NASM — The Netwide Assembler

version 2.00

© 2007 The NASM Development Team

All rights reserved. This document is redistributable under the license given in the file "COPYING"
distributed in the NASM archive.

Contents

Chapter 1: Introduction. e e 10
1.1 Documentation Changes for Version 2.0. 10
1.1.164-Bit SUPPOIt. 10

1.1.2 Floating Point Enhancements, 10
1.1.3ELF Enhancements. e 10
1.1.4Command Line Options e 10
1.1.50ther Enhancements 10
1.2What ISNASM?. e e 10
1.2.1 Why Yet Another Assembler?. 11
1.2.2 License Conditions. L 11
1.3 Contact Information. L 11
LAInstallation. 12
1.4.1 Installing NASM under MS-DOS or Windows 12
1.4.2 Installing NASM under Unix 12
Chapter 2: Running NASM 13
2.1 NASM Command-Line Syntax e 13
2.1.1 The-o Option: Specifying the Output FileName 13
2.1.2 The-f Option: Specifying the Output File Format 14
2.1.3 The-l Option: Generatinga Listing File. 14
2.1.4 The-MOption: Generate Makefile Dependencies 14
2.1.5 The-MGOption: Generate Makefile Dependencies 14
2.1.6 The-F Option: Selecting a Debug Information Format 14
2.1.7 The-g Option: Enabling Debug Information. 15
2.1.8 The-X Option: Selecting an Error Reporting Format 15
2.1.9 The-Z Option: Send Errorstoa File 15
2.1.10 The-s Option: Send Errors tstdout 15
2.1.11 The-i Option: Include File Search Directories. 15
2.1.12 The-p Option: Pre—Include aFile. 16
2.1.13 The-d Option: Pre-DefineaMacro 16
2.1.14 The-u Option: UndefineaMacro. 16

2.1.15 The-E Option: Preprocess Only. 17

2.1.16 The-a Option: Don’'t Preprocess AtAll 17
2.1.17 The-On Option: Specifying Multipass Optimization. 17
2.1.18 The-t option: Enable TASM Compatibility Mode. 17
2.1.19 The-w Option: Enable or Disable Assembly Warnings 18
2.1.20 The-v Option: Display VersionInfo 18
2.1.21 The-y Option: Display Available Debug Info Formats 18
2.1.22 The-—prefix —and-—postfix Options. 18
2.1.23 ThReNASMEN¥Nvironment Variable 19
2.2 Quick Startfor MASM USers. e 19
221 NASMIs Case-Sensitive e 19
2.2.2 NASM Requires Square Brackets For Memory References 19
2.2.3 NASM Doesn't Store Variable Types. 20
224 NASM DoesnASSUME. e 20
2.2.5 NASM Doesn’'t Support Memory Models 20
2.2.6 Floating—Point Differences 20
2.2.7 Other Differences e 20
Chapter 3: The NASM Language o 0 i i e e e e e e e e 22
3.1 Layoutof a NASM Source Line e 22
3.2 Pseudo-INStructions. e e e 23
3.2.1DBand friends: Declaring initialized Data 23
3.2.2RESBand friends: Declaring Uninitialized Data 23
3.2.3INCBIN : Including External Binary Files 23
3.24EQUDefining Constants. 24
3.2.5TIMES: Repeating InstructionsorData. 24
3.3 Effective Addresses e e 24
34CoNStants. e e 25
341 NumericConstants. e 25
3.4.2Character Constants 26
3.4.3StringConstants e e e 26
3.4.4 Floating—Paoint Constants e 26
S5 EXPressions 27
3.5.1] : Bitwise OR Operator 28
3.5.270: Bitwise XOR Operator e 28

3.5.3& Bitwise AND Operator e e 28

3.5.4<< and>>: Bit Shift Operators e 28

3.5.5+ and-: Addition and Subtraction Operators. 28
3.5.6*,/,1l ,%and%%Multiplication and Division 28
3.5.7 Unary Operators;, —,~,! andSEG. 28
3. 6SEGAaNdWRT e 28
3.7STRICT: Inhibiting Optimization e 29
3.8 Critical EXpressions e e e e 29
39 LocalLabels. e 30
Chapter 4: The NASM Preprocessor i e e 32
4.1 Single—Line Macros. 32
4.1.1 The Normal Wayxedefine e 32
4.1.2 Enhancing %definébxdefine L 33
4.1.3 Concatenating Single Line Macro Toke¥s:. 34
4.1.4 Undefining macroSoundef 34
4.1.5 Preprocessor Variablédgassign 35
4.2 String Handling in Macro$sstrlen and%substr oL 35
4.2.1 String Length%strlen 35
4.2.2 Sub-stringgbesubstr 35
4.3 Multi—Line Macros%macro 36
4.3.1 Overloading Multi-Line Macros i 36
4.3.2Macro-Local Labels 37
4.3.3 Greedy Macro Parameters e 37
4.3.4 Default Macro Parameters e 38
4.3.5%0Q Macro Parameter Counter. e 39
4.3.6%rotate : Rotating Macro Parameters. 0L 39
4.3.7 Concatenating Macro Parameters 40
4.3.8 Condition Codes as Macro Parameters 41
4.3.9 Disabling Listing Expansion. 41
4.4 Conditional Assembly. e e 41
4.4.1%ifdef : Testing Single-Line Macro Existence. 42
4.4.2ifmacro : Testing Multi-Line Macro Existence 42
4.4.3%ifctx : Testingthe ContextStack 43
4.4 4%if : Testing Arbitrary Numeric Expressions L 43
4.45%ifidn and%ifidni : Testing Exact Text Identity 43
4.4.6%ifid , %ifnum , %ifstr : Testing Token Types. 44

4.4.7%error : Reporting User-Defined Errors 44

4.5 Preprocessor LOOPHIrep o v o i e e e e 45
4.6 Including Other Files 45
4.7 The Context Stack. e 46
4.7.1%push and%pop. Creating and Removing Contexts 46
4.7.2 Context-Local Labels 46
4.7.3 Context-Local Single-Line Macros. 47
4.7.4%repl : Renaminga Context 47
4.7.5 Example Use of the Context Stack: Block IFs 47
4.8 Standard Macros. 49
4.8.1__NASM_MAJOR_, NASM_MINOR_, NASM_SUBMINOR_and
___NASM_PATCHLEVEL_: NASM Version. e 49
4.8.2__NASM_VERSION_ID_:NASM VersionID. 49
4.8.3__NASM_VER_:NASM Versionstring. it 49
48.4 FILE and_LINE__ :File NameandLineNumber. 49
485 BITS__:CurrentBITSMode i 50
4.8.6STRUCandENDSTRUDeclaring Structure Data Types. 50
4.8.7ISTRUC, AT andIEND: Declaring Instances of Structures 51
4.8.8ALIGN andALIGNB: Data Alignment 51
4.9 Stack Relative Preprocessor Directives e 52
4.9.1%arg DireCtive. o o 52
4.9.2%stacksize Directive. 53
4.9.3%local Directive e e 53
4.10 Other Preprocessor Directives. e 54
4.10.1%line DIireCtive e 54
4.10.2%!<env>: Read an environmentvariable. 55
Chapter 5: Assembler Directives e 56
5.1BITS: Specifying Target Processor Mode. 56
5.1.1USE16& USE32 Aliases for BITS i 57
5.2DEFAULT Change the assemblerdefaults. 57
5.3SECTIONor SEGMENTChanging and Defining Sections 57
53.1The _SECT__MaCro o o i e e e e e e e e e e e e e e e 57
5.4ABSOLUTEDefining Absolute Labels 58
5.5EXTERN Importing Symbols from Other Modules 59

5.6 GLOBAL Exporting Symbols to Other Modules. 59

5.7COMMOMefining Common Data Areas 60

5.8CPU Defining CPU DependencCies. o v v i i i i e e e e e e e e 60
5.9FLOAT. Handling of floating—pointconstants. 61
Chapter 6: Output Formats. e 62
6.1bin : Flat=Form Binary Output. e 62
6.1.10RGBinary File Program Origin e 62
6.1.2bin Extensions to thEECTIONDirective. o oo i v v v .. 62
6.1.3Multisection supportforthe BINformat. 63
6.1.4Mapfiles 63
6.20bj : Microsoft OMF ObjectFiles 63
6.2.10bj Extensions to thEEGMENDirective. 64
6.2.2GROUPDefining Groups of Segments 00 65
6.2.3UPPERCASHDisabling Case Sensitivity inQutput 65
6.2.4IMPORT Importing DLL Symbols 66
6.2.5EXPORTExporting DLL Symbols 66
6.2.6..start : Defining the Program Entry Point 66
6.2.70bj Extensions to thEXTERNDirective 67
6.2.80bj Extensions to thEOMMOMirective 67
6.3win32 : Microsoft Win32 Object Files. 68
6.3.1win32 Extensions to th8ECTIONDirective 68
6.4win64 : Microsoft Win64 Object Files. 69
6.5coff : Common ObjectFile Format 69
6.6macho: Mach ObjectFile Format 69
6.7 elf, elf32, and elf64 : Executable and Linkable Format Object Files. 69
6.7.1 ELF specific directivesabi 69
6.7.2elf Extensions to thBECTIONDirective. 69
6.7.3 Position—-Independent Coadf. Special Symbols and/RT. 70
6.7.4elf Extensions to th&LOBALDirective 70
6.7.5elf Extensions to thEOMMODIrective 71
6.7.6 16-bitcode and ELF 71
6.7.7 Debug formatsand ELF 71
6.8aout : Linuxa.out ObjectFiles 71
6.9aoutb : NetBSD/FreeBSD/OpenBS&out ObjectFiles 72
6.10as86 : Minix/Linux as86 ObjectFiles. 72
6.11rdf : Relocatable Dynamic Object File Format 72

6.11.1 Requiring a Library: THEIBRARY Directive 72

6.11.2 Specifying a Module Name: TREODULBirective 73
6.11.3rdf Extensions to th&LOBALdirective 73
6.11.4rdf Extensions to thEXTERNdirective 73
6.12dbg: Debugging Format. e e 73
Chapter 7: Writing 16-bit Code (DOS, Windows 3/3.1). 75
7.1 ProducingEXE Files. e 75
7.1.1 Using th@bj Format To GeneratEXE Files 75
7.1.2 Using thédin Format To Generat&EXE Files 76
7.2 ProducingCOMFiles. e 77
7.2.1 Using thdin Format To Generat€OMFiles 77
7.2.2 Using th@bj Format To Generat€OMFiles 78
7.3 ProducingSYS Files. e 78
7.4 Interfacing to 16—-bit C Programs. 78
7.4.1 External Symbol Names 78
7.42Memory Models e 79
7.4.3 Function Definitions and FunctionCalls 80
7.4.4 Accessing Data ltems e 82
7.4.5cl6.mac : Helper Macros for the 16-bitC Interface 83
7.5 Interfacing to Borland Pascal Programs 84
7.5.1 The Pascal Calling Convention e 84
7.5.2 Borland Pascal Segment Name Restrictions 85
7.5.3 Usingcl6.mac With Pascal Programs 86
Chapter 8: Writing 32-bit Code (Unix, Win32, DJGPP). 87
8.1 Interfacing to 32-bit C Programs. 87
8.1.1 External Symbol Names e 87
8.1.2 Function Definitions and FunctionCalls 87
8.1.3 Accessing Data ltems 89
8.1.4c32.mac : Helper Macros for the 32-bitCInterface 89
8.2 Writing NetBSD/FreeBSD/OpenBSD and Linux/ELF Shared Libraries. 90
8.2.1 Obtaining the Address of the GOT 90
8.2.2 Finding Your Local Data ltems 91
8.2.3 Finding External and Common Dataltems 92
8.2.4 Exporting Symbols to the LibraryUser. 92

8.2.5 Calling Procedures Outside the Library. 93

8.2.6 Generating the Library File

................................. 93
Chapter 9: Mixing 16 and 32 BitCode 94
9.1 Mixed—=Size JUMPS 94
9.2 Addressing Between Different-Size Segments 94
9.3 Other Mixed-Size Instructions 95
Chapter 10: Writing 64-bit Code (Unix, Win64). 97
10.1 Immediates and displacements in 64-bitmode. L. 97
10.2 Interfacing to 64—bit C Programs (Unix) o oo e 98
10.3 Interfacing to 64—bit C Programs (Win64) 98
Chapter 11: Troubleshooting. e 99
11.1 Common Problems. e 99
11.1.1 NASM Generates InefficientCode. 99
11.1.2MyJdumpsare OQutof Range 99
11.1.30RGD0esNtWOrK e e e 99
11.1ATIMES Doesn't Work e 100
L12BUGS & . o o o e e e e e e e e e 100
Appendix A: Ndisasm e e e e e e 102
Al Introduction. e e 102
A.2 Getting Started: Installation 102
A3 RunNning NDISASM 102
A.3.1 COM Files: Specifyingan Origin. 102
A.3.2 Code Following Data: Synchronisation. 102
A.3.3 Mixed Code and Data: Automatic (Intelligent) Synchronisation 103
A.3.4 0ther Options e 104
A.4 Bugs and Improvements e 104

Chapter 1: Introduction

1.1 Documentation Changes for Version 2.0
1.1.1 64-Bit Support
e Writing 64-bit Code chapter 10
» elf32 and elf64 output formats section 6.7
« win64 output format section 6.4
* Numeric constants in DQ directive section 3.2.1
» oword, do and reso section 3.2.1
« Stack Relative Preprocessor Directives section 4.9
1.1.2 Floating Point Enhancements
e 8-hit floating—point format section 3.4.4
» Floating—point option control section 5.9
 Infinity and NaN section 3.4.4
1.1.3 ELF Enhancements
» Symbol Visibility section 6.7.4
e Setting OSABI value in ELF header section 6.7.1
¢ Debug Formats section 6.7.7
1.1.4 Command Line Options
« Generate Makefile Dependencies section 2.1.5
» Send Errors to a File section 2.1.9
< Unlimited Optimization Passes section 2.1.17
1.1.5 Other Enhancements
¢ %IFN and %ELIFN section 4.4
» Logical Negation Operatdr section 3.5.7
e Current BITS Mode section 4.8.5
¢ Use of%+section 4.1.3

1.2 What Is NASM?

The Netwide Assembler, NASM, is an 80x86 and x86—-64 assembler designed for portability and
modularity. It supports a range of object file formats, including Linux @D a.out , ELF,

COFF, Mach—-Q Microsoft 16—hitOBJ, Win32 andWin64 . It will also output plain binary files.

Its syntax is designed to be simple and easy to understand, similar to Intel's but less complex. It
supports from the upto and includifg@ntium , P6, MMX3DNow!, SSE SSE2, SSE3 andx64
opcodes. NASM has a strong support for macro conventions.

10

1.2.1 Why Yet Another Assembler?

The Netwide Assembler grew out of an idea oopmp.lang.asm.x86 (or possibly
alt.lang.asm — | forget which), which was essentially that there didn't seem to be afggeod
x86-series assembler around, and that maybe someone ought to write one.

« a86 is good, but not free, and in particular you don’t get any 32-bit capability until you pay. It's
DOS only, too.

» gas is free, and ports over to DOS and Unix, but it's not very good, since it's designed to be a
back end tgycc , which always feeds it correct code. So its error checking is minimal. Also, its
syntax is horrible, from the point of view of anyone trying to actuatliiyje anything in it. Plus
you can’t write 16—bit code in it (properly.)

¢ as86 is specific to Minix and Linux, and (my version at least) doesn’'t seem to have much (or
any) documentation.

« MASMsnN't very good, and it's (was) expensive, and it runs only under DOS.

« TASMis better, but still strives for MASM compatibility, which means millions of directives and
tons of red tape. And its syntax is essentially MASM'’s, with the contradictions and quirks that
entails (although it sorts out some of those by means of Ideal mode.) It's expensive too. And it's
DOS-only.

So here, for your coding pleasure, is NASM. At present it's still in prototype stage — we don’t
promise that it can outperform any of these assemblers. But pj@aasesend us bug reports,

fixes, helpful information, and anything else you can get your hands on (and thanks to the many
people who've done this already! You all know who you are), and we’ll improve it out of all
recognition. Again.

1.2.2 License Conditions

Please see the filEOPYING supplied as part of any NASM distribution archive, for the license
conditions under which you may use NASM. NASM is now under the so-called GNU Lesser
General Public License, LGPL.

1.3 Contact Information

The current version of NASM (since about 0.98.08) is maintained by a team of developers,
accessible through theasm-devel mailing list (see below for the link). If you want to report a
bug, please read section 11.2 first.

NASM has a WWW page &ttp://nasm.sourceforge.net . If it's not there, google for us!

The original authors are e—mailable jates@dsf.org.uk and anakin@pobox.com . The
latter is no longer involved in the development team.

New releases of NASM are uploaded to the official ditiés://nasm.sourceforge.net
and toftp.kernel.org andibiblio.org

Announcements are posted tocomp.lang.asm.x86 , altlang.asm and
comp.os.linux.announce

If you want information about NASM beta releases, and the current development status, please
subscribe to the nasm-devel email list by registering at
http://sourceforge.net/projects/nasm

11

http://nasm.sourceforge.net
mailto:jules@dsf.org.uk
mailto:anakin@pobox.com
http://nasm.sourceforge.net
ftp://ftp.kernel.org/pub/software/devel/nasm/
ftp://ibiblio.org/pub/Linux/devel/lang/assemblers/
news:comp.lang.asm.x86
news:alt.lang.asm
news:comp.os.linux.announce
http://sourceforge.net/projects/nasm

1.4 Installation
1.4.1 Installing NASM under MS-DOS or Windows

Once you've obtained the DOS archive for NASNgsmXXX.zip (where XXX denotes the
version number of NASM contained in the archive), unpack it into its own directory (for example
c:\nasm).

The archive will contain four executable files: the NASM executable filasm.exe and
nasmw.exe , and the NDISASM executable fileslisasm.exe andndisasmw.exe . In each
case, the file whose name endsviis aWin32 executable, designed to run undiéindows 95 or
Windows NT Intel, and the other one is a 16-BiDSexecutable.

The only file NASM needs to run is its own executable, so copy (at least) orasmiexe and
nasmw.exe to a directory on your PATH, or alternatively edittoexec.bat to add thenasm
directory to yourPATH (If you're only installing thaNin32 version, you may wish to rename it to
nasm.exe .)

That's it — NASM is installed. You don't need the nasm directory to be present to run NASM
(unless you've added it to yot¥ATH, so you can delete it if you need to save space; however, you
may want to keep the documentation or test programs.

If you've downloaded the DOS source archimasmXXXs.zip , the nasm directory will also
contain the full NASM source code, and a selection of Makefiles you can (hopefully) use to rebuild
your copy of NASM from scratch.

Note that the source filaasnsa.c , insnsd.c , insnsi.h andinsnsn.c are automatically
generated from the master instruction tainlens.dat by a Perl script; the filenacros.c is
generated fronstandard.mac by another Perl script. Although the NASM source distribution
includes these generated files, you will need to rebuild them (and hence, will need a Perl interpreter)
if you change insns.dat, standard.mac or the documentation. It is possible future source distributions
may not include these files at all. Ports of Perl for a variety of platforms, including DOS and
Windows, are available from www.cpan.org.

1.4.2 Installing NASM under Unix

Once you've obtained the Unix source archive for NASism—X.XX.tar.gz (where X.XX
denotes the version number of NASM contained in the archive), unpack it into a directory such as
{usr/local/src . The archive, when unpacked, will create its own subdirectasmn—X.XX.

NASM is an auto-configuring package: once you've unpackeddit{o the directory it's been
unpacked into and typéconfigure . This shell script will find the best C compiler to use for
building NASM and set up Makefiles accordingly.

Once NASM has auto—-configured, you can typake to build thenasm andndisasm binaries,
and thenmake install to install them in/usr/local/bin and install the man pages
nasm.l andndisasm.l in /usr/local/man/manl . Alternatively, you can give options
such as-—prefix to the configure script (see the fiNSTALL for more details), or install the
programs yourself.

NASM also comes with a set of utilities for handling BRBOFFcustom object—file format, which
are in therdoff subdirectory of the NASM archive. You can build these witike rdf and
install them withmake rdf _install , if you want them.

If NASM fails to auto—configure, you may still be able to make it compile by using the fall-back
Unix makefile Makefile.unx . Copy or rename that file tMakefile and try typingmake.
There is also a Makefile.unx file in tihéoff subdirectory.

http://www.cpan.org/ports/

Chapter 2: Running NASM

2.1 NASM Command-Line Syntax
To assemble a file, you issue a command of the form
nasm —f <format> <filename> [-0 <output>]
For example,
nasm —f elf myfile.asm
will assemblanyfile.asm into anELF object filemyfile.o . And
nasm —f bin myfile.asm —o myfile.com
will assemblemyfile.asm into a raw binary filemyfile.com

To produce a listing file, with the hex codes output from NASM displayed on the left of the original
sources, use thd option to give a listing file name, for example:

nasm —f coff myfile.asm —I myfile.Ist

To get further usage instructions from NASM, try typing

nasm —-h

As —hf , this will also list the available output file formats, and what they are.

If you use Linux but aren’t sure whether your systemdsit or ELF, type

file nasm

(in the directory in which you put the NASM binary when you installed it). If it says something like
nasm: ELF 32-bit LSB executable i386 (386 and up) Version 1

then your system iELF, and you should use the optiehelf when you want NASM to produce
Linux object files. If it says

nasm: Linux/i386 demand-paged executable (QMAGIC)

or something similar, your systemasout , and you should usef aout instead (Linuxa.out
systems have long been obsolete, and are rare these days.)

Like Unix compilers and assemblers, NASM is silent unless it goes wrong: you won't see any
output at all, unless it gives error messages.

2.1.1 The-o Option: Specifying the Output File Name

NASM will normally choose the name of your output file for you; precisely how it does this is
dependent on the object file format. For Microsoft object file formaltg (andwin32), it will
remove theasm extension (or whatever extension you like to use — NASM doesn't care) from
your source file name and substitutdhj . For Unix object file formatsaput , coff , elf |,
macho andas86) it will substitute.o . Forrdf , it will use.rdf , and for thebin format it will
simply remove the extension, so thagfile.asm produces the output fil@yfile

If the output file already exists, NASM will overwrite it, unless it has the same name as the input
file, in which case it will give a warning and usasm.out as the output file name instead.

13

For situations in which this behaviour is unacceptable, NASM provides-agheommand-line
option, which allows you to specify your desired output file name. You invokby following it
with the name you wish for the output file, either with or without an intervening space. For example:

nasm —f bin program.asm —o program.com
nasm —f bin driver.asm —odriver.sys

Note that this is a small o, and is different from a capital O , which is used to specify the number of
optimisation passes required. See section 2.1.17.

2.1.2 The—f Option: Specifying the Output File Format

If you do not supply thef option to NASM, it will choose an output file format for you itself. In
the distribution versions of NASM, the default is always ; if you've compiled your own copy of
NASM, you can redefin©F_DEFAULTat compile time and choose what you want the default to
be.

Like —o, the intervening space betweeh and the output file format is optional; sbelf and
—felf are both valid.

A complete list of the available output file formats can be given by issuing the command
nasm —hf .

2.1.3 The-l Option: Generating a Listing File

If you supply the-I option to NASM, followed (with the usual optional space) by a file name,
NASM will generate a source-listing file for you, in which addresses and generated code are listed
on the left, and the actual source code, with expansions of multi-line macros (except those which
specifically request no expansion in source listings: see section 4.3.9) on the right. For example:

nasm —f elf myfile.asm —I myfile.Ist

If a list file is selected, you may turn off listing for a section of your source [listh-] , and
turn it back on with[list +] , (the default, obviously). There is no "user form" (without the
brackets). This can be used to list only sections of interest, avoiding excessively long listings.

2.1.4 The-MOption: Generate Makefile Dependencies

This option can be used to generate makefile dependencies on stdout. This can be redirected to a file
for further processing. For example:

NASM —-M myfile.asm > myfile.dep
2.1.5 The-MQOption: Generate Makefile Dependencies

This option can be used to generate makefile dependencies on stdout. This differs frdvh the
option in that if a nonexisting file is encountered, it is assumed to be a generated file and is added to
the dependency list without a prefix.

2.1.6 The—F Option: Selecting a Debug Information Format

This option is used to select the format of the debug information emitted into the output file, to be
used by a debugger (aiill be). Use of this switch do@®t enable output of the selected debug info
format. Use-g, see section 2.1.7, to enable output.

A complete list of the available debug file formats for an output format can be seen by issuing the
commandnasm —f <format> -y . (As of 2.00, only "-f elf32", "-f elf64", "-f ieee", and "—f
obj" provide debug information.) See: section 2.1.21.

This should not be confused with the "-f dbg" output format option which is not built into NASM
by default. For information on how to enable it when building from the sources, see section 6.12

2.1.7 The—g Option: Enabling Debug Information.

This option can be used to generate debugging information in the specified format. See: section
2.1.6. Using—g without —F results in emitting debug info in the default format, if any, for the
selected output format. If no debug information is currently implemented in the selected output
format,—g is silently ignored

2.1.8 The—X Option: Selecting an Error Reporting Format

This option can be used to select an error reporting format for any error messages that might be
produced by NASM.

Currently, two error reporting formats may be selected. They areXkie option and the-Xgnu
option. The GNU format is the default and looks like this:

filename.asm:65: error: specific error message

wherefilename.asm is the name of the source file in which the error was dete6teds the
source file line number on which the error was deteatedy is the severity of the error (this
could bewarning), andspecific error message is a more detailed text message which
should help pinpoint the exact problem.

The other format, specified byXvc is the style used by Microsoft Visual C++ and some other
programs. It looks like this:

filename.asm(65) : error: specific error message

where the only difference is that the line number is in parentheses instead of being delimited by
colons.

See also th¥isual C++ output format, section 6.3.
2.1.9 The-Z Option: Send Errors to a File

UnderMS-DOSt can be difficult (though there are ways) to redirect the standard—error output of a
program to a file. Since NASM usually produces its warning and error messagttean |, this
can make it hard to capture the errors if (for example) you want to load them into an editor.

NASM therefore provides theZ option, taking a filename argument which causes errors to be sent
to the specified files rather than standard error. Therefore you can redirect the errors into a file by

typing
nasm —Z myfile.err —f obj myfile.asm

In earlier versions of NASM, this option was callel, but it was changed sined is an option
conventionally used for preprocessing only, with disastrous results. See section 2.1.15.

2.1.10 The-s Option: Send Errors to stdout

The —s option redirects error messagesstdout rather thanstderr , so it can be redirected
underMS-DOSTo assemble the filmyfile.asm and pipe its output to thmore program, you
can type:

nasm —s —f obj myfile.asm | more
See also theZ option, section 2.1.9.
2.1.11 The-i Option: Include File Search Directories

When NASM sees th&include orincbin directive in a source file (see section 4.6 or section
3.2.3), it will search for the given file not only in the current directory, but also in any directories

15

specified on the command line by the use of-theoption. Therefore you can include files from a
macro library, for example, by typing

nasm —ic:\\macrolib\\ -f obj myfile.asm
(As usual, a space between and the path name is allowed, and optional).

NASM, in the interests of complete source—code portability, does not understand the file naming
conventions of the OS it is running on; the string you provide as an argumentio tpion will
be prepended exactly as written to the name of the include file. Therefore the trailing backslash in
the above example is necessary. Under Unix, a trailing forward slash is similarly necessary.

(You can use this to your advantage, if you're really perverse, by noting that the fiimn will

causé»include "bar.i" to search for the filoobar.i ...)

If you want to define atandardinclude search path, similar tosr/include on Unix systems,
you should place one or moré directives in theNASMEN\environment variable (see section
2.1.23).

For Makefile compatibility with many C compilers, this option can also be specifield.as
2.1.12 The-p Option: Pre—Include a File

NASM allows you to specify files to bere—includedinto your source file, by the use of the
option. So running

nasm myfile.asm —p myinc.inc

is equivalent to running nasm myfile.asm and placing the directive
%include "myinc.inc" at the start of the file.

For consistency with thel , =D and-U options, this option can also be specified-Bs
2.1.13 The-d Option: Pre—Define a Macro

Just as the-p option gives an alternative to placifginclude directives at the start of a source
file, the—d option gives an alternative to placin§wefine directive. You could code

nasm myfile.asm —dFO0O=100
as an alternative to placing the directive
%define FOO 100

at the start of the file. You can miss off the macro value, as well: the cftfe@Ois equivalent to
coding %define FOO . This form of the directive may be useful for selecting assembly—-time
options which are then tested usiifdef , for example-dDEBUG

For Makefile compatibility with many C compilers, this option can also be specifieD.as
2.1.14 The-u Option: Undefine a Macro

The —u option undefines a macro that would otherwise have been pre-defined, either automatically
or by a—p or—d option specified earlier on the command lines.

For example, the following command line:
nasm myfile.asm —dFOO=100 —uFOO

would result inFOOnot being a predefined macro in the program. This is useful to override options
specified at a different point in a Makefile.

