
The CDO CMOR operator

Produce CMIP-compliant climate model output
April 2017

Fabian Wachsmann, Stephanie Legutke, Joerg Wegner

Deutsches Klimarechenzentrum (DKRZ)

Contents

1. Introduction 3

2. Installation 4
2.1. CDOs with CMOR2 for CMIP5 . 4

2.1.1. DKRZ system . 4
2.1.2. Local installation . 4

2.2. CDOs with CMOR3 for CMIP6 . 4

3. Operator set-up 5
3.1. Main control . 5
3.2. Temporal and spatial description . 6
3.3. Global attributes . 7
3.4. Variable attributes . 8

3.4.1. Variable mapping with table file . 10
3.4.2. Example . 12

3.5. Special requests . 12
3.5.1. Character coordinates . 12
3.5.2. Scalar z-coordinate . 12
3.5.3. Hybrid sigma-pressure coordinates . 13

3.6. Append mode . 13
3.6.1. Examples . 14

3.7. Internal procedures . 14
3.7.1. Temporal boundaries . 14
3.7.2. Spatial boundaries . 15

3.8. cdo cmor with CMOR 3 . 15

A. Table of all keywords except global attributes 16

B. Table of all global attribute keywords 17

C. Script to install cdo with CMOR support on a unix system DYNAMIC? 18

2

1. Introduction

The Climate Data Operators (CDO) software is a collection of operators for standard processing of climate
and forecast model data. Here, the single operator cdo cmor is documented which demands a separate
explanation because of its many options to rearrange model output and add Metadata. It represents
an interface to the Climate Model Output Rewriter library CMOR developed at PCMDI. This library
comprises a set of functions which can be used to produce NetCDF files that fulfill the requirements
of many of the climate community’s standard model experiments. The output resulting from CMOR is
”self-describing” and facilitates analysis of results across models.

CMOR functions feature a specific processing and require much input. The objective of cdo cmor is to
provide an easy interface to CMOR in order to automate and simplify its usage. cdo cmor can guarantee
the right CMOR configuration by calling the CMOR functions internally in the right order in which CMOR
labels and input attributes are inserted correctly. A reduction of input can be achieved by exploiting the
information gained by the climate data interface CDI. The final cdo cmor has a minimum requirement of
one argument and an input file to apply CMOR accurately

Different versions of the CMOR library have been published over the years. The operator is based on
CMOR version 2 which is appropriate to build CMIP5 compliant netcdf model output. The data standard
of CMIP5 is fixed so that the project’s database could be used to validate and improve the operator’s
functionality. Besides, there will be no update to another CMOR 2 version which guarantees a stable
source package.

This documentation is about the operator which uses CMOR version 2. In next CDO releases, the operator
will be upgraded by the support for more recent CMOR versions in order to achieve the long term goal of
facilitating the preparation of project compliant output for all CMIP phases and other projects.

The CDO operator cmor was developed at the DKRZ and MPI for Meteorology and will be enhanced at
the DKRZ for the CMIP6 project.

3

https://pcmdi.github.io/cmor-site/

2. Installation

Note: Following instructions provide access to a CDO test version!

The recent official CDO release does not contain the cdo cmor operator because it is still in a test phase
within CMIP6. Therefore, the following instructions explains how to access and, if needed, how to install
the CDO test version on a DKRZ system and locally on a unix computer. The operator is developped
within the CMIP6 project and a release in the official CDOs is aimed. Users of the test version are informed
when new updates are availiable.

2.1. CDOs with CMOR2 for CMIP5

A first tagged CDO test version with support for CMOR version 2.92 is provided at https://svn.dkrz.de/
mad/Model/cmor-support/tags/cdo_03-31-2017/ and can be downloaded after a registration on inquiry.
The installation of CMOR support for CDO is complex because several packages used by CDO and CMOR
need to be combined. It is highly recommended to use the operator on the DKRZ system (mistral) where
active user support can be given.

2.1.1. DKRZ system

The provided test version of cdo is installed on mistral in work and the exe file is: /work/bm0021/cdo_

03-31-2017/cdo-git/src/cdo. In /work/bm0021/cdo_03-31-2017/, a script for the installation in a
user-defined directory is given.

2.1.2. Local installation

An example script how an installation of the downloaded test version can work on a lokal computer is given
in Appendix C. It requires downloading of other packages. Note that this way of installing the version
results in full CDO support for GRIB and NETCDF file formats.

2.2. CDOs with CMOR3 for CMIP6

CMOR version 3 can neither be used in the recent CDO release nor in the CDO test version. Therefore:

Note: Conversion for CMIP6 model output not yet enabled!

Once a stable CMOR version 3 is available, the implementation of CMOR version 3 will be developped.

