99 restricted pointers since they inform the compiler when
it may make Fortran-like assumptions regarding pointer contents alteration. Subsequently,
NCO requires a C99 compiler to build correctly?.

In January 2009, NCO version 3.9.6 was the first to link to the GNU Scientific Library
(GSL). GSL must be version 1.4 or later. NCO, in particular ncap2, uses the GSL spe-
cial function library to evaluate geoscience-relevant mathematics such as Bessel functions,
Legendre polynomials, and incomplete gamma functions (see Section 4.1.19 [GSL special
functions], page 111).

In June 2005, NCO version 3.0.1 began to take advantage of C99 mathematical spe-
cial functions. These include the standarized gamma function (called tgamma() for “true

2 The ‘_BSD_SOURCE’ token is required on some Linux platforms where gcc dislikes the network header

files like ‘netinet/in.h’).
3 NCO may still build with an ANSI or ISO C89 or C94/95-compliant compiler if the C pre-processor
undefines the restrict type qualifier, e.g., by invoking the compiler with ‘-Drestrict=’’".

Chapter 1: Introduction 7

gamma”). NCO automagically takes advantage of some GNU Compiler Collection (GCC)
extensions to ANSI C.

As of July 2000 and NCO version 1.2, NCO no longer performs arithmetic operations in
Fortran. We decided to sacrifice executable speed for code maintainability. Since no objec-
tive statistics were ever performed to quantify the difference in speed between the Fortran
and C code, the performance penalty incurred by this decision is unknown. Supporting
Fortran involves maintaining two sets of routines for every arithmetic operation. The USE_
FORTRAN_ARITHMETIC flag is still retained in the ‘Makefile’. The file containing the Fortran
code, ‘nco_fortran.F’, has been deprecated but a volunteer (Dr. Frankenstein?) could res-
urrect it. If you would like to volunteer to maintain ‘nco_fortran.F’ please contact me.

1.2.1 Compiling NCO for Microsoft Windows 0S

NCO has been successfully ported and tested on most Microsoft Windows operating sys-
tems including: XP SP2/Vista/7. Support is provided for compiling either native Win-
dows executables, using the Microsoft Visual Studio 2010 Compiler, or with Cygwin, the
UNIX-emulating compatibility layer with the GNU toolchain. The switches necessary to
accomplish both are included in the standard distribution of NCO.

Using Microsoft Visual Studio (MVS), one must build NCO with the C++ compiler since
MVS does not support C99. Qt, a convenient integrated development environment, was
used to convert the project files to MVS format. The Qt files themselves are distributed in
the ‘nco/qt’ directory.

Using the freely available Cygwin (formerly gnu-win32) development environment?, the
compilation process is very similar to installing NCO on a UNIX system. Set the PVM_ARCH
preprocessor token to WIN32. Note that defining WIN32 has the side effect of disabling
Internet features of NCO (see below). NCO should now build like it does on UNIX.

The least portable section of the code is the use of standard UNIX and Internet protocols
(e.g., ftp, rcp, scp, sftp, getuid, gethostname, and header files ‘<arpa/nameser.h>’
and ‘<resolv.h>’). Fortunately, these UNIX-y calls are only invoked by the single NCO
subroutine which is responsible for retrieving files stored on remote systems (see Section 3.7
[Remote storage], page 28). In order to support NCO on the Microsoft Windows platforms,
this single feature was disabled (on Windows OS only). This was required by Cygwin 18.x—
newer versions of Cygwin may support these protocols (let me know if this is the case). The
NCO operators should behave identically on Windows and UNIX platforms in all other
respects.

1.3 Symbolic Links

NCO relies on a common set of underlying algorithms. To minimize duplication of source
code, multiple operators sometimes share the same underlying source. This is accomplished
by symbolic links from a single underlying executable program to one or more invoked
executable names. For example, ncea and ncrcat are symbolically linked to the ncra

4 The Cygwin package is available from
http://sourceware.redhat.com/cygwin
Currently, Cygwin 20.x comes with the GNU C/C++ compilers (gcc, g++. These GNU compilers may be
used to build the netCDF distribution itself.

8 NCO 4.3.4 User’s Guide

executable. The ncra executable behaves slightly differently based on its invocation name
(i.e., ‘argv[0]’), which can be ncea, ncra, or ncrcat. Logically, these are three different
operators that happen to share the same executable.

For historical reasons, and to be more user friendly, multiple synonyms (or pseudonyms)
may refer to the same operator invoked with different switches. For example, ncdiff is
the same as ncbo and ncpack is the same as ncpdqg. We implement the symbolic links and
synonyms by the executing the following UNIX commands in the directory where the NCO
executables are installed.

In -s -f ncbo ncdiff # ncbo --op_typ=’+’

In -s -f ncra ncecat # ncra --pseudonym=’ncecat’
In -s -f ncra ncrcat # ncra --pseudonym=’ncrcat’
In -s -f ncbo ncadd # ncbo --op_typ=’+’

In -s -f ncbo ncsubtract # ncbo --op_typ=’-’

In -s -f ncbo ncmultiply # ncbo --op_typ=’*’

1n -s -f ncbo ncdivide # ncbo --op_typ=’/’

In -s -f ncpdq ncpack # ncpdq

In -s -f ncpdq ncunpack # ncpdq --unpack

NB: Cygwin executable (and 1link) names have an ’.exe’ suffix, e.g.,
In -s -f ncbo.exe ncdiff.exe

The imputed command called by the link is given after the comment. As can be seen,
some these links impute the passing of a command line argument to further modify the
behavior of the underlying executable. For example, ncdivide is a pseudonym for ncbo
—-op_typ="/".

1.4 Libraries

Like all executables, the NCO operators can be built using dynamic linking. This reduces
the size of the executable and can result in significant performance enhancements on mul-
tiuser systems. Unfortunately, if your library search path (usually the LD_LIBRARY_PATH
environment variable) is not set correctly, or if the system libraries have been moved, re-
named, or deleted since NCO was installed, it is possible NCO operators will fail with a
message that they cannot find a dynamically loaded (aka shared object or ‘.so’) library.
This will produce a distinctive error message, such as ‘1d.so.1: /usr/local/bin/ncea:
fatal: libsunmath.so.1: can’t open file: errno=2’. If you received an error message
like this, ask your system administrator to diagnose whether the library is truly missing®,
or whether you simply need to alter your library search path. As a final remedy, you may
re-compile and install NCO with all operators statically linked.

1.5 netCDF2/3/4 and HDF4/5 Support

netCDF version 2 was released in 1993. NCO (specifically ncks) began soon after this
in 1994. netCDF 3.0 was released in 1996, and we were eager to reap the performance

5 The 1dd command, if it is available on your system, will tell you where the executable is looking for each
dynamically loaded library. Use, e.g., 1dd ‘which ncea‘.

Chapter 1: Introduction 9

advantages of the newer netCDF implementation. One netCDF3 interface call (nc_ing_
libvers) was added to NCO in January, 1998, to aid in maintainance and debugging. In
March, 2001, the final conversion of NCO to netCDF3 was completed (coincidentally on
the same day netCDF 3.5 was released). NCO versions 2.0 and higher are built with the
-DNO_NETCDF_2 flag to ensure no netCDF2 interface calls are used.

However, the ability to compile NCO with only netCDF2 calls is worth maintaining
because HDF version 4° (available from HDF) supports only the netCDF2 library calls (see
http://hdf .ncsa.uiuc.edu/UG41r3_html/SDS_SD.fm12.html#47784). Note that there
are multiple versions of HDF. Currently HDF version 4.x supports netCDF2 and thus NCO
version 1.2.x. If NCO version 1.2.x (or earlier) is built with only netCDF2 calls then all NCO
operators should work with HDF4 files as well as netCDF files”. The preprocessor token
NETCDF2_0ONLY exists in NCO version 1.2.x to eliminate all netCDF3 calls. Only versions
of NCO numbered 1.2.x and earlier have this capability. The NCO 1.2.x branch will be
maintained with bugfixes only (no new features) until HDF begins to fully support the
netCDF3 interface (which is employed by NCO 2.x). If, at compilation time, NETCDF2_0NLY
is defined, then NCO version 1.2.x will not use any netCDF3 calls and, if linked properly, the
resulting NCO operators will work with HDF4 files. The ‘Makefile’ supplied with NCO 1.2.x
is written to simplify building in this HDF capability. When NCO is built with make HDF4=Y,
the ‘Makefile’ sets all required preprocessor flags and library links to build with the HDF4
libraries (which are assumed to reside under /usr/local/hdf4, edit the ‘Makefile’ to suit
your installation).

HDF version 5 became available in 1999, but did not support netCDF (or, for that
matter, Fortran) as of December 1999. By early 2001, HDF5 did support Fortran90. In
2004, Unidata and NCSA began a project to implement the HDF5 features necessary to
support the netCDF API. NCO version 3.0.3 added support for reading/writing netCDF4-
formatted HDF5 files in October, 2005. See Section 3.9 [Selecting Output File Format],
page 33 for more details.

HDF support for netCDF was completed with HDF5 version version 1.8 in 2007. The
netCDF front-end that uses this HDF5 back-end was completed and released soon after as
netCDF version 4. Download it from the netCDF4 website.

NCO version 3.9.0, released in May, 2007, added support for all netCDF4 atomic data
types except NC_STRING. Support for NC_STRING, including ragged arrays of strings, was
finally added in version 3.9.9, released in June, 2009. Support for additional netCDF4
features has been incremental. We add one netCDF4 feature at a time. You must build
NCO with netCDF4 to obtain this support.

The main netCDF4 features that NCO currently supports are the new atomic data
types, Lempel-Ziv compression (deflation), and chunking. The new atomic data types are
NC_UBYTE, NC_USHORT, NC_UINT, NC_INT64, and NC_UINT64. Eight-byte integer support is
an especially useful improvement from netCDF3. All NCO operators support these types,

6 The Hierarchical Data Format, or HDF, is another self-describing data format similar to, but more
elaborate than, netCDF.

" One must link the NCO code to the HDF4 MFHDF library instead of the usual netCDF library. Does
‘MF’ stands for Mike Folk? Perhaps. In any case, the MFHDF library only supports netCDF2 calls. Thus
I will try to keep this capability in NCO as long as it is not too much trouble.

http://hdf.ncsa.uiuc.edu
http://hdf.ncsa.uiuc.edu/UG41r3_html/SDS_SD.fm12.html#47784
http://my.unidata.ucar.edu/content/software/netcdf/netcdf-4

10 NCO 4.3.4 User’s Guide

e.g., ncks copies and prints them, ncra averages them, and ncap2 processes algebraic scripts
with them. ncks prints compression information, if any, to screen.

NCO version 3.9.1 (June, 2007) added support for netCDF4 Lempel-Ziv deflation.
Lempel-Ziv deflation is a lossless compression technique. See Section 3.26 [Deflation],
page 63 for more details.

NCO version 3.9.9 (June, 2009) added support for netCDF4 chunking in ncks and
ncecat. NCO version 4.0.4 (September, 2010) completed support for netCDF4 chunking in
the remaining operators. See Section 3.25 [Chunking], page 60 for more details.

NCO version 4.2.2 (October, 2012) added support for netCDF4 groups in ncks and
ncecat. Group support for these operators was complete (e.g., regular expressions to select
groups and Group Path Editing) as of NCO version 4.2.6 (March, 2013). See Section 3.13
[Group Path Editing], page 40 for more details.

Support for netCDF4 in the first arithmetic operator, ncbo, was introduced in NCO
version 4.3.0 (March, 2013). NCO version 4.3.1 (May, 2013) completed this support and
introduced the first example of automatic group broadcasting. See Section 4.3 [ncbo netCDF
Binary Operator]|, page 138 for more details.

netCDF4-enabled NCO handles netCDF3 files without change. In addition, it automag-
ically handles netCDF4 (HDF5) files: If you feed NCO netCDF3 files, it produces netCDF3
output. If you feed NCO netCDF4 files, it produces netCDF4 output. Use the handy-dandy
‘-4’ switch to request netCDF4 output from netCDF3 input, i.e., to convert netCDF3 to
netCDF4. See Section 3.9 [Selecting Output File Format], page 33 for more details.

As of 2012, netCDF4 is relatively stable software. Problems with netCDF4 and HDF
libraries have mainly been fixed. Binary NCO distributions shipped as RPMs and as debs
have used the netCDF4 library since 2010 and 2011, respectively.

One must often build NCO from source to obtain netCDF4 support. Typically, one
specifies the root of the netCDF4 installation directory. Do this with the NETCDF4_R0OOT
variable. Then use your preferred NCO build mechanism, e.g.,

export NETCDF4_RO0T=/usr/local/netcdf4 # Set netCDF4 location
cd “/nco;./configure --enable-netcdf4 # Configure mechanism -or-
cd “/nco/bld;./make NETCDF4=Y allinone # 01d Makefile mechanism

We carefully track the netCDF4 releases, and keep the netCDF4 atomic type support
and other features working. Our long term goal is to utilize more of the extensive new
netCDF4 feature set. The next major netCDF4 feature we are likely to utilize is parallel
I/O. We will enable this in the MPI netCDF operators.

1.6 Help Requests and Bug Reports

We generally receive three categories of mail from users: help requests, bug reports, and
feature requests. Notes saying the equivalent of "Hey, NCO continues to work great and it
saves me more time everyday than it took to write this note" are a distant fourth.

There is a different protocol for each type of request. The preferred etiquette for all
communications is via NCO Project Forums. Do not contact project members via personal
e-mail unless your request comes with money or you have damaging information about our

Chapter 1: Introduction 11

personal lives. Please use the Forums—they preserve a record of the questions and answers
so that others can learn from our exchange. Also, since NCO is government-funded, this
record helps us provide program officers with information they need to evaluate our project.

Before posting to the NCO forums described below, you might first register your name
and email address with SourceForge.net or else all of your postings will be attributed to
"nobody". Once registered you may choose to "monitor" any forum and to receive (or not)
email when there are any postings including responses to your questions. We usually reply
to the forum message, not to the original poster.

If you want us to include a new feature in NCO, check first to see if that feature is already
on the TODO list. If it is, why not implement that feature yourself and send us the patch?
If the feature is not yet on the list, then send a note to the NCO Discussion forum.

Read the manual before reporting a bug or posting a help request. Sending questions
whose answers are not in the manual is the best way to motivate us to write more docu-
mentation. We would also like to accentuate the contrapositive of this statement. If you
think you have found a real bug the most helpful thing you can do is simplify the problem to
a manageable size and then report it. The first thing to do is to make sure you are running
the latest publicly released version of NCO.

Once you have read the manual, if you are still unable to get NCO to perform a docu-
mented function, submit a help request. Follow the same procedure as described below for
reporting bugs (after all, it might be a bug). That is, describe what you are trying to do,
and include the complete commands (run with ‘-D 5’), error messages, and version of NCO
(with ‘-r’). Post your help request to the NCO Help forum.

If you think you used the right command when NCO misbehaves, then you might have
found a bug. Incorrect numerical answers are the highest priority. We usually fix those
within one or two days. Core dumps and sementation violations receive lower priority.
They are always fixed, eventually.

How do you simplify a problem that reveal a bug? Cut out extraneous variables, di-
mensions, and metadata from the offending files and re-run the command until it no longer
breaks. Then back up one step and report the problem. Usually the file(s) will be very
small, i.e., one variable with one or two small dimensions ought to suffice. Run the operator
with ‘-r’ and then run the command with ‘-D 5’ to increase the verbosity of the debugging
output. It is very important that your report contain the exact error messages and compile-
time environment. Include a copy of your sample input file, or place one on a publically
accessible location, of the file(s). Post the full bug report to the NCO Project buglist.

Build failures
count as bugs. Our limited machine access means we cannot fix all build failures. The
information we need to diagnose, and often fix, build failures are the three files output by
GNU build tools, ‘nco.config.log.${GNU_TRP}.foo0’, ‘nco.configure.${GNU_TRP}.foo’,
and ‘nco.make.${GNU_TRP}.foo’. The file ‘configure.eg’ shows how to produce these
files. Here ${GNU_TRP} is the "GNU architecture triplet", the chip-vendor-OS string re-
turned by ‘config.guess’. Please send us your improvements to the examples supplied in
‘configure.eg’. The regressions archive at http://dust.ess.uci.edu/nco/rgr contains

https://sf.net/account/register.php
file:./TODO
http://sf.net/projects/nco/forums/forum/9829
http://sf.net/projects/nco/forums/forum/9830
http://sf.net/bugs/?group_id=3331
http://dust.ess.uci.edu/nco/rgr

12 NCO 4.3.4 User’s Guide

the build output from our standard test systems. You may find you can solve the build
problem yourself by examining the differences between these files and your own.

Chapter 2: Operator Strategies 13

2 Operator Strategies

2.1 Philosophy

The main design goal is command line operators which perform useful, scriptable operations
on netCDF files. Many scientists work with models and observations which produce too
much data to analyze in tabular format. Thus, it is often natural to reduce and massage
this raw or primary level data into summary, or second level data, e.g., temporal or spatial
averages. These second level data may become the inputs to graphical and statistical pack-
ages, and are often more suitable for archival and dissemination to the scientific community.
NCO performs a suite of operations useful in manipulating data from the primary to the
second level state. Higher level interpretive languages (e.g., IDL, Yorick, Matlab, NCL, Perl,
Python), and lower level compiled languages (e.g., C, Fortran) can always perform any task
performed by NCO, but often with more overhead. NCO, on the other hand, is limited to
a much smaller set of arithmetic and metadata operations than these full blown languages.

Another goal has been to implement enough command line switches so that frequently
used sequences of these operators can be executed from a shell script or batch file. Finally,
NCO was written to consume the absolute minimum amount of system memory required to
perform a given job. The arithmetic operators are extremely efficient; their exact memory
usage is detailed in Section 2.9 [Memory Requirements|, page 20.

2.2 Climate Model Paradigm

NCO was developed at NCAR to aid analysis and manipulation of datasets produced by
General Circulation Models (GCMs). GCM datasets share many features with other gridded
scientific datasets and so provide a useful paradigm for the explication of the NCO operator
set. Examples in this manual use a GCM paradigm because latitude, longitude, time,
temperature and other fields related to our natural environment are as easy to visualize for
the layman as the expert.

2.3 Temporary Output Files

NCO operators are designed to be reasonably fault tolerant, so that a system failure or user-
abort of the operation (e.g., with C-c) does not cause loss of data. The user-specified output-
file is only created upon successful completion of the operation!. This is accomplished by
performing all operations in a temporary copy of output-file. The name of the temporary
output file is constructed by appending .pid<process ID>.<operator name>.tmp to the
user-specified output-file name. When the operator completes its task with no fatal errors,
the temporary output file is moved to the user-specified output-file. This imbues the pro-
cess with fault-tolerance since fatal error (e.g., disk space fills up) affect only the temporary
output file, leaving the final output file not created if it did not already exist. Note the con-
struction of a temporary output file uses more disk space than just overwriting existing files
“in place” (because there may be two copies of the same file on disk until the NCO operation
successfully concludes and the temporary output file overwrites the existing output-file).

! The ncrename and ncatted operators are exceptions to this rule. See Section 4.11 [ncrename netCDF
Renamer], page 173.

14 NCO 4.3.4 User’s Guide

Also, note this feature increases the execution time of the operator by approximately the
time it takes to copy the output-file?. Finally, note this fault-tolerant feature allows the
output-file to be the same as the input-file without any danger of “overlap”.

Over time many “power users” have requested a way to turn-off the fault-tolerance safety
feature of automatically creating a temporary file. Often these users build and execute
production data analysis scripts that are repeated frequently on large datasets. Obviating
an extra file write can then conserve significant disk space and time. For this purpose NCO
has, since version 4.2.1 in August, 2012, made configurable the controls over temporary
file creation. The ‘--wrt_tmp_£f1’ and equivalent ‘--write_tmp_f1’ switches ensure NCO
writes output to an intermediate temporary file. This is and has always been the default
behavior so there is currently no need to specify these switches. However, the default
may change some day, especially since writing to RAM disks (see Section 3.29 [RAM disks],
page 66) may some day become the default. The ‘--no_tmp_£1’ switch causes NCO to write
directly to the final output file instead of to an intermediate temporary file. “Power users”
may wish to invoke this switch to increase performance (i.e., reduce wallclock time) when
manipulating large files. When eschewing temporary files, users may forsake the ability
to have the same name for both output-file and input-file since, as described above, the
temporary file prevented overlap issues. However, if the user creates the output file in RAM
(see Section 3.29 [RAM disks|, page 66) then it is still possible to have the same name for
both output-file and input-file.

ncks in.nc out.nc # Default: create out.pid.tmp.nc then move to out.nc
ncks —-wrt_tmp_fl in.nc out.nc # Same as default

ncks --no_tmp_fl in.nc out.nc # Create out.nc directly on disk

ncks --no_tmp_fl in.nc in.nc # ERROR-prone! Overwrite in.nc with itself
ncks --create_ram --no_tmp_fl in.nc in.nc # Create in RAM, write to disk
ncks --open_ram --no_tmp_fl in.nc in.nc # Read into RAM, write to disk

There is no reason to expect the fourth example to work. The behavior of overwriting a
file while reading from the same file is undefined, much as is the shell command ‘cat foo
> foo’. Although it may “work” in some cases, it is unreliable. One way around this is
to use ‘--create_ram’ so that the output file is not written to disk until the input file is
closed, See Section 3.29 [RAM disks|, page 66. However, as of 20130328, the behavior of
the ‘--create_ram’ and ‘--open_ram’ examples has not been thoroughly tested.

The NCO authors have seen compelling use cases for utilizing the RAM switches, but
not (yet) for combining them with ‘~-no_tmp_£f1’. NCO implements both options because
they are largely independent of eachother. It is up to “power users” to discover which best
fit their needs. We welcome accounts of your experiences posted to the forums.

Other safeguards exist to protect the user from inadvertently overwriting data. If the
output-file specified for a command is a pre-existing file, then the operator will prompt
the user whether to overwrite (erase) the existing output-file, attempt to append to it, or
abort the operation. However, in processing large amounts of data, too many interactive
questions slows productivity. Therefore NCO also implements two ways to override its own
safety features, the ‘-0’ and ‘-A’ switches. Specifying ‘-0’ tells the operator to overwrite
any existing output-file without prompting the user interactively. Specifying ‘-A’ tells the

2 The OS-specific system move command is used. This is mv for UNIX, and move for Windows.

Chapter 2: Operator Strategies 15

operator to attempt to append to any existing output-file without prompting the user inter-
actively. These switches are useful in batch environments because they suppress interactive
keyboard input.

2.4 Appending Variables

Adding variables from one file to another is often desirable. This is referred to as appending,
although some prefer the terminology merging® or pasting. Appending is often confused
with what NCO calls concatenation. In NCO, concatenation refers to splicing a variable
along the record dimension. The length along the record dimension of the output is the
sum of the lengths of the input files. Appending, on the other hand, refers to copying a
variable from one file to another file which may or may not already contain the variable?.
NCO can append or concatenate just one variable, or all the variables in a file at the same
time.

