json

Welcome to libjson 7. libjson is the fastest and more customizable json library for C and C++. It
has a special interface for C++, to allow C++ programmers to embed libjson within their program, and
because many of libjson’s functions are inlined, they will get a major optimization boost from the compiler.

It also has a C-style interface for other programming languages and for sharing libraries. This
document will explain building and optimizing libjson to fit your needs, the C interface, and the C++
specialized interface. Each has their own part in this document.

If you are upgrading from libJSON 5 or earlier, this new library has a different interface, so your
programs will break if you try and plug and play, but it should not be difficult to convert them, as all of the
functions are still there, they just have more standardized names.

If you are upgrading from libjson 6, the only difference in the interface in json_validate.

libjson’s interface will not change during minor or bug fix releases. Only major upgrades will (ie,
libjson 6 to libjson 7.)

You should look at the changelog at the end of the document each time you upgrade, as things
may have been added or fixed that you are using.

About libjson

libjson is a high speed complete JSON library, including parsers, writers, builders, formatters,
validators... It is also highly customizable. It may seem strange that libjson is considered a very
lightweight library, but the documentation is 200 pages long and there are dozens of source files, but the
fact is that very little of the library gets complied at any given time. The JSONOptions.h file sets options
for which parts are compiled and how they are. This document will tell you if function behave differently
or are unavailable under certain options.

libjson was written with performance in mind. It is fast, and uses very little memory. Low level
memory manipulation allows libjson to do some speed tricks that less fine-tuned libraries don’t do. The
loads of preprocessor options means that there are few conditions at run-time, allowing it to focus as
much energy on the task at hand. The options allow you to optimize libjson for your program. See the
Optimizing libjson section.

| also gave it more customizability than any other library, including mutex managers, garbage
collection, memory control, and unicode support, all optional of course, and not on by default. There is a
clean C interface, with all methods using C - style names and all prefixed with json_. There is also a very
intuitive C++ interface complete with iterators, and a very STL - style interface. These two libraries share
some code, but also have version specific code.

Please report any bugs or feature requests here: http://sourceforge.net/tracker/?group_id=314112

If you email from your sourceforge account, be sure that you’re able to receive replies. It seems that the
default behavior of sourceforge turns this off, I've gotten lots of requests for help that I've been unable to
respond to, | try my best to find another way to answer you, but | can’t always.

https://sourceforge.net/tracker/?group_id=314112
https://sourceforge.net/tracker/?group_id=314112

Supported platforms

Building libjson

JSONOptions.h

JSON_LIBRARY
JSON_STRICT
JSON_DEBUG
JSON_ISO_STRICT
JSON_SAFE
JSON_STDERROR
JSON_PREPARSE
JSON_LESS_MEMORY
JSON_UNICODE
JSON_REF_COUNT
JSON_BINARY
JSON_EXPOSE_BASE64
JSON_ITERATORS
JSON_STREAM
JSON_MEMORY_CALLBACKS
JSON_MEMORY_MANAGE
JSON_MUTEX_CALLBACKS
JSON_MUTEX_MANAGE
JSON_NO_C_CONSTS
JSON_OCTAL
JSON_READ_PRIORITY
JSON_WRITE_PRIORITY
JSON_NEWLINE
JSON_INDENT
JSON_ESCAPE_WRITES

JSON_COMMENTS

JSON_WRITE_BASH_COMMENTS

JSON_WRITE_SINGLE_LINE_COMMENTS

ARRAY_SIZE_ON_ONE_LINE

JSON_VALIDATE

JSON_CASE_INSENSITIVE_FUNCTIONS

JSON_INDEX_TYPE
JSON_BOOL_TYPE
JSON_INT_TYPE
JSON_STRING_HEADER

JSON_NO_EXCEPTIONS

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

JSON_DEPRECATED_FUNCTIONS 46

JSON_UNIT_TEST 47
C interface 48
JSONNODE types 48
libjson types 48
JSONNODE functions 50
Inspector functions 50
Modifier Functions 51
Streaming Functions 51
json_new 54
Jjson_new_a 55
Jjson_new_i 56
json_new_f 57
Jjson_new_b 58
Json_copy 59
Json_duplicate 60
Json_delete 61
json_delete_all 62
json_new_stream 63
Json_stream_push 64
Json_delete_stream 65
json_type 66
Json_size 67
Json_empty 68
json_name 69
Json_get_comment 70
Json_as_string 71
json_as_int 72
Json_as_float 73
json_as_bool 74
json_as_node 75
Jjson_as_array 76
json_as_binary 77
Jjson_write 78
Json_write_formatted 79
Json_equal 80
json_set_a 81
Json_set_i 82
json_set_f 83

json_set_b 84

json_set_n
Json_set_name
json_set_comment
json_clear

Json_swap

json_merge
json_preparse
Json_set_binary
json_cast

json_at

Json_get
json_get_nocase
json_reserve
Json_push_back
json_pop_back_at
json_pop_back
Json_pop_back_nocase
json_find
Json_find_nocase
Json_erase
json_erase_multi
json_insert
Json_insert_multi
json_begin

