
ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue

Argonne, IL 60439

ANL/MCS-TM-234

Users Guide for ROMIO: A High-Performance,

Portable MPI-IO Implementation

by

Rajeev Thakur, Robert Ross, Ewing Lusk, and William Gropp

Mathematics and Computer Science Division

Technical Memorandum No. 234

Revised May 2004

This work was supported by the Mathematical, Information, and Computational Sciences Division subpro-
gram of the Office of Advanced Scientific Computing Research, U.S. Department of Energy, under Contract
W-31-109-Eng-38; and by the Scalable I/O Initiative, a multiagency project funded by the Defense Ad-
vanced Research Projects Agency (Contract DABT63-94-C-0049), the Department of Energy, the National
Aeronautics and Space Administration, and the National Science Foundation.

Contents

Abstract 1

1 Introduction 1

2 Major Changes in This Version 1

3 General Information 1
3.1 ROMIO Optimizations . 2
3.2 Hints . 2

3.2.1 Systemwide Hints . 5
3.3 Using ROMIO on NFS . 6

3.3.1 ROMIO, NFS, and Synchronization . 7
3.4 Using testfs . 7
3.5 ROMIO and MPI FILE SYNC . 8
3.6 ROMIO and MPI FILE SET SIZE . 8

4 Installation Instructions 8
4.1 Configuring for Linux and Large Files . 9

5 Testing ROMIO 10

6 Compiling and Running MPI-IO Programs 10

7 Limitations of This Version of ROMIO 11

8 Usage Tips 11

9 Reporting Bugs 12

10 ROMIO Internals 12

11 Learning MPI-IO 12

12 Major Changes in Previous Releases 12
12.1 Major Changes in Version 1.2.3 . 12
12.2 Major Changes in Version 1.0.3 . 13
12.3 Major Changes in Version 1.0.2 . 13
12.4 Major Changes in Version 1.0.1 . 14

References 16

Users Guide for ROMIO: A High-Performance,

Portable MPI-IO Implementation

by

Rajeev Thakur, Robert Ross, Ewing Lusk, and William Gropp

Abstract

ROMIO is a high-performance, portable implementation of MPI-IO (the I/O chapter in MPI-2).
This document describes how to install and use ROMIO version 1.2.4 on various machines.

1 Introduction

ROMIO1 is a high-performance, portable implementation of MPI-IO (the I/O chapter in MPI-2 [4]).
This document describes how to install and use ROMIO version 1.2.4 on various machines.

2 Major Changes in This Version

• Added section describing ROMIO MPI FILE SYNC and MPI FILE CLOSE behavior to User’s
Guide

• Bug removed from PVFS ADIO implementation regarding resize operations

• Added support for PVFS listio operations (see Section 3.2)

• Added the following working hints: romio pvfs listio read, romio pvfs listio write

3 General Information

This version of ROMIO includes everything defined in the MPI-2 I/O chapter except support for file
interoperability (§ 9.5 of MPI-2) and user-defined error handlers for files (§ 4.13.3). The subarray
and distributed array datatype constructor functions from Chapter 4 (§ 4.14.4 & § 4.14.5) have
been implemented. They are useful for accessing arrays stored in files. The functions MPI File f2c
and MPI File c2f (§ 4.12.4) are also implemented. C, Fortran, and profiling interfaces are provided
for all functions that have been implemented.

This version of ROMIO runs on at least the following machines: IBM SP; Intel Paragon; HP
Exemplar; SGI Origin2000; Cray T3E; NEC SX-4; other symmetric multiprocessors from HP,
SGI, DEC, Sun, and IBM; and networks of workstations (Sun, SGI, HP, IBM, DEC, Linux, and
FreeBSD). Supported file systems are IBM PIOFS, Intel PFS, HP/Convex HFS, SGI XFS, NEC
SFS, PVFS, NFS, NTFS, and any Unix file system (UFS).

This version of ROMIO is included in MPICH 1.2.4; an earlier version is included in at least
the following MPI implementations: LAM, HP MPI, SGI MPI, and NEC MPI.

1http://www.mcs.anl.gov/romio

1

Note that proper I/O error codes and classes are returned and the status variable is filled only
when used with MPICH revision 1.2.1 or later.

You can open files on multiple file systems in the same program. The only restriction is that
the directory where the file is to be opened must be accessible from the process opening the file.
For example, a process running on one workstation may not be able to access a directory on the
local disk of another workstation, and therefore ROMIO will not be able to open a file in such a
directory. NFS-mounted files can be accessed.

