
ANL/MCS-TM-00

MPICH2 Design Document
Draft of January 8, 2004

by

David Ashton
William Gropp

Ewing Lusk
Rob Ross

Brian Toonen
Mathematics and Computer Science Division

Argonne National Laboratory

A
R

G
O

N
NE

NATIONAL LABORA

TO
R

Y

U
N

IVERSITY OF C
HIC

A
G

O

•

•

MATHEMATICS AND
COMPUTER SCIENCE

DIVISION

Contents

1 Introduction 1

2 Goals of MPICH 1

3 MPICH Source Tree 1

3.1 Source Directory Structure . 2

3.2 The Build Directories . 4

3.3 The Installation Directories . 4

3.4 Modularity . 5

3.5 Sample Implementation Template . 5

3.6 Sample Makefile Template . 9

3.7 Include Files . 9

3.8 MPI and PMPI Routines . 10

3.9 Layered Implementation of MPI Routines . 10

3.10 Internal Routine Names . 11

3.11 File Names . 11

3.12 MPI Opaque Objects . 11

3.12.1 Opaque Handle Format . 11

3.12.2 Converting Handles To Pointers . 14

3.12.3 Required Structure Layout for Objects . 15

3.12.4 Memory Management for Handles . 15

3.12.5 Optimizing Allocation of Handles . 15

3.13 Error reporting . 17

3.13.1 Errors to test for . 17

3.13.2 Choosing Error Handlers and Classes . 18

3.13.3 Error handling and Fault Tolerance . 19

3.13.4 Error Handling for Layered Routines . 19

3.14 Per Thread and Per Process Data . 19

3.15 Integral Profiling . 21

i

3.15.1 Basic Timer Routines. 21

3.15.2 Instrumenting the MPI code for States. 21

3.15.3 Instrumenting the MPI code for Statistics. 23

3.16 Memory Allocation . 24

3.16.1 Multiple Memory Allocation . 24

3.16.2 Testing for Memory Errors . 25

3.17 Naming Rules . 25

3.18 Runtime Parameters . 26

3.19 Threads . 27

3.20 Initialization and Finalization . 28

3.21 Coding Practices . 28

3.22 Other Subsystems . 29

3.23 Deprecated Routines . 30

4 Adding a New Communication Method 30

4.1 Adding a Method To the Channel Device . 30

4.2 Adding a Method To the Multimethod Device . 31

4.3 Creating a New ADI3 Device . 31

5 Special Issues 31

5.1 Heterogenity . 31

6 MPI Operations 31

6.1 Attributes . 32

6.1.1 MPI_ATTR_DELETE . 32

6.1.2 MPI_ATTR_GET . 32

6.1.3 MPI_ATTR_PUT . 32

6.1.4 MPI_KEYVAL_CREATE . 32

6.1.5 MPI_KEYVAL_FREE . 33

6.1.6 MPI_COMM_CREATE_KEYVAL . 33

6.1.7 MPI_COMM_FREE_KEYVAL . 33

ii

6.1.8 MPI_COMM_GET_ATTR . 33

6.1.9 MPI_COMM_SET_ATTR . 33

6.1.10 MPI_COMM_DELETE_ATTR . 33

6.1.11 MPI_TYPE_GET_ATTR . 34

6.1.12 MPI_TYPE_SET_ATTR . 34

6.1.13 MPI_TYPE_DELETE_ATTR . 34

6.1.14 MPI_TYPE_CREATE_KEYVAL . 34

6.1.15 MPI_TYPE_FREE_KEYVAL . 34

6.1.16 MPI_WIN_CREATE_KEYVAL . 34

6.1.17 MPI_WIN_FREE_KEYVAL . 34

6.1.18 MPI_WIN_SET_ATTR . 34

6.1.19 MPI_WIN_GET_ATTR . 34

6.1.20 MPI_WIN_DELETE_ATTR . 34

6.2 Info . 34

6.2.1 MPI_INFO_CREATE . 35

6.2.2 MPI_INFO_DELETE . 35

6.2.3 MPI_INFO_DUP . 36

6.2.4 MPI_INFO_FREE . 36

6.2.5 MPI_INFO_GET . 36

6.2.6 MPI_INFO_GET_NKEYS . 36

6.2.7 MPI_INFO_GET_NTHKEY . 37

6.2.8 MPI_INFO_GET_VALUELEN . 37

6.2.9 MPI_INFO_SET . 37

6.3 Datatypes . 37

6.3.1 The Predefined Datatypes . 38

6.3.2 Creating a New Datatype . 38

6.3.3 Computing the Extent . 39

6.3.4 MPI_ADDRESS . 41

6.3.5 MPI_GET_COUNT . 41

6.3.6 MPI_GET_ELEMENTS . 41

iii

6.3.7 MPI_STATUS_SET_ELEMENTS . 42

6.3.8 MPI_TYPE_HINDEXED . 42

6.3.9 MPI_TYPE_HVECTOR . 42

6.3.10 MPI_TYPE_STRUCT . 42

6.3.11 MPI_GET_ADDRESS . 43

6.3.12 MPI_TYPE_CONTIGUOUS . 43

6.3.13 MPI_TYPE_INDEXED . 43

6.3.14 MPI_TYPE_VECTOR . 43

6.3.15 MPI_TYPE_CREATE_DARRAY . 43

6.3.16 MPI_TYPE_CREATE_HINDEXED . 43

6.3.17 MPI_TYPE_CREATE_HVECTOR . 43

6.3.18 MPI_TYPE_CREATE_INDEXED_BLOCK . 43

6.3.19 MPI_TYPE_CREATE_STRUCT . 43

6.3.20 MPI_TYPE_CREATE_SUBARRAY . 43

6.3.21 MPI_TYPE_CREATE_RESIZED . 44

6.3.22 MPI_TYPE_COMMIT . 44

6.3.23 MPI_TYPE_DUP . 44

6.3.24 MPI_TYPE_FREE . 44

6.3.25 MPI_TYPE_EXTENT . 44

6.3.26 MPI_TYPE_LB . 44

6.3.27 MPI_TYPE_SIZE . 44

6.3.28 MPI_TYPE_UB . 44

6.3.29 MPI_TYPE_GET_TRUE_EXTENT . 44

6.3.30 MPI_TYPE_GET_CONTENTS . 45

6.3.31 MPI_TYPE_GET_ENVELOPE . 45

6.3.32 MPI_TYPE_GET_EXTENT . 45

6.3.33 MPI_TYPE_MATCH_SIZE . 45

6.3.34 MPI_TYPE_GET_NAME . 46

6.3.35 MPI_TYPE_SET_NAME . 46

6.3.36 MPI_PACK . 46

iv

6.3.37 MPI_PACK_SIZE . 46

6.3.38 MPI_UNPACK . 46

6.3.39 MPI_PACK_EXTERNAL . 47

6.3.40 MPI_PACK_EXTERNAL_SIZE . 47

6.3.41 MPI_UNPACK_EXTERNAL . 47

6.3.42 MPI_REGISTER_DATAREP . 48

6.3.43 Heterogeneity . 48

6.4 Groups . 48

6.4.1 MPI_GROUP_RANK . 49

6.4.2 MPI_GROUP_SIZE . 49

6.4.3 MPI_GROUP_TRANSLATE_RANKS . 49

6.4.4 MPI_GROUP_FREE . 50

6.4.5 MPI_GROUP_COMPARE . 50

6.4.6 MPI_GROUP_EXCL . 50

6.4.7 MPI_GROUP_INCL . 50

6.4.8 MPI_GROUP_RANGE_EXCL . 50

6.4.9 MPI_GROUP_RANGE_INCL . 50

6.4.10 MPI_GROUP_DIFFERENCE . 51

6.4.11 MPI_GROUP_INTERSECTION . 51

6.4.12 MPI_GROUP_UNION . 51

6.5 Communicators . 51

6.5.1 MPI_COMM_COMPARE . 51

6.5.2 MPI_COMM_CREATE . 51

6.5.3 MPI_COMM_DUP . 53

6.5.4 MPI_COMM_FREE . 54

6.5.5 MPI_COMM_GROUP . 54

6.5.6 MPI_COMM_RANK . 54

6.5.7 MPI_COMM_REMOTE_GROUP . 54

6.5.8 MPI_COMM_REMOTE_SIZE . 54

6.5.9 MPI_COMM_SIZE . 54

v

6.5.10 MPI_COMM_SPLIT . 54

6.5.11 MPI_COMM_TEST_INTER . 55

6.5.12 MPI_INTERCOMM_CREATE . 55

6.5.13 MPI_INTERCOMM_MERGE . 56

6.5.14 MPI_COMM_CLONE . 56

6.5.15 MPI_COMM_GET_NAME . 56

6.5.16 MPI_COMM_SET_NAME . 57

6.6 Point to Point Communication . 57

6.6.1 MPI_PROBE . 57

6.6.2 MPI_IBSEND . 59

6.6.3 MPI_BSEND . 59

6.6.4 MPI_BSEND_INIT . 59

6.6.5 MPI_BUFFER_ATTACH . 59

6.6.6 MPI_BUFFER_DETACH . 60

6.6.7 MPI_CANCEL . 60

6.6.8 MPI_IPROBE . 60

6.6.9 MPI_IRECV . 60

6.6.10 MPI_IRSEND . 60

6.6.11 MPI_ISEND . 60

6.6.12 MPI_ISSEND . 61

6.6.13 MPI_RECV . 61

6.6.14 MPI_RECV_INIT . 61

6.6.15 MPI_REQUEST_GET_STATUS . 61

6.6.16 MPI_REQUEST_FREE . 61

6.6.17 MPI_RSEND . 61

6.6.18 MPI_RSEND_INIT . 61

6.6.19 MPI_SEND . 61

6.6.20 MPI_SENDRECV . 62

6.6.21 MPI_SENDRECV_REPLACE . 62

6.6.22 MPI_SEND_INIT . 62

vi

6.6.23 MPI_SSEND . 62

6.6.24 MPI_SSEND_INIT . 62

6.6.25 MPI_START . 62

6.6.26 MPI_STARTALL . 62

6.6.27 MPI_STATUS_SET_CANCELLED . 63

6.6.28 Point-to-point completion functions . 63

6.6.29 MPI_TEST . 64

6.6.30 MPI_TESTALL . 64

6.6.31 MPI_TESTANY . 64

6.6.32 MPI_TESTSOME . 64

6.6.33 MPI_TEST_CANCELLED . 64

6.6.34 MPI_WAIT . 64

6.6.35 MPI_WAITALL . 64

6.6.36 MPI_WAITANY . 64

6.6.37 MPI_WAITSOME . 64

6.7 Communication Agent . 64

6.8 Collective Communication and Computation . 65

6.8.1 Reduction functions . 65

6.8.2 Code Structure for the Implementation of the Collective functions 65

6.8.3 Collective Computation . 66

6.8.4 MPI_OP_CREATE . 66

6.8.5 MPI_OP_FREE . 66

6.8.6 Intracommunicator Collective Operations . 66

6.8.7 MPI_ALLGATHER . 66

6.8.8 MPI_ALLGATHERV . 67

6.8.9 MPI_ALLREDUCE . 67

6.8.10 MPI_ALLTOALL . 67

6.8.11 MPI_ALLTOALLV . 67

6.8.12 MPI_ALLTOALLW . 67

6.8.13 MPI_BARRIER . 67

vii

6.8.14 MPI_BCAST . 67

6.8.15 MPI_EXSCAN . 67

6.8.16 MPI_GATHER . 68

6.8.17 MPI_GATHERV . 68

6.8.18 MPI_REDUCE . 68

6.8.19 MPI_REDUCE_SCATTER . 68

6.8.20 MPI_SCAN . 68

6.8.21 MPI_SCATTER . 68

6.8.22 MPI_SCATTERV . 68

6.9 Intercommunicator Collective Operations . 69

6.10 Topology . 69

6.10.1 Proposed Interface . 69

6.10.2 Proposed Interface 2 . 70

6.10.3 MPI_CARTDIM_GET . 70

6.10.4 MPI_CART_CREATE . 70

6.10.5 MPI_CART_GET . 70

6.10.6 MPI_CART_MAP . 70

6.10.7 MPI_CART_RANK . 71

6.10.8 MPI_CART_SHIFT . 71

6.10.9 MPI_CART_SUB . 71

6.10.10MPI_DIMS_CREATE . 71

6.10.11MPI_GRAPHDIMS_GET . 71

6.10.12MPI_GRAPH_CREATE . 71

6.10.13MPI_GRAPH_GET . 71

6.10.14MPI_GRAPH_MAP . 71

6.10.15MPI_GRAPH_NEIGHBORS . 71

6.10.16MPI_GRAPH_NEIGHBORS_COUNT . 71

6.10.17MPI_TOPO_TEST . 72

6.11 RMA . 72

6.11.1 MPI_ACCUMULATE . 73

viii

6.11.2 MPI_PUT . 73

6.11.3 MPI_GET . 73

6.11.4 MPI_WIN_FENCE . 73

6.11.5 MPI_ALLOC_MEM . 73

6.11.6 MPI_FREE_MEM . 74

6.11.7 MPI_WIN_CREATE . 74

6.11.8 MPI_WIN_FREE . 74

6.11.9 MPI_WIN_GET_GROUP . 75

6.11.10MPI_WIN_GET_NAME . 75

6.11.11MPI_WIN_SET_NAME . 75

6.11.12MPI_WIN_LOCK and MPI_WIN_UNLOCK . 75

6.11.13Scalable Active Target Synchronization . 76

6.11.14MPI_WIN_POST . 76

6.11.15MPI_WIN_START . 76

6.11.16MPI_WIN_COMPLETE . 77

6.11.17MPI_WIN_WAIT . 77

6.12 Starting and Ending MPI . 77

6.12.1 MPI_ABORT . 77

6.12.2 MPI_INIT_THREAD . 78

6.12.3 MPI_QUERY_THREAD . 78

6.12.4 MPI_IS_THREAD_MAIN . 78

6.12.5 MPI_FINALIZED . 79

6.12.6 MPI_INIT . 79

6.12.7 MPI_INITIALIZED . 79

6.12.8 MPI_FINALIZE . 79

6.13 Dynamic Processes . 79

6.13.1 The BNR Interface . 80

6.13.2 The BNR Group Functions . 81

6.13.3 The BNR Keymap Functions . 81

6.13.4 The BNR Process Creation Functions . 82

ix

6.13.5 Utility Functions . 82

6.13.6 Implementation of MPI on BNR Plus Utility Functions 83

6.13.7 MPI Dynamic Processes Functions . 85

6.13.8 MPI_COMM_CONNECT . 85

6.13.9 MPI_COMM_DISCONNECT . 85

6.13.10MPI_COMM_GET_PARENT . 86

6.13.11MPI_COMM_JOIN . 86

6.13.12MPI_COMM_SPAWN . 86

6.13.13MPI_COMM_SPAWN_MULTIPLE . 86

6.13.14MPI_LOOKUP_NAME . 86

6.13.15MPI_PUBLISH_NAME . 87

6.13.16MPI_UNPUBLISH_NAME . 87

6.13.17MPI_OPEN_PORT . 87

6.13.18MPI_CLOSE_PORT . 87

6.14 User-Defined Requests . 87

6.14.1 MPI_GREQUEST_START . 88

6.14.2 MPI_GREQUEST_COMPLETE . 88

6.15 Error Handlers . 88

6.15.1 MPI_ERRHANDLER_FREE . 88

6.15.2 MPI_ERRHANDLER_CREATE . 88

6.15.3 MPI_ERRHANDLER_GET . 88

6.15.4 MPI_ERRHANDLER_SET . 88

6.15.5 MPI_ERROR_CLASS . 88

6.15.6 MPI_ERROR_STRING . 88

6.15.7 MPI_ADD_ERROR_CLASS . 88

6.15.8 MPI_ADD_ERROR_CODE . 88

6.15.9 MPI_ADD_ERROR_STRING . 89

6.15.10MPI_COMM_CALL_ERRHANDLER . 89

6.15.11MPI_COMM_CREATE_ERRHANDLER . 89

6.15.12MPI_COMM_GET_ERRHANDLER . 89

x

6.15.13MPI_COMM_SET_ERRHANDLER . 89

6.15.14MPI_WIN_CREATE_ERRHANDLER . 89

6.15.15MPI_WIN_CALL_ERRHANDLER . 89

6.15.16MPI_WIN_GET_ERRHANDLER . 89

6.15.17MPI_WIN_SET_ERRHANDLER . 89

6.16 Handle Transfers . 90

6.16.1 MPI_STATUS_F2C . 90

6.16.2 MPI_STATUS_C2F . 90

6.17 Timers . 90

6.17.1 MPI_WTICK . 90

6.17.2 MPI_WTIME . 91

6.18 Runtime Environment . 91

6.18.1 MPI_GET_PROCESSOR_NAME . 91

6.18.2 MPI_GET_VERSION . 91

6.19 Profiling . 91

6.19.1 MPI_PCONTROL . 91

6.20 I/O . 91

6.21 Utility Routines . 91

7 Portability 91

7.1 Configure . 92

7.2 Configure Flags . 92

7.3 Supporting Cross-compilation . 92

7.3.1 Complex Configuration Data . 94

7.4 Makefile Structure . 95

7.5 Coding Rules . 95

7.5.1 Printing and Other Messages . 96

7.6 NT Friendly . 97

7.7 Fortran Support . 97

7.7.1 MPI_SIZEOF . 97

xi

7.7.2 MPI_TYPE_CREATE_F90_INTEGER . 97

7.7.3 MPI_TYPE_CREATE_F90_REAL . 98

7.7.4 MPI_TYPE_CREATE_F90_COMPLEX . 98

7.7.5 Fortran Wrappers . 98

7.7.6 Fortran Datatypes . 98

7.8 C++ Support . 98

8 Standard Features 99

8.1 Command line and environment . 99

8.2 Standard I/O . 99

8.3 Other parts of the environment . 99

8.4 Documentation and Man Pages . 99

9 Testing 99

9.1 Communication Tests . 101

9.2 Test harness . 102

9.3 Debugger Interface . 103

10 ToDo List 104

A Error Codes 106

A.1 Error Classes and Codes . 106

B Rationale 112

B.1 Sample Implementation Template . 112

B.2 Opaque Handles . 112

B.3 Error checks . 112

B.3.1 Pointer Checks. 112

B.4 Layered Error Handling . 113

B.5 Memory Allocation . 114

B.6 PMPI . 114

B.7 Runtime Parameters . 114

xii

B.8 Coding Practices . 115

B.9 Other Subsystems . 115

B.10 Performance and Tracing Data . 115

B.11 Attributes . 116

B.12 Info . 116

B.13 Datatypes . 117

B.14 Groups . 117

B.15 Point-to-point . 117

B.16 Communication agent . 117

B.17 Collective . 117

B.17.1 Structure of the files containing the predefined operations. 117

B.18 Communicators . 117

B.19 Topology . 117

B.20 RMA . 117

B.21 Starting and Ending MPI . 117

B.22 Dynamic processes . 118

B.23 Name service . 118

B.24 User-defined requests . 118

B.25 Error handlers . 118

B.26 Handle Transfers . 118

B.27 Timers . 118

B.28 I/O . 118

B.29 Runtime Environment . 118

B.30 Profiling . 118

B.31 MPI command environment . 118

B.32 Portability . 118

References 119

Index 120

xiii

1 INTRODUCTION 1

1 Introduction

This document discusses how the MPICH2 implementation is written using the ADI-3 [6] for the
supporting functions. This document also contains guidelines for the MPICH2 implementation. One
important purpose of this document is to provide common guidelines for writing the MPICH code.
See also the Coding Standards docment [5] for more details on general coding practices.

To date, this document primarily contains comments on the rules for writing the code. Few
comments on the use of ADI-3 routines have been added yet. No part of this document is final.

A major challenge is developing an interface that requires fewer (or at least simpler) routines to
implement. This is particularly difficult since the MPI standard is defined to encourage efficient
implementations. While it is possible to meet the functional definitions of MPI with fewer routines,
achieving performance requires something relatively close to what MPI defines.

One possibility is to consider a few classes of systems. Pure distributed memory is one important
case. Another is shared memory, or at least some common shared memory. Of course, multi-method
devices make this more difficult. However, to be concrete, this approach is taken here; the details are
described in Section 6.

This document is structured as follows. Section 2 outlines the goals of MPICH. Section 3 discusses
the general layout of MPICH project and recommendations for coding the routines. Section 6
describes the implementation of MPI on a routine-by-routine basis. Section 7 covers some of the
more subtle issues in achieving a highly portable implementation. Section 9 describes the new MPI
test suite. The appendices include a list of all errors codes (Appendix A) and miscellaneous
rationale for the decisions in this document (Appendix B).

2 Goals of MPICH

MPICH is a full implementation of the MPI standard and is intended to support research into
high-quality, high-performance MPI implementations. Issues addressed in MPICH include:

• Scalable to large numbers of (MPI) processes. This requires care in the construction of data
structures and memory footprint.

• Performance

• Thread-safety with performance

• Support for new and unique communication layers

• Modular support for MPI operations, such as error reporting, collective communication, and
process topologies.

MPICH is designed to enable other research groups to experiment with different communication
layers as well as different implementations of groups of MPI operations (e.g., collective
communication). The design also makes it easy to port MPICH (and hence MPI) to other platforms.

3 MPICH Source Tree

This section contains general recommendations and requirements for writing the code. This section
starts with a discussion of the directory structure for the MPICH2 project and introduces the logical
decomposition of components of the MPICH implementation. This decomposition makes it easier to
experiment with alternative implementations of various parts of MPI, and it makes it easier to write
and test subsets. Following the directory structure is a sketch of a typical source file, showing the
various features that each file should have. This is followed with more detailed discussion of some of
the issues that arise in writing the implementation of the MPI routines for MPICH.

3 MPICH SOURCE TREE 2

3.1 Source Directory Structure

This describes the directory structure of the MPICH development tree. This does not include some
of the independent packages such as MPE and the performance tests (perftest), nor does it include
various contributed programs. These already exist in the MPICH CVS repository, and will continue
to reside there.

Both the MPICH distribution and the MPICH2 CVS module will contain additional items,
including the MPE and perftest modules.

Even though they are separate modules (and can be used independently of MPICH), this tree
includes the ROMIO and PMI modules. This is done because an MPI implementation is not
complete without these components.

/ Top level directory for MPICH2, it contains the configure script, top-level Makefile, COPYRIGHT,
README, and related files.

src Source files for the MPI implementation

mpi The implementation of the MPI routines. Routines in this subtree have prefix MPI or
PMPI if they implement part of the MPI standard or prefix MPIR if they are internal to
these routines and not used outside of this directory tree (e.g., not used in util or mpid).

attr Attributes (Section 6.1)
datatype Datatypes (Section 6.3), including the MPI_Pack, MPI_Pack_size,

MPI_Unpack, MPI_Pack_external, MPI_Pack_external_size, and
MPI_Unpack_external functions, as well as the functions that use MPI_Status and
MPI_Datatypes, MPI_Get_count and MPI_Get_elements.

group Groups (Section 6.4)
comm Communicators (Section 6.5) This has both inter and intracomms.
pt2pt Point-to-point (Section 6.6). This includes generalized requests (Section 6.14)

because they use the same completion routines as other point-to-point routines.
coll Collective communication and computation (Section 6.8). Because the MPI collective

routines for inter- and intra-comm collectives are the same, both are in this directory.
topo Process topology (Section 6.10)
rma Remote memory access (Section 6.11)
init Starting and ending MPI (Section 6.12)
spawn Dynamic processes (Section 6.13)
errhan Error handlers (Section 6.15)
timer Timers (Section 6.17). This is separate from the misc directory because timers are

very system dependent; this directory has its own configure.
debugger Routines that provide support for debuggers, including routines to hold

processes within MPI_Init and to provide information on the processes and routines
that implement the debugger interface.

misc Runtime (Section 6.18), profiling (Section 6.19), and Handle transfers
(Section 6.16). Handle transfer includes handle to pointer transfers. MPI Info
(Section 6.2); note that the MPID implementation of Info is provided in util/info.

io ROMIO implementation (Section 6.20), possibly minus the miscellaneous MPI-2
routines such as the info support that are in other directories already. This contains
its own src and include directories because it can be used independently of MPICH.
src Note ROMIO currently has no specific src directory; instead, it has adio,

mpi-io, and mpi2-other.
include
... Other directories for I/O

3 MPICH SOURCE TREE 3

include Main MPI includes (like mpi.h and mpiimpl.h). It also contains either links (or
copies for Windows) to other include files (for particular modules) that are set up as part
of the build process, rather than including a long list of directory paths.

util Various utilities. These have MPIU prefixes.

info Info (Section 6.2). This is the MPIU version of info, provided so that all part of
MPI (including implementations of PMI) can use it.

param Runtime parameter routines (e.g., like PETSc options database)
mem Memory allocation and management. These include the tracing malloc routines

(tr2 in the MPICH implementation) and routines to allocate and deallocate MPI
objects such as communicators and datatypes.

thread Thread portability layer. Supports at least pthreads, openmp, Solaris threads,
and Windows.

mpid Implementation of the ADI3. There are many subdirectories here, one for each device.
Currently, directories include

mm Multimethod
common Common utility routines for device implementations
ch3 The ADI-3 version of the channel interface, with a TCP implementation

Question: we may also want a include directory under the mpid directory into which
include files needed by the device (and only the device) can be placed.

pmi Implementations of the Process Manager Interface. The “simple” implementation, which
interfaces with the MPD and forker process managers, is built by default. The configure
option --with-pmi=dir can be used to select an alternative implementation, such as the
remsh implementation (for those who don’t want free-running demons) or even an
implementation not in the MPICH distribution.

simple Implementation of pmi which uses the simple process management protocol to
interface with the mpd and forker process managers

remsh Implementation of pmi in terms of remote shell (rsh, ssh, or remsh).
winmpd Implementation of pmi for the Windows MPD
bproc Scyld bproc
openpbs OpenPBS process-manager interface

pm Process managers. The default process manager for UNIX is mpd. An alternative process
manager can be selected using the --with-pm=dir configure option. No MPICH code
includes any files here. MPICH code can only include PMI header files.

mpd Note that MPD is available as a seperate CVS module.
forker
winmpd

binding Alternative Language bindings (C is the primary binding). Each of these include
their own configure to handle issues specific to compilers for the respective languages.

cxx C++ binding (includes configure); cxx is used instead of c++ to avoid using special
characters in directory names. This will be based on the version being experimented
in the MPICH-1 mpich/src/cxx directory.
src
include

fortran77 Fortran 77 binding (includes configure).
src
include

fortran90 Fortran 90 binding (includes configure). The Fortran 90 configure may
require that Fortran 77 be configured first.

3 MPICH SOURCE TREE 4

src
include

env Commands like mpiexec and mpicc

doc Documentation

userguide

installguide

mpich2 (This document.)

adi3

notes Miscellaneous notes about the implementation.

mansrc Contains source files for creating manual pages. This directory is not part of the
regular distribution but is delivered on request. The reason for this is to encourage those
that are building on MPICH to let us know about their work.

maint Contains scripts and tools used to manage the project. Some of these may be distributed
with the release of MPICH-2.

confdb autoconf macro files and scripts. This is a separate directory from maint because it is
must be distributed with mpich2 (since it is used by autoconf to build configure, and GNU
wants you to include all sources).

test Testing tools and programs

util Contains utilities for running the tests and routines for generating test cases, such as
collections of communicators and datatypes. Also contains code for reporting results so
that no example output files are required (as they are by the MPICH tests).

mpi Test of MPI. Must work with any MPI implementation.

xxx The directory structure should match that for the src/mpi, at least for the major
sections. A misc directory is acceptable for the more minor sections.

mpid Test of the MPID routines

examples Example programs. Only the most solid examples are included.

3.2 The Build Directories

These directories are created as part of the build process. They may be created at the top level in a
source distribution (e.g., at the same level as src and doc in the source tree) or in a separate
location as part of a vpath build. These directories include

bin Contains tools for building and running MPI programs. This may be empty in a distribution
and only filled in as a consequence of running make.

lib Contains libmpich.a and related (e.g., shared) libraries

include Contains the mpi.h, mpif.h, and related files. Also contains any Fortran 90 module files
(but not the Fortran 90 module libraries).

3.3 The Installation Directories

This section still needs to be written. The intent is to follow, as much as possible, GNU guidelines.
The major issues include support for different flavors of devices and compilation environments. One
possibility is to provide a simple way to select separate libdir, bindir, etc., based on the device
and compilation environment (this could include the selected thread package) while maintaining a
common location for man pages and example programs. For example, a fully GNUish choice might
be

3 MPICH SOURCE TREE 5

./configure --prefix=/usr/local/mpich-2.0.3-pthread-m3t-gcc-pgf90

but we might want

./configure --prefix=/usr/local/mpich-2.0.3 \
--with-flavor=pthread-m3t-gcc-pgf90

which would generate a set of directories under the /usr/local/mpich-2.0.3 prefix, with common
data, such as man pages, in their natural place (e.g., /usr/local/mpich-2.0.3/man).

3.4 Modularity

One of the greatest challenges will be maintaining modularity of the source code. Here are a few
guidelines.

mpich/src/include should be the home only for files that are common to the implementation of
the routines in mpich/src/mpi, and should not be the (CVS) home for any files in a separate
module (defined as anything that does or should have its own configure). Use
AC_OUTPUT_COMMANDS to copy any necessary include files into mpich/src/include from their
natural home location. See mpich/src/mpi/timer/configure.in for an example.

Note that files should be copied relative to the build directory, not the source directory. This is
needed to support vpath (virtual path feature of many make programs) builds.

Global variables should be grouped together by module. For the routines in mpich/src/mpi (but
not counting src/mpi/timer because that is a separate module), you can use the per thread or
per process blocks in src/include/mpiimpl.h. Other modules, such as the ADI
implementations, PMI, or the timer, should use their own structures to hold global variables.

mpich/configure.in should have only the tests necessary for the code in src/mpi, excluding
src/mpi/timer . Any tests for device-dependent features must be made in a configure within
that particular device, using AC_CONFIG_SUBDIRS (the configure in the device directory is
automatically invoked). In particular, no tests for features needed by PMI, the timer, or the
device should be made here. Note that the configure macros defined in confdb automatically
handle communicating the results of tests in one configure to the subsidiary configures (even
when no cache file is specified).

Initialization and rundown. As much as possible, let modules initialize themselves on first use,
rather than forcing MPI_Init_thread to call something to initialize them. Use the finalize
callbacks to register any routine used to clean up during MPI_Finalize.

3.5 Sample Implementation Template

The following is a sample implementation template for an MPI routine. This template should be
used when a file is created that implements an MPI routine. This file should be edited as
appropriate for the routine. To make it easier to identify which MPI routines have not yet been
implemented, files should not be created or built for those routines.

All source files that are part of the MPICH must have the first two items (C style line and
comment block that includes the copyright).

A few comments first:

1. The first line must set the C style. Because of limitations in C mode in emacs1, we settled on
simply setting the indentation level.

2. The comment block includes the copyright statement.
1In emacs, only variables can be set unconditionally. To set a C style requires executing an eval command, which

emacs correctly won’t do without querying the user. This was just too awkward.

3 MPICH SOURCE TREE 6

3. The first C statement must be the include of mpiimpl.h. This ensures that the configuration
switches (in mpichconf.h) are set as well as all include files defining the various MPICH
internals are loaded before any other statements are encountered.

4. The profiling block comes next. The comments must not be modified because they will be used
if it is necessary to update this block of text (a program will look for these lines and update
appropriately).

5. The block after the profiling block (on MPICH_MPI_FROM_PMPI) servies two purposes. One is to
define the MPI version of the routines if weak symbols are not supported. The other is to
include a single definition of an internal routine (included only with the PMPI definition).
Note that if internal routines are declared static, they must be defined outside of the
MPICH_MPI_FROM_PMPI block. The macro PMPI_LOCAL may be used for functions that can be
declared static if weak symbols are used but must be global if weak symbols cannot be used.

6. The two lines that undefine FUNCNAME and then define FUNCNAME as MPI_Foo make it possible
to create new names from the name of the function. This can be helpful and is more general
than the const char FCNAME[] that is defined to include the name of the routine.

7. The structured comment block uses predefined text for the possible error classes. These are
specified as .N name, along with common text on errors .N Errors. This structured comment
block is read by the doctext program; see [4] for details of the format of the structured
comment block.

8. The declaration of FCNAME ensures that all macros and routines can easily access the name of
the routine. While some compilers (such as gcc) provide __FUNCTION__ for this, that is not
portable.

9. The first executable statement starts the timer (and in general, any profiling) for the routine.
This is a macro that will expand into the appropriate code, including no code for the fastest
production version and logging code for SLOG output. Since the intent is to bracket the body
of the function and to allow other more general operations, this is a macro. The expansion of
this macro is controlled by the --enable-timing argument to configure.

To simplify instrumentation of the code, the macro MPID_MPI_STATE_DECLS is used to provide
for any local variables (such as a variable to hold the elapsed time within the routine).

10. Routines of the form MPID_Xxx_get_ptr return the pointer for an opaque handle. These do no
(or only limited) error checking (see MPID_Comm_valid_ptr below).

11. The actual error checks are guarded by both a compile-time test and a runtime test. Note that
only at the end of the list is an error return issued (this allows us to consider adding code to
catch all errors). Note that the macro MPID_BEGIN_ERROR_CHECKS is followed by a semicolon;
this is to ensure that Emacs auto-indents the code properly. Also note that the error checking
is enclosed in a block, which both helps set off the code and allows for the use of variables local
to the block. Similarly, a block is explicitly shown for the MPID_BEGIN_ERROR_CHECKS to
MPID_END_ERROR_CHECKS to visually set off this code from the surrounding code. The
expansion of this macro is controlled by the --enable-error-checking option of configure.

12. Pointers to opaque objects are validated with macros of the form MPID_Xxx_valid_ptr. This
sets the second argument with an error message if the pointer is not valid, and also resets the
pointer to null.

13. There are some predefined error tests with the form MPIR_ERRTEST_xxx. This code shows the
use of MPIR_ERRTEST_INITIALIZED. These predefined tests are defined in the file
src/include/mpiimpl.h.

14. Error codes are generated with MPIR_Err_create_code. These use predefined name strings
(see error reporting in the ADI manual and Appendix A).

3 MPICH SOURCE TREE 7

15. If an error is detected, the proper error handler is invoked with MPID_Err_return_xxx, where
xxx is either comm, win, or file (the MPI objects with attached error handlers). If the object
pointer is NULL, the appropriate error handler will be used (usually the handler on
MPI_COMM_WORLD or MPI_FILE_NULL).

16. The body of the code is placed between two comments that include “body of routine”. This
makes it easy to automatically extract the code that implements the function.

17. The example shows the use of MPID routines to lock the communicator against other threads.
As with the error checking code above, a block is used to visually indicate the extent of the
code that is protected by the lock. Note that locks should be used sparingly; any lock that is
held is a potential problem for fault-tolerant code. That is, if we support the loss of an MPI
process, then if a process dies while holding a lock, it is difficult to recover. Where possible,
use atomic operations (such as atomic increment, provided by MPIU_Object_add_ref etc.)
instead of lock/unlock.

18. The last executable statement (before any return) must end the timer (and any profiling) with
MPID_MPI_FUNC_EXIT. There are several variations on this described in Section 3.15.

19. The return always gives MPI_SUCCESS explicitly. Any return that might return an error code
should use MPIR_Err_return_comm (or MPIR_Err_return_win or MPIR_Err_return_file)
instead.

/* -*- Mode: C; c-basic-offset:4 ; -*- */
/* Id
*
* (C) 2001 by Argonne National Laboratory.
* See COPYRIGHT in top-level directory.
*/

#include "mpiimpl.h"

/* -- Begin Profiling Symbol Block for routine MPI_Foo */
#if defined(HAVE_PRAGMA_WEAK)
#pragma weak MPI_Foo = PMPI_Foo
#elif defined(HAVE_PRAGMA_HP_SEC_DEF)
#pragma _HP_SECONDARY_DEF PMPI_Foo MPI_Foo
#elif defined(HAVE_PRAGMA_CRI_DUP)
#pragma _CRI duplicate MPI_Foo as PMPI_Foo
#endif
/* -- End Profiling Symbol Block */

/* Define MPICH_MPI_FROM_PMPI if weak symbols are not supported to build
the MPI routines */

#ifndef MPICH_MPI_FROM_PMPI
#define MPI_Foo PMPI_Foo
/* Any internal routines can go here */
int MPIR_Foo_util(int a, MPID_Comm *comm)
{
...
}
#endif

#undef FUNCNAME
#define FUNCNAME MPI_Foo

3 MPICH SOURCE TREE 8

/*@
MPI_Foo - short description

Input Arguments:
+ first -
. middle -
- last -

Output Arguments:

Notes:

.N Errors

.N MPI_SUCCESS

.N ... others
@*/
int MPI_Foo(MPI_Comm comm, int a)
{

static const char FCNAME[] = "MPI_Foo";
int mpi_errno = MPI_SUCCESS;
MPID_MPI_STATE_DECLS;

MPID_MPI_FUNC_ENTER(MPID_STATE_MPI_FOO);
/* Get handles to MPI objects. */
MPID_Comm_get_ptr(comm, comm_ptr);

ifdef HAVE_ERROR_CHECKING
{

MPID_BEGIN_ERROR_CHECKS;
{

MPIR_ERRTEST_INITIALIZE(mpi_errno);
if (a < 0) {

mpi_errno = MPIR_Err_create_code(MPI_ERR_ARG,
"**negarg", "**negarg %s %d", "a", a);

}
/* Validate comm_ptr */
MPID_Comm_valid_ptr(comm_ptr, mpi_errno);
if (mpi_errno) {

MPID_MPI_FUNC_EXIT(MPID_STATE_MPI_FOO);
return MPIR_Err_return_comm(comm_ptr, FCNAME, mpi_errno);

}
}
MPID_END_ERROR_CHECKS;

}
endif /* HAVE_ERROR_CHECKING */

/* ... body of routine ... */
/* Some routines must ensure only one thread modifies a communicator

at a time, e.g., MPI_Comm_set_attr. */
MPID_Comm_thread_lock(comm_ptr);
{

... actual code ...
}
MPID_Comm_thread_unlock(comm_ptr);
/* ... end of body of routine ... */

3 MPICH SOURCE TREE 9

MPID_MPI_FUNC_EXIT(MPID_STATE_MPI_FOO);
return MPI_SUCCESS;

}

Header (“.h”) files follow similar rules, including the copyright block. Header files that will be
used only with C++ compilers should also include the comment

/* style: c++ header */

after the copyright block. This allows certain common C++ constructions, such as // for comments,
in the header file. Header files that may be used by both C and C++ compilers must not use this
comment.

The rest of this section discusses some of the coding practices and suggestions in more detail.

3.6 Sample Makefile Template

In order to ensure that the Makefiles follow a common set of targets and standards, we build the
Makefile.in files from a simpler source file, Makefile.sm. The extension “sm” is for “simple
make.” These files follow some of the same conventions used by automake, but are simpler. See
Section 7.4 for more discussion of Makefile issues. The program (actually a Perl script) simplemake
reads Makefile.sm files and writes Makefile.in files. These in turn are read by configure, which
writes the Makefile that make will use. While not as convenient as a single integrated Makefile,
this approach has the advantage that we can maintain the consistency of the Makefiles more easily
and, by modifying the simplemake script, adapt to various needs and changes without needed to
manually update each Makefile.in. A brief discussion of simplemake and the commands that may
be used in Makefile.sm may be found in maint/simplemake.txt.

Here is a typical Makefile.sm file for a leaf directory:

lib${MPILIBNAME}_a_SOURCES = foo.c bar.c
profilelib_${MPILIBNAME} = p${MPILIBNAME}
INCLUDES = -I../../include -I${top_srcdir}/src/include

This simply says to add the files foo.o and bar.o, built from foo.c and bar.c, to the library whose
name is given by the make variable MPILIBNAME. It specifies an include path with the INCLUDES line.
In addition, the line starting profilelib tells simplemake to add the same files to a separate profile
library if weak symbols are not supported.

Here is a typical Makefile.sm file for an interior node in the directory tree:

lib${MPILIBNAME}_a_SOURCES = wrapack.c
profilelib_${MPILIBNAME} = p${MPILIBNAME}
INCLUDES = -I../../include -I${top_srcdir}/src/include
SUBDIRS = shm tcp common datatype .

This specifies four sudirectories and further that the current directory should be processed after the
subdirectories (because of the position of .). It also adds wrapack.o to the mpich library.

If a particular Makefile needs a special-purpose target, that target can be added to the
Makefile.sm, because lines in the Makefile.sm that are not meaningful to simplemake (the
program that processes these files) are copied directly into the output Makefile.in.

Project-specific details such as the locations of include files and libraries are passed to simplemake
through its command line; this is done in the maint/updatefiles script.

3.7 Include Files

The include file mpi.h should not require any -Dxxx definitions by the compiler. This will require
generating the mpi.h from another file in order to handle, for example, the definitions of types such
as MPI_Aint that depend on the characteristices of the particular system.

3 MPICH SOURCE TREE 10

It should not include any other files, with the (possible) exception of mpich++.h for C++ support
and mpio.h for ROMIO.

The mpif.h (or mpif.h.in) used with Fortran should be created from mpi.h (or possibly a third
file in a simple, easy-to-parse format) so that the various integer values (e.g., error classes,
datatypes, etc.) are guaranteed consistent. This can be done prior to distribution, similar to the way
configure is generated from configure.in. The point is to automate this and ensure that, at least
in the development Makefiles, the mpif.h.in file should be created from the mpi.h automatically, at
least with respect to any values.

For module-dependent includes, comments in mpiimpl.h should explain the search rules expected
(e.g., link or copy in the same directory; file in search path). Module-dependent includes should be
used for any complex subsystem, particularly one that includes its own configure.

All preprocessor definitions should be placed in a file, such as the header files automatically
generated by autoheader and configure. Except where unavoidable, preprocessor definitions
should not be passed on the complier command line (e.g., avoid -DFOO_LONG_NAME where possible).
One exception is in the generation of MPI and PMPI symbols where weak symbols are not
supported, as described in Section 3.8.

To avoid problems with setting include paths for include files from various directories, such as
problems with conflicting names from separate device implementations, include files that are not
common to all devices and choices should live in their natural directory and be copied into either
src/include or src/mpid/include. Of course, the copy should be made relative to the build
directory to enable vpath builds.

3.8 MPI and PMPI Routines

Each routine should implement the PMPI version of the routine. Where possible, a weak symbol
pragma may be used to define the MPI version of the routine. If weak symbol support is not
available, the Makefiles will support recompiling each file with the definition
MPICH_MPI_FROM_PMPI made. This value can also be used to protect code that is used by the PMPI
version of the routine. This is shown in the sample implementation template (Section 3.5).

To allow a single library to contain all of the files, it is necessary to nameshift the object files for
either the PMPI or MPI routines. The simplemake program will automatically generate the
necessary instructions if the command profilelib_xxx = yyy is seen, where xxx is the name of the
library for which profiling targets are needed, and yyy is the name of the library to contain the
profiled versions. In MPICH, the usual line is

profilelib_${MPILIBNAME} = p${MPILIBNAME}

These use a different suffix (pf)2 from that used for the normal object files so that there is no
confusion over whether foo.o represents the regular file or the file built with the separate profiling
switch -DMPICH_MPI_FROM_PMPI3.

If it is necessary to create the MPI versions separately, the object files should be renamed, allowing
them to be placed into the same library. To handle the event that the library cannot hold over 500
files (250 for PMPI MPI 1 and 2, plus a version for the MPI routines), the name of the library
containing the profiling versions should be separate. That is, there are separate configure names
MPILIBNAME and PMPILIBNAME that are usually the same but that can be set to different names.
These names may be set using environment variables MPILIBNAME and PMPILIBNAME, just like the C
compiler is set in configure.

