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Chapter 1: Introduction

1.1  Documentation Changes for Version 2.0
1.1.1  64−Bit Support

• Writing 64−bit Code chapter 10

• elf32 and elf64 output formats section 6.7

• win64 output format section 6.4

• Numeric constants in DQ directive section 3.2.1

• oword, do and reso section 3.2.1

• Stack Relative Preprocessor Directives section 4.9

1.1.2  Floating Point Enhancements
• 8−bit floating−point format section 3.4.4

• Floating−point option control section 5.9

• Infinity and NaN section 3.4.4

1.1.3  ELF Enhancements
• Symbol Visibility section 6.7.4

• Setting OSABI value in ELF header section 6.7.1

• Debug Formats section 6.7.7

1.1.4  Command Line Options
• Generate Makefile Dependencies section 2.1.5

• Send Errors to a File section 2.1.9

• Unlimited Optimization Passes section 2.1.17

1.1.5  Other Enhancements
• %IFN and %ELIFN section 4.4

• Logical Negation Operator !  section 3.5.7

• Current BITS Mode section 4.8.5

• Use of %+ section 4.1.3

1.2  What Is NASM?
The Netwide Assembler, NASM, is an 80x86 and x86−64 assembler designed for portability and
modularity. It supports a range of object file formats, including Linux and *BSD a.out , ELF,
COFF, Mach−O, Microsoft 16−bit OBJ, Win32  and Win64 . It will also output plain binary files.
Its syntax is designed to be simple and easy to understand, similar to Intel’s but less complex. It
supports from the upto and including Pentium , P6, MMX, 3DNow!, SSE, SSE2, SSE3 and x64
opcodes. NASM has a strong support for macro conventions.
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1.2.1  Why Yet Another Assembler?
The Netwide Assembler grew out of an idea on comp.lang.asm.x86  (or possibly
alt.lang.asm  – I forget which), which was essentially that there didn’t seem to be a good free
x86−series assembler around, and that maybe someone ought to write one.

• a86  is good, but not free, and in particular you don’t get any 32−bit capability until you pay. It’s
DOS only, too.

• gas  is free, and ports over to DOS and Unix, but it’s not very good, since it’s designed to be a
back end to gcc , which always feeds it correct code. So its error checking is minimal. Also, its
syntax is horrible, from the point of view of anyone trying to actually write anything in it. Plus
you can’t write 16−bit code in it (properly.)

• as86  is specific to Minix and Linux, and (my version at least) doesn’t seem to have much (or
any) documentation.

• MASM isn’t very good, and it’s (was) expensive, and it runs only under DOS.

• TASM is better, but still strives for MASM compatibility, which means millions of directives and
tons of red tape. And its syntax is essentially MASM’s, with the contradictions and quirks that
entails (although it sorts out some of those by means of Ideal mode.) It’s expensive too. And it’s
DOS−only.

So here, for your coding pleasure, is NASM. At present it’s still in prototype stage – we don’t
promise that it can outperform any of these assemblers. But please, please send us bug reports,
fixes, helpful information, and anything else you can get your hands on (and thanks to the many
people who’ve done this already! You all know who you are), and we’ll improve it out of all
recognition. Again.

1.2.2  License Conditions
Please see the file COPYING, supplied as part of any NASM distribution archive, for the license
conditions under which you may use NASM. NASM is now under the so−called GNU Lesser
General Public License, LGPL.

1.3  Contact Information
The current version of NASM (since about 0.98.08) is maintained by a team of developers,
accessible through the nasm−devel  mailing list (see below for the link). If you want to report a
bug, please read section 11.2 first.

NASM has a WWW page at http://nasm.sourceforge.net . If it’s not there, google for us!

The original authors are e−mailable as jules@dsf.org.uk  and anakin@pobox.com . The
latter is no longer involved in the development team.

New releases of NASM are uploaded to the official sites http://nasm.sourceforge.net
and to ftp.kernel.org  and ibiblio.org .

Announcements are posted to comp.lang.asm.x86 , alt.lang.asm  and
comp.os.linux.announce

If you want information about NASM beta releases, and the current development status, please
subscribe to the nasm−devel  email list by registering at
http://sourceforge.net/projects/nasm .
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1.4  Installation
1.4.1  Installing NASM under MS−DOS or Windows

Once you’ve obtained the DOS archive for NASM, nasmXXX.zip  (where XXX denotes the
version number of NASM contained in the archive), unpack it into its own directory (for example
c:\nasm ).

The archive will contain four executable files: the NASM executable files nasm.exe  and
nasmw.exe , and the NDISASM executable files ndisasm.exe  and ndisasmw.exe . In each
case, the file whose name ends in w is a Win32  executable, designed to run under Windows 95  or
 Windows NT  Intel, and the other one is a 16−bit DOS executable.

The only file NASM needs to run is its own executable, so copy (at least) one of nasm.exe  and
nasmw.exe  to a directory on your PATH, or alternatively edit autoexec.bat  to add the nasm
directory to your PATH. (If you’re only installing the Win32  version, you may wish to rename it to
nasm.exe .)

That’s it – NASM is installed. You don’t need the nasm directory to be present to run NASM
(unless you’ve added it to your PATH), so you can delete it if you need to save space; however, you
may want to keep the documentation or test programs.

If you’ve downloaded the DOS source archive, nasmXXXs.zip , the nasm directory will also
contain the full NASM source code, and a selection of Makefiles you can (hopefully) use to rebuild
your copy of NASM from scratch.

Note that the source files insnsa.c , insnsd.c , insnsi.h  and insnsn.c  are automatically
generated from the master instruction table insns.dat  by a Perl script; the file macros.c  is
generated from standard.mac  by another Perl script. Although the NASM source distribution
includes these generated files, you will need to rebuild them (and hence, will need a Perl interpreter)
if you change insns.dat, standard.mac or the documentation. It is possible future source distributions
may not include these files at all. Ports of Perl for a variety of platforms, including DOS and
Windows, are available from www.cpan.org.

1.4.2  Installing NASM under Unix
Once you’ve obtained the Unix source archive for NASM, nasm−X.XX.tar.gz  (where X.XX
denotes the version number of NASM contained in the archive), unpack it into a directory such as
/usr/local/src . The archive, when unpacked, will create its own subdirectory nasm−X.XX .

NASM is an auto−configuring package: once you’ve unpacked it, cd  to the directory it’s been
unpacked into and type ./configure . This shell script will find the best C compiler to use for
building NASM and set up Makefiles accordingly.

Once NASM has auto−configured, you can type make to build the nasm and ndisasm  binaries,
and then make install  to install them in /usr/local/bin  and install the man pages
nasm.1  and ndisasm.1  in /usr/local/man/man1 . Alternatively, you can give options
such as −−prefix  to the configure script (see the file INSTALL  for more details), or install the
programs yourself.

NASM also comes with a set of utilities for handling the RDOFF custom object−file format, which
are in the rdoff  subdirectory of the NASM archive. You can build these with make rdf  and
install them with make rdf_install , if you want them.

If NASM fails to auto−configure, you may still be able to make it compile by using the fall−back
Unix makefile Makefile.unx . Copy or rename that file to Makefile  and try typing make.
There is also a Makefile.unx file in the rdoff  subdirectory.
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Chapter 2: Running NASM

2.1  NASM Command−Line Syntax
To assemble a file, you issue a command of the form

nasm −f <format> <filename> [−o <output>]

For example,

nasm −f elf myfile.asm

will assemble myfile.asm  into an ELF object file myfile.o . And

nasm −f bin myfile.asm −o myfile.com

will assemble myfile.asm  into a raw binary file myfile.com .

To produce a listing file, with the hex codes output from NASM displayed on the left of the original
sources, use the −l  option to give a listing file name, for example:

nasm −f coff myfile.asm −l myfile.lst

To get further usage instructions from NASM, try typing

nasm −h

As −hf , this will also list the available output file formats, and what they are.

If you use Linux but aren’t sure whether your system is a.out  or ELF, type

file nasm

(in the directory in which you put the NASM binary when you installed it). If it says something like

nasm: ELF 32−bit LSB executable i386 (386 and up) Version 1

then your system is ELF, and you should use the option −f elf  when you want NASM to produce
Linux object files. If it says

nasm: Linux/i386 demand−paged executable (QMAGIC)

or something similar, your system is a.out , and you should use −f aout  instead (Linux a.out
systems have long been obsolete, and are rare these days.)

Like Unix compilers and assemblers, NASM is silent unless it goes wrong: you won’t see any
output at all, unless it gives error messages.

2.1.1  The −o Option: Specifying the Output File Name
NASM will normally choose the name of your output file for you; precisely how it does this is
dependent on the object file format. For Microsoft object file formats (obj  and win32 ), it will
remove the .asm  extension (or whatever extension you like to use – NASM doesn’t care) from
your source file name and substitute .obj . For Unix object file formats (aout , coff , elf ,
macho and as86 ) it will substitute .o . For rdf , it will use .rdf , and for the bin  format it will
simply remove the extension, so that myfile.asm  produces the output file myfile .

If the output file already exists, NASM will overwrite it, unless it has the same name as the input
file, in which case it will give a warning and use nasm.out  as the output file name instead.
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For situations in which this behaviour is unacceptable, NASM provides the −o command−line
option, which allows you to specify your desired output file name. You invoke −o by following it
with the name you wish for the output file, either with or without an intervening space. For example:

nasm −f bin program.asm −o program.com 
nasm −f bin driver.asm −odriver.sys

Note that this is a small o, and is different from a capital O , which is used to specify the number of
optimisation passes required. See section 2.1.17.

2.1.2  The −f  Option: Specifying the Output File Format
If you do not supply the −f  option to NASM, it will choose an output file format for you itself. In
the distribution versions of NASM, the default is always bin ; if you’ve compiled your own copy of
NASM, you can redefine OF_DEFAULT at compile time and choose what you want the default to
be.

Like −o, the intervening space between −f  and the output file format is optional; so −f elf  and
−felf  are both valid.

A complete list of the available output file formats can be given by issuing the command
nasm −hf .

2.1.3  The −l  Option: Generating a Listing File
If you supply the −l  option to NASM, followed (with the usual optional space) by a file name,
NASM will generate a source−listing file for you, in which addresses and generated code are listed
on the left, and the actual source code, with expansions of multi−line macros (except those which
specifically request no expansion in source listings: see section 4.3.9) on the right. For example:

nasm −f elf myfile.asm −l myfile.lst

If a list file is selected, you may turn off listing for a section of your source with [list −] , and
turn it back on with [list +] , (the default, obviously). There is no "user form" (without the
brackets). This can be used to list only sections of interest, avoiding excessively long listings.

2.1.4  The −M Option: Generate Makefile Dependencies
This option can be used to generate makefile dependencies on stdout. This can be redirected to a file
for further processing. For example:

NASM −M myfile.asm > myfile.dep

2.1.5  The −MG Option: Generate Makefile Dependencies
This option can be used to generate makefile dependencies on stdout. This differs from the −M
option in that if a nonexisting file is encountered, it is assumed to be a generated file and is added to
the dependency list without a prefix.

2.1.6  The −F Option: Selecting a Debug Information Format
This option is used to select the format of the debug information emitted into the output file, to be
used by a debugger (or will  be). Use of this switch does not enable output of the selected debug info
format. Use −g, see section 2.1.7, to enable output.

A complete list of the available debug file formats for an output format can be seen by issuing the
command nasm −f <format> −y . (As of 2.00, only "−f elf32", "−f elf64", "−f ieee", and "−f
obj" provide debug information.) See: section 2.1.21.

This should not be confused with the "−f dbg" output format option which is not built into NASM
by default. For information on how to enable it when building from the sources, see section 6.12
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2.1.7  The −g Option: Enabling Debug Information.
This option can be used to generate debugging information in the specified format. See: section
2.1.6. Using −g without −F results in emitting debug info in the default format, if any, for the
selected output format. If no debug information is currently implemented in the selected output
format, −g is silently ignored.

2.1.8  The −X Option: Selecting an Error Reporting Format
This option can be used to select an error reporting format for any error messages that might be
produced by NASM.

Currently, two error reporting formats may be selected. They are the −Xvc  option and the −Xgnu
option. The GNU format is the default and looks like this:

filename.asm:65: error: specific error message 

where filename.asm  is the name of the source file in which the error was detected, 65  is the
source file line number on which the error was detected, error  is the severity of the error (this
could be warning ), and specific error message  is a more detailed text message which
should help pinpoint the exact problem.

The other format, specified by −Xvc  is the style used by Microsoft Visual C++ and some other
programs. It looks like this:

filename.asm(65) : error: specific error message

where the only difference is that the line number is in parentheses instead of being delimited by
colons.

See also the Visual C++  output format, section 6.3.

2.1.9  The −Z Option: Send Errors to a File
Under MS−DOS it can be difficult (though there are ways) to redirect the standard−error output of a
program to a file. Since NASM usually produces its warning and error messages on stderr , this
can make it hard to capture the errors if (for example) you want to load them into an editor.

NASM therefore provides the −Z option, taking a filename argument which causes errors to be sent
to the specified files rather than standard error. Therefore you can redirect the errors into a file by
typing

nasm −Z myfile.err −f obj myfile.asm

In earlier versions of NASM, this option was called −E, but it was changed since −E is an option
conventionally used for preprocessing only, with disastrous results. See section 2.1.15.

2.1.10  The −s Option: Send Errors to stdout

The −s  option redirects error messages to stdout  rather than stderr , so it can be redirected
under MS−DOS. To assemble the file myfile.asm  and pipe its output to the more  program, you
can type:

nasm −s −f obj myfile.asm | more

See also the −Z option, section 2.1.9.

2.1.11  The −i  Option: Include File Search Directories
When NASM sees the %include  or incbin  directive in a source file (see section 4.6 or section
3.2.3), it will search for the given file not only in the current directory, but also in any directories
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specified on the command line by the use of the −i  option. Therefore you can include files from a
macro library, for example, by typing

nasm −ic:\\macrolib\\ −f obj myfile.asm

(As usual, a space between −i  and the path name is allowed, and optional).

NASM, in the interests of complete source−code portability, does not understand the file naming
conventions of the OS it is running on; the string you provide as an argument to the −i  option will
be prepended exactly as written to the name of the include file. Therefore the trailing backslash in
the above example is necessary. Under Unix, a trailing forward slash is similarly necessary.

(You can use this to your advantage, if you’re really perverse, by noting that the option −ifoo  will
cause %include "bar.i"  to search for the file foobar.i ...)

If you want to define a standard include search path, similar to /usr/include  on Unix systems,
you should place one or more −i  directives in the NASMENV environment variable (see section
2.1.23).

For Makefile compatibility with many C compilers, this option can also be specified as −I .

2.1.12  The −p Option: Pre−Include a File
NASM allows you to specify files to be pre−included into your source file, by the use of the −p
option. So running

nasm myfile.asm −p myinc.inc

is equivalent to running nasm myfile.asm  and placing the directive
%include "myinc.inc"  at the start of the file.

For consistency with the −I , −D and −U options, this option can also be specified as −P.

2.1.13  The −d Option: Pre−Define a Macro
Just as the −p option gives an alternative to placing %include  directives at the start of a source
file, the −d option gives an alternative to placing a %define  directive. You could code

nasm myfile.asm −dFOO=100

as an alternative to placing the directive

%define FOO 100

at the start of the file. You can miss off the macro value, as well: the option −dFOO is equivalent to
coding %define FOO . This form of the directive may be useful for selecting assembly−time
options which are then tested using %ifdef , for example −dDEBUG.

For Makefile compatibility with many C compilers, this option can also be specified as −D.

2.1.14  The −u Option: Undefine a Macro
The −u option undefines a macro that would otherwise have been pre−defined, either automatically
or by a −p or −d option specified earlier on the command lines.

For example, the following command line:

nasm myfile.asm −dFOO=100 −uFOO

would result in FOO not being a predefined macro in the program. This is useful to override options
specified at a different point in a Makefile.

For Makefile compatibility with many C compilers, this option can also be specified as −U.
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2.1.15  The −E Option: Preprocess Only
NASM allows the preprocessor to be run on its own, up to a point. Using the −E option (which
requires no arguments) will cause NASM to preprocess its input file, expand all the macro
references, remove all the comments and preprocessor directives, and print the resulting file on
standard output (or save it to a file, if the −o option is also used).

This option cannot be applied to programs which require the preprocessor to evaluate expressions
which depend on the values of symbols: so code such as

%assign tablesize ($−tablestart)

will cause an error in preprocess−only mode.

For compatiblity with older version of NASM, this option can also be written −e. −E in older
versions of NASM was the equivalent of the current −Z option, section 2.1.9.

2.1.16  The −a Option: Don’t Preprocess At All
If NASM is being used as the back end to a compiler, it might be desirable to suppress
preprocessing completely and assume the compiler has already done it, to save time and increase
compilation speeds. The −a option, requiring no argument, instructs NASM to replace its powerful
preprocessor with a stub preprocessor which does nothing.

2.1.17  The −On Option: Specifying Multipass Optimization.
NASM defaults to being a two pass assembler. This means that if you have a complex source file
which needs more than 2 passes to assemble optimally, you have to enable extra passes.

Using the −O option, you can tell NASM to carry out multiple passes. The syntax is:

• −O0 strict two−pass assembly, JMP and Jcc are handled more like v0.98, except that backward
JMPs are short, if possible. Immediate operands take their long forms if a short form is not
specified.

• −O1 strict two−pass assembly, but forward branches are assembled with code guaranteed to
reach; may produce larger code than –O0, but will produce successful assembly more often if
branch offset sizes are not specified. Additionally, immediate operands which will fit in a signed
byte are optimized, unless the long form is specified.

• −On multi−pass optimization, minimize branch offsets; also will minimize signed immediate
bytes, overriding size specification unless the strict  keyword has been used (see section 3.7).
The number specifies the maximum number of passes. The more passes, the better the code, but
the slower is the assembly.

• −Ox where x  is the actual letter x , indicates to NASM to do unlimited passes.

Note that this is a capital O, and is different from a small o, which is used to specify the output
format. See section 2.1.1.

2.1.18  The −t  option: Enable TASM Compatibility Mode
NASM includes a limited form of compatibility with Borland’s TASM. When NASM’s −t  option is
used, the following changes are made:

• local labels may be prefixed with @@ instead of .

• size override is supported within brackets. In TASM compatible mode, a size override inside
square brackets changes the size of the operand, and not the address type of the operand as it
does in NASM syntax. E.g. mov eax,[DWORD val]  is valid syntax in TASM compatibility
mode. Note that you lose the ability to override the default address type for the instruction.
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• unprefixed forms of some directives supported (arg , elif , else , endif , if , ifdef ,
ifdifi , ifndef , include , local )

2.1.19  The −w Option: Enable or Disable Assembly Warnings
NASM can observe many conditions during the course of assembly which are worth mentioning to
the user, but not a sufficiently severe error to justify NASM refusing to generate an output file.
These conditions are reported like errors, but come up with the word ‘warning’ before the message.
Warnings do not prevent NASM from generating an output file and returning a success status to the
operating system.

Some conditions are even less severe than that: they are only sometimes worth mentioning to the
user. Therefore NASM supports the −w command−line option, which enables or disables certain
classes of assembly warning. Such warning classes are described by a name, for example
orphan−labels ; you can enable warnings of this class by the command−line option
−w+orphan−labels  and disable it by −w−orphan−labels .

The suppressible warning classes are:

• macro−params  covers warnings about multi−line macros being invoked with the wrong
number of parameters. This warning class is enabled by default; see section 4.3.1 for an example
of why you might want to disable it.

• macro−selfref  warns if a macro references itself. This warning class is enabled by default.

• orphan−labels  covers warnings about source lines which contain no instruction but define a
label without a trailing colon. NASM does not warn about this somewhat obscure condition by
default; see section 3.1 for an example of why you might want it to.

• number−overflow  covers warnings about numeric constants which don’t fit in 32 bits (for
example, it’s easy to type one too many Fs and produce 0x7ffffffff  by mistake). This
warning class is enabled by default.

• gnu−elf−extensions  warns if 8−bit or 16−bit relocations are used in −f elf  format. The
GNU extensions allow this. This warning class is enabled by default.

• In addition, warning classes may be enabled or disabled across sections of source code with
[warning +warning−name]  or [warning −warning−name] . No "user form"
(without the brackets) exists.

2.1.20  The −v Option: Display Version Info
Typing NASM −v will display the version of NASM which you are using, and the date on which it
was compiled.

You will need the version number if you report a bug.

2.1.21  The −y Option: Display Available Debug Info Formats
Typing nasm −f <option> −y  will display a list of the available debug info formats for the
given output format. The default format is indicated by an asterisk. E.g. nasm −f elf −y  yields
* stabs . (as of 2.00, the only debug info format implemented for this output format).

2.1.22  The −−prefix  and −−postfix  Options.
The −−prefix  and −−postfix  options prepend or append (respectively) the given argument to
all global  or extern  variables. E.g. −−prefix_  will prepend the underscore to all global and
external variables, as C sometimes (but not always) likes it.
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2.1.23  The NASMENV Environment Variable
If you define an environment variable called NASMENV, the program will interpret it as a list of
extra command−line options, which are processed before the real command line. You can use this to
define standard search directories for include files, by putting −i  options in the NASMENV variable.

The value of the variable is split up at white space, so that the value −s −ic:\nasmlib  will be
treated as two separate options. However, that means that the value −dNAME="my name"  won’t
do what you might want, because it will be split at the space and the NASM command−line
processing will get confused by the two nonsensical words −dNAME="my and name" .

To get round this, NASM provides a feature whereby, if you begin the NASMENV environment
variable with some character that isn’t a minus sign, then NASM will treat this character as the
separator character for options. So setting the NASMENV variable to the value
!−s!−ic:\nasmlib  is equivalent to setting it to −s −ic:\nasmlib , but
!−dNAME="my name"  will work.

This environment variable was previously called NASM. This was changed with version 0.98.31.

2.2  Quick Start for MASM Users
If you’re used to writing programs with MASM, or with TASM in MASM−compatible (non−Ideal)
mode, or with a86 , this section attempts to outline the major differences between MASM’s syntax
and NASM’s. If you’re not already used to MASM, it’s probably worth skipping this section.

2.2.1  NASM Is Case−Sensitive
One simple difference is that NASM is case−sensitive. It makes a difference whether you call your
label foo , Foo or FOO. If you’re assembling to DOS or OS/2  .OBJ  files, you can invoke the
UPPERCASE directive (documented in section 6.2) to ensure that all symbols exported to other
code modules are forced to be upper case; but even then, within a single module, NASM will
distinguish between labels differing only in case.

2.2.2  NASM Requires Square Brackets For Memory References
NASM was designed with simplicity of syntax in mind. One of the design goals of NASM is that it
should be possible, as far as is practical, for the user to look at a single line of NASM code and tell
what opcode is generated by it. You can’t do this in MASM: if you declare, for example,

foo     equ     1 
bar     dw      2

then the two lines of code

        mov     ax,foo 
        mov     ax,bar

generate completely different opcodes, despite having identical−looking syntaxes.

NASM avoids this undesirable situation by having a much simpler syntax for memory references.
The rule is simply that any access to the contents of a memory location requires square brackets
around the address, and any access to the address of a variable doesn’t. So an instruction of the
form mov ax,foo  will always refer to a compile−time constant, whether it’s an EQU or the
address of a variable; and to access the contents of the variable bar , you must code
mov ax,[bar] .

This also means that NASM has no need for MASM’s OFFSET keyword, since the MASM code
mov ax,offset bar  means exactly the same thing as NASM’s mov ax,bar . If you’re trying
to get large amounts of MASM code to assemble sensibly under NASM, you can always code
%idefine offset  to make the preprocessor treat the OFFSET keyword as a no−op.
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This issue is even more confusing in a86 , where declaring a label with a trailing colon defines it to
be a ‘label’ as opposed to a ‘variable’ and causes a86  to adopt NASM−style semantics; so in a86 ,
mov ax,var  has different behaviour depending on whether var  was declared as var: dw 0  (a
label) or var dw 0  (a word−size variable). NASM is very simple by comparison: everything is a
label.

NASM, in the interests of simplicity, also does not support the hybrid syntaxes supported by
MASM and its clones, such as mov ax,table[bx] , where a memory reference is denoted by
one portion outside square brackets and another portion inside. The correct syntax for the above is
mov ax,[table+bx] . Likewise, mov ax,es:[di]  is wrong and mov ax,[es:di]  is
right.

2.2.3  NASM Doesn’t Store Variable Types
NASM, by design, chooses not to remember the types of variables you declare. Whereas MASM
will remember, on seeing var dw 0 , that you declared var  as a word−size variable, and will then
be able to fill in the ambiguity in the size of the instruction mov var,2 , NASM will deliberately
remember nothing about the symbol var  except where it begins, and so you must explicitly code
mov word [var],2 .

For this reason, NASM doesn’t support the LODS, MOVS, STOS, SCAS, CMPS, INS , or OUTS
instructions, but only supports the forms such as LODSB, MOVSW, and SCASD, which explicitly
specify the size of the components of the strings being manipulated.

2.2.4  NASM Doesn’t ASSUME

As part of NASM’s drive for simplicity, it also does not support the ASSUME directive. NASM will
not keep track of what values you choose to put in your segment registers, and will never
automatically generate a segment override prefix.

