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1 Introduction

This guide covers the installation and usage of Quantum ESPRESSO
(opEn-Source Package for Research in Electronic Structure, Simulation, and
Optimization), version 4.1.1.

The Quantum ESPRESSO distribution contains the following core
packages for the calculation of electronic-structure properties within Density-
Functional Theory, using a Plane-Wave basis set and pseudopotentials:

• PWscf (Plane-Wave Self-Consistent Field),

• CP (Car-Parrinello).

It also includes the following more specialized packages:

• PHonon: phonons with Density-Functional Perturbation Theory,

• PostProc: various utilities for data prostprocessing,

• PWcond: ballistic conductance,

• GIPAW (Gauge-Independent Projector Augmented Waves): EPR g-
tensor and NMR chemical shifts,

• XSPECTRA: K-edge X-ray adsorption spectra,

• vdW: (experimental) dynamic polarizability,

• Wannier90: maximally localized Wannier functions.

Finally, the following auxiliary codes are included:

• PWgui (Graphical User Interface for PWscf): a graphical interface for
producing input data files for PWscf,
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• atomic: a program for atomic calculations and generation of pseudopo-
tentials,

• iotk: an Input-Output ToolKit.

This guide documents PWscf, CP, PHonon, PostProc, PWcond. The re-
maining packages have separate documentation.

The Quantum ESPRESSO codes work on many different types of
Unix machines, including parallel machines using Message Passing Interface
(MPI). Running Quantum ESPRESSO on Mac OS X and MS-Windows
is also possible: see section 2.2.

Further documentation, beyond what is provided in this guide, can be
found in:

• the Quantum ESPRESSO Wiki
(http://www.quantum-espresso.org/wiki/index.php/Main Page) ;

• the Doc/ directory of the Quantum ESPRESSO distribution, con-
taining a detailed description of all input data for all codes in the
INPUT * files (in .txt, .html) and a few PDF documents;

• the pw forum mailing list (pw forum@pwscf.org). You can subscribe
to this list and browse and search its archives from the Quantum
ESPRESSO web site (http://www.quantum-espresso.org/tools.php).
Only subscribed users can post. Please search the archives before post-
ing: your question may have already been answered.

This guide does not explain solid state physics and its computational
methods. If you want to learn that, you should read a good textbook, such
as e.g. the book by Richard Martin: Electronic Structure: Basic Theory and
Practical Methods, Cambridge University Press (2004).

All trademarks mentioned in this guide belong to their respective owners.

1.1 What can Quantum ESPRESSO do

PWscf can currently perform the following kinds of calculations:

• ground-state energy and one-electron (Kohn-Sham) orbitals

• atomic forces, stresses, and structural optimization

• molecular dynamics on the ground-state Born-Oppenheimer surface,
also with variable cell
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• Nudged Elastic Band (NEB) and Fourier String Method Dynamics
(SMD) for energy barriers and reaction paths

• macroscopic polarization and finite electric fields via the modern theory
of polarization (Berry Phases)

All of the above works for both insulators and metals, in any crystal struc-
ture, for many exchange-correlation functionals (including spin polarization,
DFT+U, exact exchange), for norm-conserving (Hamann-Schluter-Chiang)
pseudopotentials in separable form or Ultrasoft (Vanderbilt) pseudopoten-
tials or Projector Augmented Waves (PAW) method. Non-collinear mag-
netism and spin-orbit interactions are also implemented. Finite electric fields
are implemented also using a supercell approach.

PHonon can perform the following types of calculations:

• phonon frequencies and eigenvectors at a generic wave vector, using
Density-Functional Perturbation Theory

• effective charges and dielectric tensors

• electron-phonon interaction coefficients for metals

• interatomic force constants in real space

• third-order anharmonic phonon lifetimes

• Infrared and Raman (nonresonant) cross section

PHonon can be used whenever PWscf can be used, with the exceptions of
DFT+U and exact exchange. PAW is not implemented for higher-order
response calculations. Furtrher calculations, in the Quasi-harmonic approx-
imations, of the vibrational free energy can be performed using the QHA
package.

PostProc can perform the following types of calculations:

• Scanning Tunneling Microscopy (STM) images;

• plots of Electron Localization Functions (ELF);

• Density of States (DOS) and Projected DOS (PDOS);

• Löwdin charges;

• planar and spherical averages;

plus interfacing with a number of graphical utilities and with external codes.
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1.2 People

In the following, the cited affiliation is the one where the last known contri-
bution was done and may no longer be valid.

The maintenance and further development of the Quantum ESPRESSO
distribution is promoted by the DEMOCRITOS National Simulation Center
of CNR-INFM (Italian Institute for Condensed Matter Physics) under the
coordination of Paolo Giannozzi (Univ.Udine, Italy), with the strong support
of the CINECA National Supercomputing Center in Bologna under the re-
sponsibility of Carlo Cavazzoni. Layla Martin-Samos (Democritos) is joining
the team of coordinators.

The PWscf package (originally including PHonon and PostProc) was orig-
inally developed by Stefano Baroni, Stefano de Gironcoli, Andrea Dal Corso
(SISSA), Paolo Giannozzi, and many others. We quote in particular:

• Matteo Cococcioni (MIT) for DFT+U implementation;

• David Vanderbilt’s group at Rutgers for Berry’s phase calculations;

• Michele Lazzeri (Paris VI) for the 2n+1 code and Raman cross section
calculation with 2nd-order response;

• Ralph Gebauer (ICTP, Trieste) and Adriano Mosca Conte (SISSA, Tri-
este) for noncolinear magnetism;

• Andrea Dal Corso for spin-orbit interactions;

• Carlo Sbraccia (Princeton) for NEB, Strings method, Metadynamics,
for improvements to structural optimization and to many other parts
of the code.

• Paolo Umari (Democritos) for finite electric fields;

• Renata Wentzcovitch (Univ.Minnesota) for variable-cell molecular dy-
namics;

• Lorenzo Paulatto (SISSA) for PAW implementation, built upon previ-
ous work by Guido Fratesi (Univ.Milano Bicocca) and Riccardo Maz-
zarello (ETHZ-USI Lugano);

• Filippo Spiga (Univ. Milano Bicocca) for mixed MPI-OpenMP paral-
lelization;

• Ismaila Dabo (INRIA, Palaiseau) for electrostatics with free boundary
conditions;
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• Andrea Dal Corso for Ultrasoft, noncollinear, spin-orbit extensions to
PHonon.

The CP package is based on the original code written by Roberto Car
and Michele Parrinello. CP was developed by Alfredo Pasquarello (IRRMA,
Lausanne), Kari Laasonen (Oulu), Andrea Trave, Roberto Car (Princeton),
Nicola Marzari (MIT), Paolo Giannozzi, and others. FPMD, later merged
with CP, was developed by Carlo Cavazzoni, Gerardo Ballabio (CINECA),
Sandro Scandolo (ICTP), Guido Chiarotti (SISSA), Paolo Focher, and others.
We quote in particular:

• Carlo Sbraccia (Princeton) for NEB and Metadynamics;

• Manu Sharma (Princeton) and Yudong Wu (Princeton) for maximally
localized Wannier functions and dynamics with Wannier functions;

• Paolo Umari (MIT) for finite electric fields and conjugate gradients;

• Paolo Umari and Ismaila Dabo for ensemble-DFT;

• Xiaofei Wang (Princeton) for META-GGA;

• The Autopilot feature was implemented by Targacept, Inc.

Other packages in Quantum ESPRESSO:

• PWcond was written by Alexander Smogunov (SISSA) and Andrea Dal
Corso.

• GIPAW (http://www.gipaw.org) was written by Davide Ceresoli (MIT),
Ari Seitsonen, Uwe Gerstmann, Francesco Mauri (Univ. Paris VI) .

• PWgui was written by Anton Kokalj (IJS Ljubljana) and is based on
his GUIB concept (http://www-k3.ijs.si/kokalj/guib/).

• atomic was written by Andrea Dal Corso and it is the result of many
additions to the original code by Paolo Giannozzi and others. Lorenzo
Paulatto wrote the extension to PAW.

• iotk (http://www.s3.infm.it/iotk) was written by Giovanni Bussi (ETHZ
and S3 Modena).

• Wannier90 (http://www.wannier.org/) was written by A. Mostofi, J.
Yates, Y.-S Lee (MIT).
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• XSPECTRA was written by Matteo Calandra (Univ. Paris VI) and
collaborators.

• QHA was contributed by Eyvaz Isaev (Moscow Steel and Alloy Inst.
and Linkoping and Uppsala Univ.)

Other relevant contributions to Quantum ESPRESSO:

• Gerardo Ballabio wrote the first configure for Quantum ESPRESSO

• Dispersions interaction in the framework of DFT-D have been con-
tributed by Daniel Forrer (Padua Univ.) and Michele Pavone (Naples
Univ. Federico II).

• The calculation of the finite (imaginary) frequency molecular polariz-
ability using the approximated Thomas-Fermi + von Weizaecker scheme
(VdW) was contributed by Huy-Viet Nguyen (SISSA).

• The calculation of RPA frequency-dependent complex dielectric func-
tion was contributed by Andrea Benassi (S3 Modena).

• The initial BlueGene porting was done by Costas Bekas and Alessandro
Curioni (IBM Zurich).

• Audrius Alkauskas (IRRMA), Simon Binnie (Univ. College London),
Davide Ceresoli (MIT), Andrea Ferretti (S3), Guido Fratesi, Axel Kohlmeyer
(UPenn), Konstantin Kudin (Princeton), Sergey Lisenkov (Univ.Arkansas),
Nicolas Mounet (MIT), William Parker (Ohio State Univ), Guido Roma
(CEA), Gabriele Sclauzero (SISSA), Sylvie Stucki (IRRMA), Pascal
Thibaudeau (CEA), answered questions on the mailing list, found bugs,
helped in porting to new architectures, wrote some code.

An alphabetical list of further contributors includes: Dario Alfè, Alain
Allouche, Francesco Antoniella, Francesca Baletto, Mauro Boero, Nicola
Bonini, Claudia Bungaro, Paolo Cazzato, Gabriele Cipriani, Jiayu Dai, Ce-
sar Da Silva, Alberto Debernardi, Gernot Deinzer, Martin Hilgeman, Yosuke
Kanai, Nicolas Lacorne, Stephane Lefranc, Kurt Maeder, Andrea Marini,
Pasquale Pavone, Mickael Profeta, Kurt Stokbro, Paul Tangney, Antonio
Tilocca, Jaro Tobik, Malgorzata Wierzbowska, Silviu Zilberman, and let us
apologize to everybody we have forgotten.

This guide was mostly written by Paolo Giannozzi. Gerardo Ballabio and
Carlo Cavazzoni wrote the section on CP.
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1.3 Contacts

The web site for Quantum ESPRESSO is http://www.quantum-espresso.org/.
Releases and patches can be downloaded from this site or following the links
contained in it. The main entry point for developers is the QE-forge web
site: http://www.qe-forge.org/.

Announcements about new versions of Quantum ESPRESSO are avail-
able via a low-traffic mailing list Pw users: pw users@pwscf.org. You can
subscribe (but not post) to this list from the Quantum ESPRESSO web
site.

The recommended place where to ask questions about installation and us-
age of Quantum ESPRESSO, and to report bugs, is the Pw forum mailing
list: pw forum@pwscf.org. Here you can obtain help from the developers and
many knowledgeable users. You can browse and search its archive from the
Quantum ESPRESSO web site, but you have to subscribe in order to post
to the list. Please search the archives – using the search facility, accessible
from the web site, or using google – before posting: many questions are asked
over and over again.

Important notice: only messages that appear to come from the reg-
istered user’s e-mail address, in its exact form, will be accepted. Messages
”waiting for moderator approval” are automatically deleted with no further
processing (sorry, too much spam). In case of trouble, carefully check that
your return e-mail is the correct one (i.e. the one you used to subscribe).

The Pw forum mailing list is also the recommanded place where to con-
tact the developers of Quantum ESPRESSO.

1.4 Terms of use

Quantum ESPRESSO is free software, released under the GNU General
Public License: http://www.gnu.org/licenses/old-licenses/gpl-2.0.txt, or the
file License in the distribution).

We shall greatly appreciate if scientific work done using this code will
contain an explicit acknowledgment and the following reference:

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C.
Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo,
A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer,
U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-
Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello,
L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitso-
nen, A. Smogunov, P. Umari, R. M. Wentzcovitch, J.Phys.:Condens.Matter
21, 395502 (2009), http://arxiv.org/abs/0906.2569
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Note the form Quantum ESPRESSO for textual citations of the code.
Pseudopotentials should be cited as (for instance)

[ ] We used the pseudopotentials C.pbe-rrjkus.UPF and O.pbe-vbc.UPF
from http://www.quantum-espresso.org.

2 Installing Quantum ESPRESSO

2.1 Download

Presently, Quantum ESPRESSO is only distributed in source form; some
precompiled executables (binary files) are provided only for PWgui. Stable
releases of the Quantum ESPRESSO source package (current version is
4.1.1) can be downloaded from this URL:
http://www.quantum-espresso.org/download.php .

Uncompress and unpack the distribution using the command:

tar zxvf espresso-4.1.tar.gz

(a hyphen before ”zxvf” is optional). If your version of ”tar” doesn’t recognize
the ”z” flag:

gunzip -c espresso-4.1.tar.gz | tar xvf -

A directory espresso-4.1.1/, containing the distribution, will be created. Oc-
casionally, patches for the current version, fixing some errors and bugs, may
be distributed as a ”diff” file. In order to install a patch (for instance):

cd espresso-4.1/

patch -p1 < /path/to/the/diff/file/patch-file.diff

If more than one patch is present, they should be applied in the correct
order.

Daily snapshots of the development version can be downloaded from the
developers’ site qe-forge.org: follow the link ”Quantum ESPRESSO”, then
”SCM”. Beware: the development version is, well, under development: use
at your own risk! The bravest may access the development version via anony-
mous CVS (Concurrent Version System): see the developer manual, section
”Using CVS”.

The Quantum ESPRESSO distribution contains several directories.
Some of them are common to all packages:
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Modules/ source files for modules that are common to all programs

include/ files *.h included by fortran and C source files

clib/ external libraries written in C

flib/ external libraries written in Fortran

iotk/ Input/Output Toolkit

install/ machine-dependent makefiles

pseudo/ pseudopotential files used by examples

upftools/ converters to unified pseudopotential format (UPF)

examples/ sample input and output files

tests/ automated tests

Doc/ documentation

while others are specific to a single package:

PW/ PWscf: source files for scf calculations (pw.x)

pwtools/ PWscf: source files for miscellaneous analysis programs

PP/ PostProc: source files for post-processing of pw.x data file

PH/ PHonon: source files for phonon calculations (ph.x) and analysis

Gamma/ PHonon: source files for Gamma-only phonon calculation (phcg.x)

D3/ PHonon: source files for third-order derivative calculations (d3.x)

PWCOND/ PWcond: source files for conductance calculations (pwcond.x)

vdW/ VdW: source files for calculation of the molecular polarizability

at finite (imaginary) frequency using approximated Thomas-Fermi

+ von Weizacker scheme

CPV/ CP: source files for Car-Parrinello code (cp.x)

atomic/ Source files for the pseudopotential generation package (ld1.x)

atomic_doc/ Documentation, tests and examples for atomic

GUI/ PWGui: Graphical User Interface

2.2 Installation

To install Quantum ESPRESSO from source, you need C and Fortran-95
compilers (Fortran-90 is not sufficient, but most “Fortran-90” compilers are
actually Fortran-95-compliant). If you don’t have a commercial Fortran-95
compilers, you may install the free g95 compiler: (http://www.g95.org/) or
the GNU fortran compiler gfortran: (http://www.gfortran.org/). Note that
both the C and the F90 compilers must be in your PATH, or else their full
path must be explicitly given.

You also need a minimal Unix environment: basically, a command shell
(e.g., bash or tcsh) and the utilities make, awk and sed. MS-Windows users
need to have Cygwin (a UNIX environment which runs under Windows)
installed: see http://www.cygwin.com/. Note that the scripts contained in
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the distribution assume that the local language is set to the standard, i.e.
”C”; other settings may break them. Use

export LC_ALL=C

or

setenv LC_ALL C

to prevent any problem when running scripts (including installation scripts).
Instructions for the impatient:

cd espresso-4.1/

./configure

make all

Executable programs (actually, symlinks to them) will be placed in the bin/
subdirectory.

If you have problems or would like to tweak the default settings, read the
detailed instructions below.

2.3 configure

To install the Quantum ESPRESSO source package, run the configure

script. It will (try to) detect compilers and libraries available on your ma-
chine, and set up things accordingly. Presently it is expected to work on most
Linux 32- and 64-bit PCs (all Intel and AMD CPUs), PC clusters, IBM SP
machines, SGI Origin and Altix, some HP-Compaq Alpha machines, NEC
SX, Cray X1-XD-XT machines, Mac OS X, MS-Windows PCs. It may work
with some assistance also on other architectures (see below).

For cross-compilation, you have to specify the target machine with the
–host option (see below). This feature has not been extensively tested, but
we had at least one successful report (compilation for NEC SX6 on a PC).

Specifically, configure generates the following files:

make.sys: compilation rules and flags

configure.msg: a report of the configuration run

include/fft_defs.h: defines fortran variable for C pointer

include/c_defs.h: defines C to fortran calling convention

and a few more things used by C files

configure.msg is only used by configure to print its final report and is not
needed for compilation. NOTA BENE: unlike previous versions, configure
no longer runs the makedeps.sh shell script that updates dependencies. If
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you modify the program sources, run ./makedeps.sh or type make depend

to update files make.depend in the various subdirectories.
You should always be able to compile the Quantum ESPRESSO suite

of programs without having to edit any of the generated files. However you
may have to tune configure by specifying appropriate environment variables
and/or command-line options. Usually tricky part is to get external libraries
recognized and used: see Sec.2.3.1 for details and hints.