3.9 Layered Implementation of MPI Routines

A number of MPI routines are naturally implemented in terms of other MPI routines. For example,
MPI_Comm_dup is likely to use MPI_Allreduce. To make the nested use of routines clear, the name

2The suffix pf is used instead of po because po is used by the GNU gettext facility for internationalization.
3Without this, rerunning make might decide that the object files already exist. It would be better to have make see

these as different filenames, but make prefers to work with suffix-based rules. The solution here is a hack, but it is a
hack that prevents accidentally using the wrong file.

3 MPICH SOURCE TREE 11

NMPI_xxx should be used instead of MPI_xxx or PMPI_xxx. This allows a single definition to
determine whether the nested MPI calls use the MPI, PMPI, or even a different version (e.g., a special
instrumented version). The definitions of the NMPI_xxx routines is in src/include/nmpi.h.
Eventually, a configure option will allow the specification of the expansion of the NMPI_xxx routines.
In addition, all nested calls to MPI routines must ensure that the errors-return error handler is
called. See Section 3.13.4 for how this is done.

3.10 Internal Routine Names

All global symbols, such as internal routines, must have a prefix that identifies it as part of the
MPICH implementation. There are several prefixes:

MPIR Routines used only within the MPI implementation (outside of the ADI).

MPID Routines either defined in the ADI or used within the ADI

MPIU Routines that are defined in the util directory and may be used by either the ADI or the
implementation of the MPI routines.

Many routines will have the MPID prefix.

3.11 File Names

File names should be chosen so that they are unique throughout the source tree. That is, no file
name should appear in more than one directory. This is necessary since object libraries usually store
files by name only, ignoring the directory. For include files, using unique names aids in identifying
exactly which include file was used.

Even distinct modules (such as different implementations of a process manager) should use
different names to allow the runtime-choice of module from within a single executable (without
dynamically loaded shared libraries).

3.12 MPI Opaque Objects

Most objects in MPI (with the exception of MPI_Status) are opaque to the MPI programmer. In
the MPICH2 implementation, opaque objects are represented by integers. This simplifies the
implementation of the functions for transfering handles between C/C++ and Fortran.

In order to simplify some processing as well as to avoid some loads and stores on commonly used,
predefined objects, the handles encode some information about the object. For example, the type of
the object is encoded in the handle; this allows for runtime checks that the correct objects are
passed to routines (this is not possible with implementations that use small-valued integers for all
handles). In addition, some common objects, such as the predefined MPI datatypes, can have the
most important information about them (e.g., the size of the datatype) encoded directly in the
handle. This avoids extra load operations at the cost of a few mask and shifts.

Similarly, for communicators that are dups of MPI_COMM_WORLD, the handle could contain the
context_id, again avoiding the need to look up the communicator, since in addition the mapping
from rank to local pid for communicators similar to MPI_COMM_WORLD is the identity mapping. Thus
a single bit test on the opaque handle could eliminate a number of tests and memory references for
an important common case.

3.12.1 Opaque Handle Format

All handles (with the possible exception of MPI_Requests) are ints. Some of the considerations in
this are:

• fast resolution for some number of user-created constructs

• particularly fast resolution for built-ins

3 MPICH SOURCE TREE 12

• minimal added limitations on number of user-defined constructs

• no more than four byte ints to match the needs of most Fortran compilers4 and the
MPI_xxx_c2f functions.

• ability to detect the use of the wrong object handle, such as an MPI_Comm handle where an
MPI_Datatype handle is expected. When all handles are typedefed to int, this cannot be
done at compile-time.

Using the same system for storing all these constructs should be more space-efficient.
The MPI opaque objects include MPI_Comm, MPI_Group, MPI_Datatype, MPI_Errhandler,

MPI_File, MPI_Info, MPI_Op, and MPI_Win. Also included are MPI keyvals, whose handles are
defined to be of type int by the MPI standard but which are just another opaque object. This is
nine types of opaque objects overall. We currently do not include MPI_Request because there is a
premium on efficiency for creating and deleting requests; these other objects do not require
extremely fast creation.

There are 4 kinds of handles. These are indicated by two bits in the 31,30 (from 0) location.

HANDLE_KIND_INVALID (00) Not a valid handle.

HANDLE_KIND_BUILTIN (01) A handle to a predefined, builtin object.

HANDLE_KIND_DIRECT (10) A handle allocated from a preallocated array

HANDLE_KIND_INDIRECT (11) A handle allocated from dynamically allocated storage.

The macro HANDLE_GET_KIND(a) returns the handle kind, HANDLE_SET_KIND(a,kind) sets the
handle kind, and HANDLE_KIND_MASK masks out all but the two bits corresponding to the handle
kind.

Using 00 as invalid, especially in the two high bits, will help detect bad parameters passed to us
(although negative ints won’t be caught).
HANDLE_KIND_BUILTIN types include the predefined datatypes such as MPI_BYTE and MPI_DOUBLE

as well as the predefined communicators MPI_COMM_WORLD and MPI_COMM_SELF.
The next four highest bits will encode the MPI type stored:

MPI_Comm (0001) MPID_COMM

MPI_Group (0001) MPID_GROUP

MPI_Datatype (0011) MPID_DATATYPE

MPI_File (0100) MPID_FILE

MPI_Errhandler (0101) MPID_ERRHANDLER

MPI_Op (0110) MPID_OP

MPI_Info (0111) MPID_INFO

MPI_Win (1000) MPID_WIN

keyval (1001) MPID_KEYVAL

attribute (1010) MPID_ATTR

4Fortran INTEGER and REAL datatypes must be the same length, and that length must be half the size of a
DOUBLE PRECISION type. Because most systems use 64bit IEEE for DOUBLE PRECISION, this forces a standard
conforming Fortran compiler to use 4 byte INTEGER types even on so-called 64-bit systems.

3 MPICH SOURCE TREE 13

MPI keyvals are defined as type integer, but each keyval is associated with a structure. MPI
Attributes are never directly visible to users, but they must be managed internally by the
implementation. The macro HANDLE_MPI_TYPE(id) returns this value as an integer in the range
0–15. The names belong to the enum type MPID_Object_kind.

Note that by using HANDLE_INVALID along with the MPI handle kinds defined above, we can
create values for MPI_xxx_NULL that are distinct from MPI_yyy_NULL. E.g.,

MPI_COMM_NULL 0x04000000

MPI_GROUP_NULL 0x08000000

MPI_DATATYPE_NULL 0x0c000000

MPI_FILE_NULL 0x10000000

MPI_ERRHANDLER_NULL 0x14000000

MPI_OP_NULL 0x18000000

MPI_INFO_NULL 0x1c000000

MPI_WIN_NULL 0x20000000

MPI_KEYVAL_INVALID 0x24000000

For a 32 bit integer, there are 27 bits remaining. The use of these bits depends on the kind of
handle. For handles to builtin objects, we have the following:

Datatypes. There are more than 32 but less than 64 predefined datatypes, so 6 bits are adequate
to encode all of the predefined datatypes. Note that C2000 adds another 31 types to the C
language, so if MPI 2.x defines corresponding types, we will need 7 bits eventually. That leaves
us at least 21 bits to specify the size. We’ll be specifying size in bytes, which will be adequate
(if long double is 16 bytes, then the long complex and long-double-int types may be 32 bytes,
but on these systems, sizeof(int) will be at least 32 bits, leaving us enough room for the size
of these longer types).

Groups and Communicators. For predefined Groups and Communicators we simply use the
remaining bits to specify the particular group/communicator (e.g. MPI_COMM_WORLD) and
either the rank of the process or the size (or both!). No decision has been made on this yet.

Errhandler. Use the remaining bits to indicate errors return or errors are fatal, neither of which
invokes a user-specified routine (and hence does not need to handle the language-specific error
handler invocation).

Op. Use the remaining bits to indicate the particular builtin operation.

Info. There are no builtin MPI_Info objects.

Win. There are no builtin MPI_Win objects.

File. There are no builtin MPI_File objects.

Keyval. There are a number of predefined keyvals. The low bits indicate which keyval, and bits
22–25 indicate which object the keyval is for (keyvals are defined for communicators,
datatypes, and windows, and it is erroneous to use a keyval defined for one object in an object
of a different type).

3 MPICH SOURCE TREE 14

standin for a figure showing preallocated array of objects and
avail pointer.

Figure 1: Data structure for converting a direct handle into a particular statically allocated object.

MPID_xxx_indirect

NULL

NULL

NULL

MPID_xxx_indirect_size

Objects with next pointers

Pointers to
allocated blocks,

filled in as needed

Pointer to dynamically
allocated block, starts as NULL

Count of number of blocks

Figure 2: Data structures for converting an indirect handle into a particular dynamically allocated
object.

The last two handle types point at other storage where the object is actually stored. For the
directly accessed values (HANDLE_KIND_DIRECT) the remaining bits are used as indices into an array
of preallocated objects. This table should be a memory page or two in size, minus estimated malloc
overhead (if we dynamically allocate). The macro HANDLE_INDEX(id) returns this index value.
Figure 1 shows the data structures used to implement this handle kind.

For indirectly accessed values (HANDLE_KIND_INDIRECT) the remaining bits specify an allocated
block for storing pointers and an index into that block. We’ll split the bits based on the number of
pointers we can store in a block (which will need to be statically calculable; the _SC_PAGE_SIZE value
in the sysconf call is a starting point, or we can do a configure test and define MPID_BLOCK_SIZE).
The macros HANDLE_BLOCK(id) and HANDLE_BLOCK_INDEX(id) return these values. Figure 2
illustrates how the indirect handles are managed. This approach allows a modest number of objects
to be preallocated and additional elements to be allocated dynamically as required. More details on
this is described below under Section 3.12.4, Memory Management for Handles.

3.12.2 Converting Handles To Pointers

For each handle, there is a macro MPID_<type>_get_ptr that converts a handle into a pointer to the
corresponding structure. For example, MPID_Comm_get_ptr converts an MPI_Comm handle to a
pointer to an MPID_Comm structure. The macro MPID_<type>_valid_ptr confirms that the pointer
points to a valid object. A null pointer is returned by either macro if the handle is (known to be)
invalid.

Note that most of the opaque objects have reference count semantics. Be sure to increment and
decrement the reference count as necessary, using the routines for atomically modifying the reference
count (i.e., MPIU_Object_add_ref or MPIU_Object_release_ref). However, because these
operations can be expensive in multithreaded systems, try to avoid needing to update the reference
count.

Also note that most objects have features that require a full representation, even for the

3 MPICH SOURCE TREE 15

predefined objects. For example, datatypes can have names (see MPI_Type_get_name), even the
predefined types.

3.12.3 Required Structure Layout for Objects

Each object is described by a struct that contains object-specific data. However, to allow for a
common set of memory management routines for objects, as well a common set of thread-safe
reference count update routines, the first two members of all objects are defined by

typedef struct {
const int id;
volatile int ref_count;

} MPIU_Handle_head;

(Objects that do not have reference count semantics do not have the ref_count field.) The id is the
handle value for the object and the ref_count is the reference count. It is fixed once the object is
allocated, and so is declared const.

Objects that are unused and available for allocation have a slightly different header:

typedef struct {
const int id;
void *next; /* Free handles use this field to point to the next

free object */
} MPIU_Handle_common;

All objects are large enough to contain this structure.

3.12.4 Memory Management for Handles

Because handles are not pointers, we need an easy way to find the memory block that contains the
data to which the handle refers. This is done though a combination of preallocated and dynamically
allocated arrays; the handle contains an index into the appropriate array.

Each object has a separate set of arrays. One is preallocated and is used by handles with type
HANDLE_DIRECT. The dynamically allocated array (actually an array of pointers to arrays) is used for
handles with type HANDLE_INDIRECT. Elements are allocated from these arrays by using a simple
linked list, usually managed by a separate utility routine. See the file src/util/mem/handlemem.c
for routines to manage the allocation and deallocation of objects and src/util/info/infoutil.c
for an example that uses these routines for MPI_Info objects. Because these operations use a global
linked list, a special thread lock, allocation_lock, is provided in the MPIR_Process data structure.
The macros MPID_Allocation_lock and MPID_Allocation_unlock are used to protect all
allocation lists in a multithreaded environment.

3.12.5 Optimizing Allocation of Handles

In a multithreaded environment, it is necessary to ensure that there are no race conditions in
accessing shared data structures. In particular, since each object is accessed through an avail
pointer, the code must ensure that two threads do not attempt to update the avail pointer at the
same time. The simplest way to do this is to use the general allocation_lock around each access
to any of these lists. However, this can encur significant overhead, particularly with heavy-weight
thread lock libraries. An alternative is to use atomic memory update instructions provided by most
processor architectures. For example, for the Intel x86, the compare and exchange operation may be
used. In pseudocode,

while (ptr = avail) {
char flag;
nxt = ptr->next;
flag = 0;

3 MPICH SOURCE TREE 16

asm(%eax = ptr; lock ; cmpxchg avail,nxt ; sete flag);
if (flag) break;

}

The asm code is not correct and merely indicates the instructions needed; the sete instruction is
used to set the flag if the compare and exchange (cmpxchg) succeeded. The pseudoinstruction lock
is actually an IA32 opcode prefix that causes the cmpxchg instruction to happen atomically (this is
the default on some but not all Pentiums). Finally, if avail is null this code falls through; that case
requires special handling and is discussed below.

Note that this code does not require any thread locks. Similar code may be used to free an object:

while (ptr = avail) {
char flag;
obj->next = ptr;
flag = 0;
asm(%eax = ptr; lock ; cmpxchg avail,obj ; sete flag);
if (flag) break;

}

For a generic RISC processor that supports a load-link and store-conditional instruction, the
pseudocode is

asm(L1: loadlink avail, r1 ;
bz r1, L2 ; # break if avail is 0
load (r1)+4, r2 ; # next is offset 4 bytes
storecond r2, avail ;
bc L1; # if failed, retry
rtn ; # return from routine. new handle is in r1
L2: ; # exit loop if avail is null

)

As above, this asm code is not correct but simply sketches the operations that are necessary. Similar
code is used to free an object.

In both of these cases, a lock is still needed when allocating new blocks of storage; this code is
invoked when a thread detects that avail is NULL. A sketch of the appropriate code, using the
allocation_lock in MPIR_Process is,

top:
<appropriate code from above>

/* avail was null, so we try to allocate */
MPID_Allocation_lock();

if (avail) {
/* Another thread beat us to it */
MPID_Allocation_unlock();
goto top;

}
/* Call routine to get new storage */
ptr = MPIU_Handle_indirect_init(...);
if (ptr) {

/* As soon as avail is set, some other thread may make use of it */
avail = ptr->next;

}
MPID_Allocation_unlock();
return ptr;

For performance-sensitive handles such as MPID_Requests, it is possible to inline the basic code
(atomically implementing the ptr=avail; avail=avail->next) and call a routine in the case that

3 MPICH SOURCE TREE 17

avail was null. Note also the need for write barriers on some platforms to force write ordering;
these operations should be included as needed (unfortunately, they must be issued through an asm
statement).

3.13 Error reporting

MPI routines should check as many error conditions as possible before calling any ADI routines.
The ADI routines assume that most arguments are valid; exceptions will be noted in the
documentation of the ADI3 routines. To allow error handling to be enabled or disabled both at
compile time and at runtime, the tests should be placed within the following block:

#ifdef HAVE_ERROR_CHECKING
{
MPID_BEGIN_ERROR_CHECKS;

{
...
}

MPID_END_ERROR_CHECKS
}

#endif /* HAVE_ERROR_CHECKING */

The macros MPID_BEGIN_ERROR_CHECKS and MPID_END_ERROR_CHECKS can expand, depending on
configuration settings, into either null (i.e., no runtime control) or

#define MPID_BEGIN_ERROR_CHECKS if (MPIR_Process.do_error_checks) {
#define MPID_END_ERROR_CHECKS }

(See Section 3.14 for MPIR_Process.)
There is a configure option, --disable-error-checking, that prevents HAVE_ERROR_CHECKING

from being defined. The --enable-error-checking takes the arguments

all For all options, that is, runtime control over error checking

runtime A synonym for all

always Error checking is always on (no runtime control)

no Disables all error checking

MPIR_Init_thread calls MPIR_Err_init. This routine is responsible for setting the value of
MPIR_Process.do_error_checks when there is runtime control over error checking.

3.13.1 Errors to test for

Most values should be tested to ensure that they are in-range. For example, tags must be
nonnegative for sending (and nonnegative or MPI_ANY_TAG for receiving).

Some of the error conditions to test for include

• Is MPI Initialized?5

• Are parameter values in range, including tag values, ranks, counts?

• Are input and output parameters improperly aliased (e.g., inbuf and outbuf of
MPI_Allreduce)?

• Are MPI objects valid (see opaque object discussion)?

5This is important not just for novice users; for example, consider the case of libraries that may be called erroneously
before MPI is initialized.

3 MPICH SOURCE TREE 18

• Are output parameter pointers valid? The macro MPID_Pointer_is_invalid(void
*p,alignment) returns one for invalid pointers. Note that this may be as simple as ((p) ==
0) or (long(p)<=0) or (!(p) || (unsigned long)(p) > STACKLIMIT), or even call a
routine that attempts to access the pointer with a SIGSEGV and SIGBUS handler set. An
enhancement of this is to return zero on success and nonzero on failure, with the particular
non-zero value indicating the reason for failure, including null, SEGV (out-of-range), unaligned
(which is why there is an alignment requirement in the call). Alignment values are macros of
the form ALIGNED_PTR_xxx, where xxx is INT, LONG, etc. configure can determine the
alignment requirements or these can be specified through a configuration file. The amount of
checking may be controlled at configure time through the configure option
--enable-g=strongpointercheck.

Note that message buffer pointers depend on the datatype; if the datatype is a struct type, then a
null pointer or otherwise invalid value for the message buffer may in fact be valid when combined
with the datatype. The test MPID_Check_user_buffer(buf, count, datatype) checks that the
specified user buffer represents a valid address. This can be as simple as testing that buf +
datatype->true_lb is not null. If we use this routine for testing, then the test on the message
buffer can be made within the MPI routine rather than in the ADI routine.

3.13.2 Choosing Error Handlers and Classes

The MPI standard specifies which error handler is invoked when an error is detected. The following
describes the process for selecting the appropriate error handler.

1. If still in the initialization step (e.g., within MPI_Init_thread), errors invoke a special
pre-initialization error handler named MPIR_Err_preinit. This handler may either abort or
return; by default, it will abort. A return may be prefered for some fault-tolerant applications.

2. Check if executing inside a layered routine (i.e., an MPI routine called within the
implementation of another MPI routine). If so, return the error code; do not invoke the error
handler. See Section 3.13.4; the MPIR_Err_return_xxx routine makes this test.

3. If the routine has a valid MPI_Comm, MPI_File, or MPI_Win, use the error handler from that
object. Note that there is a common errorhandler member (errhandler) in the related
structures; the errfn of this structure is the actual function. Note that ROMIO currently uses
an MPI_Errhandler err_handler member in ADIOI_FileD; this is not the same as the
errhandler member of the MPID_Comm and MPID_Win structures. Question: how will we go
about updating ROMIO?

4. If the error relates to a request, and the request refers to a valid communicator, use that
communicator’s error handler (e.g., MPI_Wait). Note that this implies that we must be able to
determine the communicator from the request. The easiest way to do this is to include a
pointer to the communicator in the request. Including the error handler instead would not be
correct because the error handler to use is chosen at the time that the error is discovered
(which is rather vague but not totally ambiguous).

5. Otherwise, for everything except MPI-IO, use the error handler attached to MPI_COMM_WORLD
(see Section 7.2 in the MPI-1 Standard: “MPI calls that are not related to any communicator
are considered to be attached to the communicator MPI_COMM_WORLD.”). For the MPI routines
that can return MPI_ERR_IN_STATUS, the appropriate error handlers are invoked and the error
codes are saved in the MPI_ERROR element of the status. Ensure that the manual pages on
error handlers include this information. Routines that don’t have a natural communicator, file,
or window can include the predefined name block errhandler in the structured comment
documentation block with

.N errhandler

3 MPICH SOURCE TREE 19

(The text for the named documentation blocks is in doc/mansrc.)

6. For MPI-IO, the default error handler is attached to MPI_FILE_NULL (see Section 9.7 in the
MPI-2 standard: “The default file error handler can be changed by specifying MPI_FILE_NULL
as the fh argument to MPI_FILE_SET_ERRHANDLER”). Note that this requires
MPI_FILE_SET_ERRHANDLER and MPI_FILE_GET_ERRHANDLER to handle this special case for
MPI_FILE_NULL.

When the object holding the correct error handler has been determined, it should be invoked with
the MPIR_Err_return_xxx handler (where xxx is comm, win, or file):

return MPIR_Err_return_comm(comm_ptr, FCNAME, error_code);

This allows nested MPI calls to invoke the correct error handler (see Section 3.13.4).

3.13.3 Error handling and Fault Tolerance

In order to support fault tolerance, errors should be handled as gracefully as possible. If it is
possible to remain in a consistent state, the process should not abort (unless, of course, the error
handler requires it, as the default MPI_ERRORS_FATAL does). If it is not possible to recover from an
error, then the process should call MPID_Abort but specify MPI_COMM_SELF as the communicator.

3.13.4 Error Handling for Layered Routines

In some cases, MPI routines are implemented in terms of other MPI (or PMPI) routines. In these
cases, it is important for any error handler (other than MPI_ERRORS_RETURN) to be invoked only by
the “top-level” routine. This is managed by maintaining a per-thread nesting level. Before an error
handler is invoked, the nesting level is tested. If the level is different from zero, the error code is
returned. The interface to update and get the nesting values is

void MPIR_Nest_incr(void)
void MPIR_Nest_decr(void)
int MPIR_Nest_value(void)

See Section 3.14 for details on the thread-specific storage.

3.14 Per Thread and Per Process Data

There are various data values that are common to the MPI process and values that are specific to a
particular thread in the MPI process. An example of per-thread data is the nesting level for a
layered MPI routine. An example of per-process data is the thread-id of the main thread (the thread
that called MPI_Init or MPI_Init_thread). The structures and routines in this section provide a
mechanism for accessing per thread and per process data for the routines that implement MPI
functions (e.g., MPI and MPIR). Devices and methods may need to provide their own per process
and per thread data structures.

To simplify the management of per-thread data, there is a common data structure,
MPICH_PerThread_t, that contains per-thread data. For example,

typedef struct {
MPID_Time_t stamp;
int count;

} MPID_Stateinfo_t;
typedef struct {

int nest_count; /* For layered MPI implementation */
int op_errno; /* For errors in predefined MPI_Ops */
MPID_Stateinfo_t timestamps[MPICH_MAX_STATES]; /* per thread state info */

} MPICH_PerThread_t;

3 MPICH SOURCE TREE 20

(In the actual mpiimpl.h header file, the timestamps array is included only if timing is enabled by
setting the HAVE_TIMING preprocessor variable.) Similarly, there is a per-process type

typedef enum { MPICH_PRE_INIT=0, MPICH_WITHIN_MPI=1,
MPICH_POST_FINALIZED=2 } MPIR_MPI_State_t;

typedef struct {
int appnum; /* Application number provided by mpiexec (MPI-2) */
int host; /* host */
int io; /* standard io allowed */
int lastusedcode; /* last used error code (MPI-2) */
int tag_ub; /* Maximum message tag */
int universe; /* Universe size from mpiexec (MPI-2) */
int wtime_is_global; /* Wtime is global over processes in COMM_WORLD */

} PreDefined_attrs;
typedef struct {

MPIR_MPI_State_t initialized; /* Is MPI initalized? */
int thread_provided; /* Provided level of thread support */
MPID_Thread_key_t thread_key; /* Id for perthread data */
MPID_Thread_id_t master_thread; /* Thread that started MPI */
MPID_Thread_lock_t allocation_lock; /* Used to lock around

list-allocations */
MPID_Thread_lock_t common_lock; /* General purpose common lock */
int do_error_checks; /* runtime error check control */
MPID_Comm *comm_world; /* Easy access to comm_world for

error handler */
MPID_Comm *comm_self; /* Easy access to comm_self */
MPID_Comm *comm_parent; /* Easy access to the parent

of comm_world, if any (null
if none) */

PreDefined_attrs attrs; /* Predefined attribute values */
/* Communicator context ids. Special data is needed for thread-safety */
int context_id_mask[32];

} MPICH_PerProcess_t;
extern MPICH_PerProcess_t MPIR_Process;

Note that there is an instance of this per-process type that all routines may refer to directly. The
per-thread type must be accessed though special macros. Access to the fields in MPICH_PerThread_t
is made through a macro that allows both the compile-time and run-time single-threaded case to
directly access the data without using, for example, pthread_getspecific. To access this data, the
routine MPID_GetPerThread is used. This might have a definition like

#ifdef MPICH_SINGLE_THREADED
extern MPICH_PerThread_t MPIR_Thread;
#define MPID_GetPerThread(p) p = &MPIR_Thread
#else /* Assumes pthreads for simplicity */
#define MPID_GetPerThread(p) {\

p = pthread_getspecific(MPIR_Process.thread_key); \
if (!(p)) { p = MPIU_Calloc(1, sizeof(MPICH_PerThread_t));\

pthread_setspecific(MPIR_Process.thread_key, p);}}
#endif

Question: As defined, this macro cannot be implemented as a function, since the argument is
returned and would need to be a pointer if this was a function. Should we change it so that either a
macro or a function can be used? Note that we can still use a function by simply taking the address
of the variable before calling a function, e.g.,

#define MPID_GetPerThread(p) MPID_GetPerThread_fcn(&p)

3 MPICH SOURCE TREE 21

Note that a device is likely to have its own per process and per thread data blocks. Rather than
try to merge them into a single block, we have choosen to define the data needed in the MPI and
MPIR routines.

3.15 Integral Profiling

All programs should contain basic timing and usage instrumentation. This section describes the
MPICH approach. There are two basic types of profiling: state recording, e.g., SLOG [?], and
statistics gathering. States are assumed to be nested (within a thread) while statistics can be
collected anywhere. In fact, the state recording calls also collect statistics, allowing a build to choose
between full state logging, simple statistics collection, and no data collection at all. Separate
statistics-collection calls are provided to augment, not replace, the state recording calls. The files for
these are in util/instrm (for “instrumentation”).

3.15.1 Basic Timer Routines.

These provide a basic mechanism for accessing a fast timer. The value of the timer is an opaque
timestamp; for example, it may be a simple cycle counter6. These are described in detail in the
ADI3 document. The routine MPID_Wtime_diff converts the difference between two timestamps
into a number of seconds (as a double). These provide the basic support for timing on a process.
The basic routines are

typedef ... MPID_Time_t;
MPID_Wtime(MPID_Time_t *timestamp)
MPID_Wtime_diff(MPID_Time_t *timestamp1,

MPID_Time_t *timestamp2,
double *seconds)

MPID_Wtime_acc(MPID_Time_t *t1, MPID_Time_t *t2,
MPID_Time_t *t3)

MPID_WTime_init()
MPID_WTime_finalize()

MPID_Wtime_acc is an accumulate function; if the time stamps are numeric types (e.g., long or
double), then MPID_Wtime_acc is simply

*t3 += (*t2 - *t1);

(See questions in the ADI document on whether these should be explicitly pointers or if values are
prefered.)

Note that these timers should normally not be used directly in most code; instead, the timer
macros MPID_TimerStateBegin and MPID_TimerStateEnd should be used.

3.15.2 Instrumenting the MPI code for States.

Each major routine will contain references to

MPID_MPI_FUNC_ENTER(stateid);
MPID_MPI_FUNC_EXIT(stateid);

These will normally be defined as the corresponding timer calls

MPID_TimerStateBegin(stateid);
MPID_TimerStateEnd(stateid);

The value of stateid is MPID_STATE_functionname, for example, MPID_STATE_MPI_SEND. The timer
code will accumulate the sum of timestamps, along with the number of calls. These are defined in
the file include/mpistates.h.

6A 64-bit counter is used so that rollover is not a problem.

3 MPICH SOURCE TREE 22

Simple informational routines such as MPI_Comm_size and MPI_Wtime will not be timed.
Each state belongs to a class; there are at most 32 classes (so that we can use bitwise tests on a 32

bit unsigned int). Instrumentation can be controlled:

at compile time with the --enable-timing configure flag. Options to this can restrict timing
code to particular classes, e.g., --enable-timing=all,class=pt2pt,class=coll. These are
implemented by defining the class as MPID_STATE_CLASS_xxx before including mpiimpl.h, and
having code in mpiimpl.h check the class when defining these macros.

(not yet implemented)

at run time with the MPICH_TIMING environment variable or -mpich-timing command line
argument; the value is a string of timing class names.

In addition to timing the routines, we also need to instrument important states. For example, the
idle time in an MPI_Wait or in a blocking select should be covered. We will also have a class for
idle time and separate entries for each place where the code waits. For example,
MPID_STATE_PROGRESS_WAIT (see the implementation of MPI_Wait).

In addition, nontrivial system calls should be timed because they can sometimes take surprising
amounts of time (e.g., gethostbyname). These can be timed using the same macros, with state
names that include the function name (e.g., MPID_STATE_SYS_GETHOSTBYNAME). The state names for
all system routines start with MPID_STATE_SYS_, and are defined in the file mpisysstates.h.

While it would be nice to dynamically allocate the state ids, this part of the code should be fast;
this argues for predefined state numbers (#defined).

There are two additional items to watch:

1. Resource usage

2. Flow control

There are three levels to the state timers:

none No data is available (macros evaluate to empty). This is appropriate for production versions
of MPICH, and is the default value.

time Only the total accumulate time in each state is available.

log Logfiles are collected (using slog).

If state timers are enabled (with --enable-timing), these are controlled by the runtime parameter
code.

Adding data to the state. Because it is often valuable to have data with the state, there are two
more forms of MPID_MPI_FUNC_EXIT:

MPID_MPI_FUNC_EXITI1(stateid,i1)
MPID_MPI_FUNC_EXITI2(stateid,i1,i2)

These allow including one or two integers in the state. If more complex state information is required,
it should be handled by making direct calls to the appropriate profiling routines (suitably wrapped
to obey the selected profiling level).

Controlling the Collection of State Data. The routine MPID_TimerStateControl can be used
to control the collection of data. This routine has the form

void MPID_TimerStateControl(int onoff, int category)

The first argument simply controls whether data collection is on or off. The second controls the
states that the first argument applies to. Initially, category will be ignored and all states will be
either on or off. The category flag allows finer control should we find that we need it.

3 MPICH SOURCE TREE 23

3.15.3 Instrumenting the MPI code for Statistics.

Statistics are collected by items, such as writev calls or number of times an I/O call returns with an
errno of EAGAIN.

The most general form is

#ifdef COLLECT_STATS
{

MPID_STAT_BEGIN;
{

MPID_STAT_ACC(statid,val);
MPID_STAT_ACC_RANGE(statid2,rval);

}
MPID_STAT_END;

}
#endif

For very simple uses, these two one-line forms are provided:

MPID_STAT_MISC(any statement);
MPID_STAT_ACC_SIMPLE(statid,val);

The definitions of these macros allow for thread-safe implementations. For example,

MPID_STAT_BEGIN Allows for a thread lock; it can also find the per-thread data block containing
statistics information. This does not guarantee a thread lock, only that the update routines
(e.g., MPID_STAT_ACC) are atomic. For example, if the accumulate functions can be
implemented atomically without a lock, they may be. This macro allows a single lock to be
used if necessary, rather than a lock for each item updated.

MPID_STAT_ACC Accumulates an integer value into a predefined statid. This can be as simple as a
sum or can include code to track maximum and minimum values, standard deviations, or even
histograms.

MPID_STAT_ACC_RANGE Accumulates an integer value that represents a single value in a range. The
purpose of this is to keep which values are used, and how many times they are used (e.g., file
fds).

MPID_STAT_END Allows for the release of a thread lock.

MPID_STAT_ACC_SIMPLE is a short-hand for

#ifdef COLLECT_STATS
{
MPID_STAT_BEGIN;

{
MPID_STAT_ACC(statid,val);
}

MPID_STAT_END;
}
#endif

This is appropriate for cases where only a single value is being collected.

MPID_STAT_MISC includes the statement only if COLLECT_STATS is defined. This is useful for
declaring and initializing local variables that may be used to update a statistics value (e.g., the
val in the example above).

3 MPICH SOURCE TREE 24

The implementation of MPID_STAT_BEGIN requires thread locks only if the update operations
require them; an alternative is to use atomic update or assembly code that exploits
load-link/store-conditional instructions. Arranging the code this way abstracts out the use of thread
locks so that they can be avoided where they aren’t needed. It also allows mulitple STAT values to be
updated with a single lock.

The value of statid is of the form MPID_STAT_ID_xxx. These are constant values that are set in
the file mpistats.h (not the same as mpistates.h). We may provide a simple tool to search
through the source files and create these values automatically. Each statid refers to an element of
an MPID_Stat_t structure whose definition is

typedef struct {
int accval, maxval, minval, nval;

} MPID_Stat_t;

This allows the accumulation of the value (accval), the min and max ranges seen, and the number
of values (nval). More complex versions of this type could also include bins for histogramming the
range of values seen.

In order to read and optionally reset the statistics values in a thread-safe way, the two routines

MPID_Stat_lock()
MPID_Stat_unlock()

are provided. While the lock is held, no updates will be made to the statistics values. In a
single-threaded implementation, these routines are effectively no-ops. In order to make use of tools
such as the Alice Memory Snooper (www.mcs.anl.gov/AMS), we will need to provide a generic
locking mechanism for the statistics, somewhat separate from the thread locks.

The results of statistics collection are reported through the use of a callback that is registered
with MPI_Finalize. These are registered as part of the initialization process, because the particular
choice of data collection and output format can be set at runtime during MPI_Init. We should have
at least two statistics reporters: one that sums values over all processes and produces an aggregate
output, with only a single processor writing output, and one that writes each process’s data to a
separate file.

3.16 Memory Allocation

As a software package, MPICH should minimize the perturbation of the user’s environment. In
particular, it should have bounded memory usage and should strive not to allocate memory outside
of the initialization routine.

Where it is necessary to allocate memory, the function MPIU_Malloc (and corresponding
MPIU_Calloc, etc.) must be used instead of malloc, as described in the ADI-3 manual [6]. Uses of a
bare malloc and related memory allocation and freeing routines will be flagged as an error by the
code style checkers. Note that MPIU_Malloc and friends may be implemented as macros directly in
terms of the corresponding malloc etc. routines, so there is no performance penalty to using the
MPIU_Malloc routines.

Memory for MPI objects is handled separately as described in Section 3.12. These routines should
be used only for the allocation of memory within MPI objects, such as copies of index arrays needed
for MPI indexed datatypes and info value strings.

Memory allocation follows the usual rules for a separate subpackage: there are initialization
routines and a registered routine to be called in MPI_Finalize. (See Section 6.12.8.) This end-of-job
handler must call the routine MPIU_Trdump if the runtime parameter MPICH_TRDUMP is set. This
routine provides information on any memory that is still allocated; using this routine allows us to
check for memory leaks without using any special third-party software, and it works on any platform.

3.16.1 Multiple Memory Allocation

In some routines, there may be multiple memory allocations (e.g., MPI_Type_create_struct). If an
error is detected after some of these (either an out-of-memory error or some other error), it can be

www.mcs.anl.gov/AMS

3 MPICH SOURCE TREE 25

difficult to recover all of the allocated memory before returning. To simplify this case, we define a
simple, stack-based system that remembers the allocated memory and provides a simple way to
ensure that all allocations are freed before an error return.

The definition is

#define MAX_MEM_STACK 16
typedef struct { int n_alloc; void *ptrs[MAX_MEM_STACK]; } MPIU_Mem_stack;

defined in mpiimpl.h and a memory allocation macro that updated a routine-local version of a local
instance (for thread-safety) of MPIU_Mem_stack with every allocation. Then on an error, we could
easily free any allocated memory. The memory allocator could be

#define MALLOC_STK(n,a) {a=MPIU_Malloc(n);\
if (memstack.n_alloc >= MAX_MEM_STACK) abort(implerror);\
memstack.ptrs[memstack.n_alloc++] = a;}

#define MALLOC_STK_FREE {int i; for (i=memstack.n_alloc-1;i>=0;i--) {\
MPIU_Free(memstack.ptrs[i]);}}

#define MALLOC_STK_INIT memstack.n_alloc = 0
#define MALLOC_STK_DECL MPIU_Mem_stack memstack

To ensure that the usuage is thread-safe, the memstack should be declared within the routine. A
typical use might be

MALLOC_STK_DECL;
MALLOC_STK_INIT;
...
MALLOC_STK(sizeof(MPID_Dataloop)*n,new->dataloops);
if (!new->dataloops) {

MALLOC_STK_FREE;
return MPIR_Err_return_comm(...);

}
MALLOC_STK(m,new->other);
if (!new->other) {

MALLOC_STK_FREE;
return MPIR_Err_return_comm(...);

}
...
if (count < 0) {

MALLOC_STK_FREE;
return MPIR_Err_return_comm(...);

}

3.16.2 Testing for Memory Errors

The util/mem/trmem.c (TRacing MEMory package) provides both tests for memory leaks and for
memory overruns by using sentinels; it can also pre-initialize all allocated memory to various
patterns. These tests should be made a part of the nightly rounds (even in MPICH). Memory tests
are enabled by the configure option --enable-g=trmem or --enable-g=all.

3.17 Naming Rules

Routines should be name following rules similar to that used for the MPI-2 routines. The prefix
should be MPID_ for routines used within the ADI (and in other parts of the implementation), MPIU_
for utility functions, and MPIR_ for routines used only in the implementation of the MPI routines
(and not within the ADI), such as helper functions for the topology routines or callbacks for
MPI_Finalize. As in MPI-2, the rest of the name should then name the object or class, followed by
a description of the action. For example, MPIR_Comm_get_errhandler, not
MPIR_Get_comm_errhandler.

3 MPICH SOURCE TREE 26

Creating and Destroying Structures. The routines to create and destroy structures use
create and destroy. The names new and delete are used by C++ and alloc and free are used
by both MPI and C. To avoid conflicts and misunderstandings, particularly since the semantics of
the operations are slightly different (e.g., in MPI, a free operation only (effectively) decrements a
reference count and does not actually recover the space until the reference count reaches zero), we
chose the terms create and destroy.

3.18 Runtime Parameters

MPICH-1 suffers from having many compile-time parameters that could just as easily be either
runtime or at least initialization-time. These parameters include search paths and buffer sizes.
These should have a compile-time default (particularly the search paths) but have an easy way to
override at initialization and/or run time. While environment variables are one way to do this, we
should not rely on them, since not all environments guarantee that environment variables are
propagated to all processes.

Question: What should the routines be? For example,

int MPIU_Param_init(int *argc, char **argv[]);
int MPIU_Param_bcast(void);
int MPIU_Param_register(const char name[], const char envname[],

const char description[]);
int MPIU_Param_get_int(const char name[], int default_val, int *value);
int MPIU_Param_get_string(const char name[], const char *default val,

char **value);
void MPIU_Param_finalize(void);

We use pointers to argc and argv to allow parameters to be removed. The return code indicates
success or failure; an example of a failure is a non-integer value provided to the parameter accessed
with MPIU_Param_get_int. The routine MPIU_Param_init is called by the master process (the one
that will be rank zero in MPI_COMM_WORLD); this should happen early enough that any startup
parameters are available to the master process. The routine MPIU_Param_bcast is called within
MPI_Init or MPI_Init_thread after all processes have started and is a collective call across
MPI_COMM_WORLD. This allows an implementation to use one process to read the environment and
any initialization file and then use MPI communication to communicate the parameters to other
processes.

The routine MPIU_Param_register allows the MPICH2 implementation to indicate which
parameters are used and to provide a help string for each one. We provide an automated tool to
compile a listing of such parameters (maint/extractparams) and allow MPIU_Param_finalize to
identify unused command-line arguments (often misspellings of valid arguments). This tool uses the
same utility routines as the program to extract error messages (extracterrmsgs) and configure
options (extractconfigopts).

These routines return zero on success. The routines that return the values of parameters return
MPIU_PARAM_OK if no value was specified (this allows a routine to determine if the default value was
provided) and MPIU_PARAM_ERROR on an error (such as an integer value containing a non-digit).
These values are provided by

typedef enum { MPIU_PARAM_FOUND = 0,
MPIU_PARAM_OK = 1,
MPIU_PARAM_ERROR = 2 } MPIU_Param_result_t;

The MPIU_Param_init and MPIU_Param_finalize allows values to also be passed via the
command line. In fact, we may want to enforce the following order:

1. Check for an override value (e.g., a priority environment variable),

2. Use any info or attribute value,

3 MPICH SOURCE TREE 27

3. Use environment value,

4. Use configure file value (.mpichrc, followed by /.mpichrc). There should be an environment
variable and command line option to suppress reading of the configuration files, and

5. Use default (compile-time) value.

The configuration file is read once (most likely by one process) at MPI_Init time.
Note that there are two success values, one for the default was used and another for an specified

and valid value. The return value MPIU_PARAM_ERROR is used if, for example, MPIU_Param_get_int
is called but the value is the string "big".

Question: To support “override” values, should the routines also return an indication of the
priority of the value? This would allow the code to decide whether to accept a value from the
runtime parameter routines or to use a value provided through an MPI Info hint or attribute.

Question: What are the names of the environment variables that are used to select which value to
use? What are the command-line options to use? Is the environment variable MPICH_USE_ENV?

Question: The definition of MPIU_Param_bcast given above requires that the MPI communication
system be initialized. This implicitly assumes that the parameter calls are not used for any
communication setup. This isn’t adequate for initializing sockets in a TCP device or allocating
message-buffer space for a shared memory or VIA device. It may be more appropriate to provide
two separate phases:

MPIU_Param_init No values are available until after this call. After this call, some values are
available (see below).

MPIU_Param_bcast All values are available to all processes. This call may use MPI communication

To make this work, MPIU_Param_register must indicate when the value is needed; i.e., either before
or after MPIU_Param_bcast. All parameters that are needed before MPIU_Param_bcast must be
communicated to all processes through a mechanism that does not rely on MPI communication,
such as PMI put and get calls. This would use an “intent” variable as a fourth argument.

The format of the configuration file has not been defined. Bill is leaning towards an XML format
to allow for simple use of tools to manage the file and a standard way to organize parameters in
hierarchies.

A side note: in MPICH 1.2.2, a commandline option for controlling the p4 socket code using the
format -p4sctrl name=val:name=val:... was used. Should we standardize on this (key = value
pairs) for commandline options and environment variables?

3.19 Threads

All thread-related operations must not assume a particular thread package. At least five different
packages are of interest:

1. pthreads. This provides a powerful model with reasonable portability to most Unix platforms,
including Linux.

2. Solaris threads.

3. Windows threads.

4. OpenMP threads. OpenMP has a small set of thread runtime routines (such as lock/unlock),
including the ability to run different blocks of code in different threads, but does not include
condition variables or other more general thread operations.

5. No threads. That is, a single-threaded implementation.

Solaris LWP (light-weight processes) may also be of interest. In addition, some systems, such as
AIX, provide both “kernel” and “user” threads, where system calls made in a user thread may block

3 MPICH SOURCE TREE 28

all threads in the process while only the calling thread is blocked in a kernel thread. Note that the
pthreads specification does not require threads to be “kernel” threads.

There are some operations, such as condition variables, monitors, and thread-scheduling control,
that may not be available (e.g., OpenMP has no condition variables).

For thread packages that do not provide all operations efficiently, we will want to have an
indication of that fact. For example, if condition variables are not provided any must be emulated
by a spin loop, there should be a macro indicating that fact, such as
MPID_THREAD_EMULATE_COND_VAR. What these are and which we need will be decided as we
implemente the code that needs these thread operations.

The MPID versions of the thread operations are currently in include/mpiimpl.h and
src/util/thread/gthread.c. The full set of operations has not been defined yet. Note that in
most cases, no thread operations should be used explicitly; instead, higher-level abstractions such as
reference count increment and MPID_Comm_thread_lock.

Note that threads may be used in two places. One is in the implementation of the ADI, such as
the use of a thread to provide for progress. The other is the use of threads by the users application
which requires that the MPI routines use compatible thread routines to provide for thread private
storage. To keep it simple, we require that only one thread package be chosen. A different MPICH
must be built for each flavor of threads. Fortunately, most systems provide only one or two flavors of
threads.