2.2.5  NASM Doesn’t Support Memory Models
NASM also does not have any directives to support different 16−bit memory models. The
programmer has to keep track of which functions are supposed to be called with a far call and which
with a near call, and is responsible for putting the correct form of RET instruction (RETN or RETF;
NASM accepts RET itself as an alternate form for RETN); in addition, the programmer is
responsible for coding CALL FAR instructions where necessary when calling external functions,
and must also keep track of which external variable definitions are far and which are near.

2.2.6  Floating−Point Differences
NASM uses different names to refer to floating−point registers from MASM: where MASM would
call them ST(0) , ST(1)  and so on, and a86  would call them simply 0, 1 and so on, NASM
chooses to call them st0 , st1  etc.

As of version 0.96, NASM now treats the instructions with ‘nowait’ forms in the same way as
MASM−compatible assemblers. The idiosyncratic treatment employed by 0.95 and earlier was
based on a misunderstanding by the authors.

2.2.7  Other Differences
For historical reasons, NASM uses the keyword TWORD where MASM and compatible assemblers
use TBYTE.

NASM does not declare uninitialized storage in the same way as MASM: where a MASM
programmer might use stack db 64 dup (?) , NASM requires stack resb 64 , intended
to be read as ‘reserve 64 bytes’. For a limited amount of compatibility, since NASM treats ? as a
valid character in symbol names, you can code ? equ 0  and then writing dw ?  will at least do
something vaguely useful. DUP is still not a supported syntax, however.
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In addition to all of this, macros and directives work completely differently to MASM. See chapter
4 and chapter 5 for further details.
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Chapter 3: The NASM Language

3.1  Layout of a NASM Source Line
Like most assemblers, each NASM source line contains (unless it is a macro, a preprocessor
directive or an assembler directive: see chapter 4 and chapter 5) some combination of the four fields

label:    instruction operands        ; comment

As usual, most of these fields are optional; the presence or absence of any combination of a label,
an instruction and a comment is allowed. Of course, the operand field is either required or forbidden
by the presence and nature of the instruction field.

NASM uses backslash (\) as the line continuation character; if a line ends with backslash, the next
line is considered to be a part of the backslash−ended line.

NASM places no restrictions on white space within a line: labels may have white space before
them, or instructions may have no space before them, or anything. The colon after a label is also
optional. (Note that this means that if you intend to code lodsb  alone on a line, and type lodab
by accident, then that’s still a valid source line which does nothing but define a label. Running
NASM with the command−line option −w+orphan−labels  will cause it to warn you if you
define a label alone on a line without a trailing colon.)

Valid characters in labels are letters, numbers, _, $, #, @, ~, . , and ?. The only characters which
may be used as the first character of an identifier are letters, .  (with special meaning: see section
3.9), _ and ?. An identifier may also be prefixed with a $ to indicate that it is intended to be read as
an identifier and not a reserved word; thus, if some other module you are linking with defines a
symbol called eax , you can refer to $eax  in NASM code to distinguish the symbol from the
register. Maximum length of an identifier is 4095 characters.

The instruction field may contain any machine instruction: Pentium and P6 instructions, FPU
instructions, MMX instructions and even undocumented instructions are all supported. The
instruction may be prefixed by LOCK, REP, REPE/REPZ or REPNE/REPNZ, in the usual way.
Explicit address−size and operand−size prefixes A16, A32, O16 and O32 are provided – one
example of their use is given in chapter 9. You can also use the name of a segment register as an
instruction prefix: coding es mov [bx],ax  is equivalent to coding mov [es:bx],ax . We
recommend the latter syntax, since it is consistent with other syntactic features of the language, but
for instructions such as LODSB, which has no operands and yet can require a segment override,
there is no clean syntactic way to proceed apart from es lodsb .

An instruction is not required to use a prefix: prefixes such as CS, A32, LOCK or REPE can appear
on a line by themselves, and NASM will just generate the prefix bytes.

In addition to actual machine instructions, NASM also supports a number of pseudo−instructions,
described in section 3.2.

Instruction operands may take a number of forms: they can be registers, described simply by the
register name (e.g. ax , bp , ebx , cr0 : NASM does not use the gas –style syntax in which register
names must be prefixed by a % sign), or they can be effective addresses (see section 3.3), constants
(section 3.4) or expressions (section 3.5).

For x87 floating−point instructions, NASM accepts a wide range of syntaxes: you can use
two−operand forms like MASM supports, or you can use NASM’s native single−operand forms in
most cases. For example, you can code:
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        fadd    st1             ; this sets st0 := st0 + st1 
        fadd    st0,st1         ; so does this 

        fadd    st1,st0         ; this sets st1 := st1 + st0 
        fadd    to st1          ; so does this

Almost any x87 floating−point instruction that references memory must use one of the prefixes
DWORD, QWORD or TWORD to indicate what size of memory operand it refers to.

3.2  Pseudo−Instructions
Pseudo−instructions are things which, though not real x86 machine instructions, are used in the
instruction field anyway because that’s the most convenient place to put them. The current
pseudo−instructions are DB, DW, DD, DQ, DT and DO; their uninitialized counterparts RESB, RESW,
RESD, RESQ, REST and RESO; the INCBIN  command, the EQU command, and the TIMES prefix.

3.2.1  DB and friends: Declaring initialized Data
DB, DW, DD, DQ, DT and DO are used, much as in MASM, to declare initialized data in the output
file. They can be invoked in a wide range of ways: 

      db    0x55                ; just the byte 0x55 
      db    0x55,0x56,0x57      ; three bytes in succession 
      db    ’a’,0x55            ; character constants are OK 
      db    ’hello’,13,10,’$’   ; so are string constants 
      dw    0x1234              ; 0x34 0x12 
      dw    ’a’                 ; 0x61 0x00 (it’s just a number) 
      dw    ’ab’                ; 0x61 0x62 (character constant) 
      dw    ’abc’               ; 0x61 0x62 0x63 0x00 (string) 
      dd    0x12345678          ; 0x78 0x56 0x34 0x12 
      dd    1.234567e20         ; floating−point constant 
      dq    0x123456789abcdef0  ; eight byte constant 
      dq    1.234567e20         ; double−precision float 
      dt    1.234567e20         ; extended−precision float

DT and DO do not accept numeric constants as operands.

3.2.2  RESB and friends: Declaring Uninitialized Data
RESB, RESW, RESD, RESQ, REST and RESO are designed to be used in the BSS section of a
module: they declare uninitialized storage space. Each takes a single operand, which is the number
of bytes, words, doublewords or whatever to reserve. As stated in section 2.2.7, NASM does not
support the MASM/TASM syntax of reserving uninitialized space by writing DW ? or similar
things: this is what it does instead. The operand to a RESB–type pseudo−instruction is a critical
expression: see section 3.8.

For example:

buffer:         resb    64              ; reserve 64 bytes 
wordvar:        resw    1               ; reserve a word 
realarray       resq    10              ; array of ten reals

3.2.3  INCBIN: Including External Binary Files
INCBIN  is borrowed from the old Amiga assembler DevPac: it includes a binary file verbatim into
the output file. This can be handy for (for example) including graphics and sound data directly into
a game executable file. It can be called in one of these three ways:
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    incbin  "file.dat"             ; include the whole file 
    incbin  "file.dat",1024        ; skip the first 1024 bytes 
    incbin  "file.dat",1024,512    ; skip the first 1024, and 
                                   ; actually include at most 512

3.2.4  EQU: Defining Constants
EQU defines a symbol to a given constant value: when EQU is used, the source line must contain a
label. The action of EQU is to define the given label name to the value of its (only) operand. This
definition is absolute, and cannot change later. So, for example,

message         db      ’hello, world’ 
msglen          equ     $−message

defines msglen  to be the constant 12. msglen  may not then be redefined later. This is not a
preprocessor definition either: the value of msglen  is evaluated once, using the value of $ (see
section 3.5 for an explanation of $) at the point of definition, rather than being evaluated wherever
it is referenced and using the value of $ at the point of reference. Note that the operand to an EQU is
also a critical expression (section 3.8).

3.2.5  TIMES: Repeating Instructions or Data
The TIMES prefix causes the instruction to be assembled multiple times. This is partly present as
NASM’s equivalent of the DUP syntax supported by MASM–compatible assemblers, in that you
can code

zerobuf:        times 64 db 0

or similar things; but TIMES is more versatile than that. The argument to TIMES is not just a
numeric constant, but a numeric expression, so you can do things like

buffer: db      ’hello, world’ 
        times 64−$+buffer db ’ ’

which will store exactly enough spaces to make the total length of buffer  up to 64. Finally,
TIMES can be applied to ordinary instructions, so you can code trivial unrolled loops in it:

        times 100 movsb

Note that there is no effective difference between times 100 resb 1  and resb 100 , except
that the latter will be assembled about 100 times faster due to the internal structure of the assembler.

The operand to TIMES, like that of EQU and those of RESB and friends, is a critical expression
(section 3.8).

Note also that TIMES can’t be applied to macros: the reason for this is that TIMES is processed
after the macro phase, which allows the argument to TIMES to contain expressions such as
64−$+buffer  as above. To repeat more than one line of code, or a complex macro, use the
preprocessor %rep directive.

3.3  Effective Addresses
An effective address is any operand to an instruction which references memory. Effective addresses,
in NASM, have a very simple syntax: they consist of an expression evaluating to the desired
address, enclosed in square brackets. For example:

wordvar dw      123 
        mov     ax,[wordvar] 
        mov     ax,[wordvar+1] 
        mov     ax,[es:wordvar+bx]
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Anything not conforming to this simple system is not a valid memory reference in NASM, for
example es:wordvar[bx] .

More complicated effective addresses, such as those involving more than one register, work in
exactly the same way:

        mov     eax,[ebx*2+ecx+offset] 
        mov     ax,[bp+di+8]

NASM is capable of doing algebra on these effective addresses, so that things which don’t
necessarily look legal are perfectly all right:

    mov     eax,[ebx*5]             ; assembles as [ebx*4+ebx] 
    mov     eax,[label1*2−label2]   ; ie [label1+(label1−label2)]

Some forms of effective address have more than one assembled form; in most such cases NASM
will generate the smallest form it can. For example, there are distinct assembled forms for the
32−bit effective addresses [eax*2+0]  and [eax+eax] , and NASM will generally generate the
latter on the grounds that the former requires four bytes to store a zero offset.

NASM has a hinting mechanism which will cause [eax+ebx]  and [ebx+eax]  to generate
different opcodes; this is occasionally useful because [esi+ebp]  and [ebp+esi]  have different
default segment registers.

However, you can force NASM to generate an effective address in a particular form by the use of
the keywords BYTE, WORD, DWORD and NOSPLIT. If you need [eax+3]  to be assembled using a
double−word offset field instead of the one byte NASM will normally generate, you can code
[dword eax+3] . Similarly, you can force NASM to use a byte offset for a small value which it
hasn’t seen on the first pass (see section 3.8 for an example of such a code fragment) by using
[byte eax+offset] . As special cases, [byte eax]  will code [eax+0]  with a byte offset
of zero, and [dword eax]  will code it with a double−word offset of zero. The normal form,
[eax] , will be coded with no offset field.

The form described in the previous paragraph is also useful if you are trying to access data in a
32−bit segment from within 16 bit code. For more information on this see the section on
mixed−size addressing (section 9.2). In particular, if you need to access data with a known offset
that is larger than will fit in a 16−bit value, if you don’t specify that it is a dword offset, nasm will
cause the high word of the offset to be lost.

Similarly, NASM will split [eax*2]  into [eax+eax]  because that allows the offset field to be
absent and space to be saved; in fact, it will also split [eax*2+offset]  into
[eax+eax+offset] . You can combat this behaviour by the use of the NOSPLIT keyword:
[nosplit eax*2]  will force [eax*2+0]  to be generated literally.

In 64−bit mode, NASM will by default generate absolute addresses. The REL keyword makes it
produce RIP–relative addresses. Since this is frequently the normally desired behaviour, see the
DEFAULT directive (section 5.2). The keyword ABS overrides REL.

3.4  Constants
NASM understands four different types of constant: numeric, character, string and floating−point.

3.4.1  Numeric Constants
A numeric constant is simply a number. NASM allows you to specify numbers in a variety of
number bases, in a variety of ways: you can suffix H, Q or O, and B for hex, octal and binary, or you
can prefix 0x  for hex in the style of C, or you can prefix $ for hex in the style of Borland Pascal.
Note, though, that the $ prefix does double duty as a prefix on identifiers (see section 3.1), so a hex
number prefixed with a $ sign must have a digit after the $ rather than a letter.
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Some examples:

        mov     ax,100          ; decimal 
        mov     ax,0a2h         ; hex 
        mov     ax,$0a2         ; hex again: the 0 is required 
        mov     ax,0xa2         ; hex yet again 
        mov     ax,777q         ; octal 
        mov     ax,777o         ; octal again 
        mov     ax,10010011b    ; binary

3.4.2  Character Constants
A character constant consists of up to four characters enclosed in either single or double quotes. The
type of quote makes no difference to NASM, except of course that surrounding the constant with
single quotes allows double quotes to appear within it and vice versa.

A character constant with more than one character will be arranged with little−endian order in mind:
if you code

          mov eax,’abcd’

then the constant generated is not 0x61626364 , but 0x64636261 , so that if you were then to
store the value into memory, it would read abcd  rather than dcba . This is also the sense of
character constants understood by the Pentium’s CPUID instruction.

3.4.3  String Constants
String constants are only acceptable to some pseudo−instructions, namely the DB family and
INCBIN .

A string constant looks like a character constant, only longer. It is treated as a concatenation of
maximum−size character constants for the conditions. So the following are equivalent:

      db    ’hello’               ; string constant 
      db    ’h’,’e’,’l’,’l’,’o’   ; equivalent character constants

And the following are also equivalent:

      dd    ’ninechars’           ; doubleword string constant 
      dd    ’nine’,’char’,’s’     ; becomes three doublewords 
      db    ’ninechars’,0,0,0     ; and really looks like this

Note that when used as an operand to db , a constant like ’ab’  is treated as a string constant
despite being short enough to be a character constant, because otherwise db ’ab’  would have the
same effect as db ’a’ , which would be silly. Similarly, three−character or four−character
constants are treated as strings when they are operands to dw.

3.4.4  Floating−Point Constants
Floating−point constants are acceptable only as arguments to DB, DW, DD, DQ, DT, and DO, or as
arguments to the special operators __float8__ , __float16__ , __float32__ ,
__float64__ , __float80m__ , __float80e__ , __float128l__ , and
__float128h__ .

Floating−point constants are expressed in the traditional form: digits, then a period, then optionally
more digits, then optionally an E followed by an exponent. The period is mandatory, so that NASM
can distinguish between dd 1 , which declares an integer constant, and dd 1.0  which declares a
floating−point constant. NASM also support C99−style hexadecimal floating−point: 0x ,
hexadecimal digits, period, optionally more hexadeximal digits, then optionally a P followed by a
binary (not hexadecimal) exponent in decimal notation.
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Some examples:

      db    −0.2                    ; "Quarter precision" 
      dw    −0.5                    ; IEEE 754r/SSE5 half precision 
      dd    1.2                     ; an easy one 
      dd    0x1p+2                  ; 1.0x2^2 = 4.0 
      dq    1.e10                   ; 10,000,000,000 
      dq    1.e+10                  ; synonymous with 1.e10 
      dq    1.e−10                  ; 0.000 000 000 1 
      dt    3.141592653589793238462 ; pi 
      do    1.e+4000                ; IEEE 754r quad precision

The 8−bit "quarter−precision" floating−point format is sign:exponent:mantissa = 1:4:3 with an
exponent bias of 7. This appears to be the most frequently used 8−bit floating−point format,
although it is not covered by any formal standard. This is sometimes called a "minifloat."

The special operators are used to produce floating−point numbers in other contexts. They produce
the binary representation of a specific floating−point number as an integer, and can use anywhere
integer constants are used in an expression. __float80m__  and __float80e__  produce the
64−bit mantissa and 16−bit exponent of an 80−bit floating−point number, and __float128l__
and __float128h__  produce the lower and upper 64−bit halves of a 128−bit floating−point
number, respectively.

For example:

      mov    rax,__float64__(3.141592653589793238462)

... would assign the binary representation of pi as a 64−bit floating point number into RAX. This is
exactly equivalent to:

      mov    rax,0x400921fb54442d18

NASM cannot do compile−time arithmetic on floating−point constants. This is because NASM is
designed to be portable – although it always generates code to run on x86 processors, the assembler
itself can run on any system with an ANSI C compiler. Therefore, the assembler cannot guarantee
the presence of a floating−point unit capable of handling the Intel number formats, and so for
NASM to be able to do floating arithmetic it would have to include its own complete set of
floating−point routines, which would significantly increase the size of the assembler for very little
benefit.

The special tokens __Infinity__ , __QNaN__ (or __NaN__) and __SNaN__ can be used to
generate infinities, quiet NaNs, and signalling NaNs, respectively. These are normally used as
macros:

%define Inf __Infinity__ 
%define NaN __QNaN__ 

      dq    +1.5, −Inf, NaN         ; Double−precision constants

3.5  Expressions
Expressions in NASM are similar in syntax to those in C. Expressions are evaluated as 64−bit
integers which are then adjusted to the appropriate size.

NASM supports two special tokens in expressions, allowing calculations to involve the current
assembly position: the $ and $$  tokens. $ evaluates to the assembly position at the beginning of the
line containing the expression; so you can code an infinite loop using JMP $ . $$  evaluates to the
beginning of the current section; so you can tell how far into the section you are by using ($−$$) .
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The arithmetic operators provided by NASM are listed here, in increasing order of precedence.

3.5.1  | : Bitwise OR Operator
The |  operator gives a bitwise OR, exactly as performed by the OR machine instruction. Bitwise
OR is the lowest−priority arithmetic operator supported by NASM.

3.5.2  ̂ : Bitwise XOR Operator
^  provides the bitwise XOR operation.

3.5.3  &: Bitwise AND Operator
& provides the bitwise AND operation.

3.5.4  << and >>: Bit Shift Operators
<< gives a bit−shift to the left, just as it does in C. So 5<<3  evaluates to 5 times 8, or 40. >> gives
a bit−shift to the right; in NASM, such a shift is always unsigned, so that the bits shifted in from the
left−hand end are filled with zero rather than a sign−extension of the previous highest bit.

3.5.5  + and −: Addition and Subtraction Operators
The + and − operators do perfectly ordinary addition and subtraction.

3.5.6  * , / , // , % and %%: Multiplication and Division
*  is the multiplication operator. /  and //  are both division operators: /  is unsigned division and //
is signed division. Similarly, % and %% provide unsigned and signed modulo operators respectively.

NASM, like ANSI C, provides no guarantees about the sensible operation of the signed modulo
operator.

Since the % character is used extensively by the macro preprocessor, you should ensure that both the
signed and unsigned modulo operators are followed by white space wherever they appear.

3.5.7  Unary Operators: +, −, ~, !  and SEG

The highest−priority operators in NASM’s expression grammar are those which only apply to one
argument. − negates its operand, + does nothing (it’s provided for symmetry with −), ~ computes
the one’s complement of its operand, !  is the logical negation operator, and SEG provides the
segment address of its operand (explained in more detail in section 3.6).

3.6  SEG and WRT
When writing large 16−bit programs, which must be split into multiple segments, it is often
necessary to be able to refer to the segment part of the address of a symbol. NASM supports the
SEG operator to perform this function.

The SEG operator returns the preferred segment base of a symbol, defined as the segment base
relative to which the offset of the symbol makes sense. So the code

        mov     ax,seg symbol 
        mov     es,ax 
        mov     bx,symbol

will load ES:BX with a valid pointer to the symbol symbol .

Things can be more complex than this: since 16−bit segments and groups may overlap, you might
occasionally want to refer to some symbol using a different segment base from the preferred one.
NASM lets you do this, by the use of the WRT (With Reference To) keyword. So you can do things
like
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        mov     ax,weird_seg        ; weird_seg is a segment base 
        mov     es,ax 
        mov     bx,symbol wrt weird_seg

to load ES:BX with a different, but functionally equivalent, pointer to the symbol symbol .

NASM supports far (inter−segment) calls and jumps by means of the syntax
call segment:offset , where segment  and offset  both represent immediate values. So to
call a far procedure, you could code either of

        call    (seg procedure):procedure 
        call    weird_seg:(procedure wrt weird_seg)

(The parentheses are included for clarity, to show the intended parsing of the above instructions.
They are not necessary in practice.)

NASM supports the syntax call far procedure  as a synonym for the first of the above
usages. JMP works identically to CALL in these examples.

To declare a far pointer to a data item in a data segment, you must code

        dw      symbol, seg symbol

NASM supports no convenient synonym for this, though you can always invent one using the
macro processor.

3.7  STRICT: Inhibiting Optimization
When assembling with the optimizer set to level 2 or higher (see section 2.1.17), NASM will use
size specifiers (BYTE, WORD, DWORD, QWORD, TWORD or OWORD), but will give them the smallest
possible size. The keyword STRICT can be used to inhibit optimization and force a particular
operand to be emitted in the specified size. For example, with the optimizer on, and in BITS 16
mode,

        push dword 33

is encoded in three bytes 66 6A 21 , whereas

        push strict dword 33

is encoded in six bytes, with a full dword immediate operand 66 68 21 00 00 00 .

With the optimizer off, the same code (six bytes) is generated whether the STRICT keyword was
used or not.

3.8  Critical Expressions
Although NASM has an optional multi−pass optimizer, there are some expressions which must be
resolvable on the first pass. These are called Critical Expressions.

The first pass is used to determine the size of all the assembled code and data, so that the second
pass, when generating all the code, knows all the symbol addresses the code refers to. So one thing
NASM can’t handle is code whose size depends on the value of a symbol declared after the code in
question. For example,

        times (label−$) db 0 
label:  db      ’Where am I?’

The argument to TIMES in this case could equally legally evaluate to anything at all; NASM will
reject this example because it cannot tell the size of the TIMES line when it first sees it. It will just
as firmly reject the slightly paradoxical code
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        times (label−$+1) db 0 
label:  db      ’NOW where am I?’

in which any value for the TIMES argument is by definition wrong!

NASM rejects these examples by means of a concept called a critical expression, which is defined
to be an expression whose value is required to be computable in the first pass, and which must
therefore depend only on symbols defined before it. The argument to the TIMES prefix is a critical
expression; for the same reason, the arguments to the RESB family of pseudo−instructions are also
critical expressions.

Critical expressions can crop up in other contexts as well: consider the following code.

                mov     ax,symbol1 
symbol1         equ     symbol2 
symbol2:

On the first pass, NASM cannot determine the value of symbol1 , because symbol1  is defined to
be equal to symbol2  which NASM hasn’t seen yet. On the second pass, therefore, when it
encounters the line mov ax,symbol1 , it is unable to generate the code for it because it still
doesn’t know the value of symbol1 . On the next line, it would see the EQU again and be able to
determine the value of symbol1 , but by then it would be too late.

NASM avoids this problem by defining the right−hand side of an EQU statement to be a critical
expression, so the definition of symbol1  would be rejected in the first pass.

There is a related issue involving forward references: consider this code fragment.

        mov     eax,[ebx+offset] 
offset  equ     10

NASM, on pass one, must calculate the size of the instruction mov eax,[ebx+offset]
without knowing the value of offset . It has no way of knowing that offset  is small enough to
fit into a one−byte offset field and that it could therefore get away with generating a shorter form of
the effective−address encoding; for all it knows, in pass one, offset  could be a symbol in the
code segment, and it might need the full four−byte form. So it is forced to compute the size of the
instruction to accommodate a four−byte address part. In pass two, having made this decision, it is
now forced to honour it and keep the instruction large, so the code generated in this case is not as
small as it could have been. This problem can be solved by defining offset  before using it, or by
forcing byte size in the effective address by coding [byte ebx+offset] .

Note that use of the −On switch (with n>=2) makes some of the above no longer true (see section
2.1.17).

3.9  Local Labels
NASM gives special treatment to symbols beginning with a period. A label beginning with a single
period is treated as a local label, which means that it is associated with the previous non−local label.
So, for example:

label1  ; some code 

.loop 
        ; some more code 

        jne     .loop 
        ret 

label2  ; some code 
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.loop 
        ; some more code 

        jne     .loop 
        ret

In the above code fragment, each JNE instruction jumps to the line immediately before it, because
the two definitions of .loop  are kept separate by virtue of each being associated with the previous
non−local label.

This form of local label handling is borrowed from the old Amiga assembler DevPac; however,
NASM goes one step further, in allowing access to local labels from other parts of the code. This is
achieved by means of defining a local label in terms of the previous non−local label: the first
definition of .loop  above is really defining a symbol called label1.loop , and the second
defines a symbol called label2.loop . So, if you really needed to, you could write

label3  ; some more code 
        ; and some more 

        jmp label1.loop

Sometimes it is useful – in a macro, for instance – to be able to define a label which can be
referenced from anywhere but which doesn’t interfere with the normal local−label mechanism. Such
a label can’t be non−local because it would interfere with subsequent definitions of, and references
to, local labels; and it can’t be local because the macro that defined it wouldn’t know the label’s full
name. NASM therefore introduces a third type of label, which is probably only useful in macro
definitions: if a label begins with the special prefix ..@ , then it does nothing to the local label
mechanism. So you could code

label1:                         ; a non−local label 
.local:                         ; this is really label1.local 
..@@foo:                         ; this is a special symbol 
label2:                         ; another non−local label 
.local:                         ; this is really label2.local 

        jmp     ..@@foo          ; this will jump three lines up

NASM has the capacity to define other special symbols beginning with a double period: for
example, ..start  is used to specify the entry point in the obj  output format (see section 6.2.6).
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Chapter 4: The NASM Preprocessor

NASM contains a powerful macro processor, which supports conditional assembly, multi−level file
inclusion, two forms of macro (single−line and multi−line), and a ‘context stack’ mechanism for
extra macro power. Preprocessor directives all begin with a % sign.

