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GraphBLAS: faster and more general sparse
matrices for MATLAB

GraphBLAS is not only useful for creating graph algorithms; it also supports a wide range of sparse matrix
data types and operations. MATLAB can compute C=A*B with just two semirings: 'plus.times.double'
and 'plus.times.complex' for complex matrices. GraphBLAS has 1,040 unique built-in semirings, such as
'max.plus' (https://en.wikipedia.org/wiki/Tropical_semiring). These semirings can be used to construct a
wide variety of graph algorithms, based on operations on sparse adjacency matrices.

GraphBLAS supports sparse double and single precision matrices, logical, and sparse integer matrices:
int8, int16, int32, int64, uint8, uint16, uint32, and uint64. Complex matrices will be added in the future.

clear all
format compact
rng ('default') ;
X = 100 * rand (2) ;
G = gb (X)              % GraphBLAS copy of a matrix X, same type

G =

    2x2 GraphBLAS double matrix, standard CSC, 4 entries

    (1,1)    81.4724
    (2,1)    90.5792
    (1,2)    12.6987
    (2,2)    91.3376

Sparse integer matrices
Here's an int8 version of the same matrix:

S = int8 (G)            % convert G to a full MATLAB int8 matrix
G = gb (X, 'int8')      % a GraphBLAS sparse int8 matrix

S =
  2x2 int8 matrix
   81   12
   90   91

G =

    2x2 GraphBLAS int8_t matrix, standard CSC, 4 entries

    (1,1)   81
    (2,1)   90
    (1,2)   12
    (2,2)   91
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Sparse single-precision matrices
Matrix operations in GraphBLAS are typically as fast, or faster than MATLAB. Here's an unfair compar-
ison: computing X^2 with MATLAB in double precision and with GraphBLAS in single precision. You
would naturally expect GraphBLAS to be faster.

Please wait ...

n = 1e5 ;
X = spdiags (rand (n, 201), -100:100, n, n) ;
G = gb (X, 'single') ;
tic
G2 = G^2 ;
gb_time = toc ;
tic
X2 = X^2 ;
matlab_time = toc ;
fprintf ('\nGraphBLAS time: %g sec (in single)\n', gb_time) ;
fprintf ('MATLAB time:    %g sec (in double)\n', matlab_time) ;
fprintf ('Speedup of GraphBLAS over MATLAB: %g\n', ...
    matlab_time / gb_time) ;

GraphBLAS time: 1.55196 sec (in single)
MATLAB time:    5.72505 sec (in double)
Speedup of GraphBLAS over MATLAB: 3.68891

Mixing MATLAB and GraphBLAS matrices
The error in the last computation is about eps('single') since GraphBLAS did its computation in single
precision, while MATLAB used double precision. MATLAB and GraphBLAS matrices can be easily
combined, as in X2-G2. The sparse single precision matrices take less memory space.

err = norm (X2 - G2, 1) / norm (X2,1)
eps ('single')
whos G G2 X X2

err =
   1.5049e-07
ans =
  single
  1.1921e-07
  Name           Size                    Bytes  Class     Attributes

  G         100000x100000            241879772  gb                  
  G2        100000x100000            481518572  gb                  
  X         100000x100000            322238408  double    sparse    
  X2        100000x100000            641756808  double    sparse    

Faster matrix operations
But even with standard double precision sparse matrices, GraphBLAS is typically faster than the built-in
MATLAB methods. Here's a fair comparison:
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G = gb (X) ;
tic
G2 = G^2 ;
gb_time = toc ;
err = norm (X2 - G2, 1) / norm (X2,1)
fprintf ('\nGraphBLAS time: %g sec (in double)\n', gb_time) ;
fprintf ('MATLAB time:    %g sec (in double)\n', matlab_time) ;
fprintf ('Speedup of GraphBLAS over MATLAB: %g\n', ...
    matlab_time / gb_time) ;

err =
     0

GraphBLAS time: 1.62044 sec (in double)
MATLAB time:    5.72505 sec (in double)
Speedup of GraphBLAS over MATLAB: 3.53302

A wide range of semirings
MATLAB can only compute C=A*B using the standard '+.*.double' and '+.*.complex' semirings. A semi-
ring is defined in terms of a string, 'add.mult.type', where 'add' is a monoid that takes the place of the
additive operator, 'mult' is the multiplicative operator, and 'type' is the data type for the two inputs to the
mult operator (the type defaults to the type of A for C=A*B).

In the standard semiring, C=A*B is defined as:

C(i,j) = sum (A(i,:).' .* B(:,j))

using 'plus' as the monoid and 'times' as the multiplicative operator. But in a more general semiring, 'sum'
can be any monoid, which is an associative and commutative operator that has an identity value. For
example, in the 'max.plus' tropical algebra, C(i,j) for C=A*B is defined as:

C(i,j) = max (A(i,:).' + B(:,j))

This can be computed in GraphBLAS with:

C = gb.mxm ('max.+', A, B)

n = 3 ;
A = rand (n) ;
B = rand (n) ;
C = zeros (n) ;
for i = 1:n
    for j = 1:n
        C(i,j) = max (A (i,:).' + B (:,j)) ;
    end
end
C2 = gb.mxm ('max.+', A, B) ;
fprintf ('\nerr = norm (C-C2,1) = %g\n', norm (C-C2,1)) ;

err = norm (C-C2,1) = 0
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The max.plus tropical semiring
Here are details of the "max.plus" tropical semiring. The identity value is -inf since max(x,-inf) = max (-
inf,x) = -inf for any x.

gb.semiringinfo ('max.+.double') ;

    GraphBLAS Semiring: max.+.double (built-in)
    GraphBLAS Monoid: semiring->add (built-in)
    GraphBLAS BinaryOp: monoid->op (built-in) z=max(x,y)
    GraphBLAS type: ztype double size: 8
    GraphBLAS type: xtype double size: 8
    GraphBLAS type: ytype double size: 8
    identity: [    -inf ] terminal: [    inf ]

    GraphBLAS BinaryOp: semiring->multiply (built-in) z=plus(x,y)
    GraphBLAS type: ztype double size: 8
    GraphBLAS type: xtype double size: 8
    GraphBLAS type: ytype double size: 8

A boolean semiring
MATLAB cannot multiply two logical matrices. MATLAB R2019a converts them to double and uses
the conventional +.*.double semiring instead. In GraphBLAS, this is the common Boolean 'or.and.logical'
semiring, which is widely used in linear algebraic graph algorithms.

gb.semiringinfo ('|.&.logical') ;

    GraphBLAS Semiring: |.&.logical (built-in)
    GraphBLAS Monoid: semiring->add (built-in)
    GraphBLAS BinaryOp: monoid->op (built-in) z=or(x,y)
    GraphBLAS type: ztype bool size: 1
    GraphBLAS type: xtype bool size: 1
    GraphBLAS type: ytype bool size: 1
    identity: [   0 ] terminal: [   1 ]

    GraphBLAS BinaryOp: semiring->multiply (built-in) z=and(x,y)
    GraphBLAS type: ztype bool size: 1
    GraphBLAS type: xtype bool size: 1
    GraphBLAS type: ytype bool size: 1

clear
A = sparse (rand (3) > 0.5)
B = sparse (rand (3) > 0.2)

A =
  3x3 sparse logical array
   (2,1)      1
   (2,2)      1
   (3,2)      1
   (1,3)      1
B =
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  3x3 sparse logical array
   (1,1)      1
   (2,1)      1
   (3,1)      1
   (1,2)      1
   (2,2)      1
   (3,2)      1
   (1,3)      1
   (2,3)      1
   (3,3)      1

try
    % MATLAB R2019a does this by casting A and B to double
    C1 = A*B
catch
    % MATLAB R2018a throws an error
    fprintf ('MATLAB R2019a required for C=A*B with logical\n') ;
    fprintf ('matrices.  Explicitly converting to double:\n') ;
    C1 = double (A) * double (B)
end
C2 = gb (A) * gb (B)

C1 =
   (1,1)        1
   (2,1)        2
   (3,1)        1
   (1,2)        1
   (2,2)        2
   (3,2)        1
   (1,3)        1
   (2,3)        2
   (3,3)        1

C2 =

    3x3 GraphBLAS bool matrix, standard CSC, 9 entries

    (1,1)   1
    (2,1)   1
    (3,1)   1
    (1,2)   1
    (2,2)   1
    (3,2)   1
    (1,3)   1
    (2,3)   1
    (3,3)   1

Note that C1 is a MATLAB sparse double matrix, and contains non-binary values. C2 is a GraphBLAS
logical matrix.

whos
gb.type (C2)

  Name      Size            Bytes  Class      Attributes
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  A         3x3                68  logical    sparse    
  B         3x3               113  logical    sparse    
  C1        3x3               176  double     sparse    
  C2        3x3              1079  gb                   

ans =
    'logical'

GraphBLAS operators, monoids, and semi-
rings

The C interface for SuiteSparse:GraphBLAS allows for arbitrary types and operators to be constructed.
However, the MATLAB interface to SuiteSparse:GraphBLAS is restricted to pre-defined types and oper-
ators: a mere 11 types, 66 unary operators, 275 binary operators, 44 monoids, 16 select operators, and
1,865 semirings (1,040 of which are unique, since some binary operators are equivalent: 'min.logical' and
'&.logical' are the same thing, for example). The complex type and its binary operators, monoids, and
semirings will be added in the near future.