In this sense, ncks can append variables from one file to another file. This capability is
invoked by naming two files on the command line, input-file and output-file. When output-
file already exists, the user is prompted whether to overwrite, append/replace, or exit from
the command. Selecting overwrite tells the operator to erase the existing output-file and
replace it with the results of the operation. Selecting exit causes the operator to exit—the
output-file will not be touched in this case. Selecting append/replace causes the operator
to attempt to place the results of the operation in the existing output-file, See Section 4.7
[ncks netCDF Kitchen Sink], page 151.

The simplest way to create the union of two files is
ncks -A f1_1.nc f1_2.nc

This puts the contents of ‘f1_1.nc’ into ‘f1_2.nc’. The ‘-A’ is optional. On output,
‘f1_2.nc’ is the union of the input files, regardless of whether they share dimensions and
variables, or are completely disjoint. The append fails if the input files have differently
named record dimensions (since netCDF supports only one), or have dimensions of the
same name but different sizes.

2.5 Simple Arithmetic and Interpolation

Users comfortable with NCO semantics may find it easier to perform some simple mathe-
matical operations in NCO rather than higher level languages. ncbo (see Section 4.3 [ncbo
netCDF Binary Operator], page 138) does file addition, subtraction, multiplication, divi-
sion, and broadcasting. It even does group broadcasting. ncflint (see Section 4.6 [ncflint
netCDF File Interpolator|, page 148) does file addition, subtraction, multiplication and in-
terpolation. Sequences of these commands can accomplish simple but powerful operations
from the command line.

3 The terminology merging is reserved for an (unwritten) operator which replaces hyperslabs of a variable
in one file with hyperslabs of the same variable from another file

4 Yes, the terminology is confusing. By all means mail me if you think of a better nomenclature. Should
NCO use paste instead of append?

16 NCO 4.3.4 User’s Guide

2.6 Averagers vs. Concatenators

The most frequently used operators of NCO are probably the averagers and concatenators.
Because there are so many permutations of averaging (e.g., across files, within a file, over
the record dimension, over other dimensions, with or without weights and masks) and of
concatenating (across files, along the record dimension, along other dimensions), there are
currently no fewer than five operators which tackle these two purposes: ncra, ncea, ncwa,
ncrcat, and ncecat. These operators do share many capabilities®, but each has its unique
specialty. Two of these operators, ncrcat and ncecat, are for concatenating hyperslabs
across files. The other two operators, ncra and ncea, are for averaging hyperslabs across
filesS. First, let’s describe the concatenators, then the averagers.

2.6.1 Concatenators ncrcat and ncecat

Joining independent files together along a record dimension is called concatenation. ncrcat
is designed for concatenating record variables, while ncecat is designed for concatenating
fixed length variables. Consider five files, ‘85.nc’, ‘86.nc’, ... ‘89.nc’ each containing a
year’s worth of data. Say you wish to create from them a single file, ‘8589 .nc’ containing
all the data, i.e., spanning all five years. If the annual files make use of the same record
variable, then ncrcat will do the job nicely with, e.g., ncrcat 87.nc 8589.nc. The number
of records in the input files is arbitrary and can vary from file to file. See Section 4.10 [ncrcat
netCDF Record Concatenator|, page 171, for a complete description of ncrcat.

However, suppose the annual files have no record variable, and thus their data are
all fixed length. For example, the files may not be conceptually sequential, but rather
members of the same group, or ensemble. Members of an ensemble may have no reason
to contain a record dimension. ncecat will create a new record dimension (named record
by default) with which to glue together the individual files into the single ensemble file. If
ncecat is used on files which contain an existing record dimension, that record dimension
is converted to a fixed-length dimension of the same name and a new record dimension
(named record) is created. Consider five realizations, ‘85a.nc’, ‘85b.nc’, ... ‘85e.nc’
of 1985 predictions from the same climate model. Then ncecat 857.nc 85_ens.nc glues
the individual realizations together into the single file, ‘85_ens.nc’. If an input variable
was dimensioned [lat,lon], it will have dimensions [record,lat,lon| in the output file.
A restriction of ncecat is that the hyperslabs of the processed variables must be the same
from file to file. Normally this means all the input files are the same size, and contain data
on different realizations of the same variables. See Section 4.5 [ncecat netCDF Ensemble
Concatenator|, page 145, for a complete description of ncecat.

ncpdq makes it possible to concatenate files along any dimension, not just the record
dimension. First, use ncpdq to convert the dimension to be concatenated (i.e., extended
with data from other files) into the record dimension. Second, use ncrcat to concatenate
these files. Finally, if desirable, use ncpdq to revert to the original dimensionality. As a

5 Currently ncea and ncrcat are symbolically linked to the ncra executable, which behaves slightly differ-
ently based on its invocation name (i.e., ‘argv[0]’). These three operators share the same source code,
but merely have different inner loops.

6 The third averaging operator, ncwa, is the most sophisticated averager in NCO. However, ncwa is in a
different class than ncra and ncea because it can only operate on a single file per invocation (as opposed
to multiple files). On that single file, however, ncwa provides a richer set of averaging options—including
weighting, masking, and broadcasting.

Chapter 2: Operator Strategies 17

concrete example, say that files ‘x_01.nc’, ‘x_02.nc’, ... ‘x_10.nc’ contain time-evolving
datasets from spatially adjacent regions. The time and spatial coordinates are time and x,
respectively. Initially the record dimension is time. Our goal is to create a single file that
contains joins all the spatially adjacent regions into one single time-evolving dataset.

for idx in 01 02 03 04 05 06 07 08 09 10; do # Bourne Shell
ncpdg -a x,time x_${idx}.nc foo_${idx}.nc # Make x record dimension
done
ncrcat foo_77.nc out.nc # Concatenate along x
ncpdq -a time,x out.nc out.nc # Revert to time as record dimension

Note that ncrcat will not concatenate fixed-length variables, whereas ncecat concate-
nates both fixed-length and record variables along a new record variable. To conserve system
memory, use ncrcat where possible.

2.6.2 Averagers ncea, ncra, and ncwa

The differences between the averagers ncra and ncea are analogous to the differences be-
tween the concatenators. ncra is designed for averaging record variables from at least one
file, while ncea is designed for averaging fixed length variables from multiple files. ncra per-
forms a simple arithmetic average over the record dimension of all the input files, with each
record having an equal weight in the average. ncea performs a simple arithmetic average
of all the input files, with each file having an equal weight in the average. Note that ncra
cannot average fixed-length variables, but ncea can average both fixed-length and record
variables. To conserve system memory, use ncra rather than ncea where possible (e.g., if
each input-file is one record long). The file output from ncea will have the same dimensions
(meaning dimension names as well as sizes) as the input hyperslabs (see Section 4.4 [ncea
netCDF Ensemble Averager|, page 143, for a complete description of ncea). The file out-
put from ncra will have the same dimensions as the input hyperslabs except for the record
dimension, which will have a size of 1 (see Section 4.9 [ncra netCDF Record Averager],
page 169, for a complete description of ncra).

2.6.3 Interpolator ncflint

ncflint can interpolate data between or two files. Since no other operators have this ability,
the description of interpolation is given fully on the ncflint reference page (see Section 4.6
[ncflint netCDF File Interpolator], page 148). Note that this capability also allows ncflint
to linearly rescale any data in a netCDF file, e.g., to convert between differing units.

2.7 Large Numbers of Files

Occasionally one desires to digest (i.e., concatenate or average) hundreds or thousands of
input files. Unfortunately, data archives (e.g., NASA EOSDIS) may not name netCDF files
in a format understood by the ‘-n Ioop’ switch (see Section 3.5 [Specifying Input Files],
page 26) that automagically generates arbitrary numbers of input filenames. The ‘-n loop’
switch has the virtue of being concise, and of minimizing the command line. This helps keeps
output file small since the command line is stored as metadata in the history attribute (see
Section 3.34 [History Attribute], page 77). However, the ‘-n loop’ switch is useless when
there is no simple, arithmetic pattern to the input filenames (e.g., ‘h00001.nc’, ‘h00002.nc’,
... ‘h90210.nc’). Moreover, filename globbing does not work when the input files are too

18 NCO 4.3.4 User’s Guide

numerous or their names are too lengthy (when strung together as a single argument) to be
passed by the calling shell to the NCO operator”. When this occurs, the ANSI C-standard
argc-argv method of passing arguments from the calling shell to a C-program (i.e., an
NCO operator) breaks down. There are (at least) three alternative methods of specifying
the input filenames to NCO in environment-limited situations.

The recommended method for sending very large numbers (hundreds or more, typically)
of input filenames to the multi-file operators is to pass the filenames with the UNIX standard
input feature, aka stdin:

Pipe large numbers of filenames to stdin
/bin/1ls | grep ${CASEID}_ ’...... ’.nc | ncecat -o foo.nc

This method avoids all constraints on command line size imposed by the operating
system. A drawback to this method is that the history attribute (see Section 3.34 [History
Attribute], page 77) does not record the name of any input files since the names were not
passed on the command line. This makes determining the data provenance at a later date
difficult. To remedy this situation, multi-file operators store the number of input files in the
nco_input_file_number global attribute and the input file list itself in the nco_input_
file_list global attribute (see Section 3.35 [File List Attributes], page 77). Although
this does not preserve the exact command used to generate the file, it does retains all the
information required to reconstruct the command and determine the data provenance.

A second option is to use the UNIX xargs command. This simple example selects as
input to xargs all the filenames in the current directory that match a given pattern. For
illustration, consider a user trying to average millions of files which each have a six character
filename. If the shell buffer cannot hold the results of the corresponding globbing operator,

pattern as an extended regular expression, ‘. \.nc’ (see Section 3.11 [Subsetting Files],
page 36). We use grep to filter the directory listing for this pattern and to pipe the results
to xargs which, in turn, passes the matching filenames to an NCO multi-file operator, e.g.,
ncecat.

Use xargs to transfer filenames on the command line
/bin/ls | grep ${CASEID}_’...... ’.nc | xargs -x ncecat -o foo.nc

The single quotes protect the only sensitive parts of the extended regular expression
(the grep argument), and allow shell interpolation (the ${CASEID} variable substitution)
to proceed unhindered on the rest of the command. xargs uses the UNIX pipe feature
to append the suitably filtered input file list to the end of the ncecat command options.
The -o foo.nc switch ensures that the input files supplied by xargs are not confused with
the output file name. xargs does, unfortunately, have its own limit (usually about 20,000
characters) on the size of command lines it can pass. Give xargs the ‘-x’ switch to ensure it
dies if it reaches this internal limit. When this occurs, use either the stdin method above,
or the symbolic link presented next.

" The exact length which exceeds the operating system internal limit for command line lengths varies
from OS to OS and from shell to shell. GNU bash may not have any arbitrary fixed limits to the size of
command line arguments. Many OSs cannot handle command line arguments (including results of file
globbing) exceeding 4096 characters.

Chapter 2: Operator Strategies 19

Even when its internal limits have not been reached, the xargs technique may not
be sophisticated enough to handle all situations. A full scripting language like Perl can
handle any level of complexity of filtering input filenames, and any number of filenames.
The technique of last resort is to write a script that creates symbolic links between the
irregular input filenames and a set of regular, arithmetic filenames that the ‘-n l1oop’ switch
understands. For example, the following Perl script creates a monotonically enumerated
symbolic link to up to one million ‘.nc’ files in a directory. If there are 999,999 netCDF
files present, the links are named ‘000001 .nc’ to ‘999999.nc’:

Create enumerated symbolic links

/bin/ls | grep \.nc | perl -e \

’$idx=1;while (<STDIN>){chop;symlink $_,sprintf("%06d.nc",$idx++);}’
ncecat —n 999999,6,1 000001.nc foo.nc

Remove symbolic links when finished

The ‘-n loop’ option tells the NCO operator to automatically generate the filnames of
the symbolic links. This circumvents any OS and shell limits on command line size. The
symbolic links are easily removed once NCO is finished. One drawback to this method is that
the history attribute (see Section 3.34 [History Attribute], page 77) retains the filename
list of the symbolic links, rather than the data files themselves. This makes it difficult to
determine the data provenance at a later date.

2.8 Large Datasets

Large datasets are those files that are comparable in size to the amount of random access
memory (RAM) in your computer. Many users of NCO work with files larger than 100 MB.
Files this large not only push the current edge of storage technology, they present special
problems for programs which attempt to access the entire file at once, such as ncea and
ncecat. If you work with a 300 MB files on a machine with only 32 MB of memory then you
will need large amounts of swap space (virtual memory on disk) and NCO will work slowly,
or even fail. There is no easy solution for this. The best strategy is to work on a machine
with sufficient amounts of memory and swap space. Since about 2004, many users have
begun to produce or analyze files exceeding 2 GB in size. These users should familiarize
themselves with NCO’s Large File Support (LFS) capabilities (see Section 3.10 [Large File
Support], page 35). The next section will increase your familiarity with NCO’s memory
requirements. With this knowledge you may re-design your data reduction approach to
divide the problem into pieces solvable in memory-limited situations.

If your local machine has problems working with large files, try running NCO from
a more powerful machine, such as a network server. Certain machine architectures, e.g.,
Cray UNICOS, have special commands which allow one to increase the amount of interactive
memory. On Cray systems, try to increase the available memory with the i1limit command.
If you get a memory-related core dump (e.g., ‘Error exit (core dumped)’) on a GNU/Linux
system, try increasing the process-available memory with ulimit.

The speed of the NCO operators also depends on file size. When processing large files
the operators may appear to hang, or do nothing, for large periods of time. In order to see
what the operator is actually doing, it is useful to activate a more verbose output mode.

20 NCO 4.3.4 User’s Guide

This is accomplished by supplying a number greater than 0 to the ‘-D debug-level’ (or
‘~-debug-level’, or ‘--dbg_1lvl’) switch. When the debug-level is nonzero, the operators
report their current status to the terminal through the stderr facility. Using ‘-D’ does
not slow the operators down. Choose a debug-level between 1 and 3 for most situations,
e.g., ncea -D 2 85.nc 86.nc 8586.nc. A full description of how to estimate the actual
amount of memory the multi-file NCO operators consume is given in Section 2.9 [Memory
Requirements|, page 20.

2.9 Memory Requirements

Many people use NCO on gargantuan files which dwarf the memory available (free RAM
plus swap space) even on today’s powerful machines. These users want NCO to consume
the least memory possible so that their scripts do not have to tediously cut files into smaller
pieces that fit into memory. We commend these greedy users for pushing NCO to its limits!

This section describes the memory NCO requires during operation. The required memory
is based on the underlying algorithms. The description below is the memory usage per
thread. Users with shared memory machines may use the threaded NCO operators (see
Section 3.3 [OpenMP Threading], page 23). The peak and sustained memory usage will
scale accordingly, i.e., by the number of threads. Memory consumption patterns of all
operators are similar, with the exception of ncap?2.

2.9.1 Single and Multi-file Operators

The multi-file operators currently comprise the record operators, ncra and ncrcat, and
the ensemble operators, ncea and ncecat. The record operators require much less memory
than the ensemble operators. This is because the record operators operate on one single
record (i.e., time-slice) at a time, whereas the ensemble operators retrieve the entire variable
into memory. Let M.S be the peak sustained memory demand of an operator, F'T' be the
memory required to store the entire contents of all the variables to be processed in an
input file, FFR be the memory required to store the entire contents of a single record of
each of the variables to be processed in an input file, V R be the memory required to store
a single record of the largest record variable to be processed in an input file, VT' be the
memory required to store the largest variable to be processed in an input file, VI be the
memory required to store the largest variable which is not processed, but is copied from
the initial file to the output file. All operators require M1 = VI during the initial copying
of variables from the first input file to the output file. This is the initial (and transient)
memory demand. The sustained memory demand is that memory required by the operators
during the processing (i.e., averaging, concatenation) phase which lasts until all the input
files have been processed. The operators have the following memory requirements: ncrcat
requires MS <= V R. ncecat requires M S <= VT. ncra requires MS = 2FR + VR.
ncea requires MS = 2FT + VT. ncbo requires M S <= 3VT (both input variables and
the output variable). ncflint requires M.S <= 3VT (both input variables and the output
variable). ncpdq requires MS <= 2VT (one input variable and the output variable).
ncwa requires M S <= 8VT (see below). Note that only variables that are processed, e.g.,
averaged, concatenated, or differenced, contribute to MS. Variables which do not appear in
the output file (see Section 3.11 [Subsetting Files|, page 36) are never read and contribute
nothing to the memory requirements.

Chapter 2: Operator Strategies 21

Further note that some operators perform internal type-promotion on some variables
prior to arithmetic (see Section 3.32 [Type Conversion|, page 75). For example, ncra and
ncea both promote integer types to double precision floating point prior to arithmetic, then
perform the arithmetic, then demote back to the original integer type after arithmetic. This
preserves the on-disk storage type while obtaining the accuracy advantages of floating point
arithmetic. Single-precision floating point variables however are not promoted to double
precision prior to arithmetic. Hence, the sustained memory required for integer variables
are two or four-times their on-disk, uncompressed, unpacked sizes if they meet the rules for
automatic internal promotion.

ncwa consumes between two and seven times the memory of a variable in order to process
it. Peak consumption occurs when storing simultaneously in memory one input variable,
one tally array, one input weight, one conformed/working weight, one weight tally, one
input mask, one conformed/working mask, and one output variable. When invoked, the
weighting and masking features contribute up to three-sevenths and two-sevenths of these
requirements apiece. If weights and masks are not specified (i.e., no ‘-w’ or ‘-a’ options)
then ncwa requirements drop to MS <= 3VT (one input variable, one tally array, and the
output variable).

The above memory requirements must be multiplied by the number of threads thr_nbr
(see Section 3.3 [OpenMP Threading|, page 23). If this causes problems then reduce (with
‘~t thr_nbr’) the number of threads.

2.9.2 Memory for ncap?2

ncap?2 has unique memory requirements due its ability to process arbitrarily long scripts
of any complexity. All scripts acceptable to ncap2 are ultimately processed as a sequence
of binary or unary operations. ncap2 requires M S <= 2VT under most conditions. An
exception to this is when left hand casting (see Section 4.1.4 [Left hand casting], page 88)
is used to stretch the size of derived variables beyond the size of any input variables. Let
VC be the memory required to store the largest variable defined by left hand casting. In
this case, MS <=2V (.

ncap? scripts are complete dynamic and may be of arbitrary length. A script that
contains many thousands of operations, may uncover a slow memory leak even though each
single operation consumes little additional memory. Memory leaks are usually identifiable
by their memory usage signature. Leaks cause peak memory usage to increase monotonically
with time regardless of script complexity. Slow leaks are very difficult to find. Sometimes a
malloc() (or new[]) failure is the only noticeable clue to their existance. If you have good
reasons to believe that a memory allocation failure is ultimately due to an NCO memory
leak (rather than inadequate RAM on your system), then we would be very interested in
receiving a detailed bug report.

2.10 Performance

An overview of NCO capabilities as of about 2006 is in Zender, C. S. (2008), “Analy-
sis of Self-describing Gridded Geoscience Data with netCDF Operators (NCO)”, Envi-
ron. Modell. Softw., doi:10.1016/j.envsoft.2008.03.004. This paper is also available at
http://dust.ess.uci.edu/ppr/ppr_Zen08.pdf.

http://dust.ess.uci.edu/ppr/ppr_Zen08.pdf

22 NCO 4.3.4 User’s Guide

NCO performance and scaling for arithmetic operations is described in Zen-
der, C. S., and H. J. Mangalam (2007), “Scaling Properties of Common Statis-
tical Operators for Gridded Datasets”, Int. J. High Perform. Comput. Appl.,
21(4), 485-498, doi:10.1177/1094342007083802. This paper is also available at
http://dust.ess.uci.edu/ppr/ppr_ZeM0O7.pdf.

It is helpful to be aware of the aspects of NCO design that can limit its performance:

1. No data buffering is performed during nc_get_var and nc_put_var operations. Hy-
perslabs too large too hold in core memory will suffer substantial performance penalties
because of this.

2. Since coordinate variables are assumed to be monotonic, the search for bracketing the
user-specified limits should employ a quicker algorithm, like bisection, than the two-
sided incremental search currently implemented.

3. C_format, FORTRAN_format, signedness, scale_format and add_offset attributes are
ignored by ncks when printing variables to screen.

4. In the late 1990s it was discovered that some random access operations on large files
on certain architectures (e.g., UNICOS) were much slower with NCO than with similar
operations performed using languages that bypass the netCDF interface (e.g., Yorick).
This may have been a penalty of unnecessary byte-swapping in the netCDF interface.
It is unclear whether such problems exist in present day (2007) netCDF/NCO environ-
ments, where unnecessary byte-swapping has been reduced or eliminated.

http://dust.ess.uci.edu/ppr/ppr_ZeM07.pdf

Chapter 3: NCO Features 23

3 NCO Features

Many features have been implemented in more than one operator and are described here
for brevity. The description of each feature is preceded by a box listing the operators for
which the feature is implemented. Command line switches for a given feature are consistent
across all operators wherever possible. If no “key switches” are listed for a feature, then
that particular feature is automatic and cannot be controlled by the user.

3.1 Internationalization

Availability: All operators

NCO support for internationalization of textual input and output (e.g., Warning mes-
sages) is nascent. We hope to produce foreign language string catalogues in 2004.

3.2 Metadata Optimization

Availability: All operators
Short options: None
Long options: ‘--hdr_pad’, ‘--header_pad’

NCO supports padding headers to improve the speed of future metadata operations. Use
the ‘--hdr_pad’ and ‘--header_pad’ switches to request that hdr_pad bytes be inserted
into the metadata section of the output file. Future metadata expansions will not incur
the netCDF3 performance penalty of copying the entire output file unless the expansion
exceeds the amount of header padding exceeded. This can be beneficial when it is known
that some metadata will be added at a future date.

This optimization exploits the netCDF library nc__enddef () function, which behaves
differently with different versions of netCDF. It will improve speed of future metadata
expansion with CLASSIC and 64bit netCDF files, but not necessarily with NETCDF4 files,
i.e., those created by the netCDF interface to the HDF5 library (see Section 3.9 [Selecting
Output File Format], page 33).

