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Abstract

SuiteSparse:GraphBLAS is a full implementation of the Graph-
BLAS standard, which defines a set of sparse matrix operations on
an extended algebra of semirings using an almost unlimited variety
of operators and types. When applied to sparse adjacency matrices,
these algebraic operations are equivalent to computations on graphs.
GraphBLAS provides a powerful and expressive framework for cre-
ating graph algorithms based on the elegant mathematics of sparse
matrix operations on a semiring.
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1 Introduction

The GraphBLAS standard defines sparse matrix and vector operations on an
extended algebra of semirings. The operations are useful for creating a wide
range of graph algorithms.

For example, consider the matrix-matrix multiplication, C = AB. Sup-
pose A and B are sparse n-by-n Boolean adjacency matrices of two undi-
rected graphs. If the matrix multiplication is redefined to use logical AND
instead of scalar multiply, and if it uses the logical OR instead of add, then
the matrix C is the sparse Boolean adjacency matrix of a graph that has an
edge (i, j) if node i in A and node j in B share any neighbor in common. The
OR-AND pair forms an algebraic semiring, and many graph operations like
this one can be succinctly represented by matrix operations with different
semirings and different numerical types. GraphBLAS provides a wide range
of built-in types and operators, and allows the user application to create new
types and operators without needing to recompile the GraphBLAS library.

For more details on SuiteSparse:GraphBLAS, and its use in LAGraph,
see [Dav19, Dav18, DAK19, ACD+20, MDK+19].

A full and precise definition of the GraphBLAS specification is provided
in The GraphBLAS C API Specification by Aydın Buluç, Timothy Mattson,
Scott McMillan, José Moreira, and Carl Yang [BMM+17a, BMM+17b], based
on GraphBLAS Mathematics by Jeremy Kepner [Kep17]. The GraphBLAS C
API Specification is available at http://graphblas.org. This version of Suite-
Sparse:GraphBLAS fully conforms to Version 1.2.0 (May 18, 2018) of that
specification. In this User Guide, aspects of the GraphBLAS specification
that would be true for any GraphBLAS implementation are simply called
“GraphBLAS.” Details unique to this particular implementation are referred
to as SuiteSparse:GraphBLAS.

SPEC: See the tag SPEC: for SuiteSparse extensions to the spec. They
are also placed in text boxes like this one. All functions, objects, and
macros with a name of the form GxB_* are extensions to the spec.
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1.1 Release Notes:

• Version 3.2.0 (Feb 20, 2020). Faster GrB_mxm, GrB_mxv, and GrB_vxm,
and faster operations on dense matrices/vectors. Removed compile-
time user objects (GxB_*_define), since these were not compatible
with the faster matrix operations. Added the ANY and PAIR operators.
Added the predefined descriptor, GrB_DESC_*. Added the structural
mask option. Changed default chunk size to 65,536. Note that v3.2.0 is
not compatible with the MS Visual Studio compiler; use v3.1.2 instead.
MATLAB interface modified: GrB.init is now optional.

• Version 3.1.2 (Dec, 2019). Changes to allow SuiteSparse:GraphBLAS
to be compiled with the Microsoft Visual Studio compiler. This com-
piler does not support the _Generic keyword, so the polymorphic func-
tions are not available. Use the equivalent non-polymorphic functions
instead, when compiling GraphBLAS with MS Visual Studio. In ad-
dition, variable-length arrays are not supported, so user-defined types
are limited to 128 bytes in size. These changes have no effect if you
have an ANSI C11 compliant compiler.

MATLAB interface modified: GrB.init is now required.

• Version 3.1.0 (Oct 1, 2019). MATLAB interface added. See the
GraphBLAS/GraphBLAS folder for details and documentation, and Sec-
tion 3.1.

• Version 3.0 (July 26, 2019), with OpenMP parallelism.

The version number is increased to 3.0, since this version is not back-
ward compatible with V2.x. The GxB_select operation changes; the
Thunk parameter was formerly a const void * pointer, and is now
a GxB_Scalar. A new parameter is added to GxB_SelectOp_new, to
define the expected type of Thunk. A new parameter is added to
GxB_init, to specify whether or not the user-provided memory man-
agement functions are thread safe.

The remaining changes add new features, and are upward compati-
ble with V2.x. The major change is the addition of OpenMP paral-
lelism. This addition has no effect on the API, except that round-off
errors can differ with the number of threads used, for floating-point
types. GxB_set can optionally define the number of threads to use
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(the default is omp_get_max_threads). The number of threads can
also defined globally, and/or in the GrB_Descriptor. The RDIV and
RMINUS operators are added, which are defined as f(x, y) = y/x and
f(x, y) = y−x, respectively. Additional options are added to GxB_get.

• Version 2.3.3 (May 2019): Collected Algorithm of the ACM. No changes
from V2.3.2 other than the documentation.

• Version 2.3 (Feb 2019) improves the performance of many GraphBLAS
operations, including an early-exit for monoids. These changes have
a significant impact on breadth-first-search (a performance bug was
also fixed in the two BFS Demo codes). The matrix and vector im-
port/export functions were added (Section 5.10), in support of the
new LAGraph project (https://github.com/GraphBLAS/LAGraph, see
also Section 11.1). LAGraph includes a push-pull BFS in GraphBLAS
that is faster than two versions in the Demo folder. GxB_init was added
to allow the memory manager functions (malloc, etc) to be specified.

• Version 2.2 (Nov 2018) adds user-defined objects at compile-time, via
user *.m4 files placed in GraphBLAS/User, which use the GxB_*_define
macros described in Section 10 (NOTE: feature removed in v3.2). The
default matrix format is now GxB_BY_ROW. Also added are the GxB_*print
methods for printing the contents of each GraphBLAS object (Sec-
tion 9). PageRank demos have been added to the Demos folder. Prior
versions required GraphBLAS to be compiled with OpenMP, for it to be
thread-safe. It can now be compiled with POSIX pthreads. The cmake

script automatically detects if OpenMP and/or POSIX pthreads are
available. Demos have been added to show how GraphBLAS can be
called from a multi-threaded user application.

• Version 2.1 (Oct 2018) was a major update with support for new matrix
formats (by row or column, and hypersparse matrices), and MATLAB-
like colon notation (I=begin:end or I=begin:inc:end). Some graph
algorithms are more naturally expressed with matrices stored by row,
and this version includes the new GxB_BY_ROW format. The default
format in Version 2.1 and prior versions is by column. New exten-
sions to GraphBLAS in this version include GxB_get, GxB_set, and
GxB_AxB_METHOD, GxB_RANGE, GxB_STRIDE, and GxB_BACKWARDS, and
their related definitions, described in Sections 5.11, 6, and 7.
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• Version 2.0 (March 2018) addressed changes in the GraphBLAS C API
Specification and added GxB_kron and GxB_resize.

• Version 1.1 (Dec 2017) primarily improved the performance.

• Version 1.0 was released on Nov 25, 2017.
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2 Basic Concepts

Since the GraphBLAS C API Specification provides a precise definition of
GraphBLAS, not every detail of every function is provided here. For example,
some error codes returned by GraphBLAS are self-explanatory, but since a
specification must precisely define all possible error codes a function can
return, these are listed in detail in the GraphBLAS C API Specification.
However, including them here is not essential and the additional information
on the page might detract from a clearer view of the essential features of the
GraphBLAS functions.

This User Guide also assumes the reader is familiar with the MATLAB
language, created by Cleve Moler. MATLAB supports only the conventional
plus-times semiring on sparse double and complex matrices, but a MATLAB-
like notation easily extends to the arbitrary semirings used in GraphBLAS.
The matrix multiplication in the example in the Introduction can be written
in MATLAB notation as C=A*B, if the Boolean OR-AND semiring is under-
stood. Relying on a MATLAB-like notation allows the description in this
User Guide to be expressive, easy to understand, and terse at the same time.
The GraphBLAS C API Specification also makes use of some MATLAB-like
language, such as the colon notation.

MATLAB notation will always appear here in fixed-width font, such as
C=A*B(:,j). In standard mathematical notation it would be written as the
matrix-vector multiplication C = Abj where bj is the jth column of the ma-
trix B. The GraphBLAS standard is a C API and SuiteSparse:GraphBLAS
is written in C, and so a great deal of C syntax appears here as well, also
in fixed-width font. This User Guide alternates between all three styles as
needed.

2.1 Graphs and sparse matrices

Graphs can be huge, with many nodes and edges. A dense adjacency matrix
A for a graph of n nodes takes O(n2) memory, which is impossible if n is,
say, a million. Most graphs arising in practice are sparse, however, with only
|A| = O(n) edges, where |A| denotes the number of edges in the graph, or
the number of explicit entries present in the data structure for the matrix A.
Sparse graphs with millions of nodes and edges can easily be created by repre-
senting them as sparse matrices, where only explicit values need to be stored.
Some graphs are hypersparse, with |A| << n. SuiteSparse:GraphBLAS sup-
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ports two kinds of sparse matrix formats: a regular sparse format, taking
O(n + |A|) space, and a hypersparse format taking only O(|A|) space. As
a result, creating a sparse matrix of size n-by-n where n = 260 (about 1018)
can be done on quite easily on a commodity laptop, limited only by |A|.

A sparse matrix data structure only stores a subset of the possible n2

entries, and it assumes the values of entries not stored have some implicit
value. In conventional linear algebra, this implicit value is zero, but it differs
with different semirings. Explicit values are called entries and they appear in
the data structure. The pattern of a matrix defines where its explicit entries
appear. It will be referenced in one of two equivalent ways. It can be viewed
as a set of indices (i, j), where (i, j) is in the pattern of a matrix A if A(i, j)
is an explicit value. It can also be viewed as a Boolean matrix S where
S(i, j) is true if (i, j) is an explicit entry and false otherwise. In MATLAB
notation, S=spones(A) or S=(A~=0), if the implicit value is zero. The (i,j)

pairs, and their values, can also be extracted from the matrix via the MAT-
LAB expression [I,J,X]=find(A), where the kth tuple (I(k),J(k),X(k))

represents the explicit entry A(I(k),J(k)), with numerical value X(k) equal
to aij, with row index i=I(k) and column index j=J(k).

The entries in the pattern of A can take on any value, including the
implicit value, whatever it happens to be. This differs slightly from MAT-
LAB, which always drops all explicit zeros from its sparse matrices. This
is a minor difference but it cannot be done in GraphBLAS. For example, in
the max-plus tropical algebra, the implicit value is negative infinity, and zero
has a different meaning. Here, the MATLAB notation used will assume that
no explicit entries are ever dropped because their explicit value happens to
match the implicit value.

Graph Algorithms in the Language on Linear Algebra, Kepner and Gilbert,
eds., provides a framework for understanding how graph algorithms can be
expressed as matrix computations [KG11]. For additional background on
sparse matrix algorithms, see also [Dav06] and [DRSL16].

2.2 Overview of GraphBLAS methods and operations

GraphBLAS provides a collection of methods to create, query, and free its
of objects: sparse matrices, sparse vectors, sparse scalars, types, operators,
monoids, semirings, and a descriptor object used for parameter settings. De-
tails are given in Section 5. Once these objects are created they can be used
in mathematical operations (not to be confused with the how the term oper-
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ator is used in GraphBLAS). A short summary of these operations and their
nearest MATLAB analog is given in the table below.

operation approximate MATLAB analog
matrix multiplication C=A*B

element-wise operations C=A+B and C=A.*B

reduction to a vector or scalar s=sum(A)

apply unary operator C=-A

transpose C=A’

submatrix extraction C=A(I,J)

submatrix assignment C(I,J)=A

GraphBLAS can do far more than what MATLAB can do in these rough
analogs, but the list provides a first step in describing what GraphBLAS can
do. Details of each GraphBLAS operation are given in Section 8. With this
brief overview, the full scope of GraphBLAS extensions of these operations
can now be described.

GraphBLAS has 11 built-in scalar types: Boolean, single and double
precision floating-point, and 8, 16, 32, and 64-bit signed and unsigned inte-
gers. In addition, user-defined scalar types can be created from nearly any
C typedef, as long as the entire type fits in a fixed-size contiguous block of
memory (of arbitrary size). All of these types can be used to create Graph-
BLAS sparse matrices, vectors, or scalars.

The scalar addition of conventional matrix multiplication is replaced with
a monoid. A monoid is an associative and commutative binary operator
z=f(x,y) where all three domains are the same (the types of x, y, and z), and
where the operator has an identity value id such that f(x,id)=f(id,x)=x.
Performing matrix multiplication with a semiring uses a monoid in place of
the “add” operator, scalar addition being just one of many possible monoids.
The identity value of addition is zero, since x + 0 = 0 + x = x. GraphBLAS
includes eight built-in operators suitable for use as a monoid: min (with an
identity value of positive infinity), max (whose identity is negative infinity),
add (identity is zero) multiply (with an identity of one), and four logical oper-
ators: AND, OR, exclusive-OR, and Boolean equality. User-created monoids
can be defined with any associative and commutative operator that has an
identity value.

Finally, a semiring can use any built-in or user-defined binary operator
z=f(x,y) as its “multiply” operator, as long as the type of its output, z

matches the type of the semiring’s monoid. The user application can create
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any semiring based on any types, monoids, and multiply operators, as long
these few rules are followed.

Just considering built-in types and operators, GraphBLAS can perform
C=A*B in 1355 unique semirings. With typecasting, any of these 1355 semir-
ings can be applied to matrices C, A, and B of any of the 11 types, in any
combination. This gives 1355×113 = 1, 803, 505 possible kinds of sparse ma-
trix multiplication supported by GraphBLAS, and this is counting just built-
in types and operators. By contrast, MATLAB provides just two semirings
for its sparse matrix multiplication C=A*B: plus-times-double and plus-times-
complex, not counting the typecasting that MATLAB does when multiplying
a real matrix times a complex matrix. All of the 1.4 million forms of ma-
trix multiplication methods in SuiteSparse:GraphBLAS are typically just as
fast as computing C=A*B in MATLAB using its own native sparse matrix
multiplication methods, and often faster when parallelism can be effectively
used.

A monoid can also be used in a reduction operation, like s=sum(A) in
MATLAB. MATLAB provides the plus, times, min, and max reductions of
a real or complex sparse matrix as s=sum(A), s=prod(A), s=min(A), and
s=max(A), respectively. In GraphBLAS, any monoid can be used (min, max,
plus, times, AND, OR, exclusive-OR, equality, or any user-defined monoid,
on any user-defined type).

Element-wise operations are also expanded from what can be done in
MATLAB. Consider matrix addition, C=A+B in MATLAB. The pattern of
the result is the set union of the pattern of A and B. In GraphBLAS, any
binary operator can be used in this set-union “addition.” The operator is
applied to entries in the intersection. Entries in A but not B, or visa-versa,
are copied directly into C, without any application of the binary operator.
The accumulator operation for Z = C�T described in Section 2.3 is one
example of this set-union application of an arbitrary binary operator.

Consider element-wise multiplication, C=A.*B in MATLAB. The operator
(multiply in this case) is applied to entries in the set intersection, and the
pattern of C just this set intersection. Entries in A but not B, or visa-versa,
do not appear in C. In GraphBLAS, any binary operator can be used in this
manner, not just scalar multiplication. The difference between element-wise
“add” and “multiply” is not the operators, but whether or not the pattern of
the result is the set union or the set intersection. In both cases, the operator
is only applied to the set intersection.

Finally, GraphBLAS includes a non-blocking mode where operations can
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be left pending, and saved for later. This is very useful for submatrix as-
signment (C(I,J)=A where I and J are integer vectors), or scalar assignment
(C(i,j)=x where i and j are scalar integers). Because of how MATLAB
stores its matrices, adding and deleting individual entries is very costly. For
example, this is very slow in MATLAB, taking O(nz2) time:

A = sparse (m,n) ; % an empty sparse matrix

for k = 1:nz

compute a value x, row index i, and column index j

A (i,j) = x ;

end

The above code is very easy read and simple to write, but exceedingly
slow. In MATLAB, the method below is preferred and is far faster, taking
at most O(|A| log |A|+ n) time. It can easily be a million times faster than
the method above. Unfortunately the second method below is a little harder
to read and a little less natural to write:

I = zeros (nz,1) ;

J = zeros (nz,1) ;

X = zeros (nz,1) ;

for k = 1:nz

compute a value x, row index i, and column index j

I (k) = i ;

J (k) = j ;

X (k) = x ;

end

A = sparse (I,J,X,m,n) ;

GraphBLAS can do both methods. SuiteSparse:GraphBLAS stores its
matrices in a format that allows for pending computations, which are done
later in bulk, and as a result it can do both methods above equally as fast
as the MATLAB sparse function, allowing the user to write simpler code.

2.3 The accumulator and the mask

Most GraphBLAS operations can be modified via transposing input matrices,
using an accumulator operator, applying a mask or its complement, and by
clear all entries the matrix C after using it in the accumulator operator but
before the final results are written back into it. All of these steps are optional,
and are controlled by a descriptor object that holds parameter settings (see
Section 5.11) that control the following options:
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• the input matrices A and/or B can be transposed first.

• an accumulator operator can be used, like the plus in the statement
C=C+A*B. The accumulator operator can be any binary operator, and
an element-wise “add” (set union) is performed using the operator.

• an optional mask can be used to selectively write the results to the
output. The mask is a sparse Boolean matrix Mask whose size is the
same size as the result. If Mask(i,j) is true, then the corresponding
entry in the output can be modified by the computation. If Mask(i,j)
is false, then the corresponding in the output is protected and cannot
be modified by the computation. The Mask matrix acts exactly like
logical matrix indexing in MATLAB, with one minor difference: in
GraphBLAS notation, the mask operation is C〈M〉 = Z, where the
mask M appears only on the left-hand side. In MATLAB, it would
appear on both sides as C(Mask)=Z(Mask). If no mask is provided, the
Mask matrix is implicitly all true. This is indicated by passing the value
GrB_NULL in place of the Mask argument in GraphBLAS operations.

This process can be described in mathematical notation as:

A = AT, if requested via descriptor (first input option)

B = BT, if requested via descriptor (second input option)
T is computed according to the specific operation
C〈M〉 = C�T, accumulating and writing the results back via the mask

The application of the mask and the accumulator operator is written as
C〈M〉 = C�T where Z = C�T denotes the application of the accumu-
lator operator, and C〈M〉 = Z denotes the mask operator via the Boolean
matrix M. The Accumulator Phase, Z = C�T, is performed as follows:

Accumulator Phase: compute Z = C�T:
if accum is NULL

Z = T
else

Z = C�T

The accumulator operator is � in GraphBLAS notation, or accum in the
code. The pattern of C�T is the set union of the patterns of C and T, and
the operator is applied only on the set intersection of C and T. Entries in
neither the pattern of C nor T do not appear in the pattern of Z. That is:
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for all entries (i, j) in C ∩T (that is, entries in both C and T)
zij = cij � tij

for all entries (i, j) in C \T (that is, entries in C but not T)
zij = cij

for all entries (i, j) in T \C (that is, entries in T but not C)
zij = tij

The Accumulator Phase is followed by the Mask/Replace Phase, C〈M〉 = Z
as controlled by the GrB_REPLACE and GrB_COMP descriptor options:

Mask/Replace Phase: compute C〈M〉 = Z:
if (GrB_REPLACE) delete all entries in C
if Mask is NULL

if (GrB_COMP)
C is not modified

else
C = Z

else
if (GrB_COMP)

C〈¬M〉 = Z
else

C〈M〉 = Z

Both phases of the accum/mask process are illustrated in MATLAB no-
tation in Figure 1. A GraphBLAS operation starts with its primary compu-
tation, producing a result T; for matrix multiply, T=A*B, or if A is transposed
first, T=A’*B, for example. Applying the accumulator, mask (or its comple-
ment) to obtain the final result matrix C can be expressed in the MATLAB
accum_mask function shown in the figure. This function is an exact, fully
functional, and nearly-complete description of the GraphBLAS accumula-
tor/mask operation. The only aspects it does not consider are typecasting
(see Section 2.4), and the value of the implicit identity (for those, see another
version in the Test folder).

One aspect of GraphBLAS cannot be as easily expressed in a MATLAB
sparse matrix: namely, what is the implicit value of entries not in the pat-
tern? To accommodate this difference in the accum_mask MATLAB func-
tion, each sparse matrix A is represented with its values A.matrix and its
pattern, A.pattern. The latter could be expressed as the sparse matrix
A.pattern=spones(A) or A.pattern=(A~=0) in MATLAB, if the implicit
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function C = accum_mask (C, Mask, accum, T, C_replace, Mask_complement)

[m n] = size (C.matrix) ;

Z.matrix = zeros (m, n) ;

Z.pattern = false (m, n) ;

if (isempty (accum))

Z = T ; % no accum operator

else

% Z = accum (C,T), like Z=C+T but with an binary operator, accum

p = C.pattern & T.pattern ; Z.matrix (p) = accum (C.matrix (p), T.matrix (p));

p = C.pattern & ~T.pattern ; Z.matrix (p) = C.matrix (p) ;

p = ~C.pattern & T.pattern ; Z.matrix (p) = T.matrix (p) ;

Z.pattern = C.pattern | T.pattern ;

end

% apply the mask to the values and pattern

C.matrix = mask (C.matrix, Mask, Z.matrix, C_replace, Mask_complement) ;

C.pattern = mask (C.pattern, Mask, Z.pattern, C_replace, Mask_complement) ;

end

function C = mask (C, Mask, Z, C_replace, Mask_complement)

% replace C if requested

if (C_replace)

C (:,:) = 0 ;

end

if (isempty (Mask)) % if empty, Mask is implicit ones(m,n)

% implicitly, Mask = ones (size (C))

if (~Mask_complement)

C = Z ; % this is the default

else

C = C ; % Z need never have been computed

end

else

% apply the mask

if (~Mask_complement)

C (Mask) = Z (Mask) ;

else

C (~Mask) = Z (~Mask) ;

end

end

end

Figure 1: Applying the mask and accumulator, C〈M〉 = C�T
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value is zero. With different semirings, entries not in the pattern can be 1,
+Inf, -Inf, or whatever is the identity value of the monoid. As a result,
Figure 1 performs its computations on two MATLAB matrices: the values in
A.matrix and the pattern in the logical matrix A.pattern. Implicit values
are untouched.

The final computation in Figure 1 with a complemented Mask is easily
expressed in MATLAB as C(~Mask)=Z(~Mask) but this is costly if Mask is
very sparse (the typical case). It can be computed much faster in MATLAB
without complementing the sparse Mask via:

R = Z ; R (Mask) = C (Mask) ; C = R ;

A set of MATLAB functions that precisely compute the C〈M〉 = C�T
operation according to the full GraphBLAS specification is provided in Suite-
Sparse:GraphBLAS as GB_spec_accum.m, which computes Z = C�T, and
GB_spec_mask.m, which computes C〈M〉 = Z. SuiteSparse:GraphBLAS in-
cludes a complete list of GB_spec_* functions that illustrate every Graph-
BLAS operation; these are discussed in in Section 8.1.

The methods in Figure 1 rely heavily on MATLAB’s logical matrix in-
dexing. For those unfamiliar with logical indexing in MATLAB, here is short
summary. Logical matrix indexing in MATLAB is written as A(Mask) where
A is any matrix and Mask is a logical matrix the same size as A. The expression
x=A(Mask) produces a column vector x consisting of the entries of A where
Mask is true. On the left-hand side, logical submatrix assignment A(Mask)=x
does the opposite, copying the components of the vector x into the places in
A where Mask is true. For example, to negate all values greater than 10 using
logical indexing in MATLAB:

>> A = magic (4)

A =

16 2 3 13

5 11 10 8

9 7 6 12

4 14 15 1

>> A (A>10) = - A (A>10)

A =

-16 2 3 -13

5 -11 10 8

9 7 6 -12

4 -14 -15 1
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In MATLAB, logical indexing with a sparse matrix A and sparse logical
matrix Mask is very efficient since MATLAB supports sparse logical matrices.
The Mask operator in GraphBLAS works identically as sparse logical index-
ing in MATLAB, and is equally as fast (or faster) in SuiteSparse:GraphBLAS.

2.4 Typecasting

If an operator z=f(x) or z=f(x,y) is used with inputs that do not match
its inputs x or y, or if its result z does not match the type of the matrix it
is being stored into, then the values are typecasted. Typecasting in Graph-
BLAS extends beyond just operators. Almost all GraphBLAS methods and
operations are able to typecast their results, as needed.

If one type can be typecasted into the other, they are said to be compat-
ible. All built-in types are compatible with each other. GraphBLAS cannot
typecast user-defined types thus any user-defined type is only compatible
with itself. When GraphBLAS requires inputs of a specific type, or when
one type cannot be typecast to another, the GraphBLAS function returns an
error code, GrB_DOMAIN_MISMATCH (refer to Section 4.5 for a complete list of
error codes). Typecasting can only be done between built-in types, and it
follows the rules of the ANSI C language (not MATLAB) wherever the rules
of ANSI C are well-defined. In particular, a large integer outside the range
of a smaller one is wrapped, modulo style. This differs from MATLAB.

However, unlike MATLAB, the C language specification states that the
results of typecasting a float or double to an integer type is not always
defined. In SuiteSparse:GraphBLAS, whenever C leaves the result undefined
the rules used in MATLAB are followed. In particular +Inf converts to
the largest integer value, -Inf converts to the smallest (zero for unsigned
integers), and NaN converts to zero. Other than these special cases, Suite-
Sparse:GraphBLAS trusts the C compiler for the rest of its typecasting.

Typecasting to bool is fully defined in the C language specification, even
for NaN. The result is false if the value compares equal to zero, and true
otherwise. Thus NaN converts to true.

SPEC: the GraphBLAS API states that typecasting follows the rules of
ANSI C. Yet C leaves some typecasting undefined. SuiteSparse:GraphBLAS
provides a precise definition for all typecasting as an extension to the
spec.
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2.5 Notation and list of GraphBLAS operations

As a summary of what GraphBLAS can do, the following table lists all Graph-
BLAS operations (where GxB_* are in SuiteSparse:GraphBLAS only). Upper
case letters denote a matrix, lower case letters are vectors, and AB denote
the multiplication of two matrices over a semiring.

GrB_mxm matrix-matrix multiply C〈M〉 = C�AB
GrB_vxm vector-matrix multiply wT〈mT〉 = wT � uTA
GrB_mxv matrix-vector multiply w〈m〉 = w �Au
GrB_eWiseMult element-wise, C〈M〉 = C� (A⊗B)

set intersection w〈m〉 = w � (u⊗ v)
GrB_eWiseAdd element-wise, C〈M〉 = C� (A⊕B)

set union w〈m〉 = w � (u⊕ v)
GrB_extract extract submatrix C〈M〉 = C�A(I,J)

w〈m〉 = w � u(i)
GxB_subassign assign submatrix C(I,J)〈M〉 = C(I,J)�A

(with submask for C(I,J)) w(i)〈m〉 = w(i)� u
GrB_assign assign submatrix C〈M〉(I,J) = C(I,J)�A

(with mask for C) w〈m〉(i) = w(i)� u
GrB_apply apply unary operator C〈M〉 = C�f(A)

w〈m〉 = w�f(u)
GxB_select apply select operator C〈M〉 = C�f(A, k)

w〈m〉 = w�f(u, k)
GrB_reduce reduce to vector w〈m〉 = w�[⊕jA(:, j)]

reduce to scalar s = s� [⊕ijA(i, j)]
GrB_transpose transpose C〈M〉 = C�AT

GxB_kron Kronecker product C〈M〉 = C� kron(A,B)

Each operation takes an optional GrB_Descriptor argument that modi-
fies the operation. The input matrices A and B can be optionally transposed,
the mask M can be complemented, and C can be cleared of its entries after
it is used in Z = C�T but before the C〈M〉 = Z assignment. Vectors are
never transposed via the descriptor.

Let A⊕B denote the element-wise operator that produces a set union
pattern (like A+B in MATLAB). Any binary operator can be used this way
in GraphBLAS, not just plus. Let A⊗B denote the element-wise operator
that produces a set intersection pattern (like A.*B in MATLAB); any binary
operator can be used this way, not just times.

Reduction of a matrix A to a vector reduces the ith row of A to a scalar
wi. This is like w=sum(A’) since by default, MATLAB reduces down the
columns, not across the rows.
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3 Interfaces to MATLAB, Python, and Julia

The MATLAB interface to SuiteSparse:GraphBLAS is included with this
distribution, described in Section 3.1. It is fully polished, and fully tested,
but does have some limitations that will be addressed in future releases.

A beta version of a Python interface is now available, as is a Julia inter-
face. These are not part of the SuiteSparse:GraphBLAS distribution. See
the links below (see Sections 3.2 and 3.3).

3.1 MATLAB Interface

As of Version 3.1, a MATLAB interface is now available. Refer to the doc-
umentation in the GraphBLAS/GraphBLAS folder for details. Start with the
README.md file in that directory. An easy-to-read output of the MATLAB
demos can be found in GraphBLAS/GraphBLAS/demo/html.

Prior to using an GrB object or method, you must first call GrB.init.
The best place to put this is in your MATLAB startup.m file, normally
located in the user Documents/MATLAB folder.

The MATLAB interface adds the GrB class, which is an opaque MATLAB
object that contains a GraphBLAS matrix, either double or single precision,
boolean, or any of the built-in integer types. Complex matrix support will
be added in the future. MATLAB sparse and full matrices can be arbitrarily
mixed with GraphBLAS matrices. The following overloaded operators and
methods all work as you would expect for any matrix. The matrix multipli-
cation A*B uses the conventional PLUS_TIMES semiring.

A+B A-B A*B A.*B A./B A.\B A.^b A/b C=A(I,J)

-A +A ~A A’ A.’ A&B A|B b\A C(I,J)=A

A~=B A>B A==B A<=B A>=B A<B [A,B] [A;B] A(1:end,1:end)

fix isreal single

abs flip isscalar size

all floor issparse sparse

amd fprintf issymmetric spfun

and full istril spones

any graph istriu sprand

assert int16 isvector sprandn

bandwidth int32 kron sprandsym

ceil int64 length sprintf

colamd int8 logical sqrt

complex isa max sum
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conj isbanded min symamd

diag isdiag nnz symrcm

digraph isempty nonzeros tril

disp isequal norm triu

display isfinite numel true

dmperm isfloat nzmax uint16

double ishermitian ones uint32

eig isinf prod uint64

end isinteger real uint8

eps islogical repmat xor

etree ismatrix reshape zeros

false isnan round

find isnumeric sign

The static methods (used in the form GrB.method) provide direct access
to GraphBLAS functions and can be used on both MATLAB and Graph-
BLAS matrices, or any combination. Once the GraphBLAS/GraphBLAS folder
is in your MATLAB path, type help graphblas and help GrB in MATLAB
for more help.

init finalize

apply emult kronecker select

assign entries ktruss selectopinfo

bfs expand laplacian semiringinfo

binopinfo extract mis speye

build extracttuples monoidinfo subassign

chunk eye mxm threads

clear format nonz trans

compact incidence offdiag tricount

descriptorinfo isbycol pagerank type

dnn isbyrow prune unopinfo

eadd isfull random vreduce

empty issigned reduce

Limitations: Some features for MATLAB sparse matrices are not yet
available for GraphBLAS matrices. Some of these may be added in future
releases.

• Non-blocking mode is not exploited; this would require a MATLAB
mexFunction to modify its inputs, which is technically possible but not
permitted by the MATLAB API.

• Linear indexing, or A(:) for a 2D matrix, and a single output of
I=find(A).
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• Complex matrices.

• The second output for min and max, and the includenan option.

• Singleton expansion.

• Dynamically growing arrays, where C(i)=x can increase the size of C.

• Saturating element-wise binary and unary operators for integers. For
C=A+B with MATLAB uint8 matrices, results saturate if they ex-
ceed 255. This is not compatible with a monoid for C=A*B, and thus
MATLAB does not support matrix-matrix multiplication with uint8

matrices. In GraphBLAS, uint8 addition acts in a modulo fashion.
Saturating binary operators could be added in the future, so that
GrB.eadd (A, ’+saturate’, B) could return the MATLAB result.

• Solvers, so that x=A\b could return a GF(2) solution, for example.

• Sparse matrices with dimension higher than 2. It would be possible to
map an N-dimensional matrix to a large 2D hypersparse GraphBLAS
matrix.

3.2 Python Interface

See Michel Pelletier’s Python interface at https://github.com/michelp/pygraphblas.

3.3 Julia Interface

See Abhinav Mehndiratta’s Julia interface at
https://github.com/abhinavmehndiratta/SuiteSparseGraphBLAS.jl.
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4 GraphBLAS Context and Sequence

A user application that directly relies on GraphBLAS must include the
GraphBLAS.h header file:

#include "GraphBLAS.h"

The GraphBLAS.h file defines functions, types, and macros prefixed with
GrB_ and GxB_ that may be used in user applications. The prefix GrB_ denote
items that appear in the official GraphBLAS C API Specification. The prefix
GxB_ refers to SuiteSparse-specific extensions to the GraphBLAS API. Both
may be used in user applications but be aware that items with prefixes GxB_
will not appear in other implementations of the GraphBLAS standard.

SPEC: The following macros are extensions to the spec.

The GraphBLAS.h file includes all the definitions required to use Graph-
BLAS, including the following macros that can assist a user application in
compiling and using GraphBLAS.

There are two version numbers associated with SuiteSparse:GraphBLAS:
the version of the GraphBLAS C API Specification it conforms to, and the
version of the implementation itself. These can be used in the following
manner in a user application:

#if GxB_SPEC_VERSION >= GxB_VERSION (2,0,3)

... use features in GraphBLAS specification 2.0.3 ...

#else

... only use features in early specifications

#endif

#if GxB_IMPLEMENTATION > GxB_VERSION (1,4,0)

... use features from version 1.4.0 of a specific GraphBLAS implementation

#endif

SuiteSparse:GraphBLAS also defines the following strings with #define.
Refer to the GraphBLAS.h file for details.

Macro purpose
GxB_IMPLEMENTATION_ABOUT this particular implementation, copyright, and URL
GxB_IMPLEMENTATION_DATE the date of this implementation
GxB_SPEC_ABOUT the GraphBLAS specification for this implementation
GxB_SPEC_DATE the date of the GraphBLAS specification
GxB_IMPLEMENTATION_LICENSE the license for this particular implementation
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Finally, SuiteSparse:GraphBLAS gives itself a unique name of the form
GxB_SUITESPARSE_GRAPHBLAS that the user application can use in #ifdef

tests. This is helpful in case a particular implementation provides non-
standard features that extend the GraphBLAS specification, such as ad-
ditional predefined built-in operators, or if a GraphBLAS implementation
does not yet fully implement all of the GraphBLAS specification. The Suite-
Sparse:GraphBLAS name is provided in its GraphBLAS.h file as:

#define GxB_SUITESPARSE_GRAPHBLAS

For example, SuiteSparse:GraphBLAS predefines additional built-in op-
erators not in the specification. If the user application wishes to use these
in any GraphBLAS implementation, an #ifdef can control when they are
used. Refer to the examples in the GraphBLAS/Demo folder.

As another example, the GraphBLAS API states that an implementa-
tion need not define the order in which GrB_Matrix_build assembles dupli-
cate tuples in its [I,J,X] input arrays. As a result, no particular ordering
should be relied upon in general. However, SuiteSparse:GraphBLAS does
guarantee an ordering, and this guarantee will be kept in future versions of
SuiteSparse:GraphBLAS as well. Since not all implementations will ensure a
particular ordering, the following can be used to exploit the ordering returned
by SuiteSparse:GraphBLAS.

#ifdef GxB_SUITESPARSE_GRAPHBLAS

// duplicates in I, J, X assembled in a specific order;

// results are well-defined even if op is not associative.

GrB_Matrix_build (C, I, J, X, nvals, op) ;

#else

// duplicates in I, J, X assembled in no particular order;

// results are undefined if op is not associative.

GrB_Matrix_build (C, I, J, X, nvals, op) ;

#endif

The remainder of this section describes GraphBLAS functions that create,
modify, and destroy the GraphBLAS context, or provide utility methods for
dealing with errors:
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GraphBLAS function purpose Section
GrB_init start up GraphBLAS 4.1
GxB_init start up GraphBLAS with different malloc 4.2
GrB_wait force completion of pending operations 4.3
GrB_Info status code returned by GraphBLAS functions 4.4
GrB_error get more details on the last error 4.5
GrB_finalize finish GraphBLAS 4.6

4.1 GrB init: initialize GraphBLAS

typedef enum

{

GrB_NONBLOCKING = 0, // methods may return with pending computations

GrB_BLOCKING = 1 // no computations are ever left pending

}

GrB_Mode ;

GrB_Info GrB_init // start up GraphBLAS

(

GrB_Mode mode // blocking or non-blocking mode

) ;

GrB_init must be called before any other GraphBLAS operation. It
defines the mode that GraphBLAS will use: blocking or non-blocking. With
blocking mode, all operations finish before returning to the user applica-
tion. With non-blocking mode, operations can be left pending, and are
computed only when needed. Non-blocking mode can be much faster than
blocking mode, by many orders of magnitude in extreme cases. Blocking
mode should be used only when debugging a user application. The mode
cannot be changed once it is set by GrB_init.

GraphBLAS objects are opaque to the user application. This allows
GraphBLAS to postpone operations and then do them later in a more efficient
manner by rearranging them and grouping them together. In non-blocking
mode, the computations required to construct an opaque GraphBLAS object
might not be finished when the GraphBLAS method or operation returns to
the user. However, user-provided arrays are not opaque, and GraphBLAS
methods and operations that read them (such as GrB_Matrix_build) or write
to them (such as GrB_Matrix_extractTuples) always finish reading them,
or creating them, when the method or operation returns to the user applica-
tion.
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In addition, all methods and operations that extract values from a Graph-
BLAS object and return them into non-opaque user arrays always ensure that
the computations for that object are completed when the method returns,
namely: GrB_*_nvals, GrB_*_extractElement, GrB_*_extractTuples, and
GrB_*_reduce (to scalar). These methods only ensure that the computations
for a single object are completed. Use GrB_wait to ensure that all computa-
tions are completed (see Section 4.3).

SuiteSparse:GraphBLAS is multithreaded internally, via OpenMP, and it
is also safe to use in a multithreaded user application. See Section 12 for
details.

User threads must not operate on the same matrices at the same time,
with one exception. Multiple threads can use the same matrices or vectors
as read-only inputs to GraphBLAS operations or methods, but only if they
have no pending operations (use GrB_Matrix_nvals or GrB_wait first). User
threads cannot simultaneously modify a matrix or vector via any GraphBLAS
operation or method.

With multiple user threads, exactly one user thread must call GrB_init
before any user thread may call any GrB_* or GxB_* function. When the
user application is finished, exactly one user thread must call GrB_finalize,
after which no user thread may call any GrB_* or GxB_* function.

You can query the mode of a GraphBLAS session with the following (see
Section 6), which returns the mode passed to GrB_init:

GrB_mode mode ;

GxB_get (GxB_MODE, &mode) ;

4.2 GxB init: initialize with alternate malloc

GrB_Info GxB_init // start up GraphBLAS and also define malloc, etc

(

GrB_Mode mode, // blocking or non-blocking mode

// pointers to memory management functions.

void * (* user_malloc_function ) (size_t),

void * (* user_calloc_function ) (size_t, size_t),

void * (* user_realloc_function ) (void *, size_t),

void (* user_free_function ) (void *),

bool user_malloc_is_thread_safe

) ;
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GxB_init is identical to GrB_init, except that it also redefines the mem-
ory management functions that SuiteSparse:GraphBLAS will use. Giving
the user application control over this is particularly important when using
the GxB_*import and GxB_*export functions described in Section 5.10, since
they require the user application and GraphBLAS to use the same memory
manager.

These functions can only be set once, when GraphBLAS starts. Either
GrB_init or GxB_init must be called before any other GraphBLAS opera-
tion, but not both. The last argument to GxB_init informs GraphBLAS as
to whether or not the functions are thread-safe. The ANSI C and Intel TBB
functions are thread-safe, but the MATLAB mxMalloc and related functions
are not thread-safe. If not thread-safe, GraphBLAS calls the functions from
inside an OpenMP critical section.

The following usage is identical to GrB_init(mode):

GxB_init (mode, malloc, calloc, realloc, free, true) ;

SuiteSparse:GraphBLAS can be compiled as normal (outside of MAT-
LAB) and then linked into a MATLAB mexFunction. However, a mexFunction
should use the MATLAB memory managers. To do this, use the following
instead of GrB_init(mode) in a MATLAB mexFunction.

#include "mex.h"

#include "GraphBLAS.h"

...

GxB_init (mode, mxMalloc, mxCalloc, mxRealloc, mxFree, false) ;

As another example, the scalable Intel TBB memory manager can be
used:

#include "tbb/scalable_allocator.h"

#include "GraphBLAS.h"

...

GxB_init (mode, scalable_malloc, scalable_calloc, scalable_realloc,

scalable_free, true) ;

SPEC: GxB_init is an extension to the spec.
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4.3 GrB wait: wait for pending operations to finish

GrB_Info GrB_wait ( ) ; // finish all pending computations

GrB_wait forces all pending operations to complete. Blocking mode acts
as if GrB_wait is called whenever a GraphBLAS method or operation returns
to the user application.

Unless specific rules are followed, non-blocking mode can be unpredictable
if user-defined functions have side effects or if they rely on global variables not
under the control of GraphBLAS. Suppose the user application creates a user-
defined operator that accesses a global variable. That operator is then used
in a GraphBLAS operation, which is left pending. If the user application
then changes the global variable before pending operations complete, the
pending operations will be eventually computed with this different value.

Worse yet, a user-defined operator might be freed before it is needed to
finish a pending operation. This causes undefined behavior.

For best results with GraphBLAS, user-defined functions should not have
side effects, nor should they access global variables outside the control of
GraphBLAS. This allows the non-blocking mode to be used at its fullest
level of performance. However, both of these features can safely be used in
user-defined functions if the following specific rules are followed.

• User-defined functions may be called in any order when used in a
GraphBLAS operation. This order may change in non-obvious ways,
even in the same GraphBLAS operation. For example, SuiteSparse:-
GraphBLAS relies on multiple algorithms for matrix multiplication,
and selects between them automatically. The methods will call user-
defined multiply and add operators in the semiring, in different order.
The user application should not rely on any particular order used in a
specific implementation of GraphBLAS.

• User-defined functions are permitted to access global variables. How-
ever, if they do so, the global variables they rely on should not be
changed if any GraphBLAS methods or operations are still pending,
assuming GraphBLAS is executing in non-blocking mode (see Sec-
tion 4.1). To ensure this, the user application must call GrB_wait

before changing any global variables relied upon by user-defined func-
tions. Alternatively, computations can be forced to complete on se-
lected matrices and vectors via GrB_*_nvals, GrB_*_extractElement,
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GrB_*_extractTuples, and GrB_*_reduce (to scalar) applied to se-
lected matrices and vectors. The GrB_*_nvals function is particularly
well-suited for this purpose since it is otherwise an extremely light-
weight computation in SuiteSparse:GraphBLAS.

• If any GraphBLAS methods or operations are still pending, freeing
user-defined types, operators, monoids, semirings, vectors, matrices,
or descriptors leads to undefined behavior. A user application must
call GrB_wait before freeing any user-defined object, if a pending op-
eration relies on it, or by selective completion via, say, GrB_*_nvals.
Alternatively, if the user application is about to terminate GraphBLAS
(see GrB_finalize below), then all GraphBLAS objects may be freed
in any order, without calling GrB_wait. Pending computations will
simply be abandoned.

GrB_wait ensures that all computations are completed for all objects. For
specific objects, GrB_*_nvals, GrB_*_extractElement, GrB_*_extractTuples,
and GrB_*_reduce (to scalar) ensure that the pending operations are com-
pleted just for the matrix or vector they operate on. No other GraphBLAS
method or operation guarantees the completion of pending computations,
even though they may happen to do so in any particular implementation. In
the current version, SuiteSparse:GraphBLAS exploits the non-blocking mode
in the GrB_*_setElement methods and the GrB_assign and GxB_subassign

operations. Future versions of SuiteSparse:GraphBLAS may extend this to
other methods and operations. Refer to the example at the end of Section 2.2.