The preprocessor collapses all lines which end with a backslash (\) character into a single line. Thus:

%define THIS_VERY_LONG_MACRO_NAME_IS_DEFINED_TO \\ 
        THIS_VALUE

will work like a single−line macro without the backslash−newline sequence.

4.1  Single−Line Macros
4.1.1  The Normal Way: %define

Single−line macros are defined using the %define  preprocessor directive. The definitions work in
a similar way to C; so you can do things like

%define ctrl    0x1F & 
%define param(a,b) ((a)+(a)*(b)) 

        mov     byte [param(2,ebx)], ctrl ’D’

which will expand to

        mov     byte [(2)+(2)*(ebx)], 0x1F & ’D’

When the expansion of a single−line macro contains tokens which invoke another macro, the
expansion is performed at invocation time, not at definition time. Thus the code

%define a(x)    1+b(x) 
%define b(x)    2*x 

        mov     ax,a(8)

will evaluate in the expected way to mov ax,1+2*8 , even though the macro b wasn’t defined at
the time of definition of a.

Macros defined with %define  are case sensitive: after %define foo bar , only foo  will
expand to bar : Foo or FOO will not. By using %idefine  instead of %define  (the ‘i’ stands for
‘insensitive’) you can define all the case variants of a macro at once, so that %idefine foo bar
would cause foo , Foo, FOO, fOO and so on all to expand to bar .

There is a mechanism which detects when a macro call has occurred as a result of a previous
expansion of the same macro, to guard against circular references and infinite loops. If this happens,
the preprocessor will only expand the first occurrence of the macro. Hence, if you code

%define a(x)    1+a(x) 

        mov     ax,a(3)

the macro a(3)  will expand once, becoming 1+a(3) , and will then expand no further. This
behaviour can be useful: see section 8.1 for an example of its use.
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You can overload single−line macros: if you write

%define foo(x)   1+x 
%define foo(x,y) 1+x*y

the preprocessor will be able to handle both types of macro call, by counting the parameters you
pass; so foo(3)  will become 1+3  whereas foo(ebx,2)  will become 1+ebx*2 . However, if
you define

%define foo bar

then no other definition of foo  will be accepted: a macro with no parameters prohibits the
definition of the same name as a macro with parameters, and vice versa.

This doesn’t prevent single−line macros being redefined: you can perfectly well define a macro with

%define foo bar

and then re−define it later in the same source file with

%define foo baz

Then everywhere the macro foo  is invoked, it will be expanded according to the most recent
definition. This is particularly useful when defining single−line macros with %assign  (see section
4.1.5).

You can pre−define single−line macros using the ‘−d’ option on the NASM command line: see
section 2.1.13.

4.1.2  Enhancing %define: %xdefine

To have a reference to an embedded single−line macro resolved at the time that it is embedded, as
opposed to when the calling macro is expanded, you need a different mechanism to the one offered
by %define . The solution is to use %xdefine , or it’s case−insensitive counterpart %xidefine .

Suppose you have the following code:

%define  isTrue  1 
%define  isFalse isTrue 
%define  isTrue  0 

val1:    db      isFalse 

%define  isTrue  1 

val2:    db      isFalse

In this case, val1  is equal to 0, and val2  is equal to 1. This is because, when a single−line macro
is defined using %define , it is expanded only when it is called. As isFalse  expands to
isTrue , the expansion will be the current value of isTrue . The first time it is called that is 0, and
the second time it is 1.

If you wanted isFalse  to expand to the value assigned to the embedded macro isTrue  at the
time that isFalse  was defined, you need to change the above code to use %xdefine .

%xdefine isTrue  1 
%xdefine isFalse isTrue 
%xdefine isTrue  0 

val1:    db      isFalse 

33



%xdefine isTrue  1 

val2:    db      isFalse

Now, each time that isFalse  is called, it expands to 1, as that is what the embedded macro
isTrue  expanded to at the time that isFalse  was defined.

4.1.3  Concatenating Single Line Macro Tokens: %+

Individual tokens in single line macros can be concatenated, to produce longer tokens for later
processing. This can be useful if there are several similar macros that perform similar functions.

Please note that a space is required after %+, in order to disambiguate it from the syntax %+1 used
in multiline macros.

As an example, consider the following:

%define BDASTART 400h                ; Start of BIOS data area

struc   tBIOSDA                      ; its structure 
        .COM1addr       RESW    1 
        .COM2addr       RESW    1 
        ; ..and so on 
endstruc

Now, if we need to access the elements of tBIOSDA in different places, we can end up with:

        mov     ax,BDASTART + tBIOSDA.COM1addr 
        mov     bx,BDASTART + tBIOSDA.COM2addr

This will become pretty ugly (and tedious) if used in many places, and can be reduced in size
significantly by using the following macro:

; Macro to access BIOS variables by their names (from tBDA):

%define BDA(x)  BDASTART + tBIOSDA. %+ x

Now the above code can be written as:

        mov     ax,BDA(COM1addr) 
        mov     bx,BDA(COM2addr)

Using this feature, we can simplify references to a lot of macros (and, in turn, reduce typing errors).

4.1.4  Undefining macros: %undef

Single−line macros can be removed with the %undef  command. For example, the following
sequence:

%define foo bar 
%undef  foo 

        mov     eax, foo

will expand to the instruction mov eax, foo , since after %undef  the macro foo  is no longer
defined.

Macros that would otherwise be pre−defined can be undefined on the command−line using the ‘−u’
option on the NASM command line: see section 2.1.14.
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4.1.5  Preprocessor Variables: %assign

An alternative way to define single−line macros is by means of the %assign  command (and its
case−insensitive counterpart %iassign , which differs from %assign  in exactly the same way
that %idefine  differs from %define ).

%assign  is used to define single−line macros which take no parameters and have a numeric value.
This value can be specified in the form of an expression, and it will be evaluated once, when the
%assign  directive is processed.

Like %define , macros defined using %assign  can be re−defined later, so you can do things like

%assign i i+1

to increment the numeric value of a macro.

%assign  is useful for controlling the termination of %rep preprocessor loops: see section 4.5 for
an example of this. Another use for %assign  is given in section 7.4 and section 8.1.

The expression passed to %assign  is a critical expression (see section 3.8), and must also evaluate
to a pure number (rather than a relocatable reference such as a code or data address, or anything
involving a register).

4.2  String Handling in Macros: %strlen  and %substr
It’s often useful to be able to handle strings in macros. NASM supports two simple string handling
macro operators from which more complex operations can be constructed.

4.2.1  String Length: %strlen

The %strlen  macro is like %assign  macro in that it creates (or redefines) a numeric value to a
macro. The difference is that with %strlen , the numeric value is the length of a string. An
example of the use of this would be:

%strlen charcnt ’my string’

In this example, charcnt  would receive the value 8, just as if an %assign  had been used. In this
example, ’my string’  was a literal string but it could also have been a single−line macro that
expands to a string, as in the following example:

%define sometext ’my string’ 
%strlen charcnt sometext

As in the first case, this would result in charcnt  being assigned the value of 8.

4.2.2  Sub−strings: %substr

Individual letters in strings can be extracted using %substr . An example of its use is probably
more useful than the description:

%substr mychar  ’xyz’ 1         ; equivalent to %define mychar ’x’ 
%substr mychar  ’xyz’ 2         ; equivalent to %define mychar ’y’ 
%substr mychar  ’xyz’ 3         ; equivalent to %define mychar ’z’

In this example, mychar gets the value of ’y’. As with %strlen  (see section 4.2.1), the first
parameter is the single−line macro to be created and the second is the string. The third parameter
specifies which character is to be selected. Note that the first index is 1, not 0 and the last index is
equal to the value that %strlen  would assign given the same string. Index values out of range
result in an empty string.
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4.3  Multi−Line Macros: %macro
Multi−line macros are much more like the type of macro seen in MASM and TASM: a multi−line
macro definition in NASM looks something like this.

%macro  prologue 1 

        push    ebp 
        mov     ebp,esp 
        sub     esp,%1 

%endmacro

This defines a C−like function prologue as a macro: so you would invoke the macro with a call such
as

myfunc:   prologue 12

which would expand to the three lines of code

myfunc: push    ebp 
        mov     ebp,esp 
        sub     esp,12

The number 1 after the macro name in the %macro line defines the number of parameters the
macro prologue  expects to receive. The use of %1 inside the macro definition refers to the first
parameter to the macro call. With a macro taking more than one parameter, subsequent parameters
would be referred to as %2, %3 and so on.

Multi−line macros, like single−line macros, are case−sensitive, unless you define them using the
alternative directive %imacro .

If you need to pass a comma as part of a parameter to a multi−line macro, you can do that by
enclosing the entire parameter in braces. So you could code things like

%macro  silly 2 

    %2: db      %1 

%endmacro 

        silly ’a’, letter_a             ; letter_a:  db ’a’ 
        silly ’ab’, string_ab           ; string_ab: db ’ab’ 
        silly @\{13,10@\}, crlf             ; crlf:      db 13,10

4.3.1  Overloading Multi−Line Macros
As with single−line macros, multi−line macros can be overloaded by defining the same macro name
several times with different numbers of parameters. This time, no exception is made for macros
with no parameters at all. So you could define

%macro  prologue 0 

        push    ebp 
        mov     ebp,esp 

%endmacro

to define an alternative form of the function prologue which allocates no local stack space.
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Sometimes, however, you might want to ‘overload’ a machine instruction; for example, you might
want to define

%macro  push 2 

        push    %1 
        push    %2 

%endmacro

so that you could code

        push    ebx             ; this line is not a macro call 
        push    eax,ecx         ; but this one is

Ordinarily, NASM will give a warning for the first of the above two lines, since push  is now
defined to be a macro, and is being invoked with a number of parameters for which no definition
has been given. The correct code will still be generated, but the assembler will give a warning. This
warning can be disabled by the use of the −w−macro−params  command−line option (see section
2.1.19).

4.3.2  Macro−Local Labels
NASM allows you to define labels within a multi−line macro definition in such a way as to make
them local to the macro call: so calling the same macro multiple times will use a different label each
time. You do this by prefixing %% to the label name. So you can invent an instruction which
executes a RET if the Z flag is set by doing this:

%macro  retz 0 

        jnz     %%skip 
        ret 
    %%skip: 

%endmacro

You can call this macro as many times as you want, and every time you call it NASM will make up
a different ‘real’ name to substitute for the label %%skip. The names NASM invents are of the
form ..@2345.skip , where the number 2345 changes with every macro call. The ..@  prefix
prevents macro−local labels from interfering with the local label mechanism, as described in section
3.9. You should avoid defining your own labels in this form (the ..@  prefix, then a number, then
another period) in case they interfere with macro−local labels.

4.3.3  Greedy Macro Parameters
Occasionally it is useful to define a macro which lumps its entire command line into one parameter
definition, possibly after extracting one or two smaller parameters from the front. An example
might be a macro to write a text string to a file in MS−DOS, where you might want to be able to
write

        writefile [filehandle],"hello, world",13,10

NASM allows you to define the last parameter of a macro to be greedy, meaning that if you invoke
the macro with more parameters than it expects, all the spare parameters get lumped into the last
defined one along with the separating commas. So if you code:

%macro  writefile 2+ 

        jmp     %%endstr 

37



  %%str:        db      %2 
  %%endstr: 
        mov     dx,%%str 
        mov     cx,%%endstr−%%str 
        mov     bx,%1 
        mov     ah,0x40 
        int     0x21 

%endmacro

then the example call to writefile  above will work as expected: the text before the first comma,
[filehandle] , is used as the first macro parameter and expanded when %1 is referred to, and all
the subsequent text is lumped into %2 and placed after the db .

The greedy nature of the macro is indicated to NASM by the use of the + sign after the parameter
count on the %macro line.

If you define a greedy macro, you are effectively telling NASM how it should expand the macro
given any number of parameters from the actual number specified up to infinity; in this case, for
example, NASM now knows what to do when it sees a call to writefile  with 2, 3, 4 or more
parameters. NASM will take this into account when overloading macros, and will not allow you to
define another form of writefile  taking 4 parameters (for example).

Of course, the above macro could have been implemented as a non−greedy macro, in which case
the call to it would have had to look like

          writefile [filehandle], @\{"hello, world",13,10@\}

NASM provides both mechanisms for putting commas in macro parameters, and you choose which
one you prefer for each macro definition.

See section 5.3.1 for a better way to write the above macro.

4.3.4  Default Macro Parameters
NASM also allows you to define a multi−line macro with a range of allowable parameter counts. If
you do this, you can specify defaults for omitted parameters. So, for example:

%macro  die 0−1 "Painful program death has occurred." 

        writefile 2,%1 
        mov     ax,0x4c01 
        int     0x21 

%endmacro

This macro (which makes use of the writefile  macro defined in section 4.3.3) can be called
with an explicit error message, which it will display on the error output stream before exiting, or it
can be called with no parameters, in which case it will use the default error message supplied in the
macro definition.

In general, you supply a minimum and maximum number of parameters for a macro of this type; the
minimum number of parameters are then required in the macro call, and then you provide defaults
for the optional ones. So if a macro definition began with the line

%macro foobar 1−3 eax,[ebx+2]

then it could be called with between one and three parameters, and %1 would always be taken from
the macro call. %2, if not specified by the macro call, would default to eax , and %3 if not specified
would default to [ebx+2] .
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You may omit parameter defaults from the macro definition, in which case the parameter default is
taken to be blank. This can be useful for macros which can take a variable number of parameters,
since the %0 token (see section 4.3.5) allows you to determine how many parameters were really
passed to the macro call.

This defaulting mechanism can be combined with the greedy−parameter mechanism; so the die
macro above could be made more powerful, and more useful, by changing the first line of the
definition to

%macro die 0−1+ "Painful program death has occurred.",13,10

The maximum parameter count can be infinite, denoted by * . In this case, of course, it is impossible
to provide a full set of default parameters. Examples of this usage are shown in section 4.3.6.

4.3.5  %0: Macro Parameter Counter
For a macro which can take a variable number of parameters, the parameter reference %0 will return
a numeric constant giving the number of parameters passed to the macro. This can be used as an
argument to %rep (see section 4.5) in order to iterate through all the parameters of a macro.
Examples are given in section 4.3.6.

4.3.6  %rotate : Rotating Macro Parameters
Unix shell programmers will be familiar with the shift  shell command, which allows the
arguments passed to a shell script (referenced as $1 , $2  and so on) to be moved left by one place,
so that the argument previously referenced as $2  becomes available as $1 , and the argument
previously referenced as $1  is no longer available at all.

NASM provides a similar mechanism, in the form of %rotate . As its name suggests, it differs
from the Unix shift  in that no parameters are lost: parameters rotated off the left end of the
argument list reappear on the right, and vice versa.

%rotate  is invoked with a single numeric argument (which may be an expression). The macro
parameters are rotated to the left by that many places. If the argument to %rotate  is negative, the
macro parameters are rotated to the right.

So a pair of macros to save and restore a set of registers might work as follows:

%macro  multipush 1−* 

  %rep  %0 
        push    %1 
  %rotate 1 
  %endrep 

%endmacro

This macro invokes the PUSH instruction on each of its arguments in turn, from left to right. It
begins by pushing its first argument, %1, then invokes %rotate  to move all the arguments one
place to the left, so that the original second argument is now available as %1. Repeating this
procedure as many times as there were arguments (achieved by supplying %0 as the argument to
%rep) causes each argument in turn to be pushed.

Note also the use of *  as the maximum parameter count, indicating that there is no upper limit on
the number of parameters you may supply to the multipush  macro.

It would be convenient, when using this macro, to have a POP equivalent, which didn’t require the
arguments to be given in reverse order. Ideally, you would write the multipush  macro call, then
cut−and−paste the line to where the pop needed to be done, and change the name of the called
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macro to multipop , and the macro would take care of popping the registers in the opposite order
from the one in which they were pushed.

This can be done by the following definition:

%macro  multipop 1−* 

  %rep %0 
  %rotate −1 
        pop     %1 
  %endrep 

%endmacro

This macro begins by rotating its arguments one place to the right, so that the original last argument
appears as %1. This is then popped, and the arguments are rotated right again, so the second−to−last
argument becomes %1. Thus the arguments are iterated through in reverse order.

4.3.7  Concatenating Macro Parameters
NASM can concatenate macro parameters on to other text surrounding them. This allows you to
declare a family of symbols, for example, in a macro definition. If, for example, you wanted to
generate a table of key codes along with offsets into the table, you could code something like

%macro keytab_entry 2 

    keypos%1    equ     $−keytab 
                db      %2 

%endmacro 

keytab: 
          keytab_entry F1,128+1 
          keytab_entry F2,128+2 
          keytab_entry Return,13

which would expand to

keytab: 
keyposF1        equ     $−keytab 
                db     128+1 
keyposF2        equ     $−keytab 
                db      128+2 
keyposReturn    equ     $−keytab 
                db      13

You can just as easily concatenate text on to the other end of a macro parameter, by writing %1foo .

If you need to append a digit to a macro parameter, for example defining labels foo1  and foo2
when passed the parameter foo , you can’t code %11 because that would be taken as the eleventh
macro parameter. Instead, you must code %{1}1 , which will separate the first 1 (giving the number
of the macro parameter) from the second (literal text to be concatenated to the parameter).

This concatenation can also be applied to other preprocessor in−line objects, such as macro−local
labels (section 4.3.2) and context−local labels (section 4.7.2). In all cases, ambiguities in syntax can
be resolved by enclosing everything after the % sign and before the literal text in braces: so
%{%foo}bar  concatenates the text bar  to the end of the real name of the macro−local label
%%foo. (This is unnecessary, since the form NASM uses for the real names of macro−local labels
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means that the two usages %{%foo}bar  and %%foobar  would both expand to the same thing
anyway; nevertheless, the capability is there.)

4.3.8  Condition Codes as Macro Parameters
NASM can give special treatment to a macro parameter which contains a condition code. For a
start, you can refer to the macro parameter %1 by means of the alternative syntax %+1, which
informs NASM that this macro parameter is supposed to contain a condition code, and will cause
the preprocessor to report an error message if the macro is called with a parameter which is not a
valid condition code.

Far more usefully, though, you can refer to the macro parameter by means of %−1, which NASM
will expand as the inverse condition code. So the retz  macro defined in section 4.3.2 can be
replaced by a general conditional−return macro like this:

%macro  retc 1 

        j%−1    %%skip 
        ret 
  %%skip: 

%endmacro

This macro can now be invoked using calls like retc ne , which will cause the conditional−jump
instruction in the macro expansion to come out as JE, or retc po  which will make the jump a
JPE.

The %+1 macro−parameter reference is quite happy to interpret the arguments CXZ and ECXZ as
valid condition codes; however, %−1 will report an error if passed either of these, because no
inverse condition code exists.

4.3.9  Disabling Listing Expansion
When NASM is generating a listing file from your program, it will generally expand multi−line
macros by means of writing the macro call and then listing each line of the expansion. This allows
you to see which instructions in the macro expansion are generating what code; however, for some
macros this clutters the listing up unnecessarily.

NASM therefore provides the .nolist  qualifier, which you can include in a macro definition to
inhibit the expansion of the macro in the listing file. The .nolist  qualifier comes directly after
the number of parameters, like this:

%macro foo 1.nolist

Or like this:

%macro bar 1−5+.nolist a,b,c,d,e,f,g,h

4.4  Conditional Assembly
Similarly to the C preprocessor, NASM allows sections of a source file to be assembled only if
certain conditions are met. The general syntax of this feature looks like this:

%if<condition> 
    ; some code which only appears if <condition> is met 
%elif<condition2> 
    ; only appears if <condition> is not met but <condition2> is 
%else 
    ; this appears if neither <condition> nor <condition2> was met 
%endif
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The inverse forms %ifn  and %elifn  are also supported.

The %else  clause is optional, as is the %elif  clause. You can have more than one %elif  clause
as well.

4.4.1  %ifdef : Testing Single−Line Macro Existence
Beginning a conditional−assembly block with the line %ifdef MACRO  will assemble the
subsequent code if, and only if, a single−line macro called MACRO is defined. If not, then the
%elif  and %else  blocks (if any) will be processed instead.

For example, when debugging a program, you might want to write code such as

          ; perform some function 
%ifdef DEBUG 
          writefile 2,"Function performed successfully",13,10 
%endif 
          ; go and do something else

Then you could use the command−line option −dDEBUG to create a version of the program which
produced debugging messages, and remove the option to generate the final release version of the
program.

You can test for a macro not being defined by using %ifndef  instead of %ifdef . You can also
test for macro definitions in %elif  blocks by using %elifdef  and %elifndef .

4.4.2  ifmacro : Testing Multi−Line Macro Existence
The %ifmacro  directive operates in the same way as the %ifdef  directive, except that it checks
for the existence of a multi−line macro.

For example, you may be working with a large project and not have control over the macros in a
library. You may want to create a macro with one name if it doesn’t already exist, and another name
if one with that name does exist.

The %ifmacro  is considered true if defining a macro with the given name and number of
arguments would cause a definitions conflict. For example:

%ifmacro MyMacro 1−3 

     %error "MyMacro 1−3" causes a conflict with an existing macro. 

%else 

     %macro MyMacro 1−3 

             ; insert code to define the macro 

     %endmacro 

%endif

This will create the macro "MyMacro 1−3" if no macro already exists which would conflict with it,
and emits a warning if there would be a definition conflict.

You can test for the macro not existing by using the %ifnmacro  instead of %ifmacro .
Additional tests can be performed in %elif  blocks by using %elifmacro  and %elifnmacro .
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4.4.3  %ifctx : Testing the Context Stack
The conditional−assembly construct %ifctx ctxname  will cause the subsequent code to be
assembled if and only if the top context on the preprocessor’s context stack has the name
ctxname . As with %ifdef , the inverse and %elif  forms %ifnctx , %elifctx  and
%elifnctx  are also supported.

For more details of the context stack, see section 4.7. For a sample use of %ifctx , see section
4.7.5.

4.4.4  %if : Testing Arbitrary Numeric Expressions
The conditional−assembly construct %if expr  will cause the subsequent code to be assembled if
and only if the value of the numeric expression expr  is non−zero. An example of the use of this
feature is in deciding when to break out of a %rep preprocessor loop: see section 4.5 for a detailed
example.

The expression given to %if , and its counterpart %elif , is a critical expression (see section 3.8).

%if  extends the normal NASM expression syntax, by providing a set of relational operators which
are not normally available in expressions. The operators =, <, >, <=, >= and <> test equality,
less−than, greater−than, less−or−equal, greater−or−equal and not−equal respectively. The C−like
forms == and !=  are supported as alternative forms of = and <>. In addition, low−priority logical
operators &&, ^^  and ||  are provided, supplying logical AND, logical XOR and logical OR. These
work like the C logical operators (although C has no logical XOR), in that they always return either
0 or 1, and treat any non−zero input as 1 (so that ^^ , for example, returns 1 if exactly one of its
inputs is zero, and 0 otherwise). The relational operators also return 1 for true and 0 for false.

Like most other %if  constructs, %if  has a counterpart %elif , and negative forms %ifn  and
%elifn .

4.4.5  %ifidn  and %ifidni : Testing Exact Text Identity
The construct %ifidn text1,text2  will cause the subsequent code to be assembled if and
only if text1  and text2 , after expanding single−line macros, are identical pieces of text.
Differences in white space are not counted.

%ifidni  is similar to %ifidn , but is case−insensitive.

For example, the following macro pushes a register or number on the stack, and allows you to treat
IP  as a real register:

%macro  pushparam 1 

  %ifidni %1,ip 
        call    %%label 
  %%label: 
  %else 
        push    %1 
  %endif 

%endmacro

Like most other %if  constructs, %ifidn  has a counterpart %elifidn , and negative forms
%ifnidn  and %elifnidn . Similarly, %ifidni  has counterparts %elifidni , %ifnidni  and
%elifnidni .
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4.4.6  %ifid , %ifnum , %ifstr : Testing Token Types
Some macros will want to perform different tasks depending on whether they are passed a number,
a string, or an identifier. For example, a string output macro might want to be able to cope with
being passed either a string constant or a pointer to an existing string.

The conditional assembly construct %ifid , taking one parameter (which may be blank), assembles
the subsequent code if and only if the first token in the parameter exists and is an identifier.
%ifnum  works similarly, but tests for the token being a numeric constant; %ifstr  tests for it
being a string.

For example, the writefile  macro defined in section 4.3.3 can be extended to take advantage of
%ifstr  in the following fashion:

%macro writefile 2−3+ 

  %ifstr %2 
        jmp     %%endstr 
    %if %0 = 3 
      %%str:    db      %2,%3 
    %else 
      %%str:    db      %2 
    %endif 
      %%endstr: mov     dx,%%str 
                mov     cx,%%endstr−%%str 
  %else 
                mov     dx,%2 
                mov     cx,%3 
  %endif 
                mov     bx,%1 
                mov     ah,0x40 
                int     0x21 

%endmacro

Then the writefile  macro can cope with being called in either of the following two ways:

        writefile [file], strpointer, length 
        writefile [file], "hello", 13, 10

In the first, strpointer  is used as the address of an already−declared string, and length  is
used as its length; in the second, a string is given to the macro, which therefore declares it itself and
works out the address and length for itself.