An MPI-IO file created by ROMIO is no different from any other file created by the underlying
file system. Therefore, you may use any of the commands provided by the file system to access the
file, for example, ls, mv, cp, rm, ftp.

Please read the limitations of this version of ROMIO that are listed in Section 7 of this document
(e.g., restriction to homogeneous environments).

3.1 ROMIO Optimizations

ROMIO implements two I/O optimization techniques that in general result in improved perfor-
mance for applications. The first of these is data sieving [2]. Data sieving is a technique for
efficiently accessing noncontiguous regions of data in files when noncontiguous accesses are not
provided as a file system primitive. The naive approach to accessing noncontiguous regions is to
use a separate I/O call for each contiguous region in the file. This results in a large number of
I/O operations, each of which is often for a very small amount of data. The added network cost of
performing an I/O operation across the network, as in parallel I/O systems, is often high because
of latency. Thus, this naive approach typically performs very poorly because of the overhead of
multiple operations. In the data sieving technique, a number of noncontiguous regions are accessed
by reading a block of data containing all of the regions, including the unwanted data between them
(called “holes”). The regions of interest are then extracted from this large block by the client. This
technique has the advantage of a single I/O call, but additional data is read from the disk and
passed across the network.

There are four hints that can be used to control the application of data sieving in ROMIO:
ind rd buffer size, ind wr buffer size, romio ds read, and romio ds write. These are dis-
cussed in Section 3.2.

The second optimization is two-phase I/O [1]. Two-phase I/O, also called collective buffering,
is an optimization that only applies to collective I/O operations. In two-phase I/O, the collection
of independent I/O operations that make up the collective operation are analyzed to determine
what data regions must be transferred (read or written). These regions are then split up amongst
a set of aggregator processes that will actually interact with the file system. In the case of a read,
these aggregators first read their regions from disk and redistribute the data to the final locations,
while in the case of a write, data is first collected from the processes before being written to disk
by the aggregators.

There are five hints that can be used to control the application of two-phase I/O: cb config list,
cb nodes, cb buffer size, romio cb read, and romio cb write. These are discussed in Subsec-
tion 3.2.

3.2 Hints

The following hints control the data sieving optimization and are applicable to all file system types:

2

• ind rd buffer size – Controls the size (in bytes) of the intermediate buffer used by ROMIO
when performing data sieving during read operations. Default is 4194304 (4 Mbytes).

• ind wr buffer size – Controls the size (in bytes) of the intermediate buffer used by ROMIO
when performing data sieving during write operations. Default is 524288 (512 Kbytes).

• romio ds read – Determines when ROMIO will choose to perform data sieving. Valid values
are enable, disable, or automatic. Default value is automatic. In automatic mode ROMIO
may choose to enable or disable data sieving based on heuristics.

• romio ds write – Same as above, only for writes.

The following hints control the two-phase (collective buffering) optimization and are applicable
to all file system types:

• cb buffer size – Controls the size (in bytes) of the intermediate buffer used in two-phase
collective I/O. If the amount of data that an aggregator will transfer is larger than this value,
then multiple operations are used. The default is 4194304 (4 Mbytes).

• cb nodes – Controls the maximum number of aggregators to be used. By default this is set
to the number of unique hosts in the communicator used when opening the file.

• romio cb read – Controls when collective buffering is applied to collective read operations.
Valid values are enable, disable, and automatic. Default is automatic. When enabled,
all collective reads will use collective buffering. When disabled, all collective reads will be
serviced with individual operations by each process. When set to automatic, ROMIO will
use heuristics to determine when to enable the optimization.

• romio cb write – Controls when collective buffering is applied to collective write operations.
Valid values are enable, disable, and automatic. Default is automatic. See the description
of romio cb read for an explanation of the values.

• romio no indep rw – This hint controls when “deferred open” is used. When set to true,
ROMIO will make an effort to avoid performing any file operation on non-aggregator nodes.
The application is expected to use only collective operations. This is discussed in further
detail below.

• cb config list – Provides explicit control over aggregators. This is discussed in further
detail below.

For some systems configurations, more control is needed to specify which hardware resources
(processors or nodes in an SMP) are preferred for collective I/O, either for performance reasons
or because only certain resources have access to storage. The additional MPI Info key name
cb config list specifies a comma-separated list of strings, each string specifying a particular
node and an optional limit on the number of processes to be used for collective buffering on this
node.

