
i

wxWindows 2.1: A portable C++ and Python GUI toolkit

Julian Smart, Robert Roebling, Vadim Zeitlin, Robin Dunn, et al

November 8th 1999

i

Contents

Introduction ...1
What is wxWindows?..1

Why another cross-platform development tool?...1

Changes from version 1.xx ...2

wxWindows requirements ...3

Availability and location of wxWindows ...4

Acknowledgments ..4

Multi-platform development with wxWindows..6
Include files ..6

Libraries ...6

Configuration ..6

Makefiles ..7

Windows-specific files...7

Allocating and deleting wxWindows objects ..8

Architecture dependency ..8

Conditional compilation...9

C++ issues ...9

File handling...10

Programming strategies ...11
Strategies for reducing programming errors ..11

Strategies for portability ..11

Strategies for debugging...11

Alphabetical class reference..1
wxAcceleratorEntry...1

wxAcceleratorTable ..2

wxActivateEvent ...5

wxApp ..6

wxArray ..16

wxArrayString ...26

wxAutomationObject...32

wxBitmap..36

wxBitmapHandler ...48

wxBitmapButton ...52

wxBitmapDataObject ..57

wxBoxSizer ..58

CONTENTS

ii

wxBrush ...60

wxBrushList ..66

wxBusyCursor ..67

wxBusyInfo...68

wxButton ..69

wxBufferedInputStream ..72

wxBufferedOutputStream..72

wxCalculateLayoutEvent...73

wxCheckBox ..74

wxCheckListBox ...77

wxChoice..79

wxClassInfo..84

wxClientDC ..86

wxClipboard ...87

wxCloseEvent...89

wxColour ..91

wxColourData...94

wxColourDatabase ...96

wxColourDialog ..98

wxComboBox ...99

wxCommand ..106

wxCommandEvent ...108

wxCommandProcessor...113

wxCondition..115

wxConfigBase ..117

wxControl ...130

wxCriticalSection ..131

wxCriticalSectionLocker..132

wxCustomDataObject ...133

wxCursor ..135

wxDatabase..139

wxDataFormat ..145

wxDataObject ...148

wxDataObjectComposite ..151

wxDataObjectSimple ..152

wxDataInputStream ..154

wxDataOutputStream ...156

wxDate ...157

wxDC ...165

wxDDEClient ..181

CONTENTS

iii

wxDDEConnection ...182

wxDDEServer...186

wxDebugContext ..187

wxDebugStreamBuf..192

wxDialog ..193

wxDirDialog ..200

wxDocChildFrame ..203

wxDocManager...205

wxDocMDIChildFrame..213

wxDocMDIParentFrame..215

wxDocParentFrame..216

wxDocTemplate..218

wxDocument ..223

wxDropFilesEvent...231

wxDropSource..232

wxDropTarget...234

wxEraseEvent ..236

wxEvent ...237

wxEvtHandler ...240

wxExpr ...247

wxExprDatabase ..253

wxFile...257

wxFileDataObject ...263

wxFileDialog...264

wxFileDropTarget ...268

wxFileHistory ..269

wxFileInputStream..272

wxFileOutputStream ...273

wxFileStream..274

wxFileSystem ...275

wxFileSystemHandler ...277

wxFileType ...279

wxFilterInputStream..283

wxFilterOutputStream...284

wxFocusEvent ..284

wxFont ...285

wxFontData ..292

wxFontDialog..295

wxFontEnumerator ...296

wxFontList ..298

CONTENTS

iv

wxFontMapper..299

wxFrame ..299

wxFSFile ..311

wxFTP..313

wxGauge..317

wxGDIObject ..321

wxGenericValidator ..321

wxGrid..323

wxHashTable..337

wxHelpController ..339

wxHtmlCell ...343

wxHtmlColourCell ...348

wxHtmlContainerCell ..349

wxHtmlDCRenderer..354

wxHtmlEasyPrinting..357

wxHtmlFilter ...360

wxHtmlHelpController ...361

wxHtmlHelpData...364

wxHtmlHelpFrame..366

wxHtmlParser ...369

wxHtmlPrintout ...374

wxHtmlTag ...376

wxHtmlTagHandler ...379

wxHtmlTagsModule ..380

wxHtmlWidgetCell ..381

wxHtmlWindow...382

wxHtmlWinParser ...387

wxHtmlWinTagHandler ...392

wxHTTP ...393

wxIdleEvent..394

wxIcon..395

wxImage...402

wxImageHandler...414

wxImageList ...418

wxIndividualLayoutConstraint ...422

wxInitDialogEvent ...425

wxInputStream ...425

wxIPV4address...427

wxJoystick ..429

wxJoystickEvent ...436

CONTENTS

v

wxKeyEvent ...438

wxLayoutAlgorithm ...441

wxLayoutConstraints ..444

wxList ...446

wxListBox...452

wxListCtrl ...461

wxListEvent ..474

wxLocale ..476

wxLog...479

wxLongLong ...483

wxMask ..483

wxMDIChildFrame..485

wxMDIClientWindow...488

wxMDIParentFrame..490

wxMemoryDC...496

wxMemoryInputStream...497

wxMemoryOutputStream ..498

wxMenu..499

wxMenuBar ..508

wxMenuItem...515

wxMenuEvent...519

wxMessageDialog ..520

wxMetafile ..522

wxMetafileDC ...523

wxMimeTypesManager...524

wxMiniFrame..528

wxModule ...530

wxMouseEvent ...532

wxMoveEvent ...539

wxMultipleChoiceDialog..540

wxMutex...541

wxMutexLocker ..544

wxNodeBase ..544

wxNotebook..546

wxNotebookEvent...552

wxNotifyEvent...553

wxObject ..555

wxObjectRefData..558

wxOutputStream...559

wxPageSetupDialogData..560

CONTENTS

vi

wxPageSetupDialog ...565

wxPaintDC ...567

wxPaintEvent..568

wxPalette..568

wxPanel ...572

wxPanelTabView ..575

wxPathList..576

wxPen ..578

wxPenList...585

wxPoint ..586

wxPostScriptDC ...587

wxPreviewCanvas ..588

wxPreviewControlBar ...589

wxPreviewFrame..590

wxPrintData..592

wxPrintDialog ...598

wxPrintDialogData ..599

wxPrinter ..604

wxPrinterDC ...606

wxPrintout ..606

wxPrintPreview...610

wxPrivateDropTarget ..614

wxProcess..615

wxProgressDialog...616

wxProcessEvent...618

wxProtocol..619

wxQueryCol..621

wxQueryField ...624

wxQueryLayoutInfoEvent..626

wxRadioBox ...629

wxRadioButton ...634

wxRealPoint ...637

wxRect ...637

wxRecordSet ..641

wxRegion ...653

wxRegionIterator ..658

wxSashEvent..660

wxSashLayoutWindow..662

wxSashWindow ..665

wxStaticBoxSizer..669

CONTENTS

vii

wxScreenDC ..670

wxScrollBar ..671

wxScrollWinEvent...676

wxScrollEvent...678

wxScrolledWindow..680

wxSingleChoiceDialog ..687

wxSize..689

wxSizeEvent...691

wxSizer ..692

wxSlider ...696

wxSockAddress ..704

wxSocketBase..705

wxSocketClient...719

wxSocketEvent...721

wxSocketServer ...722

wxSplitterEvent...724

wxSocketInputStream...726

wxSocketOutputStream ..727

wxSpinButton ...727

wxSplitterWindow ...731

wxStaticBitmap...740

wxStaticBox..743

wxStaticLine ...744

wxStaticText...746

wxStatusBar ...748

wxStreamBase ...754

wxStreamBuffer..755

wxString ...762

wxStringList..782

wxStringTokenizer ..784

wxSysColourChangedEvent ...786

wxSystemSettings ..786

wxTabbedDialog...790

wxTabbedPanel..791

wxTabControl ...792

wxTabView...795

wxTabCtrl ...803

wxTabEvent ...809

wxTaskBarIcon...810

wxTCPClient ..812

CONTENTS

viii

wxTCPConnection..813

wxTCPServer ...817

wxTempFile..818

wxTextCtrl ..820

wxTextDataObject ..833

wxTextInputStream...835

wxTextOutputStream..836

wxTextEntryDialog..838

wxTextDropTarget ..839

wxTextValidator..841

wxTextFile ..844

wxThread ...849

wxTime...853

wxTimer ...858

wxTipProvider...860

wxToolBar ..861

wxTreeCtrl..875

wxTreeItemData ...888

wxTreeEvent ..890

wxUpdateUIEvent...891

wxURL ...895

wxValidator...897

wxVariant ...900

wxVariantData ..908

wxView...909

wxWave ...913

wxWindow ..915

wxWindowDC...961

wxZipInputStream...962

wxZlibInputStream..963

wxZlibOutputStream ...963

Functions ...964
File functions ..964

Network functions ...969

User identification ...970

String functions...971

Dialog functions..972

GDI functions..977

Printer settings ...978

CONTENTS

ix

Clipboard functions...981

Miscellaneous functions..983

Macros ...999

wxWindows resource functions...1006

Log functions..1010

Debugging macros and functions..1012

Keycodes ...1014

Classes by category..1017

Topic overviews ..1025
wxWindows samples ..1025

wxApp overview..1026

wxString overview...1027

Container classes overview ..1031

Log classes overview..1032

Config classes overview ...1035

Unicode support in wxWindows ..1036

Clipboard and drag and drop overview..1038

Bitmaps and icons overview..1040

wxDialog overview..1043

Font overview ...1043

wxSplitterWindow overview...1044

wxTreeCtrl overview ...1046

wxListCtrl overview...1047

wxImageList overview...1047

Common dialogs overview..1047

Constraints overview ..1051

Database classes overview...1054

Device context overview ...1059

Debugging overview ...1060

Window deletion overview ..1062

Scrolling overview...1065

Document/view overview ..1066

Event handling overview...1072

Writing a wxWindows application: a rough guide...1079

Interprocess communication overview...1080

Printing overview ..1083

The wxWindows resource system...1084

Run time class information overview ...1091

Window styles ..1093

CONTENTS

x

Tab classes overview ...1094

wxTabView overview ..1097

Toolbar overview ..1098

Validator overview ..1103

wxExpr overview...1105

wxGrid classes overview...1109

Multithreading overview ..1110

File classes and functions overview ..1110

Internationalization ...1111

Font encoding overview..1112

Streams in wxWindows overview ..1113

Notes on using the reference..1115

Startup tips overview ..1115

File Systems...1116

wxHTML Notes ..1
wxHTML quick start ..1

HTML Printing ..2

Help Files Format ...2

Input Filters ..4

Cells and Containers ..4

Tag Handlers..5

Tags supported by wxHTML ...7

wxPython Notes ..1
What is wxPython? ...1

Why use wxPython? ...1

Other Python GUIs ...2

Building wxPython ..2

Using wxPython..4

wxWindows classes implemented in wxPython ...7

Where to go for help ...10

Index...12

xi

Copyright notice

(c) 1999 Julian Smart, Robert Roebling, Vadim Zeitlin and other members of the
wxWindows team

Portions (c) 1996 Artificial Intelligence Applications Institute

Please see the wxWindows licence files (preamble.txt, lgpl.txt, gpl.txt, licence.txt,
licendoc.txt) for conditions of software and documentation use.

1

Introduction

What is wxWindows?

wxWindows is a C++ framework providing GUI (Graphical User Interface) and other
facilities on more than one platform. Version 2.0 currently supports MS Windows (16-bit,
Windows 95 and Windows NT), Unix with GTK+, and Unix with Motif. A Mac port is in an
advanced state, an OS/2 port and a port to the MGL graphics library have been started.

wxWindows was originally developed at the Artificial Intelligence Applications Institute,
University of Edinburgh, for internal use. wxWindows has been released into the public
domain in the hope that others will also find it useful. Version 2.0 is written and
maintained by Julian Smart, Robert Roebling, Vadim Zeitlin and others.

This manual discusses wxWindows in the context of multi-platform development.

Please note that in the following, "MS Windows" often refers to all platforms related to
Microsoft Windows, including 16-bit and 32-bit variants, unless otherwise stated. All
trademarks are acknowledged.

Why another cross-platform development tool?

wxWindows was developed to provide a cheap and flexible way to maximize investment
in GUI application development. While a number of commercial class libraries already
existed for cross-platform development, none met all of the following criteria:

1. low price;
2. source availability;
3. simplicity of programming;
4. support for a wide range of compilers.

Since wxWindows was started, several other free or almost-free GUI frameworks have
emerged. However, none has the range of features, flexibility, documentation and the
well-established development team that wxWindows has.

As public domain software and a project open to everyone, wxWindows has benefited
from comments, ideas, bug fixes, enhancements and the sheer enthusiasm of users,
especially via the Internet. This gives wxWindows a certain advantage over its
commercial competitors (and over free libraries without an independent development
team), plus a robustness against the transience of one individual or company. This
openness and availability of source code is especially important when the future of
thousands of lines of application code may depend upon the longevity of the underlying
class library.

Version 2.0 goes much further than previous versions in terms of generality and
features, allowing applications to be produced that are often indistinguishable from those
produced using single-platform toolkits such as Motif and MFC.

The importance of using a platform-independent class library cannot be overstated,
since GUI application development is very time-consuming, and sustained popularity of

CHAPTER 1

2

particular GUIs cannot be guaranteed. Code can very quickly become obsolete if it
addresses the wrong platform or audience. wxWindows helps to insulate the
programmer from these winds of change. Although wxWindows may not be suitable for
every application (such as an OLE-intensive program), it provides access to most of the
functionality a GUI program normally requires, plus some extras such as network
programming and PostScript output, and can of course be extended as needs dictate.
As a bonus, it provides a cleaner programming interface than the native APIs.
Programmers may find it worthwhile to use wxWindows even if they are developing on
only one platform.

It is impossible to sum up the functionality of wxWindows in a few paragraphs, but here
are some of the benefits:

• Low cost (free, in fact!)
• You get the source.
• Available on a variety of popular platforms.
• Works with almost all popular C++ compilers.
• Several example programs.
• Over 900 pages of printable and on-line documentation.
• Includes Tex2RTF, to allow you to produce your own documentation in Windows

Help, HTML and Word RTF formats.
• Simple-to-use, object-oriented API.
• Flexible event system.
• Graphics calls include lines, rounded rectangles, splines, polylines, etc.
• Constraint-based layout option.
• Print/preview and document/view architectures.
• Toolbar, notebook, tree control, advanced list control classes.
• PostScript generation under Unix, normal MS Windows printing on the PC.
• MDI (Multiple Document Interface) support.
• Can be used to create DLLs under Windows, dynamic libraries on Unix.
• Common dialogs for file browsing, printing, colour selection, etc.
• Under MS Windows, support for creating metafiles and copying them to the

clipboard.
• An API for invoking help from applications.
• Dialog Editor for building dialogs.
• Network support via a family of socket and protocol classes.

Changes from version 1.xx

These are a few of the major differences between versions 1.xx and 2.0.

Removals:

• XView is no longer supported;
• all controls (panel items) no longer have labels attached to them;
• wxForm has been removed;
• wxCanvasDC, wxPanelDC removed (replaced by wxClientDC, wxWindowDC,

wxPaintDC which can be used for any window);
• wxMultiText, wxTextWindow, wxText removed and replaced by wxTextCtrl;

CHAPTER 1

3

• classes no longer divided into generic and platform-specific parts, for efficiency.

Additions and changes:

• class hierarchy changed, and restrictions about subwindow nesting lifted;
• header files reorganised to conform to normal C++ standards;
• classes less dependent on each another, to reduce executable size;
• wxString used instead of char* wherever possible;
• the number of separate but mandatory utilities reduced;
• the event system has been overhauled, with virtual functions and callbacks

being replaced with MFC-like event tables;
• new controls, such as wxTreeCtrl, wxListCtrl, wxSpinButton;
• less inconsistency about what events can be handled, so for example mouse

clicks or key presses on controls can now be intercepted;
• the status bar is now a separate class, wxStatusBar, and is implemented in

generic wxWindows code;
• some renaming of controls for greater consistency;
• wxBitmap has the notion of bitmap handlers to allow for extension to new

formats without ifdefing;
• new dialogs: wxPageSetupDialog, wxFileDialog, wxDirDialog,

wxMessageDialog, wxSingleChoiceDialog, wxTextEntryDialog;
• GDI objects are reference-counted and are now passed to most functions by

reference, making memory management far easier;
• wxSystemSettings class allows querying for various system-wide properties

such as dialog font, colours, user interface element sizes, and so on;
• better platform look and feel conformance;
• toolbar functionality now separated out into a family of classes with the same

API;
• device contexts are no longer accessed using wxWindow::GetDC - they are

created temporarily with the window as an argument;
• events from sliders and scrollbars can be handled more flexibly;
• the handling of window close events has been changed in line with the new

event system;
• the concept of validator has been added to allow much easier coding of the

relationship between controls and application data;
• the documentation has been revised, with more cross-referencing.

Platform-specific changes:

• The Windows header file (windows.h) is no longer included by wxWindows
headers;

• wx.dll supported under Visual C++;
• the full range of Windows 95 window decorations are supported, such as modal

frame borders;
• MDI classes brought out of wxFrame into separate classes, and made more

flexible.

wxWindows requirements

CHAPTER 1

4

To make use of wxWindows, you currently need one or both of the following setups.

(a) PC:

1. A 486 or higher PC running MS Windows.
2. A Windows compiler: most are supported, but please see install.txt for

details. Supported compilers include Microsoft Visual C++ 4.0 or higher, Borland
C++, Cygwin, Metrowerks CodeWarrior.

3. At least 60 MB of disk space.

(b) Unix:

1. Almost any C++ compiler, including GNU C++ (EGCS 1.1.1 or above).
2. Almost any Unix workstation, and one of: GTK+ 1.0, GTK+ 1.2, Motif 1.2 or

higher, Lesstif.
3. At least 60 MB of disk space.

Availability and location of wxWindows

wxWindows is available by anonymous FTP and World Wide Web:

 ftp://www.remstar.com/pub/wxwin
 http://www.wxwindows.org

You can also buy a CD-ROM using the form on the Web site, or by contacting:

Julian Smart
12 North Street West
Uppingham
Rutland
LE15 9SG
julian.smart@ukonline.co.uk

Acknowledgments

Thanks are due to AIAI for being willing to release the original version of wxWindows
into the public domain, and to our patient partners.

We would particularly like to thank the following for their contributions to wxWindows,
and the many others who have been involved in the project over the years. Apologies for
any unintentional omissions from this list. Yiorgos Adamopoulos, Jamshid Afshar,
Alejandro Aguilar-Sierra, AIAI, Patrick Albert, Karsten Ballueder, Michael Bedward, Kai
Bendorf, Yura Bidus, Keith Gary Boyce, Chris Breeze, Pete Britton, Ian Brown, C.
Buckley, Dmitri Chubraev, Robin Corbet, Cecil Coupe, Andrew Davison, Neil Dudman,
Robin Dunn, Hermann Dunkel, Jos van Eijndhoven, Tom Felici, Thomas Fettig,
Matthew Flatt, Pasquale Foggia, Josep Fortiana, Todd Fries, Dominic Gallagher,
Wolfram Gloger, Norbert Grotz, Stefan Gunter, Bill Hale, Patrick Halke, Stefan Hammes,
Guillaume Helle, Harco de Hilster, Cord Hockemeyer, Markus Holzem, Olaf Klein, Leif
Jensen, Bart Jourquin, Guilhem Lavaux, Jan Lessner, Nicholas Liebmann, Torsten
Liermann, Per Lindqvist, Thomas Runge, Tatu Männistö, Scott Maxwell, Thomas Myers,
Oliver Niedung, Hernan Otero, Ian Perrigo, Timothy Peters, Giordano Pezzoli, Harri

CHAPTER 1

5

Pasanen, Thomaso Paoletti, Garrett Potts, Marcel Rasche, Robert Roebling, Dino
Scaringella, Jobst Schmalenbach, Arthur Seaton, Paul Shirley, Vaclav Slavik, Stein
Somers, Petr Smilauer, Neil Smith, Kari Systä, Arthur Tetzlaff-Deas, Jonathan Tonberg,
Jyrki Tuomi, Janos Vegh, Andrea Venturoli, Vadim Zeitlin, Xiaokun Zhu, Edward
Zimmermann.

'Graphplace', the basis for the wxGraphLayout library, is copyright Dr. Jos T.J. van
Eijndhoven of Eindhoven University of Technology. The code has been used in
wxGraphLayout with his permission.

We also acknowledge the author of XFIG, the excellent Unix drawing tool, from the
source of which we have borrowed some spline drawing code. His copyright is included
below.

XFig2.1 is copyright (c) 1985 by Supoj Sutanthavibul. Permission to use, copy, modify,
distribute, and sell this software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in all copies and that both
that copyright notice and this permission notice appear in supporting documentation, and
that the name of M.I.T. not be used in advertising or publicity pertaining to distribution of
the software without specific, written prior permission. M.I.T. makes no representations
about the suitability of this software for any purpose. It is provided "as is'' without
express or implied warranty.

6

Multi-platform development with wxWindows

This chapter describes the practical details of using wxWindows. Please see the file
install.txt for up-to-date installation instructions, and changes.txt for differences between
versions.

Include files

The main include file is "wx/wx.h"; this includes the most commonly used modules of
wxWindows.

To save on compilation time, include only those header files relevant to the source file. If
you are using precompiled headers, you should include the following section before any
other includes:

// For compilers that support precompilation, includes "wx.h".
#include <wx/wxprec.h>

#ifdef __BORLANDC__
#pragma hdrstop
#endif

#ifndef WX_PRECOMP
// Include your minimal set of headers here, or wx.h
#include <wx/wx.h>
#endif

... now your other include files ...

The file "wx/wxprec.h" includes "wx/wx.h". Although this incantation may seem
quirky, it is in fact the end result of a lot of experimentation, and several Windows
compilers to use precompilation (those tested are Microsoft Visual C++, Borland C++
and Watcom C++).

Borland precompilation is largely automatic. Visual C++ requires specification of
"wx/wxprec.h" as the file to use for precompilation. Watcom C++ is automatic apart
from the specification of the .pch file. Watcom C++ is strange in requiring the
precompiled header to be used only for object files compiled in the same directory as
that in which the precompiled header was created. Therefore, the wxWindows Watcom
C++ makefiles go through hoops deleting and recreating a single precompiled header
file for each module, thus preventing an accumulation of many multi-megabyte .pch files.

Libraries

Please the wxGTK or wxMotif documentation for use of the Unix version of wxWindows.
Under Windows, use the library wx.lib for stand-alone Windows applications, or wxdll.lib
for creating DLLs.

Configuration

Options are configurable in the file "wx/XXX/setup.h" where XXX is the required

CHAPTER 2

7

platform (such as msw, motif, gtk, mac). Some settings are a matter of taste, some help
with platform-specific problems, and others can be set to minimize the size of the library.
Please see the setup.h file and install.txt files for details on configuration.

Makefiles

At the moment there is no attempt to make Unix makefiles and PC makefiles compatible,
i.e. one makefile is required for each environment. wxGTK has its own configure system
which can also be used with wxMotif, although wxMotif has a simple makefile system of
its own.

Sample makefiles for Unix (suffix .UNX), MS C++ (suffix .DOS and .NT), Borland C++
(.BCC and .B32) and Symantec C++ (.SC) are included for the library, demos and
utilities.

The controlling makefile for wxWindows is in the platform-specific directory, such as
src/msw or src/motif.

Please see the platform-specific install.txt file for further details.

Windows-specific files

wxWindows application compilation under MS Windows requires at least two extra files,
resource and module definition files.

Resource file

The least that must be defined in the Windows resource file (extension RC) is the
following statement:

rcinclude "wx/msw/wx.rc"

which includes essential internal wxWindows definitions. The resource script may also
contain references to icons, cursors, etc., for example:

wxicon icon wx.ico

The icon can then be referenced by name when creating a frame icon. See the MS
Windows SDK documentation.

Note: include wx.rc after any ICON statements so programs that search your executable
for icons (such as the Program Manager) find your application icon first.

Module definition file

A module definition file (extension DEF) is required for 16-bit applications, and looks like
the following:

CHAPTER 2

8

NAME Hello
DESCRIPTION 'Hello'
EXETYPE WINDOWS
STUB 'WINSTUB.EXE'
CODE PRELOAD MOVEABLE DISCARDABLE
DATA PRELOAD MOVEABLE MULTIPLE
HEAPSIZE 1024
STACKSIZE 8192

The only lines which will usually have to be changed per application are NAME and
DESCRIPTION.

Allocating and deleting wxWindows objects

In general, classes derived from wxWindow must dynamically allocated with new and
deleted with delete. If you delete a window, all of its children and descendants will be
automatically deleted, so you don't need to delete these descendants explicitly.

When deleting a frame or dialog, use Destroy rather than delete so that the wxWindows
delayed deletion can take effect. This waits until idle time (when all messages have been
processed) to actually delete the window, to avoid problems associated with the GUI
sending events to deleted windows.

Don't create a window on the stack, because this will interfere with delayed deletion.

If you decide to allocate a C++ array of objects (such as wxBitmap) that may be cleaned
up by wxWindows, make sure you delete the array explicitly before wxWindows has a
chance to do so on exit, since calling delete on array members will cause memory
problems.

wxColour can be created statically: it is not automatically cleaned up and is unlikely to be
shared between other objects; it is lightweight enough for copies to be made.

Beware of deleting objects such as a wxPen or wxBitmap if they are still in use.
Windows is particularly sensitive to this: so make sure you make calls like
wxDC::SetPen(wxNullPen) or wxDC::SelectObject(wxNullBitmap) before deleting a
drawing object that may be in use. Code that doesn't do this will probably work fine on
some platforms, and then fail under Windows.

Architecture dependency

A problem which sometimes arises from writing multi-platform programs is that the basic
C types are not defiend the same on all platforms. This holds true for both the length in
bits of the standard types (such as int and long) as well as their byte order, which might
be little endian (typically on Intel computers) or big endian (typically on some Unix
workstations). wxWindows defines types and macros that make it easy to write
architecture independent code. The types are:

wxInt32, wxInt16, wxInt8, wxUint32, wxUint16 = wxWord, wxUint8 = wxByte

where wxInt32 stands for a 32-bit signed integer type etc. You can also check which

CHAPTER 2

9

architecture the program is compiled on using the wxBYTE_ORDER define which is
either wxBIG_ENDIAN or wxLITTLE_ENDIAN (in the future maybe wxPDP_ENDIAN as
well).

The macros handling bit-swapping with respect to the applications endianness are
described in the Macros (p. 999) section.

Conditional compilation

One of the purposes of wxWindows is to reduce the need for conditional compilation in
source code, which can be messy and confusing to follow. However, sometimes it is
necessary to incorporate platform-specific features (such as metafile use under MS
Windows). The symbols listed in the file symbols.txt may be used for this purpose,
along with any user-supplied ones.

C++ issues

The following documents some miscellaneous C++ issues.

Templates

wxWindows does not use templates since it is a notoriously unportable feature.

RTTI

wxWindows does not use run-time type information since wxWindows provides its own
run-time type information system, implemented using macros.

Type of NULL

Some compilers (e.g. the native IRIX cc) define NULL to be 0L so that no conversion to
pointers is allowed. Because of that, all these occurences of NULL in the GTK port use
an explicit conversion such as

 wxWindow *my_window = (wxWindow*) NULL;

It is recommended to adhere to this in all code using wxWindows as this make the code
(a bit) more portable.

Precompiled headers

Some compilers, such as Borland C++ and Microsoft C++, support precompiled
headers. This can save a great deal of compiling time. The recommended approach is to

CHAPTER 2

10

precompile "wx.h", using this precompiled header for compiling both wxWindows itself
and any wxWindows applications. For Windows compilers, two dummy source files are
provided (one for normal applications and one for creating DLLs) to allow initial creation
of the precompiled header.

However, there are several downsides to using precompiled headers. One is that to take
advantage of the facility, you often need to include more header files than would
normally be the case. This means that changing a header file will cause more
recompilations (in the case of wxWindows, everything needs to be recompiled since
everything includes "wx.h"!)

A related problem is that for compilers that don't have precompiled headers, including a
lot of header files slows down compilation considerably. For this reason, you will find (in
the common X and Windows parts of the library) conditional compilation that under Unix,
includes a minimal set of headers; and when using Visual C++, includes wx.h. This
should help provide the optimal compilation for each compiler, although it is biassed
towards the precompiled headers facility available in Microsoft C++.

File handling

When building an application which may be used under different environments, one
difficulty is coping with documents which may be moved to different directories on other
machines. Saving a file which has pointers to full pathnames is going to be inherently
unportable. One approach is to store filenames on their own, with no directory
information. The application searches through a number of locally defined directories to
find the file. To support this, the class wxPathList makes adding directories and
searching for files easy, and the global function wxFileNameFromPath allows the
application to strip off the filename from the path if the filename must be stored. This has
undesirable ramifications for people who have documents of the same name in different
directories.

As regards the limitations of DOS 8+3 single-case filenames versus unrestricted Unix
filenames, the best solution is to use DOS filenames for your application, and also for
document filenames if the user is likely to be switching platforms regularly. Obviously
this latter choice is up to the application user to decide. Some programs (such as YACC
and LEX) generate filenames incompatible with DOS; the best solution here is to have
your Unix makefile rename the generated files to something more compatible before
transferring the source to DOS. Transferring DOS files to Unix is no problem, of course,
apart from EOL conversion for which there should be a utility available (such as
dos2unix).

See also the File Functions section of the reference manual for descriptions of
miscellaneous file handling functions.

11

Programming strategies

This chapter is intended to list strategies that may be useful when writing and debugging
wxWindows programs. If you have any good tips, please submit them for inclusion here.

Strategies for reducing programming errors

Use ASSERT

Although I haven't done this myself within wxWindows, it is good practice to use
ASSERT statements liberally, that check for conditions that should or should not hold,
and print out appropriate error messages. These can be compiled out of a non-
debugging version of wxWindows and your application. Using ASSERT is an example of
'defensive programming': it can alert you to problems later on.

Use wxString in preference to character arrays

Using wxString can be much safer and more convenient than using char *. Again, I
haven't practised what I'm preaching, but I'm now trying to use wxString wherever
possible. You can reduce the possibility of memory leaks substantially, and it's much
more convenient to use the overloaded operators than functions such as strcmp.
wxString won't add a significant overhead to your program; the overhead is
compensated for by easier manipulation (which means less code).

The same goes for other data types: use classes wherever possible.

Strategies for portability

Use relative positioning or constraints

Don't use absolute panel item positioning if you can avoid it. Different GUIs have very
differently sized panel items. Consider using the constraint system, although this can be
complex to program.

Alternatively, you could use alternative .wrc (wxWindows resource files) on different
platforms, with slightly different dimensions in each. Or space your panel items out to
avoid problems.

Use wxWindows resource files

Use .wrc (wxWindows resource files) where possible, because they can be easily
changed independently of source code. Bitmap resources can be set up to load different
kinds of bitmap depending on platform (see the section on resource files).

Strategies for debugging

CHAPTER 3

12

Positive thinking

It's common to blow up the problem in one's imagination, so that it seems to threaten
weeks, months or even years of work. The problem you face may seem insurmountable:
but almost never is. Once you have been programming for some time, you will be able to
remember similar incidents that threw you into the depths of despair. But remember, you
always solved the problem, somehow!

Perseverance is often the key, even though a seemingly trivial problem can take an
apparently inordinate amount of time to solve. In the end, you will probably wonder why
you worried so much. That's not to say it isn't painful at the time. Try not to worry -- there
are many more important things in life.

Simplify the problem

Reduce the code exhibiting the problem to the smallest program possible that exhibits
the problem. If it is not possible to reduce a large and complex program to a very small
program, then try to ensure your code doesn't hide the problem (you may have
attempted to minimize the problem in some way: but now you want to expose it).

With luck, you can add a small amount of code that causes the program to go from
functioning to non-functioning state. This should give a clue to the problem. In some
cases though, such as memory leaks or wrong deallocation, this can still give totally
spurious results!

Use a debugger

This sounds like facetious advice, but it's surprising how often people don't use a
debugger. Often it's an overhead to install or learn how to use a debugger, but it really is
essential for anything but the most trivial programs.

Use logging functions

There is a variety of logging functions that you can use in your program: see Logging
functions (p. 1010).

Using tracing statements may be more convenient than using the debugger in some
circumstances (such as when your debugger doesn't support a lot of debugging code, or
you wish to print a bunch of variables).

Use the wxWindows debugging facilities

You can use wxDebugContext to check for memory leaks and corrupt memory: in fact in
debugging mode, wxWindows will automatically check for memory leaks at the end of
the program if wxWindows is suitably configured. Depending on the operating system

CHAPTER 3

13

and compiler, more or less specific information about the problem will be logged.

You should also use debug macros (p. 1012) as part of a 'defensive programming'
strategy, scattering wxASSERTs liberally to test for problems in your code as early as
possible. Forward thinking will save a surprising amount of time in the long run.

See the debugging overview (p. 1060) for further information.

Check Windows debug messages

Under Windows, it's worth running your program with DBWIN running or some other
program that shows Windows-generated debug messages. It's possible it'll show invalid
handles being used. You may have fun seeing what commercial programs cause these
normally hidden errors! Microsoft recommend using the debugging version of Windows,
which shows up even more problems. However, I doubt it's worth the hassle for most
applications. wxWindows is designed to minimize the possibility of such errors, but they
can still happen occasionally, slipping through unnoticed because they are not severe
enough to cause a crash.

Genetic mutation

If we had sophisticated genetic algorithm tools that could be applied to programming, we
could use them. Until then, a common -- if rather irrational -- technique is to just make
arbitrary changes to the code until something different happens. You may have an
intuition why a change will make a difference; otherwise, just try altering the order of
code, comment lines out, anything to get over an impasse. Obviously, this is usually a
last resort.

1

Alphabetical class reference

wxAcceleratorEntry

An object used by an application wishing to create an accelerator table (p. 2).

Derived from

None

Include files

<wx/accel.h>

See also

wxAcceleratorTable (p. 2), wxWindow::SetAcceleratorTable (p. 950)

wxAcceleratorEntry::wxAcceleratorEntry

 wxAcceleratorEntry()

Default constructor.

 wxAcceleratorEntry(int flags, int keyCode, int cmd)

Constructor.

Parameters

flags
One of wxACCEL_SHIFT, wxACCEL_CTRL and wxACCEL_NORMAL. Indicates
which modifier key is held down.

keyCode
The keycode to be detected. See Keycodes (p. 1014) for a full list of keycodes.

cmd
The menu or control command identifier.

wxAcceleratorEntry::GetCommand

int GetCommand() const

Returns the command identifier for the accelerator table entry.

CHAPTER 4

2

wxAcceleratorEntry::GetFlags

int GetFlags() const

Returns the flags for the accelerator table entry.

wxAcceleratorEntry::GetKeyCode

int GetKeyCode() const

Returns the keycode for the accelerator table entry.

wxAcceleratorEntry::Set

void Set(int flags, int keyCode, int cmd)

Sets the accelerator entry parameters.

Parameters

flags
One of wxACCEL_SHIFT, wxACCEL_CTRL and wxACCEL_NORMAL. Indicates
which modifier key is held down.

keyCode
The keycode to be detected. See Keycodes (p. 1014) for a full list of keycodes.

cmd
The menu or control command identifier.

wxAcceleratorTable

An accelerator table allows the application to specify a table of keyboard shortcuts for
menus or other commands. On Windows, menu or button commands are supported; on
GTK, only menu commands are supported.

The object wxNullAcceleratorTable is defined to be a table with no data, and is the
initial accelerator table for a window.

Derived from

wxObject (p. 555)

Include files

<wx/accel.h>

CHAPTER 4

3

Example

 wxAcceleratorEntry entries[4];
 entries[0].Set(wxACCEL_CTRL, (int) 'N', ID_NEW_WINDOW);
 entries[1].Set(wxACCEL_CTRL, (int) 'X', wxID_EXIT);
 entries[2].Set(wxACCEL_SHIFT, (int) 'A', ID_ABOUT);
 entries[3].Set(wxACCEL_NONE, WXK_DELETE, wxID_CUT);
 wxAcceleratorTable accel(4, entries);
 frame->SetAcceleratorTable(accel);

Remarks

An accelerator takes precedence over normal processing and can be a convenient way
to program some event handling. For example, you can use an accelerator table to
enable a dialog with a multi-line text control to accept CTRL-Enter as meaning 'OK' (but
not in GTK at present).

See also

wxAcceleratorEntry (p. 1), wxWindow::SetAcceleratorTable (p. 950)

wxAcceleratorTable::wxAcceleratorTable

 wxAcceleratorTable()

Default constructor.

 wxAcceleratorTable(const wxAcceleratorTable& bitmap)

Copy constructor.

 wxAcceleratorTable(int n, wxAcceleratorEntry entries[])

Creates from an array of wxAcceleratorEntry (p. 1) objects.

 wxAcceleratorTable(const wxString& resource)

Loads the accelerator table from a Windows resource (Windows only).

Parameters

n
Number of accelerator entries.

entries
The array of entries.

CHAPTER 4

4

resource
Name of a Windows accelerator.

wxPython note: The wxPython constructor accepts a list of wxAcceleratorEntry objects,
or 3-tuples consisting of flags, keyCode, and cmd values like you would construct
wxAcceleratorEntry objects with.

wxAcceleratorTable::~wxAcceleratorTable

 ~wxAcceleratorTable()

Destroys the wxAcceleratorTable object.

wxAcceleratorTable::Ok

bool Ok() const

Returns TRUE if the accelerator table is valid.

wxAcceleratorTable::operator =

wxAcceleratorTable& operator =(const wxAcceleratorTable& accel)

Assignment operator. This operator does not copy any data, but instead passes a
pointer to the data in accel and increments a reference counter. It is a fast operation.

Parameters

accel
Accelerator table to assign.

Return value

Returns 'this' object.

wxAcceleratorTable::operator ==

bool operator ==(const wxAcceleratorTable& accel)

Equality operator. This operator tests whether the internal data pointers are equal (a fast
test).

Parameters

accel

CHAPTER 4

5

Accelerator table to compare with 'this'

Return value

Returns TRUE if the accelerator tables were effectively equal, FALSE otherwise.

wxAcceleratorTable::operator !=

bool operator !=(const wxAcceleratorTable& accel)

Inequality operator. This operator tests whether the internal data pointers are unequal (a
fast test).

Parameters

accel
Accelerator table to compare with 'this'

Return value

Returns TRUE if the accelerator tables were unequal, FALSE otherwise.

wxActivateEvent

An activate event is sent when a window or application is being activated or deactivated.

Derived from

wxEvent (p. 237)
wxObject (p. 555)

Include files

<wx/event.h>

Event table macros

To process an activate event, use these event handler macros to direct input to a
member function that takes a wxActivateEvent argument.

EVT_ACTIVATE(func) Process a wxEVT_ACTIVATE event.
EVT_ACTIVATE_APP(func) Process a wxEVT_ACTIVATE_APP event.

Remarks

A top-level window (a dialog or frame) receives an activate event when is being
activated or deactivated. This is indicated visually by the title bar changing colour, and a
subwindow gaining the keyboard focus.

CHAPTER 4

6

An application is activated or deactivated when one of its frames becomes activated, or
a frame becomes inactivate resulting in all application frames being inactive. (Windows
only)

See also

wxWindow::OnActivate (p. 934), wxApp::OnActivate (p. 10), Event handling overview (p.
1072)

wxActivateEvent::wxActivateEvent

 wxActivateEvent(WXTYPE eventType = 0, bool active = TRUE, int id = 0)

Constructor.

wxActivateEvent::m_active

bool m_active

TRUE if the window or application was activated.

wxActivateEvent::GetActive

bool GetActive() const

Returns TRUE if the application or window is being activated, FALSE otherwise.

wxApp

The wxApp class represents the application itself. It is used to:

• set and get application-wide properties;
• implement the windowing system message or event loop;
• initiate application processing via wxApp::OnInit (p. 12);
• allow default processing of events not handled by other objects in the

application.

You should use the macro IMPLEMENT_APP(appClass) in your application
implementation file to tell wxWindows how to create an instance of your application
class.

Use DECLARE_APP(appClass) in a header file if you want the wxGetApp function
(which returns a reference to your application object) to be visible to other files.

Derived from

CHAPTER 4

7

wxEvtHandler (p. 240)
wxObject (p. 555)

Include files

<wx/app.h>

See also

wxApp overview (p. 1026)

wxApp::wxApp

void wxApp()

Constructor. Called implicitly with a definition of a wxApp object.

The argument is a language identifier; this is an experimental feature and will be
expanded and documented in future versions.

wxApp::~wxApp

void ~wxApp()

Destructor. Will be called implicitly on program exit if the wxApp object is created on the
stack.

wxApp::argc

int argc

Number of command line arguments (after environment-specific processing).

wxApp::argv

char ** argv

Command line arguments (after environment-specific processing).

wxApp::CreateLogTarget

virtual wxLog* CreateLogTarget()

CHAPTER 4

8

Creates a wxLog class for the application to use for logging errors. The default
implementation returns a new wxLogGui class.

See also

wxLog (p. 479)

wxApp::Dispatch

void Dispatch()

Dispatches the next event in the windowing system event queue.

This can be used for programming event loops, e.g.

 while (app.Pending())
 Dispatch();

See also

wxApp::Pending (p. 13)

wxApp::GetAppName

wxString GetAppName() const

Returns the application name.

Remarks

wxWindows sets this to a reasonable default before calling wxApp::OnInit (p. 12), but the
application can reset it at will.

wxApp::GetAuto3D

bool GetAuto3D() const

Returns TRUE if 3D control mode is on, FALSE otherwise.

See also

wxApp::SetAuto3D (p. 14)

wxApp::GetClassName

wxString GetClassName() const

CHAPTER 4

9

Gets the class name of the application. The class name may be used in a platform
specific manner to refer to the application.

See also

wxApp::SetClassName (p. 14)

wxApp::GetExitOnDelete

bool GetExitOnDelete() const

Returns TRUE if the application will exit when the top-level window is deleted, FALSE
otherwise.

See also

wxApp::SetExitOnDelete (p. 15)

wxApp::GetTopWindow

wxWindow * GetTopWindow() const

Returns a pointer to the top window.

Remarks

If the top window hasn't been set using wxApp::SetTopWindow (p. 15), this function will
find the first top-level window (frame or dialog) and return that.

See also

wxApp::SetTopWindow (p. 15)

wxApp::ExitMainLoop

void ExitMainLoop()

Call this to explicitly exit the main message (event) loop. You should normally exit the
main loop (and the application) by deleting the top window.

wxApp::Initialized

bool Initialized()

Returns TRUE if the application has been initialized (i.e. if wxApp::OnInit (p. 12) has

CHAPTER 4

10

returned successfully). This can be useful for error message routines to determine
which method of output is best for the current state of the program (some windowing
systems may not like dialogs to pop up before the main loop has been entered).

wxApp::MainLoop

int MainLoop()

Called by wxWindows on creation of the application. Override this if you wish to provide
your own (environment-dependent) main loop.

Return value

Returns 0 under X, and the wParam of the WM_QUIT message under Windows.

wxApp::OnActivate

void OnActivate(wxActivateEvent& event)

Provide this member function to know whether the application is being activated or
deactivated (Windows only).

See also

wxWindow::OnActivate (p. 934), wxActivateEvent (p. 5)

wxApp::OnExit

int OnExit()

Provide this member function for any processing which needs to be done as the
application is about to exit.

wxApp::OnCharHook

void OnCharHook(wxKeyEvent& event)

This event handler function is called (under Windows only) to allow the window to
intercept keyboard events before they are processed by child windows.

Parameters

event
The keypress event.

Remarks

CHAPTER 4

11

Use the wxEVT_CHAR_HOOK macro in your event table.

If you use this member, you can selectively consume keypress events by calling
wxEvent::Skip (p. 240) for characters the application is not interested in.

See also

wxKeyEvent (p. 438), wxWindow::OnChar (p. 934), wxWindow::OnCharHook (p. 935),
wxDialog::OnCharHook (p. 197)

wxApp::OnIdle

void OnIdle(wxIdleEvent& event)

Override this member function for any processing which needs to be done when the
application is idle. You should call wxApp::OnIdle from your own function, since this
forwards OnIdle events to windows and also performs garbage collection for windows
whose destruction has been delayed.

wxWindows' strategy for OnIdle processing is as follows. After pending user interface
events for an application have all been processed, wxWindows sends an OnIdle event to
the application object. wxApp::OnIdle itself sends an OnIdle event to each application
window, allowing windows to do idle processing such as updating their appearance. If
either wxApp::OnIdle or a window OnIdle function requested more time, by caling
wxIdleEvent::ReqestMore (p. 395), wxWindows will send another OnIdle event to the
application object. This will occur in a loop until either a user event is found to be
pending, or OnIdle requests no more time. Then all pending user events are processed
until the system goes idle again, when OnIdle is called, and so on.

See also

wxWindow::OnIdle (p. 940), wxIdleEvent (p. 394), wxWindow::SendIdleEvents (p. 13)

wxApp::OnEndSession

void OnEndSession(wxCloseEvent& event)

This is an event handler function called when the operating system or GUI session is
about to close down. The application has a chance to silently save information, and can
optionally close itself.

Use the EVT_END_SESSION event table macro to handle query end session events.

The default handler calls wxWindow::Close (p. 919) with a TRUE argument (forcing the
application to close itself silently).

Remarks

CHAPTER 4

12

Under X, OnEndSession is called in response to the 'die' event.

Under Windows, OnEndSession is called in response to the WM_ENDSESSION
message.

See also

wxWindow::Close (p. 919), wxWindow::OnCloseWindow (p. 937), wxCloseEvent (p. 89),
wxApp::OnQueryEndSession (p. 12)

wxApp::OnInit

bool OnInit()

This must be provided by the application, and will usually create the application's main
window, optionally calling wxApp::SetTopWindow (p. 15).

Return TRUE to continue processing, FALSE to exit the application.

wxApp::OnQueryEndSession

void OnQueryEndSession(wxCloseEvent& event)

This is an event handler function called when the operating system or GUI session is
about to close down. Typically, an application will try to save unsaved documents at this
point.

If wxCloseEvent::CanVeto (p. 90) returns TRUE, the application is allowed to veto the
shutdown by calling wxCloseEvent::Veto (p. 91). The application might veto the
shutdown after prompting for documents to be saved, and the user has cancelled the
save.

Use the EVT_QUERY_END_SESSION event table macro to handle query end session
events.

You should check whether the application is forcing the deletion of the window using
wxCloseEvent::GetForce (p. 90). If this is TRUE, destroy the window using
wxWindow::Destroy (p. 922). If not, it is up to you whether you respond by destroying the
window.

The default handler calls wxWindow::Close (p. 919) on the top-level window, and vetoes
the shutdown if Close returns FALSE. This will be sufficient for many applications.

Remarks

Under X, OnQueryEndSession is called in response to the 'save session' event.

Under Windows, OnQueryEndSession is called in response to the
WM_QUERYENDSESSION message.

CHAPTER 4

13

See also

wxWindow::Close (p. 919), wxWindow::OnCloseWindow (p. 937), wxCloseEvent (p. 89),
wxApp::OnEndSession (p. 11)

wxApp::ProcessMessage

bool ProcessMessage(MSG *msg)

Windows-only function for processing a message. This function is called from the main
message loop, checking for windows that may wish to process it. The function returns
TRUE if the message was processed, FALSE otherwise. If you use wxWindows with
another class library with its own message loop, you should make sure that this function
is called to allow wxWindows to receive messages. For example, to allow co-existance
with the Microsoft Foundation Classes, override the PreTranslateMessage function:

// Provide wxWindows message loop compatibility
BOOL CTheApp::PreTranslateMessage(MSG *msg)
{
 if (wxTheApp && wxTheApp->ProcessMessage(msg))
 return TRUE;
 else
 return CWinApp::PreTranslateMessage(msg);
}

wxApp::Pending

bool Pending()

Returns TRUE if unprocessed events are in the window system event queue (MS
Windows and Motif).

See also

wxApp::Dispatch (p. 8)

wxApp::SendIdleEvents

bool SendIdleEvents()

Sends idle events to all top-level windows.

bool SendIdleEvents(wxWindow* win)

Sends idle events to a window and its children.

Remarks

CHAPTER 4

14

These functions poll the top-level windows, and their children, for idle event processing.
If TRUE is returned, more OnIdle processing is requested by one or more window.

See also

wxApp::OnIdle (p. 11), wxWindow::OnIdle (p. 940), wxIdleEvent (p. 394)

wxApp::SetAppName

void SetAppName(const wxString& name)

Sets the name of the application. The name may be used in dialogs (for example by the
document/view framework). A default name is set by wxWindows.

See also

wxApp::GetAppName (p. 8)

wxApp::SetAuto3D

void SetAuto3D(const bool auto3D)

Switches automatic 3D controls on or off.

Parameters

auto3D
If TRUE, all controls will be created with 3D appearances unless overridden for a
control or dialog. The default is TRUE

Remarks

This has an effect on Windows only.

See also

wxApp::GetAuto3D (p. 8)

wxApp::SetClassName

void SetClassName(const wxString& name)

Sets the class name of the application. This may be used in a platform specific manner
to refer to the application.

See also

CHAPTER 4

15

wxApp::GetClassName (p. 8)

wxApp::SetExitOnDelete

void SetExitOnDelete(bool flag)

Allows the programmer to specify whether the application will exit when the top-level
frame is deleted.

Parameters

flag
If TRUE (the default), the application will exit when the top-level frame is deleted. If
FALSE, the application will continue to run.

Remarks

Currently, setting this to FALSE only has an effect under Windows.

wxApp::SetTopWindow

void SetTopWindow(wxWindow* window)

Sets the 'top' window. You can call this from within wxApp::OnInit (p. 12) to let
wxWindows know which is the main window. You don't have to set the top window; it's
only a convenience so that (for example) certain dialogs without parents can use a
specific window as the top window. If no top window is specified by the application,
wxWindows just uses the first frame or dialog in its top-level window list, when it needs
to use the top window.

Parameters

window
The new top window.

See also

wxApp::GetTopWindow (p. 9), wxApp::OnInit (p. 12)

wxApp::GetStdIcon

virtual wxIcon GetStdIcon(int which) const

Returns the icons used by wxWindows internally, e.g. the ones used for message
boxes. This function is used internally and can be overridden by the user to change the
default icons.

CHAPTER 4

16

Parameters

which
One of the wxICON_XXX defines and chooses which icon to return.

wxArray

This section describes the so called dynamic arrays. This is a C array-like data structure
i.e. the member access time is constant (and not linear according to the number of
container elements as for linked lists). However, these arrays are dynamic in the sense
that they will automatically allocate more memory if there is not enough of it for adding a
new element. They also perform range checking on the index values but in debug mode
only, so please be sure to compile your application in debug mode to use it (see
debugging overview (p. 1060) for details). So, unlike the arrays in some other
languages, attempt to access an element beyond the arrays bound doesn't automatically
expand the array but provokes an assertion failure instead in debug build and does
nothing (except possibly crashing your program) in the release build.

The array classes were designed to be reasonably efficient, both in terms of run-time
speed and memory consumption and the executable size. The speed of array item
access is, of course, constant (independent of the number of elements) making them
much more efficient than linked lists (wxList (p. 446)). Adding items to the arrays is also
implemented in more or less constant time - but the price is preallocating the memory in
advance. In the memory management (p. 19) section you may find some useful hints
about optimizing wxArray memory usage. As for executable size, all wxArray functions
are inline, so they do not take any space at all.

wxWindows has three different kinds of array. All of them derive from wxBaseArray class
which works with untyped data and can not be used directly. The standard macros
WX_DEFINE_ARRAY(), WX_DEFINE_SORTED_ARRAY() and
WX_DEFINE_OBJARRAY() are used to define a new class deriving from it. The classes
declared will be called in this documentation wxArray, wxSortedArray and wxObjArray
but you should keep in mind that no classes with such names actually exist, each time
you use one of WX_DEFINE_XXXARRAY macro you define a class with a new name. In
fact, these names are "template" names and each usage of one of the macros
mentioned above creates a template specialization for the given element type.

wxArray is suitable for storing integer types and pointers which it does not treat as
objects in any way, i.e. the element pointed to by the pointer is not deleted when the
element is removed from the array. It should be noted that all of wxArray's functions are
inline, so it costs strictly nothing to define as many array types as you want (either in
terms of the executable size or the speed) as long as at least one of them is defined and
this is always the case because wxArrays are used by wxWindows internally. This class
has one serious limitation: it can only be used for storing integral types (bool, char, short,
int, long and their unsigned variants) or pointers (of any kind). An attempt to use with
objects of sizeof() greater than sizeof(long) will provoke a runtime assertion failure,
however declaring a wxArray of floats will not (on the machines where sizeof(float) <=
sizeof(long)), yet it will not work, please use wxObjArray for storing floats and doubles
(NB: a more efficient wxArrayDouble class is scheduled for the next release of
wxWindows).

CHAPTER 4

17

wxSortedArray is a wxArray variant which should be used when searching in the array is
a frequently used operation. It requires you to define an additional function for comparing
two elements of the array element type and always stores its items in the sorted order
(according to this function). Thus, it's Index() (p. 24) function execution time is O(log(N))
instead ofO(N) for the usual arrays but the Add() (p. 22) method is slower: it is O(log(N))
instead of constant time (neglecting time spent in memory allocation routine). However,
in a usual situation elements are added to an array much less often than searched inside
it, so wxSortedArray may lead to huge performance improvements compared to
wxArray. Finally, it should be noticed that, as wxArray, wxSortedArray can be only used
for storing integral types or pointers.

wxObjArray class treats its elements like "objects". It may delete them when they are
removed from the array (invoking the correct destructor) and copies them using the
objects copy constructor. In order to implement this behaviour the definition of the
wxObjArray arrays is split in two parts: first, you should declare the new wxObjArray
class using WX_DECLARE_OBJARRAY() macro and then you must include the file
defining the implementation of template type: <wx/arrimpl.cpp> and define the array
class with WX_DEFINE_OBJARRAY() macro from a point where the full (as opposed to
'forward') declaration of the array elements class is in scope. As it probably sounds very
complicated here is an example:

#include <wx/dynarray.h>

// we must forward declare the array because it's used inside the class
// declaration
class MyDirectory;
class MyFile;

// this defines two new types: ArrayOfDirectories and ArrayOfFiles
which can be
// now used as shown below
WX_DECLARE_OBJARRAY(MyDirectory, ArrayOfDirectories);
WX_DECLARE_OBJARRAY(MyFile, ArrayOfFiles);

class MyDirectory
{
...
 ArrayOfDirectories m_subdirectories; // all subdirectories
 ArrayOfFiles m_files; // all files in this directory
};

...

// now that we have MyDirectory declaration in scope we may finish the
// definition of ArrayOfDirectories
#include <wx/arrimpl.cpp> // this is a magic incantation which must be
done!
WX_DEFINE_OBJARRAY(ArrayOfDirectories);

// that's all!

It is not as elegant as writing

CHAPTER 4

18

typedef std::vector<MyDirectory> ArrayOfDirectories;

but is not that complicated and allows the code to be compiled with any, however dumb,
C++ compiler in the world.

Things are much simpler for wxArray and wxSortedArray however: it is enough just to
write

WX_DEFINE_ARRAY(MyDirectory *, ArrayOfDirectories);
WX_DEFINE_SORTED_ARRAY(MyFile *, ArrayOfFiles);

See also:

Container classes overview (p. 1031), wxList (p. 446)

Required headers:

<wx/dynarray.h> for wxArray and wxSortedArray and additionally <wx/arrimpl.cpp> for
wxObjArray.

Macros for template array definition

To use an array you must first define the array class. This is done with the help of the
macros in this section. The class of array elements must be (at least) forward declared
for WX_DEFINE_ARRAY, WX_DEFINE_SORTED_ARRAY and
WX_DECLARE_OBJARRAY macros and must be fully declared before you use
WX_DEFINE_OBJARRAY macro.

WX_DEFINE_ARRAY (p. 20)
WX_DEFINE_SORTED_ARRAY (p. 20)
WX_DECLARE_OBJARRAY (p. 20)
WX_DEFINE_OBJARRAY (p. 21)

Constructors and destructors

Array classes are 100% C++ objects and as such they have the appropriate copy
constructors and assignment operators. Copying wxArray just copies the elements but
copying wxObjArray copies the arrays items. However, for memory-efficiency sake,
neither of these classes has virtual destructor. It is not very important for wxArray which
has trivial destructor anyhow, but it does mean that you should avoid deleting
wxObjArray through a wxBaseArray pointer (as you would never use wxBaseArray
anyhow it shouldn't be a problem) and that you should not derive your own classes from
the array classes.

wxArray default constructor (p. 21)
wxArray copy constructors and assignment operators (p. 22)
~wxArray (p. 22)

CHAPTER 4

19

Memory management

Automatic array memory management is quite trivial: the array starts by preallocating
some minimal amount of memory (defined by WX_ARRAY_DEFAULT_INITIAL_SIZE)
and when further new items exhaust already allocated memory it reallocates it adding
50% of the currently allocated amount, but no more than some maximal number which is
defined by ARRAY_MAXSIZE_INCREMENT constant. Of course, this may lead to some
memory being wasted (ARRAY_MAXSIZE_INCREMENT in the worst case, i.e. 4Kb in
the current implementation), so the Shrink() (p. 25) function is provided to unallocate the
extra memory. The Alloc() (p. 23) function can also be quite useful if you know in
advance how many items you are going to put in the array and will prevent the array
code from reallocating the memory more times than needed.

Alloc (p. 23)
Shrink (p. 25)

Number of elements and simple item access

Functions in this section return the total number of array elements and allow to retrieve
them - possibly using just the C array indexing [] operator which does exactly the same
as Item() (p. 25) method.

Count (p. 23)
GetCount (p. 24)
IsEmpty (p. 25)
Item (p. 25)
Last (p. 25)

Adding items

Add (p. 22)
Insert (p. 24)

Removing items

WX_CLEAR_ARRAY (p. 21)
Empty (p. 24)
Clear (p. 23)
Remove (p. 25)

Searching and sorting

Index (p. 24)
Sort (p. 26)

CHAPTER 4

20

WX_DEFINE_ARRAY

 WX_DEFINE_ARRAY(T, name)

This macro defines a new array class named name and containing the elements of type
T. Example:

WX_DEFINE_ARRAY(int, wxArrayInt);

class MyClass;
WX_DEFINE_ARRAY(MyClass *, wxArrayOfMyClass);

Note that wxWindows predefines the following standard array classes: wxArrayInt,
wxArrayLong and wxArrayPtrVoid.

WX_DEFINE_SORTED_ARRAY

 WX_DEFINE_SORTED_ARRAY(T, name)

This macro defines a new sorted array class named name and containing the elements
of type T. Example:

WX_DEFINE_SORTED_ARRAY(int, wxArrayInt);

class MyClass;
WX_DEFINE_SORTED_ARRAY(MyClass *, wxArrayOfMyClass);

You will have to initialize the objects of this class by passing a comparaison function to
the array object constructor like this:
int CompareInts(int n1, int n2)
{
 return n1 - n2;
}

wxArrayInt sorted(CompareInts);

int CompareMyClassObjects(MyClass *item1, MyClass *item2)
{
 // sort the items by their address...
 return Stricmp(item1->GetAddress(), item2->GetAddress());
}

wxArrayOfMyClass another(CompareMyClassObjects);

WX_DECLARE_OBJARRAY

 WX_DECLARE_OBJARRAY(T, name)

CHAPTER 4

21

This macro declares a new object array class named name and containing the elements
of type T. Example:

class MyClass;
WX_DEFINE_OBJARRAY(MyClass, wxArrayOfMyClass); // note: not "MyClass
*"!

You must use WX_DEFINE_OBJARRAY() (p. 21) macro to define the array class -
otherwise you would get link errors.

WX_DEFINE_OBJARRAY

 WX_DEFINE_OBJARRAY(name)

This macro defines the methods of the array class name not defined by the
WX_DECLARE_OBJARRAY() (p. 20) macro. You must include the file <wx/arrimpl.cpp>
before using this macro and you must have the full declaration of the class of array
elements in scope! If you forget to do the first, the error will be caught by the compiler,
but, unfortunately, many compilers will not give any warnings if you forget to do the
second - but the objects of the class will not be copied correctly and their real destructor
will not be called.

Example of usage:

// first declare the class!
class MyClass
{
public:
 MyClass(const MyClass&);

 ...

 virtual ~MyClass();
};

#include <wx/arrimpl.cpp>
WX_DEFINE_OBJARRAY(wxArrayOfMyClass);

WX_CLEAR_ARRAY

void WX_CLEAR_ARRAY(wxArray& array)

This macro may be used to delete all elements of the array before emptying it. It can not
be used with wxObjArrays - but they will delete their elements anyhow when you call
Empty().

Default constructors

CHAPTER 4

22

 wxArray()

 wxObjArray()

Default constructor initializes an empty array object.

 wxSortedArray(int (*)(T first, T second)compareFunction)

There is no default constructor for wxSortedArray classes - you must initialize it with a
function to use for item comparaison. It is a function which is passed two arguments of
type T where T is the array element type and which should return a negative, zero or
positive value according to whether the first element passed to it is less than, equal to or
greater than the second one.

wxArray copy constructor and assignment operator

 wxArray(const wxArray& array)

 wxSortedArray(const wxSortedArray& array)

 wxObjArray(const wxObjArray& array)

wxArray& operator=(const wxArray& array)

wxSortedArray& operator=(const wxSortedArray& array)

wxObjArray& operator=(const wxObjArray& array)

The copy constructors and assignment operators perform a shallow array copy (i.e. they
don't copy the objects pointed to even if the source array contains the items of pointer
type) for wxArray and wxSortedArray and a deep copy (i.e. the array element are copied
too) for wxObjArray.

wxArray::~wxArray

 ~wxArray()

 ~wxSortedArray()

 ~wxObjArray()

The wxObjArray destructor deletes all the items owned by the array. This is not done by
wxArray and wxSortedArray versions - you may use WX_CLEAR_ARRAY (p. 21) macro
for this.

wxArray::Add

CHAPTER 4

23

void Add(T item)

void Add(T *item)

void Add(T &item)

Appends a new element to the array (where T is the type of the array elements.)

The first version is used with wxArray and wxSortedArray. The second and the third are
used with wxObjArray. There is an important difference between them: if you give a
pointer to the array, it will take ownership of it, i.e. will delete it when the item is deleted
from the array. If you give a reference to the array, however, the array will make a copy
of the item and will not take ownership of the original item. Once again, it only makes
sense for wxObjArrays because the other array types never take ownership of their
elements.

wxArray::Alloc

void Alloc(size_t count)

Preallocates memory for a given number of array elements. It is worth calling when the
number of items which are going to be added to the array is known in advance because
it will save unneeded memory reallocation. If the array already has enough memory for
the given number of items, nothing happens.

wxArray::Clear

void Clear()

This function does the same as Empty() (p. 24) and additionally frees the memory
allocated to the array.

wxArray::Count

size_t Count() const

Same as GetCount() (p. 24). This function is deprecated - it exists only for compatibility.

wxObjArray::Detach

T * Detach(size_t index)

Removes the element from the array, but, unlike,

Remove() (p. 25) doesn't delete it. The function returns the pointer to the removed
element.

CHAPTER 4

24

wxArray::Empty

void Empty()

Empties the array. For wxObjArray classes, this destroys all of the array elements. For
wxArray and wxSortedArray this does nothing except marking the array of being empty -
this function does not free the allocated memory, use Clear() (p. 23) for this.

wxArray::GetCount

size_t GetCount() const

Return the number of items in the array.

wxArray::Index

int Index(T& item, bool searchFromEnd = FALSE)

int Index(T& item)

The first version of the function is for wxArray and wxObjArray, the second is for
wxSortedArray only.

Searches the element in the array, starting from either beginning or the end depending
on the value of searchFromEnd parameter. wxNOT_FOUND is returned if the element is
not found, otherwise the index of the element is returned.

Linear search is used for the wxArray and wxObjArray classes but binary search in the
sorted array is used for wxSortedArray (this is why searchFromEnd parameter doesn't
make sense for it).

wxArray::Insert

void Insert(T item, size_t n)

void Insert(T *item, size_t n)

void Insert(T &item, size_t n)

Insert a new item into the array before the item n - thus, Insert(something, 0u) will insert
an item in such way that it will become the first array element.

Please see Add() (p. 22) for explanation of the differences between the overloaded
versions of this function.

CHAPTER 4

25

wxArray::IsEmpty

bool IsEmpty() const

Returns TRUE if the array is empty, FALSE otherwise.

wxArray::Item

T& Item(size_t index) const

Returns the item at the given position in the array. If index is out of bounds, an assert
failure is raised in the debug builds but nothing special is done in the release build.

The returned value is of type "reference to the array element type" for all of the array
classes.

wxArray::Last

T& Last() const

Returns the last element in the array, i.e. is the same as Item(GetCount() - 1). An assert
failure is raised in the debug mode if the array is empty.

The returned value is of type "reference to the array element type" for all of the array
classes.

wxArray::Remove

 Remove(size_t index)

 Remove(T item)

Removes the element from the array either by index or by value. When an element is
removed from wxObjArray it is deleted by the array - use Detach() (p. 23) if you don't
want this to happen. On the other hand, when an object is removed from a wxArray
nothing happens - you should delete the it manually if required:

T *item = array[n];
delete item;
array.Remove(n)

See also WX_CLEAR_ARRAY (p. 21) macro which deletes all elements of a wxArray
(supposed to contain pointers).

wxArray::Shrink

CHAPTER 4

26

void Shrink()

Frees all memory unused by the array. If the program knows that no new items will be
added to the array it may call Shrink() to reduce its memory usage. However, if a new
item is added to the array, some extra memory will be allocated again.

wxArray::Sort

void Sort(CMPFUNC<T> compareFunction)

The notation CMPFUNC<T> should be read as if we had the following declaration:

template int CMPFUNC(T *first, T *second);

where T is the type of the array elements. I.e. it is a function returning int which is
passed two arguments of type T *.

Sorts the array using the specified compare function: this function should return a
negative, zero or positive value according to whether the first element passed to it is less
than, equal to or greater than the second one.

wxSortedArray doesn't have this function because it is always sorted.

wxArrayString

wxArrayString is an efficient container for storing wxString (p. 762) objects. It has the
same features as all wxArray (p. 16) classes, i.e. it dynamically expands when new
items are added to it (so it is as easy to use as a linked list), but the access time to the
elements is constant, instead of being linear in number of elements as in the case of
linked lists. It is also very size efficient and doesn't take more space than a C array
wxString[] type (wxArrayString uses its knowledge of internals of wxString class to
achieve this).

This class is used in the same way as other dynamic arrays (p. 16), except that no
WX_DEFINE_ARRAY declaration is needed for it. When a string is added or inserted in
the array, a copy of the string is created, so the original string may be safely deleted
(e.g. if it was a char * pointer the memory it was using can be freed immediately after
this). In general, there is no need to worry about string memory deallocation when using
this class - it will always free the memory it uses itself.

The references returned by Item (p. 30), Last (p. 30) or operator[] (p. 28) are not
constant, so the array elements may be modified in place like this

 array.Last().MakeUpper();

There is also a varian of wxArrayString called wxSortedArrayString which has exactly
the same methods as wxArrayString, but which always keeps the string in it in
(alphabetical) order. wxSortedArrayString uses binary search in its Index (p. 29) function
(insteadf of linear search for wxArrayString::Index) which makes it much more efficient if
you add strings to the array rarely (because, of course, you have to pay for Index()

CHAPTER 4

27

efficiency by having Add() be slower) but search for them often. Several methods should
not be used with sorted array (basicly, all which break the order of items) which is
mentioned in their description.

Final word: none of the methods of wxArrayString is virtual including its destructor, so
this class should not be used as a base class.

Derived from

Although this is not true strictly speaking, this class may be considered as a
specialization of wxArray (p. 16) class for the wxString member data: it is not
implemented like this, but it does have all of the wxArray functions.

Include files

<wx/string.h>

See also

wxArray (p. 16), wxString (p. 762), wxString overview (p. 1027)

wxArrayString::wxArrayString

 wxArrayString()

 wxArrayString(const wxArrayString& array)

Default and copy constructors.

Note that when an array is assigned to a sorted array, its contents is automatically
sorted during construction.

wxArrayString::~wxArrayString

 ~wxArrayString()

Destructor frees memory occupied by the array strings. For the performance reasons it
is not virtual, so this class should not be derived from.

wxArrayString::operator=

wxArrayString & operator =(const wxArrayString& array)

Assignment operator.

CHAPTER 4

28

wxArrayString::operator[]

wxString& operator[](size_t nIndex)

Return the array element at position nIndex. An assert failure will result from an attempt
to access an element beyond the end of array in debug mode, but no check is done in
release mode.

This is the operator version of Item (p. 30) method.

wxArrayString::Add

size_t Add(const wxString& str)

Appends a new item to the array and return the index of th new item in the array.

Warning: For sorted arrays, the index of the inserted item will not be, in general, equal
to GetCount() (p. 29) - 1 because the item is inserted at the correct position to keep the
array sorted and not appended.

See also: Insert (p. 29)

wxArrayString::Alloc

void Alloc(size_t nCount)

Preallocates enough memory to store nCount items. This function may be used to
improve array class performance before adding a known number of items consecutively.

See also: Dynamic array memory management (p. 19)

wxArrayString::Clear

void Clear()

Clears the array contents and frees memory.

See also: Empty (p. 29)

wxArrayString::Count

size_t Count() const

Returns the number of items in the array. This function is deprecated and is for
backwards compatibility only, please use GetCount (p. 29) instead.

CHAPTER 4

29

wxArrayString::Empty

void Empty()

Empties the array: after a call to this function GetCount (p. 29) will return 0. However,
this function does not free the memory used by the array and so should be used when
the array is going to be reused for storing other strings. Otherwise, you should use Clear
(p. 28) to empty the array and free memory.

wxArrayString::GetCount

size_t GetCount() const

Returns the number of items in the array.

wxArrayString::Index

int Index(const char * sz, bool bCase = TRUE, bool bFromEnd = FALSE)

Search the element in the array, starting from the beginning ifbFromEnd is FALSE or
from end otherwise. If bCase, comparison is case sensitive (default), otherwise the case
is ignored.

This function uses linear search for wxArrayString and binary search for
wxSortedArrayString, but it ignores the bCase and bFromEnd parameters in the latter
case.

Returns index of the first item matched or wxNOT_FOUND if there is no match.

wxArrayString::Insert

void Insert(const wxString& str, size_t nIndex)

Insert a new element in the array before the position nIndex. Thus, for example, to insert
the string in the beginning of the array you would write

Insert("foo", 0);

If nIndex is equal to GetCount() + 1 this function behaves as Add (p. 28).

Warning: this function should not be used with sorted array because it could break the
order of items and, for example, subsequent calls to Index() (p. 29) would not work then!

wxArrayString::IsEmpty

CHAPTER 4

30

 IsEmpty()

Returns TRUE if the array is empty, FALSE otherwise. This function returns the same
result as GetCount() == 0 but is probably easier to read.

wxArrayString::Item

wxString& Item(size_t nIndex) const

Return the array element at position nIndex. An assert failure will result from an attempt
to access an element beyond the end of array in debug mode, but no check is done in
release mode.

See also operator[] (p. 28) for the operator version.

wxArrayString::Last

 Last()

Returns the last element of the array. Attempt to access the last element of an empty
array will result in assert failure in debug build, however no checks are done in release
mode.

wxArrayString::Remove (by value)

void Remove(const char * sz)

Removes the first item matching this value. An assert failure is provoked by an attempt
to remove an element which does not exist in debug build.

See also: Index (p. 29), Remove (p. 30)

wxArrayString::Remove (by index)

void Remove(size_t nIndex)

Removes the item at given position.

See also: Remove (p. 30)

wxArrayString::Shrink

void Shrink()

CHAPTER 4

31

Releases the extra memory allocated by the array. This function is useful to minimize the
array memory consumption.

See also: Alloc (p. 28), Dynamic array memory management (p. 19)

wxArrayString::Sort (alphabetically)

void Sort(bool reverseOrder = FALSE)

Sorts the array in alphabetical order or in reverse alphabetical order ifreverseOrder is
TRUE.

Warning: this function should not be used with sorted array because it could break the
order of items and, for example, subsequent calls to Index() (p. 29) would not work then!

See also: Sort (p. 31)

wxArrayString::Sort (user defined)

void Sort(CompareFunction compareFunction)

Sorts the array using the specified compareFunction for item
comparison.CompareFunction is defined as a function taking two const wxString&
parameters and returning int value less than, equal to or greater than 0 if the first string
is less than, equal to or greater than the second one.

Example

The following example sorts strings by their length.

static int CompareStringLen(const wxString& first, const wxString&
second)
{
 return first.length() - second.length();
}

...

wxArrayString array;

array.Add("one");
array.Add("two");
array.Add("three");
array.Add("four");

array.Sort(CompareStringLen);

Warning: this function should not be used with sorted array because it could break the
order of items and, for example, subsequent calls to Index() (p. 29) would not work then!

CHAPTER 4

32

See also: Sort (p. 31)

wxAutomationObject

The wxAutomationObject class represents an OLE automation object containing a
single data member, an IDispatch pointer. It contains a number of functions that make it
easy to perform automation operations, and set and get properties. The class makes
heavy use of the wxVariant (p. 900) class.

The usage of these classes is quite close to OLE automation usage in Visual Basic. The
API is high-level, and the application can specify multiple properties in a single string.
The following example gets the current Excel instance, and if it exists, makes the active
cell bold.

 wxAutomationObject excelObject;
 if (excelObject.GetInstance("Excel.Application"))
 excelObject.PutProperty("ActiveCell.Font.Bold", TRUE);

Note that this class works under Windows only, and currently only for Visual C++.

Derived from

wxObject (p. 555)

Include files

<wx/msw/ole/automtn.h>

See also

wxVariant (p. 900)

wxAutomationObject::wxAutomationObject

 wxAutomationObject(WXIDISPATCH* dispatchPtr = NULL)

Constructor, taking an optional IDispatch pointer which will be released when the object
is deleted.

wxAutomationObject::~wxAutomationObject

 ~wxAutomationObject()

Destructor. If the internal IDispatch pointer is non-null, it will be released.

CHAPTER 4

33

wxAutomationObject::CallMethod

wxVariant CallMethod(const wxString& method, int noArgs, wxVariant args[]) const

wxVariant CallMethod(const wxString& method, ...) const

Calls an automation method for this object. The first form takes a method name, number
of arguments, and an array of variants. The second form takes a method name and zero
to six constant references to variants. Since the variant class has constructors for the
basic data types, and C++ provides temporary objects automatically, both of the
following lines are syntactically valid:

 wxVariant res = obj.CallMethod("Sum", wxVariant(1.2),
wxVariant(3.4));
 wxVariant res = obj.CallMethod("Sum", 1.2, 3.4);

Note that method can contain dot-separated property names, to save the application
needing to call GetProperty several times using several temporary objects. For example:

 object.CallMethod("ActiveCell.Font.ShowDialog", "My caption");

wxAutomationObject::CreateInstance

bool CreateInstance(const wxString& classId) const

Creates a new object based on the class id, returning TRUE if the object was
successfully created, or FALSE if not.

wxAutomationObject::GetDispatchPtr

IDispatch* GetDispatchPtr() const

Gets the IDispatch pointer.

wxAutomationObject::GetInstance

bool GetInstance(const wxString& classId) const

Retrieves the current object associated with a class id, and attaches the IDispatch
pointer to this object. Returns TRUE if a pointer was succesfully retrieved, FALSE
otherwise.

CHAPTER 4

34

Note that this cannot cope with two instances of a given OLE object being active
simultaneously, such as two copies of Excel running. Which object is referenced cannot
currently be specified.

wxAutomationObject::GetObject

bool GetObject(wxAutomationObject&obj const wxString& property, int noArgs = 0,
wxVariant args[] = NULL) const

Retrieves a property from this object, assumed to be a dispatch pointer, and initialises
obj with it. To avoid having to deal with IDispatch pointers directly, use this function in
preference to wxAutomationObject::GetProperty (p. 34) when retrieving objects from
other objects.

Note that an IDispatch pointer is stored as a void* pointer in wxVariant objects.

See also

wxAutomationObject::GetProperty (p. 34)

wxAutomationObject::GetProperty

wxVariant GetProperty(const wxString& property, int noArgs, wxVariant args[])
const

wxVariant GetProperty(const wxString& property, ...) const

Gets a property value from this object. The first form takes a property name, number of
arguments, and an array of variants. The second form takes a property name and zero
to six constant references to variants. Since the variant class has constructors for the
basic data types, and C++ provides temporary objects automatically, both of the
following lines are syntactically valid:

 wxVariant res = obj.GetProperty("Range", wxVariant("A1"));
 wxVariant res = obj.GetProperty("Range", "A1");

Note that property can contain dot-separated property names, to save the application
needing to call GetProperty several times using several temporary objects.

wxAutomationObject::Invoke

bool Invoke(const wxString& member, int action, wxVariant& retValue, int noArgs,
wxVariant args[], const wxVariant* ptrArgs[] = 0) const

CHAPTER 4

35

This function is a low-level implementation that allows access to the IDispatch Invoke
function. It is not meant to be called directly by the application, but is used by other
convenience functions.

Parameters

member
The member function or property name.

action
Bitlist: may contain DISPATCH_PROPERTYPUT,
DISPATCH_PROPERTYPUTREF, DISPATCH_METHOD.

retValue
Return value (ignored if there is no return value)

.

noArgs
Number of arguments in args or ptrArgs.

args
If non-null, contains an array of variants.

ptrArgs
If non-null, contains an array of constant pointers to variants.

Return value

TRUE if the operation was successful, FALSE otherwise.

Remarks

Two types of argument array are provided, so that when possible pointers are used for
efficiency.

wxAutomationObject::PutProperty

bool PutProperty(const wxString& property, int noArgs, wxVariant args[]) const

bool PutProperty(const wxString& property, ...)

Puts a property value into this object. The first form takes a property name, number of
arguments, and an array of variants. The second form takes a property name and zero
to six constant references to variants. Since the variant class has constructors for the
basic data types, and C++ provides temporary objects automatically, both of the
following lines are syntactically valid:

 obj.PutProperty("Value", wxVariant(23));
 obj.PutProperty("Value", 23);

CHAPTER 4

36

Note that property can contain dot-separated property names, to save the application
needing to call GetProperty several times using several temporary objects.

wxAutomationObject::SetDispatchPtr

void SetDispatchPtr(WXIDISPATCH* dispatchPtr)

Sets the IDispatch pointer. This function does not check if there is already an IDispatch
pointer.

You may need to cast from IDispatch* to WXIDISPATCH* when calling this function.

wxBitmap

This class encapsulates the concept of a platform-dependent bitmap, either
monochrome or colour.

Derived from

wxGDIObject (p. 321)
wxObject (p. 555)

Include files

<wx/bitmap.h>

Predefined objects

Objects:

wxNullBitmap

See also

wxBitmap overview (p. 1040),supported bitmap file formats (p. 1041),wxDC::Blit (p.
166),wxIcon (p. 395), wxCursor (p. 135), wxBitmap (p. 36),wxMemoryDC (p. 496)

wxBitmap::wxBitmap

 wxBitmap()

Default constructor.

 wxBitmap(const wxBitmap& bitmap)

CHAPTER 4

37

Copy constructor.

 wxBitmap(void* data, int type, int width, int height, int depth = -1)

Creates a bitmap from the given data, which can be of arbitrary type. Windows only, I
think.

 wxBitmap(const char bits[], int width, int height
 int depth = 1)

Creates a bitmap from an array of bits.

Note that the bit depth is ignored on GTK+ and Motif. If you want to create a bitmap from
something else than a 1-bit data array, use the wxImage (p. 402) class.

 wxBitmap(int width, int height, int depth = -1)

Creates a new bitmap. A depth of -1 indicates the depth of the current screen or visual.
Some platforms only support 1 for monochrome and -1 for the current colour setting.

 wxBitmap(const char** bits)

Creates a bitmap from XPM data.

 wxBitmap(const wxString& name, long type)

Loads a bitmap from a file or resource.

Parameters

bits
Specifies an array of pixel values.

width
Specifies the width of the bitmap.

height
Specifies the height of the bitmap.

depth
Specifies the depth of the bitmap. If this is omitted, the display depth of the screen
is used.

name
This can refer to a resource name under MS Windows, or a filename under MS
Windows and X. Its meaning is determined by the type parameter.

type
May be one of the following:

CHAPTER 4

38

wxBITMAP_TYPE_BMP Load a Windows bitmap file.

wxBITMAP_TYPE_BMP_RESOURCE Load a Windows bitmap from the
resource database.

wxBITMAP_TYPE_GIF Load a GIF bitmap file.

wxBITMAP_TYPE_XBM Load an X bitmap file.

wxBITMAP_TYPE_XPM Load an XPM bitmap file.

wxBITMAP_TYPE_RESOURCE Load a Windows resource name.

The validity of these flags depends on the platform and wxWindows configuration.
If all possible wxWindows settings are used, the Windows platform supports BMP
file, BMP resource, XPM data, and XPM. Under wxGTK, the available formats are
BMP file, XPM data, XPM file, and PNG file. Under wxMotif, the available formats
are XBM data, XBM file, XPM data, XPM file.

Remarks

The first form constructs a bitmap object with no data; an assignment or another
member function such as Create or LoadFile must be called subsequently.

The second and third forms provide copy constructors. Note that these do not copy the
bitmap data, but instead a pointer to the data, keeping a reference count. They are
therefore very efficient operations.

The fourth form constructs a bitmap from data whose type and value depends on the
value of the type argument.

The fifth form constructs a (usually monochrome) bitmap from an array of pixel values,
under both X and Windows.

The sixth form constructs a new bitmap.

The seventh form constructs a bitmap from pixmap (XPM) data, if wxWindows has been
configured to incorporate this feature.

To use this constructor, you must first include an XPM file. For example, assuming that
the file mybitmap.xpm contains an XPM array of character pointers called mybitmap:

#include "mybitmap.xpm"

...

wxBitmap *bitmap = new wxBitmap(mybitmap);

The eighth form constructs a bitmap from a file or resource. name can refer to a
resource name under MS Windows, or a filename under MS Windows and X.

CHAPTER 4

39

Under Windows, type defaults to wxBITMAP_TYPE_BMP_RESOURCE. Under X, type
defaults to wxBITMAP_TYPE_XPM.

See also

wxBitmap::LoadFile (p. 43)

wxPython note: Constructors supported by wxPython are:

wxBitmap(name, flag) Loads a bitmap from a file

wxBitmapFromData(data, type, width, height, depth=1) Creates a
bitmap from the given data, which can be of
arbitrary type.

wxNoRefBitmap(name, flag) This one won't own the reference, so
Python won't call the destructor, this is good for
toolbars and such where the parent will
manage the bitmap.

wxEmptyBitmap(width, height, depth = -1) Creates an empty bitmap
with the given specifications

wxBitmap::~wxBitmap

 ~wxBitmap()

Destroys the wxBitmap object and possibly the underlying bitmap data. Because
reference counting is used, the bitmap may not actually be destroyed at this point - only
when the reference count is zero will the data be deleted.

If the application omits to delete the bitmap explicitly, the bitmap will be destroyed
automatically by wxWindows when the application exits.

Do not delete a bitmap that is selected into a memory device context.

wxBitmap::AddHandler

static void AddHandler(wxBitmapHandler* handler)

Adds a handler to the end of the static list of format handlers.

handler
A new bitmap format handler object. There is usually only one instance of a given
handler class in an application session.

See also

CHAPTER 4

40

wxBitmapHandler (p. 48)

wxBitmap::CleanUpHandlers

static void CleanUpHandlers()

Deletes all bitmap handlers.

This function is called by wxWindows on exit.

wxBitmap::Create

virtual bool Create(int width, int height, int depth = -1)

Creates a fresh bitmap. If the final argument is omitted, the display depth of the screen is
used.

virtual bool Create(void* data, int type, int width, int height, int depth = -1)

Creates a bitmap from the given data, which can be of arbitrary type.

Parameters

width
The width of the bitmap in pixels.

height
The height of the bitmap in pixels.

depth
The depth of the bitmap in pixels. If this is -1, the screen depth is used.

data
Data whose type depends on the value of type.

type
A bitmap type identifier - see wxBitmap::wxBitmap (p. 36) for a list of possible
values.

Return value

TRUE if the call succeeded, FALSE otherwise.

Remarks

The first form works on all platforms. The portability of the second form depends on the
type of data.

See also

CHAPTER 4

41

wxBitmap::wxBitmap (p. 36)

wxBitmap::FindHandler

static wxBitmapHandler* FindHandler(const wxString& name)

Finds the handler with the given name.

static wxBitmapHandler* FindHandler(const wxString& extension, long bitmapType)

Finds the handler associated with the given extension and type.

static wxBitmapHandler* FindHandler(long bitmapType)

Finds the handler associated with the given bitmap type.

name
The handler name.

extension
The file extension, such as "bmp".

bitmapType
The bitmap type, such as wxBITMAP_TYPE_BMP.

Return value

A pointer to the handler if found, NULL otherwise.

See also

wxBitmapHandler (p. 48)

wxBitmap::GetDepth

int GetDepth() const

Gets the colour depth of the bitmap. A value of 1 indicates a monochrome bitmap.

wxBitmap::GetHandlers

static wxList& GetHandlers()

Returns the static list of bitmap format handlers.

See also

CHAPTER 4

42

wxBitmapHandler (p. 48)

wxBitmap::GetHeight

int GetHeight() const

Gets the height of the bitmap in pixels.

wxBitmap::GetPalette

wxPalette* GetPalette() const

Gets the associated palette (if any) which may have been loaded from a file or set for the
bitmap.

See also

wxPalette (p. 568)

wxBitmap::GetMask

wxMask* GetMask() const

Gets the associated mask (if any) which may have been loaded from a file or set for the
bitmap.

See also

wxBitmap::SetMask (p. 46), wxMask (p. 483)

wxBitmap::GetWidth

int GetWidth() const

Gets the width of the bitmap in pixels.

See also

wxBitmap::GetHeight (p. 42)

wxBitmap::InitStandardHandlers

static void InitStandardHandlers()

CHAPTER 4

43

Adds the standard bitmap format handlers, which, depending on wxWindows
configuration, can be handlers for Windows bitmap, Windows bitmap resource, and
XPM.

This function is called by wxWindows on startup.

See also

wxBitmapHandler (p. 48)

wxBitmap::InsertHandler

static void InsertHandler(wxBitmapHandler* handler)

Adds a handler at the start of the static list of format handlers.

handler
A new bitmap format handler object. There is usually only one instance of a given
handler class in an application session.

See also

wxBitmapHandler (p. 48)

wxBitmap::LoadFile

bool LoadFile(const wxString& name, long type)

Loads a bitmap from a file or resource.

Parameters

name
Either a filename or a Windows resource name. The meaning of name is
determined by the type parameter.

type
One of the following values:

wxBITMAP_TYPE_BMP Load a Windows bitmap file.

wxBITMAP_TYPE_BMP_RESOURCE Load a Windows bitmap from the
resource database.

wxBITMAP_TYPE_GIF Load a GIF bitmap file.

wxBITMAP_TYPE_XBM Load an X bitmap file.

wxBITMAP_TYPE_XPM Load an XPM bitmap file.

CHAPTER 4

44

The validity of these flags depends on the platform and wxWindows configuration.

Return value

TRUE if the operation succeeded, FALSE otherwise.

Remarks

A palette may be associated with the bitmap if one exists (especially for colour Windows
bitmaps), and if the code supports it. You can check if one has been created by using
the GetPalette (p. 42) member.

See also

wxBitmap::SaveFile (p. 44)

wxBitmap::Ok

bool Ok() const

Returns TRUE if bitmap data is present.

wxBitmap::RemoveHandler

static bool RemoveHandler(const wxString& name)

Finds the handler with the given name, and removes it. The handler is not deleted.

name
The handler name.

Return value

TRUE if the handler was found and removed, FALSE otherwise.

See also

wxBitmapHandler (p. 48)

wxBitmap::SaveFile

bool SaveFile(const wxString& name, int type, wxPalette* palette = NULL)

Saves a bitmap in the named file.

Parameters

CHAPTER 4

45

name
A filename. The meaning of name is determined by the type parameter.

type
One of the following values:

wxBITMAP_TYPE_BMP Save a Windows bitmap file.

wxBITMAP_TYPE_GIF Save a GIF bitmap file.

wxBITMAP_TYPE_XBM Save an X bitmap file.

wxBITMAP_TYPE_XPM Save an XPM bitmap file.

The validity of these flags depends on the platform and wxWindows configuration.

palette
An optional palette used for saving the bitmap.

Return value

TRUE if the operation succeeded, FALSE otherwise.

Remarks

Depending on how wxWindows has been configured, not all formats may be available.

See also

wxBitmap::LoadFile (p. 43)

wxBitmap::SetDepth

void SetDepth(int depth)

Sets the depth member (does not affect the bitmap data).

Parameters

depth
Bitmap depth.

wxBitmap::SetHeight

void SetHeight(int height)

Sets the height member (does not affect the bitmap data).

Parameters

CHAPTER 4

46

height
Bitmap height in pixels.

wxBitmap::SetMask

void SetMask(wxMask* mask)

Sets the mask for this bitmap.

Remarks

The bitmap object owns the mask once this has been called.

See also

wxBitmap::GetMask (p. 42), wxMask (p. 483)

wxBitmap::SetOk

void SetOk(int isOk)

Sets the validity member (does not affect the bitmap data).

Parameters

isOk
Validity flag.

wxBitmap::SetPalette

void SetPalette(wxPalette* palette)

Sets the associated palette: it will be deleted in the wxBitmap destructor, so if you do not
wish it to be deleted automatically, reset the palette to NULL before the bitmap is
deleted.

Parameters

palette
The palette to set.

Remarks

The bitmap object owns the palette once this has been called.

See also

CHAPTER 4

47

wxPalette (p. 568)

wxBitmap::SetWidth

void SetWidth(int width)

Sets the width member (does not affect the bitmap data).

Parameters

width
Bitmap width in pixels.

wxBitmap::operator =

wxBitmap& operator =(const wxBitmap& bitmap)

Assignment operator. This operator does not copy any data, but instead passes a
pointer to the data in bitmap and increments a reference counter. It is a fast operation.

Parameters

bitmap
Bitmap to assign.

Return value

Returns 'this' object.

wxBitmap::operator ==

bool operator ==(const wxBitmap& bitmap)

Equality operator. This operator tests whether the internal data pointers are equal (a fast
test).

Parameters

bitmap
Bitmap to compare with 'this'

Return value

Returns TRUE if the bitmaps were effectively equal, FALSE otherwise.

CHAPTER 4

48

wxBitmap::operator !=

bool operator !=(const wxBitmap& bitmap)

Inequality operator. This operator tests whether the internal data pointers are unequal (a
fast test).

Parameters

bitmap
Bitmap to compare with 'this'

Return value

Returns TRUE if the bitmaps were unequal, FALSE otherwise.

wxBitmapHandler

Overview (p. 1040)

This is the base class for implementing bitmap file loading/saving, and bitmap creation
from data. It is used within wxBitmap and is not normally seen by the application.

If you wish to extend the capabilities of wxBitmap, derive a class from wxBitmapHandler
and add the handler using wxBitmap::AddHandler (p. 39) in your application initialisation.

Derived from

wxObject (p. 555)

Include files

<wx/bitmap.h>

See also

wxBitmap (p. 36), wxIcon (p. 395), wxCursor (p. 135)

wxBitmapHandler::wxBitmapHandler

 wxBitmapHandler()

Default constructor. In your own default constructor, initialise the members m_name,
m_extension and m_type.

wxBitmapHandler::~wxBitmapHandler

CHAPTER 4

49

 ~wxBitmapHandler()

Destroys the wxBitmapHandler object.

wxBitmapHandler::Create

virtual bool Create(wxBitmap* bitmap, void* data, int type, int width, int height, int
depth = -1)

Creates a bitmap from the given data, which can be of arbitrary type. The wxBitmap
object bitmap is manipulated by this function.

Parameters

bitmap
The wxBitmap object.

width
The width of the bitmap in pixels.

height
The height of the bitmap in pixels.

depth
The depth of the bitmap in pixels. If this is -1, the screen depth is used.

data
Data whose type depends on the value of type.

type
A bitmap type identifier - see wxBitmapHandler::wxBitmapHandler (p. 36) for a list
of possible values.

Return value

TRUE if the call succeeded, FALSE otherwise (the default).

wxBitmapHandler::GetName

wxString GetName() const

Gets the name of this handler.

wxBitmapHandler::GetExtension

wxString GetExtension() const

CHAPTER 4

50

Gets the file extension associated with this handler.

wxBitmapHandler::GetType

long GetType() const

Gets the bitmap type associated with this handler.

wxBitmapHandler::LoadFile

bool LoadFile(wxBitmap* bitmap, const wxString& name, long type)

Loads a bitmap from a file or resource, putting the resulting data into bitmap.

Parameters

bitmap
The bitmap object which is to be affected by this operation.

name
Either a filename or a Windows resource name. The meaning of name is
determined by the type parameter.

type
See wxBitmap::wxBitmap (p. 36) for values this can take.

Return value

TRUE if the operation succeeded, FALSE otherwise.

See also

wxBitmap::LoadFile (p. 43)
wxBitmap::SaveFile (p. 44)
wxBitmapHandler::SaveFile (p. 50)

wxBitmapHandler::SaveFile

bool SaveFile(wxBitmap* bitmap, const wxString& name, int type, wxPalette* palette
= NULL)

Saves a bitmap in the named file.

Parameters

bitmap

CHAPTER 4

51

The bitmap object which is to be affected by this operation.

name
A filename. The meaning of name is determined by the type parameter.

type
See wxBitmap::wxBitmap (p. 36) for values this can take.

palette
An optional palette used for saving the bitmap.

Return value

TRUE if the operation succeeded, FALSE otherwise.

See also

wxBitmap::LoadFile (p. 43)
wxBitmap::SaveFile (p. 44)
wxBitmapHandler::LoadFile (p. 50)

wxBitmapHandler::SetName

void SetName(const wxString& name)

Sets the handler name.

Parameters

name
Handler name.

wxBitmapHandler::SetExtension

void SetExtension(const wxString& extension)

Sets the handler extension.

Parameters

extension
Handler extension.

wxBitmapHandler::SetType

void SetType(long type)

CHAPTER 4

52

Sets the handler type.

Parameters

name
Handler type.

wxBitmapButton

A bitmap button is a control that contains a bitmap. It may be placed on a dialog box (p.
193) or panel (p. 572), or indeed almost any other window.

Derived from

wxButton (p. 69)
wxControl (p. 130)
wxWindow (p. 915)
wxEvtHandler (p. 240)
wxObject (p. 555)

Include files

<wx/bmpbuttn.h>

Remarks

A bitmap button can be supplied with a single bitmap, and wxWindows will draw all
button states using this bitmap. If the application needs more control, additional bitmaps
for the selected state, unpressed focussed state, and greyed-out state may be supplied.

Window styles

wxBU_AUTODRAW If this is specified, the button will be drawn automatically
using the label bitmap only, providing a 3D-look border. If
this style is not specified, the button will be drawn without
borders and using all provided bitmaps.

See also window styles overview (p. 1093).

Event handling

EVT_BUTTON(id, func) Process a
wxEVT_COMMAND_BUTTON_CLICKED
event, when the button is clicked.

See also

wxButton (p. 69)

CHAPTER 4

53

wxBitmapButton::wxBitmapButton

 wxBitmapButton()

Default constructor.

 wxBitmapButton(wxWindow* parent, wxWindowID id, const wxBitmap& bitmap,
const wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long
style = wxBU_AUTODRAW, const wxValidator& validator = wxDefaultValidator, const
wxString& name = "button")

Constructor, creating and showing a button.

Parameters

parent
Parent window. Must not be NULL.

id
Button identifier. A value of -1 indicates a default value.

bitmap
Bitmap to be displayed.

pos
Button position.

size
Button size. If the default size (-1, -1) is specified then the button is sized
appropriately for the bitmap.

style
Window style. See wxBitmapButton (p. 52).

validator
Window validator.

name
Window name.

Remarks

The bitmap parameter is normally the only bitmap you need to provide, and wxWindows
will draw the button correctly in its different states. If you want more control, call any of
the functions wxBitmapButton::SetBitmapSelected (p. 56),
wxBitmapButton::SetBitmapFocus (p. 56), wxBitmapButton::SetBitmapDisabled (p. 55).

Note that the bitmap passed is smaller than the actual button created.

CHAPTER 4

54

See also

wxBitmapButton::Create (p. 54), wxValidator (p. 897)

wxBitmapButton::~wxBitmapButton

 ~wxBitmapButton()

Destructor, destroying the button.

wxBitmapButton::Create

bool Create(wxWindow* parent, wxWindowID id, const wxBitmap& bitmap, const
wxPoint& pos, const wxSize& size = wxDefaultSize, long style = 0, const
wxValidator& validator, const wxString& name = "button")

Button creation function for two-step creation. For more details, see
wxBitmapButton::wxBitmapButton (p. 53).

wxBitmapButton::GetBitmapDisabled

wxBitmap& GetBitmapLabel() const

Returns the bitmap for the disabled state.

Return value

A reference to the disabled state bitmap.

See also

wxBitmapButton::SetBitmapDisabled (p. 55)

wxBitmapButton::GetBitmapFocus

wxBitmap& GetBitmapFocus() const

Returns the bitmap for the focussed state.

Return value

A reference to the focussed state bitmap.

See also

CHAPTER 4

55

wxBitmapButton::SetBitmapFocus (p. 56)

wxBitmapButton::GetBitmapLabel

wxBitmap& GetBitmapLabel() const

Returns the label bitmap (the one passed to the constructor).

Return value

A reference to the button's label bitmap.

See also

wxBitmapButton::SetBitmapLabel (p. 56)

wxBitmapButton::GetBitmapSelected

wxBitmap& GetBitmapSelected() const

Returns the bitmap for the selected state.

Return value

A reference to the selected state bitmap.

See also

wxBitmapButton::SetBitmapSelected (p. 56)

wxBitmapButton::SetBitmapDisabled

void SetBitmapDisabled(const wxBitmap& bitmap)

Sets the bitmap for the disabled button appearance.

Parameters

bitmap
The bitmap to set.

See also

wxBitmapButton::GetBitmapDisabled (p. 54), wxBitmapButton::SetBitmapLabel (p. 56),
wxBitmapButton::SetBitmapSelected (p. 56), wxBitmapButton::SetBitmapFocus (p. 56)

CHAPTER 4

56

wxBitmapButton::SetBitmapFocus

void SetBitmapFocus(const wxBitmap& bitmap)

Sets the bitmap for the button appearance when it has the keyboard focus.

Parameters

bitmap
The bitmap to set.

See also

wxBitmapButton::GetBitmapFocus (p. 54), wxBitmapButton::SetBitmapLabel (p. 56),
wxBitmapButton::SetBitmapSelected (p. 56), wxBitmapButton::SetBitmapDisabled (p.
55)

wxBitmapButton::SetBitmapLabel

void SetBitmapLabel(const wxBitmap& bitmap)

Sets the bitmap label for the button.

Parameters

bitmap
The bitmap label to set.

Remarks

This is the bitmap used for the unselected state, and for all other states if no other
bitmaps are provided.

See also

wxBitmapButton::GetBitmapLabel (p. 55)

wxBitmapButton::SetBitmapSelected

void SetBitmapSelected(const wxBitmap& bitmap)

Sets the bitmap for the selected (depressed) button appearance.

Parameters

bitmap
The bitmap to set.

CHAPTER 4

57

See also

wxBitmapButton::GetBitmapSelected (p. 55), wxBitmapButton::SetBitmapLabel (p. 56),
wxBitmapButton::SetBitmapFocus (p. 56), wxBitmapButton::SetBitmapDisabled (p. 55)

wxBitmapDataObject

wxBitmapDataObject is a specialization of wxDataObject for bitmap data. It can be used
without change to paste data into thewxClipboard (p. 87) or a wxDropSource (p. 232). A
user may wish to derive a new class from this class for providing a bitmap on-demand in
order to minimize memory consumption when offering data in several formats, such as a
bitmap and GIF.

wxPython note: If you wish to create a derived wxBitmapDataObject class in wxPython
you should derive the class from wxPyBitmapDataObject in order to get Python-aware
capabilities for the various virtual methods.

Virtual functions to override

This class may be used as is, butGetBitmap (p. 57) may be overridden to increase
efficiency.

Derived from

wxDataObjectSimple (p. 152)
wxDataObject (p. 148)

Include files

<wx/dataobj.h>

See also

Clipboard and drag and drop overview (p. 1038),wxDataObject (p.
148),wxDataObjectSimple (p. 152),wxFileDataObject (p. 263),wxTextDataObject (p.
833),wxDataObject (p. 148)

 wxBitmapDataObject(const wxBitmap& bitmap = wxNullBitmap)

Constructor, optionally passing a bitmap (otherwise useSetBitmap (p. 58) later)

wxBitmapDataObject::GetBitmap

virtual wxBitmap GetBitmap() const

Returns the bitmap associated with the data object. You may wish to override this
method when offering data on-demand, but this is not required by wxWindows' internals.
Use this method to get data in bitmap form from the wxClipboard (p. 87).

CHAPTER 4

58

wxBitmapDataObject::SetBitmap

virtual void SetBitmap(const wxBitmap& bitmap)

Sets the bitmap associated with the data object. This method is called when the data
object receives data. Usually there will be no reason to override this function.

wxBoxSizer

The basic idea behind a box sizer is that windows will most often be laid out in rather
simple basic geomerty, typically in a row or a column or several hierachies of either.

As an exmaple, we will construct a dialog that will contain a text field at the top and two
buttons at the bottom. This can be seen as a top-hierarchy column with the text at the
top and buttons at the bottom and a low-hierchary row with an OK button to the left and
a Cancel button to the right. In many cases (particulary dialogs under Unix and normal
frames) the main window will be resizable by the user and this change of size will have
to get propagated to its children. In our case, we want the text area to grow with the
dialog, whereas the button shall have a fixed size. In addition, there will be a thin border
around all controls to make the dialog look nice and - to make matter worse - the buttons
shall be centred as the width of the dialog changes.

It is the unique feature of a box sizer, that it can grow in both directions (height and
width) but can distribute its growth in the main direction (horizontal for a row)
unevenlyamong its children. In our example case, the vertical sizer is supposed to
propagate all its height changes to only the text area, not to the button area. This is
determined by the option parameter when adding a window (or another sizer) to a sizer.
It is interpreted as a weight factor, i.e. it can be zero, indicating that the window may not
be resized at all, or above zero. If several windows have a value above zero, the value is
interpreted relative to the sum of all weight factors of the sizer, so when adding two
windows with a value of 1, they will both get resized equally much and each half as
much as the sizer owning them. Then what do we do when a column sizer changes its
width? This behaviour is controlled by flags (the second parameter of the Add()
function): Zero or no flag indicates that the window will get aligned at the left (in a
column sizer) and the top (row sizer), whereas wxALIGN_RIGHT and
wxALIGN_BOTTOM will do what they say. The item can also be centered using the
wxCENTRE flag (same as wxCENTER) or it can be forced to grow with the sizer (using
the wxGROW flag (same as wxEXPAND)).

As mentioned above, any window belonging to a sizer may have border, and it can be
specified which of the four sides may have this border, using the wxTOP, wxLEFT,
wxRIGHT and wxBOTTOM constants or wxALL for all directions (and you may also use
wxNORTH, wxWEST etc instead). These flags can be used in combintaion with the
alignement flags above as the second paramter of the Add() method using the binary or
operator |. The sizer of the border also must be made known, and it is the third
parameter in the Add() method. This means, that the entire behaviour of a sizer and its
children can be controlled by the three parameters of the Add() method.

