
Developer’s Manual for Quantum
ESPRESSO

Contents

1 Introduction 1
1.1 Who should read (and who should write) this guide 1
1.2 Who may read this guide but will not necessarily profit from it 1
1.3 How to Contribute to Quantum-ESPRESSO 2

2 Structure of the distribution 3
2.1 Contents of the various directories 3

2.1.1 Modules . 3
2.1.2 Sources . 3
2.1.3 Utilities . 3
2.1.4 Libraries . 3

2.2 Installation mechanism . 4
2.2.1 How to edit the configure script 4
2.2.2 How to add support for a new architecture 5

2.3 Adding new directories or routines 11

3 Algorithms 11
3.1 Diagonalization . 11
3.2 Self-consistency . 11
3.3 Structural optimization . 11
3.4 Symmetrization . 11
3.5 Gamma tricks . 11

1

4 Structure of the code 11
4.1 Modules and global variables 11
4.2 Meaning of the most important variables 11
4.3 Conventions for indices . 11
4.4 Preprocessing . 11
4.5 Performance issues . 12
4.6 Portability issues . 12

5 Parallelization 12
5.1 Paradigms . 13
5.2 Implementation . 13

5.2.1 Data distribution . 13
5.2.2 Parallel fft . 14

6 File Formats 14
6.1 Data file(s) . 14

6.1.1 Rationale . 14
6.1.2 General structure . 15
6.1.3 Structure of file ”data-file.xml” 16
6.1.4 Sample . 17

6.2 Restart files . 23

7 Modifying/adding/extending Quantum-ESPRESSO 23
7.1 Hints, Caveats, Do’s and Dont’s 23
7.2 Programming style (or lack of it) 23
7.3 Adding or modifying input variables 24

8 Using CVS 25
8.1 Anonymous CVS . 26
8.2 Read/Write CVS . 26
8.3 CVS operations . 27
8.4 Web-CVS interface . 28

1 Introduction

1.1 Who should read (and who should write) this guide

The intended audience of this guide is everybody who wants to:

• know how Quantum-ESPRESSO works, including its internals

• modify/customize/add/extend/improve/clean up Quantum-ESPRESSO

2

• know how to read data produced by Quantum-ESPRESSO

The same category of people should also ”write” this guide, of course.

1.2 Who may read this guide but will not necessarily
profit from it

People who want to know about the capabilities of Quantum-ESPRESSO,
or who want just to use Quantum-ESPRESSO, should read the User Guide.

People who want to know about the methods or the physics behind
Quantum-ESPRESSO should read first the relevant literature.

1.3 How to Contribute to Quantum-ESPRESSO

You can contribute to a better Quantum-ESPRESSO by

• answering other people’s questions on the mailing list (correct answers
are strongly preferred to wrong ones).

• suggesting changes: note however that suggestions requiring a signif-
icant amount of work are welcome only if accompanied by implemen-
tation or by a promise of future implementation (fulfilled promises are
strongly preferred to forgotten ones).

• porting to new/unsupported architectures or configurations: see the
Installation mechanism section. You shouldn’t need new preprocessing
flags: those already existing should be sufficient. If you really need a
new one, look into file include/defs.h.README to learn what is there
and how it is used.

• pointing out bugs in the software and in the documentation (reports of
real bugs are strongly preferred to reports of nonexistent bugs). A bug
report should include enough information to be reproduced: typically,
version number, hardware/software combination(s) for which the prob-
lem arises, whether it is reproducible or erratic, whether it happens in
serial or parallel execution or both, and, most important, an input and
output exhibiting such behavior (fast to execute if possible). The error
message alone is usually not a sufficient piece of information.

• adding new features to the code. If you like to have something added to
Quantum-ESPRESSO, contact the developers. Unless there are techni-
cal reasons not to include your changes, we will try to make you happy
(no warranty that we will actually succeed).

3

For extensive changes, the ideal procedure is as follows:

• download the current CVS version (see Using CVS) and work on that
version

• when you are happy with your modified version, make a copy of it, then
update your copy with cvs update

• if you get no conflicts and everything is still working, you have won.
Send the modified files to the developers.

• if you get conflicts, or if the updated code doesn’t work any longer, you
haven’t yet won. Look into the conflicting section: in most cases con-
flicts are trivial (format changes, white spaces) or easily solved (the part
of the code you were modifying has been moved to another place, for
instance). Sometimes, somebody else has done changes that are incom-
patible with yours during the same period. Look into the ChangeLog
(use the script cvs2cl.pl to get an updated ChangeLog) to under-
stand what may have happened. Use cvs update -D 2006-oct-12 to
update to the CVS version of 12 oct 2006: this may be useful if you
suspect that the incompatibile change happened after that date. CVS
versions can be tagged; tags are visible with cvs status -v. Use cvs

update -r TAG to update to the CVS version with tag TAG. In all
cases, use cvs update -A to revert to the last version.

Developers can be contacted via the pw forum mailing list.

2 Structure of the distribution

2.1 Contents of the various directories

2.1.1 Modules

2.1.2 Sources

2.1.3 Utilities

2.1.4 Libraries

Subdirectory flib/ contains libraries written in fortran77 (*.f) and in fortran-
90 (*.f90). The latter should not depend on any module, except for ”kind”
and ”constants”.