3.3 OpenMP Threading

Availability: ncap2, ncbo, ncea, ncecat, ncflint, ncpdq, ncra, ncrcat, ncwa
Short options: ‘-t’
Long options: ‘--thr_nbr’, ‘--threads’, ‘-—omp_num_threads’

NCO supports shared memory parallelism (SMP) when compiled with an OpenMP-
enabled compiler. Threads requests and allocations occur in two stages. First, users may
request a specific number of threads thr_nbr with the ‘-t’ switch (or its long option equiva-

24 NCO 4.3.4 User’s Guide

lents, ‘-—thr_nbr’, ‘--threads’, and ‘~-omp_num_threads’). If not user-specified, OpenMP
obtains thr_nbr from the OMP_NUM_THREADS environment variable, if present, or from the
08, if not.
(M
Caveat: Unfortunately, threading does not improve NCO throughput (i.e., wallclock
time) because nearly all NCO operations are I/O-bound. This means that NCO spends
negligible time doing anything compared to reading and writing. We have seen some and
can imagine other use cases where ncwa, ncpdq, and ncap2 (with long scripts) will complete
faster due to threading. The main benefits of threading so far have been to isolate the serial
from parallel portions of code. This parallelism is now exploited by OpenMP but then runs
into the I/O bottleneck during output. The bottleneck could be ameliorated for large files
by the use of MPI-enabled calls in the netCDF4 library when the underlying filesystem is
parallel (e.g., PVFS or JFS). Implementation of the parallel output calls in NCO is not a

goal of our current funding and would require new volunteers or funding.
- J

NCO may modify thr_nbr according to its own internal settings before it requests any
threads from the system. Certain operators contain hard-code limits to the number of
threads they request. We base these limits on our experience and common sense, and to
reduce potentially wasteful system usage by inexperienced users. For example, ncrcat is
extremely I/O-intensive so we restrict thr_nbr <= 2 for ncrcat. This is based on the notion
that the best performance that can be expected from an operator which does no arithmetic
is to have one thread reading and one thread writing simultaneously. In the future (perhaps
with netCDF4), we hope to demonstrate significant threading improvements with operators
like ncrcat by performing multiple simultaneous writes.

Compute-intensive operators (ncap2, ncwa and ncpdq) benefit most from threading. The
greatest increases in throughput due to threading occur on large datasets where each thread
performs millions, at least, of floating point operations. Otherwise, the system overhead
of setting up threads probably outweighs the speed enhancements due to SMP parallelism.
However, we have not yet demonstrated that the SMP parallelism scales beyond four threads
for these operators. Hence we restrict thr_nbr <= 4 for all operators. We encourage users
to play with these limits (edit file ‘nco_omp.c’) and send us their feedback.

Once the initial thr_nbr has been modified for any operator-specific limits, NCO requests
the system to allocate a team of thr_nbr threads for the body of the code. The operating
system then decides how many threads to allocate based on this request. Users may keep
track of this information by running the operator with dbg_Ivl > 0.

By default, threaded operators attach one global attribute, nco_openmp_thread_number,
to any file they create or modify. This attribute contains the number of threads the op-
erator used to process the input files. This information helps to verify that the answers
with threaded and non-threaded operators are equal to within machine precision. This
information is also useful for benchmarking.

Chapter 3: NCO Features 25

3.4 Command Line Options

Availability: All operators

NCO achieves flexibility by using command line options. These options are implemented
in all traditional UNIX commands as single letter switches, e.g., ‘1s -1’. For many years
NCO used only single letter option names. In late 2002, we implemented GNU/POSIX
extended or long option names for all options. This was done in a backward compatible
way such that the full functionality of NCO is still available through the familiar single
letter options. In the future, however, some features of NCO may require the use of long
options, simply because we have nearly run out of single letter options. More importantly,
mnemonics for single letter options are often non-intuitive so that long options provide a
more natural way of expressing intent.

Extended options, also called long options, are implemented using the system-supplied
‘getopt.h’ header file, if possible. This provides the getopt_long function to NCO®.

The syntax of short options (single letter options) is ~key value (dash-key-space-value).
Here, key is the single letter option name, e.g., ‘-D 2’.

The syntax of long options (multi-letter options) is —~~long_name value (dash-dash-key-
space-value), e.g., ‘-=dbg_1vl 2’ or --long_name=value (dash-dash-key-equal-value), e.g.,
‘~-dbg_1v1=2’". Thus the following are all valid for the ‘-D’ (short version) or ‘--dbg_1v1’
(long version) command line option.

ncks -D 3 in.nc # Short option
ncks --dbg_1lvl=3 in.nc # Long option, preferred form
ncks --dbg_lvl 3 in.nc # Long option, alternate form

The last example is preferred for two reasons. First, ‘-—dbg_1lv1’ is more specific and less
ambiguous than ‘-D’. The long option form makes scripts more self documenting and less
error prone. Often long options are named after the source code variable whose value they
carry. Second, the equals sign = joins the key (i.e., long_name) to the value in an unin-
terruptible text block. Experience shows that users are less likely to mis-parse commands
when restricted to this form.

GNU implements a superset of the POSIX standard which allows any unambiguous trun-
cation of a valid option to be used.

ncks -D 3 in.nc # Short option

ncks --dbg_1lvl=3 in.nc # Long option, full form

ncks --dbg=3 in.nc # Long option, unambiguous truncation
ncks --db=3 in.nc # Long option, unambiguous truncation
ncks --d=3 in.nc # Long option, ambiguous truncation

L If a getopt_long function cannot be found on the system, NCO will use the getopt_long from the

my_getopt package by Benjamin Sittler bsittler@iname.com. This is BSD-licensed software available
from http://www.geocities.com/ResearchTriangle/Node/9405/#my_getopt.

mailto:bsittler@iname.com
http://www.geocities.com/ResearchTriangle/Node/9405/#my_getopt

26 NCO 4.3.4 User’s Guide

The first four examples are equivalent and will work as expected. The final example will
exit with an error since ncks cannot disambiguate whether ‘~-d’ is intended as a truncation
of ‘-==dbg_1v1’, of ‘--dimension’, or of some other long option.

NCO provides many long options for common switches. For example, the debugging level
may be set in all operators with any of the switches ‘-D’, ‘-—~debug-level’, or ‘--dbg_lvl’.
This flexibility allows users to choose their favorite mnemonic. For some, it will be ‘~-debug’
(an unambiguous truncation of ‘--debug-level’, and other will prefer ‘--dbg’. Interactive
users usually prefer the minimal amount of typing, i.e., ‘-D’. We recommend that scripts
which are re-usable employ some form of the long options for future maintainability.

This manual generally uses the short option syntax. This is for historical reasons and to
conserve space. The remainder of this manual specifies the full long_name of each option.
Users are expected to pick the unambiguous truncation of each option name that most suits
their taste.

3.5 Specifying Input Files

Availability (-n): ncea, ncecat, ncra, ncrcat
Availability (-p): All operators
C_nd G

Short options: ‘-n’, ‘-p
Long options: ‘--nintap’, ‘--pth’, ‘--path’

It is important that users be able to specify multiple input files without typing every
filename in full, often a tedious task even by graduate student standards. There are four
different ways of specifying input files to NCO: explicitly typing each, using UNIX shell wild-
cards, and using the NCO ‘-n’ and ‘-p’ switches (or their long option equivalents, ‘--nintap’
or ‘—-pth’ and ‘--path’, respectively). Techniques to augment these methods to specify ar-
bitrary numbers (e.g., thousands) and patterns of filenames are discussed separately (see
Section 2.7 [Large Numbers of Files], page 17).

To illustrate these methods, consider the simple problem of using ncra to average five
input files, ‘85.nc’, ‘86.nc’, ... ‘89.nc’, and store the results in ‘85689.nc’. Here are the
four methods in order. They produce identical answers.

ncra 85.nc 86.nc 87.nc 88.nc 89.nc 8589.nc

ncra 8[56789].nc 8589.nc

ncra -p input-path 85.nc 86.nc 87.nc 88.nc 89.nc 8589.nc
ncra -n 5,2,1 85.nc 8589.nc

The first method (explicitly specifying all filenames) works by brute force. The sec-
ond method relies on the operating system shell to glob (expand) the regular expression
8[56789] .nc. The shell passes valid filenames which match the expansion to ncra. The
third method uses the ‘-p input-path’ argument to specify the directory where all the in-
put files reside. NCO prepends input-path (e.g., ‘/data/usrname/model’) to all input-files
(but not to output-file). Thus, using ‘-p’, the path to any number of input files need only
be specified once. Note input-path need not end with ‘/’; the ¢/’ is automatically generated
if necessary.

Chapter 3: NCO Features 27

The last method passes (with ‘-n’) syntax concisely describing the entire set of filenames?.
This option is only available with the multi-file operators: ncra, ncrcat, ncea, and ncecat.
By definition, multi-file operators are able to process an arbitrary number of input-files.
This option is very useful for abbreviating lists of filenames representable as alphanu-
meric_prefix+numeric_suffix+* . +filetype where alphanumeric_prefix is a string of arbitrary
length and composition, numeric_suffix is a fixed width field of digits, and filetype is a
standard filetype indicator. For example, in the file ‘ccm3_h0001.nc’, we have alphanu-
meric_prefix = ‘ccm3_h’, numeric_suffix = ‘0001’, and filetype = ‘nc’.

NCO is able to decode lists of such filenames encoded using the ‘-n’ option. The

simpler (3-argument) ‘-n’ usage takes the form -n file_number,digit_number,numeric_
increment where file_number is the number of files, digit_number is the fixed number
of numeric digits comprising the numeric_suffix, and numeric_increment is the constant,
integer-valued difference between the numeric_suffix of any two consecutive files. The value
of alphanumeric_prefix is taken from the input file, which serves as a template for decoding
the filenames. In the example above, the encoding -n 5,2,1 along with the input file name
‘85.nc’ tells NCO to construct five (5) filenames identical to the template ‘85.nc’ except
that the final two (2) digits are a numeric suffix to be incremented by one (1) for each
successive file. Currently filetype may be either be empty, ‘nc’, ‘cdf’, ‘hdf’, or ‘hd5’. If
present, these filetype suffixes (and the preceding ¢.’) are ignored by NCO as it uses the ‘-n’
arguments to locate, evaluate, and compute the numeric_suffix component of filenames.

Recently the ‘-n’ option has been extended to allow convenient specification of filenames
with “circular” characteristics. This means it is now possible for NCO to automatically gen-
erate filenames which increment regularly until a specified maximum value, and then wrap
back to begin again at a specified minimum value. The corresponding ‘-n’ usage becomes
more complex, taking one or two additional arguments for a total of four or five, respec-
tively: -n file_number,digit_number,numeric_increment [,numeric_max [,numeric_
min]] where numeric_max, if present, is the maximum integer-value of numeric_suffix
and numeric_min, if present, is the minimum integer-value of numeric_suffix. Consider,
for example, the problem of specifying non-consecutive input files where the filename suf-
fixes end with the month index. In climate modeling it is common to create summertime
and wintertime averages which contain the averages of the months June-July—August, and
December—January—February, respectively:

ncra —-n 3,2,1 85_06.nc 85_0608.nc
ncra -n 3,2,1,12 85_12.nc 85_1202.nc
ncra -n 3,2,1,12,1 85_12.nc 85_1202.nc

The first example shows that three arguments to the ‘-n’ option suffice to specify con-

secutive months (06, 07, 08) which do not “wrap” back to a minimum value. The second
example shows how to use the optional fourth and fifth elements of the ‘-n’ option to specify
a wrap value to NCO. The fourth argument to ‘-n’, if present, specifies the maximum integer
value of numeric_suffix. In this case the maximum value is 12, and will be formatted as ‘12’
in the filename string. The fifth argument to ‘-n’, if present, specifies the minimum integer
value of numeric_suffix. The default minimum filename suffix is 1, which is formatted as
‘01’ in this case. Thus the second and third examples have the same effect, that is, they

2 The ‘-n’ option is a backward compatible superset of the NINTAP option from the NCAR CCM Processor.

28 NCO 4.3.4 User’s Guide

automatically generate, in order, the filenames ‘85_12.nc’, ‘85_01.nc’, and ‘85_02.nc’ as
input to NCO.

3.6 Specifying Output Files

Availability: All operators
Short options: ‘-o’
Long options: ‘--f1_out’, ‘--output’

NCO commands produce no more than one output file, fi_out. Traditionally, users spec-
ify fl_out as the final argument to the operator, following all input file names. This is the
positional argument method of specifying input and ouput file names. The positional ar-
gument method works well in most applications. NCO also supports specifying fl_out using
the command line switch argument method, ‘-0 f1_out’.

Specifying fl_out with a switch, rather than as a positional argument, allows fl_out to
precede input files in the argument list. This is particularly useful with multi-file operators
for three reasons. Multi-file operators may be invoked with hundreds (or more) filenames.
Visual or automatic location of fl_out in such a list is difficult when the only syntactic
distinction between input and output files is their position. Second, specification of a long
list of input files may be difficult (see Section 2.7 [Large Numbers of Files|, page 17). Making
the input file list the final argument to an operator facilitates using xargs for this purpose.
Some alternatives to xargs are very ugly and undesirable. Finally, many users are more
comfortable specifying output files with ‘—o f1_out’ near the beginning of an argument list.
Compilers and linkers are usually invoked this way.

Users should specify fl_out using either but not both methods. If fl_out is specified
twice (once with the switch and once as the last positional argument), then the positional
argument takes precedence.

3.7 Accessing Remote Files

Availability: All operators
Short options: ‘-p’, ‘-1’
Long options: ‘--pth’, ‘--path’, ‘--1cl’, ‘--local’

All NCO operators can retrieve files from remote sites as well as from the local file system.
A remote site can be an anonymous FTP server, a machine on which the user has rcp, scp,
or sftp privileges, NCAR’s Mass Storage System (MSS), or an OPeNDAP server. Examples
of each are given below, following a brief description of the particular access protocol.

To access a file via an anonymous FTP server, supply the remote file’s URL. FTP is an
intrinsically insecure protocol because it transfers passwords in plain text format. Users
should access sites using anonymous FTP, or better yet, secure FTP when possible. Some
FTP servers require a login/password combination for a valid user account. NCO allows
these transactions so long as the required information is stored in the ‘.netrc’ file. Usually

Chapter 3: NCO Features 29

this information is the remote machine name, login, and password, in plain text, separated
by those very keywords, e.g.,

machine dust.ess.uci.edu login zender password bushlied

¢

Eschew using valuable passwords for FTP transactions, since ‘.netrc’ passwords are

potentially exposed to eavesdropping software?.

SFTP, i.e., secure FTP, uses SSH-based security protocols that solve the security issues
associated with plain FTP. NCO supports SFTP protocol access to files specified with a
homebrew syntax of the form

sftp://machine.domain.tld:/path/to/filename

Note the second colon following the top-level-domain, t1d. This syntax is a hybrid
between an FTP URL and a standard remote file syntax.

To access a file using rcp or scp, specify the Internet address of the remote file. Of
course in this case you must have rcp or scp privileges which allow transparent (no pass-
word entry required) access to the remote machine. This means that ‘~/.rhosts’ or
‘“/ssh/authorized_keys’ must be set accordingly on both local and remote machines.

To access a file on a High Performance Storage System (HPSS) (such as that at NCAR,
ECMWF, LANL, DKRZ, LLNL) specify the full HPSS pathname of the remote file. NCO will
attempt to detect whether the local machine has direct (synchronous) HPSS access. In this
case, NCO attempts to use the Hierarchical Storage Interface (HSI) command hsi get®.

The following examples show how one might analyze files stored on remote systems.

ncks -1 . ftp://dust.ess.uci.edu/pub/zender/nco/in.nc

ncks -1 . sftp://dust.ess.uci.edu:/home/ftp/pub/zender/nco/in.nc

ncks -1 . dust.ess.uci.edu:/home/zender/nco/data/in.nc

ncks -1 . /ZENDER/nco/in.nc

ncks -1 . /home/zender/nco/in.nc

ncks -1 . http://motherlode.ucar.edu:8080/thredds/dodsC/testdods/in.nc

The first example works verbatim if your system is connected to the Internet and is not
behind a firewall. The second example works if you have sftp access to the machine
dust.ess.uci.edu. The third example works if you have rcp or scp access to the machine
dust.ess.uci.edu. The fourth and fifth examples work on NCAR computers with local
access to the HPSS hsi get command®. The sixth command works if your local version of

3 NCO does not implement command line options to specify FTP logins and passwords because copying
those data into the history global attribute in the output file (done by default) poses an unacceptable
security risk.

The hsi command must be in the user’s path in one of the following directories: /usr/local/bin,
/opt/hpss/bin, or /ncar/opt/hpss/hsi. Tell us if the HPSS installation at your site places the hsi
command in a different location, and we will add that location to the list of acceptable paths to search
for hsi.

NCO supported the old NCAR Mass Storage System (MSS) until version 4.0.7 in April, 2011. NCO
supported MSS-retrievals via a variety of mechanisms including the msread, msrcp, and nrnet commands
invoked either automatically or with sentinels like ncks -p mss:/ZENDER/nco -1 . in.nc. Once the MSS
was decommissioned in March, 2011, support for these retrieval mechanisms was replaced by support for
HPSS in NCO.

30 NCO 4.3.4 User’s Guide

NCO is OPeNDAP-enabled (this is fully described in Section 3.7.1 [OPeNDAP], page 30), or
if the remote file is accessible via wget. The above commands can be rewritten using the
‘~p input-path’ option as follows:

ncks -p ftp://dust.ess.uci.edu/pub/zender/nco -1 . in.nc
ncks -p sftp://dust.ess.uci.edu:/home/ftp/pub/zender/nco -1 . in.nc
ncks -p dust.ess.uci.edu:/home/zender/nco -1 . in.nc
ncks -p /ZENDER/nco -1 . in.nc
ncks -p /home/zender/nco -1 . in.nc # HPSS
ncks -p http://motherlode.ucar.edu:8080/thredds/dodsC/testdods \
-1 . in.nc

Using ‘-p’ is recommended because it clearly separates the input-path from the filename
itself, sometimes called the stub. When input-path is not explicitly specified using ‘-p’,
NCO internally generates an input-path from the first input filename. The automatically
generated input-path is constructed by stripping the input filename of everything following
the final ‘/’ character (i.e., removing the stub). The ‘-1 output-path’ option tells NCO
where to store the remotely retrieved file. It has no effect on locally-retrieved files, or on
the output file. Often the path to a remotely retrieved file is quite different than the path
on the local machine where you would like to store the file. If ‘-1’ is not specified then
NCO internally generates an output-path by simply setting output-path equal to input-path
stripped of any machine names. If ‘-1’ is not specified and the remote file resides on the
NCAR HPSS system, then the leading character of input-path, ‘/’, is also stripped from
output-path. Specifying output-path as ‘=1 ./’ tells NCO to store the remotely retrieved
file and the output file in the current directory. Note that ‘-1 .’ is equivalent to ‘-1 ./’
though the latter is syntactically more clear.

3.7.1 OPeNDAP

The Distributed Oceanographic Data System (DODS) provides useful replacements for com-
mon data interface libraries like netCDF. The DODS versions of these libraries implement
network transparent access to data via a client-server data access protocol that uses the
HTTP protocol for communication. Although DODS-technology originated with oceanogra-
phy data, it applyies to virtually all scientific data. In recognition of this, the data access
protocol underlying DODS (which is what NCO cares about) has been renamed the Open-
source Project for a Network Data Access Protocol, OPeNDAP. We use the terms DODS
and OPeNDAP interchangeably, and often write OPeNDAP/DODS for now. In the future we
will deprecate DODS in favor of DAP or OPeNDAP, as appropriate’.

NCO may be DAP-enabled by linking NCO to the OPeNDAP libraries. This is described in
the OPeNDAP documentation and automagically implemented in NCO build mechanisms”.

6 DODS is being deprecated because it is ambiguous, referring both to a protocol and to a collection of
(oceanography) data. It is superceded by two terms. DAP is the discipline-neutral Data Access Protocol
at the heart of DODS. The National Virtual Ocean Data System (NVODS) refers to the collection of
oceanography data and oceanographic extensions to DAP. In other words, NVODS is implemented with
OPeNDAP. OPeNDAP is also the open source project which maintains, develops, and promulgates the
DAP standard. OPeNDAP and DAP really are interchangeable. Got it yet?

Automagic support for DODS version 3.2.x was deprecated in December, 2003 after NCO version 2.8.4.
NCO support for OPeNDAP versions 3.4.x commenced in December, 2003, with NCO version 2.8.5. NCO
support for OPeNDAP versions 3.5.x commenced in June, 2005, with NCO version 3.0.1. NCO support for

Chapter 3: NCO Features 31

The ‘./configure’ mechanism automatically enables NCO as OPeNDAP clients if it can
find the required OPeNDAP libraries®. in the usual locations. The $D0DS_ROOT environment
variable may be used to override the default OPeNDAP library location at NCO compile-time.
Building NCO with ‘bld/Makefile’ and the command make DODS=Y adds the (non-intuitive)
commands to link to the OPeNDAP libraries installed in the $DODS_ROOT directory. The file
‘doc/opendap.sh’ contains a generic script intended to help users install OPeNDAP before
building NCO. The documentation at the OPeNDAP Homepage is voluminous. Check there
and on the DODS mail lists. to learn more about the extensive capabilities of OPeNDAP?.

Once NCO is DAP-enabled the operators are OPeNDAP clients. All OPeNDAP clients have
network transparent access to any files controlled by a OPeNDAP server. Simply specify the
input file path(s) in URL notation and all NCO operations may be performed on remote
files made accessible by a OPeNDAP server. This command tests the basic functionality of
OPeNDAP-enabled NCO clients:

% ncks -0 -o "/foo.nc -C -H -v one -1 /tmp \

-p http://motherlode.ucar.edu:8080/thredds/dodsC/testdods in.nc
% ncks -H -v one ~/foo.nc
one = 1

The one = 1 outputs confirm (first) that ncks correctly retrieved data via the OPeNDAP
protocol and (second) that ncks created a valid local copy of the subsetted remote file.
With minor changes to the above command, netCDF4 can be used as both the input and
output file format:

% ncks -4 -0 -o “/foo.nc -C -H -v one -1 /tmp \

-p http://motherlode.ucar.edu:8080/thredds/dodsC/testdods in_4.nc
% ncks -H -v one “/foo.nc
one = 1

And, of course, OPeNDAP-enabled NCO clients continue to support other, orthogonal
features such as UDUnits (see Section 3.22 [UDUnits Support], page 55):

% ncks -u -C -H -v wvl -d wvl,’0.4 micron’,’0.7 micron’ \
-p http://motherlode.ucar.edu:8080/thredds/dodsC/testdods in_4.nc
% wvl[0]=5e-07 meter

The next command is a more advanced example which demonstrates the real power
of OPeNDAP-enabled NCO clients. The ncwa client requests an equatorial hyperslab from
remotely stored NCEP reanalyses data of the year 1969. The NOAA OPeNDAP server (hope-
fully!) serves these data. The local ncwa client then computes and stores (locally) the
regional mean surface pressure (in Pa).

OPeNDAP versions 3.6.x commenced in June, 2006, with NCO version 3.1.3. NCO support for OPeNDAP
versions 3.7.x commenced in January, 2007, with NCO version 3.1.9.

8 The minimal set of libraries required to build NCO as OPeNDAP clients, where OPeNDAP is supplied as
a separate library apart from ‘libnetcdf.a’; are, in link order, ‘libnc-dap.a’, ‘libdap.a’, and ‘1ibxml2’
and ‘libcurl.a’.