This refers to the same processes that cb nodes refers to, but specifies the available nodes more
precisely.

The format of the value of cb config list is given by the following BNF:

3

cb_config_list => hostspec [’,’ cb_config_list]
hostspec => hostname [’:’ maxprocesses]
hostname => <alphanumeric string>

| ’*’
maxprocesses => <digits>

| ’*’

The value hostname identifies a processor. This name must match the name returned by
MPI Get processor name 2 for the specified hardware. The value * as a hostname matches all
processors. The value of maxprocesses may be any nonnegative integer (zero is allowed).

The value maxprocesses specifies the maximum number of processes that may be used for
collective buffering on the specified host. If no value is specified, the value one is assumed. If *
is specified for the number of processes, then all MPI processes with this same hostname will be
used..

Leftmost components of the info value take precedence.
Note: Matching of processor names to cb config list entries is performed with string matching

functions and is independent of the listing of machines that the user provides to mpirun/mpiexec.
In other words, listing the same machine multiple times in the list of hosts to run on will not cause a
*:1 to assign the same host four aggregators, because the matching code will see that the processor
name is the same for all four and will assign exactly one aggregator to the processor.

The value of this info key must be the same for all processes (i.e., the call is collective and
each process must receive the same hint value for these collective buffering hints). Further, in the
ROMIO implementation the hint is only recognized at MPI File open time.

The set of hints used with a file is available through the routine MPI File get info, as docu-
mented in the MPI-2 standard. As an additional feature in the ROMIO implementation, wildcards
will be expanded to indicate the precise configuration used with the file, with the hostnames in the
rank order used for the collective buffering algorithm (this is not implemented at this time).

Here are some examples of how this hint might be used:

• *:1 One process per hostname (i.e., one process per node)

• box12:30,*:0 Thirty processes on one machine, namely box12, and none anywhere else.

• n01,n11,n21,n31,n41 One process on each of these specific nodes only.

When the values specified by cb config list conflict with other hints (e.g., the number of
collective buffering nodes specified by cb nodes), the implementation is encouraged to take the
minimum of the two values. In other words, if cb config list specifies ten processors on which
I/O should be performed, but cb nodes specifies a smaller number, then an implementation is
encouraged to use only cb nodes total aggregators. If cb config list specifies fewer processes
than cb nodes, no more than the number in cb config list should be used.

The implementation is also encouraged to assign processes in the order that they are listed in
cb config list.

The following hint controls the deferred open feature of romio and are also applicable to all file
system types:

2The MPI standard requires that the output from this routine identify a particular piece of hardware; some MPI
implementations may not conform to this requirement. MPICH does conform to the MPI standard.

4

• no indep rw – If the application plans on performing only collecitve operations and this hint
is set to “true”, then ROMIO can have just the aggregators open a file. The cb config list
and cb nodes hints can be given to further control which nodes are aggregators.

For PVFS, PIOFS, and PFS:

• striping factor – Controls the number of I/O devices to stripe across. The default is file
system dependent, but for PVFS it is -1, indicating that the file should be striped across all
I/O devices.

• striping unit – Controls the striping unit (in bytes). For PVFS the default will be the
PVFS file system default strip size.

• start iodevice – Determines what I/O device data will first be written to. This is a number
in the range of 0 ... striping factor - 1.

Also for PFS:

• pfs svr buf – Turns on PFS server buffering. Valid values are true and false. Default is
false.

For XFS control is provided for the direct I/O optimization:

• direct read – Controls direct I/O for reads. Valid values are true and false. Default is
false.

• direct write – Controls direct I/O for writes. Valid values are true and false. Default is
false.

For PVFS control is provided for the use of the listio interface. This interface to PVFS allows for
a collection of noncontiguous regions to be requested (for reading or writing) with a single operation.
This can result in substantially higher performance when accessing noncontiguous regions. Support
for these operations in PVFS exists after version 1.5.4, but has not been heavily tested, so use of
the interface is disabled in ROMIO by default at this time. The hints to control listio use are:

• romio pvfs listio read – Controls use of listio for reads. Valid values are enable, disable,
and automatic. Default is disable.

• romio pvfs listio write – Controls use of listio for writes. Valid values are enable,
disable, and automatic. Default is disable.

If ROMIO doesn’t understand a hint, or if the value is invalid, the hint will be ignored. The
values of hints being used by ROMIO for a file can be obtained at any time via MPI File get info.