Jjson_end

Json_lock

json_unlock
json_set_mutex
Json_set_global_mutex
json_parse
json_parse_unformatted
Json_strip_white_space
Json_is_valid
Json_is_valid_unformatted
Json_validate (deprecated)
json_register_debug_callback
json_register_mutex_callbacks
Json_register_memory_callbacks
json_free

json_free_all

Json_encode64

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

112

113

114

115

116

117

118

119

120

121

122

123

124

125

json_decode64

JSON_TEXT

C++ interface

JSONNode
JSONNode types
Member types
Class functions
Inspector functions
Modifier Functions
JSONNode::JSONNode
JSONNode::~JSONNode
JSONNode::duplicate
JSONNode::operator =
JSONNode::operator ==
JSONNode::operator I=
JSONNode::type
JSONNode::size
JSONNode::empty
JSONNode::name
JSONNode::get_comment
JSONNode::as_string
JSONNode::as_int
JSONNode::as_float
JSONNode::as_bool
JSONNode::as_node
JSONNode::as_array
JSONNode::as_binary
JSONNode::dump
JSONNode::write
JSONNode::write_formatted
JSONNode::set_name
JSONNode::set_comment
JSONNode::clear
JSONNode::swap
JSONNode::merge
JSONNode::preparse
JSONNode::set_binary
JSONNode::cast
JSONNode::at

JSONNode::at_nocase

126

127

128

129
129
129
130
130
132
134
136
137
138
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

166

JSONNode::operator []

JSONNode::reserve

JSONNode::push_back

JSONNode::pop_back

JSONNode::pop_back _nocase

JSONNode::find

JSONNode::find_nocase

JSONNode::erase

JSONNode::insert

JSONNode::begin

JSONNode::end

JSONNode::rbegin

JSONNode::rend

JSONNode::set_mutex

JSONNode::lock

JSONNode::unlock

JSONStream
JSONStream::JSONStream

JSONStream::~JSONStream

JSONStream::operator =

JSONStream::operator <<

libjson
libjson:
libjson:
libjson:
libjson:

libjson:

libjson::

libjson:
libjson:
libjson:
libjson:

libjson:

libjson::

JSON_

parse
:parse_unformatted
:strip_white_space
:is_valid

:is_valid_unformatted

validate (deprecated)

:register_debug_callback
:register_mutex_callbacks
:set_global_mutex
:register_memory_callbacks

:encode64

decode64

TEXT

Optimizing

libjson

Compiler Options

C++ Optimizations

JSONOptions.h Optimizations

167
168
169
170
171
172
173
174
175
177
178
179
180
181
182

183

184
185
186
187
188
189
191

192
193
194
195
196
197
198
199
200
201

202

203

204

204
204

204

Changelog 206

License 210

Supported platforms
libjson officially supports and has been tested on the following platforms

gcc (0OSX)

gcc (LInux)

MinGW (Windows)
Visual C++ (Windows)

More compilers are being added as | get word that it is working on them. If you are using a
different compiler than one on this list, it should would. The code is meant to be platform and compiler
independent. If there are minor incompatibilities, please open a ticket on sourceforge and | will get it fixed

as soon as | can.

Building libjson

libjson is designed for customizability by experts, but also ease of use by novices. Most users
simply need to make the library. If you are planning on embedding it in your C++ program, then all you
have to do is add libjson’s source to your project and comment JSON_LIBRARY in JSONOptions.h.
libjson does not use anything other than built-in C++ and any compiler should compile it.

JSONOptions.h

In the source code you will find a file called JSONOptions.h, which is used for configuring libjson’s
build. All of the options are in there and it's recommended that you leave them, just comment out what
you don’t need. There is a brief description of each option in the file, as well as a more extensive
explanation further down in this document.

| chose to use a file for the options in libjson instead of forcing the user to know compile options
and change them in the project and make files. | think this is easier.