9 We are most familiar with the OPeNDAP ability to enable network-transparent data access. OPeNDAP
has many other features, including sophisticated hyperslabbing and server-side processing via constraint
expressions. If you know more about this, please consider writing a section on "OPeNDAP Capabilities
of Interest to NCO Users" for incorporation in the NCO User’s Guide.

http://www.opendap.org
http://www.unidata.ucar.edu/packages/dods/home/mailLists/

32 NCO 4.3.4 User’s Guide

ncwa -C -a lat,lon,time -d lon,-10.,10. -d lat,-10.,10. -1 /tmp -p \
http://www.esrl.noaa.gov/psd/thredds/dodsC/Datasets/ncep.reanalysis.dailyavgs/surface
pres.sfc.1969.nc “/foo.nc

All with one command! The data in this particular input file also happen to be packed (see
Section 4.1.11 [Methods and functions|, page 96), although this is completely transparent
to the user since NCO automatically unpacks data before attempting arithmetic.

NCO obtains remote files from the OPeNDAP server (e.g., ‘www.cdc.noaa.gov’) rather
than the local machine. Input files are first copied to the local machine, then processed. The
OPeNDAP server performs data access, hyperslabbing, and transfer to the local machine.
This allows the I/O to appear to NCO as if the input files were local. The local machine
performs all arithmetic operations. Only the hyperslabbed output data are transferred over
the network (to the local machine) for the number-crunching to begin. The advantages of
this are obvious if you are examining small parts of large files stored at remote locations.

3.8 Retaining Retrieved Files

Availability: All operators
Short options: ‘-R’

Long options: ‘—-rtn’, ‘--retain’

In order to conserve local file system space, files retrieved from remote locations are
automatically deleted from the local file system once they have been processed. Many NCO
operators were constructed to work with numerous large (e.g., 200 MB) files. Retrieval of
multiple files from remote locations is done serially. Each file is retrieved, processed, then
deleted before the cycle repeats. In cases where it is useful to keep the remotely-retrieved
files on the local file system after processing, the automatic removal feature may be disabled
by specifying ‘-R’ on the command line.

Invoking -R disables the default printing behavior of ncks. This allows ncks to retrieve
remote files without automatically trying to print them. See Section 4.7 [ncks netCDF
Kitchen Sink], page 151, for more details.

Note that the remote retrieval features of NCO can always be used to retrieve any file,
including non-netCDF files, via SSH, anonymous FTP, or msrcp. Often this method is
quicker than using a browser, or running an FTP session from a shell window yourself. For
example, say you want to obtain a JPEG file from a weather server.

ncks -R -p ftp://weather.edu/pub/pix/jpeg -1 . storm.jpg

In this example, ncks automatically performs an anonymous FTP login to the remote
machine and retrieves the specified file. When ncks attempts to read the local copy of
‘storm. jpg’ as a netCDF file, it fails and exits, leaving ‘storm.jpg’ in the current direc-
tory.

If your NCO is DAP-enabled (see Section 3.7.1 [OPeNDAP], page 30), then you may use
NCO to retrieve any files (including netCDF, HDF, etc.) served by an OPeNDAP server to
your local machine. For example,

Chapter 3: NCO Features 33

ncks -R -1 . -p \
http://www.esrl.noaa.gov/psd/thredds/dodsC/Datasets/ncep.reanalysis.dailyavgs/surface
pres.sfc.1969.nc

It may occasionally be useful to use NCO to transfer files when your other preferred
methods are not available locally.

3.9 Selecting Output File Format

Availability: ncap2, ncbo, ncea, ncecat, ncflint, ncks, ncpdq, ncra, ncrcat, ncwa
Short options: ‘=37, ‘-4’
Long options: ‘--3’, ‘-=-4’, ‘=-64bit’, ‘--f1_fmt’, ‘~-netcdf4d’

All NCO operators support (read and write) all three (or four, depending on how one
counts) file formats supported by netCDF4. The default output file format for all operators
is the input file format. The operators listed under “Availability” above allow the user to
specify the output file format independent of the input file format. These operators allow
the user to convert between the various file formats. (The operators ncatted and ncrename
do not support these switches so they always write the output netCDF file in the same
format as the input netCDF file.)

netCDF supports four types of files: CLASSIC, 64BIT, NETCDF4, and NETCDF4_CLASSIC,
The CLASSIC format is the traditional 32-bit offset written by netCDF2 and netCDF3. As
of 2005, most netCDF datasets are in CLASSIC format. The 64BIT format was added in
Fall, 2004.

The NETCDF4 format uses HDF5 as the file storage layer. The files are (usually) created,
accessed, and manipulated using the traditional netCDF3 API (with numerous extensions).
The NETCDF4_CLASSIC format refers to netCDF4 files created with the NC_CLASSIC_MODEL
mask. Such files use HDF5 as the back-end storage format (unlike netCDF3), though they
incorporate only netCDF3 features. Hence NETCDF4_CLASSIC files are perfectly readable
by applications which use only the netCDF3 API and library. NCO must be built with
netCDF4 to write files in the new NETCDF4 and NETCDF4_CLASSIC formats, and to read
files in the new NETCDF4 format. Users are advised to use the default CLASSIC format or
the NETCDF4_CLASSIC format until netCDF4 is more widespread. Widespread support for
NETCDF4 format files is not expected for a few more years, 2013-2014, say. If performance
or coolness are issues, then use NETCDF4_CLASSIC instead of CLASSIC format files.

As mentioned above, all operators write use the input file format for output files un-
less told otherwise. Toggling the long option ‘--64bit’ switch (or its key-value equiva-
lent ‘--f1_fmt=64bit’) produces the netCDF3 64-bit offset format named 64BIT. NCO
must be built with netCDF 3.6 or higher to produce a 64BIT file. Using the ‘-4’ switch
(or its long option equivalents ‘--4’ or ‘--netcdf4’), or setting its key-value equivalent
‘~-f1_fmt=netcdf4’ produces a NETCDF4 file (i.e., HDF). Casual users are advised to use the
default (netCDF3) CLASSIC format until netCDF 3.6 and netCDF 4.0 are more widespread.
Conversely, operators given the ‘-3’ (or ‘-=3’) switch without arguments will (attempt to)
produce netCDF3 CLASSIC output, even from netCDF4 input files.

34 NCO 4.3.4 User’s Guide

These examples demonstrate converting a file from any netCDF format into any other
netCDF format (subject to limits of the format):

ncks --fl_fmt=classic in.nc foo_3c.nc # netCDF3 classic

ncks —--fl_fmt=64bit in.nc foo_364.nc # netCDF3 64bit

ncks --fl_fmt=netcdf4_classic in.nc foo_4c.nc # netCDF4 classic
ncks --fl_fmt=netcdf4 in.nc foo_4.nc # netCDF4

ncks -3 in.nc foo_3c.nc # netCDF3 classic

ncks --3 in.nc foo_3c.nc # netCDF3 classic

ncks --64 in.nc foo_364.nc # netCDF3 64bit

ncks -4 in.nc foo_4.nc # netCDF4

ncks --4 in.nc foo_4.nc # netCDF4

Of course since most operators support these switches, the “conversions” can be done
at the output stage of arithmetic or metadata processing rather than requiring a separate
step. Producing (netCDF3) CLASSIC or 64BIT files from NETCDF4_CLASSIC files will always
work. However, producing netCDF3 files from NETCDF4 files will only work if the output
files are not required to contain netCDF4-specific features.

Note that NETCDF4 and NETCDF4_CLASSIC are the same binary format. The latter simply
causes a writing application to fail if it attempts to write a NETCDF4 file that cannot be
completely read by the netCDF3 library. Conversely, NETCDF4_CLASSIC indicates to a
reading application that all of the file contents are readable with the netCDF3 library. As
of October, 2005, NCO writes no netCDF4-specific data structures and so always succeeds
at writing NETCDF4_CLASSIC files.

There are at least three ways to discover the format of a netCDF file, i.e., whether it is
a classic (32-bit offset) or newer 64-bit offset netCDF3 format, or is netCDF4 format. Each
method returns the information using slightly different terminology that becomes easier to
understand with practice.

First, examine the end of the first line of global metadata output by ‘ncks -M’:

% ncks -M foo_3c.nc

Opened file foo_3c.nc: dimensions = 23, variables = 296,
global atts. = 5, type = NC_FORMAT_CLASSIC

% ncks -M foo_364.nc

Opened file foo_364.nc: dimensions = 23, variables = 296,
global atts. = 5, type = NC_FORMAT_64BIT

% ncks -M foo_4c.nc

Opened file foo_4c.nc: dimensions = 23, variables = 296,
global atts. = 5, type = NC_FORMAT_NETCDF4_CLASSIC

% ncks -M foo_4.nc

Opened file foo_4.nc: dimensions = 23, variables = 296,
global atts. = 5, type = NC_FORMAT_NETCDF4

This method requires a netCDF4-enabled NCO version 3.9.0+ (i.e., from 2007 or later).
Second, query the file with ‘ncdump -k’

% ncdump -k foo_3.nc

Chapter 3: NCO Features 35

classic

% ncdump -k foo_364.nc
64-bit-offset

% ncdump -k foo_4c.nc
netCDF-4 classic model
% ncdump -k foo_4.nc
netCDF-4

This method requires a netCDF4-enabled netCDF 3.6.2+ (i.e., from 2007 or later).
The third option uses the POSIX-standard od (octal dump) command:

% od -An -c -N4 foo_3c.nc
C D F 001
% od -An -c -N4 foo_364.nc
C D F 002
% od -An -c -N4 foo_4c.nc
211 H D F
% od -An -c -N4 foo_4.nc
211 H D F

This option works without NCO and ncdump. Values of ‘CDF 001’ and ‘C D F 002’
indicate 32-bit (classic) and 64-bit netCDF3 formats, respectively, while values of ‘211 HD
F’ indicate the newer netCDF4 file format.

3.10 Large File Support

Availability: All operators
Short options: none
Long options: none

NCO has Large File Support (LFS), meaning that NCO can write files larger than 2 GB
on some 32-bit operating systems with netCDF libraries earlier than version 3.6. If desired,
LFS support must be configured when both netCDF and NCO are installed. netCDF
versions 3.6 and higher support 64-bit file addresses as part of the netCDF standard. We
recommend that users ignore LFS support which is difficult to configure and is implemented
in NCO only to support netCDF versions prior to 3.6. This obviates the need for configuring
explicit LFS support in applications (such as NCO) which now support 64-bit files directly
through the netCDF interface. See Section 3.9 [Selecting Output File Format], page 33 for
instructions on accessing the different file formats, including 64-bit files, supported by the
modern netCDF interface.

If you are still interested in explicit LEF'S support for netCDF versions prior to 3.6, know
that LFS support depends on a complex, interlocking set of operating system!? and netCDF
support issues. The netCDF LFS FAQ describes the various file size limitations imposed

10 Tinux and AIX do support LFS.

http://my.unidata.ucar.edu/content/software/netcdf/faq-lfs.html

36 NCO 4.3.4 User’s Guide

by different versions of the netCDF standard. NCO and netCDF automatically attempt to
configure LF'S at build time.

3.11 Subsetting Files

-
Options --unn

Availability: ncbo, ncecat, ncflint, ncks, ncpdq, ncwa

Short options:

Long options: ‘——unn’ and ‘--union’

Options -g grp

Availability: ncbo, ncecat, ncflint, ncks, ncpdq, ncwa

Short options: ‘-g’

Long options: ‘--grp’ and ‘--group’

Options -v var and -x

Availability: (ncap2), ncbo, ncea, ncecat, ncflint, ncks, ncpdq, ncra, ncrcat, ncwa
Short options: ‘-v’, ‘-x’
Long options: ‘~-variable’, ‘--exclude’ or ‘--xcl’

¢

N

Subsetting variables refers to explicitly specifying variables and groups to be included
or excluded from operator actions. Subsetting is controlled by the ‘-v var[,...]" and ‘-x’
options for directly specifying variables. Specifying groups, whether in addition to or instead
of variables, is quite similar and is controlled by the ‘-g grp[,...]” and ‘-x’ options. A list
of variables or groups to extract is specified following the ‘-v’ and ‘-g’ options, e.g., ‘-v
time,lat,lon’ or ‘-g grpl,grp2’. Both options may be specified simultaneously and NCO
will extract the intersection of the lists, i.e., only variables of the specified names found in
groups of the specified names. The ‘——unn’ option causes NCO to extract the union, rather
than the intersection, of the specified groups and variables. Not using the ‘-v’ or ‘-g’ option
is equivalent to specifying all variables or groupp, respectively. The ‘-x’ option causes the
list of variables specified with ‘-v’ to be excluded rather than extracted. Thus ‘-x’ saves
typing when you only want to extract fewer than half of the variables in a file.

Variables or groups explicitly specified for extraction with ‘-v var[,...]" or ‘-g
grpl,...1” must be present in the input file or an error will result. Variables explic-
itly specified for exclusion with ‘-x -v var [, ...] need not be present in the input file. To
accord with the sophistication of the underlying hierarchy, group subsetting is controlled by
a few powerful yet subtle syntactical distinctions. When learning this syntax it is helpful
to keep in mind the similarity between group hierarchies and directory structures.

Two properties of subsetting, recursion and anchoring, are best illustrated by reminding
the user of their UNIX equivalents. The UNIX command mv src dst moves ‘src’ and all its
subdirectories (and all their subdirectories etc.) to ‘dst’. In other words mv is, by default,
recursive. In contrast, the UNIX command cp src dst moves ‘src’, and only ‘src’, to ‘dst’,
If ‘src’ is a directory, not a file, then that command fails. One must explicitly request to
copy directories recursively, i.e., with cp -r src dst. In NCO recursive extraction (and
copying) of groups is the default (like with mv, not with cp). Recursion is turned off by
appending a trailing slash to the path.

Chapter 3: NCO Features 37

These UNIX commands also illustrate a property we call anchoring. The command mv
src dst moves (recursively) the source directory ‘src’ to the destination directory ‘dst’. If
‘src’ begins with the slash character then the specified path is relative to the root directory,
otherwise the path is relative to the current working directory. In other words, an initial
slash character anchors the subsequent path to the root directory. In NCO an initial slash
anchors the path at the root group. Paths that begin and end with slash characters (e.g.,
/17, ‘/g1/’, and ‘/g1/g2/’) are both anchored and non-recursive.

Consider the following commands, all of which may be assumed to end with ‘in.nc
out.nc’:

ncks -g gl # Extract, recursively, all groups with a gl component
ncks -g gl/ # Extract, non-recursively, all groups terminating in gl
ncks -g /gl # Extract, recursively, root group gl

ncks -g /gl/ # Extract, non-recursively root group gl

ncks -g // # Extract, non-recursively the root group

The first command is probably the most useful and common. It would extract these
groups, if present, and all their direct ancestors and children: ‘/gi’, ‘/g2/gl’, and
‘/g3/g1/g2’. In other words, the simplest form of ‘-g grp’ grabs all groups that (and
their direct ancestors and children, recursively) that have ‘grp’ as a complete component
of their path. A simple string match is insufficient, grp must be a complete component
(i.e., group name) in the path. The option ‘-g g1’ would not extract these groups because
‘g1’ is not a complete component of the path: ‘/g12’) ‘/fgl’, and ‘/gigl’. The second
command above shows how a terminating slash character / cancels the recursive copying
of groups. An argument to ‘-g’ which terminates with a slash character extracts the group
and its direct ancestors, but none of its children. The third command above shows how
an initial slash character / anchors the argument to the root group. The third command
would not extract the group /g2/gl’ because the ‘gl’ group is not at the root level, but
it would extract, any group ‘/gl’ at the root level and all its children, recursively. The
fourth command is the non-recursive version of the third command. The fifth command is
a special case of the fourth command.

)

As mentioned above, both ‘v’ and ‘-g’ options may be specified simultaneously and
NCO will, by default, extract the intersection of the lists, i.e., the specified variables found
in the specified groups''. The ‘--unn’ option causes NCO to extract the union, rather than
the intersection, of the specified groups and variables. Consider the following commands
(which may be assumed to end with ‘in.nc out.nc’):

Intersection mode subsetting (default)

ncks -g gl -v vl # Yes: /gi/v1l, /g2/gl/v1. No: /vi, /g2/vl

ncks -g /gl -v vl # Yes: /gl/v1l, /gl/g2/vi. No: /v1, /g2/v1, /g2/gl/v1
ncks -g gl/ -v vl # Yes: /gi/vl, /g2/gl/vi. No: /v1, /g2/v1, /gl/g2/v1
ncks -v gl/vl # Yes: /gil/vl, /g2/gl/vl. No: /v1, /g2/vl, /gl/g2/v1
ncks -g /gl/ -v vl # Yes: /gi/vl. No: /g2/gl/v1, /vi, /g2/vl

ncks -v /gl/v1 # Yes: /gi/vl. No: /g2/gl/v1, /vi, /g2/vl

I Tntersection mode can also be explicitly invoked with the ‘--nsx’ or ‘--intersection’ switches. These

switches are supplied for clarity and consistency and do absolutely nothing since intersection mode is
the default.

38 NCO 4.3.4 User’s Guide

Union mode subsetting (invoke with --unn or --union)

ncks -g gl -v vl --unn # All variables in gl or progeny, or named vl
ncks -g /gl -v vl --unn # All variables in /gl or progeny, or named vl
ncks -g gl/ -v vl --unn # All variables in gl or named vl

ncks -g /gl/ -v vl --unn # All variables in /gl or named vl

The first command (‘-g g1 -v v1’) extracts the variable ‘v1’ from any group named ‘g1’
or descendent ‘gl’. The second command extracts ‘vl’ from any root group named ‘gl’
and any descendent groups as well. The third and fourth commands are equivalent ways of
extracting ‘v1’ only from the root group named ‘g1’ (but not its descendents). The fifth and
sixth commands are equivalent ways of extracting the variable ‘v1’ only from the root group
named ‘gl’. Subsetting in union mode (with ‘--unn’) causes all variables to be extracted
which meet either one or both of the specifications of the variable and group specifications.
Union-mode subsetting is simply the logical “OR” of intersection-mode subsetting. As
discussed below, the group and variable specifications may be comma separated lists of
regular expressions for added control over subsetting.

Remember, if averaging or concatenating large files stresses your systems memory or
disk resources, then the easiest solution is often to subset (with ‘-g’ and/or ‘-v’) to retain
only the most important variables (see Section 2.9 [Memory Requirements], page 20).

ncks in.nc out.nc # Extract all groups and variables
ncks -v scl # Extract variable scl from all groups

ncks -g gl # Extract group gl and descendents

ncks -x -g gl # Extract all groups except gl and descendents
ncks -g g2,g3 -v scl # Extract scl from groups g2 and g3

Overwriting and appending work as expected:

Replace scl in group g2 in out.nc with scl from group g2 from in.nc
ncks -A -g g2 -v scl in.nc out.nc

Due to its special capabilities, ncap2 interprets the ‘-v’ switch differently (see Section 4.1
[ncap2 netCDF Arithmetic Processor|, page 82). For ncap2, the ‘-v’ switch takes no ar-
guments and indicates that only user-defined variables should be output. ncap2 neither
accepts nor understands the -x and -g switches.

Regular expressions the syntax that NCO use pattern-match object names in netCDF file
against user requests. The user can select all variables beginning with the string ‘DST’ from
an input file by supplying the regular expression ‘"DST’ to the ‘-v’ switch, i.e., ‘=v >~DST’’.
The meta-characters used to express pattern matching operations are ‘~$+7.*[1{}|’. If
the regular expression pattern matches any part of a variable name then that variable is
selected. This capability is also called wildcarding, and is very useful for sub-setting large
data files.

Extended regular expressions are defined by the POSIX grep -E (aka egrep) command.
As of NCO 2.8.1 (August, 2003), variable name arguments to the ‘-v’ switch may contain
extended regular expressions. As of NCO 3.9.6 (January, 2009), variable names arguments
to ncatted may contain extended regular expressions. As of NCO 4.2.4 (November, 2012),
group name arguments to the ‘-g’ switch may contain extended regular expressions.

Chapter 3: NCO Features 39

Because of its wide availability, NCO uses the POSIX regular expression library regex.
Regular expressions of arbitary complexity may be used. Since netCDF variable names are
relatively simple constructs, only a few varieties of variable wildcards are likely to be useful.
For convenience, we define the most useful pattern matching operators here:

[

Matches the beginning of a string
‘$ Matches the end of a string

[

Matches any single character

The most useful repetition and combination operators are

‘7 The preceding regular expression is optional and matched at most once
k7 The preceding regular expression will be matched zero or more times
+ The preceding regular expression will be matched one or more times

The preceding regular expression will be joined to the following regular ex-
pression. The resulting regular expression matches any string matching either
subexpression.

To illustrate the use of these operators in extracting variables and groups, consider file
‘in_grp.nc’ with groups g0-g9, and subgroups s0-s9, in each of those groups, and file
“in.nc’ with variables Q, Q01-Q99, Q100, QAA-QZZ, Q_H20, X_H20, Q_C02, X_C02

ncks -v ’.+’ in.nc # All variables (default)

ncks -v ’Q.7’ in.nc # Variables that contain Q

ncks -v ’7Q.7’ in.nc # Variables that start with Q

ncks -v "Q+.7.° in.nc # Q, Q0--Q9, QO01--Q99, QAA--QZZ, etc.
ncks -v ’7Q..’ in.nc # Q01--Q99, QAA--QZZ, etc.

ncks -v >~Q[0-9][0-9]° in.nc # Q01--Q99, Q100

ncks -v ’"Q[[:digit:1]1{2}’ in.nc # Q01--Q99

ncks -v ’H20$’ in.nc # Q_H20, X_H20

ncks -v ’H20$/C02$’ in.nc # Q_H20, X_H20, Q_C02, X_C02

ncks -v >~Q[0-9][0-9]$’ in.nc # Q01--Q99

ncks -v ’>"Q[0-6][0-9]]7[0-3]’ in.nc # QO01--Q73, Q100

ncks -v > (Q[0-6][0-9]17[0-3])$’ in.nc # QO01--Q73

ncks -v ’~[a-z]_[a-z]{3}$’ in.nc # Q_H20, X_H20, Q_C02, X_C02

ncks -g ’g.’ in_grp.nc # 10 Groups g0-g9
ncks -g ’s.’ in_grp.nc # 100 sub-groups g0/s0, g0/s1, ... g9/s9
ncks -g ’g.’ -v ’v.’ in_grp.nc # All variables ’v.’ in groups ’g.’

Beware—two of the most frequently used repetition pattern matching operators, ‘*’ and
‘“?’are also valid pattern matching operators for filename expansion (globbing) at the shell-
level. Confusingly, their meanings in extended regular expressions and in shell-level filename
expansion are significantly different. In an extended regular expression, ‘*’ matches zero
or more occurences of the preceding regular expression. Thus ‘Q*’ selects all variables,
and ‘Q+.*’ selects all variables containing ‘Q’ (the ‘+’ ensures the preceding item matches
at least once). To match zero or one occurence of the preceding regular expression, use

40 NCO 4.3.4 User’s Guide

“?’. Documentation for the UNIX egrep command details the extended regular expressions
which NCO supports.