Environment variables may be set in any of these ways:

export VARIABLE=value # sh, bash, ksh

./configure

setenv VARIABLE value # csh, tcsh

./configure

./configure VARIABLE=value # any shell

Some environment variables that are relevant to configure are:

ARCH: label identifying the machine type (see below)

F90, F77, CC: names of Fortran 95, Fortran 77, and C compilers

MPIF90: name of parallel Fortran 95 compiler (using MPI)

CPP: source file preprocessor (defaults to $CC -E)

LD: linker (defaults to $MPIF90)

CFLAGS, FFLAGS, F90FLAGS, CPPFLAGS, LDFLAGS: compilation flags

LIBDIRS: extra directories to search for libraries (see below)

For example, the following command line:

./configure MPIF90=mpf90 FFLAGS="-O2 -assume byterecl" \

CC=gcc CFLAGS=-O3 LDFLAGS=-static

instructs configure to use mpf90 as Fortran 95 compiler with flags -O2

-assume byterecl, gcc as C compiler with flags -O3, and to link with flag
-static. Note that the value of FFLAGS must be quoted, because it con-
tains spaces. NOTA BENE: do not pass compiler names with the leading
path included. F90=f90xyz is ok, F90=/path/to/f90xyz is not. Do not
use environmental variables with configure unless they are needed! try
configure with no options as a first step.

If your machine type is unknown to configure, you may use the ARCH
variable to suggest an architecture among supported ones. Some large paral-
lel machines using a front-end (e.g. Cray XT) may need to define the correct
ARCH even if they are apparently recognized, because configure cannot
figure out that cross-compilation is needed. Try the one that looks more
similar to your machine type; you’ll probably have to do some additional
tweaking. Currently supported architectures are:
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ia32: Intel 32-bit machines (x86) running Linux

ia64: Intel 64-bit (Itanium) running Linux

x86_64: Intel and AMD 64-bit running Linux - see note below

aix: IBM AIX machines

mips: SGI MIPS machines

alpha: HP-Compaq alpha machines

alinux: HP-Compaq alpha running Linux

sparc: Sun SPARC machines

solaris:PC’s running SUN-Solaris

crayx1: Cray X1 machines

crayxt4: Cray XT4/5 machines

macppc: Apple PowerPC machines running Mac OS X

mac686: Apple Intel machines running Mac OS X

cygwin: MS-Windows PCs with Cygwin

necsx: NEC SX-6 and SX-8 machines

ppc64: Linux PowerPC machines, 64 bits

ppc64-mn:as above, with IBM xlf compiler

Note: x86 64 replaces amd64 since v.4.1. Finally, configure recognizes the
following command-line options:

--disable-parallel: compile serial code, even if parallel compiler available

--host=target : specify target machine for cross-compilation.

target is a string identifying the architecture you want

to compile for; run config.guess on the target machine

--disable-shared: don’t use shared libraries: generate static executables

--enable-shared: use shared libraries

The latter two options actually work only in a few specific cases. If you want
to modify the configure script (advanced users only!), see the Developer
Manual. You will need GNU Autoconf (http://www.gnu.org/software/autoconf/)
installed.

2.3.1 Libraries

Quantum ESPRESSO makes use of the following external libraries:

• BLAS (http://www.netlib.org/blas/) and

• LAPACK (http://www.netlib.org/lapack/) for linear algebra

• FFTW (http://www.fftw.org/) for Fast Fourier Transforms
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A copy of the needed routines is provided with the distribution. However,
when available, optimized vendor-specific libraries can be used instead: this
often yields huge performance gains.

BLAS and LAPACK Quantum ESPRESSO can use the following
architecture- specific replacements for BLAS and LAPACK:

MKL for Intel Linux PCs

ACML for AMD Linux PCs

ESSL for IBM machines

complib.sgimath for SGI Origin

SCSL for SGI Altix

SUNperf for Sun

cxml for HP-Compaq Alphas.

If none of these is available, we suggest that you use the optimized AT-
LAS library (http://math-atlas.sourceforge.net/). Note that ATLAS is not
a complete replacement for LAPACK: it contains all of the BLAS, plus the
LU code, plus the full storage Cholesky code. Follow the instructions in the
ATLAS distributions to produce a full LAPACK replacement.

Sergei Lisenkov reported success and good performances with optimized
BLAS by Kazushige Goto. They can be freely downloaded (but not redis-
tributed): http://www.cs.utexas.edu/users/flame/goto/

FFT Quantum ESPRESSO can use the following vendor-specific FFT
libraries:

IBM ESSL

SGI SCSL

SUN sunperf

NEC ASL

AMD ACML

If none of the above is available, you should use FFTW, choosing before com-
pilation whether to load the built-in copy of FFTW or an external v.3 FFTW
library. configure will first search for vendor-specific FFT libraries; if none
is found, it will search for an external FFTW v.3 library; if none is found,
it will fall back to the internal copy of FFTW. Appropriate precompiling
options will be set in all cases:

__FFTW internal FFTW

__FFTW3 external FFTW v.3
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__SCSL SGI SCSL

__SUNPERF SUN sunperf

__ESSL IBM ESSL

ASL NEC ASL

If you have recent versions of MKL installed, you may try the FFTW interface
provided with MKL. You will have to compile them (they come in source form
with the MKL library) and to modify the make.sys accordingly (MKL must
linked after the FFTW-MKL interface)

If everything else fails, you’ll have to modify the make.sys file manually:
see the section on Manual configuration.

MPI libraries For parallel execution, Quantum ESPRESSO uses the
MPI libraries. In well-configured machine, configure should find the appro-
priate parallel compiler for you, and this should find the appropriate libraries.
Since often this doesn’t happen, especially on PC clusters, see Sec.2.6.6.

Other libraries Quantum ESPRESSO can use the MASS vector math
library from IBM, if available (only on AIX).

The configure script attempts to find optimized libraries, but may fail
if they have been installed in non-standard places. You should examine
the final value of BLAS LIBS, LAPACK LIBS, FFT LIBS, MPI LIBS (if
needed), MASS LIBS (IBM only), either in the output of configure or in
the generated make.sys, to check whether it found all the libraries that you
intend to use.

If some library was not found, you can specify a list of directories to search
in the environment variable LIBDIRS, and rerun configure; directories in
the list must be separated by spaces. For example:

./configure LIBDIRS="/opt/intel/mkl70/lib/32 /usr/lib/math"

If this still fails, you may set some or all of the * LIBS variables manually
and retry. For example:

./configure BLAS_LIBS="-L/usr/lib/math -lf77blas -latlas_sse"

Beware that in this case, configure will blindly accept the specified value,
and won’t do any extra search.

Please note: If you change any settings after a previous (successful or
failed) compilation, you must run make clean before recompiling, unless
you know exactly which routines are affected by the changed settings and
how to force their recompilation.
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2.3.2 Manual configuration

If configure stops before the end, and you don’t find a way to fix it, you have
to write working ”make.sys”, ”include/fft defs.h” and ”include/c defs.h” files.
For the latter two files, follow the explanations in ”include/defs.h.README”.

If configure has run till the end, you should need only to edit make.sys.
A few templates (each for a different machine type) are provided in the in-
stall/ directory: they have names of the form Make.system, where ”system”
is a string identifying the architecture and compiler.

Obsolete: if you have the Intel compiler ifc v.6 or earlier, you will have
to run the script ./ifcmods.sh.

Most likely (and even more so if there isn’t an exact match to your ma-
chine type), you’ll have to tweak make.sys by hand. In particular, you must
specify the full list of libraries that you intend to link to.

NOTA BENE: If you modify the program sources, run the makedeps.sh

script or type make depend to update files make.depend in the various sub-
directories.

2.4 Compilation

There are a few adjustable parameters in Modules/parameters.f90. The
present values will work for most cases. All other variables are dynamically
allocated: you do not need to recompile your code for a different system.

At your option, you may compile the complete Quantum ESPRESSO
suite of programs (with make all), or only some specific programs.

make with no arguments yields a list of valid compilation targets. Here is
a list:

• make pw produces PW/pw.x
pw.x calculates electronic structure, structural optimization, molecular
dynamics, barriers with NEB.

• make ph produces PH/ph.x
ph.x calculates phonon frequencies and displacement patterns, dielec-
tric tensors, effective charges (uses data produced by pw.x).

• make d3 produces D3/d3.x
d3.x calculates anharmonic phonon lifetimes (third-order derivatives of
the energy), using data produced by pw.x and ph.x (Ultrasoft pseu-
dopotentials not supported).

• make gamma produces Gamma/phcg.x
phcg.x is a version of ph.x that calculates phonons at q = 0 using
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conjugate-gradient minimization of the density functional expanded to
second-order. Only the Γ (q = 0) point is used for Brillouin zone
integration. It is faster and takes less memory than ph.x, but does not
support Ultrasoft pseudopotentials.

• make pp produces several codes for data postprocessing, in PP/ (see
list below).

• make tools produces several utility programs in pwtools/ (see list be-
low).

• make pwcond produces PWCOND/pwcond.x
for ballistic conductance calculations.

• make pwall produces all of the above.

• make ld1 produces code atomic/ld1.x
for pseudopotential generation (see specific documentation in atomic doc/).

• make upf produces utilities for pseudopotential conversion in directory
upftools/ (see section 4, “Pseudopotentials”).

• make cp produces the Car-Parrinello code CP in CPV/cp.x and the
postprocessing code CPV/cppp.x.

• make all produces all of the above.

For the setup of the GUI, refer to the PWgui-X.Y.Z /INSTALL file, where
X.Y.Z stands for the version number of the GUI (should be the same as
the general version number). If you are using the CVS sources, see the
GUI/README file instead.

The codes for data postprocessing in PP/ are:

• pp.x extracts the specified data from files produced by pw.x, prepares
data for plotting by writing them into formats that can be read by
several plotting programs.

• bands.x extracts and reorders eigenvalues from files produced by pw.x
for band structure plotting

• projwfc.x calculates projections of wavefunction over atomic orbitals,
performs Lẅdin population analysis and calculates projected density
of states. These can be summed using auxiliary code sumpdos.x.
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• dipole.x calculates the dipole moment for isolated systems (molecules)
and the Makov-Payne correction for molecules in supercells (beware:
meaningful results only if the charge density is completely contained
into the Wigner-Seitz cell)

• plotrho.x produces PostScript 2-d contour plots

• plotband.x reads the output of bands.x, produces band structure PostScript
plots

• average.x calculates planar averages of quantities produced by pp.x
(potentials, charge, magnetization densities,...)

• voronoy.x divides the charge density into Voronoy polyhedra (obsolete,
use at your own risk)

• dos.x calculates electronic Density of States (DOS)

• pw2wan.x: interface with code WanT for calculation of transport prop-
erties via Wannier functions: see
http://www.wannier-transport.org/

• pmw.x generates Poor Man’s Wannier functions, to be used in DFT+U
calculations

• pw2casino.x: interface with CASINO code for Quantum Monte Carlo
calculation (http://www.tcm.phy.cam.ac.uk/˜mdt26/casino.html).

The utility programs in pwtools/ are:

• dynmat.x applies various kinds of Acoustic Sum Rule (ASR), calculates
LO-TO splitting at q = 0 in insulators, IR and Raman cross sections
(if the coefficients have been properly calculated), from the dynamical
matrix produced by ph.x

• q2r.x calculates Interatomic Force Constants (IFC) in real space from
dynamical matrices produced by ph.x on a regular q-grid

• matdyn.x produces phonon frequencies at a generic wave vector using
the IFC file calculated by q2r.x; may also calculate phonon DOS

• fqha.x for quasi-harmonic calculations

• lambda.x calculates the electron-phonon coefficient λ and the function
α2F (ω)
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• dist.x calculates distances and angles between atoms in a cell, taking
into account periodicity

• ev.x fits energy-vs-volume data to an equation of state

• kpoints.x produces lists of k-points

• pwi2xsf.sh, pwo2xsf.sh process respectively input and output files (not
data files!) for pw.x and produce an XSF-formatted file suitable for
plotting with XCrySDen, a powerful crystalline and molecular struc-
ture visualization program (http://www.xcrysden.org/). BEWARE:
the pwi2xsf.sh shell script requires the pwi2xsf.x executables to be lo-
cated somewhere in your $PATH.

• band plot.x: undocumented and possibly obsolete

• bs.awk, mv.awk are scripts that process the output of pw.x (not data
files!). Usage:

awk -f bs.awk < my-pw-file > myfile.bs

awk -f mv.awk < my-pw-file > myfile.mv

The files so produced are suitable for use with xbs, a very simple X-
windows utility to display molecules, available at:
http://www.ccl.net/cca/software/X-WINDOW/xbsa/README.shtml

• path int.sh/path int.x: utility to generate, starting from a path (a set
of images), a new one with a different number of images. The initial
and final points of the new path can differ from those in the original
one. Useful for NEB calculations.

• kvecs FS.x, bands FS.x: utilities for Fermi Surface plotting using XCryS-
Den

Other utilities VdW/ contains the sources for the calculation of the fi-
nite (imaginary) frequency molecular polarizability using the approximated
Thomas-Fermi + von Weizäcker scheme, contributed by H.-V. Nguyen (Sissa
and Hanoi University). Compile with make vdw, executables in VdW/vdw.x,
no documentation yet, but an example in examples/example34.
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2.5 Running examples

As a final check that compilation was successful, you may want to run some or
all of the examples contained within the examples directory of the Quantum
ESPRESSO distribution. Those examples try to exercise all the programs
and features of the Quantum ESPRESSO distribution. A list of examples
and of what each example does is contained in examples/README. For
details, see the README file in each example’s directory. If you find that
any relevant feature isn’t being tested, please contact us (or even better,
write and send us a new example yourself !).

To run the examples, you should follow this procedure:
1. Go to the examples directory and edit the environment variables file,

setting the following variables as needed:

BIN_DIR= directory where executables reside

PSEUDO_DIR= directory where pseudopotential files reside

TMP_DIR= directory to be used as temporary storage area

If you have downloaded the full Quantum ESPRESSO distribution, you
may set BIN DIR=$TOPDIR/bin and PSEUDO DIR=$TOPDIR/pseudo,
where =$TOPDIR is the root of the Quantum ESPRESSO source tree.
In order to be able to run all the examples, the PSEUDO DIR directory
must contain all the needed pseudopotentials. If any of these are miss-
ing, you can download them (and many others) from the Pseudopoten-
tials Page of the Quantum ESPRESSO web site (http://www.quantum-
espresso.org/pseudo.php). TMP DIR must be a directory you have read and
write access to, with enough available space to host the temporary files pro-
duced by the example runs, and possibly offering high I/O performance (i.e.,
don’t use an NFS-mounted directory).

2. If you have compiled the parallel version of Quantum ESPRESSO
(this is the default if parallel libraries are detected), you will usually have
to specify a driver program (such as poe or mpiexec) and the number of
processors: see section ”Running on parallel machines’ for details. In order to
do that, edit again the environment variables file and set the PARA PREFIX
and PARA POSTFIX variables as needed. Parallel executables will be run
by a command like this:

$PARA_PREFIX pw.x $PARA_POSTFIX < file.in > file.out

For example, if the command line is like this (as for an IBM SP):

poe pw.x -procs 4 < file.in > file.out
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you should set PARA PREFIX=”poe”, PARA POSTFIX=”-procs 4”. Fur-
thermore, if your machine does not support interactive use, you must run
the commands specified below through the batch queueing system installed
on that machine. Ask your system administrator for instructions.

3. To run a single example, go to the corresponding directory (for in-
stance, example/example01) and execute:

./run_example

This will create a subdirectory results, containing the input and output files
generated by the calculation. Some examples take only a few seconds to run,
while others may require several minutes depending on your system. To run
all the examples in one go, execute:

./run_all_examples

from the examples directory. On a single-processor machine, this typically
takes a few hours. The make clean script cleans the examples tree, by re-
moving all the results subdirectories. However, if additional subdirectories
have been created, they aren’t deleted.

4. In each example’s directory, the reference subdirectory contains verified
output files, that you can check your results against. They were generated on
a Linux PC using the Intel compiler. On different architectures the precise
numbers could be slightly different, in particular if different FFT dimensions
are automatically selected. For this reason, a plain diff of your results against
the reference data doesn’t work, or at least, it requires human inspection of
the results. Instead, you can run the check example script in the examples
directory:

./check_example example_dir

where example dir is the directory of the example that you want to check
(e.g., ./check example example01). You can specify multiple directories.

Note: check example does only a fair job, and only for a few examples.
For pw.x only, a much better series of automated tests is available in directory
tests/. Edit variables PARA PREFIX, PARA POSTFIX (if needed) in file
”check pw.x.j”; explanations on how to run it are in the header of the file.

2.6 Installation tricks and problems

2.6.1 All architectures

Working fortran-95 and C compilers are needed in order to compile Quan-
tum ESPRESSO. Most so-called “fortran-90” compilers implement the
fortran-95 standard, but older versions may not be fortran-95 compliant.
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If you get “Compiler Internal Error” or similar messages: your compiler
version is buggy. Try to lower the optimization level, or to remove opti-
mization just for the routine that has problems. If it doesn’t work, or if
you experience weird problems, try to install patches for your version of the
compiler (most vendors release at least a few patches for free), or to upgrade
to a more recent version.

If you get error messages at the loading phase that looks like “file XYZ.o:
unknown (unrecognized, invalid, wrong, missing, ... ) file type”, or “file
format not recognized for file XYZ.a”, one of the following things have hap-
pened:

1. you have leftover object files from a compilation with another compiler:
run make clean and recompile.

2. make does not stop at the first compilation error (it may happen in
some software configurations). Remove file XYZ.o and look for the
compilation error.

If many symbols are missing in the loading phase: you did not specify the
location of all needed libraries (LAPACK, BLAS, FFTW, machine-specific
optimized libraries). If you did, but symbols are still missing, see below (for
Linux PC). Remember: Quantum ESPRESSO is self-contained (with the
exception of MPI libraries for parallel compilation). If system libraries are
missing, the problem cannot be in Quantum ESPRESSO.

2.6.2 IBM AIX

On IBM machines with ESSL libraries installed, there is a potential conflict
between a few LAPACK routines that are also part of ESSL, but with a
different calling sequence. The appearence of run-time errors like

ON ENTRY TO ZHPEV PARAMETER NUMBER 1 HAD AN ILLEGAL VALUE

is a signal that you are calling the bad routine. If you have defined -D ESSL

you should load ESSL before LAPACK: see variable LAPACK LIBS in make.sys.