It is recommended that you build and run the Unit Test before compiling for the library or using it
in C++. As there are billions of combinations of options, not all of them have been tested together. If the
build failed, please take out a ticket on sourceforge: http://sourceforge.net/tracker/?group_id=314112 or
email the author at ninja9578 @yahoo.com. Your issue will be quickly fixed and your options added to the
quarter of a million unit tests that are already run, that way regression of the bug is impossible.

Make Options

Thanks to Bernhard Fluehmann, libjson now has a proper makefile. The options of how libjson
behaves are all in JSONOptions, but the way it compiles depends on the options you give the make file.
The most common options for the makefile are BUILD_TYPE, SHARED, and install.

Running make by itself will cause the library to be built as a static library, exactly where the
source is. Doing make install will install it in the exec_prefix. By default, exec_prefix is /usr/local, but you
can set this as an option too.

To build libjson for specific purposes, you can set the BUILD_TYPE parameter. This is set to the
same values as libjson 6’s target: small or debug;

BUILD_TYPE=debug BUILD_TYPE=small
Output libjson_dbg.a libjson.a
Library JSONOptions.h, JSON_SAFE, | JSONOptions.h and
Options and JSON_DEBUG JSON_LESS_MEMORY
Compile -g -Wall -Os, -ffast-math -DNDEBUG
Options

libjson now also has an option to compile as a shared or static library. Shared libraries are quite
useful if you have multiple programs hat all require json functionality. To use a shared library make
SHARED=1. By default, SHARED is 0, so it will output a static library. The extension for a shared library
is hard coded as .so in the makefile. To use .dll or .dylib, you will have to edit the make file. There are a
few more options, all documented in the makefile itself.

https://sourceforge.net/tracker/?group_id=314112
https://sourceforge.net/tracker/?group_id=314112
mailto:ninja9578@yahoo.com
mailto:ninja9578@yahoo.com

JSON_LIBRARY

This option exposes only the C-style interface, which is used for static and dynamic library
compilation so that it can be shared by multiple programs, or used by non-C++ programming languages.
This C interface is a little simpler so that it is compatible with most programming languages primitives, but
the overall functionality remains the same.
Recommended for

Sharing the library among multiple programs, dynamically loading the library, or using it in a
programming language other than C++.

On by default

Yes

JSON_STRICT

This option makes libjson strictly adhere to the specs laid out for JSON. This eliminates all
support for comments, hexidecimal and octal values, and various other things that libjson supports that
isn’t standard.
Recommended for

Programmers who want a bare-bones strict JSON library and nothing more.
Requirements

JSON_UNICODE is required for this option

JSON_COMMENTS is required to be off for this option

JSON_OCTAL is required to be off for this option
On by default

No

JSON_DEBUG

This option is used to create a debugging version of the library. It does a lot of checks not only of
the json, but also of the library itself. This is recommended only while writing your software, but not for
release, as it is a little bit slower.

This option exposes libjson::registerDebugCallback in C++ and json_register_debug_callback in
C, which allows you to get feedback from libjson if something goes wrong. This will not protect against
errors, only let you know about them before it crashes. If you want to catch errors and handle them
gracefully, then turn on JSON_SAFE as well. You can also turn on JSON_STDERROR, which hides the
callbacks and prints problems to stderr.

This option also exposes the JSONNode::dump function in C++, which allows you inspect the
internal workings of libjson, which can be useful for debugging. | chose to omit this from the C interface
because it is mostly used by the author and maintainers.

Recommended for
Writing and debugging software, not for release software
On by default

No

JSON_ISO_STRICT

This option makes libjson use iso strict settings. This includes doing things like removing any
non-standard C++ functionality like long longs and wchar_t.

Recommended for
Those who have compiler or company restrictions
On by default

Depends, usually it is off, but if you compile on GCC with -ansi, this option will turn itself on and
warn you that you left it off

JSON_SAFE

This option is also used for debugging, but can also be useful if you think that your program might
receive json that is not properly formatted. If libjson encounters something it it considers an error, then it
will tell you through the callback or stderr, depending on the other options. then handle it gracefully. This
option is required for validation.
Recommended for

Programs that might receive incorrect json, or if you need to validate json. If your sure that your
json will be correct, then there is no need for this option.

On by default

Yes

JSON_STDERROR

This option is will route all error messages to cerr instead of the callback. It hides
libjson::registerDebugCallback and json_register_debug_callback as they are not needed. You can see
the errors in the console.
Recommended for

Debugging for those who do not want to handle error messages in a special way.