3.20 Initialization and Finalization

In order to simplify the development of independent modules for parts of MPICH (such as the
topology or collective routines), where possible, each module initializes itself on the first use (we call
this lazy initialization). In cases where this is not possible, MPI_Init and MPI_Init_thread may
call a series of initialization routines for each such package (which may be a null macro if no
initialization is required). To handle MPI_Finalize, each package can register an exit handler. See
Section 6.12.8 for details. In general, lazy initialization is the goal, both to reduce the time that it
takes an MPI job to start and reduce the (static) executable size and link time by excluding
unneeded code. It is also a good way to ensure that the code is modular.

3.21 Coding Practices

This section reviews some coding practices for the MPICH code.

Function prototypes. All routines should be prototyped and declared in prototype form. The
prototypes should be in the smallest scope possible. For example, if the routine is used only
within the files in a subdirectory, the prototype should be in an include file within that
directory. This helps identify functions that are used outside of their intended scope.

The function prototype may include the variables names for the parameters; however the
prototypes in mpi.h will provide only the types.

Static and internal functions. Functions used entirely within a single file should be declared
static. Functions that are not static must follow the naming convention of starting with MPI_
or PMPI_ (for routines implementing the MPI Standard), MPIR_ for internal routines used only
in the MPICH (and not MPID) code, MPIU_ for utility routines, and MPID_ for all other
internal routines. Functions and variables that can be static only if weak symbols are used
should use PMPI_LOCAL rather than static. Global symbols visible to the MPI programmer,
such as device-specific keyvals, should use MPICH_ as the prefix. Also consider the use of
inline (configure uses the autoconf macro AC_C_INLINE to test for this feature, and defines
inline as empty if it is not supported) with internal functions.

Parameter declarations. Parameters (with the exception of the MPI routines defined by the
standard) should follow the guidelines in coding [5]. In particular, const and restrict should

3 MPICH SOURCE TREE 29

be used where appropriate. Parameters that are semantically arrays should be declared as
arrays (using []) rather than as pointers.

Indentation style. A common indentation level of 4 is specified for all files. All C source files
(including header files) begin with

/* -*- Mode: C; c-basic-offset:4 ; -*- */

This is interpreted by Emacs and allows us to define an indentation style for MPICH code that
can be different from each developer’s personnal style.

Source formatting. Where possible, keep line lengths to 80 characters. This permits side-by-side
display on common displays.

File header. There is a standard file header contained within the sample template file
maint/template.c that contains the copyright and standardized includes (e.g., mpiimpl.h).
All files must contain the C-style and copyright block preamble.

Function name. The function name is available as FCNAME. Each routine is responsible for setting
this variable; it should be of type static const char[].

Global variables should be avoided where possible; in cases where they cannot be avoided, they
should be collected into a structure. Global variables that may be widely used can be placed
within the per process (MPIR_Process) or per thread (MPIR_Thread) blocks. Global variables
that are needed only within a subsystem should, of course, be defined only within that
subsystem (collected into a structure as appropriate), and made static within a single file if
possible and natural.

Some sets of routines need a variable that persists between calls. Rather than make the
variable a global variable, it should become a static variable in a file, where if possible the
variable is used entirely within that file, such as a file of utility routines. See mpidtimer.c for
another example in the support for the Windows high-resoultion timer, where a static variable
is used to hold the clock frequency. If it is not possible to keep the variable within the file or
module, then it should be accessed through MPIR_ or MPID_ routines. However, wherever
possible, keep the varibles within the defining module (e.g., timer, topo, etc.).

Be careful with files that are may be compiled twice, once to generate the MPI version of a
routine and once to generate the PMPI version. Make sure that any helper routines or global
variables are defined in the PMPI verison rather than the MPI version, since a user application
that uses the profiling interface may replace the MPI version.

Global variables should also be initialized to avoid problems with some object library formats7.

3.22 Other Subsystems

In MPICH, there is code that is not directly part of the MPI implementation, such as MPE and the
test suite code. These are intended to operate with any MPI implementation, not just MPICH. For
MPICH2, these should be cleanly separated. Of course, the full MPICH2 distribution will contain
these and know how to build them.

To simplify the construction of a full MPICH distribution, there will be a Makefile (and configure
options) that knows how to build MPICH2 with MPE, perftest [?], the test suite, and other options.
These should not be part of the base MPICH2 project (as far as CVS is concerned). This will
encourage better separation of the projects. Note that these will be distributed with an MPICH
distribution.

7Uninitialized global variables are given type “common” by many Unix C compilers; initialized variables have type
“global”. Some ar or ranlib programs do not consider common symbols as defining the use of a name(!) unless special
options are used; this causes link steps to fail.

4 ADDING A NEW COMMUNICATION METHOD 30

In addition, subsystems that are part of the MPICH distribution that have nontrivial
configuration requirements must have their own configure programs. This is necessary to properly
modularize the often complex and subsystem-dependent tests.

Note that autoconf version 2 better handles communication options between modules, as long as
the subsidiary module has its configure invoked using AC_CONFIG_SUBDIRS and PAC_SUBDIR_CACHE
is invoked first (this ensures that AC_CONFIG_SUBDIRS uses any information discovered by this
configure). In addition, the changes to the autoconf macros defined in the confdb subdirectory
correctly pass information to the subsidiary configures (unlike the stock autoconf).

3.23 Deprecated Routines

The MPI-2 standard deprecated some routines (see Section 2.6.1 in the MPI-2 Standard). The
manual pages for the deprecated routines should make clear that they are deprecated and what
functions should be used instead. In addition, we should provide a library created with wrappergen
that generates a single warning message for each deprecated routine used in an application (and of
course document this).

4 Adding a New Communication Method

MPICH2 has been designed to make it relatively easy to add support for additional communication
methods. In the current release, there are three ways to add a communication method:

Channel Device This is a relatively simple communication device; adding a method requires
implementing a small number of routines. This choice is most suitable for initial ports and for
single communication methods (e.g., only TCP or only Infiniband).

MultiMethod Device This is a device designed to support both multiple communication methods
and more complex data management. It is possible to add a method to this device and to use
the other methods as well. For example, this provides TCP, Infiniband, shared memory, and
VIA methods.

Abstract Device Interface This is the most general interface; the Channel device and the
Multimethod implement this interface. The ADI gives you nearly complete control over the
implementation of all communication functions.

4.1 Adding a Method To the Channel Device

1. Create a new directory under src/mpid/ch3/channels. For purposes of illustration, call this
directory newdev.

2. Add newdev to the list of directories in the file src/mpid/ch3/channels/Makefile.sm defined
by the variable SUBDIRS_channel_name . This tells the build system what directories may be
used by MPICH.

3. Add a file src/mpid/ch3/channels/newdev/Makefile.sm . This file is used to create the
Makefile.in file used to build this device.

4. Add a configure.in file to src/mpid/ch3/channels/newdev that will handle any
configuration issues; it will also create the Makefile from the Makefile.in file.

5. (Optional) Add a localdefs (or a localdefs.in that will be used as input by the configure
in this directory). This file will be sourced by the top-level MPICH configure after the
configure in this directory has been run. This is an appropriate place to put any extra
libraries needed by this method. For example, the file localdefs.in may contain just

LIBS="$LIBS @NEWDEV_LIBS@"

5 SPECIAL ISSUES 31

where the configure program puts the libraries needed by this method into the configure
variable NEWDEV˙LIBS. See the configure and localdefs.in file in
src/mpid/ch3/channels/tcp for an example.

Once these steps are complete, go to the top level of MPICH and execute

maint/updatefiles

This is a shell script that executes a number of programs to rebuild the Makefiles and other parts
of MPICH2. As this tool is not intended for general use, you may need to make a few changes. For
example, several of the programs are Perl scripts; while updatefiles tries to find a version of Perl,
not all of the scripts are updated to use the version of Perl that it finds.

Once these steps have completed, you should be able to execute

configure --with-device=ch3:newdev --prefix=/my/mpi2-install

to build MPICH2 with your new channel device.
Note that no changes are made to the top-level configure. This approach makes it easy for groups

to develop new communication methods while staying sychronized with MPICH2 development.

4.2 Adding a Method To the Multimethod Device

Still to do

4.3 Creating a New ADI3 Device

Still to do

5 Special Issues

This section contains other issues that don’t fit anywhere else.

5.1 Heterogenity

Handling communication between systems with (potentially) different data representations is
difficult, particularly when the differences are more than just differences in the lengths of datatypes
(non-IEEE floating point formats are particularly painful).

Some issues that have come up:

1. When using XDR, the assignment of native types to XDR types is not as easy as it appears.
For example, the external representation for a C long provided by the xdr_long actually
moves 32 bits even for systems where a long is 64 bits. I.e., the XDR types (e.g., xdr_long)
match a specific set of sizes, not the particular sizes chosen by the C compiler. Thus, when
choosing the XDR routines to use, the sizes of the datatypes need to be considered, as well as
whether the local processor provides xdr_longlong or xdr_hyper (note that the XDR type
“hyper” is defined as an 8-byte integer (see RFC1014) and should be available everywhere).

To solve the problem of matching XDR lengths to actual lengths, partners should first
negotiate a precision or length, and then choose the corresponding XDR type. In other words,
we need to introduce another level of indirection between the MPI datatypes and the XDR
types, rather than assuming that MPI_INT can be represented by xdr_int.

6 MPI Operations

This section describes the implementation of the MPI operations. The descriptions may include
discussion of some implementation issues. These are split up according to function, and roughly (but

6 MPI OPERATIONS 32

not exactly) match the MPI standard. Each of these has a corresponding directory in the MPI
source tree. Note that this means that the directory structure does not exactly match the chapter
structure of the MPI Standards.

6.1 Attributes

Attributes provide a way for the user to attach information to communicators, datatypes, and
windows. The information is accessed through a keyval and consists of a single pointer or, in the
Fortran 77 case, an integer.

Attributes are implemented as a simple linear list on each of the three MPI objects. The major
issue with the implementation of attributes is thread-safety: ensuring that valid updates to the
attributes on the same communicator by different threads are performed correctly. An example of
valid updates by two threads is the deletion of different attributes; an example of an invalid update
by two threads is the deletion of the same attribute.

Note that the performance of the attribute routines is not performance critical, so these routines
emphasize robustness. In addition, we must ensure that MPI programs do not need to load the
attribute routines if the user’s program (including any libraries) does not make use of attributes.
This is done by using lazy initialization of the user-visible attributes, rather than having MPI_Init
always create the attributes. We can do this because the predefined attributes are not copied to
dups of MPI_COMM_WORLD; thus we don’t need to load the attribute routines when MPI_Comm_dup is
called. The predefined keyvals are handled without using any attributes; the attribute get routines
have special code to handle the predefined attributes.

Error classes defined for keyvals and attributes: MPI_ERR_KEYVAL (note that this is new in MPI-2).
The storage for attributes is allocated with the same mechanism as the other MPI objects. This is

not really necessary; the attributes do not have reference count semantics and could use a simpler
allocator. However, it seems easiest to reuse the common object allocator, and since attributes are
neither performance nor space critical, this is the simplest approach. It also ensure that the routines
for creating and destroying attribute storage are thread safe.

MPI-1 Attribute Functions. The following five functions are deprecated. These are
implemented in terms of MPI-2 functions. In case an error is encountered, they must ensure that the
original routine name is reported in any error message. For example, if MPI_ATTR_DELETE is called
by the user and an error occurs when that routine calls MPI_COMM_DELETE_ATTR, then the error
message returned to the user will indicate that the error occured in MPI_ATTR_DELETE, not
MPI_COMM_DELETE_ATTR. This is easily accomplished using the MPID_Nest_incr and
MPID_Nest_decr functions.

6.1.1 MPI_ATTR_DELETE

Increment the nest count (see Section 3.13.4). Call PMPI_COMM_DELETE_ATTR. Decrement the nest
count. If an error was found, invoke the correct handler. All layered calls manage the error handler
in this way.

6.1.2 MPI_ATTR_GET

Calls PMPI_COMM_GET_ATTR using a nested error handler.

6.1.3 MPI_ATTR_PUT

Calls PMPI_COMM_SET_ATTR using a nested error handler.

6.1.4 MPI_KEYVAL_CREATE

Calls PMPI_COMM_CREATE_KEYVAL using a nested error handler.

6 MPI OPERATIONS 33

6.1.5 MPI_KEYVAL_FREE

Calls PMPI_COMM_FREE_KEYVAL using a nested error handler.

MPI-2 Attribute Functions. The MPICH implementation treats attributes and keyvals on
communicators, windows, and datatypes in the same way, using the same structures
(MPID_Attribute and MPID_Keyval). The keyval does retain the type of object for which the keyval
was created in the kind field; however, this value is used only to check for user-errors and to select
the appropriate function pointer on attribute copy or delete events. Because most keyval operations
are simple, a set of separate routines may not be necessary for most operations involving keyvals,
with the possible exception of the routines that invoke the attribute copy and delete functions.

6.1.6 MPI_COMM_CREATE_KEYVAL

Calls MPIU_Handle_obj_create with object type MPID_KEYVAL. Fills in the fields of the returned
MPID_Keyval structure. Returns the id value as the keyval.

This routine also initializes the comm_attr_dup field in MPIR_Process. This is a function pointer
that is called when a communicator is duplicated (with MPI_Comm_dup or MPI::Clone). By adding
this one level of indirection, we can ensure that none of the attribute code is loaded into applications
that make no use of attributes (other than the predefined attributes).

6.1.7 MPI_COMM_FREE_KEYVAL

Test that the keyval belongs to communicators. Decrement the reference count; if the postdecrement
value is 0, call MPIU_Handle_obj_destroy to reclaim the storage.

6.1.8 MPI_COMM_GET_ATTR

Lock the communicator, look for the attribute, then unlock and return the attribute value.
Note that this operation does not require a thread lock around access to the attribute value but

does require a thread lock to ensure that an insert or delete of a different (by keyval) attribute
doesn’t cause the find to follow an invalid next pointer. (Actually, the lock isn’t strictly necessary, as
long as the search through the list ensure that deletes or inserts by other threads don’t cause errors.)

The reason for this relatively weak requirement is that thread-safe only means that the routine
performs correctly under all serial ordering of the instructions in the routine, even when multiple
threads, using this or other routines, accesses the same data structures. A user that trys to both get
an attribute and delete that same attribute in different threads has written an invalid program.

6.1.9 MPI_COMM_SET_ATTR

MPID_Attr_find, followed by access to the value. This has the same thread-lock requirements as
MPI_COMM_GET_ATTR.

Attributes are also used to control special characteristics. Within the lock, it must also call
MPID_Dev_comm_attr_set_hook (see the ADI-3 manual).

6.1.10 MPI_COMM_DELETE_ATTR

find and remove from list (thread-atomic, use lock if necessary)
execute delete function
decrement associated keyvals reference count and destroy keyval if
count is now zero.
return the attribute to the list of free attributes (thread-atomic)

The above order is used to avoid the possibility of a deadly embrace caused by another operation
that uses the same lock being executed by the attribute delete function. That is, it is incorrect to
hold a lock while the delete function is being executed.

6 MPI OPERATIONS 34

6.1.11 MPI_TYPE_GET_ATTR

See MPI_COMM_GET_ATTR.

6.1.12 MPI_TYPE_SET_ATTR

See MPI_COMM_SET_ATTR.

6.1.13 MPI_TYPE_DELETE_ATTR

See MPI_COMM_DELETE_ATTR.

6.1.14 MPI_TYPE_CREATE_KEYVAL

See MPI_COMM_CREATE_KEYVAL with object type MPID_Datatype_t.

6.1.15 MPI_TYPE_FREE_KEYVAL

See MPI_COMM_FREE_KEYVAL.

6.1.16 MPI_WIN_CREATE_KEYVAL

See MPI_COMM_CREATE_KEYVAL.

6.1.17 MPI_WIN_FREE_KEYVAL

See MPI_COMM_FREE_KEYVAL.

6.1.18 MPI_WIN_SET_ATTR

See MPI_COMM_SET_ATTR.

6.1.19 MPI_WIN_GET_ATTR

See MPI_COMM_GET_ATTR.

6.1.20 MPI_WIN_DELETE_ATTR

See MPI_COMM_DELETE_ATTR.

6.2 Info

The MPI_Info object is used to pass key=value pairs of strings to various MPI operations. Like
attributes, these are usually not performance critical operations, though some routines, such as the
File I/O routines, may want to extract the values in the MPI_Info object and cache the data to
simplify the use of the data provided by MPI_Info.

Because a number of modules use MPI_Info, a utility implementation of all of the info routines,
but in the src/util/info directory and with MPIU_ prefix, is provided. These routines do not
include all of the error checking that is part of the MPI_Info_xxx routines. In addition, some
modules may wish to access the structures that contain the data for an MPI_Info directly. These
structures may change.

Info. Predefined info keys are (by module):
Dynamic Processes: appnum, arch, host, ip_address, ip_port, path, soft, wdir.
Files: access_style, cb_block_size, cb_buffer_size, cb_nodes, chunked, chunked_item,

chunked_size, collective_buffering, external32, file, file_perm, filename, internal,
io_node_list, native, nb_proc, num_io_nodes, random, read_mostly, read_once,

6 MPI OPERATIONS 35

reverse_sequential, sequential, striping_factor, striping_unit, write_mostly,
write_once.

RMA: no_locks.
Predefined info values include: true, false,
Error values defined for info: MPI_ERR_INFO_KEY, MPI_ERR_INFO_VALUE, MPI_ERR_INFO_NOKEY.
Constants defined for info: MPI_MAX_INFO_KEY, MPI_MAX_INFO_VAL. Note that the MPI standard

sets limits on the ranges that these can take.

Implementing Info. There are two ways to handle MPI_Info. One is to implement a general
mechanism for handling key/value pairs, much like the code that is part of mpich/src/misc2. The
other is to implement only the defined keys that MPICH2 needs. This is the approach used by IBM;
in this model, the known keys are not stored; instead, the keys are mapped to a predefined set of
values (e.g., to an enum). This makes it easy to extract a value from a particular info object (the
values can be preconverted into booleans or integers and stored in a small array); further, it provides
a way (which is otherwise lacking) to indicate which key values are known to the implementation.
The problem with restricting keys to those known to the implementation is it prevents using
MPI_Info to pass information to another subsystem, such as to the process manager and allocator
(through MPI_COMM_SPAWN). Since MPI_Info is not used by any performance-critical functions
(MPI_Info is only used in MPI_Alloc_mem, MPI_Comm_accept, MPI_Comm_connect, MPI_Comm_spawn,
MPI_Comm_spawn_multiple, MPI_File_delete, MPI_File_open, MPI_File_set_view,
MPI_Lookup_name, MPI_Open_port, MPI_Publish_name, MPI_Unpublish_name, as well as the
functions with INFO in their name), speed is not critical for the Info functions.

Thread-Safety. Because multiple threads may update the same info object as long as they do not
simultaneously try to access the same element, it is necessary to ensure that the list operations have
no race conditions. The simplest way to do this is to use a thread-lock around parts of the code that
access or modify the list pointers that connected items within an MPI_Info object. A more
sophisticated code could use processor-atomic operations to update the list without using locks. The
descriptions below use the term “lock” only to indicate the need to perform the operations
atomically.

Note also that the interface to access the info values is not thread-safe, since it has the implicit
assumption that the number of keys in an info object does not change unless the same thread
changes it. For example, consider this sequence:

MPI_Info_get_nkeys(info, &nkeys);
MPI_Info_get_nthkey(info, nkeys-1, keystring);

In a multi-threaded environment, another thread may have called

MPI_Info_delete(info, "any-key-in-info");

after MPI_Info_get_nkeys but before MPI_Info_get_nthkey. There’s no way to really fix this, but
we can at least raise the issue in the manual pages and generate helpful error messages in this case.
We may also want to add an extension that raises a special error code if a different thread modifies
an MPI_Info while any of the routines with a notion of the “current” state of info are operating on it.

Memory Usage. The info routines may use MPIU_Malloc to allocate space in which to store the
keys and values.

6.2.1 MPI_INFO_CREATE

Call MPIU_Handle_obj_create.

6.2.2 MPI_INFO_DELETE

Remove a key from an info object:

6 MPI OPERATIONS 36

lock info
check that object is valid
find key and remove key and associated value
unlock info

Note that this lock should look at the global threadedness to decide if the lock is necessary.
The “check that object is valid” happens within the lock to ensure that the object is never deleted

by another thread between the check and acquiring the lock. This is a simple test to detect a
user-error. This is an optional test. That is, it is shown here to indicate where the test should be
placed for maximum effectiveness in catching thread-race conditions.

6.2.3 MPI_INFO_DUP

Note that this routine must be thread-safe; in particular, if one thread modifies the same info
structure while another is dup’ing it, some valid info must be returned. This requires info routines
that modify the info structure or the list of key/value pairs to operate safely. Because none of the
info routines are performance critical, and because none of these operations is very complex, using a
single lock per MPI_Info or even a single lock for all info objects is probably adequate.

Create a new info object with MPID_Handle_obj_create
lock
check that object is valid
walk list, copying each entry
unlock

Note that we don’t use a shallow copy because this is a relatively rare operation, and because
implementing a shallow copy (e.g., with reference counts) is tricky because any before any changes
are made, a full copy must be performed (or even trickier versioning must be used).

6.2.4 MPI_INFO_FREE

Call MPID_Info_free. We may want to lock the info object while removing the individual entries.
While inside the lock, we could also mark the object as invalid in some way.

lock
check that object is valid. Mark as invalid
free all entries (key and value with MPIU_Free, MPID_Info with

MPIU_Handle_obj_destroy)
unlock
free with MPIU_Handle_obj_destroy

The “mark as invalid” serves as a useful check that the user is not accessing an already deleted
object.

Note that since there is no way to create an additional reference to an MPI_Info object, there is
no reference count to check.

6.2.5 MPI_INFO_GET

lock info
check that object is valid
find key and return associated value (by copying to designated location)
unlock info

We can actually unlock after finding the key but before copying the value since a user program
that both gets and deletes the same value is invalid.

6.2.6 MPI_INFO_GET_NKEYS

lock info
check that object is valid
run through list to count all keys

6 MPI OPERATIONS 37

unlock info

6.2.7 MPI_INFO_GET_NTHKEY

lock info
check that object is valid
find indicated key and return name
unlock info

For applications that are accessing each element of an info list, this forces a complexity that is the
square of the number of elements in the info list. An alternative approach that is linear is described
in the rationale (Section B).

6.2.8 MPI_INFO_GET_VALUELEN

lock info
check that object is valid
find indicated key and return length of the associated value.
unlock info

Note that the returned length does not include the end-of-string character.

6.2.9 MPI_INFO_SET

lock info
check that object is valid
find indicated key.
If found, set the value,
else add the key and value.
unlock info

6.3 Datatypes

MPI datatypes come in two forms: the basic, predefined types representing the natural types in the
language (e.g., MPI_DOUBLE), and derived types, created from other types by combining them in
different ways. MPI provides a number of different ways to construct datatypes, but they are best
described in terms of two properties:

1. A loop describing the typemap of the datatype. As described in [7], a general MPI typemap
may be efficiently described using one of a few forms of loops.

2. The extent of the datatype. This tells MPI how to position the successive uses of a datatype.

In addition, there are a number of properties of a datatype that must be saved to handle both some
oddities from MPI-1 (particularly the “sticky” upper and lower bounds) and the requirement from
MPI-2 that it be possible to return to the user the exact calls used to construct a datatype. This
introduces some complications that are discussed below.

A major goal of the MPICH2 datatypes is excellent performance for typical user datatypes,
particularly strided (vector) and scatter/gather (indexed). To achieve this requires storing an
efficient representation of the data needed to pack and unpack a buffer using this datatype. The
data structure that contains this information is called a dataloop (MPID_Dataloop) because it
contains the information needed by a loop that packs or unpacks data. Each dataloop represents a
single loop and thus a single level of combiner in datatypes. A very general datatype may be
constructured from multiple derived datatypes. Thus, in general, a datatype may need to be
described with multiple dataloops. The MPICH2 implementation of datatypes also separates out the
extent of the datatype from the description of the data to move (the dataloop). This permits more
efficient implementation of a number of powerful data movement patterns without forcing the use of
the most general (and slowest) code.

6 MPI OPERATIONS 38

Applying a dataloop to pack or unpack a datatype requires some additional data. Since the
datatype description in terms of dataloops is recursive, a stack is maintained while processing a
datatype. A stack is used both because it is faster than using recursive function calls and because in
some cases it is necessary to halt a pack or unpack operation part of the way through and then
continue the operation later; this is only possible with an explicit stack. The datastructure that
defines this stack is the MPID_Dataloop_stackelm. This dataloop stack is not part of an
MPID_Datatype structure but is used by routines that pack and unpack buffers using datatypes and
by objects (such as MPID_Requests) that may need to incrementally pack or unpack a buffer).

6.3.1 The Predefined Datatypes

The handles for the predefined datatypes corresponding to the language types (e.g., MPI_DOUBLE but
not MPI_DOUBLE_INT) use the HANDLE_BUILTIN type and encode the length of the datatype in bytes
within the handle. The format is

(in bits)
01 0010 00 (16 bits for index) (8 bits for the length in bytes)
(in hex)
0x50xxxxyy
xxxx is the index and yy the length

The index values provides an index into the preallocated datatype storage for a MPID_Datatype
structure for each datatype. This contains, for example, the character name field for the datatype.
An additional 3 bits could be used for the index, but in fact, there are fewer than 128 datatypes,
even including the new C2000 datatypes (which do not have corresponding MPI types yet), and
keeping these 3 bits zero makes it easier to setup the handles.

The lengths of the language types are computed by configure. For systems where cross
compilation is used, these values must be provided by defining the appropriate CROSS_SIZEOF_xxx
environment variables.

All builtin types are predefined (at compile time), including the names of the datatypes (the name
accessed through MPI_Type_get_name)8.

6.3.2 Creating a New Datatype

Here are the steps to create and return a new datatype.

1. Allocate a new object using MPIU_Handle_obj_create.

2. Allocate two dataloops: one to hold the description as given (needed to return the contents
and envelope) and one to hold the optimized loop. If the two loops are identical, only the
optimized loop is allocated; the other is left null. MPIU_Malloc may be used to allocate the
dataloops. Alternatively, let the MPID_Datatype structure contain the first two dataloops (as
part of the structure itself).

3. Initialize the fields and datatype name.

4. Setup the two dataloops. For datatypes that require copies of input arrays (e.g.,
MPI_Type_indexed), only the opt_loopinfo should contain a copy if possible. Use NULL
pointers in the loopinfo to indicate that the corresponding fields in opt_loopinfo should be
used. This will become clearer below.

Setting up the dataloop is relatively easy. The combiner (e.g., MPI_COMBINER_HVECTOR) is
stored in the combiner field in the datatype.

For the basic types, just select the corresponding dataloop type, noting that several combiner
types often map to a single looptype. For example, MPI_COMBINER_VECTOR,
MPI_COMBINER_HVECTOR, and MPI_COMBINER_HVECTOR_INTEGER all map to MPID_VECTOR.

8An alternative is to provide the names only if MPI_Type_get_name is used by the user’s program.

6 MPI OPERATIONS 39

However, note that there are some special cases detailed below. Next, determine the following
about the specified datatype:

(a) Are all of the input datatypes contiguous or basic? If so, this is a special case dataloop
called a leaf. This is indicated by a bit in kind.

(b) Are the elements all multiples of 2, 4, or 8 bytes in size?

(c) Are the elements aligned on a multiple of the element size? If all elements are aligned on
a multiple of 2, 4, or 8, the element-size field in kind is set to 1, 2, 4, or 8 respectively.
All values in the dataloop (including any offsets or sizes) are adjusted to be in multiples
of the element size. (Question: we could also store the power of 2 instead, giving a more
compact representation. Which makes the code faster and clearer?)

(d) Do the elements describe a contiguous section of memory (not counting the effect of any
extent)? If so, replace the dataloop type with MPID_CONTIG.

(e) If the type is indexed, are all block sizes the same? If so, replace the dataloop type with
MPID_BLOCKINDEXED.

(f) Are any of the MPI_UB or MPI_LB markers present in the input (old) datatypes? If so, the
various “sticky” ub and lb flags must be set.

(g) Can multiple consecutive elements be contracted into a single larger section? In a struct
type, this may allow a reduction in the number of elements (and may also change the
alignment result).

In some of the above cases, the dataloop and opt_dataloop will either be the same or differ
only in that opt_dataloop will use values that are multiples of the element size. In these
cases, any fields in the (non-optimized) dataloop that must be allocated and copied (e.g.,
offset fields in an indexed datatype) should be set to NULL instead. The code to process
MPI_Type_get_contents must understand how to compute the data from that stored in the
opt_dataloop.

If the opt_dataloop represents a more radical change, for example, replacing multiple items
with a single item, then both the dataloop and opt_dataloop should contain the necessary
fields. Any code that attempts to further optimize the opt_dataloop must also ensure that
any NULL fields in the dataloop can be recovered.

Error classes for datatype creation. Error classes include MPI_ERR_TYPE, MPI_ERR_ARG, and
MPI_ERR_OTHER (for out-of-memory allocating internal fields).

The ADI defines a datatype structure that is believed to be a good choice for implementing
operations that involve datatypes, such as MPI_Pack and MPI_Unpack.

6.3.3 Computing the Extent

There are two cases to computing the extent: MPI_Type_struct and other. Most routines should
call the function MPIR_Type_compute_extent to compute the extent because the computation is a
bit complex. Here is the rule for the extent:

/* Compute the ub */
If a sticky ub exists for the old datatype (datatypes for struct), then

use the ub and set the sticky ub flag
(has_ub).

else
use the true_ub

/* Similar for the lb,
lb,
has_lb and
true_lb. */

extent = ub - lb + PAD.

6 MPI OPERATIONS 40

where PAD is determined by alignment rules.
/* Similar for true_extent */
For the alignment rules, each datatype keeps track of the largest
alignment obect in alignment_size; these are the
sizes of the predefined language datatypes such as char and
long. The PAD is chosen to force the extent to be an integral
multiple of the alignment size.

Note that the choice of alignment rule is made at runtime, using the routines in Section 3.18. The
default alignment rule is determined by configure using PAC_C_STRUCT_ALIGNMENT. This macro
returns the values packed, largest, two, four, or eight.

In the case of datatypes created with MPI_Type_struct, the routine itself must compute the
extent, using the same rules as above.

Questions about the implementation of datatypes:

1. Should we require alignment of data when packing/unpacking? The problem is in the
heterogeneous case, where we’d need to communicate the alignment rules, along with byte
ordering and data lengths.

2. For nested datatypes, should we allow loop interchange (as NEC did in their “flattening on the
fly” paper)? We can implement this within the current representation by creating new
dataloop structures for the re-ordered loops.

3. We could even compile code to pack and unpack the given datatype and dynamically load the
code. PETSc has code for this for some user-interface convenience functions. In general, we
could consider allowing the pack and unpack functions to be specified as part of the datatype,
with defaults based on the dataloop structures. A datatype attribute could be used to decide
when to create a datatype-specific routine.

4. We need to include instrumentation on the pack/unpack functions themselves so that we can
gather information about the performance of the pack/unpack. Should this be stored by
datatype instance? Datatype kind (e.g., vector, indexed, struct)? pack/unpack?

5. Do we need separate pack and unpack descriptions (e.g., if we optimize for the transfers by
reordering loops, will we want different versions for each direction)?

6. For types that do not contain MPI struct types, we can preload the entire processing stack,
since the elements never change (just the position on the stack). This is close to creating a
simple nested loop structure for an interpreter. We may want the datatype to have a field
indicating that it has this feature; alternately, we might encode this by specifying a different
pack/unpack routine, one that preloads the stack and eliminates any code to fill the stack
during processing. Another approach that would apply to the more general case would be to
cause datatypes that have simple nested structure to load the entire stack and switch the stack
interpreter into a mode that knew that the stack had been loaded.

7. Struct alignment (pad) should have optional rules. That is, we need to support at runtime all
alignment options that a compiler might pick (we currently test for this in the MPICH
configure). For systems where different padding rules can be specified (e.g., IBM’s xlc has 4
different choices), we should allow an environment variable to select a different padding rule.
We might implement this by using a separate routine for each type of padding, and call a
routine to compute the padding towards the end of creating a struct datatype. See
Sections 7.1 and 7.3 for how the default alignment is determined or specified.

8. For pack and unpack code, we need to handle the tests for sizes of the output buffers
efficiently, hoisting the tests out of the loops where possible. This is the reason for the size
field; it allows a quick check at the top of the loop to see if the loop can simply be executed or
if more careful steps are needed to avoid overrunning a buffer.

6 MPI OPERATIONS 41

9. For the homogeneous case, some struct types (those that contain only basic datatypes) can be
changed into indexed types (as if they were all MPI_BYTE). Note that in the homogeneous data
representation case, there are no struct leaf nodes.

10. Structs with no gaps (except at the ends, possibly because of structure padding, an MPI_UB, or
an explicit resize), should be replaced with a strided type. In the heterogeneous case, this can
only be done when the struct contains a single basic type.

11. In the heterogeneous case, we may want two different representations: one for homogenous
communication and one for heterogeneous communication. Thus the datatype structure needs
several dataloop entries, at least in the heterogeneous case. There may be multiple
heterogeneous representations. For example, most communicators may use reader-makes-right
(RMR) [10] but any IMPI (interoperable MPI [3]) communicators need a different
representation. Communicators that connect an unusual system (e.g., one using a non-IEEE
floating point format) may need to use XDR.

12. All datatype creation routines should call the routine MPID_Type_signature to compute the
representative type signature. The configure option --disable-type-signature could turn
this off (and remove the overhead from the communication, since the signature value must be
communicated to the destination to allow it to be checked).

Question: do we want --disable-type_signature or should this be an option on a more
generic --enable-mpidatatype, such as --enable-mpidatatype=signature=no?

13. There could also be a configure option to enable compilation of the datatype pack and unpack
code at runtime. For example, MPI_Type_commit could write a small pack function, compile it,
and link it in using dlopen under most Unixes. More detailed control of this could use an
attribute on MPI_COMM_WORLD or on the datatype itself.

6.3.4 MPI_ADDRESS

Deprecated. Use MPI_GET_ADDRESS.

6.3.5 MPI_GET_COUNT

Uses the size field of the datatype and the count field of MPI_Status. Note the special case of a
datatype of size zero and a message of size zero; this should return a count of zero (see the MPI
errata discussion).

Devices that provide their own datatype support (such as the globus2 device in MPICH1) can
provide the function MPID_Get_count and define MPID_HAS_GET_COUNT instead.

6.3.6 MPI_GET_ELEMENTS

This requires some care. This should return the number of basic datatypes in a message. So, to start
with, each datatype should keep track of the number of basic datatypes. Then a quick version of this
is:

sizeof_datatype = size field of MPI_Datatype
n_bytes = count field of MPI_Status
If sizeof_datatype is zero, then

If n_bytes is zero, return zero
else return MPI_UNDEFINED

m_count = n_bytes / sizeof_datatype.
m_rem = n_bytes % sizeof_datatype.
If m_rem is zero, then

the number of elements is this m_count *
elements_per_datatype.

Else if all elements in the datatype are the same size then

6 MPI OPERATIONS 42

(e.g., an indexed case)
the number of elements is n_bytes /
sizeof_each_element
Use _flags with
MPID_ELEMENTS_SAME_SIZE for this test, along
with element_size.

Else
/* This is the difficult case */
element_count = m_count * elements_per_datatype
Process m_rem recursively as follows:
Two cases:
If the datatype has a single old type (e.g., everything except
a structure type), recursively apply the algorithm with m_rem
instead of n_bytes to the old type.
Else

(the struct case).
Apply the above algorithm to each datatype component of the
struct in turn (there is only one instance of the struct
datatype to worry about)

To implement this, we should have a utility routine MPIR_Type_get_elements that takes just a
byte count and a datatype and returns the number of basic elements. This routine can then be
called recursively.

6.3.7 MPI_STATUS_SET_ELEMENTS

Questions: Where are the values defined for the count field(s) in the status? Is this just the count
field? Is there an MPID_Status_set_elements routine?

Answer: There should at least be an optional one. Perhaps the right way to do this is to have a
preprocessor variable that indicates whether the count field is the number of bytes in the message; if
not, then routines provided by the device are called to handle all count-related computations in
MPI_Status.

In the near term, this will simply set the count field. Later, we may provide a hook to an optional
device routine to handle this.

6.3.8 MPI_TYPE_HINDEXED

Deprecated. However, we can’t easily use MPI_TYPE_CREATE_HINDEXED because that could (if
MPI_Aint is longer than int) require making a copy of an array argument. Thus, this code should
copy most of MPI_TYPE_CREATE_HINDEXED. Note that the combiner name for this is
MPI_COMBINER_HINDEXED_INTEGER.

To reduce code size and complexity in the common case where sizeof(MPI_Aint is the same as
sizeof(int), use the C preprocessor value SIZEOF_INT_IS_AINT that is defined by configure.

6.3.9 MPI_TYPE_HVECTOR

Deprecated. Use MPI_TYPE_CREATE_HVECTOR. Note that the combiner name is
MPI_COMBINER_HVECTOR_INTEGER.

6.3.10 MPI_TYPE_STRUCT

Deprecated. For reasons similar to MPI_TYPE_HINDEXED, we do not want to call the new function.
Note that the combiner name is MPI_COMBINER_STRUCT_INTEGER.

6 MPI OPERATIONS 43

6.3.11 MPI_GET_ADDRESS

See the implementation in MPICH-1 MPI_ADDRESS in mpich/src/pt2pt/address.c. The
preprocessor symbol CHAR_PTR_IS_BYTE is set by configure if casting a char * pointer to
MPI_Aint gives a byte address (this assumes that a char is a byte).

6.3.12 MPI_TYPE_CONTIGUOUS

Create a new datatype with MPIU_Handle_obj_create and fill in the dataloop with type
MPID_Contig.

6.3.13 MPI_TYPE_INDEXED

Create a new datatype with MPIU_Handle_obj_create and fill in the dataloop with type
MPID_Indexed. While copying index values, check for monotone increasing or decreasing. Note that
a datatype used to specify a file type must be monotonically nondecreasing (MPI Section 9.3, “File
Views”).

6.3.14 MPI_TYPE_VECTOR

Create a new datatype with MPIU_Handle_obj_create and fill in the dataloop with type
MPID_VECTOR.

6.3.15 MPI_TYPE_CREATE_DARRAY

Create a new datatype with MPIU_Handle_obj_create and fill in the dataloops (the number
depends on the dimension of the darray) with type MPID_VECTOR.

6.3.16 MPI_TYPE_CREATE_HINDEXED

Create a new datatype with MPIU_Handle_obj_create and fill in the dataloop with type
MPID_INDEXED. While copying index values, check for monotone increasing values.

In addition, ignore (generate no entries for and do not set the extent) any elements with a
blocklength of zero. However, such elements must be remembered in the dataloop that is used to
implement the get contents routines.

6.3.17 MPI_TYPE_CREATE_HVECTOR

Create a new datatype with MPIU_Handle_obj_create and fill in the dataloop with type
MPID_VECTOR.

6.3.18 MPI_TYPE_CREATE_INDEXED_BLOCK

Create a new datatype with MPIU_Handle_obj_create and fill in the dataloop with type
MPID_BLOCKINDEXED.

6.3.19 MPI_TYPE_CREATE_STRUCT

Create a new datatype with MPIU_Handle_obj_create and fill in the dataloop with type
MPID_STRUCT. Check for contiguous elements while setting up arrays.

6.3.20 MPI_TYPE_CREATE_SUBARRAY

Create a new datatype with MPIU_Handle_obj_create and fill in the dataloops (the number
depends on the dimension of the subarray) with type MPID_VECTOR.

6 MPI OPERATIONS 44

6.3.21 MPI_TYPE_CREATE_RESIZED

Create a new datatype with MPIU_Handle_obj_create and copy in the dataloop from the old type.
Then change the extent of the type as specified by the extent argument and the lowerbound by the
lb argument.

6.3.22 MPI_TYPE_COMMIT

Optimize the datatype for communication.
Question: How do we want to organize the optimization code for datatypes? We shouldn’t embed

it within the MPI_TYPE_COMMIT function. Should each of the dataloop types (e.g., MPID_VECTOR)
have a corresponding routine that is called with the entire datatype (not just the specific dataloop)?
If so, it should be stored in a function pointer within the datatype itself, rather than as a function
name known to the commit function.

Answer: Yes, we want to put most of the optimization into the routines that create the datatypes
in the first place. Further optimizations should be registered for the various types of datatypes (e.g.,
structs), so that the code can be kept close to the routines that manipulate that type of data.

Note that we may want to have multiple passes of optimization.
One special case is to identify datatypes that are contiguous.
Note that MPI-2 explicitly allows an already committed datatype to be committed again.

6.3.23 MPI_TYPE_DUP

Duplicate a datatype. Invoke the attribute copy code (through the type_attr_dup pointer) for the
attribute list (attributes) on this datatype. We don’t need to lock around this because a user that
deletes this datatype or modifies the attribute list for this datatypes at the same time that
MPI_TYPE_DUP is executed for it is writing an erroneous program. If we do want to protect against
erroneous user programs, we can use the same strategy as used for the MPI_Info routines.

6.3.24 MPI_TYPE_FREE

This first calls MPIU_Object_release_ref. If the returned value is zero, it should invoke the free
function attached to the datatype. That free function (free_fn) should free the dataloop and any
other allocated space.

6.3.25 MPI_TYPE_EXTENT

Simply uses the extent field in the structure.

6.3.26 MPI_TYPE_LB

Simply uses the lb field in the structure.

6.3.27 MPI_TYPE_SIZE

Simply uses the size field in the structure.

6.3.28 MPI_TYPE_UB

Simply uses the ub field in the structure.

6.3.29 MPI_TYPE_GET_TRUE_EXTENT

Simply uses the true_extent field in the structure.

6 MPI OPERATIONS 45

6.3.30 MPI_TYPE_GET_CONTENTS

Uses the dataloop (not the opt_datatloop) field to access the data uses to create the datatype.
This function is the reason for having two dataloop fields in the datatype structure.
Question: Should this function know how to return the contents of all datatypes, or should the

datatype structure contain a pointer to the function that understands the datatype? I prefer a
function pointer within the datatype structure.

6.3.31 MPI_TYPE_GET_ENVELOPE

Uses dataloop field to identify how the datatype was constructed. The combiner type must be one
of
MPI_COMBINER_NAMED
MPI_COMBINER_DUP
MPI_COMBINER_CONTIGUOUS
MPI_COMBINER_VECTOR
MPI_COMBINER_HVECTOR_INTEGER
MPI_COMBINER_HVECTOR
MPI_COMBINER_INDEXED
MPI_COMBINER_HINDEXED_INTEGER
MPI_COMBINER_HINDEXED
MPI_COMBINER_INDEXED_BLOCK
MPI_COMBINER_STRUCT_INTEGER
MPI_COMBINER_STRUCT
MPI_COMBINER_SUBARRAY
MPI_COMBINER_DARRAY
MPI_COMBINER_F90_REAL
MPI_COMBINER_F90_COMPLEX
MPI_COMBINER_F90_INTEGER
MPI_COMBINER_RESIZED

6.3.32 MPI_TYPE_GET_EXTENT

Simply uses extent and lb fields. Note that this is the MPI-2 replacement for MPI_Type_ub,
MPI_Type_lb, and MPI_Type_extent.

6.3.33 MPI_TYPE_MATCH_SIZE

This function returns the MPI Datatype corresponding to a specified type class (one of
MPI_TYPECLASS_INTEGER, MPI_TYPECLASS_REAL, or MPI_TYPECLASS_COMPLEX) and size. This will
need to be implemented by using the datatype sizes determined by configure, and then mapped into
the actual types. For example

switch (typeclass) {
case MPI_TYPECLASS_REAL:

switch (size) {
case 4: *rtype = MPI_REAL;
case 8: *rtype = MPI_DOUBLE_PRECISION;
case 16: *rtype = MPI_REAL16
default: (invoke error handler from MPI_COMM_WORLD)
}

case MPI_TYPECLASS_INTEGER:
...