Subdirectory clib/ contains libraries written in C (*.c). Functions that
are called by fortran should be preprocessed using the macros:

4

1. F77 FUNC (func,FUNC) for function ”func”, not containing under-
score(s) in name

2. F77 FUNC (f nc,F NC) for function ”f nc”, containing underscore(s)
in name

These macros are defined in file include/c defs.h. This file must be included
by all *.c files. The macros are automagically generated by ”configure” and
choose the correct case (lowercase or uppercase) and the correct number of
final underscores. See file include/defs.h.README for more info.

2.2 Installation mechanism

The code contains C-style preprocessing directives. There are two ways to
do preprocessing of fortran files:

• directly with the fortran compiler, if supported;

• by first pre-compiling with the C preprocessor cpp.

In the first case, one needs to specify in the make.sys file the fortran
compiler option that tells the compiler to pre-process first. In the second case,
one needs to specify the C precompiler and options (if needed) in make.sys.
Normally, ”configure” should take care of this.

2.2.1 How to edit the configure script

The ”configure” script is generated from its source file ”configure.ac” by the
GNU Autoconf utility (http://www.gnu.org/software/autoconf/). Don’t edit
”configure” directly: whenever it gets regenerated, your changes will be lost.
Instead, edit ”configure.ac”, then run ”autoconf” to regenerate ”configure”.
If you want to keep the old ”configure”, make a copy first.

GNU Autoconf is installed by default on most Unix/Linux systems. If
you don’t have it on your system, you’ll have to install it. Also, if it bumps an
error message saying ”configure.in not found”, you’ll have to install a more
recent version. Version 2.53 at least is known to work.

”configure.ac” is a regular Bourne shell script (i.e., ”sh” – not csh!), except
that:

– capitalized names starting with ”AC ” are Autoconf macros. Normally
you shouldn’t have to touch them.

– square brackets are normally removed by the macro processor. If you
need a square bracket (that should be very rare), you’ll have to write
two.

5

You may refer to the GNU Autoconf Manual for more info.
”make.sys.in” is the source file for ”make.sys”, that ”configure” gener-

ates: you might want to edit that file as well. The generation procedure is
as follows: if ”configure.ac” contains the macro ”AC SUBST(name)”, then
every occurrence of ”@name@” in the source file will be substituted with the
value of the shell variable ”name” at the point where AC SUBST was called.

Similarly, ”configure.msg” is generated from ”configure.msg.in”: this file
is only used by ”configure” to print its final report, and isn’t needed for
the compilation. We did it this way so that our ”configure” may also be
used by other projects, just by replacing the Quantum-ESPRESSO-specific
”configure.msg.in” by your own.

”configure” writes a detailed log of its operation to ”config.log”. When
any configuration step fails, you may look there for the relevant error mes-
sages. Note that it is normal for some checks to fail.

2.2.2 How to add support for a new architecture

In order to support a previously unsupported architecture, first you have to
figure out which compilers, compilation flags, libraries etc. should be used
on that architecture. In other words, you have to write a ”make.sys” that
works: you may use the manual configuration procedure for that (see the
Quantum-ESPRESSO User Guide). Then, you have to modify ”configure”
so that it can generate that ”make.sys” automatically.

To do that, you have to add the case for your architecture in several
places throughout ”configure.ac”:

1. Detect architecture

Look for these lines:

if test "$arch" = ""

then

case $host in

ia64-*-linux-gnu) arch=ia64 ;;

x86_64-*-linux-gnu) arch=x86_64 ;;

*-pc-linux-gnu) arch=ia32 ;;

etc.

Here you must add an entry corresponding to your architecture and
operating system. Run ”config.guess” to obtain the string identifying
your system. For instance on a PC it may be ”i686-pc-linux-gnu”,
while on IBM SP4 ”powerpc-ibm-aix5.1.0.0”. It is convenient to put

6

some asterisks to account for small variations of the string for different
machines of the same family. For instance, it could be ”aix4.3” instead
of ”aix5.1”, or ”athlon” instead of ”i686”...

2. Select compilers

Look for these lines:

candidate compilers and flags based on architecture

case $arch in

ia64 | x86_64)

...

ia32)

...

aix)

...

etc.

Add an entry for your value of $arch, and set there the appropriate
values for several variables, if needed (all variables are assigned some
reasonable default value, defined before the ”case” block):

- ”try f90” should contain the list of candidate Fortran 90 compilers,
in order of decreasing preference (i.e. configure will use the first it
finds). If your system has parallel compilers, you should list them in
”try mpif90”.

- ”try ar”, ”try arflags”: for these, the values ”ar” and ”ruv” should be
always fine, unless some special flag is required (e.g., -X64 With sp4).

- you should define ”try dflags” if the Quantum-ESPRESSO codes con-
tain any ”#ifdef” specific to your machine: for instance, on IBM ma-
chines, ”try dflags=-D AIX” . A list of such flags can be found in file
include/defs.h.README

You shouldn’t need to define the following two:

- ”try arflags dynamics” should be set to the same as ”try arflags”
except in special cases in which dynamically libraries are to be built
(presently only on PowerPC Mac with OS-X and xlf compiler)

- ”try iflags” should be set to the appropriate ”-I” option(s) needed by
the preprocessor or by the compiler to locate *.h files to be included;
try iflags=”-I../include” should be good for most cases

For example, here’s the entry for IBM machines running AIX:

7

aix)

try_mpif90="mpxlf90_r mpxlf90"

try_f90="xlf90_r xlf90 $try_f90"

try_arflags="-X64 ruv"

try_arflags_dynamic="-X64 ruv"

try_dflags="-D__AIX -D__XLF"

;;

The following step is to look for both serial and parallel fortran com-
pilers:

check serial Fortran 90 compiler...