3.2.1 Systemwide Hints

A site administrator with knowledge of the storage and networking capabilities of a machine might
be able to come up with a set of hint values that work better for that machine than the ROMIO
default values. As an extention to the standard, ROMIO will consult a “hints file”. This file
provides an additional mechanism for setting MPI-IO hints, albeit in a ROMIO-specific manner.

5

The hints file contains a list of hints and their values. ROMIO will use these initial hint settings,
though programs are free to override any of them.

The format of the hints file is a list of hints and their values, one per line. A # character in
the first column indicates a comment, and ROMIO will ignore the entire line. Here’s an example:

this is a comment describing the following setting
cb_nodes 32
these nodes happen to have the best connection to storage
cb_config_list n01,n11,n21,n31,n41

ROMIO will look for these hints in the file /etc/romio-hints. A user can set the environment
variable ROMIO HINTS to the name of a file which ROMIO will use instead.

3.3 Using ROMIO on NFS

It is worth first mentioning that in no way do we encourage the use of ROMIO on NFS volumes.
NFS is not a high-performance protocol, nor are NFS servers typically very good at handling the
types of concurrent access seen from MPI-IO applications. Nevertheless, NFS is a very popular
mechanism for providing access to a shared space, and ROMIO does support MPI-IO to NFS
volumes, provided that they are configured properly.

To use ROMIO on NFS, file locking with fcntl must work correctly on the NFS installation. On
some installations, fcntl locks don’t work. To get them to work, you need to use Version 3 of NFS,
ensure that the lockd daemon is running on all the machines, and have the system administrator
mount the NFS file system with the “noac” option (no attribute caching). Turning off attribute
caching may reduce performance, but it is necessary for correct behavior.

The following are some instructions we received from Ian Wells of HP for setting the noac
option on NFS. We have not tried them ourselves. We are including them here because you may
find them useful. Note that some of the steps may be specific to HP systems, and you may need
root permission to execute some of the commands.

>1. first confirm you are running nfs version 3
>
>rpcnfo -p ‘hostname‘ | grep nfs
>
>ie
> goedel >rpcinfo -p goedel | grep nfs
> 100003 2 udp 2049 nfs
> 100003 3 udp 2049 nfs
>
>
>2. then edit /etc/fstab for each nfs directory read/written by MPIO
> on each machine used for multihost MPIO.
>
> Here is an example of a correct fstab entry for /epm1:
>
> ie grep epm1 /etc/fstab

6

>
> ROOOOT 11>grep epm1 /etc/fstab
> gershwin:/epm1 /rmt/gershwin/epm1 nfs bg,intr,noac 0 0
>
> if the noac option is not present, add it
> and then remount this directory
> on each of the machines that will be used to share MPIO files
>
>ie
>
>ROOOOT >umount /rmt/gershwin/epm1
>ROOOOT >mount /rmt/gershwin/epm1
>
>3. Confirm that the directory is mounted noac:
>
>ROOOOT >grep gershwin /etc/mnttab
>gershwin:/epm1 /rmt/gershwin/epm1 nfs
>noac,acregmin=0,acregmax=0,acdirmin=0,acdirmax=0 0 0 899911504

3.3.1 ROMIO, NFS, and Synchronization

NFS has a “sync” option that specifies that the server should put data on the disk before replying
that an operation is complete. This means that the actual I/O cost on the server side cannot be
hidden with caching, etc. when this option is selected.

In the “async” mode the server can get the data into a buffer (and perhaps put it in the write
queue; this depends on the implementation) and reply right away. Obviously if the server were to
go down after the reply was sent but before the data was written, the system would be in a strange
state, which is why so many articles suggest the ”sync” option.

Some systems default to “sync”, while others default to “async”, and the default can change
from version to version of the NFS software. If you find that access to an NFS volume through
MPI-IO is particularly slow, this is one thing to check out.

3.4 Using testfs

The testfs ADIO implementation provides a harness for testing components of ROMIO or discov-
ering the underlying I/O access patterns of an application. When testfs is specified as the file
system type, no actual files will be opened. Instead debugging information will be displayed on
the processes opening the file. Subsequent I/O operations on this testfs file will provide additional
debugging information.

The intention of the testfs implementation is that it serve as a starting point for further in-
strumentation when debugging new features or applications. As such it is expected that users will
want to modify the ADIO implementation in order to get the specific output they desire.