For Makefile compatibility with many C compilers, this option can also be specified.as

2.1.15 The-E Option: Preprocess Only

NASM allows the preprocessor to be run on its own, up to a point. UsingBhaption (which
requires no arguments) will cause NASM to preprocess its input file, expand all the macro
references, remove all the comments and preprocessor directives, and print the resulting file on
standard output (or save it to a file, if the option is also used).

This option cannot be applied to programs which require the preprocessor to evaluate expressions
which depend on the values of symbols: so code such as

%assign tablesize ($-tablestart)
will cause an error in preprocess—only mode.

For compatiblity with older version of NASM, this option can also be written —E in older
versions of NASM was the equivalent of the currefitoption, section 2.1.9.

2.1.16 The-a Option: Don't Preprocess At All

If NASM is being used as the back end to a compiler, it might be desirable to suppress
preprocessing completely and assume the compiler has already done it, to save time and increase
compilation speeds. Thea option, requiring no argument, instructs NASM to replace its powerful
preprocessor with a stub preprocessor which does nothing.

2.1.17 The-OnOption: Specifying Multipass Optimization.

NASM defaults to being a two pass assembler. This means that if you have a complex source file
which needs more than 2 passes to assemble optimally, you have to enable extra passes.

Using the-O option, you can tell NASM to carry out multiple passes. The syntax is:

» —0O0 strict two—pass assembly, JMP and Jcc are handled more like v0.98, except that backward
JMPs are short, if possible. Immediate operands take their long forms if a short form is not
specified.

e -0l strict two—pass assembly, but forward branches are assembled with code guaranteed to
reach; may produce larger code than —OO0, but will produce successful assembly more often if
branch offset sizes are not specified. Additionally, immediate operands which will fit in a signed
byte are optimized, unless the long form is specified.

« —On multi-pass optimization, minimize branch offsets; also will minimize signed immediate
bytes, overriding size specification unless s$krict keyword has been used (see section 3.7).
The number specifies the maximum number of passes. The more passes, the better the code, bu
the slower is the assembly.

« —Ox wherex is the actual lettex, indicates to NASM to do unlimited passes.

Note that this is a capital O, and is different from a small o, which is used to specify the output
format. See section 2.1.1.

2.1.18 The-t option: Enable TASM Compatibility Mode

NASM includes a limited form of compatibility with BorlandT/ASM When NASM’s—t option is
used, the following changes are made:

« local labels may be prefixed wit® @hstead of

« size override is supported within brackets. In TASM compatible mode, a size override inside
square brackets changes the size of the operand, and not the address type of the operand as |
does in NASM syntax. E.gnov eax,[DWORD val] is valid syntax in TASM compatibility
mode. Note that you lose the ability to override the default address type for the instruction.

17

e unprefixed forms of some directives supportedg(, elif , else , endif , if , ifdef
ifdifi ,ifndef ,include ,local)

2.1.19 The-wOption: Enable or Disable Assembly Warnings

NASM can observe many conditions during the course of assembly which are worth mentioning to
the user, but not a sufficiently severe error to justify NASM refusing to generate an output file.
These conditions are reported like errors, but come up with the word ‘warning’ before the message.
Warnings do not prevent NASM from generating an output file and returning a success status to the
operating system.

Some conditions are even less severe than that: they are only sometimes worth mentioning to the
user. Therefore NASM supports thev command-line option, which enables or disables certain
classes of assembly warning. Such warning classes are described by a name, for example
orphan-labels ; you can enable warnings of this class by the command-line option
-w+orphan-labels and disable it byw-orphan-Ilabels

The suppressible warning classes are:

* macro—params covers warnings about multi-line macros being invoked with the wrong
number of parameters. This warning class is enabled by default; see section 4.3.1 for an example
of why you might want to disable it.

¢ macro—selfref warns if a macro references itself. This warning class is enabled by default.

» orphan-labels covers warnings about source lines which contain no instruction but define a
label without a trailing colon. NASM does not warn about this somewhat obscure condition by
default; see section 3.1 for an example of why you might want it to.

* number—overflow covers warnings about numeric constants which don'’t fit in 32 bits (for

example, it's easy to type one too many Fs and pro@uaéffffff by mistake). This
warning class is enabled by default.
* gnu-elf-extensions warns if 8—bit or 16-bit relocations are used-irelf format. The

GNU extensions allow this. This warning class is enabled by default.

* In addition, warning classes may be enabled or disabled across sections of source code with
[warning +warning—name] or [warning -warning—name] . No "user form"
(without the brackets) exists.

2.1.20 The-v Option: Display Version Info

Typing NASM -v will display the version of NASM which you are using, and the date on which it
was compiled.

You will need the version number if you report a bug.
2.1.21 The-y Option: Display Available Debug Info Formats

Typing nasm —f <option> -y will display a list of the available debug info formats for the
given output format. The default format is indicated by an asteriskn&sgn —f elf -y yields
* stabs . (as of 2.00, thenly debug info format implemented for this output format).

2.1.22 The-—prefix and--postfix Options.

The ——prefix and—-postfix options prepend or append (respectively) the given argument to
all global orextern variables. E.g-——prefix_ will prepend the underscore to all global and
external variables, as C sometimes (but not always) likes it.

2.1.23 TheNASMENEnvironment Variable

If you define an environment variable callslASMENVthe program will interpret it as a list of
extra command-line options, which are processed before the real command line. You can use this to
define standard search directories for include files, by puttingptions in theNASMENVWariable.

The value of the variable is split up at white space, so that the vald&:\nasmlib will be
treated as two separate options. However, that means that the-ddlA®E="my name" won’t

do what you might want, because it will be split at the space and the NASM command-line
processing will get confused by the two nonsensical wetddAME="myandname".

To get round this, NASM provides a feature whereby, if you beginN\h8 MEN\&nvironment
variable with some character that isn't a minus sign, then NASM will treat this character as the
separator character for options. So setting tANASMENV variable to the value
I-sl-ic:\nasmlib is equivalent to setting it to-s -ic:\nasmlib , but
I-dNAME="my name" will work.

This environment variable was previously cald&SMThis was changed with version 0.98.31.

2.2 Quick Start for MASM Users

If you're used to writing programs with MASM, or with TASM in MASM-compatible (non-Ideal)
mode, or witha86, this section attempts to outline the major differences between MASM'’s syntax
and NASM's. If you're not already used to MASM, it's probably worth skipping this section.

2.2.1 NASM Is Case-Sensitive

One simple difference is that NASM is case-sensitive. It makes a difference whether you call your
label foo , Foo or FOO If you're assembling t®OSor OS/2 .OBJ files, you can invoke the
UPPERCASHlirective (documented in section 6.2) to ensure that all symbols exported to other
code modules are forced to be upper case; but even il a single module, NASM will
distinguish between labels differing only in case.

2.2.2 NASM Requires Square Brackets For Memory References

NASM was designed with simplicity of syntax in mind. One of the design goals of NASM is that it
should be possible, as far as is practical, for the user to look at a single line of NASM code and tell
what opcode is generated by it. You can’t do this in MASM: if you declare, for example,

foo equ 1
bar dw 2

then the two lines of code

mov ax,foo
mov ax,bar

generate completely different opcodes, despite having identical-looking syntaxes.

NASM avoids this undesirable situation by having a much simpler syntax for memory references.
The rule is simply that any access to tomtentsof a memory location requires square brackets
around the address, and any access tadligessof a variable doesn’t. So an instruction of the
form mov ax,foo will alwaysrefer to a compile-time constant, whether it's BQUor the
address of a variable; and to access twomtents of the variablebar, you must code

mov ax,[bar]

This also means that NASM has no need for MASMIIEFSETkeyword, since the MASM code

mov ax,offset bar means exactly the same thing as NASMa@v ax,bar . If you're trying
to get large amounts of MASM code to assemble sensibly under NASM, you can always code
%idefine offset to make the preprocessor treat @ieFSETkeyword as a no—-op.

19

20

This issue is even more confusingai®6, where declaring a label with a trailing colon defines it to
be a ‘label’ as opposed to a ‘variable’ and cawd® to adopt NASM-style semantics; sod86,
mov ax,var has different behaviour depending on whethar was declared agar: dw 0 (a
label) orvar dw 0 (a word-size variable). NASM is very simple by comparisarerythingis a

label.

NASM, in the interests of simplicity, also does not support the hybrid syntaxes supported by
MASM and its clones, such asov ax,table[bx] , Where a memory reference is denoted by

one portion outside square brackets and another portion inside. The correct syntax for the above is
mov ax,[table+bx] . Likewise, mov ax,es:[di] is wrong andmov ax,[es:di] is

right.

2.2.3 NASM Doesn’t Store Variable Types

NASM, by design, chooses not to remember the types of variables you declare. Whereas MASM
will remember, on seeingar dw 0 , that you declaredar as a word-size variable, and will then

be able to fill in the ambiguity in the size of the instructivov var,2 , NASM will deliberately
remember nothing about the symb@lr except where it begins, and so you must explicitly code
mov word [var],2

For this reason, NASM doesn’'t support th®DS MOVS STOS SCAS CMPSINS, or OUTS
instructions, but only supports the forms suchL&@DSB MOVSWand SCASD which explicitly
specify the size of the components of the strings being manipulated.

2.2.4 NASM Doesn'tASSUME

As part of NASM'’s drive for simplicity, it also does not support A&5UMHlirective. NASM will
not keep track of what values you choose to put in your segment registers, and will never
automaticallygenerate a segment override prefix.

2.2.5 NASM Doesn’'t Support Memory Models

NASM also does not have any directives to support different 16—bit memory models. The
programmer has to keep track of which functions are supposed to be called with a far call and which
with a near call, and is responsible for putting the correct forREX instruction RETNor RETFE

NASM acceptsRET itself as an alternate form fdRETN; in addition, the programmer is
responsible for coding CALL FAR instructions where necessary when cattggnal functions,

and must also keep track of which external variable definitions are far and which are near.

2.2.6 Floating—Point Differences

NASM uses different names to refer to floating—point registers from MASM: where MASM would
call themST(0) , ST(1) and so on, and86 would call them simply0, 1 and so on, NASM
chooses to call thestO , st1 etc.

As of version 0.96, NASM now treats the instructions with ‘nowait’ forms in the same way as
MASM-compatible assemblers. The idiosyncratic treatment employed by 0.95 and earlier was
based on a misunderstanding by the authors.

2.2.7 Other Differences
For historical reasons, NASM uses the keyw®WWORDBvhere MASM and compatible assemblers

useTBYTE
NASM does not declare uninitialized storage in the same way as MASM: where a MASM
programmer might usstack db 64 dup (?) , NASM requiresstack resb 64 , intended

to be read as ‘reserve 64 bytes’. For a limited amount of compatibility, since NASM2raata
valid character in symbol names, you can c@dsgqu 0 and then writingdw ? will at least do
something vaguely usefuDUPis still not a supported syntax, however.

In addition to all of this, macros and directives work completely differently to MASM. See chapter
4 and chapter 5 for further details.

21

22

Chapter 3: The NASM Language

3.1 Layout of a NASM Source Line

Like most assemblers, each NASM source line contains (unless it is a macro, a preprocessor
directive or an assembler directive: see chapter 4 and chapter 5) some combination of the four fields

label: instruction operands ; comment

As usual, most of these fields are optional; the presence or absence of any combination of a label,
an instruction and a comment is allowed. Of course, the operand field is either required or forbidden
by the presence and nature of the instruction field.

NASM uses backslash (\) as the line continuation character; if a line ends with backslash, the next
line is considered to be a part of the backslash—ended line.

NASM places no restrictions on white space within a line: labels may have white space before
them, or instructions may have no space before them, or anything. The colon after a label is also
optional. (Note that this means that if you intend to dodsb alone on a line, and typedab

by accident, then that's still a valid source line which does nothing but define a label. Running

NASM with the command-line optiorw+orphan—labels will cause it to warn you if you

define a label alone on a line without a trailing colon.)

Valid characters in labels are letters, numbers$, #, @ ~, . , and?. The only characters which

may be used as tHest character of an identifier are letters,(with special meaning: see section
3.9),_and?. An identifier may also be prefixed with$ato indicate that it is intended to be read as

an identifier and not a reserved word; thus, if some other module you are linking with defines a
symbol calledeax, you can refer tdbeax in NASM code to distinguish the symbol from the
register. Maximum length of an identifier is 4095 characters.

The instruction field may contain any machine instruction: Pentium and P6 instructions, FPU
instructions, MMX instructions and even undocumented instructions are all supported. The
instruction may be prefixed byOCK REP, REPEREPZ or REPNEREPNZ in the usual way.

Explicit address—size and operand-size prefiRd$, A32, 016 and O32 are provided — one
example of their use is given in chapter 9. You can also use the name of a segment register as an
instruction prefix: codinges mov [bx],ax is equivalent to codingnov [es:bx],ax . We
recommend the latter syntax, since it is consistent with other syntactic features of the language, but
for instructions such asODSB which has no operands and yet can require a segment override,
there is no clean syntactic way to proceed apart shodsb

An instruction is not required to use a prefix: prefixes sucBAA32, LOCKor REPEcan appear
on a line by themselves, and NASM will just generate the prefix bytes.

In addition to actual machine instructions, NASM also supports a number of pseudo-instructions,
described in section 3.2.

Instruction operands may take a number of forms: they can be registers, described simply by the
register name (e.@x, bp, ebx, crO : NASM does not use thgas —style syntax in which register
names must be prefixed byasign), or they can be effective addresses (see section 3.3), constants
(section 3.4) or expressions (section 3.5).

For x87 floating—point instructions, NASM accepts a wide range of syntaxes: you can use
two—operand forms like MASM supports, or you can use NASM’s native single—operand forms in
most cases. For example, you can code:

fadd stl : this sets stO ;= st0 + stl

fadd stO,stl : so does this
fadd stl,stO : this sets stl := stl + st0
fadd to stl : so does this

Almost any x87 floating—point instruction that references memory must use one of the prefixes
DWORMWORDr TWORIM indicate what size of memory operand it refers to.

3.2 Pseudo-Instructions

Pseudo-instructions are things which, though not real x86 machine instructions, are used in the
instruction field anyway because that's the most convenient place to put them. The current
pseudo-instructions a®B DWDD DQ DT andDQ their uninitialized counterparRESB RESW
RESDRESQRESTandRESQtheINCBIN command, th&QUcommand, and thEIMES prefix.

3.2.1 DBand friends: Declaring initialized Data

DB DWDD DQ DT andDOare used, much as in MASM, to declare initialized data in the output
file. They can be invoked in a wide range of ways:

db 0x55 ; just the byte 0x55

db 0x55,0x56,0x57 ; three bytes in succession
db ’a’,0x55 ; character constants are OK
db ’hello’,13,10,’$’ ; so are string constants

dw 0x1234 1 0x34 0x12

dw 'a’ ; Ox61 0x00 (it's just a number)
dw ‘ab’ ; Ox61 0x62 (character constant)
dw ’'abc’ ; Ox61 0x62 0x63 0x00 (string)
dd 0x12345678 ; OX78 0x56 0x34 0x12

dd 1.234567e20 ; floating—point constant

dg 0x123456789abcdefO ; eight byte constant
dg 1.234567e20 ; double—precision float

dt 1.234567e20 ; extended-precision float

DT andDOdo not accept numeric constants as operands.
3.2.2 RESBand friends: Declaring Uninitialized Data

RESB RESWRESD RESQ REST and RESOare designed to be used in the BSS section of a
module: they declareninitialized storage space. Each takes a single operand, which is the number
of bytes, words, doublewords or whatever to reserve. As stated in section 2.2.7, NASM does not
support the MASM/TASM syntax of reserving uninitialized space by wribdWy ? or similar

things: this is what it does instead. The operand RE&B-type pseudo-instruction is @itical
expressionsee section 3.8.

For example:

buffer: resb 64 ; reserve 64 bytes
wordvar: resw 1 : reserve a word
realarray resq 10 ; array of ten reals

3.2.3 INCBIN: Including External Binary Files

INCBIN is borrowed from the old Amiga assembler DevPac: it includes a binary file verbatim into
the output file. This can be handy for (for example) including graphics and sound data directly into
a game executable file. It can be called in one of these three ways:

23

incbin "file.dat" ; include the whole file

incbin "file.dat",1024 ; skip the first 1024 bytes

inchbin “file.dat",1024,512 ; skip the first 1024, and
; actually include at most 512

3.2.4 EQU Defining Constants

EQUdefines a symbol to a given constant value: wB&wis used, the source line must contain a
label. The action oEQUis to define the given label name to the value of its (only) operand. This
definition is absolute, and cannot change later. So, for example,

message db ’hello, world’
msglen equ $-message

definesmsglen to be the constant 1sglen may not then be redefined later. This is not a
preprocessor definition either: the valuem$glen is evaluatecbnce using the value of (see
section 3.5 for an explanation $j at the point of definition, rather than being evaluated wherever
it is referenced and using the valuebadit the point of reference. Note that the operand tBQuis

also a critical expression (section 3.8).

3.2.5 TIMES Repeating Instructions or Data

The TIMES prefix causes the instruction to be assembled multiple times. This is partly present as
NASM’s equivalent of theDUP syntax supported by MASM-compatible assemblers, in that you
can code

zerobuf;: times 64 db 0

or similar things; bufTIMES is more versatile than that. The argumenfTtMES is not just a
numeric constant, but a numeegpressionso you can do things like

buffer: db 'hello, world’
times 64-$+buffer db '’

which will store exactly enough spaces to make the total lengthuféér up to 64. Finally,
TIMES can be applied to ordinary instructions, so you can code trivial unrolled loops in it:

times 100 movsb

Note that there is no effective difference betwasmes 100 resb 1 andresb 100 , except
that the latter will be assembled about 100 times faster due to the internal structure of the assembler.

The operand td'IMES, like that of EQUand those oRESBand friends, is a critical expression
(section 3.8).

Note also thalfIMES can't be applied to macros: the reason for this is THSIES is processed

after the macro phase, which allows the argumenTHdES to contain expressions such as
64-$+buffer as above. To repeat more than one line of code, or a complex macro, use the
preprocessatorep directive.

3.3 Effective Addresses

An effective address is any operand to an instruction which references memory. Effective addresses,
in NASM, have a very simple syntax: they consist of an expression evaluating to the desired
address, enclosed in square brackets. For example:

wordvar dw 123
mov ax,[wordvar]
mov ax,[wordvar+1]
mov ax,[es:wordvar+bx]

Anything not conforming to this simple system is not a valid memory reference in NASM, for
examplees:wordvar[bx]

More complicated effective addresses, such as those involving more than one register, work in
exactly the same way:

mov eax,[ebx*2+ecx+offset]
mov ax,[bp+di+8]

NASM is capable of doing algebra on these effective addresses, so that things which don't
necessarilyook legal are perfectly all right:

mov eax,[ebx*5] ; assembles as [ebx*4+ebx]
mov eax,[label1*2-label2] ;ie [labell+(labell-label?)]

Some forms of effective address have more than one assembled form; in most such cases NASM
will generate the smallest form it can. For example, there are distinct assembled forms for the
32-bit effective addressgeax*2+0] and[eax+eax] , and NASM will generally generate the

latter on the grounds that the former requires four bytes to store a zero offset.

NASM has a hinting mechanism which will caugax+ebx] and[ebx+eax] to generate
different opcodes; this is occasionally useful becgesieebp] and[ebp+esi] have different
default segment registers.

However, you can force NASM to generate an effective address in a particular form by the use of
the keywordBYTE WORPDWORRNANOSPLIT. If you needeax+3] to be assembled using a
double-word offset field instead of the one byte NASM will normally generate, you can code
[dword eax+3] . Similarly, you can force NASM to use a byte offset for a small value which it
hasn’'t seen on the first pass (see section 3.8 for an example of such a code fragment) by using
[byte eax+offset] . As special casefhyte eax] will code [eax+0] with a byte offset

of zero, anddword eax] will code it with a double-word offset of zero. The normal form,

[eax] , will be coded with no offset field.

The form described in the previous paragraph is also useful if you are trying to access data in a
32-bit segment from within 16 bit code. For more information on this see the section on
mixed-size addressing (section 9.2). In particular, if you need to access data with a known offset
that is larger than will fit in a 16—bit value, if you don’t specify that it is a dword offset, nasm will
cause the high word of the offset to be lost.

Similarly, NASM will split [eax*2] into [eax+eax] because that allows the offset field to be

absent and space to be saved; in fact, it will also sj@#x*2+offset] into
[eax+eax+offset] . You can combat this behaviour by the use of M@SPLIT keyword:
[nosplit eax*2] will force [eax*2+0] to be generated literally.

In 64-bit mode, NASM will by default generate absolute addressesREhekeyword makes it
produceRIP —relative addresses. Since this is frequently the normally desired behaviour, see the
DEFAULTdirective (section 5.2). The keywofBSoverridesREL

3.4 Constants
NASM understands four different types of constant: numeric, character, string and floating—point.
3.4.1 Numeric Constants

A numeric constant is simply a number. NASM allows you to specify numbers in a variety of
number bases, in a variety of ways: you can sifi® or O, andB for hex, octal and binary, or you

can prefixOx for hex in the style of C, or you can prefixfor hex in the style of Borland Pascal.
Note, though, that th® prefix does double duty as a prefix on identifiers (see section 3.1), so a hex
number prefixed with & sign must have a digit after tBerather than a letter.

25

Some examples:

mov ax,100 ; decimal

mov ax,0azh ; hex

mov ax,$0a2 ; hex again: the 0 is required
mov ax,0xa2 ; hex yet again

mov ax,777q : octal

mov ax,7770 ; octal again

mov ax,10010011b ; binary
3.4.2 Character Constants

A character constant consists of up to four characters enclosed in either single or double quotes. The
type of quote makes no difference to NASM, except of course that surrounding the constant with
single quotes allows double quotes to appear within it and vice versa.

A character constant with more than one character will be arranged with little—endian order in mind:
if you code

mov eax,’abcd’

then the constant generated is G861626364 , but 0x64636261 , so that if you were then to
store the value into memory, it would reatlcd rather thandcba. This is also the sense of
character constants understood by the Penti@RWID instruction.

3.4.3 String Constants

String constants are only acceptable to some pseudo-instructions, namdéhB flaenily and
INCBIN .

A string constant looks like a character constant, only longer. It is treated as a concatenation of
maximum-size character constants for the conditions. So the following are equivalent:

db ’hello’ ; string constant

db ’'h';e’I'VI'’o’ ; equivalent character constants
And the following are also equivalent:

dd ’ninechars’ ; doubleword string constant

dd ’nine’,char’,’s’ ; becomes three doublewords
db ’ninechars’,0,0,0 ; and really looks like this

Note that when used as an operandilbg a constant likéab’ is treated as a string constant
despite being short enough to be a character constant, because ottieriatse would have the
same effect aglb 'a’ , which would be silly. Similarly, three—character or four—character
constants are treated as strings when they are operamds to

3.4.4 Floating—Point Constants
Floating—point constants are acceptable only as argumemmi tbW DD DQ DT, andDQ or as

arguments to the special operators float8 , _ floatl6_ , _ float32__
_ float64 __float80m__ __float80e _ float128l , and
_ floatl28h__

Floating—point constants are expressed in the traditional form: digits, then a period, then optionally
more digits, then optionally && followed by an exponent. The period is mandatory, so that NASM
can distinguish betweesid 1 , which declares an integer constant, dddl.0 which declares a
floating—point constant. NASM also support C99-style hexadecimal floating—p@ixi:
hexadecimal digits, period, optionally more hexadeximal digits, then option&Iljolowed by a

binary (not hexadecimal) exponent in decimal notation.

Some examples:

db -0.2 ; "Quarter precision”

dw -0.5 ; IEEE 754r/SSES5 half precision
dd 1.2 ; an easy one

dd Ox1lp+2 ; 1.0x27"2 =4.0

dg 1.e10 ; 10,000,000,000

dg 1.e+10 ; synonymous with 1.e10

dg 1l.e-10 ; 0.000 000 000 1

dt 3. 141592653589793238462 pi

do 1.e+4000 ; IEEE 754r gquad precision

The 8-bit "quarter—precision” floating—point format is sign:exponent:mantissa = 1:4:3 with an
exponent bias of 7. This appears to be the most frequently used 8-bit floating—point format,
although it is not covered by any formal standard. This is sometimes called a "minifloat."

The special operators are used to produce floating—point numbers in other contexts. They produce
the binary representation of a specific floating—point number as an integer, and can use anywhere
integer constants are used in an expressiofioat80m__ and__ float80e produce the

64-bit mantissa and 16-bit exponent of an 80-bit floating—point number, dhuwht128|

and __ floatl28h produce the lower and upper 64-bit halves of a " 128-bit floating—point
number, respectively.

For example:
mov rax,__float64__ (3.141592653589793238462)

.. would assign the binary representation of pi as a 64-bit floating point numb&AXtd his is
exactly equivalent to:

mov rax,0x400921fb54442d18

NASM cannot do compile—time arithmetic on floating—point constants. This is because NASM is
designed to be portable — although it always generates code to run on x86 processors, the assemble
itself can run on any system with an ANSI C compiler. Therefore, the assembler cannot guarantee
the presence of a floating—point unit capable of handling the Intel number formats, and so for
NASM to be able to do floating arithmetic it would have to include its own complete set of
floating—point routines, which would significantly increase the size of the assembler for very little

benefit.

The special tokens_Infinity , __QNaN__(or _NaN__) and__SNaN__ can be used to
generate infinities, quiet NaNs, and signalling NaNs, respectively. These are normally used as
macros:

%define Inf __Infinity
%define NaN __ QNaN___

dg +1.5, -Inf, NaN ; Double—precision constants

3.5 Expressions

Expressions in NASM are similar in syntax to those in C. Expressions are evaluated as 64-bit
integers which are then adjusted to the appropriate size.

NASM supports two special tokens in expressions, allowing calculations to involve the current
assembly position: th® and$$ tokens$ evaluates to the assembly position at the beginning of the
line containing the expression; so you can code an infinite loop UMRg$. $$ evaluates to the
beginning of the current section; so you can tell how far into the section you are b{$a€iy .

27

28

The arithmetic operators provided by NASM are listed here, in increasing order of precedence.
3.5.1 | : Bitwise OR Operator

The | operator gives a bitwise OR, exactly as performed byORenachine instruction. Bitwise
OR is the lowest-priority arithmetic operator supported by NASM.

3.5.2 ~: Bitwise XOR Operator

A provides the bitwise XOR operation.
3.5.3 & Bitwise AND Operator

& provides the bitwise AND operation.
3.5.4 << and >>: Bit Shift Operators

<< gives a bit-shift to the left, just as it does in C.58&3 evaluates to 5 times 8, or 48> gives
a bit=shift to the right; in NASM, such a shiftagvaysunsigned, so that the bits shifted in from the
left—-hand end are filled with zero rather than a sign—extension of the previous highest bit.

3.5.5 + and —: Addition and Subtraction Operators
The+ and- operators do perfectly ordinary addition and subtraction.
3.5.6*,/,/ ,%and %%Multiplication and Division

* is the multiplication operatof. and// are both division operators:is unsigned division and
is signed division. Similarly¥%and%%provide unsigned and signed modulo operators respectively.

NASM, like ANSI C, provides no guarantees about the sensible operation of the signed modulo
operator.

Since thébcharacter is used extensively by the macro preprocessor, you should ensure that both the
signed and unsigned modulo operators are followed by white space wherever they appear.

3.5.7 Unary Operators:+, —, ~,! and SEG

The highest—priority operators in NASM’s expression grammar are those which only apply to one
argument.— negates its operand, does nothing (it's provided for symmetry witf), ~ computes

the one’s complement of its operarid,is the logical negation operator, aSdEG provides the
segment address of its operand (explained in more detail in section 3.6).

3.6 SEGand WRT

When writing large 16-bit programs, which must be split into multiple segments, it is often
necessary to be able to refer to the segment part of the address of a symbol. NASM supports the
SEGoperator to perform this function.

The SEG operator returns thpreferred segment base of a symbol, defined as the segment base
relative to which the offset of the symbol makes sense. So the code

mov ax,seg symbol
mov es,ax
mov bx,symbol

will load ES:BX with a valid pointer to the symbsi{mbol .

Things can be more complex than this: since 16—bit segments and groups may overlap, you might
occasionally want to refer to some symbol using a different segment base from the preferred one.
NASM lets you do this, by the use of ttRT(With Reference To) keyword. So you can do things

like

mov ax,weird_seg ; weird_seg is a segment base
mov es,ax _
mov bx,symbol wrt weird_seg

to loadES:BX with a different, but functionally equivalent, pointer to the synsyahbol .

NASM supports far (inter-segment) calls and jumps by means of the syntax
call segment:offset , wheresegment andoffset both represent immediate values. So to
call a far procedure, you could code either of

call (seg procedure):procedure
call weird_seg:(procedure wrt weird_seq)

(The parentheses are included for clarity, to show the intended parsing of the above instructions.
They are not necessary in practice.)

NASM supports the syntagall far procedure as a synonym for the first of the above
usagesJMPworks identically taCALL in these examples.