6 MPI OPERATIONS 46

6.3.34 MPI_TYPE_GET_NAME

Uses the name field. Note that the Fortran versions must be careful to blank-pad the value rather
than null-terminating the name.

The default names are setup on the first call to MPI_Type_get_name or MPI_Type_set_name. This
is another example of lazy initialization. In the case where debugger support is included, we may
want to initialize these names within MPI_Init (or better yet, within the function that allows the
debugger to gain access to other MPI data).

6.3.35 MPI_TYPE_SET_NAME

Sets the name field. Returns error if supplied name is too long. Note that the name may be set for
all datatypes, including the predefined names.

6.3.36 MPI_PACK

Call MPID_Pack with a rank of MPI_ANY_SOURCE. Native/Homogeneous case: Simply execute the
dataloop

Heterogeneous case: If reader-makes-right (RMR) is used, then this is the same as the native case.
If XDR or external32 is used, then each basic type must be identified and processed appropriately.

6.3.37 MPI_PACK_SIZE

Call MPID_Pack_size with a rank of MPI_ANY_SOURCE.
Question: One issue is with IMPI [3], which requires that there be no header on any pack buffers.

Do we want to say something about a header on a pack buffer? Note that implementing the
datatype signature [8] requires a header.

Native/Homogenous case: size field of MPI_Datatype (unless datatype signatures are used, in
which case there is a header containing the signature).

Heterogeneous case: Except for the RMR case, this is more awkward. On possibility is to compute
a pack_size and pack_alignment for each datatype and use that to compute the final size, at least
for choices that are not dependent on the rank in the communicator. Or, if there are only a few
choices, one for each choice.

6.3.38 MPI_UNPACK

Call MPID_Unpack with a rank of MPI_ANY_SOURCE.
Native/Homogeneous case: Simply use the dataloop to unpack the data. Special case: As

described below, packed buffers may have a header; if the implementation requires them, even the
native case must first check and skip over the header.

Heterogeneous case: In all cases (RMR and XDR/external32/etc.), each basic datatype must be
identified and processed. Further, for RMR, we need to know the origin of the data so that the
receiver can figure out what to do.

Question: some communicators may require a symmetric format, such as XDR or external32. An
example is any communicator that involves a process connected through IMPI [3]. Do
communicators need a structure that contains information on heterogeneity (e.g., a data_rep)?

Question: The MPI-FT project (no papers available) has proposed reordering the data so that
data of each type is placed together. For example, instead of sending char-int-char-int, it might send
int-int-char-char, and rely on the datatype at the destination to receive it correctly. Do we want to
make this an option? How do we handle the case that less than one complete instance of a datatype
is sent (e.g., in the above case, only char-int-char is sent as int-char-char)? Note that it is possible
but difficult.

Using MPI_PACK, MPI_UNPACK, MPID_Pack and MPID_Unpack in the ADI. Data that is sent with
MPI_PACKED as the datatype may either be received as MPI_PACKED or with any datatype that

6 MPI OPERATIONS 47

matches the type signature of the types used to pack the data on the sending end. In homongeneous
systems, this doesn’t matter, but in systems where different data formats may be used depending on
the source and destination of a message, along with the communicator connecting them, there are
many issues. Consider the following cases of sending between two processes:

1. Source process uses MPI datatypes (not including MPI_PACKED) to send the data. In this case,
a particular destination is known, and the sending process can check to see if the destination
process uses the same data representation as the source process. If so, it can send the data as
native. However, it needs to indicate that the data is in native format to the destination.

Question: do we want datatypes to contain information on what basic types they contain?
How about the optimization for the case of a single basic type? Type signature?

2. Source process uses MPI_Pack and sends using type MPI_PACKED. Since MPI_Pack does not
specify a destination rank, the representation format must be chosen based on the
communicator, not the destination rank. At the destination, one of two things happens:

(a) The receive type is not MPI_PACKED. The data is converted from the packed format into
the user’s buffer. There must be some indication that the message is in a particular
format, whether it is RMR, native, XDR, external32, etc. This must be part of the
envelope, not the data.

(b) The receive type is MPI_PACKED. The data must be copied (almost) as is, except that
enough information must be saved so that MPI_UNPACK can unpack it later. This may
include the message format and source, stored in the header (see case 3). This
information must be saved in the packed data header since there is no other place to put
it. (The source may be needed if reader-makes-write is used, though the same data could
be encoded within the message format.)
For IMPI communicators, the format is fixed for all communication within the
communicator and no header is permitted on packed data (at least in the parts of the
code visible to IMPI).

3. Source process use MPI_Pack and sends using type MPI_PACKED. Receiving process receives as
MPI_PACKED and then resends the message to another process in the same communicator. The
recipient of that message then unpacks it.

This last case makes it clear that the rank in the communicator of the process that packed the
message must be retained; the rank of the sender is not sufficient.

For better error checking, packed data could contain the communicator (actually, context id) that
it was packed for in the header, and an error signaled for use in a different communicator.

6.3.39 MPI_PACK_EXTERNAL

This is like MPI_PACK, but in the “external32” format defined by MPI-2. There is no header; I
believe that this exactly matches the IMPI format.

6.3.40 MPI_PACK_EXTERNAL_SIZE

Like MPI_PACK_SIZE, but for “external32”. Note that there must be no message header in the
external format.

6.3.41 MPI_UNPACK_EXTERNAL

Like MPI_UNPACK, but for “external32”. Actually, this is slightly simpler, since the incoming format
is specified and there is no header.

6 MPI OPERATIONS 48

6.3.42 MPI_REGISTER_DATAREP

Specify a set of user data conversion functions. The data representation defined by this routine may
be used by MPI_FILE_SET_VIEW. The error handler used is that defined on MPI_FILE_NULL. Note
that MPI_PACK_EXTERNAL and MPI_UNPACK_EXTERNAL take a datarep as an argument; if possible,
the implementation of those routines should accept a general data representation defined by this
routine so that they may be used in an MPI I/O implementation.

Where are the list of datareps stored? We need a list of datareps, containing functions. This list
needs a lock (it can use the global_lock) so that multiple threads can define new datareps. Note
that there is no deregister for datareps, but we need one for MPI_Finalize (so that memory leak
checks will not report a leak due to a user-defined datarep).

Datareps should be setup using lazy initialization (so no datarep routines are included if they are
not explicitly referenced by the user). In addition, the initialization step should register a callback
with finalize to remove any allocated storage.

6.3.43 Heterogeneity

Optimizing for the common case of machines or clusters with a common data representation is
important.

In MPICH, macros were used to include code that handled heterogeneous systems. For MPICH2,
I’d prefer to use clearer blocks of code rather than special macros. For example,

#define MPICH_IS_HETERO
...
#else
...
#endif

even if some code is duplicated as a result. This is an exception to the “no duplicated code” rule,
partly because in fact we expect little code to be duplicated and partly because the duplicated code
will be close by in the file rather than off in some other file where it may be overlooked when a bug
is fixed.

6.4 Groups

In the implementation of MPICH-2, groups are rarely used. For example, groups are not used to
provide a mapping from relative rank in a communicator to some “global” rank, as they were in the
implementation of MPICH-1. That function is provided by the virtual connection array (see the
ADI-3 manual [?]). Groups are provided primarily to support the MPI routines that require them.

Groups are not even allocated for communicators unless they are required by MPI_Comm_group. In
other words, we create the groups only as required to support the MPI routines that need them.

Remark: The choice of data structure used to represent a group affects the scalability of the
implementation. MPICH-1 used a simple array that mapped rank in a group to rank in the group of
MPI_COMM_WORLD. In MPI-2, we can’t use MPI_COMM_WORLD. ADI-3 defines “local process ids,” which
simply refers to the processes known to the current process. The code below suggests the use of an
array mapping ranks to the ADI-3 local process ids. Local process ids are not related to Unix
process ids (perhaps we need a new name); rather, they are local MPI process ids. The MPI
processes in MPI_COMM_WORLD have local process ids that range from zero to size of MPI_COMM_WORLD
−1. Local process ids indicate a “connection” or link to other proceeses. Processes that are added to
a running MPI process (e.g., by MPI_COMM_SPAWN) have local process ids of at least size.

Actually, groups are simple as long as we don’t require a scalable representation of group
membership. An interesting question is what sort of representation should be used for truly
massively parallel systems such as Blue Gene.

Plan: At least initially, the group implementation in ADI-3 will not be scalable. Each group will
have an array that maps ranks to local process ids. However, a scalable representation is possible.
The exact choice depends on the underlying system; a typical large-scale system may have a global

6 MPI OPERATIONS 49

memory space with put and get operations; in that case, the description of any group may be shared
among all processes; compressed representations of subsets of such a group can also be defined.

Note: the MPICH-1 implementation of MPI_Group_difference, MPI_Group_union, and
MPI_Group_intersection have complexity that is the product of the sizes of the groups (!). The
MPICH-2 implementation described in this section has lower complexity; in fact, it is linear if radix
sort routines are used. To achieve this, we make use of marker arrays, which are used to determine
which processes are members of a new group and to efficiently detect various error conditions. Many
of the algorithms rely on mappings from “local PIDs” to local ranks, where a “local PID” is just an
identifier for a remote process known to this process (that is, these are not global process
identifiers). These mappings are stored in a single array of lrank_to_lpid. Each element of this
array has four members: lrank (local rank in group), lpid (corresponding local pid), next_lpid
(index in this array of the next local pid (next in value)), and flag (a flag to be used in
implementing the group routines). In addition, the value idx_of_first_lpid gives the index in this
array of the lowest-valued local pid.

Error classes include MPI_ERR_GROUP, MPI_ERR_RANK, MPI_ERR_ARG, and MPI_ERR_OTHER (memory
allocation).

6.4.1 MPI_GROUP_RANK

Simply return rank field.

6.4.2 MPI_GROUP_SIZE

Simply return size field.

6.4.3 MPI_GROUP_TRANSLATE_RANKS

We may want to detect the special case of a group that is a subset of MPI_COMM_WORLD (does this
imply a flag in the MPID_Group structure?). Such a flag might be MPID_GROUP_SUBSET_WORLD. A
slight generalization identifies groups for which the mapping from local rank to local pid is simply an
affine one: if

lpid = offset + lrank ∗ stride

then the translation between the groups is simpler. We might want the special cases:

MPID_GROUP_MAP_IDENT for lpid = lrank

MPID_GROUP_MAP_AFFINE_UNIT for lpid = offset + lrank

MPID_GROUP_MAP_AFFINE for lpid = offset + lrank * stride

MPID_GROUP_MAP_GENERAL for the general case.

If either group is not a subset of MPI_COMM_WORLD, then

1. For group2, if necessary, create a new array containing the pairs local process id (lpid),
local rank (lrank), sorted by local process id (lpid). Call this array lpid_to_lrank;
the elements are structures of type MPID_Group_pmap_t (Note that MPI_GROUP_FREE needs to
free this array.)

2. For each rank in ranks1, find the corresponding local process id using lrank_to_lpid and
then search for that lpid in the sorted array lpid_to_lrank in group2.

Otherwise, if both groups are subsets of MPI_COMM_WORLD, then we can use the fact that the first
size values of local PIDs (where MPI_COMM_WORLD describes size processes) to simplify the
computation. The code used in MPICH-1 for this function can then be used with only slight
modification (due to the different data structures for groups in MPICH-2).

The algorithm in MPICH-1 had complexity that was the product of the number of ranks and the
size of group2. For the important special case of ranks that correspond to increasing local processor

6 MPI OPERATIONS 50

order (e.g., increasing ranks against the group of MPI_COMM_WORLD or any split of MPI_COMM_WORLD
that uses rank as the key), we start the search for the corresponding local pid at the location where
the last rank was found. This reduces the complexity to the sum of the number of ranks and size of
group2 in this case.

6.4.4 MPI_GROUP_FREE

Free all internal fields (e.g., lpid_to_lrank) and then call MPID_Dev_Group_free_hook.

6.4.5 MPI_GROUP_COMPARE

1. Check that sizes are the same. If not, set result to MPI_UNEQUAL and return.

2. Check that the elements of lrank_to_lpid are the same. If so, set result to MPI_IDENT and
return.

3. Check that the lrank_to_lpid arrays contain the same values, but in a different order. We
could use the same array needed by MPI_GROUP_TRANSLATE_RANKS here. If those two arrays
have the same local process ids (they’ll be in the same order), return MPI_SIMILAR, otherwise
return MPI_UNEQUAL.

6.4.6 MPI_GROUP_EXCL

Construct new group from the designated subset of lrank_to_lpid field of input group.
To provide high-quality error checking (such as the Intel test suite checks for), check for duplicate

ranks in the exclusion list.
We can arrange to perform both the group creation and the test for duplicates through the use of

a marker array; this can be used for many of the group creation routines.
The marker_array is an integer array whose size is the size of the group. For MPI_GROUP_EXCL,

initialize all entries to one. For each rank in the exclusion list, decrement the corresponding entry in
the marker array. Any entry that is less than zero indicates an error (duplicate in the exclusion list).
Any entry that is still one indicates that the corresponding process in the original group is to be
retained in the new group.

We may want an MPIR_Group_create_from_marker for this and many of the other group creation
routines.

6.4.7 MPI_GROUP_INCL

Construct new group from subset of lrank_to_lpid field of input group.
Make sure to check for duplicate input ranges (invalid input). Use the marker_array approach

from MPI_GROUP_EXCL, but start with zero in each element; any element over one indicates an error.

6.4.8 MPI_GROUP_RANGE_EXCL

Check that the ranges terminate.
Construct new group from subset of lrank_to_lpid field of input group. This is a little tricky

because multiple ranges can be specified and they can exclude overlapping ranges of ranks. Use the
marker_array with each element initialized to one; zero out each rank specified by each range.
Create the new group from the corresponding processes that have a positive entry.

6.4.9 MPI_GROUP_RANGE_INCL

Check that the ranges terminate.
Construct new group from subset of lrank_to_lpid field of input group. Like

MPI_GROUP_RANGE_EXCL, but start with zero in each element of the marker_array.

6 MPI OPERATIONS 51

6.4.10 MPI_GROUP_DIFFERENCE

This should use the local process id and rank array (lpid_to_lrank) to identify the different
processes to include. Note that this includes only the elements of the first group that are not in the
second group, ordered as in the first group. This also exploits the flag fields to indicate which
members to include.

6.4.11 MPI_GROUP_INTERSECTION

This is implemented similarly to MPI_GROUP_DIFFERENCE.

6.4.12 MPI_GROUP_UNION

Start with all of group1. For each process in group2 that is not in group1 (check the
lpid_to_lrank array for group1), add that local process id to the union.

6.5 Communicators

Communicators have two main features: a context id and a group. In addition, communicators that
are created with MPI_Comm_dup must copy attributes (where requested) from the old communicator.

Because communicators are used both by the user and by the MPI implementation (e.g., for
collective communication when implementing routines such as MPI_Bcast), each communicator
provides multiple context values. These are four consequtive values that may be used to specify
exactly which communication context is being used, and allows the MPI implementation to separate
point-to-point from collective communication. The rationale discusses why this approach is used
rather than the MPICH-1 approach of defining a “hidden” communicator.

What utility routines do we wish to define? There are a number of routines that create
communicators, including the topology routines. Note that attributes are only copied by
MPI_Comm_dup.

6.5.1 MPI_COMM_COMPARE

This compares first the context_id values (Question: this assumes that we don’t use the same
context_id for communicators with disjoint groups). If the same, return MPI_IDENT. Other wise,
call MPI_GROUP_COMPARE for the remote group (and if both are intercommunicators, local group). If
the group comparision(s) return MPI_IDENT, then return MPI_CONGRUENT. Otherwise, return the
same value as given by MPI_GROUP_COMPARE. If the communicator is an intercommunicator, return
the lowest value returned by MPI_GROUP_COMPARE.

Question: This requires that we create the groups. An alternative is

1. If context_id values are the same, return MPI_IDENT

2. If sizes of the corresponding local and remote groups are different, or if one is an
intercommunicator and the other is an intercommunicator, return MPI_UNEQUAL.

3. Compare the elements of the virtual connection table (vcr); if they all reference the same local
processes in the same order, return MPI_CONGRUENT.

4. Otherwise, use PMPI_GROUP_COMPARE.

The advantage of this approach is that for most applications, we never explicitly create the groups.

6.5.2 MPI_COMM_CREATE

We need a basic communicator creation routine for this. In particular, many of the communicator
construction routines can create a group and then use that to specify the communicator. We may
want a varient that takes a group and does not make a duplicate or copy; this would allow us to
create the group and then provide it to the communicator creation routine.

6 MPI OPERATIONS 52

Allocating Context Ids. The single threaded case is relatively easy: a global variable can be
used that contains a list of available context ids; there can also be a way to generate new context ids
if a large number of communicators are in use. The “list” could, in fact, be a bit vector, with the
bits indicating whether or not the context id was in use. Communicator creation routines could find
a context id by performing an MPI_Allreduce with the appropriate bit operator (MPI_BAND). The
position of the lowest set bit can be used.

The multithreaded case is more difficult. You cannot do
lock
MPI_Allreduce
unlock

because different threads in the same process might lock the data structure, causing a deadly
embrace with multiple MPI_Allreduce calls. One possible solution is to use a lock/read/unlock on
the bit vector, followed by an MPI_Allreduce, followed by an MPI_Allreduce on whether the bit
vector has been changed by another thread. If not, then the value for the context id can be
accepted; otherwise, start over. This is rather expensive as it requires multiple MPI_Allreduce calls.
In addition, there is the chance the two competing threads would loop forever, with each thread
invalidating the other’s choice of context value.

Here is an algorithm that will work in the multithreaded case. It uses a bit mask of context ids
(each bit set indicates a context id available; 32 32-bit integers covers 1024 context ids). This mask,
along with a queue containing the context ids of communicators that are requesting a new context id
and a variable that indicates that some thread has acquired the rights to the mask, are stored in
thread-shared memory (in MPIR_Process). In this code, note that mask_in_use is initialized to zero.

volatile int mask_in_use;
while (no context id found)

local_mask = 0
lock
if (mask_in_use) local_mask = 0
else if (first_time)

add to this context id to queue of pending
requests in order of context id value

if at the head of queue (lowest numbered context),
mask_in_use = 1
local_mask = mask

unlock
MPI_Allreduce(local_mask, MPI_BAND)
If a set bit is found in mask,

lock
unset corresponding bit in mask
mask_in_use = 0
remove this context_id from queue
if queue non-empty, release condition variable
unlock
return the new context_id.

else if had low context value (i.e., this thread set mask_in_use)
lock
mask_in_use = 0
release condition variable
unlock

else
wait on condition variable

/* end while */
The use of the flag mask_in_use ensures that only one thread per process is accessing the mask of

available context ids at any time; thus a success in the MPI_Allreduce step guarantees that the
found value is in fact available. If that step fails, that means that some thread was unable to access

6 MPI OPERATIONS 53

the mask and contributed an all-zero bit vector as a result. The key to handling this case is to use
the context_id value to break ties when several threads in the same process are attempting to find
a context id. Note that a correct program cannot have two collective routines on the same
communicator active in the same process at the same time. If that happens, the program is
erroneous. Note that this algorithm can detect that by detecting two identical context_ids in the
queue.

Note that this algorithm involves no extra communication in the single-threaded case; even in the
multi-threaded case, no extra communication is required in most circumstances.

A refinement of this algorithm would allow multiple threads to have disjoint masks; if the masks
were cleverly picked, most threads would find an acceptable value even when multiple threads where
concurrently executing the algorithm.

Question: do we want to fix the number of context ids? Note that these are not globally unique;
they are only unique among a collection of processes. 1024 might be enough. Is this a compile time
or runtime parameter? Is the --with-maxcomm=n the configure control for this? Or should this
option be collected with other options for communicators, such as --enable-comm=maxcontext=n?

Caching context ids. The performance of operations such as MPI_Comm_split and
MPI_Comm_dup can be improved if there is a preallocated cache of context ids, at least in the
single-threaded case. In the above algorithm, more than one id may be extracted from the mask
following a successful call to MPI_Allreduce (success defined as returning a mask with at least one
bit set). Following the rules that require ordering of collective calls, even in the multi-threaded case,
context ids can be extracted from this cache with no communication.

Question: Do we want to support context id caching? If so, how many? If provided, the
configure flag is --enable-comm=id-cache=n?

If a cache is supported, one of the issues is ensuring the in a multithreaded environment,
MPI_Comm_free can correctly recover any cached ids. In addition, allocating context ids to a
communicator cache that are never used (because the recipient communicator is never dup’ed or
split) wastes context ids, which may become a problem if the context space is kept small to reduce
the number of bits in an MPI envelope. Considerations of this kind lead to the following
requirements:

1. A communicator may have extra context ids (the context id cache)

2. A freed communicator must return the context id to the cache if the value came from the cache.

3. A freed communicator that contains a cache must ensure that the cache is restored to the pool
of available context ids. Of course, the cache cannot be returned until all communicators using
context ids from the cache are freed.

One simple approach is to provide a single pool of context ids for MPI_COMM_WORLD. Since this
communicator is never freed (except by MPI_Finalize), we can avoid the problems of freeing the
context id cache.

A more complex approach is to make the context id cache a separate object, subject to the usual
reference count semantics. That allows us to delete the communicator that created the cache
without loosing the information about the cache.

6.5.3 MPI_COMM_DUP

One approach is to extract the group from the incoming communicator, invoke MPI_Comm_create,
and then invoke the attribute copying step. This is not what we want to do, however, because we
don’t want to force the creation of the MPI group. Instead, we simply copy the virtual connection
array (and we may do this through a reference count mechanism, so that it is a shallow copy).

Question: Who (if anyone) guarantees that two threads don’t run the same attribute copy
functions at the same time? The standard is silent here, but some examples use code where the
attribute is a pointer to storage that holds an integer (e.g., a private tag) and the copy routine

6 MPI OPERATIONS 54

performs (without locking) a fetch and increment. Do we want to allow/force the attribute copy
functions to behave like Java synchronized methods?

This question was posed to the MPI Forum and the answer was that because any operation
(including communication) is permitted, it isn’t permissible to lock around the attribute copy
routines. Thus, we can only warn the user on the man page. Or provide a test as an option.

6.5.4 MPI_COMM_FREE

Decrement the ref_count. If zero, free the communicator.
This routine must invoke the attribute delete functions for each attribute, then free the groups,

then any per-communicator structures. Calls comm_attr_free on the attribute list (if the function
is defined; if it isn’t, there are no keyvals defined). Calls MPID_Comm_free.

Question: how are the groups freed? is there a pointer to a group_free routine in the per-process
data structure, which is set only when the first group is explicitly created?

6.5.5 MPI_COMM_GROUP

If no group exists, create one. Then returns a duplicate (shallow copy) of the local group. Calls
MPIU_Object_add_ref to do this.

6.5.6 MPI_COMM_RANK

Return the rank field.

6.5.7 MPI_COMM_REMOTE_GROUP

If no group exists, create one. Then returns a duplicate (shallow copy) of the remote group. Call
MPIU_Object_add_ref to do this.

6.5.8 MPI_COMM_REMOTE_SIZE

See MPI_COMM_SIZE. This is actually not an unusual operation, since all point-to-point operations
need to check the rank of the sender or destination against this size, not the size of the local group.

6.5.9 MPI_COMM_SIZE

Return the size field. This is really the size of the local group, which for an intercommunicator may
be different from the remote size. Note that for point-to-point communication, error checking for
destination or source ranks must look at the remote size. To avoid requiring or accessing groups in
the communicator, the communicator contains fields for local_size and remote_size.

6.5.10 MPI_COMM_SPLIT

Perform an Allgather on the color and key. Processes with the same color are in the same new
communicator. Count the number with the same color. Allocate an array of that size and fill in
with the ranks of the current communicator and the keys (from the MPI_Allgather). Sort the ranks
according to the key. Create the new communicator by passing that list of ranks to an internal form
of MPI_Comm_create (the same routine is needed by MPI_Comm_create and MPI_Intercomm_merge).

Question: We obviously need some sort routines. What should they be? The sizes are relatively
small (no more than a few thousand) so relatively simple routines are possible. In addition, the
values to be sorted are often (but not always, as in this routine) small integers, so special
radix-based routines can often be used.

Note that the above algorithm is not scalable, since it must do an allgather.

6 MPI OPERATIONS 55

6.5.11 MPI_COMM_TEST_INTER

This simply checks the communicator kind field to see if the communicator is an inter- or
intra-communicator. Note that this test does need to be performed for every collective operation,
since the inter- and intra-communicator algorithms are different.

6.5.12 MPI_INTERCOMM_CREATE

The local leaders exchange messages with the remote leaders to gather the information on the two
groups and to agree on a context id. (Question: should a debugging version ensure that consistent
local and remote leader ranks are specified by first performing an allgather of the root values?)
Leaders then broadcast information containing process identifiers to their respective groups (using
PMPI_Bcast). Note that this requires communication wholely within the local group.

For intercommunicators communication, two of the four context ids may be used to specify
communication (this is like having hidden, private communicators for the local group, but without
the overhead of setting up a separate communicator).

Question: What are the process identifiers? In the case of MPI-1, these can simply be the rank in
MPI_COMM_WORLD. For the purposes of building the local process ids, we need to convert a local
process id on one process into a identifier that can be used by another process. There are two cases:

1. The (remote) process is already known to the local process. This is similar to the case of
MPI_COMM_WORLD.

2. The (remote) process is not known to the local process. That is, there is no connection
between the two processes. This is the case for groups created by MPI_COMM_SPAWN or
MPI_COMM_CONNECT.

In the first case, we only need to establish the correspondence between the local process ids. We can
convert the second case into the first case by forming a correspondence when processes are joined to
an MPI process with MPI_COMM_SPAWN, MPI_COMM_CONNECT and related routines. This means that
there must be a function that converts local process numbers into the “global” numbering and back.
The global numbering provides enough information to connect to another process. In turn, this
implies that these routines must ensure atomic access, since the “global” numbers change when
another group of processes connects or is spawned (particularly connects, since both previously
disjoint process sets may have picked the same global numbers). This could have the following
interface:

int MPIR_Gprocmap_lock(int flag) /* lock/unlock */
void MPIR_Gprocmap_ltog(int n, const int lpid_array[], int gpid_array[])
void MPIR_Gprocmap_gtol(int n, const int gpid_array[], int lpid_array[])
void MPIR_Gprocmap_update(int n, int (*gpid_array)[])
void MPIR_Gprocmap_get(int *n, int (*gpid_array)[])

Still to do: make this consistent with the discussion of intercommunicator creation in
MPI_Comm_spawn. An alternative to the MPIR_Gprocmap_xxx routines is a local process id and a
table that maps this to a global identifier made up of a BNR group id and a rank in that group. For
a job with a single MPI_COMM_WORLD, this would map to a BNR group id of zero and the rank in
MPI_COMM_WORLD. More complex jobs (such as that in Figure 3) would have multiple BNR groups.

The intercommunicator routines should have robust error checking because they require care and
understanding in use and errors are hard to diagnose. Errors to check for include inconsistent
leaders (all members of the local group should agree) and overlapping groups (remote and local
groups must not overlap).

Note that this routine is not collective in the peer communicator; that is why a tag value is
required. That makes it more difficult to check for consistent leaders between the two groups,
though it could be done tbrough some sort of central registry.

6 MPI OPERATIONS 56

G1 G2

G2G1

G5 G6

G5

G3 G4

G2G1

G6

G1 G2

G4G3

G3

G2G1

G2G1

processes in G6 (including G4)
can now communicate with
(including those in G3)
All processes in G5
G1+G2 as peer comm.

and similarly G6
make G5 (intracomm)
using G1 and G3 to
and communicators

G2 Spawns

G1 Spawns

Separate MPI Jobs

Form local groups

Form intercomm using

Connect/Attach or Spawn
from G1 creating G2

Figure 3: Example of MPI process creation and MPI_Intercomm_merge. Note that the processes in
groups G3 and G4 are spawned after the intercommunicator joining groups G1 and G2 is created.

6.5.13 MPI_INTERCOMM_MERGE

Create a new group from the union of the local and remote groups. Rank 0 in the group with high
== true communicates with rank 0 in the group with high == false. Once this group is created,
call MPI_COMM_CREATE with this group.

6.5.14 MPI_COMM_CLONE

This is a special C++ function; it behaves similarly to MPI_COMM_DUP, but returns a reference
(pointer) to the created communicator, rather than the communicator itself. This is necessary
because the C++ binding makes a Comm an abstract base class, and since you cannot return an
instance of an abstract base class, you can’t use MPI::Dup (which returns an instance). MPI::Dup
may only be used on one of the four derived classes. MPI::Clone was provided to give C++
programmers a way to create a reference to a duplicate of an arbitrary communicator. Question:
should we design an internal dup function so that both MPI_COMM_DUP and the C++
MPI::Comm::Clone function can use it?

6.5.15 MPI_COMM_GET_NAME

Return a copy of the name field. See MPI_Type_get_name for a discussion about Fortran.
Note that unlike the MPI_Type_set_name and MPI_Type_get_name functions, these do not need to

initialize the names of the predefined objects because that is done in MPI_Init (there are only two,
after all).

Question: MPICH-1 dynamically allocated storage for names rather than preallocating in the
structure. Do we want to do the same (currently, we preallocate, which makes all communicator
structures larger).

6 MPI OPERATIONS 57

6.5.16 MPI_COMM_SET_NAME

Set the name field. Check for valid length. See MPI_Type_set_name for a discussion about Fortran.

6.6 Point to Point Communication

The ADI provides a relatively close match to the point-to-point communication routines.
This section is out-of-date.
Questions that remain: Handling of persistent requests. The ADI contains memory registration.

Is anything else needed for persistent requests?
Should a persistent request simply have a pointer to the active request? The request pointer could

be null to indicate an inactive persistent request.
Question: There are a number of flags that we may want to check in order to drop into a special

optimized case. Should we set things up so that a single int of flags, where the “good” case is a zero
bit for each flag, can be tested with a single compare against zero?

6.6.1 MPI_PROBE

Call MPID_Probe. An implementation of this routine might look something like:
Look for a match in the unexpected receive queue. If no match is found, then wait until another

message is receive and check again. In a polling, single-threaded implementation, this can simply
invoke a blocking call to wait for incoming messages.

This routine immediately brings up the problem of how to structure code that uses multiple
threads to achieve good performance when a blocking call is used by one or more user threads.

Note that in a multithreaded MPI implementation, this must watch for the race condition of

Thread 1 Thread 2
Check queue, no match found

Handle incoming unexpected message
Wait for a message to arrive

Handling this is device-implementation specific.
Consider the following cases:

1. There is only one thread (e.g., the current ch_p4 case). In this case, after checking the queue,
a call that polls the communication agent and waits for something to arrive (e.g., with select
for TCP-only devices) may be used. A multimethod device might briefly spin on all “fast”
devices (e.g., shared-memory queues) and then yield the time slice.

2. There is a single thread that acts as the communication agent (see Section 6.7) that is different
from the user’s thread. In this case, the user’s thread could pass control to the communication
agent. For example, it could use pthread_cond_wait to wait on the communication agent.
The communication agent can use pthread_cond_broadcast to release any user thread that is
waiting on the communication agent (pthread_cond_signal may be better if only one user
thread ever holds the condition variable).

3. There is one communication agent for each method. For example, a TCP method that waits in
select for activity on an fd and a thread that handles shared memory and may use (in POSIX)
sched_yield after spinwaiting (or, in systems that support condition variables shared between
processes, may use that to wait for an incoming event or message). A similar approach may be
used here: pthread_cond_broadcast can be used from any method’s communication agent
thread to release all waiting threads.

The POSIX pthread_cond_wait has two arguments: a mutex and a condition variable. The
routine atomically unlocks the mutex and waits for the condition variable. This suggests, for
pthreads, the following solution for MPID_Request_probe in the multithreaded cases:

6 MPI OPERATIONS 58

while (1) {
pthread_mutex_lock(&queue_mutex);
<look through queue>
if (found) {

pthread_mutex_unlock(&queue_mutex);
return;
}

else
pthread_cond_wait(&queue_mutex, &cond);

}

In the case of a single user thread, you might want to try

<look through queue>
if (found) return;
<same code as above>

This is ok as long as the communication agent can’t remove items from the queue. Unfortunately,
cancel does just that.

In fact, we may want to consider a higher-level abstraction, such as monitors, which could (usually
would) be implemented using locks and condition variables.

Buffered send. The buffered send (both blocking and nonblocking) should first use MPID_tBsend
to attempt and send the message before implementing the buffer-copying strategy.

Question: should the request needed to implement a buffered send be allocated from the
user-supplied buffer? The standard suggests so, though it isn’t strictly required. For example, only
the information needed to create the request could be saved; if no request is available, the bsend
handler can wait until later.

The advantage of not requiring that the request itself be stored in the Bsend buffer is that the
device may want to control who allocates requests. Thus, we only store the information needed to
get a request in the bsend buffer. This has the advantage that it means that the value of
MPI_BSEND_OVERHEAD is constant, independent of the choice of device.

What utility routine should be defined to allocate buffer space from the user-specified buffer? How
will it be made thread-safe? What is the interface to MPI_REQUEST_FREE? How do we ensure that we
wait on pending bsend operations in a polling implementation? See the file
mpich/src/util/bsendutil2.c in MPICH-1. Note that while the buffer is a global (thread safety
warning), it can be stored as a local static variable in the file the implements the buffer
management utility routines.

Question: where is the information on the buffered send buffer stored? Is it in a separate module
(e.g., bsendutil.c) or is it in the MPIR_Process structure? I think that it should be in a bsend
module, with bsend adding a finalize callback as necessary to complete any pending bsend
communication.

We need a MPIR_Bsend_init and MPIR_Bsend_finalize to control the initialization and
finalization of the bsend buffer. The initialization include initializing the thread lock used to guard
access to the rest of the structures. Finalization must ensure that any pending operations complete
(locally); thus the MPIR_Bsend_finalize needs to be called before any of the routines that free any
data structures or state.

The bsend operations are roughly:
Try MPID_tBsend; if it succeeds, done. Otherwise, find the first block in the buffer that is large

enough for the data, stored as packed with MPI_Pack. Save: the data, the type of the data (e.g.,
MPI_PACKED or some contiguous type), the count, and the MPI_Request used to start an MPI_Isend
on the data.

As noted above, we must be prepared to save the communicator, tag, and rank, so that if no
request is currently available, the communication can be deferred until later. SGI doesn’t do this
currently, and as a result, their implementation fails on some valid MPI programs.

6 MPI OPERATIONS 59

msgbuf
p−>size

p−>total_size

BsendData_t

p

BsendData_t(a)

(b)

msgbuf
p−>size

p−>total_size

BsendData_t

p

BsendData_t

Alignment padding

Figure 4: Explanation of size and total_size fields in the BsendData_t header. In (a), an
unallocated element, pointed at by p is shown. The difference between the two sizes is just the
size of the header. In (b), an allocated element is shown. Here, the size is smaller, reflecting the
need to align the BsendData_t header on a suitable boundary.

If some bsend operations are deferred pending the availability of a request, there needs to be some
way for the communication agent to know that it needs to try to send messages once requests
become available.

We take advantage of MPI_BSEND_OVERHEAD to ensure that each block is aligned on a double.
The fields in the bsend buffer element include tag, comm, rank, dtype, count, and request, as

well as next.
The bsend buffer itself is described by buffer, size, head, tail, and pending. The value of tail

points to the first free byte and head points to the first used byte, or to tail if the buffer is empty.
Question: for the nonblocking versions, in principle, we could wait to copy into the buffer until the

wait/test. Maybe in 2008.

6.6.2 MPI_IBSEND

See Buffered send.

6.6.3 MPI_BSEND

See Buffered send.

6.6.4 MPI_BSEND_INIT

Remark: Note that this should not reserve space in the buffer for the data. That step should be
performed when the communication is started with MPI_Start or MPI_Startall.

6.6.5 MPI_BUFFER_ATTACH

If a buffer is already attached, return error. Otherwise, attach the designated buffer and initialize
the buffer as empty. The buffer is organized as a circular buffer as described in the model
implementation of buffered mode in the MPI standard.

6 MPI OPERATIONS 60

6.6.6 MPI_BUFFER_DETACH

Buffer detach must first wait for all operations to complete before returning. In order to catch race
conditions in a multi-threaded environment, MPI_Buffer_detach should set a flag on the buffer on
entrance; all buffered send operations should check this value before proceeding, generating a
MPI_ERR_OTHER class of type THREAD_RACE if the flag is set.

6.6.7 MPI_CANCEL

Check the kind of the request:

• Inactive persistent. Return error.

• Active persistent. Handle as a non-persistent request of the same type.

• Receive. Call MPID_Cancel_recv. If already complete or in progress, cancel fails.

• Send. Call MPID_Cancel_send. If already complete or in progress, cancel fails.

Remark: We should have an attribute that indicates that there are no send-cancels. Handling
send-cancel is the only part of MPI-1 that requires that a communication agent runs even if no MPI
calls are made by a process. Question: what is the keyval of this attribute?

Remark: there was some discussion in MPICH-1 that send-cancel required more care that
described here (including a time-stamp on requests to ensure that the correct request was cancelled.
Here’s the situation

process 0 process 1
thread 0 thread 1
isend
cancel irecv (matches isend)

<------- ok-to-send -------<
send matched, removed

isend(same request)
isend arrives
cancel arrives (late)

At the end of this, the cancel matches the second isend even though it should only match the first.
However, to avoid this, we need only wait until we receive a response from the destination process
about whether the cancel succeeded or not before freeing the request. To accomplish this, we need
only increment the reference count on the request when canceling it, decrementing the reference
count on the response from the destination process.

6.6.8 MPI_IPROBE

MPID_Request_iprobe

6.6.9 MPI_IRECV

MPID_Irecv

6.6.10 MPI_IRSEND

Call MPID_Irsend.

6.6.11 MPI_ISEND

MPID_Isend
Another special case is the predefined, permanent objects. Should the ref_count be updated for

those objects (answer: no)? Is the branch (we’ve already loaded the object identifier) faster than the
load/increment/store?

6 MPI OPERATIONS 61

6.6.12 MPI_ISSEND

Same as MPI_ISEND, but with the synchronous mode set.

6.6.13 MPI_RECV

Call MPID_Recv. Note that this routine is permitted to return a MPI_Request; in that case, we must
wait on the request.

6.6.14 MPI_RECV_INIT

Call MPID_Recv_init to create a persistent request and save the message parameters
(communicator, tag, source_rank, datatype, buffer, and count).

Note that a persistent request is not like an MPID_Request; rather, it only contains enough
information to identify it as a persistent request and a pointer to a normal MPID_Request. In fact,
the pointer to the request can be used to indicate whether the persistent request is active, rather
than using a separate field. This field could be active_request.

Note that MPID_Memory_register must fix both the physical memory and the virtual to physical
mapping, so that both any peripheral device (such as a network card that implements VIA) and the
process will both access the same locations. Apparently, Linux doesn’t provide this service, and it
must be emulated by restricting the behavior of malloc!

6.6.15 MPI_REQUEST_GET_STATUS

Extract the status data from the request. This requires either an MPID_Request_get_status or
clearly defined status elements in the MPID_Request. The current choice is to use the status field in
MPID_Request.

6.6.16 MPI_REQUEST_FREE

MPID_Request_free Question: Who handles persistent or user-defined requests?
Note that this is not the same as cancelling a request. A request that is freed must still complete.

Thus, the request needs a reference count (ref_count) that must be checked when the related
communication completes. If the count is zero, there will be no MPI_Wait etc. call, and the request
data strucutre must be recovered. A polling device that expects a wait or test call may need to
maintain a list of freed but not completed requests and effectively call MPID_Testsome on that list.
See Section 6.7.

6.6.17 MPI_RSEND

Like MPI_Send, but with the ready mode. This is a bit in the message header (at least when full
debugging is enabled) that can be checked at the destination to detect an erroneous use of
MPI_RSEND (no matching receive).

6.6.18 MPI_RSEND_INIT

See MPI_RECV_INIT.

6.6.19 MPI_SEND

See MPI_ISEND. This could simply be isend followed by wait.
Question: do we want to indicate to the receiver that this is a blocking send? For example, that

would suggest a higher priority in handling the operation, since a single threaded source process may
be blocked on this operation.

6 MPI OPERATIONS 62

P0 P1 P0 P1

(a) isend/irecv (b) combined

data
ack

data
data

ack
ack

data
data+ack

data+ack

Figure 5: Two sendrecv scenarios

6.6.20 MPI_SENDRECV

Question: If the source and destination are the same, is there anything special that we want to do?
Note that this routine matches communication from any point-to-point operation, not just other
sendrecv calls. Simply use MPI_Isend, MPI_Irecv, and MPI_Waitall.

Note that in the case of a rendezvous exchange where the data is sent in a number of blocks, an
exchange can be handled more efficiently that two independent isend/irecv pairs, as shown in
Figure 5. Question: do we want to allow ok-to-send acks to be piggy-backed onto an ongoing data
stream? Once a data stream starts, we can record that it is ongoing; any ack to that partner can be
added to the ongoing stream. If no communication is pending, the ack can be sent immediately.

Note that since MPI_Sendrecv can match other MPI communication calls, such as MPI_Send and
MPI_Irecv, we cannot depend on MPI_Sendrecv to give us enough information to decide whether to
piggyback acks on a data stream.

6.6.21 MPI_SENDRECV_REPLACE

6.6.22 MPI_SEND_INIT

Call MPID_Send_init. See MPI_Recv_init for more details.

6.6.23 MPI_SSEND

Like MPI_Send, but with the synchronous mode.

6.6.24 MPI_SSEND_INIT

See MPI_RECV_INIT.

6.6.25 MPI_START

This just calls MPID_Startall with a single request.

6.6.26 MPI_STARTALL

Do we want startall to allow for some scheduling of the operations? For example, it could start the
“furthest away” first. It could also batch operations. If so, we need an MPID_Startall.

Should each of the individual persistent routines provide an internal routine that is used to start
the operation? These can simply call the related non-persistent routine using the fields from the
persistent request (e.g., communicator) and storing the new request in the request field.

Note that generalized requests are not started with MPI_START; i.e., there is no persistent
generalized request.

6 MPI OPERATIONS 63

6.6.27 MPI_STATUS_SET_CANCELLED

Where are the values defined for indicating cancelled message? A MPID_COUNT_MSG_CANCELLED for
the count field in the status? (We shouldn’t use the MPI_TAG field of MPI_Status because that field
is visible to the user.) MPICH-1 currently sets the MPI_TAG field to MPIR_MSG_CANCELLED.

6.6.28 Point-to-point completion functions

There are several special kinds of requests that require special handling by all of the completion
(e.g., MPI_Test and MPI_Waitany) functions.

Generalized requests: On completion, invoke the free_fn.
Persistent requests: The actual request is the active_request in the MPID_Request structure.
Rather than have separate routines for each of the MPI completion functions, we instead use the

busy flag in the MPID_Request. In the case of a completed request, this eliminates the need to call
an additional function. Otherwise, the MPI code must make the appropriate progress engine calls.
For example, MPI_Wait looks something like this:

MPI_Wait(...)
{

while (request->busy) {
MPID_Progress_start(); // Notes that we are about to

// check ready flags. No busy
// flags will be cleared

if (request->busy) {
MPID_Progress_wait();

}
else {

MPID_Progress_end();
}

}
if (request->type & REQUEST_IS_RECV && status) {

*status = request->status;
}

}

The reason for the MPID_Progress_start and the other progress routines becomes clear when you
consider MPI_Waitsome.

Previous Discussion. (This text is still true but represents a different direction that we are no
longer planning to take.)

The two most basic routines are MPI_Testany and MPI_Waitany in the sense that all of the other
operations can be built from these. For example:

MPI_Wait MPI_Waitany

MPI_Waitsome MPI_Waitany followed by MPI_Testsome (or MPI_Testany until flag is false). Note
that without the MPI_Testsome call, the requirements of MPI_Waitsome won’t be met; in
particular, the MPI_Testsome is needed to allow MPI_Waitsome to provide fairness (indicate all
requests that are ready).