If multiple user threads have created matrices or vectors, and those have
pending operations, then a single call by one thread to GrB_wait causes all
pending operations left by all threads to be completed. If other user threads
are working on any of those matrices, this would result in a race condition.
Therefore, GrB_wait should be called only when no other user thread is
operating on any other matrix. Functions that cause a specific matrix to
be finalized (GrB_*_nvals, GrB_*_extractElement, GrB_*_extractTuples,
and GrB_*_reduce (to scalar)) can be safely called by multiple user threads
on different matrices.
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4.4 GrB Info: status code returned by GraphBLAS

Each GraphBLAS method and operation returns its status to the caller as
its return value, an enumerated type (an enum) called GrB_Info. The first
two values in the following table denote a successful status, the rest are error
codes.

GrB_SUCCESS 0 the method or operation was successful
GrB_NO_VALUE 1 A(i,j) requested but not there. Its value

is implicit.

GrB_UNINITIALIZED_OBJECT 2 object has not been initialized
GrB_INVALID_OBJECT 3 object is corrupted
GrB_NULL_POINTER 4 input pointer is NULL

GrB_INVALID_VALUE 5 generic error code; some value is bad
GrB_INVALID_INDEX 6 a row or column index is out of bounds; for

indices passed as scalars, not in a list.
GrB_DOMAIN_MISMATCH 7 object domains are not compatible
GrB_DIMENSION_MISMATCH 8 matrix dimensions do not match
GrB_OUTPUT_NOT_EMPTY 9 output matrix already has values in it

GrB_OUT_OF_MEMORY 10 out of memory
GrB_INSUFFICIENT_SPACE 11 output array not large enough
GrB_INDEX_OUT_OF_BOUNDS 12 a row or column index is out of bounds; for

indices in a list of indices.

GrB_PANIC 13 unrecoverable error.

Not all GraphBLAS methods or operations can return all status codes.
Any GraphBLAS method or operation can return an out-of-memory condi-
tion, GrB_OUT_OF_MEMORY, or a panic, GrB_PANIC. These two errors, and the
GrB_INDEX_OUT_OF_BOUNDS error, are called execution errors. The other er-
rors are called API errors. An API error is detecting immediately, regardless
of the blocking mode. The detection of an execution error may be deferred
until the pending operations complete.

In the discussions of each method and operation in this User Guide, most
of the obvious error code returns are not discussed. For example, if a required
input is a NULL pointer, then GrB_NULL_POINTER is returned. Only error
codes specific to the method or that require elaboration are discussed here.
For a full list of the status codes that each GraphBLAS function can return,
refer to The GraphBLAS C API Specification [BMM+17b].
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4.5 GrB error: get more details on the last error

const char *GrB_error ( ) ; // return a string describing the last error

Each GraphBLAS method and operation returns a GrB_Info error code.
The GrB_error function returns additional information on the error in a
thread-safe null-terminated string. The string returned by GrB_error is
allocated in thread local storage and must not be freed or modified. Each
user thread has its own error status. The simplest way to use it is just to
print it out, such as:

info = GrB_some_method_here (...) ;

if (! (info == GrB_SUCCESS || info == GrB_NO_VALUE))

{

printf ("info: %d error: %s\n", info, GrB_error ( )) ;

}

SuiteSparse:GraphBLAS reports many helpful details via GrB_error. For
example, if a row or column index is out of bounds, the report will state
what those bounds are. If a matrix dimension is incorrect, the mismatch-
ing dimensions will be provided. GrB_BinaryOp_new, GrB_UnaryOp_new,
and GxB_SelectOp_new record the name the function passed to them, and
GrB_Type_new records the name of its type parameter, and these are printed
if the user-defined types and operators are used incorrectly. Refer to the out-
put of the example programs in the Demo folder, which intentionally generate
errors to illustrate the use of GrB_error.

Successful GraphBLAS methods do not modify the last error message
recorded. If a GraphBLAS method fails and then subsequent GraphBLAS
method succeeds, the error message is not modified from the last failure.
Only a subsequent failure will cause GrB_error to return a different error
message.

Note that GrB_NO_VALUE is an not error, but an informational status.
GrB_*_extractElment(&x,A,i,j), which does x=A(i,j), returns this value
to indicate that A(i,j) is not present in the matrix.

In SuiteSparse:GraphBLAS, some failures cannot be safely recorded for
GrB_error to print. These include GrB_PANIC and errors in GrB_init and
GxB_init.
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4.6 GrB finalize: finish GraphBLAS

GrB_Info GrB_finalize ( ) ; // finish GraphBLAS

GrB_finalize must be called as the last GraphBLAS operation, even af-
ter all calls to GrB_free. All GraphBLAS objects created by the user appli-
cation should be freed first, before calling GrB_finalize since GrB_finalize
will not free those objects. In non-blocking mode, GraphBLAS may leave
some computations as pending. These computations can be safely abandoned
if the user application frees all GraphBLAS objects it has created and then
calls GrB_finalize. There is no need to call GrB_wait in this case. When the
user application is finished, exactly one user thread must call GrB_finalize.
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5 GraphBLAS Objects and their Methods

GraphBLAS defines eight different objects to represent matrices and vec-
tors, their scalar data type (or domain), binary and unary operators on
scalar types, monoids, semirings, and a descriptor object used to specify
optional parameters that modify the behavior of a GraphBLAS operation.
SuiteSparse:GraphBLAS adds two additional objects: a sparse scalar, and
an operator for selecting entries from a matrix or vector.

The GraphBLAS API makes a distinction between methods and opera-
tions. A method is a function that works on a GraphBLAS object, creating
it, destroying it, or querying its contents. An operation (not to be confused
with an operator) acts on matrices and/or vectors in a semiring.

GrB_Type a scalar data type
GrB_UnaryOp a unary operator z = f(x), where z and x are scalars
GrB_BinaryOp a binary operator z = f(x, y), where z, x, and y are scalars
GxB_SelectOp a select operator
GrB_Monoid an associative and commutative binary operator

and its identity value
GrB_Semiring a monoid that defines the “plus” and a binary operator

that defines the “multiply” for an algebraic semiring
GrB_Matrix a 2D sparse matrix of any type
GrB_Vector a 1D sparse column vector of any type
GxB_Scalar a sparse scalar of any type
GrB_Descriptor a collection of parameters that modify an operation

Each of these objects is implemented in C as an opaque handle, which
is a pointer to a data structure held by GraphBLAS. User applications may
not examine the content of the object directly; instead, they can pass the
handle back to GraphBLAS which will do the work. Assigning one handle
to another is valid but it does not make a copy of the underlying object.

GraphBLAS provides 11 built-in types and 157 built-in operators; Suite-
Sparse:GraphBLAS adds 143 additional built-in operators. With these, 55
unique monoids and 1355 unique semirings can be constructed.

SPEC: SuiteSparse:GraphBLAS predefines all unique monoids and semir-
ings that can be constructed from built-in types and operators, as an ex-
tension to the spec. They appear in GraphBLAS.h. The GxB_SelectOp

object is an extension to GraphBLAS.
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5.1 The GraphBLAS type: GrB Type

A GraphBLAS GrB_Type defines the type of scalar values that a matrix
or vector contains, and the type of scalar operands for a unary or binary
operator. There are eleven built-in types, and a user application can define
any types of its own as well. The built-in types correspond to built-in types
in C (#include <stdbool.h> and #include <stdint.h>), and the classes
in MATLAB, as listed in the following table.

GraphBLAS C type MATLAB description range
type class
GrB_BOOL bool logical Boolean true (1), false (0)
GrB_INT8 int8_t int8 8-bit signed integer -128 to 127
GrB_UINT8 uint8_t uint8 8-bit unsigned integer 0 to 255
GrB_INT16 int16_t int16 16-bit integer −215 to 215 − 1
GrB_UINT16 uint16_t uint16 16-bit unsigned integer 0 to 216 − 1
GrB_INT32 int32_t int32 32-bit integer −231 to 231 − 1
GrB_UINT32 uint32_t uint32 32-bit unsigned integer 0 to 232 − 1
GrB_INT64 int64_t int64 64-bit integer −263 to 263 − 1
GrB_UINT64 uint64_t uint64 64-bit unsigned integer 0 to 264 − 1
GrB_FP32 float single 32-bit IEEE 754 -Inf to +Inf

GrB_FP64 double double 64-bit IEEE 754 -Inf to +Inf

The user application can also define new types based on any typedef in
the C language whose values are held in a contiguous region of memory. For
example, a user-defined GrB_Type could be created to hold any C struct

whose content is self-contained. A C struct containing pointers might be
problematic because GraphBLAS would not know to dereference the pointers
to traverse the entire “scalar” entry, but this can be done if the objects ref-
erenced by these pointers are not moved. A user-defined complex type with
real and imaginary types can be defined, or even a “scalar” type containing
a fixed-sized dense matrix (see Section 5.1.1). The possibilities are endless.
GraphBLAS can create and operate on sparse matrices and vectors in any of
these types, including any user-defined ones. For user-defined types, Graph-
BLAS simply moves the data around itself (via memcpy), and then passes the
values back to user-defined functions when it needs to do any computations
on the type. The next sections describe the methods for the GrB_Type object:

GrB_Type_new create a user-defined type
GxB_Type_size return the size of a type
GrB_Type_free free a user-defined type
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5.1.1 GrB Type new: create a user-defined type

GrB_Info GrB_Type_new // create a new GraphBLAS type

(

GrB_Type *type, // handle of user type to create

size_t sizeof_ctype // size = sizeof (ctype) of the C type

) ;

GrB_Type_new creates a new user-defined type. The type is a handle, or
a pointer to an opaque object. The handle itself must not be NULL on input,
but the content of the handle can be undefined. On output, the handle
contains a pointer to a newly created type. The ctype is the type in C
that will be used to construct the new GraphBLAS type. It can be either
a built-in C type, or defined by a typedef. The second parameter should
be passed as sizeof(ctype). The only requirement on the C type is that
sizeof(ctype) is valid in C, and that the type reside in a contiguous block
of memory so that it can be moved with memcpy. For example, to create a
user-defined type called Complex for double-precision complex values using
the ANSI C11 double complex type, the following can be used. A complete
example can be found in the usercomplex.c and usercomplex.h files in the
Demo folder.

#include <math.h>

#include <complex.h>

GrB_Type Complex ;

GrB_Type_new (&Complex, sizeof (double complex)) ;

To demonstrate the flexibility of the GrB_Type, consider a “scalar” con-
sisting of 4-by-4 floating-point matrix and a string. This type might be useful
for the 4-by-4 translation/rotation/scaling matrices that arise in computer
graphics, along with a string containing a description or even a regular ex-
pression that can be parsed and executed in a user-defined operator. All that
is required is a fixed-size type, where sizeof(ctype) is a constant.

typedef struct

{

float stuff [4][4] ;

char whatstuff [64] ;

}

wildtype ;

GrB_Type WildType ;

GrB_Type_new (&WildType, sizeof (wildtype)) ;
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With this type a sparse matrix can be created in which each entry con-
sists of a 4-by-4 dense matrix stuff and a 64-character string whatstuff.
GraphBLAS treats this 4-by-4 as a “scalar.” Any GraphBLAS method or
operation that simply moves data can be used with this type without any
further information from the user application. For example, entries of this
type can be assigned to and extracted from a matrix or vector, and matrices
containing this type can be transposed. A working example (wildtype.c
in the Demo folder) creates matrices and multiplies them with a user-defined
semiring with this type.

Performing arithmetic on matrices and vectors with user-defined types
requires operators to be defined. For example, the user application can de-
fine its own type for complex numbers, but then transposing the matrix with
GraphBLAS will not compute the complex conjugate transpose. This corre-
sponds to the array transpose in MATLAB (C=A.’) instead of the complex
conjugate transpose (C=A’). To compute the complex conjugate transpose,
the application would need to create a user-defined unary operator to con-
jugate a user-defined complex scalar, and then apply it to the matrix before
or after the transpose, via GrB_apply. An extensive set of complex opera-
tors are provided in the usercomplex.c example in the Demo folder, along
with an include file, usercomplex.h, that is suitable for inclusion in any user
application. Thus, while GraphBLAS does not include any complex types
or operators, SuiteSparse:GraphBLAS provides them in two simple “user”
files in the Demo folder. Refer to Section 11.9 for more details on these two
example user-defined types.

5.1.2 GxB Type size: return the size of a type

GrB_Info GxB_Type_size // determine the size of the type

(

size_t *size, // the sizeof the type

GrB_Type type // type to determine the sizeof

) ;

This function acts just like sizeof(type) in the C language. For example
GxB_Type_size (&s, GrB_INT32) sets s to 4, the same as sizeof(int32_t).

SPEC: GxB_Type_size is an extension to the spec.
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5.1.3 GrB Type free: free a user-defined type

GrB_Info GrB_free // free a user-defined type

(

GrB_Type *type // handle of user-defined type to free

) ;

GrB_Type_free frees a user-defined type. Either usage:

GrB_Type_free (&type) ;

GrB_free (&type) ;

frees the user-defined type and sets type to NULL. It safely does nothing if
passed a NULL handle, or if type == NULL on input.

It is safe to attempt to free a built-in type. SuiteSparse:GraphBLAS
silently ignores the request and returns GrB_SUCCESS. A user-defined type
should not be freed until all operations using the type are completed. Suite-
Sparse:GraphBLAS attempts to detect this condition but it must query a
freed object in its attempt. This is hazardous and not recommended. Oper-
ations on such objects whose type has been freed leads to undefined behavior.

It is safe to first free a type, and then a matrix of that type, but after the
type is freed the matrix can no longer be used. The only safe thing that can
be done with such a matrix is to free it.

Note the function signature of GrB_Type_free, above. It is illustrated
with the generic name, GrB_free. Any GraphBLAS object can be freed
with the single function, GrB_free. Refer to Section 5.12 for more details.

GraphBLAS includes many such generic functions. When describing a
specific variation, a function is described with its specific name in this User
Guide (such as GrB_Type_free). When discussing features applicable to all
specific forms, the generic name is used instead (such as GrB_free).
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5.2 GraphBLAS unary operators: GrB UnaryOp, z =
f(x)

A unary operator is a scalar function of the form z = f(x). The domain
(type) of z and x need not be the same.

There are six kinds of built-in unary operators: one, identity, additive in-
verse, absolute value, multiplicative inverse, and logical negation. In the no-
tation in the table below, T is any of the 11 built-in types and is a place-holder
for BOOL, INT8, UINT8, ... FP32, or FP64. For example, GrB_AINV_INT32 is a
unary operator that computes z=-x for two values x and z of type GrB_INT32.

The logical negation operator GrB_LNOT only works on Boolean types.
The GxB_LNOT_T functions operate on inputs of type T , implicitly typecast-
ing their input to Boolean and returning result of type T , with a value 1 for
true and 0 for false. The operators GxB_LNOT_BOOL and GrB_LNOT are identi-
cal. Considering all combinations, there are thus 67 built-in unary operators
((6 kinds of operators) × (11 types), and GrB_LNOT).

GraphBLAS name types (domains) expression description
z = f(x)

GxB_ONE_T T → T z = 1 one
GrB_IDENTITY_T T → T z = x identity
GrB_AINV_T T → T z = −x additive inverse
GxB_ABS_T T → T z = |x| absolute value
GrB_MINV_T T → T z = 1/x multiplicative inverse
GxB_LNOT_T T → T z = ¬(x 6= 0) logical negation
GrB_LNOT bool → bool z = ¬x logical negation

SPEC: GxB_ONE_T , GxB_ABS_T and GxB_LNOT_T are extensions to the
spec.

Integer division by zero normally terminates an application, but this is
avoided in SuiteSparse:GraphBLAS. For details, see the binary GrB_DIV_T
operators.

SPEC: The definition of integer division by zero is an extension to the
spec.

The next sections define the following methods for the GrB_UnaryOp ob-
ject:
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GrB_UnaryOp_new create a user-defined unary operator
GxB_UnaryOp_ztype return the type of the output z for z = f(x)
GxB_UnaryOp_xtype return the type of the input x for z = f(x)
GrB_UnaryOp_free free a user-defined unary operator

5.2.1 GrB UnaryOp new: create a user-defined unary operator

GrB_Info GrB_UnaryOp_new // create a new user-defined unary operator

(

GrB_UnaryOp *unaryop, // handle for the new unary operator

void *function, // pointer to the unary function

GrB_Type ztype, // type of output z

GrB_Type xtype // type of input x

) ;

GrB_UnaryOp_new creates a new unary operator. The new operator is
returned in the unaryop handle, which must not be NULL on input. On
output, its contents contains a pointer to the new unary operator.

The two types xtype and ztype are the GraphBLAS types of the input
x and output z of the user-defined function z = f(x). These types may be
built-in types or user-defined types, in any combination. The two types need
not be the same, but they must be previously defined before passing them
to GrB_UnaryOp_new.

The function argument to GrB_UnaryOp_new is a pointer to a user-
defined function with the following signature:

void (*f) (void *z, const void *x) ;

When the function f is called, the arguments z and x are passed as
(void *) pointers, but they will be pointers to values of the correct type,
defined by ztype and xtype, respectively, when the operator was created.
NOTE: The pointers may not be unique. That is, the user function may
be called with multiple pointers that point to the same space, such as when
z=f(z,y) is to be computed by a binary operator, or z=f(z) for a unary
operator. Any parameters passed to the user-callable function may be aliased
to each other.
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5.2.2 GxB UnaryOp ztype: return the type of z

GrB_Info GxB_UnaryOp_ztype // return the type of z

(

GrB_Type *ztype, // return type of output z

GrB_UnaryOp unaryop // unary operator

) ;

GxB_UnaryOp_ztype returns the ztype of the unary operator, which is
the type of z in the function z = f(x).

SPEC: GxB_UnaryOp_ztype is an extension to the spec.

5.2.3 GxB UnaryOp xtype: return the type of x

GrB_Info GxB_UnaryOp_xtype // return the type of x

(

GrB_Type *xtype, // return type of input x

GrB_UnaryOp unaryop // unary operator

) ;

GxB_UnaryOp_xtype returns the xtype of the unary operator, which is
the type of x in the function z = f(x).

SPEC: GxB_UnaryOp_xtype is an extension to the spec.

5.2.4 GrB UnaryOp free: free a user-defined unary operator

GrB_Info GrB_free // free a user-created unary operator

(

GrB_UnaryOp *unaryop // handle of unary operator to free

) ;

GrB_UnaryOp_free frees a user-defined unary operator. Either usage:

GrB_UnaryOp_free (&unaryop) ;

GrB_free (&unaryop) ;

frees the unaryop and sets unaryop to NULL. It safely does nothing if passed
a NULL handle, or if unaryop == NULL on input. It does nothing at all if
passed a built-in unary operator.
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5.3 GraphBLAS binary operators: GrB BinaryOp, z =
f(x, y)

A binary operator is a scalar function of the form z = f(x, y). The types of
z, x, and y need not be the same.

SuiteSparse:GraphBLAS has 21 kinds of built-in binary operators of the
form T × T → T that work on all 11 of the built-in types, T . These are
listed in the table below. For each of these operators, all domains (types)
of the three operands are the same. The six comparison operators and the
logical operators all return a result one for true and zero for false, in the
same domain T as their inputs. These six comparison operators are useful
as “multiply” operators for creating semirings with non-Boolean monoids.

GraphBLAS types (domains) expression description
name z = f(x, y)
GrB_FIRST_T T × T → T z = x first argument
GrB_SECOND_T T × T → T z = y second argument
GxB_ANY_T T × T → T z = x or y pick x or y arbitrarily
GxB_PAIR_T T × T → T z = 1 one
GrB_MIN_T T × T → T z = min(x, y) minimum
GrB_MAX_T T × T → T z = max(x, y) maximum
GrB_PLUS_T T × T → T z = x + y addition
GrB_MINUS_T T × T → T z = x− y subtraction
GxB_RMINUS_T T × T → T z = y − x reverse subtraction
GrB_TIMES_T T × T → T z = xy multiplication
GrB_DIV_T T × T → T z = x/y division
GxB_RDIV_T T × T → T z = y/x reverse division
GxB_ISEQ_T T × T → T z = (x == y) equal
GxB_ISNE_T T × T → T z = (x 6= y) not equal
GxB_ISGT_T T × T → T z = (x > y) greater than
GxB_ISLT_T T × T → T z = (x < y) less than
GxB_ISGE_T T × T → T z = (x ≥ y) greater than or equal
GxB_ISLE_T T × T → T z = (x ≤ y) less than or equal
GxB_LOR_T T × T → T z = (x 6= 0) ∨ (y 6= 0) logical OR
GxB_LAND_T T × T → T z = (x 6= 0) ∧ (y 6= 0) logical AND
GxB_LXOR_T T × T → T z = (x 6= 0) Y (y 6= 0) logical XOR

SPEC: The GxB_IS*_T GxB_RMINUS_T , GxB_RDIV_T GxB_ANY_T , and
GxB_PAIR_T , operators, and the Boolean GxB_L*_T are extensions to the
spec.
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Another set of six kinds of built-in comparison operators have the form
T ×T →bool. They are defined for all eleven built-in types, for a total of 66
binary operators. Note that when T is bool, the six operators give the same
results as the six GxB_IS*_BOOL operators in the table above. These six com-
parison operators are useful as “multiply” operators for creating semirings
with Boolean monoids.

GraphBLAS types (domains) expression description
name z = f(x, y)
GrB_EQ_T T × T →bool z = (x == y) equal
GrB_NE_T T × T →bool z = (x 6= y) not equal
GrB_GT_T T × T →bool z = (x > y) greater than
GrB_LT_T T × T →bool z = (x < y) less than
GrB_GE_T T × T →bool z = (x ≥ y) greater than or equal
GrB_LE_T T × T →bool z = (x ≤ y) less than or equal

Finally, GraphBLAS has three built-in binary operators that operate
purely in the Boolean domain. These three are identical to the GxB_L*_BOOL

operators described above, just with a shorter name.

GraphBLAS types (domains) expression description
name z = f(x, y)
GrB_LOR bool × bool → bool z = x ∨ y logical OR
GrB_LAND bool × bool → bool z = x ∧ y logical AND
GrB_LXOR bool × bool → bool z = x Y y logical XOR

There are two sets of built-in comparison operators in SuiteSparse:Graph-
BLAS, but they are not redundant. They are identical except for the type
(domain) of their output, z. The GrB_EQ_T and related operators compare
their inputs of type T and produce a Boolean result of true or false. The
GxB_ISEQ_T and related operators do the same comparison and produce a re-
sult with same type T as their input operands, returning one for true or zero
for false. The IS* comparison operators are useful when combining compar-
isons with other non-Boolean operators. For example, a PLUS-ISEQ semiring
counts how many terms of the comparison are true. With this semiring,
matrix multiplication C = AB for two weighted undirected graphs A and B
computes cij as the number of edges node i and j have in common that have
identical edge weights. Since the output type of the “multiplier” operator
in a semiring must match the type of its monoid, the Boolean EQ cannot be
combined with a non-Boolean PLUS monoid to perform this operation.
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Likewise, SuiteSparse:GraphBLAS has two sets of logical OR, AND, and
XOR operators. Without the _T suffix, the three operators GrB_LOR, GrB_LAND,
and GrB_LXOR operate purely in the Boolean domain, where all input and
output types are GrB_BOOL. The second set (GxB_LOR_T GxB_LAND_T and
GxB_LXOR_T ) provides Boolean operators to all 11 domains, implicitly type-
casting their inputs from type T to Boolean and returning a value of type T
that is 1 for true or zero for false. The set of GxB_L*_T operators are useful
since they can be combined with non-Boolean monoids in a semiring.

SPEC: The definition of integer division by zero is an extension to the
spec.

Floating-point operations follow the IEEE 754 standard. Thus, comput-
ing x/0 for a floating-point x results in +Inf if x is positive, -Inf if x is
negative, and NaN if x is zero. The application is not terminated. How-
ever, integer division by zero normally terminates an application. Suite-
Sparse:GraphBLAS avoids this by adopting the same rules as MATLAB,
which are analogous to how the IEEE standard handles floating-point di-
vision by zero. For integers, when x is positive, x/0 is the largest positive
integer, for negative x it is the minimum integer, and 0/0 results in zero.
For example, for an integer x of type GrB_INT32, 1/0 is 231− 1 and (-1)/0 is
−231. Refer to Section 5.1 for a list of integer ranges.

The next sections define the following methods for the GrB_BinaryOp

object:

GrB_BinaryOp_new create a user-defined binary operator
GxB_BinaryOp_ztype return the type of the output z for z = f(x, y)
GxB_BinaryOp_xtype return the type of the input x for z = f(x, y)
GxB_BinaryOp_ytype return the type of the input y for z = f(x, y)
GrB_BinaryOp_free free a user-defined binary operator
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5.3.1 GrB BinaryOp new: create a user-defined binary operator

GrB_Info GrB_BinaryOp_new

(

GrB_BinaryOp *binaryop, // handle for the new binary operator

void *function, // pointer to the binary function

GrB_Type ztype, // type of output z

GrB_Type xtype, // type of input x

GrB_Type ytype // type of input y

) ;

GrB_BinaryOp_new creates a new binary operator. The new operator is
returned in the binaryop handle, which must not be NULL on input. On
output, its contents contains a pointer to the new binary operator.

The three types xtype, ytype, and ztype are the GraphBLAS types of
the inputs x and y, and output z of the user-defined function z = f(x, y).
These types may be built-in types or user-defined types, in any combination.
The three types need not be the same, but they must be previously defined
before passing them to GrB_BinaryOp_new.

The final argument to GrB_BinaryOp_new is a pointer to a user-defined
function with the following signature:

void (*f) (void *z, const void *x, const void *y) ;

When the function f is called, the arguments z, x, and y are passed as
(void *) pointers, but they will be pointers to values of the correct type,
defined by ztype, xtype, and ytype, respectively, when the operator was
created. NOTE: SuiteSparse:GraphBLAS may call the function with the
pointers z and x equal to one another, in which case z=f(z,y) should be
computed. Future versions may use additional pointer aliasing.

5.3.2 GxB BinaryOp ztype: return the type of z

GrB_Info GxB_BinaryOp_ztype // return the type of z

(

GrB_Type *ztype, // return type of output z

GrB_BinaryOp binaryop // binary operator to query

) ;

GxB_BinaryOp_ztype returns the ztype of the binary operator, which is
the type of z in the function z = f(x, y).
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SPEC: GxB_BinaryOp_ztype is an extension to the spec.

5.3.3 GxB BinaryOp xtype: return the type of x

GrB_Info GxB_BinaryOp_xtype // return the type of x

(

GrB_Type *xtype, // return type of input x

GrB_BinaryOp binaryop // binary operator to query

) ;

GxB_BinaryOp_xtype returns the xtype of the binary operator, which is
the type of x in the function z = f(x, y).

SPEC: GxB_BinaryOp_xtype is an extension to the spec.

5.3.4 GxB BinaryOp ytype: return the type of y

GrB_Info GxB_BinaryOp_ytype // return the type of y

(

GrB_Type *ytype, // return type of input y

GrB_BinaryOp binaryop // binary operator to query

) ;

GxB_BinaryOp_ytype returns the ytype of the binary operator, which is
the type of y in the function z = f(x, y).

SPEC: GxB_BinaryOp_ytype is an extension to the spec.

5.3.5 GrB BinaryOp free: free a user-defined binary operator

GrB_Info GrB_free // free a user-created binary operator

(

GrB_BinaryOp *binaryop // handle of binary operator to free

) ;

GrB_BinaryOp_free frees a user-defined binary operator. Either usage:

GrB_BinaryOp_free (&op) ;

GrB_free (&op) ;

frees the op and sets op to NULL. It safely does nothing if passed a NULL

handle, or if op == NULL on input. It does nothing at all if passed a built-in
binary operator.
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5.3.6 ANY and PAIR operators

SuiteSparse:GraphBLAS v3.2.0 adds two new operators, ANY and PAIR.
The PAIR operator is simple to describe: just f(x, y) = 1. It is called the

PAIR operator since it returns 1 in a semiring when a pair of entries aik and
bkj is found in the matrix multiply. This operator is simple yet very useful.
It allows purely symbolic computations to be performed on matrices of any
type, without having to typecast them to Boolean with all values being true.
Typecasting need not be performed on the inputs to the PAIR operator, and
the PAIR operator does not have to access the values of the matrix, so it is a
very fast operator to use.

The ANY operator is very unusual, but very powerful. It is the function
f(x, y) = x, or y, where GraphBLAS has to freedom to select either x, or y,
at its own discretion. Do not confuse the ANY operator with the any function
in MATLAB, which computes a reduction using the logical OR operator.

The ANY function is associative and commutative, and can thus serve as an
operator for a monoid. The selection of x are y is not randomized. Instead,
SuiteSparse:GraphBLAS uses this freedom to compute as fast a result as
possible. When used in a dot product,

cij =
∑
k

aikbkj

for example, the computation can terminate as soon as any matching pair of
entries is found. When used in a parallel saxpy-style computation, the ANY

operator allows for a relaxed form of synchronization to be used, resulting in
a fast benign race condition.

The result of the ANY monoid is non-deterministic, unless it is coupled with
the PAIR multiplicative operator. In this case, the ANY_PAIR semiring will
return a deterministic result, since f(1, 1) is always 1, for the ANY operator.

When paired with a different operator, the results are non-deterministic.
This gives a powerful method when computing results for which any value
selected by the ANY operator is valid. One such example is the breadth-first-
search tree. Suppose node j is at level v, and there are multiple nodes i at
level v− 1 for which edge (i, j) exists in the graph. Any of these nodes i can
serve as a valid parent in the BFS tree. Using the ANY operator, GraphBLAS
can quickly compute a valid BFS tree; if it used again on the same inputs, it
might return a different, yet still valid, BFS tree, due to the non-deterministic
nature of intra-thread synchronization.
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5.4 SuiteSparse:GraphBLAS select operators: GxB SelectOp

A select operator is a scalar function of the form z = f(i, j,m, n, aij, thunk)
that is applied to the entries aij of an m-by-n matrix. The domain (type)
of z is always boolean. The domain (type) of aij can be any built-in or
user-defined type, or it can be GrB_NULL if the operator is type-generic.

The GxB_SelectOp operator is used by GxB_select (see Section 8.13)
to select entries from a matrix. Each entry A(i,j) is evaluated with the
operator, which returns true if the entry is to be kept in the output, or false
if it is not to appear in the output. The signature of the select function f is
as follows:

bool f // returns true if A(i,j) is kept

(

const GrB_Index i, // row index of A(i,j)

const GrB_Index j, // column index of A(i,j)

const GrB_Index nrows, // number of rows of A

const GrB_Index ncols, // number of columns of A

const void *x, // value of A(i,j), or NULL if f is type-generic

const void *thunk // user-defined auxiliary data

) ;

Operators can be used on any type, including user-defined types, except
that the comparisons GT, GE, LT, and LE can only be used with built-in types.
User-defined select operators can also be created.

GraphBLAS name MATLAB description
analog

GxB_TRIL C=tril(A,k) true for A(i,j) if (j-i) <= k

GxB_TRIU C=triu(A,k) true for A(i,j) if (j-i) >= k

GxB_DIAG C=diag(A,k) true for A(i,j) if (j-i) == k

GxB_OFFDIAG C=A-diag(A,k) true for A(i,j) if (j-i) != k

GxB_NONZERO C=A(A~=0) true if A(i,j) is nonzero
GxB_EQ_ZERO C=A(A==0) true if A(i,j) is zero
GxB_GT_ZERO C=A(A>0) true if A(i,j) is greater than zero
GxB_GE_ZERO C=A(A>=0) true if A(i,j) is greater than or equal to zero
GxB_LT_ZERO C=A(A<0) true if A(i,j) is less than zero
GxB_LE_ZERO C=A(A<=0) true if A(i,j) is less than or equal to zero
GxB_NE_THUNK C=A(A~=k) true if A(i,j) is not equal to k

GxB_EQ_THUNK C=A(A==k) true if A(i,j) is equal to k

GxB_GT_THUNK C=A(A>k) true if A(i,j) is greater than k

GxB_GE_THUNK C=A(A>=k) true if A(i,j) is greater than or equal to k

GxB_LT_THUNK C=A(A<k) true if A(i,j) is less than k

GxB_LE_THUNK C=A(A<=k) true if A(i,j) is less than or equal to k
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SPEC: GxB_SelectOp and the table above are extensions to the spec.

The following methods operate on the GxB_SelectOp object:

GxB_SelectOp_new create a user-defined select operator
GxB_SelectOp_xtype return the type of the input x
GxB_SelectOp_ttype return the type of the input thunk
GxB_SelectOp_free free a user-defined select operator

5.4.1 GxB SelectOp new: create a user-defined select operator

GrB_Info GxB_SelectOp_new // create a new user-defined select operator

(

GxB_SelectOp *selectop, // handle for the new select operator

void *function, // pointer to the select function

GrB_Type xtype, // type of input x, or NULL if type-generic

GrB_Type ttype // type of input thunk, or NULL if type-generic

) ;

GxB_SelectOp_new creates a new select operator. The new operator is
returned in the selectop handle, which must not be NULL on input. On
output, its contents contains a pointer to the new select operator.

The function argument to GxB_SelectOp_new is a pointer to a user-
defined function whose signature is given at the beginning of Section 5.4.
Given the properties of an entry aij in an m-by-n matrix, the function

should return true if the entry should be kept in the output of GxB_select,
or false if it should not appear in the output.

The type xtype is the GraphBLAS type of the input x of the user-defined
function z = f(i, j,m, n, x, thunk). The type may be built-in or user-defined,
or it may even be GrB_NULL. If the xtype is GrB_NULL, then the selectop is
type-generic.

The type ttype is the GraphBLAS type of the input thunk of the user-
defined function z = f(i, j,m, n, x, thunk). The type may be built-in or
user-defined, or it may even be GrB_NULL. If the ttype is GrB_NULL, then the
selectop does not access this parameter. The const void *thunk param-
eter on input to the user function will be passed as NULL.
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5.4.2 GxB SelectOp xtype: return the type of x

GrB_Info GxB_SelectOp_xtype // return the type of x

(

GrB_Type *xtype, // return type of input x

GxB_SelectOp selectop // select operator

) ;

GxB_SelectOp_xtype returns the xtype of the select operator, which is
the type of x in the function z = f(i, j,m, n, x, thunk). If the select operator
is type-generic, xtype is returned as GrB_NULL. This is not an error condition,
but simply indicates that the GxB_SelectOp is type-generic.

5.4.3 GxB SelectOp ttype: return the type of the thunk

GrB_Info GxB_SelectOp_ttype // return the type of thunk

(

GrB_Type *ttype, // return type of input thunk

GxB_SelectOp selectop // select operator

) ;

GxB_SelectOp_ttype returns the ttype of the select operator, which is
the type of thunk in the function z = f(i, j,m, n, x, thunk). If the select
operator does not use this parameter, ttype is returned as GrB_NULL. This
is not an error condition, but simply indicates that the GxB_SelectOp does
not use this parameter.

5.4.4 GxB SelectOp free: free a user-defined select operator

GrB_Info GrB_free // free a user-created select operator

(

GxB_SelectOp *selectop // handle of select operator to free

) ;

GxB_SelectOp_free frees a user-defined select operator. Either usage:

GxB_SelectOp_free (&selectop) ;

GrB_free (&selectop) ;

frees the selectop and sets selectop to NULL. It safely does nothing if passed
a NULL handle, or if selectop == NULL on input. It does nothing at all if
passed a built-in select operator.
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5.5 GraphBLAS monoids: GrB Monoid

A monoid is defined on a single domain (that is, a single type), T . It consists
of an associative binary operator z = f(x, y) whose three operands x, y,
and z are all in this same domain T (that is T × T → T ). The associative
operator must also have an identity element, or “zero” in this domain, such
that f(x, 0) = f(0, x) = 0. Recall that an associative operator f(x, y) is one
for which the condition f(a, f(b, c)) = f(f(a, b), c) always holds. That is,
operator can be applied in any order and the results remain the same.

Five kinds of built-in operators (MIN, MAX, PLUS, TIMES, and ANY) can be
used to form monoids for each of the ten non-Boolean built-in types, and
12 can be used for Boolean monoids, all of which are listed in the table
below. These are the valid monoids that can be constructed from built-in
types and operators, although 8 of the 13 Boolean monoids are redundant
(the four remaining being OR, AND, XOR, EQ, and ANY). There are a total of
55 unique monoids that can be constructed using built-in binary operators:
five for each of the the 10 non-Boolean types, and 5 more for Boolean types.
Since the built-in monoids are also commutative, all of them can be used
to create a semiring. Recall that a commutative operator f(x, y) is one for
which the condition f(a, b) = f(b, a) always holds. That is, the two operands
can be swapped and the results remain the same. One of the components of
a semiring is a commutative monoid.

GraphBLAS types (domains) expression identity terminal
operator z = f(x, y)
GrB_MIN_T T × T → T z = min(x, y) +∞ −∞
GrB_MAX_T T × T → T z = max(x, y) −∞ +∞
GrB_PLUS_T T × T → T z = x + y 0 none
GrB_TIMES_T T × T → T z = xy 1 0 (not fp)
GxB_ANY_T T × T → T z = x or y any any
GrB_LOR bool × bool → bool z = x ∨ y false true
GrB_LAND bool × bool → bool z = x ∧ y true false
GrB_LXOR bool × bool → bool z = x Y y false none
GrB_EQ_BOOL bool × bool → bool z = (x == y) true none

The above table lists the GraphBLAS operator, its type, expression, iden-
tity value, and terminal value (if any). For these built-in operators, the ter-
minal values are the annihilators of the function, which is the value z so that
z = f(z, y) regardless of the value of y. For example min(−∞, y) = −∞
for any y. For integer domains, +∞ and −∞ are the largest and smallest

53



integer in their range. With unsigned integers, the smallest value is zero, and
thus GrB_MIN_UINT8 has an identity of 255 and a terminal value of 0.

When computing with a monoid, the computation can terminate early if
the terminal value arises. No further work is needed since the result will not
change. This value is called the terminal value instead of the annihilator,
since a user-defined operator can be created with a terminal value that is not
an annihilator. See Section 5.5.2 for an example.

The GxB_ANY_* monoid can terminate as soon as it finds any value at all.
The GrB_TIMES_FP* operators do not have a terminal value of zero, since

they comply with the IEEE 754 standard, and 0*NaN is not zero, but NaN.
Technically, their terminal value is NaN, but this value is rare in practice and
thus the terminal condition is not worth checking.

SuiteSparse:GraphBLAS predefines each of the 55 unique monoids that
can be constructed with built-in types and operators, with the naming con-
vention GxB_op_type_MONOID. For the first 50, op is MIN, MAX, PLUS, TIMES, or
ANY, and type is all but BOOL. The five Boolean monoids are GxB_LOR_BOOL_MONOID,
GxB_LAND_BOOL_MONOID, GxB_LXOR_BOOL_MONOID, GxB_EQ_BOOL_MONOID, and
GxB_ANY_BOOL_MONOID.

The next sections define the following methods for the GrB_Monoid object:

GrB_Monoid_new create a monoid
GxB_Monoid_terminal_new create a monoid that has a terminal value
GxB_Monoid_operator return the monoid operator
GxB_Monoid_identity return the monoid identity value
GxB_Monoid_terminal return the monoid terminal value (if any)
GrB_Monoid_free free a monoid

SPEC: The predefined monoids are an extension to the spec.
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5.5.1 GrB Monoid new: create a monoid

GrB_Info GrB_Monoid_new // create a monoid

(

GrB_Monoid *monoid, // handle of monoid to create

GrB_BinaryOp op, // binary operator of the monoid

<type> identity // identity value of the monoid

) ;

GrB_Monoid_new creates a monoid. The operator, op, must be an asso-
ciative binary operator, either built-in or user-defined.

In the definition above, <type> is a place-holder for the specific type of
the monoid. For built-in types, it is the C type corresponding to the built-in
type (see Section 5.1), such as bool, int32_t, float, or double. In this case,
identity is a scalar value of the particular type, not a pointer. For user-
defined types, <type> is void *, and thus identity is a not a scalar itself
but a void * pointer to a memory location containing the identity value of
the user-defined operator, op.

If op is a built-in operator with a known identity value, then the identity
parameter is ignored, and its known identity value is used instead.

5.5.2 GxB Monoid terminal new: create a monoid with terminal

GrB_Info GxB_Monoid_terminal_new // create a monoid that has a terminal value

(

GrB_Monoid *monoid, // handle of monoid to create

GrB_BinaryOp op, // binary operator of the monoid

<type> identity, // identity value of the monoid

<type> terminal // terminal value of the monoid

) ;

GxB_Monoid_terminal_new is identical to GrB_Monoid_new, except that
it allows for the specification of a terminal value. The <type> of the terminal
value is the same as the identity parameter; see Section 5.5.1 for details.

The terminal value of a monoid is the value z for which z = f(z, y) for
any y, where z = f(x, y) is the binary operator of the monoid. This is also
called the annihilator, but the term terminal value is used here. This is
because all annihilators are terminal values, but a terminal value need not
be an annihilator, as described in the MIN example below.

If the terminal value is encountered during computation, the rest of the
computations can be skipped. This can greatly improve the performance
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of GrB_reduce, and matrix multiply in specific cases (when a dot product
method is used). For example, using GrB_reduce to compute the sum of all
entries in a GrB_FP32 matrix with e entries takes O(e) time, since a monoid
based on GrB_PLUS_FP32 has no terminal value. By contrast, a reduction
using GrB_LOR on a GrB_BOOL matrix can take as little as O(1) time, if a
true value is found in the matrix very early.

Monoids based on the built-in GrB_MIN_* and GrB_MAX_* operators (for
any type), the boolean GrB_LOR, and the boolean GrB_LAND operators all
have terminal values. For example, the identity value of GrB_LOR is false,
and its terminal value is true. When computing a reduction of a set of
boolean values to a single value, once a true is seen, the computation can
exit early since the result is now known.

If op is a built-in operator with known identity and terminal values, then
the identity and terminal parameters are ignored, and its known identity
and terminal values are used instead.

There may be cases in which the user application needs to use a non-
standard terminal value for a built-in operator. For example, suppose the
matrix has type GrB_FP32, but all values in the matrix are known to be
non-negative. The annihilator value of MIN is -INFINITY, but this will never
be seen. However, the computation could could terminate when finding the
value zero. This is an example of using a terminal value that is not actually
an annihilator, but it functions like one since the monoid will operate strictly
on non-negative values. In this case, a monoid created with GrB_MIN_FP32

will not terminate early. To create a monoid that can terminate early, create
a user-defined operator that computes the same thing as GrB_MIN_FP32, and
then create a monoid based on this user-defined operator with a terminal
value of zero and an identity of +INFINITY.

SPEC: GxB_Monoid_terminal_new is an extension to the spec.

5.5.3 GxB Monoid operator: return the monoid operator

GrB_Info GxB_Monoid_operator // return the monoid operator

(

GrB_BinaryOp *op, // returns the binary op of the monoid

GrB_Monoid monoid // monoid to query

) ;

GxB_Monoid_operator returns the binary operator of the monoid.
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SPEC: GxB_Monoid_operator is an extension to the spec.

5.5.4 GxB Monoid identity: return the monoid identity

GrB_Info GxB_Monoid_identity // return the monoid identity

(

void *identity, // returns the identity of the monoid

GrB_Monoid monoid // monoid to query

) ;

GxB_Monoid_identity returns the identity value of the monoid. The
void * pointer, identity, must be non-NULL and must point to a memory
space of size at least equal to the size of the type of the monoid. The type
size can be obtained via GxB_Monoid_operator to return the monoid addi-
tive operator, then GxB_BinaryOp_ztype to obtain the ztype, followed by
GxB_Type_size to get its size.

SPEC: GxB_Monoid_identity is an extension to the spec.

5.5.5 GxB Monoid terminal: return the monoid terminal value

GrB_Info GxB_Monoid_terminal // return the monoid terminal

(

bool *has_terminal, // true if the monoid has a terminal value

void *terminal, // returns the terminal of the monoid

GrB_Monoid monoid // monoid to query

) ;

GxB_Monoid_terminal returns the terminal value of the monoid (if any).
The void * pointer, terminal, must be non-NULL and must point to a mem-
ory space of size at least equal to the size of the type of the monoid. The
type size can be obtained via GxB_Monoid_operator to return the monoid
additive operator, then GxB_BinaryOp_ztype to obtain the ztype, followed
by GxB_Type_size to get its size.

If the monoid has a terminal value, then has_terminal is true, and its
value is returned in the terminal parameter. If it has no terminal value,
then has_terminal is false, and the terminal parameter is not modified.