On by default

No

JSON_PREPARSE

This option forces libjson to parse the entire json string at once. By default, libjson does on-the-
fly parsing for speed reasons. This makes initial parsing much faster and use much less memory, but
subsequent reads of it slightly slower. This options switches those.

Recommended for

Programs that use all or most of the json that it receives. Because json is largely used for
communication from client to server, often the server will send more information that needed, so parsing
all of it wastes time for no reason. However, json can also be used for configuration files as well as other
things, so in cases like that, it might be preferable to use this option.
On by default

No

JSON_LESS_MEMORY

This option makes libjson use about 20% less memory on average. When libjson is done using
memory, it doesn’t always release all of it, it keeps it allocated so that any future requests to push memory
back is much faster. This option doesn't allow that to happen, it instantly releases all extra memory.

This also turns off hot spot optimizations under GCC, but turns on the better packing.

Recommended for

Programs that need as much memory as possible. Possibly for embedded programming, or
programs that might end up using billions of nodes and need as much memory as possible.

On by default

No

JSON_UNICODE

This option makes libjson use wide strings both internally and for the interface. Because the
JSON standard specifies that it must support full UTFS8, libjson can not meet this standard without wide
characters. However, because these multi-byte characters are rarely used, this is optional, and off by
default.
Recommended for

Programs that need the full range of UTF-8.
Requirements

Must not be compiled using ansi strict.

On by default

No

JSON_REF_COUNT

This option makes libjson’s nodes reference count and copy-on-write it’s internal structure. This
makes passing by value and copying nodes very fast, but less thread-safe.

Recommended for

Programmers that want to copy and pass by value often. Also by programmers who take
JSONNodes just to read them. It is recommended if you are interacting with your json with multiple
threads, that you turn this option off, or use the JSON_MUTEX_CALLBACKSs options and use critical
sections.

On by default

Yes

JSON_BINARY

This option turns on the set_binary and get_binary functions. Because the JSON standard offers
no way to encode true binary data, libjson (like most json libraries) uses Base64 to encode and decode
binary data into text. This allows you to transport binary data between server and client, such as images
or files. If you already have a base64 library, then you don’t need this, however, this one is highly
optimized and will probably be faster than most others.
Recommended for

Programs that have to encode and decode binary data such as images. It can also be used to
obfuscate data.

On by default

No

JSON_EXPOSE_BASEG64

This option exposes an interface to libjson’s base64 encoding functions. Normally, these are
hidden behind the scenes (and off unless JSON_BINARY is turned on,) but sometimes you may want a
high-speed base64 encoder to accompany libjson. It is inefficient to have a base64 encoder/decoder
AND libjson in your project. libjson’s encoder and decoder is by far the fastest I've come across, and
already therefor you. JSON is often used in networking, and base64 is often also required in networking.

Recommended for

Programs that have to encode and decode binary data such as images. It can also be used to
obfuscate data.

On by default

No

JSON_ITERATORS

This option turns on iterator functions for libjson. erase, find, insert are exposed when this option
is on. In C++ mode you'll find iterator functions to be very STL-like, and there is even support for iterators
in the library, but more restrictive.

Recommended for

Programmers familiar and comfortable with STL iterators or need advanced manipulation
methods.

On by default

No

JSON_STREAM

This option turns on streaming functions for libjson. This allows you buffer json, and send it to the
stream a little bit at a time.

Recommended for
Programs that want to buffer json, or need to stream from the internet.
On by default

No

JSON_MEMORY_CALLBACKS

This option exposes functions to register callbacks for allocating, resizing, and freeing memory.
Because libjson is designed for speed, it is feasible that some users would like to further add speed by
having the library utilize a memory pool. With this option turned on, the default behavior is still done
internally unless a callback is registered
Recommended for

Programs that want to use custom memory handling functionality, such as memory pools and
garbage collection.

On by default

No

JSON_MEMORY_MANAGE

This option exposes functions to bulk delete all memory that libjson has allocated for you. This
includes strings and nodes. Usually, you are required to keep track of all of the nodes and strings that
libjson creates, but with this option you don’t have to.

Recommended for
Programs that use lots of strings and nodes and want to de bulk cleanups or memory managers.

On by default

No

JSON_MUTEX_CALLBACKS

This option exposes functions to register callbacks to lock and unlock mutexs and functions to
lock and unlock JSONNodes and all of it's children. This does not prevent other threads from accessing
the node, but will prevent them from locking it. Because of libjson’s extremely complex internal working
and reference counting, it is much easier for the end programmer to allow libjson to manage your mutexs
because of reference counting and manipulating trees, libjson automatically tracks mutex controls for you,
so you only ever lock what you need to.
Recommended for

Programs that require libjson be used in critical sections.