2.6.3 Linux PC

The web site of Axel Kohlmeyer contains a very informative section on com-
piling and running CPMD on Linux. Most of its contents applies to the
Quantum ESPRESSO codes as well:
http://www.theochem.rub.de/˜axel.kohlmeyer/cpmd-linux.html. In partic-
ular, there is a set of ATLAS libraries, containing all of LAPACK and no
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external reference to fortran libraries:
http://www.theochem.rub.de/˜axel.kohlmeyer/cpmd-linux.html#atlas

It is convenient to create semi-statically linked executables (with only
libc/libm/libpthread linked dynamically). If you want to produce a binary
that runs on different machines, compile it on the oldest machine you have
(i.e. the one with the oldest version of the operating system).

If you get errors like

IPO Error: unresolved : __svml_cos2

at the linking stage, your compiler is optimized to use the SSE version of
sine, cosine etc. contained in the SVML library. Append ’-lsvml’ to the list
of libraries in your make.sys file (info by Axel Kohlmeyer, oct.2007).

Linux PCs with Portland Group compiler (pgf90) Quantum ESPRESSO
does not work reliably, or not at all, with many old versions of the Portland
Group compiler (in particular, v.5.2 and 6.0). Version 5.1 used to work, v.6.1
is reported to work (info from Paolo Cazzato). Use the latest version of each
release of the compiler, with patches if available: see the Portland Group
web site, http://www.pgroup.com/faq/install.htm#release info

Linux PCs with Pathscale compiler Version 2.99 of the Pathscale com-
piler works and is recognized by configure, but the preprocessing step:

pathcc -E

causes a mysterious error in compilation of iotk and should be replaced by

/lib/cpp -P --traditional

The MVAPICH parallel environment with Pathscale compilers also works.
(info by Paolo Giannozzi, July 2008)

Linux PCs with gfortran Recent versions of gfortran (e.g. v.4.1 and
later) are supported, but only the basic functionalities have been tested.
More advanced ones may or may not work. In particular: reading files
produced by previous versions of Quantum ESPRESSO may not work,
apparently due to a gfortran bug.
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Linux PCs with Intel compiler (ifort, formerly ifc) If configure

doesn’t find the compiler, or if you get “Error loading shared libraries...”
at run time, you may have forgotten to execute the script that sets up the
correct path and library path. Unless your system manager has done this
for you, you should execute the appropriate script – located in the directory
containing the compiler executable – in your initialization files. Consult the
documentation provided by Intel.

Starting from the latests v 8.1 patchlevels, the recommended way to build
semi-statically linked binaries is to use the -i-static flag; for multi-threaded
libraries the linker flag would be -i-static -openmp (linking libguide is no
longer needed and the compiler will pick the correct one). The warning:
”feupdateenv is not implemented and will always fail”, showing up in recent
versions, can be safely ignored. For previous versions, try -static-libcxa (this
will give an incomplete semi-static link on newer versions).

Each major release of the Intel compiler differs a lot from the previous
one. Do not mix compiled objects from different releases: they may be
incompatible.

In case of trouble, update your version with the most recent patches,
available via Intel Premier support (registration free of charge for Linux):
http://developer.intel.com/software/products/support/#premier.

ifort v.10: on 64-bit AMD CPUs, at least some versions of ifort 10.1
miscompile subroutine write rho xml in Module/xml io base.f90 with -O2
options. Using -O1 instead solves the problem (info by Carlo Cavazzoni,
March 2008).

”The intel compiler version 10.1.008 miscompiles a lot of codes (I have
proof for CP2K and CPMD) and needs to be updated in any case” (info by
Axel Kohlmeter, May 2008).

ifort v.9: The latest (July 2006) 32-bit version of ifort 9.1 works flawlessy.
Earlier versions yielded “Compiler Internal Error”.

At least some versions of ifort 9.0 have a buggy preprocessor that either
prevents compilation of iotk, or produces runtime errors in cft3. Update to a
more patched version, or modify make.sys to explicitly perform preprocessing
using /lib/cpp, as in the following example (courtesy from Sergei Lisenkov):

.f90.o:

$(CPP) $(CPPFLAGS) $< -o $*.F90

$(MPIF90) $(F90FLAGS) -c $*.F90 -o $*.o

CPP = /lib/cpp

CPPFLAGS = -P -C -traditional $(DFLAGS) $(IFLAGS)

On some versions of RedHat Linux, you may get an obscure error: IPO
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link: can not find “(“ ... , due to a bad system configuration. Add option
-no-ipo to LDFLAGS in file make.sys.

ifort v.8: Some releases of ifort 8 yield ”Compiler Internal Error”. Up-
date to a more patched version: 8.0.046 for v. 8.0, 8.1.018 for v. 8.1.

There is a well known problem with ifort 8 and pthreads (that are used
both in Debian Woody and Sarge) that causes ”segmentation fault” errors
(info from Lucas Fernandez Seivane). Version 7 did not have this problem.

ifc v.7: Some releases of ifc 7.0 and 7.1 yield ”Compiler Internal Error”.
Update to the last version (should be 7.1.41).

Warnings ”size of symbol ... changed ...” are produced by ifc 7.1 a the
loading stage. These seem to be harmless, but they may cause the loader
to stop, depending on your system configuration. If this happen and no
executable is produced, add the following to LDFLAGS: -Xlinker –noinhibit-
exec.

Linux distributions using glibc 2.3 or later (such as e.g. RedHat 9) may be
incompatible with ifc 7.0 and 7.1. The incompatibility shows up in the form
of messages ”undefined reference to ’errno’ ” at linking stage. A workaround
is available: see http://newweb.ices.utexas.edu/misc/ctype.c.

Linux PCs with MKL libraries On Intel CPUs it is very convenient
to use Intel MKL libraries. They can be also used for AMD CPU, selecting
the appropriate machine-optimized libraries, and also together with non-Intel
compilers. If configure doesn’t find MKL, try configure --enable-shared.
Note that ifort 8 fails to load with MKL v. 5.2 or earlier versions, because
some symbols that are referenced by MKL are missing There is a fix for this
(info from Konstantin Kudin): add libF90.a from ifc 7.1 at the linking stage,
as the last library. Note that some combinations of not-so-recent versions
of MKL and ifc may yield a lot of ”undefined references” when statically
loaded: use configure --enable-shared, or remove the -static option in
make.sys. Note that pwcond.x works only with recent versions (v.7 or later)
of MKL.

MKL contains optimized FFT routines and a FFTW interface, to be
separately compiled. For 64-bit Intel Core2 processors, they are slightly
faster than FFTW (MKL v.10, FFTW v.3 fortran interface, reported by P.
Giannozzi, November 2008).

Important: for parallel (MPI) execution on multiprocessor (SMP) ma-
chines, set the environmental variable OMP NUM THREADS to 1 unless
you know what you are doing. See the section on parallelism for more info
on this and on the difference between MPI and OpenMP parallelization.
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Fun with precompiled libraries Since there is no standard fortran com-
piler for Linux, different compilers have different ideas about the right way to
call external libraries. As a consequence you may have a mismatch between
what your compiler calls (”symbols”) and the actual name of the required
library call. Use the nm command to determine the name of a library call,
as in the following examples:

nm /usr/local/lib/libblas.a | grep -i ’T daxpy’

nm /usr/local/lib/liblapack.a | grep -i ’T zhegv’

where typical location and name of libraries is assumed. Most precompiled
libraries have lowercase names with one or two underscores ( ) appended.
configure should select the appropriate preprocessing options in make.sys,
but in case of trouble, be aware that:

• the Absoft compiler is case-sensitive (like C and unlike other Fortran
compilers) and does not add an underscore to symbol names (note that
if your libraries contain uppercase or mixed case names, you are out
of luck: You must either recompile your own libraries, or change the
#define’s in include/f defs.h);

• both Portland compiler (pgf90) and Intel compiler (ifort/ifc) are case
insensitive and add an underscore to symbol names.

Another potential source of trouble is the incompatibility between I/O li-
braries used by different fortran compilers. This manifests itself under the
form of missing routines with strange names (like s wsfe, do fio...) at linking
stage. Possible workarounds include

• loading the missing routines; it is often sufficient to load -lg2c (some-
times -lm may also be needed); or

• (better) to replace the BLAS routine xerbla (it should be the only one
containing I/O calls) with a recompiled object.

If you choose the latter workaround, locate the library containing this routine
using nm, for instance:

nm /path/to/your/libs/libf77blas.a | grep ’T xerbla’

and replace the object xerbla.o in the library with the one you will compile.
In flib/:

make xerbla.o

ar rv /path/to/your/libs/libf77blas.a xerbla.o

If nothing works, you may need to recompile the libraries with your fortran
compiler, or to use the internal (slow) copy.
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2.6.4 AMD 32-bit CPUs

AMD Athlon CPUs can be basically treated like Intel Pentium CPUs. You
can use the Intel compiler and MKL with Pentium-3 optimization.

Konstantin Kudin reports that the best results in terms of performances
are obtained with ATLAS optimized BLAS/LAPACK libraries, using AMD
Core Math Library (ACML) for the missing libraries. ACML can be freely
downloaded from AMD web site. Beware: some versions of ACML – i.e.
the GCC version with SSE2 – crash PWscf. The ”nosse2” version appears
to be stable. Load first ATLAS, then ACML, then -lg2c, as in the follow-
ing example (replace what follows -L with something appropriate to your
configuration):

-L/location/of/fftw/lib/ -lfftw \

-L/location/of/atlas/lib -lf77blas -llapack -lcblas -latlas \

-L/location/of/gnu32_nosse2/lib -lacml -lg2c

2.6.5 64-bit CPUs

64-bit CPUs like the AMD Opteron and the Intel Itanium are supported
and should work both in 32-bit emulation and in 64-bit mode. Both the
Portland and the Intel compiler (v8.1 EM64T-edition, available via Intel
Premier support) should work. 64-bit executables can address a much larger
memory space, but apparently they are not especially faster than 32-bit
executables. The Intel compiler has been reported to be more reliable and
to produce faster executables wrt the Portland compiler. You may also try
g95 or gfortran.

Beware: the default integer type for 64-bit machine is typically 32-bit
long. You should be able to use 64-bit integers as well, but it will not give
you any advantage and you may run into trouble.

2.6.6 Linux PC clusters with MPI

PC clusters running some version of MPI are a very popular computational
platform nowadays. Quantum ESPRESSO is known to work with at least
two of the major MPI implementations (MPICH, LAM-MPI), plus with the
newer MPICH2 and OpenMPI implementation. The number of possible con-
figurations, in terms of type and version of the MPI libraries, kernels, system
libraries, compilers, is very large. Quantum ESPRESSO compiles and
works on all non-buggy, properly configured hardware and software combi-
nations. You may have to recompile MPI libraries: not all MPI installations
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contain support for the fortran-90 compiler of your choice (or for any fortran-
90 compiler at all!). See Axel Kohlmeyer’s web site for precompiled versions
of the MPI libraries. Very useful step-by-step instructions can be found in
the following post by Javier Antonio Montoya:
http://www.democritos.it/pipermail/pw forum/2008April/008818.htm .

If Quantum ESPRESSO does not work for some reason on a PC clus-
ter, try first if it works in serial execution. A frequent problem with parallel
execution is that Quantum ESPRESSO does not read from standard in-
put, due to the configuration of MPI libraries: see section ”Running on
parallel machines” and Axel Kohlmeyer’s web site for more info.

If you are dissatisfied with the performances in parallel execution, read
the section on ”Parallelization issues”. See also the following post from Axel
Kohlmeyer:
http://www.democritos.it/pipermail/pw forum/2008-April/008796.html

2.6.7 Intel Mac OS X

Newer Mac OS-X machines with Intel CPUs are supported by configure,
with gcc4+g95, gfortran, and the Intel compiler ifort with MKL libraries.

Intel Mac OS X with ifort ”Uninstall darwin ports, fink and developer
tools. The presence of all of those at the same time generates many spooky
events in the compilation procedure. I installed just the developer tools from
apple, the intel fortran compiler and everything went on great” (Info by
Riccardo Sabatini, Nov. 2007)

Intel Mac OS X 10.4 and 10.5 with g95 and gfortran The stable and
unstable versions of g95 are known to work. Recent gfortran versions also
work, but they may require an updated version of Developer Tools (XCode
2.4.1 or 2.5), that can be downloaded from Apple. Some tests fails with
mysterious errors, that disappear if fortran BLAS are linked instead of system
Atlas libraries. Use:

BLAS_LIBS = ../flib/blas.a -latlas

(Info by Paolo Giannozzi, jan.2008)
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3 Parallelism

3.1 Understanding Parallelism in Quantum ESPRESSO

Two different parallelization paradigms are currently implemented in Quan-
tum ESPRESSO:

1. Message-Passing (MPI). A copy of the executable runs on each CPU;
each copy lives in a different world, with its own private set of data, and
communicates with other executables only via calls to MPI libraries.
MPI parallelization requires compilation for parallel execution, linking
with MPI libraries, execution using a launcher program (poe, mpirun,
mpiexec, or no launcher at all, depending upon the specific machine).
The number of CPUs used is specified at run-time either as an option
to the launcher or by the batch queue system.

2. OpenMP. A single executable spawn subprocesses (threads) that per-
form in parallel specific tasks. OpenMP can be implemented via com-
piler directives (explicit OpenMP) or via multithreading libraries (li-
brary OpenMP). Explicit OpenMP require compilation for OpenMP
execution; library OpenMP requires only linking to a multithreading
version of mathematical libraries, e.g.: ESSLSMP, ACML MP, MKL
(the latter is natively multithreading). The number of threads is spec-
ified at run-time in the environment variable OMP NUM THREADS.

MPI is the well-established, general-purpose parallelization. In Quan-
tum ESPRESSO several parallelization levels, specified at run-time via
command-line options to the executable, are implemented with MPI. This is
your first choice for execution a parallel machine.

Library OpenMP is a low-effort parallelization suitable for multicore
CPUs. Its effectiveness relies upon the quality of the multithreading libraries
and the availability of multithreading FFTs. If you are using MKL, you may
want to select FFTW3 and to link with the MKL interface to FFTW3. You
will get a decent speedup (∼ 25%) on two cores.

Explicit OpenMP is a very recent addition, still at an experimental stage,
devised to increase scalability on large multicore parallel machines. Explicit
OpenMP is devised to be run together with MPI and also together with
multithreaded libraries. BEWARE: you have to be VERY careful to prevent
conflicts between the various kinds of parallelization. If you don’t know how
to run MPI processes and OpenMP threads in a controlled manner, forget
about mixed OpenMP-MPI parallelization.
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3.2 Running on parallel machines

Parallel execution is strongly system- and installation-dependent. Typically
one has to specify:

1. a launcher program, such as poe, mpirun, mpiexec, with or without
appropriate options

2. the number of processors, typically as an option to the launcher pro-
gram, but in some cases to be specified after the program to be exe-
cuted;

3. the program to be executed, with the proper path if needed: for in-
stance, pw.x, or ./pw.x, or $HOME/bin/pw.x, or whatever applies;

4. other Quantum ESPRESSO-specific parallelization options, to be
read and interpreted by the running code:

• the number of “images” used by NEB calculations;

• the number of “pools” into which processors are to be grouped
(pw.x only);

• the number of “task groups” into which processors are to be
grouped;

• the number of processors performing iterative diagonalization (for
pw.x) or orthonormalization (for cp.x).

Items 1) and 2) are machine- and installation-dependent, and may be differ-
ent for interactive and batch execution. Note that large parallel machines
are often configured so as to disallow interactive execution: if in doubt, ask
your system administrator. Item 3) also depend on your specific configura-
tion (shell, execution path, etc). Item 4) is optional but may be important:
see the following section for the meaning of the various options.

For illustration, here is how to run pw.x on 16 processors partitioned into
8 pools (2 processors each), for several typical cases.

IBM SP machines, batch:

pw.x -npool 8 < input

This should also work interactively, with environment variables NPROC set
to 16, MP HOSTFILE set to the file containing a list of processors.

IBM SP machines, interactive, using poe:

poe pw.x -procs 16 -npool 8 < input
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PC clusters using mpiexec:

mpiexec -n 16 pw.x -npool 8 < input

SGI Altix and PC clusters using mpirun:

mpirun -np 16 pw.x -npool 8 < input

IBM BlueGene using mpirun:

mpirun -np 16 -exe /path/to/executable/pw.x -args "-npool 8" \

-in /path/to/input -cwd /path/to/work/directory

If you want to run in parallel the examples distributed with Quantum
ESPRESSO (see section ”Run examples”), set PARA PREFIX to every-
thing before the executable (pw.x in the above examples), PARA POSTFIX
to what follows it until the first redirection sign (<,>, |, ..), if any. For execu-
tion using OpenMP, you can use PARA PREFIX=”env OMP NUM THREADS=n”

3.3 Parallelization levels in Quantum ESPRESSO

Data structures are distributed across processors. Processors are organized
in a hierarchy of groups, which are identified by different MPI communicators
level. The groups hierarchy is as follow:

world _ images _ pools _ task groups

\_ ortho groups

world: is the group of all processors (MPI COMM WORLD).
images: Processors can then be divided into different ”images”, corre-

sponding to a point in configuration space (i.e. to a different set of atomic
positions). Such partitioning is used when performing Nudged Elastic band
(NEB), Meta-dynamics and Laio-Parrinello simulations.

pools: When k-point sampling is used, each image group can be subparti-
tioned into ”pools”, and k-points can distributed to pools. Within each pool,
reciprocal space basis set (plane waves) and real-space grids are distributed
across processors. This is usually referred to as ”plane-wave parallelization”.
All linear-algebra operations on array of plane waves / real-space grids are
automatically and effectively parallelized. 3D FFT is used to transform elec-
tronic wave functions from reciprocal to real space and vice versa. The 3D
FFT is parallelized by distributing planes of the 3D grid in real space to pro-
cessors (in reciprocal space, it is columns of G-vectors that are distributed
to processors).
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task groups: In order to allow good parallelization of the 3D FFT when
the number of processors exceeds the number of FFT planes, data can be
redistributed to ”task groups” so that each group can process several wave-
functions at the same time.

ortho group: A further level of parallelization, independent on plane-
wave (pool) parallelization, is the parallelization of subspace diagonalization
(pw.x) or iterative orthonormalization (cp.x). Both operations required the
diagonalization of arrays whose dimension is the number of Kohn-Sham states
(or a small multiple). All such arrays are distributed block-like across the
”ortho group”, a subgroup of the pool of processors, organized in a square
2D grid. The diagonalization is then performed in parallel using standard
linear algebra operations. (This diagonalization is used by, but should not
be confused with, the iterative Davidson algorithm).