That gives you a lot of tools to create all kinds of interesting graph algorithms. For example:

gb.bfs    % breadth-first search
gb.dnn    % sparse deep neural network (http://graphchallenge.org)
gb.mis    % maximal independent set

See 'help gb.binopinfo' for a list of the binary operators, and 'help gb.monoidinfo' for the ones that can be
used as the additive monoid in a semiring.

help gb.binopinfo

 GB.BINOPINFO list the details of a GraphBLAS binary operator.
 
  Usage
 
    gb.binopinfo
    gb.binopinfo (op)
    gb.binopinfo (op, type)
 
  For gb.binopinfo(op), the op must be a string of the form
  'op.type', where 'op' is listed below.  The second usage allows the
  type to be omitted from the first argument, as just 'op'.  This is
  valid for all GraphBLAS operations, since the type defaults to the
  type of the input matrices.  However, gb.binopinfo does not have a
  default type and thus one must be provided, either in the op as
  gb.binopinfo ('+.double'), or in the second argument, gb.binopinfo
  ('+', 'double').
 
  The MATLAB interface to GraphBLAS provides for 25 different binary
  operators, each of which may be used with any of the 11 types, for
  a total of 25*11 = 275 valid binary operators.  Binary operators
  are defined by a string of the form 'op.type', or just 'op'.  In
  the latter case, the type defaults to the type of the matrix inputs
  to the GraphBLAS operation.
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  The 6 comparator operators come in two flavors.  For the is*
  operators, the result has the same type as the inputs, x and y,
  with 1 for true and 0 for false.  For example isgt.double (pi, 3.0)
  is the double value 1.0.  For the second set of 6 operators (eq,
  ne, gt, lt, ge, le), the result is always logical (true or false).
  In a semiring, the type of the add monoid must exactly match the
  type of the output of the multiply operator, and thus
  'plus.iseq.double' is valid (counting how many terms are equal).
  The 'plus.eq.double' semiring is valid, but not the same semiring
  since the 'plus' of 'plus.eq.double' has a logical type and is thus
  equivalent to 'or.eq.double'.   The 'or.eq' is true if any terms
  are equal and false otherwise (it does not count the number of
  terms that are equal).
 
  The following binary operators are available.  Many have equivalent
  synonyms, so that '1st' and 'first' both define the first(x,y) = x
  operator.
 
    operator name(s) f(x,y)         |   operator names(s) f(x,y)
    ---------------- ------         |   ----------------- ------
    1st first        x              |   iseq             x == y
    2nd second       y              |   isne             x ~= y
    min              min(x,y)       |   isgt             x > y
    max              max(x,y)       |   islt             x < y
    +   plus         x+y            |   isge             x >= y
    -   minus        x-y            |   isle             x <= y
    rminus           y-x            |   ==  eq           x == y
    *   times        x*y            |   ~=  ne           x ~= y
    /   div          x/y            |   >   gt           x > y
    \   rdiv         y/x            |   <   lt           x < y
    |   || or  lor   x | y          |   >=  ge           x >= y
    &   && and land  x & y          |   <=  le           x <= y
    xor lxor         xor(x,y)       |
 
  The three logical operators, lor, land, and lxor, also come in 11
  types.  z = lor.double (x,y) tests the condition (x~=0) || (y~=0),
  and returns the double value 1.0 if true, or 0.0 if false.
 
  Example:
 
    % valid binary operators
    gb.binopinfo ('+.double') ;
    gb.binopinfo ('1st.int32') ;
 
    % invalid binary operator (an error; this is a unary op):
    gb.binopinfo ('abs.double') ;
 
  See also gb, gb.unopinfo, gb.semiringinfo, gb.descriptorinfo.

help gb.monoidinfo

 GB.MONOIDINFO list the details of a GraphBLAS monoid.
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  Usage
 
    gb.monoidinfo
    gb.monoidinfo (monoid)
    gb.monoidinfo (monoid, type)
 
  For gb.monoidinfo(op), the op must be a string of the form
  'op.type', where 'op' is listed below.  The second usage allows the
  type to be omitted from the first argument, as just 'op'.  This is
  valid for all GraphBLAS operations, since the type defaults to the
  type of the input matrices.  However, gb.monoidinfo does not have a
  default type and thus one must be provided, either in the op as
  gb.monoidinfo ('+.double'), or in the second argument,
  gb.monoidinfo ('+', 'double').
 
  The MATLAB interface to GraphBLAS provides for 44 different
  monoids.  The valid monoids are: '+', '*', 'max', and 'min' for all
  but the 'logical' type, and '|', '&', 'xor', and 'eq' for the
  'logical' type.
 
  Example:
 
    % valid monoids
    gb.monoidinfo ('+.double') ;
    gb.monoidinfo ('*.int32') ;
 
    % invalid monoids
    gb.monoidinfo ('1st.int32') ;
    gb.monoidinfo ('abs.double') ;
 
  See also gb.unopinfo, gb.binopinfo, gb.semiringinfo,
  gb.descriptorinfo.

Element-wise operations
Binary operators can be used in element-wise matrix operations, like C=A+B and C=A.*B. For the matrix
addition C=A+B, the pattern of C is the set union of A and B, and the '+' operator is applied for entries in
the intersection. Entries in A but not B, or in B but not A, are assigned to C without using the operator.
The '+' operator is used for C=A+B but any operator can be used with gb.eadd.

A = gb (sprand (3, 3, 0.5)) ;
B = gb (sprand (3, 3, 0.5)) ;
C1 = A + B
C2 = gb.eadd ('+', A, B)
err = norm (C1-C2,1)

C1 =

    3x3 GraphBLAS double matrix, standard CSC, 7 entries

    (1,1)    0.666139
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    (3,1)    0.735859
    (1,2)    1.47841
    (2,2)    0.146938
    (3,2)    0.566879
    (2,3)    0.248635
    (3,3)    0.104226

C2 =

    3x3 GraphBLAS double matrix, standard CSC, 7 entries

    (1,1)    0.666139
    (3,1)    0.735859
    (1,2)    1.47841
    (2,2)    0.146938
    (3,2)    0.566879
    (2,3)    0.248635
    (3,3)    0.104226

err =
     0

Subtracting two matrices
A-B and gb.eadd ('-', A, B) are not the same thing, since the '-' operator is not applied to an entry that is
in B but not A.

C1 = A-B
C2 = gb.eadd ('-', A, B)

C1 =

    3x3 GraphBLAS double matrix, standard CSC, 7 entries

    (1,1)    -0.666139
    (3,1)    -0.735859
    (1,2)    -0.334348
    (2,2)    -0.146938
    (3,2)    0.566879
    (2,3)    0.248635
    (3,3)    0.104226

C2 =

    3x3 GraphBLAS double matrix, standard CSC, 7 entries

    (1,1)    0.666139
    (3,1)    0.735859
    (1,2)    -0.334348
    (2,2)    0.146938
    (3,2)    0.566879
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    (2,3)    0.248635
    (3,3)    0.104226

But these give the same result

C1 = A-B
C2 = gb.eadd ('+', A, gb.apply ('-', B))
err = norm (C1-C2,1)

C1 =

    3x3 GraphBLAS double matrix, standard CSC, 7 entries

    (1,1)    -0.666139
    (3,1)    -0.735859
    (1,2)    -0.334348
    (2,2)    -0.146938
    (3,2)    0.566879
    (2,3)    0.248635
    (3,3)    0.104226

C2 =

    3x3 GraphBLAS double matrix, standard CSC, 7 entries

    (1,1)    -0.666139
    (3,1)    -0.735859
    (1,2)    -0.334348
    (2,2)    -0.146938
    (3,2)    0.566879
    (2,3)    0.248635
    (3,3)    0.104226

err =
     0

Element-wise 'multiplication'
For C = A.*B, the result C is the set intersection of the pattern of A and B. The operator is applied to
entries in both A and B. Entries in A but not B, or B but not A, do not appear in the result C.