On by default

No

JSON_MUTEX_MANAGE

This option lets you set mutexes and forget them, libjson will not only keep track of the mutex, but
also keep a count of how many nodes are using it, and delete it when there are no more references. This
changes the registerMutexCallbacks and json_register_mutex_callbacks to require a third deleter
callback as well.
Recommended for

Programs that require libjson be used in critical sections and handle it’'s own mutexes.
Requirements

JSON_MUTEX_CALLBACKS is required to also be defined, if it is not, the build will fail.
On by default

No

JSON_NO_C_CONSTS

This option removes the const qualifier for the function declarations. The functions do not behave
any differently, they simply have a slightly different interface.

Recommended for
Programmers who are using legacy C compilers or coding guidelines
On by default

No

JSON_OCTAL

This option turns on features for supporting octal values in strings and numbers. Normally, octal
numbers are treated as decimal

Recommended for
People who need octal support
On by default

No

JSON_READ_PRIORITY

This option exposes libjson’s parsing functionality, and sets it’s priority. By default reading is high
priority, but if the majority of your time is spent writing, you can lower the priority to produce a better
writing engine.
Recommended for

Programs that need to read json, this is almost everyone.

On by default

Yes (HIGH)

JSON_WRITE_PRIORITY

This option exposes the write and write_formatted functionality. Without this option, libjson is
read-only, this allows you to write json as well. This also sets the priority of the writing, some compilers
will generate different code depending on the priority that you give.

Recommended for

Programs that need to write json, such as two way communication or recording a config file after
it has changed.

On by default

Yes (MED)

JSON_NEWLINE

This option is used for writing formatted json using specialized newlines. By default, libjson will
use the UNIX newline character. Simply defining this option is not adequate, you must define it to
something. Whatever it’s defined to will be used. The JSONOptions.h file included with libjson shows
you how, as it defined is as a carriage return followed by a newline character, this is standard on Windows
or MS-DOS. You may also want to set it to </br> (the new line tag for HTML.)

Even if you are using unicode, write the value of the newline in regular quotes, libjson will
automatically make ii unicode for you (in preprocessor.)

Recommended for
Programs that write formatted JSON that require special newline characters.
On by default

No

JSON_INDENT

This option is used for writing formatted json using specialized indents. By default, libjson will use
the ASCII tab character. Simply defining this option is not adequate, you must define it to something.
Whatever it’s defined to will be used. The JSONOptions.h file included with libjson shows you how, you
will most commonly change it to spaces, but HTML might also be common.

Even if you are using unicode, write the value of the newline in regular quotes, libjson will
automatically make ii unicode for you (in preprocessor.)

Recommended for
Programs that write formatted JSON that spaces to indent instead of tabs.
On by default

No

JSON_ESCAPE_WRITES

This option is used for writing json where the special characters have been escaped. This is on
by default, because without it, the json no longer meets the standards. If it’s off special characters like
newlines, tabs, and special unicode characters are simply place in the json as they appear. This may
cause problems with other JSON engines, and it will not pass validation, so it is recommended that you
leave it on.
Recommended for

Programs that write JSON and want to adhere to the JSON standard, or communicate between
other json engines.

On by default

Yes

JSON_COMMENTS

This option tells libjson to store and write comments. libjson always supports parsing json that
has comments in it as it simply ignores them, but with this option it keeps the comments and allows you to
insert further comments.

libjson will automatically determine if comments are multiline or single line and write them
accordingly.
Recommended for

Programs that write complex JSON that might be read by human eyes. Comments make JSON
easier to understand and alter.

On by default

No

JSON_WRITE_BASH_COMMENTS

This option tells libjson to use bash comments to output json with comments. Bash comments
are the # character. This also disables multi-line comments in the C-style (/* */). Instead it will simply put
multiple lines, all with leading # characters.

Recommended for
Programs that require bash comments, perhaps for DOxygen documentation.

On by default

No

JSON_WRITE_SINGLE_LINE_COMMENTS

This option tells libjson to not use the C-style multi-line comment, as some JSON libraries don’t
support them. This will write multi-line comments as a series of // comments instead.

Recommended for

Programs that need to output JSON that libraries that don’t support multiline comments need to
read.