Communications: Images and pools are loosely coupled and proces-
sors communicate between different images and pools only once in a while,
whereas processors within each pool are tightly coupled and communications
are significant. This means that Gigabit ethernet (typical for cheap PC clus-
ters) is ok up to 4-8 processors per pool, but fast communication hardware
(e.g. Mirynet or comparable) is absolutely needed beyond 8 processors per
pool.

Choosing parameters: To control the number of images, pools and
task groups, command line switch: -nimage -npools -ntg can be used. The
dimension of the ortho group is set to the largest value compatible with the
number of processors and with the number of electronic states. The user
can choose a smaller value using the command line switch -ndiag (pw.x) or
-northo (cp.x) . As an example consider the following command line:

mpirun -np 4096 ./pw.x -nimage 8 -npool 2 -ntg 8 -ndiag 144 -input my.input

This execute the PWscf code on 4096 processors, to simulate a system with
8 images, each of which is distributed across 512 processors. K-points are
distributed across 2 pools of 256 processors each, 3D FFT is performed using
8 task groups (64 processors each, so the 3D real-space grid is cut into 64
slices), and the diagonalization of the subspace Hamiltonian is distributed to
a square grid of 144 processors (12x12).

Default values are: -nimage 1 -npool 1 -ntg 1 ; ndiag is chosen by the
code as the fastest n2 (n integer) that fits into the size of each pool.

Massively parallel calculations For very large jobs (i.e. O(1000) atoms
or so) or for very long jobs to be run on massively parallel machines (e.g. IBM
BlueGene) it is crucial to use in an effective way both the ”task group” and
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the ”ortho group” parallelization. Without a judicious choice of parameters,
large jobs will find a stumbling block in either memory or CPU requirements.
In particular, the ”ortho group” parallelization is used in the diagonaliza-
tion of matrices in the subspace of Kohn-Sham states (whose dimension is
as a strict minumum equal to the number of occupied states). These are
stored as block-distributed matrixes (distributed across processors) and di-
agonalized using custom-taylored diagonalization algorithms that work on
block-distributed matrixes.

Since v.4.1, Scalapack can be used to diagonalize block distributed ma-
trixes, yielding better speed-up than the default algorithms for large (> 1000)
matrices, when using a large number of processors (> 512). If you want to
test scalapack you have to compile adding -D SCALAPACK to DFLAGS
in make.sys and you have to modify the LAPACK LIBS variable as in the
following example:

LAPACK_LIBS = -lscalapack -lblacs -lblacsF77init -lblacs -llapack

The repeated -lblacs is not an error, it is needed! after Scalapack, Blacs,
BlacsInit, Blacs again (with their paths if needed), then Lapack or a suitable
replacement.

A further possibility to expand scalability, especially on machines like
IBM BlueGene, is to use mixed MPI-OpenMP. The idea is to have one
(or more) MPI process(es) per multicore node, with OpenMP paralleliza-
tion inside a same node. This option is activated by preprocessing flag -
D OPENMP, by the following compiler options:

ifort: -openmp
xlf: -qsmp=omp
PGI: -mp
ftn: -mp=nonuma

and is implemented and tested for the following combinations of FFTs and
libraries:

internal FFTW copy: -D FFTW

ESSL: -D ESSL or -D LINUX ESSL, link with -lesslsmp

ACML: -D ACML, link with -lacml mp.

Currently, ESSL (when available) are faster than internal FFTW, which in
turn are faster than ACML.
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3.3.1 Understanding parallel I/O

In parallel exeution, each processor has its own slice of wavefunctions, to be
written to temporary files during the calculation. The way wavefunctions
are written by pw.x is governed by variable wf collect, in namelist control. If
wf collect=.true., the final wavefunctions are collected into a single directory,
written by a single processor, whose format is independent on the number of
processors. If wf collect=.false. (default) each processor writes its own slice
of the final wavefunctions to disk in the internal format used by PWscf.

The former case requires more disk I/O and disk space, but produces
portable data files; the latter case requires less I/O and disk space, but the
data so produced can be read only by a job running on the same number of
processors and pools, and if all files are on a file system that is visible to all
processors (i.e., you cannot use local scratch directories: there is presently
no way to ensure that the distribution of processes on processors will follow
the same pattern for different jobs).

cp.x instead always collects the final wavefunctions into a single directory.
Files written by pw.x can be read by cp.x only if wf collect=.true. (and if
produced for k=0 case).

With the new file format (v.3.1 and later) all data (except wavefunctions
in pw.x if wf collect=.false.) is written to and read from a single directory
outdir/prefix.save. A copy of pseudopotential files is also written there. If
some processor cannot access outdir/prefix.save, it reads the pseudopoten-
tial files from the pseudopotential directory specified in input data. Unpre-
dictable results may follow if those files are not the same as those in the data
directory!

Avoid I/O to network-mounted disks (via NFS) as much as you can!
Ideally the scratch directory (ESPRESSO TMPDIR) should be a modern
Parallel File System. If you do not have any, you can use local scratch disks
(i.e. each node is physically connected to a disk and writes to it) but you may
run into trouble anyway if you need to access your files that are scattered in
an unpredictable way across disks residing on different nodes.

You can use option ”disk io=’minimal’”, or even ’none’, if you run into
trouble (or angry system managers) with eccessive I/O with pw.x. The code
will store wavefunctions into RAM during the calculation. Note however that
this will increase your memory usage and may limit or prevent restarting from
interrupted runs.

Cray XT3 On the cray xt3 there is a special hack to keep files in memory
instead of writing them without changes to the code. You have to do a:
module load iobuf before compiling and then add liobuf at link time. If
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you run a job you set the environment variable IOBUF PARAMS to proper
numbers and you can gain a lot. Here is one example:

env IOBUF_PARAMS=’*.wfc*:noflush:count=1:size=15M:verbose,\

*.dat:count=2:size=50M:lazyflush:lazyclose:verbose,\

*.UPF*.xml:count=8:size=8M:verbose’ pbsyod =\

\~{}/pwscf/pwscfcvs/bin/pw.x npool 4 in si64pw2x2x2.inp > & \

si64pw2x2x232moreiobuf.out &

This will ignore all flushes on the *wfc* (scratch files) using a single i/o buffer
large enough to contain the whole file (∼ 12 Mb here). this way they are
actually never(!) written to disk. The *.dat files are part of the restart, so
needed, but you can be ’lazy’ since they are writeonly. .xml files have a lot of
accesses (due to iotk), but with a few rather small buffers, this can be handled
as well. You have to pay attention not to make the buffers too large, if the
code needs a lot of memory, too and in this example there is a lot of room
for improvement. After you have tuned those parameters, you can remove
the ’verboses’ and enjoy the fast execution. Apart from the i/o issues the
cray xt3 is a really nice and fast machine. (Info by Axel Kohlmeyer, maybe
obsolete)

3.4 Tricks and problems

Trouble with input files Some implementations of the MPI library have
problems with input redirection in parallel. This typically shows up under
the form of mysterious errors when reading data. If this happens, use the
option -in (or -inp or -input), followed by the input file name. Example:

pw.x -in inputfile npool 4 > outputfile

Of course the input file must be accessible by the processor that must read
it (only one processor reads the input file and subsequently broadcasts its
contents to all other processors).

Apparently the LSF implementation of MPI libraries manages to ignore or
to confuse even the -in/inp/input mechanism that is present in all Quantum
ESPRESSO codes. In this case, use the -i option of mpirun.lsf to provide
an input file.

Trouble with MKL and MPI parallelization If you notice very bad
parallel performances with MPI and MKL libraries, it is very likely that
the OpenMP parallelization perfomed by the latter is colliding with MPI.
Recent versions of MKL enable autoparallelization by default on multicore
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machines. You must set the environmental variable OMP NUM THREADS
to 1 to disable it. Note that if for some reason the correct setting of vari-
able OMP NUM THREADS does not propagate to all processors, you may
equally run into trouble. Lorenzo Paulatto (Nov. 2008) suggests to use the
”-x” option to ”mpirun” to propagate OMP NUM THREADS to all proces-
sors. Axel Kohlmeyer suggests the following (April 2008): ”(I’ve) found that
Intel is now turning on multithreading without any warning and that is for
example why their FFT seems faster than FFTW. For serial and OpenMP
based runs this makes no difference (in fact the multi-threaded FFT helps),
but if you run MPI locally, you actually lose performance. Also if you use
the ’numactl’ tool on linux to bind a job to a specific cpu core, MKL will
still try to use all available cores (and slow down badly). The cleanest way
of avoiding this mess is to either link with

-lmkl_intel_lp64 -lmkl_sequential -lmkl_core (on 64-bit: x86_64, ia64)

-lmkl_intel -lmkl_sequential -lmkl_core (on 32-bit, i.e. ia32 )

or edit the libmkl ’platform’.a file (I’m using now a file libmkl10.a with:

GROUP (libmkl_intel_lp64.a libmkl_sequential.a libmkl_core.a)

It works like a charm”.

Trouble with compilers and MPI libraries Many users of Quan-
tum ESPRESSO, in particular those working on PC clusters, have to rely
on themselves (or on less-than-adequate system managers) for the correct
configuration of software for parallel execution. Mysterious and irrepro-
ducible crashes in parallel execution are sometimes due to bugs in Quantum
ESPRESSO, but more often than not are a consequence of buggy compilers
or of buggy or miscompiled MPI libraries. Very useful step-by-step instruc-
tions to compile and install MPI libraries can be found in the following post
by Javier Antonio Montoya:
http://www.democritos.it/pipermail/pw forum/2008-April/008818.htm .

On a Xeon quadriprocessor cluster, erratic crashes in parallel execution
have been reported, apparently correlated with ifort 10.1 (info by Nathalie
Vast and Jelena Sjakste, May 2008).

4 Using PWscf

Input files for the PWscf codes may be either written by hand (the good old
way), or produced via the ”PWgui” graphical interface by Anton Kokalj, in-
cluded in the Quantum ESPRESSO distribution. See PWgui-x.y.z/INSTALL
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(where x.y.z is the version number) for more info on PWgui, or GUI/README
if you are using CVS sources.

You may take the examples distributed with Quantum ESPRESSO as
templates for writing your own input files: see section 2.3, ”Run examples”.
In the following, whenever we mention ”Example N”, we refer to those. Input
files are those in the results directories, with names ending in .in (they will
appear after you have run the examples).

Note about exchange-correlation: the type of exchange-correlation used
in the calculation is read from PP files. All PP’s must have been generated
using the same exchange-correlation.

4.1 Electronic and ionic structure calculations

Electronic and ionic structure calculations are performed by program pw.x.

Input data The input data is organized as several namelists, followed by
other fields introduced by keywords.

The namelists are

&CONTROL: general variables controlling the run

&SYSTEM: structural information on the system under investigation

&ELECTRONS: electronic variables: self-consistency, smearing

&IONS (optional): ionic variables: relaxation, dynamics

&CELL (optional): variable-cell dynamics

&EE (optional): for density counter charge electrostatic corrections

Optional namelist may be omitted if the calculation to be performed does not
require them. This depends on the value of variable calculation in namelist
&CONTROL. Most variables in namelists have default values. Only the
following variables in &SYSTEM must always be specified:

ibrav (integer): bravais-lattice index

celldm (real, dimension 6): crystallographic constants

nat (integer): number of atoms in the unit cell

ntyp (integer): number of types of atoms in the unit cell

ecutwfc (real): kinetic energy cutoff (Ry) for wavefunctions.

For metallic systems, you have to specify how metallicity is treated by set-
ting variable occupations. If you choose occupations=’smearing’, you have to
specify the smearing width degauss and optionally the smearing type smear-
ing. If you choose occupations=’tetrahedra’, you need to specify a suit-
able uniform k-point grid (card K POINTS with option automatic). Spin-
polarized systems must be treated as metallic system, except the special
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case of a single k-point, for which occupation numbers can be fixed (occupa-
tions=’from input’ and card OCCUPATIONS).

Explanations for the meaning of variables ibrav and celldm are in file
INPUT PW. Please read them carefully. There is a large number of other
variables, having default values, which may or may not fit your needs.

After the namelists, you have several fields introduced by keywords with
self-explanatory names:

ATOMIC_SPECIES

ATOMIC_POSITIONS

K_POINTS

CELL_PARAMETERS (optional)

OCCUPATIONS (optional)

CLIMBING_IMAGES (optional)

The keywords may be followed on the same line by an option. Unknown fields
(including some that are specific to CP package) are ignored by PWscf. See
file Doc/INPUT PW for a detailed explanation of the meaning and format
of the various fields.

Note about k points: The k-point grid can be either automatically gener-
ated or manually provided as a list of k-points and a weight in the Irreducible
Brillouin Zone only of the Bravais lattice of the crystal. The code will gener-
ate (unless instructed not to do so: see variable nosym) all required k-point
and weights if the symmetry of the system is lower than the symmetry of the
Bravais lattice. The automatic generation of k-points follows the convention
of Monkhorst and Pack.

4.1.1 Typical cases

We may distinguish the following typical cases for pw.x:

Single-point (fixed-ion) SCF calculation Set calculation=’scf’. Namelists
&IONS and &CELL need not to be present (this is the default).
See Example 01.

Band structure calculation First perform a SCF calculation as above;
then do a non-SCF calculation by specifying calculation=’bands’ or calcula-
tion=’nscf’, with the desired k-point grid and number nbnd of bands. If you
are interested in calculating only the Kohn-Sham states for the given set of
k-points, use calculation=’bands’. If you are interested in further processing
of the results of non-SCF calculations (for instance, in DOS calculations) use
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calculations=’nscf’. Specify nosym=.true. to avoid generation of additional
k-points in low symmetry cases. Variables prefix and outdir, which deter-
mine the names of input or output files, should be the same in the two runs.
See Example 01.

Important: until v.4.0, atomic positions for a non scf calculations were
read from input, while the scf potential was read from the data file of the scf
calculation. Since v.4.1, both atomic positions and the scf potential are read
from the data file so that consistency is guaranteed.

Structural optimization Specify calculation=’relax’ and add namelist
&IONS.

All options for a single SCF calculation apply, plus a few others. You may
follow a structural optimization with a non-SCF band-structure calculation
(since v.4.1, you do not need any longer to update the atomic positions in
the input file for non scf calculation).
See Example 03.

Molecular Dynamics Specify calculation=’md’ and time step dt.
Use variable ion dynamics in namelist &IONS for a fine-grained control of

the kind of dynamics. Other options for setting the initial temperature and
for thermalization using velocity rescaling are available. Remember: this is
MD on the electronic ground state, not Car-Parrinello MD.
See Example 04.

Polarization via Berry Phase See Example 10, its README, and the
documentation in the header of PW/bp c phase.f90.

Nudged Elastic Band calculation Specify calculation=’neb’ and add
namelist &IONS.

All options for a single SCF calculation apply, plus a few others. In the
namelist &IONS the number of images used to discretize the elastic band
must be specified. All other variables have a default value. Coordinates of
the initial and final image of the elastic band have to be specified in the
ATOMIC POSITIONS card. A detailed description of all input variables is
contained in the file Doc/INPUT PW. See also Example 17.

4.1.2 Data files

The output data files are written in the directory specified by variable outdir,
with names specified by variable prefix (a string that is prepended to all file
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names, whose default value is: prefix=’pwscf’). The ”iotk” toolkit is used to
write the file in a XML format, whose definition can be found in the Developer
Manual. In order to use the data directory on a different machine, you need
to convert the binary files to formatted and back, using the ”bin/iotk” script.

The execution stops if you create a file ”prefix.EXIT” in the working
directory. IMPORTANT NOTE: this is the directory where the program
is executed, NOT the directory ”outdir” defined in input, where files are
written. Note that with some versions of MPI, the ”working directory” is
the directory where the pw.x executable is! The advantage of this procedure
is that all files are properly closed, whereas just killing the process may leave
data and output files in unusable state.

4.2 Phonon calculations

Phonon calculation is presently a two-step process: First, you have to find the
ground-state atomic and electronic configuration; Second, you can calculate
phonons using Density-Functional Perturbation Theory. Further processing
to calculate Interatomic Force Constants, to add macroscopic electric field
and impose Acoustic Sum Rules at q=0 may be needed.

Since version 4 it is possible to safely stop execution of the phonon code
using the same mechanism of the pw.x code, i.e. by creating a file pre-
fix.EXIT in the working directory. Execution can be resumed by setting
’recover=.true.’ in the subsequent input data.

Single-q calculation The phonon code ph.x calculates normal modes at
a given q-vector, starting from data files produced by pw.x with a simple
SCF calculation. NOTE: the alternative procedure in which a band-structure
calculation with calculation=’phonon’ was performed as an intermediate step
is no longer implemented since version 4.1. It is also no longer needed to
specify lnscf=.true. for q 6= 0.

The output data file appear in the directory specified by variables outdir,
with names specified by variable prefix. After the output file(s) has been
produced (do not remove any of the files, unless you know which are used
and which are not), you can run ph.x.

The first input line of ph.x is a job identifier. At the second line the
namelist &INPUTPH starts. The meaning of the variables in the namelist
(most of them having a default value) is described in file INPUT PH. Vari-
ables outdir and prefix must be the same as in the input data of pw.x.
Presently you must also specify amass (real, dimension ntyp): the atomic
mass of each atomic type.
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After the namelist you must specify the q-vector of the phonon mode.
This must be the same q-vector given in the input of pw.x.

Notice that the dynamical matrix calculated by ph.x at q = 0 does not
contain the non-analytic term occuring in polar materials, i.e. there is no
LO-TO splitting in insulators. Moreover no Acoustic Sum Rule (ASR) is
applied. In order to have the complete dynamical matrix at q = 0 including
the non-analytic terms, you need to calculate effective charges by specifying
option epsil=.true. to ph.x.

Use program dynmat.x to calculate the correct LO-TO splitting, IR cross
sections, and to impose various forms of ASR. If ph.x was instructed to cal-
culate Raman coefficients, dynmat.x will also calculate Raman cross sections
for a typical experimental setup.

A sample phonon calculation is performed in Example 02.

Calculation of interatomic force constants in real space First, dy-
namical matrices D(q) are calculated and saved for a suitable uniform grid
of q-vectors (only those in the Irreducible Brillouin Zone of the crystal are
needed). Although this can be done one q-vector at the time, a simpler pro-
cedure is to specify variable ldisp=.true. and to set variables nq1,nq2,nq3
to some suitable Monkhorst-Pack grid, that will be automatically generated,
centered at q = 0. Do not forget to specify epsil=.true. in the input data of
ph.x if you want the correct TO-LO splitting in polar materials.