// we want to get a dialog that is stretchable because it
// has a text ctrl at the top and two buttons at the bottom

CHAPTER 4

59

MyDialog::MyDialog(wxFrame *parent, wxWindowID id, const wxString
&title) :
 wxDialog(parent, id, title, wxDefaultPosition, wxDefaultSize,
wxDIALOG_STYLE | wxRESIZE_BORDER)
{
 wxBoxSizer *topsizer = new wxBoxSizer(wxVERTICAL);

 // create text ctrl with minimal size 100x60
 topsizer->Add(
 new wxTextCtrl(this, -1, "My text.", wxDefaultPosition,
wxSize(100,60), wxTE_MULTILINE),
 1, // make vertically stretchable
 wxEXPAND | // make horizontally stretchable
 wxALL, // and make border all around
 10); // set border width to 10

 wxBoxSizer *button_sizer = new wxBoxSizer(wxHORIZONTAL);
 button_sizer->Add(
 new wxButton(this, wxID_OK, "OK"),
 0, // make horizontally unstretchable
 wxALL, // make border all around (implicit top alignment)
 10); // set border width to 10
 button_sizer->Add(
 new wxButton(this, wxID_CANCEL, "Cancel"),
 0, // make horizontally unstretchable
 wxALL, // make border all around (implicit top alignment)
 10); // set border width to 10

 topsizer->Add(
 button_sizer,
 0, // make vertically unstretchable
 wxCENTER); // no border and centre horizontally

 SetAutoLayout(TRUE); // tell dialog to use sizer
 SetSizer(topsizer); // actually set the sizer

 topsizer->Fit(this); // set size to minimum size as
calculated by the sizer
 topsizer->SetSizeHints(this); // set size hints to honour mininum
size
}

Derived from

wxSizer (p. 692)
wxObject (p. 555)

wxBoxSizer::wxBoxSizer

 wxBoxSizer(int orient)

Constructor for a wxBoxSizer. orient may be either of wxVERTICAL or wxHORIZONTAL
for creating either a column sizer or a row sizer.

CHAPTER 4

60

wxBoxSizer::RecalcSizes

void RecalcSizes()

Implements the calculation of a box sizer's dimensions and then sets the size of its its
children (calling wxWindow::SetSize (p. 957)if the child is a window). It is used internally
only and must not be called by the users. Documented for information.

wxBoxSizer::CalcMin

wxSize CalcMin()

Implements the calculation of a box sizer's minimal. It is used internally only and must
not be called by the users. Documented for information.

wxBoxSizer::GetOrientation

int GetOrientation()

Returns the orientation of the boxsizer, either of wxVERTICAL or wxHORIZONTAL.

wxBrush

A brush is a drawing tool for filling in areas. It is used for painting the background of
rectangles, ellipses, etc. It has a colour and a style.

Derived from

wxGDIObject (p. 321)
wxObject (p. 555)

Include files

<wx/brush.h>

Predefined objects

Objects:

wxNullBrush

Pointers:

wxBLUE_BRUSH
wxGREEN_BRUSH
wxWHITE_BRUSH

CHAPTER 4

61

wxBLACK_BRUSH
wxGREY_BRUSH
wxMEDIUM_GREY_BRUSH
wxLIGHT_GREY_BRUSH
wxTRANSPARENT_BRUSH
wxCYAN_BRUSH
wxRED_BRUSH

Remarks

On a monochrome display, wxWindows shows all brushes as white unless the colour is
really black.

Do not initialize objects on the stack before the program commences, since other
required structures may not have been set up yet. Instead, define global pointers to
objects and create them in wxApp::OnInit (p. 12) or when required.

An application may wish to create brushes with different characteristics dynamically, and
there is the consequent danger that a large number of duplicate brushes will be created.
Therefore an application may wish to get a pointer to a brush by using the global list of
brushes wxTheBrushList, and calling the member function FindOrCreateBrush.

wxBrush uses a reference counting system, so assignments between brushes are very
cheap. You can therefore use actual wxBrush objects instead of pointers without
efficiency problems. Once one wxBrush object changes its data it will create its own
brush data internally so that other brushes, which previously shared the data using the
reference counting, are not affected.

See also

wxBrushList (p. 66), wxDC (p. 165), wxDC::SetBrush (p. 178)

wxBrush::wxBrush

 wxBrush()

Default constructor. The brush will be uninitialised, and wxBrush::Ok (p. 64) will return
FALSE.

 wxBrush(const wxColour& colour, int style)

Constructs a brush from a colour object and style.

 wxBrush(const wxString& colourName, int style)

Constructs a brush from a colour name and style.

 wxBrush(const wxBitmap& stippleBitmap)

CHAPTER 4

62

Constructs a stippled brush using a bitmap.

 wxBrush(const wxBrush& brush)

Copy constructor. This uses reference counting so is a cheap operation.

Parameters

colour
Colour object.

colourName
Colour name. The name will be looked up in the colour database.

style
One of:

wxTRANSPARENT Transparent (no fill).
wxSOLID Solid.
wxBDIAGONAL_HATCH Backward diagonal hatch.
wxCROSSDIAG_HATCH Cross-diagonal hatch.
wxFDIAGONAL_HATCH Forward diagonal hatch.
wxCROSS_HATCH Cross hatch.
wxHORIZONTAL_HATCH Horizontal hatch.
wxVERTICAL_HATCH Vertical hatch.

brush
Pointer or reference to a brush to copy.

stippleBitmap
A bitmap to use for stippling.

Remarks

If a stipple brush is created, the brush style will be set to wxSTIPPLE.

See also

wxBrushList (p. 66), wxColour (p. 91), wxColourDatabase (p. 96)

wxBrush::~wxBrush

void ~wxBrush()

Destructor.

Remarks

CHAPTER 4

63

The destructor may not delete the underlying brush object of the native windowing
system, since wxBrush uses a reference counting system for efficiency.

Although all remaining brushes are deleted when the application exits, the application
should try to clean up all brushes itself. This is because wxWindows cannot know if a
pointer to the brush object is stored in an application data structure, and there is a risk of
double deletion.

wxBrush::GetColour

wxColour& GetColour() const

Returns a reference to the brush colour.

See also

wxBrush::SetColour (p. 64)

wxBrush::GetStipple

wxBitmap * GetStipple() const

Gets a pointer to the stipple bitmap. If the brush does not have a wxSTIPPLE style, this
bitmap may be non-NULL but uninitialised (wxBitmap::Ok (p. 44) returns FALSE).

See also

wxBrush::SetStipple (p. 64)

wxBrush::GetStyle

int GetStyle() const

Returns the brush style, one of:

wxTRANSPARENT Transparent (no fill).
wxSOLID Solid.
wxBDIAGONAL_HATCH Backward diagonal hatch.
wxCROSSDIAG_HATCH Cross-diagonal hatch.
wxFDIAGONAL_HATCH Forward diagonal hatch.
wxCROSS_HATCH Cross hatch.
wxHORIZONTAL_HATCH Horizontal hatch.
wxVERTICAL_HATCH Vertical hatch.
wxSTIPPLE Stippled using a bitmap.

See also

CHAPTER 4

64

wxBrush::SetStyle (p. 65), wxBrush::SetColour (p. 64), wxBrush::SetStipple (p. 64)

wxBrush::Ok

bool Ok() const

Returns TRUE if the brush is initialised. It will return FALSE if the default constructor has
been used (for example, the brush is a member of a class, or NULL has been assigned
to it).

wxBrush::SetColour

void SetColour(wxColour& colour)

Sets the brush colour using a reference to a colour object.

void SetColour(const wxString& colourName)

Sets the brush colour using a colour name from the colour database.

void SetColour(const unsigned char red, const unsigned char green, const
unsigned char blue)

Sets the brush colour using red, green and blue values.

See also

wxBrush::GetColour (p. 63)

wxBrush::SetStipple

void SetStipple(const wxBitmap& bitmap)

Sets the stipple bitmap.

Parameters

bitmap
The bitmap to use for stippling.

Remarks

The style will be set to wxSTIPPLE.

Note that there is a big difference between stippling in X and Windows. On X, the stipple
is a mask between the wxBitmap and current colour. On Windows, the current colour is

CHAPTER 4

65

ignored, and the bitmap colour is used. However, for pre-defined modes like
wxCROSS_HATCH, the behaviour is the same for both platforms.

See also

wxBitmap (p. 36)

wxBrush::SetStyle

void SetStyle(int style)

Sets the brush style.

style
One of:

wxTRANSPARENT Transparent (no fill).
wxSOLID Solid.
wxBDIAGONAL_HATCH Backward diagonal hatch.
wxCROSSDIAG_HATCH Cross-diagonal hatch.
wxFDIAGONAL_HATCH Forward diagonal hatch.
wxCROSS_HATCH Cross hatch.
wxHORIZONTAL_HATCH Horizontal hatch.
wxVERTICAL_HATCH Vertical hatch.
wxSTIPPLE Stippled using a bitmap.

See also

wxBrush::GetStyle (p. 63)

wxBrush::operator =

wxBrush& operator =(const wxBrush& brush)

Assignment operator, using reference counting. Returns a reference to 'this'.

wxBrush::operator ==

bool operator ==(const wxBrush& brush)

Equality operator. Two brushes are equal if they contain pointers to the same underlying
brush data. It does not compare each attribute, so two independently-created brushes
using the same parameters will fail the test.

wxBrush::operator !=

CHAPTER 4

66

bool operator !=(const wxBrush& brush)

Inequality operator. Two brushes are not equal if they contain pointers to different
underlying brush data. It does not compare each attribute.

wxBrushList

A brush list is a list containing all brushes which have been created.

Derived from

wxList (p. 446)
wxObject (p. 555)

Include files

<wx/gdicmn.h>

Remarks

There is only one instance of this class: wxTheBrushList. Use this object to search for
a previously created brush of the desired type and create it if not already found. In some
windowing systems, the brush may be a scarce resource, so it can pay to reuse old
resources if possible. When an application finishes, all brushes will be deleted and their
resources freed, eliminating the possibility of 'memory leaks'. However, it is best not to
rely on this automatic cleanup because it can lead to double deletion in some
circumstances.

There are two mechanisms in recent versions of wxWindows which make the brush list
less useful than it once was. Under Windows, scarce resources are cleaned up internally
if they are not being used. Also, a referencing counting mechanism applied to all GDI
objects means that some sharing of underlying resources is possible. You don't have to
keep track of pointers, working out when it is safe delete a brush, because the
referencing counting does it for you. For example, you can set a brush in a device
context, and then immediately delete the brush you passed, because the brush is
'copied'.

So you may find it easier to ignore the brush list, and instead create and copy brushes
as you see fit. If your Windows resource meter suggests your application is using too
many resources, you can resort to using GDI lists to share objects explicitly.

The only compelling use for the brush list is for wxWindows to keep track of brushes in
order to clean them up on exit. It is also kept for backward compatibility with earlier
versions of wxWindows.

See also

wxBrush (p. 60)

CHAPTER 4

67

wxBrushList::wxBrushList

void wxBrushList()

Constructor. The application should not construct its own brush list: use the object
pointer wxTheBrushList.

wxBrushList::AddBrush

void AddBrush(wxBrush *brush)

Used internally by wxWindows to add a brush to the list.

wxBrushList::FindOrCreateBrush

wxBrush * FindOrCreateBrush(const wxColour& colour, int style)

Finds a brush with the specified attributes and returns it, else creates a new brush, adds
it to the brush list, and returns it.

wxBrush * FindOrCreateBrush(const wxString& colourName, int style)

Finds a brush with the specified attributes and returns it, else creates a new brush, adds
it to the brush list, and returns it.

Finds a brush of the given specification, or creates one and adds it to the list.

Parameters

colour
Colour object.

colourName
Colour name, which should be in the colour database.

style
Brush style. See wxBrush::SetStyle (p. 65) for a list of styles.

wxBrushList::RemoveBrush

void RemoveBrush(wxBrush *brush)

Used by wxWindows to remove a brush from the list.

wxBusyCursor

CHAPTER 4

68

This class makes it easy to tell your user that the program is temporarily busy. Just
create a wxBusyCursor object on the stack, and within the current scope, the hourglass
will be shown.

For example:

 wxBusyCursor wait;

 for (int i = 0; i < 100000; i++)
 DoACalculation();

It works by calling wxBeginBusyCursor (p. 984) in the constructor, and
wxEndBusyCursor (p. 987) in the destructor.

Derived from

None

Include files

<wx/utils.h>

See also

wxBeginBusyCursor (p. 984), wxEndBusyCursor (p. 987)

wxBusyCursor::wxBusyCursor

 wxBusyCursor(wxCursor* cursor = wxHOURGLASS_CURSOR)

Constructs a busy cursor object, calling wxBeginBusyCursor (p. 984).

wxBusyCursor::~wxBusyCursor

 ~wxBusyCursor()

Destroys the busy cursor object, calling wxEndBusyCursor (p. 987).

wxBusyInfo

This class makes it easy to tell your user that the program is temporarily busy. Just
create a wxBusyInfo object on the stack, and within the current scope, a message
window will be shown.

For example:

CHAPTER 4

69

 wxBusyInfo wait("Please wait, working...");

 for (int i = 0; i < 100000; i++)
 DoACalculation();

It works by creating a window in the constructor, and deleting it in the destructor.

Derived from

None

Include files

<wx/busyinfo.h>

wxBusyInfo::wxBusyInfo

 wxBusyInfo(const wxString& msg)

Constructs a busy info object, displays msg.

wxButton

A button is a control that contains a text string, and is one of the commonest elements of
a GUI. It may be placed on a dialog box (p. 193) or panel (p. 572), or indeed almost any
other window.

Derived from

wxControl (p. 130)
wxWindow (p. 915)
wxEvtHandler (p. 240)
wxObject (p. 555)

Include files

<wx/button.h>

Window styles

There are no special styles for wxButton.

See also window styles overview (p. 1093).

Event handling

EVT_BUTTON(id, func) Process a
wxEVT_COMMAND_BUTTON_CLICKED

CHAPTER 4

70

event, when the button is clicked.

See also

wxBitmapButton (p. 52)

wxButton::wxButton

 wxButton()

Default constructor.

 wxButton(wxWindow* parent, wxWindowID id, const wxString& label, const
wxPoint& pos, const wxSize& size = wxDefaultSize, long style = 0, const
wxValidator& validator, const wxString& name = "button")

Constructor, creating and showing a button.

Parameters

parent
Parent window. Must not be NULL.

id
Button identifier. A value of -1 indicates a default value.

label
Text to be displayed on the button.

pos
Button position.

size
Button size. If the default size (-1, -1) is specified then the button is sized
appropriately for the text.

style
Window style. See wxButton (p. 69).

validator
Window validator.

name
Window name.

See also

CHAPTER 4

71

wxButton::Create (p. 71), wxValidator (p. 897)

wxButton::~wxButton

 ~wxButton()

Destructor, destroying the button.

wxButton::Create

bool Create(wxWindow* parent, wxWindowID id, const wxString& label, const
wxPoint& pos, const wxSize& size = wxDefaultSize, long style = 0, const
wxValidator& validator, const wxString& name = "button")

Button creation function for two-step creation. For more details, see wxButton::wxButton
(p. 70).

wxButton::GetLabel

wxString GetLabel() const

Returns the string label for the button.

Return value

The button's label.

See also

wxButton::SetLabel (p. 72)

wxButton::GetDefaultSize

wxSize GetDefaultSize()

Returns the default size for the buttons. It is advised to make all the dialog buttons of the
same size and this function allows to retrieve the (platform and current font dependent
size) which should be the best suited for this.

wxButton::SetDefault

void SetDefault()

This sets the button to be the default item for the panel or dialog box.

CHAPTER 4

72

Remarks

Under Windows, only dialog box buttons respond to this function. As normal under
Windows and Motif, pressing return causes the default button to be depressed when the
return key is pressed. See also wxWindow::SetFocus (p. 953) which sets the keyboard
focus for windows and text panel items, and wxWindow::GetDefaultItem (p. 925).

Note that under Motif, calling this function immediately after creation of a button and
before the creation of other buttons will cause misalignment of the row of buttons, since
default buttons are larger. To get around this, call SetDefault after you have created a
row of buttons: wxWindows will then set the size of all buttons currently on the panel to
the same size.

wxButton::SetLabel

void SetLabel(const wxString& label)

Sets the string label for the button.

Parameters

label
The label to set.

See also

wxButton::GetLabel (p. 71)

wxBufferedInputStream

This stream acts as a cache. It caches the bytes read from the specified input stream
(See wxFilterInputStream (p. 283)). It uses wxStreamBuffer and sets the default in-buffer
size to 1024 bytes.

Derived from

wxFilterInputStream (p. 283)

Include files

<wx/stream.h>

See also

wxStreamBuffer (p. 755), wxInputStream (p. 425)

wxBufferedOutputStream

This stream acts as a cache. It caches the bytes to be written to the specified output

CHAPTER 4

73

stream (See wxFilterOutputStream (p. 284)). The datas are only written when the cache
is full or when the buffered stream is destroyed.

Derived from

wxFilterOutputStream (p. 284)

Include files

<wx/stream.h>

See also

wxStreamBuffer (p. 755), wxOutputStream (p. 559)

wxCalculateLayoutEvent

This event is sent by wxLayoutAlgorithm (p. 441) to calculate the amount of the
remaining client area that the window should occupy.

Derived from

wxEvent (p. 237)
wxObject (p. 555)

Include files

<wx/laywin.h>

Event table macros

EVT_CALCULATE_LAYOUT(func) Process a wxEVT_CALCULATE_LAYOUT
event, which asks the window to take a 'bite'
out of a rectangle provided by the algorithm.

See also

wxQueryLayoutInfoEvent (p. 626), wxSashLayoutWindow (p. 662), wxLayoutAlgorithm
(p. 441).

wxCalculateLayoutEvent::wxCalculateLayoutEvent

 wxCalculateLayoutEvent(wxWindowID id = 0)

Constructor.

CHAPTER 4

74

wxCalculateLayoutEvent::GetFlags

int GetFlags() const

Returns the flags associated with this event. Not currently used.

wxCalculateLayoutEvent::GetRect

wxRect GetRect() const

Before the event handler is entered, returns the remaining parent client area that the
window could occupy. When the event handler returns, this should contain the remaining
parent client rectangle, after the event handler has subtracted the area that its window
occupies.

wxCalculateLayoutEvent::SetFlags

void SetFlags(int flags)

Sets the flags associated with this event. Not currently used.

wxCalculateLayoutEvent::SetRect

void SetRect(const wxRect& rect)

Call this to specify the new remaining parent client area, after the space occupied by the
window has been subtracted.

wxCheckBox

A checkbox is a labelled box which is either on (checkmark is visible) or off (no
checkmark).

Derived from

wxControl (p. 130)
wxWindow (p. 915)
wxEvtHandler (p. 240)
wxObject (p. 555)

Include files

<wx/checkbox.h>

Window styles

There are no special styles for wxCheckBox.

CHAPTER 4

75

See also window styles overview (p. 1093).

Event handling

EVT_CHECKBOX(id, func) Process a
wxEVT_COMMAND_CHECKBOX_CLICKED
event, when the checkbox is clicked.

See also

wxRadioButton (p. 634), wxCommandEvent (p. 108)

wxCheckBox::wxCheckBox

 wxCheckBox()

Default constructor.

 wxCheckBox(wxWindow* parent, wxWindowID id, const wxString& label, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
0, const wxValidator& val, const wxString& name = "checkBox")

Constructor, creating and showing a checkbox.

Parameters

parent
Parent window. Must not be NULL.

id
Checkbox identifier. A value of -1 indicates a default value.

label
Text to be displayed next to the checkbox.

pos
Checkbox position. If the position (-1, -1) is specified then a default position is
chosen.

size
Checkbox size. If the default size (-1, -1) is specified then a default size is chosen.

style
Window style. See wxCheckBox (p. 74).

validator

CHAPTER 4

76

Window validator.

name
Window name.

See also

wxCheckBox::Create (p. 76), wxValidator (p. 897)

wxCheckBox::~wxCheckBox

 ~wxCheckBox()

Destructor, destroying the checkbox.

wxCheckBox::Create

bool Create(wxWindow* parent, wxWindowID id, const wxString& label, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
0, const wxValidator& val, const wxString& name = "checkBox")

Creates the checkbox for two-step construction. See wxCheckBox::wxCheckBox (p. 75)
for details.

wxCheckBox::GetValue

bool GetValue() const

Gets the state of the checkbox.

Return value

Returns TRUE if it is checked, FALSE otherwise.

wxCheckBox::SetValue

void SetValue(const bool state)

Sets the checkbox to the given state. This does not cause a
wxEVT_COMMAND_CHECKBOX_CLICKED event to get emitted.

Parameters

state
If TRUE, the check is on, otherwise it is off.

CHAPTER 4

77

wxCheckListBox

A checklistbox is like a listbox, but allows items to be checked or unchecked.

This class is currently implemented under Windows and GTK. When using this class
under Windows wxWindows must be compiled with USE_OWNER_DRAWN set to 1.

Only the new functions for this class are documented; see also wxListBox (p. 452).

Derived from

wxListBox (p. 452)
wxControl (p. 130)
wxWindow (p. 915)
wxEvtHandler (p. 240)
wxObject (p. 555)

Include files

<wx/checklst.h>

Window styles

See wxListBox (p. 452).

Event handling

EVT_CHECKLISTBOX(id, func) Process a
wxEVT_COMMAND_CHECKLISTBOX_TOGG
LE event, when an item in the check list box is
checked or unchecked.

See also

wxListBox (p. 452), wxChoice (p. 79), wxComboBox (p. 99), wxListCtrl (p. 461),
wxCommandEvent (p. 108)

wxCheckListBox::wxCheckListBox

 wxCheckListBox()

Default constructor.

 wxCheckListBox(wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, int n, const wxString
choices[] = NULL, long style = 0, const wxValidator& validator = wxDefaultValidator,
const wxString& name = "listBox")

CHAPTER 4

78

Constructor, creating and showing a list box.

Parameters

parent
Parent window. Must not be NULL.

id
Window identifier. A value of -1 indicates a default value.

pos
Window position.

size
Window size. If the default size (-1, -1) is specified then the window is sized
appropriately.

n
Number of strings with which to initialise the control.

choices
An array of strings with which to initialise the control.

style
Window style. See wxCheckListBox (p. 77).

validator
Window validator.

name
Window name.

wxPython note: The wxCheckListBox constructor in wxPython reduces the nand
choices arguments are to a single argument, which is a list of strings.

wxCheckListBox::~wxCheckListBox

void ~wxCheckListBox()

Destructor, destroying the list box.

wxCheckListBox::Check

void Check(int item, bool check = TRUE)

Checks the given item.

CHAPTER 4

79

Parameters

item
Index of item to check.

check
TRUE if the item is to be checked, FALSE otherwise.

wxCheckListBox::IsChecked

bool IsChecked(int item) const

Returns TRUE if the given item is checked, FALSE otherwise.

Parameters

item
Index of item whose check status is to be returned.

wxChoice

A choice item is used to select one of a list of strings. Unlike a listbox, only the selection
is visible until the user pulls down the menu of choices.

Derived from

wxControl (p. 130)
wxWindow (p. 915)
wxEvtHandler (p. 240)
wxObject (p. 555)

Include files

<wx/choice.h>

Window styles

There are no special styles for wxChoice.

See also window styles overview (p. 1093).

Event handling

EVT_CHOICE(id, func) Process a
wxEVT_COMMAND_CHOICE_SELECTED
event, when an item on the list is selected.

See also

CHAPTER 4

80

wxListBox (p. 452), wxComboBox (p. 99), wxCommandEvent (p. 108)

wxChoice::wxChoice

 wxChoice()

Default constructor.

 wxChoice(wxWindow *parent, wxWindowID id, const wxPoint& pos, const wxSize&
size, int n, const wxString choices[], long style = 0, const wxValidator& validator =
wxDefaultValidator, const wxString& name = "choice")

Constructor, creating and showing a choice.

Parameters

parent
Parent window. Must not be NULL.

id
Window identifier. A value of -1 indicates a default value.

pos
Window position.

size
Window size. If the default size (-1, -1) is specified then the choice is sized
appropriately.

n
Number of strings with which to initialise the choice control.

choices
An array of strings with which to initialise the choice control.

style
Window style. See wxChoice (p. 79).

validator
Window validator.

name
Window name.

See also

wxChoice::Create (p. 81), wxValidator (p. 897)

CHAPTER 4

81

wxPython note: The wxChoice constructor in wxPython reduces the nand choices
arguments are to a single argument, which is a list of strings.

wxChoice::~wxChoice

 ~wxChoice()

Destructor, destroying the choice item.

wxChoice::Append

void Append(const wxString& item)

Adds the item to the end of the choice control.

void Append(const wxString& item, void* clientData)

Adds the item to the end of the combobox, associating the given data with the item.

Parameters

item
String to add.

clientData
Client data to associate with the item.

wxChoice::Clear

void Clear()

Clears the strings from the choice item.

wxChoice::Create

bool Create(wxWindow *parent, wxWindowID id, const wxPoint& pos, const
wxSize& size, int n, const wxString choices[], long style = 0, const wxString& name
= "choice")

Creates the choice for two-step construction. See wxChoice::wxChoice (p. 80).

wxChoice::FindString

int FindString(const wxString& string) const

CHAPTER 4

82

Finds a choice matching the given string.

Parameters

string
String to find.

Return value

Returns the position if found, or -1 if not found.

wxChoice::GetColumns

int GetColumns() const

Gets the number of columns in this choice item.

Remarks

This is implemented for Motif only.

wxChoice::GetClientData

void* GetClientData(int n) const

Returns a pointer to the client data associated with the given item (if any).

Parameters

n
An item, starting from zero.

Return value

A pointer to the client data, or NULL if the item was not found.

wxChoice::GetSelection

int GetSelection() const

Gets the id (position) of the selected string, or -1 if there is no selection.

wxChoice::GetString

wxString GetString(int n) const

CHAPTER 4

83

Returns the string at the given position.

Parameters

n
The zero-based position.

Return value

The string at the given position, or the empty string if n is invalid.

wxChoice::GetStringSelection

wxString GetStringSelection() const

Gets the selected string, or the empty string if no string is selected.

wxChoice::Number

int Number() const

Returns the number of strings in the choice control.

wxChoice::SetClientData

void SetClientData(int n, void* data)

Associates the given client data pointer with the given item.

Parameters

n
The zero-based item.

data
The client data.

wxChoice::SetColumns

void SetColumns(int n = 1)

Sets the number of columns in this choice item.

Parameters

n

CHAPTER 4

84

Number of columns.

Remarks

This is implemented for Motif only.

wxChoice::SetSelection

void SetSelection(int n)

Sets the choice by passing the desired string position. This does not cause a
wxEVT_COMMAND_CHOICE_SELECTED event to get emitted.

Parameters

n
The string position to select, starting from zero.

See also

wxChoice::SetStringSelection (p. 84)

wxChoice::SetStringSelection

void SetStringSelection(const wxString& string)

Sets the choice by passing the desired string. This does not cause a
wxEVT_COMMAND_CHOICE_SELECTED event to get emitted.

Parameters

string
The string to select.

See also

wxChoice::SetSelection (p. 84)

wxClassInfo

This class stores meta-information about classes. Instances of this class are not
generally defined directly by an application, but indirectly through use of macros such as
DECLARE_DYNAMIC_CLASS and IMPLEMENT_DYNAMIC_CLASS.

Derived from

No parent class.

CHAPTER 4

85

Include files

<wx/object.h>

See also

Overview (p. 1092), wxObject (p. 555)

wxClassInfo::wxClassInfo

 wxClassInfo(char* className, char* baseClass1, char* baseClass2, int size,
wxObjectConstructorFn fn)

Constructs a wxClassInfo object. The supplied macros implicitly construct objects of this
class, so there is no need to create such objects explicitly in an application.

wxClassInfo::CreateObject

wxObject* CreateObject()

Creates an object of the appropriate kind. Returns NULL if the class has not been
declared dynamically createable (typically, it's an abstract class).

wxClassInfo::FindClass

static wxClassInfo * FindClass(char* name)

Finds the wxClassInfo object for a class of the given string name.

wxClassInfo::GetBaseClassName1

char* GetBaseClassName1() const

Returns the name of the first base class (NULL if none).

wxClassInfo::GetBaseClassName2

char* GetBaseClassName2() const

Returns the name of the second base class (NULL if none).

wxClassInfo::GetClassName

CHAPTER 4

86

char * GetClassName() const

Returns the string form of the class name.

wxClassInfo::GetSize

int GetSize() const

Returns the size of the class.

wxClassInfo::InitializeClasses

static void InitializeClasses()

Initializes pointers in the wxClassInfo objects for fast execution of IsKindOf. Called in
base wxWindows library initialization.

wxClassInfo::IsKindOf

bool IsKindOf(wxClassInfo* info)

Returns TRUE if this class is a kind of (inherits from) the given class.

wxClientDC

A wxClientDC must be constructed if an application wishes to paint on the client area of
a window from outside an OnPaint event. This should normally be constructed as a
temporary stack object; don't store a wxClientDC object.

To draw on a window from within OnPaint, construct a wxPaintDC (p. 567) object.

To draw on the whole window including decorations, construct a wxWindowDC (p. 961)
object (Windows only).

Derived from

wxWindowDC (p. 961)
wxDC (p. 165)

Include files

<wx/dcclient.h>

See also

wxDC (p. 165), wxMemoryDC (p. 496), wxPaintDC (p. 567), wxWindowDC (p. 961),

CHAPTER 4

87

wxScreenDC (p. 670)

wxClientDC::wxClientDC

 wxClientDC(wxWindow* window)

Constructor. Pass a pointer to the window on which you wish to paint.

wxClipboard

A class for manipulating the clipboard. Note that this is not compatible with the clipboard
class from wxWindows 1.xx, which has the same name but a different implementation.

To use the clipboard, you call member functions of the global wxTheClipboard object.

Call wxClipboard::Open (p. 89) to get ownership of the clipboard. If this operation returns
TRUE, you now own the clipboard. Call wxClipboard::SetData (p. 89) to put data on the
clipboard, or wxClipboard::GetData (p. 88) to retrieve data from the clipboard. Call
wxClipboard::Close (p. 88) to close the clipboard and relinquish ownership. You should
keep the clipboard open only momentarily.

For example:

 // Write some text to the clipboard
 if (wxTheClipboard->Open())
 {
 // This data objects are held by the clipboard,
 // so do not delete them in the app.
 wxTheClipboard->SetData(new wxTextDataObject("Some text"));
 wxTheClipboard->Close();
 }

 // Read some text
 if (wxTheClipboard->Open())
 {
 if (wxTheClipboard->IsSupported(wxDF_TEXT))
 {
 wxTextDataObject data;
 wxTheClipboard->GetData(data);
 wxMessageBox(data.GetText());
 }
 wxTheClipboard->Close();
 }

Derived from

wxObject (p. 555)

Include files

CHAPTER 4

88

<wx/clipbrd.h>

See also

Drag and drop overview (p. 1038), wxDataObject (p. 148)

wxClipboard::wxClipboard

 wxClipboard()

Constructor.

wxClipboard::~wxClipboard

 ~wxClipboard()

Destructor.

wxClipboard::Clear

void Clear()

Clears the global clipboard object and the system's clipboard if possible.

wxClipboard::Close

bool Close()

Call this function to close the clipboard, having opened it with wxClipboard::Open (p. 89).

wxClipboard::GetData

bool GetData(wxDataObject& data)

Call this function to fill data with data on the clipboard, if available in the required format.
Returns TRUE on success.

wxClipboard::IsSupported

bool IsSupported(const wxDataFormat& format)

Returns TRUE if the format of the given data object is available on the clipboard.

CHAPTER 4

89

wxClipboard::Open

bool Open()

Call this function to open the clipboard before calling wxClipboard::SetData (p. 89) and
wxClipboard::GetData (p. 88).

Call wxClipboard::Close (p. 88) when you have finished with the clipboard. You should
keep the clipboard open for only a very short time.

Returns TRUE on success. This should be tested (as in the sample shown above).

wxClipboard::SetData

bool SetData(wxDataObject* data)

Call this function to set the data object to the clipboard. This function will clear all
previous contents in the clipboard, so calling it several times does not make any sense.

wxClipboard::UsePrimarySelection

void UsePrimarySelection(bool primary = TRUE)

On platforms supporting it (currently only GTK), selects the so called PRIMARY
SELECTION as the clipboard as opposed to the normal clipboard, if primary is TRUE.

wxCloseEvent

This event class contains information about window and session close events.

Derived from

wxEvent (p. 237)

Include files

<wx/event.h>

Event table macros

To process a close event, use these event handler macros to direct input to member
functions that take a wxCloseEvent argument.

EVT_CLOSE(func) Process a close event, supplying the member
function. This event applies to wxFrame and
wxDialog classes.

CHAPTER 4

90

EVT_QUERY_END_SESSION(func) Process a query end session event, supplying
the member function. This event applies to
wxApp only.

EVT_END_SESSION(func) Process an end session event, supplying the
member function. This event applies to wxApp
only.

See also

wxWindow::OnCloseWindow (p. 937), wxWindow::Close (p. 919),
wxApp::OnQueryEndSession (p. 12), wxApp::OnEndSession (p. 11), Window deletion
overview (p. 1062)

wxCloseEvent::wxCloseEvent

 wxCloseEvent(WXTYPE commandEventType = 0, int id = 0)

Constructor.

wxCloseEvent::CanVeto

bool CanVeto()

Returns TRUE if you can veto a system shutdown or a window close event. Vetoing a
window close event is not possible if the calling code wishes to force the application to
exit, and so this function must be called to check this.

wxCloseEvent::GetLoggingOff

bool GetLoggingOff() const

Returns TRUE if the user is logging off.

wxCloseEvent::GetSessionEnding

bool GetSessionEnding() const

Returns TRUE if the session is ending.

wxCloseEvent::GetForce

bool GetForce() const

CHAPTER 4

91

Returns TRUE if the application wishes to force the window to close. This will shortly be
obsolete, replaced by CanVeto.

wxCloseEvent::SetCanVeto

void SetCanVeto(bool canVeto)

Sets the 'can veto' flag.

wxCloseEvent::SetForce

void SetForce(bool force) const

Sets the 'force' flag.

wxCloseEvent::SetLoggingOff

void SetLoggingOff(bool loggingOff) const

Sets the 'logging off' flag.

wxCloseEvent::Veto

void Veto(bool veto = TRUE)

Call this from your event handler to veto a system shutdown or to signal to the calling
application that a window close did not happen.

You can only veto a shutdown if wxCloseEvent::CanVeto (p. 90) returns TRUE.

wxColour

A colour is an object representing a combination of Red, Green, and Blue (RGB)
intensity values, and is used to determine drawing colours. See the entry for
wxColourDatabase (p. 96) for how a pointer to a predefined, named colour may be
returned instead of creating a new colour.

Valid RGB values are in the range 0 to 255.

Derived from

wxObject (p. 555)

Include files

CHAPTER 4

92

<wx/colour.h>

Predefined objects

Objects:

wxNullColour

Pointers:

wxBLACK
wxWHITE
wxRED
wxBLUE
wxGREEN
wxCYAN
wxLIGHT_GREY

See also

wxColourDatabase (p. 96), wxPen (p. 578), wxBrush (p. 60), wxColourDialog (p. 98)

wxColour::wxColour

 wxColour()

Default constructor.

 wxColour(const unsigned char red, const unsigned char green, const unsigned
char blue)

Constructs a colour from red, green and blue values.

 wxColour(const wxString& colourNname)

Constructs a colour object using a colour name listed in wxTheColourDatabase.

 wxColour(const wxColour& colour)

Copy constructor.

Parameters

red
The red value.

green
The green value.

CHAPTER 4

93

blue
The blue value.

colourName
The colour name.

colour
The colour to copy.

See also

wxColourDatabase (p. 96)

wxPython note: Constructors supported by wxPython are:

wxColour(red=0, green=0, blue=0)
wxNamedColour(name)

wxColour::Blue

unsigned char Blue() const

Returns the blue intensity.

wxColour::GetPixel

long GetPixel() const

Returns a pixel value which is platform-dependent. On Windows, a COLORREF is
returned. On X, an allocated pixel value is returned.

-1 is returned if the pixel is invalid (on X, unallocated).

wxColour::Green

unsigned char Green() const

Returns the green intensity.

wxColour::Ok

bool Ok() const

Returns TRUE if the colour object is valid (the colour has been initialised with RGB

CHAPTER 4

94

values).

wxColour::Red

unsigned char Red() const

Returns the red intensity.

wxColour::Set

void Set(const unsigned char red, const unsigned char green, const unsigned char
blue)

Sets the RGB intensity values.

wxColour::operator =

wxColour& operator =(const wxColour& colour)

Assignment operator, taking another colour object.

wxColour& operator =(const wxString& colourName)

Assignment operator, using a colour name to be found in the colour database.

See also

wxColourDatabase (p. 96)

wxColour::operator ==

bool operator ==(const wxColour& colour)

Tests the equality of two colours by comparing individual red, green blue colours.

wxColour::operator !=

bool operator !=(const wxColour& colour)

Tests the inequality of two colours by comparing individual red, green blue colours.

wxColourData

This class holds a variety of information related to colour dialogs.

CHAPTER 4

95

Derived from

wxObject (p. 555)

Include files

<wx/cmndata.h>

See also

wxColour (p. 91), wxColourDialog (p. 98), wxColourDialog overview (p. 1048)

wxColourData::wxColourData

 wxColourData()

Constructor. Initializes the custom colours to white, the data colour setting to black, and
the choose full setting to TRUE.

wxColourData::~wxColourData

 ~wxColourData()

Destructor.

wxColourData::GetChooseFull

bool GetChooseFull() const

Under Windows, determines whether the Windows colour dialog will display the full
dialog with custom colour selection controls. Has no meaning under other platforms.

The default value is TRUE.

wxColourData::GetColour

wxColour& GetColour() const

Gets the current colour associated with the colour dialog.

The default colour is black.

wxColourData::GetCustomColour

CHAPTER 4

96

wxColour& GetCustomColour(int i) const

Gets the ith custom colour associated with the colour dialog. i should be an integer
between 0 and 15.

The default custom colours are all white.

wxColourData::SetChooseFull

void SetChooseFull(const bool flag)

Under Windows, tells the Windows colour dialog to display the full dialog with custom
colour selection controls. Under other platforms, has no effect.

The default value is TRUE.

wxColourData::SetColour

void SetColour(const wxColour& colour)

Sets the default colour for the colour dialog.

The default colour is black.

wxColourData::SetCustomColour

void SetColour(int i, const wxColour& colour)

Sets the ith custom colour for the colour dialog. i should be an integer between 0 and 15.

The default custom colours are all white.

wxColourData::operator =

void operator =(const wxColourData& data)

Assingment operator for the colour data.

wxColourDatabase

wxWindows maintains a database of standard RGB colours for a predefined set of
named colours (such as "BLACK'', "LIGHT GREY''). The application may add to this set
if desired by using Append. There is only one instance of this class:
wxTheColourDatabase.

CHAPTER 4

97

Derived from

wxList (p. 446)
wxObject (p. 555)

Include files

<wx/gdicmn.h>

Remarks

The colours in the standard database are as follows:

AQUAMARINE, BLACK, BLUE, BLUE VIOLET, BROWN, CADET BLUE, CORAL,
CORNFLOWER BLUE, CYAN, DARK GREY, DARK GREEN, DARK OLIVE GREEN,
DARK ORCHID, DARK SLATE BLUE, DARK SLATE GREY DARK TURQUOISE, DIM
GREY, FIREBRICK, FOREST GREEN, GOLD, GOLDENROD, GREY, GREEN, GREEN
YELLOW, INDIAN RED, KHAKI, LIGHT BLUE, LIGHT GREY, LIGHT STEEL BLUE,
LIME GREEN, MAGENTA, MAROON, MEDIUM AQUAMARINE, MEDIUM BLUE,
MEDIUM FOREST GREEN, MEDIUM GOLDENROD, MEDIUM ORCHID, MEDIUM
SEA GREEN, MEDIUM SLATE BLUE, MEDIUM SPRING GREEN, MEDIUM
TURQUOISE, MEDIUM VIOLET RED, MIDNIGHT BLUE, NAVY, ORANGE, ORANGE
RED, ORCHID, PALE GREEN, PINK, PLUM, PURPLE, RED, SALMON, SEA GREEN,
SIENNA, SKY BLUE, SLATE BLUE, SPRING GREEN, STEEL BLUE, TAN, THISTLE,
TURQUOISE, VIOLET, VIOLET RED, WHEAT, WHITE, YELLOW, YELLOW GREEN.

See also

wxColour (p. 91)

wxColourDatabase::wxColourDatabase

 wxColourDatabase()

Constructs the colour database.

wxColourDatabase::FindColour

wxColour* FindColour(const wxString& colourName)

Finds a colour given the name. Returns NULL if not found.

wxColourDatabase::FindName

wxString FindName(const wxColour& colour) const

CHAPTER 4

98

Finds a colour name given the colour. Returns NULL if not found.

wxColourDatabase::Initialize

void Initialize()

Initializes the database with a number of stock colours. Called by wxWindows on start-
up.

wxColourDialog

This class represents the colour chooser dialog.

Derived from

wxDialog (p. 193)
wxWindow (p. 915)
wxEvtHandler (p. 240)
wxObject (p. 555)

Include files

<wx/colordlg.h>

See also

wxColourDialog Overview (p. 1048), wxColour (p. 91), wxColourData (p. 94)

wxColourDialog::wxColourDialog

 wxColourDialog(wxWindow* parent, wxColourData* data = NULL)

Constructor. Pass a parent window, and optionally a pointer to a block of colour data,
which will be copied to the colour dialog's colour data.

See also

wxColourData (p. 94)

wxColourDialog::~wxColourDialog

 ~wxColourDialog()

Destructor.

CHAPTER 4

99

wxColourDialog::GetColourData

wxColourData& GetColourData()

Returns the colour data (p. 94) associated with the colour dialog.

wxColourDialog::ShowModal

int ShowModal()

Shows the dialog, returning wxID_OK if the user pressed OK, and wxOK_CANCEL
otherwise.

wxComboBox

A combobox is like a combination of an edit control and a listbox. It can be displayed as
static list with editable or read-only text field; or a drop-down list with text field; or a drop-
down list without a text field.

A combobox permits a single selection only. Combobox items are numbered from zero.

Derived from

wxChoice (p. 79)
wxControl (p. 130)
wxWindow (p. 915)
wxEvtHandler (p. 240)
wxObject (p. 555)

Include files

<wx/combo.h>

Window styles

wxCB_SIMPLE Creates a combobox with a permanently
displayed list. Windows only.

wxCB_DROPDOWN Creates a combobox with a drop-down list.
wxCB_READONLY Creates a combo box consisting of a drop-

down list and static text item displaying the
current selection.

wxCB_SORT Sorts the entries in the list alphabetically.

See also window styles overview (p. 1093).

Event handling

CHAPTER 4

100

EVT_COMBOBOX(id, func) Process a
wxEVT_COMMAND_COMBOBOX_SELECTE
D event, when an item on the list is selected.

EVT_TEXT(id, func) Process a
wxEVT_COMMAND_TEXT_UPDATED event,
when the combobox text changes.

See also

wxListBox (p. 452), wxTextCtrl (p. 820), wxChoice (p. 79), wxCommandEvent (p. 108)

wxComboBox::wxComboBox

 wxComboBox()

Default constructor.

 wxComboBox(wxWindow* parent, wxWindowID id, const wxString& value = "",
const wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, int n,
const wxString choices[], long style = 0, const wxValidator& validator =
wxDefaultValidator, const wxString& name = "comboBox")

Constructor, creating and showing a combobox.

Parameters

parent
Parent window. Must not be NULL.

id
Window identifier. A value of -1 indicates a default value.

pos
Window position.

size
Window size. If the default size (-1, -1) is specified then the window is sized
appropriately.

n
Number of strings with which to initialise the control.

choices
An array of strings with which to initialise the control.

style

CHAPTER 4

101

Window style. See wxComboBox (p. 99).

validator
Window validator.

name
Window name.

See also

wxComboBox::Create (p. 101), wxValidator (p. 897)

wxPython note: The wxComboBox constructor in wxPython reduces the nand
choices arguments are to a single argument, which is a list of strings.

wxComboBox::~wxComboBox

 ~wxComboBox()

Destructor, destroying the combobox.

wxComboBox::Append

void Append(const wxString& item)

Adds the item to the end of the combobox.

void Append(const wxString& item, void* clientData)

Adds the item to the end of the combobox, associating the given data with the item.

Parameters

item
The string to add.

clientData
Client data to associate with the item.

wxComboBox::Clear

void Clear()

Clears all strings from the combobox.

wxComboBox::Create

CHAPTER 4

102

bool Create(wxWindow* parent, wxWindowID id, const wxString& value = "", const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, int n, const
wxString choices[], long style = 0, const wxValidator& validator = wxDefaultValidator,
const wxString& name = "comboBox")

Creates the combobox for two-step construction. Derived classes should call or replace
this function. See wxComboBox::wxComboBox (p. 100) for further details.

wxComboBox::Copy

void Copy()

Copies the selected text to the clipboard.

wxComboBox::Cut

void Cut()

Copies the selected text to the clipboard and removes the selection.

wxComboBox::Delete

void Delete(int n)

Deletes an item from the combobox.

Parameters

n
The item to delete, starting from zero.

wxComboBox::FindString

int FindString(const wxString& string)

Finds a choice matching the given string.

Parameters

string
The item to find.

Return value

The position if found, or -1 if not found.

CHAPTER 4

103

wxComboBox::GetClientData

void* GetClientData(int n) const

Returns a pointer to the client data associated with the given item (if any).

Parameters

n
An item, starting from zero.

Return value

A pointer to the client data, or NULL if the item was not found.

wxComboBox::GetInsertionPoint

long GetInsertionPoint() const

Returns the insertion point for the combobox's text field.

wxComboBox::GetLastPosition

long GetLastPosition() const

Returns the last position in the combobox text field.

wxComboBox::GetSelection

int GetSelection() const

Gets the position of the selected string, or -1 if there is no selection.

wxComboBox::GetString

wxString GetString(int n) const

Returns the string at position n.

Parameters

n
The item position, starting from zero.

CHAPTER 4

104

Return value

The string if the item is found, otherwise the empty string.

wxComboBox::GetStringSelection

wxString GetStringSelection() const

Gets the selected string.

wxComboBox::GetValue

wxString GetValue() const

Returns the current value in the combobox text field.

wxComboBox::Number

int Number() const

Returns the number of items in the combobox list.
wxComboBox::Paste

void Paste()

Pastes text from the clipboard to the text field.

wxComboBox::Replace

void Replace(long from, long to, const wxString& text)

Replaces the text between two positions with the given text, in the combobox text field.

Parameters

from
The first position.

to
The second position.

text
The text to insert.

wxComboBox::Remove

CHAPTER 4

105

void Remove(long from, long to)

Removes the text between the two positions in the combobox text field.

Parameters

from
The first position.

to
The last position.

wxComboBox::SetClientData

void SetClientData(int n, void* data)

Associates the given client data pointer with the given item.

Parameters

n
The zero-based item.

data
The client data.

wxComboBox::SetInsertionPoint

void SetInsertionPoint(long pos)

Sets the insertion point in the combobox text field.

Parameters

pos
The new insertion point.

wxComboBox::SetInsertionPointEnd

void SetInsertionPointEnd()

Sets the insertion point at the end of the combobox text field.

wxComboBox::SetSelection

CHAPTER 4

106

void SetSelection(int n)

Selects the given item in the combobox list. This does not cause a
wxEVT_COMMAND_COMBOBOX_SELECTED event to get emitted.

void SetSelection(long from, long to)

Selects the text between the two positions, in the combobox text field.

Parameters

n
The zero-based item to select.

from
The first position.

to
The second position.

wxPython note: The second form of this method is called SetMark in wxPython.

wxComboBox::SetValue

void SetValue(const wxString& text)

Sets the text for the combobox text field.

Parameters

text
The text to set.

wxCommand

wxCommand is a base class for modelling an application command, which is an action
usually performed by selecting a menu item, pressing a toolbar button or any other
means provided by the application to change the data or view.

Derived from

wxObject (p. 555)

Include files

<wx/docview.h>

See also

CHAPTER 4

107

Overview (p. 1070)

wxCommand::wxCommand

 wxCommand(bool canUndo = FALSE, const wxString& name = NULL)

Constructor. wxCommand is an abstract class, so you will need to derive a new class
and call this constructor from your own constructor.

canUndo tells the command processor whether this command is undo-able. You can
achieve the same functionality by overriding the CanUndo member function (if for
example the criteria for undoability is context-dependant).

name must be supplied for the command processor to display the command name in the
application's edit menu.

wxCommand::~wxCommand

 ~wxCommand()

Destructor.

wxCommand::CanUndo

bool CanUndo()

Returns TRUE if the command can be undone, FALSE otherwise.

wxCommand::Do

bool Do()

Override this member function to execute the appropriate action when called. Return
TRUE to indicate that the action has taken place, FALSE otherwise. Returning FALSE
will indicate to the command processor that the action is not undoable and should not be
added to the command history.

wxCommand::GetName

wxString GetName()

Returns the command name.

CHAPTER 4

108

wxCommand::Undo

bool Undo()

Override this member function to un-execute a previous Do. Return TRUE to indicate
that the action has taken place, FALSE otherwise. Returning FALSE will indicate to the
command processor that the action is not redoable and no change should be made to
the command history.

How you implement this command is totally application dependent, but typical strategies
include:

• Perform an inverse operation on the last modified piece of data in the document.
When redone, a copy of data stored in command is pasted back or some
operation reapplied. This relies on the fact that you know the ordering of Undos;
the user can never Undo at an arbitrary position in the command history.

• Restore the entire document state (perhaps using document transactioning).
Potentially very inefficient, but possibly easier to code if the user interface and
data are complex, and an 'inverse execute' operation is hard to write.

The docview sample uses the first method, to remove or restore segments in the
drawing.

wxCommandEvent

This event class contains information about command events, which originate from a
variety of simple controls. More complex controls, such as wxTreeCtrl (p. 875), have
separate command event classes.

Derived from

wxEvent (p. 237)

Include files

<wx/event.h>

Event table macros

To process a menu command event, use these event handler macros to direct input to
member functions that take a wxCommandEvent argument.

EVT_COMMAND(id, event, func) Process a command, supplying the window
identifier, command event identifier, and
member function.

EVT_COMMAND_RANGE(id1, id2, event, func) Process a command for a range of
window identifiers, supplying the minimum and
maximum window identifiers, command event
identifier, and member function.

CHAPTER 4

109

EVT_BUTTON(id, func) Process a
wxEVT_COMMAND_BUTTON_CLICKED
command, which is generated by a wxButton
control.

EVT_CHECKBOX(id, func) Process a
wxEVT_COMMAND_CHECKBOX_CLICKED
command, which is generated by a
wxCheckBox control.

EVT_CHOICE(id, func) Process a
wxEVT_COMMAND_CHOICE_SELECTED
command, which is generated by a wxChoice
control.

EVT_LISTBOX(id, func) Process a
wxEVT_COMMAND_LISTBOX_SELECTED
command, which is generated by a wxListBox
control.

EVT_LISTBOX_DCLICK(id, func) Process a
wxEVT_COMMAND_LISTBOX_DOUBLECLIC
KED command, which is generated by a
wxListBox control.

EVT_TEXT(id, func) Process a
wxEVT_COMMAND_TEXT_UPDATED
command, which is generated by a wxTextCtrl
control.

EVT_TEXT_ENTER(id, func) Process a wxEVT_COMMAND_TEXT_ENTER
command, which is generated by a wxTextCtrl
control.

EVT_MENU(id, func) Process a
wxEVT_COMMAND_MENU_SELECTED
command, which is generated by a menu item.

EVT_MENU_RANGE(id1, id2, func) Process a
wxEVT_COMMAND_MENU_RANGE
command, which is generated by a range of
menu items.

EVT_SLIDER(id, func) Process a
wxEVT_COMMAND_SLIDER_UPDATED
command, which is generated by a wxSlider
control.

EVT_RADIOBOX(id, func) Process a
wxEVT_COMMAND_RADIOBOX_SELECTED
command, which is generated by a
wxRadioBox control.

EVT_RADIOBUTTON(id, func) Process a
wxEVT_COMMAND_RADIOBUTTON_SELEC
TED command, which is generated by a
wxRadioButton control.

EVT_SCROLLBAR(id, func) Process a
wxEVT_COMMAND_SCROLLBAR_UPDATED
command, which is generated by a wxScrollBar
control. This is provided for compatibility only;
more specific scrollbar event macros should be

CHAPTER 4

110

used instead (see wxScrollEvent (p. 678)).
EVT_COMBOBOX(id, func) Process a

wxEVT_COMMAND_COMBOBOX_SELECTE
D command, which is generated by a
wxComboBox control.

EVT_TOOL(id, func) Process a
wxEVT_COMMAND_TOOL_CLICKED event (a
synonym for
wxEVT_COMMAND_MENU_SELECTED).
Pass the id of the tool.

EVT_TOOL_RANGE(id1, id2, func) Process a
wxEVT_COMMAND_TOOL_CLICKED event
for a range id identifiers. Pass the ids of the
tools.

EVT_TOOL_RCLICKED(id, func) Process a
wxEVT_COMMAND_TOOL_RCLICKED event.
Pass the id of the tool.

EVT_TOOL_RCLICKED_RANGE(id1, id2, func) Process a
wxEVT_COMMAND_TOOL_RCLICKED event
for a range of ids. Pass the ids of the tools.

EVT_TOOL_ENTER(id, func) Process a wxEVT_COMMAND_TOOL_ENTER
event. Pass the id of the toolbar itself. The
value of wxCommandEvent::GetSelection is
the tool id, or -1 if the mouse cursor has moved
off a tool.

EVT_COMMAND_LEFT_CLICK(id, func) Process a
wxEVT_COMMAND_LEFT_CLICK command,
which is generated by a control (Windows 95
and NT only).

EVT_COMMAND_LEFT_DCLICK(id, func) Process a
wxEVT_COMMAND_LEFT_DCLICK
command, which is generated by a control
(Windows 95 and NT only).

EVT_COMMAND_RIGHT_CLICK(id, func) Process a
wxEVT_COMMAND_RIGHT_CLICK
command, which is generated by a control
(Windows 95 and NT only).

EVT_COMMAND_SET_FOCUS(id, func) Process a
wxEVT_COMMAND_SET_FOCUS command,
which is generated by a control (Windows 95
and NT only).

EVT_COMMAND_KILL_FOCUS(id, func) Process a
wxEVT_COMMAND_KILL_FOCUS command,
which is generated by a control (Windows 95
and NT only).

EVT_COMMAND_ENTER(id, func) Process a wxEVT_COMMAND_ENTER
command, which is generated by a control.

CHAPTER 4

111

wxCommandEvent::m_clientData

void* m_clientData

Contains a pointer to client data for listboxes and choices, if the event was a selection.
Beware, this is not implemented anyway...

wxCommandEvent::m_commandInt

int m_commandInt

Contains an integer identifier corresponding to a listbox, choice or radiobox selection
(only if the event was a selection, not a deselection), or a boolean value representing the
value of a checkbox.

wxCommandEvent::m_commandString

char* m_commandString

Contains a string corresponding to a listbox or choice selection.

wxCommandEvent::m_extraLong

long m_extraLong

Extra information. If the event comes from a listbox selection, it is a boolean determining
whether the event was a selection (TRUE) or a deselection (FALSE). A listbox
deselection only occurs for multiple-selection boxes, and in this case the index and
string values are indeterminate and the listbox must be examined by the application.

wxCommandEvent::wxCommandEvent

 wxCommandEvent(WXTYPE commandEventType = 0, int id = 0)

Constructor.

wxCommandEvent::Checked

bool Checked()

Returns TRUE or FALSE for a checkbox selection event.

wxCommandEvent::GetClientData

CHAPTER 4

112

void* GetClientData()

Returns client data pointer for a listbox or choice selection event (not valid for a
deselection). Beware, this is not implmented anywhere...

wxCommandEvent::GetExtraLong

long GetExtraLong()

Returns the m_extraLong member.

wxCommandEvent::GetInt

int GetInt()

Returns the m_commandInt member.

wxCommandEvent::GetSelection

int GetSelection()

Returns item index for a listbox or choice selection event (not valid for a deselection).

wxCommandEvent::GetString

char* GetString()

Returns item string for a listbox or choice selection event (not valid for a deselection).

wxCommandEvent::IsSelection

bool IsSelection()

For a listbox or choice event, returns TRUE if it is a selection, FALSE if it is a
deselection.

wxCommandEvent::SetClientData

void SetClientData(void* clientData)

Sets the client data for this event.

CHAPTER 4

113

wxCommandEvent::SetExtraLong

void SetExtraLong(int extraLong)

Sets the m_extraLong member.

wxCommandEvent::SetInt

void SetInt(int intCommand)

Sets the m_commandInt member.

wxCommandEvent::SetString

void SetString(char* string)

Sets the m_commandString member.

wxCommandProcessor

wxCommandProcessor is a class that maintains a history of wxCommands, with
undo/redo functionality built-in. Derive a new class from this if you want different
behaviour.

Derived from

wxObject (p. 555)

Include files

<wx/docview.h>

See also

wxCommandProcessor overview (p. 1071), wxCommand (p. 106)

wxCommandProcessor::wxCommandProcessor

 wxCommandProcessor(int maxCommands = 100)

Constructor.

maxCommands defaults to a rather arbitrary 100, but can be set from 1 to any integer. If
your wxCommand classes store a lot of data, you may wish the limit the number of
commands stored to a smaller number.

CHAPTER 4

114

wxCommandProcessor::~wxCommandProcessor

 ~wxCommandProcessor()

Destructor.

wxCommandProcessor::CanUndo

virtual bool CanUndo()

Returns TRUE if the currently-active command can be undone, FALSE otherwise.

wxCommandProcessor::ClearCommands

virtual void ClearCommands()

Deletes all the commands in the list and sets the current command pointer to NULL.

wxCommandProcessor::Do

virtual bool Do()

Executes (redoes) the current command (the command that has just been undone if
any).

wxCommandProcessor::GetCommands

wxList& GetCommands() const

Returns the list of commands.

wxCommandProcessor::GetMaxCommands

int GetMaxCommands() const

Returns the maximum number of commands that the command processor stores.

wxCommandProcessor::GetEditMenu

wxMenu* GetEditMenu() const

Returns the edit menu associated with the command processor.

CHAPTER 4

115

wxCommandProcessor::Initialize

virtual void Initialize()

Initializes the command processor, setting the current command to the last in the list (if
any), and updating the edit menu (if one has been specified).

wxCommandProcessor::SetEditMenu

void SetEditMenu(wxMenu* menu)

Tells the command processor to update the Undo and Redo items on this menu as
appropriate. Set this to NULL if the menu is about to be destroyed and command
operations may still be performed, or the command processor may try to access an
invalid pointer.

wxCommandProcessor::Submit

virtual bool Submit(wxCommand *command, bool storeIt = TRUE)

Submits a new command to the command processor. The command processor calls
wxCommand::Do to execute the command; if it succeeds, the command is stored in the
history list, and the associated edit menu (if any) updated appropriately. If it fails, the
command is deleted immediately. Once Submit has been called, the passed command
should not be deleted directly by the application.

storeIt indicates whether the successful command should be stored in the history list.

wxCommandProcessor::Undo

virtual bool Undo()

Undoes the command just executed.

wxCondition

Condition class for code protection in multithreaded applications.

Derived from

None.

Include files

<wx/thread.h>

CHAPTER 4

116

See also

wxThread (p. 849), wxMutex (p. 541)

wxCondition::wxCondition

 wxCondition()

Default constructor.

wxCondition::~wxCondition

 ~wxCondition()

Destroys the wxCondition object.

wxCondition::Broadcast

void Broadcast()

Broadcasts to all waiting objects.

wxCondition::Signal

void Signal()

Signals the object.

wxCondition::Wait

void Wait(wxMutex& mutex)

Waits indefinitely.

bool Wait(wxMutex& mutex, unsigned long sec, unsigned long nsec)

Waits until a signal is raised or the timeout has elapsed.

Parameters

mutex
wxMutex object.

CHAPTER 4

117

sec
Timeout in seconds

nsec
Timeout nanoseconds component (added to sec).

Return value

The second form returns if the signal was raised, or FALSE if there was a timeout.

wxConfigBase

wxConfigBase class defines the basic interface of all config classes. It can not be used
by itself (it's an abstract base class) and you'll always use one of its derivations:
wxIniConfig, wxFileConfig, wxRegConfig or any other.

However, usually you don't even need to know the precise nature of the class you're
working with but you would just use the wxConfigBase methods. This allows you to write
the same code regardless of whether you're working with the registry under Win32 or
text-based config files under Unix (or even Windows 3.1 .INI files if you're really
unlucky). To make writing the portable code even easier, wxWindows provides a typedef
wxConfig which is mapped onto the native wxConfigBase implementation on the given
platform: i.e. wxRegConfig under Win32, wxIniConfig under Win16 and wxFileConfig
otherwise.

See config overview (p. 1035) for the descriptions of all features of this class.

Derived from

No base class

Include files

<wx/config.h> (to let wxWindows choose a wxConfig class for your platform)
<wx/confbase.h> (base config class)
<wx/fileconf.h> (wxFileconfig class)
<wx/msw/regconf.h> (wxRegConfig class)
<wx/msw/iniconf.h> (wxIniConfig class)

Example

Here is how you would typically use this class:

 // using wxConfig instead of writing wxFileConfig or wxRegConfig
enhances
 // portability of the code
 wxConfig *config = new wxConfig("MyAppName");

 wxString str;
 if (config->Read("LastPrompt", &str)) {

CHAPTER 4

118

 // last prompt was found in the config file/registry and its value
is now
 // in str
 ...
 }
 else {
 // no last prompt...
 }

 // another example: using default values and the full path instead of
just
 // key name: if the key is not found , the value 17 is returned
 long value = config->Read("/LastRun/CalculatedValues/MaxValue", -1);
 ...
 ...
 ...
 // at the end of the program we would save everything back
 config->Write("LastPrompt", str);
 config->Write("/LastRun/CalculatedValues/MaxValue", value);

 // the changes will be written back automatically
 delete config;

This basic example, of course, doesn't show all wxConfig features, such as enumerating,
testing for existence and deleting the entries and groups of entries in the config file, its
abilities to automatically store the default values or expand the environment variables on
the fly. However, the main idea is that using this class is easy and that it should normally
do what you expect it to.

NB: in the documentation of this class, the words "config file" also mean "registry hive"
for wxRegConfig and, generally speaking, might mean any physical storage where a
wxConfigBase-derived class stores its data.

Static functions

These functions deal with the "default" config object. Although its usage is not at all
mandatory it may be convenient to use a global config object instead of creating and
deleting the local config objects each time you need one (especially because creating a
wxFileConfig object might be a time consuming operation). In this case, you may create
this global config object in the very start of the program and Set() it as the default. Then,
from anywhere in your program, you may access it using the Get() function. Of course,
you should delete it on the program termination (otherwise, not only a memory leak will
result, but even more importantly the changes won't be written back!).

As it happens, you may even further simplify the procedure described above: you may
forget about calling Set(). When Get() is called and there is no current object, it will
create one using Create() function. To disable this behaviour DontCreateOnDemand() is
provided.

Set (p. 129)

CHAPTER 4

119

Get (p. 125)
Create (p. 124)
DontCreateOnDemand (p. 124)

Constructor and destructor

wxConfigBase (p. 123)
~wxConfigBase (p. 124)

Path management

As explained in config overview (p. 1035), the config classes support a file system-like
hierarchy of keys (files) and groups (directories). As in the file system case, to specify a
key in the config class you must use a path to it. Config classes also support the notion
of the current group, which makes it possible to use the relative paths. To clarify all this,
here is an example (it's only for the sake of demonstration, it doesn't do anything
sensible!):

 wxConfig *config = new wxConfig("FooBarApp");

 // right now the current path is '/'
 conf->Write("RootEntry", 1);

 // go to some other place: if the group(s) don't exist, they will be
created
 conf->SetPath("/Group/Subgroup");

 // create an entry in subgroup
 conf->Write("SubgroupEntry", 3);

 // '..' is understood
 conf->Write("../GroupEntry", 2);
 conf->SetPath("..");

 wxASSERT(conf->Read("Subgroup/SubgroupEntry", 0l) == 3);

 // use absolute path: it's allowed, too
 wxASSERT(conf->Read("/RootEntry", 0l) == 1);

Warning: it's probably a good idea to always restore the path to its old value on function
exit:

 void foo(wxConfigBase *config)
 {
 wxString strOldPath = config->GetPath();

 config->SetPath("/Foo/Data");
 ...

 config->SetPath(strOldPath);
 }

CHAPTER 4

120

because otherwise the assert in the following example will surely fail (we suppose here
that foo() function is the same as above except that it doesn't save and restore the path):

 void bar(wxConfigBase *config)
 {
 config->Write("Test", 17);

 foo(config);

 // we're reading "/Foo/Data/Test" here! -1 will probably be
returned...
 wxASSERT(config->Read("Test", -1) == 17);
 }

Finally, the path separator in wxConfigBase and derived classes is always '/', regardless
of the platform (i.e. it's not '\\' under Windows).

SetPath (p. 130)
GetPath (p. 127)

Enumeration

The functions in this section allow to enumerate all entries and groups in the config file.
All functions here return FALSE when there are no more items.

You must pass the same index to GetNext and GetFirst (don't modify it). Please note
that it's not the index of the current item (you will have some great surprizes with
wxRegConfig if you assume this) and you shouldn't even look at it: it's just a "cookie"
which stores the state of the enumeration. It can't be stored inside the class because it
would prevent you from running several enumerations simultaneously, that's why you
must pass it explicitly.

Having said all this, enumerating the config entries/groups is very simple:

 wxArrayString aNames;

 // enumeration variables
 wxString str;
 long dummy;

 // first enum all entries
 bool bCont = config->GetFirstEntry(str, dummy);
 while (bCont) {
 aNames.Add(str);

 bCont = GetConfig()->GetNextEntry(str, dummy);
 }

 ... we have all entry names in aNames...

 // now all groups...
 bCont = GetConfig()->GetFirstGroup(str, dummy);
 while (bCont) {

CHAPTER 4

121

 aNames.Add(str);

 bCont = GetConfig()->GetNextGroup(str, dummy);
 }

 ... we have all group (and entry) names in aNames...

There are also functions to get the number of entries/subgroups without actually
enumerating them, but you will probably never need them.

GetFirstGroup (p. 126)
GetNextGroup (p. 126)
GetFirstEntry (p. 126)
GetNextEntry (p. 126)
GetNumberOfEntries (p. 126)
GetNumberOfGroups (p. 126)

Tests of existence

HasGroup (p. 127)
HasEntry (p. 127)
Exists (p. 125)
GetEntryType (p. 125)

Miscellaneous accessors

GetAppName (p. 125)
GetVendorName (p. 127)

Key access

These function are the core of wxConfigBase class: they allow you to read and write
config file data. All Read function take a default value which will be returned if the
specified key is not found in the config file.

Currently, only two types of data are supported: string and long (but it might change in
the near future). To work with other types: for int or bool you can work with function
taking/returning long and just use the casts. Better yet, just use long for all variables
which you're going to save in the config file: chances are that sizeof(bool) ==
sizeof(int) == sizeof(long) anyhow on your system. For float, double and, in
general, any other type you'd have to translate them to/from string representation and
use string functions.

Try not to read long values into string variables and vice versa: although it just might
work with wxFileConfig, you will get a system error with wxRegConfig because in the
Windows registry the different types of entries are indeed used.

CHAPTER 4

122

Final remark: the szKey parameter for all these functions can contain an arbitrary path
(either relative or absolute), not just the key name.

Read (p. 127)
Write (p. 130)
Flush (p. 125)

Rename entries/groups

The functions in this section allow to rename entries or subgroups of the current group.
They will return FALSE on error. typically because either the entry/group with the original
name doesn't exist, because the entry/group with the new name already exists or
because the function is not supported in this wxConfig implementation.

RenameEntry (p. 129)
RenameGroup (p. 129)

Delete entries/groups

The functions in this section delete entries and/or groups of entries from the config file.
DeleteAll() is especially useful if you want to erase all traces of your program presence:
for example, when you uninstall it.

DeleteEntry (p. 124)
DeleteGroup (p. 124)
DeleteAll (p. 124)

Options

Some aspects of wxConfigBase behaviour can be changed during run-time. The first of
them is the expansion of environment variables in the string values read from the config
file: for example, if you have the following in your config file:

 # config file for my program
 UserData = $HOME/data

 # the following syntax is valud only under Windows
 UserData = %windir%\\data.dat

the call to config->Read("UserData") will return something
like"/home/zeitlin/data" if you're lucky enough to run a Linux system ;-)

Although this feature is very useful, it may be annoying if you read a value which
containts '$' or '%' symbols (% is used for environment variables expansion under
Windows) which are not used for environment variable expansion. In this situation you
may call SetExpandEnvVars(FALSE) just before reading this value and
SetExpandEnvVars(TRUE) just after. Another solution would be to prefix the offending
symbols with a backslash.

CHAPTER 4

123

The following functions control this option:

IsExpandingEnvVars (p. 127)
SetExpandingEnvVars (p. 129)
SetRecordDefaults (p. 130)
IsRecordingDefaults (p. 127)

wxConfigBase::wxConfigBase

 wxConfigBase(const wxString& appName = wxEmptyString, const wxString&
vendorName = wxEmptyString, const wxString& localFilename = wxEmptyString,
const wxString& globalFilename = wxEmptyString, long style = 0)

This is the default and only constructor of the wxConfigBase class, and derived classes.

Parameters

appName
The application name. If this is empty, the class will normally use
wxApp::GetAppName (p. 8) to set it. The application name is used in the registry
key on Windows, and can be used to deduce the local filename parameter if that is
missing.

vendorName
The vendor name. If this is empty, it is assumed that no vendor name is wanted, if
this is optional for the current config class. The vendor name is appended to the
application name for wxRegConfig.

localFilename
Some config classes require a local filename. If this is not present, but required,
the application name will be used instead.

globalFilename
Some config classes require a global filename. If this is not present, but required,
the application name will be used instead.

style
Can be one of wxCONFIG_USE_LOCAL_FILE and
wxCONFIG_USE_GLOBAL_FILE. The style interpretation depends on the config
class and is ignored by some. For wxFileConfig, these styles determine whether a
local or global config file is created or used. If the flag is present but the parameter
is empty, the parameter will be set to a default. If the parameter is present but the
style flag not, the relevant flag will be added to the style. For wxFileConfig you can
also add wxCONFIG_USE_RELATIVE_PATH by logicaly or'ing it to either of the
_FILE options to tell wxFileConfig to use relative instead of absolute paths.

Remarks

CHAPTER 4

124

By default, environment variable expansion is on and recording defaults is off.

wxConfigBase::~wxConfigBase

 ~wxConfigBase()

Empty but ensures that dtor of all derived classes is virtual.

wxConfigBase::Create

static wxConfigBase * Create()

Create a new config object: this function will create the "best" implementation of
wxConfig available for the current platform, see comments near the definition of
wxCONFIG_WIN32_NATIVE for details. It returns the created object and also sets it as
the current one.

wxConfigBase::DontCreateOnDemand

void DontCreateOnDemand()

Calling this function will prevent Get() from automatically creating a new config object if
the current one is NULL. It might be useful to call it near the program end to prevent new
config object "accidental" creation.

wxConfigBase::DeleteAll

bool DeleteAll()

Delete the whole underlying object (disk file, registry key, ...). Primarly for use by
desinstallation routine.

wxConfigBase::DeleteEntry

bool DeleteEntry(const wxString& key, boolbDeleteGroupIfEmpty = TRUE)

Deletes the specified entry and the group it belongs to if it was the last key in it and the
second parameter is true.

wxConfigBase::DeleteGroup

bool DeleteGroup(const wxString& key)

CHAPTER 4

125

Delete the group (with all subgroups)

wxConfigBase::Exists

bool Exists(wxString& strName) const

returns TRUE if either a group or an entry with a given name exists

wxConfigBase::Flush

bool Flush(bool bCurrentOnly = FALSE)

permanently writes all changes (otherwise, they're only written from object's destructor)

wxConfigBase::Get

wxConfigBase * Get()

Get the current config object. If there is no current object, creates one (using Create)
unless DontCreateOnDemand was called previously.

wxConfigBase::GetAppName

wxString GetAppName() const

Returns the application name.

wxConfigBase::GetEntryType

enum wxConfigBase::EntryType GetEntryType(const wxString& name) const

Returns the type of the given entry or Unknown if the entry doesn't exist. This function
should be used to decide which version of Read() should be used because some of
wxConfig implementations will complain about type mismatch otherwise: e.g., an attempt
to read a string value from an integer key with wxRegConfig will fail.

The result is an element of enum EntryType:

 enum EntryType
 {
 Unknown,
 String,
 Boolean,
 Integer,
 Float
 };

CHAPTER 4

126

wxConfigBase::GetFirstGroup

bool GetFirstGroup(wxString& str, long&index) const

Gets the first group.

wxPython note: The wxPython version of this method returns a 3-tuple consisting of the
continue flag, the value string, and the index for the next call.

wxConfigBase::GetFirstEntry

bool GetFirstEntry(wxString& str, long&index) const

Gets the first entry.

wxPython note: The wxPython version of this method returns a 3-tuple consisting of the
continue flag, the value string, and the index for the next call.

wxConfigBase::GetNextGroup

bool GetNextGroup(wxString& str, long&index) const

Gets the next group.

wxPython note: The wxPython version of this method returns a 3-tuple consisting of the
continue flag, the value string, and the index for the next call.

wxConfigBase::GetNextEntry

bool GetNextEntry(wxString& str, long&index) const

Gets the next entry.

wxPython note: The wxPython version of this method returns a 3-tuple consisting of the
continue flag, the value string, and the index for the next call.

wxConfigBase::GetNumberOfEntries

uint GetNumberOfEntries(bool bRecursive = FALSE) const

wxConfigBase::GetNumberOfGroups

uint GetNumberOfGroups(bool bRecursive = FALSE) const

CHAPTER 4

127

Get number of entries/subgroups in the current group, with or without its subgroups.

wxConfigBase::GetPath

const wxString& GetPath() const

Retrieve the current path (always as absolute path).

wxConfigBase::GetVendorName

wxString GetVendorName() const

Returns the vendor name.

wxConfigBase::HasEntry

bool HasEntry(wxString& strName) const

returns TRUE if the entry by this name exists

wxConfigBase::HasGroup

bool HasGroup(const wxString& strName) const

returns TRUE if the group by this name exists

wxConfigBase::IsExpandingEnvVars

bool IsExpandingEnvVars() const

Returns TRUE if we are expanding environment variables in key values.

wxConfigBase::IsRecordingDefaults

bool IsRecordingDefaults() const

Returns TRUE if we are writing defaults back to the config file.

wxConfigBase::Read

bool Read(const wxString& key, wxString*str) const

CHAPTER 4

128

Read a string from the key, returning TRUE if the value was read. If the key was not
found, str is not changed.

bool Read(const wxString& key, wxString*str, const wxString& defaultVal) const

Read a string from the key. The default value is returned if the key was not found.

Returns TRUE if value was really read, FALSE if the default was used.

wxString Read(const wxString& key, const wxString& defaultVal) const

Another version of Read(), returning the string value directly.

bool Read(const wxString& key, long* l) const

Reads a long value, returning TRUE if the value was found. If the value was not found, l
is not changed.

bool Read(const wxString& key, long* l,long defaultVal) const

Reads a long value, returning TRUE if the value was found. If the value was not found,
defaultVal is used instead.

long Read(const wxString& key, longdefaultVal) const

Reads a long value from the key and returns it. defaultVal is returned if the key is not
found.

NB: writing

 conf->Read("key", 0);

won't work because the call is ambiguous: compiler can not choose between twoRead
functions. Instead, write:

 conf->Read("key", 0l);

bool Read(const wxString& key, double* d) const

Reads a double value, returning TRUE if the value was found. If the value was not
found, d is not changed.

bool Read(const wxString& key, double* d, double defaultVal) const

Reads a double value, returning TRUE if the value was found. If the value was not
found, defaultVal is used instead.

bool Read(const wxString& key, bool* b) const

CHAPTER 4

129

Reads a bool value, returning TRUE if the value was found. If the value was not found, b
is not changed.

bool Read(const wxString& key, bool* d,bool defaultVal) const

Reads a bool value, returning TRUE if the value was found. If the value was not found,
defaultVal is used instead.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

Read(key, default="") Returns a string.
ReadInt(key, default=0) Returns an int.
ReadFloat(key, default=0.0) Returns a floating point number.

wxConfigBase::RenameEntry

bool RenameEntry(const wxString& oldName, const wxString& newName)

Renames an entry in the current group. The entries names (both the old and the new
one) shouldn't contain backslashes, i.e. only simple names and not arbitrary paths are
accepted by this function.

Returns FALSE if the oldName doesn't exist or if newName already exists.

wxConfigBase::RenameGroup

bool RenameGroup(const wxString& oldName, const wxString& newName)

Renames a subgroup of the current group. The subgroup names (both the old and the
new one) shouldn't contain backslashes, i.e. only simple names and not arbitrary paths
are accepted by this function.

Returns FALSE if the oldName doesn't exist or if newName already exists.

wxConfigBase::Set

wxConfigBase * Set(wxConfigBase *pConfig)

Sets the config object as the current one, returns the pointer to the previous current
object (both the parameter and returned value may be NULL)

wxConfigBase::SetExpandingEnvVars

void SetExpandEnvVars (bool bDoIt = TRUE)

CHAPTER 4

130

Determine whether we wish to expand environment variables in key values.

wxConfigBase::SetPath

void SetPath(const wxString& strPath)

Set current path: if the first character is '/', it's the absolute path, otherwise it's a relative
path. '..' is supported. If the strPath doesn't exist it is created.

wxConfigBase::SetRecordDefaults

void SetRecordDefaults(bool bDoIt = TRUE)

Sets whether defaults are written back to the config file.

If on (default is off) all default values are written back to the config file. This allows the
user to see what config options may be changed and is probably useful only for
wxFileConfig.

wxConfigBase::Write

bool Write(const wxString& key, const wxString& value)

bool Write(const wxString& key, long value)

bool Write(const wxString& key, double value)

bool Write(const wxString& key, bool value)

These functions write the specified value to the config file and return TRUE on success.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

Write(key, value) Writes a string.
WriteInt(key, value) Writes an int.
WriteFloat(key, value) Writes a floating point number.

wxControl

This is the base class for a control or 'widget'.

A control is generally a small window which processes user input and/or displays one or
more item of data.

CHAPTER 4

131

Derived from

wxWindow (p. 915)
wxEvtHandler (p. 240)
wxObject (p. 555)

Include files

<wx/control.h>

See also

wxValidator (p. 897)

wxControl::Command

void Command(wxCommandEvent& event)

Simulates the effect of the user issuing a command to the item. See wxCommandEvent
(p. 108).

wxControl::GetLabel

wxString& GetLabel()

Returns the control's text.

wxControl::SetLabel

void SetLabel(const wxString& label)

Sets the item's text.

wxCriticalSection

A critical section object is used for the same exactly purpose as mutexes (p. 541). The
only difference is that under Windows platform critical sections are only visible inside
one process, while mutexes may be shared between processes, so using critical
sections is slightly more efficient. The terminology is also slightly different: mutex may be
locked (or acquired) and unlocked (or released) while critical section is entered and left
by the program.

Finally, you should try to use wxCriticalSectionLocker (p. 132) class whenever possible
instead of directly using wxCriticalSection for the same reasons wxMutexLocker (p. 544)
is preferrable to wxMutex (p. 541) - please see wxMutex for an example.

CHAPTER 4

132

Derived from

None.

Include files

<wx/thread.h>

See also

wxThread (p. 849), wxCondition (p. 115), wxMutexLocker (p. 544), wxCriticalSection (p.
131)

wxCriticalSection::wxCriticalSection

 wxCriticalSection()

Default constructor initializes critical section object.

wxCriticalSection::~wxCriticalSection

 ~wxCriticalSection()

Destructor frees the ressources.

wxCriticalSection::Enter

void Enter()

Enter the critical section (same as locking a mutex). There is no error return for this
function. After entering the critical section protecting some global data the thread running
in critical section may safely use/modify it.

wxCriticalSection::Leave

void Leave()

Leave the critical section allowing other threads use the global data protected by it.
There is no error return for this function.

wxCriticalSectionLocker

This is a small helper class to be used with wxCriticalSection (p. 131) objects. A

CHAPTER 4

133

wxCriticalSectionLocker enters the critical section in the constructor and leaves it in the
destructor making it much more difficult to forget to leave a critical section (which, in
general, will lead to serious and difficult to debug problems).

Derived from

None.

Include files

<wx/thread.h>

See also

wxCriticalSection (p. 131), wxMutexLocker (p. 544)

wxCriticalSectionLocker::wxCriticalSectionLocker

 wxCriticalSectionLocker(wxCriticalSection *criticalsection)

Constructs a wxCriticalSectionLocker object associated with given criticalsection which
must be non NULL and enters it.

wxCriticalSectionLocker::~wxCriticalSectionLocker

 ~wxCriticalSectionLocker()

Destuctor leaves the criticalsection.

wxCustomDataObject

wxCustomDataObject is a specialization ofwxDataObjectSimple (p. 152) for some
application-specific data in arbitrary (either custom or one of the standard ones). The
only restriction is that it is supposed that this data can be copied bitwise (i.e. with
memcpy()), so it would be a bad idea to make it contain a C++ object (though C struct is
fine).

By default, wxCustomDataObject stores the data inside in a buffer. To put the data into
the buffer you may use eitherSetData (p. 135) orTakeData (p. 135) depending on
whether you want the object to make a copy of data or not.

If you already store the data in another place, it may be more convenient and efficient to
provide the data on-demand which is possible too if you override the virtual functions
mentioned below.

Virtual functions to override

CHAPTER 4

134

This class may be used as is, but if you don't want store the data inside the object but
provide it on demand instead, you should overrideGetSize (p. 135),GetData (p. 135)
andSetData (p. 135) (or may be only the first two or only the last one if you only allow
reading/writing the data)

Derived from

wxDataObjectSimple (p. 152)
wxDataObject (p. 148)

Include files

<wx/dataobj.h>

See also

wxDataObject (p. 148)

wxCustomDataObject::wxCustomDataObject

 wxCustomDataObject(const wxDataFormat& format = wxFormatInvalid)

The constructor accepts a format argument which specifies the (single) format supported
by this object. If it isn't set here,SetFormat (p. 153) should be used.

wxCustomDataObject::~wxCustomDataObject

 ~wxCustomDataObject()

The destructor will free the data hold by the object. Notice that although it calls a virtual
Free() (p. 134) function, the base class version will always be called (C++ doesn't allow
calling virtual functions from constructors or destructors), so if you override Free(), you
should override the destructor in your class as well (which would probably just call the
derived class' version of Free()).

wxCustomDataObject::Alloc

virtual void * Alloc(size_t size)

This function is called to allocate size bytes of memory from SetData(). The default
version just uses the operator new.

wxCustomDataObject::Free

CHAPTER 4

135

wxPython note: This method expects a string in wxPython. You can pass nearly any
object by pickling it first.

virtual void Free()

This function is called when the data is freed, you may override it to anything you want
(or may be nothing at all). The default version calls operator delete[] on the data.

wxCustomDataObject::GetSize

virtual size_t GetSize() const

Returns the data size in bytes.

wxCustomDataObject::GetData

virtual void * GetData() const

Returns a pointer to the data.

wxCustomDataObject::SetData

virtual void SetData(size_t size, const void *data)

Set the data. The data object will make an internal copy.

wxCustomDataObject::TakeData

virtual void TakeData(size_t size, const void *data)

Like SetData (p. 135), but doesn't copy the data - instead the object takes ownership of
the pointer.

wxCursor

A cursor is a small bitmap usually used for denoting where the mouse pointer is, with a
picture that might indicate the interpretation of a mouse click. As with icons, cursors in X
and MS Windows are created in a different manner. Therefore, separate cursors will be
created for the different environments. Platform-specific methods for creating a
wxCursor object are catered for, and this is an occasion where conditional compilation
will probably be required (see wxIcon (p. 395) for an example).

A single cursor object may be used in many windows (any subwindow type). The
wxWindows convention is to set the cursor for a window, as in X, rather than to set it
globally as in MS Windows, although a global ::wxSetCursor (p. 978) is also available for

CHAPTER 4

136

MS Windows use.

Derived from

wxBitmap (p. 36)
wxGDIObject (p. 321)
wxObject (p. 555)

Include files

<wx/cursor.h>

Predefined objects

Objects:

wxNullCursor

Pointers:

wxSTANDARD_CURSOR
wxHOURGLASS_CURSOR
wxCROSS_CURSOR

See also

wxBitmap (p. 36), wxIcon (p. 395), wxWindow::SetCursor (p. 952), ::wxSetCursor (p.
978)

wxCursor::wxCursor

 wxCursor()

Default constructor.

 wxCursor(const char bits[], int width, int height, int hotSpotX=-1, int hotSpotY=-1,
const char maskBits[]=NULL)

Constructs a cursor by passing an array of bits (Motif and Xt only). maskBits is used only
under Motif.

If either hotSpotX or hotSpotY is -1, the hotspot will be the centre of the cursor image
(Motif only).

 wxCursor(const wxString& cursorName, long type, int hotSpotX=0, int hotSpotY=0)

Constructs a cursor by passing a string resource name or filename.

CHAPTER 4

137

hotSpotX and hotSpotY are currently only used under Windows when loading from an
icon file, to specify the cursor hotspot relative to the top left of the image.

 wxCursor(int cursorId)

Constructs a cursor using a cursor identifier.

 wxCursor(const wxCursor& cursor)

Copy constructor. This uses reference counting so is a cheap operation.

Parameters

bits
An array of bits.

maskBits
Bits for a mask bitmap.

width
Cursor width.

height
Cursor height.

hotSpotX
Hotspot x coordinate.

hotSpotY
Hotspot y coordinate.

type
Icon type to load. Under Motif, type defaults to wxBITMAP_TYPE_XBM. Under
Windows, it defaults to wxBITMAP_TYPE_CUR_RESOURCE.

Under X, the permitted cursor types are:

wxBITMAP_TYPE_XBM Load an X bitmap file.

Under Windows, the permitted types are:

wxBITMAP_TYPE_CUR Load a cursor from a .cur cursor file (only if
USE_RESOURCE_LOADING_IN_MSW is
enabled in setup.h).

wxBITMAP_TYPE_CUR_RESOURCE Load a Windows resource (as
specified in the .rc file).

wxBITMAP_TYPE_ICO Load a cursor from a .ico icon file (only if
USE_RESOURCE_LOADING_IN_MSW is
enabled in setup.h). Specify hotSpotX and
hotSpotY.

CHAPTER 4

138

cursorId
A stock cursor identifier. May be one of:

wxCURSOR_ARROW A standard arrow cursor.
wxCURSOR_BULLSEYE Bullseye cursor.
wxCURSOR_CHAR Rectangular character cursor.
wxCURSOR_CROSS A cross cursor.
wxCURSOR_HAND A hand cursor.
wxCURSOR_IBEAM An I-beam cursor (vertical line).
wxCURSOR_LEFT_BUTTON Represents a mouse with the left button

depressed.
wxCURSOR_MAGNIFIER A magnifier icon.
wxCURSOR_MIDDLE_BUTTON Represents a mouse with the middle button

depressed.
wxCURSOR_NO_ENTRY A no-entry sign cursor.
wxCURSOR_PAINT_BRUSH A paintbrush cursor.
wxCURSOR_PENCIL A pencil cursor.
wxCURSOR_POINT_LEFT A cursor that points left.
wxCURSOR_POINT_RIGHT A cursor that points right.
wxCURSOR_QUESTION_ARROW An arrow and question mark.
wxCURSOR_RIGHT_BUTTON Represents a mouse with the right button

depressed.
wxCURSOR_SIZENESW A sizing cursor pointing NE-SW.
wxCURSOR_SIZENS A sizing cursor pointing N-S.
wxCURSOR_SIZENWSE A sizing cursor pointing NW-SE.
wxCURSOR_SIZEWE A sizing cursor pointing W-E.
wxCURSOR_SIZING A general sizing cursor.
wxCURSOR_SPRAYCAN A spraycan cursor.
wxCURSOR_WAIT A wait cursor.
wxCURSOR_WATCH A watch cursor.

Note that not all cursors are available on all platforms.

cursor
Pointer or reference to a cursor to copy.

wxPython note: Constructors supported by wxPython are:

wxCursor(name, flags, hotSpotX=0, hotSpotY=0) Constructs a cursor
from a filename

wxStockCursor(id) Constructs a stock cursor

wxCursor::~wxCursor

 ~wxCursor()

Destroys the cursor. A cursor can be reused for more than one window, and does not

CHAPTER 4

139

get destroyed when the window is destroyed. wxWindows destroys all cursors on
application exit, although it's best to clean them up explicitly.

wxCursor::Ok

bool Ok() const

Returns TRUE if cursor data is present.

wxCursor::operator =

wxCursor& operator =(const wxCursor& cursor)

Assignment operator, using reference counting. Returns a reference to 'this'.

wxCursor::operator ==

bool operator ==(const wxCursor& cursor)

Equality operator. Two cursors are equal if they contain pointers to the same underlying
cursor data. It does not compare each attribute, so two independently-created cursors
using the same parameters will fail the test.

wxCursor::operator !=

bool operator !=(const wxCursor& cursor)

Inequality operator. Two cursors are not equal if they contain pointers to different
underlying cursor data. It does not compare each attribute.

wxDatabase

Every database object represents an ODBC connection. The connection may be closed
and reopened.

Derived from

wxObject (p. 555)

Include files

<wx/odbc.h>

See also

wxDatabase overview (p. 1056), wxRecordSet (p. 641)

CHAPTER 4

140

wxDatabase::wxDatabase

 wxDatabase()

Constructor. The constructor of the first wxDatabase instance of an application initializes
the ODBC manager.

wxDatabase::~wxDatabase

 ~wxDatabase()

Destructor. Resets and destroys any associated wxRecordSet instances.

The destructor of the last wxDatabase instance will deinitialize the ODBC manager.

wxDatabase::BeginTrans

bool BeginTrans()

Not implemented.

wxDatabase::Cancel

void Cancel()

Not implemented.

wxDatabase::CanTransact

bool CanTransact()

Not implemented.

wxDatabase::CanUpdate

bool CanUpdate()

Not implemented.

wxDatabase::Close

CHAPTER 4

141

bool Close()

Resets the statement handles of any associated wxRecordSet objects, and disconnects
from the current data source.

wxDatabase::CommitTrans

bool CommitTrans()

Commits previous transactions. Not implemented.

wxDatabase::ErrorOccured

bool ErrorOccured()

Returns TRUE if the last action caused an error.

wxDatabase::ErrorSnapshot

void ErrorSnapshot(HSTMT statement = SQL_NULL_HSTMT)

This function will be called whenever an ODBC error occured. It stores the error related
information returned by ODBC. If a statement handle of the concerning ODBC action is
available it should be passed to the function.

wxDatabase::GetDatabaseName

wxString GetDatabaseName()

Returns the name of the database associated with the current connection.

wxDatabase::GetDataSource

wxString GetDataSource()

Returns the name of the connected data source.

wxDatabase::GetErrorClass

wxString GetErrorClass()

Returns the error class of the last error. The error class consists of five characters where
the first two characters contain the class and the other three characters contain the

CHAPTER 4

142

subclass of the ODBC error. See ODBC documentation for further details.

wxDatabase::GetErrorCode

wxRETCODE GetErrorCode()

Returns the error code of the last ODBC function call. This will be one of:

SQL_ERROR General error.
SQL_INVALID_HANDLE An invalid handle was passed to an ODBC function.
SQL_NEED_DATA ODBC expected some data.
SQL_NO_DATA_FOUND No data was found by this ODBC call.
SQL_SUCCESS The call was successful.
SQL_SUCCESS_WITH_INFO The call was successful, but further information can

be obtained from the ODBC manager.

wxDatabase::GetErrorMessage

wxString GetErrorMessage()

Returns the last error message returned by the ODBC manager.

wxDatabase::GetErrorNumber

long GetErrorNumber()

Returns the last native error. A native error is an ODBC driver dependent error number.

wxDatabase::GetHDBC

HDBC GetHDBC()

Returns the current ODBC database handle.

wxDatabase::GetHENV

HENV GetHENV()

Returns the ODBC environment handle.

wxDatabase::GetInfo

bool GetInfo(long infoType, long *buf)

CHAPTER 4

143

bool GetInfo(long infoType, const wxString& buf, int bufSize=-1)

Returns requested information. The return value is TRUE if successful, FALSE
otherwise.

infoType is an ODBC identifier specifying the type of information to be returned.

buf is a character or long integer pointer to storage which must be allocated by the
application, and which will contain the information if the function is successful.

bufSize is the size of the character buffer. A value of -1 indicates that the size should be
computed by the GetInfo function.

wxDatabase::GetPassword

wxString GetPassword()

Returns the password of the current user.

wxDatabase::GetUsername

wxString GetUsername()

Returns the current username.

wxDatabase::GetODBCVersionFloat

float GetODBCVersionFloat(bool implementation=TRUE)

Returns the version of ODBC in floating point format, e.g. 2.50.

implementation should be TRUE to get the DLL version, or FALSE to get the version
defined in the sql.h header file.

This function can return the value 0.0 if the header version number is not defined (for
early versions of ODBC).

wxDatabase::GetODBCVersionString

wxString GetODBCVersionString(bool implementation=TRUE)

Returns the version of ODBC in string format, e.g. "02.50".

implementation should be TRUE to get the DLL version, or FALSE to get the version
defined in the sql.h header file.

CHAPTER 4

144

This function can return the value "00.00" if the header version number is not defined
(for early versions of ODBC).

wxDatabase::InWaitForDataSource

bool InWaitForDataSource()

Not implemented.

wxDatabase::IsOpen

bool IsOpen()

Returns TRUE if a connection is open.

wxDatabase::Open

bool Open(const wxString& datasource, bool exclusive = FALSE, bool readOnly =
TRUE, const wxString& username = "ODBC", const wxString& password = "")

Connect to a data source. datasource contains the name of the ODBC data source. The
parameters exclusive and readOnly are not used.

wxDatabase::OnSetOptions

void OnSetOptions(wxRecordSet *recordSet)

Not implemented.

wxDatabase::OnWaitForDataSource

void OnWaitForDataSource(bool stillExecuting)

Not implemented.

wxDatabase::RollbackTrans

bool RollbackTrans()

Sends a rollback to the ODBC driver. Not implemented.

wxDatabase::SetDataSource

CHAPTER 4

145

void SetDataSource(const wxString& s)

Sets the name of the data source. Not implemented.

wxDatabase::SetLoginTimeout

void SetLoginTimeout(long seconds)

Sets the time to wait for an user login. Not implemented.

wxDatabase::SetPassword

void SetPassword(const wxString& s)

Sets the password of the current user. Not implemented.

wxDatabase::SetSynchronousMode

void SetSynchronousMode(bool synchronous)

Toggles between synchronous and asynchronous mode. Currently only synchronous
mode is supported, so this function has no effect.

wxDatabase::SetQueryTimeout

void SetQueryTimeout(long seconds)

Sets the time to wait for a response to a query. Not implemented.

wxDatabase::SetUsername

void SetUsername(const wxString& s)

Sets the name of the current user. Not implemented.

wxDataFormat

A wxDataFormat is an encapsulation of a platform-specific format handle which is used
by the system for the clipboard and drag and drop operations. The applications are
usually only interested in, for example, pasting data from the clipboard only if the data is
in a format the program understands and a data format is something which uniquely
identifies this format.

On the system level, a data format is usually just a number (CLIPFORMATunder

CHAPTER 4

146

Windows or Atom under X11, for example) and the standard formats are, indeed, just
numbers which can be implicitly converted to wxDataFormat. The standard formats are:

wxDF_INVALID An invalid format - used as default argument for functions
taking a wxDataFormat argument sometimes

wxDF_TEXT Text format (wxString)

wxDF_BITMAP A bitmap (wxBitmap)

wxDF_METAFILE A metafile (wxMetafile, Windows only)

wxDF_FILENAME A list of filenames

As mentioned above, these standard formats may be passed to any function taking
wxDataFormat argument because wxDataFormat has an implicit conversion from them
(or, to be precise from the type wxDataFormat::NativeFormat which is the type
used by the underlying platform for data formats).

Aside the standard formats, the application may also use custom formats which are
identified by their names (strings) and not numeric identifiers. Although internally custom
format must be created (or registered) first, you shouldn't care about it because it is done
automatically the first time the wxDataFormat object corresponding to a given format
name is created. The only implication of this is that you should avoid having global
wxDataFormat objects with non-default constructor because their constructors are
executed before the program has time to perform all necessary initialisations and so an
attempt to do clipboard format registration at this time will usually lead to a crash!

Virtual functions to override

None, this class doesn't have any.

Derived from

None

See also

Clipboard and drag and drop overview (p. 1038), DnD sample (p. 1025), wxDataObject
(p. 148)

wxDataFormat::wxDataFormat

 wxDataFormat(NativeFormat format = wxDF_INVALID)

Constructs a data format object for one of the standard data formats or an empty data

CHAPTER 4

147

object (use SetType (p. 147) or SetId (p. 147) later in this case)

wxDataFormat::wxDataFormat

 wxDataFormat(const wxChar *format)

Constructs a data format object for a custom format identified by its name format.

wxDataFormat::operator ==

bool operator ==(const wxDataFormat& format) const

Returns TRUE if the formats are equal.

wxDataFormat::operator !=

bool operator !=(const wxDataFormat& format) const

Returns TRUE if the formats are different.

wxDataFormat::GetId

wxString GetId() const

Returns the name of a custom format (this function will fail for a standard format).

wxDataFormat::GetType

NativeFormat GetType() const

Returns the platform-specific number identifying the format.

wxDataFormat::SetId

void SetId(const wxChar *format)

Sets the format to be the custom format identified by the given name.

wxDataFormat::SetType

void SetType(NativeFormat format)

Sets the format to the given value, which should be one of wxDF_XXX constants.

CHAPTER 4

148

wxDataObject

A wxDataObject represents data that can be copied to or from the clipboard, or dragged
and dropped. The important thing about wxDataObject is that this is a 'smart' piece of
data unlike usual 'dumb' data containers such as memory buffers or files. Being 'smart'
here means that the data object itself should know what data formats it supports and
how to render itself in each of supported formats.

A supported format, incidentally, is exactly the format in which the data can be requested
from a data object or from which the data object may be set. In the general case, an
object may support different formats on 'input' and 'output', i.e. it may be able to render
itself in a given format but not be created from data on this format or vice versa.
wxDataObject defines an enumeration type

enum Direction
{
 Get = 0x01, // format is supported by GetDataHere()
 Set = 0x02 // format is supported by SetData()
};

which allows to distinguish between them. SeewxDataFormat (p. 145) documentation for
more about formats.

Not surprizingly, being 'smart' comes at a price of added complexity. This is reasonable
for the situations when you really need to support multiple formats, but may be annoying
if you only want to do something simple like cut and paste text.

To provide a solution for both cases, wxWindows has two predefined classes which
derive from wxDataObject: wxDataObjectSimple (p. 152) andwxDataObjectComposite
(p. 151).wxDataObjectSimple (p. 152) is the simplest wxDataObject possible and only
holds data in a single format (such as HTML or text) and wxDataObjectComposite (p.
151) is the simplest way to implement wxDataObject which does support multiple
formats because it achievs this by simply holding several wxDataObjectSimple objects.

So, you have several solutions when you need a wxDataObject class (and you need one
as soon as you want to transfer data via the clipboard or drag and drop):

0. Use one of built-in classes You may use wxTextDataObject,
wxBitmapDataObject or wxFileDataObject in the simplest
cases when you only need to support one format and your
data is either text, bitmap or list of files.

1. Use wxDataObjectSimple Deriving from wxDataObjectSimple is the simplest
solution for custom data - you will only support one format
and so probably won't be able to communicate with other
programs, but data transfer will work in your program (or
between different copies of it).

2. Use wxDataObjectComposite This is a simple but powerful solution which allows
you to support any number of formats (either standard or

CHAPTER 4

149

custom if you combine it with the previous solution).

3. Use wxDataObject directly This is the solution for maximal flexibility and
efficiency, but it also is the most difficult to implement.

Please note that the easiest way to use drag and drop and the clipboard with multiple
formats is by using wxDataObjectComposite, but it is not the most efficient one as each
wxDataObjectSimple would contain the whole data in its respective formars. Now
imagine that you want to paste 200 pages of text in your proprietary format, as well as
Word, RTF, HTML, Unicode and plain text to the clipboard and even today's computers
are in trouble. For this case, you will have to derive from wxDataObject directly and
make it enumerate its formats and provide the data in the requested format on demand.

Note that neither the GTK data transfer mechanisms for the clipboard and drag and
drop, neither does the OLE data transfer copy any data until another application actually
requests the data. This is in contrast to the 'feel' offered to the user of a program who
would normally think that the data resides in the clipboard after having pressed 'Copy' -
in reality it is only declared to be available.

There are several predefined data object classes derived from wxDataObjectSimple:
wxFileDataObject (p. 263),wxTextDataObject (p. 833) andwxBitmapDataObject (p. 57)
which can be used without change.

You may also derive your own data object classes from wxCustomDataObject (p. 133)
for user-defined types. The format of user-defined data is given as mime-type string
literal, such as "application/word" or "image/png". These strings are used as they are
under Unix (so far only GTK) to identify a format and are translated into their Windows
equivalent under Win32 (using the OLE IDataObject for data exchange to and from the
clipboard and for drag and drop). Note that the format string translation under Windows
is not yet finished.

wxPython note: At this time this class is directly usable from wxPython. Derive a class
from wxPyDataObjectSimple (p. 152)instead.

Virtual functions to override

Each class derived directly from wxDataObject must override and implement all of its
functions which are pure virtual in the base class.

The data objects which only render their data or only set it (i.e. work in only one
direction), should return 0 fromGetFormatCount (p. 150).

Derived from

None

Include files

<wx/dataobj.h>

CHAPTER 4

150

See also

Clipboard and drag and drop overview (p. 1038), DnD sample (p. 1025),
wxFileDataObject (p. 263), wxTextDataObject (p. 833), wxBitmapDataObject (p. 57),
wxCustomDataObject (p. 133), wxDropTarget (p. 234), wxDropSource (p. 232),
wxTextDropTarget (p. 839), wxFileDropTarget (p. 268)

wxDataObject::wxDataObject

 wxDataObject()

Constructor.

wxDataObject::~wxDataObject

 ~wxDataObject()

Destructor.

wxDataObject::GetAllFormats

virtual void GetAllFormats(wxDataFormat *formats, Direction dir = Get) const

Copy all supported formats in the given direction to the array pointed to byformats. There
is enough space for GetFormatCount(dir) formats in it.

wxDataObject::GetDataHere

virtual bool GetDataHere(const wxDataFormat& format, void *buf) const

The method will write the data of the format format in the buffer buf and return TRUE on
success, FALSE on failure.

wxDataObject::GetDataSize

virtual size_t GetDataSize(const wxDataFormat& format) const

Returns the data size of the given format format.

wxDataObject::GetFormatCount

virtual size_t GetFormatCount(Direction dir = Get) const

CHAPTER 4

151

Returns the number of available formats for rendering or setting the data.

wxDataObject::GetPreferredFormat

virtual wxDataFormat GetPreferredFormat(Direction dir = Get) const

Returns the preferred format for either rendering the data (if dir is Get, its default value)
or for setting it. Usually this will be the native format of the wxDataObject.

wxDataObject::SetData

virtual bool SetData(const wxDataFormat& format, size_t len, const void *buf)

Set the data in the format format of the length len provided in the buffer buf.