On by default

No

ARRAY_SIZE_ON_ONE_LINE

This option allows libjson to write small arrays all on one line. This is commonly done to make
things easier to read, specifically for things like coordinates. This will only affect writing of primitives,
objects and arrays are done as normal. You have to set this to an integer, where anything smaller or
equal to the value is treated specially.
Recommended for

Programmers who have small arrays of primitives

On by default

No

JSON_VALIDATE

This option exposes validation functions. For programs that might get invalid json, validation
might be required before anything is done.

Recommended for

Programs that might receive invalid json.
Requirements

JSON_READ_PRIORITY is required to also be defined, if it is not, the build will fail.
On by default

No

JSON_CASE_INSENSITIVE_FUNCTIONS

This option exposes case-insensitive functions. This includes at, get, find...
Recommended for

Programs that don’t know the cases of the node names
On by default

No

JSON_INDEX_TYPE

This option changes the type that is used to track the number of children. Usually unsigned int is
used because it’s fast and efficient, but there are cases where it’s not desired. For instance, on
embedded systems where there is little memory, one might choose to use a short or even a char. Or on
huge 64-bit systems where the number of nodes may go outside the range of an unsigned int.

Recommended for
Either very large or very small systems
On by default

No

JSON_BOOL_TYPE

This option changes the bool type in the C interface. This allows you to change the interface to fit
the language that you are working with. If this option is not on, then the bool type is an int, but you can
make it anything.
Recommended for

Programming languages other than C-based ones

On by default

No

JSON_INT_TYPE

This option changes the int type for as_int. If this option is not on, then int type is a long
Recommended for

People who want to get different types out of the as_int function, possible for high precision.
On by default

No

JSON_STRING_HEADER

This option changes the string type that libjson uses for both it’s interface and internals. This can
be very useful for working with other libraries. For instance, developers using Qt or wxWigdets. Both are
very common and have their own string class. Both should be able to be dropped right in without much
problem. The class must be named or typedefed json_string.

If you change this option and are using the C++ interface, then you must recompile the entire
library because this makes a dynamic dependency that your IDE or compiler will not pick up on.
Recommended for

Making interface between libjson and other libraries easier.

On by default

No

JSON_NO_EXCEPTIONS

This option shuts off all exceptions at the interface level. The engine may still use exceptions
internally (it doesn’t in the current version.) For the functions that throw exceptions, their differences are
documented in the method documentation.

Recommended for
Companies that do not allow exception-style error handling.

On by default

No

JSON_DEPRECATED_FUNCTIONS

This option leaves functions that are not supposed to be used anymore. You will get compiler
warnings if you try to use these functions, but they will behave just as they did before they were
deprecated.
Recommended for

Backwards compatibility and ease of transition between major versions

On by default

Yes

JSON_UNIT_TEST

This option is used to maintain and debug the libjson. It makes all private members and functions
public so that tests can do checks of the inner workings of libjson. This should not be turned on by end
users.

Recommended for
libjson maintainers only.
On by default

No

C interface

libjson has an interface that uses standard C types and a standard C interface. This interface
doesn’t have to be used in just C, it can be used in Basic, C, C++ and any other language that supports
the C interface (most do.) All methods in libjson begin with “json_” to make sure that the names don't
collide with other libraries or any of your methods.

JSONNODE types
Function Description
JSON_NULL Blank node or “null” (case-less)
JSON_STRING A string

JSON_NUMBER

A floating point number

JSON_BOOL A boolean “true” or “false” (case-less)
JSON_ARRAY An array of JSONNodes
JSON_NODE A complex JSONNode structure
libjson types
Function Description
JSONNODE * Opaque pointer to a node within libjson

JSONNODE_ITERATOR

Random access iterator

JSONSTREAM Opaque pointer to a stream

json_char Either char or wchar_t, depending on options
json_number Either float or double, depending on options
json_index_t Child node indexing type

json_bool_t Boolean type

json_int_t Int type

json_error_callback_t

typedef void (* json_error_callback_t)(const json_char *)

json_stream_callback_t

typedef void (* json_stream_callback_t)(JSONNODE *)

json_mutex_callback_t

typedef void (* json_mutex_callback_t)(void *)

json_malloc_t

typedef void * (* json_malloc_t)(unsigned long)

json_realloc_t

typedef void * (* json_realloc_t)(void *, unsigned long)

json_free_t

typedef void (* json_free_t)(void *)