MPI_Waitall MPI_Waitany until all non-null requests have completed.

MPI_Test MPI_Testany

MPI_Testsome MPI_Testany until flag returns false.

MPI_Testall MPI_Test for each request.

6 MPI OPERATIONS 64

These are not necessarily the best implementations of the eight completion functions, but they do
provide reasonable implementations as long as the number of requests provided to the completion
function is not too large (since some of the algorithms above have complexity proportional to the
square of the number of requests).

6.6.29 MPI_TEST

Check the busy flag. Call MPID_Progress_poke and check again if busy is true.

6.6.30 MPI_TESTALL

Like MPI_Test, but for all requests. However, call MPID_Progress_poke first, since it is likely that
not all requests will already be completed.

6.6.31 MPI_TESTANY

Like MPI_Testall, but stop on the first completed request.

6.6.32 MPI_TESTSOME

Like MPI_Testall.

6.6.33 MPI_TEST_CANCELLED

This uses the status field, specifically the MPI_TAG field, in a request to test for a cancelled message.
See the discussion under MPI_STATUS_SET_CANCELLED. We need to decide.

6.6.34 MPI_WAIT

As described above under point-to-point completion functions.

6.6.35 MPI_WAITALL

Like MPI_Testall, but must wait until all requests are complete.

6.6.36 MPI_WAITANY

See MPI_Testany.

6.6.37 MPI_WAITSOME

See MPI_Testsome.

6.7 Communication Agent

All implementations require some sort of communication agent. This agent handles the delivery of
data as described by MPI_Recv and MPI_Irecv, RMA operations that require action at the target
(such as handling complex datatypes and for two-sided communication layers), progress for
nonblocking sends, and more subtle operations such as cancelling of nonblocking sends. This agent
may be invoked explicitly (a polling interface) or implicitly (e.g., in response to an I/O interrupt or
a thread-schedule event).

Note that the communication agent is very device-specific. See the discussion of the agents for the
particular devices.

6 MPI OPERATIONS 65

6.8 Collective Communication and Computation

One of the major changes in MPICH2 is in the implementation of the collective routines. The
MPICH2 implementation will exploit pipelining and store and forward algorithms; these are
supported by the XFER interface.

Since each system may have some feature that provides for even faster implementation of the
collective routines, it will be possible to substitute a system-specific implementation for any of the
collective routines. The purpose of the implementations provided with MPICH is to provide a level
of performance that will be adequate for many users.

The α-tree approach described in [2] should be considered; this is a simple variation on the
binomial tree approach used in the MPICH implementations of many of the collective routines. We
will consider combining this with the pipelining and scatter/gather approaches championed by van
de Geijn ([1] isn’t quite the right reference but it will do for now).

6.8.1 Reduction functions

The reduction functions must use the restrict qualifier.
Each reduction operation (e.g., MPI_SUM) has a corresponding implementation (e.g., MPIR_Sum)

and is placed in a separate file (e.g., opsum.c. Each of these must be careful to conditionally include
the Fortran datatypes and Fortran logical operations (see Section 7.7).

Some reduction functions are not defined on a particular datatype. To indicate errors, the routine
MPID_Op_set_error is called. The MPI reduction routine (reduce, allreduce, scan, exscan, and
reducescatter) checks this with MPID_Op_get_error. In order to ensure that separate threads
manage their own error flags for reductions, there is an op_error field in the per-thread data
structure.

6.8.2 Code Structure for the Implementation of the Collective functions

The MPICH code uses one gigantic file, intraops.c, to provide a generic implementation of each
collective operation. Each communicator has a structure of pointers to functions. Unless otherwise
set, each communicator points to the predefined structure MPIR_intra_collops which is initialized
to point to all of these functions.

For MPICH2, each of the MPI functions (in its own file) contains the generic implementation of
the collective operation, based initially on the point-to-point code similar to that in MPICH-1 and
eventually on the stream-oriented operations. This will simplify the process of tuning each
operation; it will also reduce the size of (unshared) executables since few if any programs use all of
the collective operations. See the discussion of the implementation of PMPI.

Question: We could restructure MPICH1 now to use this same approach. The resulting code
would serve as the first step towards the MPICH2 coee.

Question: Now that MPI-2 defines intercommunicator collective routines, do we want these in the
same file as the intracommunicator routines, or in an alternate file. E.g., should bcast.c contain the
intracommunicator implementation of MPI_Bcast and icbcast.c contain the intercommunicator
implementation. Also, we may select no intercommunicator collectives at configure (or run?) time to
reduce the size of libraries and code. This could use the configure option
--enable-comm:intercommcoll=no.

We may want to have multiple “generic” implementations and an easy way, say with the runtime
parameter routines, to select among them at runtime.

One approach is the following: By default, the collops pointer is null. In that case, the default
routine is used. If the structure is not null, but the individual pointer is null, then the default
routine is used. Otherwise, call the routine in the structure. This follows the rule of lazy
initialization and permits cleaner separation of the implementation of the various collective routines.

We may want to compute and save things like the neighbors for each collective communication
pattern; this can be done either when the collective operation is first encountered or at
communicator creation time (the descision could be a runtime attribute). Question: how do we
modularize this? Is there a “collective” attribute?

6 MPI OPERATIONS 66

6.8.3 Collective Computation

6.8.4 MPI_OP_CREATE

Create the object and set the kind, language, and function. Use an internal routine that can be
shared with the init routine to create the predefined operations.

In the multithreaded case, MPI_Op needs to have reference counts. Since operations on MPI_Op are
infrequent, we should have a ref_count field for all cases (even single threaded).

How do we handle the predefined types? Who creates them? Do we want an MPIR_Op_init and
MPIR_Op_finalize?

6.8.5 MPI_OP_FREE

If predefined and not in finalize, indicate error. Otherwise, decrement reference count and free if zero.

6.8.6 Intracommunicator Collective Operations

The following section (will) briefly describe the algorithms used to implement the
intracommunicator collective operations.

Many functions support MPI_IN_PLACE as an argument. These need to be prepared for that case.
One important check is to test for mismatched collective operations. MPICH uses a different tag

value for communication for each collective operation, but has no way to test for a mismatch
(because the communication selects on tag and, without preceeding all communication with an
MPI_Iprobe call to check that the “next” message has the right tag. We might want a routine that
returns an “unexpected message” when it finds a message with a different tag from a particular
source and communicator. That is, if the communication is a virtual stream (virtual in the sense of
being separate for each communicator/rank pair, stream as being ordered), then it is an error to see
a message with an different tag value.

Question: do we need an MPID routine to implement this? Is it a (optional) feature of the stream
routines?

We also want to provide the option to check other parameters in collective calls, for example, that
the message sizes conform or that all processes agree on the root. One approach is, when an error is
detected locally, to send the usual header but no data and with an error indication in the header.

General question: A number of the algorithms make send data destined for several processes to an
intermediate process. For example, a MPI_Scatter might send the data destined for processes p/2 to
p− 1 to process p/2; that process in effect becomes the root for a smaller broadcast. However, this
works easily only if (a) the data is contiguous and (b) the subset of processes is also contiguous in
rank. If we exploit topology information to determine a better communication pattern, the
contiguity of ranks in the process subsets may be broken. Do we want to handle this by rearranging
the data to match the ordering of the topology? If so, we need to keep a flag with the communicator
topology information that indicates whether a copy is necessary or not.

We also need some common routines for collective argument checking. These fall into a few cases:

1. All must have the same value. For example, the root value in an intracommunicator broadcast
or the operation in an allreduce.

2. All must specify the same type signature (number of items and types). For example, the count
and datatype in an intracommunicator broadcast.

6.8.7 MPI_ALLGATHER

For short data, use recursive doubling algorithm. For long data, consider the bucket brigade
algorithm.

Question: For heterogeneous systems, the decision as to whether the data is “short” needs to be
made relative to some cannonical representation, such as XDR or external32. What is the routine to
determine cannonical size? Also, do we want to have a separate routine for the heterogeneous case?

6 MPI OPERATIONS 67

6.8.8 MPI_ALLGATHERV

Same as MPI_ALLGATHER, since all processes can make the short/long determination.
Question: Is there a role for a common routine to compute total message lengths from a count

array and a datatype, and to precompute the locations in the send and/or receive buffer for
communicating?

6.8.9 MPI_ALLREDUCE

Consider recursive doubling algorithm, with care taken to ensure that all results are the same,
particularly in the presence of extended registers (e.g., 80 bit intermediate quantities on Intel).

Note that MPI_IN_PLACE is valid for this routine.
Question: Do we want to implement this using a modification of the accumulate operation? That

might be a simpler way to handle MPI_IN_PLACE.
Question: What should be used in the heterogeneous case? Should that reduce to MPI_Reduce

followed by MPI_Bcast?

6.8.10 MPI_ALLTOALL

For short data and for all data on completely connected networks, use a hypercube algorithm: each
process exchanges with its partner in that dimension the data needed by the partner and that
partner’s subsequent partners (in the remaining dimensions).

For long data on less capable networks, use a bucket brigade algorithm.

6.8.11 MPI_ALLTOALLV

This is similar to MPI_ALLTOALL, but the decision on size of data is more complicated.

6.8.12 MPI_ALLTOALLW

Like MPI_ALLTOALLV.

6.8.13 MPI_BARRIER

Barrier is a special case of allreduce with no operation or data.

6.8.14 MPI_BCAST

Broadcast will be implemented by a scatter followed by an allgather. These will use an ordering of
nodes from MPID_Topology_xxx, rather than the rank ordering of the communicator. Data that is
very short (e.g., a single int) should use a MST (minimal spanning tree). The tree itself should be
defined by MPID_Topo_cluster_info or something similar (e.g., a MPID_Topo_MST function). Since
the tree should be defined by the topology rather than computed, the algorithm should look
something like (this is the simple MST, not the scatter/allgather approach)

Get_MST(&parent, &nchildren, &children);
if (*parent)

Recv(from *parent)
for (i=0; i<nchildren; i++)

Send(to (*children)[i])

6.8.15 MPI_EXSCAN

Use the same approach as MPI_SCAN but do not include the local contribution in the local result.

6 MPI OPERATIONS 68

Figure 6: Communication pattern for MPI_Scan. The communication runs from bottom to top; this
figure shows the three steps necessary for eight processes.

6.8.16 MPI_GATHER

This will use a MST for short gathers to reduce the impact of latency.

6.8.17 MPI_GATHERV

Like MPI_Gather, but the amount of data sent can be different in each process. The root process
knows what is coming from each other process, but the other processes can’t tell how much data is
being moved. Thus, it can’t easily choose to use different algorithms for short and long messages.

6.8.18 MPI_REDUCE

Use a spanning tree. Pipeline for long vectors.

6.8.19 MPI_REDUCE_SCATTER

For short data, this can use MPI_Reduce followed by MPI_Scatterv. On complete networks, it is
possible to implement this by using hypercube-like exchange algorithms.

For long data, this should use the bucket brigade algorithm.

6.8.20 MPI_SCAN

Use reflection. At step k, processes with rank r exchange their current result with the process at
r + 2k or a r− 2k, where the sign is positive if the kth bit of r is not set, and negative otherwise (see
Figure 6). This allows the scan to be computed in log p steps.

Note that towards the end of this process, some of the exchanges are not needed; the data needs
to flow only to the processes with higher rank, not lower rank. Do we want to do this or does it
complicate the code?

Note also that this algorithm must use the rank order of the communicator, not a reordering for a
better fit to the topology of the system. If there is strong clustering in the underlying interconnect
topology, a different algorithm will be needed.

6.8.21 MPI_SCATTER

For short data, use an MST. On store and forward networks, MST should be used for long data as
well. To avoid excessive memory consumption, the MPID_Stream_iforward routines should be used.

On a switched network, an MST may not be optimal for the long case. Do we want to provide a
simple send-to-each in that case?

6.8.22 MPI_SCATTERV

For short data, use an MST.

6 MPI OPERATIONS 69

6.9 Intercommunicator Collective Operations

(Not yet done) MPI_ROOT and MPI_PROC_NULL are used by the group containing the root process; the
other group refers to the rank of the root.

6.10 Topology

How do we implement MPI_Cart_create and MPI_Dims_create with the MPID routines? Do we
need an MPID_Topology_cart and MPID_Topology_cart_dims? Constructing a mesh from the
hierarchical description that we’ve included can only be done approximately.

The MPICH implementation uses private attributes to hold this information within a
communicator. The corresponding keyval is created when needed, and a finalize callback handler is
defined to free the keyval when the MPI program finishes.

One advantage to using attributes (or equivalently a pointer to a structure) is it allows any
information to be saved in with the communicator, not just some predefined fields. Note that
MPI_Comm_dup is required to copy both attributes and topologies, so it makes sense to implement
topologies as an attribute.

Question: how do we define routines needed to support the MPI (not MPID) calls? Should we
have MPIR routines? For topology, we could have MPIR_Topo_init (and the corresponding
MPIR_Topo_finalize). Note that we need this to allocate the keyval used to store the topology
attributes. We also need a MPID_Topo_graph_t, MPID_Topo_cart_t, and MPID_Topo_common_t
structure that holds the information for each topology (the common type is a subset of the other two
that provides access only to the topology type).

6.10.1 Proposed Interface

The device may implement MPID_Cart_map and/or MPID_Graph_map . These are very similar to the
MPI routines of the same names, and can be used to communication information on the topology of
the underlying interconnect and process layout to the MPI routines. If the device does implement
these routines, it must define the corresponding C preprocessor value to indicate that the routine is
available. If the device does not provide the routine, then the MPICH implementation will provide a
simple default. Note that the MPID_Cart_map and MPID_Graph_map routines are sufficient for
implementing the MPI topology routines, as described in the MPI-1 standard.

The specifics are
Use

#define MPID_HAVE_CART_MAP

if the device provides MPID_Cart_map. The binding for this routine is

int MPID_Cart_map(MPID_Comm *comm_ptr, int dims, const int dims[],
const int periods[], int *newrank)

Use

#define MPID_HAVE_GRAPH_MAP

if the device provides MPID_Graph_map. The binding for this routine is

int MPID_Graph_map(MPID_Comm *comm_ptr, int nnodes, const int index[],
const int edges[], int *newrank)

Use

#define MPID_HAVE_DIMS_CREATE

if the device provides MPID_Dims_create. The binding for this routine is

int MPID_Dims_create(int nnodes, int ndims, int *dims)

6 MPI OPERATIONS 70

These routines should return valid MPI error codes (not classes!) if an error is detected. They may
assume that the input communicator and output pointer are valid (checked in the calling routine).

These routines should perform any initialization that they require on the first call. If they allocate
resources (e.g., malloc memory), they must register a finalize handler to clean up on exit.

It is the long-term goal of the MPICH group to provide sample implementations of these for
several important classes of machine interconnects. However, until that time, these routines provide
a way for a device implementor to communicate topology information to the MPI routines.

6.10.2 Proposed Interface 2

An alternative to the above interface would be an interface that allowed the device to specify one of
the following topology types:

cart Cartesian; the device provides the number of dimensions, the size of each dimension, and
whether the dimension is periodic (i.e., a torus or mesh). Systems with SMPs connected on a
mesh can use a first dimension with size 2 and periodic.

heirarchical The device provides, for each process, a set of levels and the color and key of the
process within that level. These arguments have meanings similar to MPI_Comm_split.
Processes that belong to the same group at a particular level (e.g., an SMP or a cluster) have
the same value of color; each process has a distinct value of key. The number of levels is
provided by the device, allowing the description of an arbitrary hierarchy of processes. In
addition, at any level, the processes with the same color may have additional structure; e.g.,
they may have cartesian topology.

switched The processes are connected by a switched network that either provides or approximates
a complete connection network. This is appropriate for systems with full bisection bandwidth
independent of the number of processes and with good handling of contention. Note that most
large systems will only approximate this, but it may still be an appropriate choice because the
details of the interconnect are too complex to be exploited.

bus The processes are connected by a shared resource, such as a bus, non-switched Ethernet (e.g.,
using hubs), or even with switched networks that do not have adequate bandwidth to handle
all processes at one time. One additional parameter may be the number of processes that may
communicate simultaneously without significant contention.

6.10.3 MPI_CARTDIM_GET

Access the topology description and return the number of dimensions of Cartesian topology (if
defined) from the ndims field.

6.10.4 MPI_CART_CREATE

This routine argues for a corresponding MPID routine, along with one for dims create. Alternately,
as suggested by the MPI standard, this could call MPI_CART_MAP followed by MPI_COMM_SPLIT.

6.10.5 MPI_CART_GET

Access the topology description and return the associated fields (dims, periods, and coords).

6.10.6 MPI_CART_MAP

This routine should call MPID_Cart_map. A trivial implementation of this routine (as described in
the MPI standard) is to simply return the rank of the process in the input communicator.

6 MPI OPERATIONS 71

6.10.7 MPI_CART_RANK

Access the topology description and convert the specified Cartesian coordinates into a rank. This
uses dims and ndims to compute the rank; note that is must also handle the case of periodic
coordinates (periods).

6.10.8 MPI_CART_SHIFT

This routine accesses the topology description and computes the requested shifted rank. This is
roughly MPI_Cart_coords, followed by an update to the coordinates, followed by MPI_Cart_rank.

6.10.9 MPI_CART_SUB

This routine can be implemented with MPI_COMM_SPLIT (see the MPI-1 standard, section 6.5.7
“Low-level topology functions”). It may also want to call MPID_Cart_map to allow subdimensions to
be reordered when requested.

6.10.10 MPI_DIMS_CREATE

This routine calls MPID_Dims_compute, which trys to return a “good” set of dimensions. It could use
MPID_Topo_cluster_info to provide a good match to a cluster; otherwise, it should strive to create
a decomposition that is as even as possible.

The name of the internal routine does not use “create” because we use create and destroy to
describe the routines that allocate and deallocate objects, particularly the structures corresponding
to MPI objects.

6.10.11 MPI_GRAPHDIMS_GET

Access the topology description and return the number of dimensions of the nodes and edges of a
graph topology (if defined).

6.10.12 MPI_GRAPH_CREATE

This is implemented using MPI_GRAPH_MAP and MPI_COMM_SPLIT.

6.10.13 MPI_GRAPH_GET

Access the topology description and return the associated fields, which include index and edges.

6.10.14 MPI_GRAPH_MAP

This should eventually have an MPID routine, but not in ADI-3. It simply returns the rank of the
input communicator.

Question: Should this try to detect special patterns for which good mappings are known? For
example, if we provide routines that are used by the collective to determine good minimal spanning
tree mappings, can MPI_GRAPH_MAP take advantage of them?

6.10.15 MPI_GRAPH_NEIGHBORS

Access the topology description and return the associated fields by using index and edges.

6.10.16 MPI_GRAPH_NEIGHBORS_COUNT

Access the topology description and return the associated fields.

6 MPI OPERATIONS 72

6.10.17 MPI_TOPO_TEST

Return MPI_GRAPH for graph topology, MPI_CART for Cartesian topology, and MPI_UNDEFINED
otherwise. This uses the kind field.

6.11 RMA

My original plan was to implement this using the Segment, Rhcv, Put_contig and Get_contig
routines. We will need code to support datatype caching at the destination process. We may want
to provide a way to define datatypes in globally shared memory for systems like large SMPs that
provide global access to at least some memory. Currently, there is no ADI interface for that. I have
since added additional put/get for the case where the origin and target datatypes are the same.

Question: Should there be a model of remotely-defined datatypes that would allow processes to
avoid caching the description? How would this work in the multi-method case where some processes
might have shared memory and others might not?

For systems with ordered delivery, we may want a simpler completion model, one that has
completion per destination process (or per process per window) rather than per RMA operation.
This is a further reason to require that completion flags be created, and that this creation contain
both destination process and window. Where operations are ordered, this flag can simply count the
number of started but not completed operations, or it could contain a sequence number of some sort
for the most recent operation.

Question: For this to work with the waitflags and testflags, we really need a flag set for the RMA
window, which each RMA operation takes (instead of a separate flag address). How should the API
for both the flag set creation, reference, and completion work?

The current ADI-3 interface defines put and get operations for both contiguous data (at both
origin and target) and for the case where the same datatype is used at both origin and target. Who
is responisble for the other cases? The MPICH code or the ADI code?

The completion flags for the MPID_Put_contig etc. operations have not be throughly thought out.
For example, there is no explicit support for the group-based window completion (MPI_Win_post
etc.), nor is there simple support for systems like the Cray T3E that have (roughly) hardware
support for MPI_Win_fence.

Question: The MPI RMA design is actually pretty lean and general, and without further
constraints or properties, it is hard to create a simpler interface. However, we might be able to
simplify by considering three important cases:

Shared Memory. This is not fully shared, but shared memory segments or shared mmap regions.
There may need to be special calls to enforce memory ordering and coherency.

Distributed Memory with DMA. This is for systems that support some one-sided data
delivery, such as VIA or LAPI.

Distributed Memory with no DMA. This is for simple network-connected processes, such as
Unix processes connected by TCP.

Question: are these sufficient? Should we put these classes into the method-based interface instead?
For example, where shared memory is available, the synchronization and lock operations can act

directly on the shared memory area that is allocated as part of the window object. For example, the
start/post/complete/wait can use counters and flags in shared memory. Locks can be acquired
directly and quickly in shared memory, and (for the passive target operations), the RMA operations
can then be done directly in shared memory.

In contrast, in the distributed memory case, particular with high latency interconnects, deferred
synchronization can be used. For example, a MPI_Win_lock in that case could return immediately.
At the first RMA operation, particularly if the amount of data is small, the request for a lock can be
piggy-backed on the RMA request. In fact, following the BSP style, all of the RMA operations could
be held until the MPI_Win_unlock.

Clearly, the choice of immediate or deferred locks depends on the kind of communication between
processes.

6 MPI OPERATIONS 73

Question: are there any special values for window objects similar to the ones considered for
datatypes and communicators? For example, one bit could indicate whether all windows of the
window object are in shared memory.

To remove the complexity of datatypes, we might want a MPID_Stream_put that acts on a
segment, rather than using several special-case versions of put. It would still need to work on two
segments; that is, both the origin and targets.

Still needed: a discussion of the completion of one-sided operations. Do we want to use the flags
(e.g., MPID_Flags_waitall)?

6.11.1 MPI_ACCUMULATE

Note that the target address is computed as base address of target window + target_offset *
target_window_displacement_unit.

Among the errors to check for is offset out of range. This is MPI_ERR_DISP; are there any subcases?
One question is whether active and passive target operations should be handled separately. For

example, a TCP device could establish two sockets for each communication path; one to be used for
active target operations and one for passive. The passive socket could be handled by a separate
thread while the active socket could be handled by routines invoked by the main thread, thus
eliminating a context switch on active-target operations (active target could include MPI-1
communication, particular blocking calls).

Also note that the case of either the origin or target datatype is contiguous can be handled with a
simple call to either MPID_Pack or MPID_Unpack; the only complex case is where both datatypes are
not contiguous or the same, requiring a copy to an intermediate form.

Another possible implementation would have a thread per window object, or a thread for all
window objects that allow locks.

[BRT] Alternatively, passive target operations could be communicated over the same socket as all
other operations, but a message handling thread could be used to periodically check for new
messages when other threads were busy with non-MPI related computations. This avoids a context
switch whenever a message fragment is received, but insures that passive operations are processed in
a timely fashion. For the non-threaded implementation, a similar solution could be used, replacing
the message handling thread with a SIGALRM signal handler.

6.11.2 MPI_PUT

MPID_Put

6.11.3 MPI_GET

6.11.4 MPI_WIN_FENCE

In all cases, any pending RMA operations must complete first before MPI_WIN_FENCE may return.
Question: There are four possible assert values for MPI_Win_fence. Are the following correct?

MPI_MODE_NOSTORE No write barrier is required.

MPI_MODE_NOPUT No action.

MPI_MODE_NOPRECEDE All processes must specify this if any do; it indicates that no process will
initiate an RMA call. No barrier is required in this case.

MPI_MODE_NOSUCCEED All processes must specify this if any do; it indicates that no process will
initiate an RMA call. No action.

6.11.5 MPI_ALLOC_MEM

Call MPID_Mem_alloc. We also need a routine that MPI_WIN_CREATE can call to determine if
memory was allocated with this (or a similar) routine.

6 MPI OPERATIONS 74

Note [BRT]: The performance of point-to-point and collective communication could be improved
in some situations if the user buffers were allocated using MPI_Mem_alloc. The info argument could
be used to express the intended use of the space, alllowing MPI_Mem_alloc to select an appropriate
memory pool.

Question: Should this routine be MPID_Mem_isalloc(int size, void *ptr)? ([BRT]
isalloc???)

6.11.6 MPI_FREE_MEM

Call MPID_Mem_free.
For error reporting, we may want to keep a reference count so that a MPI_Free_mem applied to a

window that is currently part of a window object generates an error message.

6.11.7 MPI_WIN_CREATE

Allocate a new window object. Call MPI_Comm_dup to create a private communicator that can be
used as necessary; this also stores the group of the window object. Save the base, size, and displ.
Setup the default attributes (MPI_WIN_BASE, MPI_WIN_SIZE, and MPI_WIN_DISP_UNIT). Note that
these attributes could return pointers to the corresponding fields in the window object, but for
safety against users storing through those pointers, they should use a separate area of memory.
Question: should they be in the same struct (e.g., fields user_base, user_size, and user_disp) or
far way where a mistake by the user is less likely to cause trouble?

Use the private communicator created with MPI_Comm_dup above to call MPI_Allgather to collect
all of the window base addresses, sizes, and displacement units from all of the processes using
MPI_Allgather, along with a flag that indicates if the local window is in shared memory. If all of
the base addresses are the same, set _flags with MPID_WIN_CONST_BASE; otherwise save the base
addresses in an array bases. Likewise, either set _flags with MPID_WIN_CONST_SIZE or save the
sizes in an array sizes, and either set _flags with MPID_WIN_CONST_DISPL or save the
displacement units in an array displs.

In the case of a device that supports only Twosided, it isn’t necessary to collect the displacement
units or the window bases, because the target process can apply these adjustments to the address.
However, for any one-sided operation performed by the device, it is necessary to have this
information. Further, knowing whether the target window is in shared (or registered for
RemoteMem) memory is necessary when implementing the RMA operations.

Comment [BRT]: Twosided can benefit from collecting the sizes and displacement units, as it
allows the origin to identify out-of-bounds errors prior to sending requests to the target.

If the info key nolocks is true, then no provision needs to be made for either passive target access
or for MPI_Win_lock and MPI_Win_unlock calls. Save this fact as MPID_WIN_NO_LOCKS in _flags.

For shared memory, we may want the window object to be in shared memory itself. Even if the
window object is not in shared memory, some things, like the local window locks, may need to be.
Question: how is the window object allocated? If there is an MPID routine for it, does it need to
know the group of the window (e.g., in a multimethod device, a window object whose group contains
no processes that shares memory should not consume limited shared memory space).

Question: how are pending (not yet completed) RMA operations remembered? Do we need to
keep a list of requests (or streams) on which we must wait at the end of an access epoch? For
efficiency and low-latency with short data transfers (ones that are completed immediately, e.g. by
sending a short message), do we want to have those indicate that they are complete (e.g., by
returning a null handle to wait on)? Do we only need to use the flags array and
MPID_Flags_waitall?

6.11.8 MPI_WIN_FREE

Call MPI_Barrier on the internal communicator. Check for errors, such as unreleased locks,
pending RMA operations, or incomplete post/start/complete/wait synchronization. Free the
internal communicator. Execute any attribute delete functions.

6 MPI OPERATIONS 75

6.11.9 MPI_WIN_GET_GROUP

Access the group of the related communicator (Question: does this increment the reference count for
the group?)

6.11.10 MPI_WIN_GET_NAME

Uses the name field. Note that the Fortran versions must be careful to blank-pad the value rather
than null-terminating it.

6.11.11 MPI_WIN_SET_NAME

Sets the name field. Returns error if the supplied name is too long.

6.11.12 MPI_WIN_LOCK and MPI_WIN_UNLOCK

There are two types of lock and unlock implementations. In the most obvious, based on the name,
MPI_WIN_LOCK waits until the indicated process acknowledges the lock. This may be appropriate
when the window is in memory that is shared among the processes in the window object, such as a
fully shared-memory implementation or a distributed shared memory implementation.

For systems without direct access to the memory, an alternate but equally valid approach is to
make the lock a local operation, and wait to issue it until the first RMA operation. This is
particularly appropriate when the RMA operation (e.g., the put or accumulate) involves a small
amount of data and the interprocess communications have high latency. In fact, in the high-latency
case, we may prefer to hold all operations until the MPI_WIN_UNLOCK and then issue them in a single
communication. I believe this is similar to what BSP does, but for fence operations (I need the same
discussion under fence).

Question. For the nonblocking lock case, should we have an info key for MPI_WIN_CREATE that
asks for the blocking lock?

Another alternative is to combine the lock with the first operation request, particularly in the
Twosided case. This is simpler than queueing up a long list of operations. In this case, at the second
RMA request, issue both operations. This allows sequences such as

MPI_Win_lock(0, rank, 0, win);
MPI_Put(buf, 1, MPI_INT, rank, 0, 1, MPI_INT, win);
MPI_Win_unlock(rank, win);

to turn into a single MPID_Win_do call, issued at the MPI_Win_unlock operation. To implement this,
the window object could store a single MPID_Hid_rma_op structure and issue it as soon as either a
second operation is defined or an access epoch ends (perhaps restricted to the passive target case).
We could even use an info value, specified at window creation time, to guide whether operations are
started as soon as possible or as late as possible.

Question: Can we optimize for the nonexclusive lock (read)?
Question: In the case where the operation is lock-put-unlock or lock-accumulate-unlock, we could

avoid serialization in access to the window by only locking the byte range defined by the operation.
This would guarantee the MPI semantics while providing for a higher degree of parallelism in access.
Should we do something like this? Note the a lock for the local window must lock the entire window
since access may be through local load and store operations. Alternately, if all operations are
serialized through the local communication agent, then we don’t need to do this at all. Even in the
local access case, if we specified through the assert argument that no local stores were used, it
would be possible to allow disjoint put operations to take place concurrently. We could do this
through the MPI_MODE_NOCHECK assert value, or through a new MPIX_MODE_NO_LOCAL_STORE value.

Question: Do we want a predefined window attribute that can select between different lock
approaches (early versus lazy) instead of the info value? The advantage is that info applies only at
window creation time, while the attribute can be changed after the window is created.

6 MPI OPERATIONS 76

In the shared memory case, we may prefer acquiring the lock early if that is a simple operation.
However, it may still be advantageous to ask the target to perform the operation so as to maintain
memory locality for the lock variables.

The assert value MPI_MODE_NOCHECK can be used to eliminate the need to wait for the lock to be
acquired. This allows MPI_Win_lock and MPI_Win_unlock to be used soley to begin and end RMA
operations. This suggests that the RMA handler operations (e.g., MPID_Hid_put) may want a few
bits to specify whether a lock should first be acquired and whether a lock is needed at all (the
MPI_MODE_NOCHECK case).

Question: Does the window object have two bits that indicate whether it is currently within an
access epoch and/or an exposure epoch? This could be used for error checking (e.g.,
MPIR_ERR_WIN_NOACCESS or MPIR_ERR_NOEXPOSURE).

6.11.13 Scalable Active Target Synchronization

The scalable active target synchronization routines (MPI_WIN_POST, MPI_WIN_START,
MPI_WIN_COMPLETE, MPI_WIN_WAIT) can be implemented by keeping two counts at each process.
One count is incremented by MPI_WIN_POST for each process in the group. The other is incremented
by MPI_WIN_WAIT for each process in the group specified by MPI_WIN_POST. These counts are zeroed
by MPI_WIN_START and MPI_WIN_COMPLETE respectively once all processes have checked in.

This approach is a conmpromise between letting each target process check in separately (allowing
some RMA operations to proceed even before all processes in the group are ready) and the
simplicity of waiting until all are ready to proceed. This approach is scalable since the time is
independent on the size of the group of the window object and scales linearly with the size of the
group in the post and start calls.

A better approach may be to follow the same approach recommended above for lock/unlock: defer
until an RMA operation is going to each designated neighbor. This might lead to an approach that
involved no extra messages, at least in the Twosided case: No messages are exchanged for start,
post, complete, or wait. (the fact that they have been called may be remembered) When the first
RMA operation (i.e., put, get, or accumulate) arrives, it is applied (if the exposure epoch has
started) or is queued (if not). This only requires that, at least until the first ack, a long RMA must
not assume that the exposure epoch has started.

Question: is a message needed to indicate that an exposure epoch has ended (I don’t think so)?
Question: If only one group is ever used for scalable synchronization on this window, is there

anything that we can take advantage of? Do we indicate this with an info key onegroup?

6.11.14 MPI_WIN_POST

Begin an exposure epoch for the local window.
For each member of the group, use MPID_Win_do with type MPID_Access_cnt to increment the

start counter of that process. (Each window object has a separate start and complete counter for
each process.) Save the group (increment reference count and save in the window object’s data
structure).

MPI_MODE_NOCHECK This matches the same assert value for MPI_WIN_START. If set, no MPID_Win_do
calls are made.

MPI_MODE_NOSTORE No write barrier/flush. THis refers to a memory operation needed in some
architectures to ensure that writes to memory have completed.

MPI_MODE_NOPUT No action.

6.11.15 MPI_WIN_START

Start creates an access epoch for the processes in the specified group. The implementations here
block until the matching MPI_WIN_POST calls are made (implementations that defer communicating

6 MPI OPERATIONS 77

can proceed through MPI_WIN_START as long as the matching post occurs before and RMA actions
are taken).

The MPI_MODE_NOCHECK assert value is similar to the ready-send mode. If this is set,
MPI_WIN_START does not block, since the assumption is that the matching MPI_WIN_POSTs have
already been made; further, the effect of MPI_WIN_POST (i.e., incrementing the start counter) is
performed by this routine.

Note that it is incorrect to spinwait on the counter. Consider the following correct MPI program:

Process 0 Process 1
--------------------- ----------------------

MPI_Irecv (...)
MPI_Win_post(...)
MPI_Win_start(...)

MPI_Ssend(to 1)
MPI_Win_post(...)
MPI_Win_start(...)

In the above, time runs down the page. In other words, process 1 posts an irecv, then performs the
win post step, followed by the MPI_Win_start. If MPI_Win_start enters a tight spin loop on the
counter, the MPI_Ssend started by process 0 will be unable to match with the MPI_Irecv in process
1, and this correct code would hang.

Implementation:
See MPI_WIN_POST. Wait for the start counter to reach the size of the group provided to this

function. When it is reached, set it back to zero and return.

6.11.16 MPI_WIN_COMPLETE

Complete ends an access epoch for the processes in the group specified with MPI_Win_start.
Like MPI_WIN_START, but for the complete counter.

6.11.17 MPI_WIN_WAIT

End an exposure epoch for the local window.
Like MPI_WIN_POST, but for the complete counter.

6.12 Starting and Ending MPI

This is a difficult part of the MPICH implementation because these routines must interact with the
outside environment. Some things that we must keep in mind:

• The MPI program should execute within a separate process group by default, if stdin is not
connected to a terminal. This prevents failures in the MPI application from causing a
controlling script to exit. See the code in MPICH-1 in mpid/util/sesson.c. There should be
both configure time and runtime control over this behavior (but the default should be as
above).

• Signals must not be relied on to abort MPI processes on failures, since some signals cannot be
caught.

6.12.1 MPI_ABORT

MPID_Abort. This should abort only the specified communicator. If no communicator is specified,
abort all.

Question: What is the BNR call for aborting processes? Is there one for subsets?

6 MPI OPERATIONS 78

6.12.2 MPI_INIT_THREAD

One complication to the MPI_Init and MPI_Init_thread is handling the case where this process is
created by MPI_Comm_spawn or MPI_Comm_spawn_multiple. This part of the code is shown below:

bool_t spawned;

BNR_Init(&spawned);
BNR_KM_Get_my_name(dbname);
...
BNR_Barrier();
if (spawned) {

if (my rank == root) {
BNR_KM_Get(dbname, MPICH_PARENT_PORT_KEY, pszPortName);

}
<construct intercommunicator for parent>
PMPI_Comm_connect(pszPortName, MPI_INFO_NULL, root, MPI_COMM_WORLD,

&comm_parent);
MPID_COMM_PARENT = comm_parent;
}
else {

MPID_COMM_PARENT = MPI_COMM_NULL;
}

The initialization of the processes in (the local) MPI_COMM_WORLD are carried out with MPID_Init.
MPID_Init Each device and method in a device will also require initialization.
This should also set the value MPID_THREAD_PROVIDED. Note that for processes that were spawned

from another MPI process, we will want to limit the level of thread support to what that in the
spawning process.

This must also invoke the various init functions for the different subsystems and predefined
objects. These include keyvals, topology, datatypes, groups, communicators, reduction operations
(MPI_Op), timers, and error handlers. Each of these should be handled by calling an MPIR_xxx_init
or MPID_xxx_init. We may also want to have a similar initialization routine for Fortran, Fortran
90, and C++. Also setup information for the debugger (process tables, etc.)

Question: Do we want to support the special case of a single language? I.e., only C or C++? Do
we do that by dynamically loading the Fortran, Fortran 90, and C++ initialization routines as
required?

Question: We need to describe here how connections are established, even if they are established
lazily. That is, we shold describe here, even if the connections are not established until needed, how
connections are established. For example, for Twosided, the code might look like

sprintf(key, "%d:%d:contact", gid_of_process, lrank_of_process);
BNR_KM_Get(key, value);
<use value as hostname:port to contact>

6.12.3 MPI_QUERY_THREAD

This returns the level of thread support provided from the thread_provided value in the
MPIR_Process structure.

6.12.4 MPI_IS_THREAD_MAIN

This make use of the master_thread value in the per-process data block.

is_main_thread = pthread_equal(MPIR_Process.master_thread, pthread_self());

6 MPI OPERATIONS 79

This does require that the thread library used by the user is the same as the one that the MPICH
library is built for. We may want to put this routine in a separate library, allowing several different
thread libraries to be used with MPICH. For example, the routines in the thread directory could be
arranged so that any of them can be selected at link time.

6.12.5 MPI_FINALIZED

See MPI_INITIALIZED

6.12.6 MPI_INIT

Call MPI_INIT_THREAD with MPI_THREAD_MULTIPLE as the requested level of thread support.

6.12.7 MPI_INITIALIZED

As part of the error checking code, each routine should check the state of the is_initialized flag.
See the initialized field of MPIR_Process described in Section 3.14.

6.12.8 MPI_FINALIZE

The MPI-2 standard requires that MPI_Finalize first delete the attributes associated with
MPI_COMM_SELF, even before MPI_FINALIZED would return true. This allows any number of modules
to attach “end-of-job” actions to MPI_Finalize.

Just as MPI_INIT_THREAD invokes initialization routines for the various subsystems, MPI_FINALIZE
should invoke MPI_xxx_finalize for those systems, in reverse order. However, some subsystems use
lazy initialization. Those subsystems will register a callback that MPI_Finalize will execute using
the routine MPIR_Add_finalize.

The advantage to this is that applications that do not use parts of MPI that require additional
libraries (such as ldap for the name server) do not need to load those libraries just to resolve
symbols that appear only in the functions that appear in code called during MPI_Finalize.

A partial list of subsystems that we might handle with these finalize callbacks include

1. Bsend

2. Name service

3. Topologies

4. Generalized requests

5. Datareps

6. Groups (for group structure allocation)

7. Fortran 90 types created with MPI_Type_create_f90_int etc.

8. Info (for info structure allocation)

6.13 Dynamic Processes

The MPI dynamic process management functions require more interaction with the operating
environment than the rest of MPI does. In particular, we assume that there is an external
mechanism for starting new processes, which we call the process manager, and which may in turn
require interaction with a job scheduler or resource manager. In order that MPICH be capable of
operating in a variety of environments, we isolate the interaction of the MPI library with a process
manager in an API we call BNR, described here. Multiple implementations of the BNR interface are
possible; indeed, a design goal for the BNR interface definition is to provide the functionality
required by a parallel library like MPICH without constraining the implementation. Although we
intend to provide at least one implementation of BNR (MPD), we will encourage other process
manager suppliers to implement it as well.

6 MPI OPERATIONS 80

6.13.1 The BNR Interface

The purpose of the BNR is to provide an interface to external process managers and related
resources.9

(Rationale: The external process manager may be very sophisticated and offer many useful
functions or it may be very simple and capable of few operations beyond starting a process. BNR
provides an interface that allows us to exploit the capabilities of a powerful process manager while
also (by providing implementations of any missing functionality ourselves) allowing us to use more
limited process managers. An example of functionality that not all process managers provide is the
“precommunication” setup.)

The primitive concepts of BNR are the group, the keymap, the domain, and spawn. Each of these
was chosen in order to provide a simple, MPI-independent interface that would be straightforward
for process managers to implement.

A BNR group (or process group) is a set of processes started by the process manager “at the same
time.” It is designed to fit the process manager’s own concept of a related set of parallel processes
belonging to a single parallel job. A process belongs to only one process group. They are different
from MPI groups.

(Rationale: This approach in discussion was called “big groups.” An alternative approach is to
have BNR process groups correspond to MPI groups (the “little groups” approach). While this has
some appeal, it requires an assortment of group construction and manipulation routines and imposes
a new concept on the process manager.)

A BNR keymap is a collection of key=value pairs associated with a keymap handle. Its purpose is
to provide certain services to the library linked with the application. One type of service required by
the library from the process manager might be called “precommunication.” Since only the process
manager knows where other processes have been started, it may be necessary to ask at run time how
to communicate with other processes. We allow other processes to deposit their “business cards”
into a keymap accessible to other processes in the same job, with information on how they may be
contacted (shmem keys, IP host/ports, switch ports, etc.) Thus precommunication takes place
through this keymap. Keymaps are identified by name, names are assigned by the process manger;
no process is allowed access to the keymap of another job (maybe “job” needs a definition). Each
process group does automatically have access to a keymap, but some keymaps may be shared among
process groups. A keymap is a very simple database; to emphasize that fact, we use the term
keymap instead of database in this text.

(Rationale: An alternate approach is to attach keymaps to process groups. This requires too
much duplication of data in multiple keymaps in environments where it is easy for multiple groups
to share the same keymap.)

A BNR domain is an environment managed by a single instance of a process manager. Thus
within a domain, keymaps may be shared among multiple process groups. In order to support
distributed computing applications, multiple domains are allowed, in which case keymaps may need
to be copied rather than shared. The mechanisms for doing so are included in the BNR interface.

(Rationale: In our initial design, we said that a keymap would be local to a process group. All
process in the process group would be able to put or get information from the keymap. If a member
of the process group desired to share the information contained within one of its keymaps, it could
extract the information using the iterator functions, and communicate the key-value pairs to a
process in another group. The recipient could create a new keymap and populate it with the
key-value pairs it received, thus making the information available to all members of its process group.

If the recipient process group is able to issue gets and puts directly to the sender’s keymap,
extracting and communicating all of the data within a keymap would be unnecessary and costly. We
realized that if we associate a keymap to some notion of a domain rather than a particular process
group then we might be able to pass the keymap name to the receiveing process group instead of the
keymap contents and avoid the potentially costly replication of information.

To make this practical, we restrict a process group to a single BNR domain. A keymap is
9BNR was named after “Bill, Brian, Nick, Ralph, and Rusty,” who were the initial developers of the interface.

Contributions have since been made by David Ashton and Rob Ross.

6 MPI OPERATIONS 81

accessible to any process in the domain so long as that process knows the name of the keymap.)
BNR spawn is the ability to launch a set of processes within a job. These processes must be in a

single BNR domain but they need not be in the same domain as the process that issues a BNR
spawn operation.

6.13.2 The BNR Group Functions

These functions implicitly refer to the process group to which the calling process belongs.

BNR_Init(int *spawned) - initialize BNR for this process group
The return value indicates if this process was
created by BNR_Spawn_multiple.