One must be careful to protect any special characters in the regular expression specifica-
tion from being interpreted (globbed) by the shell. This is accomplish by enclosing special
characters within single or double quotes

ncra -v Q77 in.nc out.nc # Error: Shell attempts to glob wildcards
ncra -v ’"Q+..’° in.nc out.nc # Correct: NCO interprets wildcards
ncra -v ’7"Q+..’° in*.nc out.nc # Correct: NCO interprets, Shell globs

The final example shows that commands may use a combination of variable wildcarding
and shell filename expansion (globbing). For globbing, ‘*’ and ‘?’ have nothing to do with
the preceding regular expression! In shell-level filename expansion, ‘*’ matches any string,
including the null string and ‘?’ matches any single character. Documentation for bash and
csh describe the rules of filename expansion (globbing).

3.12 Subsetting Coordinate Variables

Availability: ncap2, ncbo, ncea, ncecat, ncflint, ncks, ncpdq, ncra, ncrcat, ncwa
Short options: ‘=C’, ‘=c¢’
Long options: *

--no-coords’, ‘--no-crd’, ‘--crd’, ‘--coords’

By default, coordinates variables associated with any variable appearing in the input-file
will be placed in the output-file, even if they are not explicitly specified, e.g., with the ‘=v’
switch. Thus variables with a latitude coordinate lat always carry the values of lat with
them into the output-file. This feature can be disabled with ‘~C’, which causes NCO to
not automatically add coordinates to the variables appearing in the output-file. However,
using ‘-=C’ does not preclude the user from including some coordinates in the output files
simply by explicitly selecting the coordinates with the -v option. The ‘-c’ option, on the
other hand, is a shorthand way of automatically specifying that all coordinate variables in
the input-files should appear in the output-file. Thus ‘-c’ allows the user to select all the
coordinate variables without having to know their names. As of NCO version 3.9.6 (January,
2009) both ‘-c” and ‘-C’ honor the CF coordinates convention described in Section 3.36
[CF Conventions|, page 78. As of NCO version 4.0.8 (April, 2011) both ‘-c’ and ‘~C’ honor
the CF bounds convention described in Section 3.36 [CF Conventions|, page 78.

3.13 Group Path Editing

Options -G gpe_dsc

Availability: ncbo, ncecat, ncflint, ncks, ncpdq, ncwa
Short options: ‘-G’

Long options: ‘--gpe’

Group Path Editing, or GPE, allows the user to restructure (i.e., add, remove, and
rename groups) in the output file relative to the input file based on the instructions they

Chapter 3: NCO Features 41

provide. As of NCO 4.2.3 (November, 2012), all operators that accept netCDF4 files with
groups accept the ‘-G’ switch, or its long-option equivalent ‘--gpe’. To master GPE one
must understand the meaning of the required gpe_dsc structure/argument that specifies the
transformation of input-to-output group paths.

Each gpe_dsc contains up to three elements (two are optional) in the following order:
gpe_dsc = grp_pth:Ivl_nbr or grp_pth@lvl_nbr

grp-pth Group Path. This (optional) component specifies the output group path that
should be appended after any editing (i.e., deletion or truncation) of the input
path is performed.

Ivl_nbr The number of levels to delete (from the head) or truncate (from the tail) of
the input path.

If both components of the argument are present, then a single character, either the colon
or at-sign (: or @), must separate them. If only grp_pth is specifed, the separator character
may be omitted, e.g., ‘-G g1’. If only Ivi_nbr is specifed, the separator character is still
required to indicate it is a Ivl_nbr arugment and not a grp_pth, e.g., ‘-G : -1’ or ‘-G @1’.

If the at-sign separator character @ is used instead of the colon separator character :,
then the following Ivl_nbr arugment must be positive and it will be assumed to refer to
Truncation Mode. Hence, ‘-G :-1’ is the same as ‘-G @1’. This is simply a way of making
the Ivl_nbr argument positive-definite.

GPE has three editing modes: Deletion, Truncation, and Flattening. Select one of GPE’s
three editing modes by supplying a Ivl_nbr that is positive, negative, or zero for Deletion,
Truncation, and Flattening mode, respectively.

In Deletion Mode, Ivl_nbr is a positive integer which specifies the maximum number of
group path components (i.e., groups) that GPE will try to delete from the head of grp_pth.
For example Ivl_nbr = 3 changes the input path ‘/gl/g2/g3/g4/g5 to the output path
‘/g4/g5’. Input paths with Ivl_nbr or fewer components (groups) are completely erased
and the output path commences from the root level.

In other words, GPE is tolerant of specifying too many group components to delete. It
deletes as many as possible, without complaint, and then begins to flatten the file (which
will fail if namespace conflicts arise).

In Truncation Mode, Ivi_nbr is a negative integer which specifies the maximum number of
group path components (i.e., groups) that GPE will try to truncate from the tail of grp_pth.
For example Ivl_nbr = —3 changes the input path ‘/g1/g2/g3/g4/g5" to the output path
‘/g1/g2’. Input paths with Ivl_nbr or fewer components (groups) are completely erased and
the output path commences from the root level.

In Flattening Mode, indicated by the separator character alone or with Ivi_nbr = 0, GPE
removes the entire group path from the input file and constructs the output path beginning
at the root level. For example -G :0 and -G : are identical and change the input path
‘/gl/g2/g3/g4/gb’” to the output path °/’ whereas -G g1:0 and -G gl1: are identical and
result in the output path ‘/g1’ for all variables.

42 NCO 4.3.4 User’s Guide

Subsequent to the alteration of the input path by the specified editing mode, if any,
GPE prepends (in Deletion Mode) or Appends (in Truncation Mode) any specifed grp_pth
to the output path. For example -G g2 changes the input paths ‘/’ and /g1’ to /g2’
and ‘/gl/g2’, respectively. Likewise, -G g2/g3 changes the input paths ‘/’ and ‘/gl’ to
‘/g2/g3" and ‘/gl/g2/g3’, respectively. When grp_pth and Ivi_nbr are both specified, the
editing actions are taken in sequence so that, e.g., -G g1/g2:2 changes the input paths ‘/’
and ‘/h1/h2/h3/h4’ to ‘/gl/g2’ and ‘/gl1/g2/h3/h4’, respectively. Likewise, -G g1/g2:-2
changes the input paths ‘/” and ‘/h1/h2/h3/h4’ to ‘/gl/g2’ and ‘/h1/h2/gl/g2’, respec-
tively.

Combining GPE with subsetting (see Section 3.11 [Subsetting Files], page 36) yields
powerful control over the extracted (or excluded) variables and groups and their placement
in the output file as shown by the following commands. All commands below may be
assumed to end with ‘in.nc out.nc’.

Prepending paths without editing:

ncks # /grv/v? => /g?/v?

ncks -v vl # /g?/vl -> /g?/vl

ncks -g gl # /gl/v? -> /gl/v7?

ncks -G ol # /g?/v? -> /ol/g?/v?

ncks -G ol -g gl # /gl/v? -> /ol/gl/v?

ncks -g gl -v vl # /gl/vl -> /gl/v1l

ncks -G ol -v vl # /g?/v1l -> /ol/g?/v1l

ncks -G ol -g gl -v vl # /gl/vl -> /ol/gl/v1

ncks -G gl -g / -v vl # /vl -> /gl/v1

ncks -G gl/g2 -v vl # /g?/vl -> /gl/g2/g?/v1

Deletion Mode: Delete from and Prepend to path head
Syntax: -G [ppn]:1vl_nbr = # of levels to delete
ncks -G :1 -g gl -v vl # /gil/vl -> /vi
ncks -G :1 -g gl/gl -v v1 # /gi/gl/v1l -> /gi/v1
ncks -G :2 -g gl/gl -v vl # /gi/gl/vl -> /v1
ncks -G :2 -g gl -v vl # /gl/vl -> /v1
ncks -G g2:1 -g gl -v vl # /gi/v1 -> /g2/v1
ncks -G g2:2 -g gl/gl -v v1 # /gi/gl/v1l -> /g2/v1
ncks -G g2:1 -g -v vl # /vl -> /g2/v1
ncks -G g2:1 -g gi/gl -v vl # /gl/gl/vl -> /g2/gl/v1
Flattening Mode: Remove all input path components

Syntax: -G [apn]: colon

ncks
ncks
ncks
ncks
ncks
ncks

Truncation Mode: Truncate from and Append to path tail
Syntax: -G [apn]:-1lvl_nbr
NB: -G [apn]:-1lvl_nbr is equivalent to -G [apn]@lvl_nbr
-1

ncks

-G :
-G :
-G :
-G g2:
-G g2:
-G g2:

-G

-g gl
-g gl/gl

-g gl/gl

-g gl

'

v
\%
\%
\%

v

without numerical argument
/vl

/v1

/v1

/g2/v1
/g2/v?

1 # /g?/v1 ->
1 # /gl/v1 ->
1 # /gl/gl/v1l —>
1 # /g?/v1 ->

/g?/v? ->
1 # /gl/gl/v1 —>

-v vl # /gi/v1

/g2/v1

=->

of levels to truncate

/vl

Chapter 3: NCO Features 43

ncks -G :-1 -g gi/g2 -v vi1
ncks -G :-2 -g gl/g2 -v vl

/gl/g2/v1 => /gl/v1
/gl/g2/v1 -> /vi

ncks -G :-2 -g gl -v vl # /gl/v1 -> /vi

ncks -G g2:-1 -v vl # /g?/vl -> /g2/v1
ncks -G g2:-1 -v vl # /g?/v1 -> /g2/v1
ncks -G g2:-1 -g gl -v vl # /gil/vl -> /gl/g2/v1

H OH H H H H H

ncks -G gl:-1 -g gi/g2 -v vl # /gi/g2/vl -> /gl/gl/v1

As of 2013, netCDF contains no library function for renaming groups. GPE can be used
to move groups, which is a more arduous way of accomplishing the same goal as renaming.
GPE applies to all selected groups, so, in the general case, one must move only the desired
group to a new file, and then merge that new file with the original to obtain a file where
the desired group has been “renamed” and all else is unchanged.

ncks -0 -G f4:1 -g g4 ~/nco/data/in_grp.nc ~/tmp.nc # Move /g4 to /f4
ncks -0 -x -g g4 “/nco/data/in_grp.nc “/out.nc # Excise /g4
ncks -A “/tmp.nc “/out.nc # Add /f4 to new file

If the original group ‘g4’ is not excised from ‘out.nc’ (step two above), then the final
output file would contain both ‘g4’ and a copy named ‘f4’. Thus GPE can be used to both
“rename” and copy groups.

3.14 C and Fortran Index conventions

Availability: ncbo, ncea, ncecat, ncflint, ncks, ncpdq, ncra, ncrcat, ncwa
Short options: ‘-F’
Long options: ‘--fortran’

The ‘-F’ switch changes NCO to read and write with the Fortran index convention. By
default, NCO uses C-style (0-based) indices for all I/O. In C, indices count from 0 (rather
than 1), and dimensions are ordered from slowest (inner-most) to fastest (outer-most) vary-
ing. In Fortran, indices count from 1 (rather than 0), and dimensions are ordered from
fastest (inner-most) to slowest (outer-most) varying. Hence C and Fortran data storage
conventions represent mathematical transposes of eachother. Note that record variables
contain the record dimension as the most slowly varying dimension. See Section 4.8 [ncpdq
netCDF Permute Dimensions Quickly], page 161 for techniques to re-order (including trans-
pose) dimensions and to reverse data storage order.

Consider a file ‘85.nc’ containing 12 months of data in the record dimension time. The
following hyperslab operations produce identical results, a June-July-August average of the
data:

ncra -d time,5,7 85.nc 85_JJA.nc
ncra -F -d time,6,8 85.nc 85_JJA.nc

Printing variable three_dmn_var in file ‘in.nc’ first with the C indexing convention, then
with Fortran indexing convention results in the following output formats:

% ncks -v three_dmn_var in.nc

44 NCO 4.3.4 User’s Guide

lat[0]=-90 1ev[0]=1000 lon[0]=-180 three_dmn_var[0]=0

% ncks -F -v three_dmn_var in.nc
lon(1)=0 lev(1)=100 lat(1)=-90 three_dmn_var(1)=0

3.15 Hyperslabs

Availability: ncbo, ncea, ncecat, ncflint, ncks, ncpdq, ncra, ncrcat, ncwa
Short options: ‘-d dim, [min] [, [max] [, [stridel]]’

Long options: ‘~-dimension dim, [min] [, [max] [, [stridell]’,

‘——dmn dim, [min] [, [max] [, [stride]]]’

A hyperslab is a subset of a variable’s data. The coordinates of a hyperslab are specified
with the -d dim, [min] [, [max] [, [stride]]] short option (or with the same arguments
to the ‘--dimension’ or ‘--dmn’ long options). At least one hyperslab argument (min, max,
or stride) must be present. The bounds of the hyperslab to be extracted are specified by
the associated min and max values. A half-open range is specified by omitting either the
min or max parameter. The separating comma must be present to indicate the omission of
one of these arguments. The unspecified limit is interpreted as the maximum or minimum
value in the unspecified direction. A cross-section at a specific coordinate is extracted by
specifying only the min limit and omitting a trailing comma. Dimensions not mentioned
are passed with no reduction in range. The dimensionality of variables is not reduced (in
the case of a cross-section, the size of the constant dimension will be one).

First and second indices of lon dimension
ncks -F -d lon,1,2 in.nc out.nc

Second and third indices of lon dimension
ncks -d lon,1,2 in.nc out.nc

Coordinate values should be specified using real notation with a decimal point required in
the value, whereas dimension indices are specified using integer notation without a decimal
point. This convention serves only to differentiate coordinate values from dimension indices.
It is independent of the type of any net CDF coordinate variables. For a given dimension, the
specified limits must both be coordinate values (with decimal points) or dimension indices
(no decimal points).

If values of a coordinate-variable are used to specify a range or cross-section, then the
coordinate variable must be monotonic (values either increasing or decreasing). In this case,
command-line values need not exactly match coordinate values for the specified dimension.
Ranges are determined by seeking the first coordinate value to occur in the closed range
[min,max] and including all subsequent values until one falls outside the range. The coor-
dinate value for a cross-section is the coordinate-variable value closest to the specified value
and must lie within the range or coordinate-variable values. The stride argument, if any,
must be a dimension index, not a coordinate value. See Section 3.16 [Stride|, page 46, for
more information on the stride option.

Chapter 3: NCO Features 45

All longitude values between 1 and 2 degrees

ncks -d lon,1.0,2.0 in.nc out.nc

All longitude values between 1 and 2 degrees

ncks -F -d 1lon,1.0,2.0 in.nc out.nc

Every other longitude value between O and 90 degrees
ncks -F -d 1on,0.0,90.0,2 in.nc out.nc

As of version 4.2.1 (August, 2012), NCO allows one to extract the last N elements
of a hyperslab. Negative integers as min or max elements of a hyperslab specification
indicate offsets from the end (Python also uses this convention). Previously, for example, ‘-d
time,-2,-1’" caused a domain error. Now it means select the second-to-last and penultimate
timesteps. Negative integers work for min and max indices but not for stride.

Last two indices of lon dimension

ncks -F -d lon,1,-2 in.nc out.nc

First to penultimate indices of lon dimension
ncks -F -d lon,1,-2 in.nc out.nc

Third-to-last to last index of lon dimension
ncks -F -d lon,-3,-1 in.nc out.nc

Third-to-last to last index of lon dimension
ncks -F -d lon,-3, in.nc out.nc

As shown, we recommend using a full floating point suffix of .0 instead of simply . in order
to make obvious the selection of hyperslab elements based on coordinate value rather than
index.

User-specified coordinate limits are promoted to double precision values while searching
for the indices which bracket the range. Thus, hyperslabs on coordinates of type NC_BYTE
and NC_CHAR are computed numerically rather than lexically, so the results are unpre-
dictable.

The relative magnitude of min and max indicate to the operator whether to expect a
wrapped coordinate (see Section 3.20 [Wrapped Coordinates], page 52), such as longitude.
If min > max, the NCO expects the coordinate to be wrapped, and a warning message will
be printed. When this occurs, NCO selects all values outside the domain [max < min], i.e.,
all the values exclusive of the values which would have been selected if min and max were
swapped. If this seems confusing, test your command on just the coordinate variables with
ncks, and then examine the output to ensure NCO selected the hyperslab you expected
(coordinate wrapping is currently only supported by ncks).

Because of the way wrapped coordinates are interpreted, it is very important to make
sure you always specify hyperslabs in the monotonically increasing sense, i.e., min < max
(even if the underlying coordinate variable is monotonically decreasing). The only exception
to this is when you are indeed specifying a wrapped coordinate. The distinction is crucial
to understand because the points selected by, e.g., -d longitude,50.,340., are exactly the
complement of the points selected by -d longitude,340.,50..

Not specifying any hyperslab option is equivalent to specifying full ranges of all dimen-
sions. This option may be specified more than once in a single command (each hyperslabbed
dimension requires its own -d option).

46 NCO 4.3.4 User’s Guide

3.16 Stride

Availability: ncbo, ncea, ncecat, ncflint, ncks, ncpdq, ncra, ncrcat, ncwa
Short options: ‘-d dim, [min] [, [max] [, [stride]]]’

Long options: ‘--dimension dim, [min] [, [max] [, [stridell]’,

‘——dmn dim, [min] [, [max] [, [stride]]]’

All data operators support specifying a stride for any and all dimensions at the same
time. The stride is the spacing between consecutive points in a hyperslab. A stride of 1
picks all the elements of the hyperslab, and a stride of 2 skips every other element, etc.. ncks
multislabs support strides, and are more powerful than the regular hyperslabs supported
by the other operators (see Section 3.19 [Multislabs|, page 49). Using the stride option for
the record dimension with ncra and ncrcat makes it possible, for instance, to average or
concatenate regular intervals across multi-file input data sets.

The stride is specified as the optional fourth argument to the ‘-d’ hyperslab specification:
-d dim, [min] [, [max] [, [stride]]]. Specify stride as an integer (i.e., no decimal point)
following the third comma in the ‘-d’ argument. There is no default value for stride. Thus
using ‘-d time,,,2’ is valid but ‘-d time,,,2.0" and ‘-d time,,,’ are not. When stride
is specified but min is not, there is an ambiguity as to whether the extracted hyperslab
should begin with (using C-style, 0-based indexes) element 0 or element ‘stride-1’. NCO
must resolve this ambiguity and it chooses element 0 as the first element of the hyperslab
when min is not specified. Thus ‘-d time,,,stride’ is syntactically equivalent to ‘-d
time,0,,stride’. This means, for example, that specifying the operation ‘-d time,,,2’
on the array ‘1,2,3,4,5” selects the hyperslab ‘1,3,5’. To obtain the hyperslab ‘2,4’
instead, simply explicitly specify the starting index as 1, i.e., ‘*-d time,1,,2’.

For example, consider a file ‘8501_8912.nc’ which contains 60 consecutive months of
data. Say you wish to obtain just the March data from this file. Using 0-based subscripts
(see Section 3.14 [C and Fortran Index Conventions|, page 43) these data are stored in
records 2, 14, ... 50 so the desired stride is 12. Without the stride option, the procedure
is very awkward. One could use ncks five times and then use ncrcat to concatenate the
resulting files together:

for idx in 02 14 26 38 50; do # Bourne Shell
ncks -d time,${idx} 8501_8912.nc foo.${idx}
done
foreach idx (02 14 26 38 50) # C Shell
ncks -d time,${idx} 8501_8912.nc foo.${idx}
end
ncrcat foo.7? 8589_03.nc
rm foo.77?

With the stride option, ncks performs this hyperslab extraction in one operation:
ncks -d time,2,,12 8501_8912.nc 8589_03.nc

See Section 4.7 [ncks netCDF Kitchen Sink], page 151, for more information on ncks.

Chapter 3: NCO Features 47

Applying the stride option to the record dimension in ncra and ncrcat makes it possible,
for instance, to average or concatenate regular intervals across multi-file input data sets.

ncra -F -d time,3,,12 85.nc 86.nc 87.nc 88.nc 89.nc 8589_03.nc
ncrcat -F -d time,3,,12 85.nc 86.nc 87.nc 88.nc 89.nc 8503_8903.nc

3.17 Record Appending

Availability: ncra, ncrcat
Short options: None
Long options: ‘--rec_apn’,

3

--record_append’

As of version 4.2.6 (March, 2013), NCO allows both Multi-File, Multi-Record operators
(ncra and ncrcat) to append their output directly to the end of an existing file. This
feature useful when a target file is to be augmented, rather than constructed from scratch.
For example, when a timeseries is concatenated from input data that becomes available in
stages rather than all at once. This switch enables an optimization that significantly speeds
writing in such cases.

Consider the use case where wants to preserve the contents of ‘f1_1.nc’, and add to
them new records contained in ‘f1_2.nc’. Previously the output had to be placed in a
third file, ‘f1_3.nc’ (which could also safely be named ‘f1_2.nc’), via

ncrcat -0 f1_1.nc fl_2.nc f1_3.nc

Under the hood this operation copies all information in ‘f1_1.nc’ and ‘f1_2.nc’ not
once but twice. The first copy is performed through the netCDF interface, as all data from
‘f1_1.nc’and ‘f1_2.nc’ are extracted and placed in the output file. The second copy occurs
(usually much) more quickly as the (by default) temporary output file is copied (sometimes
a quick re-link suffices) to the final output file (see Section 2.3 [Temporary Output Files|,
page 13). All this copying is expensive for large files.

3

The new ‘--record_append’ switch causes all records in ‘f1_1.nc’ to be appended to
the end of the corresponding records in ‘f1_2.nc’:

ncrcat --rec_apn fl_1.nc fl1_2.nc

The contents of ‘f1_2.nc’ are completely preserved, and only values in ‘f1_1.nc’ are
copied. This switch avoids the necessity of copying all of ‘f1_2.nc’ through the netCDF
interface to a new output file. The ‘--rec_apn’ switch automatically puts NCO into append
mode (see Section 2.4 [Appending Variables|, page 15), so specifying ‘~A’ is redundant, and
simultaneously specifying overwrite mode with ‘-0’ causes an error. By default, NCO
works in an intermediate temporary file. Power users may combine ‘--rec_apn’ with the
‘~-no_tmp_£f1’ switch (see Section 2.3 [Temporary Output Files|, page 13):

ncrcat --rec_apn --no_tmp_f1l f1_1.nc f1_2.nc

This avoids creating an intermediate file, and copies only the minimal amount of data
(i.e., all of ‘f1_1.nc’). Hence, it is fast. We recommend users try to understand the safety
trade-offs involved.

48 NCO 4.3.4 User’s Guide

3.18 Duration

Availability: ncra, ncrcat
Short options: ‘-d dim, [min] [, [max] [, [stride] [, [duration]]]]’
Long options: ‘--mro’ ‘--dimension dim, [min] [, [max] [, [stride] [, [duration]]]]’

‘-—dmn dim, [min] [, [max] [, [stride] [, [duration]]]]’

As of version 4.2.1 (August, 2012), NCO allows both Multi-File, Multi-Record operators,
ncra and ncrcat, to extract and operate on multiple groups of records. These groups may
be physically connected to sub-cycles of a periodic nature, e.g., seasons of a year. Or they
may be thought of as groups of a specifed duration. The feature and the terminology to

describe it are new. For now, we call this the duration feature, sometimes abbreviated
DRN.