4

https://svn.dkrz.de/mad/Model/cmor-support/tags/cdo_03-31-2017/
https://svn.dkrz.de/mad/Model/cmor-support/tags/cdo_03-31-2017/
/work/bm0021/cdo_03-31-2017/cdo-git/src/cdo
/work/bm0021/cdo_03-31-2017/cdo-git/src/cdo
/work/bm0021/cdo_03-31-2017/

3. Operator set-up

This chapter introduces the operator set-up and all adjustable options. The main control elements are
explicated at the beginning to show the usage of the program interface. Since required information is
often missing in the input file, in the next sections it is explained how additional information in terms of
temporal and spatial decription, global and variable attributes can be easily and effectively delivered to
the operator.

Since CMIP requested climate data covers an enormous range of data types across experiments and vari-
ables, cdo cmor analogously provide many options to enable a correct processing for each of these special
requests. The usage of these options are given for each case in the subsequent section.

cdo cmor enables appending of output to an existing chunk. This special append mode is explained in
a further section because of its special control mechanism. Finally, the methods of automatic background
calculations in internal procedures of cdo cmor are introduced.

3.1. Main control

A minimum input when calling cdo cmor consists of specifications of a file name (relative or absolute
path) of the used MIP-table as the first argument and the input file infile:

cdo cmor,$MIP-table infile #abstract form

cdo cmor,Dir/CMIP5_Amon test.nc #example

In this case, all necessary information for converting the infile with cmor to a compliant format needs to
be available as global and variable attributes in infile. This case is only possible if infile is a NetCDF file.
However, there are several ways to pass further information to the operator which are explained beneath.

In contrast to operators which create an outfile, the outfile name must not be specified because it is always
generated by CMOR according to the project. The first argument is always the MIP-table.

If only a subset of variables shall be processed, variables can be selected by using a key=values pair with
the keyword cmor name and values as a comma separated list in a form that:

cdo cmor,MIPtable,cmor_name=var1,var2 infile #abstract form

cdo cmor,Dir/CMIP5_Amon,cmor_name=tas,uas test.nc #example

cdo cmor,Dir/CMIP5_Amon,cn=tas,uas test.nc #example 2

#example 2 shows a variation with cn as a short keyword name for cmor name. For every keyword which is
not a global attribute a short name exist. For a succesfull processing of the previous example, the following
listed information is required and needs to be given in infile ’test.nc’:

• Spatial information, e.g. a grid with coordinates ’longitude’ and ’latitude’.

• Temporal information, especially calendar and time units.

• All global attributes:

– project id, experiment id, model id, source, institute id, contact, institution

• All attributes of the variables listed in cmor name:

– units

5

Temporal and spatial description Operator set-up

In general, not all required information is available from infile. Additional global attributes which are
not deposited in infile can be collected in files denoted via info (a commandline registration for global
attributes is locked). Keywords drs and drs root determine whether a DRS directory structure is built
and in which path, respectively. These general configuration keywords controlling in- and output are
comprehensively presented in Table 3.1.

Table 3.1.: Main keywords to control in- and output of cdo cmor
Name Short

name
Value description Default

cmor name cn Strings. Values are cmor names
of variables which should be pro-
cessed. These names must be in
the MIP-table given as argument
1. In general, variables in infile
whose names agree with the speci-
fied cmor names are picked. Con-
sider that cmor name is often nei-
ther out name nor standard name
nor long name.

If no cmor name is denoted, infile
variable names are interpreted as
cmor names and all variables from
infile will be processed. If one of
these variables has a name which
is not denoted as a cmor name in
the MIP-table given as argument 1,
CMOR gives an error.

info i Strings. Values are file names
similar to MIP-table containing
global attributes as key=value pairs.
These key=value pairs are given in
the file as one pair each line.

If no files are denoted,
cdo cmor tries to read:
’$HOME/.cdocmorinfo’. If it
does not exist, no file is read and
the program continues.

drs d Character. Value is either ’y’ or ’n’.
’y’: Directory structure according
to DRS is built. ’n’: No directory
structure according to DRS is built.

0. If the DRS is built, the publica-
tion work flow is more efficient.

drs root dr String. Value is a file name where
the directory structure according to
the DRS is built.

Working directory

cdo cmor gains information from the commandline with highest priority, from info files concerning global
attributes respectively from a mapping table file concerning variable attributes and from the infile with
lowest priority where the priority decides which information is taken if keywords are repeatedly given in
more than one of these access points. I.e., an infile global attribute can be overwritten by the corresponding
info file keyvalue which can be again overwritten by a commandline keyvalue.

3.2. Temporal and spatial description

Three model and experiment specific keywords exist for adding temporal and spatial description which are
required for cdo cmor. They are listed in Table 3.2.