Returns TRUE on success, FALSE on failure.

wxDataObjectComposite

wxDataObjectComposite is the simplest wxDataObject (p. 148) derivation which may be
sued to support multiple formats. It contains several wxDataObjectSimple (p. 152)
objects and supports any format supported by at least one of them. Only one of these
data objects ispreferred (the first one if not explicitly changed by using the second
parameter of Add (p. 152)) and its format determines the preferred format of the
composite data object as well.

See wxDataObject (p. 148) documentation for the reasons why you might prefer to use
wxDataObject directly instead of wxDataObjectComposite for efficiency reasons.

Virtual functions to override

None, this class should be used directly.

Derived from

wxDataObject (p. 148)

Include files

<wx/dataobj.h>

See also

Clipboard and drag and drop overview (p. 1038), wxDataObject (p. 148),
wxDataObjectSimple (p. 152), wxFileDataObject (p. 263), wxTextDataObject (p. 833),
wxBitmapDataObject (p. 57)

CHAPTER 4

152

wxDataObjectComposite::wxDataObjectComposite

 wxDataObjectComposite()

The default constructor.

wxDataObjectComposite::Add

void Add(wxDataObjectSimple *dataObject, bool preferred = FALSE)

Adds the dataObject to the list of supported objects and it becomes the preferred object
if preferred is TRUE.

wxDataObjectSimple

This is the simplest possible implementation ofwxDataObject (p. 148) class. The data
object of (a class derived from) this class only supports one format, so the number of
virtual functions to be implemented is reduced.

Notice that this is still an abstract base class and cannot be used but should be derived
from.

wxPython note: If you wish to create a derived wxDataObjectSimple class in wxPython
you should derive the class from wxPyDataObjectSimple in order to get Python-aware
capabilities for the various virtual methods.

Virtual functions to override

The objects supporting rendering the data must overrideGetDataSize (p. 153)
andGetDataHere (p. 153) while the objects which may be set must override SetData (p.
153). Of course, the objects supporting both operations must override all threee
methods.

Derived from

wxDataObject (p. 148)

Include files

<wx/dataobj.h>

See also

Clipboard and drag and drop overview (p. 1038),DnD sample (p.
1025),wxFileDataObject (p. 263),wxTextDataObject (p. 833),wxBitmapDataObject (p.
57)

CHAPTER 4

153

wxDataObjectSimple::wxDataObjectSimple

 wxDataObjectSimple(const wxDataFormat& format = wxFormatInvalid)

Constructor accepts the supported format (none by default) which may also be set later
with SetFormat (p. 153).

wxDataObjectSimple::GetFormat

const wxDataFormat& GetFormat() const

Returns the (one and only one) format supported by this object. It is supposed that the
format is supported in both directions.

wxDataObjectSimple::SetFormat

void SetFormat(const wxDataFormat& format)

Sets the supported format.

wxDataObjectSimple::GetDataSize

virtual size_t GetDataSize() const

Gets the size of our data. Must be implemented in the derived class if the object
supports rendering its data.

wxDataObjectSimple::GetDataHere

virtual bool GetDataHere(void *buf) const

Copy the data to the buffer, return TRUE on success. Must be implemented in the
derived class if the object supports rendering its data.

wxPython note: When implementing this method in wxPython, no additional parameters
are required and the data should be returned from the method as a string.

wxDataObjectSimple::SetData

virtual bool SetData(size_t len, const void *buf)

CHAPTER 4

154

Copy the data from the buffer, return TRUE on success. Must be implemented in the
derived class if the object supports setting its data.

wxPython note: When implementing this method in wxPython, the data comes as a
single string parameter rather than the two shown here.

wxDataInputStream

This class provides functions that read binary data types in a portable way. Data can be
read in either big-endian or litte-endian format, little-endian being the default on all
architectures.

If you want to read data from text files (or streams) use wxTextInputStream (p. 835)
instead.

The >> operator is overloaded and you can use this class like a standard C++ iostream.
Note, however, that the arguments are the fixed size types wxUint32, wxInt32 etc and on
a typical 32-bit computer, none of these match to the "long" type (wxInt32 is defined as
signed int on 32-bit architectures) so that you cannot use long. To avoid problems (here
and elsewhere), make use of the wxInt32, wxUint32, etc types.

For example:
 wxFileInputStream input("mytext.dat");
 wxDataInputStream store(input);
 wxUint8 i1;
 float f2;
 wxString line;

 store >> i1; // read a 8 bit integer.
 store >> i1 >> f2; // read a 8 bit integer followed by float.
 store >> line; // read a text line

See also wxDataOutputStream (p. 156).

Derived from

None

Include files

<wx/datstrm.h>

wxDataInputStream::wxDataInputStream

 wxDataInputStream(wxInputStream& stream)

Constructs a datastream object from an input stream. Only read methods will be
available.

CHAPTER 4

155

Parameters

stream
The input stream.

wxDataInputStream::~wxDataInputStream

 ~wxDataInputStream()

Destroys the wxDataInputStream object.

wxDataInputStream::BigEndianOrdered

void BigEndianOrdered(bool be_order)

If be_order is TRUE, all data will be read in big-endian order, such as written by
programs on a big endian architecture (e.g. Sparc) or written by Java-Streams (which
always use big-endian order).
wxDataInputStream::Read8

wxUint8 Read8()

Reads a single byte from the stream.

wxDataInputStream::Read16

wxUint16 Read16()

Reads a 16 bit integer from the stream.

wxDataInputStream::Read32

wxUint32 Read32()

Reads a 32 bit integer from the stream.

wxDataInputStream::ReadDouble

double ReadDouble()

Reads a double (IEEE encoded) from the stream.

wxDataInputStream::ReadString

CHAPTER 4

156

wxString wxDataInputStream::ReadString()

Reads a string from a stream. Actually, this function first reads a long integer specifying
the length of the string (without the last null character) and then reads the string.

wxDataOutputStream

This class provides functions that write binary data types in a portable way. Data can be
written in either big-endian or litte-endian format, little-endian being the default on all
architectures.

If you want to write data to text files (or streams) use wxTextOutputStream (p. 836)
instead.

The << operator is overloaded and you can use this class like a standard C++ iostream.
See wxDataInputStream (p. 154) for its usage and caveats.

See also wxDataInputStream (p. 154).

Derived from

None

wxDataOutputStream::wxDataOutputStream

 wxDataOutputStream(wxOutputStream& stream)

Constructs a datastream object from an output stream. Only write methods will be
available.

Parameters

stream
The output stream.

wxDataOutputStream::~wxDataOutputStream

 ~wxDataOutputStream()

Destroys the wxDataOutputStream object.

wxDataOutputStream::BigEndianOrdered

void BigEndianOrdered(bool be_order)

CHAPTER 4

157

If be_order is TRUE, all data will be written in big-endian order, e.g. for reading on a
Sparc or from Java-Streams (which always use big-endian order), otherwise data will be
written in little-endian order.
wxDataOutputStream::Write8

void wxDataOutputStream::Write8(wxUint8 i8)

Writes the single byte i8 to the stream.

wxDataOutputStream::Write16

void wxDataOutputStream::Write16(wxUint16 i16)

Writes the 16 bit integer i16 to the stream.

wxDataOutputStream::Write32

void wxDataOutputStream::Write32(wxUint32 i32)

Writes the 32 bit integer i32 to the stream.

wxDataOutputStream::WriteDouble

void wxDataOutputStream::WriteDouble(double f)

Writes the double f to the stream using the IEEE format.

wxDataOutputStream::WriteString

void wxDataOutputStream::WriteString(const wxString& string)

Writes string to the stream. Actually, this method writes the size of the string before
writing string itself.

wxDate

A class for manipulating dates.

NOTE: this class should be used with caution, since it is not fully tested. It will be
replaced with a new wxDateTime class in the near future.

Derived from

wxObject (p. 555)

CHAPTER 4

158

Include files

<wx/date.h>

See also

wxTime (p. 853)

wxDate::wxDate

 wxDate()

Default constructor.

 wxDate(const wxDate& date)

Copy constructor.

 wxDate(int month, int day, int year)

Constructor taking month, day and year.

 wxDate(long julian)

Constructor taking an integer representing the Julian date. This is the number of days
since 1st January 4713 B.C., so to convert from the number of days since 1st January
1901, construct a date for 1/1/1901, and add the number of days.

 wxDate(const wxString& dateString)

Constructor taking a string representing a date. This must be either the string TODAY, or
of the form MM/DD/YYYY or MM-DD-YYYY. For example:

 wxDate date("11/26/1966");

Parameters

date
Date to copy.

month
Month: a number between 1 and 12.

day
Day: a number between 1 and 31.

year
Year, such as 1995, 2005.

CHAPTER 4

159

wxDate::~wxDate

void ~wxDate()

Destructor.

wxDate::AddMonths

wxDate& AddMonths(int months=1)

Adds the given number of months to the date, returning a reference to 'this'.

wxDate::AddWeeks

wxDate& AddWeeks(int weeks=1)

Adds the given number of weeks to the date, returning a reference to 'this'.

wxDate::AddYears

wxDate& AddYears(int years=1)

Adds the given number of months to the date, returning a reference to 'this'.

wxDate::FormatDate

wxString FormatDate(int type=-1) const

Formats the date according to type if not -1, or according to the current display type if -1.

Parameters

type
-1 or one of:

wxDAY Format day only.
wxMONTH Format month only.
wxMDY Format MONTH, DAY, YEAR.
wxFULL Format day, month and year in US style:

DAYOFWEEK, MONTH, DAY, YEAR.
wxEUROPEAN Format day, month and year in European style: DAY,

MONTH, YEAR.

CHAPTER 4

160

wxDate::GetDay

int GetDay() const

Returns the numeric day (in the range 1 to 31).

wxDate::GetDayOfWeek

int GetDayOfWeek() const

Returns the integer day of the week (in the range 1 to 7).

wxDate::GetDayOfWeekName

wxString GetDayOfWeekName() const

Returns the name of the day of week.

wxDate::GetDayOfYear

long GetDayOfYear() const

Returns the day of the year (from 1 to 365).

wxDate::GetDaysInMonth

int GetDaysInMonth() const

Returns the number of days in the month (in the range 1 to 31).

wxDate::GetFirstDayOfMonth

int GetFirstDayOfMonth() const

Returns the day of week that is first in the month (in the range 1 to 7).

wxDate::GetJulianDate

long GetJulianDate() const

Returns the Julian date.

CHAPTER 4

161

wxDate::GetMonth

int GetMonth() const

Returns the month number (in the range 1 to 12).

wxDate::GetMonthEnd

wxDate GetMonthEnd()

Returns the date representing the last day of the month.

wxDate::GetMonthName

wxString GetMonthName() const

Returns the name of the month. Do not delete the returned storage.

wxDate::GetMonthStart

wxDate GetMonthStart() const

Returns the date representing the first day of the month.

wxDate::GetWeekOfMonth

int GetWeekOfMonth() const

Returns the week of month (in the range 1 to 6).

wxDate::GetWeekOfYear

int GetWeekOfYear() const

Returns the week of year (in the range 1 to 52).

wxDate::GetYear

int GetYear() const

Returns the year as an integer (such as '1995').

wxDate::GetYearEnd

CHAPTER 4

162

wxDate GetYearEnd() const

Returns the date representing the last day of the year.

wxDate::GetYearStart

wxDate GetYearStart() const

Returns the date representing the first day of the year.

wxDate::IsLeapYear

bool IsLeapYear() const

Returns TRUE if the year of this date is a leap year.

wxDate::Set

wxDate& Set()

Sets the date to current system date, returning a reference to 'this'.

wxDate& Set(long julian)

Sets the date to the given Julian date, returning a reference to 'this'.

wxDate& Set(int month, int day, int year)

Sets the date to the given date, returning a reference to 'this'.

month is a number from 1 to 12.

day is a number from 1 to 31.

year is a year, such as 1995, 2005.

wxDate::SetFormat

void SetFormat(int format)

Sets the current format type.

Parameters

format

CHAPTER 4

163

-1 or one of:

wxDAY Format day only.
wxMONTH Format month only.
wxMDY Format MONTH, DAY, YEAR.
wxFULL Format day, month and year in US style:

DAYOFWEEK, MONTH, DAY, YEAR.
wxEUROPEAN Format day, month and year in European style: DAY,

MONTH, YEAR.

wxDate::SetOption

int SetOption(int option, const bool enable=TRUE)

Enables or disables an option for formatting.

Parameters

option
May be one of:

wxNO_CENTURY The century is not formatted.
wxDATE_ABBR Month and day names are abbreviated to 3

characters when formatting.

wxDate::operator wxString

 operator wxString()

Conversion operator, to convert wxDate to wxString by calling FormatDate.

wxDate::operator +

wxDate operator +(long i)

wxDate operator +(int i)

Adds an integer number of days to the date, returning a date.

wxDate::operator -

wxDate operator -(long i)

wxDate operator -(int i)

CHAPTER 4

164

Subtracts an integer number of days from the date, returning a date.

long operator -(const wxDate& date)

Subtracts one date from another, return the number of intervening days.

wxDate::operator +=

wxDate& operator +=(long i)

Postfix operator: adds an integer number of days to the date, returning a reference to
'this' date.

wxDate::operator -=

wxDate& operator -=(long i)

Postfix operator: subtracts an integer number of days from the date, returning a
reference to 'this' date.

wxDate::operator ++

wxDate& operator ++()

Increments the date (postfix or prefix).

wxDate::operator --

wxDate& operator --()

Decrements the date (postfix or prefix).

wxDate::operator <

friend bool operator <(const wxDate& date1, const wxDate& date2)

Function to compare two dates, returning TRUE if date1 is earlier than date2.

wxDate::operator <=

friend bool operator <=(const wxDate& date1, const wxDate& date2)

Function to compare two dates, returning TRUE if date1 is earlier than or equal to date2.

CHAPTER 4

165

wxDate::operator >

friend bool operator >(const wxDate& date1, const wxDate& date2)

Function to compare two dates, returning TRUE if date1 is later than date2.

wxDate::operator >=

friend bool operator >=(const wxDate& date1, const wxDate& date2)

Function to compare two dates, returning TRUE if date1 is later than or equal to date2.

wxDate::operator ==

friend bool operator ==(const wxDate& date1, const wxDate& date2)

Function to compare two dates, returning TRUE if date1 is equal to date2.

wxDate::operator !=

friend bool operator !=(const wxDate& date1, const wxDate& date2)

Function to compare two dates, returning TRUE if date1 is not equal to date2.

wxDate::operator <<

friend ostream& operator <<(ostream& os, const wxDate& date)

Function to output a wxDate to an ostream.

wxDC

A wxDC is a device context onto which graphics and text can be drawn. It is intended to
represent a number of output devices in a generic way, so a window can have a device
context associated with it, and a printer also has a device context. In this way, the same
piece of code may write to a number of different devices, if the device context is used as
a parameter.

Derived types of wxDC have documentation for specific features only, so refer to this
section for most device context information.

Derived from

wxObject (p. 555)

CHAPTER 4

166

Include files

<wx/dc.h>

See also

Overview (p. 1059)

wxDC::wxDC

 wxDC()

Constructor.

wxDC::~wxDC

 ~wxDC()

Destructor.

wxDC::BeginDrawing

void BeginDrawing()

Allows optimization of drawing code under MS Windows. Enclose drawing primitives
between BeginDrawing and EndDrawing calls.

Drawing to a wxDialog panel device context outside of a system-generated OnPaint
event requires this pair of calls to enclose drawing code. This is because a Windows
dialog box does not have a retained device context associated with it, and selections
such as pen and brush settings would be lost if the device context were obtained and
released for each drawing operation.

wxDC::Blit

bool Blit(long xdest, long ydest, long width, long height, wxDC* source, long xsrc,
long ysrc, int logicalFunc = wxCOPY, bool useMask = FALSE)

Copy from a source DC to this DC, specifying the destination coordinates, size of area to
copy, source DC, source coordinates, and logical function.

Parameters

CHAPTER 4

167

xdest
Destination device context x position.

ydest
Destination device context y position.

width
Width of source area to be copied.

height
Height of source area to be copied.

source
Source device context.

xsrc
Source device context x position.

ysrc
Source device context y position.

logicalFunc
Logical function to use: see wxDC::SetLogicalFunction (p. 178).

useMask
If TRUE, Blit does a transparent blit using the mask that is associated with the
bitmap selected into the source device context. The Windows implementation does
the following:

1. Creates a temporary bitmap and copies the destination area into it.
2. Copies the source area into the temporary bitmap using the specified

logical function.
3. Sets the masked area in the temporary bitmap to BLACK by ANDing the

mask bitmap with the temp bitmap with the foreground colour set to
WHITE and the bg colour set to BLACK.

4. Sets the unmasked area in the destination area to BLACK by ANDing the
mask bitmap with the destination area with the foreground colour set to
BLACK and the background colour set to WHITE.

5. ORs the temporary bitmap with the destination area.
6. Deletes the temporary bitmap.

This sequence of operations ensures that the source's transparent area need not
be black, and logical functions are supported.

Remarks

There is partial support for Blit in wxPostScriptDC, under X.

See wxMemoryDC (p. 496) for typical usage.

See also

CHAPTER 4

168

wxMemoryDC (p. 496), wxBitmap (p. 36), wxMask (p. 483)

wxDC::Clear

void Clear()

Clears the device context using the current background brush.

wxDC::CrossHair

void CrossHair(long x, long y)

Displays a cross hair using the current pen. This is a vertical and horizontal line the
height and width of the window, centred on the given point.

wxDC::DestroyClippingRegion

void DestroyClippingRegion()

Destroys the current clipping region so that none of the DC is clipped. See also
wxDC::SetClippingRegion (p. 177).

wxDC::DeviceToLogicalX

long DeviceToLogicalX(long x)

Convert device X coordinate to logical coordinate, using the current mapping mode.

wxDC::DeviceToLogicalXRel

long DeviceToLogicalXRel(long x)

Convert device X coordinate to relative logical coordinate, using the current mapping
mode. Use this function for converting a width, for example.

wxDC::DeviceToLogicalY

long DeviceToLogicalY(long y)

Converts device Y coordinate to logical coordinate, using the current mapping mode.

wxDC::DeviceToLogicalYRel

CHAPTER 4

169

long DeviceToLogicalYRel(long y)

Convert device Y coordinate to relative logical coordinate, using the current mapping
mode. Use this function for converting a height, for example.

wxDC::DrawArc

void DrawArc(long x1, long y1, long x2, long y2, double xc, double yc)

Draws an arc of a circle, centred on (xc, yc), with starting point (x1, y1) and ending at
(x2, y2). The current pen is used for the outline and the current brush for filling the
shape.

The arc is drawn in an anticlockwise direction from the start point to the end point.

wxDC::DrawBitmap

void DrawBitmap(const wxBitmap& bitmap, long x, long y, bool transparent)

Draw a bitmap on the device context at the specified point. If transparent is TRUE and
the bitmap has a transparency mask, the bitmap will be drawn transparently.

wxDC::DrawEllipse

void DrawEllipse(long x, long y, long width, long height)

Draws an ellipse contained in the rectangle with the given top left corner, and with the
given size. The current pen is used for the outline and the current brush for filling the
shape.

wxDC::DrawEllipticArc

void DrawEllipticArc(long x, long y, long width, long height, double start, double
end)

Draws an arc of an ellipse. The current pen is used for drawing the arc and the current
brush is used for drawing the pie. This function is currently only available for X window
and PostScript device contexts.

x and y specify the x and y coordinates of the upper-left corner of the rectangle that
contains the ellipse.

width and height specify the width and height of the rectangle that contains the ellipse.

start and end specify the start and end of the arc relative to the three-o'clock position

CHAPTER 4

170

from the center of the rectangle. Angles are specified in degrees (360 is a complete
circle). Positive values mean counter-clockwise motion. If start is equal to end, a
complete ellipse will be drawn.

wxDC::DrawIcon

void DrawIcon(const wxIcon& icon, long x, long y)

Draw an icon on the display (does nothing if the device context is PostScript). This can
be the simplest way of drawing bitmaps on a window.

wxDC::DrawLine

void DrawLine(long x1, long y1, long x2, long y2)

Draws a line from the first point to the second. The current pen is used for drawing the
line.

wxDC::DrawLines

void DrawLines(int n, wxPoint points[], long xoffset = 0, long yoffset = 0)

void DrawLines(wxList *points, long xoffset = 0, long yoffset = 0)

Draws lines using an array of points of size n, or list of pointers to points, adding the
optional offset coordinate. The current pen is used for drawing the lines. The
programmer is responsible for deleting the list of points.

wxPython note: The wxPython version of this method accepts a Python list of wxPoint
objects.

wxDC::DrawPolygon

void DrawPolygon(int n, wxPoint points[], long xoffset = 0, long yoffset = 0,
 int fill_style = wxODDEVEN_RULE)

void DrawPolygon(wxList *points, long xoffset = 0, long yoffset = 0,
 int fill_style = wxODDEVEN_RULE)

Draws a filled polygon using an array of points of size n, or list of pointers to points,
adding the optional offset coordinate.

The last argument specifies the fill rule: wxODDEVEN_RULE (the default) or
wxWINDING_RULE.

The current pen is used for drawing the outline, and the current brush for filling the

CHAPTER 4

171

shape. Using a transparent brush suppresses filling. The programmer is responsible for
deleting the list of points.

Note that wxWindows automatically closes the first and last points.

wxPython note: The wxPython version of this method accepts a Python list of wxPoint
objects.

wxDC::DrawPoint

void DrawPoint(long x, long y)

Draws a point using the current pen.

wxDC::DrawRectangle

void DrawRectangle(long x, long y, long width, long height)

Draws a rectangle with the given top left corner, and with the given size. The current
pen is used for the outline and the current brush for filling the shape.

wxDC::DrawRoundedRectangle

void DrawRoundedRectangle(long x, long y, long width, long height, double radius =
20)

Draws a rectangle with the given top left corner, and with the given size. The corners
are quarter-circles using the given radius. The current pen is used for the outline and the
current brush for filling the shape.

If radius is positive, the value is assumed to be the radius of the rounded corner. If
radius is negative, the absolute value is assumed to be the proportion of the smallest
dimension of the rectangle. This means that the corner can be a sensible size relative to
the size of the rectangle, and also avoids the strange effects X produces when the
corners are too big for the rectangle.

wxDC::DrawSpline

void DrawSpline(wxList *points)

Draws a spline between all given control points, using the current pen. Doesn't delete
the wxList and contents. The spline is drawn using a series of lines, using an algorithm
taken from the X drawing program 'XFIG'.

void DrawSpline(long x1, long y1, long x2, long y2, long x3, long y3)

CHAPTER 4

172

Draws a three-point spline using the current pen.

wxPython note: The wxPython version of this method accepts a Python list of wxPoint
objects.

wxDC::DrawText

void DrawText(const wxString& text, long x, long y)

Draws a text string at the specified point, using the current text font, and the current text
foreground and background colours.

The coordinates refer to the top-left corner of the rectangle bounding the string. See
wxDC::GetTextExtent (p. 175) for how to get the dimensions of a text string, which can
be used to position the text more precisely.

wxDC::EndDoc

void EndDoc()

Ends a document (only relevant when outputting to a printer).

wxDC::EndDrawing

void EndDrawing()

Allows optimization of drawing code under MS Windows. Enclose drawing primitives
between BeginDrawing and EndDrawing calls.

wxDC::EndPage

void EndPage()

Ends a document page (only relevant when outputting to a printer).

wxDC::FloodFill

void FloodFill(long x, long y, wxColour *colour, int style=wxFLOOD_SURFACE)

Flood fills the device context starting from the given point, in the given colour, and using
a style:

• wxFLOOD_SURFACE: the flooding occurs until a colour other than the given
colour is encountered.

• wxFLOOD_BORDER: the area to be flooded is bounded by the given colour.

CHAPTER 4

173

Note: this function is available in MS Windows only.

wxDC::GetBackground

wxBrush& GetBackground()

Gets the brush used for painting the background (see wxDC::SetBackground (p. 177)).

wxDC::GetBrush

wxBrush& GetBrush()

Gets the current brush (see wxDC::SetBrush (p. 178)).

wxDC::GetCharHeight

long GetCharHeight()

Gets the character height of the currently set font.

wxDC::GetCharWidth

long GetCharWidth()

Gets the average character width of the currently set font.

wxDC::GetClippingBox

void GetClippingBox(long *x, long *y, long *width, long *height)

Gets the rectangle surrounding the current clipping region.

wxPython note: No arguments are required and the four values defining the rectangle
are returned as a tuple.

wxDC::GetFont

wxFont& GetFont()

Gets the current font (see wxDC::SetFont (p. 178)).

wxDC::GetLogicalFunction

CHAPTER 4

174

int GetLogicalFunction()

Gets the current logical function (see wxDC::SetLogicalFunction (p. 178)).

wxDC::GetMapMode

int GetMapMode()

Gets the mapping mode for the device context (see wxDC::SetMapMode (p. 179)).

wxDC::GetOptimization

bool GetOptimization()

Returns TRUE if device context optimization is on. See wxDC::SetOptimization (p. 180)
for details.

wxDC::GetPen

wxPen& GetPen()

Gets the current pen (see wxDC::SetPen (p. 180)).

wxDC::GetPixel

bool GetPixel(long x, long y, wxColour *colour)

Sets colour to the colour at the specified location. Windows only; an X implementation is
being worked on. Not available for wxPostScriptDC or wxMetafileDC.

wxPython note: For wxPython the wxColour value is returned and is not required as a
parameter.

wxDC::GetSize

void GetSize(long *width, long *height)

For a PostScript device context, this gets the maximum size of graphics drawn so far on
the device context.

For a Windows printer device context, this gets the horizontal and vertical resolution. It
can be used to scale graphics to fit the page when using a Windows printer device
context. For example, if maxX and maxY represent the maximum horizontal and vertical
'pixel' values used in your application, the following code will scale the graphic to fit on

CHAPTER 4

175

the printer page:

 long w, h;
 dc.GetSize(&w, &h);
 double scaleX=(double)(maxX/w);
 double scaleY=(double)(maxY/h);
 dc.SetUserScale(min(scaleX,scaleY),min(scaleX,scaleY));

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

GetSize() Returns a wxSize

GetSizeTuple() Returns a 2-tuple (width, height)

wxDC::GetTextBackground

wxColour& GetTextBackground()

Gets the current text background colour (see wxDC::SetTextBackground (p. 180)).

wxDC::GetTextExtent

void GetTextExtent(const wxString& string, long *w, long *h,
 long *descent = NULL, long *externalLeading = NULL, wxFont *font = NULL)

Gets the dimensions of the string using the currently selected font. string is the text
string to measure, w and h are the total width and height respectively, descent is the
dimension from the baseline of the font to the bottom of the descender, and
externalLeading is any extra vertical space added to the font by the font designer
(usually is zero).

The optional parameter font specifies an alternative to the currently selected font: but
note that this does not yet work under Windows, so you need to set a font for the device
context first.

See also wxFont (p. 285), wxDC::SetFont (p. 178).

wxPython note: The following methods are implemented in wxPython:

GetTextExtent(string) Returns a 2-tuple, (width, height)

GetFullTextExtent(string, font=NULL)Returns a 4-tuple, (width, height,
descent, externalLeading)

wxDC::GetTextForeground

CHAPTER 4

176

wxColour& GetTextForeground()

Gets the current text foreground colour (see wxDC::SetTextForeground (p. 180)).

wxDC::LogicalToDeviceX

long LogicalToDeviceX(long x)

Converts logical X coordinate to device coordinate, using the current mapping mode.

wxDC::LogicalToDeviceXRel

long LogicalToDeviceXRel(long x)

Converts logical X coordinate to relative device coordinate, using the current mapping
mode. Use this for converting a width, for example.

wxDC::LogicalToDeviceY

long LogicalToDeviceY(long y)

Converts logical Y coordinate to device coordinate, using the current mapping mode.

wxDC::LogicalToDeviceYRel

long LogicalToDeviceYRel(long y)

Converts logical Y coordinate to relative device coordinate, using the current mapping
mode. Use this for converting a height, for example.

wxDC::MaxX

long MaxX()

Gets the maximum horizontal extent used in drawing commands so far.

wxDC::MaxY

long MaxY()

Gets the maximum vertical extent used in drawing commands so far.

CHAPTER 4

177

wxDC::MinX

long MinX()

Gets the minimum horizontal extent used in drawing commands so far.

wxDC::MinY

long MinY()

Gets the minimum vertical extent used in drawing commands so far.

wxDC::Ok

bool Ok()

Returns TRUE if the DC is ok to use.

wxDC::SetDeviceOrigin

void SetDeviceOrigin(long x, long y)

Sets the device origin (i.e., the origin in pixels after scaling has been applied).

This function may be useful in Windows printing operations for placing a graphic on a
page.

wxDC::SetBackground

void SetBackground(const wxBrush& brush)

Sets the current background brush for the DC.

wxDC::SetBackgroundMode

void SetBackgroundMode(int mode)

mode may be one of wxSOLID and wxTRANSPARENT. This setting determines whether
text will be drawn with a background colour or not.

wxDC::SetClippingRegion

void SetClippingRegion(long x, long y, long width, long height)

CHAPTER 4

178

void SetClippingRegion(const wxRegion& region)

Sets the clipping region for the DC. The clipping region is an area to which drawing is
restricted. Possible uses for the clipping region are for clipping text or for speeding up
window redraws when only a known area of the screen is damaged.

See also

wxDC::DestroyClippingRegion (p. 168), wxRegion (p. 653)

wxDC::SetPalette

void SetPalette(const wxPalette& palette)

If this is a window DC or memory DC, assigns the given palette to the window or bitmap
associated with the DC. If the argument is wxNullPalette, the current palette is selected
out of the device context, and the original palette restored.

See wxPalette (p. 568) for further details.

wxDC::SetBrush

void SetBrush(const wxBrush& brush)

Sets the current brush for the DC.

If the argument is wxNullBrush, the current brush is selected out of the device context,
and the original brush restored, allowing the current brush to be destroyed safely.

See also wxBrush (p. 60).

wxDC::SetFont

void SetFont(const wxFont& font)

Sets the current font for the DC.

If the argument is wxNullFont, the current font is selected out of the device context, and
the original font restored, allowing the current font to be destroyed safely.

See also wxFont (p. 285).

wxDC::SetLogicalFunction

void SetLogicalFunction(int function)

CHAPTER 4

179

Sets the current logical function for the device context. This determines how a source
pixel (from a pen or brush colour, or source device context if using wxDC::Blit (p. 166))
combines with a destination pixel in the current device context.

The possible values and their meaning in terms of source and destination pixel values
are as follows:

wxAND src AND dst
wxAND_INVERT (NOT src) AND dst
wxAND_REVERSE src AND (NOT dst)
wxCLEAR 0
wxCOPY src
wxEQUIV (NOT src) XOR dst
wxINVERT NOT dst
wxNAND (NOT src) OR (NOT dst)
wxNOR (NOT src) AND (NOT dst)
wxNO_OP dst
wxOR src OR dst
wxOR_INVERT (NOT src) OR dst
wxOR_REVERSE src OR (NOT dst)
wxSET 1
wxSRC_INVERT NOT src
wxXOR src XOR dst

The default is wxCOPY, which simply draws with the current colour. The others combine
the current colour and the background using a logical operation. wxINVERT is
commonly used for drawing rubber bands or moving outlines, since drawing twice
reverts to the original colour.

wxDC::SetMapMode

void SetMapMode(int int)

The mapping mode of the device context defines the unit of measurement used to
convert logical units to device units. Note that in X, text drawing isn't handled
consistently with the mapping mode; a font is always specified in point size. However,
setting the user scale (see wxDC::SetUserScale (p. 180)) scales the text appropriately.
In Windows, scaleable TrueType fonts are always used; in X, results depend on
availability of fonts, but usually a reasonable match is found.

Note that the coordinate origin should ideally be selectable, but for now is always at the
top left of the screen/printer.

Drawing to a Windows printer device context under UNIX uses the current mapping
mode, but mapping mode is currently ignored for PostScript output.

The mapping mode can be one of the following:

wxMM_TWIPS Each logical unit is 1/20 of a point, or 1/1440 of an inch.
wxMM_POINTS Each logical unit is a point, or 1/72 of an inch.
wxMM_METRIC Each logical unit is 1 mm.

CHAPTER 4

180

wxMM_LOMETRIC Each logical unit is 1/10 of a mm.
wxMM_TEXT Each logical unit is 1 pixel.

wxDC::SetOptimization

void SetOptimization(bool optimize)

If optimize is TRUE (the default), this function sets optimization mode on. This currently
means that under X, the device context will not try to set a pen or brush property if it is
known to be set already. This approach can fall down if non-wxWindows code is using
the same device context or window, for example when the window is a panel on which
the windowing system draws panel items. The wxWindows device context 'memory' will
now be out of step with reality.

Setting optimization off, drawing, then setting it back on again, is a trick that must
occasionally be employed.

wxDC::SetPen

void SetPen(const wxPen& pen)

Sets the current pen for the DC.

If the argument is wxNullPen, the current pen is selected out of the device context, and
the original pen restored.

wxDC::SetTextBackground

void SetTextBackground(const wxColour& colour)

Sets the current text background colour for the DC.

wxDC::SetTextForeground

void SetTextForeground(const wxColour& colour)

Sets the current text foreground colour for the DC.

wxDC::SetUserScale

void SetUserScale(double xScale, double yScale)

Sets the user scaling factor, useful for applications which require 'zooming'.

CHAPTER 4

181

wxDC::StartDoc

bool StartDoc(const wxString& message)

Starts a document (only relevant when outputting to a printer). Message is a message to
show whilst printing.

wxDC::StartPage

bool StartPage()

Starts a document page (only relevant when outputting to a printer).

wxDDEClient

A wxDDEClient object represents the client part of a client-server DDE (Dynamic Data
Exchange) conversation.

To create a client which can communicate with a suitable server, you need to derive a
class from wxDDEConnection and another from wxDDEClient. The custom
wxDDEConnection class will intercept communications in a 'conversation' with a server,
and the custom wxDDEServer is required so that a user-overriden
wxDDEClient::OnMakeConnection (p. 182) member can return a wxDDEConnection of
the required class, when a connection is made.

This DDE-based implementation is available on Windows only, but a platform-
independent, socket-based version of this API is available using wxTCPClient (p. 812).

Derived from

wxClientBase
wxObject (p. 555)

Include files

<wx/dde.h>

See also

wxDDEServer (p. 186), wxDDEConnection (p. 182), Interprocess communications
overview (p. 1080)

wxDDEClient::wxDDEClient

 wxDDEClient()

CHAPTER 4

182

Constructs a client object.

wxDDEClient::MakeConnection

wxConnectionBase * MakeConnection(const wxString& host, const wxString&
service, const wxString& topic)

Tries to make a connection with a server specified by the host (machine name under
UNIX, ignored under Windows), service name (must contain an integer port number
under UNIX), and topic string. If the server allows a connection, a wxDDEConnection
object will be returned. The type of wxDDEConnection returned can be altered by
overriding the wxDDEClient::OnMakeConnection (p. 182) member to return your own
derived connection object.

wxDDEClient::OnMakeConnection

wxConnectionBase * OnMakeConnection()

The type of wxDDEConnection (p. 182) returned from a wxDDEClient::MakeConnection
(p. 182) call can be altered by deriving the OnMakeConnection member to return your
own derived connection object. By default, a wxDDEConnection object is returned.

The advantage of deriving your own connection class is that it will enable you to
intercept messages initiated by the server, such as wxDDEConnection::OnAdvise (p.
184). You may also want to store application-specific data in instances of the new class.

wxDDEClient::ValidHost

bool ValidHost(const wxString& host)

Returns TRUE if this is a valid host name, FALSE otherwise. This always returns TRUE
under MS Windows.

wxDDEConnection

A wxDDEConnection object represents the connection between a client and a server. It
can be created by making a connection using a wxDDEClient (p. 181) object, or by the
acceptance of a connection by a wxDDEServer (p. 186) object. The bulk of a DDE
(Dynamic Data Exchange) conversation is controlled by calling members in a
wxDDEConnection object or by overriding its members.

An application should normally derive a new connection class from wxDDEConnection,
in order to override the communication event handlers to do something interesting.

This DDE-based implementation is available on Windows only, but a platform-
independent, socket-based version of this API is available using wxTCPConnection (p.

CHAPTER 4

183

813).

Derived from

wxConnectionBase
wxObject (p. 555)

Include files

<wx/dde.h>

Types

wxIPCFormat is defined as follows:

enum wxIPCFormat
{
 wxIPC_INVALID = 0,
 wxIPC_TEXT = 1, /* CF_TEXT */
 wxIPC_BITMAP = 2, /* CF_BITMAP */
 wxIPC_METAFILE = 3, /* CF_METAFILEPICT */
 wxIPC_SYLK = 4,
 wxIPC_DIF = 5,
 wxIPC_TIFF = 6,
 wxIPC_OEMTEXT = 7, /* CF_OEMTEXT */
 wxIPC_DIB = 8, /* CF_DIB */
 wxIPC_PALETTE = 9,
 wxIPC_PENDATA = 10,
 wxIPC_RIFF = 11,
 wxIPC_WAVE = 12,
 wxIPC_UNICODETEXT = 13,
 wxIPC_ENHMETAFILE = 14,
 wxIPC_FILENAME = 15, /* CF_HDROP */
 wxIPC_LOCALE = 16,
 wxIPC_PRIVATE = 20
};

See also

wxDDEClient (p. 181), wxDDEServer (p. 186), Interprocess communications overview
(p. 1080)

wxDDEConnection::wxDDEConnection

 wxDDEConnection()

 wxDDEConnection(char* buffer, int size)

Constructs a connection object. If no user-defined connection object is to be derived
from wxDDEConnection, then the constructor should not be called directly, since the

CHAPTER 4

184

default connection object will be provided on requesting (or accepting) a connection.
However, if the user defines his or her own derived connection object, the
wxDDEServer::OnAcceptConnection (p. 187) and/or wxDDEClient::OnMakeConnection
(p. 182) members should be replaced by functions which construct the new connection
object. If the arguments of the wxDDEConnection constructor are void, then a default
buffer is associated with the connection. Otherwise, the programmer must provide a a
buffer and size of the buffer for the connection object to use in transactions.

wxDDEConnection::Advise

bool Advise(const wxString& item, char* data, int size = -1, wxIPCFormat format =
wxCF_TEXT)

Called by the server application to advise the client of a change in the data associated
with the given item. Causes the client connection's wxDDEConnection::OnAdvise (p.
184)member to be called. Returns TRUE if successful.

wxDDEConnection::Execute

bool Execute(char* data, int size = -1, wxIPCFormat format = wxCF_TEXT)

Called by the client application to execute a command on the server. Can also be used
to transfer arbitrary data to the server (similar to wxDDEConnection::Poke (p. 186) in
that respect). Causes the server connection's wxDDEConnection::OnExecute (p. 185)
member to be called. Returns TRUE if successful.

wxDDEConnection::Disconnect

bool Disconnect()

Called by the client or server application to disconnect from the other program; it causes
the wxDDEConnection::OnDisconnect (p. 184) message to be sent to the corresponding
connection object in the other program. The default behaviour of OnDisconnect is to
delete the connection, but the calling application must explicitly delete its side of the
connection having called Disconnect. Returns TRUE if successful.

wxDDEConnection::OnAdvise

virtual bool OnAdvise(const wxString& topic, const wxString& item, char* data, int
size, wxIPCFormat format)

Message sent to the client application when the server notifies it of a change in the data
associated with the given item.

wxDDEConnection::OnDisconnect

CHAPTER 4

185

virtual bool OnDisconnect()

Message sent to the client or server application when the other application notifies it to
delete the connection. Default behaviour is to delete the connection object.

wxDDEConnection::OnExecute

virtual bool OnExecute(const wxString& topic, char* data, int size, wxIPCFormat
format)

Message sent to the server application when the client notifies it to execute the given
data. Note that there is no item associated with this message.

wxDDEConnection::OnPoke

virtual bool OnPoke(const wxString& topic, const wxString& item, char* data, int
size, wxIPCFormat format)

Message sent to the server application when the client notifies it to accept the given
data.

wxDDEConnection::OnRequest

virtual char* OnRequest(const wxString& topic, const wxString& item, int *size,
wxIPCFormat format)

Message sent to the server application when the client calls
wxDDEConnection::Request (p. 186). The server should respond by returning a
character string from OnRequest, or NULL to indicate no data.

wxDDEConnection::OnStartAdvise

virtual bool OnStartAdvise(const wxString& topic, const wxString& item)

Message sent to the server application by the client, when the client wishes to start an
'advise loop' for the given topic and item. The server can refuse to participate by
returning FALSE.

wxDDEConnection::OnStopAdvise

virtual bool OnStopAdvise(const wxString& topic, const wxString& item)

Message sent to the server application by the client, when the client wishes to stop an
'advise loop' for the given topic and item. The server can refuse to stop the advise loop

CHAPTER 4

186

by returning FALSE, although this doesn't have much meaning in practice.

wxDDEConnection::Poke

bool Poke(const wxString& item, char* data, int size = -1, wxIPCFormat format =
wxCF_TEXT)

Called by the client application to poke data into the server. Can be used to transfer
arbitrary data to the server. Causes the server connection's wxDDEConnection::OnPoke
(p. 185) member to be called. Returns TRUE if successful.

wxDDEConnection::Request

char* Request(const wxString& item, int *size, wxIPCFormat format = wxIPC_TEXT)

Called by the client application to request data from the server. Causes the server
connection's wxDDEConnection::OnRequest (p. 185) member to be called. Returns a
character string (actually a pointer to the connection's buffer) if successful, NULL
otherwise.

wxDDEConnection::StartAdvise

bool StartAdvise(const wxString& item)

Called by the client application to ask if an advise loop can be started with the server.
Causes the server connection's wxDDEConnection::OnStartAdvise (p. 185) member to
be called. Returns TRUE if the server okays it, FALSE otherwise.

wxDDEConnection::StopAdvise

bool StopAdvise(const wxString& item)

Called by the client application to ask if an advise loop can be stopped. Causes the
server connection's wxDDEConnection::OnStopAdvise (p. 185) member to be called.
Returns TRUE if the server okays it, FALSE otherwise.

wxDDEServer

A wxDDEServer object represents the server part of a client-server DDE (Dynamic Data
Exchange) conversation.

This DDE-based implementation is available on Windows only, but a platform-
independent, socket-based version of this API is available using wxTCPServer (p. 817).

Derived from

CHAPTER 4

187

wxServerBase

Include files

<wx/dde.h>

See also

wxDDEClient (p. 181), wxDDEConnection (p. 182), IPC overview (p. 1080)

wxDDEServer::wxDDEServer

 wxDDEServer()

Constructs a server object.

wxDDEServer::Create

bool Create(const wxString& service)

Registers the server using the given service name. Under UNIX, the string must contain
an integer id which is used as an Internet port number. FALSE is returned if the call
failed (for example, the port number is already in use).

wxDDEServer::OnAcceptConnection

virtual wxConnectionBase * OnAcceptConnection(const wxString& topic)

When a client calls MakeConnection, the server receives the message and this
member is called. The application should derive a member to intercept this message and
return a connection object of either the standard wxDDEConnection type, or of a user-
derived type. If the topic is "STDIO'', the application may wish to refuse the connection.
Under UNIX, when a server is created the OnAcceptConnection message is always sent
for standard input and output, but in the context of DDE messages it doesn't make a lot
of sense.

wxDebugContext

A class for performing various debugging and memory tracing operations. Full
functionality (such as printing out objects currently allocated) is only present in a
debugging build of wxWindows, i.e. if the __WXDEBUG__ symbol is defined.
wxDebugContext and related functions and macros can be compiled out by setting
wxUSE_DEBUG_CONTEXT to 0 is setup.h

Derived from

CHAPTER 4

188

No parent class.

Include files

<wx/memory.h>

See also

Overview (p. 1061)

wxDebugContext::Check

int Check()

Checks the memory blocks for errors, starting from the currently set checkpoint.

Return value

Returns the number of errors, so a value of zero represents success. Returns -1 if an
error was detected that prevents further checking.

wxDebugContext::Dump

bool Dump()

Performs a memory dump from the currently set checkpoint, writing to the current debug
stream. Calls the Dump member function for each wxObject derived instance.

Return value

TRUE if the function succeeded, FALSE otherwise.

wxDebugContext::GetCheckPrevious

bool GetCheckPrevious()

Returns TRUE if the memory allocator checks all previous memory blocks for errors. By
default, this is FALSE since it slows down execution considerably.

See also

wxDebugContext::SetCheckPrevious (p. 191)

CHAPTER 4

189

wxDebugContext::GetDebugMode

bool GetDebugMode()

Returns TRUE if debug mode is on. If debug mode is on, the wxObject new and delete
operators store or use information about memory allocation. Otherwise, a straight malloc
and free will be performed by these operators.

See also

wxDebugContext::SetDebugMode (p. 191)

wxDebugContext::GetLevel

int GetLevel()

Gets the debug level (default 1). The debug level is used by the wxTraceLevel function
and the WXTRACELEVEL macro to specify how detailed the trace information is; setting
a different level will only have an effect if trace statements in the application specify a
value other than one.

This is obsolete, replaced by wxLog (p. 479) functionality.

See also

wxDebugContext::SetLevel (p. 192)

wxDebugContext::GetStream

ostream& GetStream()

Returns the output stream associated with the debug context.

This is obsolete, replaced by wxLog (p. 479) functionality.

See also

wxDebugContext::SetStream (p. 192)

wxDebugContext::GetStreamBuf

streambuf* GetStreamBuf()

Returns a pointer to the output stream buffer associated with the debug context. There
may not necessarily be a stream buffer if the stream has been set by the user.

This is obsolete, replaced by wxLog (p. 479) functionality.

CHAPTER 4

190

wxDebugContext::HasStream

bool HasStream()

Returns TRUE if there is a stream currently associated with the debug context.

This is obsolete, replaced by wxLog (p. 479) functionality.

See also

wxDebugContext::SetStream (p. 192), wxDebugContext::GetStream (p. 189)

wxDebugContext::PrintClasses

bool PrintClasses()

Prints a list of the classes declared in this application, giving derivation and whether
instances of this class can be dynamically created.

See also

wxDebugContext::PrintStatistics (p. 190)

wxDebugContext::PrintStatistics

bool PrintStatistics(bool detailed = TRUE)

Performs a statistics analysis from the currently set checkpoint, writing to the current
debug stream. The number of object and non-object allocations is printed, together with
the total size.

Parameters

detailed
If TRUE, the function will also print how many objects of each class have been
allocated, and the space taken by these class instances.

See also

wxDebugContext::PrintStatistics (p. 190)

wxDebugContext::SetCheckpoint

void SetCheckpoint(bool all = FALSE)

CHAPTER 4

191

Sets the current checkpoint: Dump and PrintStatistics operations will be performed from
this point on. This allows you to ignore allocations that have been performed up to this
point.

Parameters

all
If TRUE, the checkpoint is reset to include all memory allocations since the
program started.

wxDebugContext::SetCheckPrevious

void SetCheckPrevious(bool check)

Tells the memory allocator to check all previous memory blocks for errors. By default,
this is FALSE since it slows down execution considerably.

See also

wxDebugContext::GetCheckPrevious (p. 188)

wxDebugContext::SetDebugMode

void SetDebugMode(bool debug)

Sets the debug mode on or off. If debug mode is on, the wxObject new and delete
operators store or use information about memory allocation. Otherwise, a straight malloc
and free will be performed by these operators.

By default, debug mode is on if __WXDEBUG__ is defined. If the application uses this
function, it should make sure that all object memory allocated is deallocated with the
same value of debug mode. Otherwise, the delete operator might try to look for memory
information that does not exist.

See also

wxDebugContext::GetDebugMode (p. 189)

wxDebugContext::SetFile

bool SetFile(const wxString& filename)

Sets the current debug file and creates a stream. This will delete any existing stream
and stream buffer. By default, the debug context stream outputs to the debugger
(Windows) or standard error (other platforms).

CHAPTER 4

192

wxDebugContext::SetLevel

void SetLevel(int level)

Sets the debug level (default 1). The debug level is used by the wxTraceLevel function
and the WXTRACELEVEL macro to specify how detailed the trace information is; setting
a different level will only have an effect if trace statements in the application specify a
value other than one.

This is obsolete, replaced by wxLog (p. 479) functionality.

See also

wxDebugContext::GetLevel (p. 189)

wxDebugContext::SetStandardError

bool SetStandardError()

Sets the debugging stream to be the debugger (Windows) or standard error (other
platforms). This is the default setting. The existing stream will be flushed and deleted.

This is obsolete, replaced by wxLog (p. 479) functionality.

wxDebugContext::SetStream

void SetStream(ostream* stream, streambuf* streamBuf = NULL)

Sets the stream and optionally, stream buffer associated with the debug context. This
operation flushes and deletes the existing stream (and stream buffer if any).

This is obsolete, replaced by wxLog (p. 479) functionality.

Parameters

stream
Stream to associate with the debug context. Do not set this to NULL.

streamBuf
Stream buffer to associate with the debug context.

See also

wxDebugContext::GetStream (p. 189), wxDebugContext::HasStream (p. 190)

wxDebugStreamBuf

This class allows you to treat debugging output in a similar (stream-based) fashion on

CHAPTER 4

193

different platforms. Under Windows, an ostream constructed with this buffer outputs to
the debugger, or other program that intercepts debugging output. On other platforms, the
output goes to standard error (cerr).

This is soon to be obsolete, replaced by wxLog (p. 479) functionality.

Derived from

streambuf

Include files

<wx/memory.h>

Example

 wxDebugStreamBuf streamBuf;
 ostream stream(&streamBuf);

 stream << "Hello world!" << endl;

See also

Overview (p. 1061)

wxDialog

A dialog box is a window with a title bar and sometimes a system menu, which can be
moved around the screen. It can contain controls and other windows.

Derived from

wxPanel (p. 572)
wxWindow (p. 915)
wxEvtHandler (p. 240)
wxObject (p. 555)

Include files

<wx/dialog.h>

Remarks

There are two kinds of dialog - modal and modeless. A modal dialog blocks program
flow and user input on other windows until it is dismissed, whereas a modeless dialog
behaves more like a frame in that program flow continues, and input on other windows is
still possible. You specify the type of dialog with the wxDIALOG_MODAL and
wxDIALOG_MODELESS window styles.

A dialog may be loaded from a wxWindows resource file (extension wxr).

CHAPTER 4

194

An application can define an OnCloseWindow (p. 937) handler for the dialog to respond
to system close events.

Window styles

wxCAPTION Puts a caption on the dialog box (Motif only).
wxDEFAULT_DIALOG_STYLE Equivalent to a combination of wxCAPTION,

wxSYSTEM_MENU and wxTHICK_FRAME
wxRESIZE_BORDER Display a resizeable frame around the window (Unix only).
wxSYSTEM_MENU Display a system menu.
wxTHICK_FRAME Display a thick frame around the window.
wxSTAY_ON_TOP The dialog stays on top of all other windows (Windows

only).
wxNO_3D Under Windows, specifies that the child controls should not

have 3D borders unless specified in the control.

Under Unix or Linux, MWM (the Motif Window Manager) or other window managers
reckognizing the MHM hints should be running for any of these styles to have an effect.

See also Generic window styles (p. 1093).

See also

wxDialog overview (p. 1043), wxFrame (p. 299), Resources (p. 7), Validator overview (p.
1103)

wxDialog::wxDialog

 wxDialog()

Default constructor.

 wxDialog(wxWindow* parent, wxWindowID id, const wxString& title, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxDEFAULT_DIALOG_STYLE, const wxString& name = "dialogBox")

Constructor.

Parameters

parent
Can be NULL, a frame or another dialog box.

id
An identifier for the dialog. A value of -1 is taken to mean a default.

title

CHAPTER 4

195

The title of the dialog.

pos
The dialog position. A value of (-1, -1) indicates a default position, chosen by either
the windowing system or wxWindows, depending on platform.

size
The dialog size. A value of (-1, -1) indicates a default size, chosen by either the
windowing system or wxWindows, depending on platform.

style
The window style. See wxDialog (p. 193).

name
Used to associate a name with the window, allowing the application user to set
Motif resource values for individual dialog boxes.

See also

wxDialog::Create (p. 195)

wxDialog::~wxDialog

 ~wxDialog()

Destructor. Deletes any child windows before deleting the physical window.

wxDialog::Centre

void Centre(int direction = wxBOTH)

Centres the dialog box on the display.

Parameters

direction
May be wxHORIZONTAL, wxVERTICAL or wxBOTH.

wxDialog::Create

bool Create(wxWindow* parent, wxWindowID id, const wxString& title, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxDEFAULT_DIALOG_STYLE, const wxString& name = "dialogBox")

Used for two-step dialog box construction. See wxDialog::wxDialog (p. 194) for details.

CHAPTER 4

196

wxDialog::EndModal

void EndModal(int retCode)

Ends a modal dialog, passing a value to be returned from the wxDialog::ShowModal (p.
200) invocation.

Parameters

retCode
The value that should be returned by ShowModal.

See also

wxDialog::ShowModal (p. 200), wxDialog::GetReturnCode (p. 196),
wxDialog::SetReturnCode (p. 199)

wxDialog::GetReturnCode

int GetReturnCode()

Gets the return code for this window.

Remarks

A return code is normally associated with a modal dialog, where wxDialog::ShowModal
(p. 200) returns a code to the application.

See also

wxDialog::SetReturnCode (p. 199), wxDialog::ShowModal (p. 200), wxDialog::EndModal
(p. 196)

wxDialog::GetTitle

wxString GetTitle() const

Returns the title of the dialog box.

wxDialog::Iconize

void Iconize(const bool iconize)

Iconizes or restores the dialog. Windows only.

Parameters

CHAPTER 4

197

iconize
If TRUE, iconizes the dialog box; if FALSE, shows and restores it.

Remarks

Note that in Windows, iconization has no effect since dialog boxes cannot be iconized.
However, applications may need to explicitly restore dialog boxes under Motif which
have user-iconizable frames, and under Windows calling Iconize(FALSE) will bring
the window to the front, as does Show(TRUE).

wxDialog::IsIconized

bool IsIconized() const

Returns TRUE if the dialog box is iconized. Windows only.

Remarks

Always returns FALSE under Windows since dialogs cannot be iconized.

wxDialog::IsModal

bool IsModal() const

Returns TRUE if the dialog box is modal, FALSE otherwise.

wxDialog::OnCharHook

void OnCharHook(wxKeyEvent& event)

This member is called to allow the window to intercept keyboard events before they are
processed by child windows.

For more information, see wxWindow::OnCharHook (p. 935)

Remarks

wxDialog implements this handler to fake a cancel command if the escape key has been
pressed. This will dismiss the dialog.

wxDialog::OnApply

void OnApply(wxCommandEvent& event)

The default handler for the wxID_APPLY identifier.

CHAPTER 4

198

Remarks

This function calls wxWindow::Validate (p. 961) and wxWindow::TransferDataToWindow
(p. 960).

See also

wxDialog::OnOK (p. 198), wxDialog::OnCancel (p. 198)

wxDialog::OnCancel

void OnCancel(wxCommandEvent& event)

The default handler for the wxID_CANCEL identifier.

Remarks

The function either calls EndModal(wxID_CANCEL) if the dialog is modal, or sets the
return value to wxID_CANCEL and calls Show(FALSE) if the dialog is modeless.

See also

wxDialog::OnOK (p. 198), wxDialog::OnApply (p. 197)

wxDialog::OnOK

void OnOK(wxCommandEvent& event)

The default handler for the wxID_OK identifier.

Remarks

The function calls wxWindow::Validate (p. 961), then
wxWindow::TransferDataFromWindow (p. 960). If this returns TRUE, the function either
calls EndModal(wxID_OK) if the dialog is modal, or sets the return value to wxID_OK
and calls Show(FALSE) if the dialog is modeless.

See also

wxDialog::OnCancel (p. 198), wxDialog::OnApply (p. 197)

wxDialog::OnSysColourChanged

void OnSysColourChanged(wxSysColourChangedEvent& event)

The default handler for wxEVT_SYS_COLOUR_CHANGED.

CHAPTER 4

199

Parameters

event
The colour change event.

Remarks

Changes the dialog's colour to conform to the current settings (Windows only). Add an
event table entry for your dialog class if you wish the behaviour to be different (such as
keeping a user-defined background colour). If you do override this function, call
wxWindow::OnSysColourChanged (p. 946) to propagate the notification to child windows
and controls.

See also

wxSysColourChangedEvent (p. 786)

wxDialog::SetModal

void SetModal(const bool flag)

Allows the programmer to specify whether the dialog box is modal (wxDialog::Show
blocks control until the dialog is hidden) or modeless (control returns immediately).

Parameters

flag
If TRUE, the dialog will be modal, otherwise it will be modeless.

wxDialog::SetReturnCode

void SetReturnCode(int retCode)

Sets the return code for this window.

Parameters

retCode
The integer return code, usually a control identifier.

Remarks

A return code is normally associated with a modal dialog, where wxDialog::ShowModal
(p. 200) returns a code to the application. The function wxDialog::EndModal (p. 196)
calls SetReturnCode.

See also

wxDialog::GetReturnCode (p. 196), wxDialog::ShowModal (p. 200), wxDialog::EndModal

CHAPTER 4

200

(p. 196)

wxDialog::SetTitle

void SetTitle(const wxString& title)

Sets the title of the dialog box.

Parameters

title
The dialog box title.

wxDialog::Show

bool Show(const bool show)

Hides or shows the dialog.

Parameters

show
If TRUE, the dialog box is shown and brought to the front; otherwise the box is
hidden. If FALSE and the dialog is modal, control is returned to the calling
program.

Remarks

The preferred way of dismissing a modal dialog is to use wxDialog::EndModal (p. 196).

wxDialog::ShowModal

int ShowModal()

Shows a modal dialog. Program flow does not return until the dialog has been dismissed
with wxDialog::EndModal (p. 196).

Return value

The return value is the value set with wxDialog::SetReturnCode (p. 199).

See also

wxDialog::EndModal (p. 196), wxDialog:GetReturnCode (p. 196),
wxDialog::SetReturnCode (p. 199)

wxDirDialog

CHAPTER 4

201

This class represents the directory chooser dialog.

Derived from

wxDialog (p. 193)
wxWindow (p. 915)
wxEvtHandler (p. 240)
wxObject (p. 555)

Include files

<wx/dirdlg.h>

See also

wxDirDialog overview (p. 1050), wxFileDialog (p. 264)

wxDirDialog::wxDirDialog

 wxDirDialog(wxWindow* parent, const wxString& message = "Choose a directory",
const wxString& defaultPath = "", long style = 0, const wxPoint& pos =
wxDefaultPosition)

Constructor. Use wxDirDialog::ShowModal (p. 202) to show the dialog.

Parameters

parent
Parent window.

message
Message to show on the dialog.

defaultPath
The default path, or the empty string.

style
A dialog style, currently unused.

pos
Dialog position. Not implemented.

wxDirDialog::~wxDirDialog

 ~wxDirDialog()

CHAPTER 4

202

Destructor.

wxDirDialog::GetPath

wxString GetPath() const

Returns the default or user-selected path.

wxDirDialog::GetMessage

wxString GetMessage() const

Returns the message that will be displayed on the dialog.

wxDirDialog::GetStyle

long GetStyle() const

Returns the dialog style.

wxDirDialog::SetMessage

void SetMessage(const wxString& message)

Sets the message that will be displayed on the dialog.

wxDirDialog::SetPath

void SetPath(const wxString& path)

Sets the default path.

wxDirDialog::SetStyle

void SetStyle(long style)

Sets the dialog style. This is currently unused.

wxDirDialog::ShowModal

int ShowModal()

Shows the dialog, returning wxID_OK if the user pressed OK, and wxOK_CANCEL

CHAPTER 4

203

otherwise.

wxDocChildFrame

The wxDocChildFrame class provides a default frame for displaying documents on
separate windows. This class can only be used for SDI (not MDI) child frames.

The class is part of the document/view framework supported by wxWindows, and
cooperates with the wxView (p. 909), wxDocument (p. 223), wxDocManager (p. 205)
and wxDocTemplate (p. 218) classes.

See the example application in samples/docview.

Derived from

wxFrame (p. 299)
wxWindow (p. 915)
wxEvtHandler (p. 240)
wxObject (p. 555)

Include files

<wx/docview.h>

See also

Document/view overview (p. 1066), wxFrame (p. 299)

wxDocChildFrame::m_childDocument

wxDocument* m_childDocument

The document associated with the frame.

wxDocChildFrame::m_childView

wxView* m_childView

The view associated with the frame.

wxDocChildFrame::wxDocChildFrame

 wxDocChildFrame(wxDocument* doc, wxView* view, wxFrame* parent,
wxWindowID id, const wxString& title, const wxPoint& pos = wxDefaultPosition,
const wxSize& size = wxDefaultSize, long style = wxDEFAULT_FRAME_STYLE,
const wxString& name = "frame")

CHAPTER 4

204

Constructor.

wxDocChildFrame::~wxDocChildFrame

 ~wxDocChildFrame()

Destructor.

wxDocChildFrame::GetDocument

wxDocument* GetDocument() const

Returns the document associated with this frame.

wxDocChildFrame::GetView

wxView* GetView() const

Returns the view associated with this frame.

wxDocChildFrame::OnActivate

void OnActivate(wxActivateEvent event)

Sets the currently active view to be the frame's view. You may need to override (but still
call) this function in order to set the keyboard focus for your subwindow.

wxDocChildFrame::OnCloseWindow

void OnCloseWindow(wxCloseEvent& event)

Closes and deletes the current view and document.

wxDocChildFrame::SetDocument

void SetDocument(wxDocument *doc)

Sets the document for this frame.

wxDocChildFrame::SetView

void SetView(wxView *view)

CHAPTER 4

205

Sets the view for this frame.

wxDocManager

The wxDocManager class is part of the document/view framework supported by
wxWindows, and cooperates with the wxView (p. 909), wxDocument (p. 223) and
wxDocTemplate (p. 218) classes.

Derived from

wxEvtHandler (p. 240)
wxObject (p. 555)

Include files

<wx/docview.h>

See also

wxDocManager overview (p. 1070), wxDocument (p. 223), wxView (p. 909),
wxDocTemplate (p. 218), wxFileHistory (p. 269)

wxDocManager::m_currentView

wxView* m_currentView

The currently active view.

wxDocManager::m_defaultDocumentNameCounter

int m_defaultDocumentNameCounter

Stores the integer to be used for the next default document name.

wxDocManager::m_fileHistory

wxFileHistory* m_fileHistory

A pointer to an instance of wxFileHistory (p. 269), which manages the history of recently-
visited files on the File menu.

wxDocManager::m_maxDocsOpen

int m_maxDocsOpen

CHAPTER 4

206

Stores the maximum number of documents that can be opened before existing
documents are closed. By default, this is 10,000.

wxDocManager::m_docs

wxList m_docs

A list of all documents.

wxDocManager::m_flags

long m_flags

Stores the flags passed to the constructor.

wxDocManager::m_lastDirectory

The directory last selected by the user when opening a file.

wxFileHistory* m_fileHistory

wxDocManager::m_templates

wxList mnTemplates

A list of all document templates.

wxDocManager::wxDocManager

void wxDocManager(long flags = wxDEFAULT_DOCMAN_FLAGS, bool initialize =
TRUE)

Constructor. Create a document manager instance dynamically near the start of your
application before doing any document or view operations.

flags is currently unused.

If initialize is TRUE, the Initialize (p. 210) function will be called to create a default history
list object. If you derive from wxDocManager, you may wish to call the base constructor
with FALSE, and then call Initialize in your own constructor, to allow your own Initialize
or OnCreateFileHistory functions to be called.

wxDocManager::~wxDocManager

CHAPTER 4

207

void ~wxDocManager()

Destructor.

wxDocManager::ActivateView

void ActivateView(wxView* doc, bool activate, bool deleting)

Sets the current view.

wxDocManager::AddDocument

void AddDocument(wxDocument *doc)

Adds the document to the list of documents.

wxDocManager::AddFileToHistory

void AddFileToHistory(const wxString& filename)

Adds a file to the file history list, if we have a pointer to an appropriate file menu.

wxDocManager::AssociateTemplate

void AssociateTemplate(wxDocTemplate *temp)

Adds the template to the document manager's template list.

wxDocManager::CreateDocument

wxDocument* CreateDocument(const wxString& path, long flags)

Creates a new document in a manner determined by the flags parameter, which can be:

• wxDOC_NEW Creates a fresh document.
• wxDOC_SILENT Silently loads the given document file.

If wxDOC_NEW is present, a new document will be created and returned, possibly after
asking the user for a template to use if there is more than one document template. If
wxDOC_SILENT is present, a new document will be created and the given file loaded
into it. If neither of these flags is present, the user will be presented with a file selector
for the file to load, and the template to use will be determined by the extension
(Windows) or by popping up a template choice list (other platforms).

CHAPTER 4

208

If the maximum number of documents has been reached, this function will delete the
oldest currently loaded document before creating a new one.

wxDocManager::CreateView

wxView* CreateView(wxDocument*doc, long flags)

Creates a new view for the given document. If more than one view is allowed for the
document (by virtue of multiple templates mentioning the same document type), a choice
of view is presented to the user.

wxDocManager::DisassociateTemplate

void DisassociateTemplate(wxDocTemplate *temp)

Removes the template from the list of templates.

wxDocManager::FileHistoryAddFilesToMenu

void FileHistoryAddFilesToMenu()

Appends the files in the history list, to all menus managed by the file history object.

void FileHistoryAddFilesToMenu(wxMenu* menu)

Appends the files in the history list, to the given menu only.

wxDocManager::FileHistoryLoad

void FileHistoryLoad(wxConfigBase& config)

Loads the file history from a config object.

See also

wxConfig (p. 117)

wxDocManager::FileHistoryRemoveMenu

void FileHistoryRemoveMenu(wxMenu* menu)

Removes the given menu from the list of menus managed by the file history object.

wxDocManager::FileHistorySave

CHAPTER 4

209

void FileHistorySave(wxConfigBase& resourceFile)

Saves the file history into a config object. This must be called explicitly by the
application.

See also

wxConfig (p. 117)

wxDocManager::FileHistoryUseMenu

void FileHistoryUseMenu(wxMenu* menu)

Use this menu for appending recently-visited document filenames, for convenient
access. Calling this function with a valid menu pointer enables the history list
functionality.

Note that you can add multiple menus using this function, to be managed by the file
history object.

wxDocManager::FindTemplateForPath

wxDocTemplate * FindTemplateForPath(const wxString& path)

Given a path, try to find template that matches the extension. This is only an
approximate method of finding a template for creating a document.

wxDocManager::GetCurrentDocument

wxDocument * GetCurrentDocument()

Returns the document associated with the currently active view (if any).

wxDocManager::GetCurrentView

wxView * GetCurrentView()

Returns the currently active view

wxDocManager::GetDocuments

wxList& GetDocuments()

Returns a reference to the list of documents.

CHAPTER 4

210

wxDocManager::GetFileHistory

wxFileHistory * GetFileHistory()

Returns a pointer to file history.

wxDocManager::GetLastDirectory

wxString GetLastDirectory() const

Returns the directory last selected by the user when opening a file. Initially empty.

wxDocManager::GetMaxDocsOpen

int GetMaxDocsOpen()

Returns the number of documents that can be open simultaneously.

wxDocManager::GetNoHistoryFiles

int GetNoHistoryFiles()

Returns the number of files currently stored in the file history.

wxDocManager::Initialize

bool Initialize()

Initializes data; currently just calls OnCreateFileHistory. Some data cannot always be
initialized in the constructor because the programmer must be given the opportunity to
override functionality. If OnCreateFileHistory was called from the constructor, an
overridden virtual OnCreateFileHistory would not be called due to C++'s 'interesting'
constructor semantics. In fact Initialize is called from the wxDocManager constructor, but
this can be vetoed by passing FALSE to the second argument, allowing the derived
class's constructor to call Initialize, possibly calling a different OnCreateFileHistory from
the default.

The bottom line: if you're not deriving from Initialize, forget it and construct
wxDocManager with no arguments.

wxDocManager::MakeDefaultName

bool MakeDefaultName(const wxString& buf)

CHAPTER 4

211

Copies a suitable default name into buf. This is implemented by appending an integer
counter to the string unnamed and incrementing the counter.

wxDocManager::OnCreateFileHistory

wxFileHistory * OnCreateFileHistory()

A hook to allow a derived class to create a different type of file history. Called from
Initialize (p. 210).

wxDocManager::OnFileClose

void OnFileClose()

Closes and deletes the currently active document.

wxDocManager::OnFileNew

void OnFileNew()

Creates a document from a list of templates (if more than one template).

wxDocManager::OnFileOpen

void OnFileOpen()

Creates a new document and reads in the selected file.

wxDocManager::OnFileSave

void OnFileSave()

Saves the current document by calling wxDocument::Save for the current document.

wxDocManager::OnFileSaveAs

void OnFileSaveAs()

Calls wxDocument::SaveAs for the current document.

wxDocManager::OnMenuCommand

CHAPTER 4

212

void OnMenuCommand(int cmd)

Processes menu commands routed from child or parent frames. This deals with the
following predefined menu item identifiers:

• wxID_OPEN Creates a new document and opens a file into it.
• wxID_CLOSE Closes the current document.
• wxID_NEW Creates a new document.
• wxID_SAVE Saves the document.
• wxID_SAVE_AS Saves the document into a specified filename.

Unrecognized commands are routed to the currently active wxView's
OnMenuCommand.

wxDocManager::RemoveDocument

void RemoveDocument(wxDocument *doc)

Removes the document from the list of documents.

wxDocManager::SelectDocumentPath

wxDocTemplate * SelectDocumentPath(wxDocTemplate **templates, int
noTemplates, const wxString& path, const wxString& bufSize, long flags, bool save)

Under Windows, pops up a file selector with a list of filters corresponding to document
templates. The wxDocTemplate corresponding to the selected file's extension is
returned.

On other platforms, if there is more than one document template a choice list is popped
up, followed by a file selector.

This function is used in wxDocManager::CreateDocument.

wxDocManager::SelectDocumentType

wxDocTemplate * SelectDocumentType(wxDocTemplate **templates, int
noTemplates)

Returns a document template by asking the user (if there is more than one template).
This function is used in wxDocManager::CreateDocument.

wxDocManager::SelectViewType

wxDocTemplate * SelectViewType(wxDocTemplate **templates, int noTemplates)

CHAPTER 4

213

Returns a document template by asking the user (if there is more than one template),
displaying a list of valid views. This function is used in wxDocManager::CreateView. The
dialog normally won't appear because the array of templates only contains those
relevant to the document in question, and often there will only be one such.

wxDocManager::SetLastDirectory

void SetLastDirectory(const wxString& dir)

Sets the directory to be displayed to the user when opening a file. Initially this is empty.

wxDocManager::SetMaxDocsOpen

void SetMaxDocsOpen(int n)

Sets the maximum number of documents that can be open at a time. By default, this is
10,000. If you set it to 1, existing documents will be saved and deleted when the user
tries to open or create a new one (similar to the behaviour of Windows Write, for
example). Allowing multiple documents gives behaviour more akin to MS Word and
other Multiple Document Interface applications.

wxDocMDIChildFrame

The wxDocMDIChildFrame class provides a default frame for displaying documents on
separate windows. This class can only be used for MDI child frames.

The class is part of the document/view framework supported by wxWindows, and
cooperates with the wxView (p. 909), wxDocument (p. 223), wxDocManager (p. 205)
and wxDocTemplate (p. 218) classes.

See the example application in samples/docview.

Derived from

wxMDIChildFrame (p. 485)
wxFrame (p. 299)
wxWindow (p. 915)
wxEvtHandler (p. 240)
wxObject (p. 555)

Include files

<wx/docmdi.h>

See also

Document/view overview (p. 1066), wxMDIChildFrame (p. 485)

CHAPTER 4

214

wxDocMDIChildFrame::m_childDocument

wxDocument* m_childDocument

The document associated with the frame.

wxDocMDIChildFrame::m_childView

wxView* m_childView

The view associated with the frame.

wxDocMDIChildFrame::wxDocMDIChildFrame

 wxDocMDIChildFrame(wxDocument* doc, wxView* view, wxFrame* parent,
wxWindowID id, const wxString& title, const wxPoint& pos = wxDefaultPosition,
const wxSize& size = wxDefaultSize, long style = wxDEFAULT_FRAME_STYLE,
const wxString& name = "frame")

Constructor.

wxDocMDIChildFrame::~wxDocMDIChildFrame

 ~wxDocMDIChildFrame()

Destructor.

wxDocMDIChildFrame::GetDocument

wxDocument* GetDocument() const

Returns the document associated with this frame.

wxDocMDIChildFrame::GetView

wxView* GetView() const

Returns the view associated with this frame.

wxDocMDIChildFrame::OnActivate

void OnActivate(wxActivateEvent event)

CHAPTER 4

215

Sets the currently active view to be the frame's view. You may need to override (but still
call) this function in order to set the keyboard focus for your subwindow.

wxDocMDIChildFrame::OnCloseWindow

void OnCloseWindow(wxCloseEvent& event)

Closes and deletes the current view and document.

wxDocMDIChildFrame::SetDocument

void SetDocument(wxDocument *doc)

Sets the document for this frame.

wxDocMDIChildFrame::SetView

void SetView(wxView *view)

Sets the view for this frame.

wxDocMDIParentFrame

The wxDocMDIParentFrame class provides a default top-level frame for applications
using the document/view framework. This class can only be used for MDI parent frames.

It cooperates with the wxView (p. 909), wxDocument (p. 223), wxDocManager (p. 205)
and wxDocTemplates (p. 218) classes.

See the example application in samples/docview.

Derived from

wxMDIParentFrame (p. 490)
wxFrame (p. 299)
wxWindow (p. 915)
wxEvtHandler (p. 240)
wxObject (p. 555)

Include files

<wx/docmdi.h>

See also

Document/view overview (p. 1066), wxMDIParentFrame (p. 490)

CHAPTER 4

216

wxDocMDIParentFrame::wxDocMDIParentFrame

 wxDocParentFrame(wxDocManager* manager, wxFrame *parent, wxWindowID id,
const wxString& title, const wxPoint& pos = wxDefaultPosition, const wxSize& size =
wxDefaultSize, long style = wxDEFAULT_FRAME_STYLE, const wxString& name =
"frame")

Constructor.

wxDocMDIParentFrame::~wxDocMDIParentFrame

 ~wxDocMDIParentFrame()

Destructor.

wxDocMDIParentFrame::OnCloseWindow

void OnCloseWindow(wxCloseEvent& event)

Deletes all views and documents. If no user input cancelled the operation, the frame will
be destroyed and the application will exit.

Since understanding how document/view clean-up takes place can be difficult, the
implementation of this function is shown below.

void wxDocParentFrame::OnCloseWindow(wxCloseEvent& event)
{
 if (m_docManager->Clear(!event.CanVeto()))
 {
 this->Destroy();
 }
 else
 event.Veto();
}

wxDocParentFrame

The wxDocParentFrame class provides a default top-level frame for applications using
the document/view framework. This class can only be used for SDI (not MDI) parent
frames.

It cooperates with the wxView (p. 909), wxDocument (p. 223), wxDocManager (p. 205)
and wxDocTemplates (p. 218) classes.

See the example application in samples/docview.

CHAPTER 4

217

Derived from

wxFrame (p. 299)
wxWindow (p. 915)
wxEvtHandler (p. 240)
wxObject (p. 555)

Include files

<wx/docview.h>

See also

Document/view overview (p. 1066), wxFrame (p. 299)

wxDocParentFrame::wxDocParentFrame

 wxDocParentFrame(wxDocManager* manager, wxFrame *parent, wxWindowID id,
const wxString& title, const wxPoint& pos = wxDefaultPosition, const wxSize& size =
wxDefaultSize, long style = wxDEFAULT_FRAME_STYLE, const wxString& name =
"frame")

Constructor.

wxDocParentFrame::~wxDocParentFrame

 ~wxDocParentFrame()

Destructor.

wxDocParentFrame::OnCloseWindow

void OnCloseWindow(wxCloseEvent& event)

Deletes all views and documents. If no user input cancelled the operation, the frame will
be destroyed and the application will exit.

Since understanding how document/view clean-up takes place can be difficult, the
implementation of this function is shown below.

void wxDocParentFrame::OnCloseWindow(wxCloseEvent& event)
{
 if (m_docManager->Clear(!event.CanVeto()))
 {
 this->Destroy();
 }

CHAPTER 4

218

 else
 event.Veto();
}

wxDocTemplate

The wxDocTemplate class is used to model the relationship between a document class
and a view class.

Derived from

wxObject (p. 555)

Include files

<wx/docview.h>

See also

wxDocTemplate overview (p. 1069), wxDocument (p. 223), wxView (p. 909)

wxDocTemplate::m_defaultExt

wxString m_defaultExt

The default extension for files of this type.

wxDocTemplate::m_description

wxString m_description

A short description of this template.

wxDocTemplate::m_directory

wxString m_directory

The default directory for files of this type.

wxDocTemplate::m_docClassInfo

wxClassInfo* m_docClassInfo

Run-time class information that allows document instances to be constructed
dynamically.

CHAPTER 4

219

wxDocTemplate::m_docTypeName

wxString m_docTypeName

The named type of the document associated with this template.

wxDocTemplate::m_documentManager

wxDocTemplate* m_documentManager

A pointer to the document manager for which this template was created.

wxDocTemplate::m_fileFilter

wxString m_fileFilter

The file filter (such as *.txt) to be used in file selector dialogs.

wxDocTemplate::m_flags

long m_flags

The flags passed to the constructor.

wxDocTemplate::m_viewClassInfo

wxClassInfo* m_viewClassInfo

Run-time class information that allows view instances to be constructed dynamically.

wxDocTemplate::m_viewTypeName

wxString m_viewTypeName

The named type of the view associated with this template.

wxDocTemplate::wxDocTemplate

 wxDocTemplate(wxDocManager* manager, const wxString& descr, const
wxString& filter, const wxString& dir, const wxString& ext, const wxString&
docTypeName, const wxString& viewTypeName, wxClassInfo* docClassInfo = NULL,
wxClassInfo* viewClassInfo = NULL, long flags = wxDEFAULT_TEMPLATE_FLAGS)

CHAPTER 4

220

Constructor. Create instances dynamically near the start of your application after
creating a wxDocManager instance, and before doing any document or view operations.

manager is the document manager object which manages this template.

descr is a short description of what the template is for. This string will be displayed in the
file filter list of Windows file selectors.

filter is an appropriate file filter such as *.txt.

dir is the default directory to use for file selectors.

ext is the default file extension (such as txt).

docTypeName is a name that should be unique for a given type of document, used for
gathering a list of views relevant to a particular document.

viewTypeName is a name that should be unique for a given view.

docClassInfo is a pointer to the run-time document class information as returned by the
CLASSINFO macro, e.g. CLASSINFO(MyDocumentClass). If this is not supplied, you
will need to derive a new wxDocTemplate class and override the CreateDocument
member to return a new document instance on demand.

viewClassInfo is a pointer to the run-time view class information as returned by the
CLASSINFO macro, e.g. CLASSINFO(MyViewClass). If this is not supplied, you will
need to derive a new wxDocTemplate class and override the CreateView member to
return a new view instance on demand.

flags is a bit list of the following:

• wxTEMPLATE_VISIBLE The template may be displayed to the user in dialogs.
• wxTEMPLATE_INVISIBLE The template may not be displayed to the user in

dialogs.
• wxDEFAULT_TEMPLATE_FLAGS Defined as wxTEMPLATE_VISIBLE.

wxDocTemplate::~wxDocTemplate

void ~wxDocTemplate()

Destructor.

wxDocTemplate::CreateDocument

wxDocument * CreateDocument(const wxString& path, long flags = 0)

Creates a new instance of the associated document class. If you have not supplied a

CHAPTER 4

221

wxClassInfo parameter to the template constructor, you will need to override this
function to return an appropriate document instance.

wxDocTemplate::CreateView

wxView * CreateView(wxDocument *doc, long flags = 0)

Creates a new instance of the associated view class. If you have not supplied a
wxClassInfo parameter to the template constructor, you will need to override this
function to return an appropriate view instance.

wxDocTemplate::GetDefaultExtension

wxString GetDefaultExtension()

Returns the default file extension for the document data, as passed to the document
template constructor.

wxDocTemplate::GetDescription

wxString GetDescription()

Returns the text description of this template, as passed to the document template
constructor.

wxDocTemplate::GetDirectory

wxString GetDirectory()

Returns the default directory, as passed to the document template constructor.

wxDocTemplate::GetDocumentManager

wxDocManager * GetDocumentManager()

Returns a pointer to the document manager instance for which this template was
created.

wxDocTemplate::GetDocumentName

wxString GetDocumentName()

Returns the document type name, as passed to the document template constructor.

CHAPTER 4

222

wxDocTemplate::GetFileFilter

wxString GetFileFilter()

Returns the file filter, as passed to the document template constructor.

wxDocTemplate::GetFlags

long GetFlags()

Returns the flags, as passed to the document template constructor.

wxDocTemplate::GetViewName

wxString GetViewName()

Returns the view type name, as passed to the document template constructor.

wxDocTemplate::IsVisible

bool IsVisible()

Returns TRUE if the document template can be shown in user dialogs, FALSE
otherwise.

wxDocTemplate::SetDefaultExtension

void SetDefaultExtension(const wxString& ext)

Sets the default file extension.

wxDocTemplate::SetDescription

void SetDescription(const wxString& descr)

Sets the template description.

wxDocTemplate::SetDirectory

void SetDirectory(const wxString& dir)

Sets the default directory.

CHAPTER 4

223

wxDocTemplate::SetDocumentManager

void SetDocumentManager(wxDocManager *manager)

Sets the pointer to the document manager instance for which this template was created.
Should not be called by the application.

wxDocTemplate::SetFileFilter

void SetFileFilter(const wxString& filter)

Sets the file filter.

wxDocTemplate::SetFlags

void SetFlags(long flags)

Sets the internal document template flags (see the constructor description for more
details).

wxDocument

The document class can be used to model an application's file-based data. It is part of
the document/view framework supported by wxWindows, and cooperates with the
wxView (p. 909), wxDocTemplate (p. 218) and wxDocManager (p. 205) classes.

Derived from

wxEvtHandler (p. 240)
wxObject (p. 555)

Include files

<wx/docview.h>

See also

wxDocument overview (p. 1068), wxView (p. 909), wxDocTemplate (p. 218),
wxDocManager (p. 205)

wxDocument::m_commandProcessor

wxCommandProcessor* m_commandProcessor

CHAPTER 4

224

A pointer to the command processor associated with this document.

wxDocument::m_documentFile

wxString m_documentFile

Filename associated with this document ("" if none).

wxDocument::m_documentModified

bool m_documentModified

TRUE if the document has been modified, FALSE otherwise.

wxDocument::m_documentTemplate

wxDocTemplate * m_documentTemplate

A pointer to the template from which this document was created.

wxDocument::m_documentTitle

wxString m_documentTitle

Document title. The document title is used for an associated frame (if any), and is
usually constructed by the framework from the filename.

wxDocument::m_documentTypeName

wxString m_documentTypeName

The document type name given to the wxDocTemplate constructor, copied to this
variable when the document is created. If several document templates are created that
use the same document type, this variable is used in wxDocManager::CreateView to
collate a list of alternative view types that can be used on this kind of document. Do not
change the value of this variable.

wxDocument::m_documentViews

wxList m_documentViews

List of wxView instances associated with this document.

CHAPTER 4

225

wxDocument::wxDocument

 wxDocument()

Constructor. Define your own default constructor to initialize application-specific data.

wxDocument::~wxDocument

 ~wxDocument()

Destructor. Removes itself from the document manager.

wxDocument::AddView

virtual bool AddView(wxView *view)

If the view is not already in the list of views, adds the view and calls
OnChangedViewList.

wxDocument::Close

virtual bool Close()

Closes the document, by calling OnSaveModified and then (if this returned TRUE)
OnCloseDocument. This does not normally delete the document object: use
DeleteAllViews to do this implicitly.

wxDocument::DeleteAllViews

virtual bool DeleteAllViews()

Calls wxView::Close and deletes each view. Deleting the final view will implicitly delete
the document itself, because the wxView destructor calls RemoveView. This in turns
calls wxDocument::OnChangedViewList, whose default implemention is to save and
delete the document if no views exist.

wxDocument::GetCommandProcessor

wxCommandProcessor* GetCommandProcessor() const

Returns a pointer to the command processor associated with this document.

See wxCommandProcessor (p. 113).

CHAPTER 4

226

wxDocument::GetDocumentTemplate

wxDocTemplate* GetDocumentTemplate() const

Gets a pointer to the template that created the document.

wxDocument::GetDocumentManager

wxDocManager* GetDocumentManager() const

Gets a pointer to the associated document manager.

wxDocument::GetDocumentName

wxString GetDocumentName() const

Gets the document type name for this document. See the comment for
documentTypeName (p. 224).

wxDocument::GetDocumentWindow

wxWindow* GetDocumentWindow() const

Intended to return a suitable window for using as a parent for document-related dialog
boxes. By default, uses the frame associated with the first view.

wxDocument::GetFilename

wxString GetFilename() const

Gets the filename associated with this document, or "" if none is associated.

wxDocument::GetFirstView

wxView * GetFirstView() const

A convenience function to get the first view for a document, because in many cases a
document will only have a single view.

See also: GetViews (p. 227)

wxDocument::GetPrintableName

virtual void GetPrintableName(wxString& name) const

CHAPTER 4

227

Copies a suitable document name into the supplied name buffer. The default function
uses the title, or if there is no title, uses the filename; or if no filename, the string
unnamed.

wxDocument::GetTitle

wxString GetTitle() const

Gets the title for this document. The document title is used for an associated frame (if
any), and is usually constructed by the framework from the filename.

wxDocument::GetViews

wxList & GetViews() const

Returns the list whose elements are the views on the document.

See also: GetFirstView (p. 226)

wxDocument::IsModified

virtual bool IsModified() const

Returns TRUE if the document has been modified since the last save, FALSE otherwise.
You may need to override this if your document view maintains its own record of being
modified (for example if using wxTextWindow to view and edit the document).

See also Modify (p. 227).

wxDocument::LoadObject

virtual istream& LoadObject(istream& stream)

Override this function and call it from your own LoadObject before streaming your own
data. LoadObject is called by the framework automatically when the document contents
need to be loaded.

wxDocument::Modify

virtual void Modify(bool modify)

Call with TRUE to mark the document as modified since the last save, FALSE otherwise.
You may need to override this if your document view maintains its own record of being
modified (for example if using wxTextWindow to view and edit the document).

CHAPTER 4

228

See also IsModified (p. 227).

wxDocument::OnChangedViewList

virtual void OnChangedViewList()

Called when a view is added to or deleted from this document. The default
implementation saves and deletes the document if no views exist (the last one has just
been removed).

wxDocument::OnCloseDocument

virtual bool OnCloseDocument()

The default implementation calls DeleteContents (an empty implementation) sets the
modified flag to FALSE. Override this to supply additional behaviour when the document
is closed with Close.

wxDocument::OnCreate

virtual bool OnCreate(const wxString& path, long flags)

Called just after the document object is created to give it a chance to initialize itself. The
default implementation uses the template associated with the document to create an
initial view. If this function returns FALSE, the document is deleted.

wxDocument::OnCreateCommandProcessor

virtual wxCommandProcessor* OnCreateCommandProcessor()

Override this function if you want a different (or no) command processor to be created
when the document is created. By default, it returns an instance of
wxCommandProcessor.

See wxCommandProcessor (p. 113).

wxDocument::OnNewDocument

virtual bool OnNewDocument()

The default implementation calls OnSaveModified and DeleteContents, makes a default
title for the document, and notifies the views that the filename (in fact, the title) has
changed.

CHAPTER 4

229

wxDocument::OnOpenDocument

virtual bool OnOpenDocument(const wxString& filename)

Constructs an input file stream for the given filename (which must not be empty), and
calls LoadObject. If LoadObject returns TRUE, the document is set to unmodified;
otherwise, an error message box is displayed. The document's views are notified that
the filename has changed, to give windows an opportunity to update their titles. All of the
document's views are then updated.

wxDocument::OnSaveDocument

virtual bool OnSaveDocument(const wxString& filename)

Constructs an output file stream for the given filename (which must not be empty), and
calls SaveObject. If SaveObject returns TRUE, the document is set to unmodified;
otherwise, an error message box is displayed.

wxDocument::OnSaveModified

virtual bool OnSaveModified()

If the document has been modified, prompts the user to ask if the changes should be
changed. If the user replies Yes, the Save function is called. If No, the document is
marked as unmodified and the function succeeds. If Cancel, the function fails.

wxDocument::RemoveView

virtual bool RemoveView(wxView* view)

Removes the view from the document's list of views, and calls OnChangedViewList.

wxDocument::Save

virtual bool Save()

Saves the document by calling OnSaveDocument if there is an associated filename, or
SaveAs if there is no filename.

wxDocument::SaveAs

virtual bool SaveAs()

Prompts the user for a file to save to, and then calls OnSaveDocument.

CHAPTER 4

230

wxDocument::SaveObject

virtual ostream& SaveObject(ostream& stream)

Override this function and call it from your own SaveObject before streaming your own
data. SaveObject is called by the framework automatically when the document contents
need to be saved.

wxDocument::SetCommandProcessor

virtual void SetCommandProcessor(wxCommandProcessor *processor)

Sets the command processor to be used for this document. The document will then be
responsible for its deletion. Normally you should not call this; override
OnCreateCommandProcessor instead.

See wxCommandProcessor (p. 113).

wxDocument::SetDocumentName

void SetDocumentName(const wxString& name)

Sets the document type name for this document. See the comment for
documentTypeName (p. 224).

wxDocument::SetDocumentTemplate

void SetDocumentTemplate(wxDocTemplate* templ)

Sets the pointer to the template that created the document. Should only be called by the
framework.

wxDocument::SetFilename

void SetFilename(const wxString& filename)

Sets the filename for this document. Usually called by the framework.

wxDocument::SetTitle

void SetTitle(const wxString& title)

Sets the title for this document. The document title is used for an associated frame (if

CHAPTER 4

231

any), and is usually constructed by the framework from the filename.

wxDocument::UpdateAllViews

void UpdateAllViews(wxView* sender = NULL)

Updates all views. If sender is non-NULL, does not update this view.

wxDropFilesEvent

This class is used for drop files events, that is, when files have been dropped onto the
window. This functionality is currently only available under Windows.

Important note: this is a separate implementation to the more general drag and drop
implementation documented here (p. 1038). It uses the older, Windows message-based
approach of dropping files.

Derived from

wxEvent (p. 237)
wxObject (p. 555)

Include files

<wx/event.h>

Event table macros

To process a drop files event, use these event handler macros to direct input to a
member function that takes a wxDropFilesEvent argument.

EVT_DROP_FILES(func) Process a wxEVT_DROP_FILES event.

See also

wxWindow::OnDropFiles (p. 937), Event handling overview (p. 1072)

wxDropFilesEvent::wxDropFilesEvent

 wxDropFilesEvent(WXTYPE id = 0, int noFiles = 0, wxString* files = NULL)

Constructor.

wxDropFilesEvent::m_files

CHAPTER 4

232

wxString* m_files

An array of filenames.

wxDropFilesEvent::m_noFiles

int m_noFiles

The number of files dropped.

wxDropFilesEvent::m_pos

wxPoint m_pos

The point at which the drop took place.

wxDropFilesEvent::GetFiles

wxString* GetFiles() const

Returns an array of filenames.

wxDropFilesEvent::GetNumberOfFiles

int GetNumberOfFiles() const

Returns the number of files dropped.

wxDropFilesEvent::GetPosition

wxPoint GetPosition() const

Returns the position at which the files were dropped.

Returns an array of filenames.

wxDropSource

Overview (p. 1038)

This class represents a source for a drag and drop operation.

Derived from

CHAPTER 4

233

wxObject (p. 555)

Include files

<wx/dnd.h>

Types

wxDragResult is defined as follows:

enum wxDragResult

 wxDragError, // error prevented the d&d operation from
completing
 wxDragNone, // drag target didn't accept the data
 wxDragCopy, // the data was successfully copied
 wxDragMove, // the data was successfully moved
 wxDragCancel // the operation was cancelled by user (not an
error)
 ;

See also

Drag and drop overview (p. 1038), wxDropTarget (p. 234), wxTextDropTarget (p. 839),
wxFileDropTarget (p. 268)

wxDropSource::wxDropSource

 wxDropSource(wxWindow* win = NULL)

Default/wxGTK-specific constructor. If you use the default constructor you must call
wxDropSource::SetData (p. 233) later.

win is required by wxGTK and therefore should always be set.

wxDropSource::~wxDropSource

virtual ~wxDropSource()

wxDropSource::SetData

void SetData(wxDataObject& data)

Sets the data data object (p. 148) associated with the drop source.

CHAPTER 4

234

wxDropSource::DoDragDrop

virtual wxDragResult DoDragDrop(bool allowMove = FALSE)

Do it (call this in response to a mouse button press, for example).

If allowMove is FALSE, data can only be copied.

wxDropSource::GiveFeedback

virtual bool GiveFeedback(wxDragResult effect, bool scrolling)

Overridable: you may give some custom UI feedback during the drag and drop operation
in this function. It is called on each mouse move, so your implementation must not be
too slow.

Parameters

effect
The effect to implement. One of wxDragCopy, wxDragMove and wxDragNone.

scrolling
TRUE if the window is scrolling. MSW only.

Return value

Return FALSE if you want default feedback, or TRUE if you implement your own
feedback. The return values is ignored under GTK.

wxDropTarget

Overview (p. 1038)

This class represents a target for a drag and drop operation.

Derived from

wxObject (p. 555)

Include files

<wx/dnd.h>

See also

Drag and drop overview (p. 1038), wxDropSource (p. 232), wxTextDropTarget (p. 839),
wxFileDropTarget (p. 268)

CHAPTER 4

235

wxDropTarget::wxDropTarget

 wxDropTarget()

Constructor.

wxDropTarget::~wxDropTarget

 ~wxDropTarget()

Destructor.

wxDropTarget::GetFormatCount

virtual size_t GetFormatCount() const

Override this to indicate how many formats you support.

wxDropTarget::GetFormat

virtual wxDataFormat GetFormat(size_t n) const

Override this to indicate what kind of data you support.

wxDropTarget::OnData

virtual wxDragResult OnData(wxCoord x, wxCoord y, wxDragResult def)

Called after OnDrop() returns TRUE: you will usually just call GetData() from here and,
probably, also refresh something to update the new data and, finally, return the code
indicating how did the operation complete (returning default value in case of success
and wxDragError on failure is usually ok).

wxDropTarget::OnDrop

virtual bool OnDrop(long x, long y, const void* data, size_t size)

Called when the user drops a data object on the target. Return FALSE to veto the
operation.

Parameters

CHAPTER 4

236

x
The x coordinate of the mouse.

y
The y coordinate of the mouse.

data
The data being dropped.

size
The size of the data being dropped.

Return value

Return TRUE to accept the data, FALSE to veto the operation.

wxDropTarget::OnEnter

virtual void OnEnter()

Called when the mouse enters the drop target.

wxDropTarget::OnLeave

virtual void OnLeave()

Called when the mouse leaves the drop target.

wxEraseEvent

An erase event is sent when a window's background needs to be repainted.

Derived from

wxEvent (p. 237)
wxObject (p. 555)

Include files

<wx/event.h>

Event table macros

To process an erase event, use this event handler macro to direct input to a member
function that takes a wxEraseEvent argument.

EVT_ERASE_BACKGROUND(func) Process a wxEVT_ERASE_BACKGROUND

CHAPTER 4

237

event.

Remarks

If the m_DC member is non-NULL, draw into this device context.

See also

wxWindow::OnEraseBackground (p. 938), Event handling overview (p. 1072)

wxEraseEvent::wxEraseEvent

 wxEraseEvent(int id = 0, wxDC* dc = NULL)

Constructor.

wxEraseEvent::m_dc

wxDC* m_dc

The device context associated with the erase event (may be NULL).

wxEraseEvent::GetDC

wxDC* GetDC() const

Returns the device context to draw into. If this is non-NULL, you should draw into it to
perform the erase operation.

wxEvent

An event is a structure holding information about an event passed to a callback or
member function. wxEvent used to be a multipurpose event object, and is an abstract
base class for other event classes (see below).

Derived from

wxObject (p. 555)

Include files

<wx/event.h>

See also

CHAPTER 4

238

wxCommandEvent (p. 108), wxMouseEvent (p. 532)

wxEvent::wxEvent

 wxEvent(int id = 0)

Constructor. Should not need to be used directly by an application.

wxEvent::m_eventHandle

char* m_eventHandle

Handle of an underlying windowing system event handle, such as XEvent. Not
guaranteed to be instantiated.

wxEvent::m_eventObject

wxObject* m_eventObject

The object (usually a window) that the event was generated from, or should be sent to.

wxEvent::m_eventType

WXTYPE m_eventType

The type of the event, such as wxEVENT_TYPE_BUTTON_COMMAND.

wxEvent::m_id

int m_id

Identifier for the window.

wxEvent::m_skipped

bool m_skipped

Set to TRUE by Skip if this event should be skipped.

wxEvent::m_timeStamp

CHAPTER 4

239

long m_timeStamp

Timestamp for this event.

wxEvent::GetEventClass

WXTYPE GetEventClass()

Returns the identifier of the given event class, such as wxTYPE_MOUSE_EVENT.

wxEvent::GetEventObject

wxObject* GetEventObject()

Returns the object associated with the event, if any.

wxEvent::GetEventType

WXTYPE GetEventType()

Returns the identifier of the given event type, such as
wxEVENT_TYPE_BUTTON_COMMAND.

wxEvent::GetId

int GetId()

Returns the identifier associated with this event, such as a button command id.

wxEvent::GetObjectType

WXTYPE GetObjectType()

Returns the type of the object associated with the event, such as wxTYPE_BUTTON.

wxEvent::GetSkipped

bool GetSkipped()

Returns TRUE if the event handler should be skipped, FALSE otherwise.

wxEvent::GetTimestamp

CHAPTER 4

240

long GetTimestamp()

Gets the timestamp for the event.

wxEvent::SetEventObject

void SetEventObject(wxObject* object)

Sets the originating object.

wxEvent::SetEventType

void SetEventType(WXTYPE typ)

Sets the event type.

wxEvent::SetId

void SetId(int id)

Sets the identifier associated with this event, such as a button command id.

wxEvent::SetTimestamp

void SetTimestamp(long timeStamp)

Sets the timestamp for the event.

Sets the originating object.

wxEvent::Skip

void Skip(bool skip = TRUE)

Called by an event handler to tell the event system that the event handler should be
skipped, and the next valid handler used instead.

wxEvtHandler

A class that can handle events from the windowing system. wxWindow (and therefore all
window classes) are derived from this class.

Derived from

CHAPTER 4

241

wxObject (p. 555)

Include files

<wx/event.h>

See also

Event handling overview (p. 1072)

wxEvtHandler::wxEvtHandler

 wxEvtHandler()

Constructor.

wxEvtHandler::~wxEvtHandler

 ~wxEvtHandler()

Destructor. If the handler is part of a chain, the destructor will unlink itself and restore the
previous and next handlers so that they point to each other.

wxEvtHandler::Connect

void Connect(int id, wxEventType eventType, wxObjectEventFunction function,
wxObject* userData = NULL)

void Connect(int id, int lastId, wxEventType eventType, wxObjectEventFunction
function, wxObject* userData = NULL)

Connects the given function dynamically with the event handler, id and event type. This
is an alternative to the use of static event tables. See the 'dynamic' sample for usage.

Parameters

id
The identifier (or first of the identifier range) to be associated with the event
handler function.

lastId
The second part of the identifier range to be associated with the event handler
function.

eventType

CHAPTER 4

242

The event type to be associated with this event handler.

function
The event handler function.

userData
Data to be associated with the event table entry.

Example

 frame->Connect(wxID_EXIT,
 wxEVT_COMMAND_MENU_SELECTED,
 (wxObjectEventFunction) (wxEventFunction) (wxCommandEventFunction)
MyFrame::OnQuit);

wxEvtHandler::Default

virtual long Default()

Invokes default processing if this event handler is a window.

Return value

System dependent.

Remarks

A generic way of delegating processing to the default system behaviour. It calls a
platform-dependent default function, with parameters dependent on the event or
message parameters originally sent from the windowing system.

Normally the application should call a base member, such as wxWindow::OnChar (p.
934), which itself may call Default.

wxEvtHandler::GetClientData

char* GetClientData()

Gets user-supplied client data.

Remarks

Normally, any extra data the programmer wishes to associate with the object should be
made available by deriving a new class with new data members.

See also

wxEvtHandler::SetClientData (p. 245)

CHAPTER 4

243

wxEvtHandler::GetEvtHandlerEnabled

bool GetEvtHandlerEnabled()

Returns TRUE if the event handler is enabled, FALSE otherwise.

See also

wxEvtHandler::SetEvtHandlerEnabled (p. 246)

wxEvtHandler::GetNextHandler

wxEvtHandler* GetNextHandler()

Gets the pointer to the next handler in the chain.

See also

wxEvtHandler::SetNextHandler (p. 246), wxEvtHandler::GetPreviousHandler (p. 243),
wxEvtHandler::SetPreviousHandler (p. 246), wxWindow::PushEventHandler (p. 947),
wxWindow::PopEventHandler (p. 946)

wxEvtHandler::GetPreviousHandler

wxEvtHandler* GetPreviousHandler()

Gets the pointer to the previous handler in the chain.

See also

wxEvtHandler::SetPreviousHandler (p. 246), wxEvtHandler::GetNextHandler (p. 243),
wxEvtHandler::SetNextHandler (p. 246), wxWindow::PushEventHandler (p. 947),
wxWindow::PopEventHandler (p. 946)

wxEvtHandler::ProcessEvent

virtual bool ProcessEvent(wxEvent& event)

Processes an event, searching event tables and calling zero or more suitable event
handler function(s).

Parameters

event
Event to process.

CHAPTER 4

244

Return value

TRUE if a suitable event handler function was found and executed, and the function did
not call wxEvent::Skip (p. 240).

Remarks

Normally, your application would not call this function: it is called in the wxWindows
implementation to dispatch incoming user interface events to the framework (and
application).

However, you might need to call it if implementing new functionality (such as a new
control) where you define new event types, as opposed to allowing the user to override
virtual functions.

An instance where you might actually override the ProcessEvent function is where you
want to direct event processing to event handlers not normally noticed by wxWindows.
For example, in the document/view architecture, documents and views are potential
event handlers. When an event reaches a frame, ProcessEvent will need to be called
on the associated document and view in case event handler functions are associated
with these objects. The property classes library (wxProperty) also overrides
ProcessEvent for similar reasons.

The normal order of event table searching is as follows:

1. If the object is disabled (via a call to wxEvtHandler::SetEvtHandlerEnabled (p.
246)) the function skips to step (6).

2. If the object is a wxWindow, ProcessEvent is recursively called on the window's
wxValidator (p. 897). If this returns TRUE, the function exits.

3. SearchEventTable is called for this event handler. If this fails, the base class
table is tried, and so on until no more tables exist or an appropriate function was
found, in which case the function exits.

4. The search is applied down the entire chain of event handlers (usually the chain
has a length of one). If this succeeds, the function exits.

5. If the object is a wxWindow and the event is a wxCommandEvent,
ProcessEvent is recursively applied to the parent window's event handler. If
this returns TRUE, the function exits.

6. Finally, ProcessEvent is called on the wxApp object.

See also

wxEvtHandler::SearchEventTable (p. 244)

wxEvtHandler::SearchEventTable

bool SearchEventTable(wxEventTable& table, wxEvent& event)

Searches the event table, executing an event handler function if an appropriate one is
found.