...

AC_PROG_F77($f90)

...

check parallel Fortran 90 compiler

...

AC_PROG_F77($mpif90)

...

echo setting F90... $f90

echo setting MPIF90... $mpif90

A few compilers require some extra work here: for instance, if the Intel
Fortran compiler was selected, you need to know which version because
different versions need different flags.

At the end of the test,

- $mpif90 is the parallel compiler, if any; if no parallel compiler is found
or if –disable-parallel was specified, $mpif90 is the serial compiler

- $f90 is the serial compiler

Next step: the choice of (serial) C and Fortran 77 compilers. Look for
these lines:

candidate C and f77 compilers good for all cases

try_cc="cc gcc"

try_f77="$f90"

case "$arch:$f90" in

*:f90)

....

etc.

8

Here you have to add an entry for your architecture, and since the
correct choice of C and f77 compilers may depend on the fortran-90
compiler, you may need to specify the f90 compiler as well. Again,
specify the compilers in try cc and try f77 in order of decreasing pref-
erence. At the end of the test,

- $cc is the C compiler

- $f77 is the Fortran 77 compiler, used to compile *.f files (may coincide
with $f90)

3. Specify compilation flags.

Look for these lines:

check Fortran compiler flags

...

case "$arch:$f90" in

ia64:ifort* | x86_64:ifort*)

...

ia64:ifc*)

...

etc.

Add an entry for your case and define:

- ”try fflags”: flags for Fortran 77 compiler.

- ”try f90flags”: flags for Fortran 90 compiler. In most cases they will
be the same as in Fortran 77 plus some others. In that case, define
them as ”$(FFLAGS) -something else”.

- ”try fflags noopt”: flags for Fortran 77 with all optimizations turned
off: this is usually ”-O0”. These flags must be used for compiling
flib/dlamch.f (part of our version of Lapack): it won’t work properly
with optimization.

- ”try ldflags”: flags for the linking phase (not including the list of
libraries: this is decided later).

- ”try ldflags static”: additional flags to select static compilation (i.e.,
don’t use shared libraries).

- ”try dflags”: must be defined if there is in the code any #ifdef specific
to your compiler (for instance, -D INTEL for Intel compilers). Define
it as ”$try dflags -D...” so that pre-existing flags, if any, are preserved.

9

- if the Fortran 90 compiler is not able to invoke the C preprocessor
automatically before compiling, set ”have cpp=0” (the opposite case
is the default). The appropriate compilation rules will be generated
accordingly. If the compiler requires that any flags be specified in
order to invoke the preprocessor (for example, ”-fpp ” – note the space),
specify them in ”pre fdflags”.

For example, here’s the entry for ifort on Linux PC:

ia32:ifort*)

try_fflags="-O2 -tpp6 -assume byterecl"

try_f90flags="\$(FFLAGS) -nomodule"

try_fflags_noopt="-O0 -assume byterecl"

try_ldflags=""

try_ldflags_static="-static"

try_dflags="$try_dflags -D__INTEL"

pre_fdflags="-fpp "

;;

Next step: flags for the C compiler. Look for these lines:

case "$arch:$cc" in

*:icc)

...

*:pgcc)

...

etc.

Add an entry for your case and define:

- ”try cflags”: flags for C compiler.

- ”c ldflags”: flags for linking, when using the C compiler as linker.
This is needed to check for libraries written in C, such as FFTW.

- if you need a different preprocessor from the standard one ($CC -E),
define it in ”try cpp”.

For example for XLC on AIX:

aix:mpcc* | aix:xlc* | aix:cc)

try_cflags="-q64 -O2"

c_ldflags="-q64"

;;

10

Finally, if you have to use a nonstandard preprocessor, look for these
lines:

echo $ECHO_N "setting CPPFLAGS... $ECHO_C"

case $cpp in

cpp) try_cppflags="-P -traditional" ;;

fpp) try_cppflags="-P" ;;

...

and set ”try cppflags” as appropriate.

4. Search for libraries

To instruct ”configure” to search for libraries, you must tell it two
things: the names of libraries it should search for, and where it should
search.

The following libraries are searched for:

- BLAS or equivalent. Some vendor replacements for BLAS that are
supported by Quantum-ESPRESSO are:

MKL on Linux, 32- and 64-bit Intel CPUs
ACML on Linux, 64-bit AMD CPUs
essl on AIX
complib.sgimath on sgi origin
SCSL on sgi altix
SUNperf on sparc
cxml on alpha

Moreover, ATLAS is used over BLAS if available.

- LAPACK or equivalent. Some vendor replacements for LAPACK that
are supported by Quantum-ESPRESSO are:

mkl on linux SUNperf on sparc

- FFTW (version 3) or another supported FFT library. The latter
include:

essl on aix ACML on Linux, 64-bit AMD CPUs SUNperf on
sparc

- the MASS vector math library on aix

- an MPI library. This is often automatically linked by the compiler

11

If you have another replacement for the above libraries, you’ll have to
insert a new entry in the appropriate place.