To declare a far pointer to a data item in a data segment, you must code
dw symbol, seg symbol

NASM supports no convenient synonym for this, though you can always invent one using the
macro processor.

3.7 STRICT: Inhibiting Optimization

When assembling with the optimizer set to level 2 or higher (see section 2.1.17), NASM will use
size specifiersgYTE WORPDWORBRWORDWORDr OWORDbut will give them the smallest
possible size. The keyworTRICT can be used to inhibit optimization and force a particular
operand to be emitted in the specified size. For example, with the optimizer on, BIGIA6

mode,

push dword 33
is encoded in three byté6 6A 21 |, whereas
push strict dword 33
is encoded in six bytes, with a full dword immediate ope@ha@8 21 00 00 00

With the optimizer off, the same code (six bytes) is generated wheth&TRIKET keyword was
used or not.

3.8 Critical Expressions

Although NASM has an optional multi-pass optimizer, there are some expressions which must be
resolvable on the first pass. These are cdlletical Expressions

The first pass is used to determine the size of all the assembled code and data, so that the secon
pass, when generating all the code, knows all the symbol addresses the code refers to. So one thing
NASM can’t handle is code whose size depends on the value of a symbol declared after the code in
guestion. For example,

times (label-$) db 0
label: db 'Where am |?’

The argument tdIMES in this case could equally legally evaluate to anything at all; NASM will
reject this example because it cannot tell the size of lMES line when it first sees it. It will just
as firmly reject the slightly paradoxical code

29

30

times (label-$+1) db O
label: db 'NOW where am |?’

in whichanyvalue for theTIMES argument is by definition wrong!

NASM rejects these examples by means of a concept catigtical expressionwhich is defined

to be an expression whose value is required to be computable in the first pass, and which must
therefore depend only on symbols defined before it. The argument TOMIEES prefix is a critical
expression; for the same reason, the arguments RESBfamily of pseudo-instructions are also
critical expressions.

Critical expressions can crop up in other contexts as well: consider the following code.

mov ax,symboll
symboll equ symbol2
symbol2:

On the first pass, NASM cannot determine the valusyafboll , becaussymboll is defined to

be equal tosymbol2 which NASM hasn't seen yet. On the second pass, therefore, when it
encounters the linenov ax,symboll , it is unable to generate the code for it because it still
doesn’'t know the value afymboll . On the next line, it would see tE€Uagain and be able to
determine the value @lymboll , but by then it would be too late.

NASM avoids this problem by defining the right—-hand side ofE&@1Jstatement to be a critical
expression, so the definition sfmboll would be rejected in the first pass.

There is a related issue involving forward references: consider this code fragment.

mov eax,[ebx+offset]
offset equ 10

NASM, on pass one, must calculate the size of the instruction eax,[ebx+offset]

without knowing the value afffset . It has no way of knowing thatffset is small enough to

fit into a one-byte offset field and that it could therefore get away with generating a shorter form of
the effective—address encoding; for all it knows, in pass offiget could be a symbol in the

code segment, and it might need the full four-byte form. So it is forced to compute the size of the
instruction to accommodate a four—byte address part. In pass two, having made this decision, it is
now forced to honour it and keep the instruction large, so the code generated in this case is not as
small as it could have been. This problem can be solved by defifise before using it, or by

forcing byte size in the effective address by codinge ebx+offset]

Note that use of theOn switch (with n>=2) makes some of the above no longer true (see section
2.1.17).

3.9 Local Labels

NASM gives special treatment to symbols beginning with a period. A label beginning with a single
period is treated aslacal label, which means that it is associated with the previous non-local label.
So, for example:

labell ; some code

loop
: some more code
jne .loop
ret

label2 ; some code

Joop
; some more code

jne .loop
ret

In the above code fragment, ealiXE instruction jumps to the line immediately before it, because
the two definitions ofloop are kept separate by virtue of each being associated with the previous
non-local label.

This form of local label handling is borrowed from the old Amiga assembler DevPac; however,
NASM goes one step further, in allowing access to local labels from other parts of the code. This is
achieved by means afefining a local label in terms of the previous non-local label: the first
definition of .loop above is really defining a symbol calléabell.loop , and the second
defines a symbol callddbel2.loop . So, if you really needed to, you could write

label3 ; some more code
; and some more

jmp labell.loop

Sometimes it is useful — in a macro, for instance — to be able to define a label which can be
referenced from anywhere but which doesn't interfere with the normal local-label mechanism. Such
a label can’t be non-local because it would interfere with subsequent definitions of, and references
to, local labels; and it can’t be local because the macro that defined it wouldn’t know the label’s full
name. NASM therefore introduces a third type of label, which is probably only useful in macro
definitions: if a label begins with the special prefi@ , then it does nothing to the local label
mechanism. So you could code

labell: ; a non—-local label
Jocal: ; this is really labell.local
..@ @foo: ; this is a special symbol
label2: : another non-local label
Jlocal: ; this is really label2.local
jmp .@@foo ; this will jump three lines up

NASM has the capacity to define other special symbols beginning with a double period: for
example,.start is used to specify the entry point in thlg output format (see section 6.2.6).

31

Chapter 4: The NASM Preprocessor

NASM contains a powerful macro processor, which supports conditional assembly, multi-level file
inclusion, two forms of macro (single-line and multi-line), and a ‘context stack’ mechanism for
extra macro power. Preprocessor directives all begin witisign.

The preprocessor collapses all lines which end with a backslash (\) character into a single line. Thus:

%define THIS_VERY_LONG_MACRO_NAME_IS_DEFINED_TO \\
THIS_VALUE

will work like a single—line macro without the backslash—newline sequence.

4.1 Single—-Line Macros
4.1.1 The Normal Way:%define

Single-line macros are defined using #define preprocessor directive. The definitions work in
a similar way to C; so you can do things like

%define ctrl Ox1F &
%define param(a,b) ((a)+(a)*(b))
mov byte [param(2,ebx)], ctrl 'D’
which will expand to
mov byte [(2)+(2)*(ebx)], OX1F & 'D’
When the expansion of a single-line macro contains tokens which invoke another macro, the
expansion is performed at invocation time, not at definition time. Thus the code
%define a(x) 1+b(x)
%define b(x) 2*x

mov ax,a(8)

will evaluate in the expected way moov ax,1+2*8 , even though the mactowasn’t defined at
the time of definition of.

Macros defined with?odefine are case sensitive: aftétdefine foo bar , only foo will
expand tdbar : Foo or FOOwill not. By using%idefine instead oRodefine (the ‘I’ stands for
‘insensitive’) you can define all the case variants of a macro at once, $6itledine foo bar
would causdoo , Foo, FOQfOO and so on all to expand bar .

There is a mechanism which detects when a macro call has occurred as a result of a previous
expansion of the same macro, to guard against circular references and infinite loops. If this happens,
the preprocessor will only expand the first occurrence of the macro. Hence, if you code

%define a(x) 1+a(x)

mov ax,a(3)

the macroa(3) will expand once, becoming+a(3) , and will then expand no further. This
behaviour can be useful: see section 8.1 for an example of its use.

You can overload single-line macros: if you write

%define foo(x) 1+x
%define foo(x,y) 1+x*y

the preprocessor will be able to handle both types of macro call, by counting the parameters you
pass; sdoo(3) will becomel+3 whereasfoo(ebx,2) will becomel+ebx*2 . However, if
you define

%define foo bar

then no other definition ofoo will be accepted: a macro with no parameters prohibits the
definition of the same name as a mawith parameters, and vice versa.

This doesn’t prevent single—line macros beiedefined you can perfectly well define a macro with
%define foo bar

and then re—define it later in the same source file with

%define foo baz

Then everywhere the macfoo is invoked, it will be expanded according to the most recent
definition. This is particularly useful when defining single—-line macros #G#ssign (see section
4.1.5).

You can pre—define single-line macros using the ‘—d’ option on the NASM command line: see
section 2.1.13.

4.1.2 Enhancing %define%xdefine

To have a reference to an embedded single-line macro resolved at the time that it is embedded, as
opposed to when the calling macro is expanded, you need a different mechanism to the one offered
by %define . The solution is to ustxdefine , or it's case—insensitive counterp&bkidefine

Suppose you have the following code:

%define isTrue 1
%define isFalse isTrue
%define isTrue O

vall: db isFalse
%define isTrue 1

val2: db isFalse

In this caseyall is equal to 0, andal2 is equal to 1. This is because, when a single-line macro
is defined using%define , it is expanded only when it is called. AsFalse expands to
isTrue , the expansion will be the current valuasifrue . The first time it is called that is 0, and
the second time it is 1.

If you wantedisFalse to expand to the value assigned to the embedded n&dore at the
time thatisFalse was defined, you need to change the above code &hxoefine .

%xdefine isTrue 1
%xdefine isFalse isTrue
%xdefine isTrue 0

vall: db isFalse

33

%xdefine isTrue 1

val2: db isFalse

Now, each time thaisFalse is called, it expands to 1, as that is what the embedded macro
isTrue expanded to at the time thaFalse was defined.

4.1.3 Concatenating Single Line Macro Token$po+

Individual tokens in single line macros can be concatenated, to produce longer tokens for later
processing. This can be useful if there are several similar macros that perform similar functions.

Please note that a space is required &fterin order to disambiguate it from the syn@1used
in multiline macros.

As an example, consider the following:
%define BDASTART 400h : Start of BIOS data area

struc tBIOSDA : its structure
.COM1laddr RESW 1
.COM2addr RESW 1
; ..and so on

endstruc

Now, if we need to access the elements of tBIOSDA in different places, we can end up with:

mov ax,BDASTART + tBIOSDA.COM1addr
mov bx,BDASTART + tBIOSDA.COM2addr

This will become pretty ugly (and tedious) if used in many places, and can be reduced in size
significantly by using the following macro:

; Macro to access BIOS variables by their names (from tBDA):
%define BDA(x) BDASTART + tBIOSDA. %+ X
Now the above code can be written as:

mov ax,BDA(COMZladdr)
mov bx,BDA(COM2addr)

Using this feature, we can simplify references to a lot of macros (and, in turn, reduce typing errors).
4.1.4 Undefining macros%undef

Single-line macros can be removed with #eindef command. For example, the following
sequence:

%define foo bar
%undef foo
mov eax, foo

will expand to the instructiomov eax, foo , since afteoundef the macrdoo is no longer
defined.

Macros that would otherwise be pre-defined can be undefined on the command-line using the ‘-u’
option on the NASM command line: see section 2.1.14.

4.1.5 Preprocessor Variables¥assign

An alternative way to define single—line macros is by means o¥dhssign command (and its
case-insensitive counterp&tiassign , which differs from%assign in exactly the same way
that%idefine differs from%define).

%assign is used to define single—line macros which take no parameters and have a numeric value.
This _/alue can _be _specified in the form of an expression, and it will be evaluated once, when the
%assign directive is processed.

Like %define , macros defined usirfpassign can be re—defined later, so you can do things like
%assign i i+1
to increment the numeric value of a macro.

%assign is useful for controlling the termination &6rep preprocessor loops: see section 4.5 for
an example of this. Another use fiassign is given in section 7.4 and section 8.1.

The expression passed%assign is a critical expression (see section 3.8), and must also evaluate
to a pure number (rather than a relocatable reference such as a code or data address, or anything
involving a register).

4.2 String Handling in Macros: %strlen and %substr

It's often useful to be able to handle strings in macros. NASM supports two simple string handling
macro operators from which more complex operations can be constructed.

4.2.1 String Length:%strlen

The %strlen macro is like%assign macro in that it creates (or redefines) a numeric value to a
macro. The difference is that witbstrlen , the numeric value is the length of a string. An
example of the use of this would be:

%strlen charcnt 'my string’

In this examplecharcnt would receive the value 8, just as if @assign had been used. In this
example,’my string’ was a literal string but it could also have been a single-line macro that
expands to a string, as in the following example:

%define sometext 'my string’
%strlen charcnt sometext

As in the first case, this would resultéharcnt being assigned the value of 8.
4.2.2 Sub-strings%substr

Individual letters in strings can be extracted uskagubstr . An example of its use is probably
more useful than the description:

%substr mychar 'xyz’' 1 ; equivalent to %define mychar 'x’
%substr mychar 'xyz’ 2 ; equivalent to %define mychar 'y’
%substr mychar 'xyz’ 3 ; equivalent to %define mychar 'z’

In this example, mychar gets the value of 'y’. As wittstrlen (see section 4.2.1), the first
parameter is the single-line macro to be created and the second is the string. The third parameter
specifies which character is to be selected. Note that the first index is 1, not O and the last index is
equal to the value th&bstrlen would assign given the same string. Index values out of range
result in an empty string.

35

4.3 Multi-Line Macros: %macro

Multi-line macros are much more like the type of macro seen in MASM and TASM: a multi-line
macro definition in NASM looks something like this.

%macro prologue 1
push ebp
mov ebp,esp
sub esp,%l

%endmacro

This defines a C-like function prologue as a macro: so you would invoke the macro with a call such
as

myfunc: prologue 12
which would expand to the three lines of code

myfunc: push ebp
mov ebp,esp
sub esp,12

The numberl after the macro name in tlBémacro line defines the number of parameters the
macroprologue expects to receive. The use%f inside the macro definition refers to the first
parameter to the macro call. With a macro taking more than one parameter, subsequent parameters
would be referred to @2 %3and so on.

Multi-line macros, like single-line macros, are case—sensitive, unless you define them using the
alternative directiv€simacro .

If you need to pass a comma art of a parameter to a multi-line macro, you can do that by
enclosing the entire parameter in braces. So you could code things like

%macro silly 2

%2:db %l

%endmacro
silly 'a’, letter_a ; letter_a: db’a’
silly 'ab’, string_ab ; string_ab: db 'ab’
silly @\{13,10@\}, crlf ;erlif: - db 13,10

4.3.1 Overloading Multi-Line Macros

As with single-line macros, multi-line macros can be overloaded by defining the same macro name
several times with different numbers of parameters. This time, no exception is made for macros
with no parameters at all. So you could define

%macro prologue 0

push ebp
mov ebp,esp

%endmacro
to define an alternative form of the function prologue which allocates no local stack space.

Sometimes, however, you might want to ‘overload’ a machine instruction; for example, you might
want to define

%macro push 2

push %1
push %2
%endmacro
so that you could code
push ebx : this line is not a macro call
push eax,ecx : but this one is

Ordinarily, NASM will give a warning for the first of the above two lines, sipash is now
defined to be a macro, and is being invoked with a number of parameters for which no definition
has been given. The correct code will still be generated, but the assembler will give a warning. This
warning can be disabled by the use of the-macro—params command-line option (see section
2.1.19).

4.3.2 Macro-Local Labels

NASM allows you to define labels within a multi-line macro definition in such a way as to make
them local to the macro call: so calling the same macro multiple times will use a different label each
time. You do this by prefixingo%to the label name. So you can invent an instruction which
executes ®RETIf the Z flag is set by doing this:

%macro retz 0

jnz %%skip
ret
%%skip:

%endmacro

You can call this macro as many times as you want, and every time you call it NASM will make up
a different ‘real’ name to substitute for the laBéboskip. The names NASM invents are of the
form ..@2345.skip , where the number 2345 changes with every macro call.. @eprefix
prevents macro-local labels from interfering with the local label mechanism, as described in section
3.9. You should avoid defining your own labels in this form (tl@ prefix, then a number, then
another period) in case they interfere with macro-local labels.

4.3.3 Greedy Macro Parameters

Occasionally it is useful to define a macro which lumps its entire command line into one parameter
definition, possibly after extracting one or two smaller parameters from the front. An example

might be a macro to write a text string to a file in MS-DOS, where you might want to be able to

write

writefile [filehandle],"hello, world",13,10

NASM allows you to define the last parameter of a macro tgréedy meaning that if you invoke
the macro with more parameters than it expects, all the spare parameters get lumped into the last
defined one along with the separating commas. So if you code:

%macro writefile 2+

jmp %%endstr

37

38

%%0str: dbo %2
%%endstr:
mov dx,%%str
mov ¢X,%%endstr—%%str
mov bx,%1
mov ah,0x40

int Ox21
%endmacro
then the example call toritefile above will work as expected: the text before the first comma,
[filehandle] , iIs used as the first macro parameter and expanded%henreferred to, and all

the subsequent text is lumped ift@and placed after thdb.

The greedy nature of the macro is indicated to NASM by the use of sign after the parameter
count on thé¯o line.

If you define a greedy macro, you are effectively telling NASM how it should expand the macro
given any number of parameters from the actual humber specified up to infinity; in this case, for

example, NASM now knows what to do when it sees a callriefile with 2, 3, 4 or more
parameters. NASM will take this into account when overloading macros, and will not allow you to
define another form ofritefile taking 4 parameters (for example).

Of course, the above macro could have been implemented as a non—-greedy macro, in which case
the call to it would have had to look like

writefile [filehandle], @\{"hello, world",13,10@\}

NASM provides both mechanisms for putting commas in macro parameters, and you choose which
one you prefer for each macro definition.

See section 5.3.1 for a better way to write the above macro.

4.3.4 Default Macro Parameters

NASM also allows you to define a multi-line macro withaage of allowable parameter counts. If
you do this, you can specify defaults for omitted parameters. So, for example:

%macro die 0—-1 "Painful program death has occurred."

writefile 2,%1
mov ax,0x4c01
int 0x21

%endmacro

This macro (which makes use of theitefile macro defined in section 4.3.3) can be called
with an explicit error message, which it will display on the error output stream before exiting, or it
can be called with no parameters, in which case it will use the default error message supplied in the
macro definition.

In general, you supply a minimum and maximum number of parameters for a macro of this type; the
minimum number of parameters are then required in the macro call, and then you provide defaults
for the optional ones. So if a macro definition began with the line

%macro foobar 1-3 eax,[ebx+2]

then it could be called with between one and three parametergyfanduld always be taken from
the macro call%?2 if not specified by the macro call, would defauletx , and%3if not specified
would default tgebx+2]

You may omit parameter defaults from the macro definition, in which case the parameter default is
taken to be blank. This can be useful for macros which can take a variable number of parameters,
since the%o0token (see section 4.3.5) allows you to determine how many parameters were really
passed to the macro call.

This defaulting mechanism can be combined with the greedy—parameter mechanismdiso the
macro above could be made more powerful, and more useful, by changing the first line of the
definition to

%macro die 0—1+ "Painful program death has occurred.",13,10

The maximum parameter count can be infinite, denoted. Iy this case, of course, it is impossible
to provide dull set of default parameters. Examples of this usage are shown in section 4.3.6.

4.3.5 %0 Macro Parameter Counter

For a macro which can take a variable number of parameters, the parameter rétéretitesturn

a numeric constant giving the number of parameters passed to the macro. This can be used as ar
argument to%rep (see section 4.5) in order to iterate through all the parameters of a macro.
Examples are given in section 4.3.6.

4.3.6 %rotate : Rotating Macro Parameters

Unix shell programmers will be familiar with thehift shell command, which allows the
arguments passed to a shell script (referenceklla$2 and so on) to be moved left by one place,
so that the argument previously referenced$asbecomes available &l, and the argument
previously referenced &l is no longer available at all.

NASM provides a similar mechanism, in the form%fotate . As its name suggests, it differs
from the Unixshift in that no parameters are lost: parameters rotated off the left end of the
argument list reappear on the right, and vice versa.

%rotate is invoked with a single numeric argument (which may be an expression). The macro
parameters are rotated to the left by that many places. If the argunéritide is negative, the
macro parameters are rotated to the right.

So a pair of macros to save and restore a set of registers might work as follows:
%macro multipush 1-*

%rep %0
push %1

%rotate 1

%endrep

%endmacro

This macro invokes th®USHinstruction on each of its arguments in turn, from left to right. It
begins by pushing its first argumest], then invokesrotate to move all the arguments one
place to the left, so that the original second argument is now availal¥fel aRepeating this
procedure as many times as there were arguments (achieved by supfly@isgthe argument to
%rep) causes each argument in turn to be pushed.

Note also the use df as the maximum parameter count, indicating that there is no upper limit on
the number of parameters you may supply tontliiipush ~ macro.

It would be convenient, when using this macro, to haP®©&equivalent, whictkdidn’t require the
arguments to be given in reverse order. Ideally, you would writentiigpush macro call, then
cut—and-paste the line to where the pop needed to be done, and change the name of the callec

39

40

macro tomultipop , and the macro would take care of popping the registers in the opposite order
from the one in which they were pushed.

This can be done by the following definition:
%macro multipop 1—*
%rep %0
%rotate -1
pop %1
%endrep
%endmacro

This macro begins by rotating its arguments one place taghie so that the origindhast argument
appears a%l This is then popped, and the arguments are rotated right again, so the second-to—last
argument becomé%l Thus the arguments are iterated through in reverse order.

4.3.7 Concatenating Macro Parameters

NASM can concatenate macro parameters on to other text surrounding them. This allows you to
declare a family of symbols, for example, in a macro definition. If, for example, you wanted to
generate a table of key codes along with offsets into the table, you could code something like

%macro keytab_entry 2

keypos%l equ $-keytab
db %2

%endmacro

keytab:
keytab_entry F1,128+1
keytab_entry F2,128+2
keytab_entry Return,13

which would expand to

keytab:

keyposF1 equ $—keytab
db 128+1

keyposF2 equ $-keytab
db 128+2

keyposReturn equ $-keytab
do 13

You can just as easily concatenate text on to the other end of a macro parameter, bYodfitong

If you need to append @igit to a macro parameter, for example defining lali@sd andfoo2
when passed the parameteo , you can’t codéo11 because that would be taken as the eleventh
macro parameter. Instead, you must cegé}1 , which will separate the firgt (giving the number

of the macro parameter) from the second (literal text to be concatenated to the parameter).

This concatenation can also be applied to other preprocessor in-line objects, such as macro—-local
labels (section 4.3.2) and context—local labels (section 4.7.2). In all cases, ambiguities in syntax can
be resolved by enclosing everything after #esign and before the literal text in braces: so
%{%foo}bar concatenates the tekar to the end of the real name of the macro—local label
%%foo. (This is unnecessary, since the form NASM uses for the real names of macro—local labels

means that the two usag#g%foolbar and%%foobar would both expand to the same thing
anyway; nevertheless, the capability is there.)

4.3.8 Condition Codes as Macro Parameters

NASM can give special treatment to a macro parameter which contains a condition code. For a
start, you can refer to the macro paraméter by means of the alternative syntét+1, which

informs NASM that this macro parameter is supposed to contain a condition code, and will cause
the preprocessor to report an error message if the macro is called with a parameter wbiich is
valid condition code.

Far more usefully, though, you can refer to the macro parameter by me#nsl,oivhich NASM
will expand as thenverse condition code. So theetz macro defined in section 4.3.2 can be
replaced by a general conditional-return macro like this:

%macro retc 1

%=1 %%skip
ret
%%sKkip:

%endmacro

This macro can now be invoked using calls likic ne , which will cause the conditional-jump
instruction in the macro expansion to come oudBsor retc po which will make the jump a
JPE.

The %+1 macro—parameter reference is quite happy to interpret the argu@¥Atand ECXZas
valid condition codes; howeve®—1 will report an error if passed either of these, because no
inverse condition code exists.

4.3.9 Disabling Listing Expansion

When NASM is generating a listing file from your program, it will generally expand multi-line
macros by means of writing the macro call and then listing each line of the expansion. This allows
you to see which instructions in the macro expansion are generating what code; however, for some
macros this clutters the listing up unnecessarily.

NASM therefore provides thaolist qualifier, which you can include in a macro definition to
inhibit the expansion of the macro in the listing file. Thelist gualifier comes directly after
the number of parameters, like this:

%macro foo 1.nolist
Or like this:
%macro bar 1-5+.nolist a,b,c,d,e,f,g,h

4.4 Conditional Assembly

Similarly to the C preprocessor, NASM allows sections of a source file to be assembled only if
certain conditions are met. The general syntax of this feature looks like this:

%if<condition>

; some code which only appears if <condition> is met
%elif<condition2>

; only appears if <condition> is not met but <condition2> is
%else

; this appears if neither <condition> nor <condition2> was met
%endif

41

The inverse form&oifn and%elifn are also supported.

The%else clause is optional, as is tB&elif clause. You can have more than éfelif clause
as well.

4.4.1 %ifdef : Testing Single-Line Macro Existence

Beginning a conditional-assembly block with the lif@fdef MACRO will assemble the
subsequent code if, and only if, a single-line macro cdlddCRQOs defined. If not, then the
%elif and%else blocks (if any) will be processed instead.

For example, when debugging a program, you might want to write code such as

; perform some function
%ifdef DEBUG

writefile 2,"Function performed successfully”,13,10
%endif

; go and do something else

Then you could use the command-line opti@DEBUGto create a version of the program which
produced debugging messages, and remove the option to generate the final release version of the
program.

You can test for a macnoot being defined by usingoeifndef instead ofsifdef . You can also
test for macro definitions ifelif blocks by usingoelifdef and%elifndef

4.4.2 ifmacro : Testing Multi-Line Macro Existence

The %ifmacro directive operates in the same way as%iflef directive, except that it checks
for the existence of a multi-line macro.

For example, you may be working with a large project and not have control over the macros in a
library. You may want to create a macro with one name if it doesn’t already exist, and another name
if one with that name does exist.

The %ifmacro is considered true if defining a macro with the given name and number of
arguments would cause a definitions conflict. For example:

%ifmacro MyMacro 1-3
%error "MyMacro 1-3" causes a conflict with an existing macro.
%else
%macro MyMacro 1-3
; insert code to define the macro
%endmacro

%endif

This will create the macro "MyMacro 1-3" if no macro already exists which would conflict with it,
and emits a warning if there would be a definition conflict.

You can test for the macro not existing by using #%#nmacro instead of%ifmacro .
Additional tests can be performeddgelif blocks by usingoelifmacro and%elifnmacro

4.4.3 %ifctx : Testing the Context Stack

The conditional-assembly construiifctx ctxname will cause the subsequent code to be
assembled if and only if the top context on the preprocessor's context stack has the name
ctxname . As with %ifdef , the inverse and%elif forms %ifnctx , %elifctx and
%elifnctx ~ are also supported.

For more details of the context stack, see section 4.7. For a sample Us#fetof , see section
4.7.5.

4.4.4 %if : Testing Arbitrary Numeric Expressions

The conditional-assembly constr@if expr will cause the subsequent code to be assembled if
and only if the value of the numeric expressexpr is non-zero. An example of the use of this
feature is in deciding when to break out dfoeep preprocessor loop: see section 4.5 for a detailed
example.

The expression given &if , and its counterpagbelif , is a critical expression (see section 3.8).

%if extends the normal NASM expression syntax, by providing a set of relational operators which
are not normally available in expressions. The operators, >, <=, >= and <> test equality,
less—than, greater—than, less—or—equal, greater—or—-equal and not—equal respectively. The C-like
forms== and!= are supported as alternative forms=o&nd<>. In addition, low—priority logical
operators&& M and|| are provided, supplying logical AND, logical XOR and logical OR. These
work like the C logical operators (although C has no logical XOR), in that they always return either
0 or 1, and treat any non-zero input as 1 (so thatfor example, returns 1 if exactly one of its
inputs is zero, and 0 otherwise). The relational operators also return 1 for true and O for false.

Like most other%if constructs%if has a counterpafoelif , and negative form&ifn and

%elifn
4.4.5 %ifidn and %ifidni : Testing Exact Text Identity
The construc®oifidn textl,text2 will cause the subsequent code to be assembled if and

only if textl andtext2 , after expanding single-line macros, are identical pieces of text.
Differences in white space are not counted.

%ifidni is similar to%ifidn , but is case—insensitive.

For example, the following macro pushes a register or number on the stack, and allows you to treat
IP as areal register:

%macro pushparam 1

%ifidni %1,ip

call %%label
%%label:
%else

push %1
%endif

%endmacro

Like most other%if constructs,%ifidn has a counterpafoelifidn , and negative forms
%ifnidn and%elifnidn . Similarly, %ifidni has counterpart®elifidni , %ifnidni and
%elifnidni

43

4.4.6 %ifid , %ifnum, %ifstr : Testing Token Types

Some macros will want to perform different tasks depending on whether they are passed a number,
a string, or an identifier. For example, a string output macro might want to be able to cope with
being passed either a string constant or a pointer to an existing string.

The conditional assembly constr@étfid , taking one parameter (which may be blank), assembles
the subsequent code if and only if the first token in the parameter exists and is an identifier.
%ifnum works similarly, but tests for the token being a numeric constaiistr tests for it

being a string.

For example, thevritefile macro defined in section 4.3.3 can be extended to take advantage of
%ifstr in the following fashion:

%macro writefile 2—-3+

%ifstr %2
jmp %%endstr
%if %0 = 3
%%str: db %2,%3
%else
%%str: db %2
%endif
%%endstr: mov dx,%%str
mov ¢X,%%endstr—%%str
%else
mov dx,%2
mov ¢x,%3
%endif
mov bx,%1
mov ah,0x40

int 0x21
%endmacro
Then thewritefile macro can cope with being called in either of the following two ways:

writefile [file], strpointer, length
writefile [file], "hello”, 13, 10

In the first, strpointer is used as the address of an already—declared stringeagith is
used as its length; in the second, a string is given to the macro, which therefore declares it itself and
works out the address and length for itself.