C1 = A.*B
C2 = gb.emult ('*', A, B)
C3 = double (A) .* double (B)

C1 =

    3x3 GraphBLAS double matrix, standard CSC, 1 entry

    (1,2)    0.518474
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C2 =

    3x3 GraphBLAS double matrix, standard CSC, 1 entry

    (1,2)    0.518474

C3 =
   (1,2)       0.5185

Just as in gb.eadd, any operator can be used in gb.emult:

A
B
C2 = gb.emult ('max', A, B)

A =

    3x3 GraphBLAS double matrix, standard CSC, 4 entries

    (1,2)    0.572029
    (3,2)    0.566879
    (2,3)    0.248635
    (3,3)    0.104226

B =

    3x3 GraphBLAS double matrix, standard CSC, 4 entries

    (1,1)    0.666139
    (3,1)    0.735859
    (1,2)    0.906378
    (2,2)    0.146938

C2 =

    3x3 GraphBLAS double matrix, standard CSC, 1 entry

    (1,2)    0.906378

Overloaded operators
The following operators all work as you would expect for any matrix. The matrices A and B can be Graph-
BLAS matrices, or MATLAB sparse or dense matrices, in any combination, or scalars where appropriate:

  A+B   A-B  A*B   A.*B  A./B  A.\B  A.^b   A/b   C=A(I,J)
  -A    +A   ~A    A'    A.'   A&B   A|B    b\A   C(I,J)=A
  A~=B  A>B  A==B  A<=B  A>=B  A<B   [A,B]  [A;B]
  A(1:end,1:end)
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For A^b, b must be a non-negative integer.

C1 = [A B] ;
C2 = [double(A) double(B)] ;
assert (isequal (double (C1), C2))

C1 = A^2
C2 = double (A)^2 ;
err = norm (C1 - C2, 1)
assert (err < 1e-12)

C1 =

    3x3 GraphBLAS double matrix, standard CSC, 5 entries

    (2,2)    0.140946
    (3,2)    0.0590838
    (1,3)    0.142227
    (2,3)    0.0259144
    (3,3)    0.151809

err =
     0

C1 = A (1:2,2:end)
A = double (A) ;
C2 = A (1:2,2:end) ;
assert (isequal (double (C1), C2))

C1 =

    2x2 GraphBLAS double matrix, standard CSC, 2 entries

    (1,1)    0.572029
    (2,2)    0.248635

Overloaded functions
Many MATLAB built-in functions can be used with GraphBLAS matrices:

A few differences with the built-in functions:

S = sparse (G)      % makes a copy of a gb matrix
F = full (G)        % adds explicit zeros, so numel(F)==nnz(F)
F = full (G,id)     % adds explicit identity values to a gb matrix
disp (G, level)     % display a gb matrix G; level=2 is the default.

In the list below, the first set of Methods are overloaded built-in methods. They are used as-is on Graph-
BLAS matrices, such as C=abs(G). The Static methods are prefixed with "gb.", as in C = gb.apply ( ... ).

methods gb
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Methods for class gb:

abs             ge              ldivide         single          
all             graph           le              size            
amd             gt              length          sparse          
and             horzcat         logical         spfun           
any             int16           lt              spones          
assert          int32           max             sprintf         
bandwidth       int64           min             sqrt            
ceil            int8            minus           subsasgn        
colamd          isa             mldivide        subsref         
complex         isbanded        mpower          sum             
conj            isdiag          mrdivide        symamd          
ctranspose      isempty         mtimes          symrcm          
diag            isequal         ne              times           
digraph         isfinite        nnz             transpose       
disp            isfloat         nonzeros        tril            
display         ishermitian     norm            triu            
dmperm          isinf           not             true            
double          isinteger       numel           uint16          
eig             islogical       nzmax           uint32          
end             ismatrix        ones            uint64          
eps             isnan           or              uint8           
eq              isnumeric       plus            uminus          
etree           isreal          power           uplus           
false           isscalar        prod            vertcat         
find            issparse        rdivide         xor             
fix             issymmetric     real            zeros           
floor           istril          repmat          
fprintf         istriu          reshape         
full            isvector        round           
gb              kron            sign            

Static methods:

apply           emult           isfull          select          
assign          entries         issigned        semiringinfo    
bfs             expand          ktruss          speye           
binopinfo       extract         laplacian       subassign       
build           extracttuples   mis             threads         
chunk           eye             monoidinfo      tricount        
clear           format          mxm             type            
compact         gbkron          nonz            unopinfo        
descriptorinfo  gbtranspose     offdiag         vreduce         
dnn             incidence       pagerank        
eadd            isbycol         prune           
empty           isbyrow         reduce          

Zeros are handled differently
Explicit zeros cannot be automatically dropped from a GraphBLAS matrix, like they are in MATLAB
sparse matrices. In a shortest-path problem, for example, an edge A(i,j) that is missing has an infinite
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weight, (the monoid identity of min(x,y) is +inf). A zero edge weight A(i,j)=0 is very different from an
entry that is not present in A. However, if a GraphBLAS matrix is converted into a MATLAB sparse
matrix, explicit zeros are dropped, which is the convention for a MATLAB sparse matrix. They can also
be dropped from a GraphBLAS matrix using the gb.select method.

G = gb (magic (2)) ;
G (1,1) = 0      % G(1,1) still appears as an explicit entry
A = double (G)   % but it's dropped when converted to MATLAB sparse
H = gb.select ('nonzero', G)  % drops the explicit zeros from G
fprintf ('nnz (G): %d  nnz (A): %g nnz (H): %g\n', ...
    nnz (G), nnz (A), nnz (H)) ;
fprintf ('num entries in G: %d\n', gb.entries (G)) ;

G =

    2x2 GraphBLAS double matrix, standard CSC, 4 entries

    (1,1)    0
    (2,1)    4
    (1,2)    3
    (2,2)    2

A =
   (2,1)        4
   (1,2)        3
   (2,2)        2

H =

    2x2 GraphBLAS double matrix, standard CSC, 3 entries

    (2,1)    4
    (1,2)    3
    (2,2)    2

nnz (G): 3  nnz (A): 3 nnz (H): 3
num entries in G: 4

Displaying contents of a GraphBLAS matrix
Unlike MATLAB, the default is to display just a few entries of a gb matrix. Here are all 100 entries of a
10-by-10 matrix, using a non-default disp(G,3):

G = gb (rand (10)) ;
% display everything:
disp (G,3)

G =

    10x10 GraphBLAS double matrix, standard CSC, 100 entries

    (1,1)    0.0342763
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    (2,1)    0.17802
    (3,1)    0.887592
    (4,1)    0.889828
    (5,1)    0.769149
    (6,1)    0.00497062
    (7,1)    0.735693
    (8,1)    0.488349
    (9,1)    0.332817
    (10,1)    0.0273313
    (1,2)    0.467212
    (2,2)    0.796714
    (3,2)    0.849463
    (4,2)    0.965361
    (5,2)    0.902248
    (6,2)    0.0363252
    (7,2)    0.708068
    (8,2)    0.322919
    (9,2)    0.700716
    (10,2)    0.472957
    (1,3)    0.204363
    (2,3)    0.00931977
    (3,3)    0.565881
    (4,3)    0.183435
    (5,3)    0.00843818
    (6,3)    0.284938
    (7,3)    0.706156
    (8,3)    0.909475
    (9,3)    0.84868
    (10,3)    0.564605
    (1,4)    0.075183
    (2,4)    0.535293
    (3,4)    0.072324
    (4,4)    0.515373
    (5,4)    0.926149
    (6,4)    0.949252
    (7,4)    0.0478888
    (8,4)    0.523767
    (9,4)    0.167203
    (10,4)    0.28341
    (1,5)    0.122669
    (2,5)    0.441267
    (3,5)    0.157113
    (4,5)    0.302479
    (5,5)    0.758486
    (6,5)    0.910563
    (7,5)    0.0246916
    (8,5)    0.232421
    (9,5)    0.38018
    (10,5)    0.677531
    (1,6)    0.869074
    (2,6)    0.471459
    (3,6)    0.624929
    (4,6)    0.987186
    (5,6)    0.282885
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    (6,6)    0.843833
    (7,6)    0.869597
    (8,6)    0.308209
    (9,6)    0.201332
    (10,6)    0.706603
    (1,7)    0.563222
    (2,7)    0.575795
    (3,7)    0.056376
    (4,7)    0.73412
    (5,7)    0.608022
    (6,7)    0.0400164
    (7,7)    0.540801
    (8,7)    0.023064
    (9,7)    0.165682
    (10,7)    0.250393
    (1,8)    0.23865
    (2,8)    0.232033
    (3,8)    0.303191
    (4,8)    0.579934
    (5,8)    0.267751
    (6,8)    0.916376
    (7,8)    0.833499
    (8,8)    0.978692
    (9,8)    0.734445
    (10,8)    0.102896
    (1,9)    0.353059
    (2,9)    0.738955
    (3,9)    0.57539
    (4,9)    0.751433
    (5,9)    0.93256
    (6,9)    0.281622
    (7,9)    0.51302
    (8,9)    0.24406
    (9,9)    0.950086
    (10,9)    0.303638
    (1,10)    0.563593
    (2,10)    0.705101
    (3,10)    0.0604146
    (4,10)    0.672065
    (5,10)    0.359793
    (6,10)    0.62931
    (7,10)    0.977758
    (8,10)    0.394328
    (9,10)    0.765651
    (10,10)    0.457809

That was disp(G,3), so every entry was printed. It's a little long, so the default is not to print everything.