The duration feature allows processing of groups of records separated by regular intervals
of records. It is perhaps best illustrated by an extended example which describes how to
solve the same problem both with and without the DRN feature.

The first task in climate data processing is often creating seasonal cycles. Suppose a
150-year climate simulation produces 150 output files, each comprising 12 records, each
record a monthly mean: ‘1850.nc’, ‘1851.nc’, ... ‘1999.nc’. Our goal is to create a single
file containing the summertime (June, July, and August, aka JJA) mean. Traditionally, we
would first compute the climatological monthly mean for each month of summer. Each of
these is a 150-year mean, i.e.,

Step 1: Create climatological monthly files clm0O6.nc..clm08.nc
for mth in {6..8}; do

mm="‘printf "%02d" $mth°

ncra -0 -F -d time,${mm},,12 -n 150,4,1 1850.nc clm${mm}.nc
done
Step 2: Average climatological monthly files into summertime mean
ncra -0 ¢clm06 clm07.nc clm08.nc clm_JJA.nc

So far, nothing is unusual and this task can be performed by any NCO version. The DRN
feature makes obsolete the need for the shell loop used in Step 1 above.

The new DRN option aggregates more than one input record at a time before performing
arithmetic operations, and, with an additional switch, allows us to archive those results in
multiple record output (MRO) files. This reduces the task of producing a the climatological
summertime mean to one step:

Step 1: Compute climatological summertime mean
ncra -0 -F -d time,6,,12,3 -n 150,4,1 1850.nc clm_JJA.nc

The DRN option instructs ncra (or ncrcat) to process files in groups of three records.

A separate option, ‘--mro’, instructs ncra to output its results from each sub-group, and
to produce a Multi-Record Output (MRO) file rather than a Single-Record Output (SRO)
file. Unless ‘--mro’ is specified, ncra collects all the sub-groups together, and operates on

Chapter 3: NCO Features 49

their ensemble, producing a single output record. The addition of ‘--mro’ to the above
example causes ncra to archive all (150) annual summertime means to one file:

Step 1: Archive all 150 summertime means in one file

ncra -—mro -0 -F -d time,6,,12,3 -n 150,4,1 1850.nc 1850_2009_JJA.nc
...or all (150) annual means...

ncra --mro -0 -d time,,,12,12 -n 150,4,1 1850.nc 1850_2009.nc

These operations generated and required no intermediate files. This contrasts to the pre-
vious NCO methods, which require generating, averaging, then catenating 150 files. The
‘—-mro’ option has no effect on, or rather is redundant for, ncrcat since ncrcat always
outputs all selected records.

3.19 Multislabs

Availability: ncbo, ncea, ncecat, ncflint, ncks, ncpdq, ncra, ncrcat
Short options: ‘-d dim, [min] [, [max] [, [stride]l]]’

Long options: ‘--dimension dim, [min] [, [max] [, [stridell]’,
‘——dmn dim, [min] [, [max] [, [stridel]l]’

‘--msa_usr_rdr’, ‘--msa_user_order’

\

A multislab is a union of one or more hyperslabs. One defines multislabs by chaining
together hyperslab commands, i.e., -d options (see Section 3.15 [Hyperslabs|, page 44).
Support for specifying a multi-hyperslab or multislab for any variable was first added to ncks
in late 2002. The other operators received these capabilities in April 2008. Multi-slabbing
is often referred to by the acronym MSA, which stands for “Multi-Slabbing Algorithm”. As
explained below, the user may additionally request that the multislabs be returned in the
user-specified order, rather than the on-disk storage order. Although MSA user-ordering
has been available in all operators since 2008, most users were unaware of it since the
documentation (below, and in the man pages) was not written until July 2013.

Multislabs overcome many restraints that limit simple hyperslabs. A single -d op-
tion can only specify a contiguous and/or a regularly spaced multi-dimensional data ar-
ray. Multislabs are constructed from multiple -d options and may therefore have non-
regularly spaced arrays. For example, suppose it is desired to operate on all longitudes
from 10.0 to 20.0 and from 80.0 to 90.0 degrees. The combined range of longitudes is not
selectable in a single hyperslab specfication of the form ‘-d dimension,min,max’ or ‘-d di-
mension,min,max,stride’ because its elements are irregularly spaced in coordinate space
(and presumably in index space too). The multislab specification for obtaining these values
is simply the union of the hyperslabs specifications that comprise the multislab, i.e.,

ncks -4 lon,10.,20. -d 1on,80.,90. in.nc out.nc
ncks -d lon,10.,15. -d lon,15.,20. -d 1on,80.,90. in.nc out.nc

Any number of hyperslabs specifications may be chained together to specify the multislab.
MSA creates an output dimension equal in size to the sum of the sizes of the multislabs.
This can be used to extend and or pad coordinate grids.

Users may specify redundant ranges of indices in a multislab, e.g.,

50 NCO 4.3.4 User’s Guide

ncks -d lon,0,4 -d 1lon,2,9,2 in.nc out.nc

This command retrieves the first five longitudes, and then every other longitude value
up to the tenth. Elements 0, 2, and 4 are specified by both hyperslab arguments (hence
this is redundant) but will count only once if an arithmetic operation is being performed.
This example uses index-based (not coordinate-based) multislabs because the stride option
only supports index-based hyper-slabbing. See Section 3.16 [Stride], page 46, for more
information on the stride option.

Multislabs are more efficient than the alternative of sequentially performing hyperslab
operations and concatenating the results. This is because NCO employs a novel multislab
algorithm to minimize the number of I/O operations when retrieving irregularly spaced
data from disk. The NCO multislab algorithm retrieves each element from disk once and
only once. Thus users may take some shortcuts in specifying multislabs and the algorithm
will obtain the intended values. Specifying redundant ranges is not encouraged, but may
be useful on occasion and will not result in unintended consequences.

Suppose the) variable contains three dimensional arrays of distinct chemical con-
stituents in no particular order. We are interested in the NOy species in a certain geographic
range. Say that NO, NO2, and N205 are elements 0, 1, and 5 of the species dimension of
Q. The multislab specification might look something like

ncks -d species,0,1 -d species,5 -d 1lon,0,4 -d 1lon,2,9,2 in.nc out.nc

Multislabs are powerful because they may be specified for every dimension at the same
time. Thus multislabs obsolete the need to execute multiple ncks commands to gather the
desired range of data.

3

The MSA user-order switch ‘--msa_usr_rdr’ (or ‘--msa_user_order’, both of which
shorten to ‘--msa’) requests that the multislabs be output in the user-specified order from
the command-line, rather than in the input-file on-disk storage order. This allows the
user to perform complex data re-ordering in one operation that would otherwise require
cumbersome steps of hyperslabbing, concatenating, and permuting. Consider the recent
example of a user who needed to convert datasets stored with the longitude coordinate Lon
ranging from [—180,180) to datasets that follow the [0,360) convention.

% ncks -H -v Lon in.nc
Lon[0]=-180

Lon[1]=-90

Lon[2]=0

Lon[3]=90

Although simple in theory, this task requires both mathematics to change the numerical
value of the longitude coordinate, data hyperslabbing to split the input on-disk arrays at
Greenwich, and data re-ordering within to stitch the western hemisphere onto the eastern
hemisphere at the date-line. The ‘--msa’ user-order switch overrides the default that data
are output in the same order in which they are stored on-disk in the input file, and instead
stores them in the same order as the multi-slabs are given to the command line. This
default is intuitive and is not important in most uses. However, the MSA user-order switch
allows users to meet their output order needs by specifying multi-slabs in a certain order.
Compare the results of default ordering to user-ordering for longitude:

Chapter 3: NCO Features 51

% ncks -0 -H -v Lon -d Lon,0.,180. -d Lon,-180.,-1.0 in.nc
Lon[0]=-180

Lon[1]=-90

Lon[2]=0

Lon[3]=90

% ncks -0 -H --msa -v Lon -d Lon,0.,180. -d Lon,-180.,-1.0 in.nc
Lon[0]=0

Lon[1]=90

Lon[2]=-180

Lon[3]=-90

The two multi-slabs are the same but they can be presented to screen, or to an output file,
in either order. The second example shows how to place the western hemisphere after the
eastern hemisphere, although they are stored in the opposite order in the input file.

With this background, one sees that the following commands suffice to rotate the input
file by 180 degrees longitude:

% ncks -0 -v LatLon --msa -d Lon,0.,180. -d Lon,-180.,-1.0 in.nc out.nc
% ncap2 -0 -s ’where(Lon < 0) Lon=Lon+360’ out.nc out.nc
% ncks -C -H -v LatLon ~/nco/data/in.nc

Lat [0]=-45 Lon[0]=-180 LatLon[0]=0

Lat[0]=-45 Lon[1]=-90 LatLon[1]=1

Lat[0]=-45 Lon[2]=0 LatLon[2]=2

Lat[0]=-45 Lon[3]=90 LatLon[3]=3

Lat[1]=45 Lon[0]=-180 LatLon[4]=4

Lat[1]=45 Lon[1]=-90 LatLon[5]=5

Lat[1]=45 Lon[2]=0 LatLon[6]=6

Lat[1]=45 Lon[3]=90 LatLon[7]=7

% ncks -C -H -v LatLon ~/out.nc

Lat[0]=-45 Lon[0]=0 LatLon[0]=2

Lat[0]=-45 Lon[1]1=90 LatLon[1]=3

Lat[0]=-45 Lon[2]=180 LatLon[2]=0

Lat[0]=-45 Lon[3]=270 LatLon[3]=1

Lat[1]=45 Lon[0]=0 LatLon[4]=6

Lat[1]=45 Lon[1]1=90 LatLon[5]=7

Lat[1]=45 Lon[2]=180 LatLon[6]=4

Lat[1]=45 Lon[3]=270 LatLon[7]=5

There are other workable, valid methods to accomplish this rotation, yet none are simpler
nor more efficient than utilizing MSA user-ordering. Some final comments on applying
this algorithm: Be careful to specify hemispheres that do not overlap, e.g., by inadvertently
specifying coordinate ranges that both include Greenwich. Some users will find using index-
based rather than coordinate-based hyperslabs makes this clearer.

52 NCO 4.3.4 User’s Guide

ik e .
%}gﬁt optigz?si) 1%915,3 nglll‘ f][lrb%:;cﬁs[[stridel]]’

Long options: ‘--dimension dim, [min] [, [max] [, [stridell]’,
‘——dmn dim, [min] [, [max] [, [stride]]]’

A wrapped coordinate is a coordinate whose values increase or decrease monotonically
(nothing unusual so far), but which represents a dimension that ends where it begins (i.e.,
wraps around on itself). Longitude (i.e., degrees on a circle) is a familiar example of a
wrapped coordinate. Longitude increases to the East of Greenwich, England, where it is
defined to be zero. Halfway around the globe, the longitude is 180 degrees East (or West).
Continuing eastward, longitude increases to 360 degrees East at Greenwich. The longitude
values of most geophysical data are either in the range [0,360), or [—180,180). In either case,
the Westernmost and Easternmost longitudes are numerically separated by 360 degrees,
but represent contiguous regions on the globe. For example, the Saharan desert stretches
from roughly 340 to 50 degrees East. FExtracting the hyperslab of data representing the
Sahara from a global dataset presents special problems when the global dataset is stored
consecutively in longitude from 0 to 360 degrees. This is because the data for the Sahara
will not be contiguous in the input-file but is expected by the user to be contiguous in the
output-file. In this case, ncks must invoke special software routines to assemble the desired
output hyperslab from multiple reads of the input-file.

Assume the domain of the monotonically increasing longitude coordinate lon is 0 <
lon < 360. ncks will extract a hyperslab which crosses the Greenwich meridian simply by
specifying the westernmost longitude as min and the easternmost longitude as max. The
following commands extract a hyperslab containing the Saharan desert:

ncks -d lon,340.,50. in.nc out.nc
ncks -d lon,340.,50. -d lat,10.,35. in.nc out.nc

The first example selects data in the same longitude range as the Sahara. The second exam-
ple further constrains the data to having the same latitude as the Sahara. The coordinate
lon in the output-file, ‘out.nc’, will no longer be monotonic! The values of lon will be,
e.g., ‘340, 350, 0, 10, 20, 30, 40, 50’. This can have serious implications should you run
‘out.nc’ through another operation which expects the lon coordinate to be monotonically
increasing. Fortunately, the chances of this happening are slim, since lon has already been
hyperslabbed, there should be no reason to hyperslab lon again. Should you need to hy-
perslab lon again, be sure to give dimensional indices as the hyperslab arguments, rather
than coordinate values (see Section 3.15 [Hyperslabs|, page 44).

Chapter 3: NCO Features 53

3.21 Auxiliary Coardinates

Availability: ncbo, ncea, ncecat, ncflint, ncks, ncpdq, ncra, ncrcat
Short options: ‘-X lon_min,lon_max,lat_min,lat_max’

Long options: ‘--—auxiliary lon_min,lon_max,lat_min,lat_max’

Utilize auxiliary coordinates specified in values of the coordinate variable’s standard_
name attributes, if any, when interpreting hyperslab and multi-slab options. Also
‘—-—auxiliary’. This switch supports hyperslabbing cell-based grids over coordinate ranges.
This works on datasets that associate coordinate variables to grid-mappings using the
CF-convention (see Section 3.36 [CF Conventions|, page 78) coordinates and standard_
name attributes described here. Currently, NCO understands auxiliary coordinate variables
pointed to by the standard_name attributes for latitude and longitude. Cells that contain
a value within the user-specified range [lon-min,lon_max,lat_min,lat_max] are included in
the output hyperslab.

A cell-based grid collapses the horizontal spatial information (latitude and longitude)
and stores it along a one-dimensional coordinate that has a one-to-one mapping to both
latitude and longitude coordinates. Rectangular (in longitude and latitude) horizontal hy-
perslabs cannot be selected using the typical procedure (see Section 3.15 [Hyperslabs],
page 44) of separately specifying ‘-d’” arguments for longitude and latitude. Instead, when
the ‘=X’ is used, NCO learns the names of the latitude and longitude coordinates by search-
ing the standard_name attribute of all variables until it finds the two variables whose
standard_name’s are “latitude” and “longitude”, respectively. This standard_name at-
tribute for latitude and longitude coordinates follows the CF-convention (see Section 3.36
[CF Conventions|, page 78).

Putting it all together, consider a variable gds_3dvar output from simulations on a cell-
based geodesic grid. Although the variable contains three dimensions of data (time, latitude,
and longitude), it is stored in the netCDF file with only two dimensions, time and gds_crd.

% ncks -m -C -v gds_3dvar ~/nco/data/in.nc

gds_3dvar: type NC_FLOAT, 2 dimensions, 4 attributes, chunked? no, \
compressed? no, packed? no, ID = 41

gds_3dvar RAM size is 10%8*sizeof (NC_FLOAT) = 80%4 = 320 bytes

gds_3dvar dimension O: time, size = 10 NC_DOUBLE, dim. ID = 20 \
(CRD) (REC)

gds_3dvar dimension 1: gds_crd, size = 8 NC_FLOAT, dim. ID

gds_3dvar attribute O: long_name, size = 17 NC_CHAR, value
Geodesic variable

gds_3dvar attribute 1: units, size = 5 NC_CHAR, value = meter

gds_3dvar attribute 2: coordinates, size = 15 NC_CHAR, value = \
lat_gds lon_gds

gds_3dvar attribute 3: purpose, size = 64 NC_CHAR, value = \
Test auxiliary coordinates like those that define geodesic grids

17 (CRD)
\

http://cf-pcmdi.llnl.gov/documents/cf-conventions/1.6/cf-conventions.html#coordinate-system

54 NCO 4.3.4 User’s Guide

The coordinates attribute lists the names of the latitude and longitude coordinates,
lat_gds and lon_gds, respectively. The coordinates attribute is recommended though
optional. With it, the user can immediately identify which variables contain the latitude
and longitude coordinates. Without a coordinates attribute it would be unclear at first
glance whether a variable resides on a cell-based grid. In this example, time is a normal
record dimension and gds_crd is the cell-based dimension.

The cell-based grid file must contain two variables whose standard_name attributes are
“latitude”, and “longitude”

% ncks -m -C -v lat_gds,lon_gds ~/nco/data/in.nc
lat_gds: type NC_DOUBLE, 1 dimensions, 4 attributes, \

chunked? no, compressed? no, packed? no, ID = 37
lat_gds RAM size is 8*sizeof (NC_DOUBLE) = 8%8 = 64 bytes
lat_gds dimension 0: gds_crd, size = 8 NC_FLOAT, dim. ID = 17 (CRD)
lat_gds attribute O0: long_name, size = 8 NC_CHAR, value = Latitude
lat_gds attribute 1: standard_name, size = 8 NC_CHAR, value = latitude
lat_gds attribute 2: units, size = 6 NC_CHAR, value = degree
lat_gds attribute 3: purpose, size = 62 NC_CHAR, value = \

1-D latitude coordinate referred to by geodesic grid variables

lon_gds: type NC_DOUBLE, 1 dimensions, 4 attributes, \

chunked? no, compressed? no, packed? no, ID = 38
lon_gds RAM size is 8*sizeof (NC_DOUBLE) = 8%8 = 64 bytes
lon_gds dimension 0: gds_crd, size = 8 NC_FLOAT, dim. ID = 17 (CRD)
lon_gds attribute 0: long_name, size = 9 NC_CHAR, value = Longitude
lon_gds attribute 1: standard_name, size = 9 NC_CHAR, value = longitude
lon_gds attribute 2: units, size = 6 NC_CHAR, value = degree
lon_gds attribute 3: purpose, size = 63 NC_CHAR, value = \

1-D longitude coordinate referred to by geodesic grid variables

In this example lat_gds and lon_gds represent the latitude or longitude, respectively,
of cell-based variables. These coordinates (must) have the same single dimension (gds_crd,
in this case) as the cell-based variables. And the coordinates must be one-dimensional—
multidimensional coordinates will not work.

This infrastructure allows NCO to identify, interpret, and process (e.g., hyperslab) the
variables on cell-based grids as easily as it works with regular grids. To time-average all
the values between zero and 180 degrees longitude and between plus and minus 30 degress
latitude, we use

ncra -0 -X 0.,180.,-30.,30. -v gds_3dvar in.nc out.nc

NCO accepts multiple ‘=X’ arguments for cell-based grid multi-slabs, just as it accepts
multiple ‘-d” arguments for multi-slabs of regular coordinates.

ncra -0 -X 0.,180.,-30.,30. -X 270.,315.,45.,90. in.nc out.nc

The arguments to ‘-X’ are always interpreted as floating point numbers, i.e., as coordinate
values rather than dimension indices so that these two commands produce identical results

Chapter 3: NCO Features 55

ncra -X 0.,180.,-30.,30. in.nc out.nc
ncra -X 0,180,-30,30 in.nc out.nc

In contrast, arguments to ‘-d’ require decimal places to be recognized as coordinates
not indices (see Section 3.15 [Hyperslabs|, page 44). We recommend always using decimal
points with ‘=X’ arguments to avoid confusion.

3.22 UDUnits Support

Availability: ncbo, ncea, ncecat, ncflint, ncks, ncpdq, ncra, ncrcat, ncwa
Short options: ‘-d dim, [min] [, [max] [, [stride]]]’

Long options: ‘--dimension dim, [min] [, [max] [, [stridell]’,

‘——dmn dim, [min] [, [max] [, [stride]l]]’

There is more than one way to hyperskin a cat. The UDUnits package provides a library
which, if present, NCO uses to translate user-specified physical dimensions into the physical
dimensions of data stored in netCDF files. Unidata provides UDUnits under the same terms
as netCDF, so sites should install both. Compiling NCO with UDUnits support is currently
optional but may become required in a future version of NCO.

Two examples suffice to demonstrate the power and convenience of UDUnits support.
First, consider extraction of a variable containing non-record coordinates with physical
dimensions stored in MKS units. In the following example, the user extracts all wavelengths
in the visible portion of the spectrum in terms of the units very frequently used in visible
spectroscopy, microns:

% ncks -C -H -v wvl -d wvl,"0.4 micron","0.7 micron" in.nc
wvl[0]=5e-07 meter

The hyperslab returns the correct values because the wvl variable is stored on disk with
a length dimension that UDUnits recognizes in the units attribute. The automagical
algorithm that implements this functionality is worth describing since understanding it
helps one avoid some potential pitfalls. First, the user includes the physical units of the
hyperslab dimensions she supplies, separated by a simple space from the numerical values of
the hyperslab limits. She encloses each coordinate specifications in quotes so that the shell
does not break the value-space-unit string into separate arguments before passing them to
NCO. Double quotes ("foo") or single quotes (’foo’) are equally valid for this purpose.
Second, NCO recognizes that units translation is requested because each hyperslab argument
contains text characters and non-initial spaces. Third, NCO determines whether the wvl is
dimensioned with a coordinate variable that has a units attribute. In this case, wvl itself is
a coordinate variable. The value of its units attribute is meter. Thus wvl passes this test
so UDUnits conversion is attempted. If the coordinate associated with the variable does not
contain a units attribute, then NCO aborts. Fourth, NCO passes the specified and desired
dimension strings (microns are specified by the user, meters are required by NCO) to the
UDUnits library. Fifth, the UDUnits library that these dimension are commensurate and
it returns the appropriate linear scaling factors to convert from microns to meters to NCO.
If the units are incommensurate (i.e., not expressible in the same fundamental MKS units),

http://www.unidata.ucar.edu/packages/udunits

56 NCO 4.3.4 User’s Guide

or are not listed in the UDUnits database, then NCO aborts since it cannot determine
the user’s intent. Finally, NCO uses the scaling information to convert the user-specified
hyperslab limits into the same physical dimensions as those of the corresponding cooridinate
variable on disk. At this point, NCO can perform a coordinate hyperslab using the same
algorithm as if the user had specified the hyperslab without requesting units conversion.

The translation and dimensional innterpretation of time coordinates shows a more pow-
erful, and probably more common, UDUnits application. In this example, the user prints all
data between 4 PM and 7 PM on December 8, 1999, from a variable whose time dimension
is hours since the year 1900:

% ncks —-u -H -C -v time_udunits -d time_udunits,"1999-12-08 \
16:00:0.0","1999-12-08 19:00:0.0" in.nc
time_udunits[1]1=876018 hours since 1900-01-01 00:00:0.0

Here, the user invokes the stride (see Section 3.16 [Stride], page 46) capability to obtain every
other timeslice. This is possible because the UDUnits feature is additive, not exclusive—it
works in conjunction with all other hyperslabbing (see Section 3.15 [Hyperslabs|, page 44)
options and in all operators which support hyperslabbing. The following example shows
how one might average data in a time period spread across multiple input files

ncra —-d time,"1939-09-09 12:00:0.0","1945-05-08 00:00:0.0" \
inl.nc in2.nc in3.nc out.nc

Note that there is no excess whitespace before or after the individual elements of the ‘-d’
argument. This is important since, as far as the shell knows, ‘-d’ takes only one command-
line argument. Parsing this argument into its component dim, [min] [, [max] [, [stride]]]
elements (see Section 3.15 [Hyperslabs|, page 44) is the job of NCO. When unquoted white-
space is present between these elements, the shell passes NCO arugment fragments which
will not parse as intended.