BNR_Get_size(int *size) - get size of process group
BNR_Get_rank(int *rank) - get rank in process group
BNR_Barrier() - barrier across processes in process group
BNR_Finalize() - finalize BNR for this process group.

(Rationale: Note that there is no access to an identifier for the process group itself. Con: This
means that a process cannot identify itself, which might be helpful for debugging, nor can it send its
identifier in the form of (group, rank) to another process, which might be handy. Pro: There doesn’t
seem to be a compelling need for this, and if process group id’s don’t appear in the interface, we
don’t have to worry about their type; the concept belongs entirely to the BNR implementation and
to the matching process manager.)

6.13.3 The BNR Keymap Functions

These functions are the interface to BNR keymaps. Some implementations might be integrated with
the process manager; other implementations could be independent of the process manager (e.g.
separate server).

Question: Why are keymaps managed by string name instead of a handle? If a serialized name is
needed for external identification, that could be given by a separate function. - WDG.

int BNR_KM_Get_my_name(char *dbname) - get name of keymap

int BNR_KM_Get_name_length_max() - needed to communicate keymap

int BNR_KM_Get_key_length_max() contents to a foreign domain

int BNR_KM_Get_value_length_max()

int BNR_KM_Create(char *dbname [OUT}) - make a new one, get name

int BNR_KM_Destroy(const char *dbname [IN]) - finish with one

int BNR_KM_Put(char *dbname, const char *key,

const char *value); - put data

int BNR_KM_Commit(const char *dbname) - block until all pending put

operations from this process

are complete. This is a process

local operation.

int BNR_KM_Get(const char *dbname,

const char *key, char *value); - get value associated with key

int BNR_KM_iter_first(const char *dbname, char *key, char *val) - loop through the

int BNR_KM_iter_next(const char *dbname, char *key, char *val) pairs in the db

On a BNR_KM_Put, multiple puts to the same key in the keymap is illegal. On a BNR_KM_Get, if
there is no pair with matching key, the return value is -1.

(Rationale: Note that there is no fence operation, since process groups are separate from keymaps.
Since BNR_KM_Puts and BNR_KM_Gets are globally asynchronous, it is the responsibility of the user to
ensure that the data sought by a get operation has been placed in the keymap by a put operation.
The BNR_KM_Commit ensures that the put has taken place “locally” (synchronization between a
process and the keymap); another mechanism is required for synchronization across processes.

6 MPI OPERATIONS 82

Within a process group this can be accomplished by the BNR_Barrier; across process groups it can
be accomplished by message passing.)

(Rationale: The iteration scheme for extracting the total contents of a keymap is obviously not
thread safe. This is not viewed as a problem.)

6.13.4 The BNR Process Creation Functions

In this section are the process creation routines.

int BNR_Spawn_multiple(int count, const char **cmds, const char ***argvs,
const int *maxprocs, const void *info, [OUT] int *errors,
[OUT] bool_t *same_domain, const void *preput_info);

(Rationale: The same_domain argument lets the process manager tell us whether the keymap
associated with the new process group is shared, or whether we will need to receive the contents of
the new group’s keymap and add it to our own.)

(Rationale: The preput_info argument contains key/value pairs to be put in the keymap
associated with the new process group. The new processes can access these values through
BNR_KM_Get calls immediately after BNR_Init. This allows us to populate the keymap before the
spawned processes start and it eliminates the need to pass environment variables through the info
parameter.)

Note that there is no new process group identifier returned. The only real need for it would be to
implement a BNR_Kill function, which is not really necessary for implementing MPI. See also the
comments above about the advantages of keeping process group id’s out of the interface. As a result,
there is no BNR_Kill. This might be difficult for a process manager to implement, anyway.

6.13.5 Utility Functions

We postulate the existence of some low-level communication routines. The MM stands for
“multi-method.”

int MM_Open_port(const MPID_Info *info_ptr, char *port_name);
int MM_Close_port(const char *port_name);
int MM_Accept(const MPID_Info *info_ptr, const char *port_name);
int MM_Connect(const MPID_Info *info_ptr, const char *port_name);
int MM_Send(int conn, const char *buffer, int length);
int MM_Recv(int conn, char *buffer, int length);
int MM_Close(int conn);
MM_???

Question: Should the length parameter for MM_Recv be [IN/OUT]?
One use of this form of communication is to copy keymaps between domains. Here are functions

to carry this out:

SendKeymaps([IN] conn, [IN] comm)
{

MM_Send(conn, Ndb)
foreach dbname (used in a vc in comm)
{

MM_Send(conn, dbname);
BNR_KM_iter_first(dbname, key, val);
while (key[0] != ’\0’)
{

MM_Send(conn, (key,val));
BNR_KM_iter_next(dbname, key, val);

}

6 MPI OPERATIONS 83

MM_Send(conn, (’’,’’));
}

}

RecvKeymaps([IN] conn)
{

MM_Recv(conn, Ndb);

for (i = 0; i < Ndb; i++)
{

BNR_KM_Create(dbname);
<save dbname>

while(1)
{

MM_Recv(conn, (key, val));
if (*key == ’\0’) break;
BNR_KM_Put(dbname, key, val);

}

BNR_KM_Commit(dbname);
}

}

6.13.6 Implementation of MPI on BNR Plus Utility Functions

In this and the following sections, we describe the implementation of MPI routines in terms of the
BNR functions defined above, together with the MM utility communication functions. We will also
assume that certain MPI functions have been implemented. (Note: we need to explain why we are
not in an infinite loop here.)

Question: Is BNR_Convert_args_to_info defined?

mpiexec::main()

{

MPI_Init();

BNR_Convert_args_to_info(argc, argv, infos);

/* generate command lines */

/* pack job configuration information into MPI info structures */

/* use info parameter to tell spawn process group to notify mpiexec when

spawn group has reached MPI_Finalize(). this can be accomplished by

sending a message from one of the spawned processes to the mpiexec process

over the intercomm created during the spawn. without this info parameter

mpiexec will return "immediately". */

MPI_Comm_spawn_multiple(count, cmds, argvs, maxprocs, infos, 0,

MPI_COMM_WORLD, &intercomm, errors);

/* communicate some things here */

/* wait for spawned job to finish ??? */

MPI_Finalize();

}

6 MPI OPERATIONS 84

int MPI_Init()

{

BNR_Init(&spawned);

/* initialize methods, device, etc. */

BNR_KM_Get_my_name(my_dbname);

BNR_KM_Put(my_dbname, ..., ...);

BNR_KM_Commit(my_dbname);

BNR_Barrier();

/* Various initializations like datatypes, COMM_WORLD, etc. */

if (spawned)

{

BNR_KM_Get(my_dbname, MPICH_PARENT_PORT_KEY, pszPortName);

PMPI_Comm_connect(pszPortName, MPI_INFO_NULL, 0, MPI_COMM_WORLD, &comm_parent);

}

else

{

comm_parent = MPI_COMM_NULL;

}

}

int MPI_Comm_Spawn_multiple(count, cmds, argvs, maxprocs, infos, root, comm,

intercomm, errors)

{

PMPI_Info_create(&info);

if (rank == root)

{

PMPI_Info_create(&prepost_info);

PMPI_Open_port(MPI_INFO_NULL, pszPortName);

PMPI_Info_set(prepost_info, MPICH_PARENT_PORT_KEY, pszPortName);

/*if (g_bSpawnCalledFromMPIExec)

* PMPI_Info_set(prepost_info, MPICH_EXEC_IS_PARENT_KEY, "yes");

*/

BNR_Spawn_multiple(count, cmds, argvs, maxprocs, infos, errors,

&same_domain, prepost_info);

PMPI_Info_free(&prepost_info);

if (same_domain)

{

/* set same domain for accept */

PMPI_Info_set(info, MPICH_BNR_SAME_DOMAIN_KEY, "yes");

}

}

PMPI_Comm_accept(pszPortName, info, root, comm, intercomm);

if (comm_ptr->rank == root)

{

PMPI_Close_port(pszPortName);

}

PMPI_Info_free(&info);

}

int MPI_Open_port(info, port_name)

{

MM_Open_port(info_ptr, port_name); /* query_descriptor() ??? */

6 MPI OPERATIONS 85

}

int MPI_Comm_accept(port_name, info, root, comm, intercomm)

{

char value[10];

if (comm_ptr->rank == root)

{

conn = MM_Accept(info_ptr, port_name);

PMPI_Info_get(info, MPICH_BNR_SAME_DOMAIN_KEY, 10, value, &same_domain);

/* Allocate a local process group

Create or make a way to create VC’s for this group */

if (!same_domain) {

SendKeymaps(conn, comm);

RecvKeymaps(conn, comm);

}

MM_Close(conn);

/* Bcast resulting intercommunicator stuff to the rest of this communicator */

}

else

{

/* Bcast resulting intercommunicator stuff */

}

}

int MPI_Comm_connect(port_name, info, root, comm, intercomm)

{

if (comm_ptr->rank == root)

{

conn = MM_Connect(info_ptr, port_name);

/* Transfer stuff */

MM_Close(conn);

/* Bcast resulting intercommunicator stuff to the rest of this communicator */

}

else

{

/* Bcast resulting intercommunicator stuff */

}

}

6.13.7 MPI Dynamic Processes Functions

6.13.8 MPI_COMM_CONNECT

6.13.9 MPI_COMM_DISCONNECT

This function is like MPI_Comm_free, except that it also guarantees that all communication has
completed before it returns and it affects the status of “connected” processes.

6 MPI OPERATIONS 86

6.13.10 MPI_COMM_GET_PARENT

Return the id field in comm_parent, or MPI_COMM_NULL if comm_parent is null.

6.13.11 MPI_COMM_JOIN

MPI_Comm_join creates an intercommunicator for two (and only two) MPI processes that have an
established socket between them. It is permissible for an MPI implementation to refuse to create the
intercommunicator; for example, an MPI implementation that only implements a shared-memory
device can return a failure for this routine. The standard requires all implementations to document
any limitations on MPI_Comm_join; to handle this, each device must also provide a file
join_limits.txt (similar to signal_limits.txt). If no file is present, then there are no limits and
MPI_Comm_join will always succeed (in the absence of other problems, like out-of-memory when
updating internal tables).

This routine argues for a routine that exchanges the necessary connection information between
two processes, perhaps by formatting the data to and from a string. Then MPI_Comm_join can use
read and write to send this data; MPI_Comm_connect and MPI_Comm_accept (or BNR_Connect and
BNR_Accept) can use the same data representation but different methods for communicating the
data between processes.

6.13.12 MPI_COMM_SPAWN

Question: Should this be a special case of spawn multiple?

6.13.13 MPI_COMM_SPAWN_MULTIPLE

6.13.14 MPI_LOOKUP_NAME

Question: Do we want to define an API or a wire protocol for the name service? Perhaps both?
An alternative is to use OpenLDAP [9]. LDAP stands for “Lightweight Directory Access

Protocol,” and implements the X.500 directory services. For environments where TCP is available,
LDAP provides all of the services needed by the MPI-2 name service. The OpenLDAP project
includes both a client library and a simple LDAP server (slapd).

A typical implementation using OpenLDAP might look something like this (this is incomplete and
only includes the name of the ldap routines that can be used):

#include <lber.h>
#include <ldap.h>
static LDAP ldap_handle = 0;
LDAPMessage *res;
char **value_ptr;
if (!ldap_handle) {

? how do we get the server name and port (LDAP_PORT is the default)?
? Use ldap_url_parse or ldap_is_ldap_url?
ldap_handle = ldap_open(host, port);
/* method can be LDAP_AUTH_SIMPLE, LDAP_AUTH_KRBV41 or

LDAP_AUTH_KRBV42 */
ldap_bind_s(ldap_handle, who, cred, method);
/* Or ldap_simple_bind_s(handle, who, passwd)

or ldap_kerberos_bind_s(handled, who) */
MPIR_Add_finalize(MPID_Nameserver_finalize, &ldap_handle, 9);

/* See MPI_Finalize */
}

/* Synchronous call because MPI_LOOKUP_NAME is blocking */
/* This isn’t correct yet */
ldap_search_s(ldap_handle, jobname, LDAP_SCOPE_BASE,

6 MPI OPERATIONS 87

NULL, NULL, portname, &res);

/* Use ldap_search_st to search with a timeout */
res = ldap_first_entry(ldap_handle, res);
/* attr is the LDAP attribute to return the value for. */
value_ptr = ldap_get_values(ldap_handle, res, attr);

/* ?? ldap_parse_result(); */
/* Free result data with msgfree */
ldap_msgfree(res);
...
static int MPID_Nameserver_finalize(void *ptr)
{

ldap_handle = (LDAP *) ptr;
ldap_unbind_s(ldap_handle);

#ifdef __WIN32
/* See man -s 3 ldap */
ldap_memfree();

#endif
return 0;

}
...
/* if an error seen, use */
str = ldap_err2string(err);
MPIR_Err_create_code(MPI_ERR_OTHER,

"Error from LDAP library",
"Error from LDAP library during %s operation: %s",
routine_name, str);

6.13.15 MPI_PUBLISH_NAME

/* attrs is an LDAPMod *attrs[] type */
attrs[0]->mod_type = ?;
attrs[0]->mod_values[0] = ?;
attrs[0]->mod_op = LDAP_MOD_ADD; /* or LDAP_MOD_REPLACE */
attrs[1] = NULL:
if (ldap_add_s(ldap_handle, name, attrs) == -1) {

<error; see ldap_handle->ld_errno>
}

6.13.16 MPI_UNPUBLISH_NAME

/* like add, but with LDAP_MOD_DELETE as the mod_op */
ldap_modify_s(ldap_handle, name, attrs);
/* Use ldap_delete_s(ldap_handle, name) to completely remove a name */

6.13.17 MPI_OPEN_PORT

An MPI “port” is just a string that is used in MPI_Comm_attach and MPI_Comm_connect.

6.13.18 MPI_CLOSE_PORT

6.14 User-Defined Requests

Question: What ADI support is required for these? Note that the request is under the control of the
device, so many of the fields aren’t defined yet. Answer: None. The MPI code that implements the

6 MPI OPERATIONS 88

completion functions must check for user requests and handle them at the MPI (not ADI) level.
Note that a user-defined request is started with callbacks (functions to call for query, cancel, and

free); these need to be associated with the request. These callbacks are used by the various MPI
routines to complete, cancel, or free a request.

In the current implementation, there is only one kind of MPID_Request and it contains all of the
fields that are needed by any request type.

Question: should the generalized requests be allocated by the device or by a separate module? If
they are allocated by the device, what is the call?

6.14.1 MPI_GREQUEST_START

Create and initialize a user-defined request. The values are stored in the request fields query_fn,
free_fn, cancel_fn, and grequest_extra_state.

6.14.2 MPI_GREQUEST_COMPLETE

Set the request completion field cc to zero.
This must be done in a way that will allow the progress engine to signal a blocking wait that a

request has completed. To ensure this, we use MPID_Request_set_completed.

6.15 Error Handlers

Still to do: discuss predefined messages, dynamic codes and classes, show the data structures for the
error messaging approach.

6.15.1 MPI_ERRHANDLER_FREE

Used MPIU_Object_release_ref and calls MPIU_Handle_obj_free if the error handler is no longer
in use.

6.15.2 MPI_ERRHANDLER_CREATE

Deprecated. Call MPI_COMM_CREATE_ERRHANDLER.

6.15.3 MPI_ERRHANDLER_GET

Deprecated. Call MPI_COMM_GET_ERRHANDLER.

6.15.4 MPI_ERRHANDLER_SET

Deprecated. Call MPI_COMM_SET_ERRHANDLER.

6.15.5 MPI_ERROR_CLASS

Return the error class of an error code. Simply mask the code with ERROR_CLASS_MASK.

6.15.6 MPI_ERROR_STRING

Calls MPIR_Err_get_string to return the error string associated with an error code.

6.15.7 MPI_ADD_ERROR_CLASS

Call MPIR_Err_add_class with a null string for the instance_msg_string.

6.15.8 MPI_ADD_ERROR_CODE

Call MPIR_Err_add_code with a null string for the instance_msg_string.

6 MPI OPERATIONS 89

6.15.9 MPI_ADD_ERROR_STRING

Call MPIR_Err_set_msg.

6.15.10 MPI_COMM_CALL_ERRHANDLER

All error handler calls use the common error handler structure MPID_Errhandler structure. There
should be a common routine to invoke the error handler from an object. We could do this is objects
with error handlers have the same header layout; alternately, we have something like

int MPIR_Call_errhandler(void *obj, MPI_Errhandler errhander, ...)

and invoke it as

MPIR_Call_errhandler(comm_ptr, comm_ptr->errhandler, ...)

6.15.11 MPI_COMM_CREATE_ERRHANDLER

Create an MPID_Errhandler, set the kind to MPID_COMM_OBJ, set the language to MPID_LANG_C, and
save the function.

Question: do we want to define a generic error handler creation function that could be used from
C, Fortran, and C++, as well as from communicators, windows, and files? Or is it simple enough to
inline?

6.15.12 MPI_COMM_GET_ERRHANDLER

Return the errhandler from the err_handler field. Increment the reference count for the error
handler.

6.15.13 MPI_COMM_SET_ERRHANDLER

Error checking: ensure that the error handler is of the correct type.
Note that we need a special case for MPI_ERRORS_RETURN since these have special (and simpler)

behavior than the general user-handlers
Free (reduce the ref_count and free if zero) the current error handler and set the error handler

field to the specified error handler.

6.15.14 MPI_WIN_CREATE_ERRHANDLER

Similar to the communicator versions.

6.15.15 MPI_WIN_CALL_ERRHANDLER

Similar to the communicator versions.

6.15.16 MPI_WIN_GET_ERRHANDLER

Similar to the communicator versions.

6.15.17 MPI_WIN_SET_ERRHANDLER

Similar to the communicator versions.

MPI I/O Error Handlers. We need to ensure that ROMIO’s error handlers are the same as the
MPICH-2 handlers. In addition, these must support providing an error handler for MPI_FILE_NULL.
See the discussion in Section 3.13.2.

6 MPI OPERATIONS 90

C++

FortranC

Figure 7: Relationship of handle conversion functions. The C to/from C++ are part of the C++
binding of MPI.

6.16 Handle Transfers

These provide for the conversion of handles to and from the C and Fortran representations. C++ is
handled as a descendant of C (that is, there is no Fortran representation of a C++ handle directly,
but C++ can use C handles. These should normally (i.e., unless --disable-mpi-macros is specified
to configure) be implemented as macros.

Unresolved question (raised by Barry Smith): What should happen if the handle is invalid?
Should there even be a check? Raise the error MPI_COMM_WORLD (all errors are on MPI_COMM_WORLD if
no other communicator is specified)?

The current plan is that all handle transfers will be handled by casting; the handle transfer
routines should all be available as macros, as allowed by the MPI standard. The handle transfer
routines are: MPI_COMM_C2F, MPI_COMM_F2C, MPI_ERRHANDLER_F2C, MPI_ERRHANDLER_C2F,
MPI_FILE_C2F, MPI_FILE_F2C, MPI_GROUP_F2C, MPI_GROUP_C2F, MPI_INFO_F2C, MPI_INFO_C2F,
MPI_OP_F2C, MPI_OP_C2F, MPI_REQUEST_F2C, MPI_REQUEST_C2F, MPI_TYPE_C2F, MPI_TYPE_F2C,
MPI_WIN_C2F, and MPI_WIN_F2C. These should be defined as macros in mpi.h. Note that if the
handle is invalid, the error handler associated with MPI_COMM_WORLD or MPI_FILE_NULL (for
MPI_File handles only) should be invoked.

6.16.1 MPI_STATUS_F2C

This needs to recognize the constants MPI_F_STATUS_IGNORE and MPI_F_STATUSES_IGNORE (which
must be declared in mpi.h; see Section 4.12.5 “Status” in MPI-2).

6.16.2 MPI_STATUS_C2F

Like MPI_STATUS_F2C, but must handle the C constants MPI_STATUS_IGNORE and
MPI_STATUSES_IGNORE.

6.17 Timers

The MPI standard allows MPI_Wtime and MPI_Wtick to be implemented as macros; we should also
allow that, at least as an option. The configure option, --enable-mpi-macros, causes MPI_Wtime
and MPI_Wtick to be defined as macros in mpi.h.

Eventually, we should allow for a synchronized timer. That is, even if the underlying hardware
does not provide a global timer, we should provide one as an option. (Earlier versions of the ADI
defined a MPID_Gwtime for this purpose; this has been removed for now to simplify the ADI.)

6.17.1 MPI_WTICK

Call MPID_Wtick.

7 PORTABILITY 91

6.17.2 MPI_WTIME

Call MPID_Wtime. If this is the first call to MPI_Wtime, save that value and return zero. Otherwise,
use MPID_Wtime_diff to convert the time to a double that is relative to the value of the first call to
MPI_Wtime and return that value.

6.18 Runtime Environment

6.18.1 MPI_GET_PROCESSOR_NAME

Call MPID_Get_processor_name.
The value of MPI_MAX_PROCESSOR_NAME is provided by the device at configure time, through the

Makefile target echomaxprocname. If no value is provided, 128 will be used.

6.18.2 MPI_GET_VERSION

Return the values of MPI_VERSION and MPI_SUBVERSION. Note that this routine can be called
anytime, even before MPI_Init or after MPI_Finalize.

6.19 Profiling

6.19.1 MPI_PCONTROL

This is a simple stub and performs no action other than returning MPI_SUCCESS as the result. See
the MPICH-1 implementation.

6.20 I/O

MPI I/O will be provided by ROMIO. We expect to update ROMIO to exploit both MPI-2
functions and to make use of MPID functions (such as the Stream and Segment modules) when
ROMIO is part of MPICH.

There are a few places where we need to improve the current code to provide better integration:

• I/O requests must be integrated with all other MPI requests. This eliminates the need for
ROMIO’s MPIO_Wait routine.

• Error-handlers be should consistent with the rest of MPI-2. Error reporting should follow the
rest of MPICH-2.

6.21 Utility Routines

This section should contain some of the discussion from adi3man.tex on data structures and
constants, particularly the handle allocator, and the reference count routines.

7 Portability

This section discusses how the MPICH implementation is written to provide portability to a wide
variety of systems. MPICH will continue to rely on configure. However, the use of configure will
rely on more carefully defined macros, along with more information stored in external files, allowing
for simpler adaptation to site-specific environments, such as special compilers and runtime
environments.

Question: What about shared libraries? Using libtool is awkward for development, but not using
it is awkward for portability (libtool knows a lot about making shared libraries). However, we must
have support for shared libraries. The plan is to develop a simple perl program to extract the
information stored in the libtool source to take advantage of that source of information without
requiring the libtool development environment.

Question: What are the makefile targets that we want to use for the shared libraries?

7 PORTABILITY 92

7.1 Configure

We will use autoconf version 2.13 or later, but earlier than 2.5010. The top-level configure will only
test for items used in the implementation of the MPI routines. For other parts of the package, such
as the ADI implementation, the top-level configure will invoke a configure or other setup script for
each package.

Question: configure understands how to invoke configure for other packages. If we use a level of
indirection between the ADI configure (e.g., a setup script), the top-level configure won’t know
about this. Do we care? If we don’t care, how do we ensure that re-executing config.status
executes the correct routines?

Standard configure and Makefile variables

COPTIONS Use this to pass options for the C compiler that are used by the package. For example,
the standard configure option --enable-strict sets this to strict compilation (e.g., -Wall
-Wstrict-prototypes etc.) when using the gcc compiler.

CFLAGS Do not set this value. Allow the user to use this to change, for example, the optimization
level or the debugging level. For example, the user should be able to do

setenv CFLAGS -g
make clean
make

to rebuild the package with -g added to all compile lines.

7.2 Configure Flags

To make configure simpler to document and simpler for users to understand, the number of
--enable and --with flags should be minimized. Instead of having separate --enable flags for
related features, group them into a single --enable command with a value. For example, use
--enable-method=via,tcp instead of separate --enable-via and --enable-tcp options.

In general, use hierarchies to keep the user interface simple.
Also consider the use of short cuts for common choices. For example, --enable-fast is defined to

set the appropriate configure flags for building the fastest code (e.g., no error checking or internal
timing).

7.3 Supporting Cross-compilation

In some cases (e.g., IBM SP or ASCI Red), the compiler that must be used to compile parallel
programs produces executables that must be run under the parallel environment, which may be
difficult and time consuming. This is a type of cross-compilation. To support this, configure must be
carefully written both to support cross-compilation and to provide for a way to specify the results
that would have been determined by running a program.

For each test that requires running a program, a variable of the form CROSS_xxx must be defined
and documented. For example, for variable sizes, CROSS_SIZEOF_INT will give the size of an integer
in bytes.

We should provide a program that computes the values of all of these values and writes them out
in the appropriate form to include into configure. This allows users to run a program to discover
all of these values using whatever sequence of commands they need for their cross-compilation
environment.

We need to document all CROSS_xxx variables. Here is a start at that list:
10Don’t ask. Ok, autoconf jumped from 2.13 to 2.50 and completely reorganized (which was good). Unfortunately,

many of the internal macros that are used by our extensions were reused with different semantics! In particular, the
support for AC_LANG changed, and the new system does not support Fortran 90 directly and does not document how to
add support for additional languages.

7 PORTABILITY 93

CROSS_BYTE_ORDERING Has the value WORDS_BIGENDIAN or empty (just like AC_C_BIGENDIAN)

CROSS_STRUCT_ALIGNMENT Structure alignment. One of

packed No padding

largest Aligned on the largest item

two Aligned to two bytes

four Aligned to four bytes

eight Aligned to eight bytes

other Unable to determine

A program to determine these already exists and is part of the current MPICH.

Question: Do we need a sixteen? Does this cover all four AIX forms?

CROSS_SIZEOF_INT sizeof(int)

CROSS_SIZEOF_VOID_P sizeof(void*)

CROSS_SIZEOF_CHAR sizeof(char)

CROSS_SIZEOF_LONG sizeof(long)

CROSS_SIZEOF_FLOAT sizeof(float)

CROSS_SIZEOF_DOUBLE sizeof(double)

CROSS_SIZEOF_LONG_DOUBLE sizeof(long double)

CROSS_F77_SIZEOF_INTEGER The size of an INTEGER in Fortran (as if there was a sizeof operator
in Fortran)

CROSS_F77_SIZEOF_REAL Ditto for REAL

CROSS_F77_SIZEOF_DOUBLE_PRECISION Ditto for DOUBLE PRECISION.

CROSS_F90_INTEGER_KIND The Fortran 90 kind for an integer that corresponds to a C int.

CROSS_OFFSET_KIND The Fortran 90 kind for an integer that corresponds to a MPI_Offset.

CROSS_ADDRESS_KIND The Fortran 90 kind for an integer that corresponds to a MPI_Aint.

Other items, such as the allowed types for the f90 modules, also needs to be specifyable from the
environment.

See also mpi-maint request 5556 for the values needed by the Intel Tflops system. It should be
possible to specify these with a special site file. These values are (minus the CROSS_ and in
lowercase):

sizeof_char, sizeof_short, sizeof_int, sizeof_long, sizeof_long_long,
sizeof_float, sizeof_double, sizeof_long_double, sizeof_void_p,
offset_kind, address_kind, f77_sizeof_integer, f77_sizeof_real,
f77_sizeof_double_precision, has_long_double, has_long_long,
struct_alignment

Also note the need to export variables; we may want to create a step that does something like set
| grep ’CROSS_’ | sed

7 PORTABILITY 94

7.3.1 Complex Configuration Data

Much of the complexity in the current configure system comes from handling special cases,
particularly for compiler and linker options. I propose replacing this code with a separate (yet
simple) data list that can be edited separately from the configure script, and which contains
information on various compilers and linkers. This file can be considered a very simple database,
where each record contains the following information (some of the information is used only by
compile steps; other by link or shared library steps. There is enough overlap that the combined list
is given). There are two kinds of values. The first are keys that identify a particular compiler (or
compiler class, like gcc). These include

kind C, C++, Fortran 77, or Fortran 90. Perhaps Java as well.

action compile, link, create static library, or create shared library

name E.g., cc, xlc, pgcc, gcc

ostype OS that has this compiler. For some compilers, this is * (e.g., gcc, pgcc, cc)

signature A regular expression that should match the value generated by version. This may be
slightly extended to allow a particular line of the output to be matched.

The second kind of values provide information about the compiler, such as options for generating
optimized code or for creating object files for shared libraries.

optimize Options for optimizing.

debug Options for debugging.

ansi Options to force ANSI (or a superset)

posix Options to force POSIX

threads Options to allow threads

sharedobject Options to create a shared object

version Options to generate a version and name string. See signature

size32 Options for 32-bit pointers

size64 Options for 64-bit pointers

size=xx Options for other sizes (128 bit pointers, anyone?) or for special versions (e.g., IRIX n32)

searchdir Options to specify search directories for shared libraries

searchdirkind Indicates whether the searchdir option supplements (as -I does for include files)
or replaces the search directories.

sharedlib Options to create a shared library

cross Specify values for CROSS_xxx for cross-compiler case

verbose Options to generate verbose output, particularly showing the command-line options passed
to other tools such as ld when a compiler command is used to link a program. This is useful in
determining the libraries needed for multilanguage programs.

verboseoptionsep Option separator for the output from verbose. Often either space or comma.

strict Options for strict (lint-like) compilation

7 PORTABILITY 95

Question: are these enough? We should check what libtool uses. We may also want a option that
says “check for a clean compile before accepting these values”. Compiler version numbers may also
be important; for that, there needs to be a command specified to extract and compare the version
number.

This file should have both specific rules and generic rules. For example, a generic description of cc
would specify -g for debugging, -O for optimization, and little else.

In some cases, we may want to try several options. For example, for optimization, we may want to
try -Ofast or -O2 before -O. Question: what should the syntax for this be?

I recommend that the syntax for this file be key=value pairs, using a trailing backslash to
continue lines:

comment describing compiler
kind=c action=compile name=xlc system=AIX \
optimize="-O3 -qarch=native" \
etc.

kind=c action=compile name=cc system=* \
optimize=-O \
debug=-g \
etc.

This is most easily processed using perl or (possibly) python, though another alternative is to
bootstrap by using the usual configure macros to find a C compiler and then compile a simple
program to read this file. In the cross compilation case, either a different compiler may be used, the
user can prebuild the program, or all of the necessary data can be supplied through environment
variables.

Question: This is not trivially parseable. Another option is one value per line, or tab-separated
values. We should write perl or C code to parse it and adjust the format for easy handling.

7.4 Makefile Structure

Question: Should there be a single shared makefile with most of the rules that is included by the
others, or should configure make makefiles in each directory? Bill is leaning toward fewer (configure)
constructed Makefiles, and using the include command (now the FreeBSD supports it).

7.5 Coding Rules

We will attempt to enforce the coding rules by building tools that check for conformance to these
rules.

Tools already available:

checkforglobs Check for global symbol names. Currently part of the sowing package in
sowing/bin/checkforglobs.

codingcheck Check for use of banned routines (e.g., printf, alloca) and other coding style
problems. This routine is in mpich2/maint. This also check for C preprocessor names that may
indicate a portability problem, such as the use of tests on particular system names or features.

gcc -Wall etc. Missing prototypes, return values, etc. This can be set in configure with the
PAC_ARG_STRICT macro which defined --enable-strict.

We also need tools for the following:

• Look for header files and functions that are not universal and ensure that they are properly
guarded. An example of a function that must be guarded is rindex. Note that the
AC_FUNC_MMAP test is inadequate and must be supplemented by a more rigorous test (as used
in MPICH1).

7 PORTABILITY 96

7.5.1 Printing and Other Messages

Rule: do not use printf or fprintf except (possibly) for messages intended only the for the
developers of MPICH2.

Even for developer messages, using printf is not a good idea. It is better to call a routine that
can handle recording the results.

The following should be used instead of printf or fprintf:

dbg_printf Print a debugging message. This should be used only for messages intended for the
developers of MPICH. This has the same calling sequence as printf.

MPIU_Usage_printf Print a usage message (informational) for the user. This has the same calling
sequence as printf.

MPIU_Error_printf Print an error message for the user. This has the same calling sequence as
printf. Note that this routine should not be used by any routine called by the MPI
implementation; it is provided for the implementation of separate exectuables such as the
mpiexec command.

The routines for printing user messages will attempt to use gettext or some similar routine to
handle output for other languages. On systems without convenient stdout or stderr, these may
also generate alternative output (e.g., popup a window).

Question: Should we define PRINTF etc. as we have in MPICH, or ban those values entirely?
Should we define a general output routine that can be implemented to output to a file, stdout, or a
graphical display? Answer: We should define replacement routines. These should implement
something like the DLAST feature of MPICH (e.g., hold the last 100 messages). The configure option
that controls this is --enable-g=msgtrack. The values may be

n The size of the buffer (e.g., --enable-g=msgtrack:100).

Question: Should we have something like the following:

void MPIR_Dbg_msg(int kindmask, const char *fmt, ...)

where kindmask is used to indicate what kind of debugging message this is; this is a bit field and
allows a message to belong to multiple kinds. The remaining arguments are interpreted as printf
arguments.

Question: To allow this to be a macro, do we want to use

#ifdef USE_DEBUG
#defind MPIR_DBG_MSG(a) MPIR_Dbg_msg a
#else
#define MPIR_DBG_MSG(a)
#endif

in the code?
ToDo: Need instructions for output messages so that they can properly use internationalization.

For example, do we want MPIR_User_msg(FILE *, const char *, ...)? Do we want

#ifdef HAVE_INTERNATIONAL_MSGS
#define MPIR_User_msg(a) MPIRi_User_msg a
#else
#define MPIR_User_msg(a) fprintf a
#endif

with usage

MPIR_User_msg((stderr, "Error in input"));

7 PORTABILITY 97

7.6 NT Friendly

Declare all user-visible routines EXPORT_MPI_API. This is a macro that is defined as empty for UNIX
and as the appropriate Microsoft-specific extension for Windows.

Question: we can use a file to list these functions instead of EXPORT_MPI_API. Should we do that
instead? Answer: yes.

Avoiding printf is important for Windows applications.
Question: What else do we need to consider here? (David Ashton to answer.)

7.7 Fortran Support

Fortran support has two parts: Fortran 77 and Fortran 90/95.
There are a few functions unique to Fortran. They include MPI_SIZEOF and

MPI_TYPE_CREATE_F90_COMPLEX, MPI_TYPE_CREATE_F90_REAL, and
MPI_TYPE_CREATE_F90_INTEGER. Note that the TYPE_CREATE routines create types that must return
the corresponding combiner names when MPI_TYPE_GET_ENVELOPE is called and that these must be
“predefined” types; that is, they cannot be freed.

7.7.1 MPI_SIZEOF

This must be implemented in an MPI module. The implementation looks something like this:

MODULE MPI2__REAL_s
PRIVATE
PUBLIC :: MPI_SIZEOF
INTERFACE MPI_SIZEOF

MODULE PROCEDURE MPI_SIZEOF_T
END INTERFACE
CONTAINS
SUBROUTINE MPI_SIZEOF_T(X, SIZE, IERROR)
REAL X
INTEGER SIZE, IERROR
IERROR = 0
SIZE = 4
END SUBROUTINE MPI_SIZEOF_T
END MODULE

Each Fortran type (including each type passed as an array, and for each number of dimensions of the
array) requires a similar definition. The actual size (four in the example above) must be determined
by configure or provided by the user. These can be created automatically in a way similar to the
current Fortran 90 interface.

This has been added to the Fortran 90 support in MPICH-1, although the handling of type sizes
should be better; sizes are set expecting the *n format. If another format is used, such as plain type
names, the current code chooses the common (but not universal) defaults.

7.7.2 MPI_TYPE_CREATE_F90_INTEGER

This searches through a global list (pointed at by MPID_F90_Predefined_types_head) to see if the
requested type has already been allocated. If so, it returns that type. If not, it must allocate a new
predefined type, initialize all of the fields, including the envelope type of
MPI_COMBINER_F90_INTEGER and the digits field, and returns that new type. In a multithreaded
case, this list must be updated in a thread-safe manner (e.g., by locking the list).

Questions: Should we just have a small array instead of a list? If the user asks for too many
distinct types, we can return an MPI_ERR_OTHER class indicating the problem. Answer: yes.

Question: Should there be a separate routine to initialize this array and to free the datatypes that
are created during MPI_Finalize? (I think so, particularly when trying to streamline codes to

7 PORTABILITY 98

requiring only single-language support.) What are the names of the routines? Is there a common file
that contains MPID_F90_Predefined_types_head as well as the routines to allocate and free these
predefined types? See also the finalize callbacks in MPI_Finalize. Answer: yes.

7.7.3 MPI_TYPE_CREATE_F90_REAL

See MPI_TYPE_CREATE_F90_INTEGER.

7.7.4 MPI_TYPE_CREATE_F90_COMPLEX

See MPI_TYPE_CREATE_F90_INTEGER.

7.7.5 Fortran Wrappers

One added complexity of the Fortran wrappers is handling the possibility that the types MPI_Fint
and int have different sizes. When the Fortran codes simply call the C codes, this results in copying
array arguments to a temporary array, calling the C code, and freeing the array. Allocation and
deallocation of small arrays can be avoided by using local arrays (to be thread-safe). However, I’d
prefer to avoid this whenever possible. Thus, we need a CPP value that indicates whether MPI_Fint
and int are the same size, such as MPICH_FINT_EQ_INT. The current MPICH code in
src/fortran/src does this.

In addition, the MPICH Fortran wrapper code is intended for use with MPE and other MPI
implementations, and makes no assumptions about the structure of MPI opaque objects,
necessitating a transfer of values for each array-value argument. I’d like to avoid this as well. Can
we ignore the other MPI’s, or use special routines as part of the MPE support? Alternately, should
we define MPICH_REQUEST_C_IS_F77 etc.?

7.7.6 Fortran Datatypes

There are several special Fortran datatypes. These are

LOGICAL. Roughly like the bool type in C++, the choice of value for .true. and .false. is left to
the implementation. In MPICH, we use MPIR_F_TRUE and MPIR_F_FALSE as values.

COMPLEX and COMPLEX*16. These are universally implemented as a pair of REALs or DOUBLE
PRECISION values.

7.8 C++ Support

I’d like to consider adding more native C++ support. While the Indiana (formerly Notre Dame)
C++ code is valuable and helpful, there are some difficulties:

1. Supports only MPI-1.

2. Their configure is based too much on particular systems rather than on capabilities.

3. Because it is a separate package, the build process is awkward.

4. Testing is separate from the MPICH testing, causing inadequate testing of the MPICH/C++
combination.

5. Layering makes some things difficult; it can be awkward because some data structures must be
duplicated since MPI itself leaves them opaque. For example, the C++ Comm could contain a
pointer to the MPID_Comm, rather than the opaque object MPI_Comm.

6. Does not pass our (sometimes stricter) coding standards (of course, our code doesn’t pass
theirs either).

8 STANDARD FEATURES 99

7. Their code must deal with a wide variety of partial C++ implementations. Perhaps by 2002,
there will be fewer bugs in C++ compilers.

Question: Is there a way to automate the generation of most of these routines? Or should we just
write them out? Answer: They are different enough that we need to write them out.

I’ve started the implementation of this. See mpich/src/cxx in the MPICH-1 implementation.

8 Standard Features

(this section contains the standard features, such as command line handling, environment variables,
configure options for error checking, etc.)

8.1 Command line and environment

The implementation must provide the service of providing command-line arguments to each process.
If the startup environment does not do so, the implementation must (see the discussion of
MPID_Init).

Note that we must also allow different command lines for different processes if the user wishes.

8.2 Standard I/O

I/O handling, particularly for stdin, remains troublesome. We need to be more precise about what is
available and what isn’t. We need to pay closer attention to the value of the attribute MPI_IO, and
we may want to consider adding new keyvals with more control, such as MPICH_IO_STDIN,
MPICH_IO_STDOUT, and MPICH_IO_STDERR.

Question: Where are additional keyvals documented? Do we want a string-to-keyval translator?
E.g., a routine that, given a string description, returns the corresponding keyval, if any?

8.3 Other parts of the environment

There are many parts to the state of a user’s environment that we may want to ensure are
propagated to all MPI processes. One request from a user was for the umask to be maintained. We
should list all components of a process’s state and make an explicit decision about what is and is not
carried over to new processes.

8.4 Documentation and Man Pages

The MPI standard requires that the MPI implementation document certain features and
capabilities. For example, any signal used by the MPI implementation must be documented, as must
any limitation on the use of MPI_Comm_join.

Since many of these depend on the capabilities of the device, each device should provide files
signal_limits.txt and join_limits.txt that document any limitations in the use of signals or
MPI_Comm_join. If no file is provide, no limits exist. These files should be in the device directory
(mpid/foo).

ToDo: We need to integrate the above into the document generation.

9 Testing

The tests for MPICH2 need to be more organized that for MPICH. They should follow these
principles:

1. Require no user intervention (e.g., to inspect the results)

2. Should be implementation independent (i.e., useful for any MPI implementation) unless they
are testing only features specific to MPICH2. An example is a test of error messages and error

9 TESTING 100

class/code values; any test that expects a particular message must not be combined with a
general test of standard conformance.

3. Require no extra files (the .std files in the MPICH version).

4. Testing should be applied to a range of communicators and datatypes, not just
MPI_COMM_WORLD.

5. Testing should be controlled by a file listing the tests rather than a script. That is, the script
runtests should be generic, working with a file in each testing directory that lists the test
programs and any special options (e.g., number of processes, command line arguments,
environment variables).

6. Testing that enables memory tracing should be simple and organized so that it can be run
regularly.

7. Should have short duration, so that the testing program can signal failure because a program
has not completed within the given time.

8. All tests should have positive output. Not all MPI implementations are reliable at indicating a
non-zero return code or at flushing output. A requirement for an output of Test passed is
necessary.

9. The only output on success should be Test passed.

10. Verbose output can be enabled with an environment variable. This makes it easy to rerun tests
that have failed with more output.

BRT Errors should not be reported as a result of a feature having been disabled (i.e., tests for the
long long type should not report a failure when the system is configured with
--disable-long-long).

Results should be maintained in a database which should include

1. Configuration options

2. System description (including compiler version and machines file)

3. CVS tag (or nearest value, e.g., weekly tag + date that source cut was made).

4. Results summary (success or failure; if failure, reason).

5. We should consider an XML format for the output.

The first steps toward such testing have been taken. The Perl script test/runtests can run and
collect the data for all programs in a directory; the file test/mpi/util/mtest.c contains common
routines for running tests, including error reporting; that file will contain routines for the
construction of datatypes and communicators.

Testing should also contain performances tests (see the current Chiba tests for an example:
/home/gropp/projects/chiba/perf/getperf).

1. Configuration options

2. System description (including compiler version and machines file)

3. CVS tag (or nearest value, e.g., weekly tag + date that source cut was made).

4. Results for the following tests:

(a) mpptest -logscale To get the general trend in performance

(b) mpptest -auto To get details for the short message performance.

9 TESTING 101

(c) bisection bandwidth test for a large number of processes. We may want to use beff
instead of mpptest.

(d) mpptest -logscale -halo -npartner 8 To get more realistic communication
performance

(e) mpptest -logscale -gop -dsum

(f) Similar test for alltoallv.

(g) Tests for I/O (Rajeev and Rob to identify)

(h) Tests for put/get/accumulate as those become available. Start with mpptest -logscale
-put and mpptest -logscale -halo -npartner 8

5. This should also be in XML format. Question: Should we add an XML output format to
mpptest? Is there any clear XML definition yet for 2-d data? Tabular output can use the
gtable library to generate output in different formats.

We should maintain the same data for vendor and other MPI implementations, and we should ask
for a standard set of tests.

9.1 Communication Tests

The MPI communication routines are quite general and allow many combinations of arguments. A
comprehensive test needs to check many of these combinations.

1. Datatypes. It is particularly important to check cases where the sender and receiver use
datatypes with the same type signature but different type maps (e.g., contiguous data at the
sender and indexed at the receiver). The kinds of datatypes to test include

(a) All predefined datatypes

(b) Some mixed types

(c) Different patterns (contig, vector (block count of one, two, 13), indexed (monotone
increasing and nonmonotone))

(d) MPI_PACKED sent but received either with MPI_PACKED or with the matching type
signature

To implement this, with each datatype, we need routines to

(a) Allocate the send buffer. Leave room for sentinals at both ends of the buffer.