With the default display (level = 2):

G
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G =

    10x10 GraphBLAS double matrix, standard CSC, 100 entries

    (1,1)    0.0342763
    (2,1)    0.17802
    (3,1)    0.887592
    (4,1)    0.889828
    (5,1)    0.769149
    (6,1)    0.00497062
    (7,1)    0.735693
    (8,1)    0.488349
    (9,1)    0.332817
    (10,1)    0.0273313
    (1,2)    0.467212
    (2,2)    0.796714
    (3,2)    0.849463
    (4,2)    0.965361
    (5,2)    0.902248
    (6,2)    0.0363252
    (7,2)    0.708068
    (8,2)    0.322919
    (9,2)    0.700716
    (10,2)    0.472957
    (1,3)    0.204363
    (2,3)    0.00931977
    (3,3)    0.565881
    (4,3)    0.183435
    (5,3)    0.00843818
    (6,3)    0.284938
    (7,3)    0.706156
    (8,3)    0.909475
    (9,3)    0.84868
    (10,3)    0.564605
    ...

That was disp(G,2) or just display(G), which is what is printed by a MATLAB statement that doesn't have
a trailing semicolon. With level = 1, disp(G,1) gives just a terse summary:

disp (G,1)

G =

    10x10 GraphBLAS double matrix, standard CSC, 100 entries

Storing a matrix by row or by column
MATLAB stores its sparse matrices by column, refered to as 'standard CSC' in SuiteSparse:GraphBLAS.
In the CSC (compressed sparse column) format, each column of the matrix is stored as a list of entries,
with their value and row index. In the CSR (compressed sparse row) format, each row is stored as a list
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of values and their column indices. GraphBLAS uses both CSC and CSR, and the two formats can be
intermixed arbitrarily. In its C interface, the default format is CSR. However, for better compatibility with
MATLAB, this MATLAB interface for SuiteSparse:GraphBLAS uses CSC by default instead.

rng ('default') ;
gb.clear ;                      % clear all prior GraphBLAS settings
fprintf ('the default format is: %s\n', gb.format) ;
C = sparse (rand (2))
G = gb (C)
gb.format (G)

the default format is: by col
C =
   (1,1)       0.8147
   (2,1)       0.9058
   (1,2)       0.1270
   (2,2)       0.9134

G =

    2x2 GraphBLAS double matrix, standard CSC, 4 entries

    (1,1)    0.814724
    (2,1)    0.905792
    (1,2)    0.126987
    (2,2)    0.913376

ans =
    'by col'

Many graph algorithms work better in CSR format, with matrices stored by row. For example, it is common
to use A(i,j) for the edge (i,j), and many graph algorithms need to access the out-adjacencies of nodes,
which is the row A(i,;) for node i. If the CSR format is desired, gb.format ('by row') tells GraphBLAS to
create all subsequent matrices in the CSR format. Converting from a MATLAB sparse matrix (in standard
CSC format) takes a little more time (requiring a transpose), but subsequent graph algorithms can be faster.

G = gb (C, 'by row')
fprintf ('the format of G is:    %s\n', gb.format (G)) ;
H = gb (C)
fprintf ('the format of H is:    %s\n', gb.format (H)) ;
err = norm (H-G,1)

G =

    2x2 GraphBLAS double matrix, standard CSR, 4 entries

    (1,1)    0.814724
    (1,2)    0.126987
    (2,1)    0.905792
    (2,2)    0.913376

the format of G is:    by row

H =
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    2x2 GraphBLAS double matrix, standard CSC, 4 entries

    (1,1)    0.814724
    (2,1)    0.905792
    (1,2)    0.126987
    (2,2)    0.913376

the format of H is:    by col
err =
     0

Hypersparse matrices
SuiteSparse:GraphBLAS can use two kinds of sparse matrix data structures: standard and hypersparse, for
both CSC and CSR formats. In the standard CSC format used in MATLAB, an m-by-n matrix A takes O(n
+nnz(A)) space. MATLAB can create huge column vectors, but not huge matrices (when n is huge).

clear all
[c, huge] = computer ;
C = sparse (huge, 1)    % MATLAB can create a huge-by-1 sparse column
try
    C = sparse (huge, huge)     % but this fails
catch me
    error_expected = me
end

C =
   All zero sparse: 281474976710655x1
error_expected = 
  MException with properties:

    identifier: 'MATLAB:array:SizeLimitExceeded'
       message: 'Requested 281474976710655x281474976710655
 (2097152.0GB) array exceeds maximum array size preference. Creation
 of arrays greater than this limit may take a long time and cause
 MATLAB to become unresponsive. See <a href="matlab: helpview([docroot
 '/matlab/helptargets.map'], 'matlab_env_workspace_prefs')">array size
 limit</a> or preference panel for more information.'
         cause: {}
         stack: [4x1 struct]
    Correction: []

In a GraphBLAS hypersparse matrix, an m-by-n matrix A takes only O(nnz(A)) space. The difference can
be huge if nnz (A) << n.

clear
[c, huge] = computer ;
G = gb (huge, 1)            % no problem for GraphBLAS
H = gb (huge, huge)         % this works in GraphBLAS too

G =

20



GraphBLAS: graph algorithms
in the language of linear algebra

    281474976710655x1 GraphBLAS double matrix, standard CSC, no
 entries

H =

    281474976710655x281474976710655 GraphBLAS double matrix,
 hypersparse CSC, no entries

Operations on huge hypersparse matrices are very fast; no component of the time or space complexity
is Omega(n).

I = randperm (huge, 2) ;
J = randperm (huge, 2) ;
H (I,J) = magic (2) ;        % add 4 nonzeros to random locations in H
H (I,I) = 10 * [1 2 ; 3 4] ; % so H^2 is not all zero
H = H^2 ;                    % square H
H = (H' * 2) ;               % transpose H and double the entries
K = pi * spones (H) ;
H = H + K                    % add pi to each entry in H

H =

    281474976710655x281474976710655 GraphBLAS double matrix,
 hypersparse CSC, 8 entries

    (27455183225557,27455183225557)    4403.14
    (78390279669562,27455183225557)    383.142
    (153933462881710,27455183225557)    343.142
    (177993304104065,27455183225557)    3003.14
    (27455183225557,177993304104065)    2003.14
    (78390279669562,177993304104065)    183.142
    (153933462881710,177993304104065)    143.142
    (177993304104065,177993304104065)    1403.14

numel uses vpa if the matrix is really huge
e1 = numel (G)               % this is huge, but still a flint
e2 = numel (H)               % this is huge^2, which needs vpa
whos e1 e2

e1 =
   2.8147e+14
e2 =
79228162514263774643590529025.0
  Name      Size            Bytes  Class     Attributes

  e1        1x1                 8  double              
  e2        1x1                 8  sym                 

All of these matrices take very little memory space:
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whos C G H K

  Name                    Size                         Bytes  Class   
 Attributes

  G         281474976710655x1                            989  gb      
           
  H         281474976710655x281474976710655             1308  gb      
           
  K         281474976710655x281474976710655             1308  gb      
           

The mask and accumulator
When not used in overloaded operators or built-in functions, many GraphBLAS methods of the form
gb.method ( ... ) can optionally use a mask and/or an accumulator operator. If the accumulator is '+' in
gb.mxm, for example, then C = C + A*B is computed. The mask acts much like logical indexing in MAT-
LAB. With a logical mask matrix M, C<M>=A*B allows only part of C to be assigned. If M(i,j) is true,
then C(i,j) can be modified. If false, then C(i,j) is not modified.

