
LIBARCHIVE (3) NetBSD Library Functions Manual LIBARCHIVE (3)

NAME
libarchive_internals — description of libarchive internal interfaces

OVERVIEW
Thelibarchive library provides a flexible interface for reading and writing streaming archive files such
as tar and cpio.Internally, it follows a modular layered design that should make it easy to add new archive
and compression formats.

GENERAL ARCHITECTURE
Externally, libarchive exposes most operations through an opaque, object-style interface. The
archive_entry(1) objects store information about a single filesystem object.The rest of the library pro-
vides facilities to writearchive_entry(1) objects to archive files, read them from archive files, and write
them to disk. (There are plans to add a facility to readarchive_entry(1) objects from disk as well.)

The read and write APIs each have four layers: a public API layer, a format layer that understands the ar-
chive file format, a compression layer, and an I/O layer. The I/O layer is completely exposed to clients who
can replace it entirely with their own functions.

In order to provide as much consistency as possible for clients, some public functions are virtualized.Even-
tually, it should be possible for clients to open an archive or disk writer, and then use a single set of code to
select and write entries, regardless of the target.

READ ARCHITECTURE
From the outside, clients use thearchive_read(3) API to manipulate anarchive object to read entries
and bodies from an archive stream. Internally, thearchive object is cast to anarchive_read object,
which holds all read-specific data. The API has four layers: The lowest layer is the I/O layer. This layer can
be overridden by clients, but most clients use the packaged I/O callbacks provided, for example, by
archive_read_open_memory(3), andarchive_read_open_fd(3). Thecompression layer calls
the I/O layer to read bytes and decompresses them for the format layer. The format layer unpacks a stream
of uncompressed bytes and createsarchive_entry objects from the incoming data. The API layer tracks
overall state (for example, it prevents clients from reading data before reading a header) and invokes the for-
mat and compression layer operations through registered function pointers.In particular, the API layer
drives the format-detection process: When opening the archive, it reads an initial block of data and offers it
to each registered compression handler. The one with the highest bid is initialized with the first block.Simi-
larly, the format handlers are polled to see which handler is the best for each archive. (Prior to 2.4.0, the for-
mat bidders were invoked for each entry, but this design hindered error recovery.)

I/O Layer and Client Callbacks
The read API goes to some lengths to be nice to clients. As a result, there are few restrictions on the behav-
ior of the client callbacks.

The client read callback is expected to provide a block of data on each call.A zero-length return does indi-
cate end of file, but otherwise blocks may be as small as one byte or as large as the entire file. In particular,
blocks may be of different sizes.

The client skip callback returns the number of bytes actually skipped, which may be much smaller than the
skip requested. The only requirement is that the skip not be larger. In particular, clients are allowed to return
zero for any skip that they don’t want to handle. The skip callback must never be inv oked with a negative
value.

Keep in mind that not all clients are reading from disk: clients reading from networks may provide different-
sized blocks on every request and cannot skip at all; advanced clients may usemmap(2) to read the entire file
into memory at once and return the entire file to libarchive as a single block; other clients may begin asyn-
chronous I/O operations for the next block on each request.

NetBSD 5.0 April 16, 2007 1



LIBARCHIVE (3) NetBSD Library Functions Manual LIBARCHIVE (3)

Decompresssion Layer
The decompression layer not only handles decompression, it also buffers data so that the format handlers see
a much nicer I/O model.The decompression API is a two stage peek/consume model.A read_ahead request
specifies a minimum read amount; the decompression layer must provide a pointer to at least that much data.
If more data is immediately available, it should return more: the format layer handles bulk data reads by ask-
ing for a minimum of one byte and then copying as much data as is available.

A subsequent call to theconsume() function advances the read pointer. Note that data returned from a
read_ahead() call is guaranteed to remain in place until the next call toread_ahead(). Intervening
calls toconsume() should not cause the data to move.

Skip requests must always be handled exactly. Decompression handlers that cannot seek forward should not
register a skip handler; the API layer fills in a generic skip handler that reads and discards data.

A decompression handler has a specific lifecycle:
Registration/Configuration

When the client invokes the public support function, the decompression handler invokes the inter-
nal__archive_read_register_compression() function to provide bid and initialization
functions. This function returns NULL on error or else a pointer to astruct
decompressor_t. This structure contains avoid ∗ configslot that can be used for storing any
customization information.

Bid The bid function is invoked with a pointer and size of a block of data.The decompressor can
access its config data through thedecompressorelement of thearchive_read object. Thebid
function is otherwise stateless. In particular, it must not perform any I/O operations.

The value returned by the bid function indicates its suitability for handling this data stream.A bid
of zero will ensure that this decompressor is never inv oked. Returnzero if magic number checks
fail. Otherwise,your initial implementation should return the number of bits actually checked.
For example, if you verify two full bytes and three bits of another byte, bid 19.Note that the initial
block may be very short; be careful to only inspect the data you are given. (Thecurrent decom-
pressors require two bytes for correct bidding.)