CHAPTER 4

245

Parameters

table
Event table to be searched.

event
Event to be matched against an event table entry.

Return value

TRUE if a suitable event handler function was found and executed, and the function did
not call wxEvent::Skip (p. 240).

Remarks

This function looks through the object's event table and tries to find an entry that will
match the event.

An entry will match if:

1. The event type matches, and
2. the identifier or identifier range matches, or the event table entry's identifier is

zero.

If a suitable function is called but calls wxEvent::Skip (p. 240), this function will fail, and
searching will continue.

See also

wxEvtHandler::ProcessEvent (p. 243)

wxEvtHandler::SetClientData

void SetClientData(char* data)

Sets user-supplied client data.

Parameters

data
Data to be associated with the event handler.

Remarks

Normally, any extra data the programmer wishes to associate with the object should be
made available by deriving a new class with new data members.See also

wxEvtHandler::GetClientData (p. 242)

CHAPTER 4

246

wxEvtHandler::SetEvtHandlerEnabled

void SetEvtHandlerEnabled(bool enabled)

Enables or disables the event handler.

Parameters

enabled
TRUE if the event handler is to be enabled, FALSE if it is to be disabled.

Remarks

You can use this function to avoid having to remove the event handler from the chain, for
example when implementing a dialog editor and changing from edit to test mode.

See also

wxEvtHandler::GetEvtHandlerEnabled (p. 243)

wxEvtHandler::SetNextHandler

void SetNextHandler(wxEvtHandler* handler)

Sets the pointer to the next handler.

Parameters

handler
Event handler to be set as the next handler.

See also

wxEvtHandler::GetNextHandler (p. 243), wxEvtHandler::SetPreviousHandler (p. 246),
wxEvtHandler::GetPreviousHandler (p. 243), wxWindow::PushEventHandler (p. 947),
wxWindow::PopEventHandler (p. 946)

wxEvtHandler::SetPreviousHandler

void SetPreviousHandler(wxEvtHandler* handler)

Sets the pointer to the previous handler.

Parameters

handler
Event handler to be set as the previous handler.

CHAPTER 4

247

See also

wxEvtHandler::GetPreviousHandler (p. 243), wxEvtHandler::SetNextHandler (p. 246),
wxEvtHandler::GetNextHandler (p. 243), wxWindow::PushEventHandler (p. 947),
wxWindow::PopEventHandler (p. 946)

wxExpr

The wxExpr class is the building brick of expressions similar to Prolog clauses, or
objects. It can represent an expression of type long integer, float, string, word, or list,
and lists can be nested.

Derived from

None

Include files

<wx/wxexpr.h>

See also

wxExpr overview (p. 1105), wxExprDatabase (p. 253)

wxExpr::wxExpr

 wxExpr(const wxString&functor)

Construct a new clause with this form, supplying the functor name. A clause is an object
that will appear in the data file, with a list of attribute/value pairs.

 wxExpr(wxExprType type, const wxString& wordOrString = "")

Construct a new empty list, or a word (will be output with no quotes), or a string,
depending on the value of type.

type can be wxExprList, wxExprWord, or wxExprString. If type is wxExprList, the
value of wordOrString will be ignored.

 wxExpr(long value)

Construct an integer expression.

 wxExpr(float value)

Construct a floating point expression.

 wxExpr(wxList* value)

CHAPTER 4

248

Construct a list expression. The list's nodes' data should themselves be wxExprs.

The current version of this library no longer uses the wxListinternally, so this constructor
turns the list into its internal format (assuming a non-nested list) and then deletes the
supplied list.

wxExpr::~wxExpr

 ~wxExpr()

Destructor.

wxExpr::AddAttributeValue

Use these on clauses ONLY. Note that the functions for adding strings and words must
be differentiated by function name which is why they are missing from this group (see
wxExpr::AddAttributeValueString (p. 248) and wxExpr::AddAttributeValueWord (p. 249)).

void AddAttributeValue(const wxString& attribute, float value)

Adds an attribute and floating point value pair to the clause.

void AddAttributeValue(const wxString& attribute, long value)

Adds an attribute and long integer value pair to the clause.

void AddAttributeValue(const wxString& attribute, wxList* value)

Adds an attribute and list value pair to the clause, converting the list into internal form
and then deleting value. Note that the list should not contain nested lists (except if in
internal wxExpr form.)

void AddAttributeValue(const wxString& attribute, wxExpr* value)

Adds an attribute and wxExpr value pair to the clause. Do not delete value once this
function has been called.

wxExpr::AddAttributeValueString

void AddAttributeValueString(const wxString& attribute, const wxString& value)

Adds an attribute and string value pair to the clause.

wxExpr::AddAttributeValueStringList

CHAPTER 4

249

void AddAttributeValueStringList(const wxString& attribute, wxList* value)

Adds an attribute and string list value pair to the clause.

Note that the list passed to this function is a list of strings, NOT a list of wxExprs; it gets
turned into a list of wxExprs automatically. This is a convenience function, since lists of
strings are often manipulated in C++.

wxExpr::AddAttributeValueWord

void AddAttributeValueWord(const wxString& attribute, const wxString& value)

Adds an attribute and word value pair to the clause.

wxExpr::Append

void Append(wxExpr* value)

Append the value to the end of the list. 'this' must be a list.

wxExpr::Arg

wxExpr* Arg(wxExprType type, int n) const

Get nth arg of the given clause (starting from 1). NULL is returned if the expression is
not a clause, or n is invalid, or the given type does not match the actual type. See also
wxExpr::Nth (p. 252).

wxExpr::Insert

void Insert(wxExpr* value)

Insert the value at the start of the list. 'this' must be a list.

wxExpr::GetAttributeValue

These functions are the easiest way to retrieve attribute values, by passing a pointer to
variable. If the attribute is present, the variable will be filled with the appropriate value. If
not, the existing value is left alone. This style of retrieving attributes makes it easy to set
variables to default values before calling these functions; no code is necessary to check
whether the attribute is present or not.

bool GetAttributeValue(const wxString& attribute, wxString& value) const

Retrieve a string (or word) value.

CHAPTER 4

250

bool GetAttributeValue(const wxString& attribute, float& value) const

Retrieve a floating point value.

bool GetAttributeValue(const wxString& attribute, int& value) const

Retrieve an integer value.

bool GetAttributeValue(const wxString& attribute, long& value) const

Retrieve a long integer value.

bool GetAttributeValue(const wxString& attribute, wxExpr** value) const

Retrieve a wxExpr pointer.

wxExpr::GetAttributeValueStringList

void GetAttributeValueStringList(const wxString&attribute, wxList* value) const

Use this on clauses ONLY. See above for comments on this style of attribute value
retrieval. This function expects to receive a pointer to a new list (created by the calling
application); it will append strings to the list if the attribute is present in the clause.

wxExpr::AttributeValue

wxExpr* AttributeValue(const wxString& word) const

Use this on clauses ONLY. Searches the clause for an attribute matching word, and
returns the value associated with it.

wxExpr::Copy

wxExpr* Copy() const

Recursively copies the expression, allocating new storage space.

wxExpr::DeleteAttributeValue

void DeleteAttributeValue(const wxString& attribute)

Use this on clauses only. Deletes the attribute and its value (if any) from the clause.

wxExpr::Functor

CHAPTER 4

251

wxString Functor() const

Use this on clauses only. Returns the clause's functor (object name).

wxExpr::GetClientData

wxObject* GetClientData() const

Retrieve arbitrary data stored with this clause. This can be useful when reading in data
for storing a pointer to the C++ object, so when another clause makes a reference to this
clause, its C++ object can be retrieved. See wxExpr::SetClientData (p. 252).

wxExpr::GetFirst

wxExpr* GetFirst() const

If this is a list expression (or clause), gets the first element in the list.

See also wxExpr::GetLast (p. 251), wxExpr::GetNext (p. 251), wxExpr::Nth (p. 252).

wxExpr::GetLast

wxExpr* GetLast() const

If this is a list expression (or clause), gets the last element in the list.

See also wxExpr::GetFirst (p. 251), wxExpr::GetNext (p. 251), wxExpr::Nth (p. 252).

wxExpr::GetNext

wxExpr* GetNext() const

If this is a node in a list (any wxExpr may be a node in a list), gets the next element in
the list.

See also wxExpr::GetFirst (p. 251), wxExpr::GetLast (p. 251), wxExpr::Nth (p. 252).

wxExpr::IntegerValue

long IntegerValue() const

Returns the integer value of the expression.

CHAPTER 4

252

wxExpr::Nth

wxExpr* Nth(int n) const

Get nth arg of the given list expression (starting from 0). NULL is returned if the
expression is not a list expression, or n is invalid. See also wxExpr::Arg (p. 249).

Normally, you would use attribute-value pairs to add and retrieve data from objects
(clauses) in a data file. However, if the data gets complex, you may need to store
attribute values as lists, and pick them apart yourself.

wxExpr::RealValue

float RealValue() const

Returns the floating point value of the expression.

wxExpr::SetClientData

void SetClientData(wxObject *data)

Associate arbitrary data with this clause. This can be useful when reading in data for
storing a pointer to the C++ object, so when another clause makes a reference to this
clause, its C++ object can be retrieved. See wxExpr::GetClientData (p. 251).

wxExpr::StringValue

wxString StringValue() const

Returns the string value of the expression.

wxExpr::Type

wxExprType Type() const

Returns the type of the expression. wxExprType is defined as follows:

typedef enum {
 wxExprNull,
 wxExprInteger,
 wxExprReal,
 wxExprWord,
 wxExprString,
 wxExprList
} wxExprType;

CHAPTER 4

253

wxExpr::WordValue

wxString WordValue() const

Returns the word value of the expression.

wxExpr::WriteClause

void WriteClause(FILE * stream)

Writes the clause to the given stream in Prolog format. Not normally needed, since the
whole wxExprDatabase will usually be written at once. The format is: functor, open
parenthesis, list of comma-separated expressions, close parenthesis, full stop.

wxExpr::WriteExpr

void WriteExpr(FILE * stream)

Writes the expression (not clause) to the given stream in Prolog format. Not normally
needed, since the whole wxExprDatabase will usually be written at once. Lists are
written in square bracketed, comma-delimited format.

Functions and macros

Below are miscellaneous functions and macros associated with wxExpr objects.

bool wxExprIsFunctor(wxExpr *expr, const wxString& functor)

Checks that the functor of expr is functor.

void wxExprCleanUp()

Cleans up the wxExpr system (YACC/LEX buffers) to avoid memory-checking warnings
as the program exits.

#define wxMakeInteger(x) (new wxExpr((long)x))
#define wxMakeReal(x) (new wxExpr((float)x))
#define wxMakeString(x) (new wxExpr(PrologString, x))
#define wxMakeWord(x) (new wxExpr(PrologWord, x))
#define wxMake(x) (new wxExpr(x))

Macros to help make wxExpr objects.

wxExprDatabase

The wxExprDatabase class represents a database, or list, of Prolog-like expressions.
Instances of this class are used for reading, writing and creating data files.

CHAPTER 4

254

Derived from

wxList (p. 446)
wxObject (p. 555)

See also

wxExpr overview (p. 1105), wxExpr (p. 247)

wxExprDatabase::wxExprDatabase

void wxExprDatabase(proioErrorHandler handler = 0)

Construct a new, unhashed database, with an optional error handler. The error handler
must be a function returning a bool and taking an integer and a string argument. When
an error occurs when reading or writing a database, this function is called. The error is
given as the first argument (currently one of WXEXPR_ERROR_GENERAL,
WXEXPR_ERROR_SYNTAX) and an error message is given as the second argument. If
FALSE is returned by the error handler, processing of the wxExpr operation stops.

Another way of handling errors is simply to call wxExprDatabase::GetErrorCount (p. 256)
after the operation, to check whether errors have occurred, instead of installing an error
handler. If the error count is more than zero, wxExprDatabase::Write (p. 257) and
wxExprDatabase::Read (p. 256) will return FALSE to the application.

For example:

bool myErrorHandler(int err, chat *msg)
{
 if (err == WXEXPR_ERROR_SYNTAX)
 {
 wxMessageBox(msg, "Syntax error");
 }
 return FALSE;
}

wxExprDatabase database(myErrorHandler);

 wxExprDatabase(wxExprType type, const wxString&attribute, int size = 500,
proioErrorHandler handler = 0)

Construct a new database hashed on a combination of the clause functor and a named
attribute (often an integer identification).

See above for an explanation of the error handler.

wxExprDatabase::~wxExprDatabase

CHAPTER 4

255

 ~wxExprDatabase()

Delete the database and contents.

wxExprDatabase::Append

void Append(wxExpr* clause)

Append a clause to the end of the database. If the database is hashing, the functor and
a user-specified attribute will be hashed upon, giving the option of random access in
addition to linear traversal of the database.

wxExprDatabase::BeginFind

void BeginFind()

Reset the current position to the start of the database. Subsequent
wxExprDatabase::FindClause (p. 255) calls will move the pointer.

wxExprDatabase::ClearDatabase

void ClearDatabase()

Clears the contents of the database.

wxExprDatabase::FindClause

Various ways of retrieving clauses from the database. A return value of NULL indicates
no (more) clauses matching the given criteria. Calling the functions repeatedly retrieves
more matching clauses, if any.

wxExpr* FindClause(long id)

Find a clause based on the special "id'' attribute.

wxExpr* FindClause(const wxString& attribute, const wxString& value)

Find a clause which has the given attribute set to the given string or word value.

wxExpr* FindClause(const wxString& attribute, long value)

Find a clause which has the given attribute set to the given integer value.

wxExpr* FindClause(const wxString& attribute, float value)

Find a clause which has the given attribute set to the given floating point value.

CHAPTER 4

256

wxExprDatabase::FindClauseByFunctor

wxExpr* FindClauseByFunctor(const wxString& functor)

Find the next clause with the specified functor.

wxExprDatabase::GetErrorCount

int GetErrorCount() const

Returns the number of errors encountered during the last read or write operation.

wxExprDatabase::HashFind

wxExpr* HashFind(const wxString& functor, long value) const

Finds the clause with the given functor and with the attribute specified in the database
constructor having the given integer value.

For example,

// Hash on a combination of functor and integer "id" attribute when
reading in
wxExprDatabase db(wxExprInteger, "id");

// Read it in
db.ReadProlog("data");

// Retrieve a clause with specified functor and id
wxExpr *clause = db.HashFind("node", 24);

This would retrieve a clause which is written: node(id = 24, ...,).

wxExpr* HashFind(const wxString& functor, const wxString& value)

Finds the clause with the given functor and with the attribute specified in the database
constructor having the given string value.

wxExprDatabase::Read

bool Read(const wxString& filename)

Reads in the given file, returning TRUE if successful.

wxExprDatabase::ReadFromString

CHAPTER 4

257

bool ReadFromString(const wxString& buffer)

Reads a Prolog database from the given string buffer, returning TRUE if successful.

wxExprDatabase::Write

bool Write(FILE *stream)

bool Write(const wxString& filename)

Writes the database as a Prolog-format file.

wxFile

A wxFile performs raw file I/O. This is a very small class designed to minimize the
overhead of using it - in fact, there is hardly any overhead at all, but using it brings you
automatic error checking and hides differences between platforms and compilers.

Derived from

None.

Include files

<wx/file.h>

Constants

wx/file.h defines the following constants:

#define wxS_IRUSR 00400
#define wxS_IWUSR 00200
#define wxS_IXUSR 00100

#define wxS_IRGRP 00040
#define wxS_IWGRP 00020
#define wxS_IXGRP 00010

#define wxS_IROTH 00004
#define wxS_IWOTH 00002
#define wxS_IXOTH 00001

// default mode for the new files: corresponds to umask 022
#define wxS_DEFAULT (wxS_IRUSR | wxS_IWUSR | wxS_IRGRP | wxS_IWGRP |
wxS_IROTH | wxS_IWOTH)

These constants define the file access rights and are used with wxFile::Create (p. 259)

CHAPTER 4

258

and wxFile::Open (p. 261).

The OpenMode enumeration defines the different modes for opening a file, it's defined
inside wxFile class so its members should be specified with wxFile:: scope resolution
prefix. It is also used with wxFile::Access (p. 259) function.

wxFile::read Open file for reading or test if it can be opened
for reading with Access()

wxFile::write Open file for writing deleting the contents of the
file if it already exists or test if it can be opened
for writing with Access()

wxFile::read_write Open file for reading and writing; can not be
used with Access()

wxFile::write_append Open file for appending: the file is opened for
writing, but the old contents of the file is not
erased and the file pointer is initially placed at
the end of the file; can not be used with
Access()

Other constants defined elsewhere but used by wxFile functions are wxInvalidOffset
which represents an invalid value of type off_t and is returned by functions returning off_t
on error and the seek mode constants used with Seek() (p. 261):

wxFromStart Count offset from the start of the file
wxFromCurrent Count offset from the current position of the file

pointer
wxFromEnd Count offset from the end of the file

(backwards)

wxFile::wxFile

 wxFile()

Default constructor.

 wxFile(const char* filename, wxFile::OpenMode mode = wxFile::read)

Opens a file with the given mode. As there is no way to return whether the operation was
successful or not from the constructor you should test the return value of IsOpened (p.
260) to check that it didn't fail.

 wxFile(int fd)

Opens a file with the given file descriptor, which has already been opened.

Parameters

CHAPTER 4

259

filename
The filename.

mode
The mode in which to open the file. May be one of wxFile::read, wxFile::write
and wxFile::read_write.

fd
An existing file descriptor (see Attach() (p. 259) for the list of predefined
descriptors)

wxFile::~wxFile

 ~wxFile()

Destructor will close the file.

NB: it is not virtual so you should not derive from wxFile!

wxFile::Access

static bool Access(const char * name, OpenMode mode)

This function verifies if we may access the given file in specified mode. Only values of
wxFile::read or wxFile::write really make sense here.

wxFile::Attach

void Attach(int fd)

Attaches an existing file descriptor to the wxFile object. Example of predefined file
descriptors are 0, 1 and 2 which correspond to stdin, stdout and stderr (and have
symbolic names of wxFile::fd_stdin, wxFile::fd_stdout and wxFile::fd_stderr).

The descriptor should be already opened and it will be closed by wxFile object.

wxFile::Close

void Close()

Closes the file.

wxFile::Create

CHAPTER 4

260

bool Create(const char* filename, bool overwrite = FALSE, int access =
wxS_DEFAULT)

Creates a file for writing. If the file already exists, setting overwrite to TRUE will ensure
it is overwritten.

wxFile::Detach

void Detach()

Get back a file descriptor from wxFile object - the caller is responsible for closing the file
if this descriptor is opened. IsOpened() (p. 260) will return FALSE after call to Detach().

wxFile::fd

int fd() const

Returns the file descriptor associated with the file.

wxFile::Eof

bool Eof() const

Returns TRUE if the end of the file has been reached.

wxFile::Exists

static bool Exists(const char* filename)

Returns TRUE if the given name specifies an existing regular file.

wxFile::Flush

bool Flush()

Flushes the file descriptor.

Note that wxFile::Flush is not implemented on some Windows compilers due to a
missing fsync function, which reduces the usefulness of this function (it can still be called
but it will do nothing on unsupported compilers).

wxFile::IsOpened

bool IsOpened() const

CHAPTER 4

261

Returns TRUE if the file has been opened.

wxFile::Length

off_t Length() const

Returns the length of the file.

wxFile::Open

bool Open(const char* filename, wxFile::OpenMode mode = wxFile::read)

Opens the file, returning TRUE if successful.

Parameters

filename
The filename.

mode
The mode in which to open the file. May be one of wxFile::read, wxFile::write
and wxFile::read_write.

wxFile::Read

off_t Read(void* buffer, off_t count)

Reads the specified number of bytes into a buffer, returning the actual number read.

Parameters

buffer
A buffer to receive the data.

count
The number of bytes to read.

Return value

The number of bytes read, or the symbol wxInvalidOffset (-1) if there was an error.

wxFile::Seek

off_t Seek(off_t ofs, wxFile::SeekMode mode = wxFile::FromStart)

CHAPTER 4

262

Seeks to the specified position.

Parameters

ofs
Offset to seek to.

mode
One of wxFile::FromStart, wxFile::FromEnd, wxFile::FromCurrent.

Return value

The actual offset position achieved, or wxInvalidOffset on failure.

wxFile::SeekEnd

off_t SeekEnd(off_t ofs = 0)

Moves the file pointer to the specified number of bytes before the end of the file.

Parameters

ofs
Number of bytes before the end of the file.

Return value

The actual offset position achieved, or wxInvalidOffset on failure.

wxFile::Tell

off_t Tell() const

Returns the current position or wxInvalidOffset if file is not opened or if another error
occured.

wxFile::Write

bool Write(const void* buffer, off_t count)

Writes the specified number of bytes from a buffer.

Parameters

buffer
A buffer containing the data.

CHAPTER 4

263

count
The number of bytes to write.

Return value

TRUE if the operation was successful.

wxFile::Write

bool Write(const wxString& s)

Writes the contents of the string to the file, returns TRUE on success.

wxFileDataObject

wxFileDataObject is a specialization of wxDataObject (p. 148) for file names. The
program works with it just as if it were a list of file names (absolutep aths always), but
internally it uses the same format as Explorer and other compatible programs under
Windows or GNOME/KDE filemanager under Unix which makes it possible to receive
files from them using this class.

Warning: Under all non-Windows platforms this class is currently "input-only", i.e. you
can receieve the files from another application, but copying (or dragging) file(s) from a
wxWindows application is not currently supported.

Virtual functions to override

None.

Derived from

wxDataObjectSimple (p. 152)
wxDataObject (p. 148)

Include files

<wx/dataobj.h>

See also

wxDataObject (p. 148), wxDataObjectSimple (p. 152), wxTextDataObject (p. 833),
wxBitmapDataObject (p. 57)wxDataObject (p. 148)

wxFileDataObject

 wxFileDataObject()

CHAPTER 4

264

Constructor.

wxFileDataObject::AddFile

virtual void AddFile(const wxString& file)

MSW only: adds a file to the file list represented by this data object.

wxFileDataObject::GetFilenames

const wxArrayString& GetFilenames() const

Returns the array (p. 26) of file names.

wxFileDialog

This class represents the file chooser dialog.

Derived from

wxDialog (p. 193)
wxWindow (p. 915)
wxEvtHandler (p. 240)
wxObject (p. 555)

Include files

<wx/filedlg.h>

See also

wxFileDialog overview (p. 1050), wxFileSelector (p. 973)

Remarks

Pops up a file selector box. In Windows, this is the common file selector dialog. In X, this
is a file selector box with somewhat less functionality. The path and filename are distinct
elements of a full file pathname. If path is "", the current directory will be used. If
filename is "", no default filename will be supplied. The wildcard determines what files
are displayed in the file selector, and file extension supplies a type extension for the
required filename. Flags may be a combination of wxOPEN, wxSAVE,
wxOVERWRITE_PROMPT, wxHIDE_READONLY, or 0.

Both the X and Windows versions implement a wildcard filter. Typing a filename
containing wildcards (*, ?) in the filename text item, and clicking on Ok, will result in only
those files matching the pattern being displayed. The wildcard may be a specification for
multiple types of file with a description for each, such as:

CHAPTER 4

265

 "BMP files (*.bmp)|*.bmp|GIF files (*.gif)|*.gif"

wxFileDialog::wxFileDialog

 wxFileDialog(wxWindow* parent, const wxString& message = "Choose a file", const
wxString& defaultDir = "", const wxString& defaultFile = "", const wxString& wildcard
= "*.*", long style = 0, const wxPoint& pos = wxDefaultPosition)

Constructor. Use wxFileDialog::ShowModal (p. 268) to show the dialog.

Parameters

parent
Parent window.

message
Message to show on the dialog.

defaultDir
The default directory, or the empty string.

defaultFile
The default filename, or the empty string.

wildcard
A wildcard, such as "*.*".

style
A dialog style. A bitlist of:

wxOPEN This is an open dialog.
wxSAVE This is a save dialog.
wxHIDE_READONLY Hide read-only files.
wxOVERWRITE_PROMPT Prompt for a conformation if a file will be overridden.

pos
Dialog position. Not implemented.

wxFileDialog::~wxFileDialog

 ~wxFileDialog()

Destructor.

CHAPTER 4

266

wxFileDialog::GetDirectory

wxString GetDirectory() const

Returns the default directory.

wxFileDialog::GetFilename

wxString GetFilename() const

Returns the default filename.

wxFileDialog::GetFilterIndex

int GetFilterIndex() const

Returns the index into the list of filters supplied, optionally, in the wildcard parameter.
Before the dialog is shown, this is the index which will be used when the dialog is first
displayed. After the dialog is shown, this is the index selected by the user.

wxFileDialog::GetMessage

wxString GetMessage() const

Returns the message that will be displayed on the dialog.

wxFileDialog::GetPath

wxString GetPath() const

Returns the full path (directory and filename) of the selected file.

wxFileDialog::GetStyle

long GetStyle() const

Returns the dialog style.

wxFileDialog::GetWildcard

wxString GetWildcard() const

Returns the file dialog wildcard.

CHAPTER 4

267

wxFileDialog::SetDirectory

void SetDirectory(const wxString& directory)

Sets the default directory.

wxFileDialog::SetFilename

void SetFilename(const wxString& setfilename)

Sets the default filename.

wxFileDialog::SetFilterIndex

void SetFilterIndex(int filterIndex)

Sets the default filter index, starting from zero. Windows only.

wxFileDialog::SetMessage

void SetMessage(const wxString& message)

Sets the message that will be displayed on the dialog.

wxFileDialog::SetPath

void SetPath(const wxString& path)

Sets the path (the combined directory and filename that will be returned when the dialog
is dismissed).

wxFileDialog::SetStyle

void SetStyle(long style)

Sets the dialog style. See wxFileDialog::wxFileDialog (p. 265) for details.

wxFileDialog::SetWildcard

void SetWildcard(const wxString& wildCard)

Sets the wildcard, which in Windows can contain multiple file types.

CHAPTER 4

268

wxFileDialog::ShowModal

int ShowModal()

Shows the dialog, returning wxID_OK if the user pressed OK, and wxOK_CANCEL
otherwise.

wxFileDropTarget

 A drop target which accepts files (dragged from File Manager or Explorer).

Derived from

wxDropTarget (p. 234)

Include files

<wx/dnd.h>

See also

Drag and drop overview (p. 1038), wxDropSource (p. 232), wxDropTarget (p. 234),
wxTextDropTarget (p. 839)

wxFileDropTarget::wxFileDropTarget

 wxFileDropTarget()

Constructor.

wxFileDropTarget::GetFormatCount

virtual size_t GetFormatCount()

See wxDropTarget::GetFormatCount (p. 235). This function is implemented
appropriately for files.

wxFileDropTarget::GetFormat

virtual wxDataFormat GetFormat(size_t n) const

See wxDropTarget::GetFormat (p. 235). This function is implemented appropriately for
files.

CHAPTER 4

269

wxFileDropTarget::OnDrop

virtual bool OnDrop(long x, long y, const void *data, size_t size)

See wxDropTarget::OnDrop (p. 235). This function is implemented appropriately for files,
and calls wxFileDropTarget::OnDropFiles (p. 269).

wxFileDropTarget::OnDropFiles

virtual bool OnDropFiles(long x, long y, size_t nFiles, const char * constfiles[])

Override this function to receive dropped files.

Parameters

x
The x coordinate of the mouse.

y
The y coordinate of the mouse.

nFiles
The number of files being dropped.

files
An array of filenames.

Return value

Return TRUE to accept the data, FALSE to veto the operation.

wxFileHistory

The wxFileHistory encapsulates a user interface convenience, the list of most recently
visited files as shown on a menu (usually the File menu).

wxFileHistory can manage one or more file menus. More than one menu may be
required in an MDI application, where the file history should appear on each MDI child
menu as well as the MDI parent frame.

Derived from

wxObject (p. 555)

Include files

<wx/docview.h>

CHAPTER 4

270

See also

wxFileHistory overview (p. 1071), wxDocManager (p. 205)

wxFileHistory::m_fileHistory

char** m_fileHistory

A character array of strings corresponding to the most recently opened files.

wxFileHistory::m_fileHistoryN

int m_fileHistoryN

The number of files stored in the history array.

wxFileHistory::m_fileMaxFiles

int m_fileMaxFiles

The maximum number of files to be stored and displayed on the menu.

wxFileHistory::m_fileMenu

wxMenu* m_fileMenu

The file menu used to display the file history list (if enabled).

wxFileHistory::wxFileHistory

 wxFileHistory(int maxFiles = 9)

Constructor. Pass the maximum number of files that should be stored and displayed.

wxFileHistory::~wxFileHistory

 ~wxFileHistory()

Destructor.

wxFileHistory::AddFileToHistory

CHAPTER 4

271

void AddFileToHistory(const wxString& filename)

Adds a file to the file history list, if the object has a pointer to an appropriate file menu.

wxFileHistory::AddFilesToMenu

void AddFilesToMenu()

Appends the files in the history list, to all menus managed by the file history object.

void AddFilesToMenu(wxMenu* menu)

Appends the files in the history list, to the given menu only.

wxFileHistory::GetHistoryFile

wxString GetHistoryFile(int index) const

Returns the file at this index (zero-based).

wxFileHistory::GetMaxFiles

int GetMaxFiles() const

Returns the maximum number of files that can be stored.

wxFileHistory::GetNoHistoryFiles

int GetNoHistoryFiles() const

Returns the number of files currently stored in the file history.

wxFileHistory::Load

void Load(wxConfigBase& config)

Loads the file history from the given config object. This function should be called
explicitly by the application.

See also

wxConfig (p. 117)

CHAPTER 4

272

wxFileHistory::RemoveMenu

void RemoveMenu(wxMenu* menu)

Removes this menu from the list of those managed by this object.

wxFileHistory::Save

void Save(wxConfigBase& config)

Saves the file history into the given config object. This must be called explicitly by the
application.

See also

wxConfig (p. 117)

wxFileHistory::UseMenu

void UseMenu(wxMenu* menu)

Adds this menu to the list of those managed by this object.

wxFileInputStream

This class represents data read in from a file. There are actually two such groups of
classes: those documented here, and another group called wxFFileInputStream,
wxFFileOutputStream and wxFFileStream which are not based on file descriptors (and
their wxWindows equivalent wxFile) but the FILE* type (and wxFFile). Apart from the
different constructor ("FILE *file" instead if "int fd") their interface is identical.

Derived from

wxInputStream (p. 425)

Include files

<wx/wfstream.h>

See also

wxStreamBuffer (p. 755), wxFileOutputStream (p. 273)

wxFileInputStream::wxFileInputStream

CHAPTER 4

273

 wxFileInputStream(const wxString& ifileName)

Opens the specified file using its ifilename name in read-only mode.

 wxFileInputStream(wxFile& file)

Initializes a file stream in read-only mode using the file I/O object file.

 wxFileInputStream(int fd)

Initializes a file stream in read-only mode using the specified file descriptor.

wxFileInputStream::~wxFileInputStream

 ~wxFileInputStream()

Destructor.

wxFileInputStream::Ok

bool Ok() const

Returns TRUE if the stream is initialized and ready.

wxFileOutputStream

This class represents data written to a file. There are actually two such groups of
classes: those documented here, and another group called wxFFileInputStream,
wxFFileOutputStream and wxFFileStream which are not based on file descriptors (and
their wxWindows equivalent wxFile) but the FILE* type (and wxFFile). Apart from the
different constructor ("FILE *file" instead if "int fd") their interface is identical.

Derived from

wxOutputStream (p. 559)

Include files

<wx/wfstream.h>

See also

wxStreamBuffer (p. 755), wxFileInputStream (p. 272)

wxFileOutputStream::wxFileOutputStream

CHAPTER 4

274

 wxFileOutputStream(const wxString& ofileName)

Creates a new file with ofilename name and initializes the stream in write-only mode.

 wxFileOutputStream(wxFile& file)

Initializes a file stream in write-only mode using the file I/O object file.

 wxFileOutputStream(int fd)

Initializes a file stream in write-only mode using the file descriptor fd.

wxFileOutputStream::~wxFileOutputStream

 ~wxFileOutputStream()

Destructor.

wxFileOutputStream::Ok

bool Ok() const

Returns TRUE if the stream is initialized and ready.

wxFileStream

Derived from

wxFileOutputStream (p. 273), wxFileInputStream (p. 272)

Include files

<wx/wfstream.h>

See also

wxStreamBuffer (p. 755)

wxFileStream::wxFileStream

 wxFileStream(const wxString& iofileName)

Initializes a new file stream in read-write mode using the specified iofilename name.

CHAPTER 4

275

wxFileSystem

This class provides an interface for opening files on different file systems. It can handle
absolute and/or local filenames. It uses a system of handlers (p. 277) to provide access
to user-defined virtual file systems.

Derived from

wxObject

See Also

wxFileSystemHandler (p. 277), wxFSFile (p. 311), Overview (p. 1116)

wxFileSystem::wxFileSystem

 wxFileSystem()

Constructor.

wxFileSystem::AddHandler

static void AddHandler(wxFileSystemHandler *handler)

This static function adds new handler into the list of handlers. The handlers (p. 277)
provide access to virtual FS.

Note

You can call:

wxFileSystem::AddHandler(new My_FS_Handler);

This is because (a) AddHandler is a static method, and (b) the handlers are deleted in
wxFileSystem's destructor so that you don't have to care about it.

wxFileSystem::ChangePathTo

void ChangePathTo(const wxString& location, bool is_dir = FALSE)

Sets the current location. location parameter passed to OpenFile (p. 276) is relative to
this path.

Caution! Unless is_dir is TRUE the location parameter is not directory name but the
name of the file in this directory!! All these commands change path to "dir/subdir/" :

CHAPTER 4

276

ChangePathTo("dir/subdir/xh.htm");
ChangePathTo("dir/subdir", TRUE);
ChangePathTo("dir/subdir/", TRUE);

Parameters

location
the new location. Its meaning depends on value of is_dir

is_dir
if TRUE location is new directory. If FALSE (default)location is file in the new
directory.

Example

f = fs -> OpenFile("hello.htm"); // opens file 'hello.htm'
fs -> ChangePathTo("subdir/folder", TRUE);
f = fs -> OpenFile("hello.htm"); // opens file
'subdir/folder/hello.htm' !!

wxFileSystem::GetPath

wxString GetPath()

Returns actual path (set by ChangePathTo (p. 275)).

wxFileSystem::FindFirst

wxString FindFirst(const wxString& wildcard, int flags = 0)

Works like wxFindFirstFile (p. 964). Returns name of the first filename (withing
filesystem's current path) that matches wildcard. flags may be one of wxFILE (only files),
wxDIR (only directories) or 0 (both).

wxFileSystem::FindNext

wxString FindNext()

Returns next filename that matches parameters passed to FindFirst (p. 276).

wxFileSystem::OpenFile

wxFSFile* OpenFile(const wxString& location)

Opens file and returns pointer to wxFSFile (p. 311) object or NULL if failed. It first tries to
open the file in relative scope (based on value passed to ChangePathTo() method) and

CHAPTER 4

277

then as an absolute path.

wxFileSystemHandler

Classes derived from wxFileSystemHandler are used to access virtual file systems. Its
public interface consists of two methods: CanOpen (p. 277) and OpenFile (p. 279). It
provides additional protected methods to simplify the process of opening the file:
GetProtocol, GetLeftLocation, GetRightLocation, GetAnchor, GetMimeTypeFromExt.

Please have a look at overview (p. 1116) if you don't know how locations are
constructed.

Notes

• The handlers are shared by all instances of wxFileSystem.
• wxHTML library provides handlers for local files and HTTP or FTP protocol
• The location parameter passed to OpenFile or CanOpen methods is always an

absolute path. You don't need to check the FS's current path.

Derived from

wxObject

See also

wxFileSystem (p. 275), wxFSFile (p. 311), Overview (p. 1116)

wxFileSystemHandler::wxFileSystemHandler

 wxFileSystemHandler()

Constructor.

wxFileSystemHandler::CanOpen

virtual bool CanOpen(const wxString& location)

Returns TRUE if the handler is able to open this file. This function doesn't check whether
the file exists or not, it only checks if it knows the protocol. Example:

bool MyHand::CanOpen(const wxString& location)
{
 return (GetProtocol(location) == "http");
}

Must be overridden in derived handlers.

wxFileSystemHandler::GetAnchor

CHAPTER 4

278

wxString GetAnchor(const wxString& location) const

Returns the anchor if present in the location. See wxFSFile (p. 312) for details.

Example: GetAnchor("index.htm#chapter2") == "chapter2"

Note: the anchor is NOT part of the left location.

wxFileSystemHandler::GetLeftLocation

wxString GetLeftLocation(const wxString& location) const

Returns the left location string extracted from location.

Example: GetLeftLocation("file:myzipfile.zip#zip:index.htm") == "file:myzipfile.zip"

wxFileSystemHandler::GetMimeTypeFromExt

wxString GetMimeTypeFromExt(const wxString& location)

Returns the MIME type based on extension of location. (While wxFSFile::GetMimeType
returns real MIME type - either extension-based or queried from HTTP.)

Example : GetMimeTypeFromExt("index.htm") == "text/html"

wxFileSystemHandler::GetProtocol

wxString GetProtocol(const wxString& location) const

Returns the protocol string extracted from location.

Example: GetProtocol("file:myzipfile.zip#zip:index.htm") == "zip"

wxFileSystemHandler::GetRightLocation

wxString GetRightLocation(const wxString& location) const

Returns the right location string extracted from location.

Example : GetRightLocation("file:myzipfile.zip#zip:index.htm") == "index.htm"

wxFileSystemHandler::FindFirst

virtual wxString FindFirst(const wxString& wildcard, int flags = 0)

CHAPTER 4

279

Works like wxFindFirstFile (p. 964). Returns name of the first filename (withing
filesystem's current path) that matches wildcard. flags may be one of wxFILE (only files),
wxDIR (only directories) or 0 (both).

This method is only called if CanOpen (p. 277) returns TRUE.

wxFileSystemHandler::FindNext

virtual wxString FindNext()

Returns next filename that matches parameters passed to FindFirst (p. 276).

This method is only called if CanOpen (p. 277) returns TRUE and FindFirst returned a
non-empty string.

wxFileSystemHandler::OpenFile

virtual wxFSFile* OpenFile(wxFileSystem& fs, const wxString& location)

Opens the file and returns wxFSFile pointer or NULL if failed.

Must be overridden in derived handlers.

Parameters

fs
Parent FS (the FS from that OpenFile was called). See ZIP handler for details of
how to use it.

location
The absolute location of file.

wxFileType

This class holds information about a given file type. File type is the same as MIME type
under Unix, but under Windows it corresponds more to an extension than to MIME type
(in fact, several extensions may correspond to a file type). This object may be created in
several different ways: the program might know the file extension and wish to find out
the corresponding MIME type or, conversely, it might want to find the right extension for
the file to which it writes the contents of given MIME type. Depending on how it was
created some fields may be unknown so the return value of all the accessors must be
checked: FALSE will be returned if the corresponding information couldn't be found.

The objects of this class are never created by the application code but are returned by
wxMimeTypesManager::GetFileTypeFromMimeType (p. 527) and
wxMimeTypesManager::GetFileTypeFromExtension (p. 526) methods. But it's your
responsibility to delete the returned pointer when you're done with it!

CHAPTER 4

280

A brief reminder about what the MIME types are (see the RFC 1341 for more
information): basically, it is just a pair category/type (for example, "text/plain") where the
category is a basic indication of what a file is. Examples of categories are "application",
"image", "text", "binary", and type is a precise definition of the document format: "plain"
in the example above means just ASCII text without any formatting, while "text/html" is
the HTML document source.

A MIME type may have one or more associated extensions: "text/plain" will typically
correspond to the extension ".txt", but may as well be associated with ".ini" or ".conf".

Derived from

None

Include files

<wx/mimetype.h>

See also

wxMimeTypesManager (p. 524)

MessageParameters class

One of the most common usages of MIME is to encode an e-mail message. The MIME
type of the encoded message is an example of a message parameter. These
parameters are found in the message headers ("Content-XXX"). At the very least, they
must specify the MIME type and the version of MIME used, but almost always they
provide additional information about the message such as the original file name or the
charset (for the text documents).

These parameters may be useful to the program used to open, edit, view or print the
message, so, for example, an e-mail client program will have to pass them to this
program. Because wxFileType itself can not know about these parameters, it uses
MessageParameters class to query them. The default implementation only requiers the
caller to provide the file name (always used by the program to be called - it must know
which file to open) and the MIME type and supposes that there are no other parameters.
If you wish to supply additional parameters, you must derive your own class from
MessageParameters and override GetParamValue() function, for example:

// provide the message parameters for the MIME type manager
class MailMessageParameters : public wxFileType::MessageParameters
{
public:
 MailMessageParameters(const wxString& filename,
 const wxString& mimetype)
 : wxFileType::MessageParameters(filename, mimetype)

CHAPTER 4

281

 {
 }

 virtual wxString GetParamValue(const wxString& name) const
 {
 // parameter names are not case-sensitive
 if (name.CmpNoCase("charset") == 0)
 return "US-ASCII";
 else
 return wxFileType::MessageParameters::GetParamValue(name);
 }
};

Now you only need to create an object of this class and pass it to, for example,
GetOpenCommand (p. 282) like this:

wxString command;
if (filetype->GetOpenCommand(&command,
 MailMessageParamaters("foo.txt",
"text/plain")))
{
 // the full command for opening the text documents is in 'command'
 // (it might be "notepad foo.txt" under Windows or "cat foo.txt"
under Unix)
}
else
{
 // we don't know how to handle such files...
}

Windows: As only the file name is used by the program associated with the given
extension anyhow (but no other message parameters), there is no need to ever derive
from MessageParameters class for a Windows-only program.

wxFileType::wxFileType

 wxFileType()

The default constructor is private because you should never create objects of this type:
they are only returned by wxMimeTypesManager (p. 524) methods.

wxFileType::~wxFileType

 ~wxFileType()

The destructor of this class is not virtual, so it should not be derived from.

wxFileType::GetMimeType

bool GetMimeType(wxString* mimeType)

CHAPTER 4

282

If the function returns TRUE, the string pointed to by mimeType is filled with full MIME
type specification for this file type: for example, "text/plain".

wxFileType::GetExtensions

bool GetExtensions(wxArrayString& extensions)

If the function returns TRUE, the array extensions is filled with all extensions associated
with this file type: for example, it may contain the following two elements for the MIME
type "text/html" (notice the absence of the leading dot): "html" and "htm".

Windows: This function is currently not implemented: there is no (efficient) way to
retrieve associated extensions from the given MIME type on this platform, so it will only
return TRUE if the wxFileType object was created by GetFileTypeFromExtension (p.
526) function in the first place.

wxFileType::GetIcon

bool GetIcon(wxIcon* icon)

If the function returns TRUE, the icon associated with this file type will be created and
assigned to the icon parameter.

Unix: This function always returns FALSE under Unix.

wxFileType::GetDescription

bool GetDescription(wxString* desc)

If the function returns TRUE, the string pointed to by desc is filled with a brief description
for this file type: for example, "text document" for the "text/plain" MIME type.

wxFileType::GetOpenCommand

bool GetOpenCommand(wxString* command, MessageParameters& params)

If the function returns TRUE, the string pointed to by command is filled with the
command which must be executed (see wxExecute (p. 987)) in order to open the file of
the given type. The name of the file is retrieved from MessageParameters (p. 280) class.

wxFileType::GetPrintCommand

bool GetPrintCommand(wxString* command,MessageParameters& params)

CHAPTER 4

283

If the function returns TRUE, the string pointed to by command is filled with the
command which must be executed (see wxExecute (p. 987)) in order to print the file of
the given type. The name of the file is retrieved from MessageParameters (p. 280) class.

wxFileType::ExpandCommand

static wxString ExpandCommand(const wxString& command,
MessageParameters& params)

This function is primarly intended for GetOpenCommand and GetPrintCommand usage
but may be also used by the application directly if, for example, you want to use some
non default command to open the file.

The function replaces all occurences of

format specificator with
%s the full file name
%t the MIME type
%{param} the value of the parameter param

using the MessageParameters object you pass to it.

If there is no '%s' in the command string (and the string is not empty), it is assumed that
the command reads the data on stdin and so the effect is the same as "< %s" were
appended to the string.

Unlike all other functions of this class, there is no error return for this function.

wxFilterInputStream

A filter stream has the capability of a normal stream but it can be placed on top of
another stream. So, for example, it can uncompress, uncrypt the datas which are read
from another stream and pass it to the requester.

Derived from

wxInputStream (p. 425)
wxStreamBase (p. 754)

Include files

<wx/stream.h>

Note

The use of this class is exactly the same as of wxInputStream. Only a constructor differs
and it is documented below.

CHAPTER 4

284

wxFilterInputStream::wxFilterInputStream

 wxFilterInputStream(wxInputStream& stream)

Initializes a "filter" stream.

wxFilterOutputStream

A filter stream has the capability of a normal stream but it can be placed on top of
another stream. So, for example, it can compress, encrypt the data which are passed to
it and write them to another stream.

Derived from

wxOutputStream (p. 559)
wxStreamBase (p. 754)

Include files

<wx/stream.h>

Note

The use of this class is exactly the same as of wxOutputStream. Only a constructor
differs and it is documented below.

wxFilterOutputStream::wxFilterOutputStream

 wxFilterOutputStream(wxOutputStream& stream)

Initializes a "filter" stream.

wxFocusEvent

A focus event is sent when a window's focus changes.

Derived from

wxEvent (p. 237)
wxObject (p. 555)

Include files

<wx/event.h>

Event table macros

To process a focus event, use these event handler macros to direct input to a member
function that takes a wxFocusEvent argument.

CHAPTER 4

285

EVT_SET_FOCUS(func) Process a wxEVT_SET_FOCUS event.
EVT_KILL_FOCUS(func) Process a wxEVT_KILL_FOCUS event.

See also

wxWindow::OnSetFocus (p. 945), wxWindow::OnKillFocus (p. 940), Event handling
overview (p. 1072)

wxFocusEvent::wxFocusEvent

 wxFocusEvent(WXTYPE eventType = 0, int id = 0)

Constructor.

wxFont

A font is an object which determines the appearance of text. Fonts are used for drawing
text to a device context, and setting the appearance of a window's text.

Derived from

wxGDIObject (p. 321)
wxObject (p. 555)

Include files

<wx/font.h>

Predefined objects

Objects:

wxNullFont

Pointers:

wxNORMAL_FONT
wxSMALL_FONT
wxITALIC_FONT
wxSWISS_FONT

See also

wxFont overview (p. 1043), wxDC::SetFont (p. 178), wxDC::DrawText (p. 172),
wxDC::GetTextExtent (p. 175), wxFontDialog (p. 295)

CHAPTER 4

286

wxFont::wxFont

 wxFont()

Default constructor.

 wxFont(int pointSize, int family, int style, int weight, const bool underline = FALSE,
const wxString& faceName = "", wxFontEncoding encoding =
wxFONTENCODING_DEFAULT)

Creates a font object (see font encoding overview (p. 1112) for the meaning of the last
parameter).

Parameters

pointSize
Size in points.

family
Font family, a generic way of referring to fonts without specifying actual facename.
One of:

wxDEFAULT Chooses a default font.
wxDECORATIVE A decorative font.
wxROMAN A formal, serif font.
wxSCRIPT A handwriting font.
wxSWISS A sans-serif font.
wxMODERN A fixed pitch font.

style
One of wxNORMAL, wxSLANT and wxITALIC.

weight
One of wxNORMAL, wxLIGHT and wxBOLD.

underline
The value can be TRUE or FALSE. At present this has an effect on Windows only.

faceName
An optional string specifying the actual typeface to be used. If the empty string, a
default typeface will chosen based on the family.

encoding
An encoding which may be one ofwxFONTENCODING_SYSTEM Default

system encoding.
wxFONTENCODING_DEFAULT Default application encoding: this is the

encoding set by calls to SetDefaultEncoding (p. 289)

CHAPTER 4

287

and which may be set to, say, KOI8 to create all fonts
by default with KOI8 encoding. Initially, the default
application encoding is the same as default system
encoding.

wxFONTENCODING_ISO8859_1...15ISO8859 encodings.
wxFONTENCODING_KOI8 The standard russian encoding for Internet.
wxFONTENCODING_CP1250...1252 Windows encodings similar to ISO8859 (but

not identical).
If the specified encoding isn't available, no font is
created.

Remarks

If the desired font does not exist, the closest match will be chosen. Under Windows, only
scaleable TrueType fonts are used.

Underlining only works under Windows at present.

See also wxDC::SetFont (p. 178), wxDC::DrawText (p. 172)and wxDC::GetTextExtent
(p. 175).

wxFont::~wxFont

 ~wxFont()

Destructor.

Remarks

The destructor may not delete the underlying font object of the native windowing system,
since wxFont uses a reference counting system for efficiency.

Although all remaining fonts are deleted when the application exits, the application
should try to clean up all fonts itself. This is because wxWindows cannot know if a
pointer to the font object is stored in an application data structure, and there is a risk of
double deletion.

wxFont::GetDefaultEncoding

static wxFontEncoding GetDefaultEncoding()

Returns the current applications default encoding.

See also

Font encoding overview (p. 1112), SetDefaultEncoding (p. 289)

CHAPTER 4

288

wxFont::GetFaceName

wxString GetFaceName() const

Returns the typeface name associated with the font, or the empty string if there is no
typeface information.

See also

wxFont::SetFaceName (p. 289)

wxFont::GetFamily

int GetFamily() const

Gets the font family. See wxFont::wxFont (p. 286) for a list of valid family identifiers.

See also

wxFont::SetFamily (p. 290)

wxFont::GetFontId

int GetFontId() const

Returns the font id, if the portable font system is in operation. See Font overview (p.
1043) for further details.

wxFont::GetPointSize

int GetPointSize() const

Gets the point size.

See also

wxFont::SetPointSize (p. 290)

wxFont::GetStyle

int GetStyle() const

Gets the font style. See wxFont::wxFont (p. 286) for a list of valid styles.

See also

CHAPTER 4

289

wxFont::SetStyle (p. 290)

wxFont::GetUnderlined

bool GetUnderlined() const

Returns TRUE if the font is underlined, FALSE otherwise.

See also

wxFont::SetUnderlined (p. 291)

wxFont::GetWeight

int GetWeight() const

Gets the font weight. See wxFont::wxFont (p. 286) for a list of valid weight identifiers.

See also

wxFont::SetWeight (p. 291)

wxFont::SetDefaultEncoding

static void SetDefaultEncoding(wxFontEncoding encoding)

Sets the default font encoding.

See also

Font encoding overview (p. 1112), GetDefaultEncoding (p. 287)

wxFont::SetFaceName

void SetFaceName(const wxString& faceName)

Sets the facename for the font.

Parameters

faceName
A valid facename, which should be on the end-user's system.

Remarks

To avoid portability problems, don't rely on a specific face, but specify the font family

CHAPTER 4

290

instead or as well. A suitable font will be found on the end-user's system. If both the
family and the facename are specified, wxWindows will first search for the specific face,
and then for a font belonging to the same family.

See also

wxFont::GetFaceName (p. 288), wxFont::SetFamily (p. 290)

wxFont::SetFamily

void SetFamily(int family)

Sets the font family.

Parameters

family
One of:

wxDEFAULT Chooses a default font.
wxDECORATIVE A decorative font.
wxROMAN A formal, serif font.
wxSCRIPT A handwriting font.
wxSWISS A sans-serif font.
wxMODERN A fixed pitch font.

See also

wxFont::GetFamily (p. 288), wxFont::SetFaceName (p. 289)

wxFont::SetPointSize

void SetPointSize(int pointSize)

Sets the point size.

Parameters

pointSize
Size in points.

See also

wxFont::GetPointSize (p. 288)

wxFont::SetStyle

CHAPTER 4

291

void SetStyle(int style)

Sets the font style.

Parameters

style
One of wxNORMAL, wxSLANT and wxITALIC.

See also

wxFont::GetStyle (p. 288)

wxFont::SetUnderlined

void SetUnderlined(const bool underlined)

Sets underlining.

Parameters

underlining
TRUE to underline, FALSE otherwise.

See also

wxFont::GetUnderlined (p. 289)

wxFont::SetWeight

void SetWeight(int weight)

Sets the font weight.

Parameters

weight
One of wxNORMAL, wxLIGHT and wxBOLD.

See also

wxFont::GetWeight (p. 289)

wxFont::operator =

wxFont& operator =(const wxFont& font)

CHAPTER 4

292

Assignment operator, using reference counting. Returns a reference to 'this'.

wxFont::operator ==

bool operator ==(const wxFont& font)

Equality operator. Two fonts are equal if they contain pointers to the same underlying
font data. It does not compare each attribute, so two indefontdently-created fonts using
the same parameters will fail the test.

wxFont::operator !=

bool operator !=(const wxFont& font)

Inequality operator. Two fonts are not equal if they contain pointers to different
underlying font data. It does not compare each attribute.

wxFontData

wxFontDialog overview (p. 1049)

This class holds a variety of information related to font dialogs.

Derived from

wxObject (p. 555)

Include files

<wx/cmndata.h>

See also

Overview (p. 1049), wxFontDialog (p. 295)

wxFontData::wxFontData

 wxFontData()

Constructor. Initializes fontColour to black, showHelp to black, allowSymbols to TRUE,
enableEffects to TRUE, minSize to 0 and maxSize to 0.

wxFontData::~wxFontData

CHAPTER 4

293

 ~wxFontData()

Destructor.

wxFontData::EnableEffects

void EnableEffects(bool enable)

Enables or disables 'effects' under MS Windows only. This refers to the controls for
manipulating colour, strikeout and underline properties.

The default value is TRUE.

wxFontData::GetAllowSymbols

bool GetAllowSymbols()

Under MS Windows, returns a flag determining whether symbol fonts can be selected.
Has no effect on other platforms.

The default value is TRUE.

wxFontData::GetColour

wxColour& GetColour()

Gets the colour associated with the font dialog.

The default value is black.

wxFontData::GetChosenFont

wxFont GetChosenFont()

Gets the font chosen by the user. If the user pressed OK (wxFontDialog::Show returned
TRUE), this returns a new font which is now 'owned' by the application, and should be
deleted if not required. If the user pressed Cancel (wxFontDialog::Show returned
FALSE) or the colour dialog has not been invoked yet, this will return NULL.

wxFontData::GetEnableEffects

bool GetEnableEffects()

Determines whether 'effects' are enabled under Windows. This refers to the controls for

CHAPTER 4

294

manipulating colour, strikeout and underline properties.

The default value is TRUE.

wxFontData::GetInitialFont

wxFont GetInitialFont()

Gets the font that will be initially used by the font dialog. This should have previously
been set by the application.

wxFontData::GetShowHelp

bool GetShowHelp()

Returns TRUE if the Help button will be shown (Windows only).

The default value is FALSE.

wxFontData::SetAllowSymbols

void SetAllowSymbols(bool allowSymbols)

Under MS Windows, determines whether symbol fonts can be selected. Has no effect on
other platforms.

The default value is TRUE.

wxFontData::SetChosenFont

void SetChosenFont(const wxFont& font)

Sets the font that will be returned to the user (for internal use only).

wxFontData::SetColour

void SetColour(const wxColour& colour)

Sets the colour that will be used for the font foreground colour.

The default colour is black.

wxFontData::SetInitialFont

CHAPTER 4

295

void SetInitialFont(const wxFont&font)

Sets the font that will be initially used by the font dialog.

wxFontData::SetRange

void SetRange(int min, int max)

Sets the valid range for the font point size (Windows only).

The default is 0, 0 (unrestricted range).

wxFontData::SetShowHelp

void SetShowHelp(bool showHelp)

Determines whether the Help button will be displayed in the font dialog (Windows only).

The default value is FALSE.

wxFontData::operator =

void operator =(const wxFontData& data)

Assingment operator for the font data.

wxFontDialog

This class represents the font chooser dialog.

Derived from

wxDialog (p. 193)
wxWindow (p. 915)
wxEvtHandler (p. 240)
wxObject (p. 555)

Include files

<wx/fontdlg.h>

See also

Overview (p. 1049), wxFontData (p. 292)

CHAPTER 4

296

wxFontDialog::wxFontDialog

 wxFontDialog(wxWindow* parent, wxFontData* data = NULL)

Constructor. Pass a parent window, and optionally a pointer to a block of font data,
which will be copied to the font dialog's font data.

wxFontDialog::~wxFontDialog

 ~wxFontDialog()

Destructor.

wxFontDialog::GetFontData

wxFontData& GetFontData()

Returns the font data (p. 292) associated with the font dialog.

wxFontDialog::ShowModal

int ShowModal()

Shows the dialog, returning wxID_OK if the user pressed Ok, and wxID_CANCEL
otherwise.

If the user cancels the dialog (ShowModal returns wxID_CANCEL), no font will be
created. If the user presses OK (ShowModal returns wxID_OK), a new wxFont will be
created and stored in the font dialog's wxFontData structure.

wxFontEnumerator

wxFontEnumerator enumerates either all available fonts on the system or only the ones
with given attributes - either only fixed-width (suited for use in programs such as terminal
emulators and the like) or the fonts available in the given encoding (p. 1112).

To do this, you just have to call one of EnumerateXXX() functions - either
EnumerateFacenames (p. 297) or EnumerateEncodings (p. 297) and the corresponding
callback (OnFacename (p. 298) orOnFontEncoding (p. 298)) will be called repeatedly
until either all fonts (satisfying the specified criteria) are exhausted or the callback
returns FALSE.

Virtual functions to override

Either OnFacename (p. 298) or OnFontEncoding (p. 298) should be overridden
depending on whether you plan to call EnumerateFacenames (p. 297) or

CHAPTER 4

297

EnumerateEncodings (p. 297). Of course, if you call both of them, you should override
both functions.

Derived from

None

Include files

<wx/fontenum.h>

See also

Font encoding overview (p. 1112), Font sample (p. 1025), wxFont (p. 285),
wxFontMapper (p. 299)

wxFontEnumerator::EnumerateFacenames

virtual bool EnumerateFacenames(wxFontEncoding encoding =
wxFONTENCODING_SYSTEM, bool fixedWidthOnly = FALSE)

Call OnFacename (p. 298) for each font which supports given encoding (only if it is not
wxFONTENCODING_SYSTEM) and is of fixed width (if fixedWidthOnly is TRUE).

Calling this function with default arguments will result in enumerating all fonts available
on the system.

wxFontEnumerator::EnumerateEncodings

virtual bool EnumerateEncodings(const wxString& font = "")

Call OnFontEncoding (p. 298) for each encoding supported by the given font - or for
each encoding supported by at least some font if font is not specified.

wxFontEnumerator::GetEncodings

wxArrayString* GetEncodings()

Return array of strings containing all encodings found by EnumerateEncodings (p. 297).
This is convenience function. It is based on default implementation of OnFontEncoding
(p. 298) so don't expect it to work if you overwrite that method.

wxFontEnumerator::GetFacenames

CHAPTER 4

298

wxArrayString* GetFacenames()

Return array of strings containing all facenames found by EnumerateFacenames (p.
297). This is convenience function. It is based on default implementation of
OnFacename (p. 298) so don't expect it to work if you overwrite that method.

wxFontEnumerator::OnFacename

virtual bool OnFacename(const wxString& font)

Called by EnumerateFacenames (p. 297) for each match. Return TRUE to continue
enumeration or FALSE to stop it.

wxFontEnumerator::OnFontEncoding

virtual bool OnFontEncoding(const wxString& font, const wxString& encoding)

Called by EnumerateEncodings (p. 297) for each match. Return TRUE to continue
enumeration or FALSE to stop it.

wxFontList

A font list is a list containing all fonts which have been created. There is only one
instance of this class: wxTheFontList. Use this object to search for a previously
created font of the desired type and create it if not already found. In some windowing
systems, the font may be a scarce resource, so it is best to reuse old resources if
possible. When an application finishes, all fonts will be deleted and their resources
freed, eliminating the possibility of 'memory leaks'.

Derived from

wxList (p. 446)
wxObject (p. 555)

Include files

<wx/gdicmn.h>

See also

wxFont (p. 285)

wxFontList::wxFontList

 wxFontList()

CHAPTER 4

299

Constructor. The application should not construct its own font list: use the object pointer
wxTheFontList.

wxFontList::AddFont

void AddFont(wxFont *font)

Used by wxWindows to add a font to the list, called in the font constructor.

wxFontList::FindOrCreateFont

wxFont * FindOrCreateFont(int point_size, int family, int style, int weight, bool
underline = FALSE, const wxString& facename = NULL)

Finds a font of the given specification, or creates one and adds it to the list. See the
wxFont constructor (p. 286) for details of the arguments.

wxFontList::RemoveFont

void RemoveFont(wxFont *font)

Used by wxWindows to remove a font from the list.

wxFontMapper

TODO.

wxFrame

A frame is a window whose size and position can (usually) be changed by the user. It
usually has thick borders and a title bar, and can optionally contain a menu bar, toolbar
and status bar. A frame can contain any window that is not a frame or dialog.

A frame that has a status bar and toolbar created via the
CreateStatusBar/CreateToolBar functions manages these windows, and adjusts the
value returned by GetClientSize to reflect the remaining size available to application
windows.

Derived from

wxWindow (p. 915)
wxEvtHandler (p. 240)
wxObject (p. 555)

Include files

CHAPTER 4

300

<wx/frame.h>

Window styles

wxICONIZE Display the frame iconized (minimized). Windows only.
wxCAPTION Puts a caption on the frame.
wxDEFAULT_FRAME_STYLE Defined as wxMINIMIZE_BOX |

wxMAXIMIZE_BOX | wxTHICK_FRAME |
wxSYSTEM_MENU | wxCAPTION.

wxMINIMIZE Identical to wxICONIZE. Windows only.
wxMINIMIZE_BOX Displays a minimize box on the frame.
wxMAXIMIZE Displays the frame maximized. Windows only.
wxMAXIMIZE_BOX Displays a maximize box on the frame.
wxSTAY_ON_TOP Stay on top of other windows. Windows only.
wxSYSTEM_MENU Displays a system menu.
wxTHICK_FRAME Displays a thick frame around the window. Windows and

Motif only.
wxSIMPLE_BORDER Displays no border or decorations. GTK and Windows only

(?).
wxRESIZE_BORDER Displays a resizeable border around the window (Unix

only).
wxFRAME_FLOAT_ON_PARENT Causes the frame to be above the parent window in

the z-order and not shown in the taskbar. Without this
style, frames are created as top-level windows that may be
obscured by the parent window, and frame titles are shown
in the taskbar. Windows only.

wxFRAME_TOOL_WINDOW Causes a frame with a small titlebar to be created;
the frame title does not appear in the taskbar. Windows
only.

See also window styles overview (p. 1093).

Remarks

An application should normally define an OnCloseWindow (p. 937) handler for the frame
to respond to system close events, for example so that related data and subwindows
can be cleaned up.

See also

wxMDIParentFrame (p. 490), wxMDIChildFrame (p. 485), wxMiniFrame (p. 528),
wxDialog (p. 193)

wxFrame::wxFrame

 wxFrame()

CHAPTER 4

301

Default constructor.

 wxFrame(wxWindow* parent, wxWindowID id, const wxString& title, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxDEFAULT_FRAME_STYLE, const wxString& name = "frame")

Constructor, creating the window.

Parameters

parent
The window parent. This may be NULL. If it is non-NULL, the frame will always be
displayed on top of the parent window on Windows.

id
The window identifier. It may take a value of -1 to indicate a default value.

title
The caption to be displayed on the frame's title bar.

pos
The window position. A value of (-1, -1) indicates a default position, chosen by
either the windowing system or wxWindows, depending on platform.

size
The window size. A value of (-1, -1) indicates a default size, chosen by either the
windowing system or wxWindows, depending on platform.

style
The window style. See wxFrame (p. 299).

name
The name of the window. This parameter is used to associate a name with the
item, allowing the application user to set Motif resource values for individual
windows.

Remarks

For Motif, MWM (the Motif Window Manager) should be running for any window styles to
work (otherwise all styles take effect).

See also

wxFrame::Create (p. 302)

wxFrame::~wxFrame

void ~wxFrame()

Destructor. Destroys all child windows and menu bar if present.

CHAPTER 4

302

wxFrame::Centre

void Centre(int direction = wxBOTH)

Centres the frame on the display.

Parameters

direction
The parameter may be wxHORIZONTAL, wxVERTICAL or wxBOTH.

wxFrame::Command

void Command(int id)

Simulate a menu command.

Parameters

id
The identifier for a menu item.

wxFrame::Create

bool Create(wxWindow* parent, wxWindowID id, const wxString& title, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxDEFAULT_FRAME_STYLE, const wxString& name = "frame")

Used in two-step frame construction. See wxFrame::wxFrame (p. 300) for further details.

wxFrame::CreateStatusBar

virtual wxStatusBar* CreateStatusBar(int number = 1, long style = 0, wxWindowID id
= -1, const wxString& name = "statusBar")

Creates a status bar at the bottom of the frame.

Parameters

number
The number of fields to create. Specify a value greater than 1 to create a multi-field
status bar.

style
The status bar style. See wxStatusBar (p. 748) for a list of valid styles.

CHAPTER 4

303

id
The status bar window identifier. If -1, an identifier will be chosen by wxWindows.

name
The status bar window name.

Return value

A pointer to the the status bar if it was created successfully, NULL otherwise.

Remarks

The width of the status bar is the whole width of the frame (adjusted automatically when
resizing), and the height and text size are chosen by the host windowing system.

By default, the status bar is an instance of wxStatusBar. To use a different class,
override wxFrame::OnCreateStatusBar (p. 306).

Note that you can put controls and other windows on the status bar if you wish.

See also

wxFrame::SetStatusText (p. 309), wxFrame::OnCreateStatusBar (p. 306),
wxFrame::GetStatusBar (p. 304)

wxFrame::CreateToolBar

virtual wxToolBar* CreateToolBar(long style = wxNO_BORDER |
wxTB_HORIZONTAL, wxWindowID id = -1, const wxString& name = "toolBar")

Creates a toolbar at the top or left of the frame.

Parameters

style
The toolbar style. See wxToolBar (p. 861) for a list of valid styles.

id
The toolbar window identifier. If -1, an identifier will be chosen by wxWindows.

name
The toolbar window name.

Return value

A pointer to the the toolbar if it was created successfully, NULL otherwise.

Remarks

CHAPTER 4

304

By default, the toolbar is an instance of wxToolBar (which is defined to be a suitable
toolbar class on each platform, such as wxToolBar95). To use a different class, override
wxFrame::OnCreateToolBar (p. 307).

When a toolbar has been created with this function, or made known to the frame with
wxFrame::SetToolBar (p. 310), the frame will manage the toolbar position and adjust the
return value from wxWindow::GetClientSize (p. 924) to reflect the available space for
application windows.

See also

wxFrame::CreateStatusBar (p. 302), wxFrame::OnCreateToolBar (p. 307),
wxFrame::SetToolBar (p. 310), wxFrame::GetToolBar (p. 304)

wxFrame::GetMenuBar

wxMenuBar* GetMenuBar() const

Returns a pointer to the menubar currently associated with the frame (if any).

See also

wxFrame::SetMenuBar (p. 309), wxMenuBar (p. 508), wxMenu (p. 499)

wxFrame::GetStatusBar

wxStatusBar* GetStatusBar()

Returns a pointer to the status bar currently associated with the frame (if any).

See also

wxFrame::CreateStatusBar (p. 302), wxStatusBar (p. 748)

wxFrame::GetTitle

wxString& GetTitle()

Gets a temporary pointer to the frame title. SeewxFrame::SetTitle (p. 310).

wxFrame::GetToolBar

wxToolBar* GetToolBar()

Returns a pointer to the toolbar currently associated with the frame (if any).

CHAPTER 4

305

See also

wxFrame::CreateToolBar (p. 303), wxToolBar (p. 861), wxFrame::SetToolBar (p. 310)

wxFrame::Iconize

void Iconize(const bool iconize)

Iconizes or restores the frame. Windows only.

Parameters

izonize
If TRUE, iconizes the frame; if FALSE, shows and restores it.

See also

wxFrame::IsIconized (p. 305), wxFrame::Maximize (p. 305).

wxFrame::IsIconized

bool IsIconized() const

Returns TRUE if the frame is iconized. Windows only.

wxFrame::IsMaximized

bool IsMaximized() const

Returns TRUE if the frame is maximized.

wxFrame::Maximize

void Maximize(const bool maximize)

Maximizes or restores the frame.

Parameters

maximize
If TRUE, maximizes the frame, otherwise it restores it

.

Remarks

This function only works under Windows.

CHAPTER 4

306

See also

wxFrame::Iconize (p. 305)

wxFrame::OnActivate

void OnActivate(wxActivateEvent& event)

Called when a window is activated or deactivated (MS Windows only). See also
wxActivateEvent (p. 5).

wxFrame::OnCreateStatusBar

virtual wxStatusBar* OnCreateStatusBar(int number, long style, wxWindowID id,
const wxString& name)

Virtual function called when a status bar is requested by wxFrame::CreateStatusBar (p.
302).

Parameters

number
The number of fields to create.

style
The window style. See wxStatusBar (p. 748) for a list of valid styles.

id
The window identifier. If -1, an identifier will be chosen by wxWindows.

name
The window name.

Return value

A status bar object.

Remarks

An application can override this function to return a different kind of status bar. The
default implementation returns an instance of wxStatusBar (p. 748).

See also

wxFrame::CreateStatusBar (p. 302), wxStatusBar (p. 748).

CHAPTER 4

307

wxFrame::OnCreateToolBar

virtual wxToolBar* OnCreateToolBar(long style, wxWindowID id, const wxString&
name)

Virtual function called when a toolbar is requested by wxFrame::CreateToolBar (p. 303).

Parameters

style
The toolbar style. See wxToolBar (p. 861) for a list of valid styles.

id
The toolbar window identifier. If -1, an identifier will be chosen by wxWindows.

name
The toolbar window name.

Return value

A toolbar object.

Remarks

An application can override this function to return a different kind of toolbar. The default
implementation returns an instance of wxToolBar (p. 861).

See also

wxFrame::CreateToolBar (p. 303), wxToolBar (p. 861).

wxFrame::OnMenuCommand

void OnMenuCommand(wxCommandEvent& event)

See wxWindow::OnMenuCommand (p. 941).

wxFrame::OnMenuHighlight

void OnMenuHighlight(wxMenuEvent& event)

See wxWindow::OnMenuHighlight (p. 941).

wxFrame::OnSize

void OnSize(wxSizeEvent& event)

CHAPTER 4

308

See wxWindow::OnSize (p. 945).

The default wxFrame::OnSize implementation looks for a single subwindow, and if one
is found, resizes it to fit inside the frame. Override this member if more complex
behaviour is required (for example, if there are several subwindows).

wxFrame::SetIcon

void SetIcon(const wxIcon& icon)

Sets the icon for this frame.

Parameters

icon
The icon to associate with this frame.

Remarks

The frame takes a 'copy' of icon, but since it uses reference counting, the copy is very
quick. It is safe to delete icon after calling this function.

Under Windows, instead of using SetIcon, you can add the following lines to your MS
Windows resource file:

wxSTD_MDIPARENTFRAME ICON icon1.ico
wxSTD_MDICHILDFRAME ICON icon2.ico
wxSTD_FRAME ICON icon3.ico

where icon1.ico will be used for the MDI parent frame, icon2.ico will be used for MDI
child frames, and icon3.ico will be used for non-MDI frames.

If these icons are not supplied, and SetIcon is not called either, then the following
defaults apply if you have included wx.rc.

wxDEFAULT_FRAME ICON std.ico
wxDEFAULT_MDIPARENTFRAME ICON mdi.ico
wxDEFAULT_MDICHILDFRAME ICON child.ico

You can replace std.ico, mdi.ico and child.ico with your own defaults for all your
wxWindows application. Currently they show the same icon.

Note: a wxWindows application linked with subsystem equal to 4.0 (i.e. marked as a
Windows 95 application) doesn't respond properly to wxFrame::SetIcon. To work around
this until a solution is found, mark your program as a 3.5 application. This will also
ensure that Windows provides small icons for the application automatically.

See also wxIcon (p. 395).

CHAPTER 4

309

wxFrame::SetMenuBar

void SetMenuBar(wxMenuBar* menuBar)

Tells the frame to show the given menu bar.

Parameters

menuBar
The menu bar to associate with the frame.

Remarks

If the frame is destroyed, the menu bar and its menus will be destroyed also, so do not
delete the menu bar explicitly (except by resetting the frame's menu bar to another frame
or NULL).

Under Windows, a call to wxFrame::OnSize (p. 307) is generated, so be sure to initialize
data members properly before calling SetMenuBar.

Note that it is not possible to call this function twice for the same frame object.

See also

wxFrame::GetMenuBar (p. 304), wxMenuBar (p. 508), wxMenu (p. 499).

wxFrame::SetStatusBar

void SetStatusBar(wxStatusBar* statusBar)

Associates a status bar with the frame.

See also

wxFrame::CreateStatusBar (p. 302), wxStatusBar (p. 748), wxFrame::GetStatusBar (p.
304)

wxFrame::SetStatusText

virtual void SetStatusText(const wxString& text, int number = 0)

Sets the status bar text and redraws the status bar.

Parameters

text
The text for the status field.

CHAPTER 4

310

number
The status field (starting from zero).

Remarks

Use an empty string to clear the status bar.

See also

wxFrame::CreateStatusBar (p. 302), wxStatusBar (p. 748)

wxFrame::SetStatusWidths

virtual void SetStatusWidths(int n, int *widths)

Sets the widths of the fields in the status bar.

Parameters

nThe number of fields in the status bar. It must be the same used in CreateStatusBar (p.
302).

widths
Must contain an array of n integers, each of which is a status field width in pixels. A
value of -1 indicates that the field is variable width; at least one field must be -1.
You should delete this array after calling SetStatusWidths.

Remarks

The widths of the variable fields are calculated from the total width of all fields, minus the
sum of widths of the non-variable fields, divided by the number of variable fields.

wxFrame::SetToolBar

void SetToolBar(wxToolBar* toolBar)

Associates a toolbar with the frame.

See also

wxFrame::CreateToolBar (p. 303), wxToolBar (p. 861), wxFrame::GetToolBar (p. 304)

wxFrame::SetTitle

virtual void SetTitle(const wxString& title)

Sets the frame title.

CHAPTER 4

311

Parameters

title
The frame title.

See also

wxFrame::GetTitle (p. 304)

wxFSFile

This class represents a single file opened by wxFileSystem (p. 275). It provides more
information than wxWindow's input stream (stream, filename, mime type, anchor).

Note: Any pointer returned by wxFSFile's member is valid only as long as wxFSFile
object exits. For example call to GetStream() doesn't create the stream but only returns
the pointer to it. In other words after 10 calls to GetStream() you'll obtain ten identical
pointers.

Derived from

wxObject

See Also

wxFileSystemHandler (p. 277), wxFileSystem (p. 275),Overview (p. 1116)

wxFSFile::wxFSFile

 wxFSFile(wxInputStream *stream, const wxString& loc, const wxString& mimetype,
const wxString& anchor)

Constructor. You probably won't use it. See Notes for details.

Parameters

stream
The input stream that will be used to access data

location
The full location (aka filename) of the file

mimetype
MIME type of this file. Mime type is either extension-based or HTTP Content-Type

anchor
Anchor. See GetAnchor() (p. 312) for details.

CHAPTER 4

312

If you aren't sure what do these params mean see description of GetXXXX() functions.

Notes

It is never used by end user but you'll need it if you're writing own virtual FS. For
example you may need something similar to wxMemoryInputStream but because
wxMemoryInputStream doesn't free the memory when destroyed and thus passing
memory stream pointer into wxFSFile constructor would lead to memory leaks, you can
write your own class derived from wxFSFile :

class wxMyFSFile : public wxFSFile
{
 private:
 void *m_Mem;
 public:
 wxMyFSFile(.....)

~wxMyFSFile() {free(m_Mem);}
 // of course dtor is virtual ;-)

};

wxFSFile::GetAnchor

const wxString& GetAnchor() const

Returns anchor (if present). The term of anchor can be easily explained using few
examples:

index.htm#anchor /* 'anchor' is anchor */
index/wx001.htm /* NO anchor here! */
archive/main.zip#zip:index.htm#global /* 'global' */
archive/main.zip#zip:index.htm /* NO anchor here! */

Usually anchor is presented only if mime type is 'text/html'. But it may have some
meaning with other files (for example myanim.avi#200 may refer to position in animation
or reality.wrl#MyView may refer to predefined view in VRML)

wxFSFile::GetLocation

const wxString& GetLocation() const

Returns full location of the file, including path and protocol. Examples :

http://www.wxwindows.org
http://www.ms.mff.cuni.cz/~vsla8348/wxhtml/archive.zip#zip:info.txt
file:/home/vasek/index.htm
relative-file.htm

wxFSFile::GetMimeType

CHAPTER 4

313

const wxString& GetMimeType() const

Returns MIME type of the content of this file. It is either extension-based (see
wxMimeTypesManager) or extracted from HTTP protocol Content-Type header.

wxFSFile::GetStream

wxInputStream* GetStream() const

Returns pointer to the stream. You can use the returned stream to directly access data.
You may suppose that the stream provide Seek and GetSize functionality (even in case
of HTTP protocol which doesn't provide this by default. wxHtml is using local cache to
workaround this and to speed up connection)

wxFTP

Derived from

wxProtocol (p. 619)

Include files

<wx/protocol/ftp.h>

See also

wxSocketBase (p. 705)

wxFTP::SendCommand

bool SendCommand(const wxString& command, char ret)

Send the specified command to the FTP server. ret specifies the expected result.

Return value

TRUE, if the command has been sent successfully, else FALSE.

wxFTP::GetLastResult

const wxString& GetLastResult()

Returns the last command result.

CHAPTER 4

314

wxFTP::ChDir

bool ChDir(const wxString& dir)

Change the current FTP working directory. Returns TRUE if successful.

wxFTP::MkDir

bool MkDir(const wxString& dir)

Create the specified directory in the current FTP working directory. Returns TRUE if
successful.

wxFTP::RmDir

bool RmDir(const wxString& dir)

Remove the specified directory from the current FTP working directory. Returns TRUE if
successful.

wxFTP::Pwd

wxString Pwd()

Returns the current FTP working directory.

wxFTP::Rename

bool Rename(const wxString& src, const wxString& dst)

Rename the specified src element to dst. Returns TRUE if successful.

wxFTP::RmFile

bool RmFile(const wxString& path)

Delete the file specified by path. Returns TRUE if successful.

wxFTP::SetUser

void SetUser(const wxString& user)

Sets the user name to be sent to the FTP server to be allowed to log in.

CHAPTER 4

315

Default value

The default value of the user name is "anonymous".

Remark

This parameter can be included in a URL if you want to use the URL manager. For
example, you can use: "ftp://a_user:a_password@a.host:service/a_directory/a_file" to
specify a user and a password.

wxFTP::SetPassword

void SetPassword(const wxString& passwd)

Sets the password to be sent to the FTP server to be allowed to log in.

Default value

The default value of the user name is your email address. For example, it could be
"username@userhost.domain". This password is built by getting the current user name
and the host name of the local machine from the system.

Remark

This parameter can be included in a URL if you want to use the URL manager. For
example, you can use: "ftp://a_user:a_password@a.host:service/a_directory/a_file" to
specify a user and a password.

wxFTP::GetList

wxList * GetList(const wxString& wildcard)

The GetList function is quite low-level. It returns the list of the files in the current
directory. The list can be filtered using the wildcard string. If wildcard is a NULL string, it
will return all files in directory.

The form of the list can change from one peer system to another. For example, for a
UNIX peer system, it will look like this:

-r--r--r-- 1 guilhem lavaux 12738 Jan 16 20:17 cmndata.cpp
-r--r--r-- 1 guilhem lavaux 10866 Jan 24 16:41 config.cpp
-rw-rw-rw- 1 guilhem lavaux 29967 Dec 21 19:17 cwlex_yy.c
-rw-rw-rw- 1 guilhem lavaux 14342 Jan 22 19:51 cwy_tab.c
-r--r--r-- 1 guilhem lavaux 13890 Jan 29 19:18 date.cpp
-r--r--r-- 1 guilhem lavaux 3989 Feb 8 19:18 datstrm.cpp

But on Windows system, it will look like this:

CHAPTER 4

316

winamp~1 exe 520196 02-25-1999 19:28 winamp204.exe
 1 file(s) 520 196 bytes

The list is a string list and one node corresponds to a line sent by the peer.

wxFTP::GetOutputStream

wxOutputStream * GetOutputStream(const wxString& file)

Initializes an output stream to the specified file. The returned stream has all but the seek
functionality of wxStreams. When the user finishes writing data, he has to delete the
stream to close it.

Return value

An initialized write-only stream.

See also

wxOutputStream (p. 559)

wxFTP::GetInputStream

wxInputStream * GetInputStream(const wxString& path)

Creates a new input stream on the the specified path. You can use all but seek
functionnality of wxStream. Seek isn't available on all stream. For example, http or ftp
streams doesn't deal with it. Other functions like Tell aren't available for the moment for
this sort of stream. You will be notified when the EOF is reached by an error.

Return value

Returns NULL if an error occured (it could be a network failure or the fact that the file
doesn't exist).

Returns the initialized stream. You will have to delete it yourself once you don't use it
anymore. The destructor close the DATA stream connection but will leave the
COMMAND stream connection opened. It means that you still can send new commands
without reconnecting.

Example of a standalone connection (without wxURL)

 wxFTP ftp;
 wxInputStream *in_stream;
 char *data;

 ftp.Connect("a.host.domain");
 ftp.ChDir("a_directory");
 in_stream = ftp.GetInputStream("a_file_to_get");

CHAPTER 4

317

 data = new char[in_stream->StreamSize()];

 in_stream->Read(data, in_stream->StreamSize());
 if (in_stream->LastError() != wxStream_NOERROR) {
 // Do something.
 }

 delete in_stream; /* Close the DATA connection */

 ftp.Close(); /* Close the COMMAND connection */

See also

wxInputStream (p. 425)

wxGauge

A gauge is a horizontal or vertical bar which shows a quantity (often time). There are no
user commands for the gauge.

Derived from

wxControl (p. 130)
wxWindow (p. 915)
wxEvtHandler (p. 240)
wxObject (p. 555)

Include files

<wx/gauge.h>

Window styles

wxGA_HORIZONTAL Creates a horizontal gauge.
wxGA_VERTICAL Creates a vertical gauge.
wxGA_PROGRESSBAR Under Windows 95, creates a horizontal progress bar.

See also window styles overview (p. 1093).

Event handling

wxGauge is read-only so generates no events.

See also

wxSlider (p. 696), wxScrollBar (p. 671)

wxGauge::wxGauge

CHAPTER 4

318

 wxGauge()

Default constructor.

 wxGauge(wxWindow* parent, wxWindowID id, int range, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxGA_HORIZONTAL, const wxValidator& validator = wxDefaultValidator, const
wxString& name = "gauge")

Constructor, creating and showing a gauge.

Parameters

parent
Window parent.

id
Window identifier.

range
Integer range (maximum value) of the gauge.

pos
Window position.

size
Window size.

style
Gauge style. See wxGauge (p. 317).

name
Window name.

Remarks

Under Windows 95, there are two different styles of gauge: normal gauge, and progress
bar (when the wxGA_PROGRESSBAR style is used). A progress bar is always
horizontal.

See also

wxGauge::Create (p. 319)

wxGauge::~wxGauge

 ~wxGauge()

Destructor, destroying the gauge.

CHAPTER 4

319

wxGauge::Create

bool Create(wxWindow* parent, wxWindowID id, int range, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxGA_HORIZONTAL, const wxValidator& validator = wxDefaultValidator, const
wxString& name = "gauge")

Creates the gauge for two-step construction. See wxGauge::wxGauge (p. 317) for
further details.

wxGauge::GetBezelFace

int GetBezelFace() const

Returns the width of the 3D bezel face.

Remarks

Windows only, not for wxGA_PROGRESSBAR.

See also

wxGauge::SetBezelFace (p. 320)

wxGauge::GetRange

int GetRange() const

Returns the maximum position of the gauge.

See also

wxGauge::SetRange (p. 320)

wxGauge::GetShadowWidth

int GetShadowWidth() const

Returns the 3D shadow margin width.

Remarks

Windows only, not for wxGA_PROGRESSBAR.

See also

CHAPTER 4

320

wxGauge::SetShadowWidth (p. 320)

wxGauge::GetValue

int GetValue() const

Returns the current position of the gauge.

See also

wxGauge::SetValue (p. 321)

wxGauge::SetBezelFace

void SetBezelFace(int width)

Sets the 3D bezel face width.

Remarks

Windows only, not for wxGA_PROGRESSBAR.

See also

wxGauge::GetBezelFace (p. 319)

wxGauge::SetRange

void SetRange(int range)

Sets the range (maximum value) of the gauge.

See also

wxGauge::GetRange (p. 319)

wxGauge::SetShadowWidth

void SetShadowWidth(int width)

Sets the 3D shadow width.

Remarks

Windows only, not for wxGA_PROGRESSBAR.

CHAPTER 4

321

wxGauge::SetValue

void SetValue(int pos)

Sets the position of the gauge.

Parameters

pos
Position for the gauge level.

See also

wxGauge::GetValue (p. 320)

wxGDIObject

This class allows platforms to implement functionality to optimise GDI objects, such as
wxPen, wxBrush and wxFont. On Windows, the underling GDI objects are a scarce
resource and are cleaned up when a usage count goes to zero. On some platforms this
class may not have any special functionality.

Since the functionality of this class is platform-specific, it is not documented here in
detail.

Derived from

wxObject (p. 555)

Include files

<wx/gdiobj.h>

See also

wxPen (p. 578), wxBrush (p. 60), wxFont (p. 285)

wxGDIObject::wxGDIObject

 wxGDIObject()

Default constructor.

wxGenericValidator

CHAPTER 4

322

wxGenericValidator performs data transfer (but not validation or filtering) for the following
basic controls: wxButton, wxCheckBox, wxListBox, wxStaticText, wxRadioButton,
wxRadioBox, wxChoice, wxComboBox, wxGauge, wxSlider, wxScrollBar, wxSpinButton,
wxTextCtrl, wxCheckListBox.

It checks the type of the window and uses an appropriate type for that window. For
example, wxButton and wxTextCtrl transfer data to and from a wxString variable;
wxListBox uses a wxArrayInt; wxCheckBox uses a bool.

For more information, please see Validator overview (p. 1103).

Derived from

wxValidator (p. 897)
wxEvtHandler (p. 240)
wxObject (p. 555)

Include files

<wx/valgen.h>

See also

Validator overview (p. 1103), wxValidator (p. 897),wxTextValidator (p. 841)

wxGenericValidator::wxGenericValidator

 wxGenericValidator(const wxGenericValidator& validator)

Copy constructor.

 wxGenericValidator(bool* valPtr)

Constructor taking a bool pointer. This will be used for wxCheckBox and wxRadioButton.

 wxGenericValidator(wxString* valPtr)

Constructor taking a wxString pointer. This will be used for wxButton, wxComboBox,
wxStaticText, wxTextCtrl.

 wxGenericValidator(int* valPtr)

Constructor taking an integer pointer. This will be used for wxGauge, wxScrollBar,
wxRadioBox, wxSpinButton, wxChoice.

 wxGenericValidator(wxArrayInt* valPtr)

Constructor taking a wxArrayInt pointer. This will be used for wxListBox,

CHAPTER 4

323

wxCheckListBox.

Parameters

validator
Validator to copy.

valPtr
A pointer to a variable that contains the value. This variable should have a lifetime
equal to or longer than the validator lifetime (which is usually determined by the
lifetime of the window).

wxGenericValidator::~wxGenericValidator

 ~wxGenericValidator()

Destructor.

wxGenericValidator::Clone

virtual wxValidator* Clone() const

Clones the generic validator using the copy constructor.

wxGenericValidator::TransferFromWindow

virtual bool TransferToWindow()

Transfers the value to the window.

wxGenericValidator::TransferToWindow

virtual bool TransferToWindow()

Transfers the window value to the appropriate data type.

wxGrid

wxGrid is a class for displaying and editing tabular information.

Derived from

wxPanel (p. 572)
wxWindow (p. 915)
wxEvtHandler (p. 240)
wxObject (p. 555)

CHAPTER 4

324

Include files

<wx/grid.h>

Window styles

There are no specific window styles for this class, but you may use different SetXXX()
functions to change the controls behaviour (for example, to enable in-place editing).

See also window styles overview (p. 1093).

See also

wxGrid classes overview (p. 1109)

wxGrid::wxGrid

void wxGrid(wxWindow* parent, wxWindowID id, const wxPoint& pos, const
wxSize& size, long style=0, const wxString& name="grid")

Constructor. Before using a wxGrid object, you must call CreateGrid to set up the
required rows and columns.

wxGrid::AdjustScrollbars

void AdjustScrollbars()

Call this function whenever a change has been made via the API that might alter the
scrollbar characteristics: particularly when adding or deleting rows, or changing row or
column dimensions. For example, removing rows might make it unnecessary to show
the vertical scrollbar.

wxGrid::AppendCols

bool AppendCols(int n=1, bool updateLabels=TRUE)

Appends n columns to the grid. If updateLabels is TRUE, the function OnChangeLabels
is called to give the application the opportunity to relabel.

wxGrid::AppendRows

bool AppendRows(int n=1, bool updateLabels=TRUE)

CHAPTER 4

325

Appends n rows to the grid. If updateLabels is TRUE, the function OnChangeLabels is
called to give the application the opportunity to relabel.

wxGrid::BeginBatch

void BeginBatch()

Start a BeginBatch/EndBatch pair between which, calls to SetCellValue or
SetCellBitmap will not cause a refresh. This allows you to speed up some operations (for
example, setting several hundred cell values). You can nest, but not overlap, these two
functions.

See also wxGrid::EndBatch (p. 326), wxGrid::GetBatchCount (p. 326).

wxGrid::CellHitTest

bool CellHitTest(int x, int y, int *row, int *col)

Returns TRUE if the x, y panel position coincides with a cell. If so, row and col are
returned.

wxGrid::CreateGrid

bool CreateGrid(int rows, int cols, wxString **cellValues=NULL, short *widths=NULL,
short defaultWidth=wxGRID_DEFAULT_CELL_WIDTH, short
defaultHeight=wxGRID_DEFAULT_CELL_HEIGHT)

Creates a grid rows high and cols wide. You can optionally specify an array of initial
values and widths, and/or default cell width and height.

Call this function after creating the wxGrid object.

wxPython note: Currently the cellValues and widths parameters don't exisit in the
wxPython version of this method. So in other words, the definition of the wxPython
version of this method looks like this:
 CreateGrid(rows, cols,
 defaultWidth = wxGRID_DEFAULT_CELL_WIDTH,
 defaultHeight = wxGRID_DEFAULT_CELL_HEIGHT)

wxGrid::CurrentCellVisible

bool CurrentCellVisible()

Returns TRUE if the currently selected cell is visible, FALSE otherwise.

CHAPTER 4

326

wxGrid::DeleteCols

bool DeleteCols(int pos=0, int n=1, bool updateLabels=TRUE)

Deletes n columns from the grid at position pos. If updateLabels is TRUE, the function
OnChangeLabels is called to give the application the opportunity to relabel.

wxGrid::DeleteRows

bool DeleteRows(int pos=0, int n=1, bool updateLabels=TRUE)

Deletes n rows from the grid at position pos. If updateLabels is TRUE, the function
OnChangeLabels is called to give the application the opportunity to relabel.

wxGrid::EndBatch

void EndBatch()

End a BeginBatch/EndBatch pair between which, calls to SetCellValue or SetCellBitmap
will not cause a refresh. This allows you to speed up some operations (for example,
setting several hundred cell values). You can nest, but not overlap, these two functions.

See also wxGrid::BeginBatch (p. 325), wxGrid::GetBatchCount (p. 326).

wxGrid::GetBatchCount

int GetBatchCount() const

Return the level of batch nesting. This is initially zero, and will be incremented every time
BeginBatch is called, and decremented when EndBatch is called. When the batch count
is more zero, some functions (such as SetCellValue and SetCellBitmap) will not refresh
the cell.

See also wxGrid::BeginBatch (p. 325), wxGrid::EndBatch (p. 326).

wxGrid::GetCell

wxGridCell * GetCell(int row, int col) const

Returns the grid cell object associated with this position.

wxGenericGrid implementation only.

wxGrid::GetCellAlignment

CHAPTER 4

327

int GetCellAlignment(int row, int col) const

int GetCellAlignment() const

Sets the text alignment for the cell at the given position, or the global alignment value.
The return value is wxLEFT, wxRIGHT or wxCENTRE.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

GetCellAlignment(row, col)
GetDefCellAlignment()

wxGrid::GetCellBackgroundColour

wxColour& GetCellBackgroundColour(int row, int col) const

wxColour& GetCellBackgroundColour() const

Gets the background colour for the cell at the given position, or the global background
colour.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

GetCellBackgroundColour(row, col)
GetDefCellBackgroundColourt()

wxGrid::GetCells

wxGridCell *** GetCells() const

Returns the array of grid cell object associated with this wxGrid.

wxGrid::GetCellTextColour

wxColour& GetCellTextColour(int row, int col) const

wxColour& GetCellTextColour() const

Gets the text colour for the cell at the given position, or the global text colour.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

CHAPTER 4

328

GetCellTextColour(row, col)
GetDefCellTextColour()

wxGrid::GetCellTextFont

const wxFont& GetCellTextFont(int row, int col) const

wxFont& GetCellTextFont() const

Gets the text font for the cell at the given position, or the global text font.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

GetCellTextFont(row, col)
GetDefCellTextFont()

wxGrid::GetCellValue

wxString& GetCellValue(int row, int col) const

Returns the cell value at the given position.

wxGrid::GetCols

int GetCols() const

Returns the number of columns in the grid.

wxGrid::GetColumnWidth

int GetColumnWidth(int col) const

Gets the width in pixels for column col.

wxGrid::GetCurrentRect

wxRectangle * GetCurrentRect() const

Returns a pointer to the rectangle enclosing the currently selected cell. Do not delete this
pointer.

CHAPTER 4

329

wxGrid::GetCursorColumn

int GetCursorColumn() const

Returns the column position of the currently selected cell.

wxGrid::GetCursorRow

int GetCursorRow() const

Returns the row position of the currently selected cell.

wxGrid::GetEditable

bool GetEditable() const

Returns TRUE if the grid cells can be edited.

wxGrid::GetEditInPlace

bool GetEditInPlace() const

Returns TRUE if editing in-place is enabled.

wxGrid::GetHorizScrollBar

wxScrollBar * GetHorizScrollBar() const

Returns a pointer to the horizontal scrollbar.

wxGrid::GetLabelAlignment

int GetLabelAlignment(int orientation) const

Gets the row or column label alignment. orientation should be wxHORIZONTAL to
specify column label, wxVERTICAL to specify row label. alignment should be
wxCENTRE, wxLEFT or wxRIGHT.

wxGrid::GetLabelBackgroundColour

wxColour& GetLabelBackgroundColour() const

Gets a row and column label text colour.

CHAPTER 4

330

wxGrid::GetLabelSize

int GetLabelSize(int orientation) const

Gets the row label height, or column label width, in pixels. orientation should be
wxHORIZONTAL to specify column label, wxVERTICAL to specify row label.

wxGrid::GetLabelTextColour

wxColour& GetLabelTextColour() const

Gets a row and column label text colour.

wxGrid::GetLabelTextFont

wxFont& GetLabelTextFont() const

Gets the font to be used for the row and column labels.

wxGrid::GetLabelValue

wxString& GetLabelValue(int orientation, int pos) const

Gets a row or column label value. orientation should be wxHORIZONTAL to specify
column label, wxVERTICAL to specify row label. pos is the label position.

wxGrid::GetRowHeight

int GetRowHeight(int row) const

Gets the height in pixels for row row.

wxGrid::GetRows

int GetRows() const

Returns the number of rows in the grid.

wxGrid::GetScrollPosX

int GetScrollPosX() const

CHAPTER 4

331

Returns the column scroll position.

wxGrid::GetScrollPosY

int GetScrollPosY() const

Returns the row scroll position.

wxGrid::GetTextItem

wxText * GetTextItem() const

Returns a pointer to the text item used for entering text into a cell.

wxGrid::GetVertScrollBar

wxScrollBar * GetVertScrollBar() const

Returns a pointer to the vertical scrollbar.

wxGrid::InsertCols

bool InsertCols(int pos=0, int n=1, bool updateLabels=TRUE)

Inserts n number of columns before position pos. If updateLabels is TRUE, the function
OnChangeLabels is called to give the application the opportunity to relabel.

wxGrid::InsertRows

bool InsertRows(int pos=0, int n=1, bool updateLabels=TRUE)

Inserts n number of rows before position pos. If updateLabels is TRUE, the function
OnChangeLabels is called to give the application the opportunity to relabel.

wxGrid::OnActivate

void OnActivate(bool active)

Sets the text item to have the focus. Call this function when the wxGrid window should
have the focus, for example from wxFrame::OnActivate.

wxGrid::OnChangeLabels

CHAPTER 4

332

void OnChangeLabels()

Called when rows and columns are created or deleted, to allow the application an
opportunity to update the labels. By default, columns are labelled alphabetically, and
rows numerically.

wxGrid::OnChangeSelectionLabel

void OnChangeSelectionLabel()

Called when a cell is selected, to allow the application an opportunity to update the
selection label (the label of the wxText item used for entering cell text). By default, the
cell column letter and row number are concatenated to form the selection label.

wxGrid::OnCreateCell

wxGridCell * OnCreateCell()

Override this virtual function if you want to replace the normal wxGridCell with a derived
class.

wxGrid::OnCellLeftClick

void OnLeftClick(int row, int col, int x, int y, bool control, bool shift)

Virtual function called when the left button is depressed within a cell, just after
OnSelectCell is called.

wxGrid::OnCellRightClick

void OnRightClick(int row, int col, int x, int y, bool control, bool shift)

Virtual function called when the right button is depressed within a cell, just after
OnSelectCell is called.

wxGrid::OnLabelLeftClick

void OnLeftClick(int row, int col, int x, int y, bool control, bool shift)

Virtual function called when the left button is depressed within a label.

row will be -1 if the click is in the top labels.

col will be -1 if the click is in the left labels.

CHAPTER 4

333

row and col will be -1 if the click is in the upper left corner.

wxGrid::OnLabelRightClick

void OnRightClick(int row, int col, int x, int y, bool control, bool shift)

Virtual function called when the right button is depressed within a label.

row will be -1 if the click is in the top labels.

col will be -1 if the click is in the left labels.

row and col will be -1 if the click is in the upper left corner.

wxGrid::OnSelectCell

void OnSelectCell(int row, int col)

Virtual function called when the user left-clicks on a cell.

wxGrid::OnSelectCellImplementation

void OnSelectCellImplementation(wxDC *dc, int row, int col)

Virtual function called when the user left-clicks on a cell. If you override this function, call
wxGrid::OnSelectCell to apply the default behaviour.

wxGrid::SetCellAlignment

void SetCellAlignment(int alignment, int row, int col)

void SetCellAlignment(int alignment)

Sets the text alignment for the cell at the given position, or for the whole grid. alignment
may be wxLEFT, wxRIGHT or wxCENTRE.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

SetCellAlignment(alignment, row, col)
SetDefCellAlignment(alignment)

wxGrid::SetCellBackgroundColour

CHAPTER 4

334

void SetCellBackgroundColour(const wxColour& colour, int row, int col)

void SetCellBackgroundColour(const wxColour& colour)

Sets the background colour for the cell at the given position, or for the whole grid.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

SetCellBackgroundColour(colour, row, col)
SetDefCellBackgroundColour(colour)

wxGrid::SetCellTextColour

void SetCellTextColour(const wxColour& colour, int row, int col)

void SetCellTextColour(const wxColour& colour)

Sets the text colour for the cell at the given position, or for the whole grid.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

SetCellTextColour(colour, row, col)
SetDefCellTextColour(colour)

wxGrid::SetCellTextFont

void SetCellTextFont(const wxFont& font, int row, int col)

void SetCellTextFont(const wxFont& font)

Sets the text font for the cell at the given position, or for the whole grid.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

SetCellTextFont(font, row, col)
SetDefCellTextFont(font)

wxGrid::SetCellValue

void SetCellValue(const wxString& val, int row, int col)

CHAPTER 4

335

Sets the cell value at the given position.

wxGrid::SetColumnWidth

void SetColumnWidth(int col, int width)

Sets the width in pixels for column col.

wxGrid::SetDividerPen

void SetDividerPen(const wxPen& pen)

Specifies the pen to be used for drawing the divisions between cells. The default is a
light grey. If NULL is specified, the divisions will not be drawn.

wxGrid::SetEditable

void SetEditable(bool editable)

If editable is TRUE (the default), the grid cells will be editable by means of the text edit
control. If FALSE, the text edit control will be hidden and the user will not be able to edit
the cell contents.

wxGrid::SetEditInPlace

void SetEditInPlace(bool edit = TRUE)

Enables (if edit is TRUE, default value) or disables in-place editing. When it is enabled,
the cells contents can be changed by typing text directly in the cell.

wxGrid::SetGridCursor

void SetGridCursor(int row, int col)

Sets the position of the selected cell.

wxGrid::SetLabelAlignment

void SetLabelAlignment(int orientation, int alignment)

Sets the row or column label alignment. orientation should be wxHORIZONTAL to
specify column label, wxVERTICAL to specify row label. alignment should be
wxCENTRE, wxLEFT or wxRIGHT.

CHAPTER 4

336

wxGrid::SetLabelBackgroundColour

void SetLabelBackgroundColour(const wxColour& value)

Sets a row or column label background colour.

wxGrid::SetLabelSize

void SetLabelSize(int orientation, int size)

Sets the row label height, or column label width, in pixels. orientation should be
wxHORIZONTAL to specify column label, wxVERTICAL to specify row label.

If a dimension of zero is specified, the row or column labels will not be shown.

wxGrid::SetLabelTextColour

void SetLabelTextColour(const wxColour& value)

Sets a row and column label text colour.

wxGrid::SetLabelTextFont

void SetLabelTextFont(const wxFont& font)

Sets the font to be used for the row and column labels.

wxGrid::SetLabelValue

void SetLabelValue(int orientation, const wxString& value, int pos)

Sets a row or column label value. orientation should be wxHORIZONTAL to specify
column label, wxVERTICAL to specify row label. pos is the label position.

wxGrid::SetRowHeight

void SetRowHeight(int row, int height)

Sets the height in pixels for row row.

wxGrid::UpdateDimensions

void UpdateDimensions()

CHAPTER 4

337

Call this function whenever a change has been made via the API that might alter size
characteristics. You may also need to follow it with a call to AdjustScrollbars.

wxHashTable

This class provides hash table functionality for wxWindows, and for an application if it
wishes. Data can be hashed on an integer or string key.

Derived from

wxObject (p. 555)

Include files

<wx/hash.h>

Example

Below is an example of using a hash table.

 wxHashTable table(KEY_STRING);

 wxPoint *point = new wxPoint(100, 200);
 table.Put("point 1", point);

 wxPoint *found_point = (wxPoint *)table.Get("point 1");

A hash table is implemented as an array of pointers to lists. When no data has been
stored, the hash table takes only a little more space than this array (default size is 1000).
When a data item is added, an integer is constructed from the integer or string key that
is within the bounds of the array. If the array element is NULL, a new (keyed) list is
created for the element. Then the data object is appended to the list, storing the key in
case other data objects need to be stored in the list also (when a 'collision' occurs).

Retrieval involves recalculating the array index from the key, and searching along the
keyed list for the data object whose stored key matches the passed key. Obviously this
is quicker when there are fewer collisions, so hashing will become inefficient if the
number of items to be stored greatly exceeds the size of the hash table.

