
MATLAB test suite for
SuiteSparse:GraphBLAS

Timothy A. Davis
davis@tamu.edu, Texas A&M University.

http://suitesparse.com and http://aldenmath.com

September 1, 2020

SuiteSparse:GraphBLAS includes a MATLAB implementation of nearly
the entire GraphBLAS specification, including all built-in types and oper-
ators. The typecasting rules and integer operator rules from GraphBLAS
are implemented in MATLAB via mexFunctions that call the GraphBLAS
routines in C. All other functions are written purely in MATLAB M-files,
and are given names of the form GB_spec_*. All of these MATLAB inter-
faces and M-file functions they are provided in the software distribution of
SuiteSparse:GraphBLAS. The purpose of this is two-fold:

• Illustration and documentation: MATLAB is so expressive, and
so beautiful to read and write, that the GB_spec_* functions read al-
most like the exact specifications from the GraphBLAS API. Excerpts
and condensed versions of these functions appear in the User Guide.
The reader can benefit from studying the GB_spec_* functions to un-
derstand what a GraphBLAS operation is computing. For example, in
the User Guide, GrB_mxm includes a condensed and simplified version
of GB_spec_mxm.

• Testing: Testing the C interface to SuiteSparse:GraphBLAS is a sig-
nificant challenge since it supports so many different kinds of operations
on a vast range of semirings. It is difficult to tell from looking at the
result from a C function in GraphBLAS if the result is correct. Thus,
each function has been written twice: once in a highly-optimized func-
tion in C, and again in a simple and elegant MATLAB function. The

1



latter is almost a direct translation of all the mathematics behind the
GraphBLAS API, so it is much easier to visually inspect the GB_spec_*
version in MATLAB to ensure the correct mathematics are being com-
puted.

The following functions are included in the SuiteSparse:GraphBLAS soft-
ware distribution. Each has a name of the form GB_spec_*, and each of them
is a “mimic” of a corresponding C function in GraphBLAS. Not all functions
in the C API have a corresponding mimic; in particular, many of the vector
functions can be computed directly with the corresponding matrix version in
the MATLAB implementations. A list of these files is shown below:

MATLAB GB_spec function corresponding GraphBLAS
function or method

GB_spec_accum.m Z = C�T
GB_spec_mask.m C〈M〉 = Z
GB_spec_accum_mask.m C〈M〉 = C�T
GB_spec_Vector_extractElement.m GrB_Vector_extractElement

GB_spec_build.m GrB_Matrix_build

GB_spec_Matrix_extractElement.m GrB_Matrix_extractElement

GB_spec_extractTuples.m GrB_Matrix_extractTuples

GB_spec_mxm.m GrB_mxm

GB_spec_vxm.m GrB_vxm

GB_spec_mxv.m GrB_mxv

GB_spec_Vector_eWiseMult.m GrB_Vector_eWiseMult

GB_spec_Matrix_eWiseMult.m GrB_Matrix_eWiseMult

GB_spec_Vector_eWiseAdd.m GrB_Vector_eWiseAdd

GB_spec_Matrix_eWiseAdd.m GrB_Matrix_eWiseAdd

GB_spec_Vector_extract.m GrB_Vector_extract

GB_spec_Matrix_extract.m GrB_Matrix_extract

GB_spec_Col_extract.m GrB_Col_extract

GB_spec_subassign.m GxB_subassign

GB_spec_assign.m GrB_assign

GB_spec_apply.m GrB_apply

GB_spec_select.m GxB_select

GB_spec_reduce_to_vector.m GrB_reduce (to vector)
GB_spec_reduce_to_scalar.m GrB_reduce (to scalar)
GB_spec_transpose.m GrB_transpose

GB_spec_kron.m GrB_kronecker

Additional files are included for creating test problems and providing
inputs to the above files, or supporting functions:

2



MATLAB GB_spec function purpose
GB_spec_compare.m Compares output of C and MATLAB functions
GB_spec_random.m Generates a random matrix
GB_spec_op.m MATLAB mimic of built-in operators
GB_spec_operator.m Like GrB_*Op_new
GB_spec_opsall.m List operators, types, and semirings
GB_spec_semiring.m Like GrB_Semiring_new
GB_spec_descriptor.m mimics a GraphBLAS descriptor
GB_spec_identity.m returns the identity of a monoid
GB_spec_matrix.m conforms a MATLAB sparse matrix to GraphBLAS
GB_define.m creates draft of GraphBLAS.h

An intensive test suite has been written that generates test graphs in
MATLAB, then computes the result in both the C version of the Suite-
Sparse:GraphBLAS and in the MATLAB GB_spec_* functions. Each C func-
tion in GraphBLAS has a direct mexFunction interface that allow the test
suite in MATLAB to call both functions.