JSONNODE functions

Function Description
json_new Construct JSONNode
json_new_a Constructs a string node
json_new_i Constructs a integer node
json_new_f Constructs a floating point node
json_new_b Constructs a boolean node
json_copy Copy JSONNode content, usually reference counting

json_duplicate

Copy JSONNode content, forcing a copy

json_delete

Deletes the node

json_delete_all

Deletes all allocated nodes

Inspector functions

Function Description
json_type The type of JSONNode it is
json_size The number of child nodes
json_empty Tests if the node has children
json_name The name of the node

json_get_comment

The comment attached to the node

json_as_string

The string value of the node

json_as_int

The integer value of the string

json_as_float

The floating point value of the string

json_as_bool

The boolean value of the string

json_as_node

The node, cast to a JSON_NODE

json_as_array

The node, cast to a JSON_ARRAY

json_as_binary

The node with it’s value converted to binary

json_write

Writes the node as JSON text

json_write_formatted

Writes the node as readable JSON text

json_equal

Compare JSONNode contents

Modifier Functions

Function Description
json_set_a Sets the contents of the node to a string
json_set_i Sets the contents of the node to an int
json_set_f Sets the contents of the node to a float
json_set_b Sets the contents of the node to a bool
json_set_n Sets the contents of the node to another node
json_set_name Sets the name of the node
json_set_comment Sets the comment attached to the node
json_clear Removes all children
json_nullify Nulls out the node
json_swap Swap the contents of two nodes
json_merge Merges the contents of two or more nodes
json_preparse Completely parses the JSON
json_set_binary Sets the binary value of the node
json_cast Change the node’s type

Streaming Functions

Function Description
json_new_stream Creates a stream
json_stream_push Pushes data onto the stream

json_delete_stream Deletes the stream

Children Access Functions

Function

Description

json_at

Access item by index

json_get

Access item by name or index

json_get_nocase

Assess item by name, case-insensitive

json_reserve

Reserve enough space

json_push_back

Adds a child

json_pop_back_at

Removes and returns an item by index

json_pop_back

Removes and returns an item by name

json_pop_back_nocase

Removes and returns an item by name, case-insensitive

json_find

Finds a node by name

json_find_nocase

Finds a node by name, case-insensitive

json_erase

Removes an item

json_erase_multi

Remove a set of children

json_insert

Adds a child

json_insert_multi

Insert a set of children

Ilterator Functions

Function Description
json_begin Return iterator to beginning
json_end Return iterator to end
Thread Safety Functions
Function Description
json_lock Return iterator to end
json_unlock Return reverse iterator to reverse beginning

json_set_mutex

Attaches a mutex to the node

json_set_global_mutex

Sets the global mutex

JSON Functions

Function

Description

json_parse

Parses json

json_parse_unformatted

Parses son that has no white spaces

json_strip_white_space

Removes all white space and comment

json_is_valid

Validates json

json_is_valid_unformatted

Validates json that has no white spaces

json_validate (deprecated)

Validates json and if it’s valid, return an object

Callback Registration

Function

Description

json_register_debug_callback

Registers error callback

json_register_mutex_callbacks

Register mutex callbacks

json_register_memory_callbacks

Registers the memory callbacks

Cleanup Functions

Function

Description

json_free

Frees memory of a string

json_free_all

Frees memory of all strings that libjson had allocated

Base64 Functions

Function Description
json_encode64 Base64 encodes data
json_decode64 Decodes Base64 data
Text Functions
Function Description
JSON_TEXT Creates a text string in the right format

json_new

JSONNODE * json_new (char mytype);
New Node

This function creates an empty node of the specified type. This would normally be used to start
serializing something or writing a configuration file. You must json_delete the resulting node or attach it to
something as a child.

Option Differences

JSON_MEMORY_MANAGER - Will keep a reference to the resulting node, so it doesn’t have to be
explicitly json_deleted.

Parameters

mytype
The enumerated type of the JSONNODE.

Return Value
Empty node
Complexity

Constant

json_new_a

JSONNODE * json_new_a (const json_char * name, const json_char * value);
New Node

This function creates a string node with the name and value specified. You must json_delete the
resulting node or attach it to something as a child.

Option Differences
JSON_MEMORY_MANAGER - Will keep a reference to the resulting node, so it doesn’t have to be
explicitly json_deleted.

JSON_SAFE - Allows value to be NULL
Parameters
name

The node’s name, this may be NULL
value

The node’s value, this should not be NULL
Return Value
A new node

Complexity

Constant

json_new_i

JSONNODE * json_new_i(const json_char * name, json_int_t value);
New Node

This function creates a integer node with the name and value specified. You must json_delete
the resulting node or attach it to something as a child.

Option Differences

JSON_MEMORY_MANAGER - Will keep a reference to the resulting node, so it doesn’t have to be
explicitly json_deleted.