SPEC: GxB_Monoid_terminal is an extension to the spec.
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5.5.6 GrB Monoid free: free a monoid

GrB_Info GrB_free // free a user-created monoid

(

GrB_Monoid *monoid // handle of monoid to free

) ;

GrB_Monoid_frees frees a monoid. Either usage:

GrB_Monoid_free (&monoid) ;

GrB_free (&monoid) ;

frees the monoid and sets monoid to NULL. It safely does nothing if passed a
NULL handle, or if monoid == NULL on input. It does nothing at all if passed
a built-in monoid.
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5.6 GraphBLAS semirings: GrB Semiring

A semiring defines all the operators required to define the multiplication
of two sparse matrices in GraphBLAS, C = AB. The “add” operator is a
commutative and associative monoid, and the binary “multiply” operator
defines a function z = fmult(x, y) where the type of z matches the exactly
with the monoid type. SuiteSparse:GraphBLAS includes 1355 predefined
built-in semirings, which are all those that can be constructed from built-in
types and operators. The next sections define the following methods for the
GrB_Semiring object:

GrB_Semiring_new create a semiring
GxB_Semiring_add return the additive monoid of a semiring
GxB_Semiring_multiply return the binary operator of a semiring
GrB_Semiring_free free a semiring

5.6.1 GrB Semiring new: create a semiring

GrB_Info GrB_Semiring_new // create a semiring

(

GrB_Semiring *semiring, // handle of semiring to create

GrB_Monoid add, // add monoid of the semiring

GrB_BinaryOp multiply // multiply operator of the semiring

) ;

GrB_Semiring_new creates a new semiring, with add being the additive
monoid and multiply being the binary “multiply” operator. In addition
to the standard error cases, the function returns GrB_DOMAIN_MISMATCH if
the output (ztype) domain of multiply does not match the domain of
the add monoid. Using built-in types and operators, 1355 semirings can
be built. This count excludes redundant Boolean operators (for example
GrB_TIMES_BOOL and GrB_LAND are different operators but they are redun-
dant since they always return the same result).

• 1000 semirings with a multiplier T × T → T where T is non-Boolean,
from the complete cross product of:

– 5 add monoids (MIN, MAX, PLUS, TIMES, ANY)

– 20 multiply operators (FIRST, SECOND, PAIR, MIN, MAX, PLUS, MINUS,
RMINUS, TIMES, DIV, RDIV, ISEQ, ISNE, ISGT, ISLT, ISGE, ISLE,
LOR, LAND, LXOR).
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– 10 non-Boolean types, T

• 300 semirings with a comparison operator T × T → bool, where T is
non-Boolean, from the complete cross product of:

– 5 Boolean add monoids (LAND, LOR, LXOR, EQ, ANY)

– 6 multiply operators (EQ, NE, GT, LT, GE, LE)

– 10 non-Boolean types, T

• 55 semirings with purely Boolean types, bool × bool → bool, from
the complete cross product of:

– 5 Boolean add monoids (LAND, LOR, LXOR, EQ, ANY)

– 11 multiply operators (FIRST, SECOND, PAIR, LOR, LAND, LXOR, EQ,
GT, LT, GE, LE)

SuiteSparse:GraphBLAS pre-defines all 1355 unique semirings that can
be constructed from built-in types and operators, as an extension to the
spec. The naming convention is GxB_add_mult_type, where add is the op-
erator of the additive monoid, mult is the multiply operator, and type is
the type of inputs to the multiply operator. The name of the domain for
the additive monoid does not appear, since it always matches the type of
the output of the mult operator. For example GxB_LAND_EQ_FP32 uses the
GxB_LAND_BOOL_MONOID as its additive monoid, and the GrB_EQ_FP32 as the
binary multiplicative operator.

SPEC: Predefined semirings are an extension to the spec.
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5.6.2 GxB Semiring add: return the additive monoid of a semiring

GrB_Info GxB_Semiring_add // return the add monoid of a semiring

(

GrB_Monoid *add, // returns add monoid of the semiring

GrB_Semiring semiring // semiring to query

) ;

GxB_Semiring_add returns the additive monoid of a semiring.

SPEC: GxB_Semiring_add is an extension to the spec.

5.6.3 GxB Semiring multiply: return multiply operator of a semiring

GrB_Info GxB_Semiring_multiply // return multiply operator of a semiring

(

GrB_BinaryOp *multiply, // returns multiply operator of the semiring

GrB_Semiring semiring // semiring to query

) ;

GxB_Semiring_multiply returns the binary multiplicative operator of a
semiring.

SPEC: GxB_Semiring_multiply is an extension to the spec.

5.6.4 GrB Semiring free: free a semiring

GrB_Info GrB_free // free a user-created semiring

(

GrB_Semiring *semiring // handle of semiring to free

) ;

GrB_Semiring_free frees a semiring. Either usage:

GrB_Semiring_free (&semiring) ;

GrB_free (&semiring) ;

frees the semiring and sets semiring to NULL. It safely does nothing if passed
a NULL handle, or if semiring == NULL on input. It does nothing at all if
passed a built-in semiring.
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5.7 GraphBLAS scalars: GxB Scalar

This section describes a set of methods that create, modify, query, and de-
stroy a GraphBLAS sparse scalar, GxB_Scalar:

SPEC: GxB_Scalar is an extension to the spec.

GxB_Scalar_new create a sparse scalar
GxB_Scalar_dup copy a sparse scalar
GxB_Scalar_clear clear a sparse scalar of its entry
GxB_Scalar_nvals return the number of entries in a sparse scalar (0 or 1)
GxB_Scalar_type return the type of a sparse scalar
GxB_Scalar_setElement set the single entry of a sparse scalar
GxB_Scalar_extractElement get the single entry from a sparse scalar
GxB_Scalar_free free a sparse scalar

5.7.1 GxB Scalar new: create a sparse scalar

GrB_Info GxB_Scalar_new // create a new GxB_Scalar with no entry

(

GxB_Scalar *s, // handle of GxB_Scalar to create

GrB_Type type // type of GxB_Scalar to create

) ;

GxB_Scalar_new creates a new sparse scalar with no entry in it, of the
given type. This is analogous to MATLAB statement s = sparse (0), ex-
cept that GraphBLAS can create sparse scalars any type. The pattern of the
new scalar is empty.
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5.7.2 GxB Scalar dup: copy a sparse scalar

GrB_Info GxB_Scalar_dup // make an exact copy of a GxB_Scalar

(

GxB_Scalar *s, // handle of output GxB_Scalar to create

const GxB_Scalar t // input GxB_Scalar to copy

) ;

GxB_Scalar_dup makes a deep copy of a sparse scalar, like s=t in MAT-
LAB. In GraphBLAS, it is possible, and valid, to write the following:

GxB_Scalar t, s ;

GxB_Scalar_new (&t, GrB_FP64) ;

s = t ; // s is a shallow copy of t

Then s and t can be used interchangeably. However, only a pointer
reference is made, and modifying one of them modifies both, and freeing one
of them leaves the other as a dangling handle that should not be used. If
two different sparse scalars are needed, then this should be used instead:

GxB_Scalar t, s ;

GxB_Scalar_new (&t, GrB_FP64) ;

GxB_Scalar_dup (&s, t) ; // like s = t, but making a deep copy

Then s and t are two different sparse scalars that currently have the same
value, but they do not depend on each other. Modifying one has no effect on
the other.

5.7.3 GxB Scalar clear: clear a sparse scalar of its entry

GrB_Info GxB_Scalar_clear // clear a GxB_Scalar of its entry

( // type remains unchanged.

GxB_Scalar s // GxB_Scalar to clear

) ;

GxB_Scalar_clear clears the entry from a sparse scalar. The pattern
of s is empty, just as if it were created fresh with GxB_Scalar_new. Anal-
ogous with s = sparse (0) in MATLAB. The type of s does not change.
In SuiteSparse:GraphBLAS, any pending updates to the sparse scalar are
discarded.
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5.7.4 GxB Scalar nvals: return the number of entries in a sparse
scalar

GrB_Info GxB_Scalar_nvals // get the number of entries in a GxB_Scalar

(

GrB_Index *nvals, // GxB_Scalar has nvals entries (0 or 1)

const GxB_Scalar s // GxB_Scalar to query

) ;

GxB_Scalar_nvals returns the number of entries in a sparse scalar, which
is either 0 or 1. Roughly analogous to nvals = nnz(s) in MATLAB, except
that the implicit value in GraphBLAS need not be zero and nnz (short for
“number of nonzeros”) in MATLAB is better described as “number of en-
tries” in GraphBLAS.

Forced completion: All computations for the sparse scalar s are guar-
anteed to be finished when GxB_Scalar_nvals method returns. See the
discussion about GxB_Vector_nvals in Section 5.8.5 for more details.

5.7.5 GxB Scalar type: return the type of a sparse scalar

GrB_Info GxB_Scalar_type // get the type of a GxB_Scalar

(

GrB_Type *type, // returns the type of the GxB_Scalar

const GxB_Scalar s // GxB_Scalar to query

) ;

GxB_Scalar_type returns the type of a sparse scalar. Analogous to
type = class (s) in MATLAB.

5.7.6 GxB Scalar setElement: set the single entry of a sparse scalar

GrB_Info GxB_Scalar_setElement // s = x

(

GxB_Scalar s, // GxB_Scalar to modify

<type> x // user scalar to assign to s

) ;

GxB_Scalar_setElement sets the single entry in a sparse scalar, like
s = sparse(x) in MATLAB notation. For further details of this function,
see GxB_Matrix_setElement in Section 5.9.9.
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5.7.7 GxB Scalar extractElement: get the single entry from a sparse
scalar

GrB_Info GxB_Scalar_extractElement // x = s

(

<type> *x, // user scalar extracted

const GxB_Scalar s // GxB_Sclar to extract an entry from

) ;

GxB_Scalar_extractElement extracts the single entry from a sparse
scalar, like x = full(s) in MATLAB. Further details of this method are
discussed in Section 5.9.10, which discusses GrB_Matrix_extractElement.
NOTE: if no entry is present in the sparse scalar s, then x is not modified,
and the return value of GxB_Scalar_extractElement is GrB_NO_VALUE.

Forced completion: All computations for the sparse scalar s are guaran-
teed to be finished when the method returns.

5.7.8 GxB Scalar free: free a sparse scalar

GrB_Info GrB_free // free a GxB_Scalar

(

GxB_Scalar *s // handle of GxB_Scalar to free

) ;

GxB_Scalar_free frees a sparse scalar. Either usage:

GxB_Scalar_free (&s) ;

GrB_free (&s) ;

frees the sparse scalar s and sets s to NULL. It safely does nothing if passed
a NULL handle, or if s == NULL on input. In SuiteSparse:GraphBLAS, any
pending updates to the sparse scalar are abandoned.
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5.8 GraphBLAS vectors: GrB Vector

Many of the methods for GraphBLAS vectors require a row index or a size.
Many methods for matrices require both a row and column index, or a row
and column dimension. These are all integers of a specific type, GrB_Index,
which is defined in GraphBLAS.h as

typedef uint64_t GrB_Index ;

Row and column indices of an nrows-by-ncols matrix range from zero
to the nrows-1 for the rows, and zero to ncols-1 for the columns. In-
dices are zero-based, like C, and not one-based, like MATLAB. In Suite-
Sparse:GraphBLAS, the largest size permitted for any integer of GrB_Index
is 260. The largest GrB_Matrix that SuiteSparse:GraphBLAS can construct
is thus 260-by-260. An n-by-n matrix A that size can easily be constructed in
practice with O(|A|) memory requirements, where |A| denotes the number
of entries that explicitly appear in the pattern of A. The time and memory
required to construct a matrix that large does not depend on n, since Suite-
Sparse:GraphBLAS can represent A in hypersparse form (see Section 6.3).
The largest GrB_Vector that can be constructed is 260-by-1.

This section describes a set of methods that create, modify, query, and
destroy a GraphBLAS sparse vector, GrB_Vector:

GrB_Vector_new create a vector
GrB_Vector_dup copy a vector
GrB_Vector_clear clear a vector of all entries
GrB_Vector_size return the size of a vector
GrB_Vector_nvals return the number of entries in a vector
GxB_Vector_type return the type of a vector
GrB_Vector_build build a vector from a set of tuples
GrB_Vector_setElement add a single entry to a vector
GrB_Vector_extractElement get a single entry from a vector
GrB_Vector_extractTuples get all entries from a vector
GxB_Vector_resize resize a vector
GrB_Vector_free free a vector
GxB_Vector_import import a vector (see Section 5.10)
GxB_Vector_export export a vector (see Section 5.10)
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5.8.1 GrB Vector new: create a vector

GrB_Info GrB_Vector_new // create a new vector with no entries

(

GrB_Vector *v, // handle of vector to create

GrB_Type type, // type of vector to create

GrB_Index n // vector dimension is n-by-1

) ;

GrB_Vector_new creates a new n-by-1 sparse vector with no entries in it,
of the given type. This is analogous to MATLAB statement v = sparse (n,1),
except that GraphBLAS can create sparse vectors any type. The pattern of
the new vector is empty.

5.8.2 GrB Vector dup: copy a vector

GrB_Info GrB_Vector_dup // make an exact copy of a vector

(

GrB_Vector *w, // handle of output vector to create

const GrB_Vector u // input vector to copy

) ;

GrB_Vector_dup makes a deep copy of a sparse vector, like w=u in MAT-
LAB. In GraphBLAS, it is possible, and valid, to write the following:

GrB_Vector u, w ;

GrB_Vector_new (&u, GrB_FP64, n) ;

w = u ; // w is a shallow copy of u

Then w and u can be used interchangeably. However, only a pointer
reference is made, and modifying one of them modifies both, and freeing one
of them leaves the other as a dangling handle that should not be used. If
two different vectors are needed, then this should be used instead:

GrB_Vector u, w ;

GrB_Vector_new (&u, GrB_FP64, n) ;

GrB_Vector_dup (&w, u) ; // like w = u, but making a deep copy

Then w and u are two different vectors that currently have the same set
of values, but they do not depend on each other. Modifying one has no effect
on the other.
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5.8.3 GrB Vector clear: clear a vector of all entries

GrB_Info GrB_Vector_clear // clear a vector of all entries;

( // type and dimension remain unchanged.

GrB_Vector v // vector to clear

) ;

GrB_Vector_clear clears all entries from a vector. All values v(i) are
now equal to the implicit value, depending on what semiring ring is used to
perform computations on the vector. The pattern of v is empty, just as if
it were created fresh with GrB_Vector_new. Analogous with v (:) = 0 in
MATLAB. The type and dimension of v do not change. In SuiteSparse:GraphBLAS,
any pending updates to the vector are discarded.

5.8.4 GrB Vector size: return the size of a vector

GrB_Info GrB_Vector_size // get the dimension of a vector

(

GrB_Index *n, // vector dimension is n-by-1

const GrB_Vector v // vector to query

) ;

GrB_Vector_size returns the size of a vector (the number of rows). Anal-
ogous to n = length(v) or n = size(v,1) in MATLAB.
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5.8.5 GrB Vector nvals: return the number of entries in a vector

GrB_Info GrB_Vector_nvals // get the number of entries in a vector

(

GrB_Index *nvals, // vector has nvals entries

const GrB_Vector v // vector to query

) ;

GrB_Vector_nvals returns the number of entries in a vector. Roughly
analogous to nvals = nnz(v) in MATLAB, except that the implicit value
in GraphBLAS need not be zero and nnz (short for “number of nonzeros”)
in MATLAB is better described as “number of entries” in GraphBLAS.

Forced completion: All computations for the vector v are guaranteed
to be finished when GrB_Vector_nvals method returns. That is, it acts
like an object-specific GrB_wait for just this particular vector v, which is
a side-effect useful in its own right. For example, suppose the computa-
tions required for v rely upon a user-defined operator that accesses a user-
controlled global variable outside the scope or control of GraphBLAS. If
the user-application needs to modify or free the variable, GrB_Vector_nvals
can be used to force all pending operations for this vector v to complete.
The user application can then safely modify the global variable. A call to
GrB_Vector_nvals(&nvals,v) only ensures that the computations require
to compute v are finished; other pending computations for other objects
may remain. To ensure that all pending computations are complete for all
GraphBLAS objects, use GrB_wait instead.

5.8.6 GxB Vector type: return the type of a vector

GrB_Info GxB_Vector_type // get the type of a vector

(

GrB_Type *type, // returns the type of the vector

const GrB_Vector v // vector to query

) ;

GxB_Vector_type returns the type of a vector. Analogous to type = class (v)

in MATLAB.

SPEC: GxB_Vector_type is an extension to the spec.
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5.8.7 GrB Vector build: build a vector from a set of tuples

GrB_Info GrB_Vector_build // build a vector from (I,X) tuples

(

GrB_Vector w, // vector to build

const GrB_Index *I, // array of row indices of tuples

const <type> *X, // array of values of tuples

GrB_Index nvals, // number of tuples

const GrB_BinaryOp dup // binary function to assemble duplicates

) ;

GrB_Vector_build constructs a sparse vector w from a set of tuples, I
and X, each of length nvals. The vector w must have already been initial-
ized with GrB_Vector_new, and it must have no entries in it before calling
GrB_Vector_build.

This function is just like GrB_Matrix_build (see Section 5.9.8), except
that it builds a sparse vector instead of a sparse matrix. For a description
of what GrB_Vector_build does, refer to GrB_Matrix_build. For a vector,
the list of column indices J in GrB_Matrix_build is implicitly a vector of
length nvals all equal to zero. Otherwise the methods are identical.

SPEC: As an extension to the spec, results are defined even if dup is
non-associative.

5.8.8 GrB Vector setElement: add a single entry to a vector

GrB_Info GrB_Vector_setElement // w(i) = x

(

GrB_Vector w, // vector to modify

<type> x, // scalar to assign to w(i)

GrB_Index i // row index

) ;

GrB_Vector_setElement sets a single entry in a vector, w(i) = x. The
operation is exactly like setting a single entry in an n-by-1 matrix, A(i,0) = x,
where the column index for a vector is implicitly j=0. For further details of
this function, see GrB_Matrix_setElement in Section 5.9.9.
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5.8.9 GrB Vector extractElement: get a single entry from a vector

GrB_Info GrB_Vector_extractElement // x = v(i)

(

<type> *x, // scalar extracted

const GrB_Vector v, // vector to extract an entry from

GrB_Index i // row index

) ;

GrB_Vector_extractElement extracts a single entry from a vector, x = v(i).
The method is identical to extracting a single entry x = A(i,0) from an n-
by-1 matrix, so further details of this method are discussed in Section 5.9.10,
which discusses GrB_Matrix_extractElement. In this case, the column in-
dex is implicitly j=0. NOTE: if no entry is present at v(i), then x

is not modified, and the return value of GrB_Vector_extractElement is
GrB_NO_VALUE.

Forced completion: All computations for the vector v are guaranteed to
be finished when the method returns.

5.8.10 GrB Vector extractTuples: get all entries from a vector

GrB_Info GrB_Vector_extractTuples // [I,~,X] = find (v)

(

GrB_Index *I, // array for returning row indices of tuples

<type> *X, // array for returning values of tuples

GrB_Index *nvals, // I, X size on input; # tuples on output

const GrB_Vector v // vector to extract tuples from

) ;

GrB_Vector_extractTuples extracts all tuples from a sparse vector,
analogous to [I,~,X] = find(v) in MATLAB. This function is identical
to its GrB_Matrix_extractTuples counterpart, except that the array of col-
umn indices J does not appear in this function. Refer to Section 5.9.11 where
further details of this function are described.

Forced completion: All computations for the vector v are guaranteed to
be finished when the method returns.
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5.8.11 GxB Vector resize: resize a vector

GrB_Info GxB_Vector_resize // change the size of a vector

(

GrB_Vector u, // vector to modify

GrB_Index nrows_new // new number of rows in vector

) ;

GxB_Vector_resize changes the size of a vector. If the dimension de-
creases, entries that fall outside the resized vector are deleted.

5.8.12 GrB Vector free: free a vector

GrB_Info GrB_free // free a vector

(

GrB_Vector *v // handle of vector to free

) ;

GrB_Vector_free frees a vector. Either usage:

GrB_Vector_free (&v) ;

GrB_free (&v) ;

frees the vector v and sets v to NULL. It safely does nothing if passed a NULL

handle, or if v == NULL on input. In SuiteSparse:GraphBLAS, any pending
updates to the vector are abandoned.
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5.9 GraphBLAS matrices: GrB Matrix

This section describes a set of methods that create, modify, query, and de-
stroy a GraphBLAS sparse matrix, GrB_Matrix:

GrB_Matrix_new create a matrix
GrB_Matrix_dup copy a matrix
GrB_Matrix_clear clear a matrix of all entries
GrB_Matrix_nrows return the number of rows of a matrix
GrB_Matrix_ncols return the number of columns of a matrix
GrB_Matrix_nvals return the number of entries in a matrix
GxB_Matrix_type return the type of a matrix
GrB_Matrix_build build a matrix from a set of tuples
GrB_Matrix_setElement add a single entry to a matrix
GrB_Matrix_extractElement get a single entry from a matrix
GrB_Matrix_extractTuples get all entries from a matrix
GxB_Matrix_resize resize a matrix
GrB_Matrix_free free a matrix
GxB_Matrix_import_CSR import a matrix in CSR form (see Section 5.10)
GxB_Matrix_import_CSC import a matrix in CSC form (see Section 5.10)
GxB_Matrix_import_HyperCSR import a matrix in HyperCSR form (see Section 5.10)
GxB_Matrix_import_HyperCSC import a matrix in HyperCSC form (see Section 5.10)
GxB_Matrix_export_CSR export a matrix in CSR form (see Section 5.10)
GxB_Matrix_export_CSC export a matrix in CSC form (see Section 5.10)
GxB_Matrix_export_HyperCSR export a matrix in HyperCSR form (see Section 5.10)
GxB_Matrix_export_HyperCSC export a matrix in HyperCSC form (see Section 5.10)

5.9.1 GrB Matrix new: create a matrix

GrB_Info GrB_Matrix_new // create a new matrix with no entries

(

GrB_Matrix *A, // handle of matrix to create

GrB_Type type, // type of matrix to create

GrB_Index nrows, // matrix dimension is nrows-by-ncols

GrB_Index ncols

) ;

GrB_Matrix_new creates a new nrows-by-ncols sparse matrix with no
entries in it, of the given type. This is analogous to the MATLAB statement
A = sparse (nrows, ncols), except that GraphBLAS can create sparse
matrices of any type.
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5.9.2 GrB Matrix dup: copy a matrix

GrB_Info GrB_Matrix_dup // make an exact copy of a matrix

(

GrB_Matrix *C, // handle of output matrix to create

const GrB_Matrix A // input matrix to copy

) ;

GrB_Matrix_dup makes a deep copy of a sparse matrix, like C=A in MAT-
LAB. In GraphBLAS, it is possible, and valid, to write the following:

GrB_Matrix A, C ;

GrB_Matrix_new (&A, GrB_FP64, n) ;

C = A ; // C is a shallow copy of A

Then C and A can be used interchangeably. However, only a pointer
reference is made, and modifying one of them modifies both, and freeing one
of them leaves the other as a dangling handle that should not be used. If
two different matrices are needed, then this should be used instead:

GrB_Matrix A, C ;

GrB_Matrix_new (&A, GrB_FP64, n) ;

GrB_Matrix_dup (&C, A) ; // like C = A, but making a deep copy

Then C and A are two different matrices that currently have the same set
of values, but they do not depend on each other. Modifying one has no effect
on the other.

5.9.3 GrB Matrix clear: clear a matrix of all entries

GrB_Info GrB_Matrix_clear // clear a matrix of all entries;

( // type and dimensions remain unchanged

GrB_Matrix A // matrix to clear

) ;

GrB_Matrix_clear clears all entries from a matrix. All values A(i,j)

are now equal to the implicit value, depending on what semiring ring is used
to perform computations on the matrix. The pattern of A is empty, just as if
it were created fresh with GrB_Matrix_new. Analogous with A (:,:) = 0 in
MATLAB. The type and dimensions of A do not change. In SuiteSparse:Graph-
BLAS, any pending updates to the matrix are discarded.
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5.9.4 GrB Matrix nrows: return the number of rows of a matrix

GrB_Info GrB_Matrix_nrows // get the number of rows of a matrix

(

GrB_Index *nrows, // matrix has nrows rows

const GrB_Matrix A // matrix to query

) ;

GrB_Matrix_nrows returns the number of rows of a matrix (nrows=size(A,1)
in MATLAB).

5.9.5 GrB Matrix ncols: return the number of columns of a matrix

GrB_Info GrB_Matrix_ncols // get the number of columns of a matrix

(

GrB_Index *ncols, // matrix has ncols columns

const GrB_Matrix A // matrix to query

) ;

GrB_Matrix_ncols returns the number of columns of a matrix (ncols=size(A,2)
in MATLAB).

5.9.6 GrB Matrix nvals: return the number of entries in a matrix

GrB_Info GrB_Matrix_nvals // get the number of entries in a matrix

(

GrB_Index *nvals, // matrix has nvals entries

const GrB_Matrix A // matrix to query

) ;

GrB_Matrix_nvals returns the number of entries in a matrix. Roughly
analogous to nvals = nnz(A) in MATLAB, except that the implicit value
in GraphBLAS need not be zero and nnz (short for “number of nonzeros”)
in MATLAB is better described as “number of entries” in GraphBLAS.

Forced completion: All computations for the matrix A are guaranteed to
be finished when GrB_Matrix_nvals returns. That is, it acts like an object-
specific GrB_wait for just this particular matrix A. Other pending computa-
tions for other objects may remain. To ensure that all pending computations
are complete for all GraphBLAS objects, used GrB_wait instead.
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5.9.7 GxB Matrix type: return the type of a matrix

GrB_Info GxB_Matrix_type // get the type of a matrix

(

GrB_Type *type, // returns the type of the matrix

const GrB_Matrix A // matrix to query

) ;

GxB_Matrix_type returns the type of a matrix, like type=class(A) in
MATLAB.

SPEC: GxB_Matrix_type is an extension to the spec.
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5.9.8 GrB Matrix build: build a matrix from a set of tuples

GrB_Info GrB_Matrix_build // build a matrix from (I,J,X) tuples

(

GrB_Matrix C, // matrix to build

const GrB_Index *I, // array of row indices of tuples

const GrB_Index *J, // array of column indices of tuples

const <type> *X, // array of values of tuples

GrB_Index nvals, // number of tuples

const GrB_BinaryOp dup // binary function to assemble duplicates

) ;

GrB_Matrix_build constructs a sparse matrix C from a set of tuples, I,
J, and X, each of length nvals. The matrix C must have already been initial-
ized with GrB_Matrix_new, and it must have no entries in it before calling
GrB_Matrix_build. Thus the dimensions and type of C are not changed by
this function, but are inherited from the prior call to GrB_Matrix_new or
GrB_matrix_dup.

An error is returned (GrB_INDEX_OUT_OF_BOUNDS) if any row index in I

is greater than or equal to the number of rows of C, or if any column index
in J is greater than or equal to the number of columns of C

Any duplicate entries with identical indices are assembled using the bi-
nary dup operator provided on input. All three types (x, y, z for z=dup(x,y))
must be identical. The types of dup, C and X must all be compatible. See
Section 2.4 regarding typecasting and compatibility. The values in X are type-
casted, if needed, into the type of dup. Duplicates are then assembled into a
matrix T of the same type as dup, using T(i,j) = dup (T (i,j), X (k)).
After T is constructed, it is typecasted into the result C. That is, typecasting
does not occur at the same time as the assembly of duplicates.

SPEC: As an extension to the spec, results are defined even if dup is
non-associative.

The GraphBLAS API requires dup to be associative so that entries can
be assembled in any order, and states that the result is undefined if dup is
not associative. However, SuiteSparse:GraphBLAS guarantees a well-defined
order of assembly. Entries in the tuples [I,J,X] are first sorted in increasing
order of row and column index, with ties broken by the position of the tuple
in the [I,J,X] list. If duplicates appear, they are assembled in the order
they appear in the [I,J,X] input. That is, if the same indices i and j appear

77



in positions k1, k2, k3, and k4 in [I,J,X], where k1 < k2 < k3 < k4, then
the following operations will occur in order:

T (i,j) = X (k1) ;

T (i,j) = dup (T (i,j), X (k2)) ;

T (i,j) = dup (T (i,j), X (k3)) ;

T (i,j) = dup (T (i,j), X (k4)) ;

This is a well-defined order but the user should not depend upon it when
using other GraphBLAS implementations since the GraphBLAS API does
not require this ordering.

However, SuiteSparse:GraphBLAS guarantees this ordering, even when it
compute the result in parallel. With this well-defined order, several operators
become very useful. In particular, the SECOND operator results in the last
tuple overwriting the earlier ones. The FIRST operator means the value of
the first tuple is used and the others are discarded.

The acronym dup is used here for the name of binary function used for
assembling duplicates, but this should not be confused with the _dup suffix
in the name of the function GrB_Matrix_dup. The latter function does not
apply any operator at all, nor any typecasting, but simply makes a pure deep
copy of a matrix.

The parameter X is a pointer to any C equivalent built-in type, or a
void * pointer. The GrB_Matrix_build function uses the _Generic feature
of ANSI C11 to detect the type of pointer passed as the parameter X. If X is
a pointer to a built-in type, then the function can do the right typecasting.
If X is a void * pointer, then it can only assume X to be a pointer to a user-
defined type that is the same user-defined type of C and dup. This function
has no way of checking this condition that the void * X pointer points to
an array of the correct user-defined type, so behavior is undefined if the user
breaks this condition.

The GrB_Matrix_build method is analogous to C = sparse (I,J,X)

in MATLAB, with several important extensions that go beyond that which
MATLAB can do. In particular, the MATLAB sparse function only provides
one option for assembling duplicates (summation), and it can only build
double, double complex, and logical sparse matrices.
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5.9.9 GrB Matrix setElement: add a single entry to a matrix

GrB_Info GrB_Matrix_setElement // C (i,j) = x

(

GrB_Matrix C, // matrix to modify

<type> x, // scalar to assign to C(i,j)

GrB_Index i, // row index

GrB_Index j // column index

) ;

GrB_Matrix_setElement sets a single entry in a matrix, C(i,j)=x. If the
entry is already present in the pattern of C, it is overwritten with the new
value. If the entry is not present, it is added to C. In either case, no entry
is ever deleted by this function. Passing in a value of x=0 simply creates an
explicit entry at position (i,j) whose value is zero, even if the implicit value
is assumed to be zero.

An error is returned (GrB_INVALID_INDEX) if the row index i is greater
than or equal to the number of rows of C, or if the column index j is greater
than or equal to the number of columns of C. Note that this error code
differs from the same kind of condition in GrB_Matrix_build, which re-
turns GrB_INDEX_OUT_OF_BOUNDS. This is because GrB_INVALID_INDEX is an
API error, and is caught immediately even in non-blocking mode, whereas
GrB_INDEX_OUT_OF_BOUNDS is an execution error whose detection may wait
until the computation completes sometime later.

The scalar x is typecasted into the type of C. Any value can be passed to
this function and its type will be detected, via the _Generic feature of ANSI
C11. For a user-defined type, x is a void * pointer that points to a memory
space holding a single entry of this user-defined type. This user-defined type
must exactly match the user-defined type of C since no typecasting is done
between user-defined types.

Performance considerations: SuiteSparse:GraphBLAS exploits the non-
blocking mode to greatly improve the performance of this method. Refer to
the example shown in Section 2.2. If the entry exists in the pattern already,
it is updated right away and the work is not left pending. Otherwise, it is
placed in a list of pending updates, and the later on the updates are done
all at once, using the same algorithm used for GrB_Matrix_build. In other
words, setElement in SuiteSparse:GraphBLAS builds its own internal list of
tuples [I,J,X], and then calls GrB_Matrix_build whenever the matrix is
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needed in another computation, or whenever GrB_wait is called.
As a result, if calls to setElement are mixed with calls to most other

methods and operations (even extractElement) then the pending updates
are assembled right away, which will be slow. Performance will be good if
many setElement updates are left pending, and performance will be poor if
the updates are assembled frequently.

A few methods and operations can be intermixed with setElement, in
particular, some forms of the GrB_assign and GxB_subassign operations are
compatible with the pending updates from setElement. Sections 8.11 gives
more details on which GxB_subassign and GrB_assign operations can be in-
terleaved with calls to setElement without forcing updates to be assembled.
Other methods that do not access the existing entries may also be done
without forcing the updates to be assembled, namely GrB_Matrix_clear

(which erases all pending updates), GrB_Matrix_free, GrB_Matrix_ncols,
GrB_Matrix_nrows, GxB_Matrix_type, and of course GrB_Matrix_setElement
itself. All other methods and operations cause the updates to be assembled.
Future versions of SuiteSparse:GraphBLAS may extend this list.

See Section 11.4 for an example of how to use GrB_Matrix_setElement.

5.9.10 GrB Matrix extractElement: get a single entry from a matrix

GrB_Info GrB_Matrix_extractElement // x = A(i,j)

(

<type> *x, // extracted scalar

const GrB_Matrix A, // matrix to extract a scalar from

GrB_Index i, // row index

GrB_Index j // column index

) ;

GrB_Matrix_extractElement extracts a single entry from a matrix x=A(i,j).
An error is returned (GrB_INVALID_INDEX) if the row index i is greater

than or equal to the number of rows of C, or if column index j is greater than
or equal to the number of columns of C.

NOTE: if no entry is present at A(i,j), then x is not modified, and the
return value of GrB_Matrix_extractElement is GrB_NO_VALUE.

If the entry is not present then GraphBLAS does not know its value,
since its value depends on the implicit value, which is the identity value
of the additive monoid of the semiring. It is not a characteristic of the
matrix itself, but of the semiring it is used in. A matrix can be used in any
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compatible semiring, and even a mixture of semirings, so the implicit value
can change as the semiring changes.

As a result, if the entry is present, x=A(i,j) is performed and the scalar
x is returned with this value. The method returns GrB_SUCCESS. If the entry
is not present, x is not modified, and GrB_NO_VALUE is returned to the caller.
What this means is up to the caller.

The function knows the type of the pointer x, so it can do typecasting as
needed, from the type of A into the type of x. User-defined types cannot be
typecasted, so if A has a user-defined type then x must be a void * pointer
that points to a memory space the same size as a single scalar of the type of
A.

Forced completion: All computations for the matrix A are guaranteed to
be finished when the method returns. In particular, this method causes all
pending updates from GrB_setElement, GrB_assign, or GxB_subassign to
be assembled, so its use can have performance implications. Calls to this
function should not be arbitrarily intermixed with calls to these other two
functions. Everything will work correctly and results will be predictable, it
will just be slow.

5.9.11 GrB Matrix extractTuples: get all entries from a matrix

GrB_Info GrB_Matrix_extractTuples // [I,J,X] = find (A)

(

GrB_Index *I, // array for returning row indices of tuples

GrB_Index *J, // array for returning col indices of tuples

<type> *X, // array for returning values of tuples

GrB_Index *nvals, // I,J,X size on input; # tuples on output

const GrB_Matrix A // matrix to extract tuples from

) ;

GrB_Matrix_extractTuples extracts all the entries from the matrix A,
returning them as a list of tuples, analogous to [I,J,X]=find(A) in MAT-
LAB. Entries in the tuples [I,J,X] are unique. No pair of row and column
indices (i,j) appears more than once.

The GraphBLAS API states the tuples can be returned in any order.
SuiteSparse:GraphBLAS chooses to always return them in sorted order, de-
pending on whether the matrix is stored by row or by column.
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The number of tuples in the matrix A is given by GrB_Matrix_nvals(&anvals,A).
If anvals is larger than the size of the arrays (nvals in the parameter list),
an error GrB_INSUFFICIENT_SIZE is returned, and no tuples are extracted. If
nvals is larger than anvals, then only the first anvals entries in the arrays
I J, and X are modified, containing all the tuples of A, and the rest of I J,
and X are left unchanged. On output, nvals contains the number of tuples
extracted.

Forced completion: All computations for the matrix A are guaranteed to
be finished when the method returns.

5.9.12 GxB Matrix resize: resize a matrix

GrB_Info GxB_Matrix_resize // change the size of a matrix

(

GrB_Matrix A, // matrix to modify

const GrB_Index nrows_new, // new number of rows in matrix

const GrB_Index ncols_new // new number of columns in matrix

) ;

GxB_Matrix_resize changes the size of a matrix. If the dimensions de-
crease, entries that fall outside the resized matrix are deleted.

5.9.13 GrB Matrix free: free a matrix

GrB_Info GrB_free // free a matrix

(

GrB_Matrix *A // handle of matrix to free

) ;

GrB_Matrix_free frees a matrix. Either usage:

GrB_Matrix_free (&A) ;

GrB_free (&A) ;

frees the matrix A and sets A to NULL. It safely does nothing if passed a NULL

handle, or if A == NULL on input. In SuiteSparse:GraphBLAS, any pending
updates to the matrix are abandoned.
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5.10 GraphBLAS matrix and vector import/export

The import/export functions allow the user application to create a GrB_Matrix
or GrB_Vector object, and to extract its contents, faster and with less mem-
ory overhead than the GrB_*_build and GrB_*_extractTuples functions.

The semantics of import/export are the same as the move constructor in
C++. On import, the user provides a set of arrays that have been previously
allocated via the ANSI C malloc, calloc, or realloc functions (by default),
or by the corresponding functions passed to GxB_init. The arrays define
the content of the matrix or vector. Unlike GrB_*_build, the GraphBLAS
library then takes ownership of the user’s input arrays and may either:

1. incorporate them into its internal data structure for the new GrB_Matrix

or GrB_Vector, potentially creating the GrB_Matrix or GrB_Vector in
constant time with no memory copying performed, or

2. if the library does not support the import format directly, then it may
convert the input to its internal format, and then free the user’s input
arrays.

3. A GraphBLAS implementation may also choose to use a mix of the
two strategies.

SuiteSparse:GraphBLAS takes the first approach, and so the import func-
tions always take O(1) time, and require O(1) memory space to be allocated.

Regardless of the method chosen, as listed above, the input arrays are
no longer owned by the user application. If A is a GrB_Matrix created by
an import, the user input arrays are freed no later than GrB_free(&A), and
may be freed earlier, at the discretion of the GraphBLAS library. The data
structure of the GrB_Matrix and GrB_Vector remain opaque.

The export of a GrB_Matrix or GrB_Vector is symmetric with the im-
port operation. The export changes the ownership of the arrays, where the
GrB_Matrix or GrB_Vector no longer exists when the export completes,
and instead the user is returned several arrays that contain the matrix
or vector in the requested format. Ownership of these arrays is given to
the user application, which is then responsible for freeing them via the
ANSI C free function (by default), or by the free_function that was
passed in to GxB_init. Alternatively, these arrays can be re-imported into a
GrB_Matrix or GrB_Vector, at which point they again become the respon-
sibility of GraphBLAS.
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For a matrix export, if the output format matches the current internal
format of the matrix then these arrays are returned to the user applica-
tion in O(1) time and with no memory copying performed. Otherwise, the
GrB_Matrix is first converted into the requested format, and then exported.

The vector import/export methods use a single format for a GrB_Vector.
Four different formats are provided for the import/export of a GrB_Matrix.
For each format, the Ax array has a C type corresponding to one of the 11
built-in types in GraphBLAS (bool, int*_t, uint*_t, float, and double),
or that corresponds with the user-defined type. No typecasting is done on
import or export.

The table below lists the methods presented in this section.

method purpose Section
GxB_Vector_import import a vector 5.10.1
GxB_Vector_export export a vector 5.10.2
GxB_Matrix_import_CSR import a matrix in CSR form 5.10.3
GxB_Matrix_import_CSC import a matrix in CSC form 5.10.4
GxB_Matrix_import_HyperCSR import a matrix in HyperCSR form 5.10.5
GxB_Matrix_import_HyperCSC import a matrix in HyperCSC form 5.10.6
GxB_Matrix_export_CSR export a matrix in CSR form 5.10.7
GxB_Matrix_export_CSC export a matrix in CSC form 5.10.8
GxB_Matrix_export_HyperCSR export a matrix in HyperCSR form 5.10.9
GxB_Matrix_export_HyperCSC export a matrix in HyperCSC form 5.10.10

SPEC: The import/export methods are extensions to the spec. How-
ever, they have been implemented in SuiteSparse:GraphBLAS at the
request of the GraphBLAS C API Committee, as a prototype for fu-
ture consideration for inclusion in a future specification. Their calling
sequence may change if these functions are added to the specification
as GrB_* functions. A GraphBLAS library need not implement these
methods in constant time and memory. On import, a library may choose
to copy the content of the user arrays into its internal data structure
and then free the user arrays. On export, it may chose to malloc the
output arrays, fill them with the requested data, and then GrB_free the
GraphBLAS object being exported. The semantics of these options are
the same as a move constructor; they just take more time and memory.
The choice is up to the GraphBLAS implementation since the internal
data structure is opaque to the user application.

84



5.10.1 GxB Vector import: import a vector

GrB_Info GxB_Vector_import // import a vector in CSC format

(

GrB_Vector *v, // vector to create

GrB_Type type, // type of vector to create

GrB_Index n, // vector length

GrB_Index nvals, // number of entries in the vector

GrB_Index **vi, // indices, size nvals (in sorted order)

void **vx, // values, size nvals

const GrB_Descriptor desc // currently unused

) ;

The GxB_Vector_import function is a fast way to construct a GrB_Vector,
always taking just O(1) time. Calling GxB_Vector_import with:

GxB_Vector_import (&v, type, n, nvals, &vi, &vx, desc) ;

is identical to the following:

int64_t *Ap = calloc (2, sizeof (int64_t)) ;

Ap [1] = nvals ;

GxB_Matrix_import_CSC (&A, type, n, 1, nvals, -1, &Ap, &vi, &vx, desc) ;

except that the latter creates an n-by-1 matrix instead. For the vector im-
port, described here, the first argument is a GrB_Vector. The arguments
vi and vx take the place of Ai and Ax, and the Ap array for the CSC ma-
trix import is not provided for a vector import. Refer to the description of
GxB_Matrix_import_CSC for details (Section 5.10.4).

If successful, v is created as a n-by-1 vector. Its entries are the row indices
given by vi, with the corresponding values in vx. The two pointers vi and
vx are returned as NULL, which denotes that they are no longer owned by
the user application. They have instead been moved into the new vector v.
The row indices in vi must appear in sorted order, and no duplicates can
appear. These conditions are not checked, so results are undefined if they
are not met exactly. The user application can check the resulting vector v

with GxB_print, if desired, which will determine if these conditions hold.
If not successful, v is returned as NULL and vi and vx are not modified.

SPEC: GxB_Vector_import is an extension to the spec.
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5.10.2 GxB Vector export: export a vector

GrB_Info GxB_Vector_export // export and free a vector

(

GrB_Vector *v, // vector to export and free

GrB_Type *type, // type of vector exported

GrB_Index *n, // length of the vector

GrB_Index *nvals, // number of entries in the vector

GrB_Index **vi, // indices, size nvals

void **vx, // values, size nvals

const GrB_Descriptor desc // currently unused

) ;

The GxB_Vector_export function is a fast way to extract the contents
of a GrB_Vector, always taking just O(1) time. Using GxB_Vector_export

with:

GxB_Vector_export (&v, &type, &n, &nvals, &vi, &vx, desc) ;

is analogous to:

GxB_Matrix_export_CSC (&A, &type, &n, &one, &nvals, &nonempty,

&Ap, &Ai, &Ax, desc)

if A were an n-by-1 matrix. For the vector export, described here, the first
argument is a GrB_Vector. The arguments vi and vx take the place of Ai
and Ax, and the Ap array for the CSC matrix export is not returned from
a vector export. Refer to the description of GxB_Matrix_export_CSC for
details. (Section 5.10.8).

Exporting a vector forces completion of any pending operations on the
vector.

If successful, v is returned as NULL, and its contents are returned to the
user, with its type, dimension n, and number of entries nvals. A sorted list of
row indices of entries that were in v is returned in vi, and the corresponding
numerical values are returned in vx. If nvals is zero, the vi and vx arrays
are returned as NULL; this is not an error condition.

If not successful, v is unmodified and vi and vx are not modified.