6

Operator set-up Global attributes

Table 3.2.: Keywords to set required temporal and spatial information. Note that calendar is only
assignable in info files.

Name Short
name

Value description Default

grid info gi String. Value is a climate data file
which contains grid information. A
grid is read in from that file and sub-
stitutes all grids from variables in in-
file.

If no ’grid info’ is stated, grids from
input file are taken for the variables,
respectively. If no grid information
at all is available, it depends on the
request whether the operator gives
an error or not.

required

time

units

rtu String. Value has the form ’$Fre-
quency since $Year-$Month-$Day
$Hours:$Minutes:$Seconds’, for
example: ’days since 1979-1-1
00:00:00’. The value is required
to build a relative time axis where
time values of the records in the
infile are calculated as the temporal
distance to the specified reference
time. Generally, the experiment
prescribes this value.

If no value is given, the operator
tries to work with the time axis in
infile. If no time information at all is
available, it depends on the request
whether the operator gives an error
or not.

calendar

(only
assignable in
info files)

l String. Value is one of ’standard’
(’gregorian’), ’proleptic gregorian’,
’360 day’, ’noleap’ and ’all leap’.
Generally, the model prescribes this
value.

If no value is given, the operator
tries to work with a potential cal-
endar in infile. If no calendar infor-
mation at all is available, the default
is ’standard’.

These keywords grid info, required time units and calendar have in common that they set spatial
and temporal axes information respectively for all variables which should be processed at once. Therefore,
they can also be set in info files and will be processed similar to global attributes internally. If all variables
are computed by the same model and designed for one experiment (which is in general the case), no
problems referring to these keyvalues should occur during a conversion of a desired subset of variables
because grid info and calendar are model specific attributes and required time units is prescribed by
the experiment.

Note that the grid info file cannot be used in a operator chain because, during a chain, two climate data
files cannot be open at the same time.

3.3. Global attributes

The necessary global attributes are given in Table 3.3. One important reason why they are mandotory is
that they are part of the Data Reference Syntax (DRS) which is used to build the file path for the output.

The attribute project id plays a special role because it affects the importance and restrictions of other
global attributes. For particular projects, e.g. ’CMIP5’, several global attributes are restricted to a ’Con-
trolled Vocabulary’ (CV) which is predefined by the project and used by CMOR to control the attributes.
The project id must be equivalent to the project which can be found in the MIP-table given as argument
1.

7

Variable attributes Operator set-up

Table 3.3.: Required global attributes to start cdo cmor independently of the project. For particular
projects, some of the listed attributes are restricted to a ’Controlled Vocabulary’ (CV) which is highlighted
in the Explanation row with : ’CV’.

Keyword (CMIP6 Name) Value examples Explanation

project id (activity id) CMIP5 Value must be equivalent to the
project which can be found in the
MIP-table given as argument 1.

experiment id amip CV

model id (source id) MPI-ESM CV

source ”MPI-ESM-LR 2011; URL: ht.... ” A reference of the model.

institude id (institution id) MPI-M CV

institution ”Max Planck Institute for Meteorology” CV

contact ”cmip5-mpi-esm@dkrz.de” -

For different projects, cdo cmor requires additional global attributes to start. They are shown in Table
3.4.

Table 3.4.: Additonal required global attributes to start cdo cmor for requests of different projects.
Attributes are restricted to a controlled vocabulary when ’CV’ is denoted in the Explanation row.

Keyword Required
from
projects

Value examples Explanation

member CMIP5+,
CORDEX

r1i1p1 The format of member is ”r%di%dp%d” where
%d is an integer respectively. The integers
after ’r’, ’i’ and ’p’ represent the realization
method, initialization method and physics
version respectively.

product CMIP5+,
CORDEX

output CV

cordex domain CORDEX EUR11 CV. Value represents the model region of the
regional model.

driving model id CORDEX MPI-ESM CV. Value is the model which is used to force
the regional model at its boundaries.

We highly recommend to assign these global attributes shown in Table 3.2, Table 3.3 and Table 3.4 to
three different Info files categorized by topics Model, Experiment and User (see Appendix). Therefore, the
user can be sure to adapt all corresponding attributes when changing one of the topic elements.

3.4. Variable attributes

If infile data contains variables correctly named with cmor names and provided with units and cell methods

attributes which agree with the CMIP-requested ones, this chapter can be omitted. However, most of the
infiles contains rather raw data with variables without attributes and names. In that case, it can be useful
to (re-)name the variable read from infile as the fitting cmor name and add necessary variable attributes.
This procedure is called ’mapping’ from now on.