This is unfortunately a little bit too complex to explain. Basic info:
”AC SEARCH LIBS(function, name, ...)” looks for symbol ”function”
in library ”libname”. If that is found, ”-lname” is appended to the
LIBS environment variable (initially empty). The real thing is more
complicated than just that because the ”-Ldirectory” option must be
added to search in a nonstandard directory, and because a given li-
brary may require other libraries as prerequisites (for example, Lapack
requires BLAS).

2.3 Adding new directories or routines

3 Algorithms

3.1 Diagonalization

3.2 Self-consistency

3.3 Structural optimization

3.4 Symmetrization

3.5 Gamma tricks

In calculations using only the Γ point (k=0), the Kohn-Sham orbitals can
be chosen to be real functions in real space, so that ψ(G) = ψ∗(−G). This
allows us to store only half of the Fourier components. Moreover, two real
FFTs can be performed as a single complex FFT. The auxiliary complex
function Φ is introduced: Φ(r) = ψj(r) + iψj+1(r) whose Fourier transform
Φ(G) yields

ψj(G) = Φ(G)+Φ∗(G)
2

, ψj+1(G) = Φ(G)−Φ∗(G)
2i

.
A side effect on parallelization is that G and −G must reside on the same

processor. As a consequence, pairs of columns with Gn′
1,n′

2,n′
3

and G−n′
1,−n′

2,n′
3

(with the exception of the case n′1 = n′2 = 0), must be assigned to the same
processor.

12

4 Structure of the code

4.1 Modules and global variables

4.2 Meaning of the most important variables

4.3 Conventions for indices

4.4 Preprocessing

The code contains C-style preprocessing directives. Most fortran compilers
directly support them; some don’t, and preprocessing is ”hand-made” by the
makefile using the C preprocessor cpp. The C preprocessor may:

• assign a value to a given expression. For instance, command #define

THIS that, or the option in the command line: -DTHIS=that, will
replace all occurrence of THIS with that.

• include file (command #include)

• expand macros (command #define)

• execute conditional expressions such as

#ifdef __expression

...code A...

#else

...code B...

#endif

If ”expression” is defined (with a #define command or from the com-
mand line with option D expression), then ...code A... is sent to
output; otherwise ...code B... is sent to output.

The file include/defs.h.README contains a list of definitions that are used
in the code. In order to make preprocessing options easy to see, prepro-
cessing variables should start with two underscores, as expression in the
above example. Traditionally ”preprocessed” variables are also written in
uppercase.

13

4.5 Performance issues

4.6 Portability issues

5 Parallelization

In parallel execution, PW starts N independent processes (do not start more
than one per processor!) that communicate via calls to MPI libraries. Each
process has its own set of variables and knows nothing about other processes’
variables. Variables that take little memory are replicated, those that take a
lot of memory (wavefunctions, G-vectors, R-space grid) are distributed.

Beware: replicated calculations may either be performed independently
on each processor, or performed on one processor and broadcast to all others.
The first approach requires less programming, but it is unsafe: in principle
all processors should yield exactly the same results, if they work on the same
data, but sometimes they don’t (depending on the machine, compiler, and
libraries). Even a tiny difference in the last significant digit can eventually
cause serious trouble if allowed to build up, especially when a replicated check
is performed (in which case the code may ”hang” if the check yields different
results on different processors). Never assume that the value of a variable
produced by replicated calculations is exactly the same on all processors:
when in doubt, broadcast the value calculated on a specific processor (the
”root” processor) to all others.

5.1 Paradigms

5.2 Implementation

5.2.1 Data distribution

Quantum-Espresso employ arrays whose memory requirements fall into three
categories.

• Fully Scalable: Arrays that are distributed across processors of a pool.
Fully scalable arrays are typically large to very large and contain one
of the following dimensions:

– number of plane waves, npw (or max number, npwx)

– number of Gvectors, ngm

– number of grid points in the R space, nrxx

Their size decreases linearly with the number of processors in a pool.

14

• Partially Scalable: Arrays that are distributed across processors of the
ortho or diag group. Typically they are much smaller than fully scalable
array, and small in absolute terms for moderate-size system. Their
size however increases quadratically with the number of atoms in the
system, so they have to be distributed for large systems (hundreds
to thousands atoms). Partially scalable arrays contain none of the
dimensions listed above, two of the following dimensions:

– number of states, nbnd

– number of projectors, nkb

Their size decreases linearly with the number of processors in a ortho
or diag group.

• Nonscalable: All the remaining arrays, that are not distributed across
processors. These are typically small arrays, having dimensions like for
instance:

– number of atoms, nat

– number of species of atoms, nsp

The size of these arrays is independent on the number of processors.