Note the use ofsif inside the%ifstr : this is to detect whether the macro was passed two
arguments (so the string would be a single string constangtaf6R would be adequate) or more
(in which case, all but the first two would be lumped together ¥#%anddb %2,%3 would be
required).

The usuaboelifXXX , %ifnXXX and%elifnXXX versions exist for each ébifid , %ifnum
and%ifstr
4.4.7 %error : Reporting User—Defined Errors

The preprocessor directiierror will cause NASM to report an error if it occurs in assembled
code. So if other users are going to try to assemble your source files, you can ensure that they define
the right macros by means of code like this:

%ifdef SOME_MACRO
; do some setup
%elifdef SOME_OTHER_MACRO
; do some different setup
%else
%error Neither SOME_MACRO nor SOME_OTHER_MACRO was defined.
%endif

Then any user who fails to understand the way your code is supposed to be assembled will be
quickly warned of their mistake, rather than having to wait until the program crashes on being run
and then not knowing what went wrong.

4.5 Preprocessor Loops%orep

NASM’s TIMES prefix, though useful, cannot be used to invoke a multi-line macro multiple times,
because it is processed by NASM after macros have already been expanded. Therefore NASM
provides another form of loop, this time at the preprocessor areb.

The directiveorep and%endrep (%rep takes a numeric argument, which can be an expression;
%endrep takes no arguments) can be used to enclose a chunk of code, which is then replicated as
many times as specified by the preprocessor:

%assigni 0
Y%rep 64
inc word [table+2%i]
%assign i i+1
%endrep

This will generate a sequence of BNIC instructions, incrementing every word of memory from
[table] to[table+126]

For more complex termination conditions, or to break out of a repeat loop part way along, you can
use théyexitrep directive to terminate the loop, like this:

fibonacci:
%assigni 0
%assign j 1
%rep 100
%if | > 65535

%exitrep
%endif

dw |

%assign Kk j+i
%assign i j
%assign j k
%endrep

fib_number equ ($—fibonacci)/2

This produces a list of all the Fibonacci numbers that will fit in 16 bits. Note that a maximum repeat
count must still be given téorep. This is to prevent the possibility of NASM getting into an
infinite loop in the preprocessor, which (on multitasking or multi-user systems) would typically
cause all the system memory to be gradually used up and other applications to start crashing.

4.6 Including Other Files

Using, once again, a very similar syntax to the C preprocessor, NASM’s preprocessor lets you
include other source files into your code. This is done by the use itltdude directive:

45

%include "macros.mac"

will include the contents of the filmacros.mac into the source file containing tBéinclude
directive.

Include files are searched for in the current directory (the directory you're in when you run NASM,
as opposed to the location of the NASM executable or the location of the source file), plus any
directories specified on the NASM command line using-th@ption.

The standard C idiom for preventing a file being included more than once is just as applicable in
NASM: if the file macros.mac has the form

%ifndef MACROS_MAC
%define MACROS_ MAC
: now define some macros
%endif

then including the file more than once will not cause errors, because the second time the file is
included nothing will happen because the maACROS_MAWIII already be defined.

You can force a file to be included even if there ig%iaclude directive that explicitly includes
it, by using the-p option on the NASM command line (see section 2.1.12).

4.7 The Context Stack

Having labels that are local to a macro definition is sometimes not quite powerful enough:
sometimes you want to be able to share labels between several macro calls. An example might be a
REPEAT... UNTIL loop, in which the expansion of tiREPEATmacro would need to be able to

refer to a label which theJNTIL macro had defined. However, for such a macro you would also
want to be able to nest these loops.

NASM provides this level of power by means afantext stackThe preprocessor maintains a stack

of contexts each of which is characterized by a name. You add a new context to the stack using the
%push directive, and remove one usifgpop. You can define labels that are local to a particular
context on the stack.

4.7.1 %pushand %pop Creating and Removing Contexts

The %push directive is used to create a new context and place it on the top of the context stack.
%push requires one argument, which is the name of the context. For example:

%push foobar

This pushes a new context calledbar on the stack. You can have several contexts on the stack
with the same name: they can still be distinguished.

The directive%pop, requiring no arguments, removes the top context from the context stack and
destroys it, along with any labels associated with it.

4.7.2 Context—Local Labels

Just as the usa@é%foo defines a label which is local to the particular macro call in which it is
used, the usag®&$foo is used to define a label which is local to the context on the top of the
context stack. So tiREPEATandUNTIL example given above could be implemented by means of:

%macro repeat 0

%push repeat
%$begin:

%endmacro

%macro until 1

j%-1 %$begin
%pop
%endmacro
and invoked by means of, for example,

mov cx,string
repeat

add c¢cx,3
scasb

until e

which would scan every fourth byte of a string in search of the bye.in

If you need to define, or access, labels local to the cohtdaivthe top one on the stack, you can
use%$$foo , or %$$$foo for the context below that, and so on.

4.7.3 Context-Local Single-Line Macros

NASM also allows you to define single-line macros which are local to a particular context, in just
the same way:

%define %3$localmac 3

will define the single—line macré&e$localmac to be local to the top context on the stack. Of
course, after a subsequéfpush, it can then still be accessed by the nés$$localmac .

4.7.4 %repl : Renaming a Context

If you need to change the name of the top context on the stack (in order, for example, to have it
respond differently t&sifctx), you can execute @pop followed by a%push; but this will have

the side effect of destroying all context—local labels and macros associated with the context that was
just popped.

NASM provides the directivéorepl , which replacesa context with a different name, without
touching the associated macros and labels. So you could replace the destructive code

%pop
%push newname

with the non—destructive versiéarepl newname .
4.7.5 Example Use of the Context Stack: Block IFs

This example makes use of almost all the context-stack features, including the
conditional-assembly construgtifctx , to implement a block IF statement as a set of macros.

%macro if 1

%push if
j%-1 %$%ifnot

%endmacro

%macro else 0

47

%ifctx if

%repl else

jmp %$%ifend

%3S$ifnot:
%else

%error "expected ‘if’ before ‘else
%endif

%endmacro
%macro endif O

%ifctx if
%$ifnot:
%pop
%elifctx else
%S$ifend:
%pop
%else
%error "expected ‘if’ or ‘else’ before ‘endif
%endif

%endmacro

This code is more robust than tREPEATand UNTIL macros given in section 4.7.2, because it
uses conditional assembly to check that the macros are issued in the right order (for example, not
callingendif beforeif) and issues %error if they’re not.

In addition, theendif macro has to be able to cope with the two distinct cases of either directly
following anif , or following anelse . It achieves this, again, by using conditional assembly to do
different things depending on whether the context on top of the stédickaselse .

Theelse macro has to preserve the context on the stack, in order to had¢Sifinet referred to
by theif macro be the same as the one defined byettdif macro, but has to change the
context’s name so thandif will know there was an intervenirgse . It does this by the use of
Y%repl .

A sample usage of these macros might look like:

cmp ax,bx
if ae
cmp bx,cx
if ae
mov ax,cx
else
~mov ax,bx
endif
else

cmp ax,cx

if ae
mov ax,cXx
endif

endif

The block+F macros handle nesting quite happily, by means of pushing another context,
describing the inneif , on top of the one describing the oufer; thuselse andendif always
refer to the last unmatché&d orelse .

4.8 Standard Macros

NASM defines a set of standard macros, which are already defined when it starts to process any
source file. If you really need a program to be assembled with no pre—defined macros, you can use
the %clear directive to empty the preprocessor of everything but context-local preprocessor
variables and single-line macros.

Most user—level assembler directives (see chapter 5) are implemented as macros which invoke
primitive directives; these are described in chapter 5. The rest of the standard macro set is described
here.

48.1 NASM _MAJOR, _ NASM_MINOR, _ NASM_SUBMINOR__ and
— NASM_PATCHLEVEL, NASM Version

The single-line macros NASM_MAJOR_, NASM_MINOR , NASM_SUBMINOR_and
___NASM_PATCHLEVEL__expand to the me major, minor, subminor and patch level parts of the

version number of NASM being used. So, under NASM 0.98. 32pl for example,

NASM_MAJOR__would be defined to be 0, NASM_MINOR__would be defined as 98,

NASM SUBMINOR __would be defined to 32 and NASM "PATCHLEVEL __would be
defined as 1.

4.8.2 __NASM_VERSION_ID : NASM Version ID

The single-line macro NASM_VERSION_ID__expands to a dword integer representing the full
version number of the version of nasm being used. The value is the equivalent to
NASM_MAJOR, NASM_MINOR_, NASM_SUBMINOR and

NASM PATCHLEVEL concatenated to produce a single doubleword. Hence, for 0.98.32p1,
the returned number would be equivalent to:

dd 0x00622001

or
db 1,32,98,0

Note that the above lines are generate exactly the same code, the second line is used just to give al
indication of the order that the separate values will be present in memory.

4.8.3 __NASM_VER _: NASM Version string

The single-line macro_ NASM_VER__expands to a string which defines the version number of
nasm being used. So, under NASM 0.98.32 for example,

db _ NASM_VER__
would expand to
db "0.98.32"
48.4 FILE__ and__LINE__ : File Name and Line Number

Like the C preprocessor, NASM allows the user to find out the file name and line number
containing the current instruction. The macroFILE__ expands to a string constant giving the
name of the current input file (which may change through the course of assertihcifide

49

directives are used), and LINE___ expands to a nhumeric constant giving the current line number
in the input file.

These macros could be used, for example, to communicate debugging information to a macro, since
invoking__ LINE__ inside a macro definition (either single—line or multi-line) will return the line
number of the macroall, rather thardefinition So to determine where in a piece of code a crash is
occurring, for example, one could write a routstdlhere , which is passed a line number in
EAXand outputs something like ‘line 155: still here’. You could then write a macro

%macro notdeadyet 0

push eax

mov eax, LINE
call stillhere

pop eax

%endmacro
and then pepper your code with callswtdeadyet until you find the crash point.

4.8.5 __BITS__ : Current BITS Mode

The _ BITS _ standard macro is updated every time that the BITS mode is set using the
BITS XX or [BITS XX] directive, where XX is a valid mode number of 16, 32 or 64.
__BITS__ receives the specified mode number and makes it globally available. This can be very
useful for those who utilize mode—-dependent macros.

4.8.6 STRUGInd ENDSTRU®eclaring Structure Data Types

The core of NASM contains no intrinsic means of defining data structures; instead, the preprocessor
is sufficiently powerful that data structures can be implemented as a set of macros. The macros
STRUCandENDSTRUGre used to define a structure data type.

STRUCtakes one parameter, which is the name of the data type. This name is defined as a symbol
with the value zero, and also has the suffize appended to it and is then defined asEQU

giving the size of the structure. On88RUChas been issued, you are defining the structure, and
should define fields using tHRESBfamily of pseudo-instructions, and then invdkdDSTRUGo

finish the definition.

For example, to define a structure callegtype containing a longword, a word, a byte and a
string of bytes, you might code

struc mytype

mt_long: resd 1
mt word: resw 1
mt_byte: resb 1
mt_str: resb 32

endstruc

The above code defines six symboats: long as 0 (the offset from the beginning ofrgtype
structure to the longword fieldimt_word as 4,mt_byte as 6mt_str as 7,mytype_size as
39, andmytype itself as zero.

The reason why the structure type name is defined at zero is a side effect of allowing structures to
work with the local label mechanism: if your structure members tend to have the same names in
more than one structure, you can define the above structure like this:

struc mytype

Jlong: resd 1

.word: resw 1

.byte: resb 1

.str: resbh 32
endstruc

This defines the offsets to the structure fieldengtype.long , mytype.word , mytype.byte
andmytype.str

NASM, since it has nantrinsic structure support, does not support any form of period notation to
refer to the elements of a structure once you have one (except the above local-label notation), so
code such amov ax,[mystruc.mt_word] is not valid.mt_word is a constant just like any

other constant, so the correct syntax imov ax,[mystruc+mt_word] or

mov ax,[mystruc+mytype.word]

4.8.7 ISTRUG AT and IEND: Declaring Instances of Structures

Having defined a structure type, the next thing you typically want to do is to declare instances of
that structure in your data segment. NASM provides an easy way to do this IBT(R&C
mechanism. To declare a structure of typgdype in a program, you code something like this:

mystruc:
istruc mytype

at mt_long, dd 123456

at mt_word, dw 1024

atmt byte,db X

atmt_str, db ’hello, world’, 13, 10, 0

iend

The function of theAT macro is to make use of tHéMES prefix to advance the assembly position

to the correct point for the specified structure field, and then to declare the specified data. Therefore
the structure fields must be declared in the same order as they were specified in the structure
definition.

If the data to go in a structure field requires more than one source line to specify, the remaining
source lines can easily come after &leline. For example:

atmt_str, db 123,134,145,156,167,178,189
db 190,100,0

Depending on personal taste, you can also omit the code partAT thee completely, and start the
structure field on the next line:

at mt_str
db 'hello, world’
db 13,10,0

4.8.8 ALIGN and ALIGNB Data Alignment

The ALIGN and ALIGNB macros provides a convenient way to align code or data on a word,
longword, paragraph or other boundary. (Some assemblers call this dife¢tM) The syntax of
the ALIGN andALIGNB macros is

51

align 4 ; align on 4-byte boundary

align 16 ; align on 16—-byte boundary
align 8,db 0 ; pad with Os rather than NOPs
align 4,resb1 ; align to 4 in the BSS

alignb 4 ; equivalent to previous line

Both macros require their first argument to be a power of two; they both compute the number of
additional bytes required to bring the length of the current section up to a multiple of that power of
two, and then apply thEIMES prefix to their second argument to perform the alignment.

If the second argument is not specified, the defaulAfdGN is NOPR and the default foALIGNB

is RESB 1. So if the second argument is specified, the two macros are equivalent. Normally, you
can just usALIGN in code and data sections aAHIGNB in BSS sections, and never need the
second argument except for special purposes.

ALIGN and ALIGNB, being simple macros, perform no error checking: they cannot warn you if
their first argument fails to be a power of two, or if their second argument generates more than one
byte of code. In each of these cases they will silently do the wrong thing.

ALIGNB (or ALIGN with a second argument BESB 1) can be used within structure definitions:
struc mytype2

mt_byte:
resb 1
alignb 2
mt_word:
resw 1
alignb 4
mt_long:
resd 1
mt_str:
resb 32

endstruc

This will ensure that the structure members are sensibly aligned relative to the base of the structure.

A final caveat ALIGN andALIGNB work relative to the beginning of tlsection not the beginning

of the address space in the final executable. Aligning to a 16—byte boundary when the section
you'’re in is only guaranteed to be aligned to a 4—-byte boundary, for example, is a waste of effort.

Again, NASM does not check that the section’s alignment characteristics are sensible for the use of
ALIGN or ALIGNB.

4.9 Stack Relative Preprocessor Directives

The following preprocessor directives provide a way to use labels to refer to local variables
allocated on the stack.

* %arg (see section 4.9.1)

« Opstacksize (see section 4.9.2)

¢ %local (see section 4.9.3)
4.9.1 %arg Directive

The%arg directive is used to simplify the handling of parameters passed on the stack. Stack based
parameter passing is used by many high level languages, including C, C++ and Pascal.

While NASM has macros which attempt to duplicate this functionality (see section 7.4.5), the
syntax is not particularly convenient to use. and is not TASM compatible. Here is an example which
shows the use @barg without any external macros:

some_function:

%push mycontext ; save the current context
%stacksize large ; tell NASM to use bp
%arg i:word, |_ptr:word

mov ax,][i]

mov bx,[j_ptr]

add ax,[bx]

ret
%pop ; restore original context

This is similar to the procedure defined in section 7.4.5 and adds the value in i to the value pointed
to by j_ptr and returns the sum in the ax register. See section 4.7.1 for an explangtish @ind
pop and the use of context stacks.

4.9.2 %stacksize Directive

The %stacksize directive is used in conjunction with tléarg (see section 4.9.1) and the
%local (see section 4.9.3) directives. It tells NASM the default size to use for subséemrent
and%local directives. Thébstacksize directive takes one required argument which is one of
flat ,flat64 ,large orsmall .

%stacksize flat

This form causes NASM to use stack—based parameter addressing relatbe amd it assumes
that a near form of call was used to get to this label (i.eethatis on the stack).

%stacksize flat64

This form causes NASM to use stack—based parameter addressing relabpe amd it assumes
that a near form of call was used to get to this label (i.erifhatis on the stack).

%stacksize large

This form usedp to do stack—based parameter addressing and assumes that a far form of call was
used to get to this address (i.e. tipatandcs are on the stack).

%stacksize small

This form also usebp to address stack parameters, but it is different flamge because it also
assumes that the old value of bp is pushed onto the stack (i.e. it expENI BRinstruction). In
other words, it expects thhp, ip andcs are on the top of the stack, underneath any local space
which may have been allocated BNTER This form is probably most useful when used in
combination with théslocal directive (see section 4.9.3).

4.9.3 %local Directive

The %local directive is used to simplify the use of local temporary stack variables allocated in a
stack frame. Automatic local variables in C are an example of this kind of variablésldbal
directive is most useful when used with #hetacksize (see section 4.9.2 and is also compatible
with the %arg directive (see section 4.9.1). It allows simplified reference to variables on the stack
which have been allocated typically by using ENdTERInstruction. An example of its use is the
following:

53

silly_swap:

%push mycontext ; save the current context
%stacksize small ; tell NASM to use bp
%assign %$localsize 0 ; see text for explanation

%local old_ax:word, old_dx:word

enter %S$localsize,0 ; see text for explanation
mov [old_ax],ax ;swap ax & bx

mov [old_dx],dx ;and swap dx & cx

mov ax,bx

mov dx,cx

mov bx,[old_ax]

mov cx,[old_dx]

leave ; restore old bp
ret ;
%pop ; restore original context

The %$localsize variable is used internally by thlocal directive andmustbe defined
within the current context before thélocal directive may be used. Failure to do so will result in
one expression syntax error for ea@slocal variable declared. It then may be used in the
construction of an appropriately sized ENTER instruction as shown in the example.

4.10 Other Preprocessor Directives

NASM also has preprocessor directives which allow access to information from external sources.
Currently they include:

The following preprocessor directive is supported to allow NASM to correctly handle output of the
cpp C language preprocessor.

* %line enables NAsM to correctly handle the output of the cpp C language preprocessor (see
section 4.10.1).

* 9! enables NASM to read in the value of an environment variable, which can then be used in
your program (see section 4.10.2).

4.10.1 %line Directive

The %line directive is used to notify NASM that the input line corresponds to a specific line
number in another file. Typically this other file would be an original source file, with the current
NASM input being the output of a pre—processor. Phitne directive allows NASM to output
messages which indicate the line number of the original source file, instead of the file that is being
read by NASM.

This preprocessor directive is not generally of use to programmers, by may be of interest to
preprocessor authors. The usage ofiiime preprocessor directive is as follows:

%line nnn[+mmm] [filename]

In this directive,nnn identifies the line of the original source file which this line corresponds to.
mmnis an optional parameter which specifies a line increment value; each line of the input file read
in is considered to correspond mamniines of the original source file. Finallfijename is an
optional parameter which specifies the file name of the original source file.

After reading a%line preprocessor directive, NASM will report all file name and line numbers
relative to the values specified therein.

4.10.2 %!<env>: Read an environment variable.

The %!<env> directive makes it possible to read the value of an environment variable at assembly
time. This could, for example, be used to store the contents of an environment variable into a string,
which could be used at some other point in your code.

For example, suppose that you have an environment vaf&@® and you want the contents of
FOOto be embedded in your program. You could do that as follows:

%define FOO %!FOO
%define quote ’

tmpstr db quote FOO quote

At the time of writing, this will generate an "unterminated string" warning at the time of defining
"guote”, and it will add a space before and after the string that is read in. | was unable to find a
simple workaround (although a workaround can be created using a multi-line macro), so | believe
that you will need to either learn how to create more complex macros, or allow for the extra spaces
if you make use of this feature in that way.

55

56

Chapter 5: Assembler Directives

NASM, though it attempts to avoid the bureaucracy of assemblers like MASM and TASM, is
nevertheless forced to suppoffeavdirectives. These are described in this chapter.

NASM’s directives come in two typesiser—leveldirectives andorimitive directives. Typically,

each directive has a user—level form and a primitive form. In almost all cases, we recommend that
users use the user-level forms of the directives, which are implemented as macros which call the
primitive forms.

Primitive directives are enclosed in square brackets; user—level directives are not.

In addition to the universal directives described in this chapter, each object file format can
optionally supply extra directives in order to control particular features of that file format. These
format-specificdirectives are documented along with the formats that implement them, in chapter 6.

5.1 BITS: Specifying Target Processor Mode

The BITS directive specifies whether NASM should generate code designed to run on a processor
operating in 16—bit mode, 32-bit mode or 64-bit mode. The syntBKIS XX , where XX is 16,
32 or 64.

In most cases, you should not need toRIF&S explicitly. Theaout , coff |, elf , macho, win32
andwin64 object formats, which are designed for use in 32—-bit or 64-bit operating systems, all
cause NASM to select 32-bit or 64-bit mode, respectively, by default.offheobject format
allows you to specify each segment you define as €ills&16 or USE32 and NASM will set its
operating mode accordingly, so the use ofBRES directive is once again unnecessary.

The most likely reason for using tB4TS directive is to write 32-bit or 64-bit code in a flat binary
file; this is because thigin output format defaults to 16—bit mode in anticipation of it being used
most frequently to write DOSCOMprograms, DOSSYS device drivers and boot loader software.

You donot need to specifBITS 32 merely in order to use 32-bit instructions in a 16-bit DOS
program; if you do, the assembler will generate incorrect code because it will be writing code
targeted at a 32-bit platform, to be run on a 16-bit one.

When NASM is inBITS 16 mode, instructions which use 32-bit data are prefixed with an 0x66
byte, and those referring to 32-hit addresses have an 0x67 preBkl$n32 mode, the reverse is

true: 32-bit instructions require no prefixes, whereas instructions using 16-bit data need an 0x66
and those working on 16-bit addresses need an 0x67.

When NASM is inBITS 64 mode, most instructions operate the same as they d®IT& 32
mode. However, there are 8 more general and SSE registers, and 16-bit addressing is no longer
supported.

The default address size is 64 bits; 32-bit addressing can be selected with the 0x67 prefix. The
default operand size is still 32 bits, however, and the 0x66 prefix selects 16-bit operand size. The
REX prefix is used both to select 64-bit operand size, and to access the new registers. NASM
automatically inserts REX prefixes when necessary.

When theREXprefix is used, the processor does not know how to address the AH, BH, CH or DH
(high 8-hit legacy) registers. Instead, it is possible to access the the low 8-bits of the SP, BP Sl and
Dl registers as SPL, BPL, SIL and DIL, respectively; but only when the REX prefix is used.

The BITS directive has an exactly equivalent primitive forfBJTS 16] , [BITS 32] and
[BITS 64] . The user—level form is a macro which has no function other than to call the primitive
form.

Note that the space is neccessary,Bl§S32 will notwork!
5.1.1 USE16& USE32 Aliases for BITS

The USE16 and ‘USE3Z directives can be used in place &ITS 16 ' and ‘BITS 32 ’, for
compatibility with other assemblers.

5.2 DEFAULT Change the assembler defaults

The DEFAULT directive changes the assembler defaults. Normally, NASM defaults to a mode
where the programmer is expected to explicitly specify most features directly. However, this is
occationally obnoxious, as the explicit form is pretty much the only one one wishes to use.

Currently, the onlyDEFAULTthat is settable is whether or not registerless instructions in 64-bit
mode areRIP-relative or not. By default, they are absolute unless overridden witiREie
specifier (see section 3.3). However, DEFAULT REL is specified,REL is default, unless
overridden with theABS specifier,except when used with an FS or GS segment override

The special handling dfS and GS overrides are due to the fact that these registers are generally
used as thread pointers or other special functions in 64—bit mode, and genBi&tinglative
addresses would be extremely confusing.

DEFAULT RELis disabled wittDEFAULT ABS

5.3 SECTIONor SEGMENTChanging and Defining Sections

The SECTION directive SEGMENTs an exactly equivalent synonym) changes which section of

the output file the code you write will be assembled into. In some object file formats, the number
and names of sections are fixed; in others, the user may make up as many as they wish. Hence
SECTIONmay sometimes give an error message, or may define a new section, if you try to switch
to a section that does not (yet) exist.

The Unix object formats, and thiein object format (but see section 6.1.3, all support the
standardized section namdext , .data and.bss for the code, data and uninitialized—data
sections. Thebj format, by contrast, does not recognize these section names as being special, and
indeed will strip off the leading period of any section name that has one.

5.3.1 The SECT__ Macro

The SECTION directive is unusual in that its user—level form functions differently from its
primitive form. The primitive form[SECTION xyz] , simply switches the current target section
to the one given. The user-level forRECTION xyz , however, first defines the single-line
macro__ SECT__ to be the primitivd SECTION] directive which it is about to issue, and then
issues it. So the user—level directive

SECTION .text
expands to the two lines

%define _ SECT__ [SECTION .text]
[SECTION .text]

Users may find it useful to make use of this in their own macros. For exampleritiide
macro defined in section 4.3.3 can be usefully rewritten in the following more sophisticated form:

%macro writefile 2+

57

58

[section .data]

%%str: db %2
%%endstr:

__SECT__

mov dx,%%str

mov c¢Xx,%%endstr—%%str
mov bx,%1

mov ah,0x40

int 0x21

%endmacro

This form of the macro, once passed a string to output, first switches temporarily to the data section
of the file, using the primitive form of th8ECTION directive so as not to modify SECT__. It

then declares its string in the data section, and then invok8&CT _ to switch back to
whicheversection the user was previously working in. It thus avoids the need, in the previous
version of the macro, to includeJMP instruction to jump over the data, and also does not fall if, in

a complicatedOBJ format module, the user could potentially be assembling the code in any of

several separate code sections.

5.4 ABSOLUTEDefining Absolute Labels

The ABSOLUTEdirective can be thought of as an alternative fornrSBICTION it causes the
subsequent code to be directed at no physical section, but at the hypothetical section starting at the
given absolute address. The only instructions you can use in this mode RESBEamily.

ABSOLUTHS used as follows:
absolute Ox1A
kbuf chr resw 1

kbuf free resw 1
kbuf resw 16

This example describes a section of the PC BIOS data area, at segment address 0x40: the above
code definegbuf chr to be Ox1Akbuf free to be O0x1C, andbuf to be Ox1E.

The user—level form oABSOLUTElike that of SECTION redefines the SECT__ macro when
it is invoked.

STRUCandENDSTRU@Gre defined as macros which usSOLUTHand also _ SECT_).

ABSOLUTEdoesn’'t have to take an absolute constant as an argument: it can take an expression
(actually, a critical expression: see section 3.8) and it can be a value in a segment. For example, a
TSR can re—use its setup code as run-time BSS like this:

org 100h ; it's a .COM program

jmp setup ; setup code comes last

; the resident part of the TSR goes here
setup:

; how write the code that installs the TSR here

absolute setup

runtimevarl resw 1
runtimevar2 resd 20

tsr_end:

This defines some variables ‘on top of' the setup code, so that after the setup has finished running,
the space it took up can be re-used as data storage for the running TSR. The symbol ‘tsr_end’ can
be used to calculate the total size of the part of the TSR that needs to be made resident.

5.5 EXTERNImporting Symbols from Other Modules

EXTERNIs similar to the MASM directiveEXTRNand the C keywordkxtern : it is used to

declare a symbol which is not defined anywhere in the module being assembled, but is assumed to
be defined in some other module and needs to be referred to by this one. Not every object—file
format can support external variables: ke format cannot.

The EXTERNdirective takes as many arguments as you like. Each argument is the name of a
symbol:

extern _printf
extern _sscanf,_fscanf

Some object—file formats provide extra features to EX&ERNdirective. In all cases, the extra
features are used by suffixing a colon to the symbol name followed by object—format specific text.
For example, th@bj format allows you to declare that the default segment base of an external
should be the groughgroup by means of the directive

extern _variable:wrt dgroup

The primitive form ofEXTERNdiffers from the user-level form only in that it can take only one
argument at a time: the support for multiple arguments is implemented at the preprocessor level.

You can declare the same variable EBSTERNmore than once: NASM will quietly ignore the
second and later redeclarations. You can’t declare a variall¥ BSRNas well as something else,
though.

5.6 GLOBALEXxporting Symbols to Other Modules

GLOBALIs the other end dEXTERN if one module declares a symbolEBXTERNand refers to it,
then in order to prevent linker errors, some other module must actigfilye the symbol and
declare it a&SLOBAL Some assemblers use the ndddBLIC for this purpose.

The GLOBALdirective applying to a symbol must appbeforethe definition of the symbol.