Note the use of %if  inside the %ifstr : this is to detect whether the macro was passed two
arguments (so the string would be a single string constant, and db %2  would be adequate) or more
(in which case, all but the first two would be lumped together into %3, and db %2,%3  would be
required).

  The usual %elifXXX , %ifnXXX  and %elifnXXX  versions exist for each of %ifid , %ifnum
and %ifstr .

4.4.7  %error : Reporting User−Defined Errors
The preprocessor directive %error  will cause NASM to report an error if it occurs in assembled
code. So if other users are going to try to assemble your source files, you can ensure that they define
the right macros by means of code like this:
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%ifdef SOME_MACRO 
    ; do some setup 
%elifdef SOME_OTHER_MACRO 
    ; do some different setup 
%else 
    %error Neither SOME_MACRO nor SOME_OTHER_MACRO was defined. 
%endif

Then any user who fails to understand the way your code is supposed to be assembled will be
quickly warned of their mistake, rather than having to wait until the program crashes on being run
and then not knowing what went wrong.

4.5  Preprocessor Loops: %rep
NASM’s TIMES prefix, though useful, cannot be used to invoke a multi−line macro multiple times,
because it is processed by NASM after macros have already been expanded. Therefore NASM
provides another form of loop, this time at the preprocessor level: %rep.

The directives %rep and %endrep  (%rep takes a numeric argument, which can be an expression;
%endrep  takes no arguments) can be used to enclose a chunk of code, which is then replicated as
many times as specified by the preprocessor:

%assign i 0 
%rep    64 
        inc     word [table+2*i] 
%assign i i+1 
%endrep

This will generate a sequence of 64 INC instructions, incrementing every word of memory from
[table]  to [table+126] .

For more complex termination conditions, or to break out of a repeat loop part way along, you can
use the %exitrep  directive to terminate the loop, like this:

fibonacci: 
%assign i 0 
%assign j 1 
%rep 100 
%if j > 65535 
    %exitrep 
%endif 
        dw j 
%assign k j+i 
%assign i j 
%assign j k 
%endrep 

fib_number equ ($−fibonacci)/2

This produces a list of all the Fibonacci numbers that will fit in 16 bits. Note that a maximum repeat
count must still be given to %rep. This is to prevent the possibility of NASM getting into an
infinite loop in the preprocessor, which (on multitasking or multi−user systems) would typically
cause all the system memory to be gradually used up and other applications to start crashing.

4.6  Including Other Files
Using, once again, a very similar syntax to the C preprocessor, NASM’s preprocessor lets you
include other source files into your code. This is done by the use of the %include  directive:
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%include "macros.mac"

will include the contents of the file macros.mac  into the source file containing the %include
directive.

Include files are searched for in the current directory (the directory you’re in when you run NASM,
as opposed to the location of the NASM executable or the location of the source file), plus any
directories specified on the NASM command line using the −i  option.

The standard C idiom for preventing a file being included more than once is just as applicable in
NASM: if the file macros.mac  has the form

%ifndef MACROS_MAC 
    %define MACROS_MAC 
    ; now define some macros 
%endif

then including the file more than once will not cause errors, because the second time the file is
included nothing will happen because the macro MACROS_MAC will already be defined.

You can force a file to be included even if there is no %include  directive that explicitly includes
it, by using the −p option on the NASM command line (see section 2.1.12).

4.7  The Context Stack
Having labels that are local to a macro definition is sometimes not quite powerful enough:
sometimes you want to be able to share labels between several macro calls. An example might be a
REPEAT ... UNTIL  loop, in which the expansion of the REPEAT macro would need to be able to
refer to a label which the UNTIL  macro had defined. However, for such a macro you would also
want to be able to nest these loops.

NASM provides this level of power by means of a context stack. The preprocessor maintains a stack
of contexts, each of which is characterized by a name. You add a new context to the stack using the
%push directive, and remove one using %pop. You can define labels that are local to a particular
context on the stack.

4.7.1  %push and %pop: Creating and Removing Contexts
The %push directive is used to create a new context and place it on the top of the context stack.
%push requires one argument, which is the name of the context. For example:

%push    foobar

This pushes a new context called foobar  on the stack. You can have several contexts on the stack
with the same name: they can still be distinguished.

The directive %pop, requiring no arguments, removes the top context from the context stack and
destroys it, along with any labels associated with it.

4.7.2  Context−Local Labels
Just as the usage %%foo defines a label which is local to the particular macro call in which it is
used, the usage %$foo  is used to define a label which is local to the context on the top of the
context stack. So the REPEAT and UNTIL  example given above could be implemented by means of:

%macro repeat 0 

    %push   repeat 
    %$begin: 

%endmacro 
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%macro until 1 

        j%−1    %$begin 
    %pop 

%endmacro

and invoked by means of, for example,

        mov     cx,string 
        repeat 
        add     cx,3 
        scasb 
        until   e

which would scan every fourth byte of a string in search of the byte in AL.

If you need to define, or access, labels local to the context below the top one on the stack, you can
use %$$foo , or %$$$foo  for the context below that, and so on.

4.7.3  Context−Local Single−Line Macros
NASM also allows you to define single−line macros which are local to a particular context, in just
the same way:

%define %$localmac 3

will define the single−line macro %$localmac  to be local to the top context on the stack. Of
course, after a subsequent %push, it can then still be accessed by the name %$$localmac .

4.7.4  %repl : Renaming a Context
If you need to change the name of the top context on the stack (in order, for example, to have it
respond differently to %ifctx ), you can execute a %pop followed by a %push; but this will have
the side effect of destroying all context−local labels and macros associated with the context that was
just popped.

NASM provides the directive %repl , which replaces a context with a different name, without
touching the associated macros and labels. So you could replace the destructive code

%pop 
%push   newname

with the non−destructive version %repl newname .

4.7.5  Example Use of the Context Stack: Block IFs
This example makes use of almost all the context−stack features, including the
conditional−assembly construct %ifctx , to implement a block IF statement as a set of macros.

%macro if 1 

    %push if 
    j%−1  %$ifnot 

%endmacro 

%macro else 0 
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  %ifctx if 
        %repl   else 
        jmp     %$ifend 
        %$ifnot: 
  %else 
        %error  "expected ‘if’ before ‘else’" 
  %endif 

%endmacro 

%macro endif 0 

  %ifctx if 
        %$ifnot: 
        %pop 
  %elifctx      else 
        %$ifend: 
        %pop 
  %else 
        %error  "expected ‘if’ or ‘else’ before ‘endif’" 
  %endif 

%endmacro

This code is more robust than the REPEAT and UNTIL  macros given in section 4.7.2, because it
uses conditional assembly to check that the macros are issued in the right order (for example, not
calling endif  before if ) and issues a %error  if they’re not.

In addition, the endif  macro has to be able to cope with the two distinct cases of either directly
following an if , or following an else . It achieves this, again, by using conditional assembly to do
different things depending on whether the context on top of the stack is if  or else .

The else  macro has to preserve the context on the stack, in order to have the %$ifnot  referred to
by the if  macro be the same as the one defined by the endif  macro, but has to change the
context’s name so that endif  will know there was an intervening else . It does this by the use of
%repl .

A sample usage of these macros might look like:

        cmp     ax,bx 

        if ae 
               cmp     bx,cx 

               if ae 
                       mov     ax,cx 
               else 
                       mov     ax,bx 
               endif 

        else 
               cmp     ax,cx 

               if ae 
                       mov     ax,cx 
               endif 
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        endif

The block−IF  macros handle nesting quite happily, by means of pushing another context,
describing the inner if , on top of the one describing the outer if ; thus else  and endif  always
refer to the last unmatched if  or else .

4.8  Standard Macros
NASM defines a set of standard macros, which are already defined when it starts to process any
source file. If you really need a program to be assembled with no pre−defined macros, you can use
the %clear  directive to empty the preprocessor of everything but context−local preprocessor
variables and single−line macros.

Most user−level assembler directives (see chapter 5) are implemented as macros which invoke
primitive directives; these are described in chapter 5. The rest of the standard macro set is described
here.

4.8.1  __NASM_MAJOR__, __NASM_MINOR__, __NASM_SUBMINOR__ and
___NASM_PATCHLEVEL__: NASM Version
The single−line macros __NASM_MAJOR__, __NASM_MINOR__, __NASM_SUBMINOR__ and
___NASM_PATCHLEVEL__ expand to the major, minor, subminor and patch level parts of the
version number of NASM being used. So, under NASM 0.98.32p1 for example,
__NASM_MAJOR__ would be defined to be 0, __NASM_MINOR__ would be defined as 98,
__NASM_SUBMINOR__ would be defined to 32, and ___NASM_PATCHLEVEL__ would be
defined as 1.

4.8.2  __NASM_VERSION_ID__: NASM Version ID
The single−line macro __NASM_VERSION_ID__ expands to a dword integer representing the full
version number of the version of nasm being used. The value is the equivalent to
__NASM_MAJOR__, __NASM_MINOR__, __NASM_SUBMINOR__ and
___NASM_PATCHLEVEL__ concatenated to produce a single doubleword. Hence, for 0.98.32p1,
the returned number would be equivalent to:

        dd      0x00622001

or

        db      1,32,98,0

Note that the above lines are generate exactly the same code, the second line is used just to give an
indication of the order that the separate values will be present in memory.

4.8.3  __NASM_VER__: NASM Version string
The single−line macro __NASM_VER__ expands to a string which defines the version number of
nasm being used. So, under NASM 0.98.32 for example,

        db      __NASM_VER__

would expand to

        db      "0.98.32"

4.8.4  __FILE__  and __LINE__ : File Name and Line Number
Like the C preprocessor, NASM allows the user to find out the file name and line number
containing the current instruction. The macro __FILE__  expands to a string constant giving the
name of the current input file (which may change through the course of assembly if %include
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directives are used), and __LINE__  expands to a numeric constant giving the current line number
in the input file.

These macros could be used, for example, to communicate debugging information to a macro, since
invoking __LINE__  inside a macro definition (either single−line or multi−line) will return the line
number of the macro call, rather than definition. So to determine where in a piece of code a crash is
occurring, for example, one could write a routine stillhere , which is passed a line number in
EAX and outputs something like ‘line 155: still here’. You could then write a macro

%macro  notdeadyet 0 

        push    eax 
        mov     eax,__LINE__ 
        call    stillhere 
        pop     eax 

%endmacro

and then pepper your code with calls to notdeadyet  until you find the crash point.

4.8.5  __BITS__ : Current BITS Mode
The __BITS__  standard macro is updated every time that the BITS mode is set using the
BITS XX  or [BITS XX]  directive, where XX is a valid mode number of 16, 32 or 64.
__BITS__  receives the specified mode number and makes it globally available. This can be very
useful for those who utilize mode−dependent macros.

4.8.6  STRUC and ENDSTRUC: Declaring Structure Data Types
The core of NASM contains no intrinsic means of defining data structures; instead, the preprocessor
is sufficiently powerful that data structures can be implemented as a set of macros. The macros
STRUC and ENDSTRUC are used to define a structure data type.

STRUC takes one parameter, which is the name of the data type. This name is defined as a symbol
with the value zero, and also has the suffix _size  appended to it and is then defined as an EQU
giving the size of the structure. Once STRUC has been issued, you are defining the structure, and
should define fields using the RESB family of pseudo−instructions, and then invoke ENDSTRUC to
finish the definition.

For example, to define a structure called mytype  containing a longword, a word, a byte and a
string of bytes, you might code

struc   mytype 

  mt_long:      resd    1 
  mt_word:      resw    1 
  mt_byte:      resb    1 
  mt_str:       resb    32 

endstruc

The above code defines six symbols: mt_long  as 0 (the offset from the beginning of a mytype
structure to the longword field), mt_word  as 4, mt_byte  as 6, mt_str  as 7, mytype_size  as
39, and mytype  itself as zero.

The reason why the structure type name is defined at zero is a side effect of allowing structures to
work with the local label mechanism: if your structure members tend to have the same names in
more than one structure, you can define the above structure like this:
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struc mytype 

  .long:        resd    1 
  .word:        resw    1 
  .byte:        resb    1 
  .str:         resb    32 

endstruc

This defines the offsets to the structure fields as mytype.long , mytype.word , mytype.byte
and mytype.str .

NASM, since it has no intrinsic structure support, does not support any form of period notation to
refer to the elements of a structure once you have one (except the above local−label notation), so
code such as mov ax,[mystruc.mt_word]  is not valid. mt_word  is a constant just like any
other constant, so the correct syntax is mov ax,[mystruc+mt_word]  or
mov ax,[mystruc+mytype.word] .

4.8.7  ISTRUC, AT and IEND: Declaring Instances of Structures
Having defined a structure type, the next thing you typically want to do is to declare instances of
that structure in your data segment. NASM provides an easy way to do this in the ISTRUC
mechanism. To declare a structure of type mytype  in a program, you code something like this:

mystruc: 
    istruc mytype 

        at mt_long, dd      123456 
        at mt_word, dw      1024 
        at mt_byte, db      ’x’ 
        at mt_str,  db      ’hello, world’, 13, 10, 0 

    iend

The function of the AT macro is to make use of the TIMES prefix to advance the assembly position
to the correct point for the specified structure field, and then to declare the specified data. Therefore
the structure fields must be declared in the same order as they were specified in the structure
definition.

If the data to go in a structure field requires more than one source line to specify, the remaining
source lines can easily come after the AT line. For example:

        at mt_str,  db      123,134,145,156,167,178,189 
                    db      190,100,0

Depending on personal taste, you can also omit the code part of the AT line completely, and start the
structure field on the next line:

        at mt_str 
                db      ’hello, world’ 
                db      13,10,0

4.8.8  ALIGN and ALIGNB: Data Alignment
The ALIGN and ALIGNB macros provides a convenient way to align code or data on a word,
longword, paragraph or other boundary. (Some assemblers call this directive EVEN.) The syntax of
the ALIGN and ALIGNB macros is
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        align   4               ; align on 4−byte boundary 
        align   16              ; align on 16−byte boundary 
        align   8,db 0          ; pad with 0s rather than NOPs 
        align   4,resb 1        ; align to 4 in the BSS 
        alignb  4               ; equivalent to previous line

Both macros require their first argument to be a power of two; they both compute the number of
additional bytes required to bring the length of the current section up to a multiple of that power of
two, and then apply the TIMES prefix to their second argument to perform the alignment.

If the second argument is not specified, the default for ALIGN is NOP, and the default for ALIGNB
is RESB 1. So if the second argument is specified, the two macros are equivalent. Normally, you
can just use ALIGN in code and data sections and ALIGNB in BSS sections, and never need the
second argument except for special purposes.

ALIGN and ALIGNB, being simple macros, perform no error checking: they cannot warn you if
their first argument fails to be a power of two, or if their second argument generates more than one
byte of code. In each of these cases they will silently do the wrong thing.

ALIGNB (or ALIGN with a second argument of RESB 1) can be used within structure definitions:

struc mytype2 

  mt_byte: 
        resb 1 
        alignb 2 
  mt_word: 
        resw 1 
        alignb 4 
  mt_long: 
        resd 1 
  mt_str: 
        resb 32 

endstruc

This will ensure that the structure members are sensibly aligned relative to the base of the structure.

A final caveat: ALIGN and ALIGNB work relative to the beginning of the section, not the beginning
of the address space in the final executable. Aligning to a 16−byte boundary when the section
you’re in is only guaranteed to be aligned to a 4−byte boundary, for example, is a waste of effort.
Again, NASM does not check that the section’s alignment characteristics are sensible for the use of
ALIGN or ALIGNB.

4.9  Stack Relative Preprocessor Directives
The following preprocessor directives provide a way to use labels to refer to local variables
allocated on the stack.

• %arg (see section 4.9.1)

• %stacksize  (see section 4.9.2)

• %local  (see section 4.9.3)

4.9.1  %arg Directive
The %arg directive is used to simplify the handling of parameters passed on the stack. Stack based
parameter passing is used by many high level languages, including C, C++ and Pascal.
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While NASM has macros which attempt to duplicate this functionality (see section 7.4.5), the
syntax is not particularly convenient to use. and is not TASM compatible. Here is an example which
shows the use of %arg without any external macros:

some_function: 

    %push     mycontext        ; save the current context 
    %stacksize large           ; tell NASM to use bp 
    %arg      i:word, j_ptr:word 

        mov     ax,[i] 
        mov     bx,[j_ptr] 
        add     ax,[bx] 
        ret 

    %pop                       ; restore original context

This is similar to the procedure defined in section 7.4.5 and adds the value in i to the value pointed
to by j_ptr and returns the sum in the ax register. See section 4.7.1 for an explanation of push  and
pop  and the use of context stacks.

4.9.2  %stacksize  Directive
The %stacksize  directive is used in conjunction with the %arg (see section 4.9.1) and the
%local  (see section 4.9.3) directives. It tells NASM the default size to use for subsequent %arg
and %local  directives. The %stacksize  directive takes one required argument which is one of
flat , flat64 , large  or small .

%stacksize flat

This form causes NASM to use stack−based parameter addressing relative to ebp  and it assumes
that a near form of call was used to get to this label (i.e. that eip  is on the stack).

%stacksize flat64

This form causes NASM to use stack−based parameter addressing relative to rbp  and it assumes
that a near form of call was used to get to this label (i.e. that rip  is on the stack).

%stacksize large

This form uses bp  to do stack−based parameter addressing and assumes that a far form of call was
used to get to this address (i.e. that ip  and cs  are on the stack).

%stacksize small

This form also uses bp  to address stack parameters, but it is different from large  because it also
assumes that the old value of bp is pushed onto the stack (i.e. it expects an ENTER instruction). In
other words, it expects that bp , ip  and cs  are on the top of the stack, underneath any local space
which may have been allocated by ENTER. This form is probably most useful when used in
combination with the %local  directive (see section 4.9.3).

4.9.3  %local  Directive
The %local  directive is used to simplify the use of local temporary stack variables allocated in a
stack frame. Automatic local variables in C are an example of this kind of variable. The %local
directive is most useful when used with the %stacksize  (see section 4.9.2 and is also compatible
with the %arg directive (see section 4.9.1). It allows simplified reference to variables on the stack
which have been allocated typically by using the ENTER instruction. An example of its use is the
following:

53



silly_swap: 

    %push mycontext             ; save the current context 
    %stacksize small            ; tell NASM to use bp 
    %assign %$localsize 0       ; see text for explanation 
    %local old_ax:word, old_dx:word 

        enter   %$localsize,0   ; see text for explanation 
        mov     [old_ax],ax     ; swap ax & bx 
        mov     [old_dx],dx     ; and swap dx & cx 
        mov     ax,bx 
        mov     dx,cx 
        mov     bx,[old_ax] 
        mov     cx,[old_dx] 
        leave                   ; restore old bp 
        ret                     ; 

    %pop                        ; restore original context

The %$localsize  variable is used internally by the %local  directive and must be defined
within the current context before the %local  directive may be used. Failure to do so will result in
one expression syntax error for each %local  variable declared. It then may be used in the
construction of an appropriately sized ENTER instruction as shown in the example.

4.10  Other Preprocessor Directives
NASM also has preprocessor directives which allow access to information from external sources.
Currently they include:

The following preprocessor directive is supported to allow NASM to correctly handle output of the
cpp C language preprocessor.

• %line  enables NAsM to correctly handle the output of the cpp C language preprocessor (see
section 4.10.1).

• %! enables NASM to read in the value of an environment variable, which can then be used in
your program (see section 4.10.2).

4.10.1  %line  Directive
The %line  directive is used to notify NASM that the input line corresponds to a specific line
number in another file. Typically this other file would be an original source file, with the current
NASM input being the output of a pre−processor. The %line  directive allows NASM to output
messages which indicate the line number of the original source file, instead of the file that is being
read by NASM.

This preprocessor directive is not generally of use to programmers, by may be of interest to
preprocessor authors. The usage of the %line  preprocessor directive is as follows:

%line nnn[+mmm] [filename]

In this directive, nnn  identifies the line of the original source file which this line corresponds to.
mmm is an optional parameter which specifies a line increment value; each line of the input file read
in is considered to correspond to mmm lines of the original source file. Finally, filename  is an
optional parameter which specifies the file name of the original source file.

After reading a %line  preprocessor directive, NASM will report all file name and line numbers
relative to the values specified therein.
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4.10.2  %!<env> : Read an environment variable.
The %!<env>  directive makes it possible to read the value of an environment variable at assembly
time. This could, for example, be used to store the contents of an environment variable into a string,
which could be used at some other point in your code.

For example, suppose that you have an environment variable FOO, and you want the contents of
FOO to be embedded in your program. You could do that as follows:

%define FOO    %!FOO 
%define quote   ’ 

tmpstr  db      quote FOO quote

At the time of writing, this will generate an "unterminated string" warning at the time of defining
"quote", and it will add a space before and after the string that is read in. I was unable to find a
simple workaround (although a workaround can be created using a multi−line macro), so I believe
that you will need to either learn how to create more complex macros, or allow for the extra spaces
if you make use of this feature in that way.
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Chapter 5: Assembler Directives

NASM, though it attempts to avoid the bureaucracy of assemblers like MASM and TASM, is
nevertheless forced to support a few directives. These are described in this chapter.

NASM’s directives come in two types: user−level directives and primitive directives. Typically,
each directive has a user−level form and a primitive form. In almost all cases, we recommend that
users use the user−level forms of the directives, which are implemented as macros which call the
primitive forms.

Primitive directives are enclosed in square brackets; user−level directives are not.

In addition to the universal directives described in this chapter, each object file format can
optionally supply extra directives in order to control particular features of that file format. These
format−specific directives are documented along with the formats that implement them, in chapter 6.

5.1  BITS : Specifying Target Processor Mode
The BITS  directive specifies whether NASM should generate code designed to run on a processor
operating in 16−bit mode, 32−bit mode or 64−bit mode. The syntax is BITS XX , where XX is 16,
32 or 64.

In most cases, you should not need to use BITS  explicitly. The aout , coff , elf , macho, win32
and win64  object formats, which are designed for use in 32−bit or 64−bit operating systems, all
cause NASM to select 32−bit or 64−bit mode, respectively, by default. The obj  object format
allows you to specify each segment you define as either USE16 or USE32, and NASM will set its
operating mode accordingly, so the use of the BITS  directive is once again unnecessary.

The most likely reason for using the BITS  directive is to write 32−bit or 64−bit code in a flat binary
file; this is because the bin  output format defaults to 16−bit mode in anticipation of it being used
most frequently to write DOS .COM programs, DOS .SYS  device drivers and boot loader software.

You do not need to specify BITS 32  merely in order to use 32−bit instructions in a 16−bit DOS
program; if you do, the assembler will generate incorrect code because it will be writing code
targeted at a 32−bit platform, to be run on a 16−bit one.

When NASM is in BITS 16  mode, instructions which use 32−bit data are prefixed with an 0x66
byte, and those referring to 32−bit addresses have an 0x67 prefix. In BITS 32  mode, the reverse is
true: 32−bit instructions require no prefixes, whereas instructions using 16−bit data need an 0x66
and those working on 16−bit addresses need an 0x67.

When NASM is in BITS 64  mode, most instructions operate the same as they do for BITS 32
mode. However, there are 8 more general and SSE registers, and 16−bit addressing is no longer
supported.

The default address size is 64 bits; 32−bit addressing can be selected with the 0x67 prefix. The
default operand size is still 32 bits, however, and the 0x66 prefix selects 16−bit operand size. The
REX prefix is used both to select 64−bit operand size, and to access the new registers. NASM
automatically inserts REX prefixes when necessary.

When the REX prefix is used, the processor does not know how to address the AH, BH, CH or DH
(high 8−bit legacy) registers. Instead, it is possible to access the the low 8−bits of the SP, BP SI and
DI registers as SPL, BPL, SIL and DIL, respectively; but only when the REX prefix is used.

56



The BITS  directive has an exactly equivalent primitive form, [BITS 16] , [BITS 32]  and
[BITS 64] . The user−level form is a macro which has no function other than to call the primitive
form.

Note that the space is neccessary, e.g. BITS32  will not work!

5.1.1  USE16 & USE32: Aliases for BITS
The ‘USE16’ and ‘USE32’ directives can be used in place of ‘BITS 16 ’ and ‘BITS 32 ’, for
compatibility with other assemblers.

5.2  DEFAULT: Change the assembler defaults
The DEFAULT directive changes the assembler defaults. Normally, NASM defaults to a mode
where the programmer is expected to explicitly specify most features directly. However, this is
occationally obnoxious, as the explicit form is pretty much the only one one wishes to use.

Currently, the only DEFAULT that is settable is whether or not registerless instructions in 64−bit
mode are RIP–relative or not. By default, they are absolute unless overridden with the REL
specifier (see section 3.3). However, if DEFAULT REL is specified, REL is default, unless
overridden with the ABS specifier, except when used with an FS or GS segment override.

The special handling of FS and GS overrides are due to the fact that these registers are generally
used as thread pointers or other special functions in 64−bit mode, and generating RIP–relative
addresses would be extremely confusing.

DEFAULT REL is disabled with DEFAULT ABS.

5.3  SECTION or SEGMENT: Changing and Defining Sections
The SECTION directive (SEGMENT is an exactly equivalent synonym) changes which section of
the output file the code you write will be assembled into. In some object file formats, the number
and names of sections are fixed; in others, the user may make up as many as they wish. Hence
SECTION may sometimes give an error message, or may define a new section, if you try to switch
to a section that does not (yet) exist.