7

3.5 ROMIO and MPI FILE SYNC

The MPI-2 specification notes that a call to MPI FILE SYNC “causes all previous writes to fh by
the calling process to be transferred to the storage device.” Likewise, calls to MPI FILE CLOSE have
this same semantic. Further, “if all processes have made updates to the storage device, then all
such updates become visible to subsequent reads of fh by the calling process.”

The intended use of MPI FILE SYNC is to allow all processes in the communicator used to open
the file to see changes made to the file by each other (the second part of the specification). The
definition of “storage device” in the specification is vague, and it isn’t necessarily the case that
calling MPI FILE SYNC will force data out to permanent storage.

Since users often use MPI FILE SYNC to attempt to force data out to permanent storage (i.e.
disk), the ROMIO implementation of this call enforces stronger semantics for most underlying file
systems by calling the appropriate file sync operation when MPI FILE SYNC is called (e.g. fsync).
However, it is still unwise to assume that the data has all made it to disk because some file systems
(e.g. NFS) may not force data to disk when a client system makes a sync call.

For performance reasons we do not make this same file system call at MPI FILE CLOSE time. At
close time ROMIO ensures any data has been written out to the “storage device” (file system) as
defined in the standard, but does not try to push the data beyond this and into physical storage.
Users should call MPI FILE SYNC before the close if they wish to encourage the underlying file
system to push data to permanent storage.

3.6 ROMIO and MPI FILE SET SIZE

MPI FILE SET SIZE is a collective routine used to resize a file. It is important to remember that a
MPI-IO routine being collective does not imply that the routine synchronizes the calling processes
in any way (unless this is specified explicitly).

As of 1.2.4, ROMIO implements MPI FILE SET SIZE by calling ftruncate from all processes.
Since different processes may call the function at different times, it means that unless external
synchronization is used, a resize operation mixed in with writes or reads could have unexpected
results.

In short, if synchronization after a set size is needed, the user should add a barrier or similar
operation to ensure the set size has completed.

4 Installation Instructions

Since ROMIO is included in MPICH, LAM, HP MPI, SGI MPI, and NEC MPI, you don’t need
to install it separately if you are using any of these MPI implementations. If you are using some
other MPI, you can configure and build ROMIO as follows:

Untar the tar file as

gunzip -c romio.tar.gz | tar xvf -

or

zcat romio.tar.Z | tar xvf -

then

8

cd romio
./configure
make

Some example programs and a Makefile are provided in the romio/test directory. Run the
examples as you would run any MPI program. Each program takes the filename as a command-line
argument “-fname filename”.

The configure script by default configures ROMIO for the file systems most likely to be
used on the given machine. If you wish, you can explicitly specify the file systems by using the
“-file system” option to configure. Multiple file systems can be specified by using ‘+’ as a
separator, e.g.,

./configure -file system=xfs+nfs
For the entire list of options to configure, do

./configure -h | more
After building a specific version, you can install it in a particular directory with

make install PREFIX=/usr/local/romio (or whatever directory you like)
or just

make install (if you used -prefix at configure time)
If you intend to leave ROMIO where you built it, you should not install it; make install is

used only to move the necessary parts of a built ROMIO to another location. The installed copy
will have the include files, libraries, man pages, and a few other odds and ends, but not the whole
source tree. It will have a test directory for testing the installation and a location-independent
Makefile built during installation, which users can copy and modify to compile and link against the
installed copy.

To rebuild ROMIO with a different set of configure options, do
make distclean

to clean everything, including the Makefiles created by configure. Then run configure again
with the new options, followed by make.

4.1 Configuring for Linux and Large Files

32-bit systems running linux kernel version 2.4.0 or newer and glibc version 2.2.0 or newer can
support files greater than 2 GBytes in size. This support is currently automaticly detected and
enabled. We document the manual steps should the automatic detection not work for some reason.

The two macros FILE OFFSET BITS=64 and LARGEFILE64 SOURCE tell gnu libc it’s ok to sup-
port large files on 32 bit platforms. The former changes the size of off t (no need to change
source. might affect interoperability with libraries compiled with a different size of off t). The
latter exposes the gnu libc functions open64(), write64(), read64(), etc. ROMIO does not make use
of the 64 bit system calls directly at this time, but we add this flag for good measure.