This approach has its limitations:

• matrix classes: MATLAB only supports sparse double, sparse double
complex, and sparse logical matrices. MATLAB can represent dense
matrices in all 13 built-in GraphBLAS data types, so in all these spec-
ification M-files, the matrices are either in dense format in the corre-
sponding MATLAB class, or they are held as sparse double or sparse
logical, and the actual GraphBLAS type is held with it as a string
member of a MATLAB struct. To ensure the correct typecasting is
computed, most of the MATLAB scripts work on dense matrices, not
sparse ones. As a result, the MATLAB GB_spec_* function are not
meant for production use, but just for testing and illustration.

• integer operations: MATLAB and GraphBLAS handle integer op-
erations differently. In MATLAB, an integer result outside the range
of the integer is set to maximum or minimum integer. For example,
int8(127)+1 is 127. This is useful for many computations such as
image processing, but GraphBLAS follows the C rules instead, where
integer values wrap, modulo style. For example, in GraphBLAS and
in C, incrementing (int8_t) 127 by one results in -128. Of course,
an alternative would be for a MATLAB interface to create its own
integer operators, each of which would follow the MATLAB integer
rules of arithmetic. However, this would obscure the purpose of these
GB_spec_* and GB_mex_* test functions, which is to test the C API of

3



GraphBLAS. When the GB_spec_* functions need to perform integer
computations and typecasting, they call GraphBLAS to do the work,
instead doing the work in MATLAB. This ensures that the GB_spec_*

functions obtain the same results as their GraphBLAS counterparts.

• elegance: to simplify testing, each MATLAB mexFunction interface a
GraphBLAS function is a direct translation of the C API. For example,
GB_mex_mxm is a direct interface to the GraphBLAS GrB_mxm, even
down the order of parameters. This approach abandons some of the
potential features of MATLAB for creating elegant M-file interfaces in a
highly usable form, such as the ability to provide fewer parameters when
optional parameters are not in use. These mexFunctions, as written,
are not meant to be usable in a user application. They are not highly
documented. They are meant to be fast, and direct, to accomplish the
goal of testing SuiteSparse:GraphBLAS in MATLAB and comparing
their results with the corresponding GB_spec_* function. They are not
recommended for use in general applications in MATLAB.

• generality: the MATLAB mexFunction interface needs to test the C
API directly, so it must access content of SuiteSparse:GraphBLAS ob-
jects that are normally opaque to an end user application. As a result,
these mexFunctions do not serve as a general interface to any conform-
ing GraphBLAS implementation, but only to SuiteSparse:GraphBLAS.

In the MATLAB mimic functions, GB_spec_*, a GraphBLAS matrix A is
represented as a MATLAB struct with the following components:

• A.matrix: the values of the matrix. If A.matrix is a sparse double ma-
trix, it holds a typecasted copy of the values of a GraphBLAS matrix,
unless the GraphBLAS matrix is also double (GrB_FP64).

• A.pattern: a logical matrix holding the pattern; A.pattern(i,j)=true
if (i,j) is in the pattern of A, and false otherwise.

• A.class: the MATLAB class of the matrix corresponding to one of the
13 built-in types. Normally this is simply class(A.matrix).

• A.values: most of the GraphBLAS test mexFunctions return their
result as a MATLAB sparse matrix, in the double class. This works
well for all types except for the 64-bit integer types, since a double has

4



about 54 bits of mantissa which is less than the 64 bits available in a
long integer. To ensure no bits are lots, these values are also returned as
a vector. This enables GB_spec_compare to ensure the test results are
identical down to the very last bit, and not just to within roundoff error.
Nearly all tests, even in double precision, check for perfect equality, not
just for results accurate to within round-off error.

5