5.2.2 Parallel fft

6 File Formats

6.1 Data file(s)

Quantum-Espresso restart file specifications: Paolo Giannozzi scripsit AD
2005-11-11, Last modified by Andrea Ferretti 2006-10-29

6.1.1 Rationale

Requirements: the data file should be

• efficient (quick to read and write)

• easy to read, parse and write without special libraries

• easy to understand (self-documented)

• portable across different software packages

15

• portable across different computer architectures

Solutions:

• use binary I/O for large records

• exploit the file system for organizing data

• use XML

• use a small specialized library (iotk) to read, parse, write

• ensure the possibility to convert to a portable formatted file

Integration with other packages:

• provide a self-standing (code-independent) library to read/write this
format

• the use of this library is intended to be at high level, hiding low-level
details

6.1.2 General structure

Format name: ”’QEXML”’
Format version: ”’1.4.0”’

The ”restart file” is actually a ”restart directory”, containing several files
and sub-directories. For CP/FPMD, the restart directory is created as ”$pre-
fix $ndw/”, where $prefix is the value of the variable ”prefix”. $ndw the value
of variable ndw, both read in input; it is read from ”$prefix $ndr/”, where
$ndr the value of variable ndr, read from input. For PWscf, both input and
output directories are called ”$prefix.save/”.

The content of the restart directory is as follows:

’’data-file.xml’’ which contains:

- general information that doesn’t require large data set:

atomic structure, lattice, symmetries, parameters of the run, ...

- pointers to other files or directories containing bulkier data:

such as grids, wavefunctions, charge density, potentials, ...

’’charge_density.dat’’ contains the charge density

’’spin_polarization.dat’’ contains the spin polarization (rhoup-rhodw) (LSDA calculations)

’’magnetization.x.dat’’

16

’’magnetization.y.dat’’ contain the spin polarization along x,y,z (noncollinear calculations)

’’magnetization.z.dat’’

’’lambda.dat’’ contains occupations (Car-Parrinello dynamics only

’’mat_z.1’’ contains occupations (ensemble-dynamics only)

<pseudopotentials> A copy of all pseudopotential files given in input

<k-point dirs> One or more subdirectories ’’K00001/’’, ’’K00002/’’, etc, one per k-point.

Each k-point directory contains:

’’evc.dat’’ containing the wavefunctions for spin-unpolarized calculations, OR

’’evc1.dat’’

’’evc2.dat’’ containing the spin-up and spin-down wavefunctions, respectively,

for spin polarized (LSDA) calculations;

in a molecular dynamics run, also wavefunctions at the preceding time step:

’’evcm.dat’’ for spin-unpolirized calculations OR

’’evcm1.dat’’

’’evcm2.dat’’ for spin polarized calculations;

’’gkvectors.dat’’ with the details of specific k+G grid;

’’eigenval.xml’’ containing the eigenvalues for the corresponding k-point for spin-unpolarized calculations, OR

’’eigenval1.xml’’

’’eigenval2.xml’’ for spin-polarized calculations;

• All files ”*.xml” are XML-compliant, formatted file;

• Files ”mat z.1”, ”lambda.dat” are unformatted files, containing a single
record;

• All other files ”*.dat”, are XML-compliant files, but they contain an
unformatted record.

6.1.3 Structure of file ”data-file.xml”

* ’’XML Header’’: whatever is needed to have a well-formed XML file

* ’’Body’’: introduced by <Root>, terminated by </Root>. Contains first-level tags only. These contain only other tags, not values. XML syntax applies.

* ’’First-level tags’’: contain either

** second-level tags

** "data tags": tags containing data (values for a given variable)

17

** "file tags": tags pointing to a file

’’data tags syntax’’ ([...] = optional) :

<TAG type="vartype" size="n" [UNIT="units"] [LEN="k"]>

values (in appropriate units) for variable corresponding to TAG:

n elements of type vartype (if character, of lenght k)

</TAG>

where TAG describes the variable into which data must be read;

"vartype" may be "integer", "real", "character", "logical";

if type="logical", LEN=k" must be used to specify the length

of the variable character; size="n" is the dimension.

Acceptable values for "units" depend on the specific tag.

’’Short syntax’’, used only in a few cases:

<TAG attribute="something"/> .

For instance:

<FFT_GRID nr1="NR1" nr2="NR2" nr3="NR3"/>

defines the value of the FFT grid parameters nr1, nr2, nr3

for the charge density

6.1.4 Sample

* Header:

<?xml version="1.0"?>

<?iotk version="1.0.0test"?>

<?iotk file_version="1.0"?>

<?iotk binary="F"?>

These are meant to be used only by iotk (actually they aren’t)

* First-level tags:

- <HEADER> (global information about fmt version)

- <CONTROL> (miscellanea of internal information)

- <STATUS> (information about the status of the CP simulation)

- <CELL> (lattice vector, unit cell, etc)

- <IONS> (type and positions of atoms in the unit cell etc)

- <SYMMETRIES> (symmetry operations)

- <ELECTRIC_FIELD> (details for an eventual applied electric field)

- <PLANE_WAVES> (basis set, cutoffs etc)

18

- <SPIN> (info on spin polarizaztion)

- <MAGNETIZATION_INIT> (info about starting or constrained magnetization)

- <EXCHANGE_CORRELATION>

- <OCCUPATIONS> (occupancy of the states)

- <BRILLOUIN_ZONE> (k-points etc)

- <PHONON> (info for phonon calculations)

- <PARALLELISM> (specialized info for parallel runs)

- <CHARGE-DENSITY>

- <TIMESTEPS> (positions, velocities, nose’ thermostats)