For example, to set all values in C that are greater than 0.5 to 3:

A = rand (3)
C = gb.assign (A, A > 0.5, 3) ;     % in GraphBLAS
C1 = gb (A) ; C1 (A > .5) = 3       % also in GraphBLAS
C2 = A      ; C2 (A > .5) = 3       % in MATLAB
err = norm (C - C1, 1)
err = norm (C - C2, 1)

A =
    0.9575    0.9706    0.8003
    0.9649    0.9572    0.1419
    0.1576    0.4854    0.4218

C1 =

    3x3 GraphBLAS double matrix, standard CSC, 9 entries

    (1,1)    3
    (2,1)    3
    (3,1)    0.157613
    (1,2)    3
    (2,2)    3
    (3,2)    0.485376
    (1,3)    3
    (2,3)    0.141886
    (3,3)    0.421761

C2 =
    3.0000    3.0000    3.0000
    3.0000    3.0000    0.1419
    0.1576    0.4854    0.4218
err =
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     0
err =
     0

The descriptor
Most GraphBLAS functions of the form gb.method ( ... ) take an optional last argument, called the de-
scriptor. It is a MATLAB struct that can modify the computations performed by the method. 'help gb.de-
scriptorinfo' gives all the details. The following is a short summary of the primary settings:

d.out = 'default' or 'replace', clears C after the accum op is used.

d.mask = 'default' or 'complement', to use M or ~M as the mask matrix.

d.in0 = 'default' or 'transpose', to transpose A for C=A*B, C=A+B, etc.

d.in1 = 'default' or 'transpose', to transpose B for C=A*B, C=A+B, etc.

d.kind = 'default', 'gb', 'sparse', or 'full'; the output of gb.method.

A = sparse (rand (2)) ;
B = sparse (rand (2)) ;
C1 = A'*B ;
C2 = gb.mxm ('+.*', A, B, struct ('in0', 'transpose')) ;
err = norm (C1-C2,1)

err =
     0

Integer arithmetic is different in GraphBLAS
MATLAB supports integer arithmetic on its full matrices, using int8, int16, int32, int64, uint8, uint16,
uint32, or uint64 data types. None of these integer data types can be used to construct a MATLAB sparse
matrix, which can only be double, double complex, or logical. Furthermore, C=A*B is not defined for
integer types in MATLAB, except when A and/or B are scalars.

GraphBLAS supports all of those types for its sparse matrices (except for complex, which will be added
in the future). All operations are supported, including C=A*B when A or B are any integer type, for all
1,865 semirings (1,040 of which are unique).

However, integer arithmetic differs in GraphBLAS and MATLAB. In MATLAB, integer values saturate
if they exceed their maximum value. In GraphBLAS, integer operators act in a modular fashion. The latter
is essential when computing C=A*B over a semiring. A saturating integer operator cannot be used as a
monoid since it is not associative.

The C API for GraphBLAS allows for the creation of arbitrary user-defined types, so it would be possible
to create different binary operators to allow element-wise integer operations to saturate, perhaps:

C = gb.eadd('+saturate',A,B)

This would require an extension to this MATLAB interface.

C = uint8 (magic (3)) ;
G = gb (C) ;
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C1 = C * 40
C2 = G * 40
C3 = double (G) * 40 ;
S = double (C1 < 255) ;
assert (isequal (double (C1).*S, double (C2).*S))
assert (isequal (nonzeros (C2), double (mod (nonzeros (C3), 256))))

C1 =
  3x3 uint8 matrix
   255    40   240
   120   200   255
   160   255    80

C2 =

    3x3 GraphBLAS uint8_t matrix, standard CSC, 9 entries

    (1,1)   64
    (2,1)   120
    (3,1)   160
    (1,2)   40
    (2,2)   200
    (3,2)   104
    (1,3)   240
    (2,3)   24
    (3,3)   80

An example graph algorithm: breadth-first
search

The breadth-first search of a graph finds all nodes reachable from the source node, and their level, v.
v=gb.bfs(A,s) or v=bfs_matlab(A,s) compute the same thing, but gb.bfs uses GraphBLAS matrices and
operations, while bfs_matlab uses pure MATLAB operations. v is defined as v(s) = 1 for the source node,
v(i) = 2 for nodes adjacent to the source, and so on.

clear all
rng ('default') ;
n = 1e5 ;
A = logical (sprandn (n, n, 1e-3)) ;

tic
v1 = gb.bfs (A, 1) ;
gb_time = toc ;

tic
v2 = bfs_matlab (A, 1) ;
matlab_time = toc ;

assert (isequal (double (v1'), v2))
fprintf ('\nnodes reached: %d of %d\n', nnz (v2), n) ;
fprintf ('GraphBLAS time: %g sec\n', gb_time) ;
fprintf ('MATLAB time:    %g sec\n', matlab_time) ;
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fprintf ('Speedup of GraphBLAS over MATLAB: %g\n', ...
    matlab_time / gb_time) ;

nodes reached: 100000 of 100000
GraphBLAS time: 0.653887 sec
MATLAB time:    0.457752 sec
Speedup of GraphBLAS over MATLAB: 0.700048

Example graph algorithm: Luby's method in
GraphBLAS

The gb.mis.m function is variant of Luby's randomized algorithm [Luby 1985]. It is a parallel method for
finding an maximal independent set of nodes, where no two nodes are adjacent. See the GraphBLAS/@gb/
gb.mis.m function for details. The graph must be symmetric with a zero-free diagonal, so A is symmetrized
first and any diagonal entries are removed.

A = gb (A) ;
A = gb.offdiag (A|A') ;

tic
s = gb.mis (A) ;
toc
fprintf ('# nodes in the graph: %g\n', size (A,1)) ;
fprintf ('# edges: : %g\n', gb.entries (A) / 2) ;
fprintf ('size of maximal independent set found: %g\n', ...
    full (double (sum (s)))) ;

% make sure it's independent
p = find (s) ;
S = A (p,p) ;
assert (gb.entries (S) == 0)

% make sure it's maximal
notp = find (s == 0) ;
S = A (notp, p) ;
deg = gb.vreduce ('+.int64', S) ;
assert (logical (all (deg > 0)))

Elapsed time is 0.429444 seconds.
# nodes in the graph: 100000
# edges: : 9.9899e+06
size of maximal independent set found: 2811

Sparse deep neural network
The 2019 MIT GraphChallenge (see http://graphchallenge.org) is to solve a set of large sparse deep neur-
al network problems. In this demo, the MATLAB reference solution is compared with a solution using
GraphBLAS, for a randomly constructed neural network. See the gb.dnn and dnn_matlab.m functions for
details.

clear all
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rng ('default') ;
nlayers = 16 ;
nneurons = 4096 ;
nfeatures = 30000 ;
fprintf ('# layers:   %d\n', nlayers) ;
fprintf ('# neurons:  %d\n', nneurons) ;
fprintf ('# features: %d\n', nfeatures) ;

tic
Y0 = sprand (nfeatures, nneurons, 0.1) ;
for layer = 1:nlayers
    W {layer} = sprand (nneurons, nneurons, 0.01) * 0.2 ;
    bias {layer} = -0.2 * ones (1, nneurons) ;
end
t_setup = toc ;
fprintf ('construct problem time: %g sec\n', t_setup) ;

% convert the problem from MATLAB to GraphBLAS
t = tic ;
[W_gb, bias_gb, Y0_gb] = dnn_mat2gb (W, bias, Y0) ;
t = toc (t) ;
fprintf ('setup time: %g sec\n', t) ;

# layers:   16
# neurons:  4096
# features: 30000
construct problem time: 5.82564 sec
setup time: 0.353485 sec

Solving the sparse deep neural network prob-
lem with GraphbLAS

Please wait ...

tic
Y1 = gb.dnn (W_gb, bias_gb, Y0_gb) ;
gb_time = toc ;
fprintf ('total time in GraphBLAS: %g sec\n', gb_time) ;

total time in GraphBLAS: 11.2218 sec

Solving the sparse deep neural network prob-
lem with MATLAB

Please wait ...

tic
Y2 = dnn_matlab (W, bias, Y0) ;
matlab_time = toc ;
fprintf ('total time in MATLAB:    %g sec\n', matlab_time) ;
fprintf ('Speedup of GraphBLAS over MATLAB: %g\n', ...
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    matlab_time / gb_time) ;

err = norm (Y1-Y2,1)

total time in MATLAB:    104.735 sec
Speedup of GraphBLAS over MATLAB: 9.33314
err =
     0

GraphBLAS has better colon notation than
MATLAB

The MATLAB notation C = A (start:inc:fini) is very handy, but in both the built-in operators and the
overloaded operators for objects, MATLAB starts by creating the explicit index vector I = start:inc:fini.
That's fine if the matrix is modest in size, but GraphBLAS can construct huge matrices (and MATLAB can
build huge sparse vectors as well). The problem is that 1:n cannot be explicitly constructed when n is huge.