In general, cdo cmor provides two ways to map the input file variable to the one fulfilling all requirements
for cdo cmor. In the interactive way, only one variable can be mapped in each operator call. The other
one uses a table file and is explicated in the next subsection.

Besides cmor name, cdo cmor provides two additional variable attributes which act as substitutional
variable selectors, name and code. If one of them is found in the commandline, cdo cmor selects the
variable from infile via name respective code and not via cmor name anymore. The value for code is the
GRIB-code, a three digit integer, of the infile variable one likes to process. The selected variable, however,
will be written in the outfile with the name specified via cmor name. To denote both, key name and key

8

Operator set-up Variable attributes

code, is neither reasonable nor allowed. If more than one value is found for one of these three keywords,
only the first is processed. If a variable selection key is denoted, a cmor name must also be specified.

cdo cmor,MIP-table,cmor_name=outname infile #select by outname

#output name is outname

cdo cmor,MIP-table,name=inname,cmor_name=outname infile #select by inname

#output name is outname

cdo cmor,MIP-table,code=incode,cmor_name=outname infile #select by incode

#output name is outname

Variable attributes listed in Table 3.5 can be set in the command line. If a subset of variables should be
processed and variable attributes are registered in the command line, the operator gives a warning because
all requested variables via ’cmor name’ are registered with the same variable attributes which is probably
not desired.

9

Variable attributes Operator set-up

Table 3.5.: Mapping table entry keyword (first line), variable selection keywords (second and third lines)
and variable attributes (following lines) which can be added. Note that only one selection key should be
denoted, otherwise the operator gives an error.

Name Short
name

Value description Default

mip table mtf String. Value is identical to MIP table
frequency used in the operator call. It
is needed in a mapping table to dis-
tinguish between two lines containing
equivalent cmor names.

If no keyvalue is given, the oper-
ator uses the first line it finds in
the mapping table with agreeing
cmor names.

name n String. Value is the variable name
in infile of the variable requested via
’cmor name’. If ’name’ or ’code’ is de-
noted in the command line, only one
variable is selected from infile by ’name’
respective ’code’.

If no value is given, no variable
renaming is active.

code c Three digits Integer. Value is the vari-
able code of the variable requested via
’cmor name’ in infile. If ’name’ or
’code’ is denoted in the command line,
only one variable is selected from infile
by ’name’ respective ’code’.

If no value is given, no variable
renaming is active.

units u String. Value must be readable by
library ’udunits’(LINK), e.g.: ’W m-
2’. CMOR uses this library to convert
units if they do not agree with the re-
quest.

If no value is registered, units are
taken from infile. If no units in-
formation is available, the oper-
ator gives an error.

cell methods cm Character or first character of string.
Value is one of ’m’, ’p’, ’c’ and ’n’ which
stands for ’mean’, ’point’, ’climate’ and
’none’. This is the aggregation method
used for the chosen variable in infile. Its
value is necessary to register the correct
time axis. ’Mean’ is used for temporal
averages, ’point’ for observations, ’cli-
mate’ for and ’none’ for static fields.

The default is mean i.e. ’m’.

positive p Character. Value is one of ’u’, ’d’ and ’ ’
(blank). This attribute enables CMOR
to switch the sign of a directed variable,
e.g. radiation flux, if the request de-
mands it. ’u’ stands for ’upward’, ’d’
for ’downward’ and a blank symbolizes
an undirected variable.

The demand is blank. However,
if a directed variable is regis-
tered, one of ’u’ and ’d’ is re-
quired - otherwise the operator
gives an error.

variable comment vc String. Value gives additional informa-
tion about the variable.

If no keyvalue is given, no com-
ment will be in output and the
program continues.

Important note concerning cell methods: The requested cell methods must be equivalent to the
aggregation methode which was used to create the infile. cell methods cannot be changed, for example,
if the output is averaged over time but cell methods: point is requested.

3.4.1. Variable mapping with table file

Cdo cmor offers a way to map several variables in the same operator call which is beneficial e.g. in
the operational application. This is realized by a mapping table file which can be registered via keyword

10

Operator set-up Variable attributes

mapping table and which is of the format of a fortran namelist. Each line of this file is related to one
variable and consists of attributes one likes to provide the variable with. A line must begin with the
keyword ’¶meter’ by definition. An example of three lines of a mapping table is given in the following.