The Unix object formats, and the bin  object format (but see section 6.1.3, all support the
standardized section names .text , .data  and .bss  for the code, data and uninitialized−data
sections. The obj  format, by contrast, does not recognize these section names as being special, and
indeed will strip off the leading period of any section name that has one.

5.3.1  The __SECT__ Macro
The SECTION directive is unusual in that its user−level form functions differently from its
primitive form. The primitive form, [SECTION xyz] , simply switches the current target section
to the one given. The user−level form, SECTION xyz , however, first defines the single−line
macro __SECT__ to be the primitive [SECTION]  directive which it is about to issue, and then
issues it. So the user−level directive

        SECTION .text

expands to the two lines

%define __SECT__        [SECTION .text] 
        [SECTION .text]

Users may find it useful to make use of this in their own macros. For example, the writefile
macro defined in section 4.3.3 can be usefully rewritten in the following more sophisticated form:

%macro  writefile 2+ 
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        [section .data] 

  %%str:        db      %2 
  %%endstr: 

        __SECT__ 

        mov     dx,%%str 
        mov     cx,%%endstr−%%str 
        mov     bx,%1 
        mov     ah,0x40 
        int     0x21 

%endmacro

This form of the macro, once passed a string to output, first switches temporarily to the data section
of the file, using the primitive form of the SECTION directive so as not to modify __SECT__. It
then declares its string in the data section, and then invokes __SECT__ to switch back to
whichever section the user was previously working in. It thus avoids the need, in the previous
version of the macro, to include a JMP instruction to jump over the data, and also does not fail if, in
a complicated OBJ format module, the user could potentially be assembling the code in any of
several separate code sections.

5.4  ABSOLUTE: Defining Absolute Labels
The ABSOLUTE directive can be thought of as an alternative form of SECTION: it causes the
subsequent code to be directed at no physical section, but at the hypothetical section starting at the
given absolute address. The only instructions you can use in this mode are the RESB family.

ABSOLUTE is used as follows:

absolute 0x1A 

    kbuf_chr    resw    1 
    kbuf_free   resw    1 
    kbuf        resw    16

This example describes a section of the PC BIOS data area, at segment address 0x40: the above
code defines kbuf_chr  to be 0x1A, kbuf_free  to be 0x1C, and kbuf  to be 0x1E.

The user−level form of ABSOLUTE, like that of SECTION, redefines the __SECT__ macro when
it is invoked.

STRUC and ENDSTRUC are defined as macros which use ABSOLUTE (and also __SECT__).

ABSOLUTE doesn’t have to take an absolute constant as an argument: it can take an expression
(actually, a critical expression: see section 3.8) and it can be a value in a segment. For example, a
TSR can re−use its setup code as run−time BSS like this:

        org     100h               ; it’s a .COM program 

        jmp     setup              ; setup code comes last 

        ; the resident part of the TSR goes here 
setup: 
        ; now write the code that installs the TSR here 

absolute setup 
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runtimevar1     resw    1 
runtimevar2     resd    20 

tsr_end:

This defines some variables ‘on top of’ the setup code, so that after the setup has finished running,
the space it took up can be re−used as data storage for the running TSR. The symbol ‘tsr_end’ can
be used to calculate the total size of the part of the TSR that needs to be made resident.

5.5  EXTERN: Importing Symbols from Other Modules
EXTERN is similar to the MASM directive EXTRN and the C keyword extern : it is used to
declare a symbol which is not defined anywhere in the module being assembled, but is assumed to
be defined in some other module and needs to be referred to by this one. Not every object−file
format can support external variables: the bin  format cannot.

The EXTERN directive takes as many arguments as you like. Each argument is the name of a
symbol:

extern  _printf 
extern  _sscanf,_fscanf

Some object−file formats provide extra features to the EXTERN directive. In all cases, the extra
features are used by suffixing a colon to the symbol name followed by object−format specific text.
For example, the obj  format allows you to declare that the default segment base of an external
should be the group dgroup  by means of the directive

extern  _variable:wrt dgroup

The primitive form of EXTERN differs from the user−level form only in that it can take only one
argument at a time: the support for multiple arguments is implemented at the preprocessor level.

You can declare the same variable as EXTERN more than once: NASM will quietly ignore the
second and later redeclarations. You can’t declare a variable as EXTERN as well as something else,
though.

5.6  GLOBAL: Exporting Symbols to Other Modules
GLOBAL is the other end of EXTERN: if one module declares a symbol as EXTERN and refers to it,
then in order to prevent linker errors, some other module must actually define the symbol and
declare it as GLOBAL. Some assemblers use the name PUBLIC for this purpose.

The GLOBAL directive applying to a symbol must appear before the definition of the symbol.

GLOBAL uses the same syntax as EXTERN, except that it must refer to symbols which are defined
in the same module as the GLOBAL directive. For example:

global _main 
_main: 
        ; some code

GLOBAL, like EXTERN, allows object formats to define private extensions by means of a colon. The
elf  object format, for example, lets you specify whether global data items are functions or data:

global  hashlookup:function, hashtable:data

Like EXTERN, the primitive form of GLOBAL differs from the user−level form only in that it can
take only one argument at a time.
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5.7  COMMON: Defining Common Data Areas
The COMMON directive is used to declare common variables. A common variable is much like a
global variable declared in the uninitialized data section, so that

common  intvar  4

is similar in function to

global  intvar 
section .bss 

intvar  resd    1

The difference is that if more than one module defines the same common variable, then at link time
those variables will be merged, and references to intvar  in all modules will point at the same
piece of memory.

Like GLOBAL and EXTERN, COMMON supports object−format specific extensions. For example, the
obj  format allows common variables to be NEAR or FAR, and the elf  format allows you to
specify the alignment requirements of a common variable:

common  commvar  4:near  ; works in OBJ 
common  intarray 100:4   ; works in ELF: 4 byte aligned

Once again, like EXTERN and GLOBAL, the primitive form of COMMON differs from the user−level
form only in that it can take only one argument at a time.

5.8  CPU: Defining CPU Dependencies
The CPU directive restricts assembly to those instructions which are available on the specified CPU.

Options are:

• CPU 8086  Assemble only 8086 instruction set

• CPU 186  Assemble instructions up to the 80186 instruction set

• CPU 286  Assemble instructions up to the 286 instruction set

• CPU 386  Assemble instructions up to the 386 instruction set

• CPU 486  486 instruction set

• CPU 586  Pentium instruction set

• CPU PENTIUM Same as 586

• CPU 686  P6 instruction set

• CPU PPRO Same as 686

• CPU P2 Same as 686

• CPU P3 Pentium III (Katmai) instruction sets

• CPU KATMAI Same as P3

• CPU P4 Pentium 4 (Willamette) instruction set

• CPU WILLAMETTE Same as P4

• CPU PRESCOTT Prescott instruction set

• CPU X64 x86−64 (x64/AMD64/Intel 64) instruction set

60



• CPU IA64  IA64 CPU (in x86 mode) instruction set

All options are case insensitive. All instructions will be selected only if they apply to the selected
CPU or lower. By default, all instructions are available.

5.9  FLOAT: Handling of floating−point constants
By default, floating−point constants are rounded to nearest, and IEEE denormals are supported. The
following options can be set to alter this behaviour:

• FLOAT DAZ Flush denormals to zero

• FLOAT NODAZ Do not flush denormals to zero (default)

• FLOAT NEAR Round to nearest (default)

• FLOAT UP Round up (toward +Infinity)

• FLOAT DOWN Round down (toward –Infinity)

• FLOAT ZERO Round toward zero

• FLOAT DEFAULT Restore default settings

The standard macros __FLOAT_DAZ__, __FLOAT_ROUND__, and __FLOAT__ contain the
current state, as long as the programmer has avoided the use of the brackeded primitive form,
([FLOAT] ).

__FLOAT__ contains the full set of floating−point settings; this value can be saved away and
invoked later to restore the setting.
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Chapter 6: Output Formats

NASM is a portable assembler, designed to be able to compile on any ANSI C−supporting platform
and produce output to run on a variety of Intel x86 operating systems. For this reason, it has a large
number of available output formats, selected using the −f  option on the NASM command line.
Each of these formats, along with its extensions to the base NASM syntax, is detailed in this chapter.

As stated in section 2.1.1, NASM chooses a default name for your output file based on the input file
name and the chosen output format. This will be generated by removing the extension (.asm , .s ,
or whatever you like to use) from the input file name, and substituting an extension defined by the
output format. The extensions are given with each format below.

6.1  bin : Flat−Form Binary Output
The bin  format does not produce object files: it generates nothing in the output file except the code
you wrote. Such ‘pure binary’ files are used by MS−DOS: .COM executables and .SYS  device
drivers are pure binary files. Pure binary output is also useful for operating system and boot loader
development.

The bin  format supports multiple section names. For details of how nasm handles sections in the
bin  format, see section 6.1.3.

Using the bin  format puts NASM by default into 16−bit mode (see section 5.1). In order to use
bin  to write 32−bit or 64−bit code, such as an OS kernel, you need to explicitly issue the
BITS 32  or BITS 64  directive.

bin  has no default output file name extension: instead, it leaves your file name as it is once the
original extension has been removed. Thus, the default is for NASM to assemble binprog.asm
into a binary file called binprog .

6.1.1  ORG: Binary File Program Origin
The bin  format provides an additional directive to the list given in chapter 5: ORG. The function of
the ORG directive is to specify the origin address which NASM will assume the program begins at
when it is loaded into memory.

For example, the following code will generate the longword 0x00000104 :

        org     0x100 
        dd      label 
label:

Unlike the ORG directive provided by MASM−compatible assemblers, which allows you to jump
around in the object file and overwrite code you have already generated, NASM’s ORG does exactly
what the directive says: origin. Its sole function is to specify one offset which is added to all internal
address references within the section; it does not permit any of the trickery that MASM’s version
does. See section 11.1.3 for further comments.

6.1.2  bin  Extensions to the SECTION Directive
The bin  output format extends the SECTION (or SEGMENT) directive to allow you to specify the
alignment requirements of segments. This is done by appending the ALIGN qualifier to the end of
the section−definition line. For example,

section .data   align=16
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switches to the section .data  and also specifies that it must be aligned on a 16−byte boundary.

The parameter to ALIGN specifies how many low bits of the section start address must be forced to
zero. The alignment value given may be any power of two.

6.1.3  Multisection  support for the BIN format.
The bin  format allows the use of multiple sections, of arbitrary names, besides the "known"
.text , .data , and .bss  names.

• Sections may be designated progbits  or nobits . Default is progbits  (except .bss ,
which defaults to nobits , of course).

• Sections can be aligned at a specified boundary following the previous section with align= , or
at an arbitrary byte−granular position with start= .

• Sections can be given a virtual start address, which will be used for the calculation of all memory
references within that section with vstart= .

• Sections can be ordered using follows=<section>  or vfollows=<section>  as an
alternative to specifying an explicit start address.

• Arguments to org , start , vstart , and align=  are critical expressions. See section 3.8. E.g.
align=(1 << ALIGN_SHIFT)  – ALIGN_SHIFT  must be defined before it is used here.

• Any code which comes before an explicit SECTION directive is directed by default into the
.text  section.

• If an ORG statement is not given, ORG 0 is used by default.

• The .bss  section will be placed after the last progbits  section, unless start= , vstart= ,
follows= , or vfollows=  has been specified.

• All sections are aligned on dword boundaries, unless a different alignment has been specified.

• Sections may not overlap.

• Nasm creates the section.<secname>.start  for each section, which may be used in your
code.

6.1.4  Map files
Map files can be generated in −f bin  format by means of the [map]  option. Map types of all
(default), brief , sections , segments , or symbols  may be specified. Output may be
directed to stdout  (default), stderr , or a specified file. E.g.
[map symbols myfile.map] . No "user form" exists, the square brackets must be used.

6.2  obj : Microsoft OMF Object Files
The obj  file format (NASM calls it obj  rather than omf  for historical reasons) is the one produced
by MASM and TASM, which is typically fed to 16−bit DOS linkers to produce .EXE  files. It is
also the format used by OS/2.

obj  provides a default output file−name extension of .obj .

obj  is not exclusively a 16−bit format, though: NASM has full support for the 32−bit extensions to
the format. In particular, 32−bit obj  format files are used by Borland’s Win32 compilers, instead of
using Microsoft’s newer win32  object file format.

The obj  format does not define any special segment names: you can call your segments anything
you like. Typical names for segments in obj  format files are CODE, DATA and BSS.
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If your source file contains code before specifying an explicit SEGMENT directive, then NASM will
invent its own segment called __NASMDEFSEG for you.

When you define a segment in an obj  file, NASM defines the segment name as a symbol as well,
so that you can access the segment address of the segment. So, for example:

segment data 

dvar:   dw      1234 

segment code 

function: 
        mov     ax,data         ; get segment address of data 
        mov     ds,ax           ; and move it into DS 
        inc     word [dvar]     ; now this reference will work 
        ret

The obj  format also enables the use of the SEG and WRT operators, so that you can write code
which does things like

extern  foo 

      mov   ax,seg foo            ; get preferred segment of foo 
      mov   ds,ax 
      mov   ax,data               ; a different segment 
      mov   es,ax 
      mov   ax,[ds:foo]           ; this accesses ‘foo’ 
      mov   [es:foo wrt data],bx  ; so does this

6.2.1  obj  Extensions to the SEGMENT Directive
The obj  output format extends the SEGMENT (or SECTION) directive to allow you to specify
various properties of the segment you are defining. This is done by appending extra qualifiers to the
end of the segment−definition line. For example,

segment code private align=16

defines the segment code , but also declares it to be a private segment, and requires that the portion
of it described in this code module must be aligned on a 16−byte boundary.

The available qualifiers are:

• PRIVATE, PUBLIC, COMMON and STACK specify the combination characteristics of the
segment. PRIVATE segments do not get combined with any others by the linker; PUBLIC and
STACK segments get concatenated together at link time; and COMMON segments all get overlaid
on top of each other rather than stuck end−to−end.

• ALIGN is used, as shown above, to specify how many low bits of the segment start address must
be forced to zero. The alignment value given may be any power of two from 1 to 4096; in reality,
the only values supported are 1, 2, 4, 16, 256 and 4096, so if 8 is specified it will be rounded up
to 16, and 32, 64 and 128 will all be rounded up to 256, and so on. Note that alignment to
4096−byte boundaries is a PharLap extension to the format and may not be supported by all
linkers.

• CLASS can be used to specify the segment class; this feature indicates to the linker that segments
of the same class should be placed near each other in the output file. The class name can be any
word, e.g. CLASS=CODE.
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• OVERLAY, like CLASS, is specified with an arbitrary word as an argument, and provides overlay
information to an overlay−capable linker.

• Segments can be declared as USE16 or USE32, which has the effect of recording the choice in
the object file and also ensuring that NASM’s default assembly mode when assembling in that
segment is 16−bit or 32−bit respectively.

• When writing OS/2 object files, you should declare 32−bit segments as FLAT, which causes the
default segment base for anything in the segment to be the special group FLAT, and also defines
the group if it is not already defined.

• The obj  file format also allows segments to be declared as having a pre−defined absolute
segment address, although no linkers are currently known to make sensible use of this feature;
nevertheless, NASM allows you to declare a segment such as
SEGMENT SCREEN ABSOLUTE=0xB800 if you need to. The ABSOLUTE and ALIGN
keywords are mutually exclusive.

NASM’s default segment attributes are PUBLIC, ALIGN=1, no class, no overlay, and USE16.

6.2.2  GROUP: Defining Groups of Segments
The obj  format also allows segments to be grouped, so that a single segment register can be used
to refer to all the segments in a group. NASM therefore supplies the GROUP directive, whereby you
can code

segment data 

        ; some data 

segment bss 

        ; some uninitialized data 

group dgroup data bss

which will define a group called dgroup  to contain the segments data  and bss . Like SEGMENT,
GROUP causes the group name to be defined as a symbol, so that you can refer to a variable var  in
the data  segment as var wrt data  or as var wrt dgroup , depending on which segment
value is currently in your segment register.

If you just refer to var , however, and var  is declared in a segment which is part of a group, then
NASM will default to giving you the offset of var  from the beginning of the group, not the
segment. Therefore SEG var , also, will return the group base rather than the segment base.

NASM will allow a segment to be part of more than one group, but will generate a warning if you
do this. Variables declared in a segment which is part of more than one group will default to being
relative to the first group that was defined to contain the segment.

A group does not have to contain any segments; you can still make WRT references to a group which
does not contain the variable you are referring to. OS/2, for example, defines the special group
FLAT with no segments in it.

6.2.3  UPPERCASE: Disabling Case Sensitivity in Output
Although NASM itself is case sensitive, some OMF linkers are not; therefore it can be useful for
NASM to output single−case object files. The UPPERCASE format−specific directive causes all
segment, group and symbol names that are written to the object file to be forced to upper case just
before being written. Within a source file, NASM is still case−sensitive; but the object file can be
written entirely in upper case if desired.
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UPPERCASE is used alone on a line; it requires no parameters.

6.2.4  IMPORT: Importing DLL Symbols
The IMPORT format−specific directive defines a symbol to be imported from a DLL, for use if you
are writing a DLL’s import library in NASM. You still need to declare the symbol as EXTERN as
well as using the IMPORT directive.

The IMPORT directive takes two required parameters, separated by white space, which are
(respectively) the name of the symbol you wish to import and the name of the library you wish to
import it from. For example:

    import  WSAStartup wsock32.dll

A third optional parameter gives the name by which the symbol is known in the library you are
importing it from, in case this is not the same as the name you wish the symbol to be known by to
your code once you have imported it. For example:

    import  asyncsel wsock32.dll WSAAsyncSelect

6.2.5  EXPORT: Exporting DLL Symbols
The EXPORT format−specific directive defines a global symbol to be exported as a DLL symbol,
for use if you are writing a DLL in NASM. You still need to declare the symbol as GLOBAL as well
as using the EXPORT directive.

EXPORT takes one required parameter, which is the name of the symbol you wish to export, as it
was defined in your source file. An optional second parameter (separated by white space from the
first) gives the external name of the symbol: the name by which you wish the symbol to be known
to programs using the DLL. If this name is the same as the internal name, you may leave the second
parameter off.

Further parameters can be given to define attributes of the exported symbol. These parameters, like
the second, are separated by white space. If further parameters are given, the external name must
also be specified, even if it is the same as the internal name. The available attributes are:

• resident  indicates that the exported name is to be kept resident by the system loader. This is
an optimisation for frequently used symbols imported by name.

• nodata  indicates that the exported symbol is a function which does not make use of any
initialized data.

• parm=NNN, where NNN is an integer, sets the number of parameter words for the case in which
the symbol is a call gate between 32−bit and 16−bit segments.

• An attribute which is just a number indicates that the symbol should be exported with an
identifying number (ordinal), and gives the desired number.

For example:

    export  myfunc 
    export  myfunc TheRealMoreFormalLookingFunctionName 
    export  myfunc myfunc 1234  ; export by ordinal 
    export  myfunc myfunc resident parm=23 nodata

6.2.6  ..start : Defining the Program Entry Point
OMF linkers require exactly one of the object files being linked to define the program entry point,
where execution will begin when the program is run. If the object file that defines the entry point is
assembled using NASM, you specify the entry point by declaring the special symbol ..start  at
the point where you wish execution to begin.
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6.2.7  obj  Extensions to the EXTERN Directive
If you declare an external symbol with the directive

    extern  foo

then references such as mov ax,foo  will give you the offset of foo  from its preferred segment
base (as specified in whichever module foo  is actually defined in). So to access the contents of
foo  you will usually need to do something like

        mov     ax,seg foo      ; get preferred segment base 
        mov     es,ax           ; move it into ES 
        mov     ax,[es:foo]     ; and use offset ‘foo’ from it

This is a little unwieldy, particularly if you know that an external is going to be accessible from a
given segment or group, say dgroup . So if DS already contained dgroup , you could simply code

        mov     ax,[foo wrt dgroup]

However, having to type this every time you want to access foo  can be a pain; so NASM allows
you to declare foo  in the alternative form

    extern  foo:wrt dgroup

This form causes NASM to pretend that the preferred segment base of foo  is in fact dgroup ; so
the expression seg foo  will now return dgroup , and the expression foo  is equivalent to
foo wrt dgroup .

This default−WRT mechanism can be used to make externals appear to be relative to any group or
segment in your program. It can also be applied to common variables: see section 6.2.8.

6.2.8  obj  Extensions to the COMMON Directive
The obj  format allows common variables to be either near or far; NASM allows you to specify
which your variables should be by the use of the syntax

common  nearvar 2:near   ; ‘nearvar’ is a near common 
common  farvar  10:far   ; and ‘farvar’ is far

Far common variables may be greater in size than 64Kb, and so the OMF specification says that
they are declared as a number of elements of a given size. So a 10−byte far common variable could
be declared as ten one−byte elements, five two−byte elements, two five−byte elements or one
ten−byte element.

Some OMF linkers require the element size, as well as the variable size, to match when resolving
common variables declared in more than one module. Therefore NASM must allow you to specify
the element size on your far common variables. This is done by the following syntax:

common  c_5by2  10:far 5        ; two five−byte elements 
common  c_2by5  10:far 2        ; five two−byte elements

If no element size is specified, the default is 1. Also, the FAR keyword is not required when an
element size is specified, since only far commons may have element sizes at all. So the above
declarations could equivalently be

common  c_5by2  10:5            ; two five−byte elements 
common  c_2by5  10:2            ; five two−byte elements

In addition to these extensions, the COMMON directive in obj  also supports default−WRT
specification like EXTERN does (explained in section 6.2.7). So you can also declare things like
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common  foo     10:wrt dgroup 
common  bar     16:far 2:wrt data 
common  baz     24:wrt data:6

6.3  win32 : Microsoft Win32 Object Files
The win32  output format generates Microsoft Win32 object files, suitable for passing to Microsoft
linkers such as Visual C++. Note that Borland Win32 compilers do not use this format, but use obj
instead (see section 6.2).

win32  provides a default output file−name extension of .obj .

Note that although Microsoft say that Win32 object files follow the COFF (Common Object File
Format) standard, the object files produced by Microsoft Win32 compilers are not compatible with
COFF linkers such as DJGPP’s, and vice versa. This is due to a difference of opinion over the
precise semantics of PC−relative relocations. To produce COFF files suitable for DJGPP, use
NASM’s coff  output format; conversely, the coff  format does not produce object files that
Win32 linkers can generate correct output from.

6.3.1  win32  Extensions to the SECTION Directive
Like the obj  format, win32  allows you to specify additional information on the SECTION
directive line, to control the type and properties of sections you declare. Section types and
properties are generated automatically by NASM for the standard section names .text , .data
and .bss , but may still be overridden by these qualifiers.

The available qualifiers are:

• code , or equivalently text , defines the section to be a code section. This marks the section as
readable and executable, but not writable, and also indicates to the linker that the type of the
section is code.

• data  and bss  define the section to be a data section, analogously to code . Data sections are
marked as readable and writable, but not executable. data  declares an initialized data section,
whereas bss  declares an uninitialized data section.

• rdata  declares an initialized data section that is readable but not writable. Microsoft compilers
use this section to place constants in it.

• info  defines the section to be an informational section, which is not included in the executable
file by the linker, but may (for example) pass information to the linker. For example, declaring an
info –type section called .drectve  causes the linker to interpret the contents of the section as
command−line options.

• align= , used with a trailing number as in obj , gives the alignment requirements of the section.
The maximum you may specify is 64: the Win32 object file format contains no means to request
a greater section alignment than this. If alignment is not explicitly specified, the defaults are
16−byte alignment for code sections, 8−byte alignment for rdata sections and 4−byte alignment
for data (and BSS) sections. Informational sections get a default alignment of 1 byte (no
alignment), though the value does not matter.

The defaults assumed by NASM if you do not specify the above qualifiers are:

section .text    code  align=16 
section .data    data  align=4 
section .rdata   rdata align=8 
section .bss     bss   align=4

Any other section name is treated by default like .text .
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6.4  win64 : Microsoft Win64 Object Files
The win64  output format generates Microsoft Win64 object files, which is nearly 100% identical
to the win32  object format (section 6.3) with the exception that it is meant to target 64−bit code
and the x86−64 platform altogether. This object file is used exactly the same as the win32  object
format (section 6.3), in NASM, with regard to this exception.

6.5  coff : Common Object File Format
The coff  output type produces COFF object files suitable for linking with the DJGPP linker.

coff  provides a default output file−name extension of .o .

The coff  format supports the same extensions to the SECTION directive as win32  does, except
that the align  qualifier and the info  section type are not supported.

6.6  macho: Mach Object File Format
The macho output type produces Mach−O object files suitable for linking with the Mac OSX linker.

macho provides a default output file−name extension of .o .

6.7  elf, elf32, and elf64 : Executable and Linkable Format Object
Files
The elf32  and elf64  output formats generate ELF32 and ELF64  (Executable and Linkable
Format) object files, as used by Linux as well as Unix System V, including Solaris x86, UnixWare
and SCO Unix. elf  provides a default output file−name extension of .o . elf  is a synonym for
elf32 .

6.7.1  ELF specific directive osabi

The ELF header specifies the application binary interface for the target operating system (OSABI).
This field can be set by using the osabi  directive with the numeric value (0−255) of the target
system. If this directive is not used, the default value will be "UNIX System V ABI" (0) which will
work on most systems which support ELF.

6.7.2  elf  Extensions to the SECTION Directive
Like the obj  format, elf  allows you to specify additional information on the SECTION directive
line, to control the type and properties of sections you declare. Section types and properties are
generated automatically by NASM for the standard section names .text , .data  and .bss , but
may still be overridden by these qualifiers.