GLOBALuses the same syntax BXTERN except that it must refer to symbols white defined
in the same module as tftd¢ OBALdirective. For example:

global _main
_main:
: some code

GLOBAL like EXTERN allows object formats to define private extensions by means of a colon. The
elf object format, for example, lets you specify whether global data items are functions or data:

global hashlookup:function, hashtable:data

Like EXTERN the primitive form ofGLOBALdiffers from the user—level form only in that it can
take only one argument at a time.

59

5.7 COMMOBefining Common Data Areas

The COMMONHNirective is used to decla@mmon variablesA common variable is much like a
global variable declared in the uninitialized data section, so that

common intvar 4

is similar in function to
global intvar

section .bss

intvar resd 1

The difference is that if more than one module defines the same common variable, then at link time
those variables will benerged and references tmtvar in all modules will point at the same
piece of memory.

Like GLOBALandEXTERN COMMOS8uUpports object-format specific extensions. For example, the
obj format allows common variables to be NEAR or FAR, anddlfie format allows you to
specify the alignment requirements of a common variable:

common commvar 4:near ; works in OBJ
common intarray 100:4 ; works in ELF: 4 byte aligned

Once again, likeEXTERNandGLOBAL the primitive form ofCOMMOUiffers from the user—level
form only in that it can take only one argument at a time.

5.8 CPU Defining CPU Dependencies
The CPUdirective restricts assembly to those instructions which are available on the specified CPU.
Options are:
e CPU 8086 Assemble only 8086 instruction set
» CPU 186 Assemble instructions up to the 80186 instruction set
« CPU 286 Assemble instructions up to the 286 instruction set
e CPU 386 Assemble instructions up to the 386 instruction set
» CPU 486 486 instruction set
¢ CPU 586 Pentium instruction set
* CPU PENTIUMSame as 586
* CPU 686 P6 instruction set
« CPU PPROSame as 686
¢ CPU P2 Same as 686
¢ CPU P3 Pentium Ill (Katmai) instruction sets
e CPU KATMAI Same as P3
¢ CPU P4 Pentium 4 (Willamette) instruction set
* CPU WILLAMETTESame as P4
* CPU PRESCOTPrescott instruction set
e CPU X64 x86-64 (x64/AMDG64/Intel 64) instruction set

CPU IA64 1A64 CPU (in x86 mode) instruction set

All options are case insensitive. All instructions will be selected only if they apply to the selected
CPU or lower. By default, all instructions are available.

5.9 FLOAT Handling of floating—point constants

By default, floating—point constants are rounded to nearest, and IEEE denormals are supported. The
following options can be set to alter this behaviour:

FLOAT DAZ Flush denormals to zero

FLOAT NODAZDo not flush denormals to zero (default)
FLOAT NEARRound to nearest (default)

FLOAT UP Round up (toward +Infinity)

FLOAT DOWNRound down (toward —Infinity)

FLOAT ZERORound toward zero

FLOAT DEFAULTRestore default settings

The standard macros FLOAT DAZ , FLOAT ROUND_, and _FLOAT__ contain the
current state, as long as the programmer has avoided the use of the brackeded primitive form,
([FLOAT]).

FLOAT__ contains the full set of floating—point settings; this value can be saved away and

invoked later to restore the setting.

61

Chapter 6: Output Formats

NASM is a portable assembler, designed to be able to compile on any ANSI C-supporting platform
and produce output to run on a variety of Intel x86 operating systems. For this reason, it has a large
number of available output formats, selected using-theoption on the NASM command line.

Each of these formats, along with its extensions to the base NASM syntax, is detailed in this chapter.

As stated in section 2.1.1, NASM chooses a default name for your output file based on the input file
name and the chosen output format. This will be generated by removing the extaasion.§ ,

or whatever you like to use) from the input file name, and substituting an extension defined by the
output format. The extensions are given with each format below.

6.1 bin : Flat—-Form Binary Output

Thebin format does not produce object files: it generates nothing in the output file except the code
you wrote. Such ‘pure binary’ files are used by MS-DOS0OM executables andSYS device

drivers are pure binary files. Pure binary output is also useful for operating system and boot loader
development.

Thebin format supports multiple section names. For details of how nasm handles sections in the
bin format, see section 6.1.3.

Using thebin format puts NASM by default into 16-bit mode (see section 5.1). In order to use
bin to write 32-bit or 64-bit code, such as an OS kernel, you need to explicitly issue the
BITS 32 orBITS 64 directive.

bin has no default output file hame extension: instead, it leaves your file name as it is once the
original extension has been removed. Thus, the default is for NASM to asdanyrieg.asm
into a binary file calledbinprog

6.1.1 ORGBiInary File Program Origin

Thebin format provides an additional directive to the list given in chapt@R5 The function of
the ORGdirective is to specify the origin address which NASM will assume the program begins at
when it is loaded into memory.

For example, the following code will generate the longwix@0000104 :

org 0x100
dd label
label:

Unlike the ORGdirective provided by MASM-compatible assemblers, which allows you to jump
around in the object file and overwrite code you have already generated, NAR@EH0es exactly

what the directive saysrigin. Its sole function is to specify one offset which is added to all internal
address references within the section; it does not permit any of the trickery that MASM’s version
does. See section 11.1.3 for further comments.

6.1.2 bin Extensions to theSECTIONDirective

The bin output format extends tHeECTION (or SEGMEN)Tdirective to allow you to specify the
alignment requirements of segments. This is done by appendifg_tB& qualifier to the end of
the section—definition line. For example,

section .data align=16

switches to the sectiadata and also specifies that it must be aligned on a 16—byte boundary.

The parameter tALIGN specifies how many low bits of the section start address must be forced to
zero. The alignment value given may be any power of two.

6.1.3 Multisection support for the BIN format.

The bin format allows the use of multiple sections, of arbitrary names, besides the "known"
text ,.data , and.bss names.

» Sections may be designat@dogbits or nobits . Default isprogbits (except.bss ,
which defaults taobits , of course).

e Sections can be aligned at a specified boundary following the previous sectialigvith , or
at an arbitrary byte—granular position witart=

¢ Sections can be given a virtual start address, which will be used for the calculation of all memory
references within that section wiistart=

. Section_s can be _ordered usilf'g!ows=<section> or vfollows=<section> as an
alternative to specifying an explicit start address.

e Arguments toorg , start , vstart , andalign= are critical expressions. See section 3.8. E.g.
align=(1 << ALIGN_SHIFT) —ALIGN_SHIFT must be defined before it is used here.

* Any code which comes before an expliGECTION directive is directed by default into the
text section.

» If an ORGstatement is not give@QRG 0is used by default.

e The.bss section will be placed after the lgstogbits section, unlesstart= , vstart=
follows= , orvfollows= has been specified.

« All sections are aligned on dword boundaries, unless a different alignment has been specified.
¢ Sections may not overlap.

¢ Nasm creates theection.<secname>.start for each section, which may be used in your
code.

6.1.4 Map files

Map files can be generated+f bin format by means of thgnap] option. Map types odll
(default), brief , sections , segments , or symbols may be specified. Output may be
directed to stdout (default), stderr or a specified file. E.g.
[map symbols myfile.map] . No "user form" exists, the square brackets must be used.

obj : Microsoft OMF Object Files

Theobj file format (NASM calls itobj rather tharomf for historical reasons) is the one produced
by MASM and TASM, which is typically fed to 16-bit DOS linkers to prodUeXE files. It is
also the format used by OS/2.

obj provides a default output file—name extensiorobf .

obj is not exclusively a 16-bit format, though: NASM has full support for the 32-bit extensions to
the format. In particular, 32—-bitbj format files are used by Borland’s Win32 compilers, instead of
using Microsoft's newewin32 object file format.

The obj format does not define any special segment names: you can call your segments anything
you like. Typical names for segmentsoinj format files areCODEDATAandBSS

63

64

If your source file contains code before specifying an ex@bEiGMENTirective, then NASM will
invent its own segment called NASMDEFSE®r you.

When you define a segment in abj file, NASM defines the segment name as a symbol as well,
so that you can access the segment address of the segment. So, for example:

segment data
dvar: dw 1234

segment code

function:
mov ax,data ; get segment address of data
mov ds,ax ; and move it into DS
inc word [dvar] ; now this reference will work
ret

The obj format also enables the use of BEGand WRToperators, so that you can write code
which does things like

extern foo
mov ax,seg foo ; get preferred segment of foo
mov ds,ax
mov ax,data ; a different segment
mov es,ax
mov ax,[ds:foo] : this accesses ‘foo’

mov [es:foo wrt data],bx ; so does this

6.2.1 obj Extensions to theSEGMENDirective

The obj output format extends th 8 EGMENTor SECTION directive to allow you to specify
various properties of the segment you are defining. This is done by appending extra qualifiers to the
end of the segment-definition line. For example,

segment code private align=16

defines the segmenbde , but also declares it to be a private segment, and requires that the portion
of it described in this code module must be aligned on a 16-byte boundary.

The available qualifiers are:

¢ PRIVATE, PUBLIC, COMMOMNNd STACK specify the combination characteristics of the
segmentPRIVATE segments do not get combined with any others by the lifk&BLIC and
STACKsegments get concatenated together at link timeCadMOBEgments all get overlaid
on top of each other rather than stuck end-to—end.

e ALIGN is used, as shown above, to specify how many low bits of the segment start address must
be forced to zero. The alignment value given may be any power of two from 1 to 4096; in reality,
the only values supported are 1, 2, 4, 16, 256 and 4096, so if 8 is specified it will be rounded up
to 16, and 32, 64 and 128 will all be rounded up to 256, and so on. Note that alignment to
4096-byte boundaries is a PharLap extension to the format and may not be supported by all
linkers.

« CLASScan be used to specify the segment class; this feature indicates to the linker that segments
of the same class should be placed near each other in the output file. The class hame can be any
word, e.g.CLASS=CODE

« OVERLAYIlike CLASS is specified with an arbitrary word as an argument, and provides overlay
information to an overlay—capable linker.

» Segments can be declaredUsSE16 or USE32 which has the effect of recording the choice in
the object file and also ensuring that NASM'’s default assembly mode when assembling in that
segment is 16-bit or 32-bit respectively.

* When writing OS/2 object files, you should declare 32-bit segmersA&E, which causes the
default segment base for anything in the segment to be the speciaFy&tlipand also defines
the group if it is not already defined.

« The obj file format also allows segments to be declared as having a pre—defined absolute
segment address, although no linkers are currently known to make sensible use of this feature;
nevertheless, NASM allows you to declare a segment such as
SEGMENT SCREEN ABSOLUTE=0xB800f you need to. TheABSOLUTEand ALIGN
keywords are mutually exclusive.

NASM'’s default segment attributes @&BLIC, ALIGN=1, no class, no overlay, atdSE16.
6.2.2 GROURDefining Groups of Segments

The obj format also allows segments to be grouped, so that a single segment register can be used
to refer to all the segments in a group. NASM therefore supplieSR@URIirective, whereby you
can code

segment data
; some data
segment bss
: some uninitialized data

group dgroup data bss

which will define a group calledgroup to contain the segmendgta andbss . Like SEGMENT
GROURauses the group name to be defined as a symbol, so that you can refer to avaaridtle
the data segment asar wrt data or asvar wrt dgroup , depending on which segment
value is currently in your segment register.

If you just refer tovar , however, andiar is declared in a segment which is part of a group, then
NASM will default to giving you the offset ofar from the beginning of thgroup not the
segmentThereforeSEG var , also, will return the group base rather than the segment base.

NASM will allow a segment to be part of more than one group, but will generate a warning if you
do this. Variables declared in a segment which is part of more than one group will default to being
relative to the first group that was defined to contain the segment.

A group does not have to contain any segments; you can stillWiBReeferences to a group which
does not contain the variable you are referring to. OS/2, for example, defines the special group
FLAT with no segments in it.

6.2.3 UPPERCASBDisabling Case Sensitivity in Output

Although NASM itself is case sensitive, some OMF linkers are not; therefore it can be useful for
NASM to output single—case object files. TAIEPPERCASHormat-specific directive causes all
segment, group and symbol names that are written to the object file to be forced to upper case just
before being written. Within a source file, NASM is still case—sensitive; but the object file can be
written entirely in upper case if desired.

65

UPPERCASES used alone on a line; it requires no parameters.
6.2.4 IMPORT Importing DLL Symbols

The IMPORTformat-specific directive defines a symbol to be imported from a DLL, for use if you
are writing a DLL’s import library in NASM. You still need to declare the symbdEd$ERNas
well as using th&MPORTdirective.

The IMPORT directive takes two required parameters, separated by white space, which are
(respectively) the name of the symbol you wish to import and the name of the library you wish to
import it from. For example:

import WSAStartup wsock32.dll

A third optional parameter gives the name by which the symbol is known in the library you are
importing it from, in case this is not the same as the name you wish the symbol to be known by to
your code once you have imported it. For example:

import asyncsel wsock32.dll WSAAsyncSelect
6.2.5 EXPORTEXxporting DLL Symbols

The EXPORTformat—specific directive defines a global symbol to be exported as a DLL symbol,
for use if you are writing a DLL in NASM. You still need to declare the symb@LaBBALas well
as using th&XPORTdirective.

EXPORTtakes one required parameter, which is the name of the symbol you wish to export, as it
was defined in your source file. An optional second parameter (separated by white space from the
first) gives theexternalname of the symbol: the name by which you wish the symbol to be known

to programs using the DLL. If this name is the same as the internal name, you may leave the second
parameter off.

Further parameters can be given to define attributes of the exported symbol. These parameters, like
the second, are separated by white space. If further parameters are given, the external name mus
also be specified, even if it is the same as the internal name. The available attributes are:

» resident indicates that the exported name is to be kept resident by the system loader. This is
an optimisation for frequently used symbols imported by nhame.

e nodata indicates that the exported symbol is a function which does not make use of any
initialized data.

« parm=NNN whereNNNis an integer, sets the number of parameter words for the case in which
the symbol is a call gate between 32-bit and 16-bit segments.

* An attribute which is just a number indicates that the symbol should be exported with an
identifying number (ordinal), and gives the desired number.

For example:

export myfunc

export myfunc TheRealMoreFormalLookingFunctionName
export myfunc myfunc 1234 ; export by ordinal

export myfunc myfunc resident parm=23 nodata

6.2.6 ..start : Defining the Program Entry Point

OMFlinkers require exactly one of the object files being linked to define the program entry point,
where execution will begin when the program is run. If the object file that defines the entry point is
assembled using NASM, you specify the entry point by declaring the special systdndl at

the point where you wish execution to begin.

6.2.7 obj Extensions to theEXTERNDirective
If you declare an external symbol with the directive
extern foo

then references such awv ax,foo will give you the offset ofoo from its preferred segment
base (as specified in whichever modtde is actually defined in). So to access the contents of
foo you will usually need to do something like

mov ax,seg foo ; get preferred segment base
mov es,ax ; move it into ES
mov ax,[es:foo] ; and use offset ‘foo’ from it

This is a little unwieldy, particularly if you know that an external is going to be accessible from a
given segment or group, sdgroup . So ifDSalready containedgroup , you could simply code

mov ax,[foo wrt dgroup]

However, having to type this every time you want to acéesscan be a pain; so NASM allows
you to declardoo in the alternative form

extern foo:wrt dgroup

This form causes NASM to pretend that the preferred segment bése a$ in factdgroup ; so
the expressiorseg foo will now return dgroup , and the expressiofoo is equivalent to
foo wrt dgroup

This default"WRTmechanism can be used to make externals appear to be relative to any group or
segment in your program. It can also be applied to common variables: see section 6.2.8.

6.2.8 obj Extensions to theCOMMODIrective

The obj format allows common variables to be either near or far; NASM allows you to specify
which your variables should be by the use of the syntax

common nearvar 2:near ; ‘nearvar’is a near common
common farvar 10:far ; and ‘farvar’ is far

Far common variables may be greater in size than 64Kb, and so the OMF specification says that
they are declared as a numberetdmentf a given size. So a 10-byte far common variable could

be declared as ten one-byte elements, five two—byte elements, two five-byte elements or one
ten—byte element.

SomeOMFlinkers require the element size, as well as the variable size, to match when resolving
common variables declared in more than one module. Therefore NASM must allow you to specify
the element size on your far common variables. This is done by the following syntax:

common c¢_5by2 10:far5 ; two five—byte elements
common c_2by5 10:far 2 ; five two—byte elements

If no element size is specified, the default is 1. Also, RAR keyword is not required when an
element size is specified, since only far commons may have element sizes at all. So the above
declarations could equivalently be

common c¢_5by2 10:5 ; two five—byte elements
common c¢_2by5 10:2 ; five two—byte elements

In addition to these extensions, tl@OMMONMlirective in obj also supports defauN¥RT
specification likeEXTERNdJoes (explained in section 6.2.7). So you can also declare things like

67

68

6.3

common foo 10:wrt dgroup
common bar 16:far 2:wrt data
common baz 24:wrt data:6

win32 : Microsoft Win32 Object Files

Thewin32 output format generates Microsoft Win32 object files, suitable for passing to Microsoft
linkers such as Visual C++. Note that Borland Win32 compilers do not use this format, bbjf use
instead (see section 6.2).

win32 provides a default output file—name extensiorobj .

Note that although Microsoft say that Win32 object files follow @@FF(Common Object File
Format) standard, the object files produced by Microsoft Win32 compilers are not compatible with
COFF linkers such as DJGPP’s, and vice versa. This is due to a difference of opinion over the
precise semantics of PC-relative relocations. To produce COFF files suitable for DJGPP, use
NASM’s coff output format; conversely, theoff format does not produce object files that
Win32 linkers can generate correct output from.

6.3.1 win32 Extensions to theSECTIONDiIrective

Like the obj format, win32 allows you to specify additional information on tS&&CTION
directive line, to control the type and properties of sections you declare. Section types and
properties are generated automatically by NASM for the standard section riartes, .data

and.bss , but may still be overridden by these qualifiers.

The available qualifiers are:

e code, or equivalentiytext , defines the section to be a code section. This marks the section as
readable and executable, but not writable, and also indicates to the linker that the type of the
section is code.

e data andbss define the section to be a data section, analogousipde . Data sections are
marked as readable and writable, but not executdbla. declares an initialized data section,
whereadss declares an uninitialized data section.

e rdata declares an initialized data section that is readable but not writable. Microsoft compilers
use this section to place constants in it.

» info defines the section to be an informational section, which is not included in the executable
file by the linker, but may (for example) pass informatiothe linker. For example, declaring an
info —type section calleddrectve causes the linker to interpret the contents of the section as
command-line options.

e align= , used with a trailing number asabj , gives the alignment requirements of the section.
The maximum you may specify is 64: the Win32 object file format contains no means to request
a greater section alignment than this. If alignment is not explicitly specified, the defaults are
16-byte alignment for code sections, 8—byte alignment for rdata sections and 4-byte alignment
for data (and BSS) sections. Informational sections get a default alignment of 1 byte (no
alignment), though the value does not matter.

The defaults assumed by NASM if you do not specify the above qualifiers are:

section .text code align=16
section .data data align=4
section .rdata rdata align=8
section .bss bss align=4

Any other section name is treated by default ltleat

6.4 win64 : Microsoft Win64 Object Files

Thewin64 output format generates Microsoft Win64 object files, which is nearly 100% identical
to thewin32 object format (section 6.3) with the exception that it is meant to target 64-bit code
and the x86-64 platform altogether. This object file is used exactly the samewia3Be object
format (section 6.3), in NASM, with regard to this exception.

6.5 coff : Common Object File Format
Thecoff output type produceSOFFobject files suitable for linking with the DJGPP linker.
coff provides a default output file—name extensiormoof

Thecoff format supports the same extensions toSEE€TION directive aswin32 does, except
that thealign qualifier and thenfo section type are not supported.

6.6 macho: Mach Obiject File Format
Themacho output type producddach—Oobject files suitable for linking with the Mac OSX linker.
macho provides a default output file—name extensioroof
6.7 EI_]I, elf32, and elf64 : Executable and Linkable Format Object
les

Theelf32 andelf64 output formats generateLF32 and ELF64 (Executable and Linkable
Format) object files, as used by Linux as well as Unix System V, including Solaris x86, UnixWare
and SCO Unixelf provides a default output file-name extensionoof elf is a synonym for

elf32

6.7.1 ELF specific directiveosabi

The ELF header specifies the application binary interface for the target operating system (OSABI).
This field can be set by using tlesabi directive with the numeric value (0-255) of the target
system. If this directive is not used, the default value will be "UNIX System V ABI" (0) which will
work on most systems which support ELF.

6.7.2 elf Extensions to theSECTIONDiIrective

Like theobj format,elf allows you to specify additional information on tBECTIONdirective

line, to control the type and properties of sections you declare. Section types and properties are
generated automatically by NASM for the standard section naews , .data and.bss , but

may still be overridden by these qualifiers.

The available qualifiers are:

» alloc defines the section to be one which is loaded into memory when the program is run.
noalloc defines it to be one which is not, such as an informational or comment section.

« exec defines the section to be one which should have execute permission when the program is
run.noexec defines it as one which should not.

« write defines the section to be one which should be writable when the program is run.
nowrite defines it as one which should not.

» progbits defines the section to be one with explicit contents stored in the object file: an
ordinary code or data section, for exampdebits defines the section to be one with no
explicit contents given, such as a BSS section.

e align= , used with a trailing number asabj , gives the alignment requirements of the section.

69

The defaults assumed by NASM if you do not specify the above qualifiers are:

section .text progbits alloc exec nowrite align=16
section .rodata progbits alloc noexec nowrite align=4
section .data progbits alloc noexec write align=4
section .bss nobits alloc noexec write align=4
section other progbits alloc noexec nowrite align=1

(Any section name other thatext , .rodata , .data and.bss is treated by default like
other in the above code.)

6.7.3 Position—-Independent Codeelf Special Symbols andVRT

The ELF specification contains enough features to allow position—independent code (PIC) to be

written, which makes ELF shared libraries very flexible. However, it also means NASM has to be

able to generate a variety of strange relocation types in ELF object files, if it is to be an assembler
which can write PIC.

SinceELF does not support segment-base referenced)VR€operator is not used for its normal
purpose; therefore NASM'slf output format makes use WRTfor a different purpose, namely
the PIC-specific relocation types.

elf defines five special symbols which you can use as the right-hand sideWWRif@perator to

obtain PIC relocation types. They argotpc , ..gotoff ,..got ,.plt and..sym . Their
functions are summarized here:
« Referring to the symbol marking the global offset table base wgihggotpc will end up

giving the distance from the beginning of the current section to the global offset table.
(_GLOBAL_OFFSET_TABLE s the standard symbol name used to refer to the GOT.) So you
would then need to adg to the result to get the real address of the GOT.

« Referring to a location in one of your own sections using..gotoff will give the distance
from the beginning of the GOT to the specified location, so that adding on the address of the
GOT would give the real address of the location you wanted.

« Referring to an external or global symbol usimg ..got causes the linker to build an entry
in the GOT containing the address of the symbol, and the reference gives the distance from the
beginning of the GOT to the entry; so you can add on the address of the GOT, load from the
resulting address, and end up with the address of the symbol.

» Referring to a procedure name using ..plt causes the linker to build a procedure linkage
table entry for the symbol, and the reference gives the address of the PLT entry. You can only
use this in contexts which would generate a PC-relative relocation normally (i.e. as the
destination forCALL or JMP), since ELF contains no relocation type to refer to PLT entries
absolutely.

¢ Referring to a symbol name usimgt ..sym causes NASM to write an ordinary relocation,
but instead of making the relocation relative to the start of the section and then adding on the
offset to the symbol, it will write a relocation record aimed directly at the symbol in question.
The distinction is a necessary one due to a peculiarity of the dynamic linker.

A fuller explanation of how to use these relocation types to write shared libraries entirely in NASM
is given in section 8.2.

6.7.4 elf Extensions to theGLOBAILDirective

ELF object files can contain more information about a global symbol than just its address: they can
contain the size of the symbol and its type as well. These are not merely debugger conveniences, but
are actually necessary when the program being written is a shared library. NASM therefore supports
some extensions to tli& OBALdirective, allowing you to specify these features.

You can specify whether a global variable is a function or a data object by suffixing the name with a
colon and the woréunction ordata . (object is a synonym fodata .) For example:

global hashlookup:function, hashtable:data
exports the global symbblshlookup as a function andlashtable as a data object.

Optionally, you can control the ELF visibility of the symbol. Just add one of the visibility
keywords:default , internal , hidden , or protected . The default iglefault of course.
For example, to makeashlookup hidden:

global hashlookup:function hidden

You can also specify the size of the data associated with the symbol, as a numeric expression
(which may involve labels, and even forward references) after the type specifier. Like this:

global hashtable:data (hashtable.end — hashtable)

hashtable:
db this,that,theother ; some data here
.end:

This makes NASM automatically calculate the length of the table and place that information into
the ELF symbol table.

Declaring the type and size of global symbols is necessary when writing shared library code. For
more information, see section 8.2.4.

6.7.5 elf Extensions to theCOMMODrective

ELF also allows you to specify alignment requirements on common variables. This is done by
putting a number (which must be a power of two) after the name and size of the common variable,
separated (as usual) by a colon. For example, an array of doublewords would benefit from 4-byte
alignment:

common dwordarray 128:4

This declares the total size of the array to be 128 bytes, and requires that it be aligned on a 4-byte
boundary.

6.7.6 16-—bit code and ELF

The ELF32 specification doesn’t provide relocations for 8— and 16-bit values, but the IGNU
linker adds these as an extension. NASM can generate GNU-compatible relocations, to allow
16-bit code to be linked as ELF using GNUWd . If NASM is used with the
-w+gnu-elf-extensions option, a warning is issued when one of these relocations is
generated.

6.7.7 Debug formats and ELF

ELF32 andELF64 provide debug information iSTABS format. Prior to 2.00, this information
was generated only for the ".text" section. However, all executable sections are now included. (Note
that only the ".text" section is executable by default.)

6.8 aout : Linux a.out Object Files

The aout format generatea.out object files, in the form used by early Linux systems (current
Linux systems use ELF, see section 6.7.) These differ from atbaet object files in that the
magic number in the first four bytes of the file is different; also, some implementatiansubf ,

for example NetBSD'’s, support position—independent code, which Linux’s implementation does not.

71

a.out provides a default output file—name extensioroof

a.out is a very simple object format. It supports no special directives, no special symbols, no use
of SEGor WRT and no extensions to any standard directives. It supports only the three standard
section namedext ,.data and.bss .

6.9 aoutb : NetBSD/FreeBSD/OpenBS[a.out Object Files

Theaoutb format generatea.out object files, in the form used by the various fB&D Unix
clones,NetBSD, FreeBSD andOpenBSD For simple object files, this object format is exactly the
same agout except for the magic number in the first four bytes of the file. Howevergadhtb
format supports position—-independent code in the same way al thiermat, so you can use it to
write BSDshared libraries.

aoutb provides a default output file—name extensioroof

aoutb supports no special directives, no special symbols, and only the three standard section
namestext ,.data and.bss . However, it also supports the same us¥/éTaself does, to
provide position—-independent code relocation types. See section 6.7.3 for full documentation of this
feature.

aoutb also supports the same extensions toGh®BALdirective aslf does: see section 6.7.4
for documentation of this.

6.10 as86: Minix/Linux as86 Obiject Files

The Minix/Linux 16-bit assembleas86 has its own non-standard object file format. Although its
companion linketd86 produces something close to ordinargut binaries as output, the object
file format used to communicate betwexs86 andld86 is not itselfa.out .

NASM supports this format, just in case it is useful,aa86 . as86 provides a default output
file—name extension ab .

as86 is a very simple object format (from the NASM user’s point of view). It supports no special
directives, no special symbols, no use&s&Gor WRT and no extensions to any standard directives.
It supports only the three standard section nate&s ,.data and.bss .

6.11 rdf : Relocatable Dynamic Object File Format

The rdf output format produceRDOFFobject files.RDOFF(Relocatable Dynamic Object File
Format) is a home—grown object—file format, designed alongside NASM itself and reflecting in its
file format the internal structure of the assembler.

RDOFFis not used by any well-known operating systems. Those writing their own systems,
however, may well wish to useDOFFas their object format, on the grounds that it is designed
primarily for simplicity and contains very little file—header bureaucracy.

The Unix NASM archive, and the DOS archive which includes sources, both contedofain
subdirectory holding a set of RDOFF utilities: an RDF linker RDF static—library manager, an
RDF file dump utility, and a program which will load and execute an RDF executable under Linux.

rdf supports only the standard section narteeg |, .data and.bss .
6.11.1 Requiring a Library: The LIBRARY Directive

RDOFFcontains a mechanism for an object file to demand a given library to be linked to the
module, either at load time or run time. This is done bylIB&RARY directive, which takes one
argument which is the name of the module:

library mylib.rdl

6.11.2 Specifying a Module Name: Th®IODULPirective

SpecialRDOFFheader record is used to store the name of the module. It can be used, for example,
by run—time loader to perform dynamic linkingODULEHlirective takes one argument which is the
name of current module:

module mymodname

Note that when you statically link modules and tell linker to strip the symbols from output file, all
module names will be stripped too. To avoid it, you should start module names Vike

module $kernel.core
6.11.3rdf Extensions to theGLOBALdirective

RDOFFglobal symbols can contain additional information needed by the static linker. You can
mark a global symbol as exported, thus telling the linker do not strip it from target executable or
library file. Like in ELF, you can also specify whether an exported symbol is a procedure (function)
or data object.