(b) Initialize the send buffer. Make sure that most bits are set. E.g., 64-bit int values should
include values with bits set in the high 32 bits.

(c) Allocate receive buffer.

(d) Check that the correct data has been received (and that no other data has been set).
This takes the data buffer, the count, the status value, and the structure containing the
description of this datatype.

(e) Release buffers.

This list suggests that a routine be used to return an array of structures that contain both the
datatypes to use (providing separate send and receive datatypes), the functions to allocate,
initialize, and check the data buffers. This function can query the test initialization routine to
determine the number of datatypes to provide; for example, choosing all types, only the most
popular types (e.g., MPI_INT and MPI_DOUBLE), or a specific type (e.g., an environment
variable containing a string that names the datatype). The allocation routines must take an
nelm that specifies the number of basic types. If there is a required divisor of nelm (e.g., the
datatype is a vector with a block count of 13), that is specified, allowing the testing code to
compute valid nelms.

9 TESTING 102

To make it easy to add types and to control the types used in testing (so that exhaustive and
reduced tests are easy to manage), there should be a table-driven form, based on text strings.
SKaMPI may use a similar approach.

Question: For collective scatter and gather routines (particularly the “v” versions), do we also
need routines to allocate, initialize, and check the communication buffers?

2. Communicators

(a) MPI_COMM_WORLD

(b) Dup of MPI_COMM_WORLD

(c) rerank from r to n− r − 1 of MPI_COMM_WORLD (i.e., reverse the order of the ranks

(d) Split into communicators containing only the odd and only the even ranks from
MPI_COMM_WORLD

(e) MPI_COMM_SELF (note that this can’t be used for some blocking communication)

(f) Intercommunicator (built from the groups containing odd, or even ranks in MPI

3. Message Sizes from zero to at least 128 KB. These must be cover enough range so that all
protocols are tested within the device. To simplify this, there should be a way to query the
device about the number of protocols and message sizes (even if the results are only
approximate, as they could be for an adaptive method).

4. Communication Patterns In addition to the unit tests, there must be a way to test interactions
between different pending operations. We may want to have a set of communication
specifications, containing setup, initiate, wait, and rundown, that would allow various
combinations of nonblocking and blocking communication to be selected either from a table or
at random. These should also include successive collective operations, using the same and
different operations.

9.2 Test harness

There is a common test harness for running tests. This will

1. Allow selecting the level of testing; e.g., exhaustive (all tests for all combinations of datatypes
and communicators), factored (all tests for some combination of datatypes and
communicators), or reduced (a sampling of tests), or random (tests chosen using a
pseudorandom number generator).

2. The test harness is table driven, allowing a specific set to be easily specified.

This test harness replaces the current runtests scripts.
In addition, each test will use simple set of routine (similar to the ones in test.c used in some of

the current tests. A simple communication test might look like

#include "mpi.h"
#include "mpitest.h"

int main(int argc, char **argv)
{

int errs;
int sender, receiver;
MTest_Datatypes sendtype, recvtype;
...
MTest_Init(&argc, &argv); /* Testing initialization */
while (MPI_Comm = MTest_Get_comm(&sender, &receiver)) {

while (MTest_Get_datatypes(&sendtype, &recvtype)) {

9 TESTING 103

if (sender) {
sendbuf = sendtype.InitBuf(&sendtype);
... send operation
sendtype.FreeBuf(&sendtype);

}
else if (receiver) {

recvbuf = recvtype.InitBuf(&recvtype);
... recv operation
if (MTest_Check_recv(&status, &recvtype))) {

errs++;
MTest_Errmsg(msg, ...); /* Any process can call */
}

else {
MTest_Message(msg, ...); /* ditto */

}
recvtype.FreeBuf(&recvtype);

}
}
MTest_Reset_datatypes();

}
MTest_Finalize(errs);
return 0;

}

This uses a “get next” interface for the communicators and datatypes because, even though it isn’t
thread-safe, it is very convenient to use. A thread-safe form can also be provided if necessary. All
MPI initialization and finalization is done within the MTest routines. This also supports control of
debugging output: command line and environment variables control how much output the
MTest_Message and MTest_Errmsg generate. In the automated test mode, MTest_Message produces
no output; in the full debugging mode, it performs a printf/fflush with each call. Other versions
of MTest_Get_datatypes and MTest_Check_recv can be used for collective routines.

Routine Summary. This is incomplete.

void MTest_Init(int *argc, char ***argv);
int MTest_Get_datatypes(...);
void MTest_Reset_datatypes(void);
MPI_Comm MTest_Get_comm(int, int);
void MTest_Errmsg(msg, ...);
void MTest_Message(msg, ...);
void MTest_Finalize(int errcount);

9.3 Debugger Interface

We need a test that the DLL that provides access to the internal symbols is correct, as well as a test
that the MPICH library correctly identifies the location of the DLL.

To test the DLL, we need a program mpichdlltest.c that can load the dll and call the routines,
ensuring that it runs correctly. This program should use the ADI’s include files to provide the data
structures that the DLL accesses.

Note that the debugger interface must be compiled in 32-bit mode on platforms with mixed 32
and 64-bit modes. We don’t currently do this (which is a bug) but we need to. To do this, we need a
configure step that may need to know that a system has both options (in the case that sizeof(void
*) is 64. See “complex configuration options” above. We should add a macro PAC_PROG_CC32 that
determines the 32-bit compiler (if any); the DLL’s makefile should use CC32 instead of CC and it
should have its own configure.

10 TODO LIST 104

Still needed: Information needed for debugger startup and message queues.

10 ToDo List

This section contains a ToDo list for this document; that is, the outstanding issues and questions.
The process for resolving each of these is to have each item choosen by one person who is responsible
for writing the text (the section author) and one other person who is the “immediate reviewer.” The
section author is responsible for organizing and leading any discussion necessary to complete the
text. Anyone may read and comment on the document at any time, but should check with the
section author first to make sure that the document is up-to-date. Once a section is written, it
should be read by everyone and we should “vote” on the section. Once a section is “passed,” the
section author should update the ADI-3 document to match the section. This may involve changing,
adding, and/or deleting routines from the ADI-3 document. Once that step is completed, the
routines in the section can be written. The section author is not responsible for implementing the
routines in the section (though they can be; the point is that authoring a section is separate from
implementing a section).

Many of these sections can be implemented independently, once the infrastructure list is settled.

1. Infrastructure

These are necessary before any coding can commence.

(a) Directory structure

(b) MPI routine source code template, including error checks

(c) Partial definitions for key structures, such as communicators and datatypes, and macros
for thread-safe operations

(d) Coding standards (documentation, style, associated tests)

(e) Integral profiling and data collection. Definition of macros for collecting timing data and
for generating slog records.

In addition, the error reporting routines and guidelines to error handling are needed before
much coding is done.

2. MPI Major Sections

Each of these sections should consider

(a) Thread safety,

(b) Error handling and reporting,

(c) Core ADI for 3rd parties (non-multimethod),

(d) Core method ADI for 3rd parties (as part of our multimethod device), and

(e) Performance in MPI communication (whether point-to-point, collective, or RMA).

In addition, scalability to 10,000 processes is required and scalability beyond that to 1,000,000
processes should be considered. However, if scalability to a million processes complicates the
design or the code, we should design for fewer processes and document the reasons in the
Rationale (Section B).

The highest-priority items are: Point-to-point, collective, RMA, and dynamic processes, along
with the communication agent. Of course, these will require some specification of datatypes,
communicators, groups, etc., but they will also drive the details of those objects (e.g.,
datatypes must be defined to support the operations needed for communication).

(a) Attributes.

(b) Info.

10 TODO LIST 105

Defining New Keys. The MPI Forum has not resolved an ambiguity in the definition
of info. While it was clear during many of the discussions that the expectation was that
MPI_Info could be used by layered implementations of parts of MPI, particularly the I/O
part, IBM did not interpret the standard this way and their interpretation is both
consistent with the standard and offers a feature not otherwise available (specifically, the
ability to determine what info keys are recognized by the implementation). However, we
have chosen to follow the spirit of the MPI Forum and allow users to create their own
keys.

(c) Datatypes.

(d) Groups.

(e) Point-to-point.

i. Define the communicator data structure, including the handling of processes that are
not part of the original MPI_COMM_WORLD.

ii. Address the issues of the multiple completion routines (e.g., MPI_Waitsome).

(f) Communication agent. This ensures the progress of MPI communication including passive
RMA access. As such, it is closely connected to the point-to-point and RMA sections.

(g) Collective.

i. MPI_Bcast, MPI_Scatter, and MPI_Reduce with “stream” operations.
ii. Plan for developing algorithms for the other collective routines.
iii. Design to allow implementors to replace any collective routine with a device-specific

version

(h) Communicators.

i. Basic routines for communicator construction. Coordinate intercomm creation with
the dynamic process routines (MPI_Comm_spawn, MPI_Comm_connect,
MPI_Comm_attach, and MPI_Join).

(i) Topology.

(j) RMA. Everything (including scenarios illustrating BSP-style defered updates).

i. Scenarios

(k) Starting and Ending MPI (e.g., init, finalize, and abort).

(l) Dynamic processes.

(m) Name service.

(n) User-defined requests (also needed for ROMIO I/O).

(o) Error handlers. (These are the MPI error handlers, not the error reporting routines.)

(p) Handle Transfers (e.g., MPI_Request_c2f)

(q) Timers.

(r) I/O. For the most part, we will take ROMIO without any changes for now. However,
there are a few things to handle:

i. Replace ROMIO’s MPIO_Request and MPIO_Wait etc. with regular MPI_Requests
(possibly using the generalized requests).

ii. Update error reporting with new routines
iii. Check on datatype handling
iv. Update configure.in

(s) Runtime Environment. (Processor name and MPI version.)

(t) Profiling.

(u) MPI command environment (mpiexec, mpicc, etc.)

A ERROR CODES 106

3. Source code, portability, and framework. These are miscellaneous (though important) items
that need to be completed before much coding is done.

(a) Error reporting routines, particularly the handling of instance-specific messages and
internationalization.

(b) mpich2 bug list.

(c) Runtime parameter access (e.g., socket buffer sizes from an environment variable or
.mpichrc file).

(d) Configure and automake, particularly a style-sheet on modifying the autoconf and
automake input files. See maint/sampleconf.in.

(e) Cross compilation and compilation environment (using different compilers from the ones
MPICH is built with)

(f) Fortran

(g) C++

(h) Testing. Needs new test harness; intelligent sampling of the possible combinations;
archiving of results (including performance tests). The tests must work with any MPI,
not just MPICH (just like the current test suite). Separate tests for MPICH-specific
features should be provided in a separate suite of tests.

A Error Codes

A.1 Error Classes and Codes

The MPI standard defines a number of error classes and permits an implementation to make use of
additional error codes, with the proviso that any error code belong to some error class (though this
does include the MPI_ERR_OTHER class). The specification of MPI error classes is rather uneven.
There are separate classes for most of the arguments to the point-to-point communication functions
and for many of the I/O errors. Other routines have to make due with MPI_ERR_ARG or
MPI_ERR_OTHER.

In addition, many of the errors have common subcases. For example, most of the errors that refer
to an MPI opaque handle can indicate either a null or a non-null but invalid handle. To handle all of
these cases, we predefine an extended set of error codes. Only the error classes are defined in mpi.h.
Codes are assigned dynamically, and they contain both the class and information that is used to
identify particular instance-specific error messages. The full list of predefined error messages and the
shortnames that can be used in MPIR_Err_create_code is in the file
src/mpi/errhan/errnames.txt.

Many of these descriptions list the optional arguments. These can be provided (in the order and
with the types specified) to the call that creates an error code (see MPID_Err_create_code).

All of these error codes may be specified by using a string of the form (**string) in the
MPID_Err_create_code call. The string versions are the preferred forms.

MPI_ERR_BUFFER (**buffer) Invalid buffer pointer

(**bufnull) Null buffer pointer

(**bufbsend) Insufficient space in Bsend buffer (optional args: requested and avaliable
length (int))

(**bufalias) Buffers must not be aliased (optional args: names of two arguments (string))

(**bufsize) Invalid buffer size (optional arg: size (int))

(**bufexists) Buffer already attached with MPI_BUFFER_ATTACH.

(**bsendbufsmall) Buffer size is smaller than MPI_BSEND_OVERHEAD (optional argument:
size, value of MPI_BSEND_OVERHEAD (int))

A ERROR CODES 107

(**bsendnobuf) No buffer to detach.

MPI_ERR_COUNT (**count) Invalid count (optional argument value (int))

(**countarray) Invalid count in count array (optional arguments: index and value (int))

(**countneg) Negative count

MPI_ERR_TYPE (**dtype) Invalid datatype

(**dtypenull) Null datatype

(**dtypenullarray) Null datatype in array of datatypes (optional arguments: name of
argument (string) and index (int))

(**dtypecommit) Datatype has not been committed

(**dtypeperm) Cannot free permanent data type (optional argument: name (string))

(**dtypepermcontents) Cannot get contents of a permanent or basic data type (optional
argument: name (string))

(**dtypename) Cannot set name in data type

(**dtypenomatch) Type signatures do not match in communication (see [8])

(**dtypecomm) Pack buffer not packed for this communicator.

MPI_ERR_TAG (**tag) Invalid tag (optional argument: value (int))

MPI_ERR_COMM (**comm) Invalid communicator

(**commnull) Null communicator

(**intercomm) Intercommunicator is not allowed

(**intracomm) Intracommunicator is not allowed

(**commname) Cannot set name in communicator

(**commpeer) Peer communicator is not valid

(**commlocalnull) Local communicator must not be MPI_COMM_NULL

Note that while C++ defines separate Cartesian and Graph communicators, errors involving
improper choice of those is under MPI_ERR_TOPOLOGY.

MPI_ERR_RANK (**rank) Invalid rank (optional argument: value (int))

(**rankarray) Invalid rank in rank array (optional arguments: index, value, size-1 (int))

(**rankdup) Duplicate ranks in rank array (optional arguments: index, value, other index
(int))

(**ranklocal) Error specifying local˙leader (optional arguments: value, size-1 (int))

(**rankremote) Error specifying remote˙leader (optional arguments: value, size-1 (int))

MPI_ERR_ROOT (**root) Invalid root (optional arg: value (int))

(**rootlarge) Root is too large (optional arguments: value and size-1 (int))

MPI_ERR_GROUP (**group) Invalid group

(**groupnull) Null group

MPI_ERR_OP (**op) Invalid MPI_Op

(**opnull) Null MPI_Op

A ERROR CODES 108

(**opundefined) MPI_Op operation not defined for this datatype (optional argument: name
of datatype (string))

(**opperm) Cannot free permanent MPI_Op

MPI_ERR_TOPOLOGY (**topology) Invalid topology

(**topologysize) Topology size is greater than communicator size (optional arguments:
topology size and communicator size (int))

(**grapharraysize) Specified edge < 0 or > nnodes (optional arguments: index, value,
nnodes (int))

MPI_ERR_DIMS (**dims) Invalid dimension argument (optional arg: value (int))

(**dimsarray) Invalid dimension argument in array (optional arguments: index, value (int))

(**dimsmany) Number of dimensions is too large (optional arguments: value, maxvalue (int))

(**dimstensor) Tensor product size does not match nnodes (optional arguments: tensor
product size and nnodes (int))

(**dimspartition) Can not partition nodes as requested

MPI_ERR_ARG (**arg) Invalid argument (optional arg: name (string))

(**argerrcode) Invalid error code (optional arg: value (int))

(**argnull) Invalid null parameter (optional arg: name of argument (string))

(**argaddress) Address of location given to MPI_ADDRESS does not fix in a Fortran integer
(optional argument: address (long int))

(**errhandler) Invalid errhandler

(**errhandlernull) Null errhandler

(**errhandlerperm) Cannot free permanent error handler (optional argument: name
(string))

(**statusignore) Invalid use of MPI_STATUS_IGNORE or MPI_STATUSES_IGNORE

(**stride) Range does not terminate (optional arguments: start, end, stride (int))

(**stridezero) Zero stride is incorrect

(**argarray) Invalid value in array (optional arguments: name of variable (string), index
(int), value (int))

(**argnamed) Invalid argument (optional arguments: name (string), value (int))

(**argneg) Invalid argument; must be nonnegative (optional arguments: name (string),
value (int))

(**argarrayneg) Negative value in array (optional arguments: name of variable (string),
index (int), value (int))

(**darraydist) For MPI_DISTRIBUTE_NONE, the number of processes in that dimension of
the grid must be 1 (optional arguments: index of array˙of˙psizes, value (int))

(**darrayunknown) Unknown distribution type

(**darrayblock) Value of m must be positive for block(m) distribution (optional argument:
value of m (int))

(**darrayblock2) m * nprocs is < array_size and is not valid for block(m) distribution
(optional arguments: m*nprocs, array_size (int))

(**darraycyclic) Value of m must be positive for a cyclic(m) distribution (optional
argument: m (int))

(**argposneg) Value of position must be nonnegative (optional argument: value (int))

A ERROR CODES 109

(**infonkey) n (for nth key/value) is invalid (optional arguments: n, number of keys in info
(int))

MPI_ERR_UNKNOWN (**unknown) Unknown error. Note that this should never be used.

MPI_ERR_TRUNCATE (**truncate) Message truncated (optional arguments: bytes received and
buffer size (int))

MPI_ERR_OTHER (**other) Other MPI error

(**othersys) System resource limit exceeded (optional argument: name of resource (string))

(**rsendnomatch) Ready send had no matching receive (optional arguments: source,
destination, tag (int))

(**inittwice) Cannot call MPI_INIT or MPI_INIT_THREAD more than once

(**preinit) MPI_Init must be called first (optional argument: name of calling routine
(string))

(**startup) Error on startup, such as a mismatch between mpiexec and the MPI libraries
(optional argument: text with detailed reason (string))

(**nomem) Out of memory (optional arguments: requested and available (int))

(**attrcopy) User defined attribute copy routine returned a non-zero return code (optional
argument: return code (int))

MPI_ERR_INTERN (**intern) Internal MPI error! (optional argument: detailed text (string)) These
provide English-only strings because they are for internal errors and should never be seen by
users.

MPI_ERR_IN_STATUS (**instatus) See the MPI_ERROR field in MPI_Status for the error code

MPI_ERR_PENDING (**pending) Pending request (no error)

MPI_ERR_REQUEST (**request) Invalid MPI_Request

(**requestnull) Null MPI_Request

(**requestnotpersist) Request is not persistent in MPI_Start or MPI_Startall.

MPI_ERR_ACCESS (**fileaccess) Access denied to file (optional arg: name (string)

MPI_ERR_AMODE (**fileamode) Invalid amode value in MPI_File_open (optional argument: amode
(int))

(**fileamodeone) Exactly one of MPI_MODE_RDONLY, MPI_MODE_WRONLY, or MPI_MODE_RDWR
must be specified

(**fileamoderead) Cannot use MPI_MODE_CREATE or MPI_MODE_EXCL with MPI_MODE_RDONLY

(**fileamodeseq) Cannot specify MPI_MODE_SEQUENTIAL with MPI_MODE_RDWR

MPI_ERR_BAD_FILE (**filename) Invalid file name (optional arg: name (string))

(**filenamelong) Pathname too long (optional arguments: name, length, and maximum
length (string, int, int))

(**filenamedir) Invalid or missing directory (optional argument: name (string))

MPI_ERR_CONVERSION (**conversion) An error occurred in a user-defined data conversion function

MPI_ERR_DUP_DATAREP (**datarep) The requested datarep name has already been specified to
MPI_REGISTER_DATAREP (optional arg: name (string))

MPI_ERR_FILE_EXISTS (**fileexist) File exists (optional arg: name (string))

A ERROR CODES 110

MPI_ERR_FILE_IN_USE (**fileinuse) File in use by some process (optional arg: name (string))

MPI_ERR_FILE (**file) Invalid MPI_File

(**filenull) Null MPI_File

MPI_ERR_INFO (**info) Invalid MPI_Info

(**infonull) Null MPI_Info

MPI_ERR_INFO_KEY (**infokey) Invalid key for MPI_Info

(**infokeynull) Null key

(**infokeylong) Key is too long (optional arguments: name, length, maxlength (string, int,
int)

(**infokeyempty) Empty or blank key

MPI_ERR_INFO_VALUE (**infoval) Invalid MPI_Info value

(**infovalnull) Null value

(**infovallong) Value is too long (optional arguments: name, length, maxlength (string,
int, int)

MPI_ERR_INFO_NOKEY (**infonokey) MPI_Info key is not defined (optional argument: keyname
(string))

MPI_ERR_IO (**io) Other I/O error (optional argument: text (string))

(**ioetype) Only an integral number of etypes can be accessed

(**iofstype) Cannot determine filesystem type (optional argument: name of file (string))

(**iofstypeunsupported) Specified filesystem is not available (optional argument: name of
filesystem (string))

(**iosplitcoll) Only one active split collective I/O operation is allowed per file handle

(**iosplitcollnone) No split collective I/O operation is active

(**ioasyncwaiting) There are outstanding nonblocking I/O operations on this file

(**ioneedrdwr) Read/write access is required to this file

(**iofiletype) Filetype must be constructed out of one or more etypes

(**iosharedunsupported) Shared file pointers not supported (optional argument: name of
file system (string))

(**ioamodeseq) Cannot use this function when the file is opened with amode
MPI_MODE_SEQUENTIAL (optional argument: name of routine (string))

(**iowronly) Cannot read from a file opened with amode MPI_MODE_WRONLY

(**iosequnsupported) MPI_MODE_SEQUENTIAL not supported on this file system (optional
argument: name of file system (string))

MPI_ERR_NAME (**nameservice) Attempt to lookup an unknown service name (optional arg: name
(string))

MPI_ERR_NOMEM (**allocmem) Unable to allocate memory for MPI_Alloc_mem (optional arguments:
amount requested and amount available (int))

MPI_ERR_NOT_SAME (**notsame) Inconsistent arguments to collective routine (optional arguments:
name of collective routine (string), name of argument that is not consistent (string))

A ERROR CODES 111

(**notsamevalue) Arguments to collective routine must be the same (optional arguments:
name of collective routine (string), name of argument (string), null terminated array of
values (array of int))

(**notsameroot) Inconsistent root

(**notsameorder) Collective routines called in an inconsistent order (optional arguments:
null terminated array of names (array of string))

MPI_ERR_NO_SPACE (**filenospace) Not enough space for file (optional arguments: name (string),
size needed (int), and size available (int))

MPI_ERR_NO_SUCH_FILE (**filenoexist) File does not exist (optional arg: name (string))

MPI_ERR_PORT (**port) Invalid port

(**portexist) Named port does not exist (optional arg: name of port (string))

(**porttimeout) Time out attempting a MPI_Comm_connect to port (optional arg: name of
port (string))

MPI_ERR_QUOTA (**filequota) Quota exceeded for files (optional arg: name (string)

MPI_ERR_READ_ONLY (**filerdonly) Read-only file or filesystem (optional arg: name (string))

MPI_ERR_SERVICE (**servicename) Invalid service name (see MPI_Publish_name) (optional arg:
name (string))

(**servicenameunpublish) Attempt to unpublish an unknown service name (optional arg:
name (string))

MPI_ERR_SPAWN (**spawn) Error in spawn call

(**spawnfail) Could not spawn all requested processes

(**spawnpgm) The named program could not be found (optional arg: name (spawn))

(**spawnmanager) The process manager returned an error (optional arg: text from process
manager (string))

MPI_ERR_UNSUPPORTED_DATAREP (**datarepunsupported) Unsupported datarep passed to
MPI_File_set_view (optional arg: name of datarep (string))

MPI_ERR_UNSUPPORTED_OPERATION (**fileopunsupported) Unsupported file operation (optional
arg: text describing specific operation (string)). We may want to define subclasses for this
error class.

MPI_ERR_WIN (**win) Invalid MPI_Win

(**winnull) Null MPI_Win

(**winname) Cannot set window object name

(**winpassive) Attempt to use passive target access with a window not allocated with
MPI_Alloc_mem.

MPI_ERR_BASE (**freemembase) Invalid base address in MPI_Free_mem

MPI_ERR_LOCKTYPE (**locktype) Invalid locktype

MPI_ERR_KEYVAL (**keyval) Invalid keyval

(**keyvalnull) Null keyval

(**keyvalperm) Cannot free permanent attribute key

(**keyvalcomm) Keyval is not in communicator

B RATIONALE 112

(**keyvaldtype) Keyval is not in datatype

(**keyvalwin) Keyval is not in window object

MPI_ERR_RMA_CONFLICT (**rmaconflict) Conflicting accesses to window

MPI_ERR_RMA_SYNC (**rmasync) Wrong synchronization of RMA calls

MPI_ERR_SIZE (**rmasize) Invalid size argument in RMA call (optional argument: size (int))

MPI_ERR_DISP (**rmadisp) Invalid displacement argument in RMA call

MPI_ERR_ASSERT (**assert) Invalid assert argument

B Rationale

This appendix contains some of the discussion about the particular choices made in the design of the
MPICH2 implementation, and include both design alternatives and discussion of constraints that
may not be obvious to a casual reader of the MPI standard. This appendix is organized by major
section.

B.1 Sample Implementation Template

We considered requiring an entire mpich style, but this requires using eval for the first line, causing
emacs to query whether it should run the eval every time a file is loaded. This was considered too
ugly for words.

B.2 Opaque Handles

Integers are used for opaque handles rather than addresses because Fortran integers may be smaller
than addresses, and providing a mapping from integer address to pointer proved to be troublesome
in MPICH-1. In addition, using pointers can be risky, since a malformed value (for example, an
out-of-position argument to an MPI routine) can cause a SEGV when used. Using integers that
encode the type and other data make it easier to detect user errors.

The reason for the indirect blocks is to provide a balance between fast startup and small memory
size and the ability to provide large numbers of objects to the applications that require them. The
approach taken here optimizes for small numbers of objects (the HANDLE_DIRECT type) but allows
large numbers of objects to be incrementally allocated.

An alternative approach that one vendor used is realloc; for cases where the realloc succeeds
without allocating new data (by extending the existing region), this approach is very fast. However,
in a multithreaded environment, it forces a lock around every object access, since in the case where
realloc allocates a new block, it is necessary to move the objects to the new storage. In a
multithreaded application, without a lock around each object access, an object may be updated by
one thread while being moved by another. The approach taken here avoids that problem; locks are
only needed to allocate and free an object, and careful assembly language coding could eliminate
those locks in favor of atomic update operations.

B.3 Error checks

B.3.1 Pointer Checks.

Question: Code in ROMIO often includes the following test on pointers:

if (ptr < (Ptr_type) 0) error

This helps catch some common invalid pointers on many systems, but isn’t correct for some other
systems. Should there be an optional pointer-validation test? For example, the function

B RATIONALE 113

MPID_Test_pointer would return true if the pointer was valid and false otherwise (possibly testing
only for reading). This could do anything from test against null to changing the SIGSEGV handler,
attempting to read from the address, resetting the handler, and determining if the handler was
invoked. It could return an error code if it finds a problem. Note that this won’t work in the
multi-threaded case (unless a thread-specific signal handler is available).

Question [BRT]: Are there systems where a pointer can be less than zero? I have always (perhaps
incorrectly) considered pointers to be unsigned, so the above code fragment seems bizzare to me.

Question [BRT]: What is the purpose of performing these tests? If the purpose is to help us, the
MPICH developers, find bugs, then I suggest that we avoid adding these types of tests and instead
make use of a product like Insure++. If the purpose is to keep the user’s code from core dumping,
then such tests might be useful. However, I highly recommend that the user be able to turn off such
checks as a core dump frequently provides useful information about the source of the problem.
Answer [WDG]: I believe that the intent was to catch user errors. As the bug reports have shown,
users often assume that any code except theirs is at fault, so the library code by default should be
defensive.

B.4 Layered Error Handling

In the case of a single-threaded MPI (from the user’s perspective; that is, the user’s code is
single-threaded), implementing this is not difficult. The “top-level” routine needs only to save the
current error handler and then replace it with MPI_ERRORS_RETURN. Any errors detected in the
routines that the top level routine calls will then be returned to that routine, which can then invoke
the specified MPI error handler.

In a multithreaded case, however, this approach is incorrect, since another thread may be using
the same object (think of MPI_COMM_WORLD). This suggests an alternative approach. For each thread,
maintain a “current error handler.” Most of the time, this will be “object’s error handler”. However,
during a layered call, this would be changed to “errors return.”

The only difficulty with this is that threads are not registered with the MPI implementation; thus,
depending on the details of the thread package, there may bes no easy way for the implementation
to know a priori whether thread-private data has been created to store the current error handler.
Instead, when an error handler must be invoked or changed, a global table of known threads must be
consulted (by the thread id, which is unique for each thread). This table indicates which error
handler is current for a thread. Note that a different thread id function is needed for each thread
package. For example, if a system supports both pthreads and OpenMP (where OpenMP does not
use pthreads), then the MPI implementation needs to know which thread package is being used.
This suggests that the function that provides the thread id by well isolated and perhaps dynamically
loaded.

Comment [BRT]: I believe most threads packages provide thread-specific storage. If such storage
is available, we should use it rather than creating our own implementation of thread-specific storage.

Comment [BRT]: On some systems, the choice of the threads package (or lack thereof) must be
selected at compile time and be consistent for all object files linked into the executable. On these
systems, dynamic loading of libraries compiled with different thread packages is likely to be
problematic.

The following is old text that predated the “nest level” solution. This followed the
(non-thread-safe) approach used in MPICH that updated the error handler directly within the
communicator.

Under pthreads, the situation is somewhat easier. We can use pthread_key_create to create a
key that can be used to access thread-private data with pthread_getspecific in any thread. The
key needs to be a (at least file-scoped) variable such as MPID_THREAD_KEY_ERRHANDLER. Since the
pthread keys are common to all pthreads, this can be allocated in MPID_Init. Question: is this
handled as part of MPID_Err_init, and is there a corresponding MPID_Err_finalize that calls
pthread_key_delete? The routine pthread_cleanup_push can be used to recover any
thread-specific data structures.

To implement the layered calls, the following functions may be used

B RATIONALE 114

void MPIR_Err_set_return(void);
void MPIR_Err_restore(void);
MPID_Errhandler *MPIR_Err_get_handler(ds);

The last routine returns the error handler to use; it first checks the global current error handler (int
MPIR_QUERY_ERRORS_RETURN); if true, then the handler is MPI_ERRORS_RETURN. Otherwise, it returns
the handler associated with the data structure. In the multithreaded case, it uses the thread id to
check the table of threads for the thread-specific version of MPIR_QUERY_ERRORS_RETURN.

This is different from the MPICH-1 version which implemented a general push/pop of error
handlers. While push/pop of error handlers is a nice abstract model, it is more than is needed for
the layered MPI routines, and, as noted above, is not correct for the multithreaded case.

Comment [BRT]: push/pop would be correct for the multi-threaded case as long as thread-specific
stacks are used.

B.5 Memory Allocation

The use of MPIU_Malloc etc. makes it easier to use portable versions of memory tracing tools. The
allocator that maintains a stack of allocated memory is intended for routines such as
MPI_Type_hindexed that make multiple memory allocations.

B.6 PMPI

Question: The pragma code is very ugly and hard to read. It is also hard to update. It would be
relatively easy to create the correct form on the fly, using configure (or another program, run by
configure). But that would require at least an include file for each MPI routine. An alternate
approach is to make the inclusion entirely machine generated. In that case, updating it requires only
re-running the update editor. In this case, the pragmas for implementing the profiling interface
should be placed between two clear markers, such as

/* -- begin profiling interface for routine xxxx -- */
/* DO NOT EDIT. Use the program xxx to update */
...
/* -- end profiling interface -- */

Placing the routine name in the comment header makes it easy to extract the correct name and
generate the appropriate text.

Question: If we do have two libraries, then we must link with both, even when the profiling
routines are not otherwise used because any internal functions may be defined in the PMPI versions.
We may need to do this anyway, because any function that calls an MPI routine will actually be
calling the PMPI version. Is this what we want to do? Is it the best thing to do? Note that we do
this now, but through the confusing approach of using the MPI file names, but redefining them as
PMPI with a file containing a redefinition of every single MPI routine.

B.7 Runtime Parameters

Question: Should we use the PETSc options database code or something similar to provide uniform
access to runtime parameters? The reason that we may not do this is that the PETSc code makes
heavy use of the PETSc flavors of the memory allocation and error reporting routines and also does
not have the concept of pre/post initialization.

The simplest implementation of these might be

int MPIU_Param_init(int *argc, char **argv[]) {return 0; }
int MPIU_Param_bcast(void) { return 0; }
int MPIU_Param_get_int(const char name[], int default_val, int *value)

{ char *tmp = getenv{name);
if (tmp) {

B RATIONALE 115

char *endp;
*value = strtol(name,&endp,10);
/* if name not an integer, return 2 */
if (*endp != ’\0’) return MPIU_PARAM_ERROR;
return MPIU_PARAM_FOUND;

*value = default_val;
return MPIU_PARAM_OK; }

int MPIU_Param_get_string(const char name[], const char *default_val,
char **value)

{ char *tmp = getenv(name);
if (!tmp) {

tmp = default_val;
return MPID_PARAM_OK;

}
*value = MPID_Strdup(tmp);
return MPIU_PARAM_FOUND;
}

void MPIU_Param_finalize(void){}

BNR routines could be used instead of getenv to get values. Even more complex routines could read
a .mpichrc file and remember parameter values in a table, looking them up when requested (this is
closest to the PETSc options database).

B.8 Coding Practices

Setting the Emacs style in each file is awkward. One alternative is to explicitly set the variables for
the style we prefer (e.g., set the indent explicitly). The problem with this is that it depends on the
Emacs version; each release of Emacs seems to use a different set of variables. Of course, the next
version might use a different style format, but with some luck that may not change.

B.9 Other Subsystems

Question: What about Fortran and C++? These are required for full MPI support (unlike MPE or
the performance tests), but have many unique requirements during configurations. I believe that
these should continue to have a separate configure, though it is not necessary to make them
standalone (e.g., work with other implementations of MPI).

There are two major reasons for making the non-MPICH packages separate CVS projects:

1. These projects are intended to work with any MPI implementation. They must thus work in
an enviroment that does not include any of the MPICH components. This is particularly
important for the test suite and performance test codes. The close integration of the source
trees has led to serious problems in maintaining the portability to other MPI implementations.

2. They can have separate release cycles as separate projects. This makes it easier to distribute
updates for the tests and for the MPE functionality.

B.10 Performance and Tracing Data

One critical piece of information that is hard currently to acquire is the amount of idle time spent in
completing a communication operation. This is information that a tracing library would like to
have. Should there be an MPID_xxx call that could be made available to a tracing package? For
example, it could have semantics roughly like MPI_Wtime, except that it would contain cumulative
idle time. In a multithreaded environment, it could give a per-thread cumulative idle time (or could
it)? Should we define MPID_Idle_time, and modify MPE to look for that name in the MPI library?
(Note: handled differently in the current text, using explicit states for waits).

B RATIONALE 116

To tune the layered routines, including the collective routines, we should include from the
beginning standardized tracing for:

1. All (major?) MPID calls

2. Idle time. Note that to ensure that this is really close to the actual idle time, it may be
necessary to separate some actions into a “check for ready” and “perform operation”. For
example, in the TCP case, you’d want to use select to determine the idle time rather than
ever use a blocking I/O operation.

3. Context switches (if using threads)

4. Resource usage

5. Flow control

In addition to these, a tracing layer can benefit from access to the context id and to a message
sequence number (necessary for matching messages in the multi-threaded case).

B.11 Attributes

B.12 Info

Below are a number of alternatives that were considered for the implementation of MPI_Info. These
alternatives were not selected.

Question: Since many of the predefined Info values encode either booleans or integers, do we want
an internal routine such as MPID_Info_get_int that returns an integer value if the key is found and
has either an integer value? Similarly, should there be an MPID_Info_set_int? If we do this, do we
want to cache the result in the Info item structure? There are a few info keys (e.g., chuncked or
io_node_list) that are lists of integers and at least one (access_style) that is a list of strings.
soft is a list of triplets; an info routine that returned triplets would be needed for this. We also
need MPID_Info_get_bool that returns 1, 0, or -1 (for error). Do we want these to return an error
code instead, and return the value through an argument?

Question: Do we want to make the key part of the structure, and set MPI_MAX_KEY_VALUE to a
small value such as 32 (the minimum allowed)? Doing so slightly simplifies the code to set and
delete info values.

Question: Do we want the list to be sorted by key name? The current implementation uses a
linear list, which is probably ok for most uses.

An alternative for MPI_INFO_GET_NTHKEY Since the most likely use of this routine is to search
for all keys, we remember the index and location in the list of the last key returned (or modified).
This value is stored in the first info element (using the otherwise unused key and value fields). This
change lowers the cost of extracting every key from n2 in the length of the list to n.

Inorder to get the value that matches the key, we may want to check that particular entry first
when searching for a key.

Note that if this approach is implemented, other routines such as MPI_Info_set and
MPI_Info_delete must update the number of keys in the list.

Question: Do we want to have this return an error if the info list is modified by another thread?
Is there any way to actually do this? For example, the self-id of a thread could record itself in the
info object when ever the object is modified. This routine could (optionally) return an error if the
list is modified by another thread after MPI_INFO_GET_NKEYS. Note that it is incorrect in general to
signal an error in this case because MPI allows the user to change an info in one thread while using
these get nth key and nkeys routines in another. However, an option in MPICH that checked the
assertion that “only one thread accesses or modifies a particular object at a time” (common in many
programs) could be helpful to users.

B RATIONALE 117

B.13 Datatypes

B.14 Groups

B.15 Point-to-point

B.16 Communication agent

B.17 Collective

The following old text describes some of the issues with using “hidden” communicators. The
solution to these problems was to use a set of explicit context values, and make the context value an
argument to some of the routines.

Question: do we want a “hidden” communicator for implementing the collective routines? Just a
hidden context? One concern when there are two communicators: which do you lock (e.g., with
MPID_Comm_thread_lock)? How do you avoid deadly embraces? How do you ensure that the
expected communicator is acted on? An alternative to two full communicators is to have two
context values. If there is a hidden communicator, should there be a flag that can be used to
indicate that the communicator is, in fact, a hidden one?

If a hidden communicator is used, it should have its error handler permanently set to
MPI_ERRORS_RETURN so that an error action that is appropriate to the collective routine, not the
routine called, may be used.

B.17.1 Structure of the files containing the predefined operations.

The MPICH code uses one gigantic file, global_ops.c, to implement all of the reduction functions.
There are two problems with this. First, some compilers become unhappy with it and do not
optimize it very well. Second, all applications must load all of the routines even though only a few
(typically one) reduction function is used. We could break this into separate routines for each
operation. Those could further be broken down by basic datatype, since the datatype is known by
the routine that calls the specific reduction function. For example, we could have MPIR_SUM_Double,
MPIR_SUM_Int, etc. This would also allow us to use Fortran code for some or all of these routines,
since Fortran compilers typically produce better code for this kind of operation (though the new
definitions, using restrict, may be much better than the current C code).

The down side of this is that, particularly in unstripped code, each file (particularly if it includes
any significant header files) includes a significant amount of information. A latency, if you will, for
each file. That is, if putting all of the routines into a single file takes n bytes, putting them into k
files takes n + (k − 1)m, where m is the size of the header. In practice, the value of m can be
relatively large (several kilobytes).

If we want to use the Fortran compiler for some or all of these, we’ll need a Fortran compiler and
a backup when there is no Fortran compiler.

Unfortunately, there is no way to return an error value from a standard MPI reduction operation
(there is no return value). MPICH used an external int (MPIR_Op_errno). MPICH-2 uses a value in
the per-thread data block.

B.18 Communicators

B.19 Topology

B.20 RMA

B.21 Starting and Ending MPI

The following three questions have to do with the callbacks registered for MPI_Finalize.
Question: Since storing function pointers is vunerable to user-errors that overwrite memory, do we

want to add sentinals, either on each side of the function stack or around each entry in the stack?

B RATIONALE 118

Question: Do we need to provide an ordering to these callbacks? We could add a third argument
that specified a phase; the callbacks would be called in phase order; within a phase, the order would
be arbitrary.

Question: Another approach is to add these as internal attributes on MPI_COMM_SELF, with the
delete function corresponding to the callback defined above. The major problem with this is defining
and communicating the private keyvals without losing the separation of the module from the rest of
the code. The other problem with relying on the attribute is that the order of invocation is not
defined.

B.22 Dynamic processes

B.23 Name service

B.24 User-defined requests

B.25 Error handlers

B.26 Handle Transfers

B.27 Timers

B.28 I/O

B.29 Runtime Environment

B.30 Profiling

B.31 MPI command environment

B.32 Portability

Here is some discussion on what would be necessary if automake was used.
If automake is used, add

Use AM_xFLAGS to modify compiler behavior
AM_CFLAGS=${COPTIONS}

to the Makefile.am. If we do use automake, we will provide a tool to edit the generated files to both
clean them up and to patch errors (e.g., the re-run automake in distributed versions of the
Makefiles).

Files produced by automake must be modified. If we use automake, we will provide an
automake-fixup that

1. Removes bogus targets for updating the configure and Makefile.in files. Automake’s
targets for these are not correct, particularly for distributions (it doesn’t ensure that the
correct versions of the various autotools are used; the stock automake doesn’t even generate a
correct Makefile.in). Of particular importance is removing the stamp-h target and
dependencies. This is the most serious problem with automake; an unlucky user can have
automake destroy the Makefile.ins with no way to recover them short of starting over and
unpacking the distribution from the tarball.

2. Cleans up empty targets and dependencies. While this is not essential, the Makefile.ins
generated by automake are very messy; users are used to looking at Makefiles and
understanding what is going on. For example, this pass can eliminate the many hook targets
such as check-am.

3. Automake, when used with libtool, only allows libraries to be created in the current
directory, not in a directory “above” the current one in the directory tree. For large packages
that use multiple source directories, this leads to the construction of a library in each directory

REFERENCES 119

whose sole purpose is to be unpacked and used to create a different library in a different
directory. This is particularly inconvenient during development, when you’d like to simply
replace the (few) files that have changed in the library.

4. Fixes errors. Some of these have been fixed in some of the automake installations, but there
will undoubtably be others.

References

[1] M. Barnett, S. Gupta, D. Payne, L. Shuler, R. van de Geijn, and J. Watts. Interprocessor
collective communications library (intercomm). In Proceedings of the Scalable High
Performance Computing Conference, pages 356–364. IEEE Computer Society Press, 1994.

[2] Massimo Bernaschi, Giulio Iannello, and Mario Lauria. Experimental results about MPI
collective communication operations. In Proceedings of HPCN99, 1999.

[3] IMPI Steering Committee. IMPI - interoperable message-passing interface, 1998.
http://impi.nist.gov/IMPI/.

[4] William Gropp. Users manual for doctext: Producing documentation from C source code.
Technical Report ANL/MCS-TM-206, Argonne National Laboratory, March 1995.

[5] William Gropp. Coding Standards and Development Framework. Argonne National Laboratory,
2000. Unfinished.

[6] William Gropp and Ewing Lusk. MPICH abstract device interface version 3. Technical report,
Argonne National Laboratory, 2000. Unfinished.

[7] William Gropp, Ewing Lusk, and Debbie Swider. Improving the performance of MPI derived
datatypes. In Anthony Skjellum, Purushotham V. Bangalore, and Yoginder S. Dandass, editors,
Proceedings of the Third MPI Developer’s and User’s Conference, pages 25–30. MPI Software
Technology Press, 1999.

[8] William D. Gropp. Runtime checking of datatype signatures in MPI. In Jack Dongarra, Peter
Kacsuk, and Norbert Podhorszki, editors, Recent Advances in Parallel Virutal Machine and
Message Passing Interface, number 1908 in Springer Lecture Notes in Computer Science, pages
160–167, September 2000.