See also

wxList (p. 446)

wxHashTable::wxHashTable

CHAPTER 4

338

 wxHashTable(unsigned int key_type, int size = 1000)

Constructor. key_type is one of wxKEY_INTEGER, or wxKEY_STRING, and indicates
what sort of keying is required. size is optional.

wxHashTable::~wxHashTable

 ~wxHashTable()

Destroys the hash table.

wxHashTable::BeginFind

void BeginFind()

The counterpart of Next. If the application wishes to iterate through all the data in the
hash table, it can call BeginFind and then loop on Next.

wxHashTable::Clear

void Clear()

Clears the hash table of all nodes (but as usual, doesn't delete user data).

wxHashTable::Delete

wxObject * Delete(long key)

wxObject * Delete(const wxString& key)

Deletes entry in hash table and returns the user's data (if found).

wxHashTable::Get

wxObject * Get(long key)

wxObject * Get(const wxString& key)

Gets data from the hash table, using an integer or string key (depending on which has
table constructor was used).

wxHashTable::MakeKey

long MakeKey(const wxString& string)

CHAPTER 4

339

Makes an integer key out of a string. An application may wish to make a key explicitly
(for instance when combining two data values to form a key).

wxHashTable::Next

wxNode * Next()

If the application wishes to iterate through all the data in the hash table, it can call
BeginFind and then loop on Next. This function returns a wxNode pointer (or NULL if
there are no more nodes). See the description for wxNode (p. 544). The user will
probably only wish to use thewxNode::Data function to retrieve the data; the node may
also be deleted.

wxHashTable::Put

void Put(long key, wxObject *object)

void Put(const wxString& key, wxObject *object)

Inserts data into the hash table, using an integer or string key (depending on which has
table constructor was used). The key string is copied and stored by the hash table
implementation.

wxHelpController

This is a family of classes by which applications may invoke a help viewer to provide on-
line help.

A help controller allows an application to display help, at the contents or at a particular
topic, and shut the help program down on termination. This avoids proliferation of many
instances of the help viewer whenever the user requests a different topic via the
application's menus or buttons.

Typically, an application will create a help controller instance when it starts, and
immediately call Initialize to associate a filename with it. The help viewer will only get
run, however, just before the first call to display something.

Most help controller classes actually derive from wxHelpControllerBase and have names
of the form wxXXXHelpController or wxHelpControllerXXX. An appropriate class is
aliased to the name wxHelpController for each platform, as follows:

• On Windows, wxWinHelpController is used.
• On all other platforms, wxHelpControllerHtml is used if wxHTML is compiled into

wxWindows; otherwise wxExtHelpController is used (for invoking an external
browser).

The remaining help controller classess need to be named explicitly by an application that

CHAPTER 4

340

wishes to make use of them.

There are currently the following help controller classes defined:

• wxWinHelpController, for controlling Windows Help.
• wxExtHelpController, for controlling external browsers under Unix. The default

browser is Netscape Navigator. The 'help' sample shows its use.
• wxHelpControllerHtml, using wxHTML (p. 1) to display help. The API for this

class is reasonably close to the wxWindows help controller API; see
wx/helpwxht.h for details of use.

• wxHtmlHelpController (p. 361), a more sophisticated help controller using
wxHTML (p. 1), in a similar style to the Windows HTML Help viewer and using
some of the same files. The API is not the same as the standard API, which is
why it is documented separately.

• wxXLPHelpController, for controlling wxHelp (from wxWindows 1). Obsolete.

Derived from

wxHelpControllerBase
wxObject (p. 555)

Include files

<wx/help.h> (wxWindows chooses the appropriate help controller class)
<wx/helpbase.h> (wxHelpControllerBase class)
<wx/helpwin.h> (Windows Help controller)
<wx/generic/helpext.h> (external HTML browser controller) <wx/generic/helpwxht.h>
(wxHTML based help controller) <wx/generic/helpxlp.h> (wxHelp controller)

See also

wxHtmlHelpController (p. 361), wxHTML (p. 1)

wxHelpController::wxHelpController

 wxHelpController()

Constructs a help instance object, but does not invoke the help viewer.

wxHelpController::~wxHelpController

 ~wxHelpController()

Destroys the help instance, closing down the viewer if it is running.

CHAPTER 4

341

wxHelpController::Initialize

virtual void Initialize(const wxString& file)

virtual void Initialize(const wxString& file, int server)

Initializes the help instance with a help filename, and optionally a server (socket) number
if using wxHelp. Does not invoke the help viewer. This must be called directly after the
help instance object is created and before any attempts to communicate with the viewer.

You may omit the file extension and a suitable one will be chosen.

wxHelpController::DisplayBlock

virtual bool DisplayBlock(long blockNo)

If the help viewer is not running, runs it and displays the file at the given block number.

wxHelp: this is the wxHelp block number.

WinHelp: Refers to the context number.

External HTML help: the same as for wxHelpController::DisplaySection (p. 341).

wxHelpController::DisplayContents

virtual bool DisplayContents()

If the help viewer is not running, runs it and displays the contents.

wxHelpController::DisplaySection

virtual bool DisplaySection(int sectionNo)

If the help viewer is not running, runs it and displays the given section.

wxHelp: Sections are numbered starting from 1. Section numbers may be viewed by
running wxHelp in edit mode.

WinHelp: sectionNo is a context id.

External HTML help/wxHTML based help: wxExtHelpController and
wxHelpControllerHtml implement sectionNo as an id in a map file, which is of the form:

0 wx.html ; Index
1 wx34.html#classref ; Class reference
2 wx204.html ; Function reference

CHAPTER 4

342

wxHelpController::KeywordSearch

virtual bool KeywordSearch(const wxString& keyWord)

If the help viewer is not running, runs it, and searches for sections matching the given
keyword. If one match is found, the file is displayed at this section.

wxHelp: If more than one match is found, the Search dialog is displayed with the
matches.

WinHelp: If more than one match is found, the first topic is displayed.

External HTML help: If more than one match is found, a choice of topics is displayed.

wxHelpController::LoadFile

virtual bool LoadFile(const wxString& file = "")

If the help viewer is not running, runs it and loads the given file. If the filename is not
supplied or is NULL, the file specified in Initialize is used. If the viewer is already
displaying the specified file, it will not be reloaded. This member function may be used
before each display call in case the user has opened another file.

wxHelpController::SetViewer

virtual void SetViewer(const wxString& viewer, long flags)

Sets detailed viewer information. So far this is only relevant to wxExtHelpController.

wxHelpController::SetFrameParameters

virtual void SetFrameParameters(const wxString & title, const wxSize & size, const
wxPoint & pos = wxDefaultPosition, bool newFrameEachTime = FALSE)

For the wxHelpControllerHtml, this allows the application to set the default frame title,
size and position for the frame. If the title contains %s, this will be replaced with the page
title. If the parammeter newFrameEachTime is set, the controller will open a new help
frame each time it is called. For all other help controllers this function has no effect.

wxHelpController::GetFrameParameters

virtual wxFrame * GetFrameParameters(const wxSize * size = NULL, const wxPoint
* pos = NULL, bool *newFrameEachTime = NULL)This reads the current settings for the
help frame in the case of the wxHelpControllerHtml, setting the frame size, position and
the newFrameEachTime parameters to the last values used. It also returns the pointer to

CHAPTER 4

343

the last opened help frame. This can be used for example, to automatically close the
help frame on program shutdown. For all other help controllers, this function does
nothing and just returns NULL.

Parameters

viewer
This defaults to "netscape" for wxExtHelpController.

flags
This defaults to wxHELP_NETSCAPE for wxExtHelpController, indicating that the
viewer is a variant of Netscape Navigator.

wxHelpController::OnQuit

virtual bool OnQuit()

Overridable member called when this application's viewer is quit by the user.

This does not work for all help controllers.

wxHelpController::Quit

virtual bool Quit()

If the viewer is running, quits it by disconnecting.

For Windows Help, the viewer will only close if no other application is using it.

wxHtmlCell

Internal data structure. It represents fragments of parsed HTML page, the so-called cell
- a word, picture, table, horizontal line and so on. It is used by wxHtmlWindow (p. 382)
and wxHtmlWinParser (p. 387) to represent HTML page in memory.

You can divide cells into two groups : visible cells with non-zero width and height and
helper cells (usually with zero width and height) that perform special actions such as
color or font change.

Derived from

wxObject

See Also

Cells Overview (p. 4),wxHtmlContainerCell (p. 349)

CHAPTER 4

344

wxHtmlCell::wxHtmlCell

 wxHtmlCell()

Constructor.

wxHtmlCell::AdjustPagebreak

virtual bool AdjustPagebreak(int * pagebreak)

This method is used to adjust pagebreak position. The parameter is variable that
contains y-coordinate of page break (= horizontal line that should not be crossed by
words, images etc.). If this cell cannot be divided into two pieces (each one on another
page) then it moves the pagebreak few pixels up.

Returns TRUE if pagebreak was modified, FALSE otherwise

Usage:
while (container->AdjustPagebreak(&p)) {}

wxHtmlCell::Draw

virtual void Draw(wxDC& dc, int x, int y, int view_y1, int view_y2)

Renders the cell.

Parameters

dc
Device context to which the cell is to be drawn

x,y
Coordinates of parent's upper left corner (origin). You must add this to
m_PosX,m_PosY when passing coordinates to dc's methods Example : dc ->
DrawText("hello", x + m_PosX, y + m_PosY)

view_y1
y-coord of the first line visible in window. This is used to optimize rendering speed

view_y2
y-coord of the last line visible in window. This is used to optimize rendering speed

wxHtmlCell::DrawInvisible

virtual void DrawInvisible(wxDC& dc, int x, int y)

CHAPTER 4

345

This method is called instead of Draw (p. 344) when the cell is certainly out of the screen
(and thus invisible). This is not nonsense - some tags (like wxHtmlColourCell (p. 348)or
font setter) must be drawn even if they are invisible!

Parameters

dc
Device context to which the cell is to be drawn

x,y
Coordinates of parent's upper left corner. You must add this to m_PosX,m_PosY
when passing coordinates to dc's methods Example : dc ->
DrawText("hello", x + m_PosX, y + m_PosY)

wxHtmlCell::Find

virtual const wxHtmlCell* Find(int condition, const void* param)

Returns pointer to itself if this cell matches condition (or if any of the cells following in the
list matches), NULL otherwise. (In other words if you call top-level container's Find it will
return pointer to the first cell that matches the condition)

It is recommended way how to obtain pointer to particular cell or to cell of some type
(e.g. wxHtmlAnchorCell reacts on HTML_COND_ISANCHOR condition)

Parameters

condition
Unique integer identifier of condition

param
Optional parameters

Defined conditions

HTML_COND_ISANCHOR Finds particular anchor. param is pointer to wxString with
name of the anchor.

HTML_COND_USER User-defined conditions start from this number.

wxHtmlCell::GetDescent

int GetDescent() const

Returns descent value of the cell (m_Descent member). See explanation:

CHAPTER 4

346

wxHtmlCell::GetHeight

int GetHeight() const

Returns height of the cell (m_Height member).

wxHtmlCell::GetLink

virtual wxString GetLink(int x = 0, int y = 0) const

Returns hypertext link if associated with this cell or empty string otherwise. (Note: this
makes sense only for visible tags).

Parameters

x,y
Coordinates of position where the user pressed mouse button. These coordinates
are used e.g. by COLORMAP. Values are relative to the upper left corner of THIS
cell (i.e. from 0 to m_Width or m_Height)

wxHtmlCell::GetNext

wxHtmlCell* GetNext() const

Returns pointer to the next cell in list (see htmlcell.h if you're interested in details).

wxHtmlCell::GetParent

wxHtmlContainerCell* GetParent() const

Returns pointer to parent container.

wxHtmlCell::GetPosX

CHAPTER 4

347

int GetPosX() const

Returns X position within parent (the value is relative to parent's upper left corner). The
returned value is meaningful only if parent's Layout (p. 347) was called before!

wxHtmlCell::GetPosY

int GetPosY() const

Returns Y position within parent (the value is relative to parent's upper left corner). The
returned value is meaningful only if parent's Layout (p. 347) was called before!

wxHtmlCell::GetWidth

int GetWidth() const

Returns width of the cell (m_Width member).

wxHtmlCell::Layout

virtual void Layout(int w)

This method performs 2 actions:

1. adjusts cell's width according to the fact that maximal possible width is w. (this
has sense when working with horizontal lines, tables etc.)

2. prepares layout (=fill-in m_PosX, m_PosY (and sometimes m_Height) members)
based on actual width w

It must be called before displaying cells structure because m_PosX and m_PosY are
undefined (or invalid) before calling Layout.

wxHtmlCell::OnMouseClick

virtual void OnMouseClick(wxWindow* parent, int x, int y, bool left, bool middle,
bool right)

This function is simple event handler. Each time user clicks mouse button over a cell
within wxHtmlWindow (p. 382) this method of that cell is called. Default behavior is that it
calls wxHtmlWindow::LoadPage (p. 384).

Note

If you need more "advanced" behaviour (for example you'd like to catch mouse
movement events or key events or whatsoever) you should use wxHtmlBinderCell
instead.

CHAPTER 4

348

Parameters

parent
parent window (always wxHtmlWindow!)

x, y
coordinates of mouse click (this is relative to cell's origin

left, middle, right
boolean flags for mouse buttons. TRUE if the left/middle/right button is pressed,
FALSE otherwise

wxHtmlCell::SetLink

void SetLink(const wxString& link)

Sets the hypertext link asocciated with this cell. (Default value is wxEmptyString (no
link))

wxHtmlCell::SetNext

void SetNext(wxHtmlCell *cell)

Sets the next cell in the list. This shouldn't be called by user - it is to be used only by
wxHtmlContainerCell::InsertCell (p. 350)

wxHtmlCell::SetParent

void SetParent(wxHtmlContainerCell *p)

Sets parent container of this cell. This is called fromwxHtmlContainerCell::InsertCell (p.
350).

wxHtmlCell::SetPos

void SetPos(int x, int y)

Sets the cell's position within parent container.

wxHtmlColourCell

This cell changes color of either background or foreground.

Derived from

CHAPTER 4

349

wxHtmlCell (p. 343)

wxHtmlColourCell::wxHtmlColourCell

 wxHtmlColourCell(wxColour clr, int flags = HTML_CLR_FOREGROUND)

Constructor.

Parameters

clr
The color

flags
Can be one of following:

HTML_CLR_FOREGROUND change color of text
HTML_CLR_BACKGROUND change background color

wxHtmlContainerCell

The wxHtmlContainerCell class is an implementation of a cell that may contain more
cells in it. It is heavily used in the wxHTML layout algorithm.

Derived from

wxHtmlCell (p. 343)

See Also

Cells Overview (p. 4)

wxHtmlContainerCell::wxHtmlContainerCell

 wxHtmlContainerCell(wxHtmlContainerCell *parent)

Constructor. parent is pointer to parent container or NULL.

wxHtmlContainerCell::GetAlignHor

int GetAlignHor() const

CHAPTER 4

350

Returns container's horizontal alignment.

wxHtmlContainerCell::GetAlignVer

int GetAlignVer() const

Returns container's vertical alignment.

wxHtmlContainerCell::GetFirstCell

wxHtmlCell* GetFirstCell()

Returns pointer to the first cell in the list. You can then use wxHtmlCell's GetNext
method to obtain pointer to the next cell in list.

Note: This shouldn't be used by the end user. If you need some way of finding particular
cell in the list, try Find (p. 345) method instead.

wxHtmlContainerCell::GetIndent

int GetIndent(int ind) const

Returns the indentation. ind is one of the HTML_INDENT_* constants.

Note: You must call GetIndentUnits (p. 350)with same ind parameter in order to
correctly interpret the returned integer value. It is NOT always in pixels!

wxHtmlContainerCell::GetIndentUnits

int GetIndentUnits(int ind) const

Returns the units of indentation for ind where ind is one of the HTML_INDENT_*
constants.

wxHtmlContainerCell::GetMaxLineWidth

int GetMaxLineWidth() const

Returns width of widest line (note : this may be more than GetWidth()!! E.g. if you have
640x480 image and the wxHtmlWindow is only 100x100...)

Call to this method is valid only after calling Layout (p. 347)

wxHtmlContainerCell::InsertCell

CHAPTER 4

351

void InsertCell(wxHtmlCell *cell)

Inserts new cell into the container.

wxHtmlContainerCell::SetAlign

void SetAlign(const wxHtmlTag& tag)

Sets the container's alignment (both horizontal and vertical) according to the values
stored in tag. (Tags ALIGN parameter is extracted.) In fact it is only a front-end to
SetAlignHor (p. 351)and SetAlignVer (p. 351).

wxHtmlContainerCell::SetAlignHor

void SetAlignHor(int al)

Sets the container's horizontal alignment. During Layout (p. 347)each line is aligned
according to al value.

Parameters

al
new horizontal alignment. May be one of these values:

HTML_ALIGN_LEFT lines are left-aligned (default)
HTML_ALIGN_CENTER_H lines are centered
HTML_ALIGN_RIGHT lines are right-aligned

wxHtmlContainerCell::SetAlignVer

void SetAlignVer(int al)

Sets the container's vertical alignment. This is per-line alignment!

Parameters

al
new vertical alignment. May be one of these values:

HTML_ALIGN_BOTTOM cells are over the line (default)
HTML_ALIGN_CENTER_V cells are centered on line
HTML_ALIGN_TOP cells are under the line

CHAPTER 4

352

wxHtmlContainerCell::SetBackgroundColour

void SetBackgroundColour(const wxColour& clr)

Sets the background color for this container.

wxHtmlContainerCell::SetBorder

void SetBorder(const wxColour& clr1, const wxColour& clr2)

Sets the border (frame) colours. Border is rectangle around the container.

Parameters

clr1
Color of top and left lines

clr2
Color of bottom and right lines

wxHtmlContainerCell::SetIndent

void SetIndent(int i, int what, int units = HTML_UNITS_PIXELS)

Sets the indentation (free space between borders of container and subcells).

Parameters

i

CHAPTER 4

353

Indentation value.

what
Determines which of the four borders we're setting. It is OR combination of
following constants:

HTML_INDENT_TOP top border
HTML_INDENT_BOTTOM bottom
HTML_INDENT_LEFT left
HTML_INDENT_RIGHT right
HTML_INDENT_HORIZONTAL left and right
HTML_INDENT_VERTICAL top and bottom
HTML_INDENT_ALL all 4 borders

units
Units of i. This parameter affects interpretation of value.

HTML_UNITS_PIXELS i is number of pixels
HTML_UNITS_PERCENT i is interpreted as percents of width of parent

container

wxHtmlContainerCell::SetMinHeight

void SetMinHeight(int h, int align = HTML_ALIGN_TOP)

Sets minimal height of the container.

When container's Layout (p. 347) is called, m_Height is set depending on layout of
subcells to the height of area covered by layed-out subcells. Calling this method
guarantees you that the height of container is never smaller than h - even if the subcells
cover much smaller area.

CHAPTER 4

354

Parameters

h
The minimal height.

align
If height of the container is lower than the minimum height, empty space must be
inserted somewhere in order to ensure minimal height. This parameter is one of
HTML_ALIGN_TOP, HTML_ALIGN_BOTTOM, HTML_ALIGN_CENTER
constants. It refers to the contents, not to the empty place!

wxHtmlContainerCell::SetWidthFloat

void SetWidthFloat(int w, int units)

void SetWidthFloat(const wxHtmlTag& tag)

Sets floating width adjustment.

The normal behaviour of container is that its width is the same as the width of parent
container (and thus you can have only one sub-container per line). You can change this
by setting FWA.

Parameters

w
Width of the container. If the value is negative it means complement to full width of
parent container (e.g.SetWidthFloat(-50, HTML_UNITS_PIXELS) sets the
width of container to parent's width minus 50 pixels. This is useful when creating
tables - you can call SetWidthFloat(50) and SetWidthFloat(-50))

units
Units of w This parameter affects the interpretation of value.

HTML_UNITS_PIXELS w is number of pixels
HTML_UNITS_PERCENT w is interpreted as percents of width of parent

container

tag
In the second version of method, w and unitsinfo is extracted from tag's WIDTH
parameter.

wxPython note: The second form of this method is named SetWidthFloatFromTag in
wxPython.

wxHtmlDCRenderer

This class can render HTML document into a specified area of a DC. You can use it in

CHAPTER 4

355

your own printing code, although use of wxHtmlEasyPrinting (p. 357) or wxHtmlPrintout
(p. 374) is strongly recommended.

Derived from

wxObject (p. 555)

wxHtmlDCRenderer::wxHtmlDCRenderer

 wxHtmlDCRenderer()

Constructor.

wxHtmlDCRenderer::SetDC

void SetDC(wxDC* dc, int maxwidth)

Assign DC instance to the renderer.

Parameters

maxwidth
width of the area (on this DC) that is equivalent to screen's width, in pixels (you
should set it to page width minus margins).

Note: In the current implementation the screen width is always 800 pixels: it gives
best results and ensures (almost) same printed outputs across platforms and
differently configured desktops.

See also SetSize (p. 355).

wxHtmlDCRenderer::SetSize

void SetSize(int width, int height)

Set size of output rectangle, in pixels. Note that you can't change width of the rectangle
between calls to Render (p. 356)! (You can freely change height.) If you set width equal
to maxwidth then HTML is rendered as if it were displayed in fullscreen. If you set width
= 1/2 maxwidth the it is rendered as if it covered half the screen and so on.

wxHtmlDCRenderer::SetHtmlText

void SetHtmlText(const wxString& html, const wxString& basepath =
wxEmptyString, bool isdir = TRUE)

CHAPTER 4

356

Assign text to the renderer. Render (p. 356) then draws the text onto DC.

Parameters

html
HTML text. This is not a filename.

basepath
base directory (html string would be stored there if it was in file). It is used to
determine path for loading images, for example.

isdir
FALSE if basepath is filename, TRUE if it is directory name (see wxFileSystem (p.
275) for detailed explanation)

wxHtmlDCRenderer::Render

int Render(int x, int y, int from = 0, int dont_render = FALSE)

Renders HTML text to the DC.

Parameters

x,y
 position of upper-left corner of printing rectangle (see SetSize (p. 355))

from
y-coordinate of the very first visible cell

dont_render
if TRUE then this method only returns y coordinate of the next page and does not
output anything

Returned value is y coordinate of first cell than didn't fit onto page. Use this value as
from in next call to Render in order to print multipages document.

Caution!

The Following three methods must always be called before any call to Render
(preferably in this order):

• SetDC (p. 355)
• SetSize (p. 355)
• SetHtmlText (p. 355)

Render() changes the DC's user scale and does NOT restore it.

CHAPTER 4

357

wxHtmlDCRenderer::GetTotalHeight

int GetTotalHeight()

Returns the height of the HTML text. This is important if area height (see SetSize (p.
355)) is smaller that total height and thus the page cannot fit into it. In that case you're
supposed to call Render (p. 356) as long as its return value is smaller than
GetTotalHeight's.

wxHtmlEasyPrinting

This class provides very simple interface to printing architecture. It allows you to print
HTML documents using only a few commands.

Note

Do not create this class on the stack only. You should create an instance on app startup
and use this instance for all printing operations. The reason is that this class stores
various settings in it.

Derived from

wxObject (p. 555)

wxHtmlEasyPrinting::wxHtmlEasyPrinting

 wxHtmlEasyPrinting(const wxString& name = "Printing", wxFrame* parent_frame =
NULL)

Constructor.

Parameters

name
Name of the printing. Used by preview frames and setup dialogs.

parent_frame
pointer to the frame that will own preview frame and setup dialogs. May be NULL.

wxHtmlEasyPrinting::PreviewFile

void PreviewFile(const wxString& htmlfile)

Previews HTML file.

CHAPTER 4

358

wxHtmlEasyPrinting::PreviewText

void PreviewText(const wxString& htmltext, const wxString& basepath =
wxEmptyString)

Previews HTML text (not file!).

Parameters

htmltext
HTML text.

basepath
base directory (html string would be stored there if it was in file). It is used to
determine path for loading images, for example.

wxHtmlEasyPrinting::PrintFile

void PrintFile(const wxString& htmlfile)

Prints HTML file.

wxHtmlEasyPrinting::PrintText

void PrintText(const wxString& htmltext, const wxString& basepath =
wxEmptyString)

Prints HTML text (not file!).

Parameters

htmltext
HTML text.

basepath
base directory (html string would be stored there if it was in file). It is used to
determine path for loading images, for example.

wxHtmlEasyPrinting::PrinterSetup

void PrinterSetup()

Displays printer setup dialog and allows the user to modify settings.

wxHtmlEasyPrinting::PageSetup

CHAPTER 4

359

void PageSetup()

Displays page setup dialog and allows the user to modify settings.

wxHtmlEasyPrinting::SetHeader

void SetHeader(const wxString& header, int pg = wxPAGE_ALL)

Sets page header.

Parameters

header
HTML text to be used as header. You can use macros in it:

• @PAGENUM@ is replaced by page number
• @PAGESCNT@ is replaced by total number of pages

pg
one of wxPAGE_ODD, wxPAGE_EVEN and wxPAGE_ALL constants.

wxHtmlEasyPrinting::SetFooter

void SetFooter(const wxString& footer, int pg = wxPAGE_ALL)

Sets page footer.

Parameters

footer
HTML text to be used as footer. You can use macros in it:

• @PAGENUM@ is replaced by page number
• @PAGESCNT@ is replaced by total number of pages

pg
one of wxPAGE_ODD, wxPAGE_EVEN and wxPAGE_ALL constants.

wxHtmlEasyPrinting::GetPrintData

wxPrintData* GetPrintData()

Returns pointer to wxPrintData (p. 592) instance used by this class. You can set its
parameters (via SetXXXX methods).

wxHtmlEasyPrinting::GetPageSetupData

CHAPTER 4

360

wxPageSetupDialogData* GetPageSetupData()

Returns a pointer to wxPageSetupDialogData (p. 560) instance used by this class. You
can set its parameters (via SetXXXX methods).

wxHtmlFilter

This class is an input filter for wxHtmlWindow (p. 382). It allows you to read and display
files of different file formats.

Derived from

wxObject

See Also

Overview (p. 4)

wxHtmlFilter::wxHtmlFilter

 wxHtmlFilter()

Constructor.

wxHtmlFilter::CanRead

bool CanRead(const wxFSFile& file)

Returns TRUE if this filter is capable of reading file file.

Example:

bool MyFilter::CanRead(const wxFSFile& file)
{
 return (file.GetMimeType() == "application/x-ugh");
}

wxHtmlFilter::ReadFile

wxString ReadFile(const wxFSFile& file)

Reads the file and returns string with HTML document.

Example:

CHAPTER 4

361

wxString MyImgFilter::ReadFile(const wxFSFile& file)
{
 return "<html><body><img src=\"" +
 file.GetLocation() +

 "\"></body></html>";
}

wxHtmlHelpController

WARNING! This help controller has an API incompatible with wxWindows
wxHelpController!

This help controller provides an easy way of displaying HTML help in your application
(see test sample). The help system is based on books(see AddBook (p. 362)). A book is
a logical section of documentation (for example "User's Guide" or "Programmer's Guide"
or "C++ Reference" or "wxWindows Reference"). The help controller can handle as
many books as you want.

wxHTML uses Microsoft's HTML Help Workshop project files (.hhp, .hhk, .hhc) as its
native format. The file format is described here (p. 2). Have a look at docs/html/ directory
where sample project files are stored.

You can use Tex2RTF to produce these files when generating HTML, if you set
htmlWorkshopFiles to true in your tex2rtf.ini file.

In order to use the controller in your application under Windows you must have the
following line in your .rc file:

#include "wx/html/msw/wxhtml.rc"

Derived from

wxEvtHandler

wxHtmlHelpController::wxHtmlHelpController

 wxHtmlHelpController(int style = wxHF_DEFAULTSTYLE)

Constructor.

Parameters

style is combination of these flags:

wxHF_TOOLBAR Help frame has toolbar.

wxHF_CONTENTS Help frame has contents panel.

CHAPTER 4

362

wxHF_INDEX Help frame has index panel.

wxHF_SEARCH Help frame has search panel.

Default value : everything enabled.

wxHtmlHelpController::AddBook

bool AddBook(const wxString& book, bool show_wait_msg)

Adds book (.hhp file (p. 2) - HTML Help Workshop project file) into the list of loaded
books. This must be called at least once before displaying any help.

book may be either .hhp file or ZIP archive that contains arbitrary number of .hhp files in
top-level directory. This ZIP archive must have .zip or .htb extension (the latter stands for
"HTML book"). In other words, AddBook("help.zip") is possible and, in fact,
recommended way.

If show_wait_msg is TRUE then a decorationless window with progress message is
displayed.

wxHtmlHelpController::Display

void Display(const wxString& x)

Displays page x. This is THE important function - it is used to display the help in
application.

You can specify the page in many ways:

• as direct filename of HTML document
• as chapter name (from contents) or as a book name
• as some word from index
• even as any word (will be searched)

Looking for the page runs in these steps:

1. try to locate file named x (if x is for example "doc/howto.htm")
2. try to open starting page of book named x
3. try to find x in contents (if x is for example "How To ...")
4. try to find x in index (if x is for example "How To ...")
5. switch to Search panel and start searching

void Display(const int id)

This alternative form is used to search help contents by numeric IDs.

CHAPTER 4

363

wxPython note: The second form of this method is named DisplayId in wxPython.

wxHtmlHelpController::DisplayContents

void DisplayContents()

Displays help window and focuses contents panel.

wxHtmlHelpController::DisplayIndex

void DisplayIndex()

Displays help window and focuses index panel.

wxHtmlHelpController::KeywordSearch

bool KeywordSearch(const wxString& keyword)

Displays help window, focuses search panel and starts searching. Returns TRUE if the
keyword was found.

Important: KeywordSearch searches only pages listed in .htc file(s). You should list all
pages in the contents file.

wxHtmlHelpController::ReadCustomization

void ReadCustomization(wxConfigBase* cfg, wxString path = wxEmptyString)

Reads the controller's setting (position of window, etc.)

wxHtmlHelpController::SetTempDir

void SetTempDir(const wxString& path)

Sets the path for storing temporary files - cached binary versions of index and contents
files. These binary forms are much faster to read. Default value is empty string (empty
string means that no cached data are stored). Note that these files are notdeleted when
program exits.

wxHtmlHelpController::SetTitleFormat

void SetTitleFormat(const wxString& format)

Sets format of title of the frame. Must contain exactly one "%s" (for title of displayed

CHAPTER 4

364

HTML page).

wxHtmlHelpController::UseConfig

void UseConfig(wxConfigBase* config, const wxString& rootpath = wxEmptyString)

Associates config object with the controller.

If there is associated config object, wxHtmlHelpController automatically reads and writes
settings (including wxHtmlWindow's settings) when needed.

The only thing you must do is create wxConfig object and call UseConfig.

wxHtmlHelpController::WriteCustomization

void WriteCustomization(wxConfigBase* cfg, wxString path = wxEmptyString)

Stores controllers setting (position of window etc.)

wxHtmlHelpData

This class is used by wxHtmlHelpController (p. 361)and wxHtmlHelpFrame (p. 366) to
access HTML help items. It is internal class and should not be used directly - except for
the case you're writing your own HTML help controller.

Derived from

wxObject (p. 555)

wxHtmlHelpData::wxHtmlHelpData

 wxHtmlHelpData()

Constructor.

wxHtmlHelpData::AddBook

bool AddBook(const wxString& book)

Adds new book. 'book' is location of HTML help project (hhp) or ZIP file that contains
arbitrary number of .hhp projects (this zip file can have either .zip or .htb extension, htb
stands for "html book"). Returns success.

CHAPTER 4

365

wxHtmlHelpData::FindPageById

wxString FindPageById(int id)

Returns page's URL based on integer ID stored in project.

wxHtmlHelpData::FindPageByName

wxString FindPageByName(const wxString& page)

Returns page's URL based on its (file)name.

wxHtmlHelpData::GetBookRecArray

const wxHtmlBookRecArray& GetBookRecArray()

Returns array with help books info.

wxHtmlHelpData::GetContents

wxHtmlContentsItem* GetContents()

Returns contents lists pointer.

wxHtmlHelpData::GetContentsCnt

int GetContentsCnt()

Returns size of contents list.

wxHtmlHelpData::GetIndex

wxHtmlContentsItem* GetIndex()

Returns pointer to index items list.

wxHtmlHelpData::GetIndexCnt

int GetIndexCnt()

Returns size of index list.

wxHtmlHelpData::LoadCachedBook

CHAPTER 4

366

bool LoadCachedBook(wxHtmlBookRecord* book, wxInputStream* f)

Reads binary cached book.

wxHtmlHelpData::LoadMSProject

bool LoadMSProject(wxHtmlBookRecord* book, wxFileSystem& fsys, const
wxString& indexfile, const wxString& contentsfile)

Imports .hhp files (MS HTML Help Workshop).

wxHtmlHelpData::SaveCachedBook

bool SaveCachedBook(wxHtmlBookRecord* book, wxOutputStream* f)

Saves binary cached book. (Internal - this methods is used automatically if you call
SetTempDir!)

wxHtmlHelpData::SetTempDir

void SetTempDir(const wxString& path)

Sets temporary directory where binary cached versions of MS HTML Workshop files will
be stored. (This is turned off by default and you can enable this feature by setting non-
empty temp dir.)

wxHtmlHelpFrame

This class is used by wxHtmlHelpController (p. 361)to display help. It is internal class
and should not be used directly - except for the case you're writing your own HTML help
controller.

Derived from

wxFrame (p. 299)

wxHtmlHelpFrame::wxHtmlHelpFrame

 wxHtmlHelpFrame(wxHtmlHelpData* data = NULL)

 wxHtmlHelpFrame(wxWindow* parent, int wxWindowID, const wxString& title =
wxEmptyString, int style = wxHF_DEFAULTSTYLE, wxHtmlHelpData* data = NULL)

CHAPTER 4

367

Constructor.

style is combination of these flags:

wxHF_TOOLBAR Help frame has toolbar.

wxHF_CONTENTS Help frame has contents panel.

wxHF_INDEX Help frame has index panel.

wxHF_SEARCH Help frame has search panel.

wxHtmlHelpFrame::Create

bool Create(wxWindow* parent, wxWindowID id, const wxString& title =
wxEmptyString, int style = wxHF_DEFAULTSTYLE)

Creates the frame.

style is combination of these flags:

wxHF_TOOLBAR Help frame has toolbar.

wxHF_CONTENTS Help frame has contents panel.

wxHF_INDEX Help frame has index panel.

wxHF_SEARCH Help frame has search panel.

wxHtmlHelpFrame::CreateContents

void CreateContents(bool show_progress = FALSE)

Creates contents panel. (May take some time.)

wxHtmlHelpFrame::CreateIndex

void CreateIndex(bool show_progress = FALSE)

Creates index panel. (May take some time.)

wxHtmlHelpFrame::CreateSearch

void CreateSearch()

CHAPTER 4

368

Creates search panel.

wxHtmlHelpFrame::Display

bool Display(const wxString& x)

bool Display(const int id)

Displays page x. If not found it will offect the user a choice of searching books. Looking
for the page runs in these steps: 1. try to locate file named x (if x is for example
"doc/howto.htm") 2. try to open starting page of book x 3. try to find x in contents (if x is
for example "How To ...") 4. try to find x in index (if x is for example "How To ...")

The second form takes numeric ID as the parameter. (uses extension to MS format,
<param name="ID" value=id>)

wxPython note: The second form of this method is named DisplayId in wxPython.

wxHtmlHelpFrame::DisplayContents

bool DisplayContents()

Displays contents panel.

wxHtmlHelpFrame::DisplayIndex

bool DisplayIndex()

Displays index panel.

wxHtmlHelpFrame::GetData

wxHtmlHelpData* GetData()

Return wxHtmlHelpData object.

wxHtmlHelpFrame::KeywordSearch

bool KeywordSearch(const wxString& keyword)

Search for given keyword.

wxHtmlHelpFrame::ReadCustomization

CHAPTER 4

369

void ReadCustomization(wxConfigBase* cfg, const wxString& path =
wxEmptyString)

Reads user's settings for this frame (see wxHtmlHelpController::ReadCustomization (p.
363))

wxHtmlHelpFrame::RefreshLists

void RefreshLists(bool show_progress = FALSE)

Refresh all panels. This is neccessary if new book was added.

wxHtmlHelpFrame::SetTitleFormat

void SetTitleFormat(const wxString& format)

Sets frame's title format. format must contain exactly one "%s" (it will be replaced by
page's title).

wxHtmlHelpFrame::UseConfig

void UseConfig(wxConfigBase* config, const wxString& rootpath = wxEmptyString)

Add books to search choice panel

wxHtmlHelpFrame::WriteCustomization

void WriteCustomization(wxConfigBase* cfg, const wxString& path =
wxEmptyString)

Saves user's settings for this frame (see wxHtmlHelpController::WriteCustomization (p.
364))

wxHtmlParser

This class handles the generic parsing of HTML document: it scans the document and
divide it into blocks of tags (where one block consists of begining and ending tag and of
text between these two tags).

It is independent from wxHtmlWindow and can be used as stand-alone parser (Julian
Smart's idea of speech-only HTML viewer or wget-like utility - see InetGet sample for
example).

It uses system of tag handlers to parse the HTML document. Tag handlers are not
staticaly shared by all instances but are created for each wxHtmlParser instance. The

CHAPTER 4

370

reason is that the handler may contain document-specific temporary data used during
parsing (e.g. complicated structures like tables).

Typically the user calls only the Parse (p. 372) method.

Derived from

wxObject

See also

Cells Overview (p. 4),Tag Handlers Overview (p. 5),wxHtmlTag (p. 376)

wxHtmlParser::wxHtmlParser

 wxHtmlParser()

Constructor.

wxHtmlParser::AddTag

void AddTag(const wxHtmlTag& tag)

This may (and may not) be overwriten in derived class.

This method is called each time new tag is about to be added. tag contains information
about the tag. (See wxHtmlTag (p. 376)for details.)

Default (wxHtmlParser) behaviour is this: First it finds a handler capable of handling this
tag and then it calls handler's HandleTag method.

wxHtmlParser::AddTagHandler

virtual void AddTagHandler(wxHtmlTagHandler *handler)

Adds handler to the internal list (& hash table) of handlers. This method should not be
called directly by user but rather by derived class' constructor.

This adds the handler to this instance of wxHtmlParser, not to all objects of this class!
(Static front-end to AddTagHandler is provided by wxHtmlWinParser).

All handlers are deleted on object deletion.

wxHtmlParser::AddText

CHAPTER 4

371

virtual void AddWord(const char* txt)

Must be overwriten in derived class.

This method is called by DoParsing (p. 371)each time a part of text is parsed. txt is NOT
only one word, it is substring of input. It is not formatted or preprocessed (so white
spaces are unmodified).

wxHtmlParser::DoParsing

void DoParsing(int begin_pos, int end_pos)

void DoParsing()

Parses the m_Source from begin_pos to end_pos-1. (in noparams version it parses
whole m_Source)

wxHtmlParser::DoneParser

virtual void DoneParser()

This must be called after DoParsing().

wxHtmlParser::GetFS

wxFileSystem* GetFS() const

Returns pointer to the file system. Because each tag handler has reference to it's parent
parser it can easily request the file by calling

wxFSFile *f = m_Parser -> GetFS() -> OpenFile("image.jpg");

wxHtmlParser::GetProduct

virtual wxObject* GetProduct()

Returns product of parsing. Returned value is result of parsing of the document. The
type of this result depends on internal representation in derived parser (but it must be
derived from wxObject!).

See wxHtmlWinParser for details.

wxHtmlParser::GetSource

CHAPTER 4

372

wxString* GetSource()

Returns pointer to the source being parsed.

wxHtmlParser::GetTempData

virtual wxList* GetTempData()

This method returns list of wxObjects that represents all data allocated by the parser.
These can't be freed by the destructor because they must be valid as long as
GetProduct's return value is valid - the caller must explicitly call

delete (MyParser -> GetTempData());

to free the memory (this method always sets the list to delete its contents).

Example

Why is this neccessary? Imagine wxHtmlWinParser: when handling a FONT tag it
creates some fonts. These fonts are then used by wxHtmlWindow to display the text. But
the wxHtmWinParser object is needed only when parsing the document - it may be
deleted then. But fonts CAN'T be deleted - they must exist as long as the window is
displaying text.

GetTempData() solves the problem.

wxHtmlParser::InitParser

virtual void InitParser(const wxString& source)

Setups the parser for parsing the source string. (Should be overriden in derived class)

wxHtmlParser::Parse

wxObject* Parse(const wxString& source)

Proceeds parsing of the document. This is end-user method. You can simply call it when
you need to obtain parsed output (which is parser-specific)

The method does these things:

1. calls InitParser(source) (p. 372)
2. calls DoParsing (p. 371)
3. calls GetProduct (p. 371)
4. calls DoneParser (p. 371)
5. returns value returned by GetProduct

You shouldn't use InitParser, DoParsing, GetProduct or DoneParser directly.

CHAPTER 4

373

wxHtmlParser::PushTagHandler

void PushTagHandler(wxHtmlTagHandler* handler, wxString tags)

Forces the handler to handle additional tags (not returned by GetSupportedTags (p.
379)). The handler should already be added to this parser.

Parameters

handler
the handler

tags
List of tags (in same format as GetSupportedTags's return value). The parser will
redirect these tags to handler (until call to PopTagHandler (p. 373)).

Example

Imagine you want to parse following pseudo-html structure:

<myitems>
 <param name="one" value="1">
 <param name="two" value="2">
</myitems>

<execute>
 <param program="text.exe">
</execute>

It is obvious that you cannot use only one tag handler for <param> tag. Instead you must
use context-sensitive handlers for <param> inside <myitems> and <param> inside
<execute>.

This is the prefered solution:

TAG_HANDLER_BEGIN(MYITEM, "MYITEMS")
 TAG_HANDLER_PROC(tag)
 {
 // ...something...

 m_Parser -> PushTagHandler(this, "PARAM");
 ParseInner(tag);
 m_Parser -> PopTagHandler();

 // ...something...
 }
TAG_HANDLER_END(MYITEM)

wxHtmlParser::PopTagHandler

void PopTagHandler()

CHAPTER 4

374

Restores parser's state before last call to PushTagHandler (p. 373).

wxHtmlParser::SetFS

void SetFS(wxFileSystem *fs)

Sets the virtual file system that will be used to request additional files. (For example
 tag handler requests wxFSFile with the image data.)

wxHtmlPrintout

This class serves as printout class for HTML documents.

Derived from

wxPrintout (p. 606)

wxHtmlPrintout::wxHtmlPrintout

 wxHtmlPrintout(const wxString& title = "Printout")

Constructor.

wxHtmlPrintout::SetFooter

void SetFooter(const wxString& footer, int pg = wxPAGE_ALL)

Sets page footer.

Parameters

footer
HTML text to be used as footer. You can use macros in it:

• @PAGENUM@ is replaced by page number

• @PAGESCNT@ is replaced by total number of pages

pg
one of wxPAGE_ODD, wxPAGE_EVEN and wxPAGE_ALL constants.

wxHtmlPrintout::SetHeader

void SetHeader(const wxString& header, int pg = wxPAGE_ALL)

CHAPTER 4

375

Sets page header.

Parameters

header
HTML text to be used as header. You can use macros in it:

• @PAGENUM@ is replaced by page number

• @PAGESCNT@ is replaced by total number of pages

pg
one of wxPAGE_ODD, wxPAGE_EVEN and wxPAGE_ALL constants.

wxHtmlPrintout::SetHtmlFile

void SetHtmlFile(const wxString& htmlfile)

Prepare the class for printing this HTML file. The file may be located on any virtual file
system or it may be normal file.

wxHtmlPrintout::SetHtmlText

void SetHtmlText(const wxString& html, const wxString& basepath =
wxEmptyString, bool isdir = TRUE)

Prepare the class for printing this HTML text.

Parameters

html
HTML text. (NOT file!)

basepath
base directory (html string would be stored there if it was in file). It is used to
determine path for loading images, for example.

isdir
FALSE if basepath is filename, TRUE if it is directory name (see wxFileSystem (p.
275) for detailed explanation)

wxHtmlPrintout::SetMargins

void SetMargins(float top = 25.2, float bottom = 25.2, float left = 25.2, float right =
25.2, float spaces = 5)

Sets margins in milimeters. Defaults to 1 inch for margins and 0.5cm for space between

CHAPTER 4

376

text and header and/or footer

wxHtmlTag

This class represents a single HTML tag. It is used by tag handlers (p. 5).

Derived from

wxObject

wxHtmlTag::wxHtmlTag

 wxHtmlTag(const wxString& source, int pos, int end_pos, wxHtmlTagsCache*
cache)

Constructor. You'll probably never have to construct a wxHtmlTag object yourself. Feel
free to ignore the constructor parameters. Have a look at lib/htmlparser.cpp if you're
interested in creating it.

wxHtmlTag::GetAllParams

const wxString& GetAllParams() const

Returns string with all params.

Example : tag contains . Call to
tag.GetAllParams() would return SIZE=+2 COLOR="#000000".

wxHtmlTag::GetBeginPos

int GetBeginPos() const

Returns beginning position of the text between this tag and paired ending tag. See
explanation (returned position is marked with '^'):

bla bla bla <MYTAG> bla bla intenal text</MYTAG> bla bla
 ^

wxHtmlTag::GetEndPos1

int GetEndPos1() const

Returns ending position of the text between this tag and paired ending tag. See
explanation (returned position is marked with '^'):

CHAPTER 4

377

bla bla bla <MYTAG> bla bla intenal text</MYTAG> bla bla
 ^

wxHtmlTag::GetEndPos2

int GetEndPos2() const

Returns ending position 2 of the text between this tag and paired ending tag. See
explanation (returned position is marked with '^'):

bla bla bla <MYTAG> bla bla intenal text</MYTAG> bla bla
 ^

wxHtmlTag::GetName

wxString GetName() const

Returns tag's name. The name is always in uppercase and it doesn't contain '<' or '/'
characters. (So the name of tag is "FONT" and name of </table>
is "TABLE")

wxHtmlTag::GetParam

wxString GetParam(const wxString& par, bool with_commas = FALSE) const

Retuns the value of the parameter. You should check whether the param exists or not
(use HasParam (p. 378)) first.

Parameters

par
The parameter's name in uppercase

with_commas
TRUE if you want to get commas as well. See example.

Example

...
/* you have wxHtmlTag variable tag which is equal to
 HTML tag */
dummy = tag.GetParam("SIZE");
 // dummy == "+2"
dummy = tag.GetParam("COLOR");
 // dummy == "#0000FF"
dummy = tag.GetParam("COLOR", TRUE);
 // dummy == "\"#0000FF\"" -- see the difference!!

CHAPTER 4

378

wxHtmlTag::HasEnding

bool HasEnding() const

Returns TRUE if this tag is paired with ending tag, FALSE otherwise.

See the example of HTML document:

<html><body>
Hello<p>
How are you?
<p align=center>This is centered...</p>
Oops
Oooops!
</body></html>

In this example tags HTML and BODY have ending tags, first P and BR doesn't have
ending tag while the second P has. The third P tag (which is ending itself) of course
doesn't have ending tag.

wxHtmlTag::HasParam

bool HasParam(const wxString& par) const

Returns TRUE if the tag has parameter of the given name. Example : <FONT SIZE=+2
COLOR="#FF00FF"> has two parameters named "SIZE" and "COLOR".

Parameters

par
the parameter you're looking for. It must always be in uppercase!

wxHtmlTag::IsEnding

bool IsEnding() const

Returns TRUE if this tag is ending one. (is ending tag, is not)

wxHtmlTag::ScanParam

wxString ScanParam(const wxString& par, const char *format, fuck) const

This method scans given parameter. Usage is exactly the same as sscanf's usage
except that you don't pass string but param name as the first parameter.

Parameters

par

CHAPTER 4

379

The name of tag you want to query (in uppercase)

format
scanf()-like format string.

Cygwin and Mingw32

If you're using Cygwin beta 20 or Mingw32 compiler please remember that ScanParam()
is only partially implemented! The problem is that under Cygnus' GCC vsscanf() function
is not implemented. I worked around this in a way which causes that you can use only
one parameter in ... (and only one % in format).

wxHtmlTagHandler

Derived from

wxObject

See Also

Overview (p. 5),wxHtmlTag (p. 376)

wxHtmlTagHandler::m_Parser

wxHtmlParser* m_Parser

This attribute is used to access parent parser. It is protected so that it can't be accessed
by user but can be accessed from derived classes.

wxHtmlTagHandler::wxHtmlTagHandler

 wxHtmlTagHandler()

Constructor.

wxHtmlTagHandler::GetSupportedTags

virtual wxString GetSupportedTags()

Returns list of supported tags. The list is in uppercase and tags are delimited by ','.
Example : "I,B,FONT,P"

wxHtmlTagHandler::HandleTag

CHAPTER 4

380

virtual bool HandleTag(const wxHtmlTag& tag)

This is the core method of each handler. It is called each time one of supported tags is
detected. tag contains all neccessary info (see wxHtmlTag (p. 376) for details).

Return value

TRUE if ParseInner (p. 380) was called, FALSE otherwise.

Example

bool MyHandler::HandleTag(const wxHtmlTag& tag)
{
 ...
 // change state of parser (e.g. set bold face)
 ParseInner(tag);
 ...
 // restore original state of parser
}

You shouldn't call ParseInner if the tag is not paired with ending one.

wxHtmlTagHandler::ParseInner

void ParseInner(const wxHtmlTag& tag)

This method calls parser's DoParsing (p. 371) method for the string between this tag and
paired ending tag:

...Hello, world!...

In this example, a call to ParseInner (with tag pointing to A tag) will parse 'Hello, world!'.

wxHtmlTagHandler::SetParser

virtual void SetParser(wxHtmlParser *parser)

Assigns parser to this handler. Each instance of handler is guaranteed to be called only
from the parser.

wxHtmlTagsModule

This class provides easy way of filling wxHtmlWinParser's table of tag handlers. It is
used almost exclusively together with set ofTAGS_MODULE_* macros (p. 5)

Derived from

wxModule

CHAPTER 4

381

See Also

Tag Handlers (p. 5),wxHtmlTagHandler (p. 379),wxHtmlWinTagHandler (p. 392),

wxHtmlTagsModule::FillHandlersTable

virtual void FillHandlersTable(wxHtmlWinParser *parser)

You must override this method. In most common case it's body consists only of lines of
following type:

parser -> AddTagHandler(new MyHandler);

I recommend using TAGS_MODULE_* macros.

Paremeters

parser
Pointer to the parser that requested tables filling.

wxHtmlWidgetCell

wxHtmlWidgetCell is a class that provides a connection between HTML cells and
widgets (an object derived from wxWindow). You can use it to display things like forms,
input boxes etc. in an HTML window.

wxHtmlWidgetCell takes care of resizing and moving window.

Derived from

wxHtmlCell (p. 343)

wxHtmlWidgetCell::wxHtmlWidgetCell

 wxHtmlWidgetCell(wxWindow* wnd, int w = 0)

Constructor.

Parameters

wnd
Connected window. It's parent window must be the wxHtmlWindow object within
which it is displayed!

w

CHAPTER 4

382

Floating width. If non-zero width of wnd window is adjusted so that it is always w
percents of parent container's width. (For example w = 100 means that the window
will always have same width as parent container)

wxHtmlWindow

wxHtmlWindow is probably the only class you will directly use unless you want to do
something special (like adding new tag handlers or MIME filters).

The purpose of this class is to display HTML pages (either local file or downloaded via
HTTP protocol) in a window. The width of the window is constant - given in the
constructor - and virtual height is changed dynamically depending on page size. Once
the window is created you can set its content by callingSetPage(text) (p. 386) or
LoadPage(filename) (p. 384).

Derived from

wxScrolledWindow

Include files

<wxhtml/wxhtmlwin.h>

wxHtmlWindow::wxHtmlWindow

 wxHtmlWindow()

Default constructor.

 wxHtmlWindow(wxWindow *parent, wxWindowID id = -1, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxHW_SCROLLBAR_AUTO, const wxString& name = "htmlWindow")

Constructor. The parameters are the same as for the wxScrolledWindow (p. 680)
constructor.

Parameters

style
wxHW_SCROLLBAR_NEVER, or wxHW_SCROLLBAR_AUTO. Affects the
appearance of vertical scrollbar in the window.

wxHtmlWindow::AddFilter

static void AddFilter(wxHtmlFilter *filter)

Adds input filter (p. 4) to the static list of available filters. These filters are present by
default:

CHAPTER 4

383

• text/html MIME type
• image/* MIME types
• Plain Text filter (this filter is used if no other filter matches)

wxHtmlWindow::GetInternalRepresentation

wxHtmlContainerCell* GetInternalRepresentation() const

Returns pointer to the top-level container.

See also: Cells Overview (p. 4), Printing Overview (p. 2)

wxHtmlWindow::GetOpenedPage

wxString GetOpenedPage()

Returns full location of the opened page. If no page is opened or if the displayed page
wasn't produced by call to LoadPage, empty string is returned.

wxHtmlWindow::GetRelatedFrame

wxFrame* GetRelatedFrame() const

Returns the related frame.

wxHtmlWindow::HistoryBack

bool HistoryBack()

Moves back to the previous page. (each page displayed using LoadPage (p. 384) is
stored in history list.)

wxHtmlWindow::HistoryClear

void HistoryClear()

Clears history.

wxHtmlWindow::HistoryForward

bool HistoryForward()

Moves to next page in history.

CHAPTER 4

384

wxHtmlWindow::LoadPage

bool LoadPage(const wxString& location)

Unlike SetPage this function first loads HTML page from location and then displays it.
See example:

htmlwin -> SetPage("help/myproject/index.htm");

Parameters

location
The address of document. See wxFileSystem (p. 275) for details on address
format and behaviour of "opener".

Return value

FALSE if an error occured, TRUE otherwise

wxHtmlWindow::OnLinkClicked

virtual void OnLinkClicked(const wxString& link)

Called when user clicks on hypertext link. Default behaviour is to call LoadPage (p. 384)
and do nothing else.

wxHtmlWindow::ReadCustomization

virtual void ReadCustomization(wxConfigBase *cfg, wxString path =
wxEmptyString)

This reads custom settings from wxConfig. It uses the path 'path' if given, otherwise it
saves info into currently selected path. The values are stored in sub-path
wxHtmlWindow

Read values: all things set by SetFonts, SetBorders.

Parameters

cfg
wxConfig from which you want to read the configuration.

path
Optional path in config tree. If not given current path is used.

CHAPTER 4

385

wxHtmlWindow::SetBorders

void SetBorders(int b)

This function sets the space between border of window and HTML contents. See image:

Parameters

b
indentation from borders in pixels

wxHtmlWindow::SetFonts

void SetFonts(wxString normal_face, int normal_italic_mode, wxString fixed_face, int
fixed_italic_mode, const int *sizes)

This function sets font sizes and faces.

Parameters

normal_face
This is face name for normal (i.e. non-fixed) font. It can be either empty string
(then the default face is choosen) or platform-specific face name. Examples are
"helvetica" under Unix or "Times New Roman" under Windows.

normal_italic_mode
This is either wxSLANT or wxITALIC. It determines how italic (<I>..</I>) text is
handled. See wxFont documentation for details. For example you should use
wxSLANT in conjuction with "helvetica" face or wxITALIC with "times" face.

fixed_face

CHAPTER 4

386

The same thing for fixed face (<TT>..</TT>)

fixed_italic_mode
The same thing for fixed face.

sizes
This is an array of 7 items of int type. The values represent size of font with HTML
size from -2 to +4 (to)

Defaults

Under wxGTK:

 SetFonts("", wxSLANT, "", wxSLANT, {10, 12, 14, 16, 19, 24, 32});

Under Windows:

 SetFonts("", wxSLANT, "", wxSLANT, {7, 8, 10, 12, 16, 22, 30});

Athough it seems different the fact is that the fonts are of approximately same size under
both platforms (due to wxMSW / wxGTK inconsistency)

wxHtmlWindow::SetPage

bool SetPage(const wxString& source)

Sets HTML page and display it. This won't load the page!! It will display the source. See
example:

htmlwin -> SetPage("<html><body>Hello, world!</body></html>");

If you want to load a document from some location use LoadPage (p. 384) instead.

Parameters

source
The HTML document source to be displayed.

Return value

FALSE if an error occured, TRUE otherwise.

wxHtmlWindow::SetRelatedFrame

void SetRelatedFrame(wxFrame* frame, const wxString& format)

Sets the frame in which page title will be displayed. format is format of frame title, e.g.
"HtmlHelp : %s". It must contain exactly one %s. This%s is substituted with HTML page
title.

CHAPTER 4

387

wxHtmlWindow::SetRelatedStatusBar

void SetRelatedStatusBar(int bar)

After calling SetRelatedFrame (p. 386), this sets statusbar slot where messages will be
displayed. (Default is -1 = no messages.)

Parameters

bar
statusbar slot number (0..n)

wxHtmlWindow::WriteCustomization

virtual void WriteCustomization(wxConfigBase *cfg, wxString path =
wxEmptyString)

Saves custom settings into wxConfig. It uses the path 'path' if given, otherwise it saves
info into currently selected path. Regardless of whether the path is given or not, the
function creates sub-path wxHtmlWindow.

Saved values: all things set by SetFonts, SetBorders.

Parameters

cfg
wxConfig to which you want to save the configuration.

path
Optional path in config tree. If not given, the current path is used.

wxHtmlWinParser

This class is derived from wxHtmlParser (p. 369) and its mail goal is to parse HTML
input so that it can be displayed inwxHtmlWindow (p. 382). It uses special
wxHtmlWinTagHandler (p. 392).

Notes

1. Product of parsing is wxHtmlCell (resp. wxHtmlContainer) object.

2. This parser produces temporary data! You should call delete GetTempData() (p.
372)!

Derived from

wxHtmlParser (p. 369)

CHAPTER 4

388

See Also

Handlers overview (p. 5)

wxHtmlWinParser::wxHtmlWinParser

 wxHtmlWinParser()

 wxHtmlWinParser(wxWindow *wnd)

Constructor. Don't use the default one, use constructor withwnd paremeter (wnd is
pointer to associated wxHtmlWindow (p. 382))

wxHtmlWinParser::AddModule

static void AddModule(wxHtmlTagsModule *module)

Adds module (p. 5) to the list of wxHtmlWinParser tag handler.

wxHtmlWinParser::CloseContainer

wxHtmlContainerCell* CloseContainer()

Closes the container, sets actual container to the parent one and returns pointer to it
(see Overview (p. 4)).

wxHtmlWinParser::CreateCurrentFont

virtual wxFont* CreateCurrentFont()

Creates font based on current setting (see SetFontSize (p. 392),SetFontBold (p.
391),SetFontItalic (p. 391),SetFontFixed (p. 391),SetFontUnderlined (p. 392)) and
returns pointer to it. (If the font was already created only a pointer is returned.)

Fonts created during parsing are temporary data and are not freed on DoneParser. You
must call delete myparser->GetTempData(); (p. 372)to free the memory!

wxHtmlWinParser::GetActualColor

const wxColour& GetActualColor() const

Returns actual text color.

CHAPTER 4

389

wxHtmlWinParser::GetAlign

int GetAlign() const

Returns default horizontal alignment.

wxHtmlWinParser::GetCharHeight

int GetCharHeight() const

Returns (average) char height in standard font. It's used as DC-independent metrics.

Note: This function doesn't return actual height. If you want to know the height of the
current font, call GetDC -> GetCharHeight().

wxHtmlWinParser::GetCharWidth

int GetCharWidth() const

Returns average char width in standard font. It's used as DC-independent metrics.

Note: This function doesn't return actual width. If you want to know the height of the
current font, call GetDC -> GetCharWidth()

wxHtmlWinParser::GetContainer

wxHtmlContainerCell* GetContainer() const

Returns pointer to the currectly opened container (see Overview (p. 4)). Common use:

m_WParser -> GetContainer() -> InsertCell(new ...);

wxHtmlWinParser::GetDC

wxDC* GetDC()

Returns pointer to the DC used during parsing.

wxHtmlWinParser::GetFontBold

int GetFontBold() const

Returns TRUE if actual font is bold, FALSE otherwise.

CHAPTER 4

390

wxHtmlWinParser::GetFontFixed

int GetFontFixed() const

Returns TRUE if actual font is fixed face, FALSE otherwise.

wxHtmlWinParser::GetFontItalic

int GetFontItalic() const

Returns TRUE if actual font is italic, FALSE otherwise.

wxHtmlWinParser::GetFontSize

int GetFontSize() const

Returns actual font size (HTML size varies from -2 to +4)

wxHtmlWinParser::GetFontUnderlined

int GetFontUnderlined() const

Returns TRUE if actual font is underlined, FALSE otherwise.

wxHtmlWinParser::GetLink

const wxString& GetLink() const

Returns actual hypertext link. (This value is non-empty string if the parser is between
<A> and tags, wxEmptyString otherwise.

wxHtmlWinParser::GetLinkColor

const wxColour& GetLinkColor() const

Returns color of hypertext link text.

wxHtmlWinParser::GetWindow

wxWindow* GetWindow()

Returns associated window (wxHtmlWindow). This may be NULL! (You should always

CHAPTER 4

391

test if it is non-NULL. For example TITLE handler sets window title only if some window
is associated, otherwise it does nothing)

wxHtmlWinParser::OpenContainer

wxHtmlContainerCell* OpenContainer()

Opens new container and returns pointer to it (see Overview (p. 4)).

wxHtmlWinParser::SetActualColor

void SetActualColor(const wxColour& clr)

Sets actual text color. Note: this DOESN'T change the color! You must create
wxHtmlColourCell (p. 348) yourself.

wxHtmlWinParser::SetAlign

void SetAlign(int a)

Sets default horizontal alignment (see wxHtmlContainerCell::SetAlignHor (p. 351).
Alignment of newly opened container is set to this value.

wxHtmlWinParser::SetDC

virtual void SetDC(wxDC *dc)

Sets the DC. This must be called before Parse (p. 372)!

wxHtmlWinParser::SetFontBold

void SetFontBold(int x)

Sets bold flag of actualfont. x is either TRUE of FALSE.

wxHtmlWinParser::SetFontFixed

void SetFontFixed(int x)

Sets fixed face flag of actualfont. x is either TRUE of FALSE.

wxHtmlWinParser::SetFontItalic

CHAPTER 4

392

void SetFontItalic(int x)

Sets italic flag of actualfont. x is either TRUE of FALSE.

wxHtmlWinParser::SetFontSize

void SetFontSize(int s)

Sets actual font size (HTML size varies from -2 to +4)

wxHtmlWinParser::SetFontUnderlined

void SetFontUnderlined(int x)

Sets underlined flag of actualfont. x is either TRUE of FALSE.

wxHtmlWinParser::SetFonts

void SetFonts(wxString normal_face, int normal_italic_mode, wxString fixed_face, int
fixed_italic_mode, const int *sizes)

Sets fonts. This method is identical to wxHtmlWindow::SetFonts (p. 385)

wxHtmlWinParser::SetLink

void SetLink(const wxString& link)

Sets actual hypertext link. wxEmptyString means no link.

wxHtmlWinParser::SetLinkColor

void SetLinkColor(const wxColour& clr)

Sets color of hypertext link.

wxHtmlWinTagHandler

This is basically wxHtmlTagHandler except that it is extended with protected member
m_WParser pointing to the wxHtmlWinParser object (value of this member is identical to
wxHtmlParser's m_Parser).

Derived from

wxHtmlTagHandler (p. 379)

CHAPTER 4

393

wxHtmlWinTagHandler::m_WParser

wxHtmlWinParser* m_WParser

Value of this attribute is identical to value of m_Parser. The only different is that
m_WParser points to wxHtmlWinParser object while m_Parser points to wxHtmlParser
object. (The same object, but overcast.)

wxHTTP

Derived from

wxProtocol (p. 619)

Include files

<wx/protocol/http.h>

See also

wxSocketBase (p. 705), wxURL (p. 895)

wxHTTP::GetInputStream

wxInputStream * GetInputStream(const wxString& path)

Creates a new input stream on the the specified path. You can use all except the seek
functionality of wxStream. Seek isn't available on all streams. For example, http or ftp
streams doesn't deal with it. Other functions like Tell and SeekI for this sort of stream.
You will be notified when the EOF is reached by an error.

Note

You can know the size of the file you are getting using wxStreamBase::GetSize() (p.
755). But there is a limitation: as HTTP servers aren't obliged to pass the size ofi the file,
in some case, you will be returned 0xfffffff by GetSize(). In these cases, you should use
the value returned by wxInputStream::LastRead() (p. 426): this value will be 0 when the
stream is finished.

Return value

Returns the initialized stream. You will have to delete it yourself once you don't use it
anymore. The destructor closes the network connection. The next time you will try to get
a file the network connection will have to be reestablished: but you don't have to take
care of this wxHTTP reestablishes it automatically.

CHAPTER 4

394

See also

wxInputStream (p. 425)

wxHTTP::SetHeader

void SetHeader(const wxString& header, const wxString& h_data)

It sets data of a field to be sent during the next request to the HTTP server. The field
name is specified by header and the content by h_data. This is a low level function and it
assumes that you know what you are doing.

wxHTTP::GetHeader

wxString GetHeader(const wxString& header)

Returns the data attached with a field whose name is specified by header. If the field
doesn't exist, it will return an empty string and not a NULL string.

Note

The header is not case-sensitive: I mean that "CONTENT-TYPE" and "content-type"
represent the same header.

wxIdleEvent

This class is used for idle events, which are generated when the system is idle.

Derived from

wxEvent (p. 237)
wxObject (p. 555)

Include files

<wx/event.h>

Event table macros

To process an idle event, use this event handler macro to direct input to a member
function that takes a wxIdleEvent argument.

EVT_IDLE(func) Process a wxEVT_IDLE event.

Remarks

Idle events can be caught by the wxApp class, or by top-level window classes.

CHAPTER 4

395

See also

wxApp::OnIdle (p. 11), Event handling overview (p. 1072)

wxIdleEvent::wxIdleEvent

 wxIdleEvent()

Constructor.

wxIdleEvent::RequestMore

void RequestMore(bool needMore = TRUE)

Tells wxWindows that more processing is required. This function can be called by an
OnIdle handler for a window or window event handler to indicate that wxApp::OnIdle
should forward the OnIdle event once more to the application windows. If no window
calls this function during OnIdle, then the application will remain in a passive event loop
(not calling OnIdle) until a new event is posted to the application by the windowing
system.

See also

wxIdleEvent::MoreRequested (p. 395), wxApp::OnIdle (p. 11)

wxIdleEvent::MoreRequested

bool MoreRequested() const

Returns TRUE if the OnIdle function processing this event requested more processing
time.

See also

wxIdleEvent::RequestMore (p. 395), wxApp::OnIdle (p. 11)

wxIcon

An icon is a small rectangular bitmap usually used for denoting a minimized application.
It differs from a wxBitmap in always having a mask associated with it for transparent
drawing. On some platforms, icons and bitmaps are implemented identically, since there
is no real distinction between a wxBitmap with a mask and an icon; and there is no
specific icon format on some platforms (X-based applications usually standardize on
XPMs for small bitmaps and icons). However, some platforms (such as Windows) make

CHAPTER 4

396

the distinction, so a separate class is provided.

Derived from

wxBitmap (p. 36)
wxGDIObject (p. 321)
wxObject (p. 555)

Include files

<wx/icon.h>

Predefined objects

Objects:

wxNullIcon

Remarks

It is usually desirable to associate a pertinent icon with a frame. Icons can also be used
for other purposes, for example with wxTreeCtrl (p. 875) and wxListCtrl (p. 461).

Icons have different formats on different platforms. Therefore, separate icons will usually
be created for the different environments. Platform-specific methods for creating a
wxIcon structure are catered for, and this is an occasion where conditional compilation
will probably be required.

Note that a new icon must be created for every time the icon is to be used for a new
window. In Windows, the icon will not be reloaded if it has already been used. An icon
allocated to a frame will be deleted when the frame is deleted.

For more information please see Bitmap and icon overview (p. 1040).

See also

Bitmap and icon overview (p. 1040), supported bitmap file formats (p. 1041),
wxDC::DrawIcon (p. 170), wxCursor (p. 135)

wxIcon::wxIcon

 wxIcon()

Default constructor.

 wxIcon(const wxIcon& icon)

Copy constructor.

CHAPTER 4

397

 wxIcon(void* data, int type, int width, int height, int depth = -1)

Creates an icon from the given data, which can be of arbitrary type.

 wxIcon(const char bits[], int width, int height
 int depth = 1)

Creates an icon from an array of bits.

 wxIcon(int width, int height, int depth = -1)

Creates a new icon.

 wxIcon(const char** bits)

Creates an icon from XPM data.

 wxIcon(const wxString& name, long type, int desiredWidth = -1, int desiredHeight =
-1)

Loads an icon from a file or resource.

Parameters

bits
Specifies an array of pixel values.

width
Specifies the width of the icon.

height
Specifies the height of the icon.

desiredWidth
Specifies the desired width of the icon. This parameter only has an effect in
Windows (32-bit) where icon resources can contain several icons of different sizes.

desiredWidth
Specifies the desired height of the icon. This parameter only has an effect in
Windows (32-bit) where icon resources can contain several icons of different sizes.

depth
Specifies the depth of the icon. If this is omitted, the display depth of the screen is
used.

name
This can refer to a resource name under MS Windows, or a filename under MS
Windows and X. Its meaning is determined by the flags parameter.

type

CHAPTER 4

398

May be one of the following:

wxBITMAP_TYPE_ICO Load a Windows icon file.
wxBITMAP_TYPE_ICO_RESOURCE Load a Windows icon from the resource

database.
wxBITMAP_TYPE_GIF Load a GIF bitmap file.
wxBITMAP_TYPE_XBM Load an X bitmap file.
wxBITMAP_TYPE_XPM Load an XPM bitmap file.

The validity of these flags depends on the platform and wxWindows configuration.
If all possible wxWindows settings are used, the Windows platform supports ICO
file, ICO resource, XPM data, and XPM file. Under wxGTK, the available formats
are BMP file, XPM data, XPM file, and PNG file. Under wxMotif, the available
formats are XBM data, XBM file, XPM data, XPM file.

Remarks

The first form constructs an icon object with no data; an assignment or another member
function such as Create or LoadFile must be called subsequently.

The second and third forms provide copy constructors. Note that these do not copy the
icon data, but instead a pointer to the data, keeping a reference count. They are
therefore very efficient operations.

The fourth form constructs an icon from data whose type and value depends on the
value of the type argument.

The fifth form constructs a (usually monochrome) icon from an array of pixel values,
under both X and Windows.

The sixth form constructs a new icon.

The seventh form constructs an icon from pixmap (XPM) data, if wxWindows has been
configured to incorporate this feature.

To use this constructor, you must first include an XPM file. For example, assuming that
the file mybitmap.xpm contains an XPM array of character pointers called mybitmap:

#include "mybitmap.xpm"

...

wxIcon *icon = new wxIcon(mybitmap);

A macro, wxICON, is available which creates an icon using an XPM on the appropriate
platform, or an icon resource on Windows.

wxIcon icon(wxICON(mondrian));

// Equivalent to:

#if defined(__WXGTK__) || defined(__WXMOTIF__)

CHAPTER 4

399

wxIcon icon(mondrian_xpm);
#endif

#if defined(__WXMSW__)
wxIcon icon("mondrian");
#endif

The eighth form constructs an icon from a file or resource. name can refer to a resource
name under MS Windows, or a filename under MS Windows and X.

Under Windows, type defaults to wxBITMAP_TYPE_ICO_RESOURCE. Under X, type
defaults to wxBITMAP_TYPE_XPM.

See also

wxIcon::LoadFile (p. 400)

wxIcon::~wxIcon

 ~wxIcon()

Destroys the wxIcon object and possibly the underlying icon data. Because reference
counting is used, the icon may not actually be destroyed at this point - only when the
reference count is zero will the data be deleted.

If the application omits to delete the icon explicitly, the icon will be destroyed
automatically by wxWindows when the application exits.

Do not delete an icon that is selected into a memory device context.

wxIcon::GetDepth

int GetDepth() const

Gets the colour depth of the icon. A value of 1 indicates a monochrome icon.

wxIcon::GetHeight

int GetHeight() const

Gets the height of the icon in pixels.

wxIcon::GetWidth

int GetWidth() const

Gets the width of the icon in pixels.

CHAPTER 4

400

See also

wxIcon::GetHeight (p. 399)

wxIcon::LoadFile

bool LoadFile(const wxString& name, long type)

Loads an icon from a file or resource.

Parameters

name
Either a filename or a Windows resource name. The meaning of name is
determined by the type parameter.

type
One of the following values:

wxBITMAP_TYPE_ICO Load a Windows icon file.
wxBITMAP_TYPE_ICO_RESOURCE Load a Windows icon from the resource

database.
wxBITMAP_TYPE_GIF Load a GIF bitmap file.
wxBITMAP_TYPE_XBM Load an X bitmap file.
wxBITMAP_TYPE_XPM Load an XPM bitmap file.

The validity of these flags depends on the platform and wxWindows configuration.

Return value

TRUE if the operation succeeded, FALSE otherwise.

See also

wxIcon::wxIcon (p. 396)

wxIcon::Ok

bool Ok() const

Returns TRUE if icon data is present.

wxIcon::SetDepth

void SetDepth(int depth)

CHAPTER 4

401

Sets the depth member (does not affect the icon data).

Parameters

depth
Icon depth.

wxIcon::SetHeight

void SetHeight(int height)

Sets the height member (does not affect the icon data).

Parameters

height
Icon height in pixels.

wxIcon::SetOk

void SetOk(int isOk)

Sets the validity member (does not affect the icon data).

Parameters

isOk
Validity flag.

wxIcon::SetWidth

void SetWidth(int width)

Sets the width member (does not affect the icon data).

Parameters

width
Icon width in pixels.

wxIcon::operator =

wxIcon& operator =(const wxIcon& icon)

Assignment operator. This operator does not copy any data, but instead passes a
pointer to the data in icon and increments a reference counter. It is a fast operation.

CHAPTER 4

402

Parameters

icon
Icon to assign.

Return value

Returns 'this' object.

wxIcon::operator ==

bool operator ==(const wxIcon& icon)

Equality operator. This operator tests whether the internal data pointers are equal (a fast
test).

Parameters

icon
Icon to compare with 'this'

Return value

Returns TRUE if the icons were effectively equal, FALSE otherwise.

wxIcon::operator !=

bool operator !=(const wxIcon& icon)

Inequality operator. This operator tests whether the internal data pointers are unequal (a
fast test).

Parameters

icon
Icon to compare with 'this'

Return value

Returns TRUE if the icons were unequal, FALSE otherwise.

wxImage

This class encapsulates a platform-independent image. An image can be created from
data, or using the constructor taking a wxBitmap object. An image can be loaded from a
file in a variety of formats, and is extensible to new formats via image format handlers.
Functions are available to set and get image bits, so it can be used for basic image

CHAPTER 4

403

manipulation.

A wxImage cannot (currently) be drawn directly to a wxDC. Instead, a platform-specific
wxBitmap object must be created from it, and that bitmap drawn on the wxDC, using
wxDC::DrawBitmap.

Derived from

wxObject (p. 555)

Include files

<wx/image.h>

See also

wxBitmap (p. 36)wxInitAllImageHandlers (p. 965)

wxImage::wxImage

 wxImage()

Default constructor.

 wxImage(const wxImage& image)

Copy constructor.

 wxImage(const wxBitmap& bitmap)

Constructs an image from a platform-dependent bitmap. This preserves mask
information so that bitmaps and images can be converted back and forth without loss in
that respect.

 wxImage(int width, int height)

Creates an image with the given width and height.

 wxImage(const wxString& name, long type = wxBITMAP_TYPE_PNG)

 wxImage(const wxString& name, const wxString& mimetype)

Loads an image from a file.

 wxImage(wxInputStream& stream, long type = wxBITMAP_TYPE_PNG)

 wxImage(wxInputStream& stream, const wxString& mimetype)

CHAPTER 4

404

Loads an image from an input stream.

Parameters

width
Specifies the width of the image.

height
Specifies the height of the image.

name
This refers to an image filename. Its meaning is determined by the type parameter.

stream
This refers to an input stream. Its meaning is determined by the type parameter. It
is equal to loading from file except that you provide opened stream (file, HTTP or
any other custom class).

type
May be one of the following:

wxBITMAP_TYPE_BMP Load a Windows bitmap file.
wxBITMAP_TYPE_PNG Load a PNG bitmap file.
wxBITMAP_TYPE_JPEG Load a JPEG bitmap file.

The validity of these flags depends on the platform and wxWindows configuration.
If all possible wxWindows settings are used, the loading a BMP (Windows bitmap)
file, a PNG (portable network graphics) file and a JPEG file is supported on all
platforms that implement wxImage.

mimetype
MIME type string (for example 'image/jpeg')

Note : you must call wxImage::AddHandler(new wxJPEGHandler) during application
initialization in order to work with JPEGs.

See also

wxImage::LoadFile (p. 409)

wxPython note: Constructors supported by wxPython are:

wxImage(name, flag) Loads an image from a file
wxNullImage() Create a null image (has no size or image data)
wxEmptyImage(width, height) Creates an empty image of the given size
wxImageFromMime(name, mimetype Creates an image from the given file

of the given mimetype
wxImageFromBitmap(bitmap) Creates an image from a platform-

dependent bitmap

CHAPTER 4

405

wxImage::~wxImage

 ~wxImage()

Destructor.

wxImage::AddHandler

static void AddHandler(wxImageHandler* handler)

Adds a handler to the end of the static list of format handlers.

handler
A new image format handler object. There is usually only one instance of a given
handler class in an application session.

See also

wxImageHandler (p. 414)

wxPython note: In wxPython this static method is named wxImage_AddHandler.
wxImage::CleanUpHandlers

static void CleanUpHandlers()

Deletes all image handlers.

This function is called by wxWindows on exit.

wxImage::ConvertToBitmap

wxBitmap ConvertToBitmap() const

Converts the image to a platform-specific bitmap object. This has to be done to actually
display an image as you cannot draw an image directly on a window. The resulting
bitmap will use the colour depth of the current system which entails that a (crude) colour
reduction has to take place. When in 8-bit mode, this routine will use a color cube
created on program start-up to look up colors. Still, the image quality won't be perfect for
photo images.

wxImage::Create

bool Create(int width, int height)

Creates a fresh image.

CHAPTER 4

406

Parameters

width
The width of the image in pixels.

height
The height of the image in pixels.

Return value

TRUE if the call succeeded, FALSE otherwise.

wxImage::Destroy

bool Destroy()

Destroys the image data.

wxImage::FindHandler

static wxImageHandler* FindHandler(const wxString& name)

Finds the handler with the given name.

static wxImageHandler* FindHandler(const wxString& extension, long imageType)

Finds the handler associated with the given extension and type.

static wxImageHandler* FindHandler(long imageType)

Finds the handler associated with the given image type.

static wxImageHandler* FindHandlerMime(const wxString& mimetype)

Finds the handler associated with the given MIME type.

name
The handler name.

extension
The file extension, such as "bmp".

imageType
The image type, such as wxBITMAP_TYPE_BMP.

mimetype
MIME type.

Return value

CHAPTER 4

407

A pointer to the handler if found, NULL otherwise.

See also

wxImageHandler (p. 414)

wxImage::GetBlue

unsigned char GetBlue(int x, int y) const

Returns the blue intensity at the given coordinate.

wxImage::GetData

unsigned char* GetData() const

Returns the image data as an array. This is most often used when doing direct image
manipulation. The return value points to an array of chararcters in RGBGBRGB... format.

wxImage::GetGreen

unsigned char GetGreen(int x, int y) const

Returns the green intensity at the given coordinate.

wxImage::GetRed

unsigned char GetRed(int x, int y) const

Returns the red intensity at the given coordinate.

wxImage::GetHandlers

static wxList& GetHandlers()

Returns the static list of image format handlers.

See also

wxImageHandler (p. 414)

wxImage::GetHeight

CHAPTER 4

408

int GetHeight() const

Gets the height of the image in pixels.

wxImage::GetMaskBlue

unsigned char GetMaskBlue() const

Gets the blue value of the mask colour.

wxImage::GetMaskGreen

unsigned char GetMaskGreen() const

Gets the green value of the mask colour.

wxImage::GetMaskRed

unsigned char GetMaskRed() const

Gets the red value of the mask colour.

wxImage::GetSubImage

wxImage GetSubImage(const wxRect&rect) const

Returns a sub image of the current one as long as the rect belongs entirely to the
image.

wxImage::GetWidth

int GetWidth() const

Gets the width of the image in pixels.

See also

wxImage::GetHeight (p. 407)

wxImage::HasMask

bool HasMask() const

Returns TRUE if there is a mask active, FALSE otherwise.

CHAPTER 4

409

wxImage::InitStandardHandlers

static void InitStandardHandlers()

Internal use only. Adds standard image format handlers. It only install BMP for the time
being, which is use by wxBitmap.

This function is called by wxWindows on startup, and shouldn't be called by the user.

See also

wxImageHandler (p. 414)wxInitAllImageHandlers (p. 965)

wxImage::InsertHandler

static void InsertHandler(wxImageHandler* handler)

Adds a handler at the start of the static list of format handlers.

handler
A new image format handler object. There is usually only one instance of a given
handler class in an application session.

See also

wxImageHandler (p. 414)

wxImage::LoadFile

bool LoadFile(const wxString& name, long type = wxBITMAP_TYPE_ANY)

bool LoadFile(const wxString& name, const wxString& mimetype)

Loads an image from a file. If no handler type is provided, the library will try to use
wxBITMAP_TYPE_BMP.

bool LoadFile(wxInputStream& stream, long type)

bool LoadFile(wxInputStream& stream, const wxString& mimetype)

Loads an image from an input stream.

Parameters

name
A filename. The meaning of name is determined by the type parameter.

CHAPTER 4

410

stream
An input stream. The meaning of stream data is determined by the type parameter.

type
One of the following values:

wxBITMAP_TYPE_BMP Load a Windows image file.
wxBITMAP_TYPE_GIF Load a GIF image file.
wxBITMAP_TYPE_JPEG Load a JPEG image file.
wxBITMAP_TYPE_PCX Load a PCX image file.
wxBITMAP_TYPE_PNG Load a PNG image file.
wxBITMAP_TYPE_PNM Load a PNM image file.

The validity of these flags depends on the platform and wxWindows configuration.

mimetype
MIME type string (for example 'image/jpeg')

Return value

TRUE if the operation succeeded, FALSE otherwise.

See also

wxImage::SaveFile (p. 411)

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

LoadFile(filename, type) Loads an image of the given type from a file
LoadMimeFile(filename, mimetype) Loads an image of the given

mimetype from a file

wxImage::Ok

bool Ok() const

Returns TRUE if image data is present.

wxImage::RemoveHandler

static bool RemoveHandler(const wxString& name)

Finds the handler with the given name, and removes it. The handler is not deleted.

name
The handler name.

CHAPTER 4

411

Return value

TRUE if the handler was found and removed, FALSE otherwise.

See also

wxImageHandler (p. 414)

wxImage::SaveFile

bool SaveFile(const wxString& name, int type)

bool SaveFile(const wxString& name, const wxString& mimetype)

Saves a image in the named file.

bool SaveFile(wxOutputStream& stream, int type)

bool SaveFile(wxOutputStream& stream, const wxString& mimetype)

Saves a image in the given stream.

Parameters

name
A filename. The meaning of name is determined by the type parameter.

stream
An output stream. The meaning of stream is determined by the type parameter.

type
Currently two types can be used:

wxBITMAP_TYPE_PNG Save a PNG image file.
wxBITMAP_TYPE_JPEG Save a JPEG image file.

The validity of these flags depends on the platform and wxWindows configuration
as well as user-added handlers.

mimetype
MIME type.

Return value

TRUE if the operation succeeded, FALSE otherwise.

Remarks

Depending on how wxWindows has been configured, not all formats may be available.

CHAPTER 4

412

See also

wxImage::LoadFile (p. 409)

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

SaveFile(filename, type) Saves the image using the given type to the
named file

SaveMimeFile(filename, mimetype) Saves the image using the given
mimetype to the named file

wxImage::Rescale

wxImage Rescale(int width, int height)

Changes the size of the image in-place: after a call to this function, the image will have
the given width and height.

See also

Scale (p. 412)

wxImage::Scale

wxImage Scale(int width, int height) const

Returns a scaled version of the image. This is also useful for scaling bitmaps in general
as the only other way to scale bitmaps is to blit a wxMemoryDC into another
wxMemoryDC.

It may be mentioned that the GTK post uses this function internally to scale bitmaps
when using mapping mode in wxDC.

Example:

 // get the bitmap from somewhere
 wxBitmap bmp = ...;

 // rescale it to have size of 32*32
 if (bmp.GetWidth() != 32 || bmp.GetHeight() != 32)
 {
 wxImage image(bmp);
 bmp = image.Scale(32, 32).ConvertToBitmap();

 // another possibility:
 image.Rescale(32, 32);
 bmp = image;

CHAPTER 4

413

 }

See also

Rescale (p. 412)

wxImage::SetData

void SetData(unsigned char*data)

Sets the image data without performing checks. The data given must have the size
(width*height*3) or results will be unexpected. Don't use this method if you aren't sure
you know what you are doing.

wxImage::SetMask

void SetMask(bool hasMask = TRUE)

Specifies whether there is a mask or not. The area of the mask is determined by the
current mask colour.

wxImage::SetMaskColour

void SetMaskColour(unsigned char red, unsigned char blue, unsigned char green)

Sets the mask colour for this image (and tells the image to use the mask).

wxImage::SetRGB

void SetRGB(int x, int y, unsigned char red, unsigned char blue, unsigned char
green)

Sets the pixel at the given coordinate. This routine performs bounds-checks for the
coordinate so it can be considered a safe way to manipulate the data, but in some cases
this might be too slow so that the data will have to be set directly. In that case you have
to get that data by calling GetData().

wxImage::operator =

wxImage& operator =(const wxImage& image)

Assignment operator. This operator does not copy any data, but instead passes a
pointer to the data in image and increments a reference counter. It is a fast operation.

CHAPTER 4

414

Parameters

image
Image to assign.

Return value

Returns 'this' object.

wxImage::operator ==

bool operator ==(const wxImage& image)

Equality operator. This operator tests whether the internal data pointers are equal (a fast
test).

Parameters

image
Image to compare with 'this'

Return value

Returns TRUE if the images were effectively equal, FALSE otherwise.

wxImage::operator !=

bool operator !=(const wxImage& image)

Inequality operator. This operator tests whether the internal data pointers are unequal (a
fast test).

Parameters

image
Image to compare with 'this'

Return value

Returns TRUE if the images were unequal, FALSE otherwise.

wxImageHandler

This is the base class for implementing image file loading/saving, and image creation
from data. It is used within wxImage and is not normally seen by the application.

If you wish to extend the capabilities of wxImage, derive a class from wxImageHandler
and add the handler using wxImage::AddHandler (p. 405) in your application

CHAPTER 4

415

initialisation.

Note (Legal Issue)

This software is based in part on the work of the Independent JPEG Group.

(Applies when wxWindows is linked with JPEG support. wxJPEGHandler uses libjpeg
created by IJG.)

Derived from

wxObject (p. 555)

Include files

<wx/image.h>

See also

wxImage (p. 402)wxInitAllImageHandlers (p. 965)

wxImageHandler::wxImageHandler

 wxImageHandler()

Default constructor. In your own default constructor, initialise the members m_name,
m_extension and m_type.

wxImageHandler::~wxImageHandler

 ~wxImageHandler()

Destroys the wxImageHandler object.

wxImageHandler::GetName

wxString GetName() const

Gets the name of this handler.

wxImageHandler::GetExtension

wxString GetExtension() const

CHAPTER 4

416

Gets the file extension associated with this handler.

wxImageHandler::GetType

long GetType() const

Gets the image type associated with this handler.

wxImageHandler::GetMimeType

wxString GetMimeType() const

Gets the MIME type associated with this handler.

wxImageHandler::LoadFile

bool LoadFile(wxImage* image, wxInputStream& stream)

Loads a image from a stream, putting the resulting data into image.

Parameters

image
The image object which is to be affected by this operation.

stream
Opened input stream. The meaning of stream is determined by the type
parameter.

Return value

TRUE if the operation succeeded, FALSE otherwise.

See also

wxImage::LoadFile (p. 409)
wxImage::SaveFile (p. 411)
wxImageHandler::SaveFile (p. 416)

wxImageHandler::SaveFile

bool SaveFile(wxImage* image, wxOutputStream& stream)

Saves a image in the output stream.

Parameters

CHAPTER 4

417

image
The image object which is to be affected by this operation.

stream
A stream. The meaning of stream is determined by the type parameter.

Return value

TRUE if the operation succeeded, FALSE otherwise.

See also

wxImage::LoadFile (p. 409)
wxImage::SaveFile (p. 411)
wxImageHandler::LoadFile (p. 416)

wxImageHandler::SetName

void SetName(const wxString& name)

Sets the handler name.

Parameters

name
Handler name.

wxImageHandler::SetExtension

void SetExtension(const wxString& extension)

Sets the handler extension.

Parameters

extension
Handler extension.

wxImageHandler::SetType

void SetType(long type)

Sets the handler type.

Parameters

CHAPTER 4

418

name
Handler type.

wxImageHandler::SetMimeType

void SetMimeType(const wxString& mimetype)

Sets the handler MIME type.

Parameters

mimename
Handler MIME type.

wxImageList

A wxImageList contains a list of images, which are stored in an unspecified form. Images
can have masks for transparent drawing, and can be made from a variety of sources
including bitmaps and icons.

wxImageList is used principally in conjunction with wxTreeCtrl (p. 875) and wxListCtrl (p.
461) classes.

Derived from

wxObject (p. 555)

Include files

<wx/imaglist.h>

See also

wxTreeCtrl (p. 875), wxListCtrl (p. 461)

wxImageList::wxImageList

 wxImageList()

Default constructor.

 wxImageList(int width, int height, const bool mask = TRUE, int initialCount = 1)

Constructor specifying the image size, whether image masks should be created, and the
initial size of the list.

CHAPTER 4

419

Parameters

width
Width of the images in the list.

height
Height of the images in the list.

mask
TRUE if masks should be created for all images.

initialCount
The initial size of the list.

See also

wxImageList::Create (p. 420)

wxImageList::Add

int Add(const wxBitmap& bitmap, const wxBitmap& mask = wxNullBitmap)

Adds a new image using a bitmap and optional mask bitmap.

int Add(const wxBitmap& bitmap, const wxColour& maskColour)

Adds a new image using a bitmap and mask colour.

int Add(const wxIcon& icon)

Adds a new image using an icon.

Parameters

bitmap
Bitmap representing the opaque areas of the image.

mask
Monochrome mask bitmap, representing the transparent areas of the image.

maskColour
Colour indicating which parts of the image are transparent.

icon
Icon to use as the image.

Return value

The new zero-based image index.

CHAPTER 4

420

Remarks

The original bitmap or icon is not affected by the Add operation, and can be deleted
afterwards.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

Add(bitmap, mask=wxNullBitmap)
AddWithColourMask(bitmap, colour)
AddIcon(icon)

wxImageList::Create

bool Create(int width, int height, const bool mask = TRUE, int initialCount = 1)

Initializes the list. See wxImageList::wxImageList (p. 418) for details.

wxImageList::Draw

bool Draw(int index, wxDC& dc, int x, int x, int flags =
wxIMAGELIST_DRAW_NORMAL, const bool solidBackground = FALSE)

Draws a specified image onto a device context.

Parameters

index
Image index, starting from zero.

dc
Device context to draw on.

x
X position on the device context.

y
Y position on the device context.

flags
How to draw the image. A bitlist of a selection of the following:

wxIMAGELIST_DRAW_NORMAL Draw the image normally.
wxIMAGELIST_DRAW_TRANSPARENT Draw the image with transparency.
wxIMAGELIST_DRAW_SELECTED Draw the image in selected state.
wxIMAGELIST_DRAW_FOCUSED Draw the image in a focussed state.

solidBackground

CHAPTER 4

421

For optimisation - drawing can be faster if the function is told that the background
is solid.

wxImageList::GetImageCount

int GetImageCount() const

Returns the number of images in the list.

wxImageList::Remove

bool Remove(int index)

Removes the image at the given position.

wxImageList::RemoveAll

bool RemoveAll()

Removes all the images in the list.

wxImageList::Replace

bool Replace(int index, const wxBitmap& bitmap, const wxBitmap& mask =
wxNullBitmap)

Replaces the existing image with the new image.

bool Replace(int index, const wxIcon& icon)

Replaces the existing image with the new image.

Parameters

bitmap
Bitmap representing the opaque areas of the image.

mask
Monochrome mask bitmap, representing the transparent areas of the image.

icon
Icon to use as the image.

Return value

TRUE if the replacement was successful, FALSE otherwise.

CHAPTER 4

422

Remarks

The original bitmap or icon is not affected by the Replace operation, and can be deleted
afterwards.

wxPython note: The second form is called ReplaceIcon in wxPython.

wxIndividualLayoutConstraint

Objects of this class are stored in the wxIndividualLayoutConstraint class as one of eight
possible constraints that a window can be involved in.

Constraints are initially set to have the relationship wxUnconstrained, which means that
their values should be calculated by looking at known constraints.

Derived from

wxObject (p. 555)

Include files

<wx/layout.h>

See also

Overview and examples (p. 1051), wxLayoutConstraints (p. 444),
wxWindow::SetConstraints (p. 953).

Edges and relationships

The wxEdge enumerated type specifies the type of edge or dimension of a window.

wxLeft The left edge.
wxTop The top edge.
wxRight The right edge.
wxBottom The bottom edge.
wxCentreX The x-coordinate of the centre of the window.
wxCentreY The y-coordinate of the centre of the window.

The wxRelationship enumerated type specifies the relationship that this edge or
dimension has with another specified edge or dimension. Normally, the user doesn't use
these directly because functions such as Below and RightOf are a convenience for using
the more general Set function.

wxUnconstrained The edge or dimension is unconstrained (the default for

CHAPTER 4

423

edges.
wxAsIs The edge or dimension is to be taken from the current

window position or size (the default for dimensions.
wxAbove The edge should be above another edge.
wxBelow The edge should be below another edge.
wxLeftOf The edge should be to the left of another edge.
wxRightOf The edge should be to the right of another edge.
wxSameAs The edge or dimension should be the same as another

edge or dimension.
wxPercentOf The edge or dimension should be a percentage of another

edge or dimension.
wxAbsolute The edge or dimension should be a given absolute value.

wxIndividualLayoutConstraint::wxIndividualLayoutConstraint

void wxIndividualLayoutConstraint()

Constructor. Not used by the end-user.

wxIndividualLayoutConstraint::Above

void Above(wxWindow *otherWin, int margin = 0)

Constrains this edge to be above the given window, with an optional margin. Implicitly,
this is relative to the top edge of the other window.

wxIndividualLayoutConstraint::Absolute

void Absolute(int value)

Constrains this edge or dimension to be the given absolute value.

wxIndividualLayoutConstraint::AsIs

void AsIs()

Sets this edge or constraint to be whatever the window's value is at the moment. If either
of the width and height constraints are as is, the window will not be resized, but moved
instead. This is important when considering panel items which are intended to have a
default size, such as a button, which may take its size from the size of the button label.

wxIndividualLayoutConstraint::Below

void Below(wxWindow *otherWin, int margin = 0)

CHAPTER 4

424

Constrains this edge to be below the given window, with an optional margin. Implicitly,
this is relative to the bottom edge of the other window.

wxIndividualLayoutConstraint::Unconstrained

void Unconstrained()

Sets this edge or dimension to be unconstrained, that is, dependent on other edges and
dimensions from which this value can be deduced.

wxIndividualLayoutConstraint::LeftOf

void LeftOf(wxWindow *otherWin, int margin = 0)

Constrains this edge to be to the left of the given window, with an optional margin.
Implicitly, this is relative to the left edge of the other window.

wxIndividualLayoutConstraint::PercentOf

void PercentOf(wxWindow *otherWin, wxEdge edge, int margin = 0)

Constrains this edge or dimension to be to a percentage of the given window, with an
optional margin.

wxIndividualLayoutConstraint::RightOf

void RightOf(wxWindow *otherWin, int margin = 0)

Constrains this edge to be to the right of the given window, with an optional margin.
Implicitly, this is relative to the right edge of the other window.

wxIndividualLayoutConstraint::SameAs

void SameAs(wxWindow *otherWin, wxEdge edge, int margin = 0)

Constrains this edge or dimension to be to the same as the edge of the given window,
with an optional margin.

wxIndividualLayoutConstraint::Set

void Set(wxRelationship rel, wxWindow *otherWin, wxEdge otherEdge, int value = 0,
int margin = 0)

CHAPTER 4

425

Sets the properties of the constraint. Normally called by one of the convenience
functions such as Above, RightOf, SameAs.

wxInitDialogEvent

A wxInitDialogEvent is sent as a dialog or panel is being initialised. Handlers for this
event can transfer data to the window.

Derived from

wxEvent (p. 237)
wxObject (p. 555)

Include files

<wx/event.h>

Event table macros

To process an activate event, use these event handler macros to direct input to a
member function that takes a wxInitDialogEvent argument.

EVT_INIT_DIALOG(func) Process a wxEVT_INIT_DIALOG event.

See also

wxWindow::OnInitDialog (p. 940), Event handling overview (p. 1072)

wxInitDialogEvent::wxInitDialogEvent

 wxInitDialogEvent(int id = 0)

Constructor.

wxInputStream

Derived from

wxStreamBase (p. 754)

Include files

<wx/stream.h>

wxInputStream::wxInputStream

CHAPTER 4

426

 wxInputStream()

Creates a dummy input stream.

wxInputStream::~wxInputStream

 ~wxInputStream()

Destructor.

wxInputStream::GetC

char GetC()

Returns the first character in the input queue and removes it.

wxInputStream::LastRead

size_t LastRead() const

Returns the last number of bytes read.

wxInputStream::Peek

char Peek()

Returns the first character in the input queue without removing it.

wxInputStream::Read

wxInputStream& Read(void *buffer, size_t size)

Reads the specified amount of bytes and stores the data in buffer.

Warning

The buffer absolutely needs to have at least the specified size.

Return value

This function returns a reference on the current object, so the user can test any states of
the stream right away.

wxInputStream& Read(wxOutputStream& stream_out)

CHAPTER 4

427

Reads data from the input queue and stores it in the specified output stream. The data is
read until an error is raised by one of the two streams.

Return value

This function returns a reference on the current object, so the user can test any states of
the stream right away.

wxInputStream::SeekI

off_t SeekI(off_t pos, wxSeekMode mode = wxFromStart)

Changes the stream current position.

wxInputStream::TellI

off_t TellI() const

Returns the current stream position.

wxInputStream::Ungetch

size_t Ungetch(const char* buffer, size_t size)

This function is only useful in read mode. It is the manager of the "Write-Back" buffer.
This buffer acts like a temporary buffer where datas which has to be read during the next
read IO call are put. This is useful when you get a big block of data which you didn't want
to read: you can replace them at the top of the input queue by this way.

Return value

Returns the amount of bytes saved in the Write-Back buffer.

bool Ungetch(char c)

This function acts like the previous one except that it takes only one character: it is
sometimes shorter to use than the generic function.

wxIPV4address

Derived from

wxSockAddress (p. 704)

Include files

CHAPTER 4

428

<wx/socket.h>

wxIPV4address::Hostname

bool Hostname(const wxString& hostname)

Use the specified hostname for the address.

Return value

Returns FALSE if something bad happens (invalid hostname, invalid IP address).

wxIPV4address::Hostname

wxString Hostname()

Returns the hostname which matches the IP address.

wxIPV4address::Service

bool Service(const wxString& service)

Use the specified service string for the address.

Return value

Returns FALSE if something bad happens (invalid service).

wxIPV4address::Service

bool Service(unsigned short service)

Use the specified service for the address.

Return value

Returns FALSE if something bad happens (invalid service).

wxIPV4address::Service

unsigned short Service()

Returns the current service.

CHAPTER 4

429

wxIPV4address::LocalHost

bool LocalHost()

Initialize peer host to local host.

Return value

Returns FALSE if something bad happens.

wxJoystick

wxJoystick allows an application to control one or more joysticks.

Derived from

wxObject (p. 555)

Include files

<wx/joystick.h>

See also

wxJoystickEvent (p. 436)

wxJoystick::wxJoystick

 wxJoystick(int joystick = wxJOYSTICK1)

Constructor. joystick may be one of wxJOYSTICK1, wxJOYSTICK2, indicating the
joystick controller of interest.

wxJoystick::~wxJoystick

 ~wxJoystick()

Destroys the wxJoystick object.

wxJoystick::GetButtonState

int GetButtonState() const

CHAPTER 4

430

Returns the state of the joystick buttons. A bitlist of wxJOY_BUTTONn identifiers, where
n is 1, 2, 3 or 4.

wxJoystick::GetManufacturerId

int GetManufacturerId() const

Returns the manufacturer id.

wxJoystick::GetMovementThreshold

int GetMovementThreshold() const

Returns the movement threshold, the number of steps outside which the joystick is
deemed to have moved.

wxJoystick::GetNumberAxes

int GetNumberAxes() const

Returns the number of axes for this joystick.

wxJoystick::GetNumberButtons

int GetNumberButtons() const

Returns the number of buttons for this joystick.

wxJoystick::GetNumberJoysticks

int GetNumberJoysticks() const

Returns the number of joysticks currently attached to the computer.

wxJoystick::GetPollingMax

int GetPollingMax() const

Returns the maximum polling frequency.

wxJoystick::GetPollingMin

int GetPollingMin() const

CHAPTER 4

431

Returns the minimum polling frequency.

wxJoystick::GetProductId

int GetProductId() const

Returns the product id for the joystick.

wxJoystick::GetProductName

wxString GetProductName() const

Returns the product name for the joystick.

wxJoystick::GetPosition

wxPoint GetPosition() const

Returns the x, y position of the joystick.

wxJoystick::GetPOVPosition

int GetPOVPosition() const

Returns the point-of-view position, expressed in discrete units.

wxJoystick::GetPOVCTSPosition

int GetPOVCTSPosition() const

Returns the point-of-view position, expressed in continuous, one-hundredth of a degree
units.

wxJoystick::GetRudderMax

int GetRudderMax() const

Returns the maximum rudder position.

wxJoystick::GetRudderMin

int GetRudderMin() const

CHAPTER 4

432

Returns the minimum rudder position.

wxJoystick::GetRudderPosition

int GetRudderPosition() const

Returns the rudder position.

wxJoystick::GetUMax

int GetUMax() const

Returns the maximum U position.

wxJoystick::GetUMin

int GetUMin() const

Returns the minimum U position.

wxJoystick::GetUPosition

int GetUPosition() const

Gets the position of the fifth axis of the joystick, if it exists.

wxJoystick::GetVMax

int GetVMax() const

Returns the maximum V position.

wxJoystick::GetVMin

int GetVMin() const

Returns the minimum V position.

wxJoystick::GetVPosition

int GetVPosition() const

CHAPTER 4

433

Gets the position of the sixth axis of the joystick, if it exists.

wxJoystick::GetXMax

int GetXMax() const

Returns the maximum x position.

wxJoystick::GetXMin

int GetXMin() const

Returns the minimum x position.

wxJoystick::GetYMax

int GetYMax() const

Returns the maximum y position.

wxJoystick::GetYMin

int GetYMin() const

Returns the minimum y position.

wxJoystick::GetZMax

int GetZMax() const

Returns the maximum z position.

wxJoystick::GetZMin

int GetXMin() const

Returns the minimum z position.

wxJoystick::GetZPosition

int GetZPosition() const

Returns the z position of the joystick.