Initialize The winning bidder will have its init function called.This function should initialize the remaining
slots of the struct decompressor_t object pointed to by thedecompressorelement of the
archive_readobject. Inparticular, it should allocate any working data it needs in thedata slot of
that structure.The init function is called with the block of data that was used for tasting. At this
point, the decompressor is responsible for all I/O requests to the client callbacks.The decompres-
sor is free to read more data as and when necessary.

Satisfy I/O requests
The format handler will invoke theread_ahead, consume, andskipfunctions as needed.

Finish The finish method is called only once when the archive is closed. Itshould release anything stored
in thedataandconfigslots of thedecompressorobject. Itshould not invoke the client close call-
back.

Format Layer
The read formats have a similar lifecycle to the decompression handlers:
Registration

Allocate your private data and initialize your pointers.
Bid Formats bid by invoking the read_ahead() decompression method but not calling the

consume() method. This allows each bidder to look ahead in the input stream.Bidders should
not look further ahead than necessary, as long look aheads put pressure on the decompression layer
to buffer lots of data. Most formats only require a few hundred bytes of look ahead; look aheads of
a few kilobytes are reasonable.(The ISO9660 reader sometimes looks ahead by 48k, which
should be considered an upper limit.)

NetBSD 5.0 April 16, 2007 2



LIBARCHIVE (3) NetBSD Library Functions Manual LIBARCHIVE (3)

Read header
The header read is usually the most complex part of any format. Thereare a few strategies worth
mentioning: For formats such as tar or cpio, reading and parsing the header is straightforward since
headers alternate with data.For formats that store all header data at the beginning of the file, the
first header read request may have to read all headers into memory and store that data, sorted by
the location of the file data.Subsequent header read requests will skip forward to the beginning of
the file data and return the corresponding header.

Read Data
The read data interface supports sparse files; this requires that each call return a block of data spec-
ifying the file offset and size.This may require you to carefully track the location so that you can
return accurate file offsets for each read. Remember that the decompressor will return as much
data as it has.Generally, you will want to request one byte, examine the return value to see how
much data is available, and possibly trim that to the amount you can use.You should invoke con-
sume for each block just before you return it.

Skip All Data
The skip data call should skip over all file data and trailing padding.This is called automatically
by the API layer just before each header read.It is also called in response to the client calling the
publicdata_skip() function.

Cleanup On cleanup, the format should release all of its allocated memory.

API Layer
XXX to do XXX

WRITE ARCHITECTURE
The write API has a similar set of four layers: an API layer, a format layer, a compression layer, and an I/O
layer. The registration here is much simpler because only one format and one compression can be registered
at a time.

I/O Layer and Client Callbacks
XXX To be written XXX

Compression Layer
XXX To be written XXX

Format Layer
XXX To be written XXX

API Layer
XXX To be written XXX

WRITE_DISK ARCHITECTURE
The write_disk API is intended to look just like the write API to clients.Since it does not handle multiple
formats or compression, it is not layered internally.

GENERAL SERVICES
The archive_read, archive_write, and archive_write_disk objects all contain an initial
archive object which provides common support for a set of standard services. (Recall that ANSI/ISO C90
guarantees that you can cast freely between a pointer to a structure and a pointer to the first element of that
structure.) Thearchive object has a magic value that indicates which API this object is associated with,
slots for storing error information, and function pointers for virtualized API functions.

NetBSD 5.0 April 16, 2007 3



LIBARCHIVE (3) NetBSD Library Functions Manual LIBARCHIVE (3)

MISCELLANEOUS NOTES
Connecting existing archiving libraries into libarchive is generally quite difficult. In particular, many exist-
ing libraries strongly assume that you are reading from a file; they seek forwards and backwards as necessary
to locate various pieces of information. In contrast, libarchive nev er seeks backwards in its input, which
sometimes requires very different approaches.

For example, libarchive’s ISO9660 support operates very differently from most ISO9660 readers.The
libarchive support utilizes a work-queue design that keeps a list of known entries sorted by their location in
the input. Whenever libarchive’s ISO9660 implementation is asked for the next header, checks this list to
find the next item on the disk. Directories are parsed when they are encountered and new items are added to
the list. This design relies heavily on the ISO9660 image being optimized so that directories always occur
earlier on the disk than the files they describe.

Depending on the specific format, such approaches may not be possible. The ZIP format specification, for
example, allows archivers to store key information only at the end of the file. In theory, it is possible to cre-
ate ZIP archives that cannot be read without seeking.Fortunately, such archives are very rare, and libarchive
can read most ZIP archives, though it cannot always extract as much information as a dedicated ZIP pro-
gram.

SEE ALSO
archive(3),archive_entry(3),archive_read(3),archive_write(3),
archive_write_disk(3)

HISTORY
Thelibarchive library first appeared inFreeBSD5.3.

AUTHORS
Thelibarchive library was written by Tim Kientzle〈kientzle@acm.org〉.

NetBSD 5.0 April 16, 2007 4