¶meter out_name=tas name=temp2 code=167 p=" " units="K" cell_methods="m" /

¶meter out_name=sos name=sss code=016 units="psu" cell_methods=m /

¶meter out_name=msftbarot name=psitro code=027 units="kg s-1" cell_methods=m /

Consider for preparation of a mapping table:

1. Each line must begin with the entry keyword ’¶meter’.

2. Both, the order of further keywords in each line and blanks between value and next keyword are
irrelevant.

3. If a value contains blanks, it must be surrounded by ’”’.

4. In contrast to the interactive mapping, one can also denote both, name and code in the table.

Usually, the attribute entries for the mapping table are keywords cmor name and mip table which, besides,
together identify a unique cmor variable. The mapping table line which contains the cmor name specified
via keyvalue is searched. If no line with the corresponding cmor name is found, the mapping table is not
processed and the operator continues. Otherwise, if a mip table keyvalue is in the found line it has to
agree with MIP-table given as argument 1. That means, there can be multiple lines for the same cmor name

because it may require different units or cell methods attributes in another mip table. If the mip table

value disagrees, the search continues. If no mip table is denoted in the first line of agreeing cmor names,
the line is taken for mapping.

If a suitable mapping table line with agreeing cmor name and, if applicable, mip table is found, the
corresponding infile variable needs to be detected. Therefore, variable selectors name and code are searched
in the found line and compared with infile variables. Keyword name has higher priority: If a variable in
infile has the corresponding name all further attributes of this line are assigned to this variable. However, if
no name is found in a line of the mapping table, the other selector attribute code is compared with variable
codes in infile. If no selector attribute is denoted or no selector attribute corresponds to an infile variable,
the line in the mapping table will be ignored. Two special cases are discussed in the following.

Case: Commandline mapping + Mapping table
Note that a combination of a commandline mapping and a mapping table file is possible: If, in addition to
a mapping table, a variable selection key (name or code) plus a cmor name is registered in the command
line, only this variable is mapped and all attributes from the mapping table are also applied on the
variable. The line in the mapping table is again selected by cmor name. However, value of keyword name

found in the mapping table line is ignored and the variable from infile is taken by the name specified in
the command line. Therefore, the combination of both mapping methods can be reasonable e.g. if the
origin model output variable name changed after the mapping table was constructed.

Case: Mapping table but no cmor name
If all variables in infile should be processed and no cmor name is specified, the mapping table entry
keyword is no longer cmor name but name, with higher priority, and code, with lower priority. That is, if
a line contains a variable selector keyword which agrees with the infile variable attribute, the line is used
for mapping.

All external files, the mapping table, the grid info file as well as the MIP-table file can be configured
either via the filename inclusive directory path on the whole specified with one keyword or in combination
with corresponding keywords mapping table dir, grid info dir and mip table dir respectively. The
operator builds the complete file name with these keywords - in case of the MIP-table in addition with
project id so that the call ’cdo cmor,Amon,...’ can be sufficient.

11

Special requests Operator set-up

3.4.2. Example

3.5. Special requests

Cdo cmor enable the conversion of variables with special features concerning scalar, character or vertical
hybrid coordinates. They are explicated in detail in the following sections. An overview about the addi-
tional keywords one can configure to handle these special variable conversions is given in Table 3.6. The
keywords are processed similar to variable attributes and can be specified in both, the command line and
the mapping table. Again, consider that configurations specified in the command line are valid for all in
the operator call requested variables.

These special requests are often associated with cmor labels. This expression means that CMOR requires
exactly the special name denoted in the MIP-table instead of a standard name or out name to run properly.
There is no other way to look up the label to process this request properly.

Table 3.6.: Special keywords in cdo cmor for special request treatment
Name Short

name
Value description Default

scalar z coordinate szc String. Value has the shape: ’($axis-
name) ($axisvalue)’, where $axisname
is the requested axis label for a scalar
z-coordinate and $value the deviant
value, e.g.: ’height2m 1.5’.

If a scalar z-coordinate is
requested but not regis-
tered, the requested value
of this coordinate is auto-
matically taken.

character axis ca String. Value is a character axis, whose
values needs to be registered as well
as a global attribute (must not stand
in mapping table). At this develop-
ment stage of the operator, cdo cmor
only processes character axes ’basin’,
’oline’ and ’vegtype’ because character
axes cannot be transmitted to CMOR at
any stage of the process which impedes
a general handling.

No default

3.5.1. Character coordinates

Special variables feature a requested axis whose values are not numerical. E.g., ocean model data can
be desired for ocean means so that one axis would correspond to something like ’oceans’. The interested
reader is pointed to the CF-conventions which define two standard names for that axis type: ’region’ and
’area type’.

Such an axis can be registered for cdo cmor with the keyword: character axis and a connected second
keyword to define the values of the axis. The value of character axis must be the cmor label of an axis
of the requested variable. The second keyword equals this axis label and contains all the axis coordinates:
If character axis=basin is denoted, a keyvalues pair basin=atlantic,pacific,... must be denoted in an
info file similar to a global attribute.