- <BAND_STRUCTURE_INFO> (dimensions and basic data about band structure)

- <EIGENVALUES> (eigenvalues and related data)

- <EIGENVECTORS> (eigenvectors and related data)

* Tag description

<HEADER>

<FORMAT> (name and version of the format)

<CREATOR> (name and version of the code generating the file)

</HEADER>

<CONTROL>

<PP_CHECK_FLAG> (whether the file can be used for post-processing)

<LKPOINT_DIR> (whether kpt-data are written in sub-directories)

<Q_REAL_SPACE> (whether augmentation terms are used in real space)

</CONTROL>

<STATUS> (optional)

<STEP> (number $n of steps performed, i.e. we are at step $n)

<TIME> (total simulation time)

<TITLE> (a job descriptor)

<ekin> (kinetic energy)

<eht> (hartree energy)

<esr> (Ewald term, real-space contribution)

<eself> (self-interaction of the Gaussians)

<epseu> (pseudopotential energy, local)

<enl> (pseudopotential energy, nonlocal)

<exc> (exchange-correlation energy)

<vave> (average of the potential)

<enthal> (enthalpy: E+PV)

</STATUS>

19

<CELL>

<BRAVAIS_LATTICE>

<LATTICE_PARAMETER>

<CELL_DIMENSIONS> (cell parameters)

<DIRECT_LATTICE_VECTORS>

<UNITS_FOR_DIRECT_LATTICE_VECTORS>

<a1>

<a2>

<a3>

<RECIPROCAL_LATTICE_VECTORS>

<UNITS_FOR_RECIPROCAL_LATTICE_VECTORS>

<b1>

<b2>

<b3>

</CELL>

<IONS>

<NUMBER_OF_ATOMS>

<NUMBER_OF_SPECIES>

<UNITS_FOR_ATOMIC_MASSES>

For each $n-th species $X:

<SPECIE.$n>

<ATOM_TYPE>

<MASS>

<PSEUDO>

</SPECIE.$n>

<PSEUDO_DIR>

<UNITS_FOR_ATOMIC_POSITIONS>

For each atom $n of species $X:

<ATOM.$n SPECIES="$X">

</IONS>

<SYMMETRIES>

<NUMBER_OF_SYMMETRIES>

<INVERSION_SYMMETRY>

<NUMBER_OF_ATOMS>

<UNITS_FOR_SYMMETRIES>

For each symmetry $n:

<SYMM.$n>

<INFO>

20

<ROTATION>

<FRACTIONAL_TRANSLATION>

<EQUIVALENT_IONS>

</SYMM.$n>

</SYMMETRIES>

<ELECTRIC_FIELD> (optional)

<HAS_ELECTRIC_FIELD>

<HAS_DIPOLE_CORRECTION>

<FIELD_DIRECTION>

<MAXIMUM_POSITION>

<INVERSE_REGION>

<FIELD_AMPLITUDE>

</ELECTRIC_FIELD>

<PLANE_WAVES>

<UNITS_FOR_CUTOFF>

<WFC_CUTOFF>

<RHO_CUTOFF>

<MAX_NUMBER_OF_GK-VECTORS>

<GAMMA_ONLY>

<FFT_GRID>

<GVECT_NUMBER>

<SMOOTH_FFT_GRID>

<SMOOTH_GVECT_NUMBER>

<G-VECTORS_FILE> link to file "gvectors.dat"

<SMALLBOX_FFT_GRID>

</PLANE_WAVES>

<SPIN>

<LSDA>

<NON-COLINEAR_CALCULATION>

<SPIN-ORBIT_CALCULATION>

<SPIN-ORBIT_DOMAG>

</SPIN>

<EXCHANGE_CORRELATION>

<DFT>

<LDA_PLUS_U_CALCULATION>

if LDA_PLUS_U_CALCULATION

<NUMBER_OF_SPECIES>

21

<HUBBARD_LMAX>

<HUBBARD_L>

<HUBBARD_U>

<HUBBARD_ALPHA>

endif

</EXCHANGE_CORRELATION>

<OCCUPATIONS>

<SMEARING_METHOD>

if gaussian smearing

<SMEARING_TYPE>

<SMEARING_PARAMETER>

endif

<TETRAHEDRON_METHOD>

if use tetrahedra

<NUMBER_OF_TETRAHEDRA>

for each tetrahedron $t

<TETRAHEDRON.$t>

endif

<FIXED_OCCUPATIONS>

if using fixed occupations

<INFO>

<INPUT_OCC_UP>

if lsda

<INPUT_OCC_DOWN>

endif

endif

</OCCUPATIONS>

<BRILLOUIN_ZONE>

<NUMBER_OF_K-POINTS>

<UNITS_FOR_K-POINTS>

<MONKHORST_PACK_GRID>

<MONKHORST_PACK_OFFSET>

For each k-point $n:

<K-POINT.$n>

</BRILLOUIN_ZONE>

<PHONON>

<NUMBER_OF_MODES>

<UNITS_FOR_Q-POINT>

22

<Q-POINT>

</PHONON>

<PARALLELISM>

<GRANULARITY_OF_K-POINTS_DISTRIBUTION>

</PARALLELISM>

<CHARGE-DENSITY>

link to file "charge_density.rho"

</CHARGE-DENSITY>

<TIMESTEPS> (optional)