If your linux system is relatively new, there is an excellent chance it is running kernel 2.4.0 or
newer and glibc-2.2.0 or newer. Add the string

"-D_FILE_OFFSET_BITS=64 -D_LARGEFILE64_SOURCE"

to your CFLAGS environment variable before runnint ./configure

9

5 Testing ROMIO

To test if the installation works, do
make testing

in the romio/test directory. This calls a script that runs the test programs and compares the
results with what they should be. By default, make testing causes the test programs to create
files in the current directory and use whatever file system that corresponds to. To test with other
file systems, you need to specify a filename in a directory corresponding to that file system as
follows:

make testing TESTARGS="-fname=/foo/piofs/test"

6 Compiling and Running MPI-IO Programs

If ROMIO is not already included in the MPI implementation, you need to include the file mpio.h
for C or mpiof.h for Fortran in your MPI-IO program.

Note that on HP machines running HPUX and on NEC SX-4, you need to compile Fortran
programs with mpif90, becuase mpif77 does not support 8-byte integers.

With MPICH, HP MPI, or NEC MPI, you can compile MPI-IO programs as
mpicc foo.c

or
mpif77 foo.f

or
mpif90 foo.f

As mentioned above, mpif90 is preferred over mpif77 on HPUX and NEC because the f77
compilers on those machines do not support 8-byte integers.

With SGI MPI, you can compile MPI-IO programs as
cc foo.c -lmpi

or
f77 foo.f -lmpi

or
f90 foo.f -lmpi

With LAM, you can compile MPI-IO programs as
hcc foo.c -lmpi

or
hf77 foo.f -lmpi

If you have built ROMIO with some other MPI implementation, you can compile MPI-IO
programs by explicitly giving the path to the include file mpio.h or mpiof.h and explicitly specifying
the path to the library libmpio.a, which is located in $(ROMIO HOME)/lib/$(ARCH)/libmpio.a.

Run the program as you would run any MPI program on the machine. If you use mpirun, make
sure you use the correct mpirun for the MPI implementation you are using. For example, if you are
using MPICH on an SGI machine, make sure that you use MPICH’s mpirun and not SGI’s mpirun.

10

7 Limitations of This Version of ROMIO

• When used with any MPI implementation other than MPICH revision 1.2.1 or later, the
status argument is not filled in any MPI-IO function. Consequently, MPI Get count and
MPI Get elements will not work when passed the status object from an MPI-IO operation.

• Additionally, when used with any MPI implementation other than MPICH revision 1.2.1 or
later, all MPI-IO functions return only two possible error codes—MPI SUCCESS on success and
MPI ERR UNKNOWN on failure.

• This version works only on a homogeneous cluster of machines, and only the “native” file
data representation is supported.

• Shared file pointers are not supported on PVFS and IBM PIOFS file systems because they
don’t support fcntl file locks, and ROMIO uses that feature to implement shared file pointers.

• On HP machines running HPUX and on NEC SX-4, you need to compile Fortran programs
with mpif90 instead of mpif77, because the f77 compilers on these machines don’t support
8-byte integers.

• The file-open mode MPI MODE EXCL does not work on Intel PFS file system, due to a bug in
PFS.

8 Usage Tips

• When using ROMIO with SGI MPI, you may sometimes get an error message from SGI
MPI: “MPI has run out of internal datatype entries. Please set the environment variable
MPI TYPE MAX for additional space.” If you get this error message, add the following line to
your .cshrc file:

setenv MPI TYPE MAX 65536
Use a larger number if you still get the error message.

• If a Fortran program uses a file handle created using ROMIO’s C interface, or vice versa, you
must use the functions MPI File c2f or MPI File f2c (see § 4.12.4 in [4]). Such a situation
occurs, for example, if a Fortran program uses an I/O library written in C with MPI-IO calls.
Similar functions MPIO Request f2c and MPIO Request c2f are also provided.

• For Fortran programs on the Intel Paragon, you may need to provide the complete path to
mpif.h in the include statement, e.g.,

include ’/usr/local/mpich/include/mpif.h’
instead of

include ’mpif.h’
This is because the -I option to the Paragon Fortran compiler if77 doesn’t work correctly.
It always looks in the default directories first and, therefore, picks up Intel’s mpif.h, which
is actually the mpif.h of an older version of MPICH.

11

9 Reporting Bugs

If you have trouble, first check the users guide. Then check if there is a list of known bugs and
patches on the ROMIO web page at http://www.mcs.anl.gov/romio. Finally, if you still have
problems, send a detailed message containing:
• the type of system (often uname -a),
• the output of configure,
• the output of make, and
• any programs or tests

to romio-maint@mcs.anl.gov.