Parameters
name
The node’s name, may be NULL
value
The node’s value
Return Value
A new node

Complexity

Constant

json_new_f

JSONNODE * json_new_f(const json_char * name, json_number value);
New Node

This function creates a floating point node with the name and value specified. You must
json_delete the resulting node or attach it to something as a child.

Option Differences

JSON_MEMORY_MANAGER - Will keep a reference to the resulting node, so it doesn’t have to be
explicitly json_deleted.

Parameters
name
The node’s name, may be NULL
value
The node’s value
Return Value
A new node

Complexity

Constant

json_new_b

JSONNODE * json_new_b(const json_char * name, json_bool_t value);
New Node

This function creates a boolean node with the name and value specified. You must json_delete
the resulting node or attach it to something as a child.

It’s important to note that this function takes an int as the value, Some languages do not have a
bool type (including C89.)

Option Differences

JSON_MEMORY_MANAGER - Will keep a reference to the resulting node, so it doesn’t have to be
explicitly json_deleted.

Parameters
name
The node’s name, may be NULL
value
The node’s value
Return Value
A new node

Complexity

Constant

json_copy

JSONNODE * json_copy(const JSONNODE * node);
Copy Node

This function copies a JSONNODE and returns the new copy. With reference counting, this
operation is extremely fast. If you want a literal copy and not a reference count, use json_duplicate.

Option Differences

JSON_MEMORY_MANAGER - Will keep a reference to the resulting node, so it doesn’t have to be
explicitly json_deleted.

JSON_REF_COUNT - if this is turned off, the copy constructor will fully duplicate the node

Parameters

node
The node to be copied

Return Value
An exact copy of the node parameter
Complexity

Constant, unless JSON_REF_COUNT is on, in which case it's the same as json_duplicate.

json_duplicate
JSONNODE * json_duplicate(const JSONNODE * node);
Duplicating JSONNODE

Constructs a JSONNODE object, by copying the contents of JSONNODE. This is different from the
json_copy because it makes a literal copy, not reference counting.

Option Differences
None
Parameters

node
The node to be copied

Return Value
A JSONNode that is a new copy of the original node.
Complexity

Linear on json_size, however, because JSON is a tree structure it's worse case scenario is linear on
json_size + json_size of each child recursively.

json_delete

void json_delete(JSONNODE * node);

Destruct JSONNODE

Destructs the JSONNode object and cleans itself up.
Option Differences

None

Parameters

node
The node to be deleted

Return Value
None
Complexity
Depends on circumstances. If it's reference count is not one, then it's complexity is constant, if
it's the sole owner of it's value, then it becomes linear on JSONNode::size, however, because JSON is a

tree structure it's worse case scenario is linear on JSONNode::size + JSONNode::size of each child
recursively.

json_delete_all
void json_delete_all(void);
Destruct All JSONNODEs

Deletes all nodes that have been allocated by libjson. This is for bulk delete when you are done
with libjson for the time.

Option Differences

JSON_MEMORY_MANAGER - Is required to use this function
Parameters

None

Return Value

None

Complexity

Complexity of json_delete for each node.

json_new_stream

JSONSTREAM * json_new_stream(json_stream_callback_t callback);
New Stream

This function creates a stream. Streams are used for pushing small amounts of json at a time, it
may be incomplete json, or even multiple json nodes, and the callback you give it will be called whenever
a complete node is recognized.

Your callback must assume that the node given to it will be immediately deleted once the callback
is finished, so if you need to keep it, you must copy it.
Option Differences
JSON_STREAM must be turned on to use this function

Parameters

callback
The method that gets called whenever nodes are completed

Return Value
A new stream
Complexity

Constant

json_stream_push
void json_stream_push(JSONSTREAM * stream, json_char * text);
Push to stream

Pushes more text to the stream. If the stream sees that you have completed a node, it will call the
callback.

Option Differences
JSON_STREAM must be turned on to use this function
Parameters
stream
The stream to push onto
text
The text to add to the stream
Return Value
None

Complexity

Constant

json_delete_stream

void json_delete_stream(JSONSTREAM * stream);
Deletes a stream

Deletes a stream object

Option Differences

JSON_STREAM must be turned on to use this function
Parameters

stream
The stream to push onto

Return Value
None
Complexity

Constant

json_type

char json_type(JSONNODE * node);
Return type

Returns the type of the JSONNODE.
Option Differences

None

Parameters

none

Return Value

The type of the node.

Complexity

Constant

json_size

json_index_t json_size(JSONNODE * node);

Return size

Returns the number of children that the