SPEC: GxB_Vector_export is an extension to the spec.
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5.10.3 GxB Matrix import CSR: import a CSR matrix

GrB_Info GxB_Matrix_import_CSR // import a CSR matrix

(

GrB_Matrix *A, // handle of matrix to create

GrB_Type type, // type of matrix to create

GrB_Index nrows, // matrix dimension is nrows-by-ncols

GrB_Index ncols,

GrB_Index nvals, // number of entries in the matrix

// CSR format:

int64_t nonempty, // number of rows with at least one entry:

// either < 0 if not known, or >= 0 if exact

GrB_Index **Ap, // row "pointers", size nrows+1

GrB_Index **Aj, // column indices, size nvals

void **Ax, // values, size nvals

const GrB_Descriptor desc // currently unused

) ;

GxB_Matrix_import_CSR imports a matrix from 3 user arrays in CSR
format. In the resulting GrB_Matrix A, the CSR format is a matrix with a
format (GxB_FORMAT) of GxB_BY_ROW, in standard for instead of hypersparse
form (See Section 6.3).

The first four arguments of GxB_Matrix_import_CSR are the same as
all four arguments of GrB_Matrix_new, because this function is similar. It
creates a new GrB_Matrix A, with the given type and dimensions. The
GrB_Matrix A does not exist on input.

Unlike GrB_Matrix_new, this function also populates the new matrix A

with the three arrays Ap, Aj and Ax, provided by the user, all of which must
have been created with the ANSI C malloc, calloc, or realloc functions
(by default), or by the corresponding malloc_function, calloc_function,
or realloc_function provided to GxB_init. These arrays define the pattern
and values of the new matrix A:

• GrB_Index Ap [nrows+1] ; The Ap array is the row “pointer” array.
It does not actual contain pointers. More precisely, it is an integer
array that defines where the column indices and values appear in Aj

and Ax, for each row. The number of entries in row i is given by the
expression Ap [i+1] - Ap [i].

• GrB_Index Aj [nvals] ; The Aj array defines the column indices of
entries in each row.
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• ctype Aj [nvals] ; The Ax array defines the values of entries in each
row. It is passed in as a (void *) pointer, but it must point to an array
of size nvals values, each of size sizeof(ctype), where ctype is the
exact type in C that corresponds to the GrB_Type type parameter.
That is, if type is GrB_INT32, then ctype is int32_t. User types may
be used, just the same as built-in types.

The content of the three arrays Ap Aj, and Ax is very specific. This
content is not checked, since this function takes only O(1) time. Results are
undefined if the following specification is not followed exactly.

The column indices of entries in the ith row of the matrix are held in
Aj [Ap [i] ... Ap[i+1]], and the corresponding values are held in the
same positions in Ax. Column indices must be in the range 0 to ncols-1, and
must appear in sorted order within each row. No duplicate column indices
may appear in any row. Ap [0] must equal zero, and Ap [nrows] must equal
nvals. The Ap array must be of size nrows+1 (or larger), and the Aj and Ax

arrays must have size at least nvals.
If nvals is zero, then the content of the Aj and Ax arrays is not accessed

and they may be NULL on input (if not NULL, they are still freed and returned
as NULL, if the method is successful).

The nonempty parameter is optional. It states the number of rows that
have at least one entry: if not known, use -1; if ≥ 0, it must be exact.

An example of the CSR format is shown below. Consider the following
matrix with 10 nonzero entries, and suppose the zeros are not stored.

A =


4.5 0 3.2 0
3.1 2.9 0 0.9
0 1.7 3.0 0

3.5 0.4 0 1.0

 (1)

The Ap array has length 5, since the matrix is 4-by-4. The first entry
must always zero, and Ap [5] = 10 is the number of entries. The content
of the arrays is shown below:

int64_t Ap [ ] = { 0, 2, 5, 7, 10 } ;

int64_t Aj [ ] = { 0, 2, 0, 1, 3, 1, 2, 0, 1, 3 } ;

double Ax [ ] = { 4.5, 3.2, 3.1, 2.9, 0.9, 1.7, 3.0, 3.5, 0.4, 1.0 } ;

Spaces have been added to the Ap array, just for illustration. Row
zero is in Aj [0..1] (column indices) and Ax [0..1] (values), starting at
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Ap [0] = 0 and ending at Ap [0+1]-1 = 1. The list of column indices of
row one is at Aj [2..4] and row two is in Aj [5..6]. The last row (three)
appears Aj [7..9], because Ap [3] = 7 and Ap [4]-1 = 10-1 = 9. The
corresponding numerical values appear in the same positions in Ax.

To iterate over the rows and entries of this matrix, the following code can
be used:

int64_t nvals = Ap [nrows] ;

for (int64_t i = 0 ; i < nrows ; i++)

{

// get A(i,:)

for (int64_t p = Ap [i] ; p < Ap [i+1] ; p++)

{

// get A(i,j)

int64_t j = Aj [p] ; // column index

double aij = Ax [p] ; // numerical value

}

}

On successful creation of A, the three pointers Ap, Aj, and Ax are set to
NULL on output. This denotes to the user application that it is no longer
responsible for freeing these arrays. Internally, GraphBLAS has moved these
arrays into its internal data structure. They will eventually be freed no later
than when the user does GrB_free(&A), but they may be freed or resized
later, if the matrix changes.

If the matrix A is later exported in CSR form, and GraphBLAS has not
yet reallocated these arrays, then these same three arrays are returned to
the user by GxB_Matrix_export_CSR (see Section 5.10.7). If an export is
performed, the freeing of these three arrays again becomes the responsibility
of the user application.

The GxB_Matrix_import_CSR function will rarely fail, since it allocates
just O(1) space. If it does fail, it returns GrB_OUT_OF_MEMORY, and it leaves
the three user arrays unmodified. They are still owned by the user applica-
tion, which is eventually responsible for freeing them with free(Ap), etc.

SPEC: GxB_Matrix_import_CSR is an extension to the spec.
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5.10.4 GxB Matrix import CSC: import a CSC matrix

GrB_Info GxB_Matrix_import_CSC // import a CSC matrix

(

GrB_Matrix *A, // handle of matrix to create

GrB_Type type, // type of matrix to create

GrB_Index nrows, // matrix dimension is nrows-by-ncols

GrB_Index ncols,

GrB_Index nvals, // number of entries in the matrix

// CSC format:

int64_t nonempty, // number of columns with at least one entry:

// either < 0 if not known, or >= 0 if exact

GrB_Index **Ap, // column "pointers", size ncols+1

GrB_Index **Ai, // row indices, size nvals

void **Ax, // values, size nvals

const GrB_Descriptor desc // currently unused

) ;

GxB_Matrix_import_CSC imports a matrix from 3 user arrays in CSC for-
mat. The GrB_Matrix A is created in the CSC format, which is a GxB_FORMAT

of GxB_BY_COL. The arguments are identical to GxB_Matrix_import_CSR,
except for how the 3 user arrays are interpreted. The column “pointer”
array has size ncols+1. The row indices of the columns are in Ai, and
must appear in ascending order in each column. The corresponding nu-
merical values are held in Ax. The row indices of column j are held in
Ai [Ap [j]...Ap [j+1]-1, and the corresponding numerical values are in
the same locations in Ax.

The nonempty parameter is optional. It states the number of columns
that have at least one entry: if not known, use -1; if ≥ 0, it must be exact.

The same matrix from Equation 1in the last section (repeated here):

A =


4.5 0 3.2 0
3.1 2.9 0 0.9
0 1.7 3.0 0

3.5 0.4 0 1.0

 (2)

is held in CSC form as follows:

int64_t Ap [ ] = { 0, 3, 6, 8, 10 } ;

int64_t Ai [ ] = { 0, 1, 3, 1, 2, 3, 0, 2, 1, 3 } ;

double Ax [ ] = { 4.5, 3.1, 3.5, 2.9, 1.7, 0.4, 3.2, 3.0, 0.9, 1.0 } ;
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That is, the row indices of column 1 (the second column) are in Ai [3..5],
and the values in the same place in Ax, since Ap [1] = 3 and Ap [2]-1 = 5.

To iterate over the columns and entries of this matrix, the following code
can be used:

int64_t nvals = Ap [ncols] ;

for (int64_t j = 0 ; j < ncols ; j++)

{

// get A(:,j)

for (int64_t p = Ap [j] ; p < Ap [j+1] ; p++)

{

// get A(i,j)

int64_t i = Ai [p] ; // row index

double aij = Ax [p] ; // numerical value

}

}

The method is identical to GxB_Matrix_import_CSR; just the format is
different. That is, if the method is successful, the 3 user arrays are im-
ported into the new GrB_Matrix A, with the given type and dimensions, and
returned as NULL pointers to the user application.

If nvals is zero, then the content of the Ai and Ax arrays is not accessed
and they may be NULL on input (if not NULL, they are still freed and returned
as NULL, if the method is successful).

SPEC: GxB_Matrix_import_CSC is an extension to the spec.
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5.10.5 GxB Matrix import HyperCSR: import a HyperCSR matrix

GrB_Info GxB_Matrix_import_HyperCSR // import a hypersparse CSR matrix

(

GrB_Matrix *A, // handle of matrix to create

GrB_Type type, // type of matrix to create

GrB_Index nrows, // matrix dimension is nrows-by-ncols

GrB_Index ncols,

GrB_Index nvals, // number of entries in the matrix

// hypersparse CSR format:

int64_t nonempty, // number of rows in Ah with at least one entry,

// either < 0 if not known, or >= 0 if exact

GrB_Index nvec, // number of rows in Ah list

GrB_Index **Ah, // list of size nvec of rows that appear in A

GrB_Index **Ap, // row "pointers", size nvec+1

GrB_Index **Aj, // column indices, size nvals

void **Ax, // values, size nvals

const GrB_Descriptor desc // currently unused

) ;

GxB_Matrix_import_HyperCSR imports a matrix in hypersparse CSR for-
mat in O(1) time. In the hypersparse format, the Ap array itself becomes
sparse, if the matrix has rows that are completely empty. An array Ah of size
nvec provides a list of rows that appear in the data structure. For example,
consider Equation 3, which is a sparser version of the matrix in Equation 1.
Row 2 and column 1 of this matrix are all zero.

A =


4.5 0 3.2 0
3.1 0 0 0.9
0 0 0 0

3.5 0 0 1.0

 (3)

The conventional CSR format would appear as follows. Since the third
row (row 2) is all zero, accessing Ai [Ap [2] ... Ap [3]-1] gives an empty
set ([2..1]), and the number of entries in this row is Ap [i+1] - Ap [i]

= Ap [3] - Ap [2] = 0.

int64_t Ap [ ] = { 0, 2,2, 4, 5 } ;

int64_t Aj [ ] = { 0, 2, 0, 3, 0 3 }

double Ax [ ] = { 4.5, 3.2, 3.1, 0.9, 3.5, 1.0 } ;

A hypersparse CSR format for this same matrix would discard these du-
plicate integers in Ap. Doing so requires another array, Ah, that keeps track
of the rows that appear in the data structure.

92



int64_t nvec = 3 ;

int64_t Ah [ ] = { 0, 1, 3 } ;

int64_t Ap [ ] = { 0, 2, 4, 5 } ;

int64_t Aj [ ] = { 0, 2, 0, 3, 0 3 }

double Ax [ ] = { 4.5, 3.2, 3.1, 0.9, 3.5, 1.0 } ;

Note that the Aj and Ax arrays are the same in the standard and hyper-
sparse CSR formats. The row indices in Ah must appear in ascending order,
and no duplicates can appear. To iterate over this data structure:

int64_t nvals = Ap [nvec] ;

for (int64_t k = 0 ; k < nvec ; k++)

{

int64_t i = Ah [k] ; // row index

// get A(i,:)

for (int64_t p = Ap [k] ; p < Ap [k+1] ; p++)

{

// get A(i,j)

int64_t j = Aj [p] ; // column index

double aij = Ax [p] ; // numerical value

}

}

This is more complex than the standard CSR format, but it requires at
most O(e) space, where A is m-by-n with e = nvals entries. The standard
CSR format requires O(m+e) space. If e << m, then the size m+1 of Ap can
dominate the memory required. In the hypersparse form, Ap takes on size
nvec+1, and Ah has size nvec, where nvec is the number of rows that appear
in the data structure. The standard CSR format can be viewed as a dense
array (of size nrows) of sparse row vectors. By contrast, the hypersparse
CSR format is a sparse array (of size nvec) of sparse row vectors.

The import takes O(1) time. If successful, the four arrays Ah, Ap, Aj, and
Ax are returned as NULL, and the hypersparse GrB_Matrix A is created.

If nvals is zero, then the content of the Aj and Ax arrays is not accessed
and they may be NULL on input (if not NULL, they are still freed and returned
as NULL, if the method is successful). The nonempty parameter is optional.
It states the number of rows that have at least one entry: if not known, use
-1; if ≥ 0, it must be exact.

SPEC: GxB_Matrix_import_HyperCSR is an extension to the spec.
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5.10.6 GxB Matrix import HyperCSC: import a HyperCSC matrix

GrB_Info GxB_Matrix_import_HyperCSC // import a hypersparse CSC matrix

(

GrB_Matrix *A, // handle of matrix to create

GrB_Type type, // type of matrix to create

GrB_Index nrows, // matrix dimension is nrows-by-ncols

GrB_Index ncols,

GrB_Index nvals, // number of entries in the matrix

// hypersparse CSC format:

int64_t nonempty, // number of columns in Ah with at least one entry,

// either < 0 if not known, or >= 0 if exact

GrB_Index nvec, // number of columns in Ah list

GrB_Index **Ah, // list of size nvec of columns that appear in A

GrB_Index **Ap, // column "pointers", size nvec+1

GrB_Index **Ai, // row indices, size nvals

void **Ax, // values, size nvals

const GrB_Descriptor desc // currently unused

) ;

GxB_Matrix_import_HyperCSC imports a matrix in hypersparse CSC for-
mat in O(1) time. It is identical to GxB_Matrix_import_HyperCSR, except
for the data structure defined by the four arrays Ah, Ap, Ai, and Ax. It is
a sparse array of size nvec of sparse column vectors. The following code
iterates over the matrix:

int64_t nvals = Ap [nvec] ;

for (int64_t k = 0 ; k < nvec ; k++)

{

int64_t j = Ah [k] ; // column index

// get A(:,j)

for (int64_t p = Ap [k] ; p < Ap [k+1] ; p++)

{

// get A(i,j)

int64_t i = Ai [p] ; // row index

double aij = Ax [p] ; // numerical value

}

}

The nonempty parameter is optional. It states the number of columns
that have at least one entry: if not known, use -1; if ≥ 0, it must be exact.

SPEC: GxB_Matrix_import_HyperCSC is an extension to the spec.
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5.10.7 GxB Matrix export CSR: export a CSR matrix

GrB_Info GxB_Matrix_export_CSR // export and free a CSR matrix

(

GrB_Matrix *A, // handle of matrix to export and free

GrB_Type *type, // type of matrix exported

GrB_Index *nrows, // matrix dimension is nrows-by-ncols

GrB_Index *ncols,

GrB_Index *nvals, // number of entries in the matrix

// CSR format:

int64_t *nonempty, // number of rows with at least one entry

GrB_Index **Ap, // row "pointers", size nrows+1

GrB_Index **Aj, // column indices, size nvals

void **Ax, // values, size nvals

const GrB_Descriptor desc // currently unused

) ;

GxB_Matrix_export_CSR exports a matrix in CSR form:

GxB_Matrix_export_CSR (&A, &type, &nrows, &ncols, &nvals, &nonempty,

&Ap, &Aj, &Ax, desc) ;

On successful output, the GrB_Matrix A is freed, and A is returned as
NULL. Its type is returned in the type parameter, its dimensions in nrows

and ncols, its number of entries in nvals, and the CSR format is in the three
arrays Ap, Aj, and Ax. If nvals is zero, the Aj and Ax arrays are returned
as NULL; this is not an error, and GxB_Matrix_import_CSR also allows these
two arrays to be NULL on input when nvals is zero. After a successful export,
the user application is responsible for freeing these three arrays via free (or
the free function passed to GxB_init). The CSR format is described in
Section 5.10.3.

This method takes O(1) time if the matrix is already in standard (non-
hypersparse) CSR format internally. If it is in hypersparse CSR form, the
export must first convert the matrix to standard CSR form, taking O(m)
time and memory, where m = nrows. If the matrix is in CSC format, it is
first transposed to convert it to CSR format, and then exported. This takes
O(m + n + e) or O(m + e log e) time and memory, whichever is less, where
n = ncols and e = nvals.

SPEC: GxB_Matrix_export_CSR is an extension to the spec.
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5.10.8 GxB Matrix export CSC: export a CSC matrix

GrB_Info GxB_Matrix_export_CSC // export and free a CSC matrix

(

GrB_Matrix *A, // handle of matrix to export and free

GrB_Type *type, // type of matrix exported

GrB_Index *nrows, // matrix dimension is nrows-by-ncols

GrB_Index *ncols,

GrB_Index *nvals, // number of entries in the matrix

// CSC format:

int64_t *nonempty, // number of columns with at least one entry

GrB_Index **Ap, // column "pointers", size ncols+1

GrB_Index **Ai, // row indices, size nvals

void **Ax, // values, size nvals

const GrB_Descriptor desc // currently unused

) ;

GxB_Matrix_export_CSC exports a matrix in CSC form:

GxB_Matrix_export_CSC (&A, &type, &nrows, &ncols, &nvals, &nonempty,

&Ap, &Ai, &Ax, desc) ;

On successful output, the GrB_Matrix A is freed, and A is returned as
NULL. Its type is returned in the type parameter, its dimensions in nrows

and ncols, its number of entries in nvals, and the CSC format is in the three
arrays Ap, Ai, and Ax. If nvals is zero, the Ai and Ax arrays are returned
as NULL; this is not an error, and GxB_Matrix_import_CSC also allows these
two arrays to be NULL on input when nvals is zero. After a successful export,
the user application is responsible for freeing these three arrays via free (or
the free function passed to GxB_init). The CSC format is described in
Section 5.10.4.

This method takes O(1) time if the matrix is already in standard (non-
hypersparse) CSC format internally. If it is in hypersparse CSC form, the
export must first convert the matrix to standard CSC form, taking O(n)
time and memory, where n = ncols. If the matrix is in CSR format, it is
first transposed to convert it to CSC format, and then exported. This takes
O(m + n + e) or O(n + e log e) time and memory, whichever is less, where
m = nrows and e = nvals.

SPEC: GxB_Matrix_export_CSC is an extension to the spec.
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5.10.9 GxB Matrix export HyperCSR: export a HyperCSR matrix

GrB_Info GxB_Matrix_export_HyperCSR // export and free a hypersparse CSR matrix

(

GrB_Matrix *A, // handle of matrix to export and free

GrB_Type *type, // type of matrix exported

GrB_Index *nrows, // matrix dimension is nrows-by-ncols

GrB_Index *ncols,

GrB_Index *nvals, // number of entries in the matrix

// hypersparse CSR format:

int64_t *nonempty, // number of rows in Ah with at least one entry

GrB_Index *nvec, // number of rows in Ah list

GrB_Index **Ah, // list of size nvec of rows that appear in A

GrB_Index **Ap, // row "pointers", size nvec+1

GrB_Index **Aj, // column indices, size nvals

void **Ax, // values, size nvals

const GrB_Descriptor desc // currently unused

) ;

GxB_Matrix_export_HyperCSR exports a matrix in CSR form:

GxB_Matrix_export_HyperCSR (&A, &type, &nrows, &ncols, &nvals, &nonempty,

&nvec, &Ah, &Ap, &Aj, &Ax, desc) ;

On successful output, the GrB_Matrix A is freed, and A is returned as
NULL. Its type is returned in the type parameter, its dimensions in nrows

and ncols, its number of entries in nvals, and the number of non-empty rows
in nvec. The hypersparse CSR format is in the four arrays Ah, Ap, Aj, and
Ax. If nvals is zero, the Aj and Ax arrays are returned as NULL; this is not an
error. After a successful export, the user application is responsible for freeing
these three arrays via free (or the free function passed to GxB_init). The
hypersparse CSR format is described in Section 5.10.5.

This method takes O(1) time if the matrix is already in hypersparse CSR
format internally. If it is in standard CSR form, the export must first convert
the matrix to hypersparse CSR form, taking O(m) time and memory, where
m = nrows. If the matrix is in CSC format, it is first transposed to convert it
to hypersparse CSR format, and then exported. If in standard CSC form, the
transpose takes O(m + n + e) or O(n + e log e) time and memory, whichever
is less. If in hypersparse CSC format, it takes O(e log e) time.

SPEC: GxB_Matrix_export_HyperCSR is an extension to the spec.
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5.10.10 GxB Matrix export HyperCSC: export a HyperCSC matrix

GrB_Info GxB_Matrix_export_HyperCSC // export and free a hypersparse CSC matrix

(

GrB_Matrix *A, // handle of matrix to export and free

GrB_Type *type, // type of matrix exported

GrB_Index *nrows, // matrix dimension is nrows-by-ncols

GrB_Index *ncols,

GrB_Index *nvals, // number of entries in the matrix

// hypersparse CSC format:

int64_t *nonempty, // number of columns in Ah with at least one entry

GrB_Index *nvec, // number of columns in Ah list

GrB_Index **Ah, // list of size nvec of columns that appear in A

GrB_Index **Ap, // columns "pointers", size nvec+1

GrB_Index **Ai, // row indices, size nvals

void **Ax, // values, size nvals

const GrB_Descriptor desc // currently unused

) ;

GxB_Matrix_export_HyperCSC exports a matrix in CSC form:

GxB_Matrix_export_HyperCSC (&A, &type, &nrows, &ncols, &nvals, &nonempty,

&nvec, &Ah, &Ap, &Ai, &Ax, desc) ;

On successful output, the GrB_Matrix A is freed, and A is returned as
NULL. Its type is returned in the type parameter, its dimensions in nrows

and ncols, its number of entries in nvals, and the number of non-empty rows
in nvec. The hypersparse CSC format is in the four arrays Ah, Ap, Ai, and
Ax. If nvals is zero, the Ai and Ax arrays are returned as NULL; this is not an
error. After a successful export, the user application is responsible for freeing
these three arrays via free (or the free function passed to GxB_init). The
hypersparse CSC format is described in Section 5.10.6.

This method takes O(1) time if the matrix is already in hypersparse CSR
format internally. If it is in standard CSR form, the export must first convert
the matrix to hypersparse CSR form, taking O(m) time and memory, where
m = nrows. If the matrix is in CSC format, it is first transposed to convert it
to hypersparse CSR format, and then exported. If in standard CSC form, the
transpose takes O(m + n + e) or O(n + e log e) time and memory, whichever
is less. If in hypersparse CSC format, it takes O(e log e) time.

SPEC: GxB_Matrix_export_HyperCSC is an extension to the spec.
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5.11 GraphBLAS descriptors: GrB Descriptor

A GraphBLAS descriptor modifies the behavior of a GraphBLAS operation.
If the descriptor is GrB_NULL, defaults are used.

The access to these parameters and their values is governed by two enum

types, GrB_Desc_Field and GrB_Desc_Value:

#define GxB_NTHREADS 5 // for both GrB_Desc_field and GxB_Option_field

#define GxB_CHUNK 7

typedef enum

{

GrB_OUTP = 0, // descriptor for output of a method

GrB_MASK = 1, // descriptor for the mask input of a method

GrB_INP0 = 2, // descriptor for the first input of a method

GrB_INP1 = 3, // descriptor for the second input of a method

GxB_DESCRIPTOR_NTHREADS = GxB_NTHREADS, // number of threads to use

GxB_DESCRIPTOR_CHUNK = GxB_CHUNK, // chunk size for small problems

GxB_AxB_METHOD = 1000, // descriptor for selecting C=A*B algorithm

}

GrB_Desc_Field ;

typedef enum

{

// for all GrB_Descriptor fields:

GxB_DEFAULT = 0, // default behavior of the method

// for GrB_OUTP only:

GrB_REPLACE = 1, // clear the output before assigning new values to it

// for GrB_MASK only:

GrB_COMP = 2, // use the complement of the mask

GrB_STRUCTURE = 4, // use the structure of the mask

// for GrB_INP0 and GrB_INP1 only:

GrB_TRAN = 3, // use the transpose of the input

// for GxB_AxB_METHOD only:

GxB_AxB_GUSTAVSON = 1001, // gather-scatter saxpy method

GxB_AxB_HEAP = 1002, // heap-based saxpy method

GxB_AxB_DOT = 1003, // dot product

GxB_AxB_HASH = 1004, // hash-based saxpy method

GxB_AxB_SAXPY = 1005 // saxpy method (any kind)

}

GrB_Desc_Value ;
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SPEC: GxB_DEFAULT, GxB_NTHRADS, GxB_CHUNK, GxB_AxB_METHOD, and
GxB_AxB_* are extensions to the spec.

The internal representation is opaque to the user, but in this User Guide
the five descriptor fields of a descriptor desc are illustrated as an array of
five items, as described in the list below. The underlying implementation
need not be an array:

• desc [GrB_OUTP] is a parameter that modifies the output of a Graph-
BLAS operation. Currently, there are two possible settings. In the
default case, the output is not cleared, and C〈M〉 = Z = C�T is
computed as-is, where T is the results of the particular GraphBLAS
operation.

In the non-default case, Z = C�T is first computed, using the results
of T and the accumulator �. After this is done, if the GrB_OUTP de-
scriptor field is set to GrB_REPLACE, then the output is cleared of its
entries. Next, the assignment C〈M〉 = Z is performed.

• desc [GrB_MASK] is a parameter that modifies the Mask, even if the
mask is not present.

If this parameter is set to its default value, and if the mask is not present
(Mask==NULL) then implicitly Mask(i,j)=1 for all i and j. If the mask
is present then Mask(i,j)=1 means that C(i,j) is to be modified by
the C〈M〉 = Z update. Otherwise, if Mask(i,j)=0, then C(i,j) is not
modified, even if Z(i,j) is an entry with a different value; that value
is simply discarded.

If the desc [GrB_MASK] parameter is set to GrB_COMP, then the use
of the mask is complemented. In this case, if the mask is not present
(Mask==NULL) then implicitly Mask(i,j)=0 for all i and j. This means
that none of C is modified and the entire computation of Z might as
well have been skipped. That is, a complemented empty mask means
no modifications are made to the output object at all, except per-
haps to clear it in accordance with the GrB_OUTP descriptor. With a
complemented mask, if the mask is present then Mask(i,j)=0 means
that C(i,j) is to be modified by the C〈M〉 = Z update. Otherwise, if
Mask(i,j)=1, then C(i,j) is not modified, even if Z(i,j) is an entry
with a different value; that value is simply discarded.
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If the desc [GrB_MASK] parameter is set to GrB_STRUCTURE, then the
values of the mask are ignored, and just the pattern of the entries is
used. Any entry M(i,j) in the pattern is treated as if it were true.

The GrB_COMP and GrB_STRUCTURE settings can be combined, either by
setting the mask option twice (once with each value), or by setting the
mask option to GrB_COMP+GrB_STRUCTURE (the latter is an extension
to the spec).

Using a parameter to complement the Mask is very useful because con-
structing the actual complement of a very sparse mask is impossible
since it has too many entries. If the number of places in C that should
be modified is very small, then use a sparse mask without complement-
ing it. If the number of places in C that should be protected from
modification is very small, then use a sparse mask to indicate those
places, and use a descriptor GrB_MASK that complements the use of the
mask.

• desc [GrB_INP0] and desc [GrB_INP1] modify the use of the first
and second input matrices A and B of the GraphBLAS operation.

If the desc [GrB_INP0] is set to GrB_TRAN, then A is transposed be-
fore using it in the operation. Likewise, if desc [GrB_INP1] is set to
GrB_TRAN, then the second input, typically called B, is transposed.

Vectors are never transposed via the descriptor. If a method’s first
parameter is a matrix and the second a vector, then desc [GrB_INP0]

modifies the matrix parameter and desc [GrB_INP1] is ignored. If
a method’s first parameter is a vector and the second a matrix, then
desc [GrB_INP1] modifies the matrix parameter and desc [GrB_INP0]

is ignored.

To clarify this in each function, the inputs are labeled as first input:

and second input: in the function signatures.

• desc [GxB_AxB_METHOD] suggests the method that should be used to
compute C=A*B. All the methods compute the same result, except
they may have different floating-point roundoff errors. This descrip-
tor should be considered as a hint; SuiteSparse:GraphBLAS is free to
ignore it. The current version always follows the hint, however.

– GxB_DEFAULT means that a method is selected automatically.
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– GxB_AxB_SAXPY: select any saxpy-based method: GxB_AxB_GUSTAVSON,
GxB_AxB_HEAP, and/or GxB_AxB_HASH, or any mix of the three, in
contrast to the dot-product method.

– GxB_AxB_GUSTAVSON: an extended version of Gustavson’s method
[Gus78], which is a very good general-purpose method, but some-
times the workspace can be too large. Assuming all matrices are
stored by column, it computes C(:,j)=A*B(:,j) with a sequence
of saxpy operations (C(:,j)+=A(:,k)*B(k:,j) for each nonzero
B(k,j)). Each internal thread requires workspace of size m, to
the number of rows of C, which is not suitable if the matrices are
extremely sparse or if there are many threads. If all matrices are
stored by row, then it computes C(i,:)=A(i,:)*B in a sequence of
sparse saxpy operations, and using workspace of size n per thread,
corresponding to the number of columns of C.

– GxB_AxB_HEAP: no longer appears in v3.2.0, but will likely be
reintroduced in a future version. This is silently replaced with
GxB_AxB_HASH.

– GxB_AxB_HASH: a hash-based method, based on [NMAB18]. Very
efficient for hypersparse matrices, matrix-vector-multiply, and when
|B| is small.

– GxB_AxB_DOT: computes C(i,j)=A(i,:)*B(j,:)’, for each entry
C(i,j). If the mask is present and not complemented, only en-
tries for which M(i,j)=1 are computed. This is a very specialized
method that works well only if the mask is present, very sparse,
and not complemented, or when C is tiny. For example, it works
very well when A and B are tall and thin, and C<M>=A*B’ or C=A*B’
are computed. These expressions assume all matrices are in CSR
format. If in CSC format, then the dot-product method used for
A’*B. The method is impossibly slow if C is large and the mask is
not present, since it takes Ω(mn) time if C is m-by-n in that case.
It does not use any workspace at all. Since it uses no workspace, it
can work very well for extremely sparse or hypersparse matrices,
when the mask is present and not complemented.
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5.11.1 GrB Descriptor new: create a new descriptor

GrB_Info GrB_Descriptor_new // create a new descriptor

(

GrB_Descriptor *descriptor // handle of descriptor to create

) ;

GrB_Descriptor_new creates a new descriptor, with all fields set to their
defaults (output is not replaced, mask is not complemented, neither input
matrix is transposed, and the method used in C=A*B is selected automati-
cally).

5.11.2 GrB Descriptor set: set a parameter in a descriptor

GrB_Info GrB_Descriptor_set // set a parameter in a descriptor

(

GrB_Descriptor desc, // descriptor to modify

GrB_Desc_Field field, // parameter to change

GrB_Desc_Value val // value to change it to

) ;

GrB_Descriptor_set sets a descriptor field (GrB_OUTP, GrB_MASK, GrB_INP0,
GrB_INP1, or GxB_AxB_METHOD) to a particular value (GxB_DEFAULT, GrB_COMP,
GrB_STRUCTURE, GrB_COMP+GrB_STRUCTURE, GrB_TRAN, GrB_REPLACE, GxB_AxB_GUSTAVSON,
GxB_AxB_HEAP, GxB_AxB_HASH, GxB_AxB_SAXPY, or GxB_AxB_DOT).
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Descriptor Default Non-default
field

GrB_OUTP GxB_DEFAULT: The output matrix is
not cleared. The operation computes
C〈M〉 = C�T.

GrB_REPLACE: After computing
Z = C�T, the output C is
cleared of all entries. Then
C〈M〉 = Z is performed.

GrB_MASK GxB_DEFAULT: The Mask is not com-
plemented. Mask(i,j)=1 means the
value Cij can be modified by the op-
eration, while Mask(i,j)=0 means
the value Cij shall not be modified
by the operation.

GrB_COMP: The Mask is comple-
mented. Mask(i,j)=0 means the
value Cij can be modified by the
operation, while Mask(i,j)=1

means the value Cij shall not be
modified by the operation.
GrB_STRUCTURE: The values of
the Mask are ignored. If
Mask(i,j) is an entry in the
Mask matrix, it is treated as if
Mask(i,j)=1. The two options
GrB_COMP and GrB_STRUCTURE

can be combined.

GrB_INP0 GxB_DEFAULT: The first input is not
transposed prior to using it in the
operation.

GrB_TRAN: The first input is
transposed prior to using it in
the operation. Only matrices are
transposed, never vectors.

GrB_INP1 GxB_DEFAULT: The second input is
not transposed prior to using it in
the operation.

GrB_TRAN: The second input is
transposed prior to using it in
the operation. Only matrices are
transposed, never vectors.

GrB_AxB_METHOD GxB_DEFAULT: The method used for
computing C=A*B is selected auto-
matically.

GxB_AxB_method: The selected
method is used to compute
C=A*B.
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5.11.3 GxB Desc set: set a parameter in a descriptor

GrB_Info GxB_Desc_set // set a parameter in a descriptor

(

GrB_Descriptor desc, // descriptor to modify

GrB_Desc_Field field, // parameter to change

... // value to change it to

) ;

GxB_Desc_set is identical to GrB_Descriptor_set, except that the type
of the third parameter can vary with the field. All descriptor fields are cur-
rently of type GrB_Desc_Value, so currently this function is identical in all
ways to GrB_Descriptor_set, except for the name of the function. Future
versions of this function will allow for arbitrary types of the third param-
eter, depending on the field. For a simpler-to-use alternative, see GxB_set

described in Section 6.

SPEC: GxB_Desc_set is an extension to the spec.

5.11.4 GxB Desc get: get a parameter from a descriptor

GrB_Info GxB_Desc_get // get a parameter from a descriptor

(

GrB_Descriptor desc, // descriptor to query; NULL means defaults

GrB_Desc_Field field, // parameter to query

... // value of the parameter

) ;

GxB_Desc_get returns the value of a single field in a descriptor. The type
of the third parameter is a pointer to a variable type, whose type depends
on the field. Currently, all descriptor values are of type GrB_Desc_Value, so
this third parameter is a pointer to a scalar value of type GrB_Desc_Value.
For a simpler-to-use alternative, see GxB_get described in Section 6.

SPEC: GxB_Desc_get is an extension to the spec.
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5.11.5 GrB Descriptor free: free a descriptor

GrB_Info GrB_free // free a descriptor

(

GrB_Descriptor *descriptor // handle of descriptor to free

) ;

GrB_Descriptor_free frees a descriptor. Either usage:

GrB_Descriptor_free (&descriptor) ;

GrB_free (&descriptor) ;

frees the descriptor and sets descriptor to NULL. It safely does nothing if
passed a NULL handle, or if descriptor == NULL on input.
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5.11.6 GrB DESC *: predefined descriptors

Version 1.3 of the GraphBLAS C API Specification adds predefined descrip-
tors, and these have been added as of v3.2.0 of SuiteSparse:GraphBLAS.
They are listed in the table below. These descriptors may not be modified
or freed. Attempts to modify them result in an error (GrB_INVALID_VALUE);
attempts to free them are silently ignored. GrB_NULL is the default descrip-
tor, with all settings at their defaults: OUTP: do not replace the output, MASK:
mask is valued and not complemented, INP0: first input not transposed, and
INP1: second input not transposed.

Descriptor OUTP MASK MASK INP0 INP1

structural complement
GrB_NULL - - - - -
GrB_DESC_T1 - - - - GrB_TRAN

GrB_DESC_T0 - - - GrB_TRAN -
GrB_DESC_T0T1 - - - GrB_TRAN GrB_TRAN

GrB_DESC_C - - GrB_COMP - -
GrB_DESC_CT1 - - GrB_COMP - GrB_TRAN

GrB_DESC_CT0 - - GrB_COMP GrB_TRAN -
GrB_DESC_CT0T1 - - GrB_COMP GrB_TRAN GrB_TRAN

GrB_DESC_S - GrB_STRUCTURE - - -
GrB_DESC_ST1 - GrB_STRUCTURE - - GrB_TRAN

GrB_DESC_ST0 - GrB_STRUCTURE - GrB_TRAN -
GrB_DESC_ST0T1 - GrB_STRUCTURE - GrB_TRAN GrB_TRAN

GrB_DESC_SC - GrB_STRUCTURE GrB_COMP - -
GrB_DESC_SCT1 - GrB_STRUCTURE GrB_COMP - GrB_TRAN

GrB_DESC_SCT0 - GrB_STRUCTURE GrB_COMP GrB_TRAN -
GrB_DESC_SCT0T1 - GrB_STRUCTURE GrB_COMP GrB_TRAN GrB_TRAN

GrB_DESC_R GrB_REPLACE - - - -
GrB_DESC_RT1 GrB_REPLACE - - - GrB_TRAN

GrB_DESC_RT0 GrB_REPLACE - - GrB_TRAN -
GrB_DESC_RT0T1 GrB_REPLACE - - GrB_TRAN GrB_TRAN

GrB_DESC_RC GrB_REPLACE - GrB_COMP - -
GrB_DESC_RCT1 GrB_REPLACE - GrB_COMP - GrB_TRAN

GrB_DESC_RCT0 GrB_REPLACE - GrB_COMP GrB_TRAN -
GrB_DESC_RCT0T1 GrB_REPLACE - GrB_COMP GrB_TRAN GrB_TRAN

GrB_DESC_RS GrB_REPLACE GrB_STRUCTURE - - -
GrB_DESC_RST1 GrB_REPLACE GrB_STRUCTURE - - GrB_TRAN

GrB_DESC_RST0 GrB_REPLACE GrB_STRUCTURE - GrB_TRAN -
GrB_DESC_RST0T1 GrB_REPLACE GrB_STRUCTURE - GrB_TRAN GrB_TRAN

GrB_DESC_RSC GrB_REPLACE GrB_STRUCTURE GrB_COMP - -
GrB_DESC_RSCT1 GrB_REPLACE GrB_STRUCTURE GrB_COMP - GrB_TRAN

GrB_DESC_RSCT0 GrB_REPLACE GrB_STRUCTURE GrB_COMP GrB_TRAN -
GrB_DESC_RSCT0T1 GrB_REPLACE GrB_STRUCTURE GrB_COMP GrB_TRAN GrB_TRAN
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5.12 GrB free: free any GraphBLAS object

Each of the ten objects has GrB_*_new and GrB_*_free methods that are
specific to each object. They can also be accessed by a generic function,
GrB_free, that works for all ten objects. If G is any of the ten objects, the
statement

GrB_free (&G) ;

frees the object and sets the variable G to NULL. It is safe to pass in a NULL

handle, or to free an object twice:

GrB_free (NULL) ; // SuiteSparse:GraphBLAS safely does nothing

GrB_free (&G) ; // the object G is freed and G set to NULL

GrB_free (&G) ; // SuiteSparse:GraphBLAS safely does nothing

However, the following sequence of operations is not safe. The first two are
valid but the last statement will lead to undefined behavior.

H = G ; // valid; creates a 2nd handle of the same object

GrB_free (&G) ; // valid; G is freed and set to NULL; H now undefined

GrB_some_method (H) ; // not valid; H is undefined

Some objects are predefined, such as the built-in types. If a user appli-
cation attempts to free a built-in object, SuiteSparse:GraphBLAS will safely
do nothing. In all cases, the GrB_free function in SuiteSparse:GraphBLAS
always returns GrB_SUCCESS.
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6 SuiteSparse:GraphBLAS Options

SPEC: GxB set and GxB get are extensions to the specification.

SuiteSparse:GraphBLAS includes two type-generic methods, GxB_set and
GxB_get, that set and query various options and parameters settings, includ-
ing a generic way to set values in the GrB_Descriptor object. Using these
methods, the user application can provide hints to SuiteSparse:GraphBLAS
on how it should store and operate on its matrices. These hints have no effect
on the results of any GraphBLAS operation (except perhaps floating-point
roundoff differences), but they can have a great impact on the amount of
time or memory taken.

• GxB_set (field, value) provides hints to SuiteSparse:GraphBLAS
on how it should store all matrices created after calling this function: by
row, by column, and whether or not to use a hypersparse format [BG08,
BG12]. These are global options that modify all matrices created after
calling this method.

• GxB_set (GrB_Matrix A, field, value) provides hints to SuiteSparse:
GraphBLAS on how to store a particular matrix. This method allows
SuiteSparse:GraphBLAS to transform a specific matrix from one for-
mat to another. The format has no effect on the result computed by
GraphBLAS; it only affects the time and memory taken to do the com-
putations.

• GxB_set (GrB_Descriptor desc, field, value) is another way to
set the value of a field in a GrB_Descriptor. It is identical to
GrB_Descriptor_set, just with a generic name.

The GxB_get method queries a GrB_Descriptor, a GrB_Matrix, or the
global options.

• GxB_get (field, &value) retrieves the current value of a global op-
tion.

• GxB_get (GrB_Matrix A, field, &value) retrieves the current value
of an option from a particular matrix A.

• GxB_get (GrB_Descriptor desc, field, &value) retrieves the value
of a field in a descriptor.
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6.1 OpenMP parallelism

SuiteSparse:GraphBLAS Version 3 is a parallel library, based on OpenMP.
By default, all GraphBLAS operations will use up to the maximum number
of threads specified by the omp_get_max_threads OpenMP function. For
small problems, GraphBLAS may choose to use fewer threads, using two
parameters: the maximum number of threads to use (which may differ from
the omp_get_max_threads value), and a parameter called the chunk. Sup-
pose work is a measure of the work an operation needs to perform (say the
number of entries in the two input matrices for GrB_eWiseAdd). No more
than floor(work/chunk) threads will be used (or one thread if the ratio is
less than 1).

The default chunk value is 65,536, but this may change in future versions,
or it may be modified when GraphBLAS is installed on a particular machine.

Both parameters can be set in two ways:

• Globally: If the following methods are used, then all subsequent Graph-
BLAS operations will use these settings. Note the typecast, (double)
chunk. This is necessary if a literal constant such as 20000 is passed
as this argument. The type of the constant must be double.

int nthreads_max = 40 ;

GxB_set (GxB_NTHREADS, nthreads_max) ;

GxB_set (GxB_CHUNK, (double) 20000) ;

• Per operation: Most GraphBLAS operations take a GrB_Descriptor

input, and this can be modified to set the number of threads and chunk
size for the operation that uses this descriptor. Note that chunk is a
double.

GrB_Descriptor desc ;

GrB_Descriptor_new (&desc)

int nthreads_max = 40 ;

GxB_set (desc, GxB_NTHREADS, nthreads_max) ;

double chunk = 20000 ;

GxB_set (desc, GxB_CHUNK, chunk) ;

The smaller of nthreads_max and floor(work/chunk) is used for any
given GraphBLAS operation, except that a single thread is used if this value
is zero or less.
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If either parameter is set to GxB_DEFAULT, then default values are used.
The default for nthreads_max is the return value from omp_get_max_threads,
and the default chunk size is currently 65,536.

If a descriptor value for either parameter is left at its default, or set to
GxB_DEFAULT, then the global setting is used. This global setting may have
been modified from its default, and this modified value will be used.

For example, suppose omp_get_max_threads reports 8 threads. If
GxB_set (GxB_NTHREADS, 4) is used, then the global setting is four threads,
not eight. If a descriptor is used but its GxB_NTHREADS is not set, or set to
GxB_DEFAULT, then any operation that uses this descriptor

6.2 Storing a matrix by row or by column

The GraphBLAS GrB_Matrix is entirely opaque to the user application, and
the GraphBLAS API does not specify how the matrix should be stored.
However, choices made in how the matrix is represented in a particular im-
plementation, such as SuiteSparse:GraphBLAS, can have a large impact on
performance.

Many graph algorithms are just as fast in any format, but some algorithms
are much faster in one format or the other. For example, suppose the user ap-
plication stores a directed graph as a matrix A, with the edge (i, j) represented
as the value A(i,j), and the application makes many accesses to the ith
row of the matrix, with GrB_Col_extract (w,...,A,GrB_ALL,...,i,desc)

with the transposed descriptor (GrB_INP0 set to GrB_TRAN). If the matrix
is stored by column this can be extremely slow, just like the expression
w=A(i,:) in MATLAB, where i is a scalar. Since this is a typical use-
case in graph algorithms, the default format in SuiteSparse:GraphBLAS is
to store its matrices by row, in Compressed Sparse Row format (CSR).