10 ROMIO Internals

A key component of ROMIO that enables such a portable MPI-IO implementation is an internal
abstract I/O device layer called ADIO [5]. Most users of ROMIO will not need to deal with the
ADIO layer at all. However, ADIO is useful to those who want to port ROMIO to some other file
system. The ROMIO source code and the ADIO paper [5] will help you get started.

MPI-IO implementation issues are discussed in [6]. All ROMIO-related papers are available
online at http://www.mcs.anl.gov/romio.

11 Learning MPI-IO

The book Using MPI-2: Advanced Features of the Message-Passing Interface [3], published by MIT
Press, provides a tutorial introduction to all aspects of MPI-2, including parallel I/O. It has lots of
example programs. See http://www.mcs.anl.gov/mpi/usingmpi2 for further information about
the book.

12 Major Changes in Previous Releases

12.1 Major Changes in Version 1.2.3

• Added explicit control over aggregators for collective operations (see description of cb config list).

• Added the following working hints: cb config list, romio cb read, romio cb write,
romio ds read. These additional hints have been added but are currently ignored by the
implementation: romio ds write, romio no indep rw.

• Added NTFS ADIO implementation.

• Added testfs ADIO implementation for use in debugging.

• Added delete function to ADIO interface so that file systems that need to use their own delete
function may do so (e.g. PVFS).

• Changed version numbering to match version number of MPICH release.

12

12.2 Major Changes in Version 1.0.3

• When used with MPICH 1.2.1, the MPI-IO functions return proper error codes and classes,
and the status object is filled in.

• On SGI’s XFS file system, ROMIO can use direct I/O even if the user’s request does not
meet the various restrictions needed to use direct I/O. ROMIO does this by doing part of the
request with buffered I/O (until all the restrictions are met) and doing the rest with direct
I/O. (This feature hasn’t been tested rigorously. Please check for errors.)

By default, ROMIO will use only buffered I/O. Direct I/O can be enabled either by setting
the environment variables MPIO DIRECT READ and/or MPIO DIRECT WRITE to TRUE, or on a
per-file basis by using the info keys direct read and direct write.

Direct I/O will result in higher performance only if you are accessing a high-bandwidth disk
system. Otherwise, buffered I/O is better and is therefore used as the default.

• Miscellaneous bug fixes.

12.3 Major Changes in Version 1.0.2

• Implemented the shared file pointer functions (§ 9.4.4 of MPI-2) and split collective I/O
functions (§ 9.4.5). Therefore, the main components of the MPI-2 I/O chapter not yet im-
plemented are file interoperability and error handling.

• Added support for using “direct I/O” on SGI’s XFS file system. Direct I/O is an optional fea-
ture of XFS in which data is moved directly between the user’s buffer and the storage devices,
bypassing the file-system cache. This can improve performance significantly on systems with
high disk bandwidth. Without high disk bandwidth, regular I/O (that uses the file-system
cache) perfoms better. ROMIO, therefore, does not use direct I/O by default. The user can
turn on direct I/O (separately for reading and writing) either by using environment variables
or by using MPI’s hints mechanism (info). To use the environment-variables method, do

setenv MPIO_DIRECT_READ TRUE
setenv MPIO_DIRECT_WRITE TRUE

To use the hints method, the two keys are direct read and direct write. By default their
values are false. To turn on direct I/O, set the values to true. The environment variables
have priority over the info keys. In other words, if the environment variables are set to TRUE,
direct I/O will be used even if the info keys say false, and vice versa. Note that direct I/O
must be turned on separately for reading and writing. The environment-variables method
assumes that the environment variables can be read by each process in the MPI job. This is
not guaranteed by the MPI Standard, but it works with SGI’s MPI and the ch shmem device
of MPICH.

• Added support (new ADIO device, ad pvfs) for the PVFS parallel file system for Linux clus-
ters, developed at Clemson University (see http://www.parl.clemson.edu/pvfs). To use it,
you must first install PVFS and then when configuring ROMIO, specify -file system=pvfs
in addition to any other options to configure. (As usual, you can configure for multiple file

13

systems by using “+”; for example, -file system=pvfs+ufs+nfs.) You will need to specify
the path to the PVFS include files via the -cflags option to configure, for example,
configure -cflags=-I/usr/pvfs/include. You will also need to specify the full path name
of the PVFS library. The best way to do this is via the -lib option to MPICH’s configure
script (assuming you are using ROMIO from within MPICH).