Suffixing the name with a colon and the wexport you make the symbol exported:
global sys_open:export

To specify that exported symbol is a procedure (function), you add theprmed or function
after declaration:

global sys_open:export proc
Similarly, to specify exported data object, add the waath orobject to the directive:
global kernel_ticks:export data
6.11.4 rdf Extensions to theEXTERNlirective

By default theEXTERNdirective inRDOFFdeclares a "pure external" symbol (i.e. the static linker
will complain if such a symbol is not resolved). To declare an "imported” symbol, which must be
resolved later during a dynamic linking phaR&®OFFoffers an additionaimport modifier. As in
GLOBAL you can also specify whether an imported symbol is a procedure (function) or data object.
For example:

library $libc

extern _open:import
extern _printf:import proc
extern _errno:import data

Here the directive.IBRARY is also included, which gives the dynamic linker a hint as to where to
find requested symbols.

6.12 dbg: Debugging Format

Thedbg output format is not built into NASM in the default configuration. If you are building your
own NASM executable from the sources, you can defdte DBGin outform.h or on the
compiler command line, and obtain ttleg output format.

Thedbg format does not output an object file as such; instead, it outputs a text file which contains a
complete list of all the transactions between the main body of NASM and the output-format back
end module. It is primarily intended to aid people who want to write their own output drivers, so
that they can get a clearer idea of the various requests the main program makes of the output driver,
and in what order they happen.

For simple files, one can easily use thgy format like this:

73

74

nasm —f dbg filename.asm

which will generate a diagnostic file callitename.dbg . However, this will not work well on

files which were designed for a different object format, because each object format defines its own
macros (usually user—level forms of directives), and those macros will not be defineddingthe
format. Therefore it can be useful to run NASM twice, in order to do the preprocessing with the
native object format selected:

nasm —e —f rdf —o rdfprog.i rdfprog.asm
nasm —a —f dbg rdfprog.i

This preprocessesdfprog.asm into rdfprog.i , keeping thedf object format selected in
order to make sure RDF special directives are converted into primitive form correctly. Then the
preprocessed source is fed throughdhg format to generate the final diagnostic output.

This workaround will still typically not work for programs intended @j format, because the

obj SEGMEN®&ndGROURIirectives have side effects of defining the segment and group names as
symbols;dbg will not do this, so the program will not assemble. You will have to work around that
by defining the symbols yourself (usiBgK TERN for example) if you really need to getlbg trace

of anobj —specific source file.

dbg accepts any section name and any directives at all, and logs them all to its output file.

Chapter 7: Writing 16—bit Code (DOS, Windows 3/3.1)

This chapter attempts to cover some of the common issues encountered when writing 16-bit code to
run underMS-DOSr Windows 3.x . It covers how to link programs to produ¢eXE or .COM

files, how to write.SYS device drivers, and how to interface assembly language code with 16-bit

C compilers and with Borland Pascal.

7.1 Producing.EXE Files

Any large program written under DOS needs to be built &X& file: only .EXE files have the
necessary internal structure required to span more than one 64K segment. Windows programs, also,
have to be built a€£XE files, since Windows does not support i8©Mformat.

In general, you generateXE files by using theobj output format to produce one or mo@BJ

files, and then linking them together using a linker. However, NASM also supports the direct
generation of simple DOSEXE files using thebin output format (by usind®B and DWto
construct theEXE file header), and a macro package is supplied to do this. Thanks to Yann Guidon
for contributing the code for this.

NASM may also suppotEXE natively as another output format in future releases.

7.1.1 Using theobj Format To Generate.EXE Files
This section describes the usual method of generdEXg files by linking.OBJ files together.

Most 16-bit programming language packages come with a suitable linker; if you have none of
these, there is a free linker called VAL, availabld_#H archive format fronx2ftp.oulu.fi

An LZH archiver can be found étp. simtel.net . There is another ‘free’ linker (though this

one doesn’'t come with sources) called FREELINK available fremv.pcorner.com . A third,

djlink , written by DJ Delorie, is available atww.delorie.com . A fourth Iinker, ALINK,

written by Anthony A.J. Williams, is available alink.sourceforge.net

When linking severalOBJ files into a.EXE file, you should ensure that exactly one of them has a
start point defined (using thestart special symbol defined by thebj format: see section
6.2.6). If no module defines a start point, the linker will not know what value to give the
entry—point field in the output file header; if more than one defines a start point, the linker will not
knowwhichvalue to use.

An example of a NASM source file which can be assembled®@Ba file and linked on its own to

a .EXE is given here. It demonstrates the basic principles of defining a stack, initialising the
segment registers, and declaring a start point. This file is also providedtesthesubdirectory of

the NASM archives, under the nammigiexe.asm

segment code

..start:
mov ax,data
mov ds,ax
mov ax,stack
mov ss,ax
mov sp,stacktop

75

ftp://x2ftp.oulu.fi/pub/msdos/programming/lang/
ftp://ftp.simtel.net/pub/simtelnet/msdos/arcers
http://www.pcorner.com/tpc/old/3-101.html
http://www.delorie.com/djgpp/16bit/djlink/
http://alink.sourceforge.net

76

This initial piece of code sets WS to point to the data segment, and initiali&%andSP to point

to the top of the provided stack. Notice that interrupts are implicitly disabled for one instruction
after a move int&S, precisely for this situation, so that there’s no chance of an interrupt occurring
between the loads &S andSP and not having a stack to execute on.

Note also that the special symbditart is defined at the beginning of this code, which means
that will be the entry point into the resulting executable file.

mov dx,hello
mov ah,9
int 0x21

The above is the main program: loB&%:DX with a pointer to the greeting messagellp is
implicitly relative to the segmerdata , which was loaded int®S in the setup code, so the full
pointer is valid), and call the DOS print—string function.

mov ax,0x4c00
int 0x21

This terminates the program using another DOS system call.
segment data

hello: db ’hello, world’, 13, 10,’$’
The data segment contains the string we want to display.

segment stack stack
resb 64
stacktop:

The above code declares a stack segment containing 64 bytes of uninitialized stack space, and
points stacktop at the top of it. The directiveegment stack stack defines a segment

called stack , and also otype STACK The latter is not necessary to the correct running of the
program, but linkers are likely to issue warnings or errors if your program has no segment of type
STACK

The above file, when assembled intoaCBJ file, will link on its own to a validEXE file, which
when run will print ‘hello, world’” and then exit.

7.1.2 Using thebin Format To Generate.EXE Files

The .EXE file format is simple enough that it's possible to builldEXE file by writing a
pure-binary program and sticking a 32—-byte header on the front. This header is simple enough that
it can be generated usiB andDWcommands by NASM itself, so that you can usebihe output

format to directly generat&XE files.

Included in the NASM archives, in thraisc subdirectory, is a filexebin.mac of macros. It
defines three macroEXE_begin , EXE_stack andEXE_end.

To produce aEXE file using this method, you should start by uskinclude to load the
exebin.mac macro package into your source file. You should then issueXke begin macro

call (which takes no arguments) to generate the file header data. Then write code as normal for the
bin format — you can use all three standard sectiex$, .data and.bss . At the end of the

file you should call theeEXE_end macro (again, no arguments), which defines some symbols to
mark section sizes, and these symbols are referred to in the header code gen&dteddegin .

In this model, the code you end up writing start®xt00 , just like a.COMfile — in fact, if you
strip off the 32-byte header from the resultisgXE file, you will have a validCOM program. All
the segment bases are the same, so you are limited to a 64K program, again jusiQikéfite.

Note that arORGdirective is issued by thEXE_begin macro, so you should not explicitly issue
one of your own.

You can't directly refer to your segment base value, unfortunately, since this would require a
relocation in the header, and things would get a lot more complicated. So you should get your
segment base by copying it out@$instead.

On entry to yourEXE file, SS:SP are already set up to point to the top of a 2Kb stack. You can
adjust the default stack size of 2Kb by calling B¥E stack macro. For example, to change the
stack size of your program to 64 bytes, you would EXE_stack 64

A sample program which generate€XE file in this way is given in théest subdirectory of the
NASM archive, abinexe.asm

7.2 Producing.COMFiles

While large DOS programs must be written.BXE files, small ones are often better written as
.COMfiles. .COMfiles are pure binary, and therefore most easily produced usingirtheutput
format.

7.2.1 Using thebin Format To Generate.COMFiles

.COMfiles expect to be loaded at off4€i0h into their segment (though the segment may change).
Execution then begins 400h, i.e. right at the start of the program. So to writ€€®M program,
you would create a source file looking like

org 100h
section .text

start:
; put your code here

section .data
; put data items here
section .bss

; put uninitialized data here

The bin format puts thetext section first in the file, so you can declare data or BSS items
before beginning to write code if you want to and the code will still end up at the front of the file
where it belongs.

The BSS (uninitialized data) section does not take up space itC@OM file itself: instead,
addresses of BSS items are resolved to point at space beyond the end of the file, on the grounds tha
this will be free memory when the program is run. Therefore you should not rely on your BSS being
initialized to all zeros when you run.

To assemble the above program, you should use a command line like
nasm myprog.asm —fbin —o myprog.com

Thebin format would produce a file calledyprog if no explicit output file name were specified,
so you have to override it and give the desired file name.

77

7.2.2 Using theobj Format To Generate.COMFiles

If you are writing a.COM program as more than one module, you may wish to assemble several
.OBJ files and link them together into .£OM program. You can do this, provided you have a
linker capable of outputtingCOM files directly (TLINK does this), or alternatively a converter
program such aBXE2BIN to transform theEXE file output from the linker into &COMfile.

If you do this, you need to take care of several things:

» The first object file containing code should start its code segment with a lineE&8 100h .
This is to ensure that the code begins at ofi§¥ih relative to the beginning of the code
segment, so that the linker or converter program does not have to adjust address references within
the file when generating th€OMfile. Other assemblers use @RGdirective for this purpose,
but ORGIn NASM is a format—specific directive to th®n output format, and does not mean
the same thing as it does in MASM-compatible assemblers.

* You don't need to define a stack segment.

< All your segments should be in the same group, so that every time your code or data references a
symbol offset, all offsets are relative to the same segment base. This is because,@@kh a
file is loaded, all the segment registers contain the same value.

7.3 Producing.SYS Files

MS-DOS device drivers :SYS files — are pure binary files, similar t6OMfiles, except that they
start at origin zero rather thar©Oh. Therefore, if you are writing a device driver using Hie
format, you do not need ti@RCdirective, since the default origin foin is zero. Similarly, if you
are usingobj , you do not need tHRESB 100h at the start of your code segment.

.SYS files start with a header structure, containing pointers to the various routines inside the driver
which do the work. This structure should be defined at the start of the code segment, even though it
is not actually code.

For more information on the format a®YS files, and the data which has to go in the header
structure, a list of books is given in the Frequently Asked Questions list for the newsgroup
comp.os.msdos.programmer

7.4 Interfacing to 16—bit C Programs

This section covers the basics of writing assembly routines that call, or are called from, C programs.
To do this, you would typically write an assembly module a9BJ file, and link it with your C
modules to produce a mixed-language program.

7.4.1 External Symbol Names

C compilers have the convention that the names of all global symbols (functions or data) they
define are formed by prefixing an underscore to the name as it appears in the C program. So, for
example, the function a C programmer thinks ofpéastf appears to an assembly language
programmer as printf . This means that in your assembly programs, you can define symbols
without a leading underscore, and not have to worry about name clashes with C symbols.

If you find the underscores inconvenient, you can define macros to replaceL®BAL and
EXTERNdirectives as follows:

%macro cglobal 1

global %1
%define %1 %1

news:comp.os.msdos.programmer

%endmacro
%macro cextern 1

extern %1
%define %1 %1

%endmacro

(These forms of the macros only take one argument at a titeg@ construct could solve this.)
If you then declare an external like this:

cextern printf

then the macro will expand it as

extern _printf
%define printf _printf

Thereafter, you can referengeintf as if it was a symbol, and the preprocessor will put the
leading underscore on where necessary.

The cglobal macro works similarly. You must usmglobal before defining the symbol in
guestion, but you would have had to do that anyway if you G&€BAL

Also see section 2.1.22.

7.4.2 Memory Models

NASM contains no mechanism to support the various C memory models directly; you have to keep
track yourself of which one you are writing for. This means you have to keep track of the following
things:

¢ In models using a single code segment (tiny, small and compact), functions are near. This means
that function pointers, when stored in data segments or pushed on the stack as function
arguments, are 16 bits long and contain only an offset fieldG®eegister never changes its
value, and always gives the segment part of the full function address), and that functions are
called using ordinary neaCALL instructions and return usinBETN (which, in NASM, is
synonymous witrRET anyway). This means both that you should write your own routines to
return withRETN and that you should call external C routines with i@aL instructions.

* In models using more than one code segment (medium, large and huge), functions are far. This
means that function pointers are 32 bits long (consisting of a 16—bit offset followed by a 16-bit
segment), and that functions are called u€idd.L FAR (or CALL seg:offset) and return
usingRETE Again, you should therefore write your own routines to return RETF and use
CALL FAR to call external routines.

¢ In models using a single data segment (tiny, small and medium), data pointers are 16 bits long,
containing only an offset field (thBS register doesn't change its value, and always gives the
segment part of the full data item address).

¢ In models using more than one data segment (compact, large and huge), data pointers are 32 bits
long, consisting of a 16—bit offset followed by a 16—bit segment. You should still be careful not
to modify DS in your routines without restoring it afterwards, &8 is free for you to use to
access the contents of 32-bit data pointers you are passed.

« The huge memory model allows single data items to exceed 64K in size. In all other memory
models, you can access the whole of a data item just by doing arithmetic on the offset field of the

79

pointer you are given, whether a segment field is present or not; in huge model, you have to be
more careful of your pointer arithmetic.

¢ In most memory models, there idafault data segment, whose segment address is kdp§in
throughout the program. This data segment is typically the same segment as the stacl§Xept in
so that functions’ local variables (which are stored on the stack) and global data items can both
be accessed easily without changidfg Particularly large data items are typically stored in other
segments. However, some memory models (though not the standard ones, usually) allow the
assumption thaS andDS hold the same value to be removed. Be careful about functions’ local
variables in this latter case.

In models with a single code segment, the segment is callEXT, so your code segment must
also go by this name in order to be linked into the same place as the main code segment. In models
with a single data segment, or with a default data segment, it is cRIFEHA

7.4.3 Function Definitions and Function Calls

The C calling convention in 16—bit programs is as follows. In the following description, the words
caller andcalleeare used to denote the function doing the calling and the function which gets called.

¢ The caller pushes the function’s parameters on the stack, one after another, in reverse order (right
to left, so that the first argument specified to the function is pushed last).

¢ The caller then executesCGALL instruction to pass control to the callee. TBALL is either near
or far depending on the memory model.

e The callee receives control, and typically (although this is not actually necessary, in functions
which do not need to access their parameters) starts by saving the vaRédP so as to be
able to useBP as a base pointer to find its parameters on the stack. However, the caller was
probably doing this too, so part of the calling convention state®atust be preserved by any
C function. Hence the callee, if it is going to seBlpas aframe pointey must push the previous
value first.

e The callee may then access its parameters relatiz®.tdhe word afBP] holds the previous
value of BP as it was pushed; the next word,[BP+2] , holds the offset part of the return
address, pushed implicitly BALL. In a small-model (near) function, the parameters start after
that, at[BP+4] ; in a large—model (far) function, the segment part of the return address lives at
[BP+4] , and the parameters begin[BP+6] . The leftmost parameter of the function, since it
was pushed last, is accessible at this offset fBinthe others follow, at successively greater
offsets. Thus, in a function such pntf ~ which takes a variable number of parameters, the
pushing of the parameters in reverse order means that the function knows where to find its first
parameter, which tells it the number and type of the remaining ones.

* The callee may also wish to decre&f further, so as to allocate space on the stack for local
variables, which will then be accessible at negative offsets Biem

* The callee, if it wishes to return a value to the caller, should leave the valie AX or DX:AX
depending on the size of the value. Floating—point results are sometimes (depending on the
compiler) returned irsTO.

* Once the callee has finished processing, it rest8fe$rom BP if it had allocated local stack
space, then pops the previous valuBBf and returns viRETNor RETFdepending on memory
model.

* When the caller regains control from the callee, the function parameters are still on the stack, so
it typically adds an immediate constant3B to remove them (instead of executing a number of
slow POP instructions). Thus, if a function is accidentally called with the wrong number of
parameters due to a prototype mismatch, the stack will still be returned to a sensible state since
the caller, whictkknowshow many parameters it pushed, does the removing.

It is instructive to compare this calling convention with that for Pascal programs (described in
section 7.5.1). Pascal has a simpler convention, since no functions have variable numbers of
parameters. Therefore the callee knows how many parameters it should have been passed, and i
able to deallocate them from the stack itself by passing an immediate argumerREX theRETF
instruction, so the caller does not have to do it. Also, the parameters are pushed in left-to-right
order, not right-to-left, which means that a compiler can give better guarantees about sequence
points without performance suffering.

Thus, you would define a function in C style in the following way. The following example is for
small model:

global _myfunc

_myfunc:
push bp
mov bp,sp
sub sp,0x40 ; 64 bytes of local stack space
mov bx,[bp+4] ; first parameter to function

: some more code

mov sp,bp ; undo "sub sp,0x40" above
POtP bp
re

For a large-model function, you would repld@ET by RETF, and look for the first parameter at
[BP+6] instead of[BP+4] . Of course, if one of the parameters is a pointer, then the offsets of
subsequenparameters will change depending on the memory model as well: far pointers take up
four bytes on the stack when passed as a parameter, whereas near pointers take up two.

At the other end of the process, to call a C function from your assembly code, you would do
something like this:

extern _printf

: and then, further down...

push word [myint] ; one of my integer variables
push word mystring ; pointer into my data segment
call _printf

add sp,byte 4 ; ‘byte’ saves space

; then those data items...
segment _DATA
myint dw 1234
mystring db 'This number —> %d <- should be 1234’,10,0
This piece of code is the small-model assembly equivalent of the C code

int myint = 1234;
printf("This number —> %d <- should be 1234\\n", myint);
In large model, the function—call code might look more like this. In this example, it is assumed that

DS already holds the segment base of the segmRAITA If not, you would have to initialize it
first.

81

82

push word [myint]

push word seg mystring ; Now push the segment, and...
push word mystring ; ... offset of "mystring"

call far _printf

add sp,byte 6

The integer value still takes up one word on the stack, since large model does not affect the size of
theint data type. The first argument (pushed lastpriotf , however, is a data pointer, and
therefore has to contain a segment and offset part. The segment should be stored second in memory
and therefore must be pushed first. (Of couPldSH DS would have been a shorter instruction
thanPUSH WORD SEG mystring , if DSwas set up as the above example assumed.) Then the
actual call becomes a far call, since functions expect far calls in large modebPamas to be
increased by 6 rather than 4 afterwards to make up for the extra word of parameters.

7.4.4 Accessing Data Items

To get at the contents of C variables, or to declare variables which C can access, you need only
declare the names & OBALor EXTERN (Again, the names require leading underscores, as stated
in section 7.4.1.) Thus, a C variable declarethtis can be accessed from assembler as

extern _i
mov ax,[_i]
And to declare your own integer variable which C programs can accesseas int | , you
do this (making sure you are assembling in tBATAsegment, if necessary):
global _j
j dw O
To access a C array, you need to know the size of the components of the array. For éxample,
variables are two bytes long, so if a C program declares an ariay a40] , YOu can access

a[3] by codingmov ax,[_a+6] . (The byte offset 6 is obtained by multiplying the desired array
index, 3, by the size of the array element, 2.) The sizes of the C base types in 16—bit compilers are:
1 forchar , 2 forshort andint , 4 forlong andfloat , and 8 fordouble .

To access a C data structure, you need to know the offset from the base of the structure to the field
you are interested in. You can either do this by converting the C structure definition into a NASM
structure definition (usin@TRUG, or by calculating the one offset and using just that.

To do either of these, you should read your C compiler's manual to find out how it organizes data
structures. NASM gives no special alignment to structure members in itSBRWICmMacro, so you

have to specify alignment yourself if the C compiler generates it. Typically, you might find that a
structure like

struct @\{

char c;

inti;
@\} foo;
might be four bytes long rather than three, sinceiihe field would be aligned to a two—byte
boundary. However, this sort of feature tends to be a configurable option in the C compiler, either
using command-line options #pragma lines, so you have to find out how your own compiler
does it.

7.4.5 c1l6.mac : Helper Macros for the 16—bit C Interface

Included in the NASM archives, in thmisc directory, is a filecl6.mac of macros. It defines
three macrosproc , arg andendproc . These are intended to be used for C-style procedure
definitions, and they automate a lot of the work involved in keeping track of the calling convention.

(An alternative, TASM compatible form @irg is also now built into NASM’s preprocessor. See
section 4.9 for details.)

An example of an assembly function using the macro set is given here:
proc _nearproc

%3$i arg

%$j arg
mov ax,[bp + %3$i]
mov bx,[bp + %3$j]
add ax,[bx]

endproc

This defines nearproc to be a procedure taking two arguments, the firytaf integer and the
secondj() a pointer to an integer. It returng *j

Note that thearg macro has aEQUas the first line of its expansion, and since the label before the
macro call gets prepended to the first line of the expanded maciaQibeorks, defining%$i to

be an offset fronBP. A context—local variable is used, local to the context pushed bprdee

macro and popped by tlendproc macro, so that the same argument name can be used in later
procedures. Of course, you dohdveto do that.

The macro set produces code for near functions (tiny, small and compact—-model code) by default.
You can have it generate far functions (medium, large and huge—-model code) by means of coding
%define FARCODE . This changes the kind of return instruction generategnoproc , and also
changes the starting point for the argument offsets. The macro set contains no intrinsic dependency
on whether data pointers are far or not.

arg can take an optional parameter, giving the size of the argument. If no size is given, 2 is
assumed, since it is likely that many function parameters will be ofitiype

The large—model equivalent of the above function would look like this:
%define FARCODE

proc _farproc

%$i arg

%%} arg 4
mov ax,[bp + %3i]
mov bx,[bp + %$j]
mov es,[bp + %$j + 2]
add ax,[bx]

endproc

This makes use of the argument to &g macro to define a parameter of size 4, becauisenow
a far pointer. When we load frojn we must load a segment and an offset.

83

84

7.5 Interfacing to Borland Pascal Programs

Interfacing to Borland Pascal programs is similar in concept to interfacing to 16—bit C programs.
The differences are:

The leading underscore required for interfacing to C programs is not required for Pascal.

The memory model is always large: functions are far, data pointers are far, and no data item can
be more than 64K long. (Actually, some functions are near, but only those functions that are local
to a Pascal unit and never called from outside it. All assembly functions that Pascal calls, and all
Pascal functions that assembly routines are able to call, are far.) However, all static data declared
in a Pascal program goes into the default data segment, which is the one whose segment addres:
will be in DSwhen control is passed to your assembly code. The only things that do not live in
the default data segment are local variables (they live in the stack segment) and dynamically
allocated variables. All dataointers however, are far.

The function calling convention is different — described below.
Some data types, such as strings, are stored differently.

There are restrictions on the segment names you are allowed to use — Borland Pascal will ignore
code or data declared in a segment it doesn'’t like the name of. The restrictions are described
below.

7.5.1 The Pascal Calling Convention

The 16-bit Pascal calling convention is as follows. In the following description, the walids
andcalleeare used to denote the function doing the calling and the function which gets called.

The caller pushes the function’s parameters on the stack, one after another, in normal order (left
to right, so that the first argument specified to the function is pushed first).

The caller then executes a f2ALL instruction to pass control to the callee.

The callee receives control, and typically (although this is not actually necessary, in functions
which do not need to access their parameters) starts by saving the vaRédP so as to be

able to useBP as a base pointer to find its parameters on the stack. However, the caller was
probably doing this too, so part of the calling convention state8®atust be preserved by any
function. Hence the callee, if it is going to setBPpas a frame pointer, must push the previous
value first.

The callee may then access its parameters relatiB®.tdhe word a{fBP] holds the previous
value of BP as it was pushed. The next word,[BP+2] , holds the offset part of the return
address, and the next one[BP+4] the segment part. The parameters begifBBt6] . The
rightmost parameter of the function, since it was pushed last, is accessible at this off&#®,from
the others follow, at successively greater offsets.

The callee may also wish to decre&fe further, so as to allocate space on the stack for local
variables, which will then be accessible at negative offsets Biem

The callee, if it wishes to return a value to the caller, should leave the valie AX or DX:AX
depending on the size of the value. Floating—point results are returr&DinResults of type

Real (Borland’s own custom floating—point data type, not handled directly by the FPU) are
returned inDX:BX:AX. To return a result of typ&tring , the caller pushes a pointer to a
temporary string before pushing the parameters, and the callee places the returned string value at
that location. The pointer is not a parameter, and should not be removed from the stack by the
RETFinstruction.

Once the callee has finished processing, it rest8feérom BP if it had allocated local stack
space, then pops the previous valu&Bf and returns viRETF It uses the form oRETF with

an immediate parameter, giving the number of bytes taken up by the parameters on the stack.
This causes the parameters to be removed from the stack as a side effect of the return instruction.

« When the caller regains control from the callee, the function parameters have already been
removed from the stack, so it needs to do nothing further.

Thus, you would define a function in Pascal style, taking livieger —type parameters, in the
following way:

global myfunc

myfunc: push bp

mov bp,sp

sub sp,0x40 ; 64 bytes of local stack space
mov bx,[bp+8] ; first parameter to function
mov bx,[bp+6] ; second parameter to function

; some more code

mov sp,bp ; undo "sub sp,0x40" above
pop bp _ _
retf 4 ; total size of params is 4

At the other end of the process, to call a Pascal function from your assembly code, you would do
something like this:

extern SomeFunc
: and then, further down...

push word seg mystring ; Now push the segment, and...
push word mystring ; ... offset of "mystring"

push word [myint] ; one of my variables

call far SomeFunc

This is equivalent to the Pascal code

procedure SomeFunc(String: PChar; Int: Integer);
SomeFunc(@ @mystring, myint);

7.5.2 Borland Pascal Segment Name Restrictions

Since Borland Pascal’s internal unit file format is completely different f@J, it only makes a

very sketchy job of actually reading and understanding the various information contained in a real
OBJfile when it links that in. Therefore an object file intended to be linked to a Pascal program
must obey a number of restrictions:

e Procedures and functions must be in a segment whose name iCEMDBICSEG or something
ending in_TEXT.

« initialized data must be in a segment whose name is e@MSTor something ending in
_DATA

¢ Uninitialized data must be in a segment whose name is E#W€A DSEG or something ending
in _BSS.

« Any other segments in the object file are completely ignoBROURlirectives and segment
attributes are also ignored.

85

86

7.5.3 Usingcl6.mac With Pascal Programs

The c16.mac macro package, described in section 7.4.5, can also be used to simplify writing
functions to be called from Pascal programs, if you ctaiefine PASCAL . This definition
ensures that functions are far (it impllEARCODE and also causes procedure return instructions to
be generated with an operand.

Defining PASCAL does not change the code which calculates the argument offsets; you must
declare your function’'s arguments in reverse order. For example:

%define PASCAL
proc _pascalproc

%$] arg4

%% arg
mov ax,[bp + %3i]
mov bx,[bp + %$j]
mov es,[bp + %$j + 2]
add ax,[bx]

endproc

This defines the same routine, conceptually, as the example in section 7.4.5: it defines a function
taking two arguments, an integer and a pointer to an integer, which returns the sum of the integer
and the contents of the pointer. The only difference between this code and the large-model C
version is thatPASCALIis defined instead dFARCODEand that the arguments are declared in
reverse order.

Chapter 8: Writing 32—bit Code (Unix, Win32, DJGPP)

This chapter attempts to cover some of the common issues involved when writing 32-bit code, to
run under Win32 or Unix, or to be linked with C code generated by a Unix—style C compiler such
as DJGPP. It covers how to write assembly code to interface with 32-bit C routines, and how to
write position—independent code for shared libraries.

Almost all 32-bit code, and in particular all code running untl@r32 , DJGPPor any of the PC

Unix variants, runs irflat memory model. This means that the segment registers and paging have
already been set up to give you the same 32-bit 4Gb address space no matter what segment yol
work relative to, and that you should ignore all segment registers completely. When writing
flat-model application code, you never need to use a segment override or modify any segment
register, and the code-section addresses you p&Alib andJMP live in the same address space

as the data—section addresses you access your variables by and the stack—section addresses yc
access local variables and procedure parameters by. Every address is 32 bits long and contains only
an offset part.