CHAPTER 4

434

wxJoystick::HasPOV

bool HasPOV() const

Returns TRUE if the joystick has a point of view control.

wxJoystick::HasPOV4Dir

bool HasPOV4Dir() const

Returns TRUE if the joystick point-of-view supports discrete values (centered, forward,
backward, left, and right).

wxJoystick::HasPOVCTS

bool HasPOVCTS() const

Returns TRUE if the joystick point-of-view supports continuous degree bearings.

wxJoystick::HasRudder

bool HasRudder() const

Returns TRUE if there is a rudder attached to the computer.

wxJoystick::HasU

bool HasU() const

Returns TRUE if the joystick has a U axis.

wxJoystick::HasV

bool HasV() const

Returns TRUE if the joystick has a V axis.

wxJoystick::HasZ

bool HasZ() const

Returns TRUE if the joystick has a Z axis.

CHAPTER 4

435

wxJoystick::IsOk

bool IsOk() const

Returns TRUE if the joystick is functioning.

wxJoystick::ReleaseCapture

bool ReleaseCapture()

Releases the capture set by SetCapture.

Return value

TRUE if the capture release succeeded.

See also

wxJoystick::SetCapture (p. 435), wxJoystickEvent (p. 436)

wxJoystick::SetCapture

bool SetCapture(wxWindow* win, int pollingFreq = 0)

Sets the capture to direct joystick events to win.

Parameters

win
The window that will receive joystick events.

pollingFreq
If zero, movement events are sent when above the threshold. If greater than zero,
events are received every pollingFreq milliseconds.

Return value

TRUE if the capture succeeded.

See also

wxJoystick::ReleaseCapture (p. 435), wxJoystickEvent (p. 436)

wxJoystick::SetMovementThreshold

CHAPTER 4

436

void SetMovementThreshold(int threshold)

Sets the movement threshold, the number of steps outside which the joystick is deemed
to have moved.

wxJoystickEvent

This event class contains information about mouse events, particularly events received
by windows.

Derived from

wxEvent (p. 237)

Include files

<wx/event.h>

Event table macros

To process a mouse event, use these event handler macros to direct input to member
functions that take a wxJoystickEvent argument.

EVT_JOY_BUTTON_DOWN(func) Process a wxEVT_JOY_BUTTON_DOWN
event.

EVT_JOY_BUTTON_UP(func) Process a wxEVT_JOY_BUTTON_UP event.
EVT_JOY_MOVE(func) Process a wxEVT_JOY_MOVE event.
EVT_JOY_ZMOVE(func) Process a wxEVT_JOY_ZMOVE event.

See also

wxJoystick (p. 429)

wxJoystickEvent::wxJoystickEvent

 wxJoystickEvent(WXTYPE eventType = 0, int state = 0, int joystick = wxJOYSTICK1,
int change = 0)

Constructor.

wxJoystickEvent::ButtonDown

bool ButtonDown(int button = wxJOY_BUTTON_ANY) const

Returns TRUE if the event was a down event from the specified button (or any button).

CHAPTER 4

437

Parameters

button
Can be wxJOY_BUTTONn where n is 1, 2, 3 or 4; or wxJOY_BUTTON_ANY to
indicate any button down event.

wxJoystickEvent::ButtonIsDown

bool ButtonIsDown(int button = wxJOY_BUTTON_ANY) const

Returns TRUE if the specified button (or any button) was in a down state.

Parameters

button
Can be wxJOY_BUTTONn where n is 1, 2, 3 or 4; or wxJOY_BUTTON_ANY to
indicate any button down event.

wxJoystickEvent::ButtonUp

bool ButtonUp(int button = wxJOY_BUTTON_ANY) const

Returns TRUE if the event was an up event from the specified button (or any button).

Parameters

button
Can be wxJOY_BUTTONn where n is 1, 2, 3 or 4; or wxJOY_BUTTON_ANY to
indicate any button down event.

wxJoystickEvent::GetButtonChange

int GetButtonChange() const

Returns the identifier of the button changing state. This is a wxJOY_BUTTONn identifier,
where n is one of 1, 2, 3, 4.

wxJoystickEvent::GetButtonState

int GetButtonState() const

Returns the down state of the buttons. This is a bitlist of wxJOY_BUTTONn identifiers,
where n is one of 1, 2, 3, 4.

CHAPTER 4

438

wxJoystickEvent::GetJoystick

int GetJoystick() const

Returns the identifier of the joystick generating the event - one of wxJOYSTICK1 and
wxJOYSTICK2.

wxJoystickEvent::GetPosition

wxPoint GetPosition() const

Returns the x, y position of the joystick event.

wxJoystickEvent::GetZPosition

int GetZPosition() const

Returns the z position of the joystick event.

wxJoystickEvent::IsButton

bool IsButton() const

Returns TRUE if this was a button up or down event (not 'is any button down?').

wxJoystickEvent::IsMove

bool IsMove() const

Returns TRUE if this was an x, y move event.

wxJoystickEvent::IsZMove

bool IsZMove() const

Returns TRUE if this was a z move event.

wxKeyEvent

This event class contains information about keypress (character) events.

Derived from

wxEvent (p. 237)

CHAPTER 4

439

Include files

<wx/event.h>

Event table macros

To process a key event, use these event handler macros to direct input to member
functions that take a wxKeyEvent argument.

EVT_CHAR(func) Process a wxEVT_CHAR event (a non-modifier
key has been pressed).

EVT_KEY_DOWN(func) Process a wxEVT_KEY_DOWN event (any key
has been pressed).

EVT_KEY_UP(func) Process a wxEVT_KEY_UP event (any key has
been released).

EVT_CHAR(func) Process a wxEVT_CHAR event.
EVT_CHAR_HOOK(func) Process a wxEVT_CHAR_HOOK event.

See also

wxWindow::OnChar (p. 934), wxWindow::OnCharHook (p. 935),
wxWindow::OnKeyDown (p. 938), wxWindow::OnKeyUp (p. 939)

wxKeyEvent::m_altDown

bool m_altDown

TRUE if the Alt key is pressed down.

wxKeyEvent::m_controlDown

bool m_controlDown

TRUE if control is pressed down.

wxKeyEvent::m_keyCode

long m_keyCode

Virtual keycode. See Keycodes (p. 1014) for a list of identifiers.

wxKeyEvent::m_metaDown

CHAPTER 4

440

bool m_metaDown

TRUE if the Meta key is pressed down.

wxKeyEvent::m_shiftDown

bool m_shiftDown

TRUE if shift is pressed down.

wxKeyEvent::m_x

int m_x

X position of the event.

wxKeyEvent::m_y

int m_y

Y position of the event.

wxKeyEvent::wxKeyEvent

 wxKeyEvent(WXTYPE keyEventType)

Constructor. Currently, the only valid event types are wxEVT_CHAR and
wxEVT_CHAR_HOOK.

wxKeyEvent::AltDown

bool AltDown() const

Returns TRUE if the Alt key was down at the time of the key event.

wxKeyEvent::ControlDown

bool ControlDown() const

Returns TRUE if the control key was down at the time of the key event.

wxKeyEvent::GetX

CHAPTER 4

441

long GetX() const

Returns the X position of the event.

wxKeyEvent::GetY

long GetY() const

Returns the Y position of the event.

wxKeyEvent::KeyCode

long KeyCode() const

Returns the virtual key code. ASCII events return normal ASCII values, while non-ASCII
events return values such as WXK_LEFT for the left cursor key. See Keycodes (p.
1014) for a full list of the virtual key codes.

wxKeyEvent::MetaDown

bool MetaDown() const

Returns TRUE if the Meta key was down at the time of the key event.

wxKeyEvent::GetPosition

wxPoint GetPosition() const

void GetPosition(long *x, long *y) const

Obtains the position at which the key was pressed.

wxKeyEvent::ShiftDown

bool ShiftDown() const

Returns TRUE if the shift key was down at the time of the key event.

wxLayoutAlgorithm

wxLayoutAlgorithm implements layout of subwindows in MDI or SDI frames. It sends a
wxCalculateLayoutEvent event to children of the frame, asking them for information
about their size. For MDI parent frames, the algorithm allocates the remaining space to
the MDI client window (which contains the MDI child frames). For SDI (normal) frames, a
'main' window is specified as taking up the remaining space.

CHAPTER 4

442

Because the event system is used, this technique can be applied to any windows, which
are not necessarily 'aware' of the layout classes (no virtual functions in wxWindow refer
to wxLayoutAlgorithm or its events). However, you may wish to use
wxSashLayoutWindow (p. 662) for your subwindows since this class provides handlers
for the required events, and accessors to specify the desired size of the window. The
sash behaviour in the base class can be used, optionally, to make the windows user-
resizable.

wxLayoutAlgorithm is typically used in IDE (integrated development environment)
applications, where there are several resizable windows in addition to the MDI client
window, or other primary editing window. Resizable windows might include toolbars, a
project window, and a window for displaying error and warning messages.

When a window receives an OnCalculateLayout event, it should call SetRect in the given
event object, to be the old supplied rectangle minus whatever space the window takes
up. It should also set its own size accordingly.
wxSashLayoutWindow::OnCalculateLayout generates an OnQueryLayoutInfo event
which it sends to itself to determine the orientation, alignment and size of the window,
which it gets from internal member variables set by the application.

The algorithm works by starting off with a rectangle equal to the whole frame client area.
It iterates through the frame children, generating OnCalculateLayout events which
subtract the window size and return the remaining rectangle for the next window to
process. It is assumed (by wxSashLayoutWindow::OnCalculateLayout) that a window
stretches the full dimension of the frame client, according to the orientation it specifies.
For example, a horizontal window will stretch the full width of the remaining portion of the
frame client area. In the other orientation, the window will be fixed to whatever size was
specified by OnQueryLayoutInfo. An alignment setting will make the window 'stick' to the
left, top, right or bottom of the remaining client area. This scheme implies that order of
window creation is important. Say you wish to have an extra toolbar at the top of the
frame, a project window to the left of the MDI client window, and an output window
above the status bar. You should therefore create the windows in this order: toolbar,
output window, project window. This ensures that the toolbar and output window take up
space at the top and bottom, and then the remaining height inbetween is used for the
project window.

wxLayoutAlgorithm is quite independent of the way in which OnCalculateLayout chooses
to interpret a window's size and alignment. Therefore you could implement a different
window class with a new OnCalculateLayout event handler, that has a more
sophisticated way of laying out the windows. It might allow specification of whether
stretching occurs in the specified orientation, for example, rather than always assuming
stretching. (This could, and probably should, be added to the existing implementation).

Note: wxLayoutAlgorithm has nothing to do with wxLayoutConstraints. It is an alternative
way of specifying layouts for which the normal constraint system is unsuitable.

Derived from

wxObject (p. 555)

CHAPTER 4

443

Include files

<wx/laywin.h>

Event handling

The algorithm object does not respond to events, but itself generates the following
events in order to calculate window sizes.

EVT_QUERY_LAYOUT_INFO(func) Process a wxEVT_QUERY_LAYOUT_INFO
event, to get size, orientation and alignment
from a window. See wxQueryLayoutInfoEvent
(p. 626).

EVT_CALCULATE_LAYOUT(func) Process a wxEVT_CALCULATE_LAYOUT
event, which asks the window to take a 'bite'
out of a rectangle provided by the algorithm.
See wxCalculateLayoutEvent (p. 73).

Data types

enum wxLayoutOrientation {
 wxLAYOUT_HORIZONTAL,
 wxLAYOUT_VERTICAL
};

enum wxLayoutAlignment {
 wxLAYOUT_NONE,
 wxLAYOUT_TOP,
 wxLAYOUT_LEFT,
 wxLAYOUT_RIGHT,
 wxLAYOUT_BOTTOM,
};

See also

wxSashEvent (p. 660), wxSashLayoutWindow (p. 662), Event handling overview (p.
1072)

wxCalculateLayoutEvent (p. 73), wxQueryLayoutInfoEvent (p. 626),
wxSashLayoutWindow (p. 662), wxSashWindow (p. 665)

wxLayoutAlgorithm::wxLayoutAlgorithm

 wxLayoutAlgorithm()

CHAPTER 4

444

Default constructor.

wxLayoutAlgorithm::~wxLayoutAlgorithm

 ~wxLayoutAlgorithm()

Destructor.

wxLayoutAlgorithm::LayoutFrame

bool LayoutFrame(wxFrame* frame, wxWindow* mainWindow = NULL) const

Lays out the children of a normal frame. mainWindow is set to occupy the remaining
space.

This function simply calls wxLayoutAlgorithm::LayoutWindow (p. 444).

wxLayoutAlgorithm::LayoutMDIFrame

bool LayoutMDIFrame(wxMDIParentFrame* frame, wxRect* rect = NULL) const

Lays out the children of an MDI parent frame. If rect is non-NULL, the given rectangle
will be used as a starting point instead of the frame's client area.

The MDI client window is set to occupy the remaining space.

wxLayoutAlgorithm::LayoutWindow

bool LayoutWindow(wxWindow* parent, wxWindow* mainWindow = NULL) const

Lays out the children of a normal frame or other window.

mainWindow is set to occupy the remaining space.

wxLayoutConstraints

Objects of this class can be associated with a window to define its layout constraints,
with respect to siblings or its parent.

The class consists of the following eight constraints of class
wxIndividualLayoutConstraint, some or all of which should be accessed directly to set
the appropriate constraints.

• left: represents the left hand edge of the window
• right: represents the right hand edge of the window
• top: represents the top edge of the window

CHAPTER 4

445

• bottom: represents the bottom edge of the window
• width: represents the width of the window
• height: represents the height of the window
• centreX: represents the horizontal centre point of the window
• centreY: represents the vertical centre point of the window

Most constraints are initially set to have the relationship wxUnconstrained, which means
that their values should be calculated by looking at known constraints. The exceptions
are width and height, which are set to wxAsIs to ensure that if the user does not specify
a constraint, the existing width and height will be used, to be compatible with panel items
which often have take a default size. If the constraint is wxAsIs, the dimension will not be
changed.

Derived from

wxObject (p. 555)

Include files

<wx/layout.h>

See also

Overview and examples (p. 1051), wxIndividualLayoutConstraint (p. 422),
wxWindow::SetConstraints (p. 953)

wxLayoutConstraints::wxLayoutConstraints

 wxLayoutConstraints()

Constructor.

wxLayoutConstraints::bottom

wxIndividualLayoutConstraint bottom

Constraint for the bottom edge.

wxLayoutConstraints::centreX

wxIndividualLayoutConstraint centreX

Constraint for the horizontal centre point.

CHAPTER 4

446

wxLayoutConstraints::centreY

wxIndividualLayoutConstraint centreY

Constraint for the vertical centre point.

wxLayoutConstraints::height

wxIndividualLayoutConstraint height

Constraint for the height.

wxLayoutConstraints::left

wxIndividualLayoutConstraint left

Constraint for the left-hand edge.

wxLayoutConstraints::right

wxIndividualLayoutConstraint right

Constraint for the right-hand edge.

wxLayoutConstraints::top

wxIndividualLayoutConstraint top

Constraint for the top edge.

wxLayoutConstraints::width

wxIndividualLayoutConstraint width

Constraint for the width.

wxList

wxList classes provide linked list functionality for wxWindows, and for an application if it
wishes. Depending on the form of constructor used, a list can be keyed on integer or
string keys to provide a primitive look-up ability. See wxHashTable (p. 337) for a faster
method of storage when random access is required.

While wxList class in the previous versions of wxWindows only could contain elements
of type wxObject and had essentially untyped interface (thus allowing you to put apples

CHAPTER 4

447

in the list and read back oranges from it), the new wxList classes family may contain
elements of any type and has much more stricter type checking. Unfortunately, it also
requires an additional line to be inserted in your program for each list class you use
(which is the only solution short of using templates which is not done in wxWindows
because of portability issues).

The general idea is to have the base class wxListBase working with void *data but make
all of its dangerous (because untyped) functions protected, so that they can only be used
from derived classes which, in turn, expose a type safe interface. With this approach a
new wxList-like class must be defined for each list type (i.e. list of ints, of wxStrings or of
MyObjects). This is done with WX_DECLARE_LIST and WX_IMPLEMENT_LIST
macros like this (notice the similarity with WX_DECLARE_OBJARRAY and
WX_IMPLEMENT_OBJARRAY macros):

Example

 // this part might be in a header or source (.cpp) file
 class MyListElement
 {
 ... // whatever
 };

 // declare our list class: this macro declares and partly
implements MyList
 // class (which derives from wxListBase)
 WX_DECLARE_LIST(MyListElement, MyList);

 ...

 // the only requirment for the rest is to be AFTER the full
declaration of
 // MyListElement (for WX_DECLARE_LIST forward declaration is
enough), but
 // usually it will be found in the source file and not in the
header

 #include <wx/listimpl.cpp>
 WX_DEFINE_LIST(MyList);

 // now MyList class may be used as a usual wxList, but all of its
methods
 // will take/return the objects of the right (i.e. MyListElement)
type. You
 // also have MyList::Node type which is the type-safe version of
wxNode.
 MyList list;
 MyListElement element;
 list.Add(element); // ok
 list.Add(17); // error: incorrect type

 // let's iterate over the list
 for (MyList::Node *node = list.GetFirst(); node; node = node-
>GetNext())
 {

CHAPTER 4

448

 MyListElement *current = node->GetData();

 ...process the current element...
 }

For compatibility with previous versions wxList and wxStringList classes are still defined,
but their usage is deprecated and they will disappear in the future versions completely.

Derived from

wxObject (p. 555)

Include files

<wx/list.h>

Example

It is very common to iterate on a list as follows:

 ...
 wxWindow *win1 = new wxWindow(...);
 wxWindow *win2 = new wxWindow(...);

 wxList SomeList;
 SomeList.Append(win1);
 SomeList.Append(win2);

 ...

 wxNode *node = SomeList.GetFirst();
 while (node)
 {
 wxWindow *win = (wxWindow *)node->Data();
 ...
 node = node->Next();
 }

To delete nodes in a list as the list is being traversed, replace

 ...
 node = node->Next();
 ...

with

 ...
 delete win;
 delete node;
 node = SomeList.GetFirst();
 ...

CHAPTER 4

449

See wxNode (p. 544) for members that retrieve the data associated with a node, and
members for getting to the next or previous node.

Note that a cast is required when retrieving the data from a node. Although a node is
defined to store objects of type wxObject and derived types, other types (such as char*)
may be used with appropriate casting.

See also

wxNode (p. 544), wxStringList (p. 782),wxArray (p. 16)

wxList::wxList

 wxList()

 wxList(unsigned int key_type)

 wxList(int n, wxObject *objects[])

 wxList(wxObject *object, ...)

Constructors. key_type is one of wxKEY_NONE, wxKEY_INTEGER, or
wxKEY_STRING, and indicates what sort of keying is required (if any).

objects is an array of n objects with which to initialize the list.

The variable-length argument list constructor must be supplied with a terminating NULL.

wxList::~wxList

 ~wxList()

Destroys the list. Also destroys any remaining nodes, but does not destroy client data
held in the nodes.

wxList::Append

wxNode * Append(wxObject *object)

wxNode * Append(long key, wxObject *object)

wxNode * Append(const wxString& key, wxObject *object)

Appends a new wxNode to the end of the list and puts a pointer to the object in the
node. The last two forms store a key with the object for later retrieval using the key. The

CHAPTER 4

450

new node is returned in each case.

The key string is copied and stored by the list implementation.

wxList::Clear

void Clear()

Clears the list (but does not delete the client data stored with each node).

wxList::DeleteContents

void DeleteContents(bool destroy)

If destroy is TRUE, instructs the list to call delete on the client contents of a node
whenever the node is destroyed. The default is FALSE.

wxList::DeleteNode

bool DeleteNode(wxNode *node)

Deletes the given node from the list, returning TRUE if successful.

wxList::DeleteObject

bool DeleteObject(wxObject *object)

Finds the given client object and deletes the appropriate node from the list, returning
TRUE if successful. The application must delete the actual object separately.

wxList::Find

wxNode * Find(long key)

wxNode * Find(const wxString& key)

Returns the node whose stored key matches key. Use on a keyed list only.

wxList::GetFirst

wxNode * GetFirst()

Returns the first node in the list (NULL if the list is empty).

CHAPTER 4

451

wxList::IndexOf

int IndexOf(wxObject* obj)

Returns the index of obj within the list or NOT_FOUND if obj is not found in the list.

wxList::Insert

wxNode * Insert(wxObject *object)

Insert object at front of list.

wxNode * Insert(wxNode *position, wxObject *object)

Insert object before position.

wxList::GetLast

wxNode * GetLast()

Returns the last node in the list (NULL if the list is empty).

wxList::Member

wxNode * Member(wxObject *object)

Returns the node associated with object if it is in the list, NULL otherwise.

wxList::Nth

wxNode * Nth(int n)

Returns the nth node in the list, indexing from zero (NULL if the list is empty or the nth
node could not be found).

wxList::Number

int Number()

Returns the number of elements in the list.

wxList::Sort

CHAPTER 4

452

void Sort(wxSortCompareFunction compfunc)

 // Type of compare function for list sort operation (as in 'qsort')
 typedef int (*wxSortCompareFunction)(const void *elem1, const void
*elem2);

Allows the sorting of arbitrary lists by giving a function to compare two list elements. We
use the system qsort function for the actual sorting process. The sort function receives
pointers to wxObject pointers (wxObject **), so be careful to dereference appropriately.

Example:

 int listcompare(const void *arg1, const void *arg2)
 {
 return(compare(**(wxString **)arg1, // use the wxString
'compare'
 **(wxString **)arg2)); // function
 }

 void main()
 {
 wxList list;

 list.Append(new wxString("DEF"));
 list.Append(new wxString("GHI"));
 list.Append(new wxString("ABC"));
 list.Sort(listcompare);
 }

wxListBox

A listbox is used to select one or more of a list of strings. The strings are displayed in a
scrolling box, with the selected string(s) marked in reverse video. A listbox can be single
selection (if an item is selected, the previous selection is removed) or multiple selection
(clicking an item toggles the item on or off independently of other selections).

List box elements are numbered from zero. Their number is limited in some platforms
(e.g. ca. 2000 on GTK).

A listbox callback gets an event wxEVT_COMMAND_LISTBOX_SELECT for single
clicks, and wxEVT_COMMAND_LISTBOX_DOUBLE_CLICKED for double clicks.

Derived from

wxControl (p. 130)
wxWindow (p. 915)
wxEvtHandler (p. 240)
wxObject (p. 555)

Include files

<wx/listbox.h>

CHAPTER 4

453

Window styles

wxLB_SINGLE Single-selection list.
wxLB_MULTIPLE Multiple-selection list: the user can toggle multiple items on

and off.
wxLB_EXTENDED Extended-selection list: the user can select multiple items

using the SHIFT key and the mouse or special key
combinations.

wxLB_HSCROLL Create horizontal scrollbar if contents are too wide
(Windows only).

wxLB_ALWAYS_SB Always show a vertical scrollbar.
wxLB_NEEDED_SB Only create a vertical scrollbar if needed.
wxLB_SORT The listbox contents are sorted in alphabetical order. No

effect for GTK.

See also window styles overview (p. 1093).

Event handling

EVT_LISTBOX(id, func) Process a
wxEVT_COMMAND_LISTBOX_SELECTED
event, when an item on the list is selected.

EVT_LISTBOX_DCLICK(id, func) Process a
wxEVT_COMMAND_LISTBOX_DOUBLECLIC
KED event, when the listbox is doubleclicked.

See also

wxChoice (p. 79), wxComboBox (p. 99), wxListCtrl (p. 461), wxCommandEvent (p. 108)

wxListBox::wxListBox

 wxListBox()

Default constructor.

 wxListBox(wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, int n, const wxString
choices[] = NULL, long style = 0, const wxValidator& validator = wxDefaultValidator,
const wxString& name = "listBox")

Constructor, creating and showing a list box.

Parameters

parent

CHAPTER 4

454

Parent window. Must not be NULL.

id
Window identifier. A value of -1 indicates a default value.

pos
Window position.

size
Window size. If the default size (-1, -1) is specified then the window is sized
appropriately.

n
Number of strings with which to initialise the control.

choices
An array of strings with which to initialise the control.

style
Window style. See wxListBox (p. 452).

validator
Window validator.

name
Window name.

See also

wxListBox::Create (p. 455), wxValidator (p. 897)

wxPython note: The wxListBox constructor in wxPython reduces the nand choices
arguments are to a single argument, which is a list of strings.

wxListBox::~wxListBox

void ~wxListBox()

Destructor, destroying the list box.

wxListBox::Append

void Append(const wxString& item)

Adds the item to the end of the list box.

void Append(const wxString& item, void* clientData)

CHAPTER 4

455

Adds the item to the end of the list box, associating the given data with the item.

Parameters

item
String to add.

clientData
Client data to associate with the item.

wxListBox::Clear

void Clear()

Clears all strings from the list box.

wxListBox::Create

bool Create(wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, int n, const wxString
choices[] = NULL, long style = 0, const wxValidator& validator = wxDefaultValidator,
const wxString& name = "listBox")

Creates the listbox for two-step construction. See wxListBox::wxListBox (p. 453) for
further details.

wxListBox::Delete

void Delete(int n)

Deletes an item from the listbox.

Parameters

n
The zero-based item index.

wxListBox::Deselect

void Deselect(int n)

Deselects an item in the list box.

Parameters

n

CHAPTER 4

456

The zero-based item to deselect.

Remarks

This applies to multiple selection listboxes only.

wxListBox::FindString

int FindString(const wxString& string)

Finds an item matching the given string.

Parameters

string
String to find.

Return value

The zero-based position of the item, or -1 if the string was not found.

wxListBox::GetClientData

void* GetClientData(int n) const

Returns a pointer to the client data associated with the given item (if any).

Parameters

n
The zero-based position of the item.

Return value

A pointer to the client data, or NULL if not present.

wxListBox::GetSelection

int GetSelection() const

Gets the position of the selected item.

Return value

The position of the current selection.

Remarks

CHAPTER 4

457

Applicable to single selection list boxes only.

See also

wxListBox::SetSelection (p. 460), wxListBox::GetStringSelection (p. 458),
wxListBox::GetSelections (p. 457)

wxListBox::GetSelections

int GetSelections(wxArrayInt&selections) const

Fill an array of ints with the positions of the currently selected items.

Parameters

selections
A reference to an wxArrayInt instance that is used to store the result of the query.

Return value

The number of selections.

Remarks

Use this with a multiple selection listbox.

See also

wxListBox::GetSelection (p. 456), wxListBox::GetStringSelection (p. 458),
wxListBox::SetSelection (p. 460)

wxPython note: The wxPython version of this method takes no parameters and returns
a tuple of the selected items.

wxListBox::GetString

wxString GetString(int n) const

Returns the string at the given position.

Parameters

n
The zero-based position.

Return value

The string, or an empty string if the position was invalid.

CHAPTER 4

458

wxListBox::GetStringSelection

wxString GetStringSelection() const

Gets the selected string - for single selection list boxes only. This must be copied by the
calling program if long term use is to be made of it.

See also

wxListBox::GetSelection (p. 456), wxListBox::GetSelections (p. 457),
wxListBox::SetSelection (p. 460)

wxListBox::InsertItems

void InsertItems(int nItems, const wxString items, int pos)

Insert the given number of strings before the specified position.

Parameters

nItems
Number of items in the array items

items
Labels of items to be inserted

pos
Position before which to insert the items: for example, if pos is 0 the items will be
inserted in the beginning of the listbox

wxPython note: The first two parameters are collapsed into a single parameter for
wxPython, which is a list of strings.

wxListBox::Number

int Number() const

Returns the number of items in the listbox.

wxListBox::Selected

bool Selected(int n) const

Determines whether an item is selected.

CHAPTER 4

459

Parameters

n
The zero-based item index.

Return value

TRUE if the given item is selected, FALSE otherwise.

wxListBox::Set

void Set(int n, const wxString* choices)

Clears the list box and adds the given strings. Not implemented for GTK.

Parameters

n
The number of strings to set.

choices
An array of strings to set.

Remarks

Deallocate the array from the calling program after this function has been called.

wxListBox::SetClientData

void SetClientData(int n, void* data)

Associates the given client data pointer with the given item.

Parameters

n
The zero-based item index.

data
The client data to associate with the item.

wxListBox::SetFirstItem

void SetFirstItem(int n)

void SetFirstItem(const wxString& string)

CHAPTER 4

460

Set the specified item to be the first visible item. Windows only.

Parameters

n
The zero-based item index.

string
The string that should be visible.

wxListBox::SetSelection

void SetSelection(int n, const bool select = TRUE)

Selects or deselects the given item. This does not cause a
wxEVT_COMMAND_LISTBOX_SELECT event to get emitted.

Parameters

n
The zero-based item index.

select
If TRUE, will select the item. If FALSE, will deselect it.

wxListBox::SetString

void SetString(int n, const wxString& string)

Sets the string value of an item.

Parameters

n
The zero-based item index.

string
The string to set.

wxListBox::SetStringSelection

void SetStringSelection(const wxString& string, const bool select = TRUE)

Sets the current selection. This does not cause a
wxEVT_COMMAND_LISTBOX_SELECT event to get emitted.

Parameters

CHAPTER 4

461

string
The item to select.

select
If TRUE, will select the item. If FALSE, will deselect it.

wxListCtrl

A list control presents lists in a number of formats: list view, report view, icon view and
small icon view. Elements are numbered from zero.

To intercept events from a list control, use the event table macros described in
wxListEvent (p. 474).

Derived from

wxControl (p. 130)
wxWindow (p. 915)
wxEvtHandler (p. 240)
wxObject (p. 555)

Include files

<wx/listctrl.h>

Window styles

wxLC_LIST multicolumn list view, with optional small icons. Columns
are computed automatically, i.e. you don't set columns as
in wxLC_REPORT. In other words, the list wraps, unlike a
wxListBox.

wxLC_REPORT single or multicolumn report view, with optional header.
wxLC_ICON Large icon view, with optional labels.
wxLC_SMALL_ICON Small icon view, with optional labels.
wxLC_ALIGN_TOP Icons align to the top. Win32 default, Win32 only.
wxLC_ALIGN_LEFT Icons align to the left.
wxLC_AUTOARRANGE Icons arrange themselves. Win32 only.
wxLC_USER_TEXT The application provides label text on demand, except for

column headers. Win32 only.
wxLC_EDIT_LABELS Labels are editable: the application will be notified when

editing starts.
wxLC_NO_HEADER No header in report mode. Win32 only.
wxLC_SINGLE_SEL Single selection.
wxLC_SORT_ASCENDING Sort in ascending order (must still supply a comparison

callback in SortItems.
wxLC_SORT_DESCENDING Sort in descending order (must still supply a

comparison callback in SortItems.

See also window styles overview (p. 1093).

CHAPTER 4

462

Event handling

To process input from a list control, use these event handler macros to direct input to
member functions that take a wxListEvent (p. 474) argument.

EVT_LIST_BEGIN_DRAG(id, func) Begin dragging with the left mouse button.
EVT_LIST_BEGIN_RDRAG(id, func) Begin dragging with the right mouse button.
EVT_LIST_BEGIN_LABEL_EDIT(id, func) Begin editing a label. This can be prevented

by calling Veto() (p. 554).
EVT_LIST_END_LABEL_EDIT(id, func) Finish editing a label. This can be prevented

by calling Veto() (p. 554).
EVT_LIST_DELETE_ITEM(id, func) Delete an item.
EVT_LIST_DELETE_ALL_ITEMS(id, func) Delete all items.
EVT_LIST_GET_INFO(id, func) Request information from the application,

usually the item text.
EVT_LIST_SET_INFO(id, func) Information is being supplied (not

implemented).
EVT_LIST_ITEM_SELECTED(id, func) The item has been selected.
EVT_LIST_ITEM_DESELECTED(id, func) The item has been deselected.
EVT_LIST_ITEM_ACTIVATED(id, func)The item has been activated (ENTER or double

click).
EVT_LIST_KEY_DOWN(id, func) A key has been pressed.
EVT_LIST_INSERT_ITEM(id, func) An item has been inserted.
EVT_LIST_COL_CLICK(id, func) A column (m_col) has been left-clicked.

See also

wxListCtrl overview (p. 1047), wxListBox (p. 452), wxTreeCtrl (p. 875), wxImageList (p.
418), wxListEvent (p. 474)

wxListCtrl::wxListCtrl

 wxListCtrl()

Default constructor.

 wxListCtrl(wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style = wxLC_ICON,
const wxValidator& validator = wxDefaultValidator, const wxString& name = "listCtrl")

Constructor, creating and showing a list control.

Parameters

parent
Parent window. Must not be NULL.

CHAPTER 4

463

id
Window identifier. A value of -1 indicates a default value.

pos
Window position.

size
Window size. If the default size (-1, -1) is specified then the window is sized
appropriately.

style
Window style. See wxListCtrl (p. 461).

validator
Window validator.

name
Window name.

See also

wxListCtrl::Create (p. 463), wxValidator (p. 897)

wxListCtrl::~wxListCtrl

void ~wxListCtrl()

Destructor, destroying the list control.

wxListCtrl::Arrange

bool Arrange(int flag = wxLIST_ALIGN_DEFAULT)

Arranges the items in icon or small icon view. This only has effect on Win32. flag is one
of:

wxLIST_ALIGN_DEFAULT Default alignment.
wxLIST_ALIGN_LEFT Align to the left side of the control.
wxLIST_ALIGN_TOP Align to the top side of the control.
wxLIST_ALIGN_SNAP_TO_GRID Snap to grid.

wxListCtrl::Create

bool Create(wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style = wxLC_ICON,

CHAPTER 4

464

const wxValidator& validator = wxDefaultValidator, const wxString& name = "listCtrl")

Creates the list control. See wxListCtrl::wxListCtrl (p. 462) for further details.

wxListCtrl::ClearAll

void ClearAll()

Deletes all items and all columns.

wxListCtrl::DeleteItem

bool DeleteItem(long item)

Deletes the specified item.

wxListCtrl::DeleteAllItems

bool DeleteAllItems()

Deletes all the items in the list control.

wxListCtrl::DeleteColumn

bool DeleteColumn(int col)

Deletes a column.

wxListCtrl::EditLabel

void EditLabel(long item)

Starts editing the label of the given item. This function generates a
EVT_LIST_BEGIN_LABEL_EDIT event which can be vetoed so that no text control will
appear for in-place editing.

If the user changed the label (i.e. s/he does not press ESC or leave the text control
without changes, a EVT_LIST_END_LABEL_EDIT event will be sent which can be
vetoed as well.

wxListCtrl::EnsureVisible

bool EnsureVisible(long item)

CHAPTER 4

465

Ensures this item is visible.

wxListCtrl::FindItem

long FindItem(long start, const wxString& str, const bool partial = FALSE)

Find an item whose label matches this string, starting from the item after start or the
beginning if start is -1.

long FindItem(long start, long data)

Find an item whose data matches this data, starting from the item after start or the
beginning if 'start' is -1.

long FindItem(long start, const wxPoint& pt, int direction)

Find an item nearest this position in the specified direction, starting from the item after
start or the beginning if start is -1.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

FindItem(start, str, partial=FALSE)
FindItemData(start, data)
FindItemAtPos(start, point, direction)

wxListCtrl::GetColumn

bool GetColumn(int col, wxListItem& item) const

Gets information about this column. See wxListCtrl::SetItem (p. 471) for more
information.

wxListCtrl::GetColumnWidth

int GetColumnWidth(int col) const

Gets the column width (report view only).

wxListCtrl::GetCountPerPage

int GetCountPerPage() const

Gets the number of items that can fit vertically in the visible area of the list control (list or
report view) or the total number of items in the list control (icon or small icon view).

CHAPTER 4

466

wxListCtrl::GetEditControl

wxTextCtrl& GetEditControl() const

Gets the edit control for editing labels.

wxListCtrl::GetImageList

wxImageList* GetImageList(int which) const

Returns the specified image list. which may be one of:

wxIMAGE_LIST_NORMAL The normal (large icon) image list.
wxIMAGE_LIST_SMALL The small icon image list.
wxIMAGE_LIST_STATE The user-defined state image list (unimplemented).

wxListCtrl::GetItem

bool GetItem(wxListItem& info) const

Gets information about the item. See wxListCtrl::SetItem (p. 471) for more information.

wxPython note: The wxPython version of this method takes an integer parameter for
the item ID, and returns the wxListItem object.

wxListCtrl::GetItemData

long GetItemData(long item) const

Gets the application-defined data associated with this item.

wxListCtrl::GetItemPosition

bool GetItemPosition(long item, wxPoint& pos) const

Returns the position of the item, in icon or small icon view.

wxPython note: The wxPython version of this method accepts only the item ID and
returns the wxPoint.

wxListCtrl::GetItemRect

CHAPTER 4

467

bool GetItemRect(long item, wxRect& rect, int code = wxLIST_RECT_BOUNDS)
const

Returns the rectangle representing the item's size and position, in client coordinates.

code is one of wxLIST_RECT_BOUNDS, wxLIST_RECT_ICON,
wxLIST_RECT_LABEL.

wxPython note: The wxPython version of this method accepts only the item ID and
returns the wxRect.

wxListCtrl::GetItemState

int GetItemState(long item, long stateMask) const

Gets the item state. For a list of state flags, see wxListCtrl::SetItem (p. 471).

The stateMask indicates which state flags are of interest.

wxListCtrl::GetItemCount

int GetItemCount() const

Returns the number of items in the list control.

wxListCtrl::GetItemSpacing

int GetItemSpacing(bool isSmall) const

Retrieves the spacing between icons in pixels. If small is TRUE, gets the spacing for the
small icon view, otherwise the large icon view.

wxListCtrl::GetItemText

wxString GetItemText(long item) const

Gets the item text for this item.

wxListCtrl::GetNextItem

long GetNextItem(long item, int geometry = wxLIST_NEXT_ALL, int state =
wxLIST_STATE_DONTCARE) const

Searches for an item with the given goemetry or state, starting from item. item can be -1
to find the first item that matches the specified flags.

CHAPTER 4

468

Returns the item or -1 if unsuccessful.

geometry can be one of:

wxLIST_NEXT_ABOVE Searches for an item above the specified item.
wxLIST_NEXT_ALL Searches for subsequent item by index.
wxLIST_NEXT_BELOW Searches for an item below the specified item.
wxLIST_NEXT_LEFT Searches for an item to the left of the specified item.
wxLIST_NEXT_RIGHT Searches for an item to the right of the specified item.

state can be a bitlist of the following:

wxLIST_STATE_DONTCARE Don't care what the state is.
wxLIST_STATE_DROPHILITED The item indicates it is a drop target.
wxLIST_STATE_FOCUSED The item has the focus.
wxLIST_STATE_SELECTEDThe item is selected.
wxLIST_STATE_CUT The item is selected as part of a cut and paste operation.

wxListCtrl::GetSelectedItemCount

int GetSelectedItemCount() const

Returns the number of selected items in the list control.

wxListCtrl::GetTextColour

wxColour GetTextColour() const

Gets the text colour of the list control.

wxListCtrl::GetTopItem

long GetTopItem() const

Gets the index of the topmost visible item when in list or report view.

wxListCtrl::HitTest

long HitTest(const wxPoint& point, int& flags)

Determines which item (if any) is at the specified point, giving details in flags. flags will
be a combination of the following flags:

CHAPTER 4

469

wxLIST_HITTEST_ABOVE Above the client area.
wxLIST_HITTEST_BELOW Below the client area.
wxLIST_HITTEST_NOWHERE In the client area but below the last item.
wxLIST_HITTEST_ONITEMICON On the bitmap associated with an item.
wxLIST_HITTEST_ONITEMLABEL On the label (string) associated with an item.
wxLIST_HITTEST_ONITEMRIGHT In the area to the right of an item.
wxLIST_HITTEST_ONITEMSTATEICON On the state icon for a tree view item that is

in a user-defined state.
wxLIST_HITTEST_TOLEFT To the right of the client area.
wxLIST_HITTEST_TORIGHT To the left of the client area.
wxLIST_HITTEST_ONITEM Combination of wxLIST_HITTEST_ONITEMICON,

wxLIST_HITTEST_ONITEMLABEL,
wxLIST_HITTEST_ONITEMSTATEICON.

wxPython note: A tuple of values is returned in the wxPython version of thsi method.
The first value is the item id and the second is the flags value mentioned above.

wxListCtrl::InsertColumn

long InsertColumn(long col, wxListItem& info)

For list view mode (only), inserts a column. For more details, see wxListCtrl::SetItem (p.
471).

long InsertColumn(long col, const wxString& heading, int format =
wxLIST_FORMAT_LEFT, int width = -1)

For list view mode (only), inserts a column. For more details, see wxListCtrl::SetItem (p.
471).

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

InsertColumn(col, heading, format=wxLIST_FORMAT_LEFT, width=-1)
Creates a column using a header string

only.
InsertColumnInfo(col, item) Creates a column using a wxListInfo.

wxListCtrl::InsertItem

long InsertItem(wxListItem& info)

Inserts an item, returning the index of the new item if successful, -1 otherwise.

long InsertItem(long index, const wxString& label)

Inserts a string item.

CHAPTER 4

470

long InsertItem(long index, int imageIndex)

Inserts an image item.

long InsertItem(long index, const wxString& label, int imageIndex)

Insert an image/string item.

Parameters

info
wxListItem object

index
Index of the new item, supplied by the application

label
String label

imageIndex
index into the image list associated with this control and view style

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

InsertItem(item) Inserts an item using a wxListItem.
InsertStringItem(index, label) Inserts a string item.
InsertImageItem(index, imageIndex) Inserts an image item.
InsertImageStringItem(index, label, imageIndex) Insert an image/string

item.

wxListCtrl::ScrollList

bool ScrollList(int dx, int dy)

Scrolls the list control. If in icon, small icon or report view mode, dx specifies the number
of pixels to scroll. If in list view mode, dx specifies the number of columns to scroll.

If in icon, small icon or list view mode, dy specifies the number of pixels to scroll. If in
report view mode, dy specifies the number of lines to scroll.

wxListCtrl::SetBackgroundColour

void SetBackgroundColour(const wxColour& col)

Sets the background colour (GetBackgroundColour already implicit in wxWindow class).

CHAPTER 4

471

wxListCtrl::SetColumn

bool SetColumn(int col, wxListItem& item)

Sets information about this column. See wxListCtrl::SetItem (p. 471) for more
information.

wxListCtrl::SetColumnWidth

bool SetColumnWidth(int col, int width)

Sets the column width.

width can be a width in pixels or wxLIST_AUTOSIZE (-1) or
wxLIST_AUTOSIZE_USEHEADER (-2). wxLIST_AUTOSIZE will resize the column to
the length of its longest item. wxLIST_AUTOSIZE_USEHEADER will resize the column
to the length of the header (Win32) or 80 pixels (other platforms).

In small or normal icon view, col must be -1, and the column width is set for all columns.

wxListCtrl::SetImageList

void SetImageList(wxImageList* imageList, int which)

Sets the image list associated with the control. which is one of
wxIMAGE_LIST_NORMAL, wxIMAGE_LIST_SMALL, wxIMAGE_LIST_STATE (the last
is unimplemented).

wxListCtrl::SetItem

bool SetItem(wxListItem& info)

Sets information about the item.

wxListItem is a class with the following members:

long m_mask Indicates which fields are valid. See the list of valid mask
flags below.

long m_itemId The zero-based item position.
int m_col Zero-based column, if in report mode.
long m_state The state of the item. See the list of valid state flags below.
long m_stateMask A mask indicating which state flags are valid. See the list of

valid state flags below.
wxString m_text The label/header text.
int m_image The zero-based index into an image list.
long m_data Application-defined data.

CHAPTER 4

472

int m_format For columns only: the format. Can be
wxLIST_FORMAT_LEFT, wxLIST_FORMAT_RIGHT or
wxLIST_FORMAT_CENTRE.

int m_width For columns only: the column width.

The m_mask member contains a bitlist specifying which of the other fields are valid. The
flags are:

wxLIST_MASK_STATE The m_state field is valid.
wxLIST_MASK_TEXT The m_text field is valid.
wxLIST_MASK_IMAGE The m_image field is valid.
wxLIST_MASK_DATA The m_data field is valid.
wxLIST_MASK_WIDTH The m_width field is valid.
wxLIST_MASK_FORMAT The m_format field is valid.

The m_stateMask and m_state members take flags from the following:

wxLIST_STATE_DONTCARE Don't care what the state is. Win32 only.
wxLIST_STATE_DROPHILITED The item is highlighted to receive a drop event.

Win32 only.
wxLIST_STATE_FOCUSED The item has the focus.
wxLIST_STATE_SELECTEDThe item is selected.
wxLIST_STATE_CUT The item is in the cut state. Win32 only.

long SetItem(long index, int col, const wxString& label, int imageId = -1)

Sets a string field at a particular column.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

SetItem(item) Sets information about the given wxListItem.
SetStringItem(index, col, label, imageId) Sets a string or image at a

given location.

wxListCtrl::SetItemData

bool SetItemData(long item, long data)

Associates application-defined data with this item.

wxListCtrl::SetItemImage

bool SetItemImage(long item, int image, int selImage)

CHAPTER 4

473

Sets the unselected and selected images associated with the item. The images are
indices into the image list associated with the list control.

wxListCtrl::SetItemPosition

bool SetItemPosition(long item, const wxPoint& pos)

Sets the position of the item, in icon or small icon view.

wxListCtrl::SetItemState

bool SetItemState(long item, long state, long stateMask)

Sets the item state. For a list of state flags, see wxListCtrl::SetItem (p. 471).

The stateMask indicates which state flags are valid.

wxListCtrl::SetItemText

void SetItemText(long item, const wxString& text)

Sets the item text for this item.

wxListCtrl::SetSingleStyle

void SetSingleStyle(long style, const bool add = TRUE)

Adds or removes a single window style.

wxListCtrl::SetTextColour

void SetTextColour(const wxColour& col)

Sets the text colour of the list control.

wxListCtrl::SetWindowStyleFlag

void SetWindowStyleFlag(long style)

Sets the whole window style.

wxListCtrl::SortItems

CHAPTER 4

474

bool SortItems(wxListCtrlCompare fn, long data)

Sorts the items in the list control.

fn is a function which takes 3 long arguments: item1, item2, data.

item1 is the long data associated with a first item (NOT the index).

item2 is the long data associated with a second item (NOT the index).

data is the same value as passed to SortItems.

The return value is a negative number if the first item should precede the second item, a
positive number of the second item should precede the first, or zero if the two items are
equivalent.

data is arbitrary data to be passed to the sort function.

wxListEvent

A list event holds information about events associated with wxListCtrl objects.

Derived from

wxNotifyEvent (p. 553)
wxCommandEvent (p. 108)
wxEvent (p. 237)
wxObject (p. 555)

Include files

<wx/listctrl.h>

Event table macros

To process input from a list control, use these event handler macros to direct input to
member functions that take a wxListEvent argument.

EVT_LIST_BEGIN_DRAG(id, func) Begin dragging with the left mouse button.
EVT_LIST_BEGIN_RDRAG(id, func) Begin dragging with the right mouse button.
EVT_LIST_BEGIN_LABEL_EDIT(id, func) Begin editing a label. This can be prevented

by calling Veto() (p. 554).
EVT_LIST_END_LABEL_EDIT(id, func) Finish editing a label. This can be prevented

by calling Veto() (p. 554).
EVT_LIST_DELETE_ITEM(id, func) Delete an item.
EVT_LIST_DELETE_ALL_ITEMS(id, func) Delete all items.
EVT_LIST_GET_INFO(id, func) Request information from the application,

usually the item text.
EVT_LIST_SET_INFO(id, func) Information is being supplied (not

implemented).
EVT_LIST_ITEM_SELECTED(id, func) The item has been selected.

CHAPTER 4

475

EVT_LIST_ITEM_DESELECTED(id, func) The item has been deselected.
EVT_LIST_ITEM_ACTIVATED(id, func)The item has been activated (ENTER or double

click).
EVT_LIST_KEY_DOWN(id, func) A key has been pressed.
EVT_LIST_INSERT_ITEM(id, func) An item has been inserted.
EVT_LIST_COL_CLICK(id, func) A column (m_col) has been left-clicked.

See also

wxListCtrl (p. 461)

wxListEvent::wxListEvent

 wxListEvent(WXTYPE commandType = 0, int id = 0)

Constructor.

wxListEvent::m_code

int m_code

Key code if the event is a keypress event.

wxListEvent::m_itemIndex

long m_itemIndex

The item index.

wxListEvent::m_oldItemIndex

long m_oldItemIndex

The old item index.

wxListEvent::m_col

int m_col

The column position.

CHAPTER 4

476

wxListEvent::m_cancelled

bool m_cancelled

TRUE if this event is an end edit event and the user cancelled the edit.

wxListEvent::m_pointDrag

wxPoint m_pointDrag

The position of the mouse pointer if the event is a drag event.

wxListEvent::m_item

wxListItem m_item

An item object, used by some events. See also wxListCtrl::SetItem (p. 471).

wxLocale

wxLocale class encapsulates all language-dependent settings and is a generalization of
the C locale concept.

In wxWindows this class manages message catalogs which contain the translations of
the strings used to the current language.

Derived from

No base class

See also

I18n overview (p. 1111)

Include files

<wx/intl.h>

wxLocale::wxLocale

 wxLocale()

This is the default constructor and it does nothing to initialize the object: Init() (p. 478)
must be used to do that.

CHAPTER 4

477

 wxLocale(const char *szName, const char *szShort = NULL, const char *szLocale =
NULL, bool bLoadDefault = TRUE)

The parameters have the following meaning:
• szName is the name of the locale and is only used in diagnostic messages
• szShort is the standard 2 letter locale abbreviation and is used as the directory

prefix when looking for the message catalog files
• szLocale is the parameter for the call to setlocale()
• bLoadDefault may be set to FALSE to prevent loading of the message catalog

for the given locale containing the translations of standard wxWindows
messages. This parameter would be rarely used in normal circumstances.

The call of this function has several global side effects which you should understand:
first of all, the application locale is changed - note that this will affect many of standard C
library functions such as printf() or strftime(). Second, this wxLocale object becomes the
new current global locale for the application and so all subsequent calls to
wxGetTranslation() will try to translate the messages using the message catalogs for this
locale.

wxLocale::~wxLocale

 ~wxLocale()

The destructor, like the constructor, also has global side effects: the previously set locale
is restored and so the changes described in Init (p. 478) documentation are rolled back.

wxLocale::GetLocale

const char* GetLocale() const

Returns the locale name as passed to the constructor or Init() (p. 478).

wxLocale::AddCatalog

bool AddCatalog(const char *szDomain)

Add a catalog for use with the current locale: it's searched for in standard places (current
directory first, then the system one), but you may also prepend additional directories to
the search path with AddCatalogLookupPathPrefix() (p. 477).

All loaded catalogs will be used for message lookup by GetString() for the current locale.

Returns TRUE if catalog was successfully loaded, FALSE otherwise (which might mean
that the catalog is not found or that it isn't in the correct format).

wxLocale::AddCatalogLookupPathPrefix

CHAPTER 4

478

void AddCatalogLookupPathPrefix(const wxString& prefix)

Add a prefix to the catalog lookup path: the message catalog files will be looked up
under prefix/<lang>/LC_MESSAGES, prefix/LC_MESSAGES and prefix (in this order).

This only applies to subsequent invocations of AddCatalog()!

wxLocale::Init

bool Init(const char *szName, const char *szShort = NULL, const char *szLocale =
NULL, bool bLoadDefault = TRUE)

The parameters have the following meaning:

• szName is the name of the locale and is only used in diagnostic messages
• szShort is the standard 2 letter locale abbreviation and is used as the directory

prefix when looking for the message catalog files
• szLocale is the parameter for the call to setlocale()
• bLoadDefault may be set to FALSE to prevent loading of the message catalog

for the given locale containing the translations of standard wxWindows
messages. This parameter would be rarely used in normal circumstances.

The call of this function has several global side effects which you should understand:
first of all, the application locale is changed - note that this will affect many of standard C
library functions such as printf() or strftime(). Second, this wxLocale object becomes the
new current global locale for the application and so all subsequent calls to
wxGetTranslation() will try to translate the messages using the message catalogs for this
locale.

Returns TRUE on success or FALSE if the given locale couldn't be set.

wxLocale::IsLoaded

bool IsLoaded(const char* domain) const

Check if the given catalog is loaded, and returns TRUE if it is.

According to GNU gettext tradition, each catalog normally corresponds to 'domain' which
is more or less the application name.

See also: AddCatalog (p. 477)

wxLocale::GetName

const wxString& GetName() const

CHAPTER 4

479

Returns the current short name for the locale (as given to the constructor or the Init()
function).

wxLocale::GetString

const char* GetString(const char *szOrigString, const char *szDomain = NULL)
const

Retrieves the translation for a string in all loaded domains unless the szDomain
parameter is specified (and then only this catalog/domain is searched).

Returns original string if translation is not available (in this case an error message is
generated the first time a string is not found; use wxLogNull (p. 1032) to suppress it).

Remarks

Domains are searched in the last to first order, i.e. catalogs added later override those
added before.

wxLog

wxLog class defines the interface for the log targets used by wxWindows logging
functions as explained in the wxLog overview (p. 1032). The only situations when you
need to directly use this class is when you want to derive your own log target because
the existing ones don't satisfy your needs. Another case is if you wish to customize the
behaviour of the standard logging classes (all of which respect the wxLog settings): for
example, set which trace messages are logged and which are not or change (or even
remove completely) the timestamp on the messages.

Otherwise, it is completely hidden behind the wxLogXXX() functions and you may not
even know about its existence.

See log overview (p. 1032) for the descriptions of wxWindows logging facilities.

Derived from

No base class

Include files

<wx/log.h>

Static functions

The functions in this section work with and manipulate the active log target. The OnLog()
is called by the wxLogXXX() functions and invokes the DoLog() of the active log target if

CHAPTER 4

480

any. Get/Set methods are used to install/query the current active target and, finally,
DontCreateOnDemand() disables the automatic creation of a standard log target if none
actually exists. It is only useful when the application is terminating and shouldn't be used
in other situations because it may easily lead to a loss of messages.

OnLog (p. 481)
GetActiveTarget (p. 481)
SetActiveTarget (p. 481)
DontCreateOnDemand (p. 481)

Message buffering

Some of wxLog implementations, most notably the standard wxLogGui class, buffer the
messages (for example, to avoid showing the user a zillion of modal message boxes one
after another - which would be really annoying). Flush() shows them all and clears the
buffer contents. Although this function doesn't do anything if the buffer is already empty,
HasPendingMessages() is also provided which allows to explicitly verify it.

Flush (p. 482)
FlushActive (p. 482)
HasPendingMessages (p. 482)

Customization

The functions below allow some limited customization of wxLog behaviour without
writing a new log target class (which, aside of being a matter of several minutes, allows
you to do anything you want).

The verbose messages are the trace messages which are not disabled in the release
mode and are generated by wxLogVerbose(). They are not normally shown to the user
because they present little interest, but may be activated, for example, in order to help
the user find some program problem.

As for the (real) trace messages, they come in different kinds:

•for the messages about creating and deleting objects
•for tracing the windowing system messages/events
•for allocating and releasing the system ressources
•for reference counting related messages
•for the OLE (or COM) method invocations (wxMSW only)
•the remaining bits are free for user-defined trace levels

The trace mask is a bit mask which tells which (if any) of these trace messages are
going to be actually logged. For the trace message to appear somewhere, all the bits in
the mask used in the call to wxLogTrace() function must be set in the current trace
mask. For example,
wxLogTrace(wxTraceRefCount | wxTraceOle, "Active object ref count: %d",
nRef);

CHAPTER 4

481

will do something only if the current trace mask contains both wxTraceRefCount and
wxTraceOle.

Finally, the wxLog::DoLog() function automatically prepends a time stamp to all the
messages. The format of the time stamp may be changed: it can be any string with %
specificators fully described in the documentation of the standard strftime() function. For
example, the default format is "[%d/%b/%y %H:%M:%S] " which gives something like
"[17/Sep/98 22:10:16] " (without quotes) for the current date. Setting an empty string as
the time format disables timestamping of the messages completely.

SetVerbose (p. 482)
GetVerbose (p. 482)
SetTimestamp (p. 482)
GetTimestamp (p. 483)
SetTraceMask (p. 483)
GetTraceMask (p. 483)

wxLog::OnLog

static void OnLog(wxLogLevel level, const char * message)

Forwards the message at specified level to the DoLog() function of the active log target if
there is any, does nothing otherwise.

wxLog::GetActiveTarget

static wxLog * GetActiveTarget()

Returns the pointer to the active log target (may be NULL).

wxLog::SetActiveTarget

static wxLog * SetActiveTarget(wxLog * logtarget)

Sets the specified log target as the active one. Returns the pointer to the previous active
log target (may be NULL).

wxLog::DontCreateOnDemand

static void DontCreateOnDemand()

Instructs wxLog to not create new log targets on the fly if there is none currently.
(Almost) for internal use only.

CHAPTER 4

482

wxLog::Flush

virtual void Flush()

Shows all the messages currently in buffer and clears it. If the buffer is already empty,
nothing happens.

wxLog::FlushActive

static void FlushActive()

Flushes the current log target if any, does nothing if there is none.

See also:

Flush (p. 482)

wxLog::HasPendingMessages

bool HasPendingMessages() const

Returns true if there are any messages in the buffer (not yet shown to the user). (Almost)
for internal use only.

wxLog::SetVerbose

void SetVerbose(bool verbose = TRUE)

Activates or desactivates verbose mode in which the verbose messages are logged as
the normal ones instead of being silently dropped.

wxLog::GetVerbose

bool GetVerbose() const

Returns whether the verbose mode is currently active.

wxLog::SetTimestamp

void SetTimestamp(const char * format)

Sets the timestamp format prepended by the default log targets to all messages. The
string may contain any normal characters as well as %prefixed format specificators, see

CHAPTER 4

483

strftime() manual for details. Passing a NULL value (not empty string) to this function
disables message timestamping.

wxLog::GetTimestamp

const char * GetTimestamp() const

Returns the current timestamp format string.

wxLog::SetTraceMask

static void SetTraceMask(wxTraceMask mask)

Sets the trace mask, see Customization (p. 480)section for details.

wxLog::GetTraceMask

Returns the current trace mask, see Customization (p. 480) section for details.

wxLongLong

This class represents a signed 64 bit long number. It is implemented using the native 64
bit type where available (machines with 64 bit longs or compilers which have (an analog
of) long long type) and uses the emulation code in the other cases which ensures that it
is the most efficient solution for working with 64 bit integers independently of the
architecture.

wxLongLong defines all usual arithmetic operations such as addition, substraction,
bitwise shifts and logical operations as well as multiplication and division (not yet for the
machines without native long long). It also has operators for implicit construction from
and conversion to the native long long type if it exists and long.

You would usually use this type in exactly the same manner as any other (built-in)
arithmetic type.

wxMask

This class encapsulates a monochrome mask bitmap, where the masked area is black
and the unmasked area is white.

Derived from

wxObject (p. 555)

Include files

<wx/bitmap.h>

CHAPTER 4

484

Remarks

A mask may be associated with a wxBitmap (p. 36). It is used in wxDC::Blit (p. 166)
when the source device context is a wxMemoryDC (p. 496) with wxBitmap selected into
it that contains a mask.

See also

wxBitmap (p. 36), wxDC::Blit (p. 166), wxMemoryDC (p. 496)

wxMask::wxMask

 wxMask()

Default constructor.

 wxMask(const wxBitmap& bitmap)

Constructs a mask from a monochrome bitmap.

wxPython note: This is the default constructor for wxMask in wxPython.

 wxMask(const wxBitmap& bitmap, const wxColour& colour)

Constructs a mask from a bitmap and a colour that indicates the background. Not yet
implemented for GTK.

wxPython note: wxPython has an alternate wxMask constructor matching this form
called wxMaskColour.

 wxMask(const wxBitmap& bitmap, int index)

Constructs a mask from a bitmap and a palette index that indicates the background. Not
yet implemented for GTK.

Parameters

bitmap
A valid bitmap.

colour
A colour specifying the transparency RGB values.

index
Index into a palette, specifying the transparency colour.

CHAPTER 4

485

wxMask::~wxMask

 ~wxMask()

Destroys the wxMask object and the underlying bitmap data.

wxMask::Create

bool Create(const wxBitmap& bitmap)

Constructs a mask from a monochrome bitmap.

bool Create(const wxBitmap& bitmap, const wxColour& colour)

Constructs a mask from a bitmap and a colour that indicates the background. Not yet
implemented for GTK.

bool Create(const wxBitmap& bitmap, int index)

Constructs a mask from a bitmap and a palette index that indicates the background. Not
yet implemented for GTK.

Parameters

bitmap
A valid bitmap.

colour
A colour specifying the transparency RGB values.

index
Index into a palette, specifying the transparency colour.

wxMDIChildFrame

An MDI child frame is a frame that can only exist on a wxMDIClientWindow (p. 488),
which is itself a child of wxMDIParentFrame (p. 490).

Derived from

wxFrame (p. 299)
wxWindow (p. 915)
wxEvtHandler (p. 240)
wxObject (p. 555)

Include files

<wx/mdi.h>

CHAPTER 4

486

Window styles

wxCAPTION Puts a caption on the frame.
wxDEFAULT_FRAME_STYLE Defined as wxMINIMIZE_BOX |

wxMAXIMIZE_BOX | wxTHICK_FRAME |
wxSYSTEM_MENU | wxCAPTION.

wxICONIZE Display the frame iconized (minimized) (Windows only).
wxMAXIMIZE Displays the frame maximized (Windows only).
wxMAXIMIZE_BOX Displays a maximize box on the frame (Windows and Motif

only).
wxMINIMIZE Identical to wxICONIZE.
wxMINIMIZE_BOX Displays a minimize box on the frame (Windows and Motif

only).
wxRESIZE_BORDER Displays a resizeable border around the window (Motif

only; for Windows, it is implicit in wxTHICK_FRAME).
wxSTAY_ON_TOP Stay on top of other windows (Windows only).
wxSYSTEM_MENU Displays a system menu (Windows and Motif only).
wxTHICK_FRAME Displays a thick frame around the window (Windows and

Motif only).

See also window styles overview (p. 1093).

Remarks

Although internally an MDI child frame is a child of the MDI client window, in wxWindows
you create it as a child of wxMDIParentFrame (p. 490). You can usually forget that the
client window exists.

MDI child frames are clipped to the area of the MDI client window, and may be iconized
on the client window.

You can associate a menubar with a child frame as usual, although an MDI child doesn't
display its menubar under its own title bar. The MDI parent frame's menubar will be
changed to reflect the currently active child frame. If there are currently no children, the
parent frame's own menubar will be displayed.

See also

wxMDIClientWindow (p. 488), wxMDIParentFrame (p. 490), wxFrame (p. 299)

wxMDIChildFrame::wxMDIChildFrame

 wxMDIChildFrame()

Default constructor.

 wxMDIChildFrame(wxMDIParentFrame* parent, wxWindowID id, const wxString&

CHAPTER 4

487

title, const wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize,
long style = wxDEFAULT_FRAME_STYLE, const wxString& name = "frame")

Constructor, creating the window.

Parameters

parent
The window parent. This should not be NULL.

id
The window identifier. It may take a value of -1 to indicate a default value.

title
The caption to be displayed on the frame's title bar.

pos
The window position. A value of (-1, -1) indicates a default position, chosen by
either the windowing system or wxWindows, depending on platform.

size
The window size. A value of (-1, -1) indicates a default size, chosen by either the
windowing system or wxWindows, depending on platform.

style
The window style. See wxMDIChildFrame (p. 485).

name
The name of the window. This parameter is used to associate a name with the
item, allowing the application user to set Motif resource values for individual
windows.

Remarks

None.

See also

wxMDIChildFrame::Create (p. 488)

wxMDIChildFrame::~wxMDIChildFrame

 ~wxMDIChildFrame()

Destructor. Destroys all child windows and menu bar if present.

wxMDIChildFrame::Activate

void Activate()

CHAPTER 4

488

Activates this MDI child frame.

See also

wxMDIChildFrame::Maximize (p. 488), wxMDIChildFrame::Restore (p. 488)

wxMDIChildFrame::Create

bool Create(wxWindow* parent, wxWindowID id, const wxString& title, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxDEFAULT_FRAME_STYLE, const wxString& name = "frame")

Used in two-step frame construction. See wxMDIChildFrame::wxMDIChildFrame (p.
486) for further details.

wxMDIChildFrame::Maximize

void Maximize()

Maximizes this MDI child frame.

See also

wxMDIChildFrame::Activate (p. 487), wxMDIChildFrame::Restore (p. 488)

wxMDIChildFrame::Restore

void Restore()

Restores this MDI child frame (unmaximizes).

See also

wxMDIChildFrame::Activate (p. 487), wxMDIChildFrame::Maximize (p. 488)

wxMDIClientWindow

An MDI client window is a child of wxMDIParentFrame (p. 490), and manages zero or
more wxMDIChildFrame (p. 485) objects.

Derived from

wxWindow (p. 915)
wxEvtHandler (p. 240)
wxObject (p. 555)

CHAPTER 4

489

Include files

<wx/mdi.h>

Remarks

The client window is the area where MDI child windows exist. It doesn't have to cover
the whole parent frame; other windows such as toolbars and a help window might
coexist with it. There can be scrollbars on a client window, which are controlled by the
parent window style.

The wxMDIClientWindow class is usually adequate without further derivation, and it is
created automatically when the MDI parent frame is created. If the application needs to
derive a new class, the function wxMDIParentFrame::OnCreateClient (p. 495) must be
overridden in order to give an opportunity to use a different class of client window.

Under Windows 95, the client window will automatically have a sunken border style
when the active child is not maximized, and no border style when a child is maximized.

See also

wxMDIChildFrame (p. 485), wxMDIParentFrame (p. 490), wxFrame (p. 299)

wxMDIClientWindow::wxMDIClientWindow

 wxMDIClientWindow()

Default constructor.

 wxMDIClientWindow(wxMDIParentFrame* parent, long style = 0)

Constructor, creating the window.

Parameters

parent
The window parent.

style
The window style. Currently unused.

Remarks

The second style of constructor is called within wxMDIParentFrame::OnCreateClient (p.
495).

See also

CHAPTER 4

490

wxMDIParentFrame::wxMDIParentFrame (p. 491), wxMDIParentFrame::OnCreateClient
(p. 495)

wxMDIClientWindow::~wxMDIClientWindow

 ~wxMDIClientWindow()

Destructor.

wxMDIClientWindow::CreateClient

bool CreateClient(wxMDIParentFrame* parent, long style = 0)

Used in two-step frame construction. See wxMDIClientWindow::wxMDIClientWindow (p.
489) for further details.

wxMDIParentFrame

An MDI (Multiple Document Interface) parent frame is a window which can contain MDI
child frames in its own 'desktop'. It is a convenient way to avoid window clutter, and is
used in many popular Windows applications, such as Microsoft Word(TM).

Derived from

wxFrame (p. 299)
wxWindow (p. 915)
wxEvtHandler (p. 240)
wxObject (p. 555)

Include files

<wx/mdi.h>

Remarks

There may be multiple MDI parent frames in a single application, but this probably only
makes sense within programming development environments.

Child frames may be either wxMDIChildFrame (p. 485), or wxFrame (p. 299).

An MDI parent frame always has a wxMDIClientWindow (p. 488) associated with it,
which is the parent for MDI client frames. This client window may be resized to
accomodate non-MDI windows, as seen in Microsoft Visual C++ (TM) and Microsoft
Publisher (TM), where a documentation window is placed to one side of the workspace.

MDI remains popular despite dire warnings from Microsoft itself that MDI is an obsolete
user interface style.

CHAPTER 4

491

The implementation is native in Windows, and simulated under Motif. Under Motif, the
child window frames will often have a different appearance from other frames because
the window decorations are simulated.

Window styles

wxCAPTION Puts a caption on the frame.
wxDEFAULT_FRAME_STYLE Defined as wxMINIMIZE_BOX |

wxMAXIMIZE_BOX | wxTHICK_FRAME |
wxSYSTEM_MENU | wxCAPTION.

wxHSCROLL Displays a horizontal scrollbar in the client window,
allowing the user to view child frames that are off the
current view.

wxICONIZE Display the frame iconized (minimized) (Windows only).
wxMAXIMIZE Displays the frame maximized (Windows only).
wxMAXIMIZE_BOX Displays a maximize box on the frame (Windows and Motif

only).
wxMINIMIZE Identical to wxICONIZE.
wxMINIMIZE_BOX Displays a minimize box on the frame (Windows and Motif

only).
wxRESIZE_BORDER Displays a resizeable border around the window (Motif

only; for Windows, it is implicit in wxTHICK_FRAME).
wxSTAY_ON_TOP Stay on top of other windows (Windows only).
wxSYSTEM_MENU Displays a system menu (Windows and Motif only).
wxTHICK_FRAME Displays a thick frame around the window (Windows and

Motif only).
wxVSCROLL Displays a vertical scrollbar in the client window, allowing

the user to view child frames that are off the current view.

See also window styles overview (p. 1093).

See also

wxMDIChildFrame (p. 485), wxMDIClientWindow (p. 488), wxFrame (p. 299), wxDialog
(p. 193)

wxMDIParentFrame::wxMDIParentFrame

 wxMDIParentFrame()

Default constructor.

 wxMDIParentFrame(wxWindow* parent, wxWindowID id, const wxString& title,
const wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long
style = wxDEFAULT_FRAME_STYLE | wxVSCROLL | wxHSCROLL, const wxString&
name = "frame")

CHAPTER 4

492

Constructor, creating the window.

Parameters

parent
The window parent. This should be NULL.

id
The window identifier. It may take a value of -1 to indicate a default value.

title
The caption to be displayed on the frame's title bar.

pos
The window position. A value of (-1, -1) indicates a default position, chosen by
either the windowing system or wxWindows, depending on platform.

size
The window size. A value of (-1, -1) indicates a default size, chosen by either the
windowing system or wxWindows, depending on platform.

style
The window style. See wxMDIParentFrame (p. 490).

name
The name of the window. This parameter is used to associate a name with the
item, allowing the application user to set Motif resource values for individual
windows.

Remarks

During the construction of the frame, the client window will be created. To use a different
class from wxMDIClientWindow (p. 488), override wxMDIParentFrame::OnCreateClient
(p. 495).

Under Windows 95, the client window will automatically have a sunken border style
when the active child is not maximized, and no border style when a child is maximized.

See also

wxMDIParentFrame::Create (p. 493), wxMDIParentFrame::OnCreateClient (p. 495)

wxMDIParentFrame::~wxMDIParentFrame

 ~wxMDIParentFrame()

Destructor. Destroys all child windows and menu bar if present.

wxMDIParentFrame::ActivateNext

CHAPTER 4

493

void ActivateNext()

Activates the MDI child following the currently active one.

See also

wxMDIParentFrame::ActivatePrevious (p. 493)

wxMDIParentFrame::ActivatePrevious

void ActivatePrevious()

Activates the MDI child preceding the currently active one.

See also

wxMDIParentFrame::ActivateNext (p. 492)

wxMDIParentFrame::ArrangeIcons

void ArrangeIcons()

Arranges any iconized (minimized) MDI child windows.

See also

wxMDIParentFrame::Cascade (p. 493), wxMDIParentFrame::Tile (p. 496)

wxMDIParentFrame::Cascade

void Cascade()

Arranges the MDI child windows in a cascade.

See also

wxMDIParentFrame::Tile (p. 496), wxMDIParentFrame::ArrangeIcons (p. 493)

wxMDIParentFrame::Create

bool Create(wxWindow* parent, wxWindowID id, const wxString& title, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxDEFAULT_FRAME_STYLE | wxVSCROLL | wxHSCROLL, const wxString& name
= "frame")

CHAPTER 4

494

Used in two-step frame construction. See wxMDIParentFrame::wxMDIParentFrame (p.
491) for further details.

wxMDIParentFrame::GetClientSize

virtual void GetClientSize(int* width, int* height) const

This gets the size of the frame 'client area' in pixels.

Parameters

width
Receives the client width in pixels.

height
Receives the client height in pixels.

Remarks

The client area is the area which may be drawn on by the programmer, excluding title
bar, border, status bar, and toolbar if present.

If you wish to manage your own toolbar (or perhaps you have more than one), provide
an OnSize event handler. Call GetClientSize to find how much space there is for your
windows and don't forget to set the size and position of the MDI client window as well as
your toolbar and other windows (but not the status bar).

If you have set a toolbar with wxMDIParentFrame::SetToolbar (p. 495), the client size
returned will have subtracted the toolbar height. However, the available positions for the
client window and other windows of the frame do not start at zero - you must add the
toolbar height.

The position and size of the status bar and toolbar (if known to the frame) are always
managed by wxMDIParentFrame, regardless of what behaviour is defined in your
OnSize event handler. However, the client window position and size are always set in
OnSize, so if you override this event handler, make sure you deal with the client window.

You do not have to manage the size and position of MDI child windows, since they are
managed automatically by the client window.

See also

wxMDIParentFrame::GetToolBar (p. 495), wxMDIParentFrame::SetToolBar (p. 495),
wxWindow (p. 945), wxMDIClientWindow (p. 488)

wxPython note: The wxPython version of this method takes no arguments and returns
a tuple containing width and height.

wxMDIParentFrame::GetActiveChild

CHAPTER 4

495

wxMDIChildFrame* GetActiveChild() const

Returns a pointer to the active MDI child, if there is one.

wxMDIParentFrame::GetClientWindow

wxMDIClientWindow* GetClientWindow() const

Returns a pointer to the client window.

See also

wxMDIParentFrame::OnCreateClient (p. 495)

wxMDIParentFrame::GetToolBar

virtual wxWindow* GetToolBar() const

Returns the window being used as the toolbar for this frame.

See also

wxMDIParentFrame::SetToolBar (p. 495)

wxMDIParentFrame::OnCreateClient

virtual wxMDIClientWindow* OnCreateClient()

Override this to return a different kind of client window.

Remarks

You might wish to derive from wxMDIClientWindow (p. 488) in order to implement
different erase behaviour, for example, such as painting a bitmap on the background.

Note that it is probably impossible to have a client window that scrolls as well as painting
a bitmap or pattern, since in OnScroll, the scrollbar positions always return zero.
(Solutions to: julian.smart@ukonline.co.uk).

See also

wxMDIParentFrame::GetClientWindow (p. 495), wxMDIClientWindow (p. 488)

wxMDIParentFrame::SetToolBar

CHAPTER 4

496

virtual void SetToolBar(wxWindow* toolbar)

Sets the window to be used as a toolbar for this MDI parent window. It saves the
application having to manage the positioning of the toolbar MDI client window.

Parameters

toolbar
Toolbar to manage.

Remarks

When the frame is resized, the toolbar is resized to be the width of the frame client area,
and the toolbar height is kept the same.

The parent of the toolbar must be this frame.

If you wish to manage your own toolbar (or perhaps you have more than one), don't call
this function, and instead manage your subwindows and the MDI client window by
providing an OnSize event handler. Call wxMDIParentFrame::GetClientSize (p. 494) to
find how much space there is for your windows.

Note that SDI (normal) frames and MDI child windows must always have their toolbars
managed by the application.

See also

wxMDIParentFrame::GetToolBar (p. 495), wxMDIParentFrame::GetClientSize (p. 494)

wxMDIParentFrame::Tile

void Tile()

Tiles the MDI child windows.

See also

wxMDIParentFrame::Cascade (p. 493), wxMDIParentFrame::ArrangeIcons (p. 493)

wxMemoryDC

A memory device context provides a means to draw graphics onto a bitmap.

Derived from

wxDC (p. 165)
wxObject (p. 555)

Include files

CHAPTER 4

497

<wx/dcmemory.h>

Remarks

A bitmap must be selected into the new memory DC before it may be used for anything.
Typical usage is as follows:

 // Create a memory DC
 wxMemoryDC temp_dc;
 temp_dc.SelectObject(test_bitmap);

 // We can now draw into the memory DC...
 // Copy from this DC to another DC.
 old_dc.Blit(250, 50, BITMAP_WIDTH, BITMAP_HEIGHT, temp_dc, 0, 0);

Note that the memory DC must be deleted (or the bitmap selected out of it) before a
bitmap can be reselected into another memory DC.

See also

wxBitmap (p. 36), wxDC (p. 165)

wxMemoryDC::wxMemoryDC

 wxMemoryDC()

Constructs a new memory device context.

Use the Ok member to test whether the constructor was successful in creating a useable
device context. Don't forget to select a bitmap into the DC before drawing on it.

wxMemoryDC::SelectObject

 SelectObject(const wxBitmap& bitmap)

Selects the given bitmap into the device context, to use as the memory bitmap. Selecting
the bitmap into a memory DC allows you to draw into the DC (and therefore the bitmap)
and also to use Blit to copy the bitmap to a window. For this purpose, you may find
wxDC::DrawIcon (p. 170) easier to use instead.

If the argument is wxNullBitmap (or some other uninitialised wxBitmap) the current
bitmap is selected out of the device context, and the original bitmap restored, allowing
the current bitmap to be destroyed safely.

wxMemoryInputStream

Derived from

CHAPTER 4

498

wxInputStream (p. 425)

Include files

<wx/mstream.h>

See also

wxStreamBuffer (p. 755)

wxMemoryInputStream::wxMemoryInputStream

 wxMemoryInputStream(const char * data, size_t len)

Initializes a new read-only memory stream which will use the specified bufferdata of
length len.

wxMemoryInputStream::~wxMemoryInputStream

 ~wxFileInputStream()

Destructor.

wxMemoryOutputStream

Derived from

wxOutputStream (p. 559)

Include files

<wx/mstream.h>

See also

wxStreamBuffer (p. 755)

wxMemoryOutputStream::wxMemoryOutputStream

 wxMemoryOutputStream(char * data = NULL, size_t length = 0)

If data is NULL, then it will initialize a new empty buffer which will grow when it needs.

CHAPTER 4

499

Warning

If the buffer is created, it will be destroyed at the destruction of the stream.

wxMemoryOutputStream::~wxMemoryOutputStream

 ~wxMemoryOutputStream()

Destructor.

wxMemoryOutputStream::CopyTo

size_t CopyTo(char *buffer, size_t len) const

CopyTo allowed you to transfer data from the internal buffer of wxMemoryOutputStream
to an external buffer. len specifies the size of the buffer.

Returned value

CopyTo returns the number of bytes copied to the buffer. Generally it is either len or the
size of the stream buffer.

wxMenu

A menu is a popup (or pull down) list of items, one of which may be selected before the
menu goes away (clicking elsewhere dismisses the menu). Menus may be used to
construct either menu bars or popup menus.

A menu item has an integer ID associated with it which can be used to identify the
selection, or to change the menu item in some way.

Derived from

wxEvtHandler (p. 240)
wxObject (p. 555)

Include files

<wx/menu.h>

Event handling

If the menu is part of a menubar, then wxMenuBar (p. 508) event processing is used.

With a popup menu, there is a variety of ways to handle a menu selection event
(wxEVT_COMMAND_MENU_SELECTED).

CHAPTER 4

500

1. Define a callback of type wxFunction, which you pass to the wxMenu
constructor. The callback takes a reference to the menu, and a reference to a
wxCommandEvent (p. 108).

2. Derive a new class from wxMenu and define event table entries using the
EVT_MENU macro.

3. Set a new event handler for wxMenu, using an object whose class has
EVT_MENU entries.

4. Provide EVT_MENU handlers in the window which pops up the menu, or in an
ancestor of this window.

See also

wxMenuBar (p. 508), wxWindow::PopupMenu (p. 946), Event handling overview (p.
1072)

wxMenu::wxMenu

 wxMenu(const wxString& title = "", long style = 0)

Constructs a wxMenu object.

Parameters

title
A title for the popup menu: the empty string denotes no title.

style
If set to wxMENU_TEAROFF, the menu will be detachable.

 wxMenu(long style)

Constructs a wxMenu object.

Parameters

style
If set to wxMENU_TEAROFF, the menu will be detachable.

wxMenu::~wxMenu

 ~wxMenu()

Destructor, destroying the menu.

Note: under Motif, a popup menu must have a valid parent (the window it was last
popped up on) when being destroyed. Therefore, make sure you delete or re-use the

CHAPTER 4

501

popup menu before destroying the parent window. Re-use in this context means popping
up the menu on a different window from last time, which causes an implicit destruction
and recreation of internal data structures.

wxMenu::Append

void Append(int id, const wxString& item, const wxString& helpString = "", const
bool checkable = FALSE)

Adds a string item to the end of the menu.

void Append(int id, const wxString& item, wxMenu *subMenu, const wxString&
helpString = "")

Adds a pull-right submenu to the end of the menu.

void Append(wxMenuItem* menuItem)

Adds a menu item object. You can specify various extra properties of a menu item this
way, such as bitmaps and fonts.

Parameters

id
The menu command identifier.

item
The string to appear on the menu item.

menu
Pull-right submenu.

checkable
If TRUE, this item is checkable.

helpString
An optional help string associated with the item. By default,
wxFrame::OnMenuHighlight (p. 307) displays this string in the status line.

menuItem
A menuitem object. It will be owned by the wxMenu object after this function is
called, so do not delete it yourself.

Remarks

This command can be used after the menu has been shown, as well as on initial
creation of a menu or menubar.

See also

CHAPTER 4

502

wxMenu::AppendSeparator (p. 502), wxMenu::SetLabel (p. 506),
wxMenu::GetHelpString (p. 504), wxMenu::SetHelpString (p. 506), wxMenuItem (p. 515)

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

Append(id, string, helpStr="", checkable=FALSE)

AppendMenu(id, string, aMenu, helpStr="")

AppendItem(aMenuItem)

wxMenu::AppendSeparator

void AppendSeparator()

Adds a separator to the end of the menu.

See also

wxMenu::Append (p. 501)

wxMenu::Break

void Break()

Inserts a break in a menu, causing the next appended item to appear in a new column.

wxMenu::Check

void Check(int id, const bool check)

Checks or unchecks the menu item.

Parameters

id
The menu item identifier.

check
If TRUE, the item will be checked, otherwise it will be unchecked.

See also

wxMenu::IsChecked (p. 505)

CHAPTER 4

503

wxMenu::Delete

void Delete(int id)

Deletes the menu item from the menu.

Parameters

id
Menu item to be deleted.

Remarks

Does not delete a sub menu, if any.

See also

wxMenu::FindItemForId (p. 504)

wxMenu::Enable

void Enable(int id, const bool enable)

Enables or disables (greys out) a menu item.

Parameters

id
The menu item identifier.

enable
TRUE to enable the menu item, FALSE to disable it.

See also

wxMenu::IsEnabled (p. 506)

wxMenu::FindItem

int FindItem(const wxString& itemString) const

Finds the menu item id for a menu item string.

Parameters

itemString
Menu item string to find.

CHAPTER 4

504

Return value

Menu item identifier, or wxNOT_FOUND if none is found.

Remarks

Any special menu codes are stripped out of source and target strings before matching.

See also

wxMenu::FindItemForId (p. 504)

wxMenu::FindItemForId

wxMenuItem* FindItemForId(int id) const

wxMenuItem* FindItem(int id) const

Finds the menu item object associated with the given menu item identifier.

Parameters

id
Menu item identifier.

Return value

Returns the menu item object, or NULL if it is not found.

See also

wxMenu::FindItem (p. 503)

wxMenu::GetHelpString

wxString GetHelpString(int id) const

Returns the help string associated with a menu item.

Parameters

id
The menu item identifier.

Return value

The help string, or the empty string if there is no help string or the item was not found.

CHAPTER 4

505

See also

wxMenu::SetHelpString (p. 506), wxMenu::Append (p. 501)

wxMenu::GetLabel

wxString GetLabel(int id) const

Returns a menu item label.

Parameters

id
The menu item identifier.

Return value

The item label, or the empty string if the item was not found.

See also

wxMenu::SetLabel (p. 506)

wxMenu::GetTitle

wxString GetTitle() const

Returns the title of the menu.

Remarks

This is relevant only to popup menus.

See also

wxMenu::SetTitle (p. 507)

wxMenu::IsChecked

bool IsChecked(int id) const

Determines whether a menu item is checked.

Parameters

id
The menu item identifier.

CHAPTER 4

506

Return value

TRUE if the menu item is checked, FALSE otherwise.

See also

wxMenu::Check (p. 502)

wxMenu::IsEnabled

bool IsEnabled(int id) const

Determines whether a menu item is enabled.

Parameters

id
The menu item identifier.

Return value

TRUE if the menu item is enabled, FALSE otherwise.

See also

wxMenu::Enable (p. 503)

wxMenu::SetHelpString

void SetHelpString(int id, const wxString& helpString)

Sets an item's help string.

Parameters

id
The menu item identifier.

helpString
The help string to set.

See also

wxMenu::GetHelpString (p. 504)

wxMenu::SetLabel

CHAPTER 4

507

void SetLabel(int id, const wxString& label)

Sets the label of a menu item.

Parameters

id
The menu item identifier.

label
The menu item label to set.

See also

wxMenu::Append (p. 501), wxMenu::GetLabel (p. 505)

wxMenu::SetTitle

void SetTitle(const wxString& title)

Sets the title of the menu.

Parameters

title
The title to set.

Remarks

This is relevant only to popup menus.

See also

wxMenu::SetTitle (p. 507)

wxMenu::UpdateUI

void UpdateUI(wxEvtHandler* source = NULL) const

Sends events to source (or owning window if NULL) to update the menu UI. This is
called just before the menu is popped up with wxWindow::PopupMenu (p. 946), but the
application may call it at other times if required.

See also

wxUpdateUIEvent (p. 891)

CHAPTER 4

508

wxMenuBar

A menu bar is a series of menus accessible from the top of a frame.

Derived from

wxEvtHandler (p. 240)
wxObject (p. 555)

Include files

<wx/menu.h>

Event handling

To respond to a menu selection, provide a handler for EVT_MENU, in the frame that
contains the menu bar. If you have a toolbar which uses the same identifiers as your
EVT_MENU entries, events from the toolbar will also be processed by your EVT_MENU
event handlers.

Note that menu commands (and UI update events for menus) are first sent to the focus
window within the frame. If no window within the frame has the focus, then the events
are sent directly to the frame. This allows command and UI update handling to be
processed by specific windows and controls, and not necessarily by the application
frame.

See also

wxMenu (p. 499), Event handling overview (p. 1072)

wxMenuBar::wxMenuBar

void wxMenuBar()

Default constructor.

void wxMenuBar(int n, wxMenu* menus[], const wxString titles[])

Construct a menu bar from arrays of menus and titles.

Parameters

n
The number of menus.

menus
An array of menus. Do not use this array again - it now belongs to the menu bar.

CHAPTER 4

509

titles
An array of title strings. Deallocate this array after creating the menu bar.

wxPython note: Only the default constructor is supported in wxPython. Use
wxMenuBar.Append instead.

wxMenuBar::~wxMenuBar

void ~wxMenuBar()

Destructor, destroying the menu bar and removing it from the parent frame (if any).

wxMenuBar::Append

void Append(wxMenu *menu, const wxString& title)

Adds the item to the end of the menu bar.

Parameters

menu
The menu to add. Do not deallocate this menu after calling Append.

title
The title of the menu.

wxMenuBar::Check

void Check(int id, const bool check)

Checks or unchecks a menu item.

Parameters

id
The menu item identifier.

check
If TRUE, checks the menu item, otherwise the item is unchecked.

Remarks

Only use this when the menu bar has been associated with a frame; otherwise, use the
wxMenu equivalent call.

wxMenuBar::Enable

CHAPTER 4

510

void Enable(int id, const bool enable)

Enables or disables (greys out) a menu item.

Parameters

id
The menu item identifier.

enable
TRUE to enable the item, FALSE to disable it.

Remarks

Only use this when the menu bar has been associated with a frame; otherwise, use the
wxMenu equivalent call.

wxMenuBar::EnableTop

void EnableTop(int pos, const bool enable)

Enables or disables a whole menu.

Parameters

pos
The position of the menu, starting from zero.

enable
TRUE to enable the menu, FALSE to disable it.

Remarks

Only use this when the menu bar has been associated with a frame.

wxMenuBar::FindMenuItem

int FindMenuItem(const wxString& menuString, const wxString& itemString) const

Finds the menu item id for a menu name/menu item string pair.

Parameters

menuString
Menu title to find.

itemString
Item to find.

CHAPTER 4

511

Return value

The menu item identifier, or wxNOT_FOUND if none was found.

Remarks

Any special menu codes are stripped out of source and target strings before matching.

wxMenuBar::FindItem

wxMenuItem * FindItem(int id, wxMenu **menu = NULL) const

Finds the menu item object associated with the given menu item identifier.

Parameters

id
Menu item identifier.

menu
If not NULL, menu will get set to the associated menu.

Return value

The found menu item object, or NULL if one was not found.

wxMenuBar::GetHelpString

wxString GetHelpString(int id) const

Gets the help string associated with the menu item identifer.

Parameters

id
The menu item identifier.

Return value

The help string, or the empty string if there was no help string or the menu item was not
found.

See also

wxMenuBar::SetHelpString (p. 513)

CHAPTER 4

512

wxMenuBar::GetLabel

wxString GetLabel(int id) const

Gets the label associated with a menu item.

Parameters

id
The menu item identifier.

Return value

The menu item label, or the empty string if the item was not found.

Remarks

Use only after the menubar has been associated with a frame.

wxMenuBar::GetLabelTop

wxString GetLabelTop(int pos) const

Returns the label of a top-level menu.

Parameters

pos
Position of the menu on the menu bar, starting from zero.

Return value

The menu label, or the empty string if the menu was not found.

Remarks

Use only after the menubar has been associated with a frame.

See also

wxMenuBar::SetLabelTop (p. 514)

wxMenuBar::GetMenu

wxMenu* GetMenu(int menuIndex) const

Returns the menu at menuIndex (zero-based).

CHAPTER 4

513

wxMenuBar::GetMenuCount

int GetMenuCount() const

Returns the number of menus in this menubar.

wxMenuBar::IsChecked

bool IsChecked(int id) const

Determines whether an item is checked.

Parameters

id
The menu item identifier.

Return value

TRUE if the item was found and is checked, FALSE otherwise.

wxMenuBar::IsEnabled

bool IsEnabled(int id) const

Determines whether an item is enabled.

Parameters

id
The menu item identifier.

Return value

TRUE if the item was found and is enabled, FALSE otherwise.

wxMenuBar::Refresh

void Refresh()

Redraw the menu bar

wxMenuBar::SetHelpString

void SetHelpString(int id, const wxString& helpString)

CHAPTER 4

514

Sets the help string associated with a menu item.

Parameters

id
Menu item identifier.

helpString
Help string to associate with the menu item.

See also

wxMenuBar::GetHelpString (p. 511)

wxMenuBar::SetLabel

void SetLabel(int id, const wxString& label)

Sets the label of a menu item.

Parameters

id
Menu item identifier.

label
Menu item label.

Remarks

Use only after the menubar has been associated with a frame.

See also

wxMenuBar::GetLabel (p. 512)

wxMenuBar::SetLabelTop

void SetLabelTop(int pos, const wxString& label)

Sets the label of a top-level menu.

Parameters

pos
The position of a menu on the menu bar, starting from zero.

label

CHAPTER 4

515

The menu label.

Remarks

Use only after the menubar has been associated with a frame.

See also

wxMenuBar::GetLabelTop (p. 512)

wxMenuItem

A menu item represents an item in a popup menu. Note that the majority of this class is
only implemented under Windows so far, but everything except fonts, colours and
bitmaps can be achieved via wxMenu on all platforms.

Derived from

wxOwnerDrawn (Windows only)
wxObject (p. 555)

Include files

<wx/menuitem.h>

See also

wxMenuBar (p. 508), wxMenu (p. 499)

wxMenuItem::wxMenuItem

 wxMenuItem(wxMenu* parentMenu = NULL, int id = ID_SEPARATOR, const
wxString& text = "", const wxString& helpString = "", bool checkable = FALSE,
wxMenu* subMenu = NULL,)

Constructs a wxMenuItem object.

Parameters

parentMenu
Menu that the menu item belongs to.

id
Identifier for this menu item, or ID_SEPARATOR to indicate a separator.

text
Text for the menu item, as shown on the menu.

CHAPTER 4

516

helpString
Optional help string that will be shown on the status bar.

checkable
TRUE if this menu item is checkable.

subMenu
If non-NULL, indicates that the menu item is a submenu.

wxMenuItem::~wxMenuItem

 ~wxMenuItem()

Destructor.

wxMenuItem::Check

void Check(bool check)

Checks or unchecks the menu item.

wxMenuItem::DeleteSubMenu

void DeleteSubMenu()

Deletes the submenu, if any.

wxMenuItem::Enable

void Enable(bool enable)

Enables or disables the menu item.

wxMenuItem::GetBackgroundColour

wxColour& GetBackgroundColour() const

Returns the background colour associated with the menu item (Windows only).

wxMenuItem::GetBitmap

wxBitmap& GetBitmap(bool checked = TRUE) const

Returns the checked or unchecked bitmap (Windows only).

CHAPTER 4

517

wxMenuItem::GetFont

wxFont& GetFont() const

Returns the font associated with the menu item (Windows only).

wxMenuItem::GetHelp

wxString GetHelp() const

Returns the help string associated with the menu item.

wxMenuItem::GetId

int GetId() const

Returns the menu item identifier.

wxMenuItem::GetMarginWidth

int GetMarginWidth() const

Gets the width of the menu item checkmark bitmap (Windows only).

wxMenuItem::GetName

wxString GetName() const

Returns the text associated with the menu item.

wxMenuItem::GetSubMenu

wxMenu* GetSubMenu() const

Returns the submenu associated with the menu item, or NULL if there isn't one.

wxMenuItem::GetTextColour

wxColour& GetTextColour() const

Returns the text colour associated with the menu item (Windows only).

CHAPTER 4

518

wxMenuItem::IsCheckable

bool IsCheckable() const

Returns TRUE if the item is checkable.

wxMenuItem::IsChecked

bool IsChecked() const

Returns TRUE if the item is checked.

wxMenuItem::IsEnabled

bool IsEnabled() const

Returns TRUE if the item is enabled.

wxMenuItem::IsSeparator

bool IsSeparator() const

Returns TRUE if the item is a separator.

wxMenuItem::SetBackgroundColour

void SetBackgroundColour(const wxColour& colour) const

Sets the background colour associated with the menu item (Windows only).

wxMenuItem::SetBitmaps

void SetBitmaps(const wxBitmap& checked, const wxBitmap& unchecked =
wxNullBitmap) const

Sets the checked/unchecked bitmaps for the menu item (Windows only). The first bitmap
is also used as the single bitmap for uncheckable menu items.

wxMenuItem::SetFont

void SetFont(const wxFont& font) const

Sets the font associated with the menu item (Windows only).

CHAPTER 4

519

wxMenuItem::SetHelp

void SetHelp(const wxString& helpString) const

Sets the help string.

wxMenuItem::SetMarginWidth

void SetMarginWidth(int width) const

Sets the width of the menu item checkmark bitmap (Windows only).

wxMenuItem::SetName

void SetName(const wxString& text) const

Sets the text associated with the menu item.

wxMenuItem::SetTextColour

void SetTextColour(const wxColour& colour) const

Sets the text colour associated with the menu item (Windows only).

wxMenuEvent

This class is used for a variety of menu-related events. Note that these do not include
menu command events.

Derived from

wxEvent (p. 237)
wxObject (p. 555)

Include files

<wx/event.h>

Event table macros

To process a menu event, use these event handler macros to direct input to member
functions that take a wxMenuEvent argument.

EVT_MENU_CHAR(func) Process a wxEVT_MENU_CHAR event (a
keypress when a menu is showing). Windows

CHAPTER 4

520

only; not yet implemented.
EVT_MENU_INIT(func) Process a wxEVT_MENU_INIT event (the

menu is about to pop up). Windows only; not
yet implemented.

EVT_MENU_HIGHLIGHT(func) Process a wxEVT_MENU_HIGHLIGHT event
(a menu item is being highlighted). Windows
only; not yet implemented.

EVT_POPUP_MENU(func) Process a wxEVT_POPUP_MENU event (a
menu item is being highlighted). Windows only;
not yet implemented.

EVT_CONTEXT_MENU(func) Process a wxEVT_CONTEXT_MENU event
(F1 has been pressed with a particular menu
item highlighted). Windows only; not yet
implemented.

See also

wxWindow::OnMenuHighlight (p. 941), Event handling overview (p. 1072)

wxMenuEvent::wxMenuEvent

 wxMenuEvent(WXTYPE id = 0, int id = 0, wxDC* dc = NULL)

Constructor.

wxMenuEvent::m_menuId

int m_menuId

The relevant menu identifier.

wxMenuEvent::GetMenuId

int GetMenuId() const

Returns the menu identifier associated with the event.

wxMessageDialog

This class represents a dialog that shows a single or multi-line message, with a choice of
OK, Yes, No and Cancel buttons.

Derived from

CHAPTER 4

521

wxDialog (p. 193)
wxWindow (p. 915)
wxEvtHandler (p. 240)
wxObject (p. 555)

Include files

<wx/msgdlg.h>

See also

wxMessageDialog overview (p. 1051)

wxMessageDialog::wxMessageDialog

 wxMessageDialog(wxWindow* parent, const wxString& message, const wxString&
caption = "Message box", long style = wxOK | wxCANCEL | wxCENTRE, const
wxPoint& pos = wxDefaultPosition)

Constructor. Use wxMessageDialog::ShowModal (p. 522) to show the dialog.

Parameters

parent
Parent window.

message
Message to show on the dialog.

caption
The dialog caption.

style
A dialog style (bitlist) containing flags chosen from the following:

wxOK Show an OK button.
wxCANCEL Show a Cancel button.
wxYES_NO Show Yes and No buttons.
wx_NO_DEFAULT Used with wxYES_NO, makes No button the default.
wxCENTRE Centre the message. Not Windows.
wxICON_EXCLAMATION Shows an exclamation mark icon.
wxICON_HAND Shows a hand icon.
wxICON_QUESTION Shows a question mark icon.
wxICON_INFORMATION Shows an information (i) icon.

pos
Dialog position. Not Windows.

CHAPTER 4

522

wxMessageDialog::~wxMessageDialog

 ~wxMessageDialog()

Destructor.

wxMessageDialog::ShowModal

int ShowModal()

Shows the dialog, returning one of wxID_OK, wxID_CANCEL, wxID_YES, wxID_NO.

wxMetafile

A wxMetafile represents the MS Windows metafile object, so metafile operations have
no effect in X. In wxWindows, only sufficient functionality has been provided for copying
a graphic to the clipboard; this may be extended in a future version. Presently, the only
way of creating a metafile is to use a wxMetafileDC.

Derived from

wxObject (p. 555)

Include files

<wx/metafile.h>

See also

wxMetafileDC (p. 523)

wxMetafile::wxMetafile

 wxMetafile(const wxString& filename = "")

Constructor. If a filename is given, the Windows disk metafile is read in. Check whether
this was performed successfully by using the wxMetafile::Ok (p. 523) member.

wxMetafile::~wxMetafile

 ~wxMetafile()

Destructor.

CHAPTER 4

523

wxMetafile::Ok

bool Ok()

Returns TRUE if the metafile is valid.

wxMetafile::Play

bool Play(wxDC *dc)

Plays the metafile into the given device context, returning TRUE if successful.

wxMetafile::SetClipboard

bool SetClipboard(int width = 0, int height = 0)

Passes the metafile data to the clipboard. The metafile can no longer be used for
anything, but the wxMetafile object must still be destroyed by the application.

Below is a example of metafle, metafile device context and clipboard use from the
hello.cpp example. Note the way the metafile dimensions are passed to the clipboard,
making use of the device context's ability to keep track of the maximum extent of
drawing commands.

 wxMetafileDC dc;
 if (dc.Ok())
 {
 Draw(dc, FALSE);
 wxMetafile *mf = dc.Close();
 if (mf)
 {
 bool success = mf->SetClipboard((int)(dc.MaxX() + 10),
(int)(dc.MaxY() + 10));
 delete mf;
 }
 }

wxMetafileDC

This is a type of device context that allows a metafile object to be created (Windows
only), and has most of the characteristics of a normal wxDC. The wxMetafileDC::Close
(p. 524) member must be called after drawing into the device context, to return a
metafile. The only purpose for this at present is to allow the metafile to be copied to the
clipboard (see wxMetafile (p. 522)).

Adding metafile capability to an application should be easy if you already write to a
wxDC; simply pass the wxMetafileDC to your drawing function instead. You may wish to
conditionally compile this code so it is not compiled under X (although no harm will result

CHAPTER 4

524

if you leave it in).

Note that a metafile saved to disk is in standard Windows metafile format, and cannot be
imported into most applications. To make it importable, call the function
::wxMakeMetafilePlaceable (p. 978) after closing your disk-based metafile device
context.

Derived from

wxDC (p. 165)
wxObject (p. 555)

Include files

<wx/metafile.h>

See also

wxMetafile (p. 522), wxDC (p. 165)

wxMetafileDC::wxMetafileDC

 wxMetafileDC(const wxString& filename = "")

Constructor. If no filename is passed, the metafile is created in memory.

wxMetafileDC::~wxMetafileDC

 ~wxMetafileDC()

Destructor.

wxMetafileDC::Close

wxMetafile * Close()

This must be called after the device context is finished with. A metafile is returned, and
ownership of it passes to the calling application (so it should be destroyed explicitly).

wxMimeTypesManager

This class allows the application to retrieve the information about all known MIME types
from a system-specific location and the filename extensions to the MIME types and vice
versa. After initialization the
functionswxMimeTypesManager::GetFileTypeFromMimeType (p. 527) and

CHAPTER 4

525

wxMimeTypesManager::GetFileTypeFromExtension (p. 526) may be called: they will
return a wxFileType (p. 279) object which may be further queried for file description, icon
and other attributes.

Windows: MIME type information is stored in the registry and no additional initialization
is needed.

Unix: MIME type information is stored in the files mailcap and mime.types (system-wide)
and .mailcap and .mime.types in the current user's home directory: all of these files are
searched for and loaded if found by default. However, additional functions
wxMimeTypesManager::ReadMailcap (p. 527) and
wxMimeTypesManager::ReadMimeTypes (p. 527) are provided to load additional files.

NB: Currently, wxMimeTypesManager is limited to reading MIME type information but it
will support modifying it as well in the future versions.

Derived from

No base class.

Include files

<wx/mimetype.h>

See also

wxFileType (p. 279)

Helper functions

All of these functions are static (i.e. don't need a wxMimeTypesManager object to call
them) and provide some useful operations for string representations of MIME types.
Their usage is recommended instead of directly working with MIME types using wxString
functions.

IsOfType (p. 527)

Constructor and destructor

NB: You won't normally need to use more than one wxMimeTypesManager object in a
program.

wxMimeTypesManager (p. 526)
~wxMimeTypesManager (p. 526)

CHAPTER 4

526

Query database

These functions are the heart of this class: they allow to find a file type (p. 279) object
from either file extension or MIME type. If the function is successful, it returns a pointer
to the wxFileType object which must be deleted by the caller, otherwise NULL will be
returned.

GetFileTypeFromMimeType (p. 527)
GetFileTypeFromExtension (p. 526)

Initialization functions

Unix: These functions may be used to load additional files (except for the default ones
which are loaded automatically) containing MIME information in either mailcap(5) or
mime.types(5) format.

ReadMailcap (p. 527)
ReadMimeTypes (p. 527)
AddFallbacks (p. 526)

wxMimeTypesManager::wxMimeTypesManager

 wxMimeTypesManager()

Constructor puts the object in the "working" state, no additional initialization are needed -
but ReadXXX (p. 526) may be used to load additional mailcap/mime.types files.

wxMimeTypesManager::~wxMimeTypesManager

 ~wxMimeTypesManager()

Destructor is not virtual, so this class should not be derived from.

wxMimeTypesManager::AddFallbacks

void AddFallbacks(const wxFileTypeInfo *fallbacks)

This function may be used to provdie hard-wired fallbacks for the MIME types and
extensions that might not be present in the system MIME database.