• Uses weak symbols (where available) for building the profiling version, i.e., the PMPI routines.
As a result, the size of the library is reduced considerably.

• The Makefiles use virtual paths if supported by the make utility. GNU make supports it,
for example. This feature allows you to untar the distribution in some directory, say a slow
NFS directory, and compile the library (create the .o files) in another directory, say on a
faster local disk. For example, if the tar file has been untarred in an NFS directory called
/home/thakur/romio, one can compile it in a different directory, say /tmp/thakur, as follows:

cd /tmp/thakur
/home/thakur/romio/configure
make

The .o files will be created in /tmp/thakur; the library will be created in
/home/thakur/romio/lib/$ARCH/libmpio.a. This method works only if the make utility
supports virtual paths. If the default make utility does not, you can install GNU make which
does, and specify it to configure as

/home/thakur/romio/configure -make=/usr/gnu/bin/gmake (or whatever)

• Lots of miscellaneous bug fixes and other enhancements.

• This version is included in MPICH 1.2.0. If you are using MPICH, you need not download
ROMIO separately; it gets built as part of MPICH. The previous version of ROMIO is
included in LAM, HP MPI, SGI MPI, and NEC MPI. NEC has also implemented the MPI-
IO functions missing in ROMIO, and therefore NEC MPI has a complete implementation of
MPI-IO.

12.4 Major Changes in Version 1.0.1

• This version is included in MPICH 1.1.1 and HP MPI 1.4.

• Added support for NEC SX-4 and created a new device ad sfs for NEC SFS file system.

• New devices ad hfs for HP HFS file system and ad xfs for SGI XFS file system.

• Users no longer need to prefix the filename with the type of file system; ROMIO determines
the file-system type on its own.

• Added support for 64-bit file sizes on IBM PIOFS, SGI XFS, HP HFS, and NEC SFS file
systems.

14

• MPI Offset is an 8-byte integer on machines that support 8-byte integers. It is of type
long long in C and integer*8 in Fortran. With a Fortran 90 compiler, you can use either
integer*8 or integer(kind=MPI OFFSET KIND). If you printf an MPI Offset in C, remem-
ber to use %lld or %ld as required by your compiler. (See what is used in the test program
romio/test/misc.c). On some machines, ROMIO detects at configure time that long long
is either not supported by the C compiler or it doesn’t work properly. In such cases, configure
sets MPI Offset to long in C and integer in Fortran. This happens on Intel Paragon, Sun4,
and FreeBSD.

• Added support for passing hints to the implementation via the MPI Info parameter. ROMIO
understands the following hints (keys in MPI Info object): cb buffer size, cb nodes,
ind rd buffer size, ind wr buffer size (on all but IBM PIOFS), striping factor (on
PFS and PIOFS), striping unit (on PFS and PIOFS), start iodevice (on PFS and PI-
OFS), and pfs svr buf (on PFS only).

15

References

[1] Rajesh Bordawekar, Juan Miguel del Rosario, and Alok Choudhary. Design and evaluation of
primitives for parallel I/O. In Proceedings of Supercomputing ’93, pages 452–461, Portland, OR,
1993. IEEE Computer Society Press.

[2] Alok Choudhary, Rajesh Bordawekar, Michael Harry, Rakesh Krishnaiyer, Ravi Ponnusamy,
Tarvinder Singh, and Rajeev Thakur. PASSION: parallel and scalable software for input-
output. Technical Report SCCS-636, ECE Dept., NPAC and CASE Center, Syracuse University,
September 1994.

[3] William Gropp, Ewing Lusk, and Rajeev Thakur. Using MPI-2: Advanced Features of the
Message-Passing Interface. MIT Press, Cambridge, MA, 1999.

[4] Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing Interface, July
1997. http://www.mpi-forum.org/docs/docs.html.

[5] Rajeev Thakur, William Gropp, and Ewing Lusk. An abstract-device interface for implement-
ing portable parallel-I/O interfaces. In Proceedings of the 6th Symposium on the Frontiers of
Massively Parallel Computation, pages 180–187. IEEE Computer Society Press, October 1996.

[6] Rajeev Thakur, William Gropp, and Ewing Lusk. On implementing MPI-IO portably and
with high performance. In Proceedings of the 6th Workshop on I/O in Parallel and Distributed
Systems, pages 23–32. ACM Press, May 1999.

16