Second, code q2r.x reads the D(q) dynamical matrices produced in the
preceding step and Fourier-transform them, writing a file of Interatomic Force
Constants in real space, up to a distance that depends on the size of the grid
of q-vectors. Program matdyn.x may be used to produce phonon modes and
frequencies at any q using the Interatomic Force Constants file as input. See
Example 06.

Calculation of electron-phonon interaction coefficients The calcu-
lation of electron-phonon coefficients in metals is made difficult by the slow
convergence of the sum at the Fermi energy. It is convenient to calculate
phonons, for each q-vector of a suitable grid, using a smaller k-point grid,
saving the dynamical matrix and the self-consistent first-order variation of
the potential (variable fildvscf). Then a non-SCF calculation with a larger
k-point grid is performed. Finally the electron-phonon calculation is per-
formed by specifying elph=.true., trans=.false., and the input files fildvscf,
fildyn. The electron-phonon coefficients are calculated using several values of
gaussian broadening (see PH/elphon.f90) because this quickly shows whether
results are converged or not with respect to the k-point grid and Gaussian
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broadening. See Example 07.
All of the above must be repeated for all desired q-vectors and the final

result is summed over all q-vectors, using pwtools/lambda.x. The input data
for the latter is described in the header of pwtools/lambda.f90.

4.3 Post-processing

There are a number of auxiliary codes performing postprocessing tasks such
as plotting, averaging, and so on, on the various quantities calculated by
pw.x. Such quantities are saved by pw.x into the output data file(s). Post-
processing codes are in the PP/ directory.

Plotting selected quantities The main postprocessing code pp.x reads
data file(s), extracts or calculates the selected quantity, writes it into a format
that is suitable for plotting.

Quantities that can be read or calculated are:

charge density

spin polarization

various potentials

local density of states at $E_F$

local density of electronic entropy

STM images

selected squared wavefunction

ELF (electron localization function)

planar averages

integrated local density of states

Various types of plotting (along a line, on a plane, three-dimensional, polar)
and output formats (including the popular cube format) can be specified.
The output files can be directly read by the free plotting system Gnuplot
(1D or 2D plots), or by code plotrho.x that comes with PWscf (2D plots),
or by advanced plotting software XCrySDen and gOpenMol (3D plots).

See file INPUT PP.* for a detailed description of the input for code pp.x.
See example05/ in the examples/ directory for a charge density plot.

Band structure, Fermi surface The code bands.x reads data file(s),
extracts eigenvalues, regroups them into bands (the algorithm used to order
bands and to resolve crossings may not work in all circumstances, though).
The output is written to a file in a simple format that can be directly read
by plotting program plotband.x. Unpredictable plots may results if k-points
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are not in sequence along lines. See example05/ in the examples/ directory
for a simple band plot.

The code bands.x performs as well a symmetry analysis of the band struc-
ture: see example01/.

The calculation of Fermi surface can be performed using kvecs FS.x and
bands FS.x. The resulting file in .xsf format can be read and plotted using
xcrysden. See example08/ for an example of Fermi surface visualization (Ni,
including the spin-polarized case).

Projection over atomic states, DOS The code projwfc.x calculates pro-
jections of wavefunctions over atomic orbitals. The atomic wavefunctions are
those contained in the pseudopotential file(s). The Löwdin population anal-
ysis (similar to Mulliken analysis) is presently implemented. The projected
DOS (or PDOS: the DOS projected onto atomic orbitals) can also be cal-
culated and written to file(s). More details on the input data are found in
file INPUT PROJWFC.*. The auxiliary code sumpdos.x (courtesy of An-
drea Ferretti) can be used to sum selected PDOS, by specifiying the names
of files containing the desired PDOS. Type sumpdos.x -h or look into the
source code for more details. The total electronic DOS is instead calculated
by code PP/dos.x. See example08/ in the examples/ directory for total and
projected electronic DOS calculations.

4.4 Tools

Code sumpdos.x is a small utility that sums the partial DOS of selected
atoms. See the header of sumpdos.f90 for instructions.

The code path int.x is intended to be used in the framework of NEB
calculations. It is a tool to generate a new path (what is actually generated is
the restart file) starting from an old one through interpolation (cubic splines).
The new path can be discretized with a different number of images (this is
its main purpose), images are equispaced and the interpolation can be also
performed on a subsection of the old path. The input file needed by path int.x
can be easily set up with the help of the self-explanatory path int.sh shell
script.

5 Using CP

This section is intended to explain how to perform basic Car-Parrinello (CP)
simulations using the CP package.
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It is important to understand that a CP simulation is a sequence of dif-
ferent runs, some of them used to ”prepare” the initial state of the system,
and other performed to collect statistics, or to modify the state of the system
itself, i.e. modify the temperature or the pressure.

To prepare and run a CP simulation you should:

1. Define the system:

(a) atomic positions

(b) system cell

(c) pseudopotentials

(d) number of electrons and bands

(e) cut-offs

(f) FFT grids

2.

The first run, when starting from scratch, is always an electronic minimiza-
tion, with fixed ions and cell, to bring the electronic system on the ground
state (GS) relative to the starting atomic configuration.
Example of input file (Benzene Molecule):

&control

title = ’Benzene Molecule’,

calculation = ’cp’,

restart_mode = ’from_scratch’,

ndr = 51,

ndw = 51,

nstep = 100,

iprint = 10,

isave = 100,

tstress = .TRUE.,

tprnfor = .TRUE.,

dt = 5.0d0,

etot_conv_thr = 1.d-9,

ekin_conv_thr = 1.d-4,

prefix = ’c6h6’,

pseudo_dir=’/scratch/benzene/’,

outdir=’/scratch/benzene/Out/’

/

&system
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ibrav = 14,

celldm(1) = 16.0,

celldm(2) = 1.0,

celldm(3) = 0.5,

celldm(4) = 0.0,

celldm(5) = 0.0,

celldm(6) = 0.0,

nat = 12,

ntyp = 2,

nbnd = 15,

nelec = 30,

ecutwfc = 40.0,

nr1b= 10, nr2b = 10, nr3b = 10,

xc_type = ’BLYP’

/

&electrons

emass = 400.d0,

emass_cutoff = 2.5d0,

electron_dynamics = ’sd’

/

&ions

ion_dynamics = ’none’

/

&cell

cell_dynamics = ’none’,

press = 0.0d0,

/

ATOMIC_SPECIES

C 12.0d0 c_blyp_gia.pp

H 1.00d0 h.ps

ATOMIC_POSITIONS (bohr)

C 2.6 0.0 0.0

C 1.3 -1.3 0.0

C -1.3 -1.3 0.0

C -2.6 0.0 0.0

C -1.3 1.3 0.0

C 1.3 1.3 0.0

H 4.4 0.0 0.0

H 2.2 -2.2 0.0

H -2.2 -2.2 0.0

H -4.4 0.0 0.0
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H -2.2 2.2 0.0

H 2.2 2.2 0.0

You can find the description of the input variables in file INPUT CP in the
Doc/ directory.

5.1 Reaching the electronic ground state

The first step in a CP scheme is to reach the electronic ground state (GS),
for a given set of nuclear positions. Sometimes a single run is not enough to
reach the GS. In this case, you need to re-run the electronic minimization
stage. Use the input of the first run, changing restart mode = ’from scratch’
to restart mode = ’restart’.

Important Unless you are already experienced with the system you are
studying or with the internals of the code, you wil usually need to tune some
input parameters, like emass, dt, and cut-offs. For this purpose, a few trial
runs could be useful: you can perform short minimizations (say, 10 steps)
changing and adjusting these parameters to fit your needs. You can specify
the degree of convergence with these two thresholds:

etot conv thr: total energy difference between two consecutive steps
ekin conv thr: value of the fictitious kinetic energy of the electrons
Usually we consider the system on the GS when ekin conv thr < 10−5.

You could check the value of the fictitious kinetic energy on the standard
output (column EKINC).

Different strategies are available to minimize electrons, but the most used
ones are:

• steepest descent: electron dynamics = ’sd’

• damped dynamics: electron dynamics = ’damp’, electron damping =
a number typically ranging from 0.1 and 0.5

See the input description to compute the optimal damping factor.

5.2 Relax the system

Once your system is in the GS, depending on how you have prepared the
starting atomic configuration:

• if you have set the atomic positions ”by hand” and/or from a classical
code, check the forces on atoms, and if they are large (∼ 0.1÷1.0 atomic
units), you should perform an ionic minimization, otherwise the system
could break up during the dynamics.
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• if you have taken the positions from a previous run or a previous ab-
initio simulation, check the forces, and if they are too small (∼ 10−4

atomic units), this means that atoms are already in equilibrium po-
sitions and, even if left free, they will not move. Then you need to
randomize positions a little bit (see below).

1.) Minimize ionic positions.
As we pointed out in 4) if the interatomic forces are too high, the system

could ”explode” if we switch on the ionic dynamics. To avoid that we need
to relax the system. Again there are different strategies to relax the system,
but the most used are again steepest descent or damped dynamics for ions
and electrons. You could also mix electronic and ionic minimization scheme
freely, i.e. ions in steepest and electron in damping or vice versa.

(a) suppose we want to perform a steepest for ions. Then we should
specify the following section for ions:

&ions

ion_dynamics = ’sd’

/

Change also the ionic masses to accelerate the minimization:

ATOMIC_SPECIES

C 2.0d0 c_blyp_gia.pp

H 2.00d0 h.ps

while leaving other input parameters unchanged. Note that if the forces are
really high (> 1.0 atomic units), you should always use steepest descent for
the first (∼ 100 relaxation steps.

(b) as the system approaches the equilibrium positions, the steepest de-
scent scheme slows down, so is better to switch to damped dynamics:

&ions

ion_dynamics = ’damp’,

ion_damping = 0.2,

ion_velocities = ’zero’

/

A typical value of ion damping between 0.05 is good for many systems. It
is also better to specify to restart with zero ionic and electronic velocities,
since we have changed the masses.

Change further the ionic masses to accelerate the minimization:
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ATOMIC_SPECIES

C 0.1d0 c_blyp_gia.pp

H 0.1d0 h.ps

(c) when the system is really close to the equilibrium, the damped dy-
namics slow down too, especially because, since we are moving electron and
ions together, the ionic forces are not properly correct, then it is often better
to perform a ionic step every N electronic steps, or to move ions only when
electron are in their GS (within the chosen threshold).

This can be specified by adding, in the ionic section, the ion nstepe pa-
rameter, then the ionic input section become as follows:

&ions

ion_dynamics = ’damp’,

ion_damping = 0.2,

ion_velocities = ’zero’,

ion_nstepe = 10

/

Then we specify in the control input section:

etot_conv_thr = 1.d-6,

ekin_conv_thr = 1.d-5,

forc_conv_thr = 1.d-3

As a result, the code checks every 10 electronic steps whether the electronic
system satisfies the two thresholds etot conv thr, ekin conv thr: if it does,
the ions are advanced by one step. The process thus continues until the forces
become smaller than forc conv thr.

Note that to fully relax the system you need many run, and different
strategies, that you shold mix and change in order to speed-up the conver-
gence. The process is not automatic, but is strongly based on experience,
and trial and error.

Remember also that the convergence to the equilibrium positions depends
on the energy threshold for the electronic GS, in fact correct forces (required
to move ions toward the minimum) are obtained only when electrons are in
their GS. Then a small threshold on forces could not be satisfied, if you do
not require an even smaller threshold on total energy.

2. Randomization of positions.
If you have relaxed the system or if the starting system is already in

the equilibrium positions, then you need to move ions from the equilibrium
positions, otherwise they will nott move in a dynamics simulation. After the
randomization you should bring electrons on the GS again, in order to start
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a dynamic with the correct forces and with electrons in the GS. Then you
should switch off the ionic dynamics and activate the randomization for each
species, specifying the amplitude of the randomization itself. This could be
done with the following ionic input section:

&ions

ion_dynamics = ’none’,

tranp(1) = .TRUE.,

tranp(2) = .TRUE.,

amprp(1) = 0.01

amprp(2) = 0.01

/

In this way a random displacement (of max 0.01 a.u.) is added to atoms of
species 1 and 2. All other input parameters could remain the same. Note
that the difference in the total energy (etot) between relaxed and randomized
positions can be used to estimate the temperature that will be reached by the
system. In fact, starting with zero ionic velocities, all the diffrence is potential
energy, but in a dynamics simulation, the energy will be equipartitioned
between kinetic and potential, then to estimate the temperature take the
difference in energy (de), convert it in Kelvins, divide for the number of
atoms and multiply by 2/3. Randomization could be useful also while we are
relaxing the system, especially when we suspect that the ions are in a local
minimum or in an energy plateau.

5.3 CP dynamics

At this point after having minimized the electrons, and with ions dis- placed
from their equilibrium positions, we are ready to start a CP dynamics. We
need to specify ’verlet’ both in ionic and electronic dynamics. The threshold
in control input section will be ignored, like any parameter related to mini-
mization strategy. The first time we perform a CP run after a minimization,
it is always better to put velocities equal to zero, unless we have velocities,
from a previous simulation, to specify in the input file. Restore the proper
masses for the ions. In this way we will sample the microcanonical ensemble.
The input section changes as follow:

&electrons

emass = 400.d0,

emass_cutoff = 2.5d0,

electron_dynamics = ’verlet’,

electron_velocities = ’zero’
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/

&ions

ion_dynamics = ’verlet’,

ion_velocities = ’zero’

/

ATOMIC_SPECIES

C 12.0d0 c_blyp_gia.pp

H 1.00d0 h.ps

If you want to specify the initial velocities for ions, you have to set
ion velocities =’from input’, and add the IONIC VELOCITIES card, after
the ATOMIC POSITION card, with the list of velocities in atomic units.

IMPORTANT: in restarting the dynamics after the first CP run, remem-
ber to remove or comment the velocities parameters:

&electrons

emass = 400.d0,

emass_cutoff = 2.5d0,

electron_dynamics = ’verlet’

! electron_velocities = ’zero’

/

&ions

ion_dynamics = ’verlet’

! ion_velocities = ’zero’

/

otherwise you will quench the system interrupting the sampling of the mi-
crocanonical ensemble.

Varying the temperature It is possible to change the temperature of
the system or to sample the canonical ensemble fixing the average tempera-
ture, this is done using the Nosé thermostat. To activate this thermostat for
ions you have to specify in the ions input section:

&ions

ion_dynamics = ’verlet’,

ion_temperature = ’nose’,

fnosep = 60.0,

tempw = 300.0

/

where fnosep is the frequency of the thermostat in THz, thatishould be chosen
to be comparable with the center of the vibrational spectrum of the system,
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in order to excite as many vibrational modes as possible. tempw is the desired
average temperature in Kelvin.

Note: to avoid a strong coupling between the Nosé thermostat and the
system, proceed step by step. Don’t switch on the thermostat from a com-
pletely relaxed configuration: adding a random displacement is strongly rec-
ommended. Check which is the average temperature via a few steps of a
microcanonical simulation. Don’t increase the temperature too much. Fi-
nally switch on the thermostat. In the case of molecular system, different
modes have to be thermalized: it is better to use a chain of thermostat or
equivalently running different simulations with different frequencies.

Nośe thermostat for electrons It is possible to specify also the ther-
mostat for the electrons. This is usually activated in metals or in systems
where we have a transfer of energy between ionic and electronic degrees of
freedom. Beware: the usage of electronic thermostats is quite delicate. The
following information comes from K. Kudin:

”The main issue is that there is usually some ”natural” fictitious kinetic
energy that electrons gain from the ionic motion (”drag”). One could easily
quantify how much of the fictitious energy comes from this drag by doing a
CP run, then a couple of CG (same as BO) steps, and then going back to
CP. The fictitious electronic energy at the last CP restart will be purely due
to the drag effect.”

”The thermostat on electrons will either try to overexcite the otherwise
”cold” electrons, or it will try to take them down to an unnaturally cold state
where their fictitious kinetic energy is even below what would be just due
pure drag. Neither of this is good.”

”I think the only workable regime with an electronic thermostat is a mild
overexcitation of the electrons, however, to do this one will need to know
rather precisely what is the fictititious kinetic energy due to the drag.”

Self-interaction Correction The self-interaction correction (SIC) in-
cluded in the CP package is based on the Constrained Local-Spin-Density
approach proposed my F. Mauri and coworkers (M. D’Avezac et al. PRB 71,
205210 (2005)). It was used for the first time in Quantum ESPRESSO by
F. Baletto, C. Cavazzoni and S.Scandolo (PRL 95, 176801 (2005)).

This approach is a simple and nice way to treat ONE, and only one, excess
charge (EC). It is moreover necessary to check a priori that the spin-up and
spin-down eigenvalues are not too different, for the corresponding neutral
system. working in the Local-Spin-Density Approximation (setting nspin
= 2). If these two conditions are satisfied and you are interest in charged
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systems, you can apply the SIC. This approach is a on-the-fly method to
correct the self-interaction with the excess charge with itself.

Briefly, both the Hartree and the exchange-correlation part have been
corrected to avoid the interaction of the EC with tself.

For example, for the Boron atoms, where we have an even number of
electrons (valence electrons = 3), the parameters for working with the SIC
are:

&system

nbnd= 2,

nelec= 3,

nelup = 2,

neldw = 1,

sic_alpha = 1.d0,

sic_epsilon = 1.0d0,

sic = ’sic_mac’,

force_pairing = .true.,

&ions

ion_dynamics = ’none’,

ion_radius(1) = 0.8d0,

sic_rloc = 1.0,

ATOMIC_POSITIONS (bohr)

B 0.00 0.00 0.00 0 0 0 1

The two main parameters are:
”force pairing = .true.”, which forces the paired electrons to be the same;
”sic=’sic mac’,” which instructs the code to use Mauri’s correction.
Remember to add an extra-column in ATOMIC POSITIONS with ”1” to
activate SIC for those atoms.

Warning: This approach has known problems for dissociation mecha-
nism driven by excess electrons.

Comment 1: Two parameters, ”sic alpha” and ”sic epsilon”, have been
introduced following the suggestion of M. Sprik (ICR(05)) to treat the rad-
ical (OH)-H2O. In any case, a complete ab-initio approach is followed using
”sic alpha=sic epsilon=1”.