GraphBLAS can represent the colon notation start:inc:fini in an implicit manner, and it can do the indexing
without actually forming the explicit list I = start:inc:fini.

Unfortunately, this means that the elegant MATLAB colon notation start:inc:fini cannot be used. To com-
pute C = A (start:inc:fini) for very huge matrices, you need to use use a cell array to represent the colon
notation, as { start, inc, fini }, instead of start:inc:fini. See 'help gb.extract' and 'help.gbsubassign' for, for
C(I,J)=A. The syntax isn't conventional, but it is far faster than the MATLAB colon notation, and takes
far less memory when I is huge.

n = 1e14 ;
H = gb (n, n) ;            % a huge empty matrix
I = [1 1e9 1e12 1e14] ;
M = magic (4)
H (I,I) = M ;
J = {1, 1e13} ;            % represents 1:1e13 colon notation
C1 = H (J, J)              % computes C1 = H (1:e13,1:1e13)
c = nonzeros (C1) ;
m = nonzeros (M (1:3, 1:3)) ;
assert (isequal (c, m)) ;

M =
    16     2     3    13
     5    11    10     8
     9     7     6    12
     4    14    15     1

C1 =

    10000000000000x10000000000000 GraphBLAS double matrix, hypersparse
 CSC, 9 entries

    (1,1)    16
    (1000000000,1)    5
    (1000000000000,1)    9
    (1,1000000000)    2
    (1000000000,1000000000)    11
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    (1000000000000,1000000000)    7
    (1,1000000000000)    3
    (1000000000,1000000000000)    10
    (1000000000000,1000000000000)    6

try
    % try to compute the same thing with colon
    % notation (1:1e13), but this fails:
    C2 = H (1:1e13, 1:1e13)
catch me
    error_expected = me
end

error_expected = 
  MException with properties:

    identifier: 'MATLAB:array:SizeLimitExceeded'
       message: 'Requested 10000000000000x1 (74505.8GB) array exceeds
 maximum array size preference. Creation of arrays greater than this
 limit may take a long time and cause MATLAB to become unresponsive.
 See <a href="matlab: helpview([docroot '/matlab/helptargets.map'],
 'matlab_env_workspace_prefs')">array size limit</a> or preference
 panel for more information.'
         cause: {}
         stack: [4x1 struct]
    Correction: []

Iterative solvers work as-is
Many built-in functions work with GraphBLAS matrices unmodified.

A = sparse (rand (4)) ;
b = sparse (rand (4,1)) ;
x = gmres (A,b)
norm (A*x-b)
x = gmres (gb(A), gb(b))
norm (A*x-b)

gmres converged at iteration 4 to a solution with relative residual 0.
x =
    0.9105
    3.8949
   -0.5695
   -1.3867
ans =
   8.6711e-16
gmres converged at iteration 4 to a solution with relative residual 0.
x =
    0.9105
    3.8949
   -0.5695
   -1.3867
ans =
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   7.2802e-16

... even in single precision
x = gmres (gb(A,'single'), gb(b,'single'))
norm (A*x-b)

gmres converged at iteration 4 to a solution with relative residual 0.
x =
    0.9105
    3.8949
   -0.5695
   -1.3867
ans =
   3.6346e-07

Both of the following uses of minres (A,b) fail to converge because A is not symmetric, as the method
requires. Both failures are correctly reported, and both the MATLAB version and the GraphBLAS version
return the same incorrect vector x.

x = minres (A, b)
x = minres (gb(A), gb(b))

minres stopped at iteration 4 without converging to the desired
 tolerance 1e-06
because the maximum number of iterations was reached.
The iterate returned (number 4) has relative residual 0.21.
x =
    0.2489
    0.2081
    0.0700
    0.3928
minres stopped at iteration 4 without converging to the desired
 tolerance 1e-06
because the maximum number of iterations was reached.
The iterate returned (number 4) has relative residual 0.21.

x =

    4x1 GraphBLAS double matrix, standard CSC, 4 entries

    (1,1)    0.248942
    (2,1)    0.208128
    (3,1)    0.0699707
    (4,1)    0.392812

With a proper symmetric matrix

A = A+A' ;
x = minres (A, b)
norm (A*x-b)
x = minres (gb(A), gb(b))
norm (A*x-b)
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minres converged at iteration 4 to a solution with relative residual
 1.3e-11.
x =
 -114.0616
   -1.4211
  134.8227
    2.0694
ans =
   1.3650e-11
minres converged at iteration 4 to a solution with relative residual
 1.3e-11.

x =

    4x1 GraphBLAS double matrix, standard CSC, 4 entries

    (1,1)    -114.062
    (2,1)    -1.4211
    (3,1)    134.823
    (4,1)    2.0694

ans =
   1.3650e-11

Extreme performance differences between
GraphBLAS and MATLAB.

The GraphBLAS operations used so far are perhaps 2x to 50x faster than the corresponding MATLAB
operations, depending on how many cores your computer has. To run a demo illustrating a 500x or more
speedup versus MATLAB, run this demo:

  gbdemo2

It will illustrate an assignment C(I,J)=A that can take under a second in GraphBLAS but several minutes
in MATLAB. To make the comparsion even more dramatic, try:

  gbdemo2 (20000)

assuming you have enough memory. The gbdemo2 is not part of this demo since it can take a long time;
it tries a range of problem sizes, and each one takes several minutes in MATLAB.

Sparse logical indexing is much, much faster
in GraphBLAS

The mask in GraphBLAS acts much like logical indexing in MATLAB, but it is not quite the same. MAT-
LAB logical indexing takes the form:

     C (M) = A (M)

which computes the same thing as the GraphBLAS statement:

     C = gb.assign (C, M, A)
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The gb.assign statement computes C(M)=A(M), and it is vastly faster than C(M)=A(M), even if the time
to convert the gb matrix back to a MATLAB sparse matrix is included.

GraphBLAS can also compute C (M) = A (M) using overloaded operators for subsref and subsasgn, but
C = gb.assign (C, M, A) is a bit faster.

First, both methods in GraphBLAS (both are very fast):

clear
n = 4000 ;
tic
C = sprand (n, n, 0.1) ;
A = 100 * sprand (n, n, 0.1) ;
M = (C > 0.5) ;
t_setup = toc ;
fprintf ('nnz(C): %g, nnz(M): %g, nnz(A): %g\n', ...
    nnz(C), nnz(M), nnz(A)) ;
fprintf ('\nsetup time:     %g sec\n', t_setup) ;

% include the time to convert C1 from a GraphBLAS
% matrix to a MATLAB sparse matrix:
tic
C1 = gb.assign (C, M, A) ;
C1 = double (C1) ;
gb_time = toc ;
fprintf ('\nGraphBLAS time: %g sec for gb.assign\n', gb_time) ;

% now using overloaded operators, also include the time to
% convert back to a MATLAB sparse matrix, for good measure:
A2 = gb (A) ;
C2 = gb (C) ;
tic
C2 (M) = A2 (M) ;
C2 = double (C2) ;
gb_time2 = toc ;
fprintf ('\nGraphBLAS time: %g sec for C(M)=A(M)\n', gb_time2) ;

nnz(C): 1.5226e+06, nnz(M): 761163, nnz(A): 1.52245e+06

setup time:     1.05699 sec

GraphBLAS time: 0.053321 sec for gb.assign

GraphBLAS time: 0.106393 sec for C(M)=A(M)

Please wait, this will take about 10 minutes or so ...

tic
C (M) = A (M) ;
matlab_time = toc ;

fprintf ('\nGraphBLAS time: %g sec (gb.assign)\n', gb_time) ;
fprintf ('\nGraphBLAS time: %g sec (overloading)\n', gb_time2) ;
fprintf ('MATLAB time:    %g sec\n', matlab_time) ;
fprintf ('Speedup of GraphBLAS over MATLAB: %g\n', ...
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    matlab_time / gb_time2) ;

% GraphBLAS computes the exact same result with both methods:
assert (isequal (C1, C))
assert (isequal (C2, C))
C1 - C
C2 - C

GraphBLAS time: 0.053321 sec (gb.assign)

GraphBLAS time: 0.106393 sec (overloading)
MATLAB time:    724.02 sec
Speedup of GraphBLAS over MATLAB: 6805.15
ans =
   All zero sparse: 4000x4000
ans =
   All zero sparse: 4000x4000

Limitations and their future solutions
The MATLAB interface for SuiteSparse:GraphBLAS is a work-in-progress. It has some limitations, most
of which will be resolved over time.