In case the arrays for each character coordinate are saved as individual variables, one can denote more
variable names respective codes in the mapping table line of the resulting cmor name. This indicates that
the operator has to merge these variables as a character coordinate. If dimenions of all variables agree, the
dimension which contains only one value is converted to the character axis. This is a work around as long
as character coordinates are not build in the CDI data model. However, a solution is in progress.

3.5.2. Scalar z-coordinate

Some variables requested for one coordinate on the z-axis have a special output design. Instead of exhibiting
a dimension for this one-value-axis, the output file of the processed variable contains a ’description’ variable

12

Operator set-up Append mode

pointing at the corresponding coordinate value. A header comparison for illustration is given as an example:
(missing).

The requested coordinate value is identifiable from the cmor label of this axis which is given in the MIP-
table. E.g., ’tas’ has a dimension ’height2m’ which corresponds to a scalar z-coordinate height where
’2m’ is the value. CMOR automatically writes the description variable (height) in the output with the
corresponding requested value (2m).

However, for some models this value might need to be changed because, e.g., it calculates near-surface
variables in a different height. In this case, the szc must be configured. The value of szc must have the
form ’($axisname) ($axisvalue)’, e.g. szc=height2m 1.5. In many cases, the value must be within a range
prescribed by the project with a minimum and a maximum.

3.5.3. Hybrid sigma-pressure coordinates

The registration of a hybrid verical coordinate like sigma-pressure requires the deliveration of some zaxis
parameter as well as the additional variable surface pressure which will be also written in output. These
parameters and the variable needs to be saved in the infile in a form that CDI can process them. The
surface pressure variable is identified via variable name ’ps’ from infile. If a mapping table is delivered,
the name which is in the line with cmor name=ps is used to find the correct infile variable. If ps is not
available the operator gives an error.

3.6. Append mode

If a climate model produces output for each simulation year of a longer period of years, one may want to
use cdo cmor piece by piece every time new output is available. Therefore, one can use the append mode
of CMOR to append a file to an already CMOR-converted file called chunk. cdo cmor facilitates to set
keywords output mode, last chunk and the maximal chunk size max size. In standard replace output
mode, a new file is always generated which replaces an old file when indicated. If output mode is set to ’a’
for append mode, cdo cmor tries to open a chunk which should be configured via last chunk.

If the apend mode is consecutively used several times in operational usage, the file name continuously
changes which makes the specification of last chunk difficult. Therefore, the name of the outfile is written
into a file of the form: ’APPEND FILE cmor name) miptab freq model id experiment id member).txt’
in the working directory if cdo cmor is used in append mode. E.g.: ’APPEND FILE tas mon MPI-
ESM Amon r1i1p1.txt’. When cdo cmor is started in append mode and with drs=y again, the file name
saved in ’APPEND FILE tas mon MPI-ESM Amon r1i1p1.txt’ is used as a default chunk. If no chunk
is valid, the output mode switches to replace and the operator continues.

In the process of appending, it is ensured that the temporal gap between the last time value of the chunk
and the new file is in order of the frequency. Another constriction is that the finally appended outfile
should not contain more than a adjustable size. The corresponding keyword is max size and is 4Gb per
default. This is due to the fact that the publication server can have requests on the file size.

13

Internal procedures Operator set-up

Table 3.7.: Keywords to control the output mode of cdo cmor
Name Short

name
Value description Default

output mode om Character. Value is either ’r’ for CMOR
replace mode or ’a’ for CMOR append
mode. In replace mode, CMOR pro-
duces a new file. The adjustment of the
append mode is explained in the text.

’r’ for replace

last chunk lc Strings. Values are chunk file names
corresponding to the order of requested
variables via ’cmor name’.

For CMIP5 and ’drs’=1, file names
are built with attributes in the form:
’APPEND FILE ($cmor name)
($miptab freq) ($model id) ($ex-
periment id) ($member).txt’ from
where the operator reads each
chunk file name.

max size ms Integer. Value is the upper limit for the
size of an output file in gigabyte and
only valid in append mode.

4

3.6.1. Examples

3.7. Internal procedures

This chapter illuminates background operator functions that automatically help during the conversion
process.

3.7.1. Temporal boundaries

If cell methods is ’mean’, CMOR demands for time bounds. If, in that case, no time bounds are con-
figured, cdo cmor calculates them based on the time values in infile and a frequency which is usually
deduced from the MIP-table name. Since CMOR expects boundaries to leave no gap, the processed time
bounds always cover the whole unit of the frequency: If the frequency is yearly, a time value is valid for
the whole year. E.g., if a time value is 01-23-1954 00:00:00 and frequency is yearly, the lower bound is
01-01-1954 00:00:00 and the upper bound is 01-01-1955 00:00:00. The original time value is moved to the
mid point of this range by CMOR, which would be 07-01-1954 12:00:00 in the example.