NCO implemented support for the UDUnits2 library with version 3.9.2 (August, 2007).
The UDUnits2 package supports non-ASCII characters and logarithmic units. We are in-
terested in user-feedback on these features.

One aspect that deserves mention is that UDUnits, and thus NCO, supports run-time
definition of the location of the relevant UDUnits databases. With UDUnits version 1,
users may specify the directory which contains the UDUnits database, ‘udunits.dat’, via
the UDUNITS_PATH environment variable. With UDUnits version 2, users may specify the
UDUnits database file itself, ‘udunits2.xml’, via the UDUNITS2_XML_PATH environment
variable.

UDUnitsl

export UDUNITS_PATH=’/unusual/location/share/udunits’

UDUnits2

export UDUNITS2_XML_PATH=’/unusual/location/share/udunits/udunits2.xml’

This run-time flexibility can enable the full functionality of pre-built binaries on machines
with libraries in different locations.

The UDUnits package documentation describes the supported formats of time dimen-
sions. Among the metadata conventions that adhere to these formats are the Climate and

http://www.unidata.ucar.edu/software/udunits/udunits-2/udunits2.html
http://www.unidata.ucar.edu/packages/udunits
http://cf-pcmdi.llnl.gov

Chapter 3: NCO Features 57

Forecast (CF) Conventions and the Cooperative Ocean/Atmosphere Research Data Ser-
vice (COARDS) Conventions. The following ‘-d arguments’ extract the same data using
commonly encountered time dimension formats:

-d time,’1918-11-11 00:00:0.0’,71939-09-09 00:00:0.0°

-d time,’1918-11-11 00:00:0.0’,°1939-09-09 00:00:0.0’

-d time,’1918-11-11’,°1939-09-09’

-d time,’1918-11-11’,°1939-9-9°
All of these formats include at least one dash - in a non-leading character position (a dash
in a leading character position is a negative sign). NCO assumes that a space, colon, or
non-leading dash in a limit string indicates that a UDUnits units conversion is requested.
Some date formats like YYYYMMDD that are valid in UDUnits are ambiguous to NCO

because it cannot distinguish a purely numerical date (i.e., no dashes or text characters in
it) from a coordinate or index value:

-d time,1918-11-11 # Interpreted as the date November 11, 1918
-d time,19181111 # Interpreted as time-dimension index 19181111
-d time,19181111. # Interpreted as time-coordinate value 19181111.0

Hence, use the YYYY-MM-DD format rather than YYYYMMDD for dates.

As of version 4.0.0 (January, 2010), NCO supports some calendar attributes specified by the
CF conventions.

Supported types:
"365_-day" /"noleap", "360_day", "gregorian", "standard"

Unsupported types:
"366_day" /"all_leap","proleptic_gregorian","julian","none"

Unsupported types default to mixed Gregorian/Julian as defined by UDUnits.
An Example: Consider the following netCDF variable

variables:
double lon_cal(lon_cal) ;
lon_cal:long_name = "lon_cal"

lon_cal:units = "days since 1964-2-28 0:0:0"
lon_cal:calendar = "365_day" ;
data:
lon_cal = 1,2,3,4,5,6,7,8,9,10;

‘ncks -v lon_cal -d lon_cal,’1964-3-1 0:00:0.0°,°1964-3-4 00:00:0.0’ results
in lon_cal=1,2,3,4.

netCDF variables should always be stored with MKS (i.e., God’s) units, so that appli-
cation programs may assume MKS dimensions apply to all input variables. The UDUnits
feature is intended to alleviate some of the NCO user’s pain when handling MKS units. It
connects users who think in human-friendly units (e.g., miles, millibars, days) to extract
data which are always stored in God’s units, MKS (e.g., meters, Pascals, seconds). The
feature is not intended to encourage writers to store data in esoteric units (e.g., furlongs,
pounds per square inch, fortnights).

http://cf-pcmdi.llnl.gov
http://cf-pcmdi.llnl.gov
http://ferret.wrc.noaa.gov/noaa_coop/coop_cdf_profile.html
http://ferret.wrc.noaa.gov/noaa_coop/coop_cdf_profile.html

58 NCO 4.3.4 User’s Guide

3.23 Rebasing Time Coordinate

Availability: ncra, ncrcat Short options: None

Time rebasing is invoked when numerous files share a common record coordinate, and the
record coordinate units change among input files. The rebasing is performed automatically
if and only if UDUnits is installed. Usually rebasing occurs when the recoordinate is a time-
based variable, and times are recorded in units of a time-since-basetime, and the basetime
changes from file to file. Since the output file can have only one unit (i.e., one basetime)
for the record coordinate, NCO, in such cases, chooses the units of the first input file to be
the units of the output file. It is necessary to “rebase” all the input record variables to this
output time unit in order for the output file to have the correct values.

For example suppose the time coordinate is in hours and each day in January is stored
in its own daily file. Each daily file records the temperature variable tpt(time) with an
(unadjusted) time coordinate value between 0-23 hours, and uses the units attribute to
advance the base time:

fileOl.nc time:units="hours since 1990-1-1"
fileO02.nc time:units="hours since 1990-1-2"

file31l.nc time:units="hours since 1990-1-31"

// Mean noontime temperature in January
ncra -v tpt -d time,"1990-1-1 12:00:00","1990-1-31 23:59:59",24 \
file??.nc noon.nc

// Concatenate day2 noon through day3 noon records
ncrcat -v tpt -d time,"1990-1-2 12:00:00","1990-1-3 11:59:59" \
fileOl.nc file02.nc file0O3.nc noon.nc

// Results: time is "re-based" to the time units in "fileOl.nc"
time=36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, \
51, 52, 53, 54, 55, 56, 57, 58, 59 ;

// 1If we repeat the above command but with only two input files...
ncrcat -v tpt -d time,"1990-1-2 12:00:00","1990-1-3 11:59:59" \
file02.nc £ile03 noon.nc

// ...then output time coordinate is based on time units in "file02.nc"
time = 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, \
26, 27, 28, 29, 30, 31, 32, 33, 34, 35 ;

As of NCO version 4.2.1 (August, 2012), NCO automatically rebases not only the record
coordinate (time, here) but also any bounds associated with the record coordinate (e.g.,
time_bnds) (see Section 3.36 [CF Conventions|, page 78).

Chapter 3: NCO Features 59

3.24 Missing values

Availability: ncap2, ncbo, ncea, ncflint, ncpdq, ncra, ncwa
Short options: None

The phrase missing data refers to data points that are missing, invalid, or for any reason
not intended to be arithmetically processed in the same fashion as valid data. The NCO
arithmetic operators attempt to handle missing data in an intelligent fashion. There are
four steps in the NCO treatment of missing data:

1. Identifying variables that may contain missing data.

NCO follows the convention that missing data should be stored with the _FillValue
specified in the variable’s _FillValue attributes. The only way NCO recognizes that
a variable may contain missing data is if the variable has a _FillValue attribute. In
this case, any elements of the variable which are numerically equal to the _FillValue
are treated as missing data.

NCO adopted the behavior that the default attribute name, if any, assumed to specify
the value of data to ignore is _FillValue with version 3.9.2 (August, 2007). Prior to
that, the missing_value attribute, if any, was assumed to specify the value of data
to ignore. Supporting both of these attributes simultaneously is not practical. Hence
the behavior NCO once applied to missing_value it now applies to any _FillValue. NCO
now treats any missing_value as normal data'?.

It has been and remains most advisable to create both _FillValue and missing_
value attributes with identical values in datasets. Many legacy datasets contain only
missing_value attributes. NCO can help migrating datasets between these conven-
tions. One may use ncrename (see Section 4.11 [ncrename netCDF Renamer]|, page 173)
to rename all missing_value attributes to _FillValue:

ncrename -a .missing_value,_FillValue inout.nc

Alternatively, one may use ncatted (see Section 4.2 [ncatted netCDF Attribute Editor],
page 133) to add a _FillValue attribute to all variables

ncatted -0 -a _FillValue,,o0,f,1.0e36 inout.nc
2. Converting the _FillValue to the type of the variable, if neccessary.

Consider a variable var of type var_type with a _FillValue attribute of type att_type
containing the value _FillValue. As a guideline, the type of the _FillValue attribute
should be the same as the type of the variable it is attached to. If var_type equals
att_type then NCO straightforwardly compares each value of var to _FillValue to de-
termine which elements of var are to be treated as missing data. If not, then NCO
converts _FillValue from att_type to var_type by using the implicit conversion rules
of C, or, if att_type is NC_CHAR!3, by typecasting the results of the C function strtod(_
FillValue). You may use the NCO operator ncatted to change the _FillValue at-

12 The old functionality, i.e., where the ignored values are indicated by missing_value not _FillValue,
may still be selected at NCO build time by compiling NCO with the token definition CPPFLAGS=’-
UNCO_USE_FILL_VALUE’.

13 For example, the DOE ARM program often uses att_type = NC_CHAR and _FillValue = ‘-99999.".

60 NCO 4.3.4 User’s Guide

tribute and all data whose data is _FillValue to a new value (see Section 4.2 [ncatted
netCDF Attribute Editor], page 133).

3. Identifying missing data during arithmetic operations.

When an NCO arithmetic operator processes a variable var with a _FillValue at-
tribute, it compares each value of var to _FillValue before performing an operation.
Note the _FillValue comparison imposes a performance penalty on the operator. Arith-
metic processing of variables which contain the _FillValue attribute always incurs this
penalty, even when none of the data are missing. Conversely, arithmetic processing of
variables which do not contain the _FillValue attribute never incurs this penalty. In
other words, do not attach a _FillValue attribute to a variable which does not contain
missing data. This exhortation can usually be obeyed for model generated data, but it
may be harder to know in advance whether all observational data will be valid or not.

4. Treatment of any data identified as missing in arithmetic operators.

NCO averagers (ncra, ncea, ncwa) do not count any element with the value _FillValue
towards the average. ncbo and ncflint define a _FillValue result when either of the
input values is a _FillValue. Sometimes the _FillValue may change from file to file in a
multi-file operator, e.g., ncra. NCO is written to account for this (it always compares
a variable to the _FillValue assigned to that variable in the current file). Suffice it to
say that, in all known cases, NCO does “the right thing”.

It is impossible to determine and store the correct result of a binary operation in a single
variable. One such corner case occurs when both operands have differing _FillValue
attributes, i.e., attributes with different numerical values. Since the output (result)
of the operation can only have one _FillValue, some information may be lost. In this
case, NCO always defines the output variable to have the same _FillValue as the first
input variable. Prior to performing the arithmetic operation, all values of the second
operand equal to the second _FillValue are replaced with the first _FillValue. Then
the arithmetic operation proceeds as normal, comparing each element of each operand
to a single _FillValue. Comparing each element to two distinct _FillValue’s would be
much slower and would be no likelier to yield a more satisfactory answer. In practice,
judicious choice of _FillValue values prevents any important information from being
lost.

3.25 Chunking
(N
Availability: ncap2, ncbo, ncea, ncecat, ncflint, ncks, ncpdq, ncra, ncrcat, ncwa

Short options: none

Long options: ‘~-cnk_dmn dmn_nm, cnk_sz’,

‘——chunk_dimension dmn_nm, cnk_sz’

, ‘——cnk_map cnk_map’, ‘--chunk_map cnk_map’,

‘-—cnk_plc cnk_plc’, ‘--chunk_policy cnk_plc’,

‘-—cnk_scl cnk_sz’, ‘--chunk_scalar cnk_sz’

N J

All netCDF4-enabled NCO operators that define variables support a plethora of chunk-
size options. Chunking can significantly accelerate or degrade read/write access to large
datasets. Dataset chunking issues are described in detail here.

http://www.hdfgroup.org/HDF5/doc/H5.user/Chunking.html

Chapter 3: NCO Features 61

The NCO chunking implementation is designed to be flexible. Users control three aspects
of the chunking implementation. These are known as the chunking policy, chunking map,
and chunksize. The first two are high-level mechanisms that apply to an entire file, while
the third allows per-dimension specification of parameters. The implementation is a hybrid
of the ncpdq packing policies (see Section 4.8 [ncpdq netCDF Permute Dimensions Quickly],
page 161), and the hyperslab specifications (see Section 3.15 [Hyperslabs], page 44). Each
aspect is intended to have a sensible default, so that most users will only need to set one
switch to obtain sensible chunking. Power users can tune the three switches in tandem to
obtain optimal performance.

The user specifies the desired chunking policy with the ‘~P’ switch (or its long option
equivalents, ‘--cnk_plc’ and ‘--chunk_policy’) and its cnk_plc argument. Five chunking
policies are currently implemented:

Chunk All Variables [default]
Definition: Chunk all variables possible
Alternate invocation: ncchunk
cnk_plc key values: ‘all’, ‘cnk_all’, ‘plc_all’
Mnemonic: All

Chunk Variables with at least Two Dimensions
Definition: Chunk all variables possible with at least two dimensions
Alternate invocation: none
cnk_plc key values: ‘g2d’; ‘cnk_g2d’, ‘plc_g2d’
Mnemonic: Greater than or equal to 2 Dimensions

Chunk Variables with at least Three Dimensions
Definition: Chunk all variables possible with at least three dimensions
Alternate invocation: none
cnk_plc key values: ‘g3d’; ‘cnk_g3d’, ‘plc_g3d’
Mnemonic: Greater than or equal to 8 Dimensions

Chunk Variables Containing Explicitly Chunked Dimensions
Definition: Chunk all variables possible that contain at least one dimension
whose chunksize was explicitly set with the ‘--cnk_dmn’ option. Alternate
invocation: none
cnk_plc key values: ‘xpl’; ‘cnk_xpl’, ‘plc_xpl’
Mnemonic: EXPLicitly specified dimensions

Unchunking
Definition: Unchunk all variables
Alternate invocation: ncunchunk
cnk_plc key values: ‘uck’; ‘cnk_uck’, ‘plc_uck’, ‘unchunk’
Mnemonic: UnChunk

62 NCO 4.3.4 User’s Guide

Equivalent key values are fully interchangeable. Multiple equivalent options are provided to
satisfy disparate needs and tastes of NCO users working with scripts and from the command
line.

The chunking algorithms must know the chunksizes of each dimension of each variable
to be chunked. The correspondence between the input variable shape and the chunksizes is
called the chunking map. The user specifies the desired chunking map with the ‘-M’ switch
(or its long option equivalents, ‘--cnk_map’ and ‘--chunk_map’) and its cnk_map argument.
Four chunking maps are currently implemented:

Chunksize Equals Dimension Size [default]
Definition: Chunksize defaults to dimension size. Explicitly specify chunksizes
for particular dimensions with ‘--cnk_dmn’ option.
cnk_map key values: ‘dmn’, ‘cnk_dmn’, ‘map_dmn’
Mnemonic: DiMeNsion

Chunksize Equals Dimension Size except Record Dimension
Definition: Chunksize equals dimension size except record dimension has size
one. Explicitly specify chunksizes for particular dimensions with ‘--cnk_dmn’
option.
cnk_map key values: ‘rd1l’; ‘cnk_rd1’, ‘map_rd1’
Mnemonic: Record Dimension size I

Chunksize Equals Scalar Size Specified
Definition: Chunksize for all dimensions is set with the ‘--cnk_scl’ option.
cnk_map key values: ‘xpl’, ‘cnk_xpl’, ‘map_xpl’
Mnemonic: EXPLicitly specified dimensions

Chunksize Product Equals Scalar Size Specified
Definition: The product of the chunksizes for each variable (approximately)
equals the size specified with the ‘-—cnk_scl’ option. A dimension of size one
is said to be degenerate. For a variable of rank R (i.e., with R non-degenerate
dimensions), the chunksize in each non-degenerate dimension is the Rth root of
cnk_scl.
cnk_map key values: ‘prd’, ‘cnk_prd’, ‘map_prd’
Mnemonic: PRoDuct

It is possible to combine the above chunking map algorithms with user-specified per-
dimension (but not per-variable) chunksizes that override specific chunksizes determined
by the maps above. The user specifies the per-dimension chunksizes with the (equivalent)
long options ‘--cnk_dmn’ or ‘--chunk_dimension’). The option takes two comma-separated
arguments, dmn_nm,cnk_sz, which are the dimension name and its chunksize, respectively.
The ‘--cnk_dmn’ option may be used as many times as necessary.

Simple chunking and unchunking

Chapter 3: NCO Features 63

ncks -0 -4 --cnk_plc=all in.nc out.nc # Chunk in.nc
ncks -0 -4 --cnk_plc=unchunk in.nc out.nc # Unchunk in.nc

Chunk data then unchunk it, printing informative metadata
ncks -0 -4 -D 4 --cnk_plc=all “/nco/data/in.nc ~/foo.nc
ncks -0 -4 -D 4 --cnk_plc=uck ~“/foo.nc "/foo.nc

More complex chunking procedures, with informative metadata

ncks -0 -4 -D 4 --cnk_scl=8 "/nco/data/in.nc ~/foo.nc

ncks -0 -4 -D 4 --cnk_scl=8 dstmch90_clm.nc ~/foo.nc

ncks -0 -4 -D 4 --cnk_dmn lat,64 --cnk_dmn lon,128 dstmch90_clm.nc \
~/foo.nc

ncks -0 -4 -D 4 --cnk_plc=uck “/foo.nc ~“/foo.nc

ncks -0 -4 -D 4 --cnk_plc=g2d --cnk_map=rdl --cnk_dmn lat,32 \
-—cnk_dmn lon,128 dstmch90_clm_0112.nc ~/foo.nc

Chunking works with all operators...

ncap2 -0 -4 -D 4 --cnk_scl=8 -S ~/nco/data/ncap2_tst.nco \
“/nco/data/in.nc ~/foo.nc

ncbo -0 -4 -D 4 --cnk_scl=8 -p “/nco/data in.nc in.nc “/foo.nc

ncecat -0 -4 -D 4 -n 12,2,1 --cnk_dmn lat,32 \
-p /data/zender/dstmch90 dstmch90_clm01l.nc ~/foo.nc

ncflint -0 -4 -D 4 --cnk_scl=8 ~/nco/data/in.nc ~/foo.nc

ncpdq -0 -4 -D 4 -P all_new --cnk_scl=8 -L 5 ~/nco/data/in.nc ~/foo.nc

ncrcat -0 -4 -D 4 -n 12,2,1 --cnk_dmn lat,32 \
-p /data/zender/dstmch90 dstmch90_clm01l.nc ~/foo.nc

ncwa -0 -4 -D 4 -a time --cnk_plc=g2d --cnk_map=rdl --cnk_dmn lat,32 \
-—cnk_dmn lon,128 dstmch90_clm_0112.nc ~/foo.nc

It is appropriate to conclude by informing users about an aspect of chunking that may
not be expected: Record dimensions are always chunked with a chunksize of one. Hence
all variables that contain the record dimension are also stored as chunked (since data must
be stored with chunking either in all dimensions, or in no dimensions). Unless otherwise
specified by the user, the other (fixed, non-record) dimensions of such variables are assigned
default chunk sizes. The HDF5 layer does all this automatically to optimize the on-disk
variable/file storage geometry of record variables. Do not be surprised to learn that files
created without any explicit instructions to activate chunking nevertheless contain chunked
variables.

3.26_Deflation

Availability: ncap2, ncbo, ncea, ncecat, ncflint, ncks, ncpdq, ncra, ncrcat, ncwa
Short options: ‘-L’
Long options: ‘--df1_1vl’, ‘--deflate’

64 NCO 4.3.4 User’s Guide

All NCO operators that define variables support the netCDF4 feature of storing vari-
ables compressed with Lempel-Ziv deflation. The Lempel-Ziv algorithm is a lossless data
compression technique. Activate this deflation with the -L df1_1v1 short option (or with
the same argument to the ‘--df1_1v1’ or ‘--deflate’ long options). Specify the deflation
level dfi_Ivl on a scale from no deflation (dfl_lvl = 0) to maximum deflation (dfi_Ivl = 9).
Minimal deflation (dfl_-Ivl = 1) achieves considerable storage compression with little time
penalty. Higher deflation levels require more time for compression. File sizes resulting from
minimal (dfi_lvl = 1) and maximal (dfi_.Ivl = 9) deflation levels typically differ by a few
percent in size.

To compress an entire file using deflation, use

ncks -4 -L O in.nc out.nc # No deflation (fast, no time penalty)
ncks -4 -L 1 in.nc out.nc # Minimal deflation (little time penalty)
ncks -4 -L 9 in.nc out.nc # Maximal deflation (much slower)

Unscientific testing shows that deflation compresses typical climate datasets by 30-60%.
Packing, a lossy compression technique available for all netCDF files (see Section 3.30
[Packed data], page 68), can easily compress files by 50%. Packed data may be deflated to
squeeze datasets by about 80%:

ncks -4 -L 1 in.nc out.nc # Minimal deflation (~30-60% compression)
ncks -4 -L 9 in.nc out.nc # Maximal deflation (731-63% compression)
ncpdq in.nc out.nc # Standard packing (750% compression)
ncpdg -4 -L 9 in.nc out.nc # Deflated packing (7807 compression)

ncks prints deflation parameters, if any, to screen (see Section 4.7 [ncks netCDF Kitchen
Sink], page 151).

3.27 MDS5 digests

Availability: ncecat, ncks, ncrcat
Short options:
Long options: ‘--md5_dgs’, ‘--md5_digest’, ‘--md5_wrt_att’, ‘-~-md5_write_attribute’

As of NCO version 4.1.0 (April, 2012), NCO supports data integrity verification using the
MD5 digest algorithm. This support is currently implemented in ncks and in the multifile
concantenators ncecat and ncrcat. Activate it with the ‘--md5_dgs’ or ‘--md5_digest’
long options. As of NCO version 4.3.3 (July, 2013), NCO will write the MD5 digest of
each variable as an NC_CHAR attribute named MD5. This support is currently implemented
in ncks and in the multifile concantenators ncecat and ncrcat. Activate it with the
‘--md5_wrt_att’ or ‘--md5_write_attribute’ long options.