Please see the typetest sample for an example of using it.

wxMimeTypesManager::GetFileTypeFromExtension

CHAPTER 4

527

wxFileType* GetFileTypeFromExtension(const wxString& extension)

Gather information about the files with given extension and return the corresponding
wxFileType (p. 279) object or NULL if the extension is unknown.

wxMimeTypesManager::GetFileTypeFromMimeType

wxFileType* GetFileTypeFromMimeType(const wxString& mimeType)

Gather information about the files with given MIME type and return the corresponding
wxFileType (p. 279) object or NULL if the MIME type is unknown.

wxMimeTypesManager::IsOfType

bool IsOfType(const wxString& mimeType, const wxString& wildcard)

This function returns TRUE if either the given mimeType is exactly the same as wildcard
or if it has the same category and the subtype ofwildcard is '*'. Note that the '*' wildcard
is not allowed inmimeType itself.

The comparaison don by this function is case insensitive so it is not necessary to convert
the strings to the same case before calling it.

wxMimeTypesManager::ReadMailcap

bool ReadMailcap(const wxString& filename, bool fallback = FALSE)

Load additional file containing information about MIME types and associated information
in mailcap format. See metamail(1) and mailcap(5) for more information.

fallback parameter may be used to load additional mailcap files without overriding the
settings found in the standard files: normally, entries from files loaded with ReadMailcap
will override the entries from files loaded previously (and the standard ones are loaded in
the very beginning), but this will not happen if this parameter is set to TRUE (default is
FALSE).

The return value is TRUE if there were no errors in the file or FALSE otherwise.

wxMimeTypesManager::ReadMimeTypes

bool ReadMimeTypes(const wxString& filename)

Load additional file containing information about MIME types and associated information
in mime.types file format. See metamail(1) and mailcap(5) for more information.

CHAPTER 4

528

The return value is TRUE if there were no errors in the file or FALSE otherwise.

wxMiniFrame

A miniframe is a frame with a small title bar. It is suitable for floating toolbars that must
not take up too much screen area.

Derived from

wxFrame (p. 299)
wxWindow (p. 915)
wxEvtHandler (p. 240)
wxObject (p. 555)

Include files

<wx/minifram.h>

Window styles

wxICONIZE Display the frame iconized (minimized) (Windows only).
wxCAPTION Puts a caption on the frame.
wxDEFAULT_FRAME_STYLE Defined as wxMINIMIZE_BOX |

wxMAXIMIZE_BOX | wxTHICK_FRAME |
wxSYSTEM_MENU | wxCAPTION.

wxMINIMIZE Identical to wxICONIZE.
wxMINIMIZE_BOX Displays a minimize box on the frame (Windows and Motif

only).
wxMAXIMIZE Displays the frame maximized (Windows only).
wxMAXIMIZE_BOX Displays a maximize box on the frame (Windows and Motif

only).
wxSTAY_ON_TOP Stay on top of other windows (Windows only).
wxSYSTEM_MENU Displays a system menu (Windows and Motif only).
wxTHICK_FRAME Displays a thick frame around the window (Windows and

Motif only).
wxTINY_CAPTION_HORIZ Displays a small horizontal caption. Use instead of

wxCAPTION.
wxTINY_CAPTION_VERT Under Windows, displays a small vertical caption. Use

instead of wxCAPTION.
wxRESIZE_BORDER Displays a resizeable border around the window (Motif

only; for Windows, it is implicit in wxTHICK_FRAME).

See also window styles overview (p. 1093). Note that all the window styles above are
ignored under GTK and the mini frame cannot be resized by the user.

Remarks

This class has miniframe functionality under Windows and GTK, i.e. the presence of mini
frame will not be noted in the task bar and focus behaviour is different. On other
platforms, it behaves like a normal frame.

CHAPTER 4

529

See also

wxMDIParentFrame (p. 490), wxMDIChildFrame (p. 485), wxFrame (p. 299), wxDialog
(p. 193)

wxMiniFrame::wxMiniFrame

 wxMiniFrame()

Default constructor.

 wxMiniFrame(wxWindow* parent, wxWindowID id, const wxString& title, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxDEFAULT_FRAME_STYLE, const wxString& name = "frame")

Constructor, creating the window.

Parameters

parent
The window parent. This may be NULL. If it is non-NULL, the frame will always be
displayed on top of the parent window on Windows.

id
The window identifier. It may take a value of -1 to indicate a default value.

title
The caption to be displayed on the frame's title bar.

pos
The window position. A value of (-1, -1) indicates a default position, chosen by
either the windowing system or wxWindows, depending on platform.

size
The window size. A value of (-1, -1) indicates a default size, chosen by either the
windowing system or wxWindows, depending on platform.

style
The window style. See wxMiniFrame (p. 528).

name
The name of the window. This parameter is used to associate a name with the
item, allowing the application user to set Motif resource values for individual
windows.

Remarks

CHAPTER 4

530

The frame behaves like a normal frame on non-Windows platforms.

See also

wxMiniFrame::Create (p. 530)

wxMiniFrame::~wxMiniFrame

void ~wxMiniFrame()

Destructor. Destroys all child windows and menu bar if present.

wxMiniFrame::Create

bool Create(wxWindow* parent, wxWindowID id, const wxString& title, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxDEFAULT_FRAME_STYLE, const wxString& name = "frame")

Used in two-step frame construction. See wxMiniFrame::wxMiniFrame (p. 529) for
further details.

wxModule

The module system is a very simple mechanism to allow applications (and parts of
wxWindows itself) to define initialization and cleanup functions that are automatically
called on wxWindows startup and exit.

To define a new kind of module, derive a class from wxModule, override the OnInit and
OnExit functions, and add the DECLARE_DYNAMIC_CLASS and
IMPLEMENT_DYNAMIC_CLASS to header and implementation files (which can be the
same file). On initialization, wxWindows will find all classes derived from wxModule,
create an instance of each, and call each OnInit function. On exit, wxWindows will call
the OnExit function for each module instance.

Note that your module class does not have to be in a header file.

For example:

 // A module to allow DDE initialization/cleanup
 // without calling these functions from app.cpp or from
 // the user's application.

 class wxDDEModule: public wxModule
 {
 DECLARE_DYNAMIC_CLASS(wxDDEModule)
 public:
 wxDDEModule() {}
 bool OnInit() { wxDDEInitialize(); return TRUE; };
 void OnExit() { wxDDECleanUp(); };
 };

CHAPTER 4

531

 IMPLEMENT_DYNAMIC_CLASS(wxDDEModule, wxModule)

Derived from

wxObject (p. 555)

Include files

<wx/module.h>

wxModule::wxModule

 wxModule()

Constructs a wxModule object.

wxModule::~wxModule

 ~wxModule()

Destructor.

wxModule::CleanupModules

static void CleanupModules()

Calls Exit for each module instance. Called by wxWindows on exit, so there is no need
for an application to call it.

wxModule::Exit

void Exit()

Calls OnExit. This function is called by wxWindows and should not need to be called by
an application.

wxModule::Init

bool Init()

Calls OnInit. This function is called by wxWindows and should not need to be called by
an application.

CHAPTER 4

532

wxModule::InitializeModules

static bool InitializeModules()

Calls Init for each module instance. Called by wxWindows on startup, so there is no
need for an application to call it.

wxModule::OnExit

virtual void OnExit()

Provide this function with appropriate cleanup for your module.

wxModule::OnInit

virtual bool OnInit()

Provide this function with appropriate initialization for your module. If the function returns
FALSE, wxWindows will exit immediately.

wxModule::RegisterModule

static void RegisterModule(wxModule* module)

Registers this module with wxWindows. Called by wxWindows on startup, so there is no
need for an application to call it.

wxModule::RegisterModules

static bool RegisterModules()

Creates instances of and registers all modules. Called by wxWindows on startup, so
there is no need for an application to call it.

wxMouseEvent

This event class contains information about mouse events. See
wxWindow::OnMouseEvent (p. 942).

Derived from

wxEvent (p. 237)

Include files

CHAPTER 4

533

<wx/event.h>

Event table macros

To process a mouse event, use these event handler macros to direct input to member
functions that take a wxMouseEvent argument.

EVT_LEFT_DOWN(func) Process a wxEVT_LEFT_DOWN event.
EVT_LEFT_UP(func) Process a wxEVT_LEFT_UP event.
EVT_LEFT_DCLICK(func) Process a wxEVT_LEFT_DCLICK event.
EVT_MIDDLE_DOWN(func) Process a wxEVT_MIDDLE_DOWN event.
EVT_MIDDLE_UP(func) Process a wxEVT_MIDDLE_UP event.
EVT_MIDDLE_DCLICK(func) Process a wxEVT_MIDDLE_DCLICK event.
EVT_RIGHT_DOWN(func) Process a wxEVT_RIGHT_DOWN event.
EVT_RIGHT_UP(func) Process a wxEVT_RIGHT_UP event.
EVT_RIGHT_DCLICK(func) Process a wxEVT_RIGHT_DCLICK event.
EVT_MOTION(func) Process a wxEVT_MOTION event.
EVT_ENTER_WINDOW(func) Process a wxEVT_ENTER_WINDOW event.
EVT_LEAVE_WINDOW(func) Process a wxEVT_LEAVE_WINDOW event.
EVT_MOUSE_EVENTS(func) Process all mouse events.

wxMouseEvent::m_altDown

bool m_altDown

TRUE if the Alt key is pressed down.

wxMouseEvent::m_controlDown

bool m_controlDown

TRUE if control key is pressed down.

wxMouseEvent::m_leftDown

bool m_leftDown

TRUE if the left mouse button is currently pressed down.

wxMouseEvent::m_middleDown

bool m_middleDown

CHAPTER 4

534

TRUE if the middle mouse button is currently pressed down.

wxMouseEvent::m_rightDown

bool m_rightDown

TRUE if the right mouse button is currently pressed down.

wxMouseEvent::m_leftDown

bool m_leftDown

TRUE if the left mouse button is currently pressed down.

wxMouseEvent::m_metaDown

bool m_metaDown

TRUE if the Meta key is pressed down.

wxMouseEvent::m_shiftDown

bool m_shiftDown

TRUE if shift is pressed down.

wxMouseEvent::m_x

long m_x

X-coordinate of the event.

wxMouseEvent::m_y

long m_y

Y-coordinate of the event.

wxMouseEvent::wxMouseEvent

 wxMouseEvent(WXTYPE mouseEventType = 0, int id = 0)

CHAPTER 4

535

Constructor. Valid event types are:

• wxEVT_ENTER_WINDOW
• wxEVT_LEAVE_WINDOW
• wxEVT_LEFT_DOWN
• wxEVT_LEFT_UP
• wxEVT_LEFT_DCLICK
• wxEVT_MIDDLE_DOWN
• wxEVT_MIDDLE_UP
• wxEVT_MIDDLE_DCLICK
• wxEVT_RIGHT_DOWN
• wxEVT_RIGHT_UP
• wxEVT_RIGHT_DCLICK
• wxEVT_MOTION

wxMouseEvent::AltDown

bool AltDown()

Returns TRUE if the Alt key was down at the time of the event.

wxMouseEvent::Button

bool Button(int button)

Returns TRUE if the identified mouse button is changing state. Valid values of button are
1, 2 or 3 for left, middle and right buttons respectively.

Not all mice have middle buttons so a portable application should avoid this one.

wxMouseEvent::ButtonDClick

bool ButtonDClick(int but = -1)

If the argument is omitted, this returns TRUE if the event was a mouse double click
event. Otherwise the argument specifies which double click event was generated (1, 2 or
3 for left, middle and right buttons respectively).

wxMouseEvent::ButtonDown

bool ButtonDown(int but = -1)

If the argument is omitted, this returns TRUE if the event was a mouse button down
event. Otherwise the argument specifies which button-down event was generated (1, 2
or 3 for left, middle and right buttons respectively).

CHAPTER 4

536

wxMouseEvent::ButtonUp

bool ButtonUp(int but = -1)

If the argument is omitted, this returns TRUE if the event was a mouse button up event.
Otherwise the argument specifies which button-up event was generated (1, 2 or 3 for
left, middle and right buttons respectively).

wxMouseEvent::ControlDown

bool ControlDown()

Returns TRUE if the control key was down at the time of the event.

wxMouseEvent::Dragging

bool Dragging()

Returns TRUE if this was a dragging event (motion while a button is depressed).

wxMouseEvent::Entering

bool Entering()

Returns TRUE if the mouse was entering the window (MS Windows and Motif).

See also wxMouseEvent::Leaving (p. 537).

wxMouseEvent::GetPosition

wxPoint GetPosition() const

void GetPosition(long *x, long *y) const

Sets *x and *y to the position at which the event occurred.

Returns the physical mouse position in pixels.

wxMouseEvent::GetLogicalPosition

wxPoint GetLogicalPosition(const wxDC& dc) const

Returns the logical mouse position in pixels (i.e. translated according to the translation
set for the DC, which usually indicates that the window has been scrolled).

CHAPTER 4

537

wxMouseEvent::GetX

long GetX() const

Returns X coordinate of the physical mouse event position.

wxMouseEvent::GetY

long GetY()

Returns Y coordinate of the physical mouse event position.

wxMouseEvent::IsButton

bool IsButton() const

Returns TRUE if the event was a mouse button event (not necessarily a button down
event - that may be tested using ButtonDown).

wxMouseEvent::Leaving

bool Leaving() const

Returns TRUE if the mouse was leaving the window (MS Windows and Motif).

See also wxMouseEvent::Entering (p. 536).

wxMouseEvent::LeftDClick

bool LeftDClick() const

Returns TRUE if the event was a left double click.

wxMouseEvent::LeftDown

bool LeftDown() const

Returns TRUE if the left mouse button changed to down.

wxMouseEvent::LeftIsDown

bool LeftIsDown() const

CHAPTER 4

538

Returns TRUE if the left mouse button is currently down, independent of the current
event type.

Please notice that it is not the same as LeftDown (p. 537) which returns TRUE if the left
mouse button was just pressed. Rather, it describes the state of the mouse button
before the event happened.

This event is usually used in the mouse event handlers which process "move mouse"
messages to determine whether the user is (still) dragging the mouse.

wxMouseEvent::LeftUp

bool LeftUp() const

Returns TRUE if the left mouse button changed to up.

wxMouseEvent::MetaDown

bool MetaDown() const

Returns TRUE if the Meta key was down at the time of the event.

wxMouseEvent::MiddleDClick

bool MiddleDClick() const

Returns TRUE if the event was a middle double click.

wxMouseEvent::MiddleDown

bool MiddleDown() const

Returns TRUE if the middle mouse button changed to down.

wxMouseEvent::MiddleIsDown

bool MiddleIsDown() const

Returns TRUE if the middle mouse button is currently down, independent of the current
event type.

wxMouseEvent::MiddleUp

CHAPTER 4

539

bool MiddleUp() const

Returns TRUE if the middle mouse button changed to up.

wxMouseEvent::Moving

bool Moving() const

Returns TRUE if this was a motion event (no buttons depressed).

wxMouseEvent::RightDClick

bool RightDClick() const

Returns TRUE if the event was a right double click.

wxMouseEvent::RightDown

bool RightDown() const

Returns TRUE if the right mouse button changed to down.

wxMouseEvent::RightIsDown

bool RightIsDown() const

Returns TRUE if the right mouse button is currently down, independent of the current
event type.

wxMouseEvent::RightUp

bool RightUp() const

Returns TRUE if the right mouse button changed to up.

wxMouseEvent::ShiftDown

bool ShiftDown() const

Returns TRUE if the shift key was down at the time of the event.

wxMoveEvent

A move event holds information about move change events.

CHAPTER 4

540

Derived from

wxEvent (p. 237)
wxObject (p. 555)

Include files

<wx/event.h>

Event table macros

To process a move event, use this event handler macro to direct input to a member
function that takes a wxMoveEvent argument.

EVT_MOVE(func) Process a wxEVT_MOVE event, which is
generated when a window is moved.

See also

wxWindow::OnMove (p. 942), wxPoint (p. 586), Event handling overview (p. 1072)

wxMoveEvent::wxMoveEvent

 wxMoveEvent(const wxPoint& pt, int id = 0)

Constructor.

wxMoveEvent::GetPosition

wxPoint GetPosition() const

Returns the position of the window generating the move change event.

wxMultipleChoiceDialog

This class represents a dialog that shows a list of strings, and allows the user to select
one or more.

NOTE: this class is not yet implemented.

Derived from

wxDialog (p. 193)
wxWindow (p. 915)

CHAPTER 4

541

wxEvtHandler (p. 240)
wxObject (p. 555)

Include files

<wx/choicdlg.h>

See also

wxMultipleChoiceDialog overview (p. 1051)

wxMutex

A mutex object is a synchronization object whose state is set to signaled when it is not
owned by any thread, and nonsignaled when it is owned. Its name comes from its
usefulness in coordinating mutually-exclusive access to a shared resource. Only one
thread at a time can own a mutex object.

For example, when several thread use the data stored in the linked list, modifications to
the list should be only allowed to one thread at a time because during a new node
addition the list integrity is temporarily broken (this is also called program invariant).

Example

 // this variable has an "s_" prefix because it is static: seeing an
"s_" in
 // a multithreaded program is in general a good sign that you
should use a
 // mutex (or a critical section)
 static wxMutex *s_mutexProtectingTheGlobalData;

 // we store some numbers in this global array which is presumably
used by
 // several threads simultaneously
 wxArrayInt s_data;

 void MyThread::AddNewNode(int num)
 {
 // ensure that no other thread accesses the list
 s_mutexProtectingTheGlobalList->Lock();

 s_data.Add(num);

 s_mutexProtectingTheGlobalList->Unlock();
 }

 // return TRUE the given number is greater than all array elements
 bool MyThread::IsGreater(int num)
 {
 // before using the list we must acquire the mutex
 wxMutexLocker lock(s_mutexProtectingTheGlobalData);

CHAPTER 4

542

 size_t count = s_data.Count();
 for (size_t n = 0; n < count; n++)
 {
 if (s_data[n] > num)
 return FALSE;
 }

 return TRUE;
 }

Notice how wxMutexLocker was used in the second function to ensure that the mutex is
unlocked in any case: whether the function returns TRUE or FALSE (because the
destructor of the local object lock is always called). Using this class instead of directly
using wxMutex is, in general safer and is even more so if yoor program uses C++
exceptions.

Derived from

None.

Include files

<wx/thread.h>

See also

wxThread (p. 849), wxCondition (p. 115),wxMutexLocker (p. 544), wxCriticalSection (p.
131)

wxMutex::wxMutex

 wxMutex()

Default constructor.

wxMutex::~wxMutex

 ~wxMutex()

Destroys the wxMutex object.

wxMutex::IsLocked

bool IsLocked() const

CHAPTER 4

543

Returns TRUE if the mutex is locked, FALSE otherwise.

wxMutex::Lock

wxMutexError Lock()

Locks the mutex object.

Return value

One of:

wxMUTEX_NO_ERROR There was no error.
wxMUTEX_DEAD_LOCK A deadlock situation was detected.
wxMUTEX_BUSY The mutex is already locked by another thread.

wxMutex::TryLock

wxMutexError TryLock()

Tries to lock the mutex object. If it can't, returns immediately with an error.

Return value

One of:

wxMUTEX_NO_ERROR There was no error.
wxMUTEX_DEAD_LOCK A deadlock situation was detected.
wxMUTEX_BUSY The mutex is already locked by another thread.

wxMutex::Unlock

wxMutexError Unlock()

Unlocks the mutex object.

Return value

One of:

wxMUTEX_NO_ERROR There was no error.
wxMUTEX_DEAD_LOCK A deadlock situation was detected.
wxMUTEX_BUSY The mutex is already locked by another thread.
wxMUTEX_UNLOCKED The calling thread tries to unlock an unlocked

CHAPTER 4

544

mutex.

wxMutexLocker

This is a small helper class to be used with wxMutex (p. 541) objects. A wxMutexLocker
acquires a mutex lock in the constructor and releases (or unlocks) the mutex in the
destructor making it much more difficult to forget to release a mutex (which, in general,
will promptly lead to the serious problems). See wxMutex (p. 541) for an example of
wxMutexLocker usage.

Derived from

None.

Include files

<wx/thread.h>

See also

wxMutex (p. 541), wxCriticalSectionLocker (p. 132)

wxMutexLocker::wxMutexLocker

 wxMutexLocker(wxMutex *mutex)

Constructs a wxMutexLocker object associated with mutex which must be non NULL
and locks it. Call IsLocked (p. 544) to check if the mutex was successfully locked.

wxMutexLocker::~wxMutexLocker

 ~wxMutexLocker()

Destuctor releases the mutex if it was successfully acquired in the ctor.

wxMutexLocker::IsOk

bool IsOk() const

Returns TRUE if mutex was acquired in the constructor, FALSE otherwise.

wxNodeBase

A node structure used in linked lists (see wxList (p. 446)) and derived classes. You

CHAPTER 4

545

should never use wxNodeBase class directly because it works with untyped (void *) data
and this is unsafe. Use wxNode-derived classes which are defined by
WX_DECLARE_LIST and WX_DEFIBE_LIST macros instead as described in wxList (p.
446) documentation (see example there). wxNode is defined for compatibility as
wxNodeBase containing "wxObject *" pointer, but usage of this class is deprecated.

Derived from

None.

Include files

<wx/list.h>

See also

wxList (p. 446), wxHashTable (p. 337)

wxNodeBase::GetData

void * Data()

Retrieves the client data pointer associated with the node.

wxNodeBase::GetNext

wxNodeBase * Next()

Retrieves the next node (NULL if at end of list).

wxNodeBase::GetPrevious

wxNodeBase * GetPrevious()

Retrieves the previous node (NULL if at start of list).

wxNodeBase::SetData

void SetData(void *data)

Sets the data associated with the node (usually the pointer will have been set when the
node was created).

CHAPTER 4

546

wxNodeBase::IndexOf

int IndexOf()

Returns the zero-based index of this node within the list. The return value will be
NOT_FOUND if the node has not been added to a list yet.

wxNotebook

This class represents a notebook control, which manages multiple windows with
associated tabs.

To use the class, create a wxNotebook object and call AddPage (p. 547) or InsertPage
(p. 550), passing a window to be used as the page. Do not explicitly delete the window
for a page that is currently managed by wxNotebook.

wxNotebookPage is a typedef for wxWindow.

Derived from

wxControl (p. 130)
wxWindow (p. 915)
wxEvtHandler (p. 240)
wxObject (p. 555)

Include files

<wx/notebook.h>

Event handling

To process input from a notebook control, use the following event handler macros to
direct input to member functions that take a wxNotebookEvent (p. 552) argument.

EVT_NOTEBOOK_PAGE_CHANGED(id, func) The page selection was changed.
EVT_NOTEBOOK_PAGE_CHANGING(id, func) The page selection is about to be

changed. This can be prevented by calling
Veto() (p. 554).

See also

wxNotebookEvent (p. 552), wxImageList (p. 418), wxTabCtrl (p. 803)

wxNotebook::wxNotebook

 wxNotebook()

CHAPTER 4

547

Default constructor.

 wxNotebook(wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size, long style = 0, const wxString& name =
"notebook")

Constructs a notebook control.

Parameters

parent
The parent window. Must be non-NULL.

id
The window identifier.

pos
The window position.

size
The window size.

style
The window style. Its value is a bit list of zero or more of wxTC_MULTILINE,
wxTC_RIGHTJUSTIFY, wxTC_FIXEDWIDTH and wxTC_OWNERDRAW.

name
The name of the control (used only under Motif).

wxNotebook::~wxNotebook

 ~wxNotebook()

Destroys the wxNotebook object.

wxNotebook::AddPage

bool AddPage(wxNotebookPage* page, const wxString& text, bool select = FALSE,
int imageId = -1)

Adds a new page.

Parameters

page
Specifies the new page.

text

CHAPTER 4

548

Specifies the text for the new page.

select
Specifies whether the page should be selected.

imageId
Specifies the optional image index for the new page.

Return value

TRUE if successful, FALSE otherwise.

Remarks

Do not delete the page, it will be deleted by the notebook.

See also

wxNotebook::InsertPage (p. 550)

wxNotebook::AdvanceSelection

void AdvanceSelection(bool forward = TRUE)

Cycles through the tabs.

wxNotebook::Create

bool Create(wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size, long style = 0, const wxString& name =
"notebook")

Creates a notebook control. See wxNotebook::wxNotebook (p. 546) for a description of
the parameters.

wxNotebook::DeleteAllPages

bool DeleteAllPages()

Deletes all pages.

wxNotebook::DeletePage

bool DeletePage(int page)

Deletes the specified page, and the associated window.

CHAPTER 4

549

wxNotebook::GetImageList

wxImageList* GetImageList() const

Returns the associated image list.

See also

wxImageList (p. 418), wxNotebook::SetImageList (p. 551)

wxNotebook::GetPage

wxNotebookPage* GetPage(int page)

Returns the window at the given page position.

wxNotebook::GetPageCount

int GetPageCount() const

Returns the number of pages in the notebook control.

wxNotebook::GetPageImage

int GetPageImage() const

Returns the image index for the given page.

wxNotebook::GetPageText

wxString GetPageText() const

Returns the string for the given page.

wxNotebook::GetRowCount

int GetRowCount() const

Returns the number of rows in the notebook control.

wxNotebook::GetSelection

CHAPTER 4

550

int GetSelection() const

Returns the currently selected page, or -1 if none was selected.

wxNotebook::InsertPage

bool InsertPage(int index, wxNotebookPage* page, const wxString& text, bool
select = FALSE, int imageId = -1)

Inserts a new page at the specified position.

Parameters

index
Specifies the position for the new page.

page
Specifies the new page.

text
Specifies the text for the new page.

select
Specifies whether the page should be selected.

imageId
Specifies the optional image index for the new page.

Return value

TRUE if successful, FALSE otherwise.

Remarks

Do not delete the page, it will be deleted by the notebook.

See also

wxNotebook::AddPage (p. 547)

wxNotebook::OnSelChange

void OnSelChange(wxNotebookEvent& event)

An event handler function, called when the page selection is changed.

See also

wxNotebookEvent (p. 552)

CHAPTER 4

551

wxNotebook::RemovePage

bool RemovePage(int page)

Deletes the specified page, without deleting the associated window.

wxNotebook::SetImageList

void SetImageList(wxImageList* imageList)

Sets the image list for the page control.

See also

wxImageList (p. 418)

wxNotebook::SetPadding

void SetPadding(const wxSize& padding)

Sets the amount of space around each page's icon and label, in pixels.

wxNotebook::SetPageSize

void SetPageSize(const wxSize& size)

Sets the width and height of the pages.

wxNotebook::SetPageImage

bool SetPageImage(int page, int image)

Sets the image index for the given page. image is an index into the image list which was
set with wxNotebook::SetImageList (p. 551).

wxNotebook::SetPageText

bool SetPageText(int page, const wxString& text)

Sets the text for the given page.

wxNotebook::SetSelection

CHAPTER 4

552

int SetSelection(int page)

Sets the selection for the given page, returning the previous selection.

See also

wxNotebook::GetSelection (p. 549)

wxNotebookEvent

This class represents the events generated by a notebook control: currently, there are
two of them. The PAGE_CHANGING event is sent before the current page is changed. It
allows to the program to examine the current page (which can be retrieved with
GetOldSelection() (p. 553)) and to veto the page change by calling Veto() (p. 554) if, for
example, the current values in the controls of the old page are invalid.

The second event - PAGE_CHANGED - is sent after the page has been changed and
the program cannot veto it any more, it just informs it about the page change.

To summarize, if the program is interested in validating the page values before allowing
the user to change it, it should process the PAGE_CHANGING event, otherwise
PAGE_CHANGED is probably enough. In any case, it is probably unnecessary to
process both events at once.

Derived from

wxNotifyEvent (p. 553)
wxCommandEvent (p. 108)
wxEvent (p. 237)
wxEvtHandler (p. 240)
wxObject (p. 555)

Include files

<wx/notebook.h>

Event table macros

To process a notebook event, use these event handler macros to direct input to member
functions that take a wxNotebookEvent argument.

EVT_NOTEBOOK_PAGE_CHANGED(id, func) The page selection was changed.
Processes a
wxEVT_COMMAND_NOTEBOOK_PAGE_CH
ANGED event.

EVT_NOTEBOOK_PAGE_CHANGING(id, func) The page selection is about to be
changed. Processes a
wxEVT_COMMAND_NOTEBOOK_PAGE_CH
ANGING event. This event can be vetoed (p.
554).

CHAPTER 4

553

See also

wxNotebook (p. 546), wxTabCtrl (p. 803), wxTabEvent (p. 809)

wxNotebookEvent::wxNotebookEvent

 wxNotebookEvent(wxEventType eventType = wxEVT_NULL, int id = 0, int sel = -1,
int oldSel = -1)

Constructor (used internally by wxWindows only).

wxNotebookEvent::GetOldSelection

int GetOldSelection() const

Returns the page that was selected before the change, -1 if none was selected.

wxNotebookEvent::GetSelection

int GetSelection() const

Returns the currently selected page, or -1 if none was selected.

wxNotebookEvent::SetOldSelection

void SetOldSelection(int page)

Sets the id of the page selected before the change.

wxNotebookEvent::SetSelection

void SetSelection(int page)

Sets the selection member variable.

See also

wxNotebookEvent::GetSelection (p. 553)

wxNotifyEvent

CHAPTER 4

554

This class is not used by the event handlers by itself, but is a base class for other event
classes (such as wxNotebookEvent (p. 552)).

It (or an object of a derived class) is sent when the controls state is being changed and
allows the program to Veto() (p. 554) this change if it wants to prevent it from happening.

Derived from

wxCommandEvent (p. 108)
wxEvent (p. 237)
wxEvtHandler (p. 240)
wxObject (p. 555)

Include files

<wx/event.h>

Event table macros

None

See also

wxNotebookEvent (p. 552)

wxNotifyEvent::wxNotifyEvent

 wxNotifyEvent(wxEventType eventType = wxEVT_NULL, int id = 0)

Constructor (used internally by wxWindows only).

wxNotifyEvent::IsAllowed

bool IsAllowed() const

Returns TRUE if the change is allowed (Veto() (p. 554) hasn't been called) or FALSE
otherwise (if it was).

wxNotifyEvent::Veto

void Veto()

Prevents the change announced by this event from happening.

It is in general a good idea to notify the user about the reasons for vetoing the change

CHAPTER 4

555

because otherwise the applications behaviour (which just refuses to do what the user
wants) might be quite surprising.

wxObject

This is the root class of all wxWindows classes. It declares a virtual destructor which
ensures that destructors get called for all derived class objects where necessary.

wxObject is the hub of a dynamic object creation scheme, enabling a program to create
instances of a class only knowing its string class name, and to query the class hierarchy.

The class contains optional debugging versions of new and delete, which can help trace
memory allocation and deallocation problems.

wxObject can be used to implement reference counted objects, such as wxPen,
wxBitmap and others.

See also

wxClassInfo (p. 84), Debugging overview (p. 1060), wxObjectRefData (p. 558)

wxObject::wxObject

 wxObject()

Default constructor.

wxObject::~wxObject

 wxObject()

Destructor. Performs dereferencing, for those objects that use reference counting.

wxObject::m_refData

wxObjectRefData* m_refData

Pointer to an object which is the object's reference-counted data.

See also

wxObject::Ref (p. 557), wxObject::UnRef (p. 557), wxObject::SetRefData (p. 557),
wxObject::GetRefData (p. 556), wxObjectRefData (p. 558)

CHAPTER 4

556

wxObject::Dump

void Dump(ostream& stream)

A virtual function that should be redefined by derived classes to allow dumping of
memory states.

Parameters

stream
Stream on which to output dump information.

Remarks

Currently wxWindows does not define Dump for derived classes, but programmers may
wish to use it for their own applications. Be sure to call the Dump member of the class's
base class to allow all information to be dumped.

The implementation of this function just writes the class name of the object in debug
build (__WXDEBUG__ defined), otherwise it does nothing.

wxObject::GetClassInfo

wxClassInfo * GetClassInfo()

This virtual function is redefined for every class that requires run-time type information,
when using DECLARE_CLASS macros.

wxObject::GetRefData

wxObjectRefData* GetRefData() const

Returns the m_refData pointer.

See also

wxObject::Ref (p. 557), wxObject::UnRef (p. 557), wxObject::m_refData (p. 555),
wxObject::SetRefData (p. 557), wxObjectRefData (p. 558)

wxObject::IsKindOf

bool IsKindOf(wxClassInfo *info)

Determines whether this class is a subclass of (or the same class as) the given class.

Parameters

CHAPTER 4

557

info
A pointer to a class information object, which may be obtained by using the
CLASSINFO macro.

Return value

TRUE if the class represented by info is the same class as this one or is derived from it.

Example

 bool tmp = obj->IsKindOf(CLASSINFO(wxFrame));

wxObject::Ref

void Ref(const wxObject& clone)

Makes this object refer to the data in clone.

Parameters

clone
The object to 'clone'.

Remarks

First this function calls wxObject::UnRef (p. 557) on itself to decrement (and perhaps
free) the data it is currently referring to.

It then sets its own m_refData to point to that of clone, and increments the reference
count inside the data.

See also

wxObject::UnRef (p. 557), wxObject::m_refData (p. 555), wxObject::SetRefData (p. 557),
wxObject::GetRefData (p. 556), wxObjectRefData (p. 558)

wxObject::SetRefData

void SetRefData(wxObjectRefData* data)

Sets the m_refData pointer.

See also

wxObject::Ref (p. 557), wxObject::UnRef (p. 557), wxObject::m_refData (p. 555),
wxObject::GetRefData (p. 556), wxObjectRefData (p. 558)

wxObject::UnRef

CHAPTER 4

558

void UnRef()

Decrements the reference count in the associated data, and if it is zero, deletes the data.
The m_refData member is set to NULL.

See also

wxObject::Ref (p. 557), wxObject::m_refData (p. 555), wxObject::SetRefData (p. 557),
wxObject::GetRefData (p. 556), wxObjectRefData (p. 558)

wxObject::operator new

void * new(size_t size, const wxString& filename = NULL, int lineNum = 0)

The new operator is defined for debugging versions of the library only, when the
identifier __WXDEBUG__ is defined. It takes over memory allocation, allowing
wxDebugContext operations.

wxObject::operator delete

void delete(void buf)

The delete operator is defined for debugging versions of the library only, when the
identifier __WXDEBUG__ is defined. It takes over memory deallocation, allowing
wxDebugContext operations.

wxObjectRefData

This class is used to store reference-counted data. Derive classes from this to store your
own data. When retrieving information from a wxObject's reference data, you will need
to cast to your own derived class.

Friends

wxObject (p. 555)

See also

wxObject (p. 555)

wxObjectRefData::m_count

int m_count

CHAPTER 4

559

Reference count. When this goes to zero during a wxObject::UnRef (p. 557), an object
can delete the wxObjectRefData object.

wxObjectRefData::wxObjectRefData

 wxObjectRefData()

Default constructor. Initialises the m_count member to 1.

wxObjectRefData::~wxObjectRefData

 wxObjectRefData()

Destructor.

wxOutputStream

Derived from

wxStreamBase (p. 754)

Include files

<wx/stream.h>

wxOutputStream::wxOutputStream

 wxOutputStream()

Creates a dummy wxOutputStream object.

wxOutputStream::~wxOutputStream

 ~wxOutputStream()

Destructor.

wxOutputStream::LastWrite

size_t LastWrite() const

wxOutputStream::PutC

void PutC(char c)

CHAPTER 4

560

Puts the specified character in the output queue and increments the stream position.

wxOutputStream::SeekO

off_t SeekO(off_t pos, wxSeekMode mode)

Changes the stream current position.

wxOutputStream::TellO

off_t TellO() const

Returns the current stream position.

wxOutputStream::Write

wxOutputStream& Write(const void *buffer, size_t size)

Writes the specified amount of bytes using the data of buffer. WARNING! The buffer
absolutely needs to have at least the specified size.

This function returns a reference on the current object, so the user can test any states of
the stream right away.

wxOutputStream& Write(wxInputStream& stream_in)

Reads data from the specified input stream and stores them in the current stream. The
data is read until an error is raised by one of the two streams.

wxPageSetupDialogData

This class holds a variety of information related to wxPageSetupDialog (p. 565).

It contains a wxPrintData (p. 592) member which is used to hold basic printer
configuration data (as opposed to the user-interface configuration settings stored by
wxPageSetupDialogData).

Derived from

wxObject (p. 555)

Include files

<wx/cmndata.h>

See also

CHAPTER 4

561

wxPageSetupDialog (p. 565)

wxPageSetupDialogData::wxPageSetupDialogData

 wxPageSetupDialogData()

Default constructor.

 wxPageSetupDialogData(wxPageSetupDialogData& data)

Copy constructor.

 wxPrintDialogData(wxPrintData& printData)

Construct an object from a print dialog data object.

wxPageSetupDialogData::~wxPageSetupDialogData

 ~wxPageSetupDialogData()

Destructor.

wxPageSetupDialogData::EnableHelp

void EnableHelp(bool flag)

Enables or disables the 'Help' button (Windows only).

wxPageSetupDialogData::EnableMargins

void EnableMargins(bool flag)

Enables or disables the margin controls (Windows only).

wxPageSetupDialogData::EnableOrientation

void EnableOrientation(bool flag)

Enables or disables the orientation control (Windows only).

wxPageSetupDialogData::EnablePaper

CHAPTER 4

562

void EnablePaper(bool flag)

Enables or disables the paper size control (Windows only).

wxPageSetupDialogData::EnablePrinter

void EnablePrinter(bool flag)

Enables or disables the Printer button, which invokes a printer setup dialog.

wxPageSetupDialogData::GetDefaultMinMargins

bool GetDefaultMinMargins() const

Returns TRUE if the page setup dialog will take its minimum margin values from the
currently selected printer properties. Windows only.

wxPageSetupDialogData::GetEnableMargins

bool GetEnableMargins() const

Returns TRUE if the margin controls are enabled (Windows only).

wxPageSetupDialogData::GetEnableOrientation

bool GetEnableOrientation() const

Returns TRUE if the orientation control is enabled (Windows only).

wxPageSetupDialogData::GetEnablePaper

bool GetEnablePaper() const

Returns TRUE if the paper size control is enabled (Windows only).

wxPageSetupDialogData::GetEnablePrinter

bool GetEnablePrinter() const

Returns TRUE if the printer setup button is enabled.

wxPageSetupDialogData::GetEnableHelp

CHAPTER 4

563

bool GetEnableHelp() const

Returns TRUE if the printer setup button is enabled.

wxPageSetupDialogData::GetDefaultInfo

bool GetDefaultInfo() const

Returns TRUE if the dialog will simply return default printer information (such as
orientation) instead of showing a dialog. Windows only.

wxPageSetupDialogData::GetMarginTopLeft

wxPoint GetMarginTopLeft() const

Returns the left (x) and top (y) margins in millimetres.

wxPageSetupDialogData::GetMarginBottomRight

wxPoint GetMarginBottomRight() const

Returns the right (x) and bottom (y) margins in millimetres.

wxPageSetupDialogData::GetMinMarginTopLeft

wxPoint GetMinMarginTopLeft() const

Returns the left (x) and top (y) minimum margins the user can enter (Windows only).
Units are in millimetres

wxPageSetupDialogData::GetMinMarginBottomRight

wxPoint GetMinMarginBottomRight() const

Returns the right (x) and bottom (y) minimum margins the user can enter (Windows
only). Units are in millimetres

wxPageSetupDialogData::GetPaperId

wxPaperSize GetPaperId() const

Returns the paper id (stored in the internal wxPrintData object).

CHAPTER 4

564

For further information, see wxPrintData::SetPaperId (p. 595).

wxPageSetupDialogData::GetPaperSize

wxSize GetPaperSize() const

Returns the paper size in millimetres.

wxPageSetupDialogData::GetPrintData

wxPrintData& GetPrintData()

Returns a reference to the print data (p. 592) associated with this object.

wxPageSetupDialogData::SetDefaultInfo

void SetDefaultInfo(bool flag)

Pass TRUE if the dialog will simply return default printer information (such as orientation)
instead of showing a dialog. Windows only.

wxPageSetupDialogData::SetDefaultMinMargins

void SetDefaultMinMargins(bool flag)

Pass TRUE if the page setup dialog will take its minimum margin values from the
currently selected printer properties. Windows only. Units are in millimetres

wxPageSetupDialogData::SetMarginTopLeft

void GetMarginTopLeft(const wxPoint& pt)

Sets the left (x) and top (y) margins in millimetres.

wxPageSetupDialogData::SetMarginBottomRight

void SetMarginBottomRight(const wxPoint& pt)

Sets the right (x) and bottom (y) margins in millimetres.

wxPageSetupDialogData::SetMinMarginTopLeft

void SetMinMarginTopLeft(const wxPoint& pt)

CHAPTER 4

565

Sets the left (x) and top (y) minimum margins the user can enter (Windows only). Units
are in millimetres.

wxPageSetupDialogData::SetMinMarginBottomRight

void SetMinMarginBottomRight(const wxPoint& pt)

Sets the right (x) and bottom (y) minimum margins the user can enter (Windows only).
Units are in millimetres.

wxPageSetupDialogData::SetPaperId

void SetPaperId(wxPaperSize& id)

Sets the paper size id. For further information, see wxPrintData::SetPaperId (p. 595).

Calling this function overrides the explicit paper dimensions passed in
wxPageSetupDialogData::SetPaperSize (p. 565).

wxPageSetupDialogData::SetPaperSize

void SetPaperSize(const wxSize& size)

Sets the paper size in millimetres. If a corresponding paper id is found, it will be set in
the internal wxPrintData object, otherwise the paper size overrides the paper id.

wxPageSetupDialogData::SetPrintData

void SetPrintData(const wxPrintData& printData)

Sets the print data (p. 592) associated with this object.

wxPageSetupDialogData::operator =

void operator =(const wxPrintData& data)

Assigns print data to this object.

void operator =(const wxPageSetupDialogData& data)

Assigns page setup data to this object.

wxPageSetupDialog

CHAPTER 4

566

This class represents the page setup common dialog. The page setup dialog is standard
from Windows 95 on, replacing the print setup dialog (which is retained in Windows and
wxWindows for backward compatibility). On Windows 95 and NT 4.0 and above, the
page setup dialog is native to the windowing system, otherwise it is emulated.

The page setup dialog contains controls for paper size (A4, A5 etc.), orientation
(landscape or portrait), and controls for setting left, top, right and bottom margin sizes in
millimetres.

When the dialog has been closed, you need to query the wxPageSetupDialogData (p.
560) object associated with the dialog.

Note that the OK and Cancel buttons do not destroy the dialog; this must be done by the
application.

Derived from

wxDialog (p. 193)
wxWindow (p. 915)
wxEvtHandler (p. 240)
wxObject (p. 555)

Include files

<wx/printdlg.h>

See also

wxPrintDialog (p. 598), wxPageSetupDialogData (p. 560)

wxPageSetupDialog::wxPageSetupDialog

 wxPageSetupDialog(wxWindow* parent, wxPageSetupDialogData* data = NULL)

Constructor. Pass a parent window, and optionally a pointer to a block of page setup
data, which will be copied to the print dialog's internal data.

wxPageSetupDialog::~wxPageSetupDialog

 ~wxPageSetupDialog()

Destructor.

wxPageSetupDialog::GetPageSetupData

CHAPTER 4

567

wxPageSetupDialogData& GetPageSetupData()

Returns the page setup data (p. 560) associated with the dialog.

wxPageSetupDialog::ShowModal

int ShowModal()

Shows the dialog, returning wxID_OK if the user pressed OK, and wxID_CANCEL
otherwise.

wxPaintDC

A wxPaintDC must be constructed if an application wishes to paint on the client area of a
window from within an OnPaint event. This should normally be constructed as a
temporary stack object; don't store a wxPaintDC object. If you have an OnPaint handler,
you must create a wxPaintDC object within it even if you don't actually use it.

Using wxPaintDC within OnPaint is important because it automatically sets the clipping
area to the damaged area of the window. Attempts to draw outside this area do not
appear.

To draw on a window from outside OnPaint, construct a wxClientDC (p. 86) object.

To draw on the whole window including decorations, construct a wxWindowDC (p. 961)
object (Windows only).

Derived from

wxWindowDC (p. 961)
wxDC (p. 165)

Include files

<wx/dcclient.h>

See also

wxDC (p. 165), wxMemoryDC (p. 496), wxPaintDC (p. 567), wxWindowDC (p. 961),
wxScreenDC (p. 670)

wxPaintDC::wxPaintDC

 wxPaintDC(wxWindow* window)

Constructor. Pass a pointer to the window on which you wish to paint.

CHAPTER 4

568

wxPaintEvent

A paint event is sent when a window's contents needs to be repainted.

Derived from

wxEvent (p. 237)
wxObject (p. 555)

Include files

<wx/event.h>

Event table macros

To process a paint event, use this event handler macro to direct input to a member
function that takes a wxPaintEvent argument.

EVT_PAINT(func) Process a wxEVT_PAINT event.

See also

wxWindow::OnPaint (p. 943), Event handling overview (p. 1072)

wxPaintEvent::wxPaintEvent

 wxPaintEvent(int id = 0)

Constructor.

wxPalette

A palette is a table that maps pixel values to RGB colours. It allows the colours of a low-
depth bitmap, for example, to be mapped to the available colours in a display.

Derived from

wxGDIObject (p. 321)
wxObject (p. 555)

Include files

<wx/palette.h>

Predefined objects

CHAPTER 4

569

Objects:

wxNullPalette

See also

wxDC::SetPalette (p. 178), wxBitmap (p. 36)

wxPalette::wxPalette

 wxPalette()

Default constructor.

 wxPalette(const wxPalette& palette)

Copy constructor. This uses reference counting so is a cheap operation.

 wxPalette(int n, const unsigned char* red,
 const unsigned char* green, const unsigned char* blue)

Creates a palette from arrays of size n, one for each red, blue or green component.

Parameters

palette
A pointer or reference to the palette to copy.

n
The number of indices in the palette.

red
An array of red values.

green
An array of green values.

blue
An array of blue values.

See also

wxPalette::Create (p. 570)

wxPalette::~wxPalette

CHAPTER 4

570

 ~wxPalette()

Destructor.

wxPalette::Create

bool Create(int n, const unsigned char* red, const unsigned char* green, const
unsigned char* blue)

Creates a palette from arrays of size n, one for each red, blue or green component.

Parameters

n
The number of indices in the palette.

red
An array of red values.

green
An array of green values.

blue
An array of blue values.

Return value

TRUE if the creation was successful, FALSE otherwise.

See also

wxPalette::wxPalette (p. 569)

wxPalette::GetPixel

int GetPixel(const unsigned char red, const unsigned char green, const unsigned
char blue) const

Returns a pixel value (index into the palette) for the given RGB values.

Parameters

red
Red value.

green
Green value.

blue

CHAPTER 4

571

Blue value.

Return value

The nearest palette index.

See also

wxPalette::GetRGB (p. 571)

wxPalette::GetRGB

bool GetPixel(int pixel, const unsigned char* red, const unsigned char* green,
const unsigned char* blue) const

Returns RGB values for a given palette index.

Parameters

pixel
The palette index.

red
Receives the red value.

green
Receives the green value.

blue
Receives the blue value.

Return value

TRUE if the operation was successful.

See also

wxPalette::GetPixel (p. 570)

wxPalette::Ok

bool Ok() const

Returns TRUE if palette data is present.

wxPalette::operator =

CHAPTER 4

572

wxPalette& operator =(const wxPalette& palette)

Assignment operator, using reference counting. Returns a reference to 'this'.

wxPalette::operator ==

bool operator ==(const wxPalette& palette)

Equality operator. Two palettes are equal if they contain pointers to the same underlying
palette data. It does not compare each attribute, so two independently-created palettes
using the same parameters will fail the test.

wxPalette::operator !=

bool operator !=(const wxPalette& palette)

Inequality operator. Two palettes are not equal if they contain pointers to different
underlying palette data. It does not compare each attribute.

wxPanel

A panel is a window on which controls are placed. It is usually placed within a frame. It
contains minimal extra functionality over and above its parent class wxWindow; its main
purpose is to be similar in appearance and functionality to a dialog, but with the flexibility
of having any window as a parent.

Note: if not all characters are being intercepted by your OnKeyDown or OnChar handler,
it may be because you are using the wxTAB_TRAVERSAL style, which grabs some
keypresses for use by child controls.

Derived from

wxWindow (p. 915)
wxEvtHandler (p. 240)
wxObject (p. 555)

Include files

<wx/panel.h>

Window styles

There are no specific styles for this window.

See also window styles overview (p. 1093).

Remarks

CHAPTER 4

573

By default, a panel has the same colouring as a dialog.

A panel may be loaded from a wxWindows resource file (extension wxr).

See also

wxDialog (p. 193)

wxPanel::wxPanel

 wxPanel()

Default constructor.

 wxPanel(wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxTAB_TRAVERSAL, const wxString& name = "panel")

Constructor.

Parameters

parent
The parent window.

id
An identifier for the panel. A value of -1 is taken to mean a default.

pos
The panel position. A value of (-1, -1) indicates a default position, chosen by either
the windowing system or wxWindows, depending on platform.

size
The panel size. A value of (-1, -1) indicates a default size, chosen by either the
windowing system or wxWindows, depending on platform.

style
The window style. See wxPanel (p. 572).

name
Used to associate a name with the window, allowing the application user to set
Motif resource values for individual dialog boxes.

See also

wxPanel::Create (p. 574)

CHAPTER 4

574

wxPanel::~wxPanel

 ~wxPanel()

Destructor. Deletes any child windows before deleting the physical window.

wxPanel::Create

bool Create(wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxTAB_TRAVERSAL, const wxString& name = "panel")

Used for two-step panel construction. See wxPanel::wxPanel (p. 573) for details.

wxPanel::InitDialog

void InitDialog()

Sends an wxWindow::OnInitDialog (p. 940) event, which in turn transfers data to the
dialog via validators.

See also

wxWindow::OnInitDialog (p. 940)

wxPanel::OnSysColourChanged

void OnSysColourChanged(wxSysColourChangedEvent& event)

The default handler for wxEVT_SYS_COLOUR_CHANGED.

Parameters

event
The colour change event.

Remarks

Changes the panel's colour to conform to the current settings (Windows only). Add an
event table entry for your panel class if you wish the behaviour to be different (such as
keeping a user-defined background colour). If you do override this function, call
wxWindow::OnSysColourChanged (p. 946) to propagate the notification to child windows
and controls.

See also

wxSysColourChangedEvent (p. 786)

CHAPTER 4

575

wxPanelTabView

The wxPanelTabView is responsible for input and output on a wxPanel.

Derived from

wxTabView (p. 795)
wxObject (p. 555)

Include files

<wx/tab.h>

See also

wxTabView overview (p. 1097), wxTabView (p. 795)

wxPanelTabView::wxPanelTabView

void wxPanelTabView(wxPanel *panel, long style = wxTAB_STYLE_DRAW_BOX |
wxTAB_STYLE_COLOUR_INTERIOR)

Constructor. panel should be a wxTabbedPanel or wxTabbedDialog: the type will be
checked by the view at run time.

style may be a bit list of the following:

wxTAB_STYLE_DRAW_BOX Draw a box around the view area. Most
commonly used for dialogs.

wxTAB_STYLE_COLOUR_INTERIOR Draw tab backgrounds in the specified colour.
Omitting this style will ensure that the tab
background matches the dialog background.

wxPanelTabView::~wxPanelTabView

void ~wxPanelTabView()

Destructor. This destructor deletes all the panels associated with the view. If you do not
wish this to happen, call ClearWindows with argument FALSE before the view is likely to
be destroyed. This will clear the list of windows, without deleting them.

wxPanelTabView::AddTabWindow

CHAPTER 4

576

void AddTabPanel(int id, wxWindow *window)

Adds a window to the view. The window is associated with the tab identifier, and will be
shown or hidden as the tab is selected or deselected.

wxPanelTabView::ClearWindows

void ClearWindows(bool deleteWindows = TRUE)

Removes the child windows from the view. If deleteWindows is TRUE, the windows will
be deleted.

wxPanelTabView::GetCurrentWindow

wxPanel * GetCurrentWindow()

Returns the child window currently being displayed on the tabbed panel or dialog box.

wxPanelTabView::GetTabWindow

wxWindow * GetTabWindow(int id)

Returns the window associated with the tab identifier.

wxPanelTabView::ShowWindowForTab

void ShowWindowForTab(int id)

Shows the child window corresponding to the tab identifier, and hides the previously
shown window.

wxPathList

The path list is a convenient way of storing a number of directories, and when presented
with a filename without a directory, searching for an existing file in those directories.
Storing the filename only in an application's files and using a locally-defined list of
directories makes the application and its files more portable.

Use the wxFileNameFromPath global function to extract the filename from the path.

Derived from

wxList (p. 446)
wxObject (p. 555)

Include files

CHAPTER 4

577

<wx/filefn.h>

See also

wxList (p. 446)

wxPathList::wxPathList

 wxPathList()

Constructor.

wxPathList::AddEnvList

void AddEnvList(const wxString& env_variable)

Finds the value of the given environment variable, and adds all paths to the path list.
Useful for finding files in the PATH variable, for example.

wxPathList::Add

void Add(const wxString& path)

Adds the given directory to the path list, but does not check if the path was already on
the list (use wxPathList::Member) for this).

wxPathList::EnsureFileAccessible

void EnsureFileAccessible(const wxString& filename)

Given a full filename (with path), ensures that files in the same path can be accessed
using the pathlist. It does this by stripping the filename and adding the path to the list if
not already there.

wxPathList::FindAbsoluteValidPath

wxString FindAbsoluteValidPath(const wxString& file)

Searches for a full path for an existing file by appending file to successive members of
the path list. If the file exists, a temporary pointer to the absolute path is returned.

CHAPTER 4

578

wxPathList::FindValidPath

wxString FindValidPath(const wxString& file)

Searches for a full path for an existing file by appending file to successive members of
the path list. If the file exists, a temporary pointer to the full path is returned. This path
may be relative to the current working directory.

wxPathList::Member

bool Member(const wxString& file)

TRUE if the path is in the path list (ignoring case).

wxPen

A pen is a drawing tool for drawing outlines. It is used for drawing lines and painting the
outline of rectangles, ellipses, etc. It has a colour, a width and a style.

Derived from

wxGDIObject (p. 321)
wxObject (p. 555)

Include files

<wx/pen.h>

Predefined objects

Objects:

wxNullPen

Pointers:

wxRED_PEN
wxCYAN_PEN
wxGREEN_PEN
wxBLACK_PEN
wxWHITE_PEN
wxTRANSPARENT_PEN
wxBLACK_DASHED_PEN
wxGREY_PEN
wxMEDIUM_GREY_PEN
wxLIGHT_GREY_PEN

Remarks

CHAPTER 4

579

On a monochrome display, wxWindows shows all non-white pens as black.

Do not initialize objects on the stack before the program commences, since other
required structures may not have been set up yet. Instead, define global pointers to
objects and create them in OnInit or when required.

An application may wish to dynamically create pens with different characteristics, and
there is the consequent danger that a large number of duplicate pens will be created.
Therefore an application may wish to get a pointer to a pen by using the global list of
pens wxThePenList, and calling the member function FindOrCreatePen. See the entry
for wxPenList (p. 585).

wxPen uses a reference counting system, so assignments between brushes are very
cheap. You can therefore use actual wxPen objects instead of pointers without efficiency
problems. Once one wxPen object changes its data it will create its own pen data
internally so that other pens, which previously shared the data using the reference
counting, are not affected.

See also

wxPenList (p. 585), wxDC (p. 165), wxDC::SetPen (p. 180)

wxPen::wxPen

 wxPen()

Default constructor. The pen will be uninitialised, and wxPen::Ok (p. 582) will return
FALSE.

 wxPen(const wxColour& colour, int width, int style)

Constructs a pen from a colour object, pen width and style.

 wxPen(const wxString& colourName, int width, int style)

Constructs a pen from a colour name, pen width and style.

 wxPen(const wxBitmap& stipple, int width)

Constructs a stippled pen from a stipple bitmap and a width.

 wxPen(const wxPen& pen)

Copy constructor. This uses reference counting so is a cheap operation.

Parameters

colour

CHAPTER 4

580

A colour object.

colourName
A colour name.

width
Pen width. Under Windows, the pen width cannot be greater than 1 if the style is
wxDOT, wxLONG_DASH, wxSHORT_DASH, wxDOT_DASH, or wxUSER_DASH.

stipple
A stipple bitmap.

pen
A pointer or reference to a pen to copy.

style
The style may be one of the following:

wxSOLID Solid style.
wxTRANSPARENT No pen is used.
wxDOT Dotted style.
wxLONG_DASH Long dashed style.
wxSHORT_DASH Short dashed style.
wxDOT_DASH Dot and dash style.
wxSTIPPLE Use the stipple bitmap.
wxUSER_DASH Use the user dashes: see

wxPen::SetDashes (p. 583).
wxBDIAGONAL_HATCH Backward diagonal hatch.
wxCROSSDIAG_HATCH Cross-diagonal hatch.
wxFDIAGONAL_HATCH Forward diagonal hatch.
wxCROSS_HATCH Cross hatch.
wxHORIZONTAL_HATCH Horizontal hatch.
wxVERTICAL_HATCH Vertical hatch.

Remarks

Different versions of Windows and different versions of other platforms support very
different subsets of the styles above - there is no similarity even between Windows95
and Windows98 - so handle with care.

If the named colour form is used, an appropriate wxColour structure is found in the
colour database.

See also

wxPen::SetStyle (p. 584), wxPen::SetColour (p. 583), wxPen::SetWidth (p. 584),
wxPen::SetStipple (p. 584)

wxPen::~wxPen

CHAPTER 4

581

 ~wxPen()

Destructor.

Remarks

The destructor may not delete the underlying pen object of the native windowing system,
since wxBrush uses a reference counting system for efficiency.

Although all remaining pens are deleted when the application exits, the application
should try to clean up all pens itself. This is because wxWindows cannot know if a
pointer to the pen object is stored in an application data structure, and there is a risk of
double deletion.

wxPen::GetCap

int GetCap() const

Returns the pen cap style, which may be one of wxCAP_ROUND,
wxCAP_PROJECTING and wxCAP_BUTT. The default is wxCAP_ROUND.

See also

wxPen::SetCap (p. 583)

wxPen::GetColour

wxColour& GetColour() const

Returns a reference to the pen colour.

See also

wxPen::SetColour (p. 583)

wxPen::GetDashes

int GetDashes(wxDash** dashes) const

Gets an array of dashes (defined as char in X, DWORD under Windows).dashes is a
pointer to the internal array. Do not deallocate or store this pointer. The function returns
the number of dashes associated with this pen.

See also

wxPen::SetDashes (p. 583)

CHAPTER 4

582

wxPen::GetJoin

int GetJoin() const

Returns the pen join style, which may be one of wxJOIN_BEVEL, wxJOIN_ROUND and
wxJOIN_MITER. The default is wxJOIN_ROUND.

See also

wxPen::SetJoin (p. 583)

wxPen::GetStipple

wxBitmap* GetStipple() const

Gets a pointer to the stipple bitmap.

See also

wxPen::SetStipple (p. 584)

wxPen::GetStyle

int GetStyle() const

Returns the pen style.

See also

wxPen::wxPen (p. 579), wxPen::SetStyle (p. 584)

wxPen::GetWidth

int GetWidth() const

Returns the pen width.

See also

wxPen::SetWidth (p. 584)

wxPen::Ok

bool Ok() const

CHAPTER 4

583

Returns TRUE if the pen is initialised.

wxPen::SetCap

void SetCap(int capStyle)

Sets the pen cap style, which may be one of wxCAP_ROUND, wxCAP_PROJECTING
and wxCAP_BUTT. The default is wxCAP_ROUND.

See also

wxPen::GetCap (p. 581)

wxPen::SetColour

void SetColour(wxColour& colour)

void SetColour(const wxString& colourName)

void SetColour(int red, int green, int blue)

The pen's colour is changed to the given colour.

See also

wxPen::GetColour (p. 581)

wxPen::SetDashes

void SetDashes(int n, wxDash* dashes)

Associates an array of pointers to dashes (defined as char in X, DWORD under
Windows) with the pen. The array is not deallocated by wxPen, but neither must it be
deallocated by the calling application until the pen is deleted or this function is called
with a NULL array.

See also

wxPen::GetDashes (p. 581)

wxPen::SetJoin

void SetJoin(intjoin_style)

Sets the pen join style, which may be one of wxJOIN_BEVEL, wxJOIN_ROUND and

CHAPTER 4

584

wxJOIN_MITER. The default is wxJOIN_ROUND.

See also

wxPen::GetJoin (p. 582)

wxPen::SetStipple

void SetStipple(wxBitmap* stipple)

Sets the bitmap for stippling.

See also

wxPen::GetStipple (p. 582)

wxPen::SetStyle

void SetStyle(int style)

Set the pen style.

See also

wxPen::wxPen (p. 579)

wxPen::SetWidth

void SetWidth(int width)

Sets the pen width.

See also

wxPen::GetWidth (p. 582)

wxPen::operator =

wxPen& operator =(const wxPen& pen)

Assignment operator, using reference counting. Returns a reference to 'this'.

wxPen::operator ==

bool operator ==(const wxPen& pen)

CHAPTER 4

585

Equality operator. Two pens are equal if they contain pointers to the same underlying
pen data. It does not compare each attribute, so two independently-created pens using
the same parameters will fail the test.

wxPen::operator !=

bool operator !=(const wxPen& pen)

Inequality operator. Two pens are not equal if they contain pointers to different
underlying pen data. It does not compare each attribute.

wxPenList

There is only one instance of this class: wxThePenList. Use this object to search for a
previously created pen of the desired type and create it if not already found. In some
windowing systems, the pen may be a scarce resource, so it can pay to reuse old
resources if possible. When an application finishes, all pens will be deleted and their
resources freed, eliminating the possibility of 'memory leaks'. However, it is best not to
rely on this automatic cleanup because it can lead to double deletion in some
circumstances.

There are two mechanisms in recent versions of wxWindows which make the pen list
less useful than it once was. Under Windows, scarce resources are cleaned up internally
if they are not being used. Also, a referencing counting mechanism applied to all GDI
objects means that some sharing of underlying resources is possible. You don't have to
keep track of pointers, working out when it is safe delete a pen, because the referencing
counting does it for you. For example, you can set a pen in a device context, and then
immediately delete the pen you passed, because the pen is 'copied'.

So you may find it easier to ignore the pen list, and instead create and copy pens as you
see fit. If your Windows resource meter suggests your application is using too many
resources, you can resort to using GDI lists to share objects explicitly.

The only compelling use for the pen list is for wxWindows to keep track of pens in order
to clean them up on exit. It is also kept for backward compatibility with earlier versions of
wxWindows.

See also

wxPen (p. 578)

wxPenList::wxPenList

void wxPenList()

CHAPTER 4

586

Constructor. The application should not construct its own pen list: use the object pointer
wxThePenList.

wxPenList::AddPen

void AddPen(wxPen* pen)

Used internally by wxWindows to add a pen to the list.

wxPenList::FindOrCreatePen

wxPen* FindOrCreatePen(const wxColour& colour, int width, int style)

Finds a pen with the specified attributes and returns it, else creates a new pen, adds it to
the pen list, and returns it.

wxPen* FindOrCreatePen(const wxString& colourName, int width, int style)

Finds a pen with the specified attributes and returns it, else creates a new pen, adds it to
the pen list, and returns it.

Parameters

colour
Colour object.

colourName
Colour name, which should be in the colour database (p. 96).

width
Width of pen.

style
Pen style. See wxPen::wxPen (p. 579) for a list of styles.

wxPenList::RemovePen

void RemovePen(wxPen* pen)

Used by wxWindows to remove a pen from the list.

wxPoint

A wxPoint is a useful data structure for graphics operations. It simply contains integer x
and y members.

See also wxRealPoint (p. 637) for a floating point version.

CHAPTER 4

587

Derived from

None

Include files

<wx/gdicmn.h>

See also

wxRealPoint (p. 637)

wxPoint::wxPoint

 wxPoint()

 wxPoint(int x, int y)

Create a point.

wxPoint::x

int x

x member.

wxPoint::y

int y

y member.

wxPostScriptDC

This defines the wxWindows Encapsulated PostScript device context, which can write
PostScript files on any platform. See wxDC (p. 165) for descriptions of the member
functions.

Derived from

wxDC (p. 165)
wxObject (p. 555)

Include files

CHAPTER 4

588

<wx/dcps.h>

wxPostScriptDC::wxPostScriptDC

 wxPostScriptDC(const wxPrintData& printData)

Constructs a PostScript printer device context from a wxPrintData (p. 592) object.

 wxPostScriptDC(const wxString& output, bool interactive = TRUE,
 wxWindow *parent)

Constructor. output is an optional file for printing to, and if interactive is TRUE a dialog
box will be displayed for adjusting various parameters. parent is the parent of the printer
dialog box.

Use the Ok member to test whether the constructor was successful in creating a useable
device context.

See Printer settings (p. 978) for functions to set and get PostScript printing settings.

This constructor and the global printer settings are now deprecated; use the wxPrintData
constructor instead.

wxPreviewCanvas

A preview canvas is the default canvas used by the print preview system to display the
preview.

Derived from

wxScrolledWindow (p. 680)
wxWindow (p. 915)
wxevthandler (p. 240)
wxObject (p. 555)

Include files

<wx/print.h>

See also

wxPreviewFrame (p. 590), wxPreviewControlBar (p. 589), wxPrintPreview (p. 610)

wxPreviewCanvas::wxPreviewCanvas

CHAPTER 4

589

 wxPreviewCanvas(wxPrintPreview* preview, wxWindow* parent, const wxPoint&
pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style = 0, const
wxString& name = "canvas")

Constructor.

wxPreviewCanvas::~wxPreviewCanvas

 ~wxPreviewCanvas()

Destructor.

wxPreviewCanvas::OnPaint

void OnPaint(wxPaintEvent& event)

Calls wxPrintPreview::PaintPage (p. 613) to refresh the canvas.

wxPreviewControlBar

This is the default implementation of the preview control bar, a panel with buttons and a
zoom control. You can derive a new class from this and override some or all member
functions to change the behaviour and appearance; or you can leave it as it is.

Derived from

wxPanel (p. 572)
wxWindow (p. 915)
wxEvtHandler (p. 240)
wxObject (p. 555)

Include files

<wx/print.h>

See also

wxPreviewFrame (p. 590), wxPreviewCanvas (p. 588), wxPrintPreview (p. 610)

wxPreviewControlBar::wxPreviewControlbar

 wxPreviewControlBar(wxPrintPreview* preview, long buttons, wxWindow* parent,
const wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long
style = 0, const wxString& name = "panel")

CHAPTER 4

590

Constructor.

The buttons parameter may be a combination of the following, using the bitwise 'or'
operator.

wxPREVIEW_PRINT Create a print button.
wxPREVIEW_NEXT Create a next page button.
wxPREVIEW_PREVIOUS Create a previous page button.
wxPREVIEW_ZOOM Create a zoom control.
wxPREVIEW_DEFAULT Equivalent to a combination of

wxPREVIEW_PREVIOUS,
wxPREVIEW_NEXT and wxPREVIEW_ZOOM.

wxPreviewControlBar::~wxPreviewControlBar

 ~wxPreviewControlBar()

Destructor.

wxPreviewControlBar::CreateButtons

void CreateButtons()

Creates buttons, according to value of the button style flags.

wxPreviewControlBar::GetPrintPreview

wxPrintPreview * GetPrintPreview()

Gets the print preview object associated with the control bar.

wxPreviewControlBar::GetZoomControl

int GetZoomControl()

Gets the current zoom setting in percent.

wxPreviewControlBar::SetZoomControl

void SetZoomControl(int percent)

Sets the zoom control.

wxPreviewFrame

CHAPTER 4

591

This class provides the default method of managing the print preview interface. Member
functions may be overridden to replace functionality, or the class may be used without
derivation.

Derived from

wxFrame (p. 299)
wxWindow (p. 915)
wxEvtHandler (p. 240)
wxObject (p. 555)

Include files

<wx/print.h>

See also

wxPreviewCanvas (p. 588), wxPreviewControlBar (p. 589), wxPrintPreview (p. 610)

wxPreviewFrame::wxPreviewFrame

 wxPreviewFrame(wxPrintPreview* preview, wxFrame* parent, const wxString& title,
const wxPoint& pos = wxDefaultPosition, const wxSize& size size = wxDefaultSize,
long style = wxDEFAULT_FRAME_STYLE, const wxString& name = "frame")

Constructor. Pass a print preview object plus other normal frame arguments.

wxPreviewFrame::~wxPreviewFrame

 ~wxPreviewFrame()

Destructor.

wxPreviewFrame::CreateControlBar

void CreateControlBar()

Creates a wxPreviewControlBar. Override this function to allow a user-defined preview
control bar object to be created.

wxPreviewFrame::CreateCanvas

void CreateCanvas()

CHAPTER 4

592

Creates a wxPreviewCanvas. Override this function to allow a user-defined preview
canvas object to be created.

wxPreviewFrame::Initialize

void Initialize()

Creates the preview canvas and control bar, and calls wxWindow::MakeModal(TRUE) to
disable other top-level windows in the application.

This function should be called by the application prior to showing the frame.

wxPreviewFrame::OnCloseWindow

void OnCloseWindow(wxCloseEvent& event)

Enables the other frames in the application, and deletes the print preview object,
implicitly deleting any printout objects associated with the print preview object.

wxPrintData

This class holds a variety of information related to printers and printer device contexts.
This class is used to create a wxPrinterDC and a wxPostScriptDC. It is also used as a
data member of wxPrintDialogData and wxPageSetupDialogData, as part of the
mechanism for transferring data between the print dialogs and the application.

Derived from

wxObject (p. 555)

Include files

<wx/cmndata.h>

See also

wxPrintDialog (p. 598),wxPageSetupDialog (p. 565),wxPrintDialogData (p.
599),wxPageSetupDialogData (p. 560),wxPrintDialog Overview (p. 1050),wxPrinterDC
(p. 606),wxPostScriptDC (p. 587)

Remarks

The following functions are specific to PostScript printing and have not yet been
documented:

const wxString& GetPrinterCommand() const ;
const wxString& GetPrinterOptions() const ;
const wxString& GetPreviewCommand() const ;

CHAPTER 4

593

const wxString& GetFilename() const ;
const wxString& GetFontMetricPath() const ;
double GetPrinterScaleX() const ;
double GetPrinterScaleY() const ;
long GetPrinterTranslateX() const ;
long GetPrinterTranslateY() const ;
// wxPRINT_MODE_PREVIEW, wxPRINT_MODE_FILE, wxPRINT_MODE_PRINTER
wxPrintMode GetPrintMode() const ;

void SetPrinterCommand(const wxString& command) ;
void SetPrinterOptions(const wxString& options) ;
void SetPreviewCommand(const wxString& command) ;
void SetFilename(const wxString& filename) ;
void SetFontMetricPath(const wxString& path) ;
void SetPrinterScaleX(double x) ;
void SetPrinterScaleY(double y) ;
void SetPrinterScaling(double x, double y) ;
void SetPrinterTranslateX(long x) ;
void SetPrinterTranslateY(long y) ;
void SetPrinterTranslation(long x, long y) ;
void SetPrintMode(wxPrintMode printMode) ;

wxPrintData::wxPrintData

 wxPrintData()

Default constructor.

 wxPrintData(const wxPrintData& data)

Copy constructor.

wxPrintData::~wxPrintData

 ~wxPrintData()

Destructor.

wxPrintData::GetCollate

bool GetCollate() const

Returns TRUE if collation is on.

wxPrintData::GetColour

bool GetColour() const

CHAPTER 4

594

Returns TRUE if colour printing is on.

wxPrintData::GetDuplex

wxDuplexMode GetDuplex() const

Returns the duplex mode. One of wxDUPLEX_SIMPLEX, wxDUPLEX_HORIZONTAL,
wxDUPLEX_VERTICAL.

wxPrintData::GetNoCopies

int GetNoCopies() const

Returns the number of copies requested by the user.

wxPrintData::GetOrientation

int GetOrientation() const

Gets the orientation. This can be wxLANDSCAPE or wxPORTRAIT.

wxPrintData::GetPaperId

wxPaperSize GetPaperId() const

Returns the paper size id. For more information, see wxPrintData::SetPaperId (p. 595).

wxPrintData::GetPrinterName

const wxString& GetPrinterName() const

Returns the printer name. If the printer name is the empty string, it indicates that the
default printer should be used.

wxPrintData::GetQuality

wxPaperQuality GetQuality() const

Returns the current print quality. This can be a positive integer, denoting the number of
dots per inch, or one of the following identifiers:

wxPRINT_QUALITY_HIGH
wxPRINT_QUALITY_MEDIUM

CHAPTER 4

595

wxPRINT_QUALITY_LOW
wxPRINT_QUALITY_DRAFT

On input you should pass one of these identifiers, but on return you may get back a
positive integer indicating the current resolution setting.

wxPrintData::SetCollate

void SetCollate(bool flag)

Sets collation to on or off.

wxPrintData::SetColour

void SetColour(bool flag)

Sets colour printing on or off.

wxPrintData::SetDuplex

void SetDuplex(wxDuplexMode mode)

Returns the duplex mode. One of wxDUPLEX_SIMPLEX, wxDUPLEX_HORIZONTAL,
wxDUPLEX_VERTICAL.

wxPrintData::SetNoCopies

void SetNoCopies(int n)

Sets the default number of copies to be printed out.

wxPrintData::SetOrientation

void SetOrientation(int orientation)

Sets the orientation. This can be wxLANDSCAPE or wxPORTRAIT.

wxPrintData::SetPaperId

void SetPaperId(wxPaperSize paperId)

Sets the paper id. This indicates the type of paper to be used. For a mapping between
paper id, paper size and string name, see wxPrintPaperDatabase in paper.h (not yet
documented).

CHAPTER 4

596

paperId can be one of:

 wxPAPER_NONE, // Use specific dimensions
 wxPAPER_LETTER, // Letter, 8 1/2 by 11 inches
 wxPAPER_LEGAL, // Legal, 8 1/2 by 14 inches
 wxPAPER_A4, // A4 Sheet, 210 by 297 millimeters
 wxPAPER_CSHEET, // C Sheet, 17 by 22 inches
 wxPAPER_DSHEET, // D Sheet, 22 by 34 inches
 wxPAPER_ESHEET, // E Sheet, 34 by 44 inches
 wxPAPER_LETTERSMALL, // Letter Small, 8 1/2 by 11 inches
 wxPAPER_TABLOID, // Tabloid, 11 by 17 inches
 wxPAPER_LEDGER, // Ledger, 17 by 11 inches
 wxPAPER_STATEMENT, // Statement, 5 1/2 by 8 1/2 inches
 wxPAPER_EXECUTIVE, // Executive, 7 1/4 by 10 1/2 inches
 wxPAPER_A3, // A3 sheet, 297 by 420 millimeters
 wxPAPER_A4SMALL, // A4 small sheet, 210 by 297
millimeters
 wxPAPER_A5, // A5 sheet, 148 by 210 millimeters
 wxPAPER_B4, // B4 sheet, 250 by 354 millimeters
 wxPAPER_B5, // B5 sheet, 182-by-257-millimeter
paper
 wxPAPER_FOLIO, // Folio, 8-1/2-by-13-inch paper
 wxPAPER_QUARTO, // Quarto, 215-by-275-millimeter paper
 wxPAPER_10X14, // 10-by-14-inch sheet
 wxPAPER_11X17, // 11-by-17-inch sheet
 wxPAPER_NOTE, // Note, 8 1/2 by 11 inches
 wxPAPER_ENV_9, // #9 Envelope, 3 7/8 by 8 7/8 inches
 wxPAPER_ENV_10, // #10 Envelope, 4 1/8 by 9 1/2 inches
 wxPAPER_ENV_11, // #11 Envelope, 4 1/2 by 10 3/8 inches
 wxPAPER_ENV_12, // #12 Envelope, 4 3/4 by 11 inches
 wxPAPER_ENV_14, // #14 Envelope, 5 by 11 1/2 inches
 wxPAPER_ENV_DL, // DL Envelope, 110 by 220 millimeters
 wxPAPER_ENV_C5, // C5 Envelope, 162 by 229 millimeters
 wxPAPER_ENV_C3, // C3 Envelope, 324 by 458 millimeters
 wxPAPER_ENV_C4, // C4 Envelope, 229 by 324 millimeters
 wxPAPER_ENV_C6, // C6 Envelope, 114 by 162 millimeters
 wxPAPER_ENV_C65, // C65 Envelope, 114 by 229 millimeters
 wxPAPER_ENV_B4, // B4 Envelope, 250 by 353 millimeters
 wxPAPER_ENV_B5, // B5 Envelope, 176 by 250 millimeters
 wxPAPER_ENV_B6, // B6 Envelope, 176 by 125 millimeters
 wxPAPER_ENV_ITALY, // Italy Envelope, 110 by 230
millimeters
 wxPAPER_ENV_MONARCH, // Monarch Envelope, 3 7/8 by 7 1/2
inches
 wxPAPER_ENV_PERSONAL, // 6 3/4 Envelope, 3 5/8 by 6 1/2
inches
 wxPAPER_FANFOLD_US, // US Std Fanfold, 14 7/8 by 11 inches
 wxPAPER_FANFOLD_STD_GERMAN, // German Std Fanfold, 8 1/2 by 12
inches
 wxPAPER_FANFOLD_LGL_GERMAN, // German Legal Fanfold, 8 1/2 by 13
inches

Windows 95 only:
 wxPAPER_ISO_B4, // B4 (ISO) 250 x 353 mm

CHAPTER 4

597

 wxPAPER_JAPANESE_POSTCARD, // Japanese Postcard 100 x 148 mm
 wxPAPER_9X11, // 9 x 11 in
 wxPAPER_10X11, // 10 x 11 in
 wxPAPER_15X11, // 15 x 11 in
 wxPAPER_ENV_INVITE, // Envelope Invite 220 x 220 mm
 wxPAPER_LETTER_EXTRA, // Letter Extra 9 \275 x 12 in
 wxPAPER_LEGAL_EXTRA, // Legal Extra 9 \275 x 15 in
 wxPAPER_TABLOID_EXTRA, // Tabloid Extra 11.69 x 18 in
 wxPAPER_A4_EXTRA, // A4 Extra 9.27 x 12.69 in
 wxPAPER_LETTER_TRANSVERSE, // Letter Transverse 8 \275 x 11 in
 wxPAPER_A4_TRANSVERSE, // A4 Transverse 210 x 297 mm
 wxPAPER_LETTER_EXTRA_TRANSVERSE, // Letter Extra Transverse 9\275 x
12 in
 wxPAPER_A_PLUS, // SuperA/SuperA/A4 227 x 356 mm
 wxPAPER_B_PLUS, // SuperB/SuperB/A3 305 x 487 mm
 wxPAPER_LETTER_PLUS, // Letter Plus 8.5 x 12.69 in
 wxPAPER_A4_PLUS, // A4 Plus 210 x 330 mm
 wxPAPER_A5_TRANSVERSE, // A5 Transverse 148 x 210 mm
 wxPAPER_B5_TRANSVERSE, // B5 (JIS) Transverse 182 x 257 mm
 wxPAPER_A3_EXTRA, // A3 Extra 322 x 445 mm
 wxPAPER_A5_EXTRA, // A5 Extra 174 x 235 mm
 wxPAPER_B5_EXTRA, // B5 (ISO) Extra 201 x 276 mm
 wxPAPER_A2, // A2 420 x 594 mm
 wxPAPER_A3_TRANSVERSE, // A3 Transverse 297 x 420 mm
 wxPAPER_A3_EXTRA_TRANSVERSE // A3 Extra Transverse 322 x 445 mm

wxPrintData::SetPrinterName

void SetPrinterName(const wxString& printerName)

Sets the printer name. This can be the empty string to indicate that the default printer
should be used.

wxPrintData::SetQuality

void SetQuality(wxPaperQuality quality)

Sets the desired print quality. This can be a positive integer, denoting the number of dots
per inch, or one of the following identifiers:

wxPRINT_QUALITY_HIGH
wxPRINT_QUALITY_MEDIUM
wxPRINT_QUALITY_LOW
wxPRINT_QUALITY_DRAFT

On input you should pass one of these identifiers, but on return you may get back a
positive integer indicating the current resolution setting.

wxPrintData::operator =

CHAPTER 4

598

void operator =(const wxPrintData& data)

Assigns print data to this object.

void operator =(const wxPrintSetupData& data)

Assigns print setup data to this object. wxPrintSetupData is deprecated, but retained for
backward compatibility.

wxPrintDialog

This class represents the print and print setup common dialogs. You may obtain a
wxPrinterDC (p. 606) device context from a successfully dismissed print dialog.

Derived from

wxDialog (p. 193)
wxWindow (p. 915)
wxEvtHandler (p. 240)
wxObject (p. 555)

Include files

<wx/printdlg.h>

See also

wxPrintDialog Overview (p. 1050)

wxPrintDialog::wxPrintDialog

 wxPrintDialog(wxWindow* parent, wxPrintDialogData* data = NULL)

Constructor. Pass a parent window, and optionally a pointer to a block of print data,
which will be copied to the print dialog's print data.

See also

wxPrintDialogData (p. 599)

wxPrintDialog::~wxPrintDialog

 ~wxPrintDialog()

Destructor. If wxPrintDialog::GetPrintDC has not been called, the device context

CHAPTER 4

599

obtained by the dialog (if any) will be deleted.

wxPrintDialog::GetPrintDialogData

wxPrintDialogData& GetPrintDialogData()

Returns the print dialog data (p. 599) associated with the print dialog.

wxPrintDialog::GetPrintDC

wxDC* GetPrintDC()

Returns the device context created by the print dialog, if any. When this function has
been called, the ownership of the device context is transferred to the application, so it
must then be deleted explicitly.

wxPrintDialog::ShowModal

int ShowModal()

Shows the dialog, returning wxID_OK if the user pressed OK, and wxID_CANCEL
otherwise. After this function is called, a device context may be retrievable using
wxPrintDialog::GetPrintDC (p. 599).

wxPrintDialogData

This class holds information related to the visual characteristics of wxPrintDialog. It
contains a wxPrintData object with underlying printing settings.

Derived from

wxObject (p. 555)

Include files

<wx/cmndata.h>

See also

wxPrintDialog (p. 598), wxPrintDialog Overview (p. 1050)

wxPrintDialogData::wxPrintDialogData

 wxPrintDialogData()

CHAPTER 4

600

Default constructor.

 wxPrintDialogData(wxPrintDialogData& dialogData)

Copy constructor.

 wxPrintDialogData(wxPrintData& printData)

Construct an object from a print dialog data object.

wxPrintDialogData::~wxprintdialogdata

 ~wxPrintDialogData()

Destructor.

wxPrintDialogData::EnableHelp

void EnableHelp(bool flag)

Enables or disables the 'Help' button.

wxPrintDialogData::EnablePageNumbers

void EnablePageNumbers(bool flag)

Enables or disables the 'Page numbers' controls.

wxPrintDialogData::EnablePrintToFile

void EnablePrintToFile(bool flag)

Enables or disables the 'Print to file' checkbox.

wxPrintDialogData::EnableSelection

void EnableSelection(bool flag)

Enables or disables the 'Selection' radio button.

wxPrintDialogData::GetAllPages

bool GetAllPages() const

CHAPTER 4

601

Returns TRUE if the user requested that all pages be printed.

wxPrintDialogData::GetCollate

bool GetCollate() const

Returns TRUE if the user requested that the document(s) be collated.

wxPrintDialogData::GetFromPage

int GetFromPage() const

Returns the from page number, as entered by the user.

wxPrintDialogData::GetMaxPage

int GetMaxPage() const

Returns the maximum page number.

wxPrintDialogData::GetMinPage

int GetMinPage() const

Returns the minimum page number.

wxPrintDialogData::GetNoCopies

int GetNoCopies() const

Returns the number of copies requested by the user.

wxPrintDialogData::GetPrintData

wxPrintData& GetPrintData()

Returns a reference to the internal wxPrintData object.

wxPrintDialogData::GetPrintToFile

bool GetPrintToFile() const

CHAPTER 4

602

Returns TRUE if the user has selected printing to a file.

wxPrintDialogData::GetSelection

bool GetSelection() const

Returns TRUE if the user requested that the selection be printed (where 'selection' is a
concept specific to the application).

wxPrintDialogData::GetToPage

int GetToPage() const

Returns the to page number, as entered by the user.

wxPrintDialogData::SetCollate

void SetCollate(bool flag)

Sets the 'Collate' checkbox to TRUE or FALSE.

wxPrintDialogData::SetFromPage

void SetFromPage(int page)

Sets the from page number.

wxPrintDialogData::SetMaxPage

void SetMaxPage(int page)

Sets the maximum page number.

wxPrintDialogData::SetMinPage

void SetMinPage(int page)

Sets the minimum page number.

wxPrintDialogData::SetNoCopies

void SetNoCopies(int n)

CHAPTER 4

603

Sets the default number of copies the user has requested to be printed out.

wxPrintDialogData::SetPrintData

void SetPrintData(const wxPrintData& printData)

Sets the internal wxPrintData.

wxPrintDialogData::SetPrintToFile

void SetPrintToFile(bool flag)

Sets the 'Print to file' checkbox to TRUE or FALSE.

wxPrintDialogData::SetSelection

void SetSelection(bool flag)

Selects the 'Selection' radio button. The effect of printing the selection depends on how
the application implements this command, if at all.

wxPrintDialogData::SetSetupDialog

void SetSetupDialog(bool flag)

Determines whether the dialog to be shown will be the Print dialog (pass FALSE) or Print
Setup dialog (pass TRUE).

Note that the setup dialog is (according to Microsoft) obsolete from Windows 95, though
retained for backward compatibility.

wxPrintDialogData::SetToPage

void SetToPage(int page)

Sets the to page number.

wxPrintDialogData::operator =

void operator =(const wxPrintData& data)

Assigns print data to this object.

void operator =(const wxPrintDialogData& data)

CHAPTER 4

604

Assigns another print dialog data object to this object.

wxPrinter

This class represents the Windows or PostScript printer, and is the vehicle through
which printing may be launched by an application. Printing can also be achieved through
using of lower functions and classes, but this and associated classes provide a more
convenient and general method of printing.

Derived from

wxObject (p. 555)

Include files

<wx/print.h>

See also

Printing framework overview (p. 1083), wxPrinterDC (p. 606), wxPrintDialog (p. 598),
wxPrintout (p. 606), wxPrintPreview (p. 610).

wxPrinter::wxPrinter

 wxPrinter(wxPrintDialogData* data = NULL)

Constructor. Pass an optional pointer to a block of print dialog data, which will be copied
to the printer object's local data.

See also

wxPrintDialogData (p. 599),wxPrintData (p. 592)

wxPrinter::~wxPrinter

 ~wxPrinter()

Destructor.

wxPrinter::Abort

bool Abort()

Returns TRUE if the user has aborted the print job.

CHAPTER 4

605

wxPrinter::CreateAbortWindow

void CreateAbortWindow(wxWindow* parent, wxPrintout* printout)

Creates the default printing abort window, with a cancel button.

wxPrinter::GetPrintDialogData

wxPrintDialogData& GetPrintDialogData()

Returns the print data (p. 592) associated with the printer object.

wxPrinter::Print

bool Print(wxWindow *parent, wxPrintout *printout, bool prompt=TRUE)

Starts the printing process. Provide a parent window, a user-defined wxPrintout object
which controls the printing of a document, and whether the print dialog should be
invoked first.

Print could return FALSE if there was a problem initializing the printer device context
(current printer not set, for example).

wxPrinter::PrintDialog

wxDC* PrintDialog(wxWindow *parent)

Invokes the print dialog. If successful (the user did not press Cancel and no error
occurred), a suitable device context will be returned (otherwise NULL is returned).

The application must delete this device context to avoid a memory leak.

wxPrinter::ReportError

void ReportError(wxWindow *parent, wxPrintout *printout, const wxString&
message)

Default error-reporting function.

wxPrinter::Setup

bool Setup(wxWindow *parent)

CHAPTER 4

606

Invokes the print setup dialog. Note that the setup dialog is obsolete from Windows 95,
though retained for backward compatibility.

wxPrinterDC

A printer device context is specific to Windows, and allows access to any printer with a
Windows driver. See wxDC (p. 165) for further information on device contexts, and
wxDC::GetSize (p. 174) for advice on achieving the correct scaling for the page.

Derived from

wxDC (p. 165)
wxObject (p. 165)

Include files

<wx/dcprint.h>

See also

wxDC (p. 165), Printing framework overview (p. 1083)

wxPrinterDC::wxPrinterDC

 wxPrinterDC(const wxPrintData& printData)

Pass a wxPrintData (p. 592) object with information necessary for setting up a suitable
printer device context. This is the recommended way to construct a wxPrinterDC.

 wxPrinterDC(const wxString& driver, const wxString& device, const wxString&
output, const bool interactive = TRUE, int orientation = wxPORTRAIT)

Constructor. With empty strings for the first three arguments, the default printer dialog is
displayed. device indicates the type of printer and outputis an optional file for printing to.
The driver parameter is currently unused. Use the Ok member to test whether the
constructor was successful in creating a useable device context.

This constructor is deprecated and retained only for backward compatibility.

wxPrintout

This class encapsulates the functionality of printing out an application document. A new
class must be derived and members overridden to respond to calls such as OnPrintPage
and HasPage. Instances of this class are passed to wxPrinter::Print or a wxPrintPreview
object to initiate printing or previewing.

Derived from

CHAPTER 4

607

wxObject (p. 555)

Include files

<wx/print.h>

See also

Printing framework overview (p. 1083), wxPrinterDC (p. 606), wxPrintDialog (p. 598),
wxPrinter (p. 604), wxPrintPreview (p. 610)

wxPrintout::wxPrintout

 wxPrintout(const wxString& title = "Printout")

Constructor. Pass an optional title argument (currently unused).

wxPrintout::~wxPrintout

 ~wxPrintout()

Destructor.

wxPrintout::GetDC

wxDC * GetDC()

Returns the device context associated with the printout (given to the printout at start of
printing or previewing). This will be a wxPrinterDC if printing under Windows, a
wxPostScriptDC if printing on other platforms, and a wxMemoryDC if previewing.

wxPrintout::GetPageInfo

void GetPageInfo(int *minPage, int *maxPage, int *pageFrom, int *pageTo)

Called by the framework to obtain information from the application about minimum and
maximum page values that the user can select, and the required page range to be
printed. By default this returns 1, 32000 for the page minimum and maximum values,
and 1, 1 for the required page range.

If minPage is zero, the page number controls in the print dialog will be disabled.

wxPython note: When this method is implemented in a derived Python class, it should

CHAPTER 4

608

be designed to take no parameters (other than the self reference) and to return a tuple of
four integers.

wxPrintout::GetPageSizeMM

void GetPageSizeMM(int *w, int *h)

Returns the size of the printer page in millimetres.

wxPython note: This method returns the output-only parameters as a tuple.

wxPrintout::GetPageSizePixels

void GetPageSizePixels(int *w, int *h)

Returns the size of the printer page in pixels. These may not be the same as the values
returned from wxDC::GetSize (p. 174) if the printout is being used for previewing, since
in this case, a memory device context is used, using a bitmap size reflecting the current
preview zoom. The application must take this discrepancy into account if previewing is to
be supported.

wxPython note: This method returns the output-only parameters as a tuple.

wxPrintout::GetPPIPrinter

void GetPPIPrinter(int *w, int *h)

Returns the number of pixels per logical inch of the printer device context. Dividing the
printer PPI by the screen PPI can give a suitable scaling factor for drawing text onto the
printer. Remember to multiply this by a scaling factor to take the preview DC size into
account.

wxPython note: This method returns the output-only parameters as a tuple.

wxPrintout::GetPPIScreen

void GetPPIScreen(int *w, int *h)

Returns the number of pixels per logical inch of the screen device context. Dividing the
printer PPI by the screen PPI can give a suitable scaling factor for drawing text onto the
printer. Remember to multiply this by a scaling factor to take the preview DC size into
account.

wxPython note: This method returns the output-only parameters as a tuple.

CHAPTER 4

609

wxPrintout::HasPage

bool HasPage(int pageNum)

Should be overriden to return TRUE if the document has this page, or FALSE if not.
Returning FALSE signifies the end of the document. By default, HasPage behaves as if
the document has only one page.

wxPrintout::IsPreview

bool IsPreview()

Returns TRUE if the printout is currently being used for previewing.

wxPrintout::OnBeginDocument

bool OnBeginDocument(int startPage, int endPage)

Called by the framework at the start of document printing. Return FALSE from this
function cancels the print job. OnBeginDocument is called once for every copy printed.

The base wxPrintout::OnBeginDocument must be called (and the return value checked)
from within the overriden function, since it calls wxDC::StartDoc.

wxPython note: If this method is overriden in a Python class then the base class
version can be called by using the methodbase_OnBeginDocument(startPage,
endPage).

wxPrintout::OnEndDocument

void OnEndDocument()

Called by the framework at the end of document printing. OnEndDocument is called
once for every copy printed.

The base wxPrintout::OnEndDocument must be called from within the overriden
function, since it calls wxDC::EndDoc.

wxPrintout::OnBeginPrinting

void OnBeginPrinting()

Called by the framework at the start of printing. OnBeginPrinting is called once for every
print job (regardless of how many copies are being printed).

CHAPTER 4

610

wxPrintout::OnEndPrinting

void OnEndPrinting()

Called by the framework at the end of printing. OnEndPrinting is called once for every
print job (regardless of how many copies are being printed).

wxPrintout::OnPreparePrinting

void OnPreparePrinting()

Called once by the framework before any other demands are made of the wxPrintout
object. This gives the object an opportunity to calculate the number of pages in the
document, for example.

wxPrintout::OnPrintPage

bool OnPrintPage(int pageNum)

Called by the framework when a page should be printed. Returning FALSE cancels the
print job. The application can use wxPrintout::GetDC to obtain a device context to draw
on.

wxPrintPreview

Printing framework overview (p. 1083)

Objects of this class manage the print preview process. The object is passed a
wxPrintout object, and the wxPrintPreview object itself is passed to a wxPreviewFrame
object. Previewing is started by initializing and showing the preview frame. Unlike
wxPrinter::Print, flow of control returns to the application immediately after the frame is
shown.

Derived from

wxObject (p. 555)

Include files

<wx/print.h>

See also

Printing framework overview (p. 1083), wxPrinterDC (p. 606), wxPrintDialog (p. 598),
wxPrintout (p. 606), wxPrinter (p. 604), wxPreviewCanvas (p. 588),
wxPreviewControlBar (p. 589), wxPreviewFrame (p. 590).

CHAPTER 4

611

wxPrintPreview::wxPrintPreview

 wxPrintPreview(wxPrintout* printout, wxPrintout* printoutForPrinting,wxPrintData*
data=NULL)

Constructor. Pass a printout object, an optional printout object to be used for actual
printing, and the address of an optional block of printer data, which will be copied to the
print preview object's print data.

If printoutForPrinting is non-NULL, a Print... button will be placed on the preview frame
so that the user can print directly from the preview interface.

Do not explicitly delete the printout objects once this destructor has been called, since
they will be deleted in the wxPrintPreview constructor. The same does not apply to the
data argument.

Test the Ok member to check whether the wxPrintPreview object was created correctly.
Ok could return FALSE if there was a problem initializing the printer device context
(current printer not set, for example).

wxPrintPreview::~wxPrintPreview

 ~wxPrinter()

Destructor. Deletes both print preview objects, so do not destroy these objects in your
application.

wxPrintPreview::DrawBlankPage

bool DrawBlankPage(wxWindow* window)

Draws a representation of the blank page into the preview window. Used internally.

wxPrintPreview::GetCanvas

wxWindow* GetCanvas()

Gets the preview window used for displaying the print preview image.

wxPrintPreview::GetCurrentPage

int GetCurrentPage()

Gets the page currently being previewed.

CHAPTER 4

612

wxPrintPreview::GetFrame

wxFrame * GetFrame()

Gets the frame used for displaying the print preview canvas and control bar.

wxPrintPreview::GetMaxPage

int GetMaxPage()

Returns the maximum page number.

wxPrintPreview::GetMinPage

int GetMinPage()

Returns the minimum page number.

wxPrintPreview::GetPrintData

wxPrintData& GetPrintData()

Returns a reference to the internal print data.

wxPrintPreview::GetPrintout

wxPrintout * GetPrintout()

Gets the preview printout object associated with the wxPrintPreview object.

wxPrintPreview::GetPrintoutForPrinting

wxPrintout * GetPrintoutForPrinting()

Gets the printout object to be used for printing from within the preview interface, or NULL
if none exists.

wxPrintPreview::Ok

bool Ok()

Returns TRUE if the wxPrintPreview is valid, FALSE otherwise. It could return FALSE if

CHAPTER 4

613

there was a problem initializing the printer device context (current printer not set, for
example).

wxPrintPreview::PaintPage

bool PaintPage(wxWindow* window)

This refreshes the preview window with the preview image. It must be called from the
preview window's OnPaint member.

The implementation simply blits the preview bitmap onto the canvas, creating a new
preview bitmap if none exists.

wxPrintPreview::Print

bool Print(bool prompt)

Invokes the print process using the second wxPrintout object supplied in the
wxPrintPreview constructor. Will normally be called by the Print... panel item on the
preview frame's control bar.

wxPrintPreview::RenderPage

bool RenderPage(int pageNum)

Renders a page into a wxMemoryDC. Used internally by wxPrintPreview.

wxPrintPreview::SetCanvas

void SetCanvas(wxWindow* window)

Sets the window to be used for displaying the print preview image.

wxPrintPreview::SetCurrentPage

void SetCurrentPage(int pageNum)

Sets the current page to be previewed.

wxPrintPreview::SetFrame

void SetFrame(wxFrame *frame)

Sets the frame to be used for displaying the print preview canvas and control bar.

CHAPTER 4

614

wxPrintPreview::SetPrintout

void SetPrintout(wxPrintout *printout)

Associates a printout object with the wxPrintPreview object.

wxPrintPreview::SetZoom

void SetZoom(int percent)

Sets the percentage preview zoom, and refreshes the preview canvas accordingly.

wxPrivateDropTarget

wxPrivateDropTarget is for...

Derived from

wxDropTarget (p. 234)

Include files

<wx/dnd.h>

See also

wxDropTarget (p. 234)

wxPrivateDropTarget::wxPrivateDropTarget

 wxPrivateDropTarget()

wxPrivateDropTarget::SetId

void SetId(const wxString& id)

Yu have to override OnDrop to get at the data. The string ID identifies the format of
clipboard or DnD data. A word rocessor would e.g. add a wxTextDataObject and a
wxPrivateDataObject to the clipboard - the latter with the Id "WXWORD_FORMAT".

wxPrivateDropTarget::GetId

CHAPTER 4

615

virtual wxString GetId() const

wxProcess

The objects of this class are used in conjunction with wxExecute (p. 987) function. When
a wxProcess object is passed to wxExecute(), its OnTerminate() (p. 616) virtual method
is called when the process terminates. This allows the program to be (asynchronously)
notified about the process termination and also retrieve its exit status which is
unavailable from wxExecute() in the case of asynchronous execution.

Please note that if the process termination notification is processed by the parent, it is
responsible for deleting the wxProcess object which sent it. However, if it is not
processed, the object will delete itself and so the library users should only delete those
objects whose notifications have been processed (and call Detach() (p. 616) for others).

Derived from

wxEvtHandler (p. 240)

Include files

<wx/process.h>

wxProcess::wxProcess

 wxProcess(wxEvtHandler * parent = NULL, int id = -1)

Constructs a process object. id is only used in the case you want to use wxWindows
events. It identifies this object, or another window that will receive the event.

If the parent parameter is different from NULL, it will receive a wxEVT_END_PROCESS
notification event (you should insert EVT_END_PROCESS macro in the event table of
the parent to handle it) with the given id.

Parameters

parent
The event handler parent.

id
id of an event.

wxProcess::~wxProcess

 ~wxProcess()

CHAPTER 4

616

Destroys the wxProcess object.

wxProcess::Detach

void Detach()

Normally, a wxProcess object is deleted by its parent when it receives the notification
about the process termination. However, it might happen that the parent object is
destroyed before the external process is terminated (e.g. a window from which this
external process was launched is closed by the user) and in this case it should not
delete the wxProcess object, but should call Detach() instead. After the wxProcess
object is detached from its parent, no notification events will be sent to the parent and
the object will delete itself upon reception of the process termination notification.

wxProcess::OnTerminate

void OnTerminate(int pid, int status) const

It is called when the process with the pid pid finishes. It raises a wxWindows event when
it isn't overriden.

pid
The pid of the process which has just terminated.

status
The exit code of the process.

wxProgressDialog

This class represents a dialog that shows a short message and a progress bar.
Optionally, it can display an ABORT button.

Derived from

wxFrame (p. 299)
wxWindow (p. 915)
wxEvtHandler (p. 240)
wxObject (p. 555)

Include files

<wx/progdlg.h>

wxProgressDialog::wxProgressDialog

CHAPTER 4

617

 wxProgressDialog(const wxString& title, const wxString& message, int maximum
= 100, wxWindow * parent = NULL, int style = wxPD_AUTO_HIDE |
wxPD_APP_MODAL)

Constructor. Creates the dialog, displays it and disables user input for other windows, or,
if wxPD_APP_MODAL flag is not given, for its parent window only.

Parameters

title
Dialog title to show in titlebar.

message
Message displayed above the progress bar.

maximum
Maximum value for the progress bar.

parent
Parent window.

message
Message to show on the dialog.

style
The dialog style. This is the combination of the following bitmask constants defined
in wx/defs.h:

wxPD_APP_MODAL Make the progress dialog modal. If this
flag is not given, it is only "locally" modal -
that is the input to the parent window is
disabled, but not to the other ones.

wxPD_AUTO_HIDE By default, the progress dialog will
disappear from screen as soon as the
maximum value of the progress meter
has been reached. This flag prevents it
from doing it - instead the dialog will wait
until the user closes it.

wxPD_CAN_ABORT This flag tells the dialog that it should
have a "Cancel" button which the user
may press. If this happens, the next call
to Update() (p. 618) will return FALSE.

wxPD_ELAPSED_TIME This flag tells the dialog that it should
show elapsed time (since creating the
dialog).

wxPD_ESTIMATED_TIME This flag tells the dialog that it should
show estimated time.

wxPD_REMAINING_TIME This flag tells the dialog that it should
show remaining time.

CHAPTER 4

618

wxProgressDialog::~wxProgressDialog

 ~wxMessageDialog()

Destructor. Deletes the dialog and enables all top level windows.

wxProgressDialog::Update

bool Update(int value = -1, const char * newmsg = NULL,)

Updates the dialog, setting the progress bar to the new value and, if given changes the
message above it. Returns TRUE if the ABORT button has not been pressed.

If FALSE is returned, the application can either immediately destroy the dialog or ask the
user for the confirmation and if the abort is not confirmed the dialog may be resumed
with Resume (p. 618) function.

value
The new value of the progress meter. It must be strictly less than the maximum
value given to the constructor (i.e., as usual in C, the index runs from 0 to
maximum-1).

newmsg
The new messages for the progress dialog text, if none is given the message is not
changed.

wxProgressDialog::Resume

void Resume()

Can be used to continue with the dialog, after the user had chosen ABORT.

wxProcessEvent

A process event is sent when a process is terminated.

Derived from

wxEvent (p. 237)
wxObject (p. 555)

Include files

<wx/process.h>

Event table macros

To process a wxProcessEvent, use these event handler macros to direct input to a

CHAPTER 4

619

member function that takes a wxProcessEvent argument.

EVT_END_PROCESS(id, func) Process a wxEVT_END_PROCESS event.id is
the identifier of the process object (the id
passed to the wxProcess constructor) or a
window to receive the event.