For requests with subdaily frequencies and cell methods=mean, it is important that the time value from
infile is definitely correct because there is no explicit rule to calculate time bounds for 3hr frequency. I.e.,
CMOR will not move the time value.

If no frequency can be deduced from the MIP-table name, cdo cmor tries to derive it from infile by
counting time steps and determine the covered temporal range by these. However, if the operator is part
of a CDO chain this derivation is not possible because the infile must be opened a second time. This is
due to the fact that CDO intends to read one record of all variables per timestep which cannot be part of
the ’get frequency’ function.

The frequency derivation from infile relies on two steps: First, Nt

∆yr is calculated where Nt is the number of
time steps in infile and ∆yr the covered temporal range in years. If this term is 1, frequency is annual, if
it is 12, frequency is monthly, and so on. If no clear frequency assignment is possible, as a next step Nt1

∆mon
is calculated which is the number of time steps in the first year Nt1 divided by the covered months in the
first year. If Nt1

∆mon > 31 ∗ 8, cdo cmor gives an error because a sub-3hourly frequency is not yet enabled.

If Nt1

∆mon > 31 ∗ 4, frequency is 3hourly, if Nt1

∆mon > 31 , frequency is 6hourly and so on up to monthly.

14

Operator set-up cdo cmor with CMOR 3

3.7.2. Spatial boundaries

CMOR requires spatial boundaries for axes which define the valid area respective covered height of a grid
cell. If boundaries for a spatial axis are not implemented in infile, cdo cmor will interpolate the given grid
point coordinates to the mid point between adjacent grid points, respectively, in order to build boundaries.

In case of a regular grid, the northern and southern boundaries latitudes are constant along the northern
and southern boundaries, repsectively, as well as the western and eastern boundary longitudes are constant
along the western and eastern boundaries, respectively. Four values are required by cmor for each cardinal
direction at each grid point. If needed, cdo cmor calculates them by averaging the longitutes as well as
latitudes of two adjacent grid points, respectively. The upper and lower boundaries for z-axis levels are
also calculated by averaging two adjacent level values, respectively.

In case of a curvilinear grid, CMOR requires grid cell corners and for all four grid cell corners, both,
longitues and latitudes must be specified. If needed, cdo cmor calculates them with a piecewise bilinear
interpolation: Half-longitudes (-latitudes) are calculated by averaging adjacent longitudes (latitudes). The
grid cell corner longitudes (latidues) can be derived by averaging adjacent half-longitudes (-latitudes). I.e.,
the grid cell corner longitudes (latitudes) are the half-longitudes-on-half-latidues (half-latitudes-on-half-
longitudes). If the absolute difference between two adjacent longitude values is bigger than 180 degrees,
180 degrees are added (substracted) to the average of these values if it is lower (higher) than 180 degrees.
This procedure is observed to produce plausible bounds at the transmission from 360 to 0 degrees on the
grid and prohibits values lower 0 or higher 360 degrees. Since this is an expensive and possibly imprecise
approach it is highly recommended to deliver the bounds.

3.8. cdo cmor with CMOR 3

- not possible yet

15

A. Table of all keywords except global attributes

Function Key name
Italic: Inter-
nally processed
like a global
Attribute

Key
short
name

Type Necessary either
via key or Ifile in-
formation (Y =
yes, N = no) and
restrictions

Default
if no key
is config-
ured (- =
irrelevant)

Variable selector cmor name cn Strings N -

Variable selector name n String N -

Variable selector code c Three digits
integer

N -

Main control info i Strings N /$HOME
/.cdocmorinfo

Main control drs d Character N yes

Main control drs root dr String N Working di-
rectory

Temporal/spatial
description

grid info gi String Y and must fit to
variable array

Ifile variable
grid

Temporal/spatial
description

required
time units

rtu String Y and format con-
trolled

Ifile time
units

Temporal/spatial
description

calendar l String Y and 5 options Ifile calendar

Operational control mapping table - String N N

Operational control mapping table
dir

- String N N

Operational control mip table dir - String N N

Operational control grid info dir - String N N

Operational control output mode om Character N and 2 options Replace
mode

Operational control last chunk lc Strings N For CMIP5

Operational control max size ms Integer N and in Gb 4Gb

Variable attribute units u String Y and UD unit
compatible

Ifile variable
units

Variable attribute cell methods cm String N and 4 options mean

Variable attribute positive p Character N and 3 options blank

Variable attribute variable comment vc String N N

Special variable at-
tribute

scalar
z coordinate)

szc String and
form con-
trolled

N N

Special variable at-
tribute

character axis ca String and 3
options

N N

16

B. Table of all global attribute keywords

Global attributes. De-
fault type is String, oth-
erwise mentioned. Italic:
Not a glob. att. but deno-
table on the same level.