8.1 Interfacing to 32-bit C Programs

A lot of the discussion in section 7.4, about interfacing to 16—bit C programs, still applies when
working in 32 bits. The absence of memory models or segmentation worries simplifies things a lot.

8.1.1 External Symbol Names

Most 32-bit C compilers share the convention used by 16-bit compilers, that the names of all
global symbols (functions or data) they define are formed by prefixing an underscore to the name as
it appears in the C program. However, not all of them do:BhE specification states that C
symbols danot have a leading underscore on their assembly—-language names.

The older Linuxa.out C compiler, allWin32 compilers,DJGPR andNetBSD andFreeBSD,
all use the leading underscore; for these compilers, the meextesrn andcglobal , as given
in section 7.4.1, will still work. FOELF, though, the leading underscore should not be used.

See also section 2.1.22.
8.1.2 Function Definitions and Function Calls

The C calling conventionThe C calling convention in 32-bit programs is as follows. In the
following description, the wordsaller andcallee are used to denote the function doing the calling
and the function which gets called.

e The caller pushes the function’s parameters on the stack, one after another, in reverse order (right
to left, so that the first argument specified to the function is pushed last).

¢ The caller then executes a n€s&kLL instruction to pass control to the callee.

« The callee receives control, and typically (although this is not actually necessary, in functions
which do not need to access their parameters) starts by saving the vBeBE iof EBP so as to
be able to us&BP as a base pointer to find its parameters on the stack. However, the caller was
probably doing this too, so part of the calling convention stateEE@BBtmust be preserved by
any C function. Hence the callee, if it is going to seE®B® as a frame pointer, must push the
previous value first.

87

e The callee may then access its parameters relatizBR The doubleword EEBP] holds the
previous value oEBP as it was pushed; the next doubleword[EBP+4] , holds the return
address, pushed implicitly bB§ALL. The parameters start after that[EBBP+8] . The leftmost
parameter of the function, since it was pushed last, is accessible at this offsé&BRithe
others follow, at successively greater offsets. Thus, in a function syminds which takes a
variable number of parameters, the pushing of the parameters in reverse order means that the
function knows where to find its first parameter, which tells it the number and type of the
remaining ones.

* The callee may also wish to decre&®P further, so as to allocate space on the stack for local
variables, which will then be accessible at negative offsets EBR

* The callee, if it wishes to return a value to the caller, should leave the vafiie AX or EAX
depending on the size of the value. Floating—point results are typically returg&0.in

« Once the callee has finished processing, it reste8f3from EBP if it had allocated local stack
space, then pops the previous valu&BP, and returns ViRET (equivalently RETN.

* When the caller regains control from the callee, the function parameters are still on the stack, so
it typically adds an immediate constant&8P to remove them (instead of executing a number of
slow POP instructions). Thus, if a function is accidentally called with the wrong number of
parameters due to a prototype mismatch, the stack will still be returned to a sensible state since
the caller, whickknowshow many parameters it pushed, does the removing.

There is an alternative calling convention used by Win32 programs for Windows API calls, and also
for functions calledby the Windows API such as window procedures: they follow what Microsoft
calls the__stdcall convention. This is slightly closer to the Pascal convention, in that the callee
clears the stack by passing a parameter taRiE€ instruction. However, the parameters are still
pushed in right-to—left order.

Thus, you would define a function in C style in the following way:
global _myfunc

_myfunc:
push ebp
mov ebp,esp
sub esp,0x40 ; 64 bytes of local stack space

mov ebx,[ebp+8] ; first parameter to function
: some more code

leave ; mov esp,ebp / pop ebp

ret

At the other end of the process, to call a C function from your assembly code, you would do
something like this:

extern _printf
: and then, further down...

push dword [myint] ; one of my integer variables
push dword mystring ; pointer into my data segment
call _printf

add esp,byte 8 ; ‘byte’ saves space

; then those data items...
segment DATA
myint dd 1234
mystring db 'This number —> %d <- should be 1234',10,0
This piece of code is the assembly equivalent of the C code

int myint = 1234;
printf("This number —> %d <- should be 1234\\n", myint);

8.1.3 Accessing Data Items

To get at the contents of C variables, or to declare variables which C can access, you need only
declare the names &.OBALor EXTERN (Again, the names require leading underscores, as stated
in section 8.1.1.) Thus, a C variable declarethis can be accessed from assembler as

extern _i
mov eax,[_i]
And to declare your own integer variable which C programs can accesseas int | , you
do this (making sure you are assembling in tBATAsegment, if necessary):
global _j
| dd o
To access a C array, you need to know the size of the components of the array. For éxample,
variables are four bytes long, so if a C program declares an arialy a40] , YOou can access

a[3] by codingmov ax,[_a+12] . (The byte offset 12 is obtained by multiplying the desired
array index, 3, by the size of the array element, 4.) The sizes of the C base types in 32-bit compilers
are: 1 forchar , 2 forshort , 4 forint ,long andfloat , and 8 fordouble . Pointers, being

32-bit addresses, are also 4 bytes long.

To access a C data structure, you need to know the offset from the base of the structure to the field
you are interested in. You can either do this by converting the C structure definition into a NASM
structure definition (usingTRUG, or by calculating the one offset and using just that.

To do either of these, you should read your C compiler’'s manual to find out how it organizes data
structures. NASM gives no special alignment to structure members in itS®RWCmacro, so you

have to specify alignment yourself if the C compiler generates it. Typically, you might find that a
structure like

struct @\{

char c;

inti;
@\} foo;
might be eight bytes long rather than five, sinceitite field would be aligned to a four-hbyte
boundary. However, this sort of feature is sometimes a configurable option in the C compiler, either
using command-line options #pragma lines, so you have to find out how your own compiler
does it.

8.1.4 c32.mac : Helper Macros for the 32-bit C Interface

Included in the NASM archives, in thmisc directory, is a filec32.mac of macros. It defines
three macrosproc , arg andendproc . These are intended to be used for C-style procedure
definitions, and they automate a lot of the work involved in keeping track of the calling convention.

An example of an assembly function using the macro set is given here:

89

proc _proc32

%3$i arg

%$j arg
mov eax,[ebp + %$i]
mov ebx,[ebp + %$j]
add eax,[ebx]

endproc

This defines_proc32 to be a procedure taking two arguments, the firytan integer and the
secondj() a pointer to an integer. It returng *j

Note that thearg macro has aEQUas the first line of its expansion, and since the label before the
macro call gets prepended to the first line of the expanded maciaQibeorks, defining%$i to

be an offset fronBP. A context—local variable is used, local to the context pushed bprdee

macro and popped by tlendproc macro, so that the same argument name can be used in later
procedures. Of course, you dohdveto do that.

arg can take an optional parameter, giving the size of the argument. If no size is given, 4 is
assumed, since it is likely that many function parameters will be ofitypeor pointers.

8.2 Writing NetBSD/FreeBSD/OpenBSD and Linux/ELF Shared Libraries

ELF replaced the oldea.out object file format under Linux because it contains support for
position—independent code (PIC), which makes writing shared libraries much easier. NASM
supports thé&eLF position—independent code features, so you can write L shared libraries

in NASM.

NetBSD, and its close cousins FreeBSD and OpenBSD, take a different approach by hacking PIC
support into thes.out format. NASM supports this as teutb output format, so you can write
BSD shared libraries in NASM too.

The operating system loads a PIC shared library by memory—mapping the library file at an
arbitrarily chosen point in the address space of the running process. The contents of the library’s
code section must therefore not depend on where it is loaded in memory.

Therefore, you cannot get at your variables by writing code like this:
mov eax,[myvar] ; WRONG

Instead, the linker provides an area of memory calledykbieal offset tableor GOT; the GOT is
situated at a constant distance from your library’s code, so if you can find out where your library is
loaded (which is typically done usingGRALL andPOPcombination), you can obtain the address of

the GOT, and you can then load the addresses of your variables out of linker—generated entries in
the GOT.

The data section of a PIC shared library does not have these restrictions: since the data section is
writable, it has to be copied into memory anyway rather than just paged in from the library file, so
as long as it's being copied it can be relocated too. So you can put ordinary types of relocation in
the data section without too much worry (but see section 8.2.4 for a caveat).

8.2.1 Obtaining the Address of the GOT
Each code module in your shared library should define the GOT as an external symbol:

extern _GLOBAL_OFFSET_TABLE_ ;in ELF
extern __GLOBAL_OFFSET TABLE_ ;in BSD a.out

At the beginning of any function in your shared library which plans to access your data or BSS
sections, you must first calculate the address of the GOT. This is typically done by writing the
function in this form:

func: push ebp
mov ebp,esp
push ebx
call .get GOT
.get_GOT:
pop ebx
add ebx, GLOBAL_OFFSET_TABLE_+$$-.get GOT wrt ..gotpc

; the function body comes here

mov ebx,[ebp—-4]
mov esp,ebp

pop ebp
ret

(For BSD, again, the symboGLOBAL_OFFSET_TABLIEequires a second leading underscore.)

The first two lines of this function are simply the standard C prologue to set up a stack frame, and
the last three lines are standard C function epilogue. The third line, and the fourth to last line, save
and restore thEBXregister, because PIC shared libraries use this register to store the address of the
GOT.

The interesting bit is the&€ALL instruction and the following two lines. THeALL and POP
combination obtains the address of the laet GOT , without having to know in advance where

the program was loaded (since tBALL instruction is encoded relative to the current position). The
ADDinstruction makes use of one of the special PIC relocation types: GOTPC relocation. With the
WRT ..gotpc qualifier specified, the symbol referenced (hefeLOBAL_OFFSET_TABLE,_

the special symbol assigned to the GOT) is given as an offset from the beginning of the section.
(Actually, ELF encodes it as the offset from the operand field ofAD®instruction, but NASM
simplifies this deliberately, so you do things the same way for Btk and BSD) So the
instruction theraddsthe beginning of the section, to get the real address of the GOT, and subtracts
the value of.get_GOT which it knows is iInEBX Therefore, by the time that instruction has
finished,EBXcontains the address of the GOT.

If you didn’t follow that, don’t worry: it's never necessary to obtain the address of the GOT by any
other means, so you can put those three instructions into a macro and safely ignore them:

%macro get GOTO

call %%getgot
%%getgot:

pop ebx

add ebx,_ GLOBAL_OFFSET_TABLE_+$$-%%getgot wrt ..gotpc
%endmacro

8.2.2 Finding Your Local Data Items

Having got the GOT, you can then use it to obtain the addresses of your data items. Most variables
will reside in the sections you have declared; they can be accessed usinpptthie special
WRTtype. The way this works is like this:

lea eax,[ebx+myvar wrt ..gotoff]

91

The expressiomyvar wrt ..gotoff is calculated, when the shared library is linked, to be the
offset to the local variablmyvar from the beginning of the GOT. Therefore, adding iERBX as
above will place the real addressnoyvar in EAX

If you declare variables aSLOBALwithout specifying a size for them, they are shared between
code modules in the library, but do not get exported from the library to the program that loaded it.
They will still be in your ordinary data and BSS sections, so you can access them in the same way
as local variables, using the abowgpotoff mechanism.

Note that due to a peculiarity of the way B&ut format handles this relocation type, there
must be at least one non-local symbol in the same section as the address you're trying to access.

8.2.3 Finding External and Common Data Iltems

If your library needs to get at an external variable (external tdilihery, not just to one of the
modules within it), you must use thgot type to get at it. Thegot type, instead of giving

you the offset from the GOT base to the variable, gives you the offset from the GOT base to a GOT
entry containing the address of the variable. The linker will set up this GOT entry when it builds the
library, and the dynamic linker will place the correct address in it at load time. So to obtain the
address of an external varialgletvar in EAX you would code

mov eax,[ebx+extvar wrt ..got]

This loads the address extvar out of an entry in the GOT. The linker, when it builds the shared
library, collects together every relocation of typgot , and builds the GOT so as to ensure it has
every necessary entry present.

Common variables must also be accessed in this way.
8.2.4 Exporting Symbols to the Library User

If you want to export symbols to the user of the library, you have to declare whether they are
functions or data, and if they are data, you have to give the size of the data item. This is because the
dynamic linker has to build procedure linkage table entries for any exported functions, and also
moves exported data items away from the library’s data section in which they were declared.

So to export a function to users of the library, you must use
global func:function ; declare it as a function

func: push ebp

; etc.
And to export a data item such as an array, you would have to code
global array:data array.end-array ; give the size too

array: resd 128
.end:

Be careful: If you export a variable to the library user, by declaring @lE8BALand supplying a

size, the variable will end up living in the data section of the main program, rather than in your
library’s data section, where you declared it. So you will have to access your own global variable
with the..got mechanism rather thargotoff ~ , as if it were external (which, effectively, it has
become).

Equally, if you need to store the address of an exported global in one of your data sections, you
can't do it by means of the standard sort of code:

dataptr: dd global_data_item ; WRONG

NASM will interpret this code as an ordinary relocation, in wigtbbal_data_item is merely
an offset from the beginning of thdata section (or whatever); so this reference will end up
pointing at your data section instead of at the exported global which resides elsewhere.

Instead of the above code, then, you must write
dataptr: dd global data_item wrt ..sym

which makes use of the specidRTtype..sym to instruct NASM to search the symbol table for a
particular symbol at that address, rather than just relocating by section base.

Either method will work for functions: referring to one of your functions by means of
funcptr: dd my_function

will give the user the address of the code you wrote, whereas

funcptr: dd my_function wrt .sym

will give the address of the procedure linkage table for the function, which is where the calling
program willbelievethe function lives. Either address is a valid way to call the function.

8.2.5 Calling Procedures Outside the Library

Calling procedures outside your shared library has to be done by meargradfedure linkage

table or PLT. The PLT is placed at a known offset from where the library is loaded, so the library
code can make calls to the PLT in a position—-independent way. Within the PLT there is code to
jump to offsets contained in the GOT, so function calls to other shared libraries or to routines in the
main program can be transparently passed off to their real destinations.

To call an external routine, you must use another special PIC relocatioMtiR3e,.plt . This is
much easier than the GOT-based ones: you simply replace calls sGét lagprintf with the
PLT-relative versiorfCALL printf WRT ..plt :

8.2.6 Generating the Library File

Having written some code modules and assembled them fidbes, you then generate your shared
library with a command such as

Id —shared —o library.so modulel.0 module2.o0 # for ELF
Id —Bshareable —o library.so modulel.o module2.0 # for BSD

For ELF, if your shared library is going to reside in system directories suc¢hsebb or
Nib , it is usually worth using thesoname flag to the linker, to store the final library file name,
with a version number, into the library:

Id —shared —soname library.so0.1 —o library.s0.1.2 *.0

You would then copyibrary.so.1.2 into the library directory, and crealibrary.so.1
as a symbolic link to it.

93

Chapter 9: Mixing 16 and 32 Bit Code

This chapter tries to cover some of the issues, largely related to unusual forms of addressing and
jump instructions, encountered when writing operating system code such as protected—-mode
initialisation routines, which require code that operates in mixed segment sizes, such as code in a
16-bit segment trying to modify data in a 32-bit one, or jumps between different-size segments.

9.1 Mixed-Size Jumps

The most common form of mixed-size instruction is the one used when writing a 32-bit OS:
having done your setup in 16-bit mode, such as loading the kernel, you then have to boot it by
switching into protected mode and jumping to the 32-bit kernel start address. In a fully 32-bit OS,
this tends to be thenly mixed-size instruction you need, since everything before it can be done in
pure 16-bit code, and everything after it can be pure 32-bit.

This jump must specify a 48-bit far address, since the target segment is a 32—-bit one. However, it
must be assembled in a 16—bit segment, so just coding, for example,

jmp 0x1234:0x56789ABC ; wrong!

will not work, since the offset part of the address will be truncat€@@BC and the jump will be
an ordinary 16-bit far one.

The Linux kernel setup code gets round the inabilitgsfé to generate the required instruction by
coding it manually, usin@B instructions. NASM can go one better than that, by actually generating
the right instruction itself. Here’s how to do it right:

jmp dword 0x1234:0x56789ABC ; right

The DWORDDrefix (strictly speaking, it should conadter the colon, since it is declaring tlfset

field to be a doubleword; but NASM will accept either form, since both are unambiguous) forces
the offset part to be treated as far, in the assumption that you are deliberately writing a jump from a
16-bit segment to a 32-bit one.

You can do the reverse operation, jumping from a 32-bit segment to a 16-bit one, by means of the
WORDrefix:

jmp word 0x8765:0x4321 ; 32 to 16 bit

If the WORIDrefix is specified in 16—bit mode, or tBNVORDPrefix in 32-bit mode, they will be
ignored, since each is explicitly forcing NASM into a mode it was in anyway.

9.2 Addressing Between Different-Size Segments

If your OS is mixed 16 and 32-bit, or if you are writing a DOS extender, you are likely to have to
deal with some 16-bit segments and some 32-bit ones. At some point, you will probably end up
writing code in a 16—bit segment which has to access data in a 32-bit segment, or vice versa.

If the data you are trying to access in a 32-bit segment lies within the first 64K of the segment, you
may be able to get away with using an ordinary 16-bit addressing operation for the purpose; but
sooner or later, you will want to do 32-bit addressing from 16-bit mode.

The easiest way to do this is to make sure you use a register for the address, since any effective
address containing a 32-bit register is forced to be a 32-bit address. So you can do

mov eax,offset_into_32_bit_segment_specified_by fs
mov dword [fs:eax],0x11223344

This is fine, but slightly cumbersome (since it wastes an instruction and a register) if you already
know the precise offset you are aiming at. The x86 architecture does allow 32-bit effective

addresses to specify nothing but a 4-byte offset, so why shouldn’t NASM be able to generate the
best instruction for the purpose?

It can. As in section 9.1, you need only prefix the address witDWO®RReyword, and it will be
forced to be a 32-bit address:

mov dword [fs:dword my_offset],0x11223344

Also as in section 9.1, NASM is not fussy about whetheDWEORDrefix comes before or after
the segment override, so arguably a nicer—looking way to code the above instruction is

mov dword [dword fs:my_offset],0x11223344

Don't confuse theDWORDrefix outsidethe square brackets, which controls the size of the data
stored at the address, with the danside the square brackets which controls the length of the
address itself. The two can quite easily be different:

mov word [dword 0x12345678],0x9ABC
This moves 16 bits of data to an address specified by a 32-bit offset.

You can also speciffWORDr DWORDrefixes along with th&AR prefix to indirect far jumps or
calls. For example:

call dword far [fs:word 0x4321]

This instruction contains an address specified by a 16-bit offset; it loads a 48-bit far pointer from
that (16—bit segment and 32-bit offset), and calls that address.

9.3 Other Mixed-Size Instructions

The other way you might want to access data might be using the string instrut@DSx

STOSx and so on) or th&XLATB instruction. These instructions, since they take no parameters,
might seem to have no easy way to make them perform 32-bit addressing when assembled in a
16-hit segment.

This is the purpose of NASM'al6 anda32 prefixes. If you are codingODSBin a 16-bit
segment but it is supposed to be accessing a string in a 32-bit segment, you should load the desirec
address int&SI| and then code

a32 lodsb

The prefix forces the addressing size to 32 bits, meaningLtB&SB loads from[DS:ESI]
instead of[DS:SI] . To access a string in a 16-bit segment when coding in a 32-bit one, the
corresponding1l6 prefix can be used.

Theal6 anda32 prefixes can be applied to any instruction in NASM’s instruction table, but most
of them can generate all the useful forms without them. The prefixes are necessary only for
instructions with implicit addressingcMPSx SCASx LODSx STOSx MOVSx INSx , OUTSx

and XLATB. Also, the various push and pop instructioR&JEHAand POPFas well as the more
usualPUSHandPOB can accepal6 or a32 prefixes to force a particular one $P or ESPto be

used as a stack pointer, in case the stack segment in use is a different size from the code segment.

PUSHand POR when applied to segment registers in 32-bit mode, also have the slightly odd
behaviour that they push and pop 4 bytes at a time, of which the top two are ignored and the bottom

95

96

two give the value of the segment register being manipulated. To force the 16-bit behaviour of
segment-register push and pop instructions, you can use the operand-sizglprefix

016 push ss
016 push ds

This code saves a doubleword of stack space by fitting two segment registers into the space which
would normally be consumed by pushing one.

(You can also use tha82 prefix to force the 32-hbit behaviour when in 16—bit mode, but this seems
less useful.)

Chapter 10: Writing 64—bit Code (Unix, Win64)

This chapter attempts to cover some of the common issues involved when writing 64-bit code, to
run under Win64 or Unix. It covers how to write assembly code to interface with 64-bit C routines,
and how to write position—independent code for shared libraries.

All 64-bit code uses a flat memory model, since segmentation is not available in 64-bit mode. The
one exception is theS andGSregisters, which still add their bases.

Position independence in 64-bit mode is significantly simpler, since the processor supports
RIP —relative addressing directly; see tREL keyword (section 3.3). On most 64-bit platforms, it
is probably desirable to make that the default, using the dird2BVAULT REL (section 5.2).

64-bit programming is relatively similar to 32—bit programming, but of course pointers are 64 bits
long; additionally, all existing platforms pass arguments in registers rather than on the stack.
Furthermore, 64-bit platforms use SSE2 by default for floating point. Please see the ABI
documentation for your platform.

64-bit platforms differ in the sizes of the fundamental datatypes, not just from 32-bit platforms but
from each other. If a specific size data type is desired, it is probably best to use the types defined in
the Standard C headeinttypes.h>

In 64-bit mode, the default instruction size is still 32 bits. When loading a value into a 32-bit
register (but not an 8- or 16-bit register), the upper 32 bits of the corresponding 64-bit register are
set to zero.

10.1 Immediates and displacements in 64—-bit mode

In 64-bit mode, immediates and displacements are generally only 32 bits wide. NASM will
therefore truncate most displacements and immediates to 32 bits.

The only instruction which takes a full 64-bit immediate is:
MOV reg64,imm64

NASM will produce this instruction whenever the programmer Bd@3Avith an immediate into a
64-bit register. If this is not desirable, simply specify the equivalent 32-bit register, which will be
automatically zero—extended by the processor, or specify the immedRW@RD

mov rax,foo : 64—-Dbit immediate

mov rax,qword foo ; (identical)

mov eax,foo ; 32—-bit immediate, zero—extended
mov rax,dword foo ; 32—-bit immediate, sign—extended

The length of these instructions are 10, 5 and 7 bytes, respectively.

The only instructions which take a full 64-bit \e{displacement} is loading or storing, d&dyg

AL, AX, EAXor RAX(but no other registers) to an absolute 64-bit address. Since this is a relatively
rarely used instruction (64-bit code generally uses relative addressing), the programmer has to
explicitly declare the displacement sizeCA&/ORD

default abs
mov eax,[foo] ; 32—bit absolute disp, sign—extended
mov eax,[a32 foo] ; 32—bit absolute disp, zero—extended

97

mov eax,[gword foo] ; 64-bit absolute disp

default rel

mov eax,[foo] ; 32-Dit relative disp

mov eax,[a32 foo] ; d:0, address truncated to 32 bits(!)
mov eax,[gword foo] ; error

mov eax,[abs qword foo] ; 64-bit absolute disp

A sign—extended absolute displacement can access from —2 GB to +2 GB; a zero—extended absolute
displacement can access from 0 to 4 GB.

10.2 Interfacing to 64-bit C Programs (Unix)
On Unix, the 64-bit ABI is defined by the document:
http://www.x86—-64.org/documentation/abi.pdf

Although written for AT&T-syntax assembly, the concepts apply equally well for NASM-style
assembly. What follows is a simplified summary.

The first six integer arguments (from the left) are passeRiDh RSI, RDX RCX R8, andR9, in

that order. Additional integer arguments are passed on the stack. These registdR&\>pR30

and R11 are destroyed by function calls, and thus are available for use by the function without
saving.

Integer return values are passediaXandRDX in that order.

Floating point is done using SSE registers, exceptdiag double . Floating—point arguments
are passed iXMMQto XMM7 return isXMMOandXMM1long double are passed on the stack,
and returned i8T(0) andST(1) .

All SSE and x87 registers are destroyed by function calls.
On 64-bit Unix,long is 64 bits.

10.3 Interfacing to 64-bit C Programs (Win64)
The Win64 ABI is described at:
http://msdn2.microsoft.com/en—gb/library/ms794533.aspx
What follows is a simplified summary.

The first four integer arguments are passwdRidX RDX R8 andR9, in that order. Additional
integer arguments are passed on the stack. These registeRANUR10 andR11 are destroyed
by function calls, and thus are available for use by the function without saving.

Integer return values are passedRidaXonly.

Floating point is done using SSE registers, exceptdiog double . Floating—point arguments
are passed iIXMM@Qo XMM3return isXMMQ@nly.

On Win64,long is 32 bitsjonglong or_int64 is 64 bits.

http://www.x86-64.org/documentation/abi.pdf
http://msdn2.microsoft.com/en-gb/library/ms794533.aspx

Chapter 11: Troubleshooting

This chapter describes some of the common problems that users have been known to encounter with
NASM, and answers them. It also gives instructions for reporting bugs in NASM if you find a
difficulty that isn’t listed here.

11.1 Common Problems
11.1.1 NASM Generates Inefficient Code

We sometimes get ‘bug’ reports about NASM generating inefficient, or even ‘wrong’, code on
instructions such a&DD ESP,8. This is a deliberate design feature, connected to predictability of
output: NASM, on seeingDD ESP,8, will generate the form of the instruction which leaves room
for a 32-bit offset. You need to cod®D ESP,BYTE 8 if you want the space-efficient form of

the instruction. This isn’'t a bug, it's user error: if you prefer to have NASM produce the more
efficient code automatically enable optimization with @n option (see section 2.1.17).

11.1.2 My Jumps are Out of Range

Similarly, people complain that when they issue conditional jumps (whicBld€@RTby default)
that try to jump too far, NASM reports ‘short jump out of range’ instead of making the jumps longer.

This, again, is partly a predictability issue, but in fact has a more practical reason as well. NASM
has no means of being told what type of processor the code it is generating will be run on; so it
cannot decide for itself that it should generate NEAR type instructions, because it doesn't
know that it's working for a 386 or above. Alternatively, it could replace the out—-of-range short
JNE instruction with a very sholdE instruction that jumps over @MP NEAR this is a sensible
solution for processors below a 386, but hardly efficient on processors which have good branch
predictionand could have usedNE NEAR instead. So, once again, it's up to the user, not the
assembler, to decide what instructions should be generated. See section 2.1.17.

11.1.3 OR@oesn't Work

People writing boot sector programs in thia format often complain thadRGdoesn't work the
way they'd like: in order to place tHBxAA55 signature word at the end of a 512-byte boot sector,
people who are used to MASM tend to code

ORGO
: some boot sector code

ORG 510
DW 0xAA55

This is not the intended use of t@&RGdirective in NASM, and will not work. The correct way to
solve this problem in NASM is to use th&MES directive, like this:

ORGO
: some boot sector code

TIMES 510-($-$$) DB 0
DW OXAAS55

99

The TIMES directive will insert exactly enough zero bytes into the output to move the assembly
point up to 510. This method also has the advantage that if you accidentally fill your boot sector too
full, NASM will catch the problem at assembly time and report it, so you won't end up with a boot
sector that you have to disassemble to find out what's wrong with it.

11.1.4 TIMES Doesn’t Work

100

The other common problem with the above code is people who wrildNHES line as
TIMES 510-$ DB 0

by reasoning tha should be a pure number, just like 510, so the difference between them is also a
pure number and can happily be fedtMES.

NASM is amodularassembler: the various component parts are designed to be easily separable for
re—use, so they don’'t exchange information unnecessarily. In consequenue, tbatput format,

even though it has been told by B&CGdirective that thetext section should start at 0, does not

pass that information back to the expression evaluator. So from the evaluator's point df view,
isn't a pure number: it's an offset from a section base. Therefore the difference b#taeerb10

is also not a pure number, but involves a section base. Values involving section bases cannot be
passed as arguments’EMES.

The solution, as in the previous section, is to codd IRES line in the form
TIMES 510—-($-$$) DB 0

in which$ and$$ are offsets from the same section base, and so their difference is a pure number.
This will solve the problem and generate sensible code.

11.2 Bugs

We have never yet released a version of NASM with lemywnbugs. That doesn’t usually stop
there being plenty we didn’t know about, though. Any that you find should be reported firstly via
thebugtracker athttps://sourceforge.net/projects/nasm/ (click on "Bugs"), or

if that fails then through one of the contacts in section 1.3.

Please read section 2.2 first, and don’t report the bug if it’s listed in there as a deliberate feature. (If
you think the feature is badly thought out, feel free to send us reasons why you think it should be
changed, but don't just send us mail saying ‘This is a bug’ if the documentation says we did it on
purpose.) Then read section 11.1, and don't bother reporting the bug if it's listed there.