For each time step $n=0,M

<STEP$n>

<ACCUMULATORS>

<IONS_POSITIONS>

<stau>

<svel>

<taui>

<cdmi>

<force>

<IONS_NOSE>

<nhpcl>

<nhpdim>

<xnhp>

<vnhp>

<ekincm>

<ELECTRONS_NOSE>

<xnhe>

<vnhe>

<CELL_PARAMETERS>

<ht>

<htve>

<gvel>

<CELL_NOSE>

<xnhh>

<vnhh>

</CELL_NOSE>

</TIMESTEPS>

<BAND_STRUCTURE_INFO>

23

<NUMBER_OF_BANDS>

<NUMBER_OF_K-POINTS>

<NUMBER_OF_SPIN_COMPONENTS>

<NON-COLINEAR_CALCULATION>

<NUMBER_OF_ATOMIC_WFC>

<NUMBER_OF_ELECTRONS>

<UNITS_FOR_K-POINTS>

<UNITS_FOR_ENERGIES>

<FERMI_ENERGY>

</BAND_STRUCTURE_INFO>

<EIGENVALUES>

For all kpoint $n:

<K-POINT.$n>

<K-POINT_COORDS>

<WEIGHT>

<DATAFILE> link to file "./K$n/eigenval.xml"

</K-POINT.$n>

</EIGENVALUES>

<EIGENVECTORS>

<MAX_NUMBER_OF_GK-VECTORS>

For all kpoint $n:

<K-POINT.$n>

<NUMBER_OF_GK-VECTORS>

<GK-VECTORS> link to file "./K$n/gkvectors.dat"

for all spin $s

<WFC.$s> link to file "./K$n/evc.dat"

<WFCM.$s> link to file "./K$n/evcm.dat" (optional)

containing wavefunctions at preceding step

</K-POINT.$n>

</EIGENVECTORS>

6.2 Restart files

7 Modifying/adding/extending Quantum-ESPRESSO

7.1 Hints, Caveats, Do’s and Dont’s

• Before doing anything, inquire whether it is already there, or under
development.

24

• Before starting writing code, inquire whether you can reuse code that
is already available in the distribution. Avoid redundancy: the only
bug-free software line is the one that doesn’t exist.

• When you make some change:

– Check that are not spoiling other people’s work. In particular,
search the distribution for codes using the routine or module you
are modifying and change its usage or its calling sequence every-
where.

– Do not forget to add/update documentation and examples as well.

– Do not forget that your change must work on many different com-
binations of hardware and software, in both serial and parallel
execution.

• Please do not include files with DOS M̂ characters or tabulators Î.

7.2 Programming style (or lack of it)

Guidelines for developers:

• preprocessing options should be capitalized and start with two under-
scores. Examples: AIX, LINUX, ...

• fortran commands should be capitalized: CALL something()

• variable names should be lowercase: foo = bar/2

• indent DO’s and IF’s with three white spaces (editors like emacs will
do this automatically for you)

• do not write crammed code: leave spaces, insert empty separation lines

• comments (introduced by a !) should be used to explain what is not
obvious from the code, not to repeat what is already evident. Obscure
comments serve no purpose.

• do not use machine-dependent extensions or sloppy syntax. Standard
f90 requires that a & is needed both at end of line AND at the beginning
of continuation line if there is a ’ ’ or ” ” spanning two lines. Some
compilers do not complain if the latter & is missing, others do.

• use DP (defined in module ”kinds”) to define the type of real and
complex variables

25

• all constants should be defined to be of kind DP. Preferred syntax:
0.0 dp.

• conversions should be explicitely indicated. For conversions to real (in-
cluding taking the real part of a complex number), use DBLE. For the
imaginary part, use AIMAG. Beware: the following is obsolescent For
conversions to complex, use CMPLX. Note that CMPLX is prepro-
cessed by f defs.h and performs an explicit cast:

#define CMPLX(a,b) cmplx(a,b,kind=DP)

This implies that 1)f defs.h must be included whenever a CMPLX is
present, 2) CMPLX should stay in a single line, 3) DP must be defined.

7.3 Adding or modifying input variables

New input variables should be added to ”Modules/input parameters.f90”,
then copied to the code internal variables in the ”input.f90” subroutine. The
namelists and cards parsers are in : ”Modules/read namelists.f90” and ”Mod-
ules/read cards.f90”. Files ”input parameters.f90”, ”read namelists.f90”, ”read cards.f90”
are shared by all codes, while each code has its own version of ”input.f90”
used to copy input values into internal variables

EXAMPLE: suppose you need to add a new input variable called ”pippo”
to the namelist control, then:

1. add pippo to the input parameters.f90 file containing the namelist con-
trol

INTEGER :: pippo = 0

NAMELIST / control /, pippo

Remember: always set an initial value!

2. add pippo to the control default subroutine (contained in module read namelists.f90
)

subroutine control_default(prog)

...

IF(prog == ’PW’) pippo = 10

...

end subroutine

26

This routine sets the default value for pippo (can be different in different
codes)

3. add pippo to the control bcast subroutine (contained in module read namelists.f90
)

subroutine control_bcast()

...

call mp_bcast(pippo)

...

end subroutine

8 Using CVS

The package is available read-only using anonymous CVS. Developers may
have read-write access if needed. Note that the latest (development) version
may not work properly, and sometimes not even compile properly. Use at
your own risk.