Comment 2: When you apply this SIC scheme to a molecule or to an
atom, which are neutral, remember to add the correction to the energy level
as proposed by Landau: in a neutral system, subtracting the self-interaction,
the unpaired electron feels a charged system, even if using a compensat-
ing positive background. For a cubic box, the correction term due to the
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Madelung energy is approx. given by 1.4186/Lbox−1.047/(Lbox)
3, where Lbox

is the linear dimension of your box (=celldm(1)). The Madelung coefficient
is taken from I. Dabo et al. PRB 77, 115139 (2007).

(info by F. Baletto, francesca.baletto@kcl.ac.uk)

5.4 Variable-cell MD

The variable-cell MD is when the Car-Parrinello technique is also applied to
the cell. This technique is useful to study system at very high pressure.

5.5 Conjugate Gradient

This page is under construction.

ensemble-DFT The ensemble-DFT (eDFT) is a robust method to sim-
ulate the metals in the framework of ”ab-initio” molecular dynamics. It was
introduced in 1997 by Marzari et al.

The specific subroutines for the eDFT are in ensemble dft.f90 where you
define all the quantities of interest. The subroutine inner loop cold.f90 called
by cg sub.f90, control the inner loop, and so the minimization of the free
energy A with respect to the occupation matrix.

To select a eDFT calculations, the user has to choice:

calculation = ’cp’

occupations= ’ensemble’

tcg = .true.

passop= 0.3

maxiter = 250

to use the CG procedure. In the eDFT it is also the outer loop, where
thei energy is minimized with respect to the wavefunction keeping fixed the
occupation matrix. While the specific parameters for the inner loop. Since
eDFT was born to treat metals, keep in mind that we want to describe the
broadening of the occupations around the Fermi energy. Below the new
parameters in the electrons list, are listed.

• smearing: used to select the occupation distribution; there are two op-
tions: Fermi-Dirac smearing=’fd’, cold-smearing smearing=’cs’ (recom-
manded)

• degauss: is the electronic temperature; it controls the broadening of
the occupation numbers around the Fermi energy.
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• ninner: is the number of iterative cycles in the inner loop, done to
minimize the free energy A with respect the occupation numbers. The
typical range is 2-8.

• conv thr: is the threshold value to stop the search of the ’minimum’
free energy.

• niter cold restart: controls the frequency at which a full iterative inner
cycle is done. It is in the range 1-ninner. It is a trick to speed up the
calculation.

• lambda cold: is the length step along the search line for the best value
for A, when the iterative cycle is not performed. The value is close to
0.03, smaller for large and complicated metallic systems.

NOTE: degauss is in Hartree, while in PWscf is in Ry (!!!). The tyPical
range is 0.01-0.02 Ha.

The input for an Al surface is:

&CONTROL

calculation = ’cp’,

restart_mode = ’from_scratch’,

nstep = 10,

iprint = 5,

isave = 5,

dt = 125.0d0,

prefix = ’Aluminum_surface’,

pseudo_dir = ’~/UPF/’,

outdir = ’/scratch/’

ndr=50

ndw=51

/

&SYSTEM

ibrav= 14,

celldm(1)= 21.694d0, celldm(2)= 1.00D0, celldm(3)= 2.121D0,

celldm(4)= 0.0d0, celldm(5)= 0.0d0, celldm(6)= 0.0d0,

nat= 96,

ntyp= 1,

nspin=1,

ecutwfc= 15,

nbnd=160,

nelec=291,
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xc_type = ’pbe’

occupations= ’ensemble’,

smearing=’cs’,

degauss=0.018,

/

&ELECTRONS

orthogonalization = ’Gram-Schmidt’,

startingwfc = ’random’,

ampre = 0.02,

tcg = .true.,

passop= 0.3,

maxiter = 250,

emass_cutoff = 3.00,

conv_thr=1.d-6

n_inner = 2,

lambda_cold = 0.03,

niter_cold_restart = 2,

/

&IONS

ion_dynamics = ’verlet’,

ion_temperature = ’nose’

fnosep = 4.0d0,

tempw = 500.d0

/

ATOMIC_SPECIES

Al 26.89 Al.pbe.UPF

NOTA1 remember that the time step is to integrate the ionic dynamics, so
you can choose something in the range of 1-5 fs.
NOTA2 with eDFT you are simulating metals or systems for which the oc-
cupation number is also fractional, so the number of band, nbnd, has to be
chosen such as to have some empty states. As a rule of thumb, start with an
initial occupation number of about 1.6-1.8 (the more bands you considera,
the more the calculation is accurate, but it also takes longer. The CPU time
scales almost linearly with the number of bands.)
NOTA3 the parameter emass cutoff is used during the preconditioning and
it has a completely different meaning with respect to plain CP. It ranges
between 4 and 7.

All the other parameters have the same meaning in the usual CP input,
and they are discussed above.
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5.6 About nr1b, nr2b, nr3b

ecutrho defines the resolution on the real space FFT mesh (as expressed by
nr1, nr2 and nr3, that the code left on its own sets automatically). In the
ultrasoft case we refer to this mesh as the ”hard” mesh, since it is denser
than the smooth mesh that is needed to represent the square of the non-
norm-conserving wavefunctions.

On this ”hard”, fine-spaced mesh, you need to determine the size of the
cube that will encompass the largest of the augmentation charges - this is
what nr1b, nr2b, nr3b are.

So, nr1b is independent of the system size, but dependent on the size
of the augmentation charge (that doesn’t vary that much) and on the real-
space resolution needed by augmentation charges (rule of thumb: ecutrho is
between 6 and 12 times ecutwfc).

In practice, nr1b et al. are often in the region of 20-24-28; testing seems
again a necessity (unless the code started automagically to estimate these).

The core charge is in principle finite only at the core region (as defined by
rcut ) and vanishes out side the core. Numerically the charge is represented
in a Fourier series which may give rise to small charge oscillations outside
the core and even to negative charge density, but only if the cut-off is too
low. Having these small boxes removes the charge oscillations problem (at
least outside the box) and also offers some numerical advantages in going to
higher cut-offs.

The small boxes should be set as small as possible, but large enough
to contain the core of the largest element in your system. The formula for
determining the box size is quite simple:

nr1b = (2× rcut)/Lx× nr1

where rcut is the cut-off radius for the largest element and Lx is the physical
length of your box along the x axis. You have to round your result to the
nearest larger integer.” (info by Nicola Marzari)

6 Performance issues (PWscf)

6.1 CPU time requirements

The following holds for code pw.x and for non-US PPs. For US PPs there
are additional terms to be calculated, that may add from a few percent up to
30-403Nat modes requires a CPU time of the same order of that required by
a self-consistent calculation in the same system. For cp.x, the required CPU
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time of each time step is in the order of the time Th + Torth + Tsub defined
below.

The computer time required for the self-consistent solution at fixed ionic
positions, Tscf , is:

Tscf = NiterTiter + Tinit

where Niter = niter = number of self-consistency iterations, Titer = CPU time
for a single iteration, Tinit = initialization time for a single iteration. Usually
Tinit << NiterTiter .

The time required for a single self-consistency iteration Titer is:

Titer = NkTdiag + Trho + Tscf

where Nk = number of k-points, Tdiag = CPU time per hamiltonian iterative
diagonalization, Trho = CPU time for charge density calculation, Tscf = CPU
time for Hartree and exchange-correlation potential calculation.

The time for a Hamiltonian iterative diagonalization Tdiag is:

Tdiag = NhTh + Torth + Tsub

where Nh = number of Hψ products needed by iterative diagonalization, Th

= CPU time per Hψ product, Torth = CPU time for orthonormalization, Tsub

= CPU time for subspace diagonalization.
The time Th required for a Hψ product is

Th = a1MN + a2MN1N2N3log(N1N2N3) + a3MPN.

The first term comes from the kinetic term and is usually much smaller than
the others. The second and third terms come respectively from local and
nonlocal potential. a1, a2, a3 are prefactors, M = number of valence bands, N
= number of plane waves (basis set dimension), N1, N2, N3 = dimensions of
the FFT grid for wavefunctions (N1N2N3 ∼ 8N ), P = number of projectors
for PPs (summed on all atoms, on all values of the angular momentum l, and
m = 1, . . . , 2l + 1)

The time Torth required by orthonormalization is

Torth = b1NM
2
x

and the time Tsub required by subspace diagonalization is

Tsub = b2M
3
x

where b1 and b2 are prefactors, Mx = number of trial wavefunctions (this will
vary between M and a few times M , depending on the algorithm).
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The time Trho for the calculation of charge density from wavefunctions is

Trho = c1MNr1Nr2Nr3log(Nr1Nr2Nr3) + c2MNr1Nr2Nr3 + Tus

where c1, c2, c3 are prefactors, Nr1, Nr2, Nr3 = dimensions of the FFT grid
for charge density (Nr1Nr2Nr3 ∼ 8Ng, where Ng¿ = number of G-vectors for
the charge density), and Tus = CPU time required by ultrasoft contribution
(if any).

The time Tscf for calculation of potential from charge density is

Tscf = d2Nr1Nr2Nr3 + d3Nr1Nr2Nr3log(Nr1Nr2Nr3)

where d1, d2 are prefactors.

6.2 Memory requirements

A typical self-consistency or molecular-dynamics run requires a maximum
memory in the order of O double precision complex numbers, where

O = mMN + PN + pN1N2N3 + qNr1Nr2Nr3

with m, p, q = small factors; all other variables have the same meaning as
above. Note that if the Γ−point only (q = 0) is used to sample the Brillouin
Zone, the value of N will be cut into half.

The memory required by the phonon code follows the same patterns, with
somewhat larger factors m, p, q .

6.3 File space requirements

A typical pw.x run will require an amount of temporary disk space in the
order of O double precision complex numbers:

O = NkMN + qNr1Nr2Nr3

where q = 2× mixing ndim (number of iterations used in self-consistency, de-
fault value = 8) if disk io is set to ’high’ or not specified; q = 0 if disk io=’low’
or ’minimal’.

6.4 Parallelization issues

pw.x and cp.x can run in principle on any number of processors. The ef-
fectiveness of parallelization is ultimately judged by the ”scaling”, i.e. how
the time needed to perform a job scales with the number of processors, and
depends upon:
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• the size and type of the system under study;

• the judicious choice of the various levels of parallelization (detailed in
the ”Running on parallel machines” sections);

• the availability of fast interprocess communications (or lack thereof).

Ideally one would like to have linear scaling, i.e. TN ∼ T0/Np for Np pro-
cessors. In addition, one would like to have linear scaling of the RAM per
processor: ON ∼ O0/Np, so that large-memory systems fit into the RAM of
each processor.

As a general rule, image parallelization:

• may give good scaling, but the slowest image will determine the overall
performances (”load balancing” may be a problem);

• requires very little communications (suitable for ethernet communica-
tions);

• does not reduce the required memory per processor (unsuitable for
large-memory jobs).

Parallelization on k-points:

• guarantees (almost) linear scaling if the number of k-points is a multiple
of the number of pools;

• requires little communications (suitable for ethernet communications);

• does not reduce the required memory per processor (unsuitable for
large-memory jobs).

Parallelization on plane-waves:

• yields good to very good scaling, especially if the number of processors
in a pool is a divisor of N3 and Nr3 (the dimensions along the z-axis of
the FFT grids, which may coincide);

• requires heavy communications (suitable for Gigabit ethernet up to 4,
8 CPUs at most, specialized communication hardware needed for 8 or
more processors );

• yields almost linear reduction of memory per processor with the number
of processors in the pool.
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A note on scaling: optimal serial performances are achieved when the
data are as much as possible kept into the cache. As a side effect, plane-wave
parallelization may yield superlinear (better than linear) scaling, thanks to
the increase in serial speed coming from the reduction of data size (making
it easier for the machine to keep data in the cache).

For each system there is an optimal range of number of processors on
which to run the job. A too large number of processors will yield performance
degradation. If the size of pools is especially delicate: Np should not exceed
by much N3 and Nr3. For large jobs, it is convenient to further subdivide
a pool of processors into ”task groups”. When the number of processors
exceeds the number of FFT planes, data can be redistributed to ”task groups”
so that each group can process several wavefunctions at the same time.

The optimal number of processors for the ”ortho” (cp.x) or ”ndiag” (pw.x)
parallelization, taking care of linear algebra operations involving M × M
matrices, is automatically chosen by the code.

Actual parallel performances will also depend a lot on the available soft-
ware (MPI libraries) and on the available communication hardware. For
Beowulf-style machines (clusters of PC) the newest version 1.1 and later
of the OpenMPI libraries (http://www.openmpi.org/) seems to yield better
performances than other implementations (info by Kostantin Kudin). Note
however that you need a decent communication hardware (at least Gigabit
ethernet) in order to have acceptable performances with PW parallelization.
Do not expect good scaling with cheap hardware: plane-wave calculations
are by no means an ”embarrassing parallel” problem.

Also note that multiprocessor motherboards for Intel Pentium CPUs typ-
ically have just one memory bus for all processors. This dramatically slows
down any code doing massive access to memory (as most codes in the Quan-
tum ESPRESSO distribution do) that runs on processors of the same moth-
erboard.

7 Troubleshooting

Almost all problems in Quantum ESPRESSO arise from incorrect input
data and result in error stops. Error messages should be self-explanatory, but
unfortunately this is not always true. If the code issues a warning messages
and continues, pay attention to it but do not assume that something is nec-
essarily wrong in your calculation: most warning messages signal harmless
problems.

Typical pw.x and/or ph.x (mis-)behavior:
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7.1 pw.x says ’error while loading shared libraries’ or
’cannot open shared object file’ and does not start

Possible reasons:

• If you are running on the same machines on which the code was com-
piled, this is a library configuration problem. The solution is machine-
dependent. On Linux, find the path to the missing libraries; then either
add it to file /etc/ld.so.conf and run ldconfig (must be done as root), or
add it to variable LD LIBRARY PATH and export it. Another possi-
bility is to load non-shared version of libraries (ending with .a) instead
of shared ones (ending with .so).

• If you are not running on the same machines on which the code was
compiled: you need either to have the same shared libraries installed
on both machines, or to load statically all libraries (using appropri-
ate configure or loader options). The same applies to Beowulf-style
parallel machines: the needed shared libraries must be present on all
PCs.

7.2 errors in examples with parallel execution

If you get error messages in the example scripts – i.e. not errors in the codes
– on a parallel machine, such as e.g.:
”run example: -n: command not found”
you may have forgotten the ”’” in the definitions of PARA PREFIX and
PARA POSTFIX.

7.3 pw.x prints the first few lines and then nothing
happens (parallel execution)

If the code looks like it is not reading from input, maybe it isn’t: the MPI
libraries need to be properly configured to accept input redirection. See
section ”Running on parallel machines”, or inquire with your local computer
wizard (if any).

7.4 pw.x stops with error while reading data

There is an error in the input data, typically:

• a misspelled namelist variable,
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• an empty input file.

Unfortunately with most compilers the code just reports ”Error while reading
XXX namelist” and no further useful information. Here are some other more
subtle sources of trouble:

• Out-of-bound indices in dimensioned variables read in the namelist

• Input data files containing M̂ (Control-M) characters at the end of lines,
or non-ASCII characters (e.g. non-ASCII quotation marks, that at a
first glance may look the same as the ASCII character). Typically, this
happens with files coming from Windows or produced with ”smart”
editors.

Both may cause the code to crash with rather mysterious error messages. If
none of the above applies and the code stops at the first namelist (”control”)
and you are running in parallel: your MPI libraries might not be properly
configured to allow input redirection, see the previous item above this one.

7.5 pw.x mumbles something like ’cannot recover’ or
’error reading recover file’

You are trying to restart from a previous job that either produced corrupted
files, or did not do what you think it did. No luck: you have to restart from
scratch.

7.6 pw.x stops with ’inconsistent DFT’ error

As a rule, the flavor of DFT used in the calculation should be the same as
the one used in the generation of PPs, and all PPs should be generated using
the same flavor of DFT. This is actually enforced: the type of DFT is read
from PP files and it is checked that the same DFT is read from all PPs. If
this does not hold, the code stops with the above error message.

If you really want to use PPs generated with different DFT, or to perform
a calculation with a DFT that differs from what used in PP generation,
change the appropriate field in the PP file(s), at your own risk.

7.7 pw.x stops with error in cdiaghg or rdiaghg

Possible reasons for such behavior are not always clear, but they typically
fall into one of the following cases:
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• serious error in data, such as bad atomic positions or bad crystal struc-
ture/supercell;

• a bad PP, typically with a ghost, but also a US-PP with non-positive
charge density, leading to a violation of positiveness of the S matrix
appearing in the US-PP formalism;

• a failure of the algorithm performing subspace diagonalization. The
LAPACK algorithms used by cdiaghg/rdiaghg are very robust and ex-
tensively tested. Still, it may seldom happen that such algorithms fail.
Try to use conjugate-gradient diagonalization (diagonalization=’cg’), a
slower but very robust algorithm, and see what happens.

• buggy libraries. Machine-optimized mathematical libraries are very
fast but sometimes not so robust from a numerical point of view. Sus-
picious behavior: you get an error that is not reproducible on other
architectures or that disappears if the calculation is repeated with even
minimal changes in parameters. Known cases: HP-Compaq alphas with
cxml libraries, Mac OS-X with system blas/lapack. Try to use compiled
BLAS and LAPACK (or better, ATLAS) instead of machine-optimized
libraries.

7.8 pw.x crashes with no error message at all

This happens quite often in parallel execution, or under a batch queue, or
if you are writing the output to a file. When the program crashes, part of
the output, including the error message, may be lost, or hidden into error
files where nobody looks into. It is the fault of the operating system, not of
the code. Try to run interactively and to write to the screen. If this doesn’t
help, move to next point.

7.9 pw.x crashes with ’segmentation fault’ or similarly
obscure messages

Possible reasons:

• too much RAM memory requested, or too much stack memory re-
quested (see next item).

• if you are using highly optimized mathematical libraries, verify that
they are designed for your hardware. In particular, for Intel compiler
and MKL libraries, verify that you loaded the correct set of CPU-
specific MKL libraries.
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• buggy compiler. If you are using Portland or Intel compilers on Linux
PCs or clusters, see the Installation section.

7.10 pw.x crashes with ’error in davcio’

’davcio’ is the routine that performs most of the I/O operations (read from
disk and write to disk) in pw.x ; ’error in davcio ’means a failure of an I/O
operation.