MATLAB stores its sparse matrices by column, in “non-hypersparse”
format, in what is called the Compressed Sparse Column format, or CSC for
short. An m-by-n matrix in MATLAB is represented as a set of n column
vectors, each with a sorted list of row indices and values of the nonzero
entries in that column. As a result, w=A(:,j) is very fast in MATLAB, since
the result is already held in the data structure a single list, the jth column
vector. However, w=A(i,:) is very slow in MATLAB, since every column in
the matrix has to be searched to see if it contains row i. In MATLAB, if
many such accesses are made, it is much better to transpose the matrix (say
AT=A’) and then use w=AT(:,i) instead. This can have a dramatic impact
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on the performance of MATLAB.
Likewise, if u is a very sparse column vector and A is stored by column,

then w=u’*A (via GrB_vxm) is slower than w=A*u (via GrB_mxv). The opposite
is true if the matrix is stored by row.

An example of this can be found in Section B.1 of Version 1.2 of the
GraphBLAS API Specification, where the breadth-first search BFS uses GrB_vxm
to compute q’=q’*A. This method is not fast if the matrix A is stored
by column. The bfs5 and bfs6 examples in the Demo/ folder of Suite-
Sparse:GraphBLAS use GrB_vxm, which is fast since the matrices are assumed
to be stored in their default format, by row.

SuiteSparse:GraphBLAS stores its sparse matrices by row, by default. In
Versions 2.1 and earlier, the matrices were stored by column, by default.
However, it can also be instructed to store any selected matrices, or all
matrices, by column instead (just like MATLAB), so that w=A(:,j) (via
GrB_Col_extract) is very fast. The change in data format has no effect
on the result, just the time and memory usage. To use a column-oriented
format by default, the following can be done in a user application that tends
to access its matrices by column.

GrB_init (...) ;

// just after GrB_init: do the following:

#ifdef GxB_SUITESPARSE_GRAPHBLAS

GxB_set (GxB_FORMAT, GxB_BY_COL) ;

#endif

If this is done, and no other GxB_set calls are made with GxB_FORMAT,
all matrices will be stored by column. Alternatively, SuiteSparse:GraphBLAS
can be compiled with -DBYCOL, which changes the default format to GxB_BY_COL,
with no calls to any GxB_* function. The default format is now GxB_BY_ROW.

6.3 Hypersparse matrices

MATLAB can store an m-by-n matrix with a very large value of m, since a
CSC data structure takes O(n + |A|) memory, independent of m, where |A|
is the number of nonzeros in the matrix. It cannot store a matrix with a
huge n, and this structure is also inefficient when |A| is much smaller than
n. In contrast, SuiteSparse:GraphBLAS can store its matrices in hypersparse
format, taking only O(|A|) memory, independent of how it is stored (by row
or by column) and independent of both m and n [BG08, BG12].

112



In both the CSR and CSC formats, the matrix is held as a set of sparse
vectors. In non-hypersparse format, the set of sparse vectors is itself dense; all
vectors are present, even if they are empty. For example, an m-by-n matrix in
non-hypersparse CSC format contains n sparse vectors. Each column vector
takes at least one integer to represent, even for a column with no entries. This
allows for quick lookup for a particular vector, but the memory required is
O(n+|A|). With a hypersparse CSC format, the set of vectors itself is sparse,
and columns with no entries take no memory at all. The drawback of the
hypersparse format is that finding an arbitrary column vector j, such as for
the computation C=A(:,j), takes O(log k) time if there k ≤ n vectors in the
data structure. One advantage of the hypersparse structure is the memory
required for an m-by-n hypersparse CSC matrix is only O(|A|), independent
of m and n. Algorithms that must visit all non-empty columns of a matrix are
much faster when working with hypersparse matrices, since empty columns
can be skipped.

The hyper_ratio parameter controls the hypersparsity of the internal
data structure for a matrix. The parameter is typically in the range 0 to
1. The default is hyper_ratio = GxB_HYPER_DEFAULT, which is an extern

const double value, currently set to 0.0625, or 1/16. This default ratio may
change in the future.

The hyper_ratio determines how the matrix is converted between the
hypersparse and non-hypersparse formats. Let n be the number of columns
of a CSC matrix, or the number of rows of a CSR matrix. The matrix can
have at most n non-empty vectors.

Let k be the actual number of non-empty vectors. That is, for the CSC
format, k ≤ n is the number of columns that have at least one entry. Let h
be the value of hyper_ratio.

If a matrix is currently hypersparse, it can be converted to non-hypersparse
if the either condition n ≤ 1 or k > 2nh holds, or both. Otherwise, it
stays hypersparse. Note that if n ≤ 1 the matrix is always stored as non-
hypersparse.

If currently non-hypersparse, it can be converted to hypersparse if both
conditions n > 1 and k ≤ nh hold. Otherwise, it stays non-hypersparse.
Note that if n ≤ 1 the matrix always remains non-hypersparse.

The default value of hyper_ratio is assigned at startup by GrB_init,
and can then be modified globally with GxB_set. All new matrices are cre-
ated with the same hyper_ratio, determined by the global value. Once
a particular matrix A has been constructed, its hypersparsity ratio can be
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modified from the default with:

double hyper_ratio = 0.2 ;

GxB_set (A, GxB_HYPER, hyper_ratio) ;

To force a matrix to always be non-hypersparse, use hyper_ratio equal
to GxB_NEVER_HYPER. To force a matrix to always stay hypersparse, set
hyper_ratio to GxB_ALWAYS_HYPER.

A GrB_Matrix can thus be held in one of four formats: any combination of
hyper/non-hyper and CSR/CSC. All GrB_Vector objects are always stored
in non-hypersparse CSC format.

A new matrix created via GrB_Matrix_new starts with k = 0 and is cre-
ated in hypersparse form by default unless n ≤ 1 or if h < 0, where h is the
global hyper_ratio value. The matrix is created in in either GxB_BY_ROW or
GxB_BY_COL format, as determined by the last call to GxB_set(GxB_FORMAT,...)
or GrB_init.

A new matrix C created via GrB_dup (&C,A) inherits the CSR/CSC for-
mat, hypersparsity format, and hyper_ratio from A.

Parameter types: The GxB_Option_Field enumerated type gives the
type of the field parameter for the second argument of GxB_set and GxB_get,
for setting global options or matrix options.

typedef enum

{

GxB_HYPER = 0, // defines switch to hypersparse format (double value)

GxB_FORMAT = 1, // defines CSR/CSC format: GxB_BY_ROW or GxB_BY_COL

GxB_MODE = 2, // mode passed to GrB_init (blocking or non-blocking)

GxB_THREAD_SAFETY = 3, // thread library for thread safety

GxB_THREADING = 4, // currently none (in progress)

GxB_GLOBAL_NTHREADS = GxB_NTHREADS, // max number of threads to use

GxB_GLOBAL_CHUNK = GxB_CHUNK, // chunk size for small problems

GxB_IS_HYPER = 6 // query a matrix to see if it hypersparse or not

// (GxB_Matrix_Option_get only)

}

GxB_Option_Field ;

The GxB_FORMAT field can be by row or by column, set to a value with
the type GxB_Format_Value:

typedef enum

{

GxB_BY_ROW = 0, // CSR: compressed sparse row format
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GxB_BY_COL = 1 // CSC: compressed sparse column format

}

GxB_Format_Value ;

The default format (in SuiteSparse:GraphBLAS Version 2.2 and later) is
by row. The format in SuiteSparse:GraphBLAS Version 2.1 and earlier was
by column, just like MATLAB.

The default format is given by the predefined value GxB_FORMAT_DEFAULT,
which is equal to GxB_BY_ROW if default compile-time options are used. To
change the default at compile time to GxB_BY_COL, compile the SuiteSparse:
GraphBLAS library with -DBYCOL. This changes GxB_FORMAT_DEFAULT to
GxB_BY_COL. The default hypersparsity ratio is 0.0625 (1/16), but this value
may change in the future.

Setting the GxB_HYPER field to GxB_ALWAYS_HYPER ensures a matrix al-
ways stays hypersparse. If set to GxB_NEVER_HYPER, it always stays non-
hypersparse. At startup, GrB_init defines the following initial settings:

GxB_set (GxB_HYPER, GxB_HYPER_DEFAULT) ;

GxB_set (GxB_FORMAT, GxB_FORMAT_DEFAULT) ;

That is, by default, all new matrices are held by column in CSR format,
unless -DBYCOL is used at compile time, in which case the default is to store
all new matrices by row in CSC format. If a matrix has fewer than n/16
columns, it can be converted to hypersparse format. If it has more than n/8
columns, it can be converted to non-hypersparse format. These options can
be changed for all future matrices with GxB_set. For example, to change all
future matrices to be in non-hypersparse CSC when created, use:

GxB_set (GxB_HYPER, GxB_NEVER_HYPER) ;

GxB_set (GxB_FORMAT, GxB_BY_COL) ;

Then if a particular matrix needs a different format, then (as an example):

GxB_set (A, GxB_HYPER, 0.1) ;

GxB_set (A, GxB_FORMAT, GxB_BY_ROW) ;

This changes the matrix A so that it is stored by row, and it is con-
verted from non-hypersparse to hypersparse format if it has fewer than 10%
non-empty columns. If it is hypersparse, it is a candidate for conversion
to non-hypersparse if has 20% or more non-empty columns. If it has be-
tween 10% and 20% non-empty columns, it remains in its current format.
MATLAB only supports a non-hypersparse CSC format. The format in
SuiteSparse:GraphBLAS that is equivalent to the MATLAB format is:
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GrB_init (...) ;

GxB_set (GxB_HYPER, GxB_NEVER_HYPER) ;

GxB_set (GxB_FORMAT, GxB_BY_COL) ;

// no subsequent use of GxB_HYPER or GxB_FORMAT

The GxB_HYPER and GxB_FORMAT options should be considered as sugges-
tions from the user application as to how SuiteSparse:GraphBLAS can obtain
the best performance for a particular application. SuiteSparse:GraphBLAS
is free to ignore any of these suggestions, both now and in the future, and the
available options and formats may be augmented in the future. Any prior
options no longer needed in future versions of SuiteSparse:GraphBLAS will
be silently ignored, so the use these options is safe for future updates.

The hypersparse status of a matrix can be queried with the following
usage:

bool is_hyper ;

GxB_get (A, GxB_IS_HYPER, &is_hyper) ;

printf (is_hyper ? "A is hypersparse" : "A is standard sparse") ;

6.4 Other global options

GxB_MODE, GxB_THREAD_SAFETY, and GxB_THREADING can only be queried
by GxB_get; they cannot be modified by GxB_set. The mode is the value
passed to GrB_init (blocking or non-blocking). The GxB_THREAD* options
are returned as an enum type with one of the following options:

typedef enum

{

GxB_THREAD_NONE = 0, // no threading

GxB_THREAD_OPENMP = 1, // OpenMP

GxB_THREAD_POSIX = 2, // POSIX pthreads

GxB_THREAD_WINDOWS = 3, // Windows threads

GxB_THREAD_ANSI = 4 // ANSI C11 threads

}

GxB_Thread_Model ;

SuiteSparse:GraphBLAS multi-threaded, using only OpenMP for its in-
ternal parallelism. It is also thread-safe if it is compiled with OpenMP or
POSIX pthreads, and if the user application threads do not operate on the
same matrices at the same time. The user threads may use OpenMP or
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POSIX pthreads. If multiple user threads make simultaneous calls to Graph-
BLAS, then output matrices and vectors used by different threads must be
different, and input matrices and vectors can be safely used only if any pend-
ing computations on them have finished, via GrB_wait or the per-matrix
methods, GrB_*_nvals, GrB_*_extractElement, GrB_*_extractTuples, and
reduction to a scalar via GrB_*_reduce.

The GxB_THREAD_SAFETY option returns the threading model used inter-
nally to synchronize user threads. This is determined during installation (see
Section 12.4). Since GxB_THREAD_NONE is zero, the following can be used:

GxB_Thread_Model thread_safety ;

GxB_get (GxB_THREAD_SAFETY, &thread_safety) ;

if (thread_safety)

{

printf ("GraphBLAS is thread-safe\n") ;

}

else

{

// neither OpenMP, POSIX pthreads, nor any other threading model

// was available at compile-time

printf ("GraphBLAS is not thread-safe!\n") ;

}

The GxB_THREADING option returns the internal parallelism used inside
SuiteSparse:GraphBLAS, depending on how the library was compiled:

GxB_Thread_Model threading ;

GxB_get (GxB_THREADING, &threading) ;

if (threading == GxB_THREAD_NONE)

{

printf ("GraphBLAS is single-threaded, internally.\n") ;

}

else

{

printf ("GraphBLAS is multi-threaded, internally, using OpenMP.\n") ;

}

All threads in the same user application share the same global options,
including hypersparsity and CSR/CSC format determined by GxB_set, the
blocking mode determined by GrB_init, and the threading options. Spe-
cific format and hypersparsity parameters of each matrix are specific to that
matrix and can be independently changed.
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6.5 GxB Global Option set: set a global option

GrB_Info GxB_set // set a global default option

(

const GxB_Option_Field field, // option to change

... // value to change it to

) ;

This usage of GxB_set sets the value of a global option. The field

parameter can be GxB_HYPER, GxB_FORMAT, GxB_NTHREADS, or GxB_CHUNK.
For example, the following usage sets the global hypersparsity ratio to

0.2, the format of future matrices to GxB_BY_COL, the maximum number of
threads to 4, and the chunk size to 10000. No existing matrices are changed.

GxB_set (GxB_HYPER, 0.2) ;

GxB_set (GxB_FORMAT, GxB_BY_COL) ;

GxB_set (GxB_NTHREADS, 4) ;

GxB_set (GxB_CHUNK, (double) 10000) ;

6.6 GxB Matrix Option set: set a matrix option

GrB_Info GxB_set // set an option in a matrix

(

GrB_Matrix A, // matrix to modify

const GxB_Option_Field field, // option to change

... // value to change it to

) ;

This usage of GxB_set sets the value of a matrix option, for a particular
matrix. The field parameter can be GxB_HYPER or GxB_FORMAT.

For example, the following usage sets the hypersparsity ratio to 0.2, and
the format of GxB_BY_COL, for a particular matrix A. SuiteSparse:GraphBLAS
currently applies these changes immediately, but since they are simply hints,
future versions of SuiteSparse:GraphBLAS may delay the change in format
if it can obtain better performance.

For performance, the matrix option should be set as soon as it is created
with GrB_Matrix_new, so the internal transformation takes less time.

GxB_set (A, GxB_HYPER, 0.2) ;

GxB_set (A, GxB_FORMAT, GxB_BY_COL) ;
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6.7 GxB Desc set: set a GrB Descriptor value

GrB_Info GxB_set // set a parameter in a descriptor

(

GrB_Descriptor desc, // descriptor to modify

const GrB_Desc_Field field, // parameter to change

... // value to change it to

) ;

This usage is similar to GrB_Descriptor_set, just with a name that is
consistent with the other usages of this generic function. Unlike GrB_Descriptor_set,
the field may also be GxB_NTHREADS, or GxB_CHUNK. Refer to Sections 5.11.2 and 5.11.3
for details.

6.8 GxB Global Option get: retrieve a global option

GrB_Info GxB_get // gets the current global default option

(

const GxB_Option_Field field, // option to query

... // return value of the global option

) ;

This usage of GxB_get retrieves the value of a global option. The field

parameter can be GxB_HYPER, GxB_FORMAT. GxB_MODE, GxB_THREAD_SAFETY,
GxB_THREADING, GxB_NTHREADS, or GxB_CHUNK. For example:

double h ;

GxB_get (GxB_HYPER, &h) ;

printf ("hyper_ratio = %g for all new matrices\n", h) ;

GxB_Format_Value s ;

GxB_get (GxB_FORMAT, &s) ;

if (s == GxB_BY_COL) printf ("all new matrices are stored by column\n") :

else printf ("all new matrices are stored by row\n") ;

GrB_mode mode ;

GxB_get (GxB_MODE, &mode) ;

if (mode == GrB_BLOCKING) printf ("GrB_init(GrB_BLOCKING) was called.\n") :

else printf ("GrB_init(GrB_NONBLOCK) was called.\n") ;

int nthreads_max ;

GxB_get (GxB_NTHREADS, &nthreads_max) ;

printf ("max # of threads to use: %d\n", nthreads_max) ;
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double chunk ;

GxB_get (GxB_CHUNK, &chunk) ;

printf ("chunk size: %g\n", chunk) ;

// see Demo/Program/pthread_demo.c and openmp_demo.c for examples:

GxB_Threading_Model thread_safety, threading ;

GxB_get (GxB_THREAD_SAFETY, &thread_safey) ;

GxB_get (GxB_THREADING, &threading) ;

6.9 GxB Matrix Option get: retrieve a matrix option

GrB_Info GxB_get // gets the current option of a matrix

(

GrB_Matrix A, // matrix to query

GxB_Option_Field field, // option to query

... // return value of the matrix option

) ;

This usage of GxB_get retrieves the value of a matrix option. The field

parameter can be GxB_HYPER or GxB_FORMAT. For example:

double h ;

GxB_get (A, GxB_HYPER, &h) ;

printf ("matrix A has hyper_ratio = %g\n", h) ;

GxB_Format_Value s ;

GxB_get (A, GxB_FORMAT, &s) ;

if (s == GxB_BY_COL) printf ("matrix A is stored by column\n") :

else printf ("matrix A is stored by row\n") ;

6.10 GxB Desc get: retrieve a GrB Descriptor value

GrB_Info GxB_get // get a parameter from a descriptor

(

GrB_Descriptor desc, // descriptor to query; NULL means defaults

GrB_Desc_Field field, // parameter to query

... // value of the parameter

) ;

This usage is the same as GxB_Desc_get. The field parameter can be
GrB_OUTP, GrB_MASK, GrB_INP0, GrB_INP1, GxB_AxB_METHOD, GxB_NTHREADS,
or GxB_CHUNK. Refer to Section 5.11.4 for details.
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6.11 Summary of usage of GxB set and GxB get

The different usages of GxB_set and GxB_get are summarized below.
To set/get the global options:

GxB_set (GxB_HYPER, double h) ;

GxB_set (GxB_HYPER, GxB_ALWAYS_HYPER) ;

GxB_set (GxB_HYPER, GxB_NEVER_HYPER) ;

GxB_get (GxB_HYPER, double *h) ;

GxB_set (GxB_FORMAT, GxB_BY_ROW) ;

GxB_set (GxB_FORMAT, GxB_BY_COL) ;

GxB_get (GxB_FORMAT, GxB_Format_Value *s) ;

GxB_set (GxB_THREADS, int nthreads_max) ;

GxB_get (GxB_THREADS, int *nthreads_max) ;

GxB_set (GxB_CHUNK, double chunk) ;

GxB_get (GxB_CHUNK, double *chunk) ;

To get global options that can be queried but not modified:

GxB_get (GxB_MODE, GrB_Mode *mode) ;

GxB_get (GxB_THREAD_SAFETY, GxB_Thread_Model *thread_safety) ;

GxB_get (GxB_THREADING, GxB_Thread_Model *threading) ;

To set/get a matrix option:

GxB_set (GrB_Matrix A, GxB_HYPER, double h) ;

GxB_set (GrB_Matrix A, GxB_HYPER, GxB_ALWAYS_HYPER) ;

GxB_set (GrB_Matrix A, GxB_HYPER, GxB_NEVER_HYPER) ;

GxB_get (GrB_Matrix A, GxB_HYPER, double *h) ;

GxB_set (GrB_Matrix A, GxB_FORMAT, GxB_BY_ROW) ;

GxB_set (GrB_Matrix A, GxB_FORMAT, GxB_BY_COL) ;

GxB_get (GrB_Matrix A, GxB_FORMAT, GxB_Format_Value *s) ;

To get the hypersparse status of a matrix:

GxB_get (GrB_Matrix A, GxB_IS_HYPER, bool *is_hyper) ;
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To set/get a descriptor field:

GxB_set (GrB_Descriptor d, GrB_OUTP, GxB_DEFAULT) ;

GxB_set (GrB_Descriptor d, GrB_OUTP, GrB_REPLACE) ;

GxB_get (GrB_Descriptor d, GrB_OUTP, GrB_Desc_Value *v) ;

GxB_set (GrB_Descriptor d, GrB_MASK, GxB_DEFAULT) ;

GxB_set (GrB_Descriptor d, GrB_MASK, GrB_COMP) ;

GxB_set (GrB_Descriptor d, GrB_MASK, GrB_STRUCTURE) ;

GxB_set (GrB_Descriptor d, GrB_MASK, GrB_COMP+GrB_STRUCTURE) ;

GxB_get (GrB_Descriptor d, GrB_MASK, GrB_Desc_Value *v) ;

GxB_set (GrB_Descriptor d, GrB_INP0, GxB_DEFAULT) ;

GxB_set (GrB_Descriptor d, GrB_INP0, GrB_TRAN) ;

GxB_get (GrB_Descriptor d, GrB_INP0, GrB_Desc_Value *v) ;

GxB_set (GrB_Descriptor d, GrB_INP1, GxB_DEFAULT) ;

GxB_set (GrB_Descriptor d, GrB_INP1, GrB_TRAN) ;

GxB_get (GrB_Descriptor d, GrB_INP1, GrB_Desc_Value *v) ;

GxB_set (GrB_Descriptor d, GxB_AxB_METHOD, GxB_DEFAULT) ;

GxB_set (GrB_Descriptor d, GxB_AxB_METHOD, GxB_AxB_GUSTAVSON) ;

GxB_set (GrB_Descriptor d, GxB_AxB_METHOD, GxB_AxB_HEAP) ;

GxB_set (GrB_Descriptor d, GxB_AxB_METHOD, GxB_AxB_HASH) ;

GxB_set (GrB_Descriptor d, GxB_AxB_METHOD, GxB_AxB_SAXPY) ;

GxB_set (GrB_Descriptor d, GxB_AxB_METHOD, GxB_AxB_DOT) ;

GxB_get (GrB_Descriptor d, GrB_AxB_METHOD, GrB_Desc_Value *v) ;

GxB_set (GrB_Descriptor d, GxB_NTHREADS, int nthreads) ;

GxB_get (GrB_Descriptor d, GxB_NTHREADS, int *nthreads) ;

GxB_set (GrB_Descriptor d, GxB_CHUNK, double chunk) ;

GxB_get (GrB_Descriptor d, GxB_CHUNK, double *chunk) ;
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7 SuiteSparse:GraphBLAS Colon and Index

Notation

MATLAB uses a colon notation to index into matrices, such as C=A(2:4,3:8),
which extracts C as 3-by-6 submatrix from A, from rows 2 through 4 and
columns 3 to 8 of the matrix A. A single colon is used to denote all rows,
C=A(:,9), or all columns, C=A(12,:), which refers to the 9th column and
12th row of A, respectively. An arbitrary integer list can be given as well,
such as the MATLAB statements:

I = [2 1 4] ;

J = [3 5] ;

C = A (I,J) ;

which creates the 3-by-2 matrix C as follows:

C =

 a2,3 a2,5
a1,3 a1,5
a4,3 a4,5


The GraphBLAS API can do the equivalent of C=A(I,J), C=A(:,J),

C=A(I,:), and C=A(:,:), by passing a parameter const GrB_Index *I as
either an array of size ni, or as the special value GrB_ALL, which corresponds
to the stand-alone colon C=A(:,J), and the same can be done for J.. To
compute C=A(2:4,3:8) in GraphBLAS requires the user application to cre-
ate two explicit integer arrays I and J of size 3 and 5, respectively, and then
fill them with the explicit values [2,3,4] and [3,4,5,6,7,8]. This works
well if the lists are small, or if the matrix has more entries than rows or
columns.

However, particularly with hypersparse matrices, the size of the explicit
arrays I and J can vastly exceed the number of entries in the matrix. When
using its hypersparse format, SuiteSparse:GraphBLAS allows the user appli-
cation to create a GrB_Matrix with dimensions up to 260, with no memory
constraints. The only constraint on memory usage in a hypersparse matrix
is the number of entries in the matrix.

For example, creating a n-by-n matrix A of type GrB_FP64 with n = 260

and one million entries is trivial to do in Version 2.1 (and later) of Suite-
Sparse:GraphBLAS, taking at most 24MB of space. SuiteSparse:GraphBLAS
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Version 2.1 (or later) could do this on an old smartphone. However, us-
ing just the pure GraphBLAS API, constructing C=A(0:(n/2),0:(n/2)) in
SuiteSparse Version 2.0 would require the creation of an integer array I of
size 259, containing the sequence 0, 1, 2, 3, ...., requiring about 4 ExaBytes
of memory (4 million terabytes). This is roughly 1000 times larger than the
memory size of the world’s largest computer in 2018.

SuiteSparse:GraphBLAS Version 2.1 and later extends the GraphBLAS
API with a full implementation of the MATLAB colon notation for inte-
gers, I=begin:inc:end. This extension allows the construction of the ma-
trix C=A(0:(n/2),0:(n/2)) in this example, with dimension 259, probably
taking just milliseconds on an old smartphone.

The GrB_extract, GrB_assign, and GxB_subassign operations (described
in the Section 8) each have parameters that define a list of integer indices,
using two parameters:

const GrB_Index *I ; // an array, or a special value GrB_ALL

GrB_Index ni ; // the size of I, or a special value

These two parameters define five kinds of index lists, which can be used
to specify either an explicit or implicit list of row indices and/or column
indices. The length of the list of indices is denoted |I|. This discussion
applies equally to the row indices I and the column indices J. The five kinds
are listed below.

1. An explicit list of indices, such as I = [2 1 4 7 2] in MATLAB no-
tation, is handled by passing in I as a pointer to an array of size
5, and passing ni=5 as the size of the list. The length of the ex-
plicit list is ni=|I|. Duplicates may appear, except that for some
uses of GrB_assign and GxB_subassign, duplicates lead to undefined
behavior according to the GraphBLAS C API Specification. Suite-
Sparse:GraphBLAS specifies how duplicates are handled in all cases,
as an addition to the specification. See Section 8.10 for details.

2. To specify all rows of a matrix, use I = GrB_ALL. The parameter ni is
ignored. This is equivalent to C=A(:,J) in MATLAB. In GraphBLAS,
this is the sequence 0:(m-1) if A has m rows, with length |I|=m. If J
is used the columns of an m-by-n matrix, then J=GrB_ALL refers to all
columns, and is the sequence 0:(n-1), of length |J|=n.

124



3. To specify a contiguous range of indices, such as I=10:20 in MATLAB,
the array I has size 2, and ni is passed to SuiteSparse:GraphBLAS as
the special value ni = GxB_RANGE. The beginning index is I[GxB_BEGIN]
and the ending index is I[GxB_END]. Both values must be non-negative
since GrB_Index is an unsigned integer (uint64_t). The value of
I[GxB_INC] is ignored.

// to specify I = 10:20

GrB_Index I [2], ni = GxB_RANGE ;

I [GxB_BEGIN] = 10 ; // the start of the sequence

I [GxB_END ] = 20 ; // the end of the sequence

Let b = I[GxB_BEGIN], let e = I[GxB_END], The sequence has length
zero if b > e; otherwise the length is |I| = (e− b) + 1.

4. To specify a strided range of indices with a non-negative stride, such
as I=3:2:10, the array I has size 3, and ni has the special value
GxB_STRIDE. This is the sequence 3, 5, 7, 9, of length 4. Note that
10 does not appear in the list. The end point need not appear if the
increment goes past it.

// to specify I = 3:2:10

GrB_Index I [3], ni = GxB_STRIDE ;

I [GxB_BEGIN ] = 3 ; // the start of the sequence

I [GxB_INC ] = 2 ; // the increment

I [GxB_END ] = 10 ; // the end of the sequence

The GxB_STRIDE sequence is the same as the List generated by the
following for loop:

int64_t k = 0 ;

GrB_Index *List = (a pointer to an array of large enough size)

for (int64_t i = I [GxB_BEGIN] ; i <= I [GxB_END] ; i += I [GxB_INC])

{

// i is the kth entry in the sequence

List [k++] = i ;

}

Then passing the explicit array List and its length ni=k has the same
effect as passing in the array I of size 3, with ni=GxB_STRIDE. The

125



latter is simply much faster to produce, and much more efficient for
SuiteSparse:GraphBLAS to process.

Let b = I[GxB_BEGIN], let e = I[GxB_END], and let ∆ = I[GxB_INC].
The sequence has length zero if b > e or ∆ = 0. Otherwise, the length
of the sequence is

|I| =
⌊e− b

∆

⌋
+ 1

5. In MATLAB notation, if the stride is negative, the sequence is decreas-
ing. For example, 10:-2:1 is the sequence 10, 8, 6, 4, 2, in that order.
In SuiteSparse:GraphBLAS, use ni = GxB_BACKWARDS, with an array
I of size 3. The following example specifies defines the equivalent of
the MATLAB expression 10:-2:1 in SuiteSparse:GraphBLAS:

// to specify I = 10:-2:1

GrB_Index I [3], ni = GxB_BACKWARDS ;

I [GxB_BEGIN ] = 10 ; // the start of the sequence

I [GxB_INC ] = 2 ; // the magnitude of the increment

I [GxB_END ] = 1 ; // the end of the sequence

The value -2 cannot be assigned to the GrB_Index array I, since that
is an unsigned type. The signed increment is represented instead with
the special value ni = GxB_BACKWARDS. The GxB_BACKWARDS sequence
is the same as generated by the following for loop:

int64_t k = 0 ;

GrB_Index *List = (a pointer to an array of large enough size)

for (int64_t i = I [GxB_BEGIN] ; i >= I [GxB_END] ; i -= I [GxB_INC])

{

// i is the kth entry in the sequence

List [k++] = i ;

}

Let b = I[GxB_BEGIN], let e = I[GxB_END], and let ∆ = I[GxB_INC]

(note that ∆ is not negative). The sequence has length zero if b < e or
∆ = 0. Otherwise, the length of the sequence is

|I| =
⌊b− e

∆

⌋
+ 1

Since GrB_Index is an unsigned integer, all three values I[GxB_BEGIN],
I[GxB_INC], and I[GxB_END] must be non-negative.
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Just as in MATLAB, it is valid to specify an empty sequence of length
zero. For example, I = 5:3 has length zero in MATLAB and the same is true
for a GxB_RANGE sequence in SuiteSparse:GraphBLAS, with I[GxB_BEGIN]=5

and I[GxB_END]=3. This has the same effect as array I with ni=0.

SPEC: GxB_RANGE, GxB_STRIDE, and GxB_BACKWARDS are extensions to
the specification.

127



8 GraphBLAS Operations

The next sections define each of the GraphBLAS operations, also listed
in the table below. SuiteSparse:GraphBLAS extensions (GxB_subassign,
GxB_select and GxB_kron) are included in the table.

GrB_mxm matrix-matrix multiply C〈M〉 = C�AB
GrB_vxm vector-matrix multiply wT〈mT〉 = wT � uTA
GrB_mxv matrix-vector multiply w〈m〉 = w �Au

GrB_eWiseMult element-wise, C〈M〉 = C� (A⊗B)
set union w〈m〉 = w � (u⊗ v)

GrB_eWiseAdd element-wise, C〈M〉 = C� (A⊕B)
set intersection w〈m〉 = w � (u⊕ v)

GrB_extract extract submatrix C〈M〉 = C�A(I,J)
w〈m〉 = w � u(i)

GxB_subassign assign submatrix, C(I,J)〈M〉 = C(I,J)�A
with submask for C(I,J) w(i)〈m〉 = w(i)� u

GrB_assign assign submatrix C〈M〉(I,J) = C(I,J)�A
with submask for C w〈m〉(i) = w(i)� u

GrB_apply apply unary operator C〈M〉 = C�f(A)
w〈m〉 = w�f(u)

GxB_select apply select operator C〈M〉 = C�f(A,k)
w〈m〉 = w�f(u,k)

GrB_reduce reduce to vector w〈m〉 = w�[⊕jA(:, j)]
reduce to scalar s = s� [⊕ijA(I, J)]

GrB_transpose transpose C〈M〉 = C�AT

GxB_kron Kronecker product C〈M〉 = C� kron(A,B)
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8.1 The GraphBLAS specification in MATLAB

SuiteSparse:GraphBLAS includes a MATLAB implementation of nearly the
entire GraphBLAS specification, including all built-in types and operators.
The typecasting rules and integer operator rules from GraphBLAS are im-
plemented in MATLAB via mexFunctions that call the GraphBLAS rou-
tines in C. All other functions are written purely in MATLAB M-files, and
are given names of the form GB_spec_*. All of these MATLAB interfaces
and M-file functions they are provided in the software distribution of Suite-
Sparse:GraphBLAS. The purpose of this is two-fold:

• Illustration and documentation: MATLAB is so expressive, and
so beautiful to read and write, that the GB_spec_* functions read al-
most like the exact specifications from the GraphBLAS API. Excerpts
and condensed versions of these functions have already been used to
this point in the User Guide, such as Figure 1, and the subsequent
sections rely on them as well. This is why the discussion here is not
just relegated to an Appendix on testing; the reader can benefit from
studying the GB_spec_* functions to understand what a GraphBLAS
operation is computing. For example, GrB_mxm (Section 8.2) includes
a condensed and simplified version of GB_spec_mxm.

• Testing: Testing the C interface to SuiteSparse:GraphBLAS is a sig-
nificant challenge since it supports so many different kinds of operations
on a vast range of semirings. It is difficult to tell from looking at the
result from a C function in GraphBLAS if the result is correct. Thus,
each function has been written twice: once in a highly-optimized func-
tion in C, and again in a simple and elegant MATLAB function. The
latter is almost a direct translation of all the mathematics behind the
GraphBLAS API, so it is much easier to visually inspect the GB_spec_*
version in MATLAB to ensure the correct mathematics are being com-
puted.

The following functions are included in the SuiteSparse:GraphBLAS soft-
ware distribution. Each has a name of the form GB_spec_*, and each of them
is a “mimic” of a corresponding C function in GraphBLAS. Not all functions
in the C API have a corresponding mimic; in particular, many of the vector
functions can be computed directly with the corresponding matrix version in
the MATLAB implementations. A list of these files is shown below:
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MATLAB GB_spec function corresponding GraphBLAS Section
function or method

GB_spec_accum.m Z = C�T 2.3
GB_spec_mask.m C〈M〉 = Z 2.3
GB_spec_accum_mask.m C〈M〉 = C�T 2.3
GB_spec_Vector_extractElement.m GrB_Vector_extractElement 5.8.9
GB_spec_build.m GrB_Matrix_build 5.9.8
GB_spec_Matrix_extractElement.m GrB_Matrix_extractElement 5.9.10
GB_spec_extractTuples.m GrB_Matrix_extractTuples 5.9.11
GB_spec_mxm.m GrB_mxm 8.2
GB_spec_vxm.m GrB_vxm 8.3
GB_spec_mxv.m GrB_mxv 8.4
GB_spec_eWiseMult_Vector.m GrB_eWiseMult_Vector 8.5
GB_spec_eWiseMult_Matrix.m GrB_eWiseMult_Matrix 8.5
GB_spec_eWiseAdd_Vector.m GrB_eWiseAdd_Vector 8.6
GB_spec_eWiseAdd_Matrix.m GrB_eWiseAdd_Matrix 8.6
GB_spec_Vector_extract.m GrB_Vector_extract 8.7.1
GB_spec_Matrix_extract.m GrB_Matrix_extract 8.7.2
GB_spec_Col_extract.m GrB_Col_extract 8.7.3
GB_spec_subassign.m GxB_subassign 8.8
GB_spec_assign.m GrB_assign 8.9
GB_spec_apply.m GrB_apply 8.12
GB_spec_select.m GxB_select 8.13
GB_spec_reduce_to_vector.m GrB_reduce (to vector) 8.14.1
GB_spec_reduce_to_scalar.m GrB_reduce (to scalar) 8.14.3
GB_spec_transpose.m GrB_transpose 8.15
GB_spec_kron.m GxB_kron 8.16

Additional files are included for creating test problems and providing
inputs to the above files, or supporting functions:

MATLAB GB_spec function purpose
GB_spec_compare.m Compares output of C and MATLAB functions
GB_spec_random.m Generates a random matrix
GB_spec_op.m MATLAB mimic of built-in operators
GB_spec_operator.m Like GrB_*Op_new

GB_spec_opsall.m List operators, types, and semirings
GB_spec_semiring.m Like GrB_Semiring_new

GB_spec_descriptor.m mimics a GraphBLAS descriptor
GB_spec_identity.m returns the identity of a monoid
GB_spec_matrix.m conforms a MATLAB sparse matrix to GraphBLAS
GB_define.m creates draft of GraphBLAS.h
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An intensive test suite has been written that generates test graphs in
MATLAB, then computes the result in both the C version of the Suite-
Sparse:GraphBLAS and in the MATLAB GB_spec_* functions. Each C func-
tion in GraphBLAS has a direct mexFunction interface that allow the test
suite in MATLAB to call both functions.

This approach has its limitations:

• matrix classes: MATLAB only supports sparse double, sparse double
complex, and sparse logical matrices. MATLAB can represent dense
matrices in all eleven built-in GraphBLAS data types, so in all these
specification M-files, the matrices are either in dense format in the cor-
responding MATLAB class, or they are held as sparse double or sparse
logical, and the actual GraphBLAS type is held with it as a string
member of a MATLAB struct. To ensure the correct typecasting is
computed, most of the MATLAB scripts work on dense matrices, not
sparse ones. As a result, the MATLAB GB_spec_* function are not
meant for production use, but just for testing and illustration.

• integer operations: MATLAB and GraphBLAS handle integer op-
erations differently. In MATLAB, an integer result outside the range
of the integer is set to maximum or minimum integer. For example,
int8(127)+1 is 127. This is useful for many computations such as
image processing, but GraphBLAS follows the C rules instead, where
integer values wrap, modulo style. For example, in GraphBLAS and
in C, incrementing (int8_t) 127 by one results in -128. Of course,
an alternative would be for a MATLAB interface to create its own
integer operators, each of which would follow the MATLAB integer
rules of arithmetic. However, this would obscure the purpose of these
GB_spec_* and GB_mex_* test functions, which is to test the C API of
GraphBLAS. When the GB_spec_* functions need to perform integer
computations and typecasting, they call GraphBLAS to do the work,
instead doing the work in MATLAB. This ensures that the GB_spec_*

functions obtain the same results as their GraphBLAS counterparts.

• elegance: to simplify testing, each MATLAB mexFunction interface a
GraphBLAS function is a direct translation of the C API. For example,
GB_mex_mxm is a direct interface to the GraphBLAS GrB_mxm, even
down the order of parameters. This approach abandons some of the
potential features of MATLAB for creating elegant M-file interfaces in a
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highly usable form, such as the ability to provide fewer parameters when
optional parameters are not in use. These mexFunctions, as written,
are not meant to be usable in a user application. They are not highly
documented. They are meant to be fast, and direct, to accomplish the
goal of testing SuiteSparse:GraphBLAS in MATLAB and comparing
their results with the corresponding GB_spec_* function. They are not
recommended for use in general applications in MATLAB.

• generality: the MATLAB mexFunction interface needs to test the C
API directly, so it must access content of SuiteSparse:GraphBLAS ob-
jects that are normally opaque to an end user application. As a result,
these mexFunctions do not serve as a general interface to any conform-
ing GraphBLAS implementation, but only to SuiteSparse:GraphBLAS.

In the MATLAB mimic functions, GB_spec_*, a GraphBLAS matrix A is
represented as a MATLAB struct with the following components:

• A.matrix: the values of the matrix. If A.matrix is a sparse double ma-
trix, it holds a typecasted copy of the values of a GraphBLAS matrix,
unless the GraphBLAS matrix is also double (GrB_FP64).

• A.pattern: a logical matrix holding the pattern; A.pattern(i,j)=true
if (i,j) is in the pattern of A, and false otherwise.

• A.class: the MATLAB class of the matrix corresponding to one of the
eleven built-in types. Normally this is simply class(A.matrix).

• A.values: most of the GraphBLAS test mexFunctions return their
result as a MATLAB sparse matrix, in the double class. This works
well for all types except for the 64-bit integer types, since a double has
about 54 bits of mantissa which is less than the 64 bits available in a
long integer. To ensure no bits are lots, these values are also returned as
a vector. This enables GB_spec_compare to ensure the test results are
identical down to the very last bit, and not just to within roundoff error.
Nearly all tests, even in double precision, check for perfect equality, not
just for results accurate to within round-off error.
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8.2 GrB mxm: matrix-matrix multiply

GrB_Info GrB_mxm // C<Mask> = accum (C, A*B)

(

GrB_Matrix C, // input/output matrix for results

const GrB_Matrix Mask, // optional mask for C, unused if NULL

const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)

const GrB_Semiring semiring, // defines ’+’ and ’*’ for A*B

const GrB_Matrix A, // first input: matrix A

const GrB_Matrix B, // second input: matrix B

const GrB_Descriptor desc // descriptor for C, Mask, A, and B

) ;

GrB_mxm multiplies two sparse matrices A and B using the semiring. The
input matrices A and B may be transposed according to the descriptor, desc
(which may be NULL) and then typecasted to match the multiply operator of
the semiring. Next, T=A*B is computed on the semiring, precisely defined
in the GB_spec_mxm.m script. The actual algorithm exploits sparsity and
does not take O(n3) time, but what computes is the following:

[m s] = size (A.matrix) ;

[s n] = size (B.matrix) ;

T.matrix = zeros (m, n, multiply.ztype) ;

T.pattern = zeros (m, n, ’logical’) ;

T.matrix (:,:) = identity ; % the identity of the semiring’s monoid

T.class = multiply.ztype ; % the ztype of the semiring’s multiply op

A = cast (A.matrix, multiply.xtype) ; % the xtype of the semiring’s multiply op

B = cast (B.matrix, multiply.ytype) ; % the ytype of the semiring’s multiply op

for j = 1:n

for i = 1:m

for k = 1:s

% T (i,j) += A (i,k) * B (k,j), using the semiring

if (A.pattern (i,k) && B.pattern (k,j))

z = multiply (A (i,k), B (k,j)) ;

T.matrix (i,j) = add (T.matrix (i,j), z) ;

T.pattern (i,j) = true ;

end

end

end

end

Finally, T is typecasted into the type of C, and the results are written back
into C via the accum and Mask, C〈M〉 = C�T. The latter step is reflected
in the MATLAB function GB_spec_accum_mask.m, discussed in Section 2.3.
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Performance considerations: Suppose all matrices are in GxB_BY_COL

format, and B is extremely sparse but A is not as sparse. Then computing
C=A*B is very fast, and much faster than when A is extremely sparse. For
example, if A is square and B is a column vector that is all nonzero except for
one entry B(j,0)=1, then C=A*B is the same as extracting column A(:,j).
This is very fast if A is stored by column but slow if A is stored by row. If
A is a sparse row with a single entry A(0,i)=1, then C=A*B is the same as
extracting row B(i,:). This is fast if B is stored by row but slow if B is
stored by column.

If the user application needs to repeatedly extract rows and columns from
a matrix, whether by matrix multiplication or by GrB_extract, then keep
two copies: one stored by row, and other by column, and use the copy that
results in the fastest computation.
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8.3 GrB vxm: vector-matrix multiply

GrB_Info GrB_vxm // w’<mask> = accum (w, u’*A)

(

GrB_Vector w, // input/output vector for results

const GrB_Vector mask, // optional mask for w, unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(w,t)

const GrB_Semiring semiring, // defines ’+’ and ’*’ for u’*A

const GrB_Vector u, // first input: vector u

const GrB_Matrix A, // second input: matrix A

const GrB_Descriptor desc // descriptor for w, mask, and A

) ;

GrB_vxm multiplies a row vector u’ times a matrix A. The matrix A may
be first transposed according to desc (as the second input, GrB_INP1); the
column vector u is never transposed via the descriptor. The inputs u and
A are typecasted to match the xtype and ytype inputs, respectively, of the
multiply operator of the semiring. Next, an intermediate column vector
t=A’*u is computed on the semiring using the same method as GrB_mxm.
Finally, the column vector t is typecasted from the ztype of the multiply
operator of the semiring into the type of w, and the results are written back
into w using the optional accumulator accum and mask.

The last step is w〈m〉 = w � t, as described in Section 2.3, except that
all the terms are column vectors instead of matrices.

Performance considerations: If the GxB_FORMAT of A is GxB_BY_ROW,
and the default descriptor is used (A is not transposed), then GrB_vxm is
faster than than GrB_mxv with its default descriptor, when the vector u is
very sparse. However, if the GxB_FORMAT of A is GxB_BY_COL, then GrB_mxv

with its default descriptor is faster than GrB_vxm with its default descriptor,
when the vector u is very sparse. Using the non-default GrB_TRAN descriptor
for A makes the GrB_vxm operation equivalent to GrB_mxv with its default
descriptor (with the operands reversed in the multiplier, as well). The reverse
is true as well; GrB_mxv with GrB_TRAN is the same as GrB_vxm with a default
descriptor.