The available qualifiers are:

• alloc  defines the section to be one which is loaded into memory when the program is run.
noalloc  defines it to be one which is not, such as an informational or comment section.

• exec  defines the section to be one which should have execute permission when the program is
run. noexec  defines it as one which should not.

• write  defines the section to be one which should be writable when the program is run.
nowrite  defines it as one which should not.

• progbits  defines the section to be one with explicit contents stored in the object file: an
ordinary code or data section, for example, nobits  defines the section to be one with no
explicit contents given, such as a BSS section.

• align= , used with a trailing number as in obj , gives the alignment requirements of the section.
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The defaults assumed by NASM if you do not specify the above qualifiers are:

section .text    progbits  alloc  exec    nowrite  align=16 
section .rodata  progbits  alloc  noexec  nowrite  align=4 
section .data    progbits  alloc  noexec  write    align=4 
section .bss     nobits    alloc  noexec  write    align=4 
section other    progbits  alloc  noexec  nowrite  align=1

(Any section name other than .text , .rodata , .data  and .bss  is treated by default like
other  in the above code.)

6.7.3  Position−Independent Code: elf  Special Symbols and WRT

The ELF specification contains enough features to allow position−independent code (PIC) to be
written, which makes ELF shared libraries very flexible. However, it also means NASM has to be
able to generate a variety of strange relocation types in ELF object files, if it is to be an assembler
which can write PIC.

Since ELF does not support segment−base references, the WRT operator is not used for its normal
purpose; therefore NASM’s elf  output format makes use of WRT for a different purpose, namely
the PIC−specific relocation types.

elf  defines five special symbols which you can use as the right−hand side of the WRT operator to
obtain PIC relocation types. They are ..gotpc , ..gotoff , ..got , ..plt  and ..sym . Their
functions are summarized here:

• Referring to the symbol marking the global offset table base using wrt ..gotpc  will end up
giving the distance from the beginning of the current section to the global offset table.
(_GLOBAL_OFFSET_TABLE_ is the standard symbol name used to refer to the GOT.) So you
would then need to add $$  to the result to get the real address of the GOT.

• Referring to a location in one of your own sections using wrt ..gotoff  will give the distance
from the beginning of the GOT to the specified location, so that adding on the address of the
GOT would give the real address of the location you wanted.

• Referring to an external or global symbol using wrt ..got  causes the linker to build an entry
in the GOT containing the address of the symbol, and the reference gives the distance from the
beginning of the GOT to the entry; so you can add on the address of the GOT, load from the
resulting address, and end up with the address of the symbol.

• Referring to a procedure name using wrt ..plt  causes the linker to build a procedure linkage
table entry for the symbol, and the reference gives the address of the PLT entry. You can only
use this in contexts which would generate a PC−relative relocation normally (i.e. as the
destination for CALL or JMP), since ELF contains no relocation type to refer to PLT entries
absolutely.

• Referring to a symbol name using wrt ..sym  causes NASM to write an ordinary relocation,
but instead of making the relocation relative to the start of the section and then adding on the
offset to the symbol, it will write a relocation record aimed directly at the symbol in question.
The distinction is a necessary one due to a peculiarity of the dynamic linker.

A fuller explanation of how to use these relocation types to write shared libraries entirely in NASM
is given in section 8.2.

6.7.4  elf  Extensions to the GLOBAL Directive
ELF object files can contain more information about a global symbol than just its address: they can
contain the size of the symbol and its type as well. These are not merely debugger conveniences, but
are actually necessary when the program being written is a shared library. NASM therefore supports
some extensions to the GLOBAL directive, allowing you to specify these features.
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You can specify whether a global variable is a function or a data object by suffixing the name with a
colon and the word function  or data . (object  is a synonym for data .) For example:

global   hashlookup:function, hashtable:data

exports the global symbol hashlookup  as a function and hashtable  as a data object.

Optionally, you can control the ELF visibility of the symbol. Just add one of the visibility
keywords: default , internal , hidden , or protected . The default is default  of course.
For example, to make hashlookup  hidden:

global   hashlookup:function hidden

You can also specify the size of the data associated with the symbol, as a numeric expression
(which may involve labels, and even forward references) after the type specifier. Like this:

global  hashtable:data (hashtable.end − hashtable) 

hashtable: 
        db this,that,theother  ; some data here 
.end:

This makes NASM automatically calculate the length of the table and place that information into
the ELF symbol table.

Declaring the type and size of global symbols is necessary when writing shared library code. For
more information, see section 8.2.4.

6.7.5  elf  Extensions to the COMMON Directive 
ELF also allows you to specify alignment requirements on common variables. This is done by
putting a number (which must be a power of two) after the name and size of the common variable,
separated (as usual) by a colon. For example, an array of doublewords would benefit from 4−byte
alignment:

common  dwordarray 128:4

This declares the total size of the array to be 128 bytes, and requires that it be aligned on a 4−byte
boundary.

6.7.6  16−bit code and ELF 
The ELF32 specification doesn’t provide relocations for 8− and 16−bit values, but the GNU ld
linker adds these as an extension. NASM can generate GNU−compatible relocations, to allow
16−bit code to be linked as ELF using GNU ld . If NASM is used with the
−w+gnu−elf−extensions  option, a warning is issued when one of these relocations is
generated.

6.7.7  Debug formats and ELF 
ELF32 and ELF64 provide debug information in STABS format. Prior to 2.00, this information
was generated only for the ".text" section. However, all executable sections are now included. (Note
that only the ".text" section is executable by default.)

6.8  aout : Linux a.out  Object Files
The aout  format generates a.out  object files, in the form used by early Linux systems (current
Linux systems use ELF, see section 6.7.) These differ from other a.out  object files in that the
magic number in the first four bytes of the file is different; also, some implementations of a.out ,
for example NetBSD’s, support position−independent code, which Linux’s implementation does not.
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a.out  provides a default output file−name extension of .o .

a.out  is a very simple object format. It supports no special directives, no special symbols, no use
of SEG or WRT, and no extensions to any standard directives. It supports only the three standard
section names .text , .data  and .bss .

6.9  aoutb : NetBSD/FreeBSD/OpenBSD a.out  Object Files
The aoutb  format generates a.out  object files, in the form used by the various free BSD Unix
clones, NetBSD, FreeBSD  and OpenBSD. For simple object files, this object format is exactly the
same as aout  except for the magic number in the first four bytes of the file. However, the aoutb
format supports position−independent code in the same way as the elf  format, so you can use it to
write BSD shared libraries.

aoutb  provides a default output file−name extension of .o .

aoutb  supports no special directives, no special symbols, and only the three standard section
names .text , .data  and .bss . However, it also supports the same use of WRT as elf  does, to
provide position−independent code relocation types. See section 6.7.3 for full documentation of this
feature.

aoutb  also supports the same extensions to the GLOBAL directive as elf  does: see section 6.7.4
for documentation of this.

6.10  as86 : Minix/Linux as86  Object Files
The Minix/Linux 16−bit assembler as86  has its own non−standard object file format. Although its
companion linker ld86  produces something close to ordinary a.out  binaries as output, the object
file format used to communicate between as86  and ld86  is not itself a.out .

NASM supports this format, just in case it is useful, as as86 . as86  provides a default output
file−name extension of .o .

as86  is a very simple object format (from the NASM user’s point of view). It supports no special
directives, no special symbols, no use of SEG or WRT, and no extensions to any standard directives.
It supports only the three standard section names .text , .data  and .bss .

6.11  rdf : Relocatable Dynamic Object File Format
The rdf  output format produces RDOFF object files. RDOFF (Relocatable Dynamic Object File
Format) is a home−grown object−file format, designed alongside NASM itself and reflecting in its
file format the internal structure of the assembler.

RDOFF is not used by any well−known operating systems. Those writing their own systems,
however, may well wish to use RDOFF as their object format, on the grounds that it is designed
primarily for simplicity and contains very little file−header bureaucracy.

The Unix NASM archive, and the DOS archive which includes sources, both contain an rdoff
subdirectory holding a set of RDOFF utilities: an RDF linker, an RDF static−library manager, an
RDF file dump utility, and a program which will load and execute an RDF executable under Linux.

rdf  supports only the standard section names .text , .data  and .bss .

6.11.1  Requiring a Library: The LIBRARY Directive
RDOFF contains a mechanism for an object file to demand a given library to be linked to the
module, either at load time or run time. This is done by the LIBRARY directive, which takes one
argument which is the name of the module:

    library  mylib.rdl
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6.11.2  Specifying a Module Name: The MODULE Directive
Special RDOFF header record is used to store the name of the module. It can be used, for example,
by run−time loader to perform dynamic linking. MODULE directive takes one argument which is the
name of current module:

    module  mymodname

Note that when you statically link modules and tell linker to strip the symbols from output file, all
module names will be stripped too. To avoid it, you should start module names with $, like:

    module  $kernel.core

6.11.3  rdf  Extensions to the GLOBAL directive
RDOFF global symbols can contain additional information needed by the static linker. You can
mark a global symbol as exported, thus telling the linker do not strip it from target executable or
library file. Like in ELF, you can also specify whether an exported symbol is a procedure (function)
or data object.

Suffixing the name with a colon and the word export  you make the symbol exported:

    global  sys_open:export

To specify that exported symbol is a procedure (function), you add the word proc  or function
after declaration:

    global  sys_open:export proc

Similarly, to specify exported data object, add the word data  or object  to the directive:

    global  kernel_ticks:export data

6.11.4  rdf  Extensions to the EXTERN directive
By default the EXTERN directive in RDOFF declares a "pure external" symbol (i.e. the static linker
will complain if such a symbol is not resolved). To declare an "imported" symbol, which must be
resolved later during a dynamic linking phase, RDOFF offers an additional import  modifier. As in
GLOBAL, you can also specify whether an imported symbol is a procedure (function) or data object.
For example:

    library $libc 
    extern  _open:import 
    extern  _printf:import proc 
    extern  _errno:import data

Here the directive LIBRARY is also included, which gives the dynamic linker a hint as to where to
find requested symbols.

6.12  dbg: Debugging Format
The dbg  output format is not built into NASM in the default configuration. If you are building your
own NASM executable from the sources, you can define OF_DBG in outform.h  or on the
compiler command line, and obtain the dbg  output format.

The dbg  format does not output an object file as such; instead, it outputs a text file which contains a
complete list of all the transactions between the main body of NASM and the output−format back
end module. It is primarily intended to aid people who want to write their own output drivers, so
that they can get a clearer idea of the various requests the main program makes of the output driver,
and in what order they happen.

For simple files, one can easily use the dbg  format like this:
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nasm −f dbg filename.asm

which will generate a diagnostic file called filename.dbg . However, this will not work well on
files which were designed for a different object format, because each object format defines its own
macros (usually user−level forms of directives), and those macros will not be defined in the dbg
format. Therefore it can be useful to run NASM twice, in order to do the preprocessing with the
native object format selected:

nasm −e −f rdf −o rdfprog.i rdfprog.asm 
nasm −a −f dbg rdfprog.i

This preprocesses rdfprog.asm  into rdfprog.i , keeping the rdf  object format selected in
order to make sure RDF special directives are converted into primitive form correctly. Then the
preprocessed source is fed through the dbg  format to generate the final diagnostic output.

This workaround will still typically not work for programs intended for obj  format, because the
obj  SEGMENT and GROUP directives have side effects of defining the segment and group names as
symbols; dbg  will not do this, so the program will not assemble. You will have to work around that
by defining the symbols yourself (using EXTERN, for example) if you really need to get a dbg  trace
of an obj –specific source file.

dbg  accepts any section name and any directives at all, and logs them all to its output file.
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Chapter 7: Writing 16−bit Code (DOS, Windows 3/3.1)

This chapter attempts to cover some of the common issues encountered when writing 16−bit code to
run under MS−DOS or Windows 3.x . It covers how to link programs to produce .EXE  or .COM
files, how to write .SYS  device drivers, and how to interface assembly language code with 16−bit
C compilers and with Borland Pascal.

7.1  Producing .EXE Files
Any large program written under DOS needs to be built as a .EXE  file: only .EXE  files have the
necessary internal structure required to span more than one 64K segment. Windows programs, also,
have to be built as .EXE  files, since Windows does not support the .COM format.

In general, you generate .EXE  files by using the obj  output format to produce one or more .OBJ
files, and then linking them together using a linker. However, NASM also supports the direct
generation of simple DOS .EXE  files using the bin  output format (by using DB and DW to
construct the .EXE  file header), and a macro package is supplied to do this. Thanks to Yann Guidon
for contributing the code for this.

NASM may also support .EXE  natively as another output format in future releases.

7.1.1  Using the obj  Format To Generate .EXE Files
This section describes the usual method of generating .EXE  files by linking .OBJ  files together.

Most 16−bit programming language packages come with a suitable linker; if you have none of
these, there is a free linker called VAL, available in LZH archive format from x2ftp.oulu.fi .
An LZH archiver can be found at ftp.simtel.net . There is another ‘free’ linker (though this
one doesn’t come with sources) called FREELINK, available from www.pcorner.com . A third,
djlink , written by DJ Delorie, is available at www.delorie.com . A fourth linker, ALINK ,
written by Anthony A.J. Williams, is available at alink.sourceforge.net .

When linking several .OBJ  files into a .EXE  file, you should ensure that exactly one of them has a
start point defined (using the ..start  special symbol defined by the obj  format: see section
6.2.6). If no module defines a start point, the linker will not know what value to give the
entry−point field in the output file header; if more than one defines a start point, the linker will not
know which value to use.

An example of a NASM source file which can be assembled to a .OBJ  file and linked on its own to
a .EXE  is given here. It demonstrates the basic principles of defining a stack, initialising the
segment registers, and declaring a start point. This file is also provided in the test  subdirectory of
the NASM archives, under the name objexe.asm .

segment code 

..start: 
        mov     ax,data 
        mov     ds,ax 
        mov     ax,stack 
        mov     ss,ax 
        mov     sp,stacktop
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This initial piece of code sets up DS to point to the data segment, and initializes SS and SP to point
to the top of the provided stack. Notice that interrupts are implicitly disabled for one instruction
after a move into SS, precisely for this situation, so that there’s no chance of an interrupt occurring
between the loads of SS and SP and not having a stack to execute on.

Note also that the special symbol ..start  is defined at the beginning of this code, which means
that will be the entry point into the resulting executable file.

        mov     dx,hello 
        mov     ah,9 
        int     0x21

The above is the main program: load DS:DX with a pointer to the greeting message (hello  is
implicitly relative to the segment data , which was loaded into DS in the setup code, so the full
pointer is valid), and call the DOS print−string function.

        mov     ax,0x4c00 
        int     0x21

This terminates the program using another DOS system call.

segment data 

hello:  db      ’hello, world’, 13, 10, ’$’

The data segment contains the string we want to display.

segment stack stack 
        resb 64 
stacktop:

The above code declares a stack segment containing 64 bytes of uninitialized stack space, and
points stacktop  at the top of it. The directive segment stack stack  defines a segment
called stack , and also of type STACK. The latter is not necessary to the correct running of the
program, but linkers are likely to issue warnings or errors if your program has no segment of type
STACK.

The above file, when assembled into a .OBJ  file, will link on its own to a valid .EXE  file, which
when run will print ‘hello, world’ and then exit.

7.1.2  Using the bin  Format To Generate .EXE Files
The .EXE  file format is simple enough that it’s possible to build a .EXE  file by writing a
pure−binary program and sticking a 32−byte header on the front. This header is simple enough that
it can be generated using DB and DW commands by NASM itself, so that you can use the bin  output
format to directly generate .EXE  files.

Included in the NASM archives, in the misc  subdirectory, is a file exebin.mac  of macros. It
defines three macros: EXE_begin , EXE_stack  and EXE_end.

To produce a .EXE  file using this method, you should start by using %include  to load the
exebin.mac  macro package into your source file. You should then issue the EXE_begin  macro
call (which takes no arguments) to generate the file header data. Then write code as normal for the
bin  format – you can use all three standard sections .text , .data  and .bss . At the end of the
file you should call the EXE_end macro (again, no arguments), which defines some symbols to
mark section sizes, and these symbols are referred to in the header code generated by EXE_begin .

In this model, the code you end up writing starts at 0x100 , just like a .COM file – in fact, if you
strip off the 32−byte header from the resulting .EXE  file, you will have a valid .COM program. All
the segment bases are the same, so you are limited to a 64K program, again just like a .COM file.
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Note that an ORG directive is issued by the EXE_begin  macro, so you should not explicitly issue
one of your own.

You can’t directly refer to your segment base value, unfortunately, since this would require a
relocation in the header, and things would get a lot more complicated. So you should get your
segment base by copying it out of CS instead.

On entry to your .EXE  file, SS:SP are already set up to point to the top of a 2Kb stack. You can
adjust the default stack size of 2Kb by calling the EXE_stack  macro. For example, to change the
stack size of your program to 64 bytes, you would call EXE_stack 64 .

A sample program which generates a .EXE  file in this way is given in the test  subdirectory of the
NASM archive, as binexe.asm .

7.2  Producing .COM Files
While large DOS programs must be written as .EXE  files, small ones are often better written as
.COM files. .COM files are pure binary, and therefore most easily produced using the bin  output
format.

7.2.1  Using the bin  Format To Generate .COM Files
.COM files expect to be loaded at offset 100h  into their segment (though the segment may change).
Execution then begins at 100h , i.e. right at the start of the program. So to write a .COM program,
you would create a source file looking like

        org 100h 

section .text 

start: 
        ; put your code here 

section .data 

        ; put data items here 

section .bss 

        ; put uninitialized data here

The bin  format puts the .text  section first in the file, so you can declare data or BSS items
before beginning to write code if you want to and the code will still end up at the front of the file
where it belongs.

The BSS (uninitialized data) section does not take up space in the .COM file itself: instead,
addresses of BSS items are resolved to point at space beyond the end of the file, on the grounds that
this will be free memory when the program is run. Therefore you should not rely on your BSS being
initialized to all zeros when you run.

To assemble the above program, you should use a command line like

nasm myprog.asm −fbin −o myprog.com

The bin  format would produce a file called myprog  if no explicit output file name were specified,
so you have to override it and give the desired file name.
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7.2.2  Using the obj  Format To Generate .COM Files
If you are writing a .COM program as more than one module, you may wish to assemble several
.OBJ  files and link them together into a .COM program. You can do this, provided you have a
linker capable of outputting .COM files directly (TLINK does this), or alternatively a converter
program such as EXE2BIN to transform the .EXE  file output from the linker into a .COM file.

If you do this, you need to take care of several things:

• The first object file containing code should start its code segment with a line like RESB 100h .
This is to ensure that the code begins at offset 100h  relative to the beginning of the code
segment, so that the linker or converter program does not have to adjust address references within
the file when generating the .COM file. Other assemblers use an ORG directive for this purpose,
but ORG in NASM is a format−specific directive to the bin  output format, and does not mean
the same thing as it does in MASM−compatible assemblers.

• You don’t need to define a stack segment.

• All your segments should be in the same group, so that every time your code or data references a
symbol offset, all offsets are relative to the same segment base. This is because, when a .COM
file is loaded, all the segment registers contain the same value.

7.3  Producing .SYS Files
MS−DOS device drivers – .SYS  files – are pure binary files, similar to .COM files, except that they
start at origin zero rather than 100h . Therefore, if you are writing a device driver using the bin
format, you do not need the ORG directive, since the default origin for bin  is zero. Similarly, if you
are using obj , you do not need the RESB 100h  at the start of your code segment.

.SYS  files start with a header structure, containing pointers to the various routines inside the driver
which do the work. This structure should be defined at the start of the code segment, even though it
is not actually code.

For more information on the format of .SYS  files, and the data which has to go in the header
structure, a list of books is given in the Frequently Asked Questions list for the newsgroup
comp.os.msdos.programmer .

7.4  Interfacing to 16−bit C Programs
This section covers the basics of writing assembly routines that call, or are called from, C programs.
To do this, you would typically write an assembly module as a .OBJ  file, and link it with your C
modules to produce a mixed−language program.

7.4.1  External Symbol Names
C compilers have the convention that the names of all global symbols (functions or data) they
define are formed by prefixing an underscore to the name as it appears in the C program. So, for
example, the function a C programmer thinks of as printf  appears to an assembly language
programmer as _printf . This means that in your assembly programs, you can define symbols
without a leading underscore, and not have to worry about name clashes with C symbols.

If you find the underscores inconvenient, you can define macros to replace the GLOBAL and
EXTERN directives as follows:

%macro  cglobal 1 

  global  _%1 
  %define %1 _%1 
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%endmacro 

%macro  cextern 1 

  extern  _%1 
  %define %1 _%1 

%endmacro

(These forms of the macros only take one argument at a time; a %rep construct could solve this.)

If you then declare an external like this:

cextern printf

then the macro will expand it as

extern  _printf 
%define printf _printf

Thereafter, you can reference printf  as if it was a symbol, and the preprocessor will put the
leading underscore on where necessary.

The cglobal  macro works similarly. You must use cglobal  before defining the symbol in
question, but you would have had to do that anyway if you used GLOBAL.

Also see section 2.1.22.

7.4.2  Memory Models
NASM contains no mechanism to support the various C memory models directly; you have to keep
track yourself of which one you are writing for. This means you have to keep track of the following
things:

• In models using a single code segment (tiny, small and compact), functions are near. This means
that function pointers, when stored in data segments or pushed on the stack as function
arguments, are 16 bits long and contain only an offset field (the CS register never changes its
value, and always gives the segment part of the full function address), and that functions are
called using ordinary near CALL instructions and return using RETN (which, in NASM, is
synonymous with RET anyway). This means both that you should write your own routines to
return with RETN, and that you should call external C routines with near CALL instructions.

• In models using more than one code segment (medium, large and huge), functions are far. This
means that function pointers are 32 bits long (consisting of a 16−bit offset followed by a 16−bit
segment), and that functions are called using CALL FAR (or CALL seg:offset ) and return
using RETF. Again, you should therefore write your own routines to return with RETF and use
CALL FAR to call external routines.

• In models using a single data segment (tiny, small and medium), data pointers are 16 bits long,
containing only an offset field (the DS register doesn’t change its value, and always gives the
segment part of the full data item address).

• In models using more than one data segment (compact, large and huge), data pointers are 32 bits
long, consisting of a 16−bit offset followed by a 16−bit segment. You should still be careful not
to modify DS in your routines without restoring it afterwards, but ES is free for you to use to
access the contents of 32−bit data pointers you are passed.

• The huge memory model allows single data items to exceed 64K in size. In all other memory
models, you can access the whole of a data item just by doing arithmetic on the offset field of the
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pointer you are given, whether a segment field is present or not; in huge model, you have to be
more careful of your pointer arithmetic.

• In most memory models, there is a default data segment, whose segment address is kept in DS
throughout the program. This data segment is typically the same segment as the stack, kept in SS,
so that functions’ local variables (which are stored on the stack) and global data items can both
be accessed easily without changing DS. Particularly large data items are typically stored in other
segments. However, some memory models (though not the standard ones, usually) allow the
assumption that SS and DS hold the same value to be removed. Be careful about functions’ local
variables in this latter case.

In models with a single code segment, the segment is called _TEXT, so your code segment must
also go by this name in order to be linked into the same place as the main code segment. In models
with a single data segment, or with a default data segment, it is called _DATA.

7.4.3  Function Definitions and Function Calls
The C calling convention in 16−bit programs is as follows. In the following description, the words
caller and callee are used to denote the function doing the calling and the function which gets called.

• The caller pushes the function’s parameters on the stack, one after another, in reverse order (right
to left, so that the first argument specified to the function is pushed last).

• The caller then executes a CALL instruction to pass control to the callee. This CALL is either near
or far depending on the memory model.

• The callee receives control, and typically (although this is not actually necessary, in functions
which do not need to access their parameters) starts by saving the value of SP in BP so as to be
able to use BP as a base pointer to find its parameters on the stack. However, the caller was
probably doing this too, so part of the calling convention states that BP must be preserved by any
C function. Hence the callee, if it is going to set up BP as a frame pointer, must push the previous
value first.

• The callee may then access its parameters relative to BP. The word at [BP]  holds the previous
value of BP as it was pushed; the next word, at [BP+2] , holds the offset part of the return
address, pushed implicitly by CALL. In a small−model (near) function, the parameters start after
that, at [BP+4] ; in a large−model (far) function, the segment part of the return address lives at
[BP+4] , and the parameters begin at [BP+6] . The leftmost parameter of the function, since it
was pushed last, is accessible at this offset from BP; the others follow, at successively greater
offsets. Thus, in a function such as printf  which takes a variable number of parameters, the
pushing of the parameters in reverse order means that the function knows where to find its first
parameter, which tells it the number and type of the remaining ones.

• The callee may also wish to decrease SP further, so as to allocate space on the stack for local
variables, which will then be accessible at negative offsets from BP.

• The callee, if it wishes to return a value to the caller, should leave the value in AL, AX or DX:AX
depending on the size of the value. Floating−point results are sometimes (depending on the
compiler) returned in ST0.

• Once the callee has finished processing, it restores SP from BP if it had allocated local stack
space, then pops the previous value of BP, and returns via RETN or RETF depending on memory
model.