(1) Nonblocking mode:

GraphBLAS has a 'non-blocking' mode, in which operations can be left pending and completed later.
SuiteSparse:GraphBLAS uses the non-blocking mode to speed up a sequence of assignment operations,
such as C(I,J)=A. However, in its MATLAB interface, this would require a MATLAB mexFunction to
modify its inputs. That breaks the MATLAB API standard, so it cannot be safely done. As a result, using
GraphBLAS via its MATLAB interface can be slower than when using its C API. This restriction would
not be a limitation if GraphBLAS were to be incorporated into MATLAB itself, but there is likely no way
to do this in a mexFunction interface to GraphBLAS.

(2) Complex matrices:

GraphBLAS can operate on matrices with arbitrary user-defined types and operators. The only constraint
is that the type be a fixed sized typedef that can be copied with the ANSI C memcpy; variable-sized types
are not yet supported. However, in this MATLAB interface, SuiteSparse:GraphBLAS has access to only
predefined types, operators, and semirings. Complex types and operators will be added to this MATLAB
interface in the future. They already appear in the C version of GraphBLAS, with user-defined operators
in GraphBLAS/Demo/Source/usercomplex.c.

(3) Integer element-wise operations:

Integer operations in MATLAB saturate, so that uint8(255)+1 is 255. To allow for integer monoids, Graph-
BLAS uses modular arithmetic instead. This is the only way that C=A*B can be defined for integer semi-
rings. However, saturating integer operators could be added in the future, so that element- wise integer op-
erations on GraphBLAS sparse integer matrices could work just the same as their MATLAB counterparts.

So in the future, you could perhaps write this, for both sparse and dense integer matrices A and B:

     C = gb.eadd ('+saturate.int8', A, B)

to compute the same thing as C=A+B in MATLAB for its full int8 matrices. % Note that MATLAB can
do this only for dense integer matrices, since it doesn't support sparse integer matrices.
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(4) Faster methods:

Most methods in this MATLAB interface are based on efficient parallel C functions in GraphBLAS itself,
and are typically as fast or faster than the equivalent built-in operators and functions in MATLAB.

There are few notable exceptions; these will be addressed in the future. Dense matrices and vectors held
as GraphBLAS objects are slower than their MATLAB counterparts. horzcat and vertcat, for [A B] and
[A;B] when either A or B are GraphBLAS matrices, are also slow, as illustrated below in the next example.

Other methods that will be faster in the future include bandwidth, istriu, istril, eps, ceil, floor, round, fix,
isfinite, isinf, isnan, spfun, and A.^B. These methods are currently implemented in m-files, not in efficient
parallel C functions.

Here is an example that illustrates the performance of C = [A B]

clear
A = sparse (rand (2000)) ;
B = sparse (rand (2000)) ;
tic
C1 = [A B] ;
matlab_time = toc ;

A = gb (A) ;
B = gb (B) ;
tic
C2 = [A B] ;
gb_time = toc ;

err = norm (C1-C2,1)
fprintf ('\nMATLAB: %g sec, GraphBLAS: %g sec\n', ...
    matlab_time, gb_time) ;
if (gb_time > matlab_time)
    fprintf ('GraphBLAS is slower by a factor of %g\n', ...
        gb_time / matlab_time) ;
end

err =
     0

MATLAB: 0.036671 sec, GraphBLAS: 0.121573 sec
GraphBLAS is slower by a factor of 3.31524

(5) Linear indexing:

If A is an m-by-n 2D MATLAB matrix, with n > 1, A(:) is a column vector of length m*n. The index
operation A(i) accesses the ith entry in the vector A(:). This is called linear indexing in MATLAB. It is not
yet available for GraphBLAS matrices in this MATLAB interface to GraphBLAS, but it could be added
in the future.

(6) Implicit binary expansion

In MATLAB C=A+B where A is m-by-n and B is a 1-by-n row vector implicitly expands B to a matrix,
computing C(i,j)=A(i,j)+B(j). This implicit expansion is not yet suported in GraphBLAS with C=A+B.
However, it can be done with C = gb.mxm ('+.+', A, diag(gb(B))). That's an nice example of the power of
semirings, but it's not immediately obvious, and not as clear a syntax as C=A+B. The GraphBLAS/@gb/
dnn.m function uses this 'plus.plus' semiring to apply the bias to each neuron.
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A = magic (3)
B = 1000:1000:3000
C1 = A + B
C2 = gb.mxm ('+.+', A, diag (gb (B)))
err = norm (C1-C2,1)

A =
     8     1     6
     3     5     7
     4     9     2
B =
        1000        2000        3000
C1 =
        1008        2001        3006
        1003        2005        3007
        1004        2009        3002

C2 =

    3x3 GraphBLAS double matrix, standard CSC, 9 entries

    (1,1)    1008
    (2,1)    1003
    (3,1)    1004
    (1,2)    2001
    (2,2)    2005
    (3,2)    2009
    (1,3)    3006
    (2,3)    3007
    (3,3)    3002

err =
     0

(7) Other features are not yet in place, such as:

S = sparse (i,j,x) allows either i or j, and x, to be scalars, which are implicitly expanded. This is not yet
supported by gb.build.

GraphBLAS operations
In addition to the overloaded operators (such as C=A*B) and overloaded functions (such as L=tril(A)),
GraphBLAS also has methods of the form gb.method, listed on the next page. Most of them take an optional
input matrix Cin, which is the initial value of the matrix C for the expression below, an optional mask
matrix M, and an optional accumulator operator.

    C<#M,replace> = accum (C, T)

In the above expression, #M is either empty (no mask), M (with a mask matrix) or ~M (with a comple-
mented mask matrix), as determined by the descriptor. 'replace' can be used to clear C after it is used in
accum(C,T) but before it is assigned with C<...> = Z, where Z=accum(C,T). The matrix T is the result of
some operation, such as T=A*B for gb.mxm, or T=op(A,B) for gb.eadd.

A summary of these gb.methods is on the next pages.
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Methods for the gb class:
These methods operate on GraphBLAS matrices only, and they overload
the existing MATLAB functions of the same name.

C = gb (...)            construct a GraphBLAS matrix
C = sparse (G)          makes a copy of a gb matrix
C = full (G, ...)       adds explicit zeros or id values to a gb
 matrix
C = double (G)          cast gb matrix to MATLAB sparse double matrix
C = logical (G)         cast gb matrix to MATLAB sparse logical matrix
C = complex (G)         cast gb matrix to MATLAB sparse complex
C = single (G)          cast gb matrix to MATLAB full single matrix
C = int8 (G)            cast gb matrix to MATLAB full int8 matrix
C = int16 (G)           cast gb matrix to MATLAB full int16 matrix
C = int32 (G)           cast gb matrix to MATLAB full int32 matrix
C = int64 (G)           cast gb matrix to MATLAB full int64 matrix
C = uint8 (G)           cast gb matrix to MATLAB full uint8 matrix
C = uint16 (G)          cast gb matrix to MATLAB full uint16 matrix
C = uint32 (G)          cast gb matrix to MATLAB full uint32 matrix
C = uint64 (G)          cast gb matrix to MATLAB full uint64 matrix
C = cast (G,...)        cast gb matrix to MATLAB matrix (as above)

X = nonzeros (G)        extract all entries from a gb matrix
[I,J,X] = find (G)      extract all entries from a gb matrix
C = spones (G)          return pattern of gb matrix
disp (G, level)         display a gb matrix G
display (G)             display a gb matrix G; same as disp(G,2)
mn = numel (G)          m*n for an m-by-n gb matrix G
e = nnz (G)             number of entries in a gb matrix G
e = nzmax (G)           number of entries in a gb matrix G
[m n] = size (G)        size of a gb matrix G
n = length (G)          length of a gb vector
s = isempty (G)         true if any dimension of G is zero
s = issparse (G)        true for any gb matrix G
s = ismatrix (G)        true for any gb matrix G
s = isvector (G)        true if m=1 or n=1, for an m-by-n gb matrix G
s = iscolumn (G)        true if n=1, for an m-by-n gb matrix G
s = isrow (G)           true if m=1, for an m-by-n gb matrix G
s = isscalar (G)        true if G is a 1-by-1 gb matrix
s = isnumeric (G)       true for any gb matrix G (even logical)
s = isfloat (G)         true if gb matrix is double, single, complex
s = isreal (G)          true if gb matrix is not complex
s = isinteger (G)       true if gb matrix is int8, int16, ..., uint64
s = islogical (G)       true if gb matrix is logical
s = isa (G, classname)  check if a gb matrix is of a specific class