See also

wxProcess (p. 615), Event handling overview (p. 1072)

wxProcessEvent::wxProcessEvent

 wxProcessEvent(int id = 0, int pid = 0)

Constructor. Takes a wxProcessObject or window id, and a process id.

wxProcessEvent::m_pid

int m_pid

Contains the process id.

wxProcessEvent::GetPid

int GetPid() const

Returns the process id.

wxProcessEvent::SetPid

void SetPid(int pid)

Sets the process id.

wxProtocol

Derived from

wxSocketClient (p. 719)

Include files

CHAPTER 4

620

<wx/protocol/protocol.h>

See also

wxSocketBase (p. 705), wxURL (p. 895)

wxProtocol::Reconnect

bool Reconnect()

Tries to reestablish a previous opened connection (close and renegotiate connection).

Return value

TRUE, if the connection is established, else FALSE.

wxProtocol::GetInputStream

wxInputStream * GetInputStream(const wxString& path)

Creates a new input stream on the the specified path. You can use all but seek
functionnality of wxStream. Seek isn't available on all stream. For example, http or ftp
streams doesn't deal with it. Other functions like StreamSize and Tell aren't available for
the moment for this sort of stream. You will be notified when the EOF is reached by an
error.

Return value

Returns the initialized stream. You will have to delete it yourself once you don't use it
anymore. The destructor closes the network connection.

See also

wxInputStream (p. 425)

wxProtocol::Abort

bool Abort()

Abort the current stream.

Warning

It is advised to destroy the input stream instead of aborting the stream this way.

CHAPTER 4

621

Return value

Returns TRUE, if successful, else FALSE.

wxProtocol::GetError

wxProtocolError GetError()

Returns the last occured error.

wxPROTO_NOERR No error.
wxPROTO_NETERR A generic network error occured.
wxPROTO_PROTERR An error occured during negotiation.
wxPROTO_CONNERR The client failed to connect the server.
wxPROTO_INVVAL Invalid value.
wxPROTO_NOHNDLR .
wxPROTO_NOFILE The remote file doesn't exist.
wxPROTO_ABRT Last action aborted.
wxPROTO_RCNCT An error occured during reconnection.
wxPROTO_STREAM Someone tried to send a command during a

transfer.

wxProtocol::GetContentType

wxString GetContentType()

Returns the type of the content of the last opened stream. It is a mime-type.

wxProtocol::SetUser

void SetUser(const wxString& user)

Sets the authentication user. It is mainly useful when FTP is used.

wxProtocol::SetPassword

void SetPassword(const wxString& user)

Sets the authentication password. It is mainly useful when FTP is used.

wxQueryCol

Every ODBC data column is represented by an instance of this class.

Derived from

CHAPTER 4

622

wxObject (p. 555)

Include files

<wx/odbc.h>

See also

wxQueryCol overview (p. 1056), wxDatabase overview (p. 1056)

wxQueryCol::wxQueryCol

void wxQueryCol()

Constructor. Sets the attributes of the column to default values.

wxQueryCol::~wxQueryCol

void ~wxQueryCol()

Destructor. Deletes the wxQueryField list.

wxQueryCol::BindVar

void * BindVar(void *v, long sz)

Binds a user-defined variable to a column. Whenever a column is bound to a variable, it
will automatically copy the data of the current field into this buffer (to a maximum of sz
bytes).

wxQueryCol::FillVar

void FillVar(int recnum)

Fills the bound variable with the data of the field recnum. When no variable is bound to
the column nothing will happen.

wxQueryCol::GetData

void * GetData(int field)

Returns a pointer to the data of the field.

CHAPTER 4

623

wxQueryCol::GetName

wxString GetName()

Returns the name of a column.
wxQueryCol::GetType

short GetType()

Returns the data type of a column.

wxQueryCol::GetSize

long GetSize(int field)

Return the size of the data of the field field.

wxQueryCol::IsRowDirty

bool IsRowDirty(int field)

Returns TRUE if the given field has been changed, but not saved.

wxQueryCol::IsNullable

bool IsNullable()

Returns TRUE if a column may contain no data.

wxQueryCol::AppendField

void AppendField(void *buf, long len)

Appends a wxQueryField instance to the field list of the column. len bytes from buf will
be copied into the field's buffer.

wxQueryCol::SetData

bool SetData(int field, void *buf, long len)

Sets the data of a field. This function finds the wxQueryField corresponding to field and
calls wxQueryField::SetData with buf and len arguments.

CHAPTER 4

624

wxQueryCol::SetName

void SetName(const wxString& name)

Sets the name of a column. Only useful when creating new tables or appending
columns.
wxQueryCol::SetNullable

void SetNullable(bool nullable)

Determines whether a column may contain no data. Only useful when creating new
tables or appending columns.

wxQueryCol::SetFieldDirty

void SetFieldDirty(int field, bool dirty = TRUE)

Sets the dirty tag of a given field.

wxQueryCol::SetType

void SetType(short type) Sets the data type of a column. Only useful when creating
new tables or appending columns.

wxQueryField

Represents the data item for one or several columns.

Derivation

wxObject (p. 555)

See also

wxQueryField overview (p. 1056), wxDatabase overview (p. 1056)

wxQueryField::wxQueryField

 wxQueryField()

Constructor. Sets type and size of the field to default values.
wxQueryField::~wxQueryField

 ~wxQueryField()

CHAPTER 4

625

Destructor. Frees the associated memory depending on the field type.

wxQueryField::AllocData

bool AllocData()

Allocates memory depending on the size and type of the field.

wxQueryField::ClearData

void ClearData()

Deletes the contents of the field buffer without deallocating the memory.

wxQueryField::GetData

void * GetData()

Returns a pointer to the field buffer.

wxQueryField::GetSize

long GetSize()

Returns the size of the field buffer.

wxQueryField::GetType

short GetType()

Returns the type of the field (currently SQL_CHAR, SQL_VARCHAR or
SQL_INTEGER).
wxQueryField::IsDirty

bool IsDirty()

Returns TRUE if the data of a field has been changed, but not saved.

wxQueryField::SetData

bool SetData(void *data, long sz)

Allocates memory of the size sz and copies the contents of d into the field buffer.

CHAPTER 4

626

wxQueryField::SetDirty

void SetDirty(bool dirty = TRUE)

Sets the dirty tag of a field.

wxQueryField::SetSize

void SetSize(long size)

Resizes the field buffer. Stored data will be lost.
wxQueryField::SetType

void SetType(short type)

Sets the type of the field. Currently the types SQL_CHAR, SQL_VARCHAR and
SQL_INTEGER are supported.

wxQueryLayoutInfoEvent

This event is sent when wxLayoutAlgorithm (p. 441) wishes to get the size, orientation
and alignment of a window. More precisely, the event is sent by the OnCalculateLayout
handler which is itself invoked by wxLayoutAlgorithm.

Derived from

wxEvent (p. 237)
wxObject (p. 555)

Include files

<wx/laywin.h>

Event table macros

EVT_QUERY_LAYOUT_INFO(func) Process a wxEVT_QUERY_LAYOUT_INFO
event, to get size, orientation and alignment
from a window.

Data structures

enum wxLayoutOrientation {
 wxLAYOUT_HORIZONTAL,
 wxLAYOUT_VERTICAL
};

enum wxLayoutAlignment {
 wxLAYOUT_NONE,

CHAPTER 4

627

 wxLAYOUT_TOP,
 wxLAYOUT_LEFT,
 wxLAYOUT_RIGHT,
 wxLAYOUT_BOTTOM,
};

See also

wxCalculateLayoutEvent (p. 73), wxSashLayoutWindow (p. 662), wxLayoutAlgorithm (p.
441).

wxQueryLayoutInfoEvent::wxQueryLayoutInfoEvent

 wxQueryLayoutInfoEvent(wxWindowID id = 0)

Constructor.

wxQueryLayoutInfoEvent::GetAlignment

void GetAlignment() const

Specifies the alignment of the window (which side of the remaining parent client area the
window sticks to). One of wxLAYOUT_TOP, wxLAYOUT_LEFT, wxLAYOUT_RIGHT,
wxLAYOUT_BOTTOM.

wxQueryLayoutInfoEvent::GetFlags

int GetFlags() const

Returns the flags associated with this event. Not currently used.

wxQueryLayoutInfoEvent::GetOrientation

wxLayoutOrientation GetOrientation() const

Returns the orientation that the event handler specified to the event object. May be one
of wxLAYOUT_HORIZONTAL, wxLAYOUT_VERTICAL.

wxQueryLayoutInfoEvent::GetRequestedLength

int GetRequestedLength() const

CHAPTER 4

628

Returns the requested length of the window in the direction of the window orientation.
This information is not yet used.

wxQueryLayoutInfoEvent::GetSize

wxSize GetSize() const

Returns the size that the event handler specified to the event object as being the
requested size of the window.

wxQueryLayoutInfoEvent::SetAlignment

void SetAlignment(wxLayoutAlignment alignment)

Call this to specify the alignment of the window (which side of the remaining parent client
area the window sticks to). May be one of wxLAYOUT_TOP, wxLAYOUT_LEFT,
wxLAYOUT_RIGHT, wxLAYOUT_BOTTOM.

wxQueryLayoutInfoEvent::SetFlags

void SetFlags(int flags)

Sets the flags associated with this event. Not currently used.

wxQueryLayoutInfoEvent::SetOrientation

void SetOrientation(wxLayoutOrientation orientation)

Call this to specify the orientation of the window. May be one of
wxLAYOUT_HORIZONTAL, wxLAYOUT_VERTICAL.

wxQueryLayoutInfoEvent::SetRequestedLength

void SetRequestedLength(int length)

Sets the requested length of the window in the direction of the window orientation. This
information is not yet used.

wxQueryLayoutInfoEvent::SetSize

void SetSize(const wxSize& size)

Call this to let the calling code know what the size of the window is.

CHAPTER 4

629

wxRadioBox

A radio box item is used to select one of number of mutually exclusive choices. It is
displayed as a vertical column or horizontal row of labelled buttons.

Derived from

wxControl (p. 130)
wxWindow (p. 915)
wxEvtHandler (p. 240)
wxObject (p. 555)

Include files

<wx/radiobox.h>

Window styles

wxRA_SPECIFY_ROWS The major dimension parameter refers to the maximum
number of rows.

wxRA_SPECIFY_COLS The major dimension parameter refers to the maximum
number of columns.

See also window styles overview (p. 1093).

Event handling

EVT_RADIOBOX(id, func) Process a
wxEVT_COMMAND_RADIOBOX_SELECTED
event, when a radiobutton is clicked.

See also

Event handling overview (p. 1072), wxRadioButton (p. 634), wxCheckBox (p. 74)

wxRadioBox::wxRadioBox

 wxRadioBox()

Default constructor.

 wxRadioBox(wxWindow* parent, wxWindowID id, const wxString& label, const
wxPoint& point = wxDefaultPosition, const wxSize& size = wxDefaultSize, int n = 0,
const wxString choices[] = NULL, int majorDimension = 0, long style =
wxRA_SPECIFY_COLS, const wxValidator& validator = wxDefaultValidator, const
wxString& name = "radioBox")

CHAPTER 4

630

Constructor, creating and showing a radiobox.

Parameters

parent
Parent window. Must not be NULL.

id
Window identifier. A value of -1 indicates a default value.

label
Label for the static box surrounding the radio buttons.

pos
Window position. If the position (-1, -1) is specified then a default position is
chosen.

size
Window size. If the default size (-1, -1) is specified then a default size is chosen.

n
Number of choices with which to initialize the radiobox.

choices
An array of choices with which to initialize the radiobox.

majorDimension
Specifies the maximum number of rows (if style contains wxRA_SPECIFY_ROWS)
or columns (if style contains wxRA_SPECIFY_COLS) for a two-dimensional
radiobox.

style
Window style. See wxRadioBox (p. 629).

validator
Window validator.

name
Window name.

See also

wxRadioBox::Create (p. 631), wxValidator (p. 897)

wxPython note: The wxRadioBox constructor in wxPython reduces the nand choices
arguments are to a single argument, which is a list of strings.

wxRadioBox::~wxRadioBox

CHAPTER 4

631

 ~wxRadioBox()

Destructor, destroying the radiobox item.

wxRadioBox::Create

bool Create(wxWindow* parent, wxWindowID id, const wxString& label, const
wxPoint& point = wxDefaultPosition, const wxSize& size = wxDefaultSize, int n = 0,
const wxString choices[] = NULL, int majorDimension = 0, long style =
wxRA_SPECIFY_COLS, const wxValidator& validator = wxDefaultValidator, const
wxString& name = "radioBox")

Creates the radiobox for two-step construction. See wxRadioBox::wxRadioBox (p. 629)
for further details.

wxRadioBox::Enable

void Enable(const bool enable)

Enables or disables the entire radiobox.

void Enable(int n, const bool enable)

Enables or disables an individual button in the radiobox.

Parameters

enable
TRUE to enable, FALSE to disable.

n
The zero-based button to enable or disable.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

Enable(flag) Enables or disables the entire
radiobox.

EnableItem(n, flag) Enables or disables an individual
button in the radiobox.

wxRadioBox::FindString

int FindString(const wxString& string) const

Finds a button matching the given string, returning the position if found, or -1 if not

CHAPTER 4

632

found.

Parameters

string
The string to find.

wxRadioBox::GetLabel

wxString GetLabel() const

Returns the radiobox label.

wxString GetLabel(int n) const

Returns the label for the given button.

Parameters

n
The zero-based button index.

See also

wxRadioBox::SetLabel (p. 633)

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

GetLabel() Returns the radiobox label.
GetItemLabel(n) Returns the label for the given

button.

wxRadioBox::GetSelection

int GetSelection() const

Returns the zero-based position of the selected button.

wxRadioBox::GetStringSelection

wxString GetStringSelection() const

Returns the selected string.

CHAPTER 4

633

wxRadioBox::Number

int Number() const

Returns the number of buttons in the radiobox.

wxRadioBox::SetLabel

void SetLabel(const wxString& label)

Sets the radiobox label.

void SetLabel(int n, const wxString& label)

Sets a label for a radio button.

Parameters

label
The label to set.

n
The zero-based button index.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

SetLabel(string) Sets the radiobox label.
SetItemLabel(n, string) Sets a label for a radio button.

wxRadioBox::SetSelection

void SetSelection(int n)

Sets a button by passing the desired string position. This does not cause a
wxEVT_COMMAND_RADIOBOX_SELECTED event to get emitted.

Parameters

n
The zero-based button position.

wxRadioBox::SetStringSelection

void SetStringSelection(const wxString& string)

CHAPTER 4

634

Sets the selection to a button by passing the desired string. This does not cause a
wxEVT_COMMAND_RADIOBOX_SELECTED event to get emitted.

Parameters

string
The label of the button to select.

wxRadioBox::Show

void Show(const bool show)

Shows or hides the entire radiobox.

void Show(int item, const bool show)

Shows or hides individual buttons.

Parameters

show
TRUE to show, FALSE to hide.

item
The zero-based position of the button to show or hide.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

Show(flag) Shows or hides the entire radiobox.
ShowItem(n, flag) Shows or hides individual buttons.

wxRadioBox::GetString

wxString GetString(int n) const

Returns the label for the button at the given position.

Parameters

n
The zero-based button position.

wxRadioButton

A radio button item is a button which usually denotes one of several mutually exclusive
options. It has a text label next to a (usually) round button.

CHAPTER 4

635

Derived from

wxControl (p. 130)
wxWindow (p. 915)
wxEvtHandler (p. 240)
wxObject (p. 555)

Include files

<wx/radiobut.h>

Window styles

wxRB_GROUP Marks the beginning of a new group of radio buttons.

See also window styles overview (p. 1093).

Event handling

EVT_RADIOBUTTON(id, func) Process a
wxEVT_COMMAND_RADIOBUTTON_SELEC
TED event, when the radiobutton is clicked.

See also

Event handling overview (p. 1072), wxRadioBox (p. 629), wxCheckBox (p. 74)

wxRadioButton::wxRadioButton

 wxRadioButton()

Default constructor.

 wxRadioButton(wxWindow* parent, wxWindowID id, const wxString& label, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
0, const wxValidator& validator = wxDefaultValidator, const wxString& name =
"radioButton")

Constructor, creating and showing a radio button.

Parameters

parent
Parent window. Must not be NULL.

CHAPTER 4

636

id
Window identifier. A value of -1 indicates a default value.

label
Label for the radio button.

pos
Window position. If the position (-1, -1) is specified then a default position is
chosen.

size
Window size. If the default size (-1, -1) is specified then a default size is chosen.

style
Window style. See wxRadioButton (p. 634).

validator
Window validator.

name
Window name.

See also

wxRadioButton::Create (p. 636), wxValidator (p. 897)

wxRadioButton::~wxRadioButton

void ~wxRadioButton()

Destructor, destroying the radio button item.

wxRadioButton::Create

bool Create(wxWindow* parent, wxWindowID id, const wxString& label, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
0, const wxValidator& validator = wxDefaultValidator, const wxString& name =
"radioButton")

Creates the choice for two-step construction. See wxRadioButton::wxRadioButton (p.
635) for further details.

wxRadioButton::GetValue

bool GetValue() const

Returns TRUE if the radio button is depressed, FALSE otherwise.

CHAPTER 4

637

wxRadioButton::SetValue

void SetValue(const bool value)

Sets the radio button to selected or deselected status. This does not cause a
wxEVT_COMMAND_RADIOBUTTON_SELECTED event to get emitted.

Parameters

value
TRUE to select, FALSE to deselect.

wxRealPoint

A wxRealPoint is a useful data structure for graphics operations. It contains floating
point point x and y members. See also wxPoint (p. 586) for an integer version.

Derived from

None

Include files

<wx/gdicmn.h>

See also

wxPoint (p. 586)

wxRealPoint::wxRealPoint

 wxRealPoint()

 wxRealPoint(double x, double y)

Create a point.

double x

double y

Members of the wxRealPoint object.

wxRect

CHAPTER 4

638

A class for manipulating rectangles.

Derived from

None

Include files

<wx/gdicmn.h>

See also

wxPoint (p. 586), wxSize (p. 689)

wxRect::wxRect

 wxRect()

Default constructor.

 wxRect(int x, int y, int width, int height)

Creates a wxRect object from x, y, width and height values.

 wxRect(const wxPoint& topLeft, const wxPoint& bottomRight)

Creates a wxRect object from top-left and bottom-right points.

 wxRect(const wxPoint& pos, const wxSize& size)

Creates a wxRect object from position and size values.

wxRect::x

int x

x member.

wxRect::y

int y

y member.

CHAPTER 4

639

wxRect::width

int width

Width member.

wxRect::height

int height

Height member.

wxRect::GetBottom

int GetBottom() const

Gets the bottom point of the rectangle.

wxRect::GetHeight

int GetHeight() const

Gets the height member.

wxRect::GetLeft

int GetLeft() const

Gets the left point of the rectangle (the same as wxRect::GetX (p. 640)).

wxRect::GetPosition

wxPoint GetPosition() const

Gets the position.

wxRect::GetRight

int GetRight() const

Gets the right point of the rectangle.

wxRect::GetSize

CHAPTER 4

640

wxSize GetSize() const

Gets the size.

wxRect::GetTop

int GetTop() const

Gets the top point of the rectangle (the same as wxRect::GetY (p. 640)).

wxRect::GetWidth

int GetWidth() const

Gets the width member.

wxRect::GetX

int GetX() const

Gets the x member.

wxRect::GetY

int GetY() const

Gets the y member.

wxRect::SetHeight

void SetHeight(int height)

Sets the height.

wxRect::SetWidth

void SetWidth(int width)

Sets the width.

wxRect::SetX

CHAPTER 4

641

void SetX(int x)

Sets the x position.

wxRect::SetY

void SetY(int y)

Sets the y position.

wxRect::operator =

void operator =(const wxRect& rect)

Assignment operator.

wxRect::operator ==

bool operator ==(const wxRect& rect)

Equality operator.

wxRect::operator !=

bool operator !=(const wxRect& rect)

Inequality operator.

wxRecordSet

Each wxRecordSet represents an ODBC database query. You can make multiple
queries at a time by using multiple wxRecordSets with a wxDatabase or you can make
your queries in sequential order using the same wxRecordSet.

Derived from

wxObject (p. 555)

Include files

<wx/odbc.h>

See also

wxRecordSet overview (p. 1057), wxDatabase overview (p. 1056)

CHAPTER 4

642

wxRecordSet::wxRecordSet

 wxRecordSet(wxDatabase *db, int type = wxOPEN_TYPE_DYNASET, int opt =
wxOPTION_DEFAULT)

Constructor. db is a pointer to the wxDatabase instance you wish to use the
wxRecordSet with. Currently there are two possible values of type:

• wxOPEN_TYPE_DYNASET: Loads only one record at a time into memory. The
other data of the result set will be loaded dynamically when moving the cursor.
This is the default type.

• wxOPEN_TYPE_SNAPSHOT: Loads all records of a result set at once. This will
need much more memory, but will result in faster access to the ODBC data.

The option parameter is not used yet.

The constructor appends the wxRecordSet object to the parent database's list of
wxRecordSet objects, for later destruction when the wxDatabase is destroyed.

wxRecordSet::~wxRecordSet

 ~wxRecordSet()

Destructor. All data except that stored in user-defined variables will be lost. It also
unlinks the wxRecordSet object from the parent database's list of wxRecordSet objects.
wxRecordSet::AddNew

void AddNew()

Not implemented.

wxRecordSet::BeginQuery

bool BeginQuery(int openType, const wxString& sql = NULL, int options =
wxOPTION_DEFAULT)

Not implemented.

wxRecordSet::BindVar

void * BindVar(int col, void *buf, long size)

Binds a user-defined variable to the column col. Whenever the current field's data
changes, it will be copied into buf (maximum size bytes).

CHAPTER 4

643

void * BindVar(const wxString& col, void *buf, long size)

The same as above, but uses the column name as the identifier.

wxRecordSet::CanAppend

bool CanAppend()

Not implemented.

wxRecordSet::Cancel

void Cancel()

Not implemented.

wxRecordSet::CanRestart

bool CanRestart()

Not implemented.

wxRecordSet::CanScroll

bool CanScroll()

Not implemented.

wxRecordSet::CanTransact

bool CanTransact()

Not implemented.

wxRecordSet::CanUpdate

bool CanUpdate()

Not implemented.

wxRecordSet::ConstructDefaultSQL

CHAPTER 4

644

bool ConstructDefaultSQL()

Not implemented.

wxRecordSet::Delete

bool Delete()

Deletes the current record. Not implemented.

wxRecordSet::Edit

void Edit()

Not implemented.

wxRecordSet::EndQuery

bool EndQuery()

Not implemented.

wxRecordSet::ExecuteSQL

bool ExecuteSQL(const wxString& sql)

Directly executes a SQL statement. The data will be presented as a normal result set.
Note that the recordset must have been created as a snapshot, not dynaset. Dynasets
will be implemented in the near future.

Examples of common SQL statements are given in A selection of SQL commands (p.
1057).

wxRecordSet::FillVars

void FillVars(int recnum)

Fills in the user-defined variables of the columns. You can set these variables with
wxQueryCol::BindVar. This function will be automatically called after every successful
database operation.

wxRecordSet::GetColName

wxString GetColName(int col)

CHAPTER 4

645

Returns the name of the column at position col. Returns NULL if col does not exist.

wxRecordSet::GetColType

short GetColType(int col)

Returns the data type of the column at position col. Returns SQL_TYPE_NULL if col
does not exist.

short GetColType(const wxString& name)

The same as above, but uses the column name as the identifier.

See ODBC SQL data types (p. 1057) for a list of possible data types.

wxRecordSet::GetColumns

bool GetColumns(const wxString& table = NULL)

Returns the columns of the table with the specified name. If no name is given the class
member tablename will be used. If both names are NULL nothing will happen. The data
will be presented as a normal result set, organized as follows:

0 (VARCHAR) TABLE_QUALIFIER
1 (VARCHAR) TABLE_OWNER
2 (VARCHAR) TABLE_NAME
3 (VARCHAR) COLUMN_NAME
4 (SMALLINT) DATA_TYPE
5 (VARCHAR) TYPE_NAME
6 (INTEGER) PRECISION
7 (INTEGER) LENGTH
8 (SMALLINT) SCALE
9 (SMALLINT) RADIX
10 (SMALLINT) NULLABLE
11 (VARCHAR) REMARKS

wxRecordSet::GetCurrentRecord

long GetCurrentRecord()

Not implemented.

wxRecordSet::GetDatabase

CHAPTER 4

646

wxDatabase * GetDatabase()

Returns the wxDatabase object bound to a wxRecordSet.

wxRecordSet::GetDataSources

bool GetDataSources()

Gets the currently-defined data sources via the ODBC manager. The data will be
presented as a normal result set. See the documentation for the ODBC function
SQLDataSources for how the data is organized.

Example:
 wxDatabase Database;

 wxRecordSet *Record = new wxRecordSet(&Database);

 if (!Record->GetDataSources()) {
 char buf[300];
 sprintf(buf, "%s %s\n", Database.GetErrorClass(),
Database.GetErrorMessage());
 frame->output->SetValue(buf);
 }
 else {
 do {
 frame->DataSource->Append((char*)Record->GetFieldDataPtr(0,
SQL_CHAR));
 } while (Record->MoveNext());
 }

wxRecordSet::GetDefaultConnect

wxString GetDefaultConnect()

Not implemented.

wxRecordSet::GetDefaultSQL

wxString GetDefaultSQL()

Not implemented.

wxRecordSet::GetErrorCode

wxRETCODE GetErrorCode()

Returns the error code of the last ODBC action. This will be one of:

CHAPTER 4

647

SQL_ERROR General error.
SQL_INVALID_HANDLE An invalid handle was passed to an ODBC

function.
SQL_NEED_DATA ODBC expected some data.
SQL_NO_DATA_FOUND No data was found by this ODBC call.
SQL_SUCCESS The call was successful.
SQL_SUCCESS_WITH_INFO The call was successful, but further information

can be obtained from the ODBC manager.

wxRecordSet::GetFieldData

bool GetFieldData(int col, int dataType, void *dataPtr)

Copies the current data of the column at position col into the buffer dataPtr. To be sure
to get the right type of data, the user has to pass the correct data type. The function
returns FALSE if col does not exist or the wrong data type was given.

bool GetFieldData(const wxString& name, int dataType, void *dataPtr)

The same as above, but uses the column name as the identifier.

See ODBC SQL data types (p. 1057) for a list of possible data types.

wxRecordSet::GetFieldDataPtr

void * GetFieldDataPtr(int col, int dataType)

Returns the current data pointer of the column at position col. To be sure to get the right
type of data, the user has to pass the data type. Returns NULL if col does not exist or if
dataType is incorrect.

void * GetFieldDataPtr(const wxString& name, int dataType)

The same as above, but uses the column name as the identifier.

See ODBC SQL data types (p. 1057) for a list of possible data types.

wxRecordSet::GetFilter

wxString GetFilter()

Returns the current filter.

wxRecordSet::GetForeignKeys

CHAPTER 4

648

bool GetPrimaryKeys(const wxString& ptable = NULL, const wxString& ftable =
NULL)

Returns a list of foreign keys in the specified table (columns in the specified table that
refer to primary keys in other tables), or a list of foreign keys in other tables that refer to
the primary key in the specified table.

If ptable contains a table name, this function returns a result set containing the primary
key of the specified table.

If ftable contains a table name, this functions returns a result set of containing all of the
foreign keys in the specified table and the primary keys (in other tables) to which they
refer.

If both ptable and ftable contain table names, this function returns the foreign keys in the
table specified in ftable that refer to the primary key of the table specified in ptable. This
should be one key at most.

GetForeignKeys returns results as a standard result set. If the foreign keys associated
with a primary key are requested, the result set is ordered by FKTABLE_QUALIFIER,
FKTABLE_OWNER, FKTABLE_NAME, and KEY_SEQ. If the primary keys associated
with a foreign key are requested, the result set is ordered by PKTABLE_QUALIFIER,
PKTABLE_OWNER, PKTABLE_NAME, and KEY_SEQ. The following table lists the
columns in the result set.

0 (VARCHAR) PKTABLE_QUALIFIER
1 (VARCHAR) PKTABLE_OWNER
2 (VARCHAR) PKTABLE_NAME
3 (VARCHAR) PKCOLUMN_NAME
4 (VARCHAR) FKTABLE_QUALIFIER
5 (VARCHAR) FKTABLE_OWNER
6 (VARCHAR) FKTABLE_NAME
7 (VARCHAR) FKCOLUMN_NAME
8 (SMALLINT) KEY_SEQ
9 (SMALLINT) UPDATE_RULE
10 (SMALLINT) DELETE_RULE
11 (VARCHAR) FK_NAME
12 (VARCHAR) PK_NAME

wxRecordSet::GetNumberCols

long GetNumberCols()

Returns the number of columns in the result set.
wxRecordSet::GetNumberFields

int GetNumberFields()

Not implemented.

CHAPTER 4

649

wxRecordSet::GetNumberParams

int GetNumberParams()

Not implemented.

wxRecordSet::GetNumberRecords

long GetNumberRecords()

Returns the number of records in the result set.
wxRecordSet::GetPrimaryKeys

bool GetPrimaryKeys(const wxString& table = NULL)

Returns the column names that comprise the primary key of the table with the specified
name. If no name is given the class member tablename will be used. If both names are
NULL nothing will happen. The data will be presented as a normal result set, organized
as follows:

0 (VARCHAR) TABLE_QUALIFIER
1 (VARCHAR) TABLE_OWNER
2 (VARCHAR) TABLE_NAME
3 (VARCHAR) COLUMN_NAME
4 (SMALLINT) KEY_SEQ
5 (VARCHAR) PK_NAME

wxRecordSet::GetOptions

int GetOptions()

Returns the options of the wxRecordSet. Options are not supported yet.

wxRecordSet::GetResultSet

bool GetResultSet()

Copies the data presented by ODBC into wxRecordSet. Depending on the wxRecordSet
type all or only one record(s) will be copied. Usually this function will be called
automatically after each successful database operation.
wxRecordSet::GetSortString

wxString GetSortString()

CHAPTER 4

650

Not implemented.
wxRecordSet::GetSQL

wxString GetSQL()

Not implemented.

wxRecordSet::GetTableName

wxString GetTableName()

Returns the name of the current table.
wxRecordSet::GetTables

bool GetTables()

Gets the tables of a database. The data will be presented as a normal result set,
organized as follows:

0 (VARCHAR) TABLE_QUALIFIER
1 (VARCHAR) TABLE_OWNER
2 (VARCHAR) TABLE_NAME
3 (VARCHAR) TABLE_TYPE (TABLE, VIEW, SYSTEM

TABLE, GLOBAL TEMPORARY, LOCAL
TEMPORARY, ALIAS, SYNONYM, or
database-specific type)

4 (VARCHAR) REMARKS

wxRecordSet::GetType

int GetType()

Returns the type of the wxRecordSet: wxOPEN_TYPE_DYNASET or
wxOPEN_TYPE_SNAPSHOT. See the wxRecordSet description for details.

wxRecordSet::GoTo

bool GoTo(long n)

Moves the cursor to the record with the number n, where the first record has the number
0.
wxRecordSet::IsBOF

bool IsBOF()

Returns TRUE if the user tried to move the cursor before the first record in the set.

CHAPTER 4

651

wxRecordSet::IsFieldDirty

bool IsFieldDirty(int field)

Returns TRUE if the given field has been changed but not saved yet.

bool IsFieldDirty(const wxString& name)

Same as above, but uses the column name as the identifier.

wxRecordSet::IsFieldNull

bool IsFieldNull(int field)

Returns TRUE if the given field has no data.

bool IsFieldNull(const wxString& name)

Same as above, but uses the column name as the identifier.

wxRecordSet::IsColNullable

bool IsColNullable(int col)

Returns TRUE if the given column may contain no data.

bool IsColNullable(const wxString& name)

Same as above, but uses the column name as the identifier.

wxRecordSet::IsEOF

bool IsEOF()

Returns TRUE if the user tried to move the cursor behind the last record in the set.

wxRecordSet::IsDeleted

bool IsDeleted()

Not implemented.
wxRecordSet::IsOpen

bool IsOpen()

CHAPTER 4

652

Returns TRUE if the parent database is open.

wxRecordSet::Move

bool Move(long rows)

Moves the cursor a given number of rows. Negative values are allowed.
wxRecordSet::MoveFirst

bool MoveFirst()

Moves the cursor to the first record.
wxRecordSet::MoveLast

bool MoveLast()

Moves the cursor to the last record.
wxRecordSet::MoveNext

bool MoveNext()

Moves the cursor to the next record.
wxRecordSet::MovePrev

bool MovePrev()

Moves the cursor to the previous record.
wxRecordSet::Query

bool Query(const wxString& columns, const wxString& table, const wxString& filter
= NULL)

Start a query. An SQL string of the following type will automatically be generated and
executed: "SELECT columns FROM table WHERE filter".

wxRecordSet::RecordCountFinal

bool RecordCountFinal()

Not implemented.
wxRecordSet::Requery

bool Requery()

Re-executes the last query. Not implemented.

CHAPTER 4

653

wxRecordSet::SetFieldDirty

void SetFieldDirty(int field, bool dirty = TRUE)

Sets the dirty tag of the field field. Not implemented.

void SetFieldDirty(const wxString& name, bool dirty = TRUE)

Same as above, but uses the column name as the identifier.

wxRecordSet::SetDefaultSQL

void SetDefaultSQL(const wxString& s)

Not implemented.

wxRecordSet::SetFieldNull

void SetFieldNull(void *p, bool isNull = TRUE)

Not implemented.

wxRecordSet::SetOptions

void SetOptions(int opt)

Sets the options of the wxRecordSet. Not implemented.
wxRecordSet::SetTableName

void SetTableName(const wxString& tablename)

Specify the name of the table you want to use.
wxRecordSet::SetType

void SetType(int type)

Sets the type of the wxRecordSet. See the wxRecordSet class description for details.

wxRecordSet::Update

bool Update()

Writes back the current record. Not implemented.

wxRegion

CHAPTER 4

654

A wxRegion represents a simple or complex region on a device context or window. It
uses reference counting, so copying and assignment operations are fast.

Derived from

wxGDIObject (p. 321)
wxObject (p. 555)

Include files

<wx/region.h>

See also

wxRegionIterator (p. 658)

wxRegion::wxRegion

 wxRegion()

Default constructor.

 wxRegion(long x, long y, long width, long height)

Constructs a rectangular region with the given position and size.

 wxRegion(const wxPoint& topLeft, const wxPoint& bottomRight)

Constructs a rectangular region from the top left point and the bottom right point.

 wxRegion(const wxRect& rect)

Constructs a rectangular region a wxRect object.

 wxRegion(const wxRegion& region)

Constructs a region by copying another region.

wxRegion::~wxRegion

 ~wxRegion()

Destructor.

wxRegion::Clear

CHAPTER 4

655

void Clear()

Clears the current region.

wxRegion::Contains

wxRegionContain Contains(long& x, long& y) const

Returns a value indicating whether the given point is contained within the region.

wxRegionContain Contains(const wxPoint& pt) const

Returns a value indicating whether the given point is contained within the region.

wxRegionContain Contains(long& x, long& y, long& width, long& height) const

Returns a value indicating whether the given rectangle is contained within the region.

wxRegionContain Contains(const wxRect& rect) const

Returns a value indicating whether the given rectangle is contained within the region.

Return value

The return value is one of wxOutRegion, wxPartRegion and wxInRegion.

On Windows, only wxOutRegion and wxInRegion are returned; a value wxInRegion then
indicates that all or some part of the region is contained in this region.

wxRegion::GetBox

void GetBox(long& x, long& y, long& width, long& height) const

Returns the outer bounds of the region.

wxRect GetBox() const

Returns the outer bounds of the region.

wxRegion::Intersect

bool Intersect(long x, long y, long width, long height)

Finds the intersection of this region and another, rectangular region, specified using
position and size.

CHAPTER 4

656

bool Intersect(const wxRect& rect)

Finds the intersection of this region and another, rectangular region.

bool Intersect(const wxRegion& region)

Finds the intersection of this region and another region.

Return value

TRUE if successful, FALSE otherwise.

Remarks

Creates the intersection of the two regions, that is, the parts which are in both regions.
The result is stored in this region.

wxRegion::IsEmpty

bool IsEmpty() const

Returns TRUE if the region is empty, FALSE otherwise.

wxRegion::Subtract

bool Subtract(const wxRect& rect)

Subtracts a rectangular region from this region.

bool Subtract(const wxRegion& region)

Subtracts a region from this region.

Return value

TRUE if successful, FALSE otherwise.

Remarks

This operation combines the parts of 'this' region that are not part of the second region.
The result is stored in this region.

wxRegion::Union

bool Union(long x, long y, long width, long height)

Finds the union of this region and another, rectangular region, specified using position

CHAPTER 4

657

and size.

bool Union(const wxRect& rect)

Finds the union of this region and another, rectangular region.

bool Union(const wxRegion& region)

Finds the union of this region and another region.

Return value

TRUE if successful, FALSE otherwise.

Remarks

This operation creates a region that combines all of this region and the second region.
The result is stored in this region.

wxRegion::Xor

bool Xor(long x, long y, long width, long height)

Finds the Xor of this region and another, rectangular region, specified using position and
size.

bool Xor(const wxRect& rect)

Finds the Xor of this region and another, rectangular region.

bool Xor(const wxRegion& region)

Finds the Xor of this region and another region.

Return value

TRUE if successful, FALSE otherwise.

Remarks

This operation creates a region that combines all of this region and the second region,
except for any overlapping areas. The result is stored in this region.

wxRegion::operator =

void operator =(const wxRegion& region)

Copies region by reference counting.

CHAPTER 4

658

wxRegionIterator

This class is used to iterate through the rectangles in a region, typically when examining
the damaged regions of a window within an OnPaint call.

To use it, construct an iterator object on the stack and loop through the regions, testing
the object and incrementing the iterator at the end of the loop.

See wxWindow::OnPaint (p. 943) for an example of use.

Derived from

wxObject (p. 555)

Include files

<wx/region.h>

See also

wxWindow::OnPaint (p. 943)

wxRegionIterator::wxRegionIterator

 wxRegionIterator()

Default constructor.

 wxRegionIterator(const wxRegion& region)

Creates an iterator object given a region.

wxRegionIterator::GetX

long GetX() const

Returns the x value for the current region.

wxRegionIterator::GetY

long GetY() const

Returns the y value for the current region.

CHAPTER 4

659

wxRegionIterator::GetW

long GetW() const

An alias for GetWidth.

wxRegionIterator::GetWidth

long GetWidth() const

Returns the width value for the current region.

wxRegionIterator::GetH

long GetH() const

An alias for GetHeight.

wxRegionIterator::GetHeight

long GetWidth() const

Returns the width value for the current region.

wxRegionIterator::GetRect

wxRect GetRect() const

Returns the current rectangle.

wxRegionIterator::HaveRects

bool HaveRects() const

Returns TRUE if there are still some rectangles; otherwise returns FALSE.

wxRegionIterator::Reset

void Reset()

Resets the iterator to the beginning of the rectangles.

void Reset(const wxRegion& region)

CHAPTER 4

660

Resets the iterator to the given region.

wxRegionIterator::operator ++

void operator ++()

Increment operator. Increments the iterator to the next region.

wxPython note: A wxPython alias for this operator is called Next.

wxRegionIterator::operator bool

 operator bool() const

Returns TRUE if there are still some rectangles; otherwise returns FALSE.

You can use this to test the iterator object as if it were of type bool.

wxSashEvent

A sash event is sent when the sash of a wxSashWindow (p. 665) has been dragged by
the user.

Derived from

wxCommandEvent (p. 108)
wxEvent (p. 237)
wxObject (p. 555)

Include files

<wx/sashwin.h>

Event table macros

To process an activate event, use these event handler macros to direct input to a
member function that takes a wxSashEvent argument.

EVT_SASH_DRAGGED(id, func) Process a wxEVT_SASH_DRAGGED event,
when the user has finished dragging a sash.

EVT_SASH_DRAGGED_RANGE(id1, id2, func) Process a
wxEVT_SASH_DRAGGED_RANGE event,
when the user has finished dragging a sash.
The event handler is called when windows with
ids in the given range have their sashes
dragged.

CHAPTER 4

661

Data structures

enum wxSashDragStatus
{
 wxSASH_STATUS_OK,
 wxSASH_STATUS_OUT_OF_RANGE
};

Remarks

When a sash belonging to a sash window is dragged by the user, and then released, this
event is sent to the window, where it may be processed by an event table entry in a
derived class, a plug-in event handler or an ancestor class.

Note that the wxSashWindow doesn't change the window's size itself. It relies on the
application's event handler to do that. This is because the application may have to
handle other consequences of the resize, or it may wish to veto it altogether. The event
handler should look at the drag rectangle: see wxSashEvent::GetDragRect (p. 661) to
see what the new size of the window would be if the resize were to be applied. It should
also call wxSashEvent::GetDragStatus (p. 662) to see whether the drag was OK or out
of the current allowed range.

See also

wxSashWindow (p. 665), Event handling overview (p. 1072)

wxSashEvent::wxSashEvent

 wxSashEvent(int id = 0, wxSashEdgePosition edge = wxSASH_NONE)

Constructor.

wxSashEvent::GetEdge

wxSashEdgePosition GetEdge() const

Returns the dragged edge. The return value is one of wxSASH_TOP, wxSASH_RIGHT,
wxSASH_BOTTOM, wxSASH_LEFT.

wxSashEvent::GetDragRect

wxRect GetDragRect() const

CHAPTER 4

662

Returns the rectangle representing the new size the window would be if the resize was
applied. It is up to the application to set the window size if required.

wxSashEvent::GetDragStatus

wxSashDragStatus GetDragStatus() const

Returns the status of the sash: one of wxSASH_STATUS_OK,
wxSASH_STATUS_OUT_OF_RANGE. If the drag caused the notional bounding box of
the window to flip over, for example, the drag will be out of rage.

wxSashLayoutWindow

wxSashLayoutWindow responds to OnCalculateLayout events generated by
wxLayoutAlgorithm (p. 441). It allows the application to use simple accessors to specify
how the window should be laid out, rather than having to respond to events. The fact
that the class derives from wxSashWindow allows sashes to be used if required, to allow
the windows to be user-resizable.

The documentation for wxLayoutAlgorithm (p. 441) explains the purpose of this class in
more detail.

Derived from

wxSashWindow (p. 665)
wxWindow (p. 915)
wxEvtHandler (p. 240)
wxObject (p. 555)

Include files

<wx/laywin.h>

Window styles

See wxSashWindow (p. 665).

Event handling

This class handles the EVT_QUERY_LAYOUT_INFO and EVT_CALCULATE_LAYOUT
events for you. However, if you use sashes, see wxSashWindow (p. 665) for relevant
event information.

See also wxLayoutAlgorithm (p. 441) for information about the layout events.

See also

wxLayoutAlgorithm (p. 441), wxSashWindow (p. 665), Event handling overview (p. 1072)

CHAPTER 4

663

wxSashLayoutWindow::wxSashLayoutWindow

 wxSashLayoutWindow()

Default constructor.

 wxSashLayoutWindow(wxSashLayoutWindow* parent, wxSashLayoutWindowID
id, const wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize,
long style = wxCLIP_CHILDREN | wxSW_3D, const wxString& name =
"layoutWindow")

Constructs a sash layout window, which can be a child of a frame, dialog or any other
non-control window.

Parameters

parent
Pointer to a parent window.

id
Window identifier. If -1, will automatically create an identifier.

pos
Window position. wxDefaultPosition is (-1, -1) which indicates that
wxSashLayoutWindows should generate a default position for the window. If using
the wxSashLayoutWindow class directly, supply an actual position.

size
Window size. wxDefaultSize is (-1, -1) which indicates that wxSashLayoutWindows
should generate a default size for the window.

style
Window style. For window styles, please see wxSashLayoutWindow (p. 662).

name
Window name.

wxSashLayoutWindow::~wxSashLayoutWindow

 ~wxSashLayoutWindow()

Destructor.

wxSashLayoutWindow::GetAlignment

wxLayoutAlignment GetAlignment() const

CHAPTER 4

664

Returns the alignment of the window: one of wxLAYOUT_TOP, wxLAYOUT_LEFT,
wxLAYOUT_RIGHT, wxLAYOUT_BOTTOM.

wxSashLayoutWindow::GetOrientation

wxLayoutOrientation GetOrientation() const

Returns the orientation of the window: one of wxLAYOUT_HORIZONTAL,
wxLAYOUT_VERTICAL.

wxSashLayoutWindow::OnCalculateLayout

void OnCalculateLayout(wxCalculateLayoutEvent& event)

The default handler for the event that is generated by wxLayoutAlgorithm. The
implementation of this function calls wxCalculateLayoutEvent::SetRect to shrink the
provided size according to how much space this window takes up. For further details,
see wxLayoutAlgorithm (p. 441) and wxCalculateLayoutEvent (p. 73).

wxSashLayoutWindow::OnQueryLayoutInfo

void OnQueryLayoutInfo(wxQueryLayoutInfoEvent& event)

The default handler for the event that is generated by OnCalculateLayout to get size,
alignment and orientation information for the window. The implementation of this function
uses member variables as set by accessors called by the application. For further details,
see wxLayoutAlgorithm (p. 441) and wxQueryLayoutInfoEvent (p. 626).

wxSashLayoutWindow::SetAlignment

void SetAlignment(wxLayoutAlignment alignment)

Sets the alignment of the window (which edge of the available parent client area the
window is attached to). alignment is one of wxLAYOUT_TOP, wxLAYOUT_LEFT,
wxLAYOUT_RIGHT, wxLAYOUT_BOTTOM.

wxSashLayoutWindow::SetDefaultSize

void SetDefaultSize(const wxSize& size)

Sets the default dimensions of the window. The dimension other than the orientation will
be fixed to this value, and the orientation dimension will be ignored and the window
stretched to fit the available space.

CHAPTER 4

665

wxSashLayoutWindow::SetOrientation

void SetOrientation(wxLayoutOrientation orientation)

Sets the orientation of the window (the direction the window will stretch in, to fill the
available parent client area). orientation is one of wxLAYOUT_HORIZONTAL,
wxLAYOUT_VERTICAL.

wxSashWindow

wxSashWindow allows any of its edges to have a sash which can be dragged to resize
the window. The actual content window will be created by the application as a child of
wxSashWindow. The window (or an ancestor) will be notified of a drag via a
wxSashEvent (p. 660) notification.

Derived from

wxWindow (p. 915)
wxEvtHandler (p. 240)
wxObject (p. 555)

Include files

<wx/sashwin.h>

Window styles

The following styles apply in addition to the normal wxWindow styles.

wxSW_3D Draws the sashes in 3D.

See also window styles overview (p. 1093).

Event handling

EVT_SASH_DRAGGED(id, func) Process a wxEVT_SASH_DRAGGED event,
when the user has finished dragging a sash.

EVT_SASH_DRAGGED_RANGE(id1, id2, func) Process a
wxEVT_SASH_DRAGGED_RANGE event,
when the user has finished dragging a sash.
The event handler is called when windows with
ids in the given range have their sashes
dragged.

Data types

enum wxSashEdgePosition {

CHAPTER 4

666

 wxSASH_TOP = 0,
 wxSASH_RIGHT,
 wxSASH_BOTTOM,
 wxSASH_LEFT,
 wxSASH_NONE = 100
};

See also

wxSashEvent (p. 660), wxSashLayoutWindow (p. 662), Event handling overview (p.
1072)

wxSashWindow::wxSashWindow

 wxSashWindow()

Default constructor.

 wxSashWindow(wxSashWindow* parent, wxSashWindowID id, const wxPoint&
pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxCLIP_CHILDREN | wxSW_3D, const wxString& name = "sashWindow")

Constructs a sash window, which can be a child of a frame, dialog or any other non-
control window.

Parameters

parent
Pointer to a parent window.

id
Window identifier. If -1, will automatically create an identifier.

pos
Window position. wxDefaultPosition is (-1, -1) which indicates that
wxSashWindows should generate a default position for the window. If using the
wxSashWindow class directly, supply an actual position.

size
Window size. wxDefaultSize is (-1, -1) which indicates that wxSashWindows
should generate a default size for the window.

style
Window style. For window styles, please see wxSashWindow (p. 665).

name

CHAPTER 4

667

Window name.

wxSashWindow::~wxSashWindow

 ~wxSashWindow()

Destructor.

wxSashWindow::GetSashVisible

bool GetSashVisible(wxSashEdgePosition edge) const

Returns TRUE if a sash is visible on the given edge, FALSE otherwise.

Parameters

edge
Edge. One of wxSASH_TOP, wxSASH_RIGHT, wxSASH_BOTTOM,
wxSASH_LEFT.

See also

wxSashWindow::SetSashVisible (p. 669)

wxSashWindow::GetMaximumSizeX

int GetMaximumSizeX() const

Gets the maximum window size in the x direction.

wxSashWindow::GetMaximumSizeY

int GetMaximumSizeY() const

Gets the maximum window size in the y direction.

wxSashWindow::GetMinimumSizeX

int GetMinimumSizeX()

Gets the minimum window size in the x direction.

wxSashWindow::GetMinimumSizeY

CHAPTER 4

668

int GetMinimumSizeY(int min) const

Gets the minimum window size in the y direction.

wxSashWindow::HasBorder

bool HasBorder(wxSashEdgePosition edge) const

Returns TRUE if the sash has a border, FALSE otherwise.

Parameters

edge
Edge. One of wxSASH_TOP, wxSASH_RIGHT, wxSASH_BOTTOM,
wxSASH_LEFT.

See also

wxSashWindow::SetSashBorder (p. 669)

wxSashWindow::SetMaximumSizeX

void SetMaximumSizeX(int min)

Sets the maximum window size in the x direction.

wxSashWindow::SetMaximumSizeY

void SetMaximumSizeY(int min)

Sets the maximum window size in the y direction.

wxSashWindow::SetMinimumSizeX

void SetMinimumSizeX(int min)

Sets the minimum window size in the x direction.

wxSashWindow::SetMinimumSizeY

void SetMinimumSizeY(int min)

Sets the minimum window size in the y direction.

CHAPTER 4

669

wxSashWindow::SetSashVisible

void SetSashVisible(wxSashEdgePosition edge, bool visible)

Call this function to make a sash visible or invisible on a particular edge.

Parameters

edge
Edge to change. One of wxSASH_TOP, wxSASH_RIGHT, wxSASH_BOTTOM,
wxSASH_LEFT.

visible
TRUE to make the sash visible, FALSE to make it invisible.

See also

wxSashWindow::GetSashVisible (p. 667)

wxSashWindow::SetSashBorder

void SetSashBorder(wxSashEdgePosition edge, bool hasBorder)

Call this function to give the sash a border, or remove the border.

Parameters

edge
Edge to change. One of wxSASH_TOP, wxSASH_RIGHT, wxSASH_BOTTOM,
wxSASH_LEFT.

hasBorder
TRUE to give the sash a border visible, FALSE to remove it.

See also

wxSashWindow::HashBorder (p. 668)

wxStaticBoxSizer

wxStaticBoxSizer is a sizer derived from wxBoxSizer but adds a static box around the
sizer. Note that this static box has to be created separately.

See also wxSizer (p. 692), wxStaticBox (p. 743) and wxBoxSizer (p. 58).

Derived from

wxBoxSizer (p. 58)
wxSizer (p. 692)

CHAPTER 4

670

wxObject (p. 555)

wxStaticBoxSizer::wxStaticBoxSizer

 wxStaticBoxSizer(wxStaticBox* box, int orient)

Constructor. It takes an associated static box and the orientation orientas parameters -
orient can be either of wxVERTICAL or wxHORIZONTAL.

wxStaticBoxSizer::GetStaticBox

wxStaticBox* GetStaticBox()

Returns the static box associated with the sizer.

wxScreenDC

A wxScreenDC can be used to paint on the screen. This should normally be constructed
as a temporary stack object; don't store a wxScreenDC object.

Derived from

wxDC (p. 165)

Include files

<wx/dcscreen.h>

See also

wxDC (p. 165), wxMemoryDC (p. 496), wxPaintDC (p. 567), wxClientDC (p. 86),
wxWindowDC (p. 961)

wxScreenDC::wxScreenDC

 wxScreenDC()

Constructor.

wxScreenDC::StartDrawingOnTop

bool StartDrawingOnTop(wxWindow* window)

CHAPTER 4

671

bool StartDrawingOnTop(wxRect* rect = NULL)

Use this in conjunction with EndDrawingOnTop (p. 671) to ensure that drawing to the
screen occurs on top of existing windows. Without this, some window systems (such as
X) only allow drawing to take place underneath other windows.

By using the first form of this function, an application is specifying that the area that will
be drawn on coincides with the given window.

By using the second form, an application can specify an area of the screen which is to
be drawn on. If NULL is passed, the whole screen is available.

It is recommended that an area of the screen is specified because with large regions,
flickering effects are noticeable when destroying the temporary transparent window used
to implement this feature.

You might use this pair of functions when implementing a drag feature, for example as in
the wxSplitterWindow (p. 731) implementation.

wxScreenDC::EndDrawingOnTop

bool EndDrawingOnTop()

Use this in conjunction with StartDrawingOnTop (p. 670).

This function destroys the temporary window created to implement on-top drawing (X
only).

wxScrollBar

A wxScrollBar is a control that represents a horizontal or vertical scrollbar. It is distinct
from the two scrollbars that some windows provide automatically, but the two types of
scrollbar share the way events are received.

Derived from

wxControl (p. 130)
wxWindow (p. 915)
wxEvtHandler (p. 240)
wxObject (p. 555)

Include files

<wx/scrolbar.h>

Remarks

A scrollbar has the following main attributes: range, thumb size, page size, and position.

CHAPTER 4

672

The range is the total number of units associated with the view represented by the
scrollbar. For a table with 15 columns, the range would be 15.

The thumb size is the number of units that are currently visible. For the table example,
the window might be sized so that only 5 columns are currently visible, in which case the
application would set the thumb size to 5. When the thumb size becomes the same as or
greater than the range, the scrollbar will be automatically hidden on most platforms.

The page size is the number of units that the scrollbar should scroll by, when 'paging'
through the data. This value is normally the same as the thumb size length, because it is
natural to assume that the visible window size defines a page.

The scrollbar position is the current thumb position.

Most applications will find it convenient to provide a function called AdjustScrollbars
which can be called initially, from an OnSize event handler, and whenever the
application data changes in size. It will adjust the view, object and page size according
to the size of the window and the size of the data.

Window styles

wxSB_HORIZONTAL Specifies a horizontal scrollbar.
wxSB_VERTICAL Specifies a vertical scrollbar.

See also window styles overview (p. 1093).

Event handling

To process input from a scrollbar, use one of these event handler macros to direct input
to member functions that take a wxScrollEvent (p. 678) argument:

EVT_COMMAND_SCROLL(id, func) Catch all scroll commands.
EVT_COMMAND_SCROLL_TOP(id, func) Catch a command to put the scroll thumb at

the maximum position.
EVT_COMMAND_SCROLL_BOTTOM(id, func) Catch a command to put the scroll

thumb at the maximum position.
EVT_COMMAND_SCROLL_LINEUP(id, func) Catch a line up command.
EVT_COMMAND_SCROLL_LINEDOWN(id, func) Catch a line down command.
EVT_COMMAND_SCROLL_PAGEUP(id, func) Catch a page up command.
EVT_COMMAND_SCROLL_PAGEDOWN(id, func) Catch a page down

command.
EVT_COMMAND_SCROLL_THUMBTRACK(id, func) Catch a thumbtrack

command (continuous movement of the scroll
thumb).

See also

Scrolling overview (p. 1065), Event handling overview (p. 1072), wxScrolledWindow (p.
680)

CHAPTER 4

673

wxScrollBar::wxScrollBar

 wxScrollBar()

Default constructor.

 wxScrollBar(wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxSB_HORIZONTAL, const wxValidator& validator = wxDefaultValidator, const
wxString& name = "scrollBar")

Constructor, creating and showing a scrollbar.

Parameters

parent
Parent window. Must not be NULL.

id
Window identifier. A value of -1 indicates a default value.

pos
Window position. If the position (-1, -1) is specified then a default position is
chosen.

size
Window size. If the default size (-1, -1) is specified then a default size is chosen.

style
Window style. See wxScrollBar (p. 671).

validator
Window validator.

name
Window name.

See also

wxScrollBar::Create (p. 674), wxValidator (p. 897)

wxScrollBar::~wxScrollBar

void ~wxScrollBar()

Destructor, destroying the scrollbar.

CHAPTER 4

674

wxScrollBar::Create

bool Create(wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxSB_HORIZONTAL, const wxValidator& validator = wxDefaultValidator, const
wxString& name = "scrollBar")

Scrollbar creation function called by the scrollbar constructor. See
wxScrollBar::wxScrollBar (p. 673) for details.

wxScrollBar::GetRange

int GetRange() const

Returns the length of the scrollbar.

See also

wxScrollBar::SetScrollbar (p. 675)

wxScrollBar::GetPageSize

int GetPageSize() const

Returns the page size of the scrollbar. This is the number of scroll units that will be
scrolled when the user pages up or down. Often it is the same as the thumb size.

See also

wxScrollBar::SetScrollbar (p. 675)

wxScrollBar::GetThumbPosition

int GetThumbPosition() const

Returns the current position of the scrollbar thumb.

See also

wxScrollBar::SetThumbPosition (p. 675)

wxScrollBar::GetThumbLength

int GetThumbLength() const

CHAPTER 4

675

Returns the thumb or 'view' size.

See also

wxScrollBar::SetScrollbar (p. 675)

wxScrollBar::SetThumbPosition

void SetThumbPosition(int viewStart)

Sets the position of the scrollbar.

Parameters

viewStart
The position of the scrollbar thumb.

See also

wxScrollBar::GetThumbPosition (p. 674)

wxScrollBar::SetScrollbar

virtual void SetScrollbar(int position, int thumbSize, int range, int pageSize, const
bool refresh = TRUE)

Sets the scrollbar properties.

Parameters

position
The position of the scrollbar in scroll units.

thumbSize
The size of the thumb, or visible portion of the scrollbar, in scroll units.

range
The maximum position of the scrollbar.

pageSize
The size of the page size in scroll units. This is the number of units the scrollbar
will scroll when it is paged up or down. Often it is the same as the thumb size.

refresh
TRUE to redraw the scrollbar, FALSE otherwise.

Remarks

CHAPTER 4

676

Let's say you wish to display 50 lines of text, using the same font. The window is sized
so that you can only see 16 lines at a time.

You would use:

 scrollbar->SetScrollbar(0, 16, 50, 15);

The page size is 1 less than the thumb size so that the last line of the previous page will
be visible on the next page, to help orient the user.

Note that with the window at this size, the thumb position can never go above 50 minus
16, or 34.

You can determine how many lines are currently visible by dividing the current view size
by the character height in pixels.

When defining your own scrollbar behaviour, you will always need to recalculate the
scrollbar settings when the window size changes. You could therefore put your scrollbar
calculations and SetScrollbar call into a function named AdjustScrollbars, which can be
called initially and also from a wxWindow::OnSize (p. 945) event handler function.

See also

Scrolling overview (p. 1065), wxWindow::SetScrollbar (p. 955), wxScrolledWindow (p.
680)

wxScrollWinEvent

A scroll event holds information about events sent from scrolling windows.

Derived from

wxEvent (p. 237)
wxObject (p. 555)

Include files

<wx/event.h>

Event table macros

To process a scroll event, use these event handler macros to direct input to member
functions that take a wxScrollEvent argument. You can use
EVT_COMMAND_SCROLLWIN... macros with window IDs for when intercepting scroll
events from controls, or EVT_SCROLLWIN... macros without window IDs for
intercepting scroll events from the receiving window.

EVT_SCROLLWIN(func) Process all scroll events.

CHAPTER 4

677

EVT_SCROLLWIN_TOP(func) Process wxEVT_SCROLL_TOP scroll-to-top
events.

EVT_SCROLLWIN_BOTTOM(func) Process wxEVT_SCROLL_TOP scroll-to-
bottom events.

EVT_SCROLLWIN_LINEUP(func) Process wxEVT_SCROLL_LINEUP line up
events.

EVT_SCROLLWIN_LINEDOWN(func) Process wxEVT_SCROLL_LINEDOWN line
down events.

EVT_SCROLLWIN_PAGEUP(func) Process wxEVT_SCROLL_PAGEUP page up
events.

EVT_SCROLLWIN_PAGEDOWN(func) Process wxEVT_SCROLL_PAGEDOWN page
down events.

EVT_SCROLLWIN_THUMBTRACK(func) Process wxEVT_SCROLL_THUMBTRACK
thumbtrack events (frequent events sent as the
user drags the thumtrack).

EVT_COMMAND_SCROLLWIN(id, func) Process all scroll events.
EVT_COMMAND_SCROLLWIN_TOP(id, func) Process wxEVT_SCROLL_TOP

scroll-to-top events.
EVT_COMMAND_SCROLLWIN_BOTTOM(id, func) Process

wxEVT_SCROLL_TOP scroll-to-bottom events.
EVT_COMMAND_SCROLLWIN_LINEUP(id, func)Process wxEVT_SCROLL_LINEUP

line up events.
EVT_COMMAND_SCROLLWIN_LINEDOWN(id, func) Process

wxEVT_SCROLL_LINEDOWN line down
events.

EVT_COMMAND_SCROLLWIN_PAGEUP(id, func) Process
wxEVT_SCROLL_PAGEUP page up events.

EVT_COMMAND_SCROLLWIN_PAGEDOWN(id, func) Process
wxEVT_SCROLL_PAGEDOWN page down
events.

EVT_COMMAND_SCROLLWIN_THUMBTRACK(id, func) Process
wxEVT_SCROLL_THUMBTRACK thumbtrack
events (frequent events sent as the user drags
the thumtrack).

See also

wxWindow::OnScroll (p. 944), wxScrollEvent (p. 678), Event handling overview (p. 1072)

wxScrollWinEvent::wxScrollWinEvent

 wxScrollWinEvent(WXTYPE commandType = 0, int id = 0, int pos = 0, int orientation
= 0)

Constructor.

CHAPTER 4

678

wxScrollWinEvent::GetOrientation

int GetOrientation() const

Returns wxHORIZONTAL or wxVERTICAL, depending on the orientation of the
scrollbar.

wxScrollWinEvent::GetPosition

int GetPosition() const

Returns the position of the scrollbar.

wxScrollEvent

A scroll event holds information about events sent from stand-alone scrollbars, spin-
buttons and sliders - starting from wxWindows 2.1, scrolled windows send
thewxScrollWinEvent (p. 676) which does not derive from wxCommandEvent, but from
wxEvent directly.

Derived from

wxCommandEvent (p. 108)
wxEvent (p. 237)
wxObject (p. 555)

Include files

<wx/event.h>

Event table macros

To process a scroll event, use these event handler macros to direct input to member
functions that take a wxScrollEvent argument. You can use
EVT_COMMAND_SCROLL... macros with window IDs for when intercepting scroll
events from controls, or EVT_SCROLL... macros without window IDs for intercepting
scroll events from the receiving window.

EVT_SCROLL(func) Process all scroll events.
EVT_SCROLL_TOP(func) Process wxEVT_SCROLL_TOP scroll-to-top

events.
EVT_SCROLL_BOTTOM(func) Process wxEVT_SCROLL_TOP scroll-to-

bottom events.
EVT_SCROLL_LINEUP(func) Process wxEVT_SCROLL_LINEUP line up

events.
EVT_SCROLL_LINEDOWN(func) Process wxEVT_SCROLL_LINEDOWN line

down events.
EVT_SCROLL_PAGEUP(func) Process wxEVT_SCROLL_PAGEUP page up

events.

CHAPTER 4

679

EVT_SCROLL_PAGEDOWN(func) Process wxEVT_SCROLL_PAGEDOWN page
down events.

EVT_SCROLL_THUMBTRACK(func) Process wxEVT_SCROLL_THUMBTRACK
thumbtrack events (frequent events sent as the
user drags the thumtrack).

EVT_COMMAND_SCROLL(id, func) Process all scroll events.
EVT_COMMAND_SCROLL_TOP(id, func) Process wxEVT_SCROLL_TOP scroll-to-

top events.
EVT_COMMAND_SCROLL_BOTTOM(id, func) Process wxEVT_SCROLL_TOP

scroll-to-bottom events.
EVT_COMMAND_SCROLL_LINEUP(id, func) Process wxEVT_SCROLL_LINEUP

line up events.
EVT_COMMAND_SCROLL_LINEDOWN(id, func) Process

wxEVT_SCROLL_LINEDOWN line down
events.

EVT_COMMAND_SCROLL_PAGEUP(id, func) Process wxEVT_SCROLL_PAGEUP
page up events.

EVT_COMMAND_SCROLL_PAGEDOWN(id, func) Process
wxEVT_SCROLL_PAGEDOWN page down
events.

EVT_COMMAND_SCROLL_THUMBTRACK(id, func) Process
wxEVT_SCROLL_THUMBTRACK thumbtrack
events (frequent events sent as the user drags
the thumtrack).

Remarks

Note that unless specifying a scroll control identifier, you will need to test for scrollbar
orientation with wxScrollEvent::GetOrientation (p. 679), since horizontal and vertical
scroll events are processed using the same event handler.

See also

wxScrollBar (p. 671), wxSlider (p. 696), wxSpinButton (p. 727),
wxScrollWinEvent (p. 676), Event handling overview (p. 1072)

wxScrollEvent::wxScrollEvent

 wxScrollEvent(WXTYPE commandType = 0, int id = 0, int pos = 0, int orientation = 0)

Constructor.

wxScrollEvent::GetOrientation

int GetOrientation() const

CHAPTER 4

680

Returns wxHORIZONTAL or wxVERTICAL, depending on the orientation of the
scrollbar.

wxScrollEvent::GetPosition

int GetPosition() const

Returns the position of the scrollbar.

wxScrolledWindow

The wxScrolledWindow class manages scrolling for its client area, transforming the
coordinates according to the scrollbar positions, and setting the scroll positions, thumb
sizes and ranges according to the area in view.

As with all windows, an application can draw onto a wxScrolledWindow using a device
context (p. 1059).

You have the option of handling the OnPaint handler or overriding the OnDraw (p. 685)
function, which is passed a pre-scrolled device context (prepared by PrepareDC (p.
684)).

If you don't wish to calculate your own scrolling, you must call PrepareDC when not
drawing from within OnDraw, to set the device origin for the device context according to
the current scroll position.

A wxScrolledWindow will normally scroll itself and therefore its child windows as well. It
might however be desired to scroll a different window than itself: e.g. when designing a
spreadsheet, you'll normally only have to scroll the (usually white) cell area, whereas the
(usually grey) label area will scroll very differently. For this special purpose, you can call
SetTargetWindow (p. 687) which means that pressing the scrollbars will scroll a different
window.

Note that the underlying system knows nothing about scrolling coordinates, so that all
system functions (mouse events, expose events, refresh calls etc) as well as the position
of subwindows are relative to the "physical" origin of the scrolled window. If the user
insert a child window at position (10,10) and scrolls the window down 100 pixels (moving
the child window out of the visible area), the child window will report a position of (10,-
90).

Derived from

wxPanel (p. 572)
wxWindow (p. 915)
wxEvtHandler (p. 240)
wxObject (p. 555)

Include files

<wx/scrolwin.h>

CHAPTER 4

681

Window styles

wxRETAINED Uses a backing pixmap to speed refreshes. Motif only.

See also window styles overview (p. 1093).

Remarks

Use wxScrolledWindow for applications where the user scrolls by a fixed amount, and
where a 'page' can be interpreted to be the current visible portion of the window. For
more sophisticated applications, use the wxScrolledWindow implementation as a guide
to build your own scroll behaviour.

See also

wxScrollBar (p. 671), wxClientDC (p. 86), wxPaintDC (p. 567)

wxScrolledWindow::wxScrolledWindow

 wxScrolledWindow()

Default constructor.

 wxScrolledWindow(wxWindow* parent, wxWindowID id = -1, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style = wxHSCROLL |
wxVSCROLL, const wxString& name = "scrolledWindow")

Constructor.

Parameters

parent
Parent window.

id
Window identifier. A value of -1 indicates a default value.

pos
Window position. If a position of (-1, -1) is specified then a default position is
chosen.

size
Window size. If a size of (-1, -1) is specified then the window is sized appropriately.

style
Window style. See wxScrolledWindow (p. 680).

CHAPTER 4

682

name
Window name.

Remarks

The window is initially created without visible scrollbars. Call
wxScrolledWindow::SetScrollbars (p. 686) to specify how big the virtual window size
should be.

wxScrolledWindow::~wxScrolledWindow

 ~wxScrolledWindow()

Destructor.

wxScrolledWindow::CalcScrolledPosition

void CalcScrolledPosition(int x, int y, int *xx int *yy) const

Translates the logical coordinates to the device ones. For example, if a window is
scrolled 10 pixels to the bottom, the device coordinates of the origin are (0, 0) (as
always), but the logical coordinates are (0, 10) and so the call to CalcScrolledPosition(0,
0, &xx, &yy) will return 10 in yy.

See also

CalcUnscrolledPosition (p. 682)

wxPython note: The wxPython version of this methods accepts only two parameters
and returns xx and yy as a tuple of values.

wxScrolledWindow::CalcUnscrolledPosition

void CalcUnscrolledPosition(int x, int y, int *xx int *yy) const

Translates the device coordinates to the logical ones. For example, if a window is
scrolled 10 pixels to the bottom, the device coordinates of the origin are (0, 0) (as
always), but the logical coordinates are (0, 10) and so the call to
CalcUnscrolledPosition(0, 10, &xx, &yy) will return 0 in yy.

See also

CalcScrolledPosition (p. 682)

wxPython note: The wxPython version of this methods accepts only two parameters
and returns xx and yy as a tuple of values.

CHAPTER 4

683

wxScrolledWindow::Create

bool Create(wxWindow* parent, wxWindowID id = -1, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style = wxHSCROLL |
wxVSCROLL, const wxString& name = "scrolledWindow")

Creates the window for two-step construction. Derived classes should call or replace this
function. See wxScrolledWindow::wxScrolledWindow (p. 681) for details.

wxScrolledWindow::EnableScrolling

void EnableScrolling(const bool xScrolling, const bool yScrolling)

Enable or disable physical scrolling in the given direction. Physical scrolling is the
physical transfer of bits up or down the screen when a scroll event occurs. If the
application scrolls by a variable amount (e.g. if there are different font sizes) then
physical scrolling will not work, and you should switch it off. Note that you will have to
reposition child windows yourself, if physical scrolling is disabled.

Parameters

xScrolling
If TRUE, enables physical scrolling in the x direction.

yScrolling
If TRUE, enables physical scrolling in the y direction.

Remarks

Physical scrolling may not be available on all platforms. Where it is available, it is
enabled by default.

wxScrolledWindow::GetScrollPixelsPerUnit

void GetScrollPixelsPerUnit(int* xUnit, int* yUnit) const

Get the number of pixels per scroll unit (line), in each direction, as set by
wxScrolledWindow::SetScrollbars (p. 686). A value of zero indicates no scrolling in that
direction.

Parameters

xUnit
Receives the number of pixels per horizontal unit.

yUnit

CHAPTER 4

684

Receives the number of pixels per vertical unit.

See also

wxScrolledWindow::SetScrollbars (p. 686), wxScrolledWindow::GetVirtualSize (p. 684)

wxPython note: The wxPython version of this methods accepts no parameters and
returns a tuple of values for xUnit and yUnit.

wxScrolledWindow::GetVirtualSize

void GetVirtualSize(int* x, int* y) const

Gets the size in device units of the scrollable window area (as opposed to the client size,
which is the area of the window currently visible).

Parameters

x
Receives the length of the scrollable window, in pixels.

y
Receives the height of the scrollable window, in pixels.

Remarks

Use wxDC::DeviceToLogicalX (p. 168) and wxDC::DeviceToLogicalY (p. 168) to
translate these units to logical units.

See also

wxScrolledWindow::SetScrollbars (p. 686), wxScrolledWindow::GetScrollPixelsPerUnit
(p. 683)

wxPython note: The wxPython version of this methods accepts no parameters and
returns a tuple of values for x and y.

wxScrolledWindow::IsRetained

bool IsRetained() const

Motif only: TRUE if the window has a backing bitmap.

wxScrolledWindow::PrepareDC

void PrepareDC(wxDC& dc)

CHAPTER 4

685

Call this function to prepare the device context for drawing a scrolled image. It sets the
device origin according to the current scroll position.

PrepareDC is called automatically within the default wxScrolledWindow::OnPaint event
handler, so your wxScrolledWindow::OnDraw (p. 685) override will be passed a 'pre-
scrolled' device context. However, if you wish to draw from outside of OnDraw (via
OnPaint), or you wish to implement OnPaint yourself, you must call this function
yourself. For example:

void MyWindow::OnEvent(wxMouseEvent& event)
{
 wxClientDC dc(this);
 PrepareDC(dc);

 dc.SetPen(*wxBLACK_PEN);
 float x, y;
 event.Position(&x, &y);
 if (xpos > -1 && ypos > -1 && event.Dragging())
 {
 dc.DrawLine(xpos, ypos, x, y);
 }
 xpos = x;
 ypos = y;
}

wxScrolledWindow::OnDraw

virtual void OnDraw(wxDC& dc)

Called by the default paint event handler to allow the application to define painting
behaviour without having to worry about callingwxScrolledWindow::PrepareDC (p. 684).

Instead of overriding this function you may also just process the paint event in the
derived class as usual, but then you will have to call PrepareDC() yourself.

wxScrolledWindow::Scroll

void Scroll(int x, int y)

Scrolls a window so the view start is at the given point.

Parameters

x
The x position to scroll to, in scroll units.

y
The y position to scroll to, in scroll units.

Remarks

CHAPTER 4

686

The positions are in scroll units, not pixels, so to convert to pixels you will have to
multiply by the number of pixels per scroll increment. If either parameter is -1, that
position will be ignored (no change in that direction).

See also

wxScrolledWindow::SetScrollbars (p. 686), wxScrolledWindow::GetScrollPixelsPerUnit
(p. 683)

wxScrolledWindow::SetScrollbars

void SetScrollbars(int pixelsPerUnitX, int pixelsPerUnitY, int noUnitsX, int noUnitsY,
int xPos = 0, int yPos = 0)

Sets up vertical and/or horizontal scrollbars.

Parameters

pixelsPerUnitX
Pixels per scroll unit in the horizontal direction.

pixelsPerUnitY
Pixels per scroll unit in the vertical direction.

noUnitsX
Number of units in the horizontal direction.

noUnitsY
Number of units in the vertical direction.

xPos
Position to initialize the scrollbars in the horizontal direction, in scroll units.

yPos
Position to initialize the scrollbars in the vertical direction, in scroll units.

Remarks

The first pair of parameters give the number of pixels per 'scroll step', i.e. amount moved
when the up or down scroll arrows are pressed. The second pair gives the length of
scrollbar in scroll steps, which sets the size of the virtual window.

xPos and yPos optionally specify a position to scroll to immediately.

For example, the following gives a window horizontal and vertical scrollbars with 20
pixels per scroll step, and a size of 50 steps (1000 pixels) in each direction.

 window->SetScrollbars(20, 20, 50, 50);

CHAPTER 4

687

wxScrolledWindow manages the page size itself, using the current client window size as
the page size.

Note that for more sophisticated scrolling applications, for example where scroll steps
may be variable according to the position in the document, it will be necessary to derive
a new class from wxWindow, overriding OnSize and adjusting the scrollbars
appropriately.

wxScrolledWindow::SetTargetWindow

void SetTargetWindow(wxWindow* window)

Call this function to tell wxScrolledWindow to perform the actually scrolling on a different
window (not on itself).

wxScrolledWindow::ViewStart

void ViewStart(int* x, int* y) const

Get the position at which the visible portion of the window starts.

Parameters

x
Receives the first visible x position in scroll units.

y
Receives the first visible y position in scroll units.

Remarks

If either of the scrollbars is not at the home position, x and/or y will be greater than zero.
Combined with wxWindow::GetClientSize (p. 924), the application can use this function
to efficiently redraw only the visible portion of the window. The positions are in logical
scroll units, not pixels, so to convert to pixels you will have to multiply by the number of
pixels per scroll increment.

See also

wxScrolledWindow::SetScrollbars (p. 686)

wxPython note: The wxPython version of this methods accepts no parameters and
returns a tuple of values for x and y.

wxSingleChoiceDialog

This class represents a dialog that shows a list of strings, and allows the user to select
one. Double-clicking on a list item is equivalent to single-clicking and then pressing OK.

CHAPTER 4

688

Derived from

wxDialog (p. 193)
wxWindow (p. 915)
wxEvtHandler (p. 240)
wxObject (p. 555)

Include files

<wx/choicdlg.h>

See also

wxSingleChoiceDialog overview (p. 1051)

wxSingleChoiceDialog::wxSingleChoiceDialog

 wxSingleChoiceDialog(wxWindow* parent, const wxString& message, const
wxString& caption, int n, const wxString* choices, char** clientData = NULL, long
style = wxOK | wxCANCEL | wxCENTRE, const wxPoint& pos = wxDefaultPosition)

Constructor, taking an array of wxString choices and optional client data.

 wxSingleChoiceDialog(wxWindow* parent, const wxString& message, const
wxString& caption, const wxStringList& choices, char** clientData = NULL, long style
= wxOK | wxCANCEL | wxCENTRE, const wxPoint& pos = wxDefaultPosition)

Constructor, taking a string list and optional client data.

Parameters

parent
Parent window.

message
Message to show on the dialog.

caption
The dialog caption.

n
The number of choices.

choices
An array of strings, or a string list, containing the choices.

style

CHAPTER 4

689

A dialog style (bitlist) containing flags chosen from the following:

wxOK Show an OK button.
wxCANCEL Show a Cancel button.
wxCENTRE Centre the message. Not Windows.

pos
Dialog position. Not Windows.

Remarks

Use wxSingleChoiceDialog::ShowModal (p. 689) to show the dialog.

wxSingleChoiceDialog::~wxSingleChoiceDialog

 ~wxSingleChoiceDialog()

Destructor.

wxSingleChoiceDialog::GetSelection

int GetSelection() const

Returns the index of selected item.

wxSingleChoiceDialog::GetSelectionClientData

char* GetSelectionClientData() const

Returns the client data associated with the selection.

wxSingleChoiceDialog::GetStringSelection

wxString GetStringSelection() const

Returns the selected string.

wxSingleChoiceDialog::ShowModal

int ShowModal()

Shows the dialog, returning either wxID_OK or wxID_CANCEL.

wxSize

CHAPTER 4

690

A wxSize is a useful data structure for graphics operations. It simply contains integer
width and height members.

wxSize is used throughout wxWindows as well as wxPoint which, although almost
equivalent to wxSize, has a different meaning: wxPoint represents a position while
wxSize - the size.

wxPython note: wxPython defines aliases for the x and y members named width and
height since it makes much more sense for sizes.

Derived from

None

Include files

<wx/gdicmn.h>

See also

wxPoint (p. 586), wxRealPoint (p. 637)

wxSize::wxSize

 wxSize()

 wxSize(int width, int height)

Creates a size object.

wxSize::GetWidth

int GetWidth() const

Gets the width member.

wxSize::GetHeight

int GetHeight() const

Gets the height member.

wxSize::Set

CHAPTER 4

691

void Set(int width, int height)

Sets the width and height members.

wxSize::SetHeight

void SetHeight(int height)

Sets the height.

wxSize::SetWidth

void SetWidth(int width)

Sets the width.

wxSize::operator =

void operator =(const wxSize& sz)

Assignment operator.

wxSizeEvent

A size event holds information about size change events.

Derived from

wxEvent (p. 237)
wxObject (p. 555)

Include files

<wx/event.h>

Event table macros

To process a size event, use this event handler macro to direct input to a member
function that takes a wxSizeEvent argument.

EVT_SIZE(func) Process a wxEVT_SIZE event.

See also

wxWindow::OnSize (p. 945), wxSize (p. 689), Event handling overview (p. 1072)

CHAPTER 4

692

wxSizeEvent::wxSizeEvent

 wxSizeEvent(const wxSize& sz, int id = 0)

Constructor.

wxSizeEvent::GetSize

wxSize GetSize() const

Returns the entire size of the window generating the size change event.

wxSizer

wxSizer is the abstract base class used for laying out subwindows in a window. You
cannot use wxSizer directly; instead, you'll have to use wxBoxSizer (p. 58) or
wxStaticBoxSizer (p. 669).

The layout algorithm used by sizers in wxWindows closely related to layout in other GUI
toolkits, such as Java's AWT, the GTK toolkit or the Qt toolkit. It is based upon the idea
of the individual subwindows reporting their minimal required size and their ability to get
stretched if the size of the parent window has changed. This will most often mean, that
the programmer does not set the original size of the dialog in the beginning, rather the
top-most sizer will get queried and it will then query its children. Its children can be
normal windows or other sizers, so that a hierachy of sizer can be constructed. Note that
sizer are not derived from wxWindows and thus do not interfere with tab ordering and
require very little resources compared to a real window on screen.

What makes sizers so well fitted for use in wxWindows, is the fact that every control
reports its own minimal size and the algorithm can handle differences in font sizes or
different window (dialog item) sizes on different platforms without problems. If e.g. the
standard font as well as the overall design of Motif widgets requires more space than on
Windows, the intial dialog size will automatically be bigger on Motif than on Windows.

wxPython note: If you wish to create a sizer class in wxPython you should derive the
class from wxPySizer in order to get Python-aware capabilities for the various virtual
methods.

Derived from

wxObject (p. 555)

CHAPTER 4

693

wxSizer::wxSizer

 wxSizer()

The constructor. Note that wxSizer is an abstract base class and may not be
instantiated.

wxSizer::~wxSizer

 ~wxSizer()

The destructor.

wxSizer::Add

void Add(wxWindow* window, int option = 0,int flag = 0, int border = 0, wxObject*
userData = NULL)

void Add(wxSizer* sizer, int option = 0, int flag = 0, int border = 0, wxObject*
userData = NULL)

void Add(int width, int height, int option = 0, int flag = 0, int border = 0, wxObject*
userData = NULL)

Adds the window to the sizer. As wxSizer itself is an abstract class, the parameters have
no meaning in the wxSizer class itself, but as there currently is only one class deriving
directly from wxSizer and this class does not override these methods, the meaning of the
paramters is described here:

window
The window to be added to the sizer. Its initial size (either set explicitly by the user
or calculated internally when using wxDefaultSize) is interpreted as the minimal
and in many cases also the initial size. This is particularly useful in connection with
SetSizeHint (p. 696).

sizer
The (child-)sizer to be added to the sizer. This allows placing a child sizer in a sizer
and thus to create hierarchies of sizers (typically a vertical box as the top sizer and
several horizontal boxes on the level beneath).

width and height
The dimension of a spacer to be added to the sizer. Adding spacers to sizers gives
more flexilibilty in the design of dialogs; imagine for example a vertical box with two
buttons at the bottom of a dialog: you might want to insert a space between the
two buttons and make that space stretchable using the option flag and the result
will be that the left button will be aligned with the left side of the dialog and the right
button with the right side - the space in between will shrink and grow with the
dialog.

CHAPTER 4

694

option
Although the meaning of this parameter is undefined in wxSizer, it is used in
wxBoxSizer to indicate if a child of a sizer can change its size in the main
orientation of the wxBoxSizer - where 0 stands for not changable and a value of
more than zero in interpreted relative to the value of other children of the same
wxBoxSizer. You might, e.g., have a horizontal wxBoxSizer with three children, two
of which are supposed to change their size with the sizer, then the two stretchable
windows would get a value of 1 each to make them grow and shrink equally with
the sizer's horizontal dimension.

flag
This parameter can be used to set a number of flags which can be combined using
the binary OR operator |. Two main behaviours are defined using these flags: One
is the border around a window: the border parameter determines the border width
whereas the flags given here determine where the border may be (wxTOP,
wxBOTTOM, wxLEFT, wxRIGHT or wxALL). The other flags determine the child
window's behaviour if the size of the sizer changes, but - in contrast to the option
flag - not in the main orientation, but the respectively other orientation. So if you
created a wxBoxSizer with the wxVERTICAL option, these flags will be relevant if
the sizer changes its horizontal size. A child may get resized to completely fill out
the new size (using either wxGROW or wxEXPAND), may get centered
(wxCENTER or wxCENTRE) or may get aligned to either side (wxALIGN_LEFT
and wxALIGN_TOP are set to 0 and thus represent the default, wxALIGN_RIGHT
and wxALIGN_BOTTOM have their obvious meaning).

border
Determines the border width, if the flag parameter is set to any border.

userData
Allows an extra object to be attached to the sizer item, for use in derived classes
when sizing information is more complex than what option and flag will allow for.

wxSizer::Prepend

void Prepend(wxWindow* window, int option = 0, int flag = 0, int border = 0,
wxObject* userData = NULL)

void Prepend(wxSizer* sizer, int option = 0, int flag = 0, int border = 0, wxObject*
userData = NULL)

void Prepend(int width, int height, int option = 0, int flag = 0, int border= 0, wxObject*
userData = NULL)

Same as wxSizer::Add (p. 693), but prepends the items to the beginning of the list of
items (windows, subsizers or spaces) owned by this sizer.

wxSizer::Remove

CHAPTER 4

695

bool Remove(wxWindow* window)

bool Remove(wxSizer* sizer)

bool Remove(int nth)

Removes a child from the sizer. window is the window to be removed, sizer the
equivalent sizer and nth is the position of the child in the sizer, typically 0 for the first
item. This method does not cause any layout or resizing to take place and does not
delete the window itself. Call wxSizer::Layout (p. 696) for updating the layout "on screen"
after removing a child fom the sizer.

Returns TRUE if the child item was found and removed, FALSE otherwise.

wxSizer::SetDimension

void SetDimension(int x, int y, int width, int height)

Call this to force the sizer to take the given dimension and thus force the items owned by
the sizer to resize themselves according to the rules defined by the paramater in
thewxSizer::Add (p. 693) and wxSizer::Prepend (p. 694) methods.

wxSizer::GetSize

wxSize GetSize()

Returns the current size of the sizer.

wxSizer::GetPosition

wxPoint GetPosition()

Returns the current position of the sizer.

wxSizer::GetMinSize

wxSize GetMinSize()

Returns the minimal size of the sizer.

wxSizer::RecalcSizes

void RecalcSizes()

This method is abstract and has to be overwritten by any derived class. Here, the sizer

CHAPTER 4

696

will do the actual calculation of its children's positions and sizes.

wxSizer::CalcMin

wxSize CalcMin()

This method is abstract and has to be overwritten by any derived class. Here, the sizer
will do the actual calculation of its children minimal sizes.

wxSizer::Layout

void Layout()

Call this to force laying out the children anew, e.g. after having added a child to or
removed a child (window, other sizer or space) from the sizer while keeping the current
dimension.

wxSizer::Fit

void Fit(wxWindow* window)

Tell the sizer to resize the window to match the sizer's minimal size. This is commonly
done in the constructor of the window itself, see sample in the description of wxBoxSizer
(p. 58).

wxSizer::SetSizeHints

void SetSizeHints(wxWindow* window)

Tell the sizer to set the minimal size of the window to match the sizer's minimal size.
This is commonly done in the constructor of the window itself, see sample in the
description of wxBoxSizer (p. 58) if the window is resizable (as many dialogs under Unix
and frames on probably all platforms).

wxSlider

A slider is a control with a handle which can be pulled back and forth to change the
value.

In Windows versions below Windows 95, a scrollbar is used to simulate the slider. In
Windows 95, the track bar control is used.

Slider events are handled in the same way as a scrollbar.

Derived from

CHAPTER 4

697

wxControl (p. 130)
wxWindow (p. 915)
wxEvtHandler (p. 240)
wxObject (p. 555)

Include files

<wx/slider.h>

Window styles

wxSL_HORIZONTAL Displays the slider horizontally.
wxSL_VERTICAL Displays the slider vertically.
wxSL_AUTOTICKS Displays tick marks.
wxSL_LABELS Displays minimum, maximum and value labels.
wxSL_LEFT Displays ticks on the left, if a vertical slider.
wxSL_RIGHT Displays ticks on the right, if a vertical slider.
wxSL_TOP Displays ticks on the top, if a horizontal slider.
wxSL_SELRANGE Allows the user to select a range on the slider. Windows 95

only.

See also window styles overview (p. 1093).

Event handling

To process input from a slider, use one of these event handler macros to direct input to
member functions that take a wxScrollEvent (p. 678) argument:

EVT_COMMAND_SCROLL(id, func) Catch all scroll commands.
EVT_COMMAND_TOP(id, func) Catch a command to put the scroll thumb at the

maximum position.
EVT_COMMAND_BOTTOM(id, func) Catch a command to put the scroll thumb at the

maximum position.
EVT_COMMAND_LINEUP(id, func) Catch a line up command.
EVT_COMMAND_LINEDOWN(id, func)Catch a line down command.
EVT_COMMAND_PAGEUP(id, func) Catch a page up command.
EVT_COMMAND_PAGEDOWN(id, func) Catch a page down command.
EVT_COMMAND_THUMBTRACK(id, func) Catch a thumbtrack command

(continuous movement of the scroll thumb).
EVT_SLIDER(id, func) Process a

wxEVT_COMMAND_SLIDER_UPDATED
event, when the slider is moved. Though
provided for backward compatibility, this is
obsolete.

See also

Event handling overview (p. 1072), wxScrollBar (p. 671)

CHAPTER 4

698

wxSlider::wxSlider

 wxSlider()

Default slider.

 wxSlider(wxWindow* parent, wxWindowID id, int value , int minValue, int maxValue,
const wxPoint& point = wxDefaultPosition, const wxSize& size = wxDefaultSize, long
style = wxSL_HORIZONTAL, const wxValidator& validator = wxDefaultValidator, const
wxString& name = "slider")

Constructor, creating and showing a slider.

Parameters

parent
Parent window. Must not be NULL.

id
Window identifier. A value of -1 indicates a default value.

value
Initial position for the slider.

minValue
Minimum slider position.

maxValue
Maximum slider position.

size
Window size. If the default size (-1, -1) is specified then a default size is chosen.

style
Window style. See wxSlider (p. 696).

validator
Window validator.

name
Window name.

See also

wxSlider::Create (p. 699), wxValidator (p. 897)

wxSlider::~wxSlider

CHAPTER 4

699

void ~wxSlider()

Destructor, destroying the slider.

wxSlider::ClearSel

void ClearSel()

Clears the selection, for a slider with the wxSL_SELRANGE style.

Remarks

Windows 95 only.

wxSlider::ClearTicks

void ClearTicks()

Clears the ticks.

Remarks

Windows 95 only.

wxSlider::Create

bool Create(wxWindow* parent, wxWindowID id, int value , int minValue, int
maxValue, const wxPoint& point = wxDefaultPosition, const wxSize& size =
wxDefaultSize, long style = wxSL_HORIZONTAL, const wxValidator& validator =
wxDefaultValidator, const wxString& name = "slider")

Used for two-step slider construction. See wxSlider::wxSlider (p. 698) for further details.

wxSlider::GetLineSize

int GetLineSize() const

Returns the line size.

See also

wxSlider::SetLineSize (p. 702)

wxSlider::GetMax

CHAPTER 4

700

int GetMax() const

Gets the maximum slider value.

See also

wxSlider::GetMin (p. 700), wxSlider::SetRange (p. 702)

wxSlider::GetMin

int GetMin() const

Gets the minimum slider value.

See also

wxSlider::GetMin (p. 700), wxSlider::SetRange (p. 702)

wxSlider::GetPageSize

int GetPageSize() const

Returns the page size.

See also

wxSlider::SetPageSize (p. 703)

wxSlider::GetSelEnd

int GetSelEnd() const

Returns the selection end point.

Remarks

Windows 95 only.

See also

wxSlider::GetSelStart (p. 700), wxSlider::SetSelection (p. 703)

wxSlider::GetSelStart

int GetSelStart() const

CHAPTER 4

701

Returns the selection start point.

Remarks

Windows 95 only.

See also

wxSlider::GetSelEnd (p. 700), wxSlider::SetSelection (p. 703)

wxSlider::GetThumbLength

int GetThumbLength() const

Returns the thumb length.

Remarks

Windows 95 only.

See also

wxSlider::SetThumbLength (p. 703)

wxSlider::GetTickFreq

int GetTickFreq() const

Returns the tick frequency.

Remarks

Windows 95 only.

See also

wxSlider::SetTickFreq (p. 702)

wxSlider::GetValue

int GetValue() const

Gets the current slider value.

See also

CHAPTER 4

702

wxSlider::GetMin (p. 700), wxSlider::GetMax (p. 699), wxSlider::SetValue (p. 704)

wxSlider::SetRange

void SetRange(int minValue, int maxValue)

Sets the minimum and maximum slider values.

See also

wxSlider::GetMin (p. 700), wxSlider::GetMax (p. 699)

wxSlider::SetTickFreq

void SetTickFreq(int n, int pos)

Sets the tick mark frequency and position.

Parameters

n
Frequency. For example, if the frequency is set to two, a tick mark is displayed for
every other increment in the slider's range.

pos
Position. Must be greater than zero. TODO: what is this for?

Remarks

Windows 95 only.

See also

wxSlider::GetTickFreq (p. 701)

wxSlider::SetLineSize

void SetLineSize(int lineSize)

Sets the line size for the slider.

Parameters

lineSize
The number of steps the slider moves when the user moves it up or down a line.

See also

CHAPTER 4

703

wxSlider::GetLineSize (p. 699)

wxSlider::SetPageSize

void SetPageSize(int pageSize)

Sets the page size for the slider.

Parameters

pageSize
The number of steps the slider moves when the user pages up or down.

See also

wxSlider::GetPageSize (p. 700)

wxSlider::SetSelection

void SetSelection(int startPos, int endPos)

Sets the selection.

Parameters

startPos
The selection start position.

endPos
The selection end position.

Remarks

Windows 95 only.

See also

wxSlider::GetSelStart (p. 700), wxSlider::GetSelEnd (p. 700)

wxSlider::SetThumbLength

void SetThumbLength(int len)

Sets the slider thumb length.

Parameters

CHAPTER 4

704

len
The thumb length.

Remarks

Windows 95 only.

See also

wxSlider::GetThumbLength (p. 701)

wxSlider::SetTick

void SetTick(int tickPos)

Sets a tick position.

Parameters

tickPos
The tick position.

Remarks

Windows 95 only.

See also

wxSlider::SetTickFreq (p. 702)

wxSlider::SetValue

void SetValue(int value)

Sets the slider position.

Parameters

value
The slider position.

See also

wxSlider::GetValue (p. 701)

wxSockAddress

CHAPTER 4

705

You are unlikely to need to use this class: only wxSocketBase uses it.

Derived from

wxObject (p. 555)

Include files

<wx/socket.h>

See also

wxSocketBase (p. 705)

wxSockAddress::wxSockAddress

 wxSockAddress()

Default constructor.

wxSockAddress::~wxSockAddress

 ~wxSockAddress()

Default destructor.

wxSockAddress::Clear

void Clear()

Delete all informations about the address.

wxSockAddress::SockAddrLen

int SockAddrLen();

Returns the length of the socket address.

wxSocketBase

Derived from

wxEvtHandler (p. 240)

Include files

CHAPTER 4

706

<wx/socket.h>

wxSocket errors

wxSOCKET_NOERROR No error happened.
wxSOCKET_INVOP Invalid operation.
wxSOCKET_IOERR Input/Output error.
wxSOCKET_INVADDR Invalid address passed to wxSocket.
wxSOCKET_INVSOCK Invalid socket (uninitialized).
wxSOCKET_NOHOST No corresponding host.
wxSOCKET_INVPORT Invalid port.
wxSOCKET_WOULDBLOCK The socket is non-blocking and the operation

would block.
wxSOCKET_TIMEDOUT The timeout for this operation expired.
wxSOCKET_MEMERR Memory exhausted.

wxSocket events

wxSOCKET_INPUT Some data has arrived to the socket.
wxSOCKET_OUTPUT The socket is ready to be written to.
wxSOCKET_CONNECTION Incoming connection arrival (server), or

connection establishment (client).
wxSOCKET_LOST The connection has been closed.
wxSOCKET_MAX_EVENT This should never happen but the compiler may

complain about it.

A brief note on how to use these events:

The wxSOCKET_INPUT event will be issued when the incoming queue was empty and
new data arrives, but NOT if new data arrives when there was data waiting in the
incoming queue.

The wxSOCKET_OUTPUT event is issued when a socket is first connected with
Connect or accepted with Accept, and then, only after an output operation fails because
the output buffer was full, and buffer space becomes available again.

The wxSOCKET_CONNECTION event is issued when a connection request completes
(client) or when a new connection arrives at the pending connections queue (server).

The wxSOCKET_LOST event is issued when a close indication is received for the
socket. This means that the connection broke down or that it was closed by the peer.

Event handling

To process events from a socket, use the following event handler macro to direct input to
member functions that take a wxSocketEvent (p. 721) argument.

EVT_SOCKET(id, func) A socket event occured.

CHAPTER 4

707

See also

wxSocketEvent (p. 721), wxSocketClient (p. 719), wxSocketServer (p. 722)

wxSocketBase::wxSocketBase

 wxSocketBase()

Default constructor. Don't use it; use wxSocketClient (p. 719) or wxSocketServer (p.
722).

wxSocketBase::~wxSocketBase

 ~wxSocketBase()

Destroys the wxSocketBase object.

wxSocketBase::SetFlags

void SetFlags(wxSocketBase::wxSockFlags flags)

wxSOCKET_NONE Normal functionnality.
wxSOCKET_NOWAIT Get the available data in the input queue and

return immediately.
wxSOCKET_WAITALL Wait for all required data unless an error

occurs.
wxSOCKET_BLOCK Block the GUI (do not wxYield) while

reading/writing data.

A brief overview on how to use these flags follows.

If no flag is specified (this is the same as wxSOCKET_NONE), IO calls will return after
some data has been read or written, even when the transfer might not be complete. This
is the same as issuing exactly one blocking low-level call to recv() or send(). Note that
blocking here refers to when the function returns, not to whether the GUI blocks during
this time.

If wxSOCKET_NOWAIT is specified, IO calls will return immediately. Read operations
will retrieve only available data. Write operations will write as much data as possible,
depending on how much space is available in the output buffer. This is the same as
issuing exactly one nonblocking low-level call to recv() or send(). Note that nonblocking
here refers to when the function returns, not to whether the GUI blocks during this time.

CHAPTER 4

708

If wxSOCKET_WAITALL is specified, IO calls won't return until ALL the data has been
read or written (or until an error occurs), blocking if necessary, and issuing several low
level calls if necessary. This is the same as having a loop which makes as many
blocking low-level calls to recv() or send() as needed so as to transfer all the data. Note
that "blocking" here refers to when the function returns, not to whether the GUI blocks
during this time.

The wxSOCKET_BLOCK controls whether the GUI blocks during IO operations. If this
flag is not used, then the application must take extra care to avoid unwanted reentrance.

So:

wxSOCKET_NONE will try to read SOME data, no matter how much.

wxSOCKET_NOWAIT will always return immediately, even if it cannot read or write
ANY data.

wxSOCKET_WAITALL will only return when it has read or written ALL the data.

wxSOCKET_BLOCK has nothing to do with the previous flags and it control whether the
GUI blocks.

wxSocketBase::SetNotify

void SetNotify(wxSocketEventFlags flags)

SetNotify specifies which socket events are to be sent to the event handler. The flags
parameter is a combination of flags ORed toghether. The following flags can be used:

wxSOCKET_INPUT_FLAG to receive wxSOCKET_INPUT
wxSOCKET_OUTPUT_FLAG to receive wxSOCKET_OUTPUT
wxSOCKET_CONNECTION_FLAG to receive wxSOCKET_CONNECTION
wxSOCKET_LOST_FLAG to receive wxSOCKET_LOST

For example:

 sock.SetNotify(wxSOCKET_INPUT_FLAG | wxSOCKET_LOST_FLAG);

In this example, the user will be notified about incoming socket data and whenever the
connection is closed.

For more information on socket events see wxSocket events (p. 705).

wxSocketBase::SetTimeout

wxsocketbasesettimeout

void SetTimeout(int seconds)

CHAPTER 4

709

This function sets the default socket timeout in seconds. This timeout applies to IO calls
and also to Wait functions if you don't specify a wait interval. If you never use
SetTimeout, the default timeout will be 10 minutes.

wxSocketBase::Notify

void Notify(bool notify)

Notify will enable (notify is TRUE) or disable (notify is FALSE) the propagation of socket
events.

wxSocketBase::Ok

bool Ok() const

Returns TRUE if the socket is initialized and ready and FALSE in other cases.

wxSocketBase::Error

bool Error() const

Returns TRUE if an error occured in the last IO operation.

The following operations update the Error() status: Read, Write, ReadMsg, WriteMsg,
Peek, Unread, Discard.

wxSocketBase::IsConnected

bool IsConnected() const

Returns TRUE if the socket is connected.

wxSocketBase::IsData

bool IsData() const

Returns TRUE if there is data available to be read.

wxSocketBase::IsDisconnected

bool IsDisconnected() const

Returns TRUE if the socket is disconnected.

CHAPTER 4

710

wxSocketBase::IsNoWait

bool IsNoWait() const

Returns TRUE if the socket mustn't wait.

wxSocketBase::LastCount

wxUint32 LastCount() const

Returns the number of bytes read or written by the last IO call.

The following operations update the LastCount() value: Read, Write, ReadMsg,
WriteMsg, Peek, Unread, Discard.

wxSocketBase::LastError

wxSocketError LastError() const

Returns the last wxSocket error. See wxSocket errors (p. 705).

Please note that this function merely returns the last error code, but it should not be
used to determine if an error has occured (this is because successful operations do not
change tha LastError value). Use Error, instead of LastError, to determine if the last IO
call failed. If Error returns TRUE, use LastError to discover the cause of the error.

wxSocketBase::Peek

wxSocketBase& Peek(char * buffer, wxUint32 nbytes)

This function peeks a buffer of nbytes bytes from the socket. Peeking a buffer doesn't
delete it from the system socket in-queue.

Use LastCount to verify the number of bytes actually peeked.

Use Error to determine if the operation succeeded.

Parameters

buffer
Buffer where to put peeked data.

nbytes
Number of bytes.

CHAPTER 4

711

Return value

Returns a reference to the current object.

Remark/Warning

The exact behaviour of wxSocketBase::Peek() depends on the combination of flags
being used. For a detailed explanation, see wxSocketBase::SetFlags (p. 707)

See also

wxSocketBase::Error (p. 709), wxSocketBase::LastError (p. 710),
wxSocketBase::LastCount (p. 710), wxSocketBase::SetFlags (p. 707)

wxSocketBase::Read

wxSocketBase& Read(char * buffer, wxUint32 nbytes)

This function reads a buffer of nbytes bytes from the socket.

Use LastCount to verify the number of bytes actually read.

Use Error to determine if the operation succeeded.

Parameters

buffer
Buffer where to put read data.

nbytes
Number of bytes.

Return value

Returns a reference to the current object.

Remark/Warning

The exact behaviour of wxSocketBase::Read() depends on the combination of flags
being used. For a detailed explanation, see wxSocketBase::SetFlags (p. 707).

See also

wxSocketBase::Error (p. 709), wxSocketBase::LastError (p. 710),
wxSocketBase::LastCount (p. 710), wxSocketBase::SetFlags (p. 707)

wxSocketBase::Write

wxSocketBase& Write(const char * buffer, wxUint32 nbytes)

CHAPTER 4

712

This function writes a buffer of nbytes bytes to the socket.

Use LastCount to verify the number of bytes actually written.

Use Error to determine if the operation succeeded.

Parameters

buffer
Buffer with the data to be sent.

nbytes
Number of bytes.

Return value

Returns a reference to the current object.

Remark/Warning

The exact behaviour of wxSocketBase::Write() depends on the combination of