The breadth-first search presented in Section 11.2 of this User Guide uses
GrB_vxm instead of GrB_mxv, since the default format in SuiteSparse:GraphBLAS
is GxB_BY_ROW. If the matrix is stored by column, then use GrB_mxv instead.
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8.4 GrB mxv: matrix-vector multiply

GrB_Info GrB_mxv // w<mask> = accum (w, A*u)

(

GrB_Vector w, // input/output vector for results

const GrB_Vector mask, // optional mask for w, unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(w,t)

const GrB_Semiring semiring, // defines ’+’ and ’*’ for A*B

const GrB_Matrix A, // first input: matrix A

const GrB_Vector u, // second input: vector u

const GrB_Descriptor desc // descriptor for w, mask, and A

) ;

GrB_mxv multiplies a matrix A times a column vector u. The matrix A may
be first transposed according to desc (as the first input); the column vector
u is never transposed via the descriptor. The inputs A and u are typecasted
to match the xtype and ytype inputs, respectively, of the multiply operator
of the semiring. Next, an intermediate column vector t=A*u is computed on
the semiring using the same method as GrB_mxm. Finally, the column vector
t is typecasted from the ztype of the multiply operator of the semiring into
the type of w, and the results are written back into w using the optional
accumulator accum and mask.

The last step is w〈m〉 = w � t, as described in Section 2.3, except that
all the terms are column vectors instead of matrices.

Performance considerations: Refer to the discussion of GrB_vxm. In
SuiteSparse:GraphBLAS, GrB_mxv is very efficient when u is sparse or dense,
when the default descriptor is used, and when the matrix is GxB_BY_COL.
When u is very sparse and GrB_INP0 is set to its non-default GrB_TRAN, then
this method is not efficient if the matrix is in GxB_BY_COL format. If an
application needs to perform A’*u repeatedly where u is very sparse, then
use the GxB_BY_ROW format for A instead.
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8.5 GrB eWiseMult: element-wise operations, set inter-
section

Element-wise “multiplication” is shorthand for applying a binary operator
element-wise on two matrices or vectors A and B, for all entries that appear in
the set intersection of the patterns of A and B. This is like A.*B for two sparse
matrices in MATLAB, except that in GraphBLAS any binary operator can
be used, not just multiplication.

The pattern of the result of the element-wise “multiplication” is exactly
this set intersection. Entries in A but not B, or visa versa, do not appear in
the result.

Let⊗ denote the binary operator to be used. The computation T = A⊗B
is given below. Entries not in the intersection of A and B do not appear in
the pattern of T. That is:

for all entries (i, j) in A ∩B
tij = aij ⊗ bij

Depending on what kind of operator is used and what the implicit value
is assumed to be, this can give the Hadamard product. This is the case for
A.*B in MATLAB since the implicit value is zero. However, computing a
Hadamard product is not necessarily the goal of the eWiseMult operation.
It simply applies any binary operator, built-in or user-defined, to the set
intersection of A and B, and discards any entry outside this intersection.
Its usefulness in a user’s application does not depend upon it computing
a Hadamard product in all cases. The operator need not be associative,
commutative, nor have any particular property except for type compatibility
with A and B, and the output matrix C.

The generic name for this operation is GrB_eWiseMult, which can be used
for both matrices and vectors.
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8.5.1 GrB eWiseMult Vector: element-wise vector multiply

GrB_Info GrB_eWiseMult // w<mask> = accum (w, u.*v)

(

GrB_Vector w, // input/output vector for results

const GrB_Vector mask, // optional mask for w, unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(w,t)

const <operator> multiply, // defines ’.*’ for t=u.*v

const GrB_Vector u, // first input: vector u

const GrB_Vector v, // second input: vector v

const GrB_Descriptor desc // descriptor for w and mask

) ;

GrB_eWiseMult_Vector computes the element-wise “multiplication” of
two vectors u and v, element-wise using any binary operator (not just times).
The vectors are not transposed via the descriptor. The vectors u and v are
first typecasted into the first and second inputs of the multiply operator.
Next, a column vector t is computed, denoted t = u⊗ v. The pattern of t
is the set intersection of u and v. The result t has the type of the output
ztype of the multiply operator.

The operator is typically a GrB_BinaryOp, but the method is type-
generic for this parameter. If given a monoid (GrB_Monoid), the additive
operator of the monoid is used as the multiply binary operator. If given a
semiring (GrB_Semiring), the multiply operator of the semiring is used as
the multiply binary operator.

The next and final step is w〈m〉 = w � t, as described in Section 2.3,
except that all the terms are column vectors instead of matrices. Note for all
GraphBLAS operations, including this one, the accumulator w � t is always
applied in a set union manner, even though t = u⊗ v for this operation is
applied in a set intersection manner.
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8.5.2 GrB eWiseMult Matrix: element-wise matrix multiply

GrB_Info GrB_eWiseMult // C<Mask> = accum (C, A.*B)

(

GrB_Matrix C, // input/output matrix for results

const GrB_Matrix Mask, // optional mask for C, unused if NULL

const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)

const <operator> multiply, // defines ’.*’ for T=A.*B

const GrB_Matrix A, // first input: matrix A

const GrB_Matrix B, // second input: matrix B

const GrB_Descriptor desc // descriptor for C, Mask, A, and B

) ;

GrB_eWiseMult_Matrix computes the element-wise “multiplication” of
two matrices A and B, element-wise using any binary operator (not just times).
The input matrices may be transposed first, according to the descriptor desc.
They are then typecasted into the first and second inputs of the multiply

operator. Next, a matrix T is computed, denoted T = A⊗B. The pattern
of T is the set intersection of A and B. The result T has the type of the output
ztype of the multiply operator.

The multiply operator is typically a GrB_BinaryOp, but the method is
type-generic for this parameter. If given a monoid (GrB_Monoid), the additive
operator of the monoid is used as the multiply binary operator. If given a
semiring (GrB_Semiring), the multiply operator of the semiring is used as
the multiply binary operator.

The operation can be expressed in MATLAB notation as:

[nrows, ncols] = size (A.matrix) ;

T.matrix = zeros (nrows, ncols, multiply.ztype) ;

T.class = multiply.ztype ;

p = A.pattern & B.pattern ;

A = cast (A.matrix (p), multiply.xtype) ;

B = cast (B.matrix (p), multiply.ytype) ;

T.matrix (p) = multiply (A, B) ;

T.pattern = p ;

The final step is C〈M〉 = C�T, as described in Section 2.3. Note for all
GraphBLAS operations, including this one, the accumulator C�T is always
applied in a set union manner, even though T = A⊗B for this operation is
applied in a set intersection manner.
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8.6 GrB eWiseAdd: element-wise operations, set union

Element-wise “addition” is shorthand for applying a binary operator element-
wise on two matrices or vectors A and B, for all entries that appear in the
set intersection of the patterns of A and B. This is like A+B for two sparse
matrices in MATLAB, except that in GraphBLAS any binary operator can
be used, not just addition. The pattern of the result of the element-wise
“addition” is the set union of the pattern of A and B. Entries in neither in A

nor in B do not appear in the result.
Let⊕ denote the binary operator to be used. The computation T = A⊕B

is exactly the same as the computation with accumulator operator as de-
scribed in Section 2.3. It acts like a sparse matrix addition, except that any
operator can be used. The pattern of A⊕B is the set union of the patterns
of A and B, and the operator is applied only on the set intersection of A and
B. Entries not in either the pattern of A or B do not appear in the pattern
of T. That is:

for all entries (i, j) in A ∩B
tij = aij ⊕ bij

for all entries (i, j) in A \B
tij = aij

for all entries (i, j) in B \A
tij = bij

The only difference between element-wise “multiplication” (T = A⊗B)
and “addition” (T = A⊕B) is the pattern of the result, and what happens
to entries outside the intersection. With ⊗ the pattern of T is the inter-
section; with ⊕ it is the set union. Entries outside the set intersection are
dropped for ⊗, and kept for ⊕; in both cases the operator is only applied to
those (and only those) entries in the intersection. Any binary operator can
be used interchangeably for either operation.

Element-wise operations do not operate on the implicit values, even im-
plicitly, since the operations make no assumption about the semiring. As a
result, the results can be different from MATLAB, which can always assume
the implicit value is zero. For example, C=A-B is the conventional matrix
subtraction in MATLAB. Computing A-B in GraphBLAS with eWiseAdd

will apply the MINUS operator to the intersection, entries in A but not B will
be unchanged and appear in C, and entries in neither A nor B do not appear
in C. For these cases, the results matches the MATLAB C=A-B. Entries in B

but not A do appear in C but they are not negated; they cannot be subtracted
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from an implicit value in A. This is by design. If conventional matrix sub-
traction of two sparse matrices is required, and the implicit value is known
to be zero, use GrB_apply to negate the values in B, and then use eWiseAdd

with the PLUS operator, to compute A+(-B).
The generic name for this operation is GrB_eWiseAdd, which can be used

for both matrices and vectors.
There is another minor difference in two variants of the element-wise func-

tions. If given a semiring, the eWiseAdd functions use the binary operator of
the semiring’s monoid, while the eWiseMult functions use the multiplicative
operator of the semiring.

8.6.1 GrB eWiseAdd Vector: element-wise vector addition

GrB_Info GrB_eWiseAdd // w<mask> = accum (w, u+v)

(

GrB_Vector w, // input/output vector for results

const GrB_Vector mask, // optional mask for w, unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(w,t)

const <operator> add, // defines ’+’ for t=u+v

const GrB_Vector u, // first input: vector u

const GrB_Vector v, // second input: vector v

const GrB_Descriptor desc // descriptor for w and mask

) ;

GrB_eWiseAdd_Vector computes the element-wise “addition” of two vec-
tors u and v, element-wise using any binary operator (not just plus). The
vectors are not transposed via the descriptor. Entries in the intersection of u
and v are first typecasted into the first and second inputs of the add operator.
Next, a column vector t is computed, denoted t = u⊕ v. The pattern of t
is the set union of u and v. The result t has the type of the output ztype of
the add operator.

The add operator is typically a GrB_BinaryOp, but the method is type-
generic for this parameter. If given a monoid (GrB_Monoid), the additive
operator of the monoid is used as the add binary operator. If given a semiring
(GrB_Semiring), the additive operator of the monoid of the semiring is used
as the add binary operator.

The final step is w〈m〉 = w � t, as described in Section 2.3, except that
all the terms are column vectors instead of matrices.
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8.6.2 GrB eWiseAdd Matrix: element-wise matrix addition

GrB_Info GrB_eWiseAdd // C<Mask> = accum (C, A+B)

(

GrB_Matrix C, // input/output matrix for results

const GrB_Matrix Mask, // optional mask for C, unused if NULL

const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)

const <operator> add, // defines ’+’ for T=A+B

const GrB_Matrix A, // first input: matrix A

const GrB_Matrix B, // second input: matrix B

const GrB_Descriptor desc // descriptor for C, Mask, A, and B

) ;

GrB_eWiseAdd_Matrix computes the element-wise “addition” of two ma-
trices A and B, element-wise using any binary operator (not just plus). The
input matrices may be transposed first, according to the descriptor desc.
Entries in the intersection then typecasted into the first and second inputs of
the add operator. Next, a matrix T is computed, denoted T = A⊕B. The
pattern of T is the set union of A and B. The result T has the type of the
output ztype of the add operator.

The add operator is typically a GrB_BinaryOp, but the method is type-
generic for this parameter. If given a monoid (GrB_Monoid), the additive
operator of the monoid is used as the add binary operator. If given a semiring
(GrB_Semiring), the additive operator of the monoid of the semiring is used
as the add binary operator.

The operation can be expressed in MATLAB notation as:

[nrows, ncols] = size (A.matrix) ;

T.matrix = zeros (nrows, ncols, add.ztype) ;

p = A.pattern & B.pattern ;

A = GB_mex_cast (A.matrix (p), add.xtype) ;

B = GB_mex_cast (B.matrix (p), add.ytype) ;

T.matrix (p) = add (A, B) ;

p = A.pattern & ~B.pattern ; T.matrix (p) = cast (A.matrix (p), add.ztype) ;

p = ~A.pattern & B.pattern ; T.matrix (p) = cast (B.matrix (p), add.ztype) ;

T.pattern = A.pattern | B.pattern ;

T.class = add.ztype ;

Except for when typecasting is performed, this is identical to how the
accum operator is applied in Figure 1.

The final step is C〈M〉 = C�T, as described in Section 2.3.
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8.7 GrB extract: submatrix extraction

The GrB_extract function is a generic name for three specific functions:
GrB_Vector_extract, GrB_Col_extract, and GrB_Matrix_extract. The
generic name appears in the function signature, but the specific function
name is used when describing what each variation does.

8.7.1 GrB Vector extract: extract subvector from vector

GrB_Info GrB_extract // w<mask> = accum (w, u(I))

(

GrB_Vector w, // input/output vector for results

const GrB_Vector mask, // optional mask for w, unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(w,t)

const GrB_Vector u, // first input: vector u

const GrB_Index *I, // row indices

const GrB_Index ni, // number of row indices

const GrB_Descriptor desc // descriptor for w and mask

) ;

GrB_Vector_extract extracts a subvector from another vector, identical
to t = u (I) in MATLAB where I is an integer vector of row indices. Refer
to GrB_Matrix_extract for further details; vector extraction is the same as
matrix extraction with n-by-1 matrices. See Section 7 for a description of I
and ni. The final step is w〈m〉 = w � t, as described in Section 2.3, except
that all the terms are column vectors instead of matrices.
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8.7.2 GrB Matrix extract: extract submatrix from matrix

GrB_Info GrB_extract // C<Mask> = accum (C, A(I,J))

(

GrB_Matrix C, // input/output matrix for results

const GrB_Matrix Mask, // optional mask for C, unused if NULL

const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)

const GrB_Matrix A, // first input: matrix A

const GrB_Index *I, // row indices

const GrB_Index ni, // number of row indices

const GrB_Index *J, // column indices

const GrB_Index nj, // number of column indices

const GrB_Descriptor desc // descriptor for C, Mask, and A

) ;

GrB_Matrix_extract extracts a submatrix from another matrix, identi-
cal to T = A(I,J) in MATLAB where I and J are integer vectors of row and
column indices, respectively, except that indices are zero-based in Graph-
BLAS and one-based in MATLAB. The input matrix A may be transposed
first, via the descriptor. The type of T and A are the same. The size of C is
|I|-by-|J|. Entries outside A(I,J) are not accessed and do not take part in
the computation. More precisely, assuming the matrix A is not transposed,
the matrix T is defined as follows:

T.matrix = zeros (ni, nj) ; % a matrix of size ni-by-nj

T.pattern = false (ni, nj) ;

for i = 1:ni

for j = 1:nj

if (A (I(i),J(j)).pattern)

T (i,j).matrix = A (I(i),J(j)).matrix ;

T (i,j).pattern = true ;

end

end

end

If duplicate indices are present in I or J, the above method defines the
result in T. Duplicates result in the same values of A being copied into different
places in T. See Section 7 for a description of the row indices I and ni, and
the column indices J and nj. The final step is C〈M〉 = C�T, as described
in Section 2.3.

Performance considerations: If A is not transposed via input descriptor:
if |I| is small, then it is fastest if A is GxB_BY_ROW; if |J| is small, then it is
fastest if A is GxB_BY_COL. The opposite is true if A is transposed.
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8.7.3 GrB Col extract: extract column vector from matrix

GrB_Info GrB_extract // w<mask> = accum (w, A(I,j))

(

GrB_Vector w, // input/output matrix for results

const GrB_Vector mask, // optional mask for w, unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(w,t)

const GrB_Matrix A, // first input: matrix A

const GrB_Index *I, // row indices

const GrB_Index ni, // number of row indices

const GrB_Index j, // column index

const GrB_Descriptor desc // descriptor for w, mask, and A

) ;

GrB_Col_extract extracts a subvector from a matrix, identical to t = A (I,j)

in MATLAB where I is an integer vector of row indices and where j is a single
column index. The input matrix A may be transposed first, via the descrip-
tor, which results in the extraction of a single row j from the matrix A, the
result of which is a column vector w. The type of t and A are the same. The
size of w is |I|-by-1.

See Section 7 for a description of the row indices I and ni. The final step
is w〈m〉 = w � t, as described in Section 2.3, except that all the terms are
column vectors instead of matrices.

Performance considerations: If A is not transposed: it is fastest if the
format of A is GxB_BY_COL. The opposite is true if A is transposed.
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8.8 GxB subassign: submatrix assignment

The methods described in this section are all variations of the form C(I,J)=A,
which modifies a submatrix of the matrix C. All methods can be used in
their generic form with the single name GxB_subassign. This is reflected
in the prototypes. However, to avoid confusion between the different kinds
of assignment, the name of the specific function is used when describing
each variation. If the discussion applies to all variations, the simple name
GxB_subassign is used.

See Section 7 for a description of the row indices I and ni, and the column
indices J and nj.

GxB_subassign is very similar to GrB_assign, described in Section 8.9.
The two operations are compared and contrasted in Section 8.11. For a
discussion of how duplicate indices are handled in I and J, see Section 8.10.

SPEC: All variants of GxB_subassign are extensions to the spec.

8.8.1 GxB Vector subassign: assign to a subvector

GrB_Info GxB_subassign // w(I)<mask> = accum (w(I),u)

(

GrB_Vector w, // input/output matrix for results

const GrB_Vector mask, // optional mask for w(I), unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(w(I),t)

const GrB_Vector u, // first input: vector u

const GrB_Index *I, // row indices

const GrB_Index ni, // number of row indices

const GrB_Descriptor desc // descriptor for w(I) and mask

) ;

GxB_Vector_subassign operates on a subvector w(I) of w, modifying
it with the vector u. The method is identical to GxB_Matrix_subassign

described in Section 8.8.2, where all matrices have a single column each.
The mask has the same size as w(I) and u. The only other difference is that
the input u in this method is not transposed via the GrB_INP0 descriptor.
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8.8.2 GxB Matrix subassign: assign to a submatrix

GrB_Info GxB_subassign // C(I,J)<Mask> = accum (C(I,J),A)

(

GrB_Matrix C, // input/output matrix for results

const GrB_Matrix Mask, // optional mask for C(I,J), unused if NULL

const GrB_BinaryOp accum, // optional accum for Z=accum(C(I,J),T)

const GrB_Matrix A, // first input: matrix A

const GrB_Index *I, // row indices

const GrB_Index ni, // number of row indices

const GrB_Index *J, // column indices

const GrB_Index nj, // number of column indices

const GrB_Descriptor desc // descriptor for C(I,J), Mask, and A

) ;

GxB_Matrix_subassign operates only on a submatrix S of C, modifying
it with the matrix A. For this operation, the result is not the entire matrix C,
but a submatrix S=C(I,J) of C. The steps taken are as follows, except that
A may be optionally transposed via the GrB_INP0 descriptor option.

Step GraphBLAS description
notation

1 S = C(I,J) extract the C(I,J) submatrix
2 S〈M〉 = S�A apply the accumulator/mask to the submatrix S
3 C(I,J) = S put the submatrix S back into C(I,J)

The accumulator/mask step in Step 2 is the same as for all other Graph-
BLAS operations, described in Section 2.3, except that for GxB_subassign,
it is applied to just the submatrix S = C(I,J), and thus the Mask has the
same size as A, S, and C(I,J).

The GxB_subassign operation is the reverse of matrix extraction:

• For submatrix extraction, GrB_Matrix_extract, the submatrix A(I,J)

appears on the right-hand side of the assignment, C=A(I,J), and entries
outside of the submatrix are not accessed and do not take part in the
computation.

• For submatrix assignment, GxB_Matrix_subassign, the submatrix C(I,J)

appears on the left-hand-side of the assignment, C(I,J)=A, and entries
outside of the submatrix are not accessed and do not take part in the
computation.
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In both methods, the accumulator and mask modify the submatrix of the
assignment; they simply differ on which side of the assignment the submatrix
resides on. In both cases, if the Mask matrix is present it is the same size as
the submatrix:

• For submatrix extraction, C〈M〉 = C�A(I,J) is computed, where
the submatrix is on the right. The mask M has the same size as the
submatrix A(I,J).

• For submatrix assignment, C(I,J)〈M〉 = C(I,J)�A is computed, where
the submatrix is on the left. The mask M has the same size as the sub-
matrix C(I,J).

In Step 1, the submatrix S is first computed by the GrB_Matrix_extract

operation, S=C(I,J).
Step 2 accumulates the results S〈M〉 = S�T, exactly as described in

Section 2.3, but operating on the submatrix S, not C, using the optional
Mask and accum operator. The matrix T is simply T = A, or T = AT if A
is transposed via the desc descriptor, GrB_INP0. The GrB_REPLACE option
in the descriptor clears S after computing Z = T or Z = C�T, not all of
C since this operation can only modify the specified submatrix of C.

Finally, Step 3 writes the result (which is the modified submatrix S and
not all of C) back into the C matrix that contains it, via the assignment
C(I,J)=S, using the reverse operation from the method described for matrix
extraction:

for i = 1:ni

for j = 1:nj

if (S (i,j).pattern)

C (I(i),J(j)).matrix = S (i,j).matrix ;

C (I(i),J(j)).pattern = true ;

end

end

end

Performance considerations: If A is not transposed: if |I| is small, then
it is fastest if the format of C is GxB_BY_ROW; if |J| is small, then it is fastest
if the format of C is GxB_BY_COL. The opposite is true if A is transposed.
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8.8.3 GxB Col subassign: assign to a sub-column of a matrix

GrB_Info GxB_subassign // C(I,j)<mask> = accum (C(I,j),u)

(

GrB_Matrix C, // input/output matrix for results

const GrB_Vector mask, // optional mask for C(I,j), unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(C(I,j),t)

const GrB_Vector u, // input vector

const GrB_Index *I, // row indices

const GrB_Index ni, // number of row indices

const GrB_Index j, // column index

const GrB_Descriptor desc // descriptor for C(I,j) and mask

) ;

GxB_Col_subassign modifies a single sub-column of a matrix C. It is the
same as GxB_Matrix_subassign where the index vector J[0]=j is a single
column index (and thus nj=1), and where all matrices in GxB_Matrix_subassign

(except C) consist of a single column. The mask vector has the same size as
u and the sub-column C(I,j). The input descriptor GrB_INP0 is ignored;
the input vector u is not transposed. Refer to GxB_Matrix_subassign for
further details.

Performance considerations: GxB_Col_subassign is much faster than
GxB_Row_subassign if the format of C is GxB_BY_COL. GxB_Row_subassign
is much faster than GxB_Col_subassign if the format of C is GxB_BY_ROW.

8.8.4 GxB Row subassign: assign to a sub-row of a matrix

GrB_Info GxB_subassign // C(i,J)<mask’> = accum (C(i,J),u’)

(

GrB_Matrix C, // input/output matrix for results

const GrB_Vector mask, // optional mask for C(i,J), unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(C(i,J),t)

const GrB_Vector u, // input vector

const GrB_Index i, // row index

const GrB_Index *J, // column indices

const GrB_Index nj, // number of column indices

const GrB_Descriptor desc // descriptor for C(i,J) and mask

) ;

GxB_Row_subassign modifies a single sub-row of a matrix C. It is the
same as GxB_Matrix_subassign where the index vector I[0]=i is a single
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row index (and thus ni=1), and where all matrices in GxB_Matrix_subassign

(except C) consist of a single row. The mask vector has the same size as u

and the sub-column C(I,j). The input descriptor GrB_INP0 is ignored; the
input vector u is not transposed. Refer to GxB_Matrix_subassign for further
details.

Performance considerations: GxB_Col_subassign is much faster than
GxB_Row_subassign if the format of C is GxB_BY_COL. GxB_Row_subassign
is much faster than GxB_Col_subassign if the format of C is GxB_BY_ROW.

8.8.5 GxB Vector subassign <type>: assign a scalar to a subvector

GrB_Info GxB_subassign // w(I)<mask> = accum (w(I),x)

(

GrB_Vector w, // input/output vector for results

const GrB_Vector mask, // optional mask for w(I), unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(w(I),x)

const <type> x, // scalar to assign to w(I)

const GrB_Index *I, // row indices

const GrB_Index ni, // number of row indices

const GrB_Descriptor desc // descriptor for w(I) and mask

) ;

GxB_Vector_subassign_<type> assigns a single scalar to an entire sub-
vector of the vector w. The operation is exactly like setting a single entry in an
n-by-1 matrix, A(I,0) = x, where the column index for a vector is implicitly
j=0. For further details of this function, see GxB_Matrix_subassign_<type>
in Section 8.8.6.

150



8.8.6 GxB Matrix subassign <type>: assign a scalar to a submatrix

GrB_Info GxB_subassign // C(I,J)<Mask> = accum (C(I,J),x)

(

GrB_Matrix C, // input/output matrix for results

const GrB_Matrix Mask, // optional mask for C(I,J), unused if NULL

const GrB_BinaryOp accum, // optional accum for Z=accum(C(I,J),x)

const <type> x, // scalar to assign to C(I,J)

const GrB_Index *I, // row indices

const GrB_Index ni, // number of row indices

const GrB_Index *J, // column indices

const GrB_Index nj, // number of column indices

const GrB_Descriptor desc // descriptor for C(I,J) and Mask

) ;

GxB_Matrix_subassign_<type> assigns a single scalar to an entire sub-
matrix of C, like the scalar expansion C(I,J)=x in MATLAB. The scalar x is
implicitly expanded into a matrix A of size ni by nj, and then the matrix A

is assigned to C(I,J) using the same method as in GxB_Matrix_subassign.
Refer to that function in Section 8.8.2 for further details. For the accumu-
lation step, the scalar x is typecasted directly into the type of C when the
accum operator is not applied to it, or into the ytype of the accum operator,
if accum is not NULL, for entries that are already present in C.

The <type> x notation is otherwise the same as GrB_Matrix_setElement
(see Section 5.9.9). Any value can be passed to this function and its type
will be detected, via the _Generic feature of ANSI C11. For a user-defined
type, x is a void * pointer that points to a memory space holding a single
entry of a scalar that has exactly the same user-defined type as the matrix C.
This user-defined type must exactly match the user-defined type of C since
no typecasting is done between user-defined types.

If a void * pointer is passed in and the type of the underlying scalar does
not exactly match the user-defined type of C, then results are undefined. No
error status will be returned since GraphBLAS has no way of catching this
error.

Performance considerations: If A is not transposed: if |I| is small, then
it is fastest if the format of C is GxB_BY_ROW; if |J| is small, then it is fastest
if the format of C is GxB_BY_COL. The opposite is true if A is transposed.
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8.9 GrB assign: submatrix assignment

The methods described in this section are all variations of the form C(I,J)=A,
which modifies a submatrix of the matrix C. All methods can be used in their
generic form with the single name GrB_assign. These methods are very simi-
lar to their GxB_subassign counterparts in Section 8.8. They differ primarily
in the size of the Mask, and how the GrB_REPLACE option works. Refer to
Section 8.11 for a complete comparison of GxB_subassign and GrB_assign.

See Section 7 for a description of I, ni, J, and nj.

8.9.1 GrB Vector assign: assign to a subvector

GrB_Info GrB_assign // w<mask>(I) = accum (w(I),u)

(

GrB_Vector w, // input/output matrix for results

const GrB_Vector mask, // optional mask for w, unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(w(I),t)

const GrB_Vector u, // first input: vector u

const GrB_Index *I, // row indices

const GrB_Index ni, // number of row indices

const GrB_Descriptor desc // descriptor for w and mask

) ;

GrB_Vector_assign operates on a subvector w(I) of w, modifying it with
the vector u. The mask vector has the same size as w. The method is identical
to GrB_Matrix_assign described in Section 8.9.2, where all matrices have
a single column each. The only other difference is that the input u in this
method is not transposed via the GrB_INP0 descriptor.
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8.9.2 GrB Matrix assign: assign to a submatrix

GrB_Info GrB_assign // C<Mask>(I,J) = accum (C(I,J),A)

(

GrB_Matrix C, // input/output matrix for results

const GrB_Matrix Mask, // optional mask for C, unused if NULL

const GrB_BinaryOp accum, // optional accum for Z=accum(C(I,J),T)

const GrB_Matrix A, // first input: matrix A

const GrB_Index *I, // row indices

const GrB_Index ni, // number of row indices

const GrB_Index *J, // column indices

const GrB_Index nj, // number of column indices

const GrB_Descriptor desc // descriptor for C, Mask, and A

) ;

GrB_Matrix_assign operates on a submatrix S of C, modifying it with
the matrix A. It may also modify all of C, depending on the input descriptor
desc and the Mask.

Step GraphBLAS description
notation

1 S = C(I,J) extract C(I,J) submatrix
2 S = S�A apply the accumulator (but not the mask) to S
3 Z = C make a copy of C
4 Z(I,J) = S put the submatrix into Z(I,J)
5 C〈M〉 = Z apply the mask/replace phase to all of C

In contrast to GxB_subassign, the Mask has the same as C.
Step 1 extracts the submatrix and then Step 2 applies the accumulator

(or S = A if accum is NULL). The Mask is not yet applied.
Step 3 makes a copy of the C matrix, and then Step 4 writes the submatrix

S into Z. This is the same as Step 3 of GxB_subassign, except that it
operates on a temporary matrix Z.

Finally, Step 5 writes Z back into C via the Mask, using the Mask/Replace
Phase described in Section 2.3. If GrB_REPLACE is enabled, then all of C is
cleared prior to writing Z via the mask. As a result, the GrB_REPLACE option
can delete entries outside the C(I,J) submatrix.

Performance considerations: If A is not transposed: if |I| is small, then
it is fastest if the format of C is GxB_BY_ROW; if |J| is small, then it is fastest
if the format of C is GxB_BY_COL. The opposite is true if A is transposed.
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8.9.3 GrB Col assign: assign to a sub-column of a matrix

GrB_Info GrB_assign // C<mask>(I,j) = accum (C(I,j),u)

(

GrB_Matrix C, // input/output matrix for results

const GrB_Vector mask, // optional mask for C(:,j), unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(C(I,j),t)

const GrB_Vector u, // input vector

const GrB_Index *I, // row indices

const GrB_Index ni, // number of row indices

const GrB_Index j, // column index

const GrB_Descriptor desc // descriptor for C(:,j) and mask

) ;

GrB_Col_assign modifies a single sub-column of a matrix C. It is the same
as GrB_Matrix_assign where the index vector J[0]=j is a single column
index, and where all matrices in GrB_Matrix_assign (except C) consist of a
single column.

Unlike GrB_Matrix_assign, the mask is a vector with the same size as a
single column of C.

The input descriptor GrB_INP0 is ignored; the input vector u is not trans-
posed. Refer to GrB_Matrix_assign for further details.

Performance considerations: GrB_Col_assign is much faster than GrB_Row_assign

if the format of C is GxB_BY_COL. GrB_Row_assign is much faster than
GrB_Col_assign if the format of C is GxB_BY_ROW.
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8.9.4 GrB Row assign: assign to a sub-row of a matrix

GrB_Info GrB_assign // C<mask’>(i,J) = accum (C(i,J),u’)

(

GrB_Matrix C, // input/output matrix for results

const GrB_Vector mask, // optional mask for C(i,:), unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(C(i,J),t)

const GrB_Vector u, // input vector

const GrB_Index i, // row index

const GrB_Index *J, // column indices

const GrB_Index nj, // number of column indices

const GrB_Descriptor desc // descriptor for C(i,:) and mask

) ;

GxB_Row_subassign modifies a single sub-row of a matrix C. It is the same
as GxB_Matrix_subassign where the index vector I[0]=i is a single row
index, and where all matrices in GxB_Matrix_subassign (except C) consist
of a single row.

Unlike GrB_Matrix_assign, the mask is a vector with the same size as a
single row of C.

The input descriptor GrB_INP0 is ignored; the input vector u is not trans-
posed. Refer to GxB_Matrix_subassign for further details.

Performance considerations: GrB_Col_assign is much faster than GrB_Row_assign

if the format of C is GxB_BY_COL. GrB_Row_assign is much faster than
GrB_Col_assign if the format of C is GxB_BY_ROW.
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8.9.5 GrB Vector assign <type>: assign a scalar to a subvector

GrB_Info GrB_assign // w<mask>(I) = accum (w(I),x)

(

GrB_Vector w, // input/output vector for results

const GrB_Vector mask, // optional mask for w, unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(w(I),x)

const <type> x, // scalar to assign to w(I)

const GrB_Index *I, // row indices

const GrB_Index ni, // number of row indices

const GrB_Descriptor desc // descriptor for w and mask

) ;

GrB_Vector_assign_<type> assigns a single scalar to an entire subvector
of the vector w. The operation is exactly like setting a single entry in an n-
by-1 matrix, A(I,0) = x, where the column index for a vector is implicitly
j=0. The mask vector has the same size as w. For further details of this
function, see GrB_Matrix_assign_<type> in the next section.

Following the C API Specification, results are well-defined if I contains
duplicate indices. Duplicate indices are simply ignored. See Section 8.10 for
more details.

8.9.6 GrB Matrix assign <type>: assign a scalar to a submatrix

GrB_Info GrB_assign // C<Mask>(I,J) = accum (C(I,J),x)

(

GrB_Matrix C, // input/output matrix for results

const GrB_Matrix Mask, // optional mask for C, unused if NULL

const GrB_BinaryOp accum, // optional accum for Z=accum(C(I,J),x)

const <type> x, // scalar to assign to C(I,J)

const GrB_Index *I, // row indices

const GrB_Index ni, // number of row indices

const GrB_Index *J, // column indices

const GrB_Index nj, // number of column indices

const GrB_Descriptor desc // descriptor for C and Mask

) ;

GrB_Matrix_assign_<type> assigns a single scalar to an entire subma-
trix of C, like the scalar expansion C(I,J)=x in MATLAB. The scalar x is
implicitly expanded into a matrix A of size ni by nj, and then the matrix
A is assigned to C(I,J) using the same method as in GrB_Matrix_assign.
Refer to that function in Section 8.9.2 for further details.
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The Mask has the same size as C.
For the accumulation step, the scalar x is typecasted directly into the

type of C when the accum operator is not applied to it, or into the ytype

of the accum operator, if accum is not NULL, for entries that are already
present in C.

The <type> x notation is otherwise the same as GrB_Matrix_setElement
(see Section 5.9.9). Any value can be passed to this function and its type
will be detected, via the _Generic feature of ANSI C11. For a user-defined
type, x is a void * pointer that points to a memory space holding a single
entry of a scalar that has exactly the same user-defined type as the matrix C.
This user-defined type must exactly match the user-defined type of C since
no typecasting is done between user-defined types.

If a void * pointer is passed in and the type of the underlying scalar does
not exactly match the user-defined type of C, then results are undefined. No
error status will be returned since GraphBLAS has no way of catching this
error.

Following the C API Specification, results are well-defined if I or J contain
duplicate indices. Duplicate indices are simply ignored. See Section 8.10 for
more details.

Performance considerations: If A is not transposed: if |I| is small, then
it is fastest if the format of C is GxB_BY_ROW; if |J| is small, then it is fastest
if the format of C is GxB_BY_COL. The opposite is true if A is transposed.
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8.10 Duplicate indices in GrB assign and GxB subassign

According to the GraphBLAS C API Specification if the index vectors I or J
contain duplicate indices, the results are undefined for GrB_Matrix_assign

GrB_Matrix_assign GrB_Col_assign and GrB_Row_assign. Only the scalar
assignment operations (GrB_Matrix_assign_TYPE and GrB_Matrix_assign_TYPE)
are well-defined when duplicates appear in I and J. In those two functions,
duplicate indices are ignored.

As an extension to the specification, SuiteSparse:GraphBLAS provides a
definition of how duplicate indices are handled in all cases. If I has duplicate
indices, they are ignored and the last unique entry in the list is used. When
no mask and no accumulator is present, the results are identical to how MAT-
LAB handles duplicate indices in the built-in expression C(I,J)=A. Details
of how this is done is shown below.

function C = subassign (C, I, J, A)

% submatrix assignment with pre-sort of I and J; and remove duplicates

% delete duplicates from I, keeping the last one seen

[I2 I2k] = sort (I) ;

Idupl = [(I2 (1:end-1) == I2 (2:end)), false] ;

I2 = I2 (~Idupl) ;

I2k = I2k (~Idupl) ;

assert (isequal (I2, unique (I)))

% delete duplicates from J, keeping the last one seen

[J2 J2k] = sort (J) ;

Jdupl = [(J2 (1:end-1) == J2 (2:end)), false] ;

J2 = J2 (~Jdupl) ;

J2k = J2k (~Jdupl) ;

assert (isequal (J2, unique (J)))

% do the submatrix assignment, with no duplicates in I2 or J2

C (I2,J2) = A (I2k,J2k) ;

If a mask is present, then it is replaced with M = M (I2k, J2k) for
GxB_subassign, or with M = M (I2, J2) for GrB_assign. If an accumu-
lator operator is present, it is applied after the duplicates are removed, as
(for example):

C (I2,J2) = C (I2,J2) + A (I2k,J2k) ;
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These definitions allow the MATLAB interface to GraphBLAS to return
the same results for C(I,J)=A for a GrB object as they do for built-in MAT-
LAB matrices. They also allow the assignment to be done in parallel.

Results are always well-defined in SuiteSparse:GraphBLAS, but they might
not be what you expect. For example, suppose the MIN operator is being used
the following assigment to the vector x, and suppose I contains the entries
[0 0]. Suppose x is initially empty, of length 1, and suppose y is a vector of
length 2 with the values [5 7].

#include "GraphBLAS.h"

#include <stdio.h>

int main (void)

{

GrB_init (GrB_NONBLOCKING) ;

GrB_Vector x, y ;

GrB_Vector_new (&x, GrB_INT32, 1) ;

GrB_Vector_new (&y, GrB_INT32, 2) ;

GrB_Index I [2] = {0, 0} ;

GrB_Vector_setElement (y, 5, 0) ;

GrB_Vector_setElement (y, 7, 1) ;

GrB_wait ( ) ;

GxB_print (x, 3) ;

GxB_print (y, 3) ;

GrB_assign (x, NULL, GrB_MIN_INT32, y, I, 2, NULL) ;

GrB_wait ( ) ;

GxB_print (x, 3) ;

GrB_finalize ( ) ;

}

You might (wrongly) expect the result to be the vector x(0)=5, since two
entries seem to be assigned, and the min operator might be expected to take
the minimum of the two. This is not how SuiteSparse:GraphBLAS handles
duplicates.

Instead, the first duplicate index of I is discarded (I [0] = 0, and y(0)=5).
and only the second entry is used (I [1] = 0, and y(1)=7). The output of
the above program is:

1x1 GraphBLAS int32_t vector, sparse by col:

x, no entries
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2x1 GraphBLAS int32_t vector, sparse by col:

y, 2 entries

(0,0) 5

(1,0) 7

1x1 GraphBLAS int32_t vector, sparse by col:

x, 1 entry

(0,0) 7

You see that the result is x(0)=7, since the y(0)=5 entry has been ignored
because of the duplicate indices in I.

SPEC: Providing a well-defined behavior for duplicate indices with ma-
trix and vector assignment is an extension to the spec. The spec only
defines the behavior when assigning a scalar into a matrix or vector, and
states that duplicate indices otherwise lead to undefined results.
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8.11 Comparing GrB assign and GxB subassign

The GxB_subassign and GrB_assign operations are very similar, but they
differ in two ways:

1. The Mask has a different size: The mask in GxB_subassign has
the same dimensions as w(I) for vectors and C(I,J) for matrices. In
GrB_assign, the mask is the same size as w or C, respectively (ex-
cept for the row/col variants). The two masks are related. If M is the
mask for GrB_assign, then M(I,J) is the mask for GxB_subassign. If
there is no mask, or if I and J are both GrB_ALL, the two masks are
the same. For GrB_Row_assign and GrB_Col_assign, the mask vector
is the same size as a row or column of C, respectively. For the cor-
responding GxB_Row_subassign and GxB_Col_subassign operations,
the mask is the same size as the sub-row C(i,J) or subcolumn C(I,j),
respectively.

2. GrB_REPLACE is different: They differ in how C is affected in areas
outside the C(I,J) submatrix. In GxB_subassign, the C(I,J) sub-
matrix is the only part of C that can be modified, and no part of C

outside the submatrix is ever modified. In GrB_assign, it is possible
to delete entries in C outside the submatrix, but only in one specific
manner. Suppose the mask M is present (or, suppose it is not present
but GrB_COMP is true). After (optionally) complementing the mask, the
value of M(i,j) can be 0 for some entry outside the C(I,J) submatrix.
If the GrB_REPLACE descriptor is true, GrB_assign deletes this entry.

GxB_subassign and GrB_assign are identical if GrB_REPLACE is set to
its default value of false, and if the masks happen to be the same. The two
masks can be the same in two cases: either the Mask input is NULL (and
it is not complemented via GrB_COMP), or I and J are both GrB_ALL. If all
these conditions hold, the two algorithms are identical and have the same
performance. Otherwise, GxB_subassign is much faster than GrB_assign

when the latter must examine the entire matrix C to delete entries (when
GrB_REPLACE is true), and if it must deal with a much larger Mask matrix.
However, both methods have specific uses.

Consider using C(I,J)+=F for many submatrices F (for example, when
assembling a finite-element matrix). If the Mask is meant as a specification
for which entries of C should appear in the final result, then use GrB_assign.
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If instead the Mask is meant to control which entries of the submatrix
C(I,J) are modified by the finite-element F, then use GxB_subassign. This
is particularly useful is the Mask is a template that follows along with the
finite-element F, independent of where it is applied to C. Using GrB_assign

would be very difficult in this case since a new Mask, the same size as C,
would need to be constructed for each finite-element F.

In GraphBLAS notation, the two methods can be described as follows:

matrix and vector subassign C(I,J)〈M〉 = C(I,J)�A
matrix and vector assign C〈M〉(I,J) = C(I,J)�A

This notation does not include the details of the GrB_COMP and GrB_REPLACE

descriptors, but it does illustrate the difference in the Mask. In the sub-
assign, Mask is the same size as C(I,J) and A. If I[0]=i and J[0]=j, Then
Mask(0,0) controls how C(i,j) is modified by the subassign, from the value
A(0,0). In the assign, Mask is the same size as C, and Mask(i,j) controls
how C(i,j) is modified.

The GxB_subassign and GrB_assign functions have the same signatures;
they differ only in how they consider the Mask and the GrB_REPLACE descrip-
tor

Details of each step of the two operations are listed below:

Step GrB_Matrix_assign GxB_Matrix_subassign

1 S = C(I,J) S = C(I,J)
2 S = S�A S〈M〉 = S�A
3 Z = C C(I,J) = S
4 Z(I,J) = S
5 C〈M〉 = Z

Step 1 is the same. In the Accumulator Phase (Step 2), the expression
S�A, described in Section 2.3, is the same in both operations. The result is
simply A if accum is NULL. It only applies to the submatrix S, not the whole
matrix. The result S�A is used differently in the Mask/Replace phase.

The Mask/Replace Phase, described in Section 2.3 is different:

• For GrB_assign (Step 5), the mask is applied to all of C. The mask has
the same size as C. Just prior to making the assignment via the mask,
the GrB_REPLACE option can be used to clear all of C first. This is the
only way in which entries in C that are outside the C(I,J) submatrix
can be modified by this operation.
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• For GxB_subassign (Step 2b), the mask is applied to just S. The
mask has the same size as C(I,J), S, and A. Just prior to making the
assignment via the mask, the GrB_REPLACE option can be used to clear
S first. No entries in C that are outside the C(I,J) can be modified
by this operation. Thus, GrB_REPLACE has no effect on entries in C
outside the C(I,J) submatrix.

The differences between GrB_assign and GxB_subassign can be seen in
Tables 1 and 2. The first table considers the case when the entry cij is in the
C(I,J) submatrix, and it describes what is computed for both GrB_assign

and GxB_subassign. They perform the exact same computation; the only
difference is how the value of the mask is specified.

The first column of the table is yes if GrB_REPLACE is enabled, and a dash
otherwise. The second column is yes if an accumulator operator is given,
and a dash otherwise. The third column is cij if the entry is present in C,
and a dash otherwise. The fourth column is ai′j′ if the corresponding entry
is present in A, where i = I(i′) and j = J(i′).