C = diag (G,k)          diagonal matrices and diagonals of gb matrix G
L = tril (G,k)          lower triangular part of gb matrix G
U = triu (G,k)          upper triangular part of gb matrix G
C = kron (A,B)          Kronecker product
C = repmat (G, ...)     replicate and tile a GraphBLAS matrix
C = reshape (G, ...)    reshape a GraphBLAS matrix
C = abs (G)             absolute value
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C = sign (G)            signum function
s = istril (G)          true if G is lower triangular
s = istriu (G)          true if G is upper triangular
s = isbanded (G,...)    true if G is banded
s = isdiag (G)          true if G is diagonal
s = ishermitian (G)     true if G is Hermitian
s = issymmetric (G)     true if G is symmetric
[lo,hi] = bandwidth (G) determine the lower & upper bandwidth of G
C = sum (G, option)     reduce via sum, to vector or scalar
C = prod (G, option)    reduce via product, to vector or scalar
s = norm (G, kind)      1-norm or inf-norm of a gb matrix
C = max (G, ...)        reduce via max, to vector or scalar
C = min (G, ...)        reduce via min, to vector or scalar
C = any (G, ...)        reduce via '|', to vector or scalar
C = all (G, ...)        reduce via '&', to vector or scalar

C = sqrt (G)            element-wise square root
C = eps (G)             floating-point spacing
C = ceil (G)            round towards infinity
C = floor (G)           round towards -infinity
C = round (G)           round towards nearest
C = fix (G)             round towards zero
C = isfinite (G)        test if finite
C = isinf (G)           test if infinite
C = isnan (G)           test if NaN
C = spfun (fun, G)      evaluate a function on the entries of G
p = amd (G)             approximate minimum degree ordering
p = colamd (G)          column approximate minimum degree ordering
p = symamd (G)          approximate minimum degree ordering
p = symrcm (G)          reverse Cuthill-McKee ordering
[...] = dmperm (G)      Dulmage-Mendelsohn permutation
parent = etree (G)      elimination tree
C = conj (G)            complex conjugate
C = real (G)            real part of a complex GraphBLAS matrix
[V, ...] = eig (G,...)  eigenvalues and eigenvectors
assert (G)              generate an error if G is false
C = zeros (...,'like',G)   all-zero matrix, same type as G
C = false (...,'like',G)   all-false logical matrix
C = ones (...,'like',G)    matrix with all ones, same type as G

Operator overloading:
C = plus (A, B)         C = A + B
C = minus (A, B)        C = A - B
C = uminus (G)          C = -G
C = uplus (G)           C = +G
C = times (A, B)        C = A .* B
C = mtimes (A, B)       C = A * B
C = rdivide (A, B)      C = A ./ B
C = ldivide (A, B)      C = A .\ B
C = mrdivide (A, B)     C = A / B
C = mldivide (A, B)     C = A \ B
C = power (A, B)        C = A .^ B
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C = mpower (A, B)       C = A ^ B
C = lt (A, B)           C = A < B
C = gt (A, B)           C = A > B
C = le (A, B)           C = A <= B
C = ge (A, B)           C = A >= B
C = ne (A, B)           C = A ~= B
C = eq (A, B)           C = A == B
C = and (A, B)          C = A & B
C = or (A, B)           C = A | B
C = not (G)             C = ~G
C = ctranspose (G)      C = G'
C = transpose (G)       C = G.'
C = horzcat (A, B)      C = [A , B]
C = vertcat (A, B)      C = [A ; B]
C = subsref (A, I, J)   C = A (I,J) or C = A (M)
C = subsasgn (A, I, J)  C (I,J) = A
index = end (A, k, n)   for object indexing, A(1:end,1:end)

Static Methods:
The Static Methods for the gb class can be used on input matrices of
any kind: GraphBLAS sparse matrices, MATLAB sparse matrices, or
MATLAB dense matrices, in any combination.  The output matrix Cout is
a GraphBLAS matrix, by default, but can be optionally returned as a
MATLAB sparse or dense matrix.  The static methods divide into two
categories: those that perform basic functions, and the GraphBLAS
operations that use the mask/accum.

GraphBLAS basic functions:
gb.clear                    clear GraphBLAS workspace and settings
gb.descriptorinfo (d)       list properties of a descriptor
gb.unopinfo (op, type)      list properties of a unary operator
gb.binopinfo (op, type)     list properties of a binary operator
gb.monoidinfo (op, type)    list properties of a monoid
gb.semiringinfo (s, type)   list properties of a semiring
t = gb.threads (t)          set/get # of threads to use in GraphBLAS
c = gb.chunk (c)            set/get chunk size to use in GraphBLAS
result = gb.entries (G,...) count or query entries in a matrix
result = gb.nonz (G,...)    count or query nonzeros in a matrix
C = gb.prune (A, id)        prune entries equal to id
C = gb.offdiag (A)          prune diagonal entries
s = gb.isfull (A)           true if all entries present
[C,I,J] = gb.compact (A,id) remove empty rows and columns
G = gb.empty (m, n)         return an empty GraphBLAS matrix
s = gb.type (A)             get the type of a MATLAB or gb matrix A
s = gb.issigned (type)      true if type is signed
f = gb.format (f)           set/get matrix format to use in GraphBLAS
s = gb.isbyrow (A)          true if format f A is 'by row'
s = gb.isbycol (A)          true if format f A is 'by col'
C = gb.expand (scalar, A)   expand a scalar (C = scalar*spones(A))
C = gb.eye                  identity matrix of any type
C = gb.speye                identity matrix (of type 'double')
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C = gb.build (I, J, X, m, n, dup, type, desc)
                            build a gb matrix from list of entries
[I,J,X] = gb.extracttuples (A, desc)
                            extract all entries from a matrix

GraphBLAS operations with Cout, mask M, and
accum.

Cout = gb.mxm (Cin, M, accum, semiring, A, B, desc)
                sparse matrix-matrix multiplication over a semiring
Cout = gb.select (Cin, M, accum, op, A, thunk, desc)
                select a subset of entries from a matrix
Cout = gb.assign (Cin, M, accum, A, I, J, desc)
                sparse matrix assignment, such as C(I,J)=A
Cout = gb.subassign (Cin, M, accum, A, I, J, desc)
                sparse matrix assignment, such as C(I,J)=A
Cout = gb.vreduce (Cin, M, accum, op, A, desc)
                reduce a matrix to a vector
Cout = gb.reduce (Cin, accum, op, A, desc)
                reduce a matrix to a scalar
Cout = gb.gbkron (Cin, M, accum, op, A, B, desc)
                Kronecker product
Cout = gb.gbtranspose (Cin, M, accum, A, desc)
                transpose a matrix
Cout = gb.eadd (Cin, M, accum, op, A, B, desc)
                element-wise addition
Cout = gb.emult (Cin, M, accum, op, A, B, desc)
                element-wise multiplication
Cout = gb.apply (Cin, M, accum, op, A, desc)
                apply a unary operator
Cout = gb.extract (Cin, M, accum, A, I, J, desc)
                extract submatrix, like C=A(I,J) in MATLAB

GraphBLAS operations (with Cout, Cin arguments) take the following form:

C<#M,replace> = accum (C, operation (A or A', B or B'))

C is both an input and output matrix.  In this MATLAB interface to
GraphBLAS, it is split into Cin (the value of C on input) and Cout
(the value of C on output).  M is the optional mask matrix, and #M is
either M or !M depending on whether or not the mask is complemented
via the desc.mask option.  The replace option is determined by
desc.out; if present, C is cleared after it is used in the accum
operation but before the final assignment.  A and/or B may optionally
be transposed via the descriptor fields desc.in0 and desc.in1,
respectively.  To select the format of Cout, use desc.format.  See
gb.descriptorinfo for more details.

accum is optional; if not is not present, then the operation becomes
C<...> = operation(A,B).  Otherwise, C = C + operation(A,B) is
computed where '+' is the accum operator.  It acts like a sparse
matrix addition (see gb.eadd), in terms of the structure of the
result C, but any binary operator can be used.
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The mask M acts like MATLAB logical indexing.  If M(i,j)=1 then
C(i,j) can be modified; if zero, it cannot be modified by the
operation.

Static Methods for graph algorithms:
r = gb.pagerank (A, opts) ;            % PageRank of a matrix
C = gb.ktruss (A, k, check) ;          % k-truss
s = gb.tricount (A, check) ;           % triangle count
L = gb.laplacian (A, type, check) ;    % Laplacian graph
C = gb.incidence (A, ...) ;            % incidence matrix
[v, parent] = gb.bfs (A, s, ...) ;     % breadth-first search
iset = gb.mis (A, check) ;             % maximal independent set
Y = gb.dnn (W, bias, Y0) ;             % deep neural network

More graph algorithms will be added in the future.

Thanks for watching!

Tim Davis, Texas A&M University, http://faculty.cse.tamu.edu/davis See also sparse, doc sparse, and
https://twitter.com/DocSparse

Published with MATLAB® R2019b
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