The behavior and verbosity of the MD5 digest is operator-dependent. When activating
MD5 digests with ncks it is assumed that the user simply wishes to see the digest of every
variable and this is done when the debugging level exceeds one. This incurs only the minor
overhead of performing the hash algorithm for each variable read. MD5 digests may be
activated in both the one- and two-filename argument forms of ncks, which are used for

Chapter 3: NCO Features 65

printing and for sub-setting, respectively. The MD5 digests are shown as a 32-character
hexadecimal string in which each two characters represent one byte of the 16-byte digest:

> ncks -0 -D 2 -C --md5 -v md5_a,md5_abc ~/nco/data/in.nc

ncks: INFO MD5(md5_a) = Occl175b9c0f1b6a831c399e269772661

mdb_a = ’a’

ncks: INFO MD5(md5_abc) = 900150983cd24fb0d6963f7d28e17f72
lev[0]=100 md5_abc[0--2]=’abc’

> ncks -0 -D 2 -C -d lev,0 --md5 -v md5_a,md5_abc ~/nco/data/in.nc

ncks: INFO MD5(md5_a) = Occl175b9c0f1b6a831c399e269772661
mdb5_a = ’a’

ncks: INFO MD5(md5_abc) = 0ccl75b9c0f1b6a831c399e269772661
lev[0]=100 md5_abc[0--0]=’a’

In fact these examples demonstrate the validity of the hash algorithm since the MD5
hashes of the strings “a” and “abc” are widely known. The second example shows that
the hyperslab of variable md5_abc (= “abc”) consisting of only its first letter (= “a”) has
the same hash as the variable md5_a (“a”). This illustrates that MD5 digests act only on
variable data, not on metadata.

When activating MD5 digests with ncecat or ncrcat it is assumed that the user wishes to
verify that every variable written to disk has the same MD5 digest as when it is subsequently
read from disk. This incurs the major additional overhead of reading in each variable after it
is written and performing the hash algorithm again on that to compare to the original hash.
Moreover, it is assumed that such operations are generally done “production mode” where
the user is not interested in actually examining the digests herself. The digests proceed
silently unless the debugging level exceeds three:

> ncecat -0 -D 4 --md5 -p "/nco/data in.nc in.nc “/foo.nc | grep MD5

ncecat: INFO MD5(wnd_spd) = bec190dd944f2ce2794a7adabf224b28
ncecat: INFO MD5 digests of RAM and disk contents for wnd_spd agree
> ncrcat -0 -D 4 --md5 -p "/nco/data in.nc in.nc “/foo.nc | grep MD5

ncrcat: INFO MD5(wnd_spd) = 74699bb0a72b7f16456badb2c995f1al
ncrcat: INFO MD5 digests of RAM and disk contents for wnd_spd agree

Regardless of the debugging level, an error is returned when the digests of the variable
read from the source file and from the output file disagree.

These rules are evolving and as NCO pays more attention to data integrity. We welcome
feedback and suggestions from users.

66 NCO 4.3.4 User’s Guide

3.28 Buffer sizes

Availability: All operators
Short options:
Long options: ‘--bfr_sz_hnt’, ‘--buffer_size_hint’

As of NCO version 4.2.0 (May, 2012), NCO allows the user to request specific buffer sizes
to allocate for reading and writing files. This buffer size determines how many system calls
the netCDF layer must invoke to read and write files. By default, netCDF uses the preferred
I/O block size returned as the ‘st_blksize’ member of the ‘stat’ structure returned by the
stat () system call'*. Otherwise, netCDF uses twice the system pagesize. Larger sizes can
increase access speed by reducing the number of system calls netCDF makes to read/write
data from/to disk. Because netCDF cannot guarantee the buffer size request will be met,
the actual buffer size granted by the system is printed as an INFO statement.

Request 2 MB file buffer instead of default 8 kB buffer
> ncks -0 -D 3 --bfr_sz=2097152 ~/nco/data/in.nc ~/foo.nc

ncks: INFO nc__open() will request file buffer size = 2097152 bytes
ncks: INFO nc__open() opened file with buffer size = 2097152 bytes

3.29 RAM disks

Availability: All operators
Short options:
Long options:

¢ 4

—--ram_all’, ‘--create_ram’, ‘--open_ram’, ‘--diskless_all’

As of NCO version 4.2.1 (August, 2012), NCO supports the use of diskless files, aka
RAM disks, for file access and creation. Two independent switches, ‘--open_ram’ and
‘--create_ram’, control this feature. Before describing the specifics of these switches, we
describe why many NCO operations will not benefit from them. Essentially, reading/writing
from/to RAM rather than disk only hastens the task when reads/writes to disk are avoided.
Most NCO operations are simple enough that they require a single read-from/write-to disk
for every block of input/output. Diskless access does not change this, but it does add an
extra read-from/write-to RAM. However this extra RAM write/read does avoid contention
for limited system resources like disk-head access. Operators which may benefit from RAM
disks include ncwa, which may need to read weighting variables multiple times, the multi-file
operators ncra, ncrcat, and ncecat, which may try to write output at least once per input
file, and pncap2 scripts which may be arbitrarily long and convoluted.

The ‘--open_ram’ switch causes input files to copied to RAM when opened. All further
metadata and data access occurs in RAM and thus avoids access time delays caused by disk-

4 On modern Linux systems the block size defaults to 8192 B. The GLADE filesystem at NCAR has a
block size of 512 kB.

Chapter 3: NCO Features 67

head movement. Usually input data is read at most once so it is unlikely that requesting
input files be stored in RAM will save much time. The likeliest exceptions are files that are
accessed numerous times, such as those analyzed extensively analyzed by ncap?2.

The ‘--create_ram’ switch causes output files to be created in RAM, rather than on disk.
These files are copied to disk only when closed, i.e., when the operator completes. Creating
files in RAM may save time, especially with ncap2 computations that are iterative, e.g.,
loops, and for multi-file operators that write output every record (timestep) or file. RAM
files provide many of the same benefits as RAM variables in such cases (see Section 4.1.12
[RAM variables|, page 99).

Two switches, ‘--ram_all’ and ‘--diskless_all’, are convenient shortcuts for specify-
ing both ‘--create_ram’ and ‘--diskless_ram’. Thus

ncks in.nc out.nc # Default: Open in.nc on disk, write out.nc to disk
ncks --open_ram in.nc out.nc # Open in.nc in RAM, write out.nc to disk
ncks --create_ram in.nc out.nc # Create out.nc in RAM, write to disk

Open in.nc in RAM, create out.nc in RAM, then write out.nc to disk
ncks --open_ram --create_ram in.nc out.nc

ncks --ram_all in.nc out.nc # Same as above

ncks --diskless_all in.nc out.nc # Same as above

It is straightforward to demonstrate the efficacy of RAM disks. For NASA we constructed
a test that employs ncecat an arbitrary number (set to one hundred thousand) of files are
all symbolically linked to the same file. Everything is on the local filesystem (not DAP).

Create symbolic links for benchmark
cd ${DATA}/nco # Do all work here
for idx in {1..99999}; do
idx_fmt=‘printf "%05d" ${idx}°
/bin/1n -s ${DATA}/nco/LPRM-AMSR_E_L3_D_SOILM3_V002-20120512T111931Z_20020619.nc \
${DATA}/nco/${idx_fmt}.nc
done
Benchmark time to ncecat one hundred thousand files
time ncecat --create_ram -0 -u time -v ts -d Latitude,40.0 \
-d Longitude,-105.0 -p ${DATA}/nco -n 99999,5,1 00001.nc ~/foo.nc

Run normally on a laptop in 201303, this completes in 21 seconds. The ‘--create_ram’
reduces the elapsed time to 9 seconds. Some of this speed may be due to using symlinks and
caching. However, the efficacy of ‘--create_ram’ is clear. Placing the output file in RAM
avoids thousands of disk writes. It is not unreasonable to for NCO to process a million files
like this in a few minutes. However, there is no substitute for benchmarking with real files.

A completely independent way to reduce time spent writing files is to refrain from writing
temporary output files. This is accomplished with the ‘--no_tmp_£1’ switch (see Section 2.3
[Temporary Output Files], page 13).

68 NCO 4.3.4 User’s Guide

3.30 Packed data

Availability: ncap2, ncbo, ncea, ncflint, ncpdq, ncra, ncwa
Short options: None
Long options: ‘--hdf_upk’, ‘--hdf_unpack’

The phrase packed data refers to data which are stored in the standard netCDF3 packing
format which employs a lossy algorithm. See Section 4.7 [ncks netCDF Kitchen Sink],
page 151 for a description of deflation, a lossless compression technique available with
netCDF4 only. Packed data may be deflated to save additional space.

Packing Algorithm

Packing The standard netCDF packing algorithm (described here) produces data with the
same dynamic range as the original but which requires no more than half the space to
store. Like all packing algorithms, it is lossy. The packed variable is stored (usually) as
type NC_SHORT with the two attributes required to unpack the variable, scale_factor and
add_offset, stored at the original (unpacked) precision of the variable's. Let min and max
be the minimum and maximum values of x.

scale_factor = (max — min)/ndrv
add_offset = (min + max)/2

pck = (upk — add_-offset) /scale_factor
ndrv x [upk — (min 4+ max)/2]

max — min

where ndrv is the number of discrete representable values for given type of packed variable.
The theoretical maximum value for ndrv is two raised to the number of bits used to store
the packed variable. Thus if the variable is packed into type NC_SHORT, a two-byte datatype,
then there are at most 2'6 = 65536 distinct values representable. In practice, the number of
discretely representible values is taken to be two less than the theoretical maximum. This
leaves space for a missing value and solves potential problems with rounding that may occur
during the unpacking of the variable. Thus for NC_SHORT, ndrv = 65536 — 2 = 65534. Less
often, the variable may be packed into type NC_CHAR, where ndrv = 256 — 2 = 254, or type
NC_INT where where ndrv = 4294967295 — 2 = 4294967293. One useful feature of (lossy)
netCDF packing algorithm is that additional, loss-less packing algorithms perform well on
top of it.

Unpacking Algorithm

Unpacking The unpacking algorithm depends on the presence of two attributes, scale_
factor and add_offset. If scale_factor is present for a variable, the data are multiplied
by the value scale_factor after the data are read. If add_offset is present for a variable,
then the add_offset value is added to the data after the data are read. If both scale_factor
and add_offset attributes are present, the data are first scaled by scale_factor before the

15 Although not a part of the standard, NCO enforces the policy that the _FillValue attribute, if any, of
a packed variable is also stored at the original precision.

http://www.unidata.ucar.edu/software/netcdf/docs/netcdf/Attribute-Conventions.html

Chapter 3: NCO Features 69

offset add_offset is added.
upk = scale_factor x pck + add_offset

~ pck x (max —min) = min + max
N ndrv 2

When scale_factor and add_offset are used for packing, the associated variable (con-
taining the packed data) is typically of type byte or short, whereas the unpacked values
are intended to be of type int, float, or double. An attribute’s scale_factor and add_
offset and _FillValue, if any, should all be of the type intended for the unpacked data,
i.e., int, float or double.

Default Handling of Packed Data

Many HDF files use the HDF packing/unpacking algorithm that is incompatible with the
netCDF packing algorithm described above. The unpacking component of the HDF algo-
rithm (described here) is

upk = scale_factor x (pck — add_offset)

Confusingly, the (incompatible) netCDF and HDF algorithms both store their parameters
in attributes with the same names (scale_factor and add_offset). Data packed with
one algorithm should never be unpacked with the other; doing so will result in incorrect
answers. Unfortunately, few users are aware that their datasets may be packed, and fewer
know the details of the packing algorithm employed. This is what we in the “bizness”
call an interoperability issue because it hampers data analysis performed on heterogeneous
systems.

As described below, NCO automatically unpacks data before performing arithmetic. This
automatic unpacking occurs silently since there is usually no reason to bother users with
these details. There is as yet no generic way for NCO to know which packing convention was
used, so NCO assumes the netCDF convention was used. The same convention for unpacking
unless explicitly told otherwise with the ‘~-hdf_upk’ (also ‘--hdf_unpack’) switch. Until
and unless a method of automatically detecting the packing method is devised, it must
remain the user’s responsibility to tell NCO when to use the HDF convention instead of the
netCDF convention to unpack.

If your data originally came from an HDF file (e.g., NASA EOS) then it was likely packed
with the HDF convention and must be unpacked with the same convention. Our recom-
mendation is to only request HDF unpacking when you are certain. Most packed datasets
encountered by NCO will have used the netCDF convention. Those that were not will hope-
fully produce noticeably weird values when unpacked by the wrong algorithm. Before or
after panicking, treat this as a clue to re-try your commands with the ‘--hdf_upk’ switch.
See Section 4.8 [ncpdq netCDF Permute Dimensions Quickly], page 161 for an easy tech-
nique to unpack data packed with the HDF convention, and then re-pack it with the netCDF
convention.

Default Handling of Packed Data

All NCO arithmetic operators understand packed data. The operators automatically unpack
any packed variable in the input file which will be arithmetically processed. For example,

http://www.hdfgroup.org/HDF5/doc/UG

70 NCO 4.3.4 User’s Guide

ncra unpacks all record variables, and ncwa unpacks all variable which contain a dimension
to be averaged. These variables are stored unpacked in the output file.

On the other hand, arithmetic operators do not unpack non-processed variables. For
example, ncra leaves all non-record variables packed, and ncwa leaves packed all variables
lacking an averaged dimension. These variables (called fixed variables) are passed unaltered
from the input to the output file. Hence fixed variables which are packed in input files remain
packed in output files. Completely packing and unpacking files is easily accomplished with
ncpdq (see Section 4.8 [ncpdq netCDF Permute Dimensions Quickly], page 161). Pack and
unpack individual variables with ncpdq and the ncap2 pack () and unpack () functions (see
Section 4.1.11 [Methods and functions|, page 96).

3.31 Operation Types

Availability: ncap2, ncra, ncea, ncwa
Short options: ‘-y’

Long options: ‘--operation’,

--op_typ’

The ‘-y op_typ’ switch allows specification of many different types of operations Set op_typ
to the abbreviated key for the corresponding operation:

avg Mean value

sqravg Square of the mean

avgsqr Mean of sum of squares

max Maximium value

min Minimium value

rms Root-mean-square (normalized by N)
rmssdn Root-mean square (normalized by N-1)
sqrt Square root of the mean

ttl Sum of values

NCO assumes coordinate variables represent grid axes, e.g., longitude. The only rank-
reduction which makes sense for coordinate variables is averaging. Hence NCO implements
the operation type requested with ‘~y’ on all non-coordinate variables, but not on coorniate
variables. When an operation requires a coordinate variable to be reduced in rank, i.e.,
from one dimension to a scalar or from one dimension to a degenerate (single value) array,
then NCO always averages the coordinate variable regardless of the arithmetic operation
type performed on the non-coordinate variables.

The mathematical definition of each arithmetic operation is given below. See Section 4.12
[ncwa netCDF Weighted Averager], page 176, for additional information on masks and
normalization. If an operation type is not specified with ‘~y’ then the operator performs an
arithmetic average by default. Averaging is described first so the terminology for the other
operations is familiar.

Chapter 3: NCO Features 71

The masked, weighted average of a variable x can be generally represented as

i=N
_ Dot MaMw;T;

Tj = =N
21:1 i1 W;

where Z; is the j'th element of the output hyperslab, z; is the i’th element of the input
hyperslab, p; is 1 unless x; equals the missing value, m; is 1 unless x; is masked, and w; is
the weight. This formiddable looking formula represents a simple weighted average whose
bells and whistles are all explained below. It is not too early to note, however, that when
w; = m; = w; = 1, the generic averaging expression above reduces to a simple arithmetic
average. Furthermore, m; = w; = 1 for all operators except ncwa. These variables are
included in the discussion below for completeness, and for possible future use in other
operators.

The size J of the output hyperslab for a given variable is the product of all the dimensions
of the input variable which are not averaged over. The size N of the input hyperslab
contributing to each Z, is simply the product of the sizes of all dimensions which are
averaged over (i.e., dimensions specified with ‘-a’). Thus N is the number of input elements
which potentially contribute to each output element. An input element x; contributes to
the output element z; except in two conditions:

1. x; equals the missing value (see Section 3.24 [Missing Values], page 59) for the variable.

2. x; is located at a point where the mask condition (see Section 4.12.1 [Mask condition],
page 177) is false.

Points z; in either of these two categories do not contribute to z;—they are ignored. We
now define these criteria more rigorously.

Each z; has an associated Boolean weight p; whose value is 0 or 1 (false or true).
The value of u; is 1 (true) unless x; equals the missing value (see Section 3.24 [Missing
Values|, page 59) for the variable. Thus, for a variable with no _FillValue attribute, u; is
always 1. All NCO arithmetic operators (ncbo, ncra, ncea, ncflint, ncwa) treat missing
values analogously.

Besides (weighted) averaging, ncwa, ncra, and ncea also compute some common non-
linear operations which may be specified with the ‘-y’ switch (see Section 3.31 [Operation
Types|, page 70). The other rank-reducing operations are simple variations of the generic
weighted mean described above. The total value of z (-y ttl) is

i=N
T; = E i W, T
i=1

Note that the total is the same as the numerator of the mean of x, and may also be obtained
in ncwa by using the ‘-N’ switch (see Section 4.12 [ncwa netCDF Weighted Averager],
page 176).

The minimum value of z (-y min) is

T; = minfpu mawixq, eMoWsas, . . ., UNMNWNI N]

72 NCO 4.3.4 User’s Guide

Analogously, the maximum value of z (-y max) is
T; = Max([[miwi Ty, foMoWals, . .., ANMNWNT N]

Thus the minima and maxima are determined after any weights are applied.

The square of the mean value of = (-y sqravg) is

i=N 2
_ Zizl i T W T

Tj = =N
Zi:1 M TN W5

The mean of the sum of squares of = (-y avgsqr) is

i=N 2
_ Zi:l Hi T W4 L5

J i=N
Zi:1 i T W;

If x represents a deviation from the mean of another variable, z; = y;—¥ (possibly created by
ncbo in a previous step), then applying avgsqr to = computes the approximate variance of
y. Computing the true variance of y requires subtracting 1 from the denominator, discussed
below. For a large sample size however, the two results will be nearly indistinguishable.

The root mean square of z (-y rms) is

i=N 2
_ D1 Mimwi;

J =N
Zi:1 i TN W;

Thus rms simply computes the squareroot of the quantity computed by avgsqr.

The root mean square of x with standard-deviation-like normalization (-y rmssdn) is
implemented as follows. When weights are not specified, this function is the same as the
root mean square of x except one is subtracted from the sum in the denominator

i=N 2
_ Zi:l i1 5
Tj= =N
-1+ 21:1 M1

If x represents the deviation from the mean of another variable, x; = y; — ¥, then applying
rmssdn to computes the standard deviation of y. In this case the —1 in the denominator
compensates for the degree of freedom already used in computing 7 in the numerator.
Consult a statistics book for more details.

When weights are specified it is unclear how to compensate for this extra degree of
freedom. Weighting the numerator and denominator of the above by w; and subtracting
one from the denominator is only appropriate when all the weights are 1.0. When the weights
are arbitrary (e.g., Gaussian weights), subtracting one from the sum in the denominator
does not necessarily remove one degree of freedom. Therefore when -y rmssdn is requested
and weights are specified, ncwa actually implements the rms procedure. ncea and ncra,

which do not allow weights to be specified, always implement the rmssdn procedure when
asked.

Chapter 3: NCO Features 73

The square root of the mean of z (-y sqrt) is

i=N
= Doim1 MiMwiT;
arj = -

i=N
Doim1 Mimw;

The definitions of some of these operations are not universally useful. Mostly they were
chosen to facilitate standard statistical computations within the NCO framework. We are
open to redefining and or adding to the above. If you are interested in having other statistical
quantities defined in NCO please contact the NCO project (see Section 1.6 [Help Requests
and Bug Reports], page 10).

EXAMPLES

Suppose you wish to examine the variable prs_sfc(time,lat,lon) which contains a time
series of the surface pressure as a function of latitude and longitude. Find the minimium
value of prs_sfc over all dimensions:

ncwa -y min -v prs_sfc in.nc foo.nc

Find the maximum value of prs_sfc at each time interval for each latitude:
ncwa -y max -v prs_sfc -a lon in.nc foo.nc

Find the root-mean-square value of the time-series of prs_sfc at every gridpoint:

ncra -y rms -v prs_sfc in.nc foo.nc
ncwa -y rms -v prs_sfc -a time in.nc foo.nc

The previous two commands give the same answer but ncra is preferred because it has a
smaller memory footprint. A dimension of size one is said to be degenerate. By default,
ncra leaves the (degenerate) time dimension in the output file (which is usually useful)
whereas ncwa removes the time dimension (unless ‘-b’ is given).

These operations work as expected in multi-file operators. Suppose that prs_sfc is stored
in multiple timesteps per file across multiple files, say ‘jan.nc’, ‘feb.nc’, ‘march.nc’. We
can now find the three month maximium surface pressure at every point.

ncea -y max -v prs_sfc jan.nc feb.nc march.nc out.nc

It is possible to use a combination of these operations to compute the variance and standard
deviation of a field stored in a single file or across multiple files. The procedure to compute
the temporal standard deviation of the surface pressure at all points in a single file ‘in.nc’
involves three steps.

ncwa -0 -v prs_sfc -a time in.nc out.nc
ncbo -0 -v prs_sfc in.nc out.nc out.nc
ncra -0 -y rmssdn out.nc out.nc

First construct the temporal mean of prs_sfc in the file ‘out.nc’. Next overwrite
‘out.nc’ with the anomaly (deviation from the mean). Finally overwrite ‘out.nc’ with the
root-mean-square of itself. Note the use of ‘~y rmssdn’ (rather than ‘-y rms’) in the final
step. This ensures the standard deviation is correctly normalized by one fewer than the
number of time samples. The procedure to compute the variance is identical except for the
use of ‘~y var’ instead of ‘~y rmssdn’ in the final step.

74 NCO 4.3.4 User’s Guide

ncap?2 can also compute statistics like standard deviations. Brute-force implementation
of formulae is one option, e.g.,

ncap2 -s ’prs_sfc_sdn=sqrt((prs_sfc-prs_sfc.avg($time) "2).total($time)/($time.size-1))
in.nc out.nc

The operation may, of course, be broken into multiple steps in order to archive interme-
diate quantities, such as the time-anomalies

ncap?2 -s ’prs_sfc_anm=prs_sfc-prs_sfc.avg($time)’ \
-s ’prs_sfc_sdn=sqrt((prs_sfc_anm”2).total ($time)/($time.size-1))’> \
in.nc out.nc

ncap2 supports intrinsic standard deviation functions (see Section 3.31 [Operation
Types], page 70) which simplify the above expression to

ncap2 -s ’prs_sfc_sdn=(prs_sfc-prs_sfc.avg($time)) .rmssdn($time)’ in.nc out.nc
These instrinsic functions compute the answer quickly and concisely.

The procedure to compute the spatial standard deviation of a field in a single file ‘in.nc’
involves three steps.

ncwa -0 -v prs_sfc,gw -a lat,lon -w gw in.nc out.nc
ncbo -0 -v prs_sfc,gw in.nc out.nc out.nc
ncwa -0 -y rmssdn -v prs_sfc -a lat,lon -w gw out.nc out.nc

First the appropriately weighted (with ‘-w gu’) spatial mean values are written to the
output file. This example includes the use of a weighted variable specified with ‘-w gw’.
When using weights to compute standard deviations one must remember to include the
weights in the initial output files so that they may be used again in the final step. The
initial output file is then overwritten with the gridpoint deviations from the spatial mean.
Finally the root-mean-square of the appropriately weighted spatial deviations is taken.

The ncap?2 solution to the spatially