[9] OpenLDAP project. http://www.openldap.org.

[10] Honbo Zhou and Al Geist. “Receiver makes right” data conversion in PVM. In IEEE, editor,
Conference proceedings of the 1995 IEEE Fourteenth Annual International Phoenix Conference
on Computers and Communications: Scottsdale, Arizona, USA, March 28–31, 1995, volume 14,
pages 458–464, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1995. IEEE
Computer Society Press.

http://www.openldap.org

Index

–disable-error-checking, 17
–disable-mpi-macros, 90
–disable-type-signature, 41
–enable-comm:intercommcoll=no, 65
–enable-comm=id-cache=n, 53
–enable-comm=maxcontext=n, 53
–enable-error-checking, 6, 17
–enable-fast, 92
–enable-g=all, 25
–enable-g=msgtrack, 96
–enable-g=strongpointercheck, 18
–enable-g=trmem, 25
–enable-mpi-macros, 90
–enable-strict, 92, 95
–enable-timing, 6, 22
–with-maxcomm=n, 53
–with-pm=dir, 3
–with-pmi=dir, 3

access_style, 34, 116
appnum, 34
arch, 34
autoheader, 10

BNR_Accept, 86
BNR_Connect, 86
BNR_KM_Get, 78

cb_block_size, 34
cb_buffer_size, 34
cb_nodes, 34
CHAR_PTR_IS_BYTE, 43
chuncked, 116
chunked, 34
chunked_item, 34
chunked_size, 34
collective_buffering, 34

EAGAIN, 23
EXPORT_MPI_API, 97
external32, 34, 47

false, 35
FCNAME, 6
file, 34
file_perm, 34
filename, 34

HANDLE_GET_KIND(a), 12
HANDLE_KIND_DIRECT, 14
HANDLE_KIND_INDIRECT, 14
HANDLE_KIND_MASK, 12

HANDLE_SET_KIND(a,kind), 12
host, 34

internal, 34
io_node_list, 34, 116
ip_address, 34
ip_port, 34

lazy initialization, 28
lpid_to_lrank

lpid, 49
lrank, 49

marker_array, 50
MPI::Clone, 56
MPI::Dup, 56
MPI_ABORT, 77
MPI_ACCUMULATE, 73
MPI_ADD_ERROR_CLASS, 88
MPI_ADD_ERROR_CODE, 88
MPI_ADD_ERROR_STRING, 89
MPI_ADDRESS, 41, 43, 108
MPI_ALLGATHER, 66, 67
MPI_Allgather, 54, 74
MPI_ALLGATHERV, 67
MPI_ALLOC_MEM, 73
MPI_Alloc_mem, 110, 111
MPI_ALLREDUCE, 67
MPI_Allreduce, 52, 53
MPI_ALLTOALL, 67
MPI_ALLTOALLV, 67
MPI_ALLTOALLW, 67
MPI_ANY_TAG, 17
MPI_ATTR_DELETE, 32
MPI_ATTR_GET, 32
MPI_ATTR_PUT, 32
MPI_BAND, 52
MPI_BARRIER, 67
MPI_Barrier, 74
MPI_BCAST, 67
MPI_Bcast, 65, 67, 105
MPI_BSEND, 59
MPI_BSEND_INIT, 59
MPI_BSEND_OVERHEAD, 58, 59, 106
MPI_BUFFER_ATTACH, 59, 106
MPI_BUFFER_DETACH, 60
MPI_CANCEL, 60
MPI_CART, 72
MPI_Cart_coords, 71
MPI_CART_CREATE, 70
MPI_Cart_create, 69
MPI_CART_GET, 70

120

INDEX 121

MPI_CART_MAP, 70
MPI_CART_RANK, 71
MPI_Cart_rank, 71
MPI_CART_SHIFT, 71
MPI_CART_SUB, 71
MPI_CARTDIM_GET, 70
MPI_CLOSE_PORT, 87
MPI_COMBINER_CONTIGUOUS, 45
MPI_COMBINER_DARRAY, 45
MPI_COMBINER_DUP, 45
MPI_COMBINER_F90_COMPLEX, 45
MPI_COMBINER_F90_INTEGER, 45, 97
MPI_COMBINER_F90_REAL, 45
MPI_COMBINER_HINDEXED, 45
MPI_COMBINER_HINDEXED_INTEGER,

42, 45
MPI_COMBINER_HVECTOR, 38, 45
MPI_COMBINER_HVECTOR_INTEGER,

38, 42, 45
MPI_COMBINER_INDEXED, 45
MPI_COMBINER_INDEXED_BLOCK, 45
MPI_COMBINER_NAMED, 45
MPI_COMBINER_RESIZED, 45
MPI_COMBINER_STRUCT, 45
MPI_COMBINER_STRUCT_INTEGER, 42,

45
MPI_COMBINER_SUBARRAY, 45
MPI_COMBINER_VECTOR, 38, 45
MPI_Comm, 12

context_id, 51, 53
data_rep, 46
id, 86
local_size, 54
name, 56, 57
rank, 54
ref_count, 54
remote_size, 54
size, 54

MPI_Comm_accept, 86
MPI_Comm_attach, 87, 105
MPI_COMM_C2F, 90
MPI_COMM_CALL_ERRHANDLER, 89
MPI_COMM_CLONE, 56
MPI_COMM_COMPARE, 51
MPI_COMM_CONNECT, 55, 85
MPI_Comm_connect, 86, 87, 105, 111
MPI_COMM_CREATE, 51, 56
MPI_Comm_create, 53, 54
MPI_COMM_CREATE_ERRHANDLER, 88,

89
MPI_COMM_CREATE_KEYVAL, 33, 34
MPI_COMM_DELETE_ATTR, 33, 34
MPI_COMM_DISCONNECT, 85
MPI_COMM_DUP, 53, 56

MPI_Comm_dup, 51, 53, 69, 74
MPI_COMM_F2C, 90
MPI_COMM_FREE, 54
MPI_Comm_free, 53, 85
MPI_COMM_FREE_KEYVAL, 33, 34
MPI_COMM_GET_ATTR, 33, 34
MPI_COMM_GET_ERRHANDLER, 88, 89
MPI_COMM_GET_NAME, 56
MPI_COMM_GET_PARENT, 86
MPI_COMM_GROUP, 54
MPI_Comm_group, 48
MPI_COMM_JOIN, 86
MPI_Comm_join, 86, 99
MPI_COMM_NULL, 86, 107
MPI_COMM_RANK, 54
MPI_COMM_REMOTE_GROUP, 54
MPI_COMM_REMOTE_SIZE, 54
MPI_COMM_SELF, 19, 79, 118
MPI_COMM_SET_ATTR, 33, 34
MPI_COMM_SET_ERRHANDLER, 88, 89
MPI_COMM_SET_NAME, 57
MPI_COMM_SIZE, 54
MPI_COMM_SPAWN, 48, 55, 86
MPI_Comm_spawn, 55, 78, 105
MPI_COMM_SPAWN_MULTIPLE, 86
MPI_Comm_spawn_multiple, 78
MPI_COMM_SPLIT, 54, 70, 71
MPI_Comm_split, 53, 70
MPI_COMM_TEST_INTER, 55
MPI_COMM_WORLD, 18, 48, 55, 78, 90,

105, 113
MPI_CONGRUENT, 51
MPI_Datatype, 12, 41, 46

_flags, 42
alignment_size, 40
attributes, 44
element_size, 42
elements_per_datatype, 41
extent, 44, 45
lb, 39, 44, 45
MPID_ELEMENTS_SAME_SIZE, 42
name, 46
pack_alignment, 46
pack_size, 46
ref_count, 60
size, 41, 44, 46
sizeof_each_element, 42
true_extent, 44
true_ub, 39
ub, 39, 44

MPI_datatype
size, 41

MPI_DIMS_CREATE, 71
MPI_Dims_create, 69

INDEX 122

MPI_DISTRIBUTE_NONE, 108
MPI_ERR_ACCESS, 109
MPI_ERR_AMODE, 109
MPI_ERR_ARG, 39, 49, 106, 108
MPI_ERR_ASSERT, 112
MPI_ERR_BAD_FILE, 109
MPI_ERR_BASE, 111
MPI_ERR_BUFFER, 106
MPI_ERR_COMM, 107
MPI_ERR_CONVERSION, 109
MPI_ERR_COUNT, 107
MPI_ERR_DIMS, 108
MPI_ERR_DISP, 73, 112
MPI_ERR_DUP_DATAREP, 109
MPI_ERR_FILE, 110
MPI_ERR_FILE_EXISTS, 109
MPI_ERR_FILE_IN_USE, 110
MPI_ERR_GROUP, 49, 107
MPI_ERR_IN_STATUS, 109
MPI_ERR_INFO, 110
MPI_ERR_INFO_KEY, 35, 110
MPI_ERR_INFO_NOKEY, 35, 110
MPI_ERR_INFO_VALUE, 35, 110
MPI_ERR_INTERN, 109
MPI_ERR_IO, 110
MPI_ERR_KEYVAL, 32, 111
MPI_ERR_LOCKTYPE, 111
MPI_ERR_NAME, 110
MPI_ERR_NO_SPACE, 111
MPI_ERR_NO_SUCH_FILE, 111
MPI_ERR_NOMEM, 110
MPI_ERR_NOT_SAME, 110
MPI_ERR_OP, 107
MPI_ERR_OTHER, 39, 49, 60, 97, 106, 109
MPI_ERR_PENDING, 109
MPI_ERR_PORT, 111
MPI_ERR_QUOTA, 111
MPI_ERR_RANK, 49, 107
MPI_ERR_READ_ONLY, 111
MPI_ERR_REQUEST, 109
MPI_ERR_RMA_CONFLICT, 112
MPI_ERR_RMA_SYNC, 112
MPI_ERR_ROOT, 107
MPI_ERR_SERVICE, 111
MPI_ERR_SIZE, 112
MPI_ERR_SPAWN, 111
MPI_ERR_TAG, 107
MPI_ERR_TOPOLOGY, 107, 108
MPI_ERR_TRUNCATE, 109
MPI_ERR_TYPE, 39, 107
MPI_ERR_UNKNOWN, 109
MPI_ERR_UNSUPPORTED_DATAREP,

111

MPI_ERR_UNSUPPORTED_OPERATION,
111

MPI_ERR_WIN, 111
MPI_Errhandler, 12
MPI_ERRHANDLER_C2F, 90
MPI_ERRHANDLER_CREATE, 88
MPI_ERRHANDLER_F2C, 90
MPI_ERRHANDLER_FREE, 88
MPI_ERRHANDLER_GET, 88
MPI_ERRHANDLER_SET, 88
MPI_ERROR, 109
MPI_ERROR_CLASS, 88
MPI_ERROR_STRING, 88
MPI_ERRORS_FATAL, 19
MPI_ERRORS_RETURN, 19, 89, 113, 114,

117
MPI_EXSCAN, 67
MPI_F_STATUS_IGNORE, 90
MPI_F_STATUSES_IGNORE, 90
MPI_File, 12, 110
MPI_FILE_C2F, 90
MPI_FILE_F2C, 90
MPI_FILE_GET_ERRHANDLER, 19
MPI_FILE_NULL, 19, 48, 89
MPI_File_open, 109
MPI_FILE_SET_ERRHANDLER, 19
MPI_FILE_SET_VIEW, 48
MPI_File_set_view, 111
MPI_FINALIZE, 79
MPI_Finalize, 24, 48, 53, 79, 97, 98
MPI_FINALIZED, 79
MPI_FREE_MEM, 74
MPI_Free_mem, 74, 111
MPI_GATHER, 68
MPI_Gather, 68
MPI_GATHERV, 68
MPI_GET, 73
MPI_GET_ADDRESS, 41, 43
MPI_GET_COUNT, 41
MPI_GET_ELEMENTS, 41
MPI_GET_PROCESSOR_NAME, 91
MPI_GET_VERSION, 91
MPI_GRAPH, 72
MPI_GRAPH_CREATE, 71
MPI_GRAPH_GET, 71
MPI_GRAPH_MAP, 71
MPI_GRAPH_NEIGHBORS, 71
MPI_GRAPH_NEIGHBORS_COUNT, 71
MPI_GRAPHDIMS_GET, 71
MPI_GREQUEST_COMPLETE, 88
MPI_GREQUEST_START, 88
MPI_Group, 12

lpid_to_lrank, 49–51
lrank_to_lpid, 49, 50

INDEX 123

MPID_GROUP_SUBSET_WORLD, 49
rank, 49
size, 49

MPI_GROUP_C2F, 90
MPI_GROUP_COMPARE, 50, 51
MPI_GROUP_DIFFERENCE, 51
MPI_Group_difference, 49
MPI_GROUP_EXCL, 50
MPI_GROUP_F2C, 90
MPI_GROUP_FREE, 49, 50
MPI_GROUP_INCL, 50
MPI_GROUP_INTERSECTION, 51
MPI_Group_intersection, 49
MPI_GROUP_RANGE_EXCL, 50
MPI_GROUP_RANGE_INCL, 50
MPI_GROUP_RANK, 49
MPI_GROUP_SIZE, 49
MPI_GROUP_TRANSLATE_RANKS, 49
MPI_GROUP_UNION, 51
MPI_Group_union, 49
MPI_IBSEND, 59
MPI_IDENT, 50, 51
MPI_IN_PLACE, 66, 67
MPI_Info, 12, 44, 105, 110

keys
access_style, 34
appnum, 34
arch, 34
cb_block_size, 34
cb_buffer_size, 34
cb_nodes, 34
chunked, 34
chunked_item, 34
chunked_size, 34
collective_buffering, 34
external32, 34
file, 34
file_perm, 34
filename, 34
host, 34
internal, 34
io_node_list, 34
ip_address, 34
ip_port, 34
native, 34
nb_proc, 34
no_locks, 35
nolocks, 74
num_io_nodes, 34
onegroup, 76
path, 34
random, 34
read_mostly, 34
read_once, 34

reverse_sequential, 35
sequential, 35
soft, 34
striping_factor, 35
striping_unit, 35
wdir, 34
write_mostly, 35
write_once, 35

values
false, 35
true, 35

MPI_INFO_C2F, 90
MPI_INFO_CREATE, 35
MPI_INFO_DELETE, 35
MPI_INFO_DUP, 36
MPI_INFO_F2C, 90
MPI_INFO_FREE, 36
MPI_INFO_GET, 36
MPI_INFO_GET_NKEYS, 36
MPI_Info_get_nkeys, 35
MPI_INFO_GET_NTHKEY, 37
MPI_Info_get_nthkey, 35
MPI_INFO_GET_VALUELEN, 37
MPI_INFO_SET, 37
MPI_INIT, 79, 109
MPI_Init, 19, 78, 109
MPI_INIT_THREAD, 78, 79, 109
MPI_Init_thread, 18, 19, 78
MPI_INITIALIZED, 79
MPI_INTERCOMM_CREATE, 55
MPI_INTERCOMM_MERGE, 56
MPI_Intercomm_merge, 54, 56
MPI_IO, 99
MPI_IPROBE, 60
MPI_Iprobe, 66
MPI_IRECV, 60
MPI_Irecv, 62, 64, 77
MPI_IRSEND, 60
MPI_IS_THREAD_MAIN, 78
MPI_ISEND, 60, 61
MPI_Isend, 58, 62
MPI_ISSEND, 61
MPI_Join, 105
MPI_KEYVAL_CREATE, 32
MPI_KEYVAL_FREE, 33
MPI_LB, 39
MPI_LOOKUP_NAME, 86
MPI_MAX_INFO_KEY, 35
MPI_MAX_INFO_VAL, 35
MPI_MAX_KEY_VALUE, 116
MPI_MAX_PROCESSOR_NAME, 91
MPI_Mem_alloc, 74
MPI_MODE_CREATE, 109
MPI_MODE_EXCL, 109

INDEX 124

MPI_MODE_NOCHECK, 76, 77
MPI_MODE_NOPRECEDE, 73
MPI_MODE_NOPUT, 73, 76
MPI_MODE_NOSTORE, 73, 76
MPI_MODE_NOSUCCEED, 73
MPI_MODE_RDONLY, 109
MPI_MODE_RDWR, 109
MPI_MODE_SEQUENTIAL, 109, 110
MPI_MODE_WRONLY, 109, 110
MPI_Op, 12, 66, 107, 108

function, 66
kind, 66
language, 66
ref_count, 66

MPI_OP_C2F, 90
MPI_OP_CREATE, 66
MPI_OP_F2C, 90
MPI_OP_FREE, 66
MPI_OPEN_PORT, 87
MPI_PACK, 46, 47
MPI_Pack, 39, 47, 58
MPI_PACK_EXTERNAL, 47, 48
MPI_PACK_EXTERNAL_SIZE, 47
MPI_PACK_SIZE, 46, 47
MPI_PACKED, 46, 47
MPI_PCONTROL, 91
MPI_PROBE, 57
MPI_PROC_NULL, 69
MPI_PUBLISH_NAME, 87
MPI_Publish_name, 111
MPI_PUT, 73
MPI_QUERY_THREAD, 78
MPI_RECV, 61
MPI_Recv, 64
MPI_RECV_INIT, 61, 62
MPI_Recv_init, 62
MPI_REDUCE, 68
MPI_Reduce, 67, 68, 105
MPI_REDUCE_SCATTER, 68
MPI_REGISTER_DATAREP, 48, 109
MPI_Request, 12, 61, 109

active_request, 61
busy, 63, 64
cc, 88
ref_count, 61

MPI_Request(generalized)
cancel_fn, 88
free_fn, 63, 88
grequest_extra_state, 88
query_fn, 88

MPI_Request(persistent)
active_request, 63
buffer, 61
communicator, 61, 62

count, 61
datatype, 61
request, 62
source_rank, 61
tag, 61

MPI_REQUEST_C2F, 90
MPI_REQUEST_F2C, 90
MPI_REQUEST_FREE, 58, 61
MPI_REQUEST_GET_STATUS, 61
MPI_ROOT, 69
MPI_RSEND, 61
MPI_RSEND_INIT, 61
MPI_SCAN, 68
MPI_SCATTER, 68
MPI_Scatter, 66, 105
MPI_SCATTERV, 68
MPI_Scatterv, 68
MPI_SEND, 61
MPI_Send, 61, 62
MPI_SEND_INIT, 62
MPI_SENDRECV, 62
MPI_Sendrecv, 62
MPI_SENDRECV_REPLACE, 62
MPI_SIMILAR, 50
MPI_SIZEOF, 97
MPI_SSEND, 62
MPI_Ssend, 77
MPI_SSEND_INIT, 62
MPI_START, 62
MPI_Start, 109
MPI_STARTALL, 62
MPI_Startall, 109
MPI_Status, 11, 41, 63, 109

count, 41, 42
MPI_ERROR, 18
MPI_TAG, 63, 64

MPI_STATUS_C2F, 90
MPI_STATUS_F2C, 90
MPI_STATUS_IGNORE, 90, 108
MPI_STATUS_SET_CANCELLED, 63, 64
MPI_STATUS_SET_ELEMENTS, 42
MPI_STATUSES_IGNORE, 90, 108
MPI_SUBVERSION, 91
MPI_SUCCESS, 91
MPI_TEST, 64
MPI_Test, 63, 64
MPI_TEST_CANCELLED, 64
MPI_TESTALL, 64
MPI_Testall, 63, 64
MPI_TESTANY, 64
MPI_Testany, 63, 64
MPI_TESTSOME, 64
MPI_Testsome, 63, 64
MPI_TOPO_TEST, 72

INDEX 125

MPI_TYPE_C2F, 90
MPI_TYPE_COMMIT, 44
MPI_TYPE_CONTIGUOUS, 43
MPI_TYPE_CREATE_DARRAY, 43
MPI_TYPE_CREATE_F90_COMPLEX, 97,

98
MPI_Type_create_f90_int, 79
MPI_TYPE_CREATE_F90_INTEGER, 97,

98
MPI_TYPE_CREATE_F90_REAL, 97, 98
MPI_TYPE_CREATE_HINDEXED, 42, 43
MPI_TYPE_CREATE_HVECTOR, 42, 43
MPI_TYPE_CREATE_INDEXED_BLOCK,

43
MPI_TYPE_CREATE_KEYVAL, 34
MPI_TYPE_CREATE_RESIZED, 44
MPI_TYPE_CREATE_STRUCT, 43
MPI_TYPE_CREATE_SUBARRAY, 43
MPI_TYPE_DELETE_ATTR, 34
MPI_TYPE_DUP, 44
MPI_TYPE_EXTENT, 44
MPI_Type_extent, 45
MPI_TYPE_F2C, 90
MPI_TYPE_FREE, 44
MPI_TYPE_FREE_KEYVAL, 34
MPI_TYPE_GET_ATTR, 34
MPI_TYPE_GET_CONTENTS, 45
MPI_TYPE_GET_ENVELOPE, 45, 97
MPI_TYPE_GET_EXTENT, 45
MPI_TYPE_GET_NAME, 46
MPI_Type_get_name, 15, 38, 56
MPI_TYPE_GET_TRUE_EXTENT, 44
MPI_TYPE_HINDEXED, 42
MPI_Type_hindexed, 114
MPI_TYPE_HVECTOR, 42
MPI_TYPE_INDEXED, 43
MPI_TYPE_LB, 44
MPI_Type_lb, 45
MPI_TYPE_MATCH_SIZE, 45
MPI_TYPE_SET_ATTR, 34
MPI_TYPE_SET_NAME, 46
MPI_Type_set_name, 57
MPI_TYPE_SIZE, 44
MPI_TYPE_STRUCT, 42
MPI_TYPE_UB, 44
MPI_Type_ub, 45
MPI_TYPE_VECTOR, 43
MPI_TYPECLASS_COMPLEX, 45
MPI_TYPECLASS_INTEGER, 45
MPI_TYPECLASS_REAL, 45
MPI_UB, 39
MPI_UNDEFINED, 41, 72
MPI_UNEQUAL, 50, 51
MPI_UNPACK, 46, 47

MPI_Unpack, 39
MPI_UNPACK_EXTERNAL, 47, 48
MPI_UNPUBLISH_NAME, 87
MPI_VERSION, 91
MPI_WAIT, 64
MPI_Wait, 63
MPI_WAITALL, 64
MPI_Waitall, 62, 63
MPI_WAITANY, 64
MPI_Waitany, 63
MPI_WAITSOME, 64
MPI_Waitsome, 63, 105
MPI_Win, 12, 111

_flags, 74
base, 74
bases, 74
communicator, 74
displ, 74
displs, 74
name, 75
size, 74
sizes, 74

MPI_WIN_BASE, 74
MPI_WIN_C2F, 90
MPI_WIN_CALL_ERRHANDLER, 89
MPI_WIN_COMPLETE, 76, 77
MPI_WIN_CREATE, 73–75
MPI_WIN_CREATE_ERRHANDLER, 89
MPI_WIN_CREATE_KEYVAL, 34
MPI_WIN_DELETE_ATTR, 34
MPI_WIN_DISP_UNIT, 74
MPI_WIN_F2C, 90
MPI_WIN_FENCE, 73
MPI_Win_fence, 72, 73
MPI_WIN_FREE, 74
MPI_WIN_FREE_KEYVAL, 34
MPI_WIN_GET_ATTR, 34
MPI_WIN_GET_ERRHANDLER, 89
MPI_WIN_GET_GROUP, 75
MPI_WIN_GET_NAME, 75
MPI_WIN_LOCK, 75
MPI_Win_lock, 74, 76
MPI_WIN_POST, 76, 77
MPI_WIN_SET_ATTR, 34
MPI_WIN_SET_ERRHANDLER, 89
MPI_WIN_SET_NAME, 75
MPI_WIN_SIZE, 74
MPI_WIN_START, 76, 77
MPI_Win_start, 77
MPI_WIN_UNLOCK, 75
MPI_Win_unlock, 74–76
MPI_WIN_WAIT, 76, 77
MPI_WTICK, 90
MPI_Wtick, 90

INDEX 126

MPI_WTIME, 91
MPI_Wtime, 90, 91
MPI_xxx_finalize, 79
MPICH_FINT_EQ_INT, 98
MPICH_IO_STDERR, 99
MPICH_IO_STDIN, 99
MPICH_IO_STDOUT, 99
MPICH_PerProcess_t

initialized, 79
master_thread, 78
thread_provided, 78

MPICH_TRDUMP, 24
MPID_Abort, 19, 77
MPID_Access_cnt, 76
MPID_Allocation_lock, 15
MPID_Allocation_unlock, 15
MPID_ATTR, 12
MPID_Attr_find, 33
MPID_Attribute, 33
MPID_BLOCKINDEXED, 43
MPID_Cancel_recv, 60
MPID_Cancel_send, 60
MPID_Cart_map, 70, 71
MPID_COMM, 12
MPID_Comm, 98

collops, 65
MPID_Comm_free, 54
MPID_COMM_OBJ, 89
MPID_Comm_thread_lock, 117
MPID_Contig, 43
MPID_COUNT_MSG_CANCELLED, 63
MPID_Dataloop, 37

kind, 39
size, 40

MPID_Dataloop_stackelm, 38
MPID_DATATYPE, 12
MPID_Datatype, 38

combiner, 38
dataloop, 45
extent, 39
free_fn, 44
has_lb, 39
has_ub, 39
lb, 39
loopinfo, 38
opt_datatloop, 45
opt_loopinfo, 38
true_extent, 40
true_lb, 18, 39
ub, 39

MPID_Datatype_t, 34
MPID_Dev_comm_attr_set_hook, 33
MPID_Dev_Group_free_hook, 50
MPID_Dims_compute, 71

MPID_Err_create_code, 106
MPID_Err_finalize, 113
MPID_Err_init, 113
MPID_ERRHANDLER, 12
MPID_Errhandler, 89
MPID_F90_Predefined_types_head, 97, 98
MPID_FILE, 12
MPID_Flags_waitall, 73, 74
MPID_Get_count, 41
MPID_Get_processor_name, 91
MPID_GROUP, 12
MPID_Group, 49

idx_of_first_lpid, 49
MPID_Group_pmap_t, 49

flag, 49
lpid, 49
lrank, 49
next_lpid, 49

MPID_Gwtime, 90
MPID_HAS_GET_COUNT, 41
MPID_Hid_put, 76
MPID_Hid_rma_op, 75
MPID_INDEXED, 43
MPID_Indexed, 43
MPID_INFO, 12
MPID_Info_free, 36
MPID_Info_get_bool, 116
MPID_Info_get_int, 116
MPID_Info_set_int, 116
MPID_Init, 78, 99, 113
MPID_Irecv, 60
MPID_Irsend, 60
MPID_Isend, 60
MPID_KEYVAL, 12, 33
MPID_Keyval, 33

id, 33
kind, 33

MPID_LANG_C, 89
MPID_Mem_alloc, 73
MPID_Mem_free, 74
MPID_Mem_isalloc, 74
MPID_Memory_register, 61
MPID_Nest_decr, 32
MPID_Nest_incr, 32
MPID_Object_kind, 13
MPID_OP, 12
MPID_Pack, 46, 73
MPID_Pack_size, 46
MPID_Probe, 57
MPID_Progress_poke, 64
MPID_Progress_start, 63
MPID_Put, 73
MPID_Recv, 61
MPID_Recv_init, 61

INDEX 127

MPID_Request, 38, 61, 63
status, 61

MPID_Request_free, 61
MPID_Request_get_status, 61
MPID_Request_iprobe, 60
MPID_Request_set_completed, 88
MPID_Send_init, 62
MPID_Startall, 62
MPID_Status_set_elements, 42
MPID_Stream_iforward, 68
MPID_Stream_put, 73
MPID_STRUCT, 43
MPID_tBsend, 58
MPID_Test_pointer, 113
MPID_Testsome, 61
MPID_THREAD_KEY_ERRHANDLER, 113
MPID_THREAD_PROVIDED, 78
MPID_Topo_cart_t, 69

coords, 70
dims, 70, 71
ndims, 70, 71
periods, 70, 71

MPID_Topo_cluster_info, 67, 71
MPID_Topo_common_t, 69
MPID_Topo_graph_t, 69

edges, 71
index, 71

MPID_Topo_MST, 67
MPID_Topology_cart, 69
MPID_Topology_cart_dims, 69
MPID_Topology_xxx, 67
MPID_Type_signature, 41
MPID_Unpack, 46, 73
MPID_VCR

vcr, 51
MPID_VECTOR, 38, 43
MPID_WIN, 12
MPID_Win

user_base, 74
user_disp, 74
user_size, 74

MPID_WIN_CONST_BASE, 74
MPID_WIN_CONST_DISPL, 74
MPID_WIN_CONST_SIZE, 74
MPID_Win_do, 75, 76
MPID_WIN_NO_LOCKS, 74
MPID_Wtick, 90
MPID_Wtime, 91
MPID_Wtime_diff, 21, 91
MPID_xxx_init, 78
MPIR_Add_finalize, 79
MPIR_Bsend_buffer

buffer, 59
head, 59

pending, 59
size, 59
tail, 59

MPIR_Bsend_elm
comm, 59
count, 59
dtype, 59
next, 59
rank, 59
request, 59
tag, 59

MPIR_Bsend_finalize, 58
MPIR_Bsend_init, 58
MPIR_Call_errhandler, 89
MPIR_Err_add_class, 88
MPIR_Err_add_code, 88
MPIR_Err_create_code, 106
MPIR_Err_get_handler, 113
MPIR_Err_get_string, 88
MPIR_Err_init, 17
MPIR_ERR_NOEXPOSURE, 76
MPIR_Err_preinit, 18
MPIR_Err_restore, 113
MPIR_Err_set_msg, 89
MPIR_Err_set_return, 113
MPIR_ERR_WIN_NOACCESS, 76
MPIR_Gprocman_gtol, 55
MPIR_Gprocmap_get, 55
MPIR_Gprocmap_lock, 55
MPIR_Gprocmap_update, 55
MPIR_Gprocmap_xxx, 55
MPIR_Group_create_from_marker, 50
MPIR_Init_thread, 17
MPIR_intra_collops, 65
MPIR_Nest_decr, 19
MPIR_Nest_incr, 19
MPIR_Nest_value, 19
MPIR_Op_finalize, 66
MPIR_Op_init, 66
MPIR_PerThread

op_error, 65
MPIR_Process, 33

allocation_lock, 15, 16
comm_attr_dup, 33
comm_attr_free, 54
comm_parent, 86
global_lock, 48
type_attr_dup, 44

MPIR_QUERY_ERRORS_RETURN, 114
MPIR_Topo_finalize, 69
MPIR_Topo_init, 69
MPIR_Topology

kind, 72
MPIR_Type_compute_extent, 39

INDEX 128

MPIR_Type_get_elements, 42
MPIR_xxx_init, 78
MPIU_Handle_obj_create, 33, 35, 43, 44
MPIU_Malloc, 24, 35
MPIU_Object_add_ref, 54
MPIU_Object_release_ref, 44
MPIU_Param_bcast, 26
MPIU_Param_finalize, 26
MPIU_Param_get_int, 26, 27
MPIU_Param_get_string, 26
MPIU_Param_init, 26
MPIU_Param_register, 26
MPIU_Trdump, 24

native, 34
nb_proc, 34
no_locks, 35
nolocks, 74
num_io_nodes, 34

onegroup, 76

path, 34
PMPI_Bcast, 55
PMPI_COMM_CREATE_KEYVAL, 32
PMPI_COMM_DELETE_ATTR, 32
PMPI_COMM_FREE_KEYVAL, 33
PMPI_COMM_GET_ATTR, 32
PMPI_COMM_SET_ATTR, 32
PMPI_GROUP_COMPARE, 51
PMPI_LOCAL, 6, 28

random, 34
read_mostly, 34
read_once, 34
restrict, 65
reverse_sequential, 35

sequential, 35
simplemake, 9
soft, 34, 116
striping_factor, 35
striping_unit, 35

thread overhead
context ids, 52
error handlers, 113
passive RMA, 73
statistics, 24

thread safety
buffered send, 58
context allocation, 52

true, 35

umask, 99

updatefiles, 9

wdir, 34
write_mostly, 35
write_once, 35

XDR, 31

	Introduction
	Goals of MPICH
	MPICH Source Tree
	Source Directory Structure
	The Build Directories
	The Installation Directories
	Modularity
	Sample Implementation Template
	Sample Makefile Template
	Include Files
	MPI and PMPI Routines
	Layered Implementation of MPI Routines
	Internal Routine Names
	File Names
	MPI Opaque Objects
	Opaque Handle Format
	Converting Handles To Pointers
	Required Structure Layout for Objects
	Memory Management for Handles
	Optimizing Allocation of Handles

	Error reporting
	Errors to test for
	Choosing Error Handlers and Classes
	Error handling and Fault Tolerance
	Error Handling for Layered Routines

	Per Thread and Per Process Data
	Integral Profiling
	Basic Timer Routines.
	Instrumenting the MPI code for States.
	Instrumenting the MPI code for Statistics.

	Memory Allocation
	Multiple Memory Allocation
	Testing for Memory Errors

	Naming Rules
	Runtime Parameters
	Threads
	Initialization and Finalization
	Coding Practices
	Other Subsystems
	Deprecated Routines

	Adding a New Communication Method
	Adding a Method To the Channel Device
	Adding a Method To the Multimethod Device
	Creating a New ADI3 Device

	Special Issues
	Heterogenity

	MPI Operations
	Attributes
	MPI_ATTR_DELETE
	MPI_ATTR_GET
	MPI_ATTR_PUT
	MPI_KEYVAL_CREATE
	MPI_KEYVAL_FREE
	MPI_COMM_CREATE_KEYVAL
	MPI_COMM_FREE_KEYVAL
	MPI_COMM_GET_ATTR
	MPI_COMM_SET_ATTR
	MPI_COMM_DELETE_ATTR
	MPI_TYPE_GET_ATTR
	MPI_TYPE_SET_ATTR
	MPI_TYPE_DELETE_ATTR
	MPI_TYPE_CREATE_KEYVAL
	MPI_TYPE_FREE_KEYVAL
	MPI_WIN_CREATE_KEYVAL
	MPI_WIN_FREE_KEYVAL
	MPI_WIN_SET_ATTR
	MPI_WIN_GET_ATTR
	MPI_WIN_DELETE_ATTR

	Info
	MPI_INFO_CREATE
	MPI_INFO_DELETE
	MPI_INFO_DUP
	MPI_INFO_FREE
	MPI_INFO_GET
	MPI_INFO_GET_NKEYS
	MPI_INFO_GET_NTHKEY
	MPI_INFO_GET_VALUELEN
	MPI_INFO_SET

	Datatypes
	The Predefined Datatypes
	Creating a New Datatype
	Computing the Extent
	MPI_ADDRESS
	MPI_GET_COUNT
	MPI_GET_ELEMENTS
	MPI_STATUS_SET_ELEMENTS
	MPI_TYPE_HINDEXED
	MPI_TYPE_HVECTOR
	MPI_TYPE_STRUCT
	MPI_GET_ADDRESS
	MPI_TYPE_CONTIGUOUS
	MPI_TYPE_INDEXED
	MPI_TYPE_VECTOR
	MPI_TYPE_CREATE_DARRAY
	MPI_TYPE_CREATE_HINDEXED
	MPI_TYPE_CREATE_HVECTOR
	MPI_TYPE_CREATE_INDEXED_BLOCK
	MPI_TYPE_CREATE_STRUCT
	MPI_TYPE_CREATE_SUBARRAY
	MPI_TYPE_CREATE_RESIZED
	MPI_TYPE_COMMIT
	MPI_TYPE_DUP
	MPI_TYPE_FREE
	MPI_TYPE_EXTENT
	MPI_TYPE_LB
	MPI_TYPE_SIZE
	MPI_TYPE_UB
	MPI_TYPE_GET_TRUE_EXTENT
	MPI_TYPE_GET_CONTENTS
	MPI_TYPE_GET_ENVELOPE
	MPI_TYPE_GET_EXTENT
	MPI_TYPE_MATCH_SIZE
	MPI_TYPE_GET_NAME
	MPI_TYPE_SET_NAME
	MPI_PACK
	MPI_PACK_SIZE
	MPI_UNPACK
	MPI_PACK_EXTERNAL
	MPI_PACK_EXTERNAL_SIZE
	MPI_UNPACK_EXTERNAL
	MPI_REGISTER_DATAREP
	Heterogeneity

	Groups
	MPI_GROUP_RANK
	MPI_GROUP_SIZE
	MPI_GROUP_TRANSLATE_RANKS
	MPI_GROUP_FREE
	MPI_GROUP_COMPARE
	MPI_GROUP_EXCL
	MPI_GROUP_INCL
	MPI_GROUP_RANGE_EXCL
	MPI_GROUP_RANGE_INCL
	MPI_GROUP_DIFFERENCE
	MPI_GROUP_INTERSECTION
	MPI_GROUP_UNION

	Communicators
	MPI_COMM_COMPARE
	MPI_COMM_CREATE
	MPI_COMM_DUP
	MPI_COMM_FREE
	MPI_COMM_GROUP
	MPI_COMM_RANK
	MPI_COMM_REMOTE_GROUP
	MPI_COMM_REMOTE_SIZE
	MPI_COMM_SIZE
	MPI_COMM_SPLIT
	MPI_COMM_TEST_INTER
	MPI_INTERCOMM_CREATE
	MPI_INTERCOMM_MERGE
	MPI_COMM_CLONE
	MPI_COMM_GET_NAME
	MPI_COMM_SET_NAME

	Point to Point Communication
	MPI_PROBE
	MPI_IBSEND
	MPI_BSEND
	MPI_BSEND_INIT
	MPI_BUFFER_ATTACH
	MPI_BUFFER_DETACH
	MPI_CANCEL
	MPI_IPROBE
	MPI_IRECV
	MPI_IRSEND
	MPI_ISEND
	MPI_ISSEND
	MPI_RECV
	MPI_RECV_INIT
	MPI_REQUEST_GET_STATUS
	MPI_REQUEST_FREE
	MPI_RSEND
	MPI_RSEND_INIT
	MPI_SEND
	MPI_SENDRECV
	MPI_SENDRECV_REPLACE
	MPI_SEND_INIT
	MPI_SSEND
	MPI_SSEND_INIT
	MPI_START
	MPI_STARTALL
	MPI_STATUS_SET_CANCELLED
	Point-to-point completion functions
	MPI_TEST
	MPI_TESTALL
	MPI_TESTANY
	MPI_TESTSOME
	MPI_TEST_CANCELLED
	MPI_WAIT
	MPI_WAITALL
	MPI_WAITANY
	MPI_WAITSOME

	Communication Agent
	Collective Communication and Computation
	Reduction functions
	Code Structure for the Implementation of the Collective functions
	Collective Computation
	MPI_OP_CREATE
	MPI_OP_FREE
	Intracommunicator Collective Operations
	MPI_ALLGATHER
	MPI_ALLGATHERV
	MPI_ALLREDUCE
	MPI_ALLTOALL
	MPI_ALLTOALLV
	MPI_ALLTOALLW
	MPI_BARRIER
	MPI_BCAST
	MPI_EXSCAN
	MPI_GATHER
	MPI_GATHERV
	MPI_REDUCE
	MPI_REDUCE_SCATTER
	MPI_SCAN
	MPI_SCATTER
	MPI_SCATTERV

	Intercommunicator Collective Operations
	Topology
	Proposed Interface
	Proposed Interface 2
	MPI_CARTDIM_GET
	MPI_CART_CREATE
	MPI_CART_GET
	MPI_CART_MAP
	MPI_CART_RANK
	MPI_CART_SHIFT
	MPI_CART_SUB
	MPI_DIMS_CREATE
	MPI_GRAPHDIMS_GET
	MPI_GRAPH_CREATE
	MPI_GRAPH_GET
	MPI_GRAPH_MAP
	MPI_GRAPH_NEIGHBORS
	MPI_GRAPH_NEIGHBORS_COUNT
	MPI_TOPO_TEST

	RMA
	MPI_ACCUMULATE
	MPI_PUT
	MPI_GET
	MPI_WIN_FENCE
	MPI_ALLOC_MEM
	MPI_FREE_MEM
	MPI_WIN_CREATE
	MPI_WIN_FREE
	MPI_WIN_GET_GROUP
	MPI_WIN_GET_NAME
	MPI_WIN_SET_NAME
	MPI_WIN_LOCK and MPI_WIN_UNLOCK
	Scalable Active Target Synchronization
	MPI_WIN_POST
	MPI_WIN_START
	MPI_WIN_COMPLETE
	MPI_WIN_WAIT

	Starting and Ending MPI
	MPI_ABORT
	MPI_INIT_THREAD
	MPI_QUERY_THREAD
	MPI_IS_THREAD_MAIN
	MPI_FINALIZED
	MPI_INIT
	MPI_INITIALIZED
	MPI_FINALIZE

	Dynamic Processes
	The BNR Interface
	The BNR Group Functions
	The BNR Keymap Functions
	The BNR Process Creation Functions
	Utility Functions
	Implementation of MPI on BNR Plus Utility Functions
	MPI Dynamic Processes Functions
	MPI_COMM_CONNECT
	MPI_COMM_DISCONNECT
	MPI_COMM_GET_PARENT
	MPI_COMM_JOIN
	MPI_COMM_SPAWN
	MPI_COMM_SPAWN_MULTIPLE
	MPI_LOOKUP_NAME
	MPI_PUBLISH_NAME
	MPI_UNPUBLISH_NAME
	MPI_OPEN_PORT
	MPI_CLOSE_PORT

	User-Defined Requests
	MPI_GREQUEST_START
	MPI_GREQUEST_COMPLETE

	Error Handlers
	MPI_ERRHANDLER_FREE
	MPI_ERRHANDLER_CREATE
	MPI_ERRHANDLER_GET
	MPI_ERRHANDLER_SET
	MPI_ERROR_CLASS
	MPI_ERROR_STRING
	MPI_ADD_ERROR_CLASS
	MPI_ADD_ERROR_CODE
	MPI_ADD_ERROR_STRING
	MPI_COMM_CALL_ERRHANDLER
	MPI_COMM_CREATE_ERRHANDLER
	MPI_COMM_GET_ERRHANDLER
	MPI_COMM_SET_ERRHANDLER
	MPI_WIN_CREATE_ERRHANDLER
	MPI_WIN_CALL_ERRHANDLER
	MPI_WIN_GET_ERRHANDLER
	MPI_WIN_SET_ERRHANDLER

	Handle Transfers
	MPI_STATUS_F2C
	MPI_STATUS_C2F

	Timers
	MPI_WTICK
	MPI_WTIME

	Runtime Environment
	MPI_GET_PROCESSOR_NAME
	MPI_GET_VERSION

	Profiling
	MPI_PCONTROL

	I/O
	Utility Routines

	Portability
	Configure
	Configure Flags
	Supporting Cross-compilation
	Complex Configuration Data

	Makefile Structure
	Coding Rules
	Printing and Other Messages

	NT Friendly
	Fortran Support
	MPI_SIZEOF
	MPI_TYPE_CREATE_F90_INTEGER
	MPI_TYPE_CREATE_F90_REAL
	MPI_TYPE_CREATE_F90_COMPLEX
	Fortran Wrappers
	Fortran Datatypes

	C++ Support

	Standard Features
	Command line and environment
	Standard I/O
	Other parts of the environment
	Documentation and Man Pages

	Testing
	Communication Tests
	Test harness
	Debugger Interface

	ToDo List
	Error Codes
	Error Classes and Codes

	Rationale
	Sample Implementation Template
	Opaque Handles
	Error checks
	Pointer Checks.

	Layered Error Handling
	Memory Allocation
	PMPI
	Runtime Parameters
	Coding Practices
	Other Subsystems
	Performance and Tracing Data
	Attributes
	Info
	Datatypes
	Groups
	Point-to-point
	Communication agent
	Collective
	Structure of the files containing the predefined operations.

	Communicators
	Topology
	RMA
	Starting and Ending MPI
	Dynamic processes
	Name service
	User-defined requests
	Error handlers
	Handle Transfers
	Timers
	I/O
	Runtime Environment
	Profiling
	MPI command environment
	Portability

	References
	Index