If you do report a bugpleasegive us all of the following information:

* What operating system you're running NASM under. DOS, Linux, NetBSD, Winl16, Win32,
VMS (I'd be impressed), whatever.

e If you're running NASM under DOS or Win32, tell us whether you've compiled your own
executable from the DOS source archive, or whether you were using the standard distribution
binaries out of the archive. If you were using a locally built executable, try to reproduce the
problem using one of the standard binaries, as this will make it easier for us to reproduce your
problem prior to fixing it.

* Which version of NASM you're using, and exactly how you invoked it. Give us the precise
command line, and the contents of MMeSMEN¥nvironment variable if any.

* Which versions of any supplementary programs you're using, and how you invoked them. If the
problem only becomes visible at link time, tell us what linker you're using, what version of it
you've got, and the exact linker command line. If the problem involves linking against object
files generated by a compiler, tell us what compiler, what version, and what command line or

https://sourceforge.net/projects/nasm/

options you used. (If you're compiling in an IDE, please try to reproduce the problem with the
command-line version of the compiler.)

If at all possible, send us a NASM source file which exhibits the problem. If this causes
copyright problems (e.g. you can only reproduce the bug in restricted—distribution code) then
bear in mind the following two points: firstly, we guarantee that any source code sent to us for
the purposes of debugging NASM will be usady for the purposes of debugging NASM, and
that we will delete all our copies of it as soon as we have found and fixed the bug or bugs in
guestion; and secondly, we would prefat to be mailed large chunks of code anyway. The
smaller the file, the better. A three-line sample file that does nothing wsafephtdemonstrate

the problem is much easier to work with than a fully fledged ten-thousand-line program. (Of
course, some errodk only crop up in large files, so this may not be possible.)

A description of what the problem actuaily ‘It doesn’'t work’ isnot a helpful description!
Please describe exactly what is happening that shouldn’t be, or what isn’t happening that should.
Examples might be: ‘NASM generates an error message saying Line 3 for an error that’'s actually
on Line 5’; ‘NASM generates an error message that | believe it shouldn’t be generating at all’;
‘NASM fails to generate an error message that | beliegbauldbe generating’; ‘the object file
produced from this source code crashes my linker’; ‘the ninth byte of the output file is 66 and |
think it should be 77 instead’.

If you believe the output file from NASM to be faulty, send it to us. That allows us to determine
whether our own copy of NASM generates the same file, or whether the problem is related to
portability issues between our development platforms and yours. We can handle binary files
mailed to us as MIME attachments, uuencoded, and even BinHex. Alternatively, we may be able
to provide an FTP site you can upload the suspect files to; but mailing them is easier for us.

Any other information or data files that might be helpful. If, for example, the problem involves
NASM failing to generate an object file while TASM can generate an equivalent file without
trouble, then send umth object files, so we can see what TASM is doing differently from us.

101

Appendix A: Ndisasm

The Netwide Disassembler, NDISASM

A.1 Introduction

The Netwide Disassembler is a small companion program to the Netwide Assembler, NASM. It
seemed a shame to have an x86 assembler, complete with a full instruction table, and not make as
much use of it as possible, so here’s a disassembler which shares the instruction table (and some
other bits of code) with NASM.

The Netwide Disassembler does nothing except to produce disassemUbiesrgfsource files.
NDISASM does not have any understanding of object file formatsplijgump , and it will not
understand>OS .EXE files like debug will. It just disassembles.

A.2 Getting Started: Installation

See section 1.4 for installation instructions. NDISASM, like NASM, hasaa page which you
may want to put somewhere useful, if you are on a Unix system.

A.3 Running NDISASM
To disassemble a file, you will typically use a command of the form
ndisasm —-b @\{16|32|64@\} flename

NDISASM can disassemble 16—, 32— or 64-bit code equally easily, provided of course that you
remember to specify which it is to work with. If ndb switch is present, NDISASM works in
16-bit mode by default. Theu switch (for USE32) also invokes 32-bit mode.

Two more command line options are which reports the version number of NDISASM you are
running, and-h which gives a short summary of command line options.

A.3.1 COM Files: Specifying an Origin

To disassemble BOS .COMfile correctly, a disassembler must assume that the first instruction in
the file is loaded at addre8g100 , rather than at zero. NDISASM, which assumes by default that
any file you give it is loaded at zero, will therefore need to be informed of this.

The —o0 option allows you to declare a different origin for the file you are disassembling. Its
argument may be expressed in any of the NASM numeric formats: decimal by default, if it begins
with ‘$’ or ‘Ox’ or ends in H it's hex, if it ends in @Q it's octal , and if it ends inB' it's

binary

Hence, to disassemble@OMfile:
ndisasm —0100h filename.com
will do the trick.
A.3.2 Code Following Data: Synchronisation

Suppose you are disassembling a file which contains some data which isn’t machine céuen and
contains some machine code. NDISASM will faithfully plough through the data section, producing
machine instructions wherever it can (although most of them will look bizarre, and some may have

102

unusual prefixes, e.gFS OR AX,0x240A), and generating ‘DB’ instructions ever so often if
it's totally stumped. Then it will reach the code section.

Supposing NDISASM has just finished generating a strange machine instruction from part of the
data section, and its file position is now one hyéfore the beginning of the code section. It's
entirely possible that another spurious instruction will get generated, starting with the final byte of
the data section, and then the correct first instruction in the code section will not be seen because the
starting point skipped over it. This isn't really ideal.

To avoid this, you can specify aynchronisation ' point, or indeed as many synchronisation
points as you like (although NDISASM can only handle 8192 sync points internally). The definition
of a sync point is this: NDISASM guarantees to hit sync points exactly during disassembly. If it is
thinking about generating an instruction which would cause it to jump over a sync point, it will
discard that instruction and outputdb’ instead. So iwill start disassembly exactly from the sync
point, and so yowill see all the instructions in your code section.

Sync points are specified using the option: they are measured in terms of the program origin, not
the file position. So if you want to synchronize after 32 bytes.GGMfile, you would have to do

ndisasm —0100h —s120h file.com
rather than
ndisasm —0100h —s20h file.com

As stated above, you can specify multiple sync markers if you need to, just by repeatisg the
option.

A.3.3 Mixed Code and Data: Automatic (Intelligent) Synchronisation

Suppose you are disassembling the boot sectoD@&floppy (maybe it has a virus, and you need

to understand the virus so that you know what kinds of damage it might have done you). Typically,
this will contain aIMP instruction, then some data, then the rest of the code. So there is a very good
chance of NDISASM beingisalignedwhen the data ends and the code begins. Hence a sync point
is needed.

On the other hand, why should you have to specify the sync point manually? What you'd do in
order to find where the sync point would be, surely, would be to reatMRénstruction, and then
to use its target address as a sync point. So can NDISASM do that for you?

The answer, of course, is yes: using either of the synonymous switahifsr automatic sync) or

—i (for intelligent sync) will enablauto—sync mode. Auto—sync mode automatically generates

a sync point for any forward-referring PC-relative jump or call instruction that NDISASM
encounters. (Since NDISASM is one—pass, if it encounters a PC-relative jump whose target has
already been processed, there isn’t much it can do about it...)

Only PC-relative jumps are processed, since an absolute jump is either through a register (in which
case NDISASM doesn’'t know what the register contains) or involves a segment address (in which
case the target code isn't in the same segment that NDISASM is working in, and so the sync point
can't be placed anywhere useful).

For some kinds of file, this mechanism will automatically put sync points in all the right places, and
save you from having to place any sync points manually. However, it should be stressed that
auto—sync mode isot guaranteed to catch all the sync points, and you may still have to place some
manually.

Auto—sync mode doesn't prevent you from declaring manual sync points: it just adds automatically
generated ones to the ones you provide. It's perfectly feasible to speafyd some-s options.

103

A.3.4

104

A4

Another caveat with auto—sync mode is that if, by some unpleasant fluke, something in your data
section should disassemble to a PC-relative call or jump instruction, NDISASM may obediently
place a sync point in a totally random place, for example in the middle of one of the instructions in
your code section. So you may end up with a wrong disassembly even if you use auto—sync. Again,
there isn’t much | can do about this. If you have problems, you'll have to use manual sync points, or
use the-k option (documented below) to suppress disassembly of the data area.

Other Options

The —e option skips a header on the file, by ignoring the first N bytes. This means that the header is
not counted towards the disassembly offset: if you gig&0 —010 , disassembly will start at byte
10 in the file, and this will be given offset 10, not 20.

The -k option is provided with two comma-separated numeric arguments, the first of which is an
assembly offset and the second is a number of bytes to skipwilhisount the skipped bytes
towards the assembly offset: its use is to suppress disassembly of a data section which wouldn't
contain anything you wanted to see anyway.

Bugs and Improvements

There are no known bugs. However, any you find, with patches if possible, should be sent to
nasm-bugs@lists.sourceforge.net , or to the developer's site at
https://sourceforge.net/projects/nasm/ and we’ll try to fix them. Feel free to send
contributions and new features as well.

mailto:nasm-bugs@lists.sourceforge.net
https://sourceforge.net/projects/nasm/

Index

I operator, unary
I= operator
$$ token
$
Here token
prefix
%operator
%!
%$and%$$ prefixes
%%operator
%+
%-+1and%-1syntax
%0parameter count
& operator
&& operator
* operator
+ modifier
+ operator
binary
unary
— operator
binary
unary
..@ symbol prefix
/ operator
/I operator
< operator
<< operator
<= operator
<> operator
= operator
== operator
> operator
>= operator
>> operator
? MASM syntax
A operator
A operator
| operator
|| operator
~ operator
—a option
al6
a32
a86
ABS
ABSOLUTE

addition 28
addressing, mixed-size 94
address—size prefixes 22
algebra 25
ALIGN 51, 62, 64
ALIGNB 51
alignment
in bin sections 63
inelf sections 69
in obj sections 64
in win32 sections 68
of elf common variables 71
ALINK 75
alink.sourceforge.net 75
alloc 69
alt.lang.asm 11
ambiguity 20
a.out
BSD version 72
Linux version 71
aout 13,71
aoutb 72, 90
%arg 52
arg 83, 89
as86 11, 13,72
assembler directives 56
assembly-time options 16
%assign 35
ASSUME 20
AT 51
Autoconf 12
autoexec.bat 12
auto—sync 103
-b 102
bin 13, 14, 62
multisection 63
binary 25
binary files 23
16-bit mode, versus 32-bit mode 56
64-bit \e{displacement 97
64-bit immediate 97
bit shift 28
BITS 56, 62
__BITS__ 50
bitwise AND 28
bitwise OR 28
bitwise XOR 28

105

106

block IFs 47
boot loader 62
boot sector 99
Borland
Pascal 84
Win32 compilers 63
braces
after%sign 40
around macro parameters 36
BSD 90
.bss 69, 72
bugs 100
bugtracker 100
BYTE 99
C calling convention 80, 87
C symbol names 78
CALL FAR 29
case sensitivity 19, 32, 33, 35, 36, 43, 65
changing sections 57
character constant 23, 26
circular references 32
CLASS 64
%clear 49
cl6.mac 83, 86
c32.mac 89
coff 13, 69
colon 22
.COM 62, 77
command-line 13, 62
commas in macro parameters 38
COMMON 60, 64
elf extensions to 71
obj extensions to 67
Common Object File Format 69
common variables 60
alignment inelf 71
element size 67
comp.lang.asm.x86 11
comp.os.linux.announce 11
comp.os.msdos.programmer 78
concatenating macro parameters 40
condition codes as macro parameters 41
conditional assembly 41
conditional jumps 99
conditional-return macro 41
configure 12
constants 25
context stack 46, 47
context-local labels 46
context-local single-line macros a7
counting macro parameters 39
CPU 60
CPUID 26

creating contexts 46
critical expression 23, 24, 29, 35, 58
-D option 16
—d option 16
.data 69, 72
_DATA 80
data 71,73
data structure 82, 89
DB 23, 26
dbg 73
DD 23, 26
debug information 15
debug information format 14
declaring structures 50
DEFAULT 57
default 71
default macro parameters 38
default name 62
default-WRTmechanism 67
%define 16, 32
defining sections 57
design goals 19
DevPac 23,31
disabling listing expansion 41
division 28
DJGPP 69, 87
djlink 75
DLL symbols
exporting 66
importing 66
DO 23, 26
DOS 12,15
DOS archive 12
DOS source archive 12
DQ 23, 26
.drectve 68
DT 23, 26
DUP 20, 24
DW 23, 26
DWORD 23
—E option 17
—e option 17, 104
effective addresses 22,24, 30
element size, in common variables 67
ELF 13, 69
shared libraries 70
16-bit code and 71
elf, debug formats and 71
elf, elf32, and elf64 69
%elif 42, 43
%elifctx 43
%elifdef 42
%elifid 44

%elifidn
%elifidni
%elifmacro
%elifn
%elifnctx
%elifndef
%elifnid
%elifnidn
%elifnidni
%elifnmacro
%elifnnum
%elifnstr
%elifnum
%elifstr
%else
e—mail
endproc
%endrep
ENDSTRUC
environment
EQU
%error
error messages
error reporting format
EVEN
.EXE
EXE_begin
EXE2BIN
exebin.mac
exec
Executable and Linkable Format
EXE_end
EXE_stack
%exitrep
EXPORT
export
exporting symbols
expressions
extension
EXTERN
obj extensions to
rdf extensions to
—F option
—-f option
far call
far common variables
far pointer
FARCODE
__FILE__
FLAT
flat memory model
flat—-form binary
FLOAT

__FLOAT__
__floatl6_
__float32___
__float64
_ float8
__FLOAT_DAZ__
__float80e
__ float128h__
floating—point
constants
_ float128l
__ float80m___
__FLOAT_ROUND__
follows=
format—specific directives
forward references
frame pointer
FreeBSD
FreeLink
ftp.kernel.org
ftp.simtel.net
function
functions
C calling convention
Pascal calling convention
—g option
gas
gcc
GLOBAL
aoutb extensions to
elf extensions to
rdf extensions to
global offset table
_GLOBAL_OFFSET_TABLE_
gnu-elf-extensions
..got
GOTrelocations
GOT
..gotoff
GOTOFFelocations
..gotpc
GOTPQelocations
graphics
greedy macro parameters
GROUP
groups

hex

hidden

hybrid syntaxes
-1 option

-i option
%iassign

107

108

ibiblio.org

%idefine

IEND

%if

%ifctx

%ifdef

%ifid

%ifidn

%ifidni

ifmacro

%ifn

%ifnctx

%ifndef

%ifnid

%ifnidn

%ifnidni

%ifnmacro
%ifnnum

%ifnstr

%ifnum

%ifstr

%imacro

IMPORT

import library
importing symbols
INCBIN

incbin

%include

include search path
including other files
inefficient code
infinite loop
__Infinity__

infinity
informational section
INSTALL

installing

instances of structures
Intel number formats
internal

ISTRUC

iterating over macro parameters
Jcc NEAR

JMP DWORD
jumps, mixed-size

-l option
label prefix
|d86
LIBRARY
license
%line
__LINE___

linker, free
Linux

a.out

as86

ELF
listing file
little—endian
%local
local labels
logical AND
logical negation
logical OR
logical XOR
—Moption
mac 0sx
mach obiject file format
macho
%macro
macro library
macro processor
macro—local labels
macro—params
macros
macro—selfref
make
makefile dependencies
makefiles
Makefile.unx
man pages
map files
MASM
MASM
memory models
memory operand
memory references
—MGoption
Microsoft OMF
minifloat
Minix
misc subdirectory

mixed-language program

mixed-size addressing
mixed-size instruction
MMX registers
ModR/M byte
MODULE

modulo operators
MS-DOS

MS-DOS device drivers
multi-line macros
multipass optimization
multiple section names
multiplication

multipush
Multisection
__NaN__
NaN
nasm.1l
NASM version

nasm version id

nasm version string
__NASMDEFSEG
nasm-devel

nasm.exe

nasm —f <format> -y
nasm —hf
__NASM_MAJOR___
__NASM_MINOR___
nasm.out

___ NASM_PATCHLEVEL_
__NASM_SUBMINOR___
__NASM_VER___
__NASM_VERSION_ID
nasmw.exe
nasmXXXs.zip
nasm-X.XX.tar.gz
nasmXXX.zip

ndisasm.1

ndisasm

ndisasm.exe
ndisasmw.exe

near call

near common variables
NetBSD

new releases

noalloc

nobits

noexec

.nolist

‘nowait’

nowrite
number—overflow
numeric constants

—0 option

0l6

032

.0OBJ

obj

object

octal

OF _DBG

OF DEFAULT

OFFSET

OMF

omitted parameters
—Onoption

macro

one’s complement
OpenBSD
operands
operand-size prefixes
operating system
writing
operators
ORG
orphan-labels
0S/2
osabi
other preprocessor directives
out of range, jumps
output file format
output formats
overlapping segments
OVERLAY
overloading
multi-line macros
single—line macros
—P option
—p option
paradox
PASCAL
Pascal calling convention
passes, assembly
PATH
period
Perl
perverse
PharLap
PIC
.plt
PLT relocations
plt relocations
%pop
position—-independent code
——postfix
precedence
pre—defining macros
preferred
——prefix
pre-including files
preprocess—only mode
preprocessor
preprocessor expressions
preprocessor loops
preprocessor variables
primitive directives
PRIVATE
proc
procedure linkage table
processor mode

109

110

progbits
program entry point
program origin
protected
pseudo-instructions
PUBLIC
pure binary
%push
__ONaN__
quick start
QWORD
-r
rdf
rdoff subdirectory
redirecting errors
REL
relational operators
Relocatable Dynamic Obiject File
Format
relocations, PIC—specific
removing contexts
renaming contexts
Yorep
repeating
%repl
reporting bugs
RESB
RESD
RESO
RESQ
REST
RESW
%rotate
rotating macro parameters
—s option
searching for include files
__SECT__
SECTION
elf extensions to
win32 extensions to
section alignment
in bin
in elf
in obj
in win32
section, bin extensions to
SEG
SEGMENT
elf extensions to
segment address
segment alignment
in bin
in obj

segment names, Borland Pascal 85
segment override 20, 22
segments 28

groups of 65
separator character 19
shared libraries 72,90
shared library 70
shift command 39
SIB byte
signed division 28
signed modulo 28
single-line macros 32
size, of symbols 70
__SNaN__ 27
Solaris x86 69
—soname 93
sound 23
source code 12
source-listing file 14
square brackets 19, 24
STACK 64
stack relative preprocessor directives 52
%stacksize 53
standard macros 49
standardized section names 57, 68, 69, 72
..Start 66, 75
start= 63
stderr 15
stdout 15
STRICT 29
string constant 23
string handling in macros 35
string length 35
%strlen 35
STRUC 50, 58, 82, 89
stub preprocessor 17
%substr 35
sub-strings 35
subtraction 28
suppressible warning 18
suppressing preprocessing 17
switching between sections 57
..Sym 70
symbol sizes, specifying 70
symbol types, specifying 70
symbols

exporting from DLLs 66

importing from DLLs 66
synchronisation 103
.SYS 62, 78
-t 17
TASM 11, 17
tasm 19, 63

TBYTE 20
test subdirectory 75
testing
arbitrary numeric expressions 43
context stack 43
exact text identity 43
multi-line macro existence 42
single-line macro existence 42
token types 44
text 69, 72
_TEXT 80
TIMES 23, 24, 29, 99, 100
TLINK 78
trailing colon 22
TWORD 20, 23
type, of symbols 70
—U option 16
—u option 16, 102
unary operators 28
%undef 16, 34
undefining macros 16
underscore, in C symbols 78
uninitialized 23
uninitialized storage 20
Unix 12
SCO 69
source archive 12
System V 69
UnixWare 69
unrolled loops 24
unsigned division 28
unsigned modulo 28
UPPERCASE 19, 65
USE16 57, 65
USE32 57, 65
user—defined errors 44
user—level assembler directives 49
user-level directives 56
-V option 18
VAL 75
valid characters 22
variable types 20
version 18
version number of NASM 49
vfollows= 63
Visual C++ 68
vstart= 63
—w option 18
warnings 18
[warning +warning—name] 18
[warning —warning—name] 18
win64 69, 97

Win64

Windows
Windows 95
Windows NT
write

writing operating systems
WRT

WRT ..got

WRT ..gotoff
WRT ..gotpc
WRT ..plt

WRT ..sym
WWW page
www.cpan.org
www.delorie.com
WWWwW.pcorner.com
—X option
%xdefine
x2ftp.oulu.fi
%xidefine

-y option

—-Z option

111

	Title
	Contents
	Introduction
	Documentation Changes for Version 2.0
	64-Bit Support
	Floating Point Enhancements
	ELF Enhancements
	Command Line Options
	Other Enhancements

	What Is NASM?
	Why Yet Another Assembler?
	License Conditions

	Contact Information
	Installation
	Installing NASM under MS-DOS or Windows
	Installing NASM under Unix

	Running NASM
	NASM Command-Line Syntax
	The -o Option: Specifying the Output File Name
	The -f Option: Specifying the Output File Format
	The -l Option: Generating a Listing File
	The -M Option: Generate Makefile Dependencies
	The -MG Option: Generate Makefile Dependencies
	The -F Option: Selecting a Debug Information Format
	The -g Option: Enabling Debug Information.
	The -X Option: Selecting an Error Reporting Format
	The -Z Option: Send Errors to a File
	The -s Option: Send Errors to stdout
	The -i Option: Include File Search Directories
	The -p Option: Pre-Include a File
	The -d Option: Pre-Define a Macro
	The -u Option: Undefine a Macro
	The -E Option: Preprocess Only
	The -a Option: Don't Preprocess At All
	The -On Option: Specifying Multipass Optimization.
	The -t option: Enable TASM Compatibility Mode
	The -w Option: Enable or Disable Assembly Warnings
	The -v Option: Display Version Info
	The -y Option: Display Available Debug Info Formats
	The --prefix and --postfix Options.
	The NASMENV Environment Variable

	Quick Start for MASM Users
	NASM Is Case-Sensitive
	NASM Requires Square Brackets For Memory References
	NASM Doesn't Store Variable Types
	NASM Doesn't ASSUME
	NASM Doesn't Support Memory Models
	Floating-Point Differences
	Other Differences

	The NASM Language
	Layout of a NASM Source Line
	Pseudo-Instructions
	DB and friends: Declaring initialized Data
	RESB and friends: Declaring Uninitialized Data
	INCBIN: Including External Binary Files
	EQU: Defining Constants
	TIMES: Repeating Instructions or Data

	Effective Addresses
	Constants
	Numeric Constants
	Character Constants
	String Constants
	Floating-Point Constants

	Expressions
	|: Bitwise OR Operator
	^: Bitwise XOR Operator
	&: Bitwise AND Operator
	<< and >>: Bit Shift Operators
	+ and -: Addition and Subtraction Operators
	*, /, //, % and %%: Multiplication and Division
	Unary Operators: +, -, ~, ! and SEG

	SEG and WRT
	STRICT: Inhibiting Optimization
	Critical Expressions
	Local Labels

	The NASM Preprocessor
	Single-Line Macros
	The Normal Way: %define
	Enhancing %define: %xdefine
	Concatenating Single Line Macro Tokens: %+
	Undefining macros: %undef
	Preprocessor Variables: %assign

	String Handling in Macros: %strlen and %substr
	String Length: %strlen
	Sub-strings: %substr

	Multi-Line Macros: %macro
	Overloading Multi-Line Macros
	Macro-Local Labels
	Greedy Macro Parameters
	Default Macro Parameters
	%0: Macro Parameter Counter
	%rotate: Rotating Macro Parameters
	Concatenating Macro Parameters
	Condition Codes as Macro Parameters
	Disabling Listing Expansion

	Conditional Assembly
	%ifdef: Testing Single-Line Macro Existence
	ifmacro: Testing Multi-Line Macro Existence
	%ifctx: Testing the Context Stack
	%if: Testing Arbitrary Numeric Expressions
	%ifidn and %ifidni: Testing Exact Text Identity
	%ifid, %ifnum, %ifstr: Testing Token Types
	%error: Reporting User-Defined Errors

	Preprocessor Loops: %rep
	Including Other Files
	The Context Stack
	%push and %pop: Creating and Removing Contexts
	Context-Local Labels
	Context-Local Single-Line Macros
	%repl: Renaming a Context
	Example Use of the Context Stack: Block IFs

	Standard Macros
	__NASM_MAJOR__, __NASM_MINOR__, __NASM_SUBMINOR__ and ___NASM_PATCHLEVEL__: NASM Version
	__NASM_VERSION_ID__: NASM Version ID
	__NASM_VER__: NASM Version string
	__FILE__ and __LINE__: File Name and Line Number
	__BITS__: Current BITS Mode
	STRUC and ENDSTRUC: Declaring Structure Data Types
	ISTRUC, AT and IEND: Declaring Instances of Structures
	ALIGN and ALIGNB: Data Alignment

	Stack Relative Preprocessor Directives
	%arg Directive
	%stacksize Directive
	%local Directive

	Other Preprocessor Directives
	%line Directive
	%!<env>: Read an environment variable.

	Assembler Directives
	BITS: Specifying Target Processor Mode
	USE16 & USE32: Aliases for BITS

	DEFAULT: Change the assembler defaults
	SECTION or SEGMENT: Changing and Defining Sections
	The __SECT__ Macro

	ABSOLUTE: Defining Absolute Labels
	EXTERN: Importing Symbols from Other Modules
	GLOBAL: Exporting Symbols to Other Modules
	COMMON: Defining Common Data Areas
	CPU: Defining CPU Dependencies
	FLOAT: Handling of floating-point constants

	Output Formats
	bin: Flat-Form Binary Output
	ORG: Binary File Program Origin
	bin Extensions to the SECTION Directive
	Multisection support for the BIN format.
	Map files

	obj: Microsoft OMF Object Files
	obj Extensions to the SEGMENT Directive
	GROUP: Defining Groups of Segments
	UPPERCASE: Disabling Case Sensitivity in Output
	IMPORT: Importing DLL Symbols
	EXPORT: Exporting DLL Symbols
	..start: Defining the Program Entry Point
	obj Extensions to the EXTERN Directive
	obj Extensions to the COMMON Directive

	win32: Microsoft Win32 Object Files
	win32 Extensions to the SECTION Directive

	win64: Microsoft Win64 Object Files
	coff: Common Object File Format
	macho: Mach Object File Format
	elf, elf32, and elf64: Executable and Linkable Format Object Files
	ELF specific directive osabi
	elf Extensions to the SECTION Directive
	Position-Independent Code: elf Special Symbols and WRT
	elf Extensions to the GLOBAL Directive
	elf Extensions to the COMMON Directive
	16-bit code and ELF
	Debug formats and ELF

	aout: Linux a.out Object Files
	aoutb: NetBSD/FreeBSD/OpenBSD a.out Object Files
	as86: Minix/Linux as86 Object Files
	rdf: Relocatable Dynamic Object File Format
	Requiring a Library: The LIBRARY Directive
	Specifying a Module Name: The MODULE Directive
	rdf Extensions to the GLOBAL directive
	rdf Extensions to the EXTERN directive

	dbg: Debugging Format

	Writing 16-bit Code (DOS, Windows 3/3.1)
	Producing .EXE Files
	Using the obj Format To Generate .EXE Files
	Using the bin Format To Generate .EXE Files

	Producing .COM Files
	Using the bin Format To Generate .COM Files
	Using the obj Format To Generate .COM Files

	Producing .SYS Files
	Interfacing to 16-bit C Programs
	External Symbol Names
	Memory Models
	Function Definitions and Function Calls
	Accessing Data Items
	c16.mac: Helper Macros for the 16-bit C Interface

	Interfacing to Borland Pascal Programs
	The Pascal Calling Convention
	Borland Pascal Segment Name Restrictions
	Using c16.mac With Pascal Programs

	Writing 32-bit Code (Unix, Win32, DJGPP)
	Interfacing to 32-bit C Programs
	External Symbol Names
	Function Definitions and Function Calls
	Accessing Data Items
	c32.mac: Helper Macros for the 32-bit C Interface

	Writing NetBSD/FreeBSD/OpenBSD and Linux/ELF Shared Libraries
	Obtaining the Address of the GOT
	Finding Your Local Data Items
	Finding External and Common Data Items
	Exporting Symbols to the Library User
	Calling Procedures Outside the Library
	Generating the Library File

	Mixing 16 and 32 Bit Code
	Mixed-Size Jumps
	Addressing Between Different-Size Segments
	Other Mixed-Size Instructions

	Writing 64-bit Code (Unix, Win64)
	Immediates and displacements in 64-bit mode
	Interfacing to 64-bit C Programs (Unix)
	Interfacing to 64-bit C Programs (Win64)

	Troubleshooting
	Common Problems
	NASM Generates Inefficient Code
	My Jumps are Out of Range
	ORG Doesn't Work
	TIMES Doesn't Work

	Bugs

	Ndisasm
	Introduction
	Getting Started: Installation
	Running NDISASM
	COM Files: Specifying an Origin
	Code Following Data: Synchronisation
	Mixed Code and Data: Automatic (Intelligent) Synchronisation
	Other Options

	Bugs and Improvements

	Index