• When the caller regains control from the callee, the function parameters are still on the stack, so
it typically adds an immediate constant to SP to remove them (instead of executing a number of
slow POP instructions). Thus, if a function is accidentally called with the wrong number of
parameters due to a prototype mismatch, the stack will still be returned to a sensible state since
the caller, which knows how many parameters it pushed, does the removing.
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It is instructive to compare this calling convention with that for Pascal programs (described in
section 7.5.1). Pascal has a simpler convention, since no functions have variable numbers of
parameters. Therefore the callee knows how many parameters it should have been passed, and is
able to deallocate them from the stack itself by passing an immediate argument to the RET or RETF
instruction, so the caller does not have to do it. Also, the parameters are pushed in left−to−right
order, not right−to−left, which means that a compiler can give better guarantees about sequence
points without performance suffering.

Thus, you would define a function in C style in the following way. The following example is for
small model:

global  _myfunc 

_myfunc: 
        push    bp 
        mov     bp,sp 
        sub     sp,0x40         ; 64 bytes of local stack space 
        mov     bx,[bp+4]       ; first parameter to function 

        ; some more code 

        mov     sp,bp           ; undo "sub sp,0x40" above 
        pop     bp 
        ret

For a large−model function, you would replace RET by RETF, and look for the first parameter at
[BP+6]  instead of [BP+4] . Of course, if one of the parameters is a pointer, then the offsets of
subsequent parameters will change depending on the memory model as well: far pointers take up
four bytes on the stack when passed as a parameter, whereas near pointers take up two.

At the other end of the process, to call a C function from your assembly code, you would do
something like this:

extern  _printf 

      ; and then, further down... 

      push    word [myint]        ; one of my integer variables 
      push    word mystring       ; pointer into my data segment 
      call    _printf 
      add     sp,byte 4           ; ‘byte’ saves space 

      ; then those data items... 

segment _DATA 

myint         dw    1234 
mystring      db    ’This number −> %d <− should be 1234’,10,0

This piece of code is the small−model assembly equivalent of the C code

    int myint = 1234; 
    printf("This number −> %d <− should be 1234\\n", myint);

In large model, the function−call code might look more like this. In this example, it is assumed that
DS already holds the segment base of the segment _DATA. If not, you would have to initialize it
first.
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      push    word [myint] 
      push    word seg mystring   ; Now push the segment, and... 
      push    word mystring       ; ... offset of "mystring" 
      call    far _printf 
      add    sp,byte 6

The integer value still takes up one word on the stack, since large model does not affect the size of
the int  data type. The first argument (pushed last) to printf , however, is a data pointer, and
therefore has to contain a segment and offset part. The segment should be stored second in memory,
and therefore must be pushed first. (Of course, PUSH DS would have been a shorter instruction
than PUSH WORD SEG mystring , if DS was set up as the above example assumed.) Then the
actual call becomes a far call, since functions expect far calls in large model; and SP has to be
increased by 6 rather than 4 afterwards to make up for the extra word of parameters.

7.4.4  Accessing Data Items
To get at the contents of C variables, or to declare variables which C can access, you need only
declare the names as GLOBAL or EXTERN. (Again, the names require leading underscores, as stated
in section 7.4.1.) Thus, a C variable declared as int i  can be accessed from assembler as

extern _i 

        mov ax,[_i]

And to declare your own integer variable which C programs can access as extern int j , you
do this (making sure you are assembling in the _DATA segment, if necessary):

global  _j 

_j      dw      0

To access a C array, you need to know the size of the components of the array. For example, int
variables are two bytes long, so if a C program declares an array as int a[10] , you can access
a[3]  by coding mov ax,[_a+6] . (The byte offset 6 is obtained by multiplying the desired array
index, 3, by the size of the array element, 2.) The sizes of the C base types in 16−bit compilers are:
1 for char , 2 for short  and int , 4 for long  and float , and 8 for double .

To access a C data structure, you need to know the offset from the base of the structure to the field
you are interested in. You can either do this by converting the C structure definition into a NASM
structure definition (using STRUC), or by calculating the one offset and using just that.

To do either of these, you should read your C compiler’s manual to find out how it organizes data
structures. NASM gives no special alignment to structure members in its own STRUC macro, so you
have to specify alignment yourself if the C compiler generates it. Typically, you might find that a
structure like

struct @\{ 
    char c; 
    int i; 
@\} foo;

might be four bytes long rather than three, since the int  field would be aligned to a two−byte
boundary. However, this sort of feature tends to be a configurable option in the C compiler, either
using command−line options or #pragma  lines, so you have to find out how your own compiler
does it.
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7.4.5  c16.mac : Helper Macros for the 16−bit C Interface
Included in the NASM archives, in the misc  directory, is a file c16.mac  of macros. It defines
three macros: proc , arg  and endproc . These are intended to be used for C−style procedure
definitions, and they automate a lot of the work involved in keeping track of the calling convention.

(An alternative, TASM compatible form of arg  is also now built into NASM’s preprocessor. See
section 4.9 for details.)

An example of an assembly function using the macro set is given here:

proc    _nearproc 

%$i     arg 
%$j     arg 
        mov     ax,[bp + %$i] 
        mov     bx,[bp + %$j] 
        add     ax,[bx] 

endproc

This defines _nearproc  to be a procedure taking two arguments, the first (i ) an integer and the
second (j ) a pointer to an integer. It returns i + *j .

Note that the arg  macro has an EQU as the first line of its expansion, and since the label before the
macro call gets prepended to the first line of the expanded macro, the EQU works, defining %$i  to
be an offset from BP. A context−local variable is used, local to the context pushed by the proc
macro and popped by the endproc  macro, so that the same argument name can be used in later
procedures. Of course, you don’t have to do that.

The macro set produces code for near functions (tiny, small and compact−model code) by default.
You can have it generate far functions (medium, large and huge−model code) by means of coding
%define FARCODE . This changes the kind of return instruction generated by endproc , and also
changes the starting point for the argument offsets. The macro set contains no intrinsic dependency
on whether data pointers are far or not.

arg  can take an optional parameter, giving the size of the argument. If no size is given, 2 is
assumed, since it is likely that many function parameters will be of type int .

The large−model equivalent of the above function would look like this:

%define FARCODE 

proc    _farproc 

%$i     arg 
%$j     arg     4 
        mov     ax,[bp + %$i] 
        mov     bx,[bp + %$j] 
        mov     es,[bp + %$j + 2] 
        add     ax,[bx] 

endproc

This makes use of the argument to the arg  macro to define a parameter of size 4, because j  is now
a far pointer. When we load from j , we must load a segment and an offset.
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7.5  Interfacing to Borland Pascal Programs
Interfacing to Borland Pascal programs is similar in concept to interfacing to 16−bit C programs.
The differences are:

• The leading underscore required for interfacing to C programs is not required for Pascal.

• The memory model is always large: functions are far, data pointers are far, and no data item can
be more than 64K long. (Actually, some functions are near, but only those functions that are local
to a Pascal unit and never called from outside it. All assembly functions that Pascal calls, and all
Pascal functions that assembly routines are able to call, are far.) However, all static data declared
in a Pascal program goes into the default data segment, which is the one whose segment address
will be in DS when control is passed to your assembly code. The only things that do not live in
the default data segment are local variables (they live in the stack segment) and dynamically
allocated variables. All data pointers, however, are far.

• The function calling convention is different – described below.

• Some data types, such as strings, are stored differently.

• There are restrictions on the segment names you are allowed to use – Borland Pascal will ignore
code or data declared in a segment it doesn’t like the name of. The restrictions are described
below.

7.5.1  The Pascal Calling Convention
The 16−bit Pascal calling convention is as follows. In the following description, the words caller
and callee are used to denote the function doing the calling and the function which gets called.

• The caller pushes the function’s parameters on the stack, one after another, in normal order (left
to right, so that the first argument specified to the function is pushed first).

• The caller then executes a far CALL instruction to pass control to the callee.

• The callee receives control, and typically (although this is not actually necessary, in functions
which do not need to access their parameters) starts by saving the value of SP in BP so as to be
able to use BP as a base pointer to find its parameters on the stack. However, the caller was
probably doing this too, so part of the calling convention states that BP must be preserved by any
function. Hence the callee, if it is going to set up BP as a frame pointer, must push the previous
value first.

• The callee may then access its parameters relative to BP. The word at [BP]  holds the previous
value of BP as it was pushed. The next word, at [BP+2] , holds the offset part of the return
address, and the next one at [BP+4]  the segment part. The parameters begin at [BP+6] . The
rightmost parameter of the function, since it was pushed last, is accessible at this offset from BP;
the others follow, at successively greater offsets.

• The callee may also wish to decrease SP further, so as to allocate space on the stack for local
variables, which will then be accessible at negative offsets from BP.

• The callee, if it wishes to return a value to the caller, should leave the value in AL, AX or DX:AX
depending on the size of the value. Floating−point results are returned in ST0. Results of type
Real  (Borland’s own custom floating−point data type, not handled directly by the FPU) are
returned in DX:BX:AX . To return a result of type String , the caller pushes a pointer to a
temporary string before pushing the parameters, and the callee places the returned string value at
that location. The pointer is not a parameter, and should not be removed from the stack by the
RETF instruction.

• Once the callee has finished processing, it restores SP from BP if it had allocated local stack
space, then pops the previous value of BP, and returns via RETF. It uses the form of RETF with
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an immediate parameter, giving the number of bytes taken up by the parameters on the stack.
This causes the parameters to be removed from the stack as a side effect of the return instruction.

• When the caller regains control from the callee, the function parameters have already been
removed from the stack, so it needs to do nothing further.

Thus, you would define a function in Pascal style, taking two Integer –type parameters, in the
following way:

global  myfunc 

myfunc: push    bp 
        mov     bp,sp 
        sub     sp,0x40         ; 64 bytes of local stack space 
        mov     bx,[bp+8]       ; first parameter to function 
        mov     bx,[bp+6]       ; second parameter to function 

        ; some more code 

        mov     sp,bp           ; undo "sub sp,0x40" above 
        pop     bp 
        retf    4               ; total size of params is 4

At the other end of the process, to call a Pascal function from your assembly code, you would do
something like this:

extern  SomeFunc 

       ; and then, further down... 

       push   word seg mystring   ; Now push the segment, and... 
       push   word mystring       ; ... offset of "mystring" 
       push   word [myint]        ; one of my variables 
       call   far SomeFunc

This is equivalent to the Pascal code

procedure SomeFunc(String: PChar; Int: Integer); 
    SomeFunc(@@mystring, myint);

7.5.2  Borland Pascal Segment Name Restrictions
Since Borland Pascal’s internal unit file format is completely different from OBJ, it only makes a
very sketchy job of actually reading and understanding the various information contained in a real
OBJ file when it links that in. Therefore an object file intended to be linked to a Pascal program
must obey a number of restrictions:

• Procedures and functions must be in a segment whose name is either CODE, CSEG, or something
ending in _TEXT.

• initialized data must be in a segment whose name is either CONST or something ending in
_DATA.

• Uninitialized data must be in a segment whose name is either DATA, DSEG, or something ending
in _BSS.

• Any other segments in the object file are completely ignored. GROUP directives and segment
attributes are also ignored.
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7.5.3  Using c16.mac  With Pascal Programs
The c16.mac  macro package, described in section 7.4.5, can also be used to simplify writing
functions to be called from Pascal programs, if you code %define PASCAL . This definition
ensures that functions are far (it implies FARCODE), and also causes procedure return instructions to
be generated with an operand.

Defining PASCAL does not change the code which calculates the argument offsets; you must
declare your function’s arguments in reverse order. For example:

%define PASCAL 

proc    _pascalproc 

%$j     arg 4 
%$i     arg 
        mov     ax,[bp + %$i] 
        mov     bx,[bp + %$j] 
        mov     es,[bp + %$j + 2] 
        add     ax,[bx] 

endproc

This defines the same routine, conceptually, as the example in section 7.4.5: it defines a function
taking two arguments, an integer and a pointer to an integer, which returns the sum of the integer
and the contents of the pointer. The only difference between this code and the large−model C
version is that PASCAL is defined instead of FARCODE, and that the arguments are declared in
reverse order.
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Chapter 8: Writing 32−bit Code (Unix, Win32, DJGPP)

This chapter attempts to cover some of the common issues involved when writing 32−bit code, to
run under Win32 or Unix, or to be linked with C code generated by a Unix−style C compiler such
as DJGPP. It covers how to write assembly code to interface with 32−bit C routines, and how to
write position−independent code for shared libraries.

Almost all 32−bit code, and in particular all code running under Win32 , DJGPP or any of the PC
Unix variants, runs in flat memory model. This means that the segment registers and paging have
already been set up to give you the same 32−bit 4Gb address space no matter what segment you
work relative to, and that you should ignore all segment registers completely. When writing
flat−model application code, you never need to use a segment override or modify any segment
register, and the code−section addresses you pass to CALL and JMP live in the same address space
as the data−section addresses you access your variables by and the stack−section addresses you
access local variables and procedure parameters by. Every address is 32 bits long and contains only
an offset part.

8.1  Interfacing to 32−bit C Programs
A lot of the discussion in section 7.4, about interfacing to 16−bit C programs, still applies when
working in 32 bits. The absence of memory models or segmentation worries simplifies things a lot.

8.1.1  External Symbol Names
Most 32−bit C compilers share the convention used by 16−bit compilers, that the names of all
global symbols (functions or data) they define are formed by prefixing an underscore to the name as
it appears in the C program. However, not all of them do: the ELF specification states that C
symbols do not have a leading underscore on their assembly−language names.

The older Linux a.out  C compiler, all Win32  compilers, DJGPP, and NetBSD and FreeBSD ,
all use the leading underscore; for these compilers, the macros cextern  and cglobal , as given
in section 7.4.1, will still work. For ELF, though, the leading underscore should not be used.

See also section 2.1.22.

8.1.2  Function Definitions and Function Calls
The C calling conventionThe C calling convention in 32−bit programs is as follows. In the
following description, the words caller and callee are used to denote the function doing the calling
and the function which gets called.

• The caller pushes the function’s parameters on the stack, one after another, in reverse order (right
to left, so that the first argument specified to the function is pushed last).

• The caller then executes a near CALL instruction to pass control to the callee.

• The callee receives control, and typically (although this is not actually necessary, in functions
which do not need to access their parameters) starts by saving the value of ESP in EBP so as to
be able to use EBP as a base pointer to find its parameters on the stack. However, the caller was
probably doing this too, so part of the calling convention states that EBP must be preserved by
any C function. Hence the callee, if it is going to set up EBP as a frame pointer, must push the
previous value first.
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• The callee may then access its parameters relative to EBP. The doubleword at [EBP]  holds the
previous value of EBP as it was pushed; the next doubleword, at [EBP+4] , holds the return
address, pushed implicitly by CALL. The parameters start after that, at [EBP+8] . The leftmost
parameter of the function, since it was pushed last, is accessible at this offset from EBP; the
others follow, at successively greater offsets. Thus, in a function such as printf  which takes a
variable number of parameters, the pushing of the parameters in reverse order means that the
function knows where to find its first parameter, which tells it the number and type of the
remaining ones.

• The callee may also wish to decrease ESP further, so as to allocate space on the stack for local
variables, which will then be accessible at negative offsets from EBP.

• The callee, if it wishes to return a value to the caller, should leave the value in AL, AX or EAX
depending on the size of the value. Floating−point results are typically returned in ST0.

• Once the callee has finished processing, it restores ESP from EBP if it had allocated local stack
space, then pops the previous value of EBP, and returns via RET (equivalently, RETN).

• When the caller regains control from the callee, the function parameters are still on the stack, so
it typically adds an immediate constant to ESP to remove them (instead of executing a number of
slow POP instructions). Thus, if a function is accidentally called with the wrong number of
parameters due to a prototype mismatch, the stack will still be returned to a sensible state since
the caller, which knows how many parameters it pushed, does the removing.

There is an alternative calling convention used by Win32 programs for Windows API calls, and also
for functions called by the Windows API such as window procedures: they follow what Microsoft
calls the __stdcall  convention. This is slightly closer to the Pascal convention, in that the callee
clears the stack by passing a parameter to the RET instruction. However, the parameters are still
pushed in right−to−left order.

Thus, you would define a function in C style in the following way:

global  _myfunc 

_myfunc: 
        push    ebp 
        mov     ebp,esp 
        sub     esp,0x40        ; 64 bytes of local stack space 
        mov     ebx,[ebp+8]     ; first parameter to function 

        ; some more code 

        leave                   ; mov esp,ebp / pop ebp 
        ret

At the other end of the process, to call a C function from your assembly code, you would do
something like this:

extern  _printf 

        ; and then, further down... 

        push    dword [myint]   ; one of my integer variables 
        push    dword mystring  ; pointer into my data segment 
        call    _printf 
        add     esp,byte 8      ; ‘byte’ saves space 
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        ; then those data items... 

segment _DATA 

myint       dd   1234 
mystring    db   ’This number −> %d <− should be 1234’,10,0

This piece of code is the assembly equivalent of the C code

    int myint = 1234; 
    printf("This number −> %d <− should be 1234\\n", myint);

8.1.3  Accessing Data Items
To get at the contents of C variables, or to declare variables which C can access, you need only
declare the names as GLOBAL or EXTERN. (Again, the names require leading underscores, as stated
in section 8.1.1.) Thus, a C variable declared as int i  can be accessed from assembler as

          extern _i 
          mov eax,[_i]

And to declare your own integer variable which C programs can access as extern int j , you
do this (making sure you are assembling in the _DATA segment, if necessary):

          global _j 
_j        dd 0

To access a C array, you need to know the size of the components of the array. For example, int
variables are four bytes long, so if a C program declares an array as int a[10] , you can access
a[3]  by coding mov ax,[_a+12] . (The byte offset 12 is obtained by multiplying the desired
array index, 3, by the size of the array element, 4.) The sizes of the C base types in 32−bit compilers
are: 1 for char , 2 for short , 4 for int , long  and float , and 8 for double . Pointers, being
32−bit addresses, are also 4 bytes long.

To access a C data structure, you need to know the offset from the base of the structure to the field
you are interested in. You can either do this by converting the C structure definition into a NASM
structure definition (using STRUC), or by calculating the one offset and using just that.

To do either of these, you should read your C compiler’s manual to find out how it organizes data
structures. NASM gives no special alignment to structure members in its own STRUC macro, so you
have to specify alignment yourself if the C compiler generates it. Typically, you might find that a
structure like

struct @\{ 
    char c; 
    int i; 
@\} foo;

might be eight bytes long rather than five, since the int  field would be aligned to a four−byte
boundary. However, this sort of feature is sometimes a configurable option in the C compiler, either
using command−line options or #pragma  lines, so you have to find out how your own compiler
does it.

8.1.4  c32.mac : Helper Macros for the 32−bit C Interface
Included in the NASM archives, in the misc  directory, is a file c32.mac  of macros. It defines
three macros: proc , arg  and endproc . These are intended to be used for C−style procedure
definitions, and they automate a lot of the work involved in keeping track of the calling convention.

An example of an assembly function using the macro set is given here:
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proc    _proc32 

%$i     arg 
%$j     arg 
        mov     eax,[ebp + %$i] 
        mov     ebx,[ebp + %$j] 
        add     eax,[ebx] 

endproc

This defines _proc32  to be a procedure taking two arguments, the first (i ) an integer and the
second (j ) a pointer to an integer. It returns i + *j .

Note that the arg  macro has an EQU as the first line of its expansion, and since the label before the
macro call gets prepended to the first line of the expanded macro, the EQU works, defining %$i  to
be an offset from BP. A context−local variable is used, local to the context pushed by the proc
macro and popped by the endproc  macro, so that the same argument name can be used in later
procedures. Of course, you don’t have to do that.

arg  can take an optional parameter, giving the size of the argument. If no size is given, 4 is
assumed, since it is likely that many function parameters will be of type int  or pointers.

8.2  Writing NetBSD/FreeBSD/OpenBSD and Linux/ELF Shared Libraries
ELF replaced the older a.out  object file format under Linux because it contains support for
position−independent code (PIC), which makes writing shared libraries much easier. NASM
supports the ELF position−independent code features, so you can write Linux ELF shared libraries
in NASM.

NetBSD, and its close cousins FreeBSD and OpenBSD, take a different approach by hacking PIC
support into the a.out  format. NASM supports this as the aoutb  output format, so you can write
BSD shared libraries in NASM too.

The operating system loads a PIC shared library by memory−mapping the library file at an
arbitrarily chosen point in the address space of the running process. The contents of the library’s
code section must therefore not depend on where it is loaded in memory.

Therefore, you cannot get at your variables by writing code like this:

        mov     eax,[myvar]             ; WRONG

Instead, the linker provides an area of memory called the global offset table, or GOT; the GOT is
situated at a constant distance from your library’s code, so if you can find out where your library is
loaded (which is typically done using a CALL and POP combination), you can obtain the address of
the GOT, and you can then load the addresses of your variables out of linker−generated entries in
the GOT.

The data section of a PIC shared library does not have these restrictions: since the data section is
writable, it has to be copied into memory anyway rather than just paged in from the library file, so
as long as it’s being copied it can be relocated too. So you can put ordinary types of relocation in
the data section without too much worry (but see section 8.2.4 for a caveat).

8.2.1  Obtaining the Address of the GOT
Each code module in your shared library should define the GOT as an external symbol:

extern  _GLOBAL_OFFSET_TABLE_   ; in ELF 
extern  __GLOBAL_OFFSET_TABLE_  ; in BSD a.out
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At the beginning of any function in your shared library which plans to access your data or BSS
sections, you must first calculate the address of the GOT. This is typically done by writing the
function in this form:

func:   push    ebp 
        mov     ebp,esp 
        push    ebx 
        call    .get_GOT 
.get_GOT: 
        pop     ebx 
        add     ebx,_GLOBAL_OFFSET_TABLE_+$$−.get_GOT wrt ..gotpc 

        ; the function body comes here 

        mov     ebx,[ebp−4] 
        mov     esp,ebp 
        pop     ebp 
        ret

(For BSD, again, the symbol _GLOBAL_OFFSET_TABLE requires a second leading underscore.)

The first two lines of this function are simply the standard C prologue to set up a stack frame, and
the last three lines are standard C function epilogue. The third line, and the fourth to last line, save
and restore the EBX register, because PIC shared libraries use this register to store the address of the
GOT.

The interesting bit is the CALL instruction and the following two lines. The CALL and POP
combination obtains the address of the label .get_GOT , without having to know in advance where
the program was loaded (since the CALL instruction is encoded relative to the current position). The
ADD instruction makes use of one of the special PIC relocation types: GOTPC relocation. With the
WRT ..gotpc  qualifier specified, the symbol referenced (here _GLOBAL_OFFSET_TABLE_,
the special symbol assigned to the GOT) is given as an offset from the beginning of the section.
(Actually, ELF encodes it as the offset from the operand field of the ADD instruction, but NASM
simplifies this deliberately, so you do things the same way for both ELF and BSD.) So the
instruction then adds the beginning of the section, to get the real address of the GOT, and subtracts
the value of .get_GOT  which it knows is in EBX. Therefore, by the time that instruction has
finished, EBX contains the address of the GOT.

If you didn’t follow that, don’t worry: it’s never necessary to obtain the address of the GOT by any
other means, so you can put those three instructions into a macro and safely ignore them:

%macro  get_GOT 0 

        call    %%getgot 
  %%getgot: 
        pop     ebx 
        add     ebx,_GLOBAL_OFFSET_TABLE_+$$−%%getgot wrt ..gotpc 

%endmacro

8.2.2  Finding Your Local Data Items
Having got the GOT, you can then use it to obtain the addresses of your data items. Most variables
will reside in the sections you have declared; they can be accessed using the ..gotoff  special
WRT type. The way this works is like this:

        lea     eax,[ebx+myvar wrt ..gotoff]
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The expression myvar wrt ..gotoff  is calculated, when the shared library is linked, to be the
offset to the local variable myvar  from the beginning of the GOT. Therefore, adding it to EBX as
above will place the real address of myvar  in EAX.

If you declare variables as GLOBAL without specifying a size for them, they are shared between
code modules in the library, but do not get exported from the library to the program that loaded it.
They will still be in your ordinary data and BSS sections, so you can access them in the same way
as local variables, using the above ..gotoff  mechanism.

Note that due to a peculiarity of the way BSD a.out  format handles this relocation type, there
must be at least one non−local symbol in the same section as the address you’re trying to access.

8.2.3  Finding External and Common Data Items
If your library needs to get at an external variable (external to the library, not just to one of the
modules within it), you must use the ..got  type to get at it. The ..got  type, instead of giving
you the offset from the GOT base to the variable, gives you the offset from the GOT base to a GOT
entry containing the address of the variable. The linker will set up this GOT entry when it builds the
library, and the dynamic linker will place the correct address in it at load time. So to obtain the
address of an external variable extvar  in EAX, you would code

        mov     eax,[ebx+extvar wrt ..got]

This loads the address of extvar  out of an entry in the GOT. The linker, when it builds the shared
library, collects together every relocation of type ..got , and builds the GOT so as to ensure it has
every necessary entry present.

Common variables must also be accessed in this way.

8.2.4  Exporting Symbols to the Library User
If you want to export symbols to the user of the library, you have to declare whether they are
functions or data, and if they are data, you have to give the size of the data item. This is because the
dynamic linker has to build procedure linkage table entries for any exported functions, and also
moves exported data items away from the library’s data section in which they were declared.

So to export a function to users of the library, you must use

global  func:function           ; declare it as a function 

func:   push    ebp 

        ; etc.