The mask column is 1 if the mask allows C to be modified, and 0 oth-
erwise. This is mij for GrB_assign, and mi′j′ for GxB_subassign, to reflect
the difference in the mask, but this difference is not reflected in the table.
The value 1 or 0 is the value of the entry in the mask after it is optionally
complemented via the GrB_COMP option.

Finally, the last column is the action taken in this case. It is left blank if
no action is taken, in which case cij is not modified if present, or not inserted
into C if not present.
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repl accum C A mask action taken by GrB_assign and GxB_subassign

- - cij ai′j′ 1 cij = ai′j′ , update
- - - ai′j′ 1 cij = ai′j′ , insert
- - cij - 1 delete cij because ai′j′ not present
- - - - 1

- - cij ai′j′ 0
- - - ai′j′ 0
- - cij - 0
- - - - 0

yes - cij ai′j′ 1 cij = ai′j′ , update
yes - - ai′j′ 1 cij = ai′j′ , insert
yes - cij - 1 delete cij because ai′j′ not present
yes - - - 1

yes - cij ai′j′ 0 delete cij (because of GrB_REPLACE)
yes - - ai′j′ 0
yes - cij - 0 delete cij (because of GrB_REPLACE)
yes - - - 0

- yes cij ai′j′ 1 cij = cij � ai′j′ , apply accumulator
- yes - ai′j′ 1 cij = ai′j′ , insert
- yes cij - 1
- yes - - 1

- yes cij ai′j′ 0
- yes - ai′j′ 0
- yes cij - 0
- yes - - 0

yes yes cij ai′j′ 1 cij = cij � ai′j′ , apply accumulator
yes yes - ai′j′ 1 cij = ai′j′ , insert
yes yes cij - 1
yes yes - - 1

yes yes cij ai′j′ 0 delete cij (because of GrB_REPLACE)
yes yes - ai′j′ 0
yes yes cij - 0 delete cij (because of GrB_REPLACE)
yes yes - - 0

Table 1: Results of assign and subassign for entries in the C(I,J) submatrix
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repl accum C C = Z mask action taken by GrB_assign

- - cij cij 1
- - - - 1

- - cij cij 0
- - - - 0

yes - cij cij 1
yes - - - 1

yes - cij cij 0 delete cij (because of GrB_REPLACE)
yes - - - 0

- yes cij cij 1
- yes - - 1

- yes cij cij 0
- yes - - 0

yes yes cij cij 1
yes yes - - 1

yes yes cij cij 0 delete cij (because of GrB_REPLACE)
yes yes - - 0

Table 2: Results of assign for entries outside the C(I,J) submatrix. Sub-
assign has no effect on these entries.

Table 2 illustrates how GrB_assign and GxB_subassign differ for entries
outside the submatrix. GxB_subassign never modifies any entry outside the
C(I,J) submatrix, but GrB_assign can modify them in two cases listed in
Table 2. When the GrB_REPLACE option is selected, and when the Mask(i,j)
for an entry cij is false (or if the Mask(i,j) is true and GrB_COMP is enabled
via the descriptor), then the entry is deleted by GrB_assign.

The fourth column of Table 2 differs from Table 1, since entries in A never
affect these entries. Instead, for all index pairs outside the I × J submatrix,
C and Z are identical (see Step 3 above). As a result, each section of the
table includes just two cases: either cij is present, or not. This in contrast
to Table 1, where each section must consider four different cases.

The GrB_Row_assign and GrB_Col_assign operations are slightly differ-
ent. They only affect a single row or column of C. For GrB_Row_assign,
Table 2 only applies to entries in the single row C(i,J) that are outside the
list of indices, J. For GrB_Col_assign, Table 2 only applies to entries in the
single column C(I,j) that are outside the list of indices, I.
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8.11.1 Example

The difference between GxB_subassign and GrB_assign is illustrated in
the following example. Consider the 2-by-2 matrix C where all entries are
present.

C =

[
11 12
21 22

]
Suppose GrB_REPLACE is true, and GrB_COMP is false. Let the Mask be:

M =

[
1 1
0 1

]
.

Let A = 100, and let the index sets be I = 0 and J = 1. Consider the
computation C〈M〉(0, 1) = C(0, 1) + A, using the GrB_assign operation.
The result is:

C =

[
11 112
− 22

]
.

The (0, 1) entry is updated and the (1, 0) entry is deleted because its Mask

is zero. The other two entries are not modified since Z = C outside the
submatrix, and those two values are written back into C because their Mask
values are 1. The (1, 0) entry is deleted because the entry Z(1, 0) = 21 is
prevented from being written back into C since Mask(1,0)=0.

Now consider the analogous GxB_subassign operation. The Mask has the
same size as A, namely:

M =
[

1
]
.

After computing C(0, 1)〈M〉 = C(0, 1) + A, the result is

C =

[
11 112
21 22

]
.

Only the C(I,J) submatrix, the single entry C(0, 1), is modified by
GxB_subassign. The entry C(1, 0) = 21 is unaffected by GxB_subassign,
but it is deleted by GrB_assign.

166



8.11.2 Performance of GxB subassign, GrB assign and GrB * setElement

When SuiteSparse:GraphBLAS uses non-blocking mode, the modifications
to a matrix by GxB_subassign, GrB_assign, and GrB_*_setElement can
postponed, and computed all at once later on. This has a huge impact on
performance.

A sequence of assignments is fast if their completion can be postponed
for as long as possible, or if they do not modify the pattern at all. Modifying
the pattern can be costly, but it is fast if non-blocking mode can be fully
exploited.

Consider a sequence of t submatrix assignments C(I,J)=C(I,J)+A to an
n-by-n matrix C where each submatrix A has size a-by-a with s entries, and
where C starts with c entries. Assume the matrices are all stored in non-
hypersparse form, by row (GxB_BY_ROW).

If blocking mode is enabled, or if the sequence requires the matrix to
be completed after each assignment, each of the t assignments takes O(a +
s log n) time to process the A matrix and then O(n + c + s log s) time to
complete C. The latter step uses GrB_*_build to build an update matrix
and then merge it with C. This step does not occur if the sequence of
assignments does not add new entries to the pattern of C, however. As-
suming in the worst case that the pattern does change, the total time is
O(t [a + s log n + n + c + s log s]).

If the sequence can be computed with all updates postponed until the end
of the sequence, then the total time is no worse than O(a+s log n) to process
each A matrix, for t assignments, and then a single build at the end, taking
O(n+c+st log st) time. The total time is O(t [a + s log n]+(n+c+st log st)).
If no new entries appear in C the time drops to O(t [a + s log n]), and in this
case, the time for both methods is the same; both are equally efficient.

A few simplifying assumptions are useful to compare these times. Con-
sider a graph of n nodes with O(n) edges, and with a constant bound on the
degree of each node. The asymptotic bounds assume a worst-case scenario
where C has a least some dense rows (thus the log n terms). If these are not
present, if both t and c are O(n), and if a and s are constants, then the total
time with blocking mode becomes O(n2), assuming the pattern of C changes
at each assignment. This very high for a sparse graph problem. In contrast,
the non-blocking time becomes O(n log n) under these same assumptions,
which is asymptotically much faster.
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The difference in practice can be very dramatic, since n can be many
millions for sparse graphs with n nodes and O(n), which can be handled on
a commodity laptop.

The following guidelines should be considered when using GxB_subassign,
GrB_assign and GrB_*_setElement.

1. A sequence of assignments that does not modify the pattern at all
is fast, taking as little as Ω(1) time per entry modified. The worst
case time complexity is O(log n) per entry, assuming they all modify
a dense row of C with n entries, which can occur in practice. It is
more common, however, that most rows of C have a constant number
of entries, independent of n. No work is ever left pending when the
pattern of C does not change.

2. A sequence of assignments that modifies the entries that already exist
in the pattern of a matrix, or adds new entries to the pattern (using
the same accum operator), but does not delete any entries, is fast. The
matrix is not completed until the end of the sequence.

3. Similarly, a sequence that modifies existing entries, or deletes them, but
does not add new ones, is also fast. This sequence can also repeatedly
delete pre-existing entries and then reinstate them and still be fast.
The matrix is not completed until the end of the sequence.

4. A sequence that mixes assignments of types (2) and (3) above can be
costly, since the matrix may need to be completed after each assign-
ment. The time complexity can become quadratic in the worst case.

5. However, any single assignment takes no more than O(a+ s log n+n+
c+s log s) time, even including the time for a matrix completion, where
C is n-by-n with c entries and A is a-by-a with s entries. This time is
essentially linear in the size of the matrix C, if A is relatively small and
sparse compared with C. In this case, n+c are the two dominant terms.

6. In general, GxB_subassign is faster than GrB_assign. If GrB_REPLACE
is used with GrB_assign, the entire matrix C must be traversed. This
is much slower than GxB_subassign, which only needs to examine the
C(I,J) submatrix. Furthermore, GrB_assign must deal with a much
larger Mask matrix, whereas GxB_subassign has a smaller mask. Since
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its mask is smaller, GxB_subassign takes less time than GrB_assign

to access the mask.

Submatrix assignment in SuiteSparse:GraphBLAS is extremely efficient,
even without considering the advantages of non-blocking mode discussed in
Section 8.11. It can be up to 500x faster than MATLAB R2019b, or even
higher depending on the kind of matrix assignment. MATLAB logical in-
dexing (the mask of GraphBLAS) is much faster with GraphBLAS than in
MATLAB R2019b.

All of the 28 variants (each with their own source code) are either asymp-
totically optimal, or to within a log factor of being asymptotically optimal.
The methods are also fully parallel. For hypersparse matrices, the term n
in the expressions in the above discussion is dropped, and is replaced with
h log h, at the worst case, where h << n is the number of non-empty columns
of a hypersparse matrix stored by column, or the number of non-empty rows
of a hypersparse matrix stored by row. In many methods, n is replaced with
h, not h log h.
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8.12 GrB apply: apply a unary operator

The GrB_apply function is the generic name for two specific functions:
GrB_Vector_apply and GrB_Matrix_apply. The generic name appears in
the function prototypes, but the specific function name is used when describ-
ing each variation. When discussing features that apply to both versions, the
simple name GrB_apply is used.

8.12.1 GrB Vector apply: apply a unary operator to a vector

GrB_Info GrB_apply // w<mask> = accum (w, op(u))

(

GrB_Vector w, // input/output vector for results

const GrB_Vector mask, // optional mask for w, unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(w,t)

const GrB_UnaryOp op, // operator to apply to the entries

const GrB_Vector u, // first input: vector u

const GrB_Descriptor desc // descriptor for w and mask

) ;

GrB_Vector_apply applies a unary operator to the entries of a vector,
analogous to t = op(u) in MATLAB except the operator op is only applied
to entries in the pattern of u. Implicit values outside the pattern of u are not
affected. The entries in u are typecasted into the xtype of the unary operator.
The vector t has the same type as the ztype of the unary operator. The
final step is w〈m〉 = w � t, as described in Section 2.3, except that all the
terms are column vectors instead of matrices.
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8.12.2 GrB Matrix apply: apply a unary operator to a matrix

GrB_Info GrB_apply // C<Mask> = accum (C, op(A)) or op(A’)

(

GrB_Matrix C, // input/output matrix for results

const GrB_Matrix Mask, // optional mask for C, unused if NULL

const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)

const GrB_UnaryOp op, // operator to apply to the entries

const GrB_Matrix A, // first input: matrix A

const GrB_Descriptor desc // descriptor for C, mask, and A

) ;

GrB_Matrix_apply applies a unary operator to the entries of a matrix,
analogous to T = op(A) in MATLAB except the operator op is only applied
to entries in the pattern of A. Implicit values outside the pattern of A are not
affected. The input matrix A may be transposed first. The entries in A are
typecasted into the xtype of the unary operator. The matrix T has the same
type as the ztype of the unary operator. The final step is C〈M〉 = C�T,
as described in Section 2.3.

The built-in GrB_IDENTITY_T operators (one for each built-in type T )
are very useful when combined with this function, enabling it to compute
C〈M〉 = C�A. This makes GrB_apply a direct interface to the accumula-
tor/mask function for both matrices and vectors.

To compute C〈M〉 = A or C〈M〉 = C�A for user-defined types, the
user application would need to define an identity operator for the type. Since
GraphBLAS cannot detect that it is an identity operator, it must call the
operator to make the full copy T=A and apply the operator to each entry of
the matrix or vector.

The other GraphBLAS operation that provides a direct interface to the
accumulator/mask function is GrB_transpose, which does not require an
operator to perform this task. As a result, GrB_transpose can be used as
an efficient and direct interface to the accumulator/mask function for both
built-in and user-defined types. However, it is only available for matrices,
not vectors.
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8.13 GxB select: apply a select operator

The GxB_select function is the generic name for two specific functions:
GxB_Vector_select and GxB_Matrix_select. The generic name appears in
the function prototypes, but the specific function name is used when describ-
ing each variation. When discussing features that apply to both versions, the
simple name GxB_select is used.

SPEC: The GxB_select operation and GxB_SelectOp operator are ex-
tensions to the spec.

8.13.1 GxB Vector select: apply a select operator to a vector

GrB_Info GxB_select // w<mask> = accum (w, op(u,k))

(

GrB_Vector w, // input/output vector for results

const GrB_Vector mask, // optional mask for w, unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(w,t)

const GxB_SelectOp op, // operator to apply to the entries

const GrB_Vector u, // first input: vector u

const GxB_Scalar Thunk, // optional input for the select operator

const GrB_Descriptor desc // descriptor for w and mask

) ;

GxB_Vector_select applies a select operator to the entries of a vector,
analogous to t = u.*op(u) in MATLAB except the operator op is only ap-
plied to entries in the pattern of u. Implicit values outside the pattern of u
are not affected. If the operator is not type-generic, the entries in u are type-
casted into the xtype of the select operator. The vector t has the same type
and size as u. The final step is w〈m〉 = w � t, as described in Section 2.3,
except that all the terms are column vectors instead of matrices.

This operation operates on vectors just as if they were m-by-1 matrices,
except that GraphBLAS never transposes a vector via the descriptor. The
op is passed n=1 as the number of columns. Refer to the next section on
GxB_Matrix_select for more details.
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8.13.2 GxB Matrix select: apply a select operator to a matrix

GrB_Info GxB_select // C<Mask> = accum (C, op(A,k)) or op(A’,k)

(

GrB_Matrix C, // input/output matrix for results

const GrB_Matrix Mask, // optional mask for C, unused if NULL

const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)

const GxB_SelectOp op, // operator to apply to the entries

const GrB_Matrix A, // first input: matrix A

const GxB_Scalar Thunk, // optional input for the select operator

const GrB_Descriptor desc // descriptor for C, mask, and A

) ;

GxB_Matrix_select applies a select operator to the entries of a matrix,
analogous to T = A .* op(A) in MATLAB except the operator op is only
applied to entries in the pattern of A. Implicit values outside the pattern of A
are not affected. The input matrix A may be transposed first. If the operator
is not type-generic, the entries in A are typecasted into the xtype of the select
operator. The final step is C〈M〉 = C�T, as described in Section 2.3.

The matrix T has the same size and type as A (or the transpose of A if the
input is transposed via the descriptor). The entries of T are a subset of those
of A. Each entry A(i,j) of A is passed to the op, as z = f(i, j,m, n, aij, thunk),
where A is m-by-n. If A is transposed first then the operator is applied to
entries in the transposed matrix, A’. If z is returned as true, then the entry
is copied into T, unchanged. If it returns false, the entry does not appear in
T.

If Thunk is not NULL, it must be a valid GxB_Scalar. If it has no entry,
it is treated as if it had a single entry equal to zero, for built-in types (not
user-defined types).

For user-defined select operators, the entry is passed to the user-defined
select operator, with no typecasting. Its type must be identical to ttype of
the select operator.

For the GxB_TRIL, GxB_TRIU, GxB_DIAG, and GxB_OFFDIAG, the Thunk

parameter may be NULL, or it may be present but contain no entry. In this
case, these operators use the value of k=0, the main diagonal. If present,
the Thunk can be any built-in type. The value of this entry is typecasted:
k = (int64_t) Thunk. The value k=0 specifies the main diagonal of the
matrix, k=1 is the +1 diagonal (the entries just above the main diagonal),
k=-1 is the -1 diagonal, and so on.

For the GxB_*ZERO select operators, Thunk is ignored, and may be NULL.
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For built-in types, with the GxB_*THUNK operators, the value of Thunk is
typecasted to the same type as the A matrix. For user-defined types, Thunk
is passed to the select operator without typecasting.

The action of GxB_select with the built-in select operators is described
in the table below. The MATLAB analogs are precise for tril and triu,
but shorthand for the other operations. The MATLAB diag function re-
turns a column with the diagonal, if A is a matrix, whereas the matrix T in
GxB_select always has the same size as A (or its transpose if the GrB_INP0

is set to GrB_TRAN). In the MATLAB analog column, diag is as if it operates
like GxB_select, where T is a matrix.

The following operators may be used on matrices with a user-defined type:
GxB_TRIL, GxB_TRIU, GxB_DIAG, GxB_OFFIAG, GxB_NONZERO, GxB_EQ_ZERO,
GxB_NE_THUNK, and GxB_EQ_THUNK.

The comparators GxB_GT_* GxB_GE_* GxB_LT_*, and GxB_LE_* only work
for built-in types. All other built-in select operators can be used for any type,
both built-in and any user-defined type.

NOTE: For floating-point values, comparisons with NaN always return
false. The built-in select operators should not be used with a scalar thunk

that is equal to NaN. For this case, create a user-defined select operator that
performs the test with the ANSI C isnan function instead.
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GraphBLAS MATLAB
name analog

GxB_TRIL T=tril(A,k) Entries in T are the entries on and below the
kth diagonal of A.

GxB_TRIU T=triu(A,k) Entries in T are the entries on and above the
kth diagonal of A.

GxB_DIAG T=diag(A,k) Entries in T are the entries on the kth diagonal
of A.

GxB_OFFDIAG T=A-diag(A,k) Entries in T are all entries not on the kth di-
agonal of A.

GxB_NONZERO T=A(A~=0) Entries in T are all entries in A that have
nonzero value.

GxB_EQ_ZERO T=A(A==0) Entries in T are all entries in A that are equal
to zero.

GxB_GT_ZERO T=A(A>0) Entries in T are all entries in A that are greater
than zero.

GxB_GE_ZERO T=A(A<=0) Entries in T are all entries in A that are greater
than or equal to zero.

GxB_LT_ZERO T=A(A<0) Entries in T are all entries in A that are less
than zero.

GxB_LE_ZERO T=A(A<=0) Entries in T are all entries in A that are less
than or equal to zero.

GxB_NE_THUNK T=A(A~=k) Entries in T are all entries in A that are not
equal to k.

GxB_EQ_THUNK T=A(A==k) Entries in T are all entries in A that are equal
to k.

GxB_GT_THUNK T=A(A>k) Entries in T are all entries in A that are greater
than k.

GxB_GE_THUNK T=A(A>=k) Entries in T are all entries in A that are greater
than or equal to k.

GxB_LT_THUNK T=A(A<k) Entries in T are all entries in A that are less
than k.

GxB_LE_THUNK T=A(A<=k) Entries in T are all entries in A that are less
than or equal to k.
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8.14 GrB reduce: reduce to a vector or scalar

The generic function name GrB_reduce may be used for all specific functions
discussed in this section. When the details of a specific function are discussed,
the specific name is used for clarity.

8.14.1 GrB Matrix reduce <op>: reduce a matrix to a vector

GrB_Info GrB_reduce // w<mask> = accum (w,reduce(A))

(

GrB_Vector w, // input/output vector for results

const GrB_Vector mask, // optional mask for w, unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(w,t)

const <operator> reduce, // reduce operator for t=reduce(A)

const GrB_Matrix A, // first input: matrix A

const GrB_Descriptor desc // descriptor for w, mask, and A

) ;

GrB_Matrix_reduce_<op> is a generic name for two specific methods.
Both methods reduce a matrix to a column vector using an operator, roughly
analogous to t = sum (A’) in MATLAB, in the default case, where t is a
column vector. By default, the method reduces across the rows to obtain a
column vector; use GrB_TRAN to reduce down the columns.

GrB_Matrix_reduce_BinaryOp relies on a binary operator for the reduc-
tion: the fourth argument reduce, a GrB_BinaryOp. All three domains of
the operator must be the same. GrB_Matrix_reduce_Monoid performs the
same reduction using a GrB_Monoid as its fourth argument. In both cases
the reduction operator must be commutative and associative. Otherwise the
results are undefined.

The input matrix A may be transposed first. Its entries are then typecast
into the type of the reduce operator or monoid. The reduction is applied
to all entries in A (i,:) to produce the scalar t (i). This is done without
the use of the identity value of the monoid. If the ith row A (i,:) has no
entries, then (i) is not an entry in t and its value is implicit. If A (i,:) has
a single entry, then that is the result t (i) and reduce is not applied at all
for the ith row. Otherwise, multiple entries in row A (i,:) are reduced via
the reduce operator or monoid to obtain a single scalar, the result t (i).

The final step is w〈m〉 = w � t, as described in Section 2.3, except that
all the terms are column vectors instead of matrices.
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8.14.2 GrB Vector reduce <type>: reduce a vector to a scalar

GrB_Info GrB_reduce // c = accum (c, reduce_to_scalar (u))

(

<type> *c, // result scalar

const GrB_BinaryOp accum, // optional accum for c=accum(c,t)

const GrB_Monoid monoid, // monoid to do the reduction

const GrB_Vector u, // vector to reduce

const GrB_Descriptor desc // descriptor (currently unused)

) ;

GrB_Vector_reduce_<type> reduces a vector to a scalar, analogous to
t = sum (u) in MATLAB, except that in GraphBLAS any commutative and
associative monoid can be used in the reduction.

The reduction operator is a commutative and associative monoid with
an identity value. Results are undefined if the monoid does not have these
properties. This function differs from GrB_Matrix_reduce_BinaryOp (which
reduces a matrix to a vector) in that it requires a valid monoid additive
identity value. If the vector u has no entries, that identity value is copied
into the scalar t. Otherwise, all of the entries in the vector are reduced to a
single scalar using the reduce operator.

The scalar type is any of the built-in types, or a user-defined type. In
the function signature it is a C type: bool, int8_t, ... float, double, or
void * for a user-defined type. The user-defined type must be identical to
the type of the vector u. This cannot be checked by GraphBLAS and thus
results are undefined if the types are not the same.

The descriptor is unused, but it appears in case it is needed in future
versions of the GraphBLAS API. This function has no mask so its accumula-
tor/mask step differs from the other GraphBLAS operations. It does not use
the methods described in Section 2.3, but uses the following method instead.

If accum is NULL, then the scalar t is typecast into the type of c, and c = t

is the final result. Otherwise, the scalar t is typecast into the ytype of the
accum operator, and the value of c (on input) is typecast into the xtype of
the accum operator. Next, the scalar z = accum (c,t) is computed, of the
ztype of the accum operator. Finally, z is typecast into the final result, c.

Forced completion: All computations for the vector u are guaranteed to
be finished when the method returns.
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8.14.3 GrB Matrix reduce <type>: reduce a matrix to a scalar

GrB_Info GrB_reduce // c = accum (c, reduce_to_scalar (A))

(

<type> *c, // result scalar

const GrB_BinaryOp accum, // optional accum for c=accum(c,t)

const GrB_Monoid monoid, // monoid to do the reduction

const GrB_Matrix A, // matrix to reduce

const GrB_Descriptor desc // descriptor (currently unused)

) ;

GrB_Matrix_reduce_<type> reduces a matrix A to a scalar, roughly anal-
ogous to t = sum (A (:)) in MATLAB. This function is identical to reduc-
ing a vector to a scalar, since the positions of the entries in a matrix or vector
have no effect on the result. Refer to the reduction to scalar described in the
previous Section 8.14.2.

Forced completion: All computations for the matrix A are guaranteed to
be finished when the method returns.
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8.15 GrB transpose: transpose a matrix

GrB_Info GrB_transpose // C<Mask> = accum (C, A’)

(

GrB_Matrix C, // input/output matrix for results

const GrB_Matrix Mask, // optional mask for C, unused if NULL

const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)

const GrB_Matrix A, // first input: matrix A

const GrB_Descriptor desc // descriptor for C, Mask, and A

) ;

GrB_transpose transposes a matrix A, just like the array transpose T = A.’

in MATLAB. The internal result matrix T = A’ (or merely T = A if A is
transposed via the descriptor) has the same type as A. The final step is
C〈M〉 = C�T, as described in Section 2.3, which typecasts T as needed
and applies the mask and accumulator.

To be consistent with the rest of the GraphBLAS API regarding the
descriptor, the input matrix A may be transposed first. It may seem counter-
intuitive, but this has the effect of not doing any transpose at all. As
a result, GrB_transpose is useful for more than just transposing a ma-
trix. It can be used as a direct interface to the accumulator/mask op-
eration, C〈M〉 = C�A. This step also does any typecasting needed, so
GrB_transpose can be used to typecast a matrix A into another matrix C.
To do this, simply use NULL for the Mask and accum, and provide a non-
default descriptor desc that sets the transpose option:

// C = typecasted copy of A

GrB_Descriptor_set (desc, GrB_INP0, GrB_TRAN) ;

GrB_transpose (C, NULL, NULL, A, desc) ;

If the types of C and A match, then the above two lines of code are
the same as GrB_Matrix_dup (&C, A), except that for GrB_transpose the
matrix C must already exist and be the right size. If C does not exist, the
work of GrB_Matrix_dup can be replicated with this:

// C = create an exact copy of A, just like GrB_Matrix_dup

GrB_Matrix C ;

GrB_Type type ;

GrB_Index nrows, ncols ;

GrB_Descriptor desc ;

GxB_Matrix_type (&type, A) ;

GrB_Matrix_nrows (&nrows, A) ;
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GrB_Matrix_ncols (&ncols, A) ;

GrB_Matrix_new (&C, type, nrows, ncols) ;

GrB_Descriptor_new (&desc) ;

GrB_Descriptor_set (desc, GrB_INP0, GrB_TRAN) ;

GrB_transpose (C, NULL, NULL, A, desc) ;

Since the input matrix A is transposed by the descriptor, SuiteSparse:Graph-
BLAS does the right thing and does not transpose the matrix at all. Since
T = A is not typecasted, SuiteSparse:GraphBLAS can construct T internally
in O(1) time and using no memory at all. This makes Grb_transpose a fast
and direct interface to the accumulator/mask function in GraphBLAS.

This example is of course overkill, since the work can all be done by a
single call to the GrB_Matrix_dup function. However, the GrB_Matrix_dup

function can only create C as an exact copy of A, whereas variants of the code
above can do many more things with these two matrices. For example, the
type in the example can be replaced with any other type, perhaps selected
from another matrix or from an operator.

Consider the following code excerpt, which uses GrB_transpose to re-
move all diagonal entries from a square matrix. It first creates a diagonal
Mask, which is complemented so that C〈¬M〉 = A does not modify the diag-
onal of C. The REPLACE ensures that C is cleared first, and then C〈¬M〉 = A
modifies all entries in C where the mask M is false. These correspond to all
the off-diagonal entries. The descriptor ensures that A is not transposed at
all. The Mask can have any pattern, of course, and wherever it is set true,
the corresponding entries in A are deleted from the copy C.

// remove all diagonal entries from the matrix A

// Mask = speye (n) ;

GrB_Matrix_new (&Mask, GrB_BOOL, n, n) ;

for (int64_t i = 0 ; i < n ; i++)

{

GrB_Matrix_setElement (Mask, (bool) true, i, i) ;

}

// C<~Mask> = A, clearing C first. No transpose.

GrB_Descriptor_new (&desc) ;

GrB_Descriptor_set (desc, GrB_INP0, GrB_TRAN) ;

GrB_Descriptor_set (desc, GrB_MASK, GrB_COMP) ;

GrB_Descriptor_set (desc, GrB_OUTP, GrB_REPLACE) ;

GrB_transpose (A, Mask, NULL, A, desc) ;
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8.16 GxB kron: Kronecker product

GrB_Info GxB_kron // C<Mask> = accum (C, kron(A,B))

(

GrB_Matrix C, // input/output matrix for results

const GrB_Matrix Mask, // optional mask for C, unused if NULL

const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)

const GrB_BinaryOp op, // defines ’*’ for T=kron(A,B)

const GrB_Matrix A, // first input: matrix A

const GrB_Matrix B, // second input: matrix B

const GrB_Descriptor desc // descriptor for C, Mask, A, and B

) ;

GxB_kron computes the Kronecker product, C〈M〉 = C� kron(A,B) where

kron(A,B) =

 a00 ⊗B . . . a0,n−1 ⊗B
...

. . .
...

am−1,0 ⊗B . . . am−1,n−1 ⊗B


The ⊗ operator is defined by the op parameter. It is applied in an element-
wise fashion (like GrB_eWiseMult), where the pattern of the submatrix aij⊗B
is the same as the pattern of B if aij is an entry in the matrix A, or empty
otherwise. The input matrices A and B can be of any dimension, and both
matrices may be transposed first via the descriptor, desc. Entries in A and
B are typecast into the input types of the op. The matrix T=kron(A,B) has
the same type as the ztype of the binary operator, op. The final step is
C〈M〉 = C�T, as described in Section 2.3.

SPEC: GxB_kron is an extension to the spec.
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9 Printing GraphBLAS objects

SPEC: The GraphBLAS API has no mechanism for printing the con-
tents of GraphBLAS objects. This entire section is an extension to the
specification.

The ten different objects handled by SuiteSparse:GraphBLAS are all
opaque, although nearly all of their contents can be extracted via methods
such as GrB_Matrix_extractTuples, GrB_Matrix_extractElement, GxB_Matrix_type,
and so on. The GraphBLAS C API has no mechanism for printing all the
contents of GraphBLAS objects, but this is helpful for debugging. Ten type-
specific methods and two type-generic methods are provided:

GxB_Type_fprint print and check a GrB_Type

GxB_UnaryOp_fprint print and check a GrB_UnaryOp

GxB_BinaryOp_fprint print and check a GrB_BinaryOp

GxB_SelectOp_fprint print and check a GxB_SelectOp

GxB_Monoid_fprint print and check a GrB_Monoid

GxB_Semiring_fprint print and check a GrB_Semiring

GxB_Descriptor_fprint print and check a GrB_Descriptor

GxB_Matrix_fprint print and check a GrB_Matrix

GxB_Vector_fprint print and check a GrB_Vector

GxB_Scalar_fprint print and check a GxB_Scalar

GxB_fprint print/check any object to a file
GxB_print print/check any object to stdout

These methods do not modify the status of any object. If a matrix or vec-
tor has not been completed, the pending computations are guaranteed to not
be performed. The reason is simple. It is possible for a bug in the user appli-
cation (such as accessing memory outside the bounds of an array) to mangle
the internal content of a GraphBLAS object, and the GxB_*print methods
can be helpful tools to track down this bug. If GxB_*print attempted to
complete any computations prior to printing or checking the contents of the
matrix or vector, then further errors could occur, including a segfault.

By contrast, all GraphBLAS methods and operations that return values
into user-provided arrays or variables force the completion of pending oper-
ations (GrB_*_nvals, GrB_*_extractElement, GrB_*_extractTuples, and
GrB_reduce (to scalar)). The GxB_*print methods provide a useful alter-
native for debugging, and for a quick understanding of what GraphBLAS is
computing while developing a user application.
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Each of the methods has a parameter of type GxB_Print_Level that
specifies the amount to print:

typedef enum

{

GxB_SILENT = 0, // nothing is printed, just check the object

GxB_SUMMARY = 1, // print a terse summary

GxB_SHORT = 2, // short description, about 30 entries of a matrix

GxB_COMPLETE = 3 // print the entire contents of the object

}

GxB_Print_Level ;

The ten type-specific functions include an additional argument, the name

string. The name is printed at the beginning of the display (assuming the
print level is not GxB_SILENT) so that the object can be more easily identified
in the output. For the type-generic methods GxB_fprint and GxB_print,
the name string is the variable name of the object itself.

If the file f is NULL, nothing is printed (pr is effectively GxB_SILENT) If
pr is outside the bounds 0 to 3, negative values are treated as GxB_SILENT,
and values larger than 3 are treated as GxB_COMPLETE. If name is NULL, it is
treated as the empty string. None of these are error conditions.

The methods check their input objects carefully and extensively, even
when pr is equal to GxB_SILENT. The following error codes can be returned:

• GrB_SUCCESS: object is valid

• GrB_UNINITIALIZED_OBJECT: object is not initialized

• GrB_INVALID_OBJECT: object is not valid

• GrB_NULL_POINTER: object is a NULL pointer

• GrB_INVALID_VALUE: fprintf returned an I/O error; see the ANSI C
errno or GrB_error( ) for details.

The content of any GraphBLAS object is opaque, and subject to change.
As a result, the exact content and format of what is printed is implementation-
dependent, and will change from version to version of SuiteSparse:GraphBLAS.
Do not attempt to rely on the exact content or format by trying to parse
the resulting output via another program. The intent of these functions is
to produce a report of an object for visual inspection. If the user appli-
cation needs to extract content from a GraphBLAS matrix or vector, use
GrB_*_extractTuples instead.
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9.1 GxB fprint: Print a GraphBLAS object to a file

GrB_Info GxB_fprint // print and check a GraphBLAS object

(

GrB_<objecttype> object, // object to print and check

GxB_Print_Level pr, // print level

FILE *f // file for output

) ;

The GxB_fprint function prints the contents of any of the ten Graph-
BLAS objects to the file f. If f is NULL, the results are printed to stdout.
For example, to print the entire contents of a matrix A to the file f, use
GxB_fprint (A, GxB_COMPLETE, f).

9.2 GxB print: Print a GraphBLAS object to stdout

GrB_Info GxB_print // print and check a GrB_Vector

(

GrB_<objecttype> object, // object to print and check

GxB_Print_Level pr // print level

) ;

GxB_print is the same as GxB_fprint, except that it prints the contents
of the object to stdout instead of a file f. For example, to print the entire
contents of a matrix A, use GxB_print (A, GxB_COMPLETE).

9.3 GxB Type fprint: Print a GrB Type

GrB_Info GxB_Type_fprint // print and check a GrB_Type

(

GrB_Type type, // object to print and check

const char *name, // name of the object

GxB_Print_Level pr, // print level

FILE *f // file for output

) ;

For example, GxB_Type_fprint (GrB_BOOL, "boolean type", GxB_COMPLETE, f)

prints the contents of the GrB_BOOL object to the file f.
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9.4 GxB UnaryOp fprint: Print a GrB UnaryOp

GrB_Info GxB_UnaryOp_fprint // print and check a GrB_UnaryOp

(

GrB_UnaryOp unaryop, // object to print and check

const char *name, // name of the object

GxB_Print_Level pr, // print level

FILE *f // file for output

) ;

For example, GxB_UnaryOp_fprint (GrB_LNOT, "not", GxB_COMPLETE, f)

prints the GrB_LNOT unary operator to the file f.

9.5 GxB BinaryOp fprint: Print a GrB BinaryOp

GrB_Info GxB_BinaryOp_fprint // print and check a GrB_BinaryOp

(

GrB_BinaryOp binaryop, // object to print and check

const char *name, // name of the object

GxB_Print_Level pr, // print level

FILE *f // file for output

) ;

For example, GxB_BinaryOp_fprint (GrB_PLUS_FP64, "plus", GxB_COMPLETE, f)

prints the GrB_PLUS_FP64 binary operator to the file f.

9.6 GxB SelectOp fprint: Print a GxB SelectOp

GrB_Info GxB_SelectOp_fprint // print and check a GxB_SelectOp

(

GxB_SelectOp selectop, // object to print and check

const char *name, // name of the object

GxB_Print_Level pr, // print level

FILE *f // file for output

) ;

For example, GxB_SelectOp_fprint (GxB_TRIL, "tril", GxB_COMPLETE, f)

prints the GxB_TRIL select operator to the file f.
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9.7 GxB Monoid fprint: Print a GrB Monoid

GrB_Info GxB_Monoid_fprint // print and check a GrB_Monoid

(

GrB_Monoid monoid, // object to print and check

const char *name, // name of the object

GxB_Print_Level pr, // print level

FILE *f // file for output

) ;

For example, GxB_Monoid_fprint (GxB_PLUS_FP64_MONOID, "plus monoid",

GxB_COMPLETE, f) prints the predefined GxB_PLUS_FP64_MONOID (based on
the binary operator GrB_PLUS_FP64) to the file f.

9.8 GxB Semiring fprint: Print a GrB Semiring

GrB_Info GxB_Semiring_fprint // print and check a GrB_Semiring

(

GrB_Semiring semiring, // object to print and check

const char *name, // name of the object

GxB_Print_Level pr, // print level

FILE *f // file for output

) ;

For example, GxB_Semiring_fprint (GxB_PLUS_TIMES_FP64, "standard",

GxB_COMPLETE, f) prints the predefined GxB_PLUS_TIMES_FP64 semiring to
the file f.

9.9 GxB Descriptor fprint: Print a GrB Descriptor

GrB_Info GxB_Descriptor_fprint // print and check a GrB_Descriptor

(

GrB_Descriptor descriptor, // object to print and check

const char *name, // name of the object

GxB_Print_Level pr, // print level

FILE *f // file for output

) ;

For example, GxB_Descriptor_fprint (d, "descriptor", GxB_COMPLETE, f)

prints the descriptor d to the file f.
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9.10 GxB Matrix fprint: Print a GrB Matrix

GrB_Info GxB_Matrix_fprint // print and check a GrB_Matrix

(

GrB_Matrix A, // object to print and check

const char *name, // name of the object

GxB_Print_Level pr, // print level

FILE *f // file for output

) ;

For example, GxB_Matrix_fprint (A, "my matrix", GxB_SHORT, f) prints
about 30 entries from the matrix A to the file f.

9.11 GxB Vector fprint: Print a GrB Vector

GrB_Info GxB_Vector_fprint // print and check a GrB_Vector

(

GrB_Vector v, // object to print and check

const char *name, // name of the object

GxB_Print_Level pr, // print level

FILE *f // file for output

) ;

For example, GxB_Vector_fprint (v, "my vector", GxB_SHORT, f) prints
about 30 entries from the vector v to the file f.

9.12 GxB Scalar fprint: Print a GxB Scalar

GrB_Info GxB_Scalar_fprint // print and check a GrB_Scalar

(

GxB_Sclarr s, // object to print and check

const char *name, // name of the object

GxB_Print_Level pr, // print level

FILE *f // file for output

) ;

For example, GxB_Scalar_fprint (s, "my scalar", GxB_SHORT, f) prints
a short description of the sparse scalar s to the file f.
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9.13 Performance and portability considerations

Even when the print level is GxB_SILENT, these methods extensively check
the contents of the objects passed to them, which can take some time. They
should be considered debugging tools only, not for final use in production.

The return value of the GxB_*print methods can be relied upon, but the
output to the file (or stdout) can change from version to version. If these
methods are eventually added to the GraphBLAS C API Specification, a
conforming implementation might never print anything at all, regardless of
the pr value. This may be essential if the GraphBLAS library is installed in
a dedicated device, with no file output, for example.

Some implementations may wish to print nothing at all if the matrix is not
yet completed, or just an indication that the matrix has pending operations
and cannot be printed, when non-blocking mode is employed. In this case,
use GrB_Matrix_nvals or GrB_wait to finish all pending computations first.
If a matrix or vector has pending operations, SuiteSparse:GraphBLAS prints
a list of the pending tuples, which are the entries not yet inserted into the
primary data structure. It can also print out entries that remain in the data
structure but are awaiting deletion; these are called zombies in the output
report.

Most of the rest of the report is self-explanatory.

10 Creating user-defined objects at compile-

time (feature removed)

This feature has been removed as of SuiteSparse:GraphBLAS v3.2.0. User
objects defined with GxB_*_define when GraphBLAS is compiled are not
compatible with the faster matrix operations. Use the run-time definitions
instead, from the GraphBLAS C API Specification (GrB_Type_new instead
of GxB_Type_define in the GraphBLAS/User/*.m4 script).
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11 Examples

Several examples of how to use GraphBLAS are listed below. They all appear
in the Demo folder of SuiteSparse:GraphBLAS.

1. performing a breadth-first search,

2. finding a maximal independent set,

3. creating a random matrix,

4. creating a finite-element matrix,

5. reading a matrix from a file, and

6. complex numbers as a user-defined type.

7. triangle counting

8. PageRank

9. matrix import/export

Additional examples appear in the newly created LAGraph project, cur-
rently in progress. Finally, the Extras folder includes triangle counting and
k-truss algorithms in GraphBLAS, and methods that do not GraphBLAS
(both simple sequential methods, and methods that use OpenMP).

11.1 LAGraph

The LAGraph project is a community-wide effort to create graph algorithms
based on GraphBLAS (any implementation of the API, not just SuiteSparse:
GraphBLAS). As of Oct, 2019, the library includes the algorithms and utili-
ties listed in the table below. Many additional algorithms are planned, such
as betweenness centrality, PageRank, single-source shortest path (via delta
stepping), minimum spanning trees, connected components, and many more.
Refer to https://github.com/GraphBLAS/LAGraph for a current list of algo-
rithms (the one below will soon be out of date). Most of the functions in the
Demo/ and the Extras folder in SuiteSparse:GraphBLAS will eventually be
translated into algorithms or utilities for LAGraph.
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To use LAGraph with SuiteSparse:GraphBLAS, place the two folders
LAGraph and GraphBLAS in the same parent directory. This allows the cmake

script in LAGraph to find the copy of GraphBLAS. Alternatively, the Graph-
BLAS source could be placed anywhere, as long as sudo make install is
performed.

Build GraphBLAS first, then the LAGraph library, and then the tests in
LAGraph/Test.

Many of these algorithms are described in [ACD+20].

Algorithms description

LAGraph_bfs_pushpull a direction-optimized BFS [BAP12, YBO18],
typically 2x faster than bfs5m

LAGraph_bfs_simple a simple BFS (about the same as bfs5m)
LAGraph_bc_batch batched betweenness-centrality
LAGraph_bc betweenness-centrality
LAGraph_cdlp community detection via label propagation
LAGraph_cc connected components
LAGraph_BF_* three variants of Bellman-Ford
LAGraph_allktruss construct all k-trusses
LAGraph_dnn sparse deep neural network [DAK19]
LAGraph_ktruss construct a k-trusses
LAGraph_lcc local clustering coefficient
LAGraph_pagerank PageRank
LAGraph_pagerank2 PageRank variant
LAGraph_tricount triangle counting
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Utilities description

LAGraph_Vector_isall tests 2 vectors with a binary operator
LAGraph_Vector_isequal tests if 2 vectors are equal
LAGraph_Vector_to_dense converts a vector to dense
LAGraph_alloc_global types, operators, monoids, and semirings
LAGraph_finalize ends LAGraph
LAGraph_free wrapper for free
LAGraph_free_global frees objects created by _alloc_global

LAGraph_get_nthreads get # of threads used
LAGraph_grread read a binary matrix in Galois format
LAGraph_init starts LAGraph
LAGraph_isall tests 2 matrices with a binary operator
LAGraph_isequal tests if 2 matrices are equal
LAGraph_ispattern tests if all entries in a matrix are 1
LAGraph_malloc wrapper for malloc
LAGraph_mmread read a Matrix Market file
LAGraph_mmwrite write a Matrix Market file
LAGraph_pattern extracts the pattern of a matrix
LAGraph_prune_diag diagonal entries from a matrix
LAGraph_rand simple random number generator
LAGraph_rand64 int64_t random number generator
LAGraph_random random matrix generator
LAGraph_randx double random number generator
LAGraph_set_nthreads set # of threads to use
LAGraph_tic start a timer
LAGraph_toc end a timer
LAGraph_tsvread read a TSV file
LAGraph_xinit starts LAGraph, with different malloc
LAgraph_1_to_n construct the vector 1:n
GB_*sort* sorting for LAGraph_cdlp
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11.2 Breadth-first search

The bfs examples in the Demo folder provide several examples of how to
compute a breadth-first search (BFS) in GraphBLAS. Additional BFS ex-
amples are in LAGraph, shown below. The LAGraph_bfs_simple function
starts at a given source node s of an undirected graph with n nodes. The
graph is represented as an n-by-n matrix, A, where A(i,j) is the edge (i, j).
The matrix A can have any type (even a user-defined type), since the PAIR

operator does not access its values. No typecasting will be done.
The vector v of size n holds the level of each node in the BFS, where

v(i)=0 if the node has not yet been seen. This particular value makes v

useful for another role. It can be used as a Boolean mask, since 0 is false

and nonzero is true. Initially the entire v vector is zero. It is initialized as a
dense vector, with all entries present, to improve performance (otherwise, it
will slowly grow, incrementally, and this will take a lot of time if the number
of BFS levels is high).