• If the error is reproducible and happens at the beginning of a calcula-
tion: check if you have read/write permission to the scratch directory
specified in variable ’outdir’. Also: check if there is enough free space
available on the disk you are writing to, and check your disk quota (if
any)

• If the error is irreproducible: your might have flaky disks; if you are
writing via the network using nfs (which you shouldn’t do anyway),
your network connection might be not so stable, or your nfs implemen-
tation is unable to work under heavy load

• if it happens while restarting from a previous calculation: you might
be restarting from the wrong place, or from wrong data, or the files
might be corrupted.

7.11 pw.x works for simple systems, but not for large
systems or whenever more RAM is needed

Possible solutions:

• increase the amount of RAM you are authorized to use (which may be
much smaller than the available RAM). Ask your system administrator
if you don’t know what to do.

• reduce nbnd to the strict minimum, or reduce the cutoffs, or the cell
size

• use conjugate-gradient (diagonalization=’cg’: slow but very robust): it
requires less memory than the default Davidson algorithm.

• in parallel execution, use more processors, or use the same number of
processors with less pools. Remember that parallelization with respect
to k-points (pools) does not distribute memory: parallelization with
respect to R- (and G-) space does.
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• IBM only (32-bit machines): if you need more than 256 MB you must
specify it at link time (option -bmaxdata).

• buggy or weird-behaving compiler. Some versions of the Portland and
Intel compilers on Linux PCs or clusters have this problem. For Intel
ifort 8.1 and later, the problem seems to be due to the allocation of
large automatic arrays that exceeds the available stack. Increasing the
stack size (with commands limits or ulimit) may (or may not) solve
the problem. Versions > 3.2 try to avoid this problem by removing the
stack size limit at startup. See:
http://www.democritos.it/pipermail/pw forum/2007-September/007176.html,
http://www.democritos.it/pipermail/pw forum/2007-September/007179.html

7.12 pw.x crashes in parallel execution with an obscure
message related to MPI errors

Random crashes due to MPI errors have often been reported, typically in
Linux PC clusters. We cannot rule out the possibility that bugs in Quantum
ESPRESSO cause such behavior, but we are quite confident that the most
likely explanation is a hardware problem (defective RAM for instance) or a
software bug (in MPI libraries, compiler, operating system).

Debugging a parallel code may be difficult, but you should at least verify
if your problem is reproducible on different architectures/software configura-
tions/input data sets, and if there is some particular condition that activates
the bug. If this doesn’t seem to happen, the odds are that the problem is
not in Quantum ESPRESSO. You may still report your problem, but con-
sider that reports like ”it crashes with...(obscure MPI error)” contain 0 bits
of information and are likely to get 0 bits of answers.

Concerning MPI libraries in particular, useful information can be found
in Axel’s web site:
http://www.theochem.rub.de/ axel.kohlmeyer/cpmd-linux.html, and in the
following message by Javier Antonio Montoya:
http://www.democritos.it/pipermail/pw forum/2008-April/008818.html

7.13 pw.x runs but nothing happens

Possible reasons:

• in parallel execution, the code died on just one processor. Unpre-
dictable behavior may follow.
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• in serial execution, the code encountered a floating-point error and goes
on producing NaNs (Not a Number) forever unless exception handling
is on (and usually it isn’t). In both cases, look for one of the reasons
given above.

• maybe your calculation will take more time than you expect.

7.14 pw.x yields weird results

Possible solutions:

• if this happens after a change in the code or in compilation or pre-
processing options, try ’make clean’, recompile. The ’make’ command
should take care of all dependencies, but do not rely too heavily on it.
If the problem persists, ’make clean’, recompile with reduced optimiza-
tion level.

• maybe your input data are weird.

7.15 pw.x stops with error message ”the system is
metallic, specify occupations”

You did not specify state occupations, but you need to, since your system
appears to have an odd number of electrons. The variable controlling how
metallicity is treated is occupations in namelist &SYSTEM. The default,
occupations=’fixed’, occupies the lowest nelec/2 states and works only for
insulators with a gap. In all other cases, use ’smearing’ or ’tetrahedra’. See
file INPUT PW for more details.

7.16 pw.x stops with ”internal error: cannot braket Ef
” in efermig

Possible reasons:

• serious error in data, such as bad number of electrons, insufficient num-
ber of bands, absurd value of broadening;

• the Fermi energy is found by bisection assuming that the integrated
DOS N(E ) is an increasing function of the energy. This is not guaran-
teed for Methfessel-Paxton smearing of order 1 and can give problems
when very few k-points are used. Use some other smearing function:
simple Gaussian broadening or, better, Marzari-Vanderbilt ’cold smear-
ing’.
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7.17 pw.x yields ’internal error: cannot braket Ef’
message in efermit, then stops because ’charge
is incorrect’

There is either a serious error in data (bad number of electrons, insufficient
number of bands), or too few tetrahedra (i.e. k-points). The tetrahedron
method may become unstable in the latter case, especially if the bands are
very narrow. Remember that tetrahedra should be used only in conjunction
with uniform k-point grids.

7.18 pw.x yields ’internal error: cannot braket Ef’
message in efermit but does not stop

This may happen under special circumstances when you are calculating the
band structure for selected high-symmetry lines. The message signals that
occupations and Fermi energy are not correct (but eigenvalues and eigenvec-
tors are). Remove occupations=’tetrahedra’ in the input data to get rid of
the message.

7.19 the FFT grids in pw.x are machine-dependent

Yes, they are! The code automatically chooses the smallest grid that is
compatible with the specified cutoff in the specified cell, and is an allowed
value for the FFT library used. Most FFT libraries are implemented, or
perform well, only with dimensions that factors into products of small numers
(2, 3, 5 typically, sometimes 7 and 11). Different FFT libraries follow different
rules and thus different dimensions can result for the same system on different
machines (or even on the same machine, with a different FFT). See function
allowed in Modules/fft scalar.f90.

As a consequence, the energy may be slightly different on different ma-
chines. The only piece that explicitly depends on the grid parameters is
the XC part of the energy that is computed numerically on the grid. The
differences should be small, though, especially for LDA calculations.

Manually setting the FFT grids to a desired value is possible, but slightly
tricky, using input variables nr1, nr2, nr3 and nr1s, nr2s, nr3s. The code will
still increase them if not acceptable. Automatic FFT grid dimensions are
slightly overestimated, so one may try very carefully to reduce them a little
bit. The code will stop if too small values are required, it will waste CPU
time and memory for too large values.

Note that in parallel execution, it is very convenient to have FFT grid
dimensions along ”z” that are a multiple of the number of processors.
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7.20 pw.x does not find all the symmetries you ex-
pected

pw.x determines first the symmetry operations (rotations) of the Bravais
lattice; then checks which of these are symmetry operations of the system
(including if needed fractional translations). This is done by rotating (and
translating if needed) the atoms in the unit cell and verifying if the rotated
unit cell coincides with the original one.

Assuming that your coordinates are correct (please carefully check!), you
may not find all the symmetries you expect because:

• the number of significant figures in the atomic positions is not large
enough. In file PW/eqvect.f90, the variable accep is used to decide
whether a rotation is a symmetry operation. Its current value (10−5)
is quite strict: a rotated atom must coincide with another atom to 5
significant digits. You may change the value of accep and recompile.

• they are not acceptable symmetry operations of the Bravais lattice.
This is the case for C60, for instance: the Ih icosahedral group of C60

contains 5-fold rotations that are incompatible with translation sym-
metry.

• the system is rotated with respect to symmetry axis. For instance: a
C60 molecule in the fcc lattice will have 24 symmetry operations (Th

group) only if the double bond is aligned along one of the crystal axis; if
C60 is rotated in some arbitrary way, pw.x may not find any symmetry,
apart from inversion.

• they contain a fractional translation that is incompatible with the FFT
grid (see next paragraph). Note that if you change cutoff or unit cell
volume, the automatically computed FFT grid changes, and this may
explain changes in symmetry (and in the number of k-points as a con-
sequence) for no apparent good reason (only if you have fractional
translations in the system, though).

• a fractional translation, without rotation, is a symmetry operation of
the system. This means that the cell is actually a supercell. In this
case, all symmetry operations containing fractional translations are dis-
abled. The reason is that in this rather exotic case there is no simple
way to select those symmetry operations forming a true group, in the
mathematical sense of the term.
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7.21 warning: ’symmetry operation # N not allowed’

This is not an error. If a symmetry operation contains a fractional translation
that is incompatible with the FFT grid, it is discarded in order to prevent
problems with symmetrization. Typical fractional translations are 1/2 or
1/3 of a lattice vector. If the FFT grid dimension along that direction is not
divisible respectively by 2 or by 3, the symmetry operation will not transform
the FFT grid into itself.

7.22 I do not get the same results in different ma-
chines!

If the difference is small, do not panic. It is quite normal for iterative methods
to reach convergence through different paths as soon as anything changes.
In particular, between serial and parallel execution there are operations that
are not performed in the same order. As the numerical accuracy of computer
numbers is finite, this can yield slightly different results.

It is also normal that the total energy converges to a better accuracy than
its terms, since only the sum is variational, i.e. has a minimum in correspon-
dence to ground-state charge density. Thus if the convergence threshold is
for instance 10−8, you get 8-digit accuracy on the total energy, but one or
two less on other terms (e.g. XC and Hartree energy). It this is a problem
for you, reduce the convergence threshold for instance to 10−10 or 10−12. The
differences should go away (but it will probably take a few more iterations
to converge).

7.23 the CPU time is time-dependent!

Yes it is! On most machines and on most operating systems, depending
on machine load, on communication load (for parallel machines), on various
other factors (including maybe the phase of the moon), reported CPU times
may vary quite a lot for the same job. Also note that what is printed is
supposed to be the CPU time per process, but with some compilers it is
actually the wall time.

7.24 ’warning : N eigenvectors not converged ...’

This is a warning message that can be safely ignored if it is not present in
the last steps of self-consistency. If it is still present in the last steps of self-
consistency, and if the number of unconverged eigenvector is a significant
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part of the total, it may signal serious trouble in self-consistency (see next
point) or something badly wrong in input data.

7.25 ’warning : negative or imaginary charge...’, or
’...core charge ...’, or ’npt with rhoup< 0...’ or
’rho dw< 0...’

These are warning messages that can be safely ignored unless the negative or
imaginary charge is sizable, let us say of the order of 0.1. If it is, something
seriously wrong is going on. Otherwise, the origin of the negative charge
is the following. When one transforms a positive function in real space to
Fourier space and truncates at some finite cutoff, the positive function is no
longer guaranteed to be positive when transformed back to real space. This
happens only with core corrections and with ultrasoft pseudopotentials. In
some cases it may be a source of trouble (see next point) but it is usually
solved by increasing the cutoff for the charge density.

7.26 self-consistency is slow or does not converge

See the corresponding FAQ item

7.27 structural optimization is slow or does not con-
verge

Typical structural optimizations, based on the BFGS algorithm, converge
to the default thresholds ( etot conv thr and forc conv thr ) in 15-25 BFGS
steps (depending on the starting configuration). This may not happen when
your system is characterized by ”floppy” low-energy modes, that make very
difficult (and of little use anyway) to reach a well converged structure, no
matter what. Other possible reasons for a problematic convergence are listed
below.

Close to convergence the self-consistency error in forces may become large
with respect to the value of forces. The resulting mismatch between forces
and energies may confuse the line minimization algorithm, which assumes
consistency between the two. The code reduces the starting self-consistency
threshold conv thr when approaching the minimum energy configuration,
up to a factor defined by upscale. Reducing conv thr (or increasing upscale)
yields a smoother structural optimization, but if conv thr becomes too small,
electronic self-consistency may not converge. You may also increase variables
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etot conv thr and forc conv thr that determine the threshold for convergence
(the default values are quite strict).

A limitation to the accuracy of forces comes from the absence of perfect
translational invariance. If we had only the Hartree potential, our PW calcu-
lation would be translationally invariant to machine precision. The presence
of an exchange-correlation potential introduces Fourier components in the
potential that are not in our basis set. This loss of precision (more serious
for gradient-corrected functionals) translates into a slight but detectable loss
of translational invariance (the energy changes if all atoms are displaced by
the same quantity, not commensurate with the FFT grid). This sets a limit
to the accuracy of forces. The situation improves somewhat by increasing
the ecutrho cutoff.

7.28 pw.x stops during variable-cell optimization in
checkallsym with ’non orthogonal operation’ er-
ror

Variable-cell optimization may occasionally break the starting symmetry of
the cell. When this happens, the run is stopped because the number of k-
points calculated for the starting configuration may no longer be suitable.
Possible solutions:

• start with a nonsymmetric cell;

• use a symmetry-conserving algorithm: the Wentzcovitch algorithm (cell
dynamics=’damp-w’) should not break the symmetry.

7.29 some codes in PP/ complain that they do not find
some files

For Linux PC clusters in parallel execution: in at least some versions of
MPICH, the current directory is set to the directory where the executable
code resides, instead of being set to the directory where the code is executed.
This MPICH weirdness may cause unexpected failures in some postprocessing
codes that expect a data file in the current directory. Workaround: use
symbolic links, or copy the executable to the current directory.

7.30 ph.x stops with ’error reading file’

The data file produced by pw.x is bad or incomplete or produced by an
incompatible version of the code. In parallel execution: if you did not set
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wf collect=.true., the number of processors and pools for the phonon run
should be the same as for the self-consistent run; all files must be visible to
all processors.

7.31 ph.x mumbles something like ’cannot recover’ or
’error reading recover file’

You have a bad restart file from a preceding failed execution. Remove all
files recover* in outdir.

7.32 ph.x says ’occupation numbers probably wrong’
and continues; or ’phonon + tetrahedra not im-
plemented’ and stops

You have a metallic or spin-polarized system but occupations are not set
to ’smearing’. Note that the correct way to calculate occupancies must be
specified in the input data of the non-selfconsistent calculation, if the phonon
code reads data from it. The non-selfconsistent calculation will not use this
information but the phonon code will.

7.33 ph.x does not yield acoustic modes with ω = 0 at
q = 0

This may not be an error: the Acoustic Sum Rule (ASR) is never exactly
verified, because the system is never exactly translationally invariant as it
should be. The calculated frequency of the acoustic mode is typically less
than 10 cm−1, but in some cases it may be much higher, up to 100 cm−1. The
ultimate test is to diagonalize the dynamical matrix with program dynmat.x,
imposing the ASR. If you obtain an acoustic mode with a much smaller ω
(let us say < 1cm−1 ) with all other modes virtually unchanged, you can
trust your results.

”The problem is [...] in the fact that the exchange and correlation energy
is computed in real space on a discrete grid and hence the total energy is
invariant (...) only for translation in the FFT grid. Increasing the charge
density cutoff increases the grid density thus making the integral more ex-
act thus reducing the problem, unfortunately rather slowly...This problem is
usually more severe for GGA than with LDA because the GGA functionals
have functional forms that vary more strongly with the position; particularly
so for isolated molecules or system with significant portions of ”vacuum” be-
cause in the exponential tail of the charge density a) the finite cutoff (hence
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there is an effect due to cutoff) induces oscillations in rho and b) the reduced
gradient is diverging.”(info by Stefano de Gironcoli, June 2008)

7.34 ph.x yields really lousy phonons, with bad or neg-
ative frequencies or wrong symmetries or gross
ASR violations

Possible reasons

• if this happens only for acoustic modes at q = 0 that should have ω = 0:
Acoustic Sum Rule violation, see the item before this one

• wrong data file read.

• wrong atomic masses given in input will yield wrong frequencies (but
the content of file fildyn should be valid, since the force constants, not
the dynamical matrix, are written to file).

• convergence threshold for either SCF (conv thr) or phonon calculation
(tr2 ph) too large: try to reduce them.

• maybe your system does have negative or strange phonon frequencies,
with the approximations you used. A negative frequency signals a
mechanical instability of the chosen structure. Check that the structure
is reasonable, and check the following parameters:

– The cutoff for wavefunctions, ecutwfc

– For US PP: the cutoff for the charge density, ecutrho

– The k-point grid, especially for metallic systems!

Note that ”negative” frequencies are actually imaginary: the negative sign
flags eigenvalues of the dynamical matrix for which ω2 < 0.

7.35 ’Wrong degeneracy’ error in star q

Verify the q-point for which you are calculating phonons. In order to check
whether a symmetry operation belongs to the small group of q, the code
compares q and the rotated q, with an acceptance tolerance of 10−5 (set in
routine PW/eqvect.f90). You may run into trouble if your q-point differs
from a high-symmetry point by an amount in that order of magnitude.
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8 Frequently Asked Questions (FAQ)

8.1 Installation

Most installation problems have obvious origins and can be solved by reading
error messages and acting accordingly. Sometimes the reason for a failure
is less obvious. In such a case, you should look into the Installation Issues
section of the User Guide, and into the pw forum archive to see if a similar
problem (with solution) is described. If you get really weird error messages
during installation, look for them with your preferred Internet search engine
(such as Google): very often you will find an explanation and a workaround.

”What Fortran compiler do I need to compile Q-E?” ”’A:”’ Any
non-buggy, or not-too-buggy, fortran-95 compiler should work, with minimal
or no changes to the code. configure may not be able to recognize your
system, though.

”Why is configure saying that I have no fortran compiler?” ”’A:”’Because
you haven’t one (really!); or maybe you have one, but it is not your execution
path; or maybe it has been given an unusual name by your system manager.
Install a compiler if you have none; if you have one, fix your execution path,
or define an alias if it has a strange name.

”Why is configure saying that my fortran compiler doesn’t work?”
”’A:”’ Because it doesn’t work. Really! More exactly, configure has tried
to compile a small test program and didn’t succeed. Your compiler may not
be properly installed. For Intel compiler on PC’s: you may have forgotten
to run the required initialization script for the compiler.

”configure says ’unsupported architecture’, what should I do?”
”’A:”’ If compilation/linking still works, never mind, Otherwise, supply a
suitable supported architecture to configure: see instructions in README.configure
on what to do. Note that in most cases you may use configure to produce
dependencies, then edit the file make.sys.

”Why doesn’t configure recognize that I have a parallel machine?”
”’A:”’You need a properly configured complete parallel environment. If any
piece is missing, configure will revert to serial compilation. In particular:

• configure tries to locate a parallel compiler in a logical place with a
logical name, but if it has a strange names or it is located in a strange
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location, you will have to instruct configure to find it. Note that in
most PC clusters (Beowulf), there is no parallel Fortran-95 compiler in
default installations: you have to configure an appropriate script, such
as mpif90.