Associated
with: E:
Experi-
ment, M:
Model, U:
User.

CMIP6
changes if
available

Necessary either
via key or Ifile
information (Y
= yes, N = no,
D = Depends
on project)
and restrictions
(CV: Controlled
vocabulary)

Default if
no informa-
tion via key
or Ifile is
available

required time units E Y N

project id E activity id Y N

experiment id E Y and CV N

member E Format with
forcing

D and format con-
trolled

N

product E D and CV N

cordex domain E D and CV N

driving model id E D and CV N

driving experiment name E D and CV N

history E N N

parent experiment id E N and CV N

parent experiment rip E N and CV N

forcing E N N

branch times (Format:
Double)

E branch time
in parent

N 0.0

model id M source id Y N

source M Y N

mapping table M N N

mapping table dir M N N

grid info M N N

grid info dir M N N

calendar M Y and 5 options ”standard”
(gregorian)

rcm version id M N N

references M N ”No references
available for
$model id”

institude id U institution id Y and CV N

institution U Y and CV N

contact U Y and CV N

mip table dir U N N

17

C. Script to install cdo with CMOR support on
a unix system DYNAMIC?

#!/bin/sh

#Choose your installation directory HOME:

HOME=/home/

#Download the packages zlib-1.2.8, hdf5-1.8.13, expat-2.2.0, udunits-2.2.20,

uuid-1.6.2, netcdf-4.4.1.1, jasper-1.900.1, grib_api-1.14.4-Source

and, of course, cmor2_v292 and cdo-1.8.0rc5 to $HOME

cd zlib-1.2.8/

./configure --prefix=${HOME}

make; make check; make install

cd ../

cd hdf5-1.8.13/

./configure --with-zlib=/${HOME} --prefix=${HOME} CFLAGS=-fPIC

make; make check; make install

cd ../

cd expat-2.2.0/

./configure --prefix=${HOME} CFLAGS=-fPIC

make; make check; make install

cd ..

cd udunits-2.2.20/

CPPFLAGS=-I${HOME}include LDFLAGS=-L${HOME}lib

./configure --prefix=${HOME} CFLAGS=-fPIC

make; make check; make install

cd ..

cd uuid-1.6.2/

./configure --prefix=${HOME} CFLAGS=-fPIC

make; make check; make install

cd ..

cd netcdf-4.4.1.1/

CPPFLAGS=-I${HOME}include LDFLAGS=-L${HOME}lib

./configure --prefix=${HOME}

--enable-netcdf-4 CFLAGS=-fPIC

make; make check; make install

cd ..

cd jasper-1.900.1/

./configure --prefix=${HOME} CFLAGS=-fPIC

make; make check; make install

cd ..

18

Script to install cdo with CMOR support on a unix system DYNAMIC?

cd grib_api-1.14.4-Source

./configure --prefix=${HOME} CFLAGS=-fPIC --with-netcdf=${HOME} --with-jasper=${HOME}

make; make check; make install

cd ..

cd cmor2_v292/

CFLAGS=-fPIC CPPFLAGS=-I${HOME}include LDFLAGS=-L${HOME}lib

./configure --prefix=${HOME}local

--with-udunits2=${HOME} --with-uuid=${HOME} --with-netcdf=${HOME}

make

make install

cd ..

cd cdo-1.8.0rc5

CPPFLAGS="-I${HOME}include -I${HOME}include/cdTime" LDFLAGS="-L${HOME}lib"

./configure --prefix=${HOME}

--with-cmor=${HOME}local LIBS="-L${HOME}/lib -lnetcdf -ludunits2 -luuid"

--with-netcdf=${HOME} --with-jasper=${HOME} --with-hdf5=${HOME}

--with-grib_api=${HOME} --with-udunits2=${HOME}

make -j8

cd ..

19

	Introduction
	Installation
	CDOs with CMOR2 for CMIP5
	DKRZ system
	Local installation

	CDOs with CMOR3 for CMIP6

	Operator set-up
	Main control
	Temporal and spatial description
	Global attributes
	Variable attributes
	Variable mapping with table file
	Example

	Special requests
	Character coordinates
	Scalar z-coordinate
	Hybrid sigma-pressure coordinates

	Append mode
	Examples

	Internal procedures
	Temporal boundaries
	Spatial boundaries

	cdo cmor with CMOR 3

	Table of all keywords except global attributes
	Table of all global attribute keywords
	Script to install cdo with CMOR support on a unix system DYNAMIC?