The vector q is the set of nodes just discovered at the current level, where
q(i)=true if node i is in the current level. It starts out with just a single
entry set to true, q(s), the starting node.

Each iteration of the BFS consists of three calls to GraphBLAS. The first
one uses q as a mask. It modifies all positions in v where q has an entry,
setting them all to the current level.

// v<q> = level, using vector assign with q as the mask

GrB_assign (v, q, NULL, level, GrB_ALL, n, GrB_DESC_S) ;

The next call to GraphBLAS is the heart of the algorithm:

// q<!v> = q ||.&& A ; finds all the unvisited

// successors from current q, using !v as the mask

GrB_vxm (q, v, NULL, GxB_ANY_PAIR_BOOL, q, A, GrB_DESC_RC) ;

The vector q is all the set of nodes at the current level. Suppose q(j)

is true, and it has a neighbor i. Then A(i,j)=1, and the dot product of
A(i,:)*q using the ANY_PAIR semiring will use the PAIR multiplier on these
two terms, f (A(i,j), q(j)), resulting in a value 1. The ANY monoid will
“sum” up all the results in this single row i; note that the OR monoid would
compute the same thing. If the result is a column vector t=A*q, then this
t(i) will be true. The vector t will be true for any node adjacent to any
node in the set q.
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Some of these neighbors of the nodes in q have already been visited by
the BFS, either in the current level or in a prior level. These results must
be discarded; what is desired is the set of all nodes i for which t(i) is true,
and yet v(i) is still zero.

Enter the mask. The vector v is complemented for use a mask, via the
desc descriptor. This means that wherever the vector is true, that position
in the result is protected and will not be modified by the assignment. Only
where v is false will the result be modified. This is exactly the desired result,
since these represent newly seen nodes for the next level of the BFS. A node k
already visited will have a nonzero v(k), and thus q(k) will not be modified
by the assignment.

The result t is written back into the vector q, through the mask, but to
do this correctly, another descriptor parameter is used: GrB_REPLACE. The
vector q was used to compute t=A*q, and after using it to compute t, the
entire q vector needs to be cleared. Only new nodes are desired, for the next
level. This is exactly what the REPLACE option does.

As a result, the vector q now contains the set of nodes at the new level of
the BFS. It contains all those nodes (and only those nodes) that are neighbors
of the prior set and that have not already been seen in any prior level.

A single call to GrB_Vector_nvals finds how many entries are in the
current level. If this is zero, the BFS can terminate.
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#include "LAGraph_internal.h"

#define LAGRAPH_FREE_ALL { GrB_free (&v) ; GrB_free (&q) ; }

GrB_Info LAGraph_bfs_simple // push-only BFS

(

GrB_Vector *v_output, // v(i) is the BFS level of node i in the graph

GrB_Matrix A, // input graph, treated as if boolean in semiring

GrB_Index source // starting node of the BFS

)

{

GrB_Info info ;

GrB_Vector q = NULL ; // nodes visited at each level

GrB_Vector v = NULL ; // result vector

if (v_output == NULL) LAGRAPH_ERROR ("argument missing", GrB_NULL_POINTER) ;

GrB_Index n, nvals ;

GrB_Matrix_nrows (&n, A) ;

// create an empty vector v, and make it dense

GrB_Vector_new (&v, (n > INT32_MAX) ? GrB_INT64 : GrB_INT32, n) ;

GrB_assign (v, NULL, NULL, 0, GrB_ALL, n, NULL) ;

// create a boolean vector q, and set q(source) to true

GrB_Vector_new (&q, GrB_BOOL, n) ;

GrB_Vector_setElement (q, true, source) ;

// BFS traversal and label the nodes

for (int64_t level = 1 ; level <= n ; level++)

{

// v<q> = level

GrB_assign (v, q, NULL, level, GrB_ALL, n, GrB_DESC_S) ;

// break if q is empty

GrB_Vector_nvals (&nvals, q) ;

if (nvals == 0) break ;

// q’<!v> = q’*A

GrB_vxm (q, v, NULL, GxB_ANY_PAIR_BOOL, q, A, GrB_DESC_RC) ;

}

// free workspace and return result

(*v_output) = v ; // return result

v = NULL ; // set to NULL so LAGRAPH_FREE_ALL doesn’t free it

LAGRAPH_FREE_ALL ; // free all workspace (except for result v)

return (GrB_SUCCESS) ;

}

194



11.3 Maximal independent set

The maximal independent set problem is to find a set of nodes S such that
no two nodes in S are adjacent to each other (an independent set), and all
nodes not in S are adjacent to at least one node in S (and thus S is maximal
since it cannot be augmented by any node while remaining an independent
set). The mis function in the Demo folder solves this problem using Luby’s
method [Lub86]. The key operations in the method are replicated on the
next page.

The gist of the algorithm is this. In each phase, all candidate nodes are
given a random score. If a node has a score higher than all its neighbors,
then it is added to the independent set. All new nodes added to the set
cause their neighbors to be removed from the set of candidates. The process
must be repeated for multiple phases until no new nodes can be added. This
is because in one phase, a node i might not be added because one of its
neighbors j has a higher score, yet that neighbor j might not be added
because one of its neighbors k is added to the independent set instead. The
node j is no longer a candidate and can never be added to the independent
set, but node i could be added to S in a subsequent phase.

The initialization step, before the while loop, computes the degree of each
node with a PLUS reduction. The set of candidates is Boolean vector, the ith
component is true if node i is a candidate. A node with no neighbors causes
the algorithm to stall, so these nodes are not candidates. Instead, they are
immediately added to the independent set, represented by another Boolean
vector iset. Both steps are done with an assign, using the degree as a
mask, except the assignment to iset uses the complement of the mask, via
the sr_desc descriptor. Finally, the GrB_Vector_nvals statement counts
how many candidates remain.

Each phase of Luby’s algorithm consists of 11 calls to GraphBLAS oper-
ations, all of which are either parallel, or take O(1) time. Not all of them
are described here since they are commented in the code itself. The two
matrix-vector multiplications are the important parts and also take the most
time. They also make interesting use of semirings and masks. The first one
computes the largest score of all the neighbors of each node in the candidate
set:

// compute the max probability of all neighbors

GrB_vxm (neighbor_max, candidates, NULL, maxFirst, prob, A, r_desc) ;
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// compute the degree of each node

GrB_reduce (degrees, NULL, NULL, GrB_PLUS_FP64, A, NULL) ;

// singletons are not candidates; they are added to iset first instead

// candidates[degree != 0] = 1

GrB_assign (candidates, degrees, NULL, true, GrB_ALL, n, NULL);

// add all singletons to iset

// iset[degree == 0] = 1

GrB_assign (iset, degrees, NULL, true, GrB_ALL, n, sr_desc) ;

// Iterate while there are candidates to check.

GrB_Index nvals ;

GrB_Vector_nvals (&nvals, candidates) ;

while (nvals > 0)

{

// sparsify the random number seeds (just keep it for each candidate)

GrB_assign (Seed, candidates, NULL, Seed, GrB_ALL, n, r_desc) ;

// compute a random probability scaled by inverse of degree

prand_xget (X, Seed) ; // two calls to GrB_apply

GrB_eWiseMult (prob, candidates, NULL, set_random, degrees, X, r_desc) ;

// compute the max probability of all neighbors

GrB_vxm (neighbor_max, candidates, NULL, maxFirst, prob, A, r_desc) ;

// select node if its probability is > than all its active neighbors

GrB_eWiseAdd (new_members, NULL,NULL, GrB_GT_FP64, prob, neighbor_max,0);

// add new members to independent set.

GrB_eWiseAdd (iset, NULL, NULL, GrB_LOR, iset, new_members, NULL) ;

// remove new members from set of candidates c = c & !new

GrB_apply (candidates, new_members, NULL, GrB_IDENTITY_BOOL,

candidates, sr_desc) ;

GrB_Vector_nvals (&nvals, candidates) ;

if (nvals == 0) { break ; } // early exit condition

// Neighbors of new members can also be removed from candidates

GrB_vxm (new_neighbors, candidates, NULL, Boolean,

new_members, A, NULL) ;

GrB_apply (candidates, new_neighbors, NULL, GrB_IDENTITY_BOOL,

candidates, sr_desc) ;

GrB_Vector_nvals (&nvals, candidates) ;

}

A is a symmetric Boolean matrix and prob is a sparse real vector (of type
FP32), where prob(i) is nonzero only if node i is a candidate. The prob

vector is computed from a random vector computed by a utility function
prand_xget, in the Demo folder. It uses two calls to GrB_apply to construct
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n random numbers in parallel, using a repeatable pseudo-random number
generator.

The maxFirst semiring uses z=FIRST(x,y) as the multiplier operator.
The column A(:,j) is the adjacency of node j, and the dot product prob’*A(:,j)
applies the FIRST operator on all entries that appear in the intersection of
prob and A(:,j), where z=FIRST(prob(i),A(i,j)) which is just prob(i)

if A(i,j) is present. If A(i,j) not an explicit entry in the matrix, then this
term is not computed and does not take part in the reduction by the MAX

monoid.
Thus, each term z=FIRST(prob(i),A(i,j)) is the score, prob(i), of all

neighbors i of node j that have a score. Node i does not have a score if it is
not also a candidate and so this is skipped. These terms are then “summed”
up by taking the maximum score, using MAX as the additive monoid.

Finally, the results of this matrix-vector multiply are written to the re-
sult, neighbor_max. The r_desc descriptor has the REPLACE option enabled.
Since neighbor_max does not also take part in the computation prob’*A,
it is simply cleared first. Next, is it modified only in those positions i

where candidates(i) is true, using candidates as a mask. This sets the
neighbor_max only for candidate nodes, and leaves the other components of
neighbor_max as zero (implicit values not in the pattern of the vector).

All of the above work is done in a single matrix-vector multiply, with
an elegant use of the maxFirst semiring coupled with a mask. The matrix-
vector multiplication is described above as if it uses dot products of rows of A
with the column vector prob, but SuiteSparse:GraphBLAS does not compute
it that way. Sparse dot products are much slower the optimal method for
multiplying a sparse matrix times a sparse vector. The result is the same,
however.

The second matrix-vector multiplication is more straight-forward. Once
the set of new members in the independent is found, it is used to remove all
neighbors of those new members from the set of candidates.

The resulting method is very efficient. For the Freescale2 matrix, the
algorithm finds an independent set of size 1.6 million in 1.7 seconds (on the
same MacBook Pro referred to in Section 11.2, using a single core), taking
four iterations of the while loop. For comparison, removing its diagonal
entries (required for the algorithm to work) takes 0.3 seconds in GraphBLAS
(see Section 8.15), and simply transposing the matrix takes 0.24 seconds in
both MATLAB and GraphBLAS.
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11.4 Creating a random matrix

The random_matrix function in the Demo folder generates a random matrix
with a specified dimension and number of entries, either symmetric or un-
symmetric, and with or without self-edges (diagonal entries in the matrix).
It relies on simple_rand* functions in the Demo folder to provide a portable
random number generator that creates the same sequence on any computer
and operating system.

random_matrix can use one of two methods: GrB_Matrix_setElement

and GrB_Matrix_build. The former method is very simple to use:

GrB_Matrix_new (&A, GrB_FP64, nrows, ncols) ;

for (int64_t k = 0 ; k < ntuples ; k++)

{

GrB_Index i = simple_rand_i ( ) % nrows ;

GrB_Index j = simple_rand_i ( ) % ncols ;

if (no_self_edges && (i == j)) continue ;

double x = simple_rand_x ( ) ;

// A (i,j) = x

GrB_Matrix_setElement (A, x, i, j) ;

if (make_symmetric)

{

// A (j,i) = x

GrB_Matrix_setElement (A, x, j, i) ;

}

}

The above code can generate a million-by-million sparse double matrix
with 200 million entries in 66 seconds (6 seconds of which is the time to
generate the random i, j, and x), including the time to finish all pending
computations. The user application does not need to create a list of all
the tuples, nor does it need to know how many entries will appear in the
matrix. It just starts from an empty matrix and adds them one at a time in
arbitrary order. GraphBLAS handles the rest. This method is not feasible
in MATLAB.

The next method uses GrB_Matrix_build. It is more complex to use
than setElement since it requires the user application to allocate and fill the
tuple lists, and it requires knowledge of how many entries will appear in the
matrix, or at least a good upper bound, before the matrix is constructed. It
is slightly faster, creating the same matrix in 60 seconds, 51 seconds of which
is spent in GrB_Matrix_build.
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GrB_Index *I, *J ;

double *X ;

int64_t s = ((make_symmetric) ? 2 : 1) * nedges + 1 ;

I = malloc (s * sizeof (GrB_Index)) ;

J = malloc (s * sizeof (GrB_Index)) ;

X = malloc (s * sizeof (double )) ;

if (I == NULL || J == NULL || X == NULL)

{

// out of memory

if (I != NULL) free (I) :

if (J != NULL) free (J) :

if (X != NULL) free (X) :

return (GrB_OUT_OF_MEMORY) ;

}

int64_t ntuples = 0 ;

for (int64_t k = 0 ; k < nedges ; k++)

{

GrB_Index i = simple_rand_i ( ) % nrows ;

GrB_Index j = simple_rand_i ( ) % ncols ;

if (no_self_edges && (i == j)) continue ;

double x = simple_rand_x ( ) ;

// A (i,j) = x

I [ntuples] = i ;

J [ntuples] = j ;

X [ntuples] = x ;

ntuples++ ;

if (make_symmetric)

{

// A (j,i) = x

I [ntuples] = j ;

J [ntuples] = i ;

X [ntuples] = x ;

ntuples++ ;

}

}

GrB_Matrix_build (A, I, J, X, ntuples, GrB_SECOND_FP64) ;

The equivalent sprandsym function in MATLAB takes 150 seconds, but
sprandsym uses a much higher-quality random number generator to cre-
ate the tuples [I,J,X]. Considering just the time for sparse(I,J,X,n,n)

in sprandsym (equivalent to GrB_Matrix_build), the time is 70 seconds.
That is, each of these three methods, setElement and build in Suite-
Sparse:GraphBLAS, and sparse in MATLAB, are equally fast.
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11.5 Creating a finite-element matrix

Suppose a finite-element matrix is being constructed, with k=40,000 finite-
element matrices, each of size 8-by-8. The following operations (in pseudo-
MATLAB notation) are very efficient in SuiteSparse:GraphBLAS.

A = sparse (m,n) ; % create an empty n-by-n sparse GraphBLAS matrix

for i = 1:k

construct a 8-by-8 sparse or dense finite-element F

I and J define where the matrix F is to be added:

I = a list of 8 row indices

J = a list of 8 column indices

% using GrB_assign, with the ’plus’ accum operator:

A (I,J) = A (I,J) + F

end

If this were done in MATLAB or in GraphBLAS with blocking mode
enabled, the computations would be extremely slow. This example is taken
from Loren Shure’s blog on MATLAB Central, Loren on the Art of MAT-
LAB [Dav07], which discusses the built-in wathen function. In MATLAB,
a far better approach is to construct a list of tuples [I,J,X] and to use
sparse(I,J,X,n,n). This is identical to creating the same list of tuples in
GraphBLAS and using the GrB_Matrix_build, which is equally fast. The
difference in time between using sparse or GrB_Matrix_build, and using
submatrix assignment with blocking mode (or in MATLAB which does not
have a nonblocking mode) can be extreme. For the example matrix discussed
in [Dav07], using sparse instead of submatrix assignment in MATLAB cut
the run time of wathen from 305 seconds down to 1.6 seconds.

In SuiteSparse:GraphBLAS, the performance of both methods is essen-
tially identical, and roughly as fast as sparse in MATLAB. Inside Suite-
Sparse:GraphBLAS, GrB_assign is doing the same thing. When performing
A(I,J)=A(I,J)+F, if it finds that it cannot quickly insert an update into the
A matrix, it creates a list of pending tuples to be assembled later on. When
the matrix is ready for use in a subsequent GraphBLAS operation (one that
normally cannot use a matrix with pending computations), the tuples are
assembled all at once via GrB_Matrix_build.

GraphBLAS operations on other matrices have no effect on when the
pending updates of a matrix are completed. Thus, any GraphBLAS method
or operation can be used to construct the F matrix in the example above,
without affecting when the pending updates to A are completed.
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The MATLAB wathen.m script is part of Higham’s gallery of matrices
[Hig02]. It creates a finite-element matrix with random coefficients for a 2D
mesh of size nx-by-ny, a matrix formulation by Wathen [Wat87]. The pat-
tern of the matrix is fixed; just the values are randomized. The GraphBLAS
equivalent can use either GrB_Matrix_build, or GrB_assign. Both meth-
ods have good performance. The GrB_Matrix_build version below is about
15% to 20% faster than the MATLAB wathen.m function, regardless of the
problem size. It uses the identical algorithm as wathen.m.

int64_t ntriplets = nx*ny*64 ;

I = malloc (ntriplets * sizeof (int64_t)) ;

J = malloc (ntriplets * sizeof (int64_t)) ;

X = malloc (ntriplets * sizeof (double )) ;

if (I == NULL || J == NULL || X == NULL)

{

FREE_ALL ;

return (GrB_OUT_OF_MEMORY) ;

}

ntriplets = 0 ;

for (int j = 1 ; j <= ny ; j++)

{

for (int i = 1 ; i <= nx ; i++)

{

nn [0] = 3*j*nx + 2*i + 2*j + 1 ;

nn [1] = nn [0] - 1 ;

nn [2] = nn [1] - 1 ;

nn [3] = (3*j-1)*nx + 2*j + i - 1 ;

nn [4] = 3*(j-1)*nx + 2*i + 2*j - 3 ;

nn [5] = nn [4] + 1 ;

nn [6] = nn [5] + 1 ;

nn [7] = nn [3] + 1 ;

for (int krow = 0 ; krow < 8 ; krow++) nn [krow]-- ;

for (int krow = 0 ; krow < 8 ; krow++)

{

for (int kcol = 0 ; kcol < 8 ; kcol++)

{

I [ntriplets] = nn [krow] ;

J [ntriplets] = nn [kcol] ;

X [ntriplets] = em (krow,kcol) ;

ntriplets++ ;

}

}

}

}
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// A = sparse (I,J,X,n,n) ;

GrB_Matrix_build (A, I, J, X, ntriplets, GrB_PLUS_FP64) ;

The GrB_assign version has the advantage of not requiring the user appli-
cation to construct the tuple list, and is almost as fast as using GrB_Matrix_build.
The code is more elegant than either the MATLAB wathen.m function or its
GraphBLAS equivalent above. Its performance is comparable with the other
two methods, but slightly slower, being about 5% slower than the MATLAB
wathen, and 20% slower than the GraphBLAS method above.

GrB_Matrix_new (&F, GrB_FP64, 8, 8) ;

for (int j = 1 ; j <= ny ; j++)

{

for (int i = 1 ; i <= nx ; i++)

{

nn [0] = 3*j*nx + 2*i + 2*j + 1 ;

nn [1] = nn [0] - 1 ;

nn [2] = nn [1] - 1 ;

nn [3] = (3*j-1)*nx + 2*j + i - 1 ;

nn [4] = 3*(j-1)*nx + 2*i + 2*j - 3 ;

nn [5] = nn [4] + 1 ;

nn [6] = nn [5] + 1 ;

nn [7] = nn [3] + 1 ;

for (int krow = 0 ; krow < 8 ; krow++) nn [krow]-- ;

for (int krow = 0 ; krow < 8 ; krow++)

{

for (int kcol = 0 ; kcol < 8 ; kcol++)

{

// F (krow,kcol) = em (krow, kcol)

GrB_Matrix_setElement (F, em (krow,kcol), krow, kcol) ;

}

}

// A (nn,nn) += F

GrB_assign (A, NULL, GrB_PLUS_FP64, F, nn, 8, nn, 8, NULL) ;

}

}

Since there is no Mask, and since GrB_REPLACE is not used, the call to
GrB_assign in the example above is identical to GxB_subassign. Either one
can be used, and their performance would be identical.

Refer to the wathen.c function in the Demo folder, which uses GraphBLAS
to implement the two methods above, and two additional ones.

202



11.6 Reading a matrix from a file

NOTE: see also LAGraph_mmread and LAGraph_mmwrite, which can read
and write any matrix in Matrix Market format, and LAGraph_binread and
LAGraph_binwrite, which read/write a matrix from a binary file. The binary
file I/O functions are much faster than the read_matrix function described
here, and also much faster than LAGraph_mmread and LAGraph_mmwrite.

The read_matrix function in the Demo reads in a triplet matrix from
a file, one line per entry, and then uses GrB_Matrix_build to create the
matrix. It creates a second copy with GrB_Matrix_setElement, just to test
that method and compare the run times. A comparison of build versus
setElement has already been discussed in Section 11.4.

The function can return the matrix as-is, which may be rectangular or
unsymmetric. If an input parameter is set to make the matrix symmetric,
read_matrix computes A=(A+A’)/2 if A is square (turning all directed edges
into undirected ones. If A is rectangular, it creates a bipartite graph, which
is the same as the augmented matrix, A = [0 A ; A’ 0]. If C is an n-by-n
matrix, then C=(C+C’)/2 can be computed as follows in GraphBLAS, (the
scale2 function divides an entry by 2):

GrB_Descriptor_new (&dt2) ;

GrB_Descriptor_set (dt2, GrB_INP1, GrB_TRAN) ;

GrB_Matrix_new (&A, GrB_FP64, n, n) ;

GrB_eWiseAdd (A, NULL, NULL, GrB_PLUS_FP64, C, C, dt2) ; // A=C+C’

GrB_free (&C) ;

GrB_Matrix_new (&C, GrB_FP64, n, n) ;

GrB_UnaryOp_new (&scale2_op, scale2, GrB_FP64, GrB_FP64) ;

GrB_apply (C, NULL, NULL, scale2_op, A, NULL) ; // C=A/2

GrB_free (&A) ;

GrB_free (&scale2_op) ;

This is of course not nearly as elegant as A=(A+A’)/2 in MATLAB, but
with minor changes it can work on any type and use any built-in operators in-
stead of PLUS, or it can use any user-defined operators and types. The above
code in SuiteSparse:GraphBLAS takes 0.60 seconds for the Freescale2 ma-
trix, slightly slower than MATLAB (0.55 seconds).

Constructing the augmented system is more complicated using the Graph-
BLAS C API Specification since it does not yet have a simple way of speci-
fying a range of row and column indices, as in A(10:20,30:50) in MATLAB
(GxB_RANGE is a SuiteSparse:GraphBLAS extension that is not in the Speci-
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fication). Using the C API in the Specification, the application must instead
build a list of indices first, I=[10, 11 ... 20].

Thus, to compute the MATLAB equivalent of A = [0 A ; A’ 0], index
lists I and J must first be constructed:

int64_t n = nrows + ncols ;

I = malloc (nrows * sizeof (int64_t)) ;

J = malloc (ncols * sizeof (int64_t)) ;

// I = 0:nrows-1

// J = nrows:n-1

if (I == NULL || J == NULL)

{

if (I != NULL) free (I) ;

if (J != NULL) free (J) ;

return (GrB_OUT_OF_MEMORY) ;

}

for (int64_t k = 0 ; k < nrows ; k++) I [k] = k ;

for (int64_t k = 0 ; k < ncols ; k++) J [k] = k + nrows ;

Once the index lists are generated, however, the resulting GraphBLAS
operations are fairly straightforward, computing A=[0 C ; C’ 0].

GrB_Descriptor_new (&dt1) ;

GrB_Descriptor_set (dt1, GrB_INP0, GrB_TRAN) ;

GrB_Matrix_new (&A, GrB_FP64, n, n) ;

// A (nrows:n-1, 0:nrows-1) = C’

GrB_assign (A, NULL, NULL, C, J, ncols, I, nrows, dt1) ;

// A (0:nrows-1, nrows:n-1) = C

GrB_assign (A, NULL, NULL, C, I, nrows, J, ncols, NULL) ;

This takes 1.38 seconds for the Freescale2 matrix, almost as fast as
A=[sparse(m,m) C ; C’ sparse(n,n)] in MATLAB (1.25 seconds).

Both calls to GrB_assign use no accumulator, so the second one causes
the partial matrix A=[0 0 ; C’ 0] to be built first, followed by the final
build of A=[0 C ; C’ 0]. A better method, but not an obvious one, is to
use the GrB_FIRST_FP64 accumulator for both assignments. An accumulator
enables SuiteSparse:GraphBLAS to determine that that entries created by
the first assignment cannot be deleted by the second, and thus it need not
force completion of the pending updates prior to the second assignment.

SuiteSparse:GraphBLAS also adds a GxB_RANGE mechanism that mimics
the MATLAB colon notation. This speeds up the method and simplifies the
code the user needs to write to compute A=[0 C ; C’ 0]:
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int64_t n = nrows + ncols ;

GrB_Matrix_new (&A, xtype, n, n) ;

GrB_Index I_range [3], J_range [3] ;

I_range [GxB_BEGIN] = 0 ;

I_range [GxB_END ] = nrows-1 ;

J_range [GxB_BEGIN] = nrows ;

J_range [GxB_END ] = ncols+nrows-1 ;

// A (nrows:n-1, 0:nrows-1) += C’

GrB_assign (A, NULL, GrB_FIRST_FP64, // or NULL,

C, J_range, GxB_RANGE, I_range, GxB_RANGE, dt1) ;

// A (0:nrows-1, nrows:n-1) += C

GrB_assign (A, NULL, GrB_FIRST_FP64, // or NULL,

C, I_range, GxB_RANGE, J_range, GxB_RANGE, NULL) ;

Any operator will suffice because it is not actually applied. An operator is
only applied to the set intersection, and the two assignments do not overlap.
If an accum operator is used, only the final matrix is built, and the time in
GraphBLAS drops slightly to 1.25 seconds. This is a very small improvement
because in this particular case, SuiteSparse:GraphBLAS is able to detect that
no sorting is required for the first build, and the second one is a simple con-
catenation. In general, however, allowing GraphBLAS to postpone pending
updates can lead to significant reductions in run time.

11.7 PageRank

The Demo folder contains three methods for computing the PageRank of the
nodes of a graph. One uses floating-point arithmetic (GrB_FP64) and two
user-defined unary operators (dpagerank.c). The second (ipagerank.c) is
very similar, relying on integer arithmetic instead (GrB_UINT64). Neither
method include a stopping condition. They simply compute a fixed num-
ber of iterations. The third example is more extensive (dpagerank2.c), and
serves as an example of the power and flexibility of user-defined types, oper-
ators, monoids, and semirings. It creates a semiring for the entire PageRank
computation. It terminates if the 2-norm of the change in the rank vector r
is below a threshold.
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11.8 Triangle counting

A triangle in an undirected graph is a clique of size three: three nodes i, j,
and k that are all pairwise connected. There are many ways of counting the
number of triangles in a graph. Let A be a symmetric matrix with values 0
and 1, and no diagonal entries; this matrix is the adjacency matrix of the
graph. Let E be the edge incidence matrix with exactly two 1’s per column.
A column of E with entries in rows i and j represents the edge (i, j) in the
graph, A(i,j)=1 where i<j. Let L and U be the strictly lower and upper
triangular parts of A, respectively.

The methods are listed in the table below. Most of them use a form
of masked matrix-matrix multiplication. The methods are implemented in
MATLAB in the tricount.m file, and in GraphBLAS in the tricount.c

file, both in the GraphBLAS/Demo folder. Refer to the comments in those two
files for details and derivations on how these methods work.

When the matrix is stored by row, and a mask is present and not com-
plemented, GrB_INP1 is GrB_TRAN, and GrB_INP0 is GxB_DEFAULT, the Suite-
Sparse:GraphBLAS implementation of GrB_mxm always uses a dot-product
formulation. Thus, the C〈L〉 = LUT method uses dot products. This
provides a mechanism for the end-user to select a masked dot product ma-
trix multiplication method in SuiteSparse:GraphBLAS, which is occasionally
faster than the outer product method. The MATLAB form assumes the ma-
trices are stored by column (the only option in MATLAB).

Each method is followed by a reduction to a scalar, via GrB_reduce in
GraphBLAS or by nnz or sum(sum(...)) in MATLAB.

method and in MATLAB in GraphBLAS
citation
minitri [WBS15] nnz(A*E==2)/3 C = AE, then GrB_apply

Burkhardt [Bur16] sum(sum((A^2).*A))/6 C〈A〉 = A2

Cohen [ABG15, Coh09] sum(sum((L*U).*A))/2 C〈A〉 = LU
Sandia [WDB+17] sum(sum((U*U).*U)) C〈L〉 = LL (outer product)
SandiaDot sum(sum((U’*L).*L)) C〈U〉 = LUT (dot product)
Sandia2 sum(sum((L*L).*L)) C〈U〉 = UU (outer product)

In general, the Sandia methods are the fastest of the 6 methods when
implemented in GraphBLAS. For full details on the triangle counting and
k-truss algorithms, and performance results, see [Dav18], a copy of which
appears in the SuiteSparse/GraphBLAS/Doc folder. The code appears in
Extras. That paper uses an earlier version of SuiteSparse:GraphBLAS in
which all matrices are stored by column.
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11.9 User-defined types and operators: double com-
plex and struct-based

The Demo folder contains two working examples of user-defined types, first
discussed in Section 5.1.1: double complex, and a user-defined typedef

called wildtype with a struct containing a string and a 4-by-4 float matrix.
Double Complex: GraphBLAS does not have a native complex type,

but this can be easily added as a user-defined type. The Complex_init

function in the usercomplex.c file in the Demo folder creates the Complex

type based on the ANSI C11 double complex type.

GrB_Type_new (&Complex, sizeof (double complex)) ;

Next, it creates a full suite of operators that correspond to every built-in
GraphBLAS operator, both binary and unary. In addition, it creates the
operators listed in the following table, where D is double and C is Complex.

name types MATLAB description
equivalent

Complex_complex D ×D → C z=complex(x,y) complex from real and imag.
Complex_conj C → C z=conj(x) complex conjugate
Complex_real C → D z=real(x) real part
Complex_imag C → D z=imag(x) imaginary part
Complex_angle C → D z=angle(x) phase angle
Complex_complex_real D → C z=complex(x,0) real to complex real
Complex_complex_imag D → C z=complex(0,x) real to complex imag.

The Complex_init function creates two monoids (Complex_add_monoid
and Complex_times_monoid) and a semiring Complex_plus_times that cor-
responds to the conventional linear algebra for complex matrices. The in-
clude file usercomplex.h in the Demo folder is available so that this user-
defined Complex type can easily be imported into any other user application.
When the user application is done, the Complex_finalize function frees the
Complex type and its operators, monoids, and semiring.

Struct-based: In addition, the wildtype.c program creates a user-
defined typedef of a struct containing a dense 4-by-4 float matrix, and a
64-character string. It constructs an additive monoid that adds two 4-by-4
dense matrices, and a multiplier operator that multiplies two 4-by-4 matrices.
Each of these 4-by-4 matrices is treated by GraphBLAS as a “scalar” value,
and they can be manipulated in the same way any other GraphBLAS type can
be manipulated. The purpose of this type is illustrate the endless possibilities
of user-defined types and their use in GraphBLAS.
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11.10 User applications using OpenMP or POSIX pthreads

Two example demo programs are included that illustrate how a multi-threaded
user application can use GraphBLAS: openmp_demo uses OpenMP for its
user threads and pthread_demo uses POSIX pthreads. To be thread-safe,
SuiteSparse:GraphBLAS must be compiled with a threading li-
brary, either OpenMP or POSIX. Either option used inside GraphBLAS
can typically be combined with any user threading model. See Section 12.

The openmp_demo can be compiled without OpenMP, in which case it be-
comes single-threaded. GraphBLAS can be compiled with OpenMP, POSIX
pthreads, or no threading support (and is not thread-safe in this latter case).
This gives 9 different combinations:

User GraphBLAS Demo/Output file comments
applic.
none none user_none_grb_none.out OK
none OpenMP user_none_grb_openmp.out OK
none pthread user_none_grb_pthread.out OK
OpenMP none user_openmp_grb_none.out fail
OpenMP OpenMP user_openmp_grb_openmp.out OK, random
OpenMP pthread user_openmp_grb_pthread.out OK, random
pthread none user_pthread_grb_none.out fail
pthread OpenMP user_pthread_grb_openmp.out OK, random
pthread pthread user_pthread_grb_pthread.out OK, random

When the user application is multithreaded, GraphBLAS must be compiled
with a threading library to be thread-safe. The results listed above as OK,
random mean that the output of the program will appear out of order. This
is by design, simply to show that the user application is running in parallel.
The output of each thread should be the same. In particular, each thread
generates an intentional error, and later on prints it with GrB_error. It will
print its own error, not an error from another thread. When all the threads
finish, the master thread prints out each matrix generated by each thread,
and these results are identical for all 7 cases listed above as OK.

The GraphBLAS C API requires GraphBLAS to be thread-safe. If Suite-
Sparse:GraphBLAS is not compiled with a threading library it will not be
thread-safe (the two fail cases above). For these cases, a thread will not
retrieve its own error, but the last error of any thread. In addition, since
there is no critical section that SuiteSparse:GraphBLAS can use, the output
will include errors about an invalid state of the global matrix queue. These
errors are to be expected if SuiteSparse:GraphBLAS is not thread-safe.
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12 Compiling and Installing SuiteSparse:GraphBLAS

12.1 On Linux and Mac

GraphBLAS makes extensive use of features in the ANSI C11 standard, and
thus a C compiler supporting this version of the C standard is required to
use all features of GraphBLAS. On the Mac (OS X), clang 8.0.0 in Xcode

version 8.2.1 is sufficient, although earlier versions of Xcode may work as
well. For the GNU gcc compiler, version 4.9 or later is required. For the
Intel icc compiler, version 18.0 or later is required. Version 2.8.12 or later
of cmake is required; version 3.0.0 is preferred.

If you are using a pre-C11 ANSI C compiler, or Microsoft Visual Studio,
then the _Generic keyword is not available. SuiteSparse:GraphBLAS will
still compile, but you will not have access to polymorphic functions such as
GrB_assign. You will need to use the non-polymorphic functions instead.

NOTE: icc is generally an excellent compiler, but it will generate
slower code than gcc for v3.2.0. This is merely because of how the
two compilers treat #pragma omp atomic read and #pragma omp atomic write.
The use of gcc for SuiteSparse:GraphBLAS v3.2.0 is recommended.
This difference in performance should be resolved in a future ver-
sion.

To compile SuiteSparse:GraphBLAS and the demo programs, simply type
make in the main GraphBLAS folder, which compiles the library. To use a
non-default compiler:

make CC=icc CXX=icc JOBS=4

After compiling the library, you can run the demos by typing ./demo in
the Demo folder.

If cmake or make fail, it might be that your default compiler does not
support ANSI C11. Try another compiler. For example, try one of these
options. Go into the build directory and type one of these:

CC=gcc cmake ..

CC=gcc-6 cmake ..

CC=xlc cmake ..

CC=icc cmake ..

You can also do the following in the top-level GraphBLAS folder instead:
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CC=gcc make

CC=gcc-6 cmake

CC=xlc cmake

CC=icc cmake

For faster compilation, you can specify a parallel make. For example, to
use 32 parallel jobs and the gcc compiler, do the following:

JOBS=32 CC=gcc make

12.2 On Microsoft Windows (v3.1.2 only)

SuiteSparse:GraphBLAS v3.1.2 is now ported to Microsoft Visual Studio.
That compiler is not ANSI C11 compliant. It does not support the _Generic
keyword, required for the polymorphic GraphBLAS functions. So for exam-
ple, you will need to use GrB_Matrix_free instead of just GrB_free. Another
limitation is the lack of support for OpenMP tasking, used in the parallel
sort inside GraphBLAS. With Microsoft Visual Studio, the sort is compiled
to use just a single thread. The sort is used for GrB_Matrix_build and
GrB_Vector_build, and for GrB_assign and GxB_subassign when the in-
dex lists are unsorted on input. In addition, variable-length arrays are not
supported, so user-defined types are limited to 128 bytes in size. These
changes have no effect if you have an ANSI C11 compliant compiler.

The following instructions apply to Windows 10, CMake 3.16, and Visual
Studio 2019, but may work for earlier versions.

1. Open a terminal window and type the following in the top-level Suite-
Sparse/GraphBLAS folder.

cmake .

2. Open the generated GraphBLAS.sln file in Visual Studio. Alternatively,
type this command in the terminal window:

devenv graphblas.sln /build "release|x64" /project graphblas

This should create a folder called Release and place the compiled DLL
and LIB file there.
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3. Move the DLL and LIB files from the Release folder to the GraphBLAS/build
folder.

4. Add the GraphBLAS/build folder to the Windows System path.

12.3 Compiling the MATLAB interface

First, compile the SuiteSparse:GraphBLAS dynamic library (libgraphblas.so
for Linux, libgraphblas.dylib for Mac, or graphblas.dll for Windows),
as described in the prior two subsections. Next:

1. In the MATLAB command window:

cd GraphBLAS/GraphBLAS/@GrB/private

gbmake

2. Follow the remaining instructions in the GraphBLAS/GraphBLAS/README.md
file, to revise your MATLAB path and startup.m file.

12.4 Thread-safety in multithreaded user applications

SuiteSparse:GraphBLAS is parallel, based on OpenMP. It is thread-safe if
multiple simultaneous calls are made to GraphBLAS functions, from user
threads that rely on either OpenMP or POSIX pthreads. The output vari-
ables of those calls to GraphBLAS must be unique; you cannot safely modify
one GraphBLAS object in parallel, with two or more simultaneous Graph-
BLAS functions operating on the same output object. In addition, all pend-
ing operations of objects that appear in parallel calls to GraphBLAS must be
complete. This can be done for all objects via GrB_wait, or it can be done by
calling a method or operation that forces completion of a particular object
(such as GrB_*_nvals). If multiple parallel calls to GraphBLAS functions
operate on unique inputs, then those input objects can safely have pending
operations.

To use GraphBLAS from a multithreaded user application, GraphBLAS
requires access to a critical section for the GrB_wait queue of matrices with
pending operations, and to a thread-local storage space so that each user
thread can safely retrieve its own error message with GrB_error.
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SuiteSparse:GraphBLAS supports the following user threading models.
By default, the cmake script detects the presence of OpenMP and POSIX
pthreads. If OpenMP is present, it uses OpenMP critical sections for GrB_wait
and OpenMP threadprivate(...) for thread-local storage for GrB_error.
Otherwise, if POSIX pthreads are available, it uses a POSIX mutex, and
POSIX thread-local storage via pthread_key_create.

These methods used inside GraphBLAS can typically inter-operate with
any user threading model. That is, a user application that relies on POSIX
threads, OpenMP, ANSI C11 threads, or Microsoft Windows threads will
find GraphBLAS thread-safe, even though GraphBLAS uses OpenMP or
POSIX internally to synchronize the user threads. However, for the most
reliable results, the preferred approach is to use the same threading model
in GraphBLAS as is used in the user application.

You can modify the automatic selection of a user thread synchronization
model by adding the following settings for cmake. This setting does not de-
termine how SuiteSparse:GraphBLAS creates and exploits multiple threads
inside any given GraphBLAS operation. Rather, it determines which thread-
ing library it will use to synchronize multiple calls to GraphBLAS from more
than one user thread.

• OpenMP: this is the default if your compiler supports OpenMP. It can
also be specified with cmake -DUSER_OPENMP=1 in the cmake command
line. Internal parallelism in SuiteSparse:GraphBLAS version is based
on OpenMP. This is typically safe to use with any user threading mod-
els.

• POSIX: this is used if OpenMP is not available. If OpenMP is available
but you still want GraphBLAS to use POSIX synchronization, compile
with cmake -DUSER_POSIX=1

• no user threading: compile with cmake -DUSER_NONE=1. GraphBLAS
will not be thread-safe.

The following user-threading models are not yet supported, but may be
in a future version.

• Microsoft Windows: cmake -DUSER_WINDOWS=1

• ANSI C11 threads: cmake -DUSER_ANSI=1
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12.5 Default matrix format

By default, SuiteSparse:GraphBLAS stores its matrices by row, using the
GxB_BY_ROW format. You can change the default at compile time to GxB_BY_COL
using cmake -DBYCOL=1. For example:

cmake -DBYCOL=1 ..

The user application can also use GxB_get and GxB_set to set and query
the global option (see also Sections 6.7 and 6.8):

GxB_Format_Value s ;

GxB_get (GxB_FORMAT, &s) ;

if (s == GxB_BY_COL) printf ("all new matrices are stored by column\n") :

else printf ("all new matrices are stored by row\n") ;

12.6 Setting the C flags and using CMake

The above options can also be combined. For example, to use the gcc com-
piler, to change the default format GxB_FORMAT_DEFAULT to GxB_BY_COL, and
to use a POSIX mutex inside GraphBLAS to synchronize user threads, use
the following cmake command while in the GraphBLAS/build directory:

CC=gcc cmake -DBYCOL=1 -DUSER_POSIX=1 ..

Then do make in the build directory. If this still fails, see the CMakeLists.txt
file. You can edit that file to pass compiler-specific options to your compiler.
Locate this section in the CMakeLists.txt file. Use the set command in
cmake, as in the example below, to set the compiler flags you need.

# check which compiler is being used. If you need to make

# compiler-specific modifications, here is the place to do it.

if ("${CMAKE_C_COMPILER_ID}" STREQUAL "GNU")

# cmake 2.8 workaround: gcc needs to be told to do ANSI C11.

# cmake 3.0 doesn’t have this problem.

set ( CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -std=c11 -lm " )

...

elseif ("${CMAKE_C_COMPILER_ID}" STREQUAL "Intel")

...

elseif ("${CMAKE_C_COMPILER_ID}" STREQUAL "Clang")
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...

elseif ("${CMAKE_C_COMPILER_ID}" STREQUAL "MSVC")

...

endif ( )

To compile SuiteSparse:GraphBLAS without running the demos, use make library

in the top-level directory, or make in the build directory.
Several compile-time options can be selected by editing the Source/GB.h

file, but these are meant only for code development of SuiteSparse:GraphBLAS
itself, not for end-users of SuiteSparse:GraphBLAS.

12.7 Using a plain makefile

The GraphBLAS/alternative directory contains a simple Makefile that can
be used to compile SuiteSparse:GraphBLAS. This is a useful option if you
do not have the required version of cmake.

12.8 Running the Demos

By default, make in the top-level directory compiles the library and runs the
demos. You can also run the demos after compiling:

cd Demo

./demo

The ./demo command is a script that runs the demos with various in-
put matrices in the Demo/Matrix folder. The output of the demos will be
compared with expected output files in Demo/Output.

12.9 Installing SuiteSparse:GraphBLAS

To install the library (typically in /usr/local/lib and /usr/local/include

for Linux systems), go to the top-level GraphBLAS folder and type:

sudo make install
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12.10 Running the tests

To perform the extensive tests in the Test folder, and the statement coverage
tests in Tcov, MATLAB R2017A is required. See the README.txt files in
those two folders for instructions on how to run the tests.

12.11 Cleaning up

To remove all compiled files, type make distclean in the top-level Graph-
BLAS folder.
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14 Additional Resources

See http://graphblas.org for the GraphBLAS community page. See https:
//github.com/szarnyasg/graphblas-pointers for an up-to-date list of additional
resources on GraphBLAS.
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[BG08] A. Buluç and J. Gilbert. On the representation and multiplica-
tion of hypersparse matrices. In IPDPS’80: 2008 IEEE Intl. Symp.
on Parallel and Distributed Processing, pages 1–11, April 2008.
https://dx.doi.org/10.1109/IPDPS.2008.4536313.
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performance on a single multicore node. Our implementation
uses a linear algebra-based approach to triangle counting that
has grown out of work related to our miniTri data analyt-
ics miniapplication and our efforts to pose graph algorithms
in the language of linear algebra. We leverage KokkosKernels
to implement this approach efficiently on multicore architec-
tures. Our performance results are competitive with the fastest
known graph traversal-based approaches and are significantly
faster than the Graph Challenge reference implementations, up
to 670,000 times faster than the C++ reference and 10,000 times
faster than the Python reference on a single Intel Haswell node.
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