• configure tries to locate libraries (both mathematical and parallel
libraries) in logical places with logical names, but if they have strange
names or strange locations, you will have to rename/move them, or
to instruct configure to find them (see subsection ”Libraries”). Note
that if MPI libraries are not found, parallel compilation is disabled.

• configure tests that the compiler and the libraries are compatible
(i.e. the compiler may link the libraries without conflicts and without
missing symbols). If they aren’t and the compilation fail, configure
will revert to serial compilation.

”Compilation fails with ”internal error”, what should I do?” ”’A:”’
Any message saying something like ”internal compiler error” means that your
compiler is buggy. If you paid real money for your compiler, complain with
the software vendor. If not: sometimes reducing the optimization level will
do the trick, sometimes rearranging the code solves the problem, but most
often you will need to update your compiler to a less buggy version.

”Compilation fails at linking stage: ”symbol ... not found”” ”’A:”’
If the missing symbols (i.e. routines that are called but not found) are
in the code itself: most likely the fortran-to-C conventions used in file in-
clude/c defs.h are not appropriate. Change them and retry.

If the missing symbols are in external libraries (Blas, Lapack, FFT, MPI
libraries): there is a name mismatch between what the compiler expects and
what the library provides. This case is described in detail in the User Guide.

If the missing symbols aren’t found anywhere either in the code or in the
libraries: they are system library symbols. i) If they are called by external
libraries, you need to add a missing system library, or to use a different set
of external libraries, compiled with the same compiler you are using. ii) If
you are using no external libraries and still getting missing symbols, your
compiler and compiler libraries are not correctly installed.

8.2 Pseudopotentials

”Can I mix Ultrasoft/Norm-Conserving/PAW pseudopotentials?”
”’A:”’ Yes, you can (if implemented, of course: a few calculations are not

77



available with USPP, a few more are not for PAW). A small restrictions
exists in cp.x, expecting atoms with USPP listed before those with NCPP,
which in turn are expected before local PP’s (if any). Otherwise you can mix
and match, as long as the XC functional used in the generation of the PP is
the same for all PP’s. Note that it is the hardest atom that determines the
cutoff.

”Where can I find pseudopotentials for atom X?” ”’A:”’ See the
wiki page on [[Pseudopotentials]], follow those links. New contributions to
the PP table are appreciated. If X is one of the rare earths: please consider
first if DFT is suitable for your system!

8.3 Input data

A large percentage of the problems reported to the mailing list are caused
by incorrect input data. Before reporting a problem with strange crashes
or strange results, PLEASE have a look at your structure with XCrysDen.
XCrysDen can directly visualise the structure from both PWscf input data:

xcrysden --pwi "input-data-file"

and from PWscf output as well:

xcrysden --pwo "output-file".

Unlike most other visualizers, XCrysDen is periodicity-aware: you can easily
visualize periodically repeated cells. You are advised to use always XCrysDen
to check your input data!

”Where can I find the crystal structure/atomic positions of XYZ?”
”’A:”’ The following site contains a lot of crystal structures:
http://cst-www.nrl.navy.mil/lattice .
”Since this seems to come up often, I’d like to point out that the American
Mineralogist Crystal Structure Database (http://rruff.geo.arizona.edu/AMS/amcsd)
is another excellent place to find structures, though you will have to use it
in conjunction with Bilbao (http://www.cryst.ehu.es), and have some under-
standing of space groups and Wyckoff positions”.

”Where can I find the Brillouin Zone/high-symmetry points/irreps
for XYZ?” ”’A:”’ ”You might find this web site useful:
http://www.cryst.ehu.es/cryst/get kvec.html” (info by Cyrille Barreteau, nov.
2007). Or else: in textbooks, such as e.g. ”The mathematical theory of sym-
metry in solids”, by Bradley and Cracknell.
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”Where can I find Monkhorst-Pack grids of k-points?” ”’A:”’ Aux-
iliary code ”kpoints.x” (in pwtools/, executable produced by ”make tools”)
generates uniform grids of k-points that are equivalent to Monkhorst-Pack
grids.

”How do I perform a calculation with spin-orbit interactions?”
”’A:”’ The following input variables are relevant for a spin-orbit calculation:

noncolin=.true./.false.

lspinorb=.true./.false.

starting_magnetization (one for each type of atoms)

To make a spin-orbit calculation noncolin must be true. If starting magnetization
is set to zero (or not given) the code makes a spin orbit calculation with-
out spin magnetization (it assumes that time reversal symmetry holds and
it does not calculate the magnetization). The states are still two component
spinors but the total magnetization is zero.

If starting magnetization is different from zero it makes a non collinear
spin polarized calculation with spin orbit. The final spin magnetization might
be zero or different from zero depending on the system.

Furthermore to make a spin-orbit calculation you must use fully relativis-
tic pseudopotentials at least for the atoms in which you think that spin orbit
is large. If all the pseudopotentials are scalar relativistic the calculation be-
comes equivalent to a noncolinear calculation without spin orbit. (Andrea
Dal Corso, 2007-07-27)

”How can I choose parameters for variable-cell molecular dynam-
ics?” ”’A”’: ”A common mistake many new users make is to set the time
step dt improperly to the same order of magnitude as for CP algorithm, or
not setting dt at all. This will produce a “not evolving dynamics”. Good
values for the original RMW (RM Wentzcovitch) dynamics are dt= 50÷ 70.
The choice of the cell mass is a delicate matter. An off-optimal mass will
make convergence slower. Too small masses, as well as too long time steps,
can make the algorithm unstable. A good cell mass will make the oscil-
lation times for internal degrees of freedom comparable to cell degrees of
freedom in non-damped Variable-Cell MD. Test calculations are advisable
before extensive calculation. I have tested the damping algorithm that I
have developed and it has worked well so far. It allows for a much longer
time step (dt=100÷ 150) than the RMW one and is much more stable with
very small cell masses, which is useful when the cell shape, not the internal
degrees of freedom, is far out of equilibrium. It also converges in a smaller
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number of steps than RMW.” (Info from Cesar Da Silva: the new damping
algorithm is the default since v. 3.1).

8.4 Parallel execution

Effective usage of parallelism requires some basic knowledge on how parallel
machines work and how parallelism is implemented in Quantum ESPRESSO.
If you have no experience and no clear ideas (or not idea at all), consider
reading the section of the User Guide explaining some basic parallelism for
Quantum ESPRESSO.

”Why is my parallel job running in such a lousy way?” ”’A:”’ A fre-
quent reason for lousy parallel performances is a conflict between MPI paral-
lelization (implemented in Quantum ESPRESSO) and the autoparalleliz-
ing feature of MKL libraries. Set the environment variable OPEN MP THREADS
to 1. See the section dedicated to this problem in the User Guide.

8.5 Frequent errors during execution

”Why is the code saying ”Wrong atomic coordinates”?” ”’A:”’
Because they are: two or more atoms in the list of atoms have overlapping, or
anyway too close, positions. Can’t you see why? look better (use XCrysDen:
see above) and remember that the code checks periodic images as well.

”The code stops with an ”error reading namelist xxxx”” ”’A:”’
Most likely there is a misspelled variable in namelist xxxx. If there isn’t any
(have you looked carefully? really?? REALLY???), beware control characters
like DOS M̂ (control-M): they can confuse the namelist-reading code.

If this message concerns the first namelist to be read (usually ”&control”),
and if you are running in parallel: try ”code -inp input file” instead of ”code<
input file”. Some MPI libraries do not properly handle input redirection.

”The code stops with an ”error in davcio”” ”’A:”’ Possible reasons:
disk is full; outdir does not exist; outdir exists but is not a directory (i.e. it
is a file) or it is not writable; you changed some parameter(s) in the input
(like wf collect, or the number of processors/pools) without doing a bit of
cleanup in your temporary files.

”The code stops with a ”wrong charge” error” ”’A:”’ In most cases:
you are treating a metallic system as if it were insulating.
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8.6 Self Consistency

”What are the units for quantity XYZ?” ”A:”’ Unless otherwise spec-
ified, all PWscf input and output quantities are in atomic ”Rydberg” units,
i.e. energies in Ry, lengths in Bohr radii, etc.. Note that CP uses instead
atomic ”Hartree” units: energies in Ha, lengths in Bohr radii.

”Self-consistency is slow or does not converge at all” ”’A:”’ Bad in-
put data will often result in bad scf convergence. Please check your structure
first.

Assuming that your input data is sensible :

1. Verify if your system is metallic or is close to a metallic state, espe-
cially if you have few k-points. If the highest occupied and lowest
unoccupied state(s) keep exchanging place during self-consistency, for-
get about reaching convergence. A typical sign of such behavior is that
the self-consistency error goes down, down, down, than all of a sudden
up again, and so on. Usually one can solve the problem by adding a
few empty bands and a small broadening.

2. Reduce mixing beta from the default value (0.7) to ∼ 0.3 ÷ 0.1 or
smaller. Try the mixing mode value that is more appropriate for your
problem. For slab geometries used in surface problems or for elongated
cells, mixing mode=’local-TF’ should be the better choice, dampening
”charge sloshing”. You may also try to increase mixing ndim to more
than 8 (default value). Beware: the larger mixing ndim, the larger the
amount of memory you need.

3. Specific to US PP: the presence of negative charge density regions due
to either the pseudization procedure of the augmentation part or to
truncation at finite cutoff may give convergence problems. Raising
the ecutrho cutoff for charge density will usually help, especially in
gradient-corrected calculations.

”How is the charge density (the potential, etc.) stored? What
position in real space corresponds to an array value?” ”’A:”’ The
index of arrays used to store functions defined on 3D meshes is actually a
shorthand for three indeces, following the FORTRAN convention (”leftmost
index runs faster”). An example will explain this better. Suppose you have
a 3D array of dimension (nr1,nr2,nr3), say psi(nr1,nr2,nr3). FORTRAN
compilers store this array sequentially in the computer RAM in the following
way:
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psi(1,1,1)

psi(2,1,1)

...

psi(nr1,1,1)

psi(1,2,1)

psi(2,2,1)

...

psi(nr1,2,1)

...

psi(nr1,nr2,1)

psi(1,1,nr3)

etc

Let ind be the position of the (i,j,k) element in the above list: the relation
between ind and (i,j,k) is:

ind = i + (j + 1) * nr1 + (k + 1) * nr2 * nr1

This should clarify the relation between 1D and 3D indexing. In real space,
the (i,j,k) point of the mesh is

rijk =
i− 1

nr1
τ1 +

j − 1

nr2
τ2 +

k − 1

nr3
τ3

where the τi are the basis vectors of the Bravais lattice. The latter are stored
row-wise in the ”AT” array:

τ1 = at(:, 1), tau2 = at(:, 2), τ3 = at(:, 3)
(info by Stefano Baroni)

”What is the difference between total and absolute magnetiza-
tion?” ”’A:”’ The total magnetization is the integral of the magnetization
in the cell:

MT =
∫

(nup − ndown)d3r.

The absolute magnetization is the integral of the absolute value of the mag-
netization in the cell:

MA =
∫
|nup − ndown|d3r.

In a simple ferromagnetic material they should be equal (except possibly for
an overall sign)‘. In simple antiferromagnets (like FeO, NiO) MT is zero and
MA is twice the magnetization of each of the two atoms. (info by Stefano de
Gironcoli)
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”How can I calculate magnetic moments for each atom?” ”’A:”’
There is no ’right’ way of defining the local magnetic moment around an
atom in a multi-atom system. However an approximate way to define it is
via the projected density of states on the atomic orbitals (code projwfc.x,
see example08 for its use as a postprocessing tool). This code generate many
files with the density of states projected on each atomic wavefunction of each
atom and a BIG amount of data on the standard output, the last few lines of
which contain the decomposition of Lowdin charges on angular momentum
and spin component of each atom.

”What is the order of Ylm components in projected DOS / projec-
tion of atomic wavefunctions?” ”’A:”’ ”The order is, I think:

1 $P_{0,0}(t)$

2 $P_{1,0}(t)$

3 $P_{1,1}(t)cos\phi$

4 $P_{1,1}(t)sin\phi$

5 $P_{2,0}(t)$

6 $P_{2,1}(t)cos\phi$

7 $P_{2,1}(t)sin\phi$

8 $P_{2,2}(t)cos2\phi$

9 $P_{2,2}(t)sin2\phi$

and so on; Pl,m=Legendre Polynomials, t = cosθ = z/r, φ = atan(y/x). No
warranty. Anybody really interested in knowing ”for sure” which spherical
harmonic combination is which should look into routine ylmr2 in flib/ylmr2.f90”.

”Why is the sum of partial Lowdin charges not equal to the total
charge?” ”Lowdin charges (as well as other conventional atomic charges)
do not satisfy any sum rule. You can easily convince yourself that ths is the
case because the atomic orbitals that are used to calculate them are arbitrary
to some extent. If yu like, you can think that the missing charge is ”delo-
calized” or ”bonding” charge, but this would be another way of naming the
conventional (to some extent) character of Lowdin charge.” (Stefano Baroni,
Sept. 2008).

See also the definition of ”spilling parameter”: Sanchez-Portal et al.,
Sol. State Commun. 95, 685 (1995). The spilling parameter measures the
ability of the basis provided by the pseudo-atomic wfc to represent the PW
eigenstates, by measuring how much of the subspace of the Hamiltonian
eigenstates falls outside the subspace spanned by the atomic basis.
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”Why do I get a strange value of the Fermi energy?” ”The value
of the Fermi energy (as well as of any energy, for that matter) depends of
the reference level. What you are referring to is probably the ”Fermi energy
referred to the vacuum level” (i.e. the work function). In order to obtain
that, you need to know what the vacuum level is, which cannot be said from
a bulk calculation only” (Stefano Baroni, Sept. 2008).

”Why I don’t get zero pressure/stress at equilibrium?” It depends.
If you make a calculation with fixed cell parameters, you will never get ex-
actly zero pressure/stress, unless you use the cell that yields perfect equilib-
rium for your pseudopotentials, cutoffs, k-points, etc.. Such cell will anyway
be slightly different from the experimental one. Note however that pres-
sures/stresses in the order of a few KBar correspond to very small differences
in terms of lattice parameters.

If you obtain the equilibrium cell from a variable-cell optimization, do not
forget that the pressure/stress calculated with the modified kinetic energy
functional (very useful for variable-cell calculations) slightly differ from those
calculated without it.

”Why do I get ”negative starting charge”?” Self-consistency re-
quires an initial guess for the charge density in order to bootstrap the iterative
algorithm. This first guess is usually built from a superposition of atomic
charges, constructed from pseudopotential data.

More often than not, this charges are a slightly too hard to be expanded
very accurately in plane waves, hence some aliasing error will be introduced.
Especially if the unit cell is big and mostly empty, some local low negative
charge density will be produced.

”This is NOT harmful at all, the negative charge density is handled prop-
erly by the code and will disappear during the self-consistent cycles”, but if
it is very high (let’s say more than 0.001*number of electrons) it may be a
symptom that your charge density cutoff is too low. (L. Paulatto - November
2008)

”How do I calculate the work function?” Work function = (average
potential in the vacuum) - (Fermi Energy). The former is estimated in a
supercell with the slab geometry, by looking at the average of the electro-
static potential (typically without the XC part). See the example in exam-
ples/WorkFct example.
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8.7 Phonons

Is there a simple way to determine the symmetry of a given phonon
mode? ”’A:”’ A symmetry analyzer was added in v.3.2 by Andrea Dal
Corso. The following info may still be of interest to somebody, though.
ISOTROPY package: http://stokes.byu.edu/iso/isotropy.html.

”Please follow http://dx.doi.org/10.1016/0010-4655(94)00164-W and
http://dx.doi.org/10.1016/0010-4655(74)90057-5. These are connected to
some programs found in the Computer Physics Communications Program
Library (http://www.cpc.cs.qub.ac.uk ) which are described in the articles:
ACKJ v1.0 Normal coordinate analysis of crystals, J.Th.M. de Hosson.
ACMI v1.0 Group-theoretical analysis of lattice vibrations, T.G. Worlton,
J.L. Warren. See erratum Comp. Phys. Commun. 4(1972)382.
ACMM v1.0 Improved version of group-theoretical analysis of lattice dynam-
ics, J.L. Warren, T.G. Worlton.” (Info from Pascal Thibaudeau)

I am not getting zero acoustic mode frequencies, why? ”’A:”’ ”If
you treat, e.g., a molecule, the first six frequencies should vanish. However,
due to convergence (number of plane waves, size of the supercell, etc. ) they
often appear as imaginary or small real, even if all other frequencies are
converged with respect to ecut and celldm.

If you have a bulk structure, then imaginary frequencies indicate a lattice
instability. However, they can appear also as a result of a non-converged
groundstate (Ecut, k-point grid, ...).

Recently I also found that the parameters tr2 ph for the phonons and
conv thr for the groundstate can affect the quality of the phonon calculation,
especially the ”vanishing” frequencies for molecules.” (Info from Katalyn
Gaal-Nagy)

Why do I get negative phonon frequencies? ”’A:”’ If these occur for
acoustic frequencies at Gamma point, see above. If these occur for rotational
modes in a molecule into a supercell: it is a fictitious effect of the finite
supercell size. If these occur in other cases, it depends. It may be a problem
of bad convergence (see above) or it may signal a real instability.

An example: large negative phonon frequencies in 1-dimensional chains.
”It is because probably some of atoms are sitting on the saddle points of
the energy surface. Since QE symmetrizes charge density to avoid small nu-
merical oscillation, the system cannot break the symmetry with the help of
numerical noise. Check your system’s stability by displacing one or more
atoms a little bit along the direction of eigen-vector which has negative fre-
quency. The eigen-vector can be found in the output of dynamical matrices
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of ph.x. One example here is: for 1d aluminum chain, the LO mode will be
negative if you place two atoms at (0.0,0.0,0.0) and (0.0,0.0,0.5) of crystal
coordinates. To break the symmetry enforced by QE code, change the sec-
ond atom coordinate to (0.0,0.0,0.505). Relax the system. You will find the
atom will get itself a comfortable place at (0.0,0.0,0.727), showing a typical
dimerization effect.” (info by Nicola Marzari).
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