And to export a data item such as an array, you would have to code

global  array:data array.end−array      ; give the size too 

array:  resd    128 
.end:

Be careful: If you export a variable to the library user, by declaring it as GLOBAL and supplying a
size, the variable will end up living in the data section of the main program, rather than in your
library’s data section, where you declared it. So you will have to access your own global variable
with the ..got  mechanism rather than ..gotoff , as if it were external (which, effectively, it has
become).

Equally, if you need to store the address of an exported global in one of your data sections, you
can’t do it by means of the standard sort of code:
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dataptr:        dd      global_data_item        ; WRONG

NASM will interpret this code as an ordinary relocation, in which global_data_item  is merely
an offset from the beginning of the .data  section (or whatever); so this reference will end up
pointing at your data section instead of at the exported global which resides elsewhere.

Instead of the above code, then, you must write

dataptr:        dd      global_data_item wrt ..sym

which makes use of the special WRT type ..sym  to instruct NASM to search the symbol table for a
particular symbol at that address, rather than just relocating by section base.

Either method will work for functions: referring to one of your functions by means of

funcptr:        dd      my_function

will give the user the address of the code you wrote, whereas

funcptr:        dd      my_function wrt .sym

will give the address of the procedure linkage table for the function, which is where the calling
program will believe the function lives. Either address is a valid way to call the function.

8.2.5  Calling Procedures Outside the Library
Calling procedures outside your shared library has to be done by means of a procedure linkage
table, or PLT. The PLT is placed at a known offset from where the library is loaded, so the library
code can make calls to the PLT in a position−independent way. Within the PLT there is code to
jump to offsets contained in the GOT, so function calls to other shared libraries or to routines in the
main program can be transparently passed off to their real destinations.

To call an external routine, you must use another special PIC relocation type, WRT ..plt . This is
much easier than the GOT−based ones: you simply replace calls such as CALL printf  with the
PLT−relative version CALL printf WRT ..plt .

8.2.6  Generating the Library File
Having written some code modules and assembled them to .o  files, you then generate your shared
library with a command such as

ld −shared −o library.so module1.o module2.o       # for ELF 
ld −Bshareable −o library.so module1.o module2.o   # for BSD

For ELF, if your shared library is going to reside in system directories such as /usr/lib  or
/lib , it is usually worth using the −soname flag to the linker, to store the final library file name,
with a version number, into the library:

ld −shared −soname library.so.1 −o library.so.1.2 *.o

You would then copy library.so.1.2  into the library directory, and create library.so.1
as a symbolic link to it.
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Chapter 9: Mixing 16 and 32 Bit Code

This chapter tries to cover some of the issues, largely related to unusual forms of addressing and
jump instructions, encountered when writing operating system code such as protected−mode
initialisation routines, which require code that operates in mixed segment sizes, such as code in a
16−bit segment trying to modify data in a 32−bit one, or jumps between different−size segments.

9.1  Mixed−Size Jumps
The most common form of mixed−size instruction is the one used when writing a 32−bit OS:
having done your setup in 16−bit mode, such as loading the kernel, you then have to boot it by
switching into protected mode and jumping to the 32−bit kernel start address. In a fully 32−bit OS,
this tends to be the only mixed−size instruction you need, since everything before it can be done in
pure 16−bit code, and everything after it can be pure 32−bit.

This jump must specify a 48−bit far address, since the target segment is a 32−bit one. However, it
must be assembled in a 16−bit segment, so just coding, for example,

        jmp     0x1234:0x56789ABC       ; wrong!

will not work, since the offset part of the address will be truncated to 0x9ABC and the jump will be
an ordinary 16−bit far one.

The Linux kernel setup code gets round the inability of as86  to generate the required instruction by
coding it manually, using DB instructions. NASM can go one better than that, by actually generating
the right instruction itself. Here’s how to do it right:

        jmp     dword 0x1234:0x56789ABC         ; right

The DWORD prefix (strictly speaking, it should come after the colon, since it is declaring the offset
field to be a doubleword; but NASM will accept either form, since both are unambiguous) forces
the offset part to be treated as far, in the assumption that you are deliberately writing a jump from a
16−bit segment to a 32−bit one.

You can do the reverse operation, jumping from a 32−bit segment to a 16−bit one, by means of the
WORD prefix:

        jmp     word 0x8765:0x4321      ; 32 to 16 bit

If the WORD prefix is specified in 16−bit mode, or the DWORD prefix in 32−bit mode, they will be
ignored, since each is explicitly forcing NASM into a mode it was in anyway.

9.2  Addressing Between Different−Size Segments
If your OS is mixed 16 and 32−bit, or if you are writing a DOS extender, you are likely to have to
deal with some 16−bit segments and some 32−bit ones. At some point, you will probably end up
writing code in a 16−bit segment which has to access data in a 32−bit segment, or vice versa.

If the data you are trying to access in a 32−bit segment lies within the first 64K of the segment, you
may be able to get away with using an ordinary 16−bit addressing operation for the purpose; but
sooner or later, you will want to do 32−bit addressing from 16−bit mode.

The easiest way to do this is to make sure you use a register for the address, since any effective
address containing a 32−bit register is forced to be a 32−bit address. So you can do
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        mov     eax,offset_into_32_bit_segment_specified_by_fs 
        mov     dword [fs:eax],0x11223344

This is fine, but slightly cumbersome (since it wastes an instruction and a register) if you already
know the precise offset you are aiming at. The x86 architecture does allow 32−bit effective
addresses to specify nothing but a 4−byte offset, so why shouldn’t NASM be able to generate the
best instruction for the purpose?

It can. As in section 9.1, you need only prefix the address with the DWORD keyword, and it will be
forced to be a 32−bit address:

        mov     dword [fs:dword my_offset],0x11223344

Also as in section 9.1, NASM is not fussy about whether the DWORD prefix comes before or after
the segment override, so arguably a nicer−looking way to code the above instruction is

        mov     dword [dword fs:my_offset],0x11223344

Don’t confuse the DWORD prefix outside the square brackets, which controls the size of the data
stored at the address, with the one inside  the square brackets which controls the length of the
address itself. The two can quite easily be different:

        mov     word [dword 0x12345678],0x9ABC

This moves 16 bits of data to an address specified by a 32−bit offset.

You can also specify WORD or DWORD prefixes along with the FAR prefix to indirect far jumps or
calls. For example:

        call    dword far [fs:word 0x4321]

This instruction contains an address specified by a 16−bit offset; it loads a 48−bit far pointer from
that (16−bit segment and 32−bit offset), and calls that address.

9.3  Other Mixed−Size Instructions
The other way you might want to access data might be using the string instructions (LODSx,
STOSx and so on) or the XLATB instruction. These instructions, since they take no parameters,
might seem to have no easy way to make them perform 32−bit addressing when assembled in a
16−bit segment.

This is the purpose of NASM’s a16  and a32  prefixes. If you are coding LODSB in a 16−bit
segment but it is supposed to be accessing a string in a 32−bit segment, you should load the desired
address into ESI  and then code

        a32     lodsb

The prefix forces the addressing size to 32 bits, meaning that LODSB loads from [DS:ESI]
instead of [DS:SI] . To access a string in a 16−bit segment when coding in a 32−bit one, the
corresponding a16  prefix can be used.

The a16  and a32  prefixes can be applied to any instruction in NASM’s instruction table, but most
of them can generate all the useful forms without them. The prefixes are necessary only for
instructions with implicit addressing: CMPSx, SCASx, LODSx, STOSx, MOVSx, INSx , OUTSx,
and XLATB. Also, the various push and pop instructions (PUSHA and POPF as well as the more
usual PUSH and POP) can accept a16  or a32  prefixes to force a particular one of SP or ESP to be
used as a stack pointer, in case the stack segment in use is a different size from the code segment.

PUSH and POP, when applied to segment registers in 32−bit mode, also have the slightly odd
behaviour that they push and pop 4 bytes at a time, of which the top two are ignored and the bottom
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two give the value of the segment register being manipulated. To force the 16−bit behaviour of
segment−register push and pop instructions, you can use the operand−size prefix o16 :

        o16 push    ss 
        o16 push    ds

This code saves a doubleword of stack space by fitting two segment registers into the space which
would normally be consumed by pushing one.

(You can also use the o32  prefix to force the 32−bit behaviour when in 16−bit mode, but this seems
less useful.)
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Chapter 10: Writing 64−bit Code (Unix, Win64)

This chapter attempts to cover some of the common issues involved when writing 64−bit code, to
run under Win64 or Unix. It covers how to write assembly code to interface with 64−bit C routines,
and how to write position−independent code for shared libraries.

All 64−bit code uses a flat memory model, since segmentation is not available in 64−bit mode. The
one exception is the FS and GS registers, which still add their bases.

Position independence in 64−bit mode is significantly simpler, since the processor supports
RIP–relative addressing directly; see the REL keyword (section 3.3). On most 64−bit platforms, it
is probably desirable to make that the default, using the directive DEFAULT REL (section 5.2).

64−bit programming is relatively similar to 32−bit programming, but of course pointers are 64 bits
long; additionally, all existing platforms pass arguments in registers rather than on the stack.
Furthermore, 64−bit platforms use SSE2 by default for floating point. Please see the ABI
documentation for your platform.

64−bit platforms differ in the sizes of the fundamental datatypes, not just from 32−bit platforms but
from each other. If a specific size data type is desired, it is probably best to use the types defined in
the Standard C header <inttypes.h> .

In 64−bit mode, the default instruction size is still 32 bits. When loading a value into a 32−bit
register (but not an 8− or 16−bit register), the upper 32 bits of the corresponding 64−bit register are
set to zero.

10.1  Immediates and displacements in 64−bit mode
In 64−bit mode, immediates and displacements are generally only 32 bits wide. NASM will
therefore truncate most displacements and immediates to 32 bits.

The only instruction which takes a full 64−bit immediate is:

     MOV reg64,imm64

NASM will produce this instruction whenever the programmer uses MOV with an immediate into a
64−bit register. If this is not desirable, simply specify the equivalent 32−bit register, which will be
automatically zero−extended by the processor, or specify the immediate as DWORD:

     mov rax,foo             ; 64−bit immediate 
     mov rax,qword foo       ; (identical) 
     mov eax,foo             ; 32−bit immediate, zero−extended 
     mov rax,dword foo       ; 32−bit immediate, sign−extended

The length of these instructions are 10, 5 and 7 bytes, respectively.

The only instructions which take a full 64−bit \e{displacement} is loading or storing, using MOV,
AL, AX, EAX or RAX (but no other registers) to an absolute 64−bit address. Since this is a relatively
rarely used instruction (64−bit code generally uses relative addressing), the programmer has to
explicitly declare the displacement size as QWORD:

     default abs 

     mov eax,[foo]           ; 32−bit absolute disp, sign−extended 
     mov eax,[a32 foo]       ; 32−bit absolute disp, zero−extended 
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     mov eax,[qword foo]     ; 64−bit absolute disp 

     default rel 

     mov eax,[foo]           ; 32−bit relative disp 
     mov eax,[a32 foo]       ; d:o, address truncated to 32 bits(!) 
     mov eax,[qword foo]     ; error 
     mov eax,[abs qword foo] ; 64−bit absolute disp

A sign−extended absolute displacement can access from –2 GB to +2 GB; a zero−extended absolute
displacement can access from 0 to 4 GB.

10.2  Interfacing to 64−bit C Programs (Unix)
On Unix, the 64−bit ABI is defined by the document:

http://www.x86−64.org/documentation/abi.pdf

Although written for AT&T−syntax assembly, the concepts apply equally well for NASM−style
assembly. What follows is a simplified summary.

The first six integer arguments (from the left) are passed in RDI, RSI , RDX, RCX, R8, and R9, in
that order. Additional integer arguments are passed on the stack. These registers, plus RAX, R10
and R11 are destroyed by function calls, and thus are available for use by the function without
saving.

Integer return values are passed in RAX and RDX, in that order.

Floating point is done using SSE registers, except for long double . Floating−point arguments
are passed in XMM0 to XMM7; return is XMM0 and XMM1. long double  are passed on the stack,
and returned in ST(0)  and ST(1) .

All SSE and x87 registers are destroyed by function calls.

On 64−bit Unix, long  is 64 bits.

10.3  Interfacing to 64−bit C Programs (Win64)
The Win64 ABI is described at:

http://msdn2.microsoft.com/en−gb/library/ms794533.aspx

What follows is a simplified summary.

The first four integer arguments are passwd in RCX, RDX, R8 and R9, in that order. Additional
integer arguments are passed on the stack. These registers, plus RAX, R10 and R11 are destroyed
by function calls, and thus are available for use by the function without saving.

Integer return values are passed in RAX only.

Floating point is done using SSE registers, except for long double . Floating−point arguments
are passed in XMM0 to XMM3; return is XMM0 only.

On Win64, long  is 32 bits; long long  or _int64  is 64 bits.
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Chapter 11: Troubleshooting

This chapter describes some of the common problems that users have been known to encounter with
NASM, and answers them. It also gives instructions for reporting bugs in NASM if you find a
difficulty that isn’t listed here.

11.1  Common Problems
11.1.1  NASM Generates Inefficient Code

We sometimes get ‘bug’ reports about NASM generating inefficient, or even ‘wrong’, code on
instructions such as ADD ESP,8 . This is a deliberate design feature, connected to predictability of
output: NASM, on seeing ADD ESP,8 , will generate the form of the instruction which leaves room
for a 32−bit offset. You need to code ADD ESP,BYTE 8  if you want the space−efficient form of
the instruction. This isn’t a bug, it’s user error: if you prefer to have NASM produce the more
efficient code automatically enable optimization with the −On option (see section 2.1.17).

11.1.2  My Jumps are Out of Range
Similarly, people complain that when they issue conditional jumps (which are SHORT by default)
that try to jump too far, NASM reports ‘short jump out of range’ instead of making the jumps longer.

This, again, is partly a predictability issue, but in fact has a more practical reason as well. NASM
has no means of being told what type of processor the code it is generating will be run on; so it
cannot decide for itself that it should generate Jcc NEAR  type instructions, because it doesn’t
know that it’s working for a 386 or above. Alternatively, it could replace the out−of−range short
JNE instruction with a very short JE instruction that jumps over a JMP NEAR; this is a sensible
solution for processors below a 386, but hardly efficient on processors which have good branch
prediction and could have used JNE NEAR instead. So, once again, it’s up to the user, not the
assembler, to decide what instructions should be generated. See section 2.1.17.

11.1.3  ORG Doesn’t Work
People writing boot sector programs in the bin  format often complain that ORG doesn’t work the
way they’d like: in order to place the 0xAA55  signature word at the end of a 512−byte boot sector,
people who are used to MASM tend to code

        ORG 0 

        ; some boot sector code 

        ORG 510 
        DW 0xAA55

This is not the intended use of the ORG directive in NASM, and will not work. The correct way to
solve this problem in NASM is to use the TIMES directive, like this:

        ORG 0 

        ; some boot sector code 

        TIMES 510−($−$$) DB 0 
        DW 0xAA55
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The TIMES directive will insert exactly enough zero bytes into the output to move the assembly
point up to 510. This method also has the advantage that if you accidentally fill your boot sector too
full, NASM will catch the problem at assembly time and report it, so you won’t end up with a boot
sector that you have to disassemble to find out what’s wrong with it.

11.1.4  TIMES Doesn’t Work
The other common problem with the above code is people who write the TIMES line as

        TIMES 510−$ DB 0

by reasoning that $ should be a pure number, just like 510, so the difference between them is also a
pure number and can happily be fed to TIMES.

NASM is a modular assembler: the various component parts are designed to be easily separable for
re−use, so they don’t exchange information unnecessarily. In consequence, the bin  output format,
even though it has been told by the ORG directive that the .text  section should start at 0, does not
pass that information back to the expression evaluator. So from the evaluator’s point of view, $
isn’t a pure number: it’s an offset from a section base. Therefore the difference between $ and 510
is also not a pure number, but involves a section base. Values involving section bases cannot be
passed as arguments to TIMES.

The solution, as in the previous section, is to code the TIMES line in the form

        TIMES 510−($−$$) DB 0

in which $ and $$  are offsets from the same section base, and so their difference is a pure number.
This will solve the problem and generate sensible code.

11.2  Bugs
We have never yet released a version of NASM with any known bugs. That doesn’t usually stop
there being plenty we didn’t know about, though. Any that you find should be reported firstly via
the bugtracker  at https://sourceforge.net/projects/nasm/  (click on "Bugs"), or
if that fails then through one of the contacts in section 1.3.

Please read section 2.2 first, and don’t report the bug if it’s listed in there as a deliberate feature. (If
you think the feature is badly thought out, feel free to send us reasons why you think it should be
changed, but don’t just send us mail saying ‘This is a bug’ if the documentation says we did it on
purpose.) Then read section 11.1, and don’t bother reporting the bug if it’s listed there.

If you do report a bug, please give us all of the following information:

• What operating system you’re running NASM under. DOS, Linux, NetBSD, Win16, Win32,
VMS (I’d be impressed), whatever.

• If you’re running NASM under DOS or Win32, tell us whether you’ve compiled your own
executable from the DOS source archive, or whether you were using the standard distribution
binaries out of the archive. If you were using a locally built executable, try to reproduce the
problem using one of the standard binaries, as this will make it easier for us to reproduce your
problem prior to fixing it.

• Which version of NASM you’re using, and exactly how you invoked it. Give us the precise
command line, and the contents of the NASMENV environment variable if any.

• Which versions of any supplementary programs you’re using, and how you invoked them. If the
problem only becomes visible at link time, tell us what linker you’re using, what version of it
you’ve got, and the exact linker command line. If the problem involves linking against object
files generated by a compiler, tell us what compiler, what version, and what command line or
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options you used. (If you’re compiling in an IDE, please try to reproduce the problem with the
command−line version of the compiler.)

• If at all possible, send us a NASM source file which exhibits the problem. If this causes
copyright problems (e.g. you can only reproduce the bug in restricted−distribution code) then
bear in mind the following two points: firstly, we guarantee that any source code sent to us for
the purposes of debugging NASM will be used only for the purposes of debugging NASM, and
that we will delete all our copies of it as soon as we have found and fixed the bug or bugs in
question; and secondly, we would prefer not to be mailed large chunks of code anyway. The
smaller the file, the better. A three−line sample file that does nothing useful except demonstrate
the problem is much easier to work with than a fully fledged ten−thousand−line program. (Of
course, some errors do only crop up in large files, so this may not be possible.)

• A description of what the problem actually is. ‘It doesn’t work’ is not a helpful description!
Please describe exactly what is happening that shouldn’t be, or what isn’t happening that should.
Examples might be: ‘NASM generates an error message saying Line 3 for an error that’s actually
on Line 5’; ‘NASM generates an error message that I believe it shouldn’t be generating at all’;
‘NASM fails to generate an error message that I believe it should be generating’; ‘the object file
produced from this source code crashes my linker’; ‘the ninth byte of the output file is 66 and I
think it should be 77 instead’.

• If you believe the output file from NASM to be faulty, send it to us. That allows us to determine
whether our own copy of NASM generates the same file, or whether the problem is related to
portability issues between our development platforms and yours. We can handle binary files
mailed to us as MIME attachments, uuencoded, and even BinHex. Alternatively, we may be able
to provide an FTP site you can upload the suspect files to; but mailing them is easier for us.

• Any other information or data files that might be helpful. If, for example, the problem involves
NASM failing to generate an object file while TASM can generate an equivalent file without
trouble, then send us both object files, so we can see what TASM is doing differently from us.

101



Appendix A: Ndisasm

The Netwide Disassembler, NDISASM

A.1  Introduction
The Netwide Disassembler is a small companion program to the Netwide Assembler, NASM. It
seemed a shame to have an x86 assembler, complete with a full instruction table, and not make as
much use of it as possible, so here’s a disassembler which shares the instruction table (and some
other bits of code) with NASM.

The Netwide Disassembler does nothing except to produce disassemblies of binary source files.
NDISASM does not have any understanding of object file formats, like objdump , and it will not
understand DOS .EXE files like debug  will. It just disassembles.

A.2  Getting Started: Installation
See section 1.4 for installation instructions. NDISASM, like NASM, has a man page  which you
may want to put somewhere useful, if you are on a Unix system.

A.3  Running NDISASM
To disassemble a file, you will typically use a command of the form

       ndisasm −b @\{16|32|64@\} filename

NDISASM can disassemble 16−, 32− or 64−bit code equally easily, provided of course that you
remember to specify which it is to work with. If no −b switch is present, NDISASM works in
16−bit mode by default. The −u switch (for USE32) also invokes 32−bit mode.

Two more command line options are −r  which reports the version number of NDISASM you are
running, and −h which gives a short summary of command line options.

A.3.1  COM Files: Specifying an Origin
To disassemble a DOS .COM file correctly, a disassembler must assume that the first instruction in
the file is loaded at address 0x100 , rather than at zero. NDISASM, which assumes by default that
any file you give it is loaded at zero, will therefore need to be informed of this.

The −o option allows you to declare a different origin for the file you are disassembling. Its
argument may be expressed in any of the NASM numeric formats: decimal by default, if it begins
with ‘$’ or ‘0x ’ or ends in ‘H’ it’s hex , if it ends in ‘Q’ it’s octal , and if it ends in ‘B’ it’s
binary .

Hence, to disassemble a .COM file:

       ndisasm −o100h filename.com

will do the trick.

A.3.2  Code Following Data: Synchronisation
Suppose you are disassembling a file which contains some data which isn’t machine code, and then
contains some machine code. NDISASM will faithfully plough through the data section, producing
machine instructions wherever it can (although most of them will look bizarre, and some may have
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unusual prefixes, e.g. ‘FS OR AX,0x240A ’), and generating ‘DB’ instructions ever so often if
it’s totally stumped. Then it will reach the code section.

Supposing NDISASM has just finished generating a strange machine instruction from part of the
data section, and its file position is now one byte before the beginning of the code section. It’s
entirely possible that another spurious instruction will get generated, starting with the final byte of
the data section, and then the correct first instruction in the code section will not be seen because the
starting point skipped over it. This isn’t really ideal.

To avoid this, you can specify a ‘synchronisation ’ point, or indeed as many synchronisation
points as you like (although NDISASM can only handle 8192 sync points internally). The definition
of a sync point is this: NDISASM guarantees to hit sync points exactly during disassembly. If it is
thinking about generating an instruction which would cause it to jump over a sync point, it will
discard that instruction and output a ‘db ’ instead. So it will  start disassembly exactly from the sync
point, and so you will  see all the instructions in your code section.

Sync points are specified using the −s  option: they are measured in terms of the program origin, not
the file position. So if you want to synchronize after 32 bytes of a .COM file, you would have to do

       ndisasm −o100h −s120h file.com

rather than

       ndisasm −o100h −s20h file.com

As stated above, you can specify multiple sync markers if you need to, just by repeating the −s
option.

A.3.3  Mixed Code and Data: Automatic (Intelligent) Synchronisation 
Suppose you are disassembling the boot sector of a DOS floppy (maybe it has a virus, and you need
to understand the virus so that you know what kinds of damage it might have done you). Typically,
this will contain a JMP instruction, then some data, then the rest of the code. So there is a very good
chance of NDISASM being misaligned when the data ends and the code begins. Hence a sync point
is needed.

On the other hand, why should you have to specify the sync point manually? What you’d do in
order to find where the sync point would be, surely, would be to read the JMP instruction, and then
to use its target address as a sync point. So can NDISASM do that for you?

The answer, of course, is yes: using either of the synonymous switches −a (for automatic sync) or
−i  (for intelligent sync) will enable auto−sync  mode. Auto−sync mode automatically generates
a sync point for any forward−referring PC−relative jump or call instruction that NDISASM
encounters. (Since NDISASM is one−pass, if it encounters a PC−relative jump whose target has
already been processed, there isn’t much it can do about it...)

Only PC−relative jumps are processed, since an absolute jump is either through a register (in which
case NDISASM doesn’t know what the register contains) or involves a segment address (in which
case the target code isn’t in the same segment that NDISASM is working in, and so the sync point
can’t be placed anywhere useful).

For some kinds of file, this mechanism will automatically put sync points in all the right places, and
save you from having to place any sync points manually. However, it should be stressed that
auto−sync mode is not guaranteed to catch all the sync points, and you may still have to place some
manually.

Auto−sync mode doesn’t prevent you from declaring manual sync points: it just adds automatically
generated ones to the ones you provide. It’s perfectly feasible to specify −i  and some −s  options.
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Another caveat with auto−sync mode is that if, by some unpleasant fluke, something in your data
section should disassemble to a PC−relative call or jump instruction, NDISASM may obediently
place a sync point in a totally random place, for example in the middle of one of the instructions in
your code section. So you may end up with a wrong disassembly even if you use auto−sync. Again,
there isn’t much I can do about this. If you have problems, you’ll have to use manual sync points, or
use the −k  option (documented below) to suppress disassembly of the data area.

A.3.4  Other Options
The −e option skips a header on the file, by ignoring the first N bytes. This means that the header is
not counted towards the disassembly offset: if you give −e10 −o10 , disassembly will start at byte
10 in the file, and this will be given offset 10, not 20.

The −k  option is provided with two comma−separated numeric arguments, the first of which is an
assembly offset and the second is a number of bytes to skip. This will  count the skipped bytes
towards the assembly offset: its use is to suppress disassembly of a data section which wouldn’t
contain anything you wanted to see anyway.

A.4  Bugs and Improvements
There are no known bugs. However, any you find, with patches if possible, should be sent to
nasm−bugs@lists.sourceforge.net , or to the developer’s site at
https://sourceforge.net/projects/nasm/  and we’ll try to fix them. Feel free to send
contributions and new features as well.
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