CVS (Concurrent Version System) is a software that allows many devel-
opers to work and maintain a single copy of a software in a central location
(repository). It is installed by default on most Unix machines, or otherwise
it can be very easily installed: see http://www.cvshome.org. For a tutorial,
see: http://www.loria.fr/ molli/cvs/cvs-tut/cvs tutorial toc.html . You will
also need a working installation of ssh (secure shell) to use CVS.

8.1 Anonymous CVS

You have to define the environment variables CVS RSH and CVSROOT. For
csh/tcsh, use

setenv CVS_RSH ssh

setenv CVSROOT :pserver:anonymous@scm.qe-forge.org:/cvsroot/q-e

For sh/ksh/bash, use

export CVS_RSH=ssh

export CVSROOT=:pserver:anonymous@scm.qe-forge.org:/cvsroot/q-e

Then:

cvs login

Do not specify any password, just press ”Enter”.

27

8.2 Read/Write CVS

The environment variable CVS RSH is defined as above, but CVSROOT is
set to a different value. For csh/tcsh, use

setenv CVS_RSH ssh

setenv CVSROOT :ext:your-account@scm.qe-forge.org:/cvsroot/q-e

For sh/ksh/bash use

export CVS_RSH=ssh

export CVSROOT=:ext:your-account@scm.qe-forge.org:/cvsroot/q-e

You need to have an account on http://www.qe-forge.org (”your-account”
above) with provileges as quantum ESPRESSO developer. You will be
prompted for your password at each cvs operation.

8.3 CVS operations

For the first code download:

cvs co espresso

The code appears in directory ”espresso/”. To update the code to the current
version:

cvs update -dP

in the directory containing the distribution. Option ”-d” ensures that newly
added directories are downloaded, ”-P” that empty directories are removed.
It is possible to download the version at a given date, or corresponding to a
given ”tag” (set by the developers, usually just before extensive changes or
at public releases).

When updating, you should get lines looking like

cvs server: Updating Modules

P Modules/Makefile

U Modules/control_flags.f90

where P means ”patched”, U means ”updated” (a new file is added); or

M PW/Makefile

where M means ”locally modified” (i.e., wrt the CVS repository version); or

cvs server: FPMD/control.f90 is no longer in the repository

28

if a file has been meanwhile deleted, or moved, or renamed; but no lines like

C Somedir/SomeFile

cvs server: conflict while updating Somedir/SomeFile

This means that somebody else has modified the same parts of the code that
you have locally modified; conflicting files will contain lines like

>>>>>>>>>>>>>

something

=============

something else

<<<<<<<<<<<<<

If this happen, you must edit the file manually to remove conflicts.
You can compare your local copy with any version of the repository using

cvs diff -r tag

or with the repository at a given date using

cvs diff -D date

You can also compare two different versions/snapshots of the repository, by
specifying two different tags or dates. Options ”-i” (ignore case), ”-w” (ignore
all white spaces), ”-b” (ignore changes in the number of white spaces) may
be useful to distinguish true changes from esthetic ones (such as changes in
indentation).

READ-WRITE ACCESS ONLY:
In order to save your changes to the repository, use ”cvs commit”. In

order to add a file, first use ”cvs add”, then ”cvs commit”. In order to delete
a file, first use ”cvs delete”, then ”cvs commit”. In order to rename a file,
delete the file with the old name, add the file with the new name.

In order to add a new directory (let us say ”dir/”, and if you have the
permission to do so:

• create directory”dir/”; do ”cvs add dir” (this will create the CVS sub-
directory in the new directory ”dir/”)

• copy all files into ”dir/”, then from inside ”dir/” add files: ”cvs add
*.f90 Makefile” (for instance)

• ”cvs commit” will save the new directory

29

8.4 Web-CVS interface

You will find the [http://qe-forge.org/cgi-bin/cvstrac/q-e/index Web-CVS
interface], in particular the ”Timeline” and ”Browse” options, useful to follow
what has been done and what is going on in the development version.

30

	Introduction
	Who should read (and who should write) this guide
	Who may read this guide but will not necessarily profit from it
	How to Contribute to Quantum-ESPRESSO

	 Structure of the distribution
	Contents of the various directories
	 Modules
	 Sources
	 Utilities
	 Libraries

	Installation mechanism
	 How to edit the configure script
	How to add support for a new architecture

	Adding new directories or routines

	 Algorithms
	Diagonalization
	Self-consistency
	Structural optimization
	Symmetrization
	Gamma tricks

	 Structure of the code
	Modules and global variables
	Meaning of the most important variables
	Conventions for indices
	Preprocessing
	Performance issues
	Portability issues

	 Parallelization
	Paradigms
	Implementation
	 Data distribution
	 Parallel fft

	 File Formats
	Data file(s)
	Rationale
	General structure
	 Structure of file "data-file.xml"
	Sample

	Restart files

	 Modifying/adding/extending Quantum-ESPRESSO
	Hints, Caveats, Do's and Dont's
	Programming style (or lack of it)
	Adding or modifying input variables

	 Using CVS
	Anonymous CVS
	Read/Write CVS
	CVS operations
	Web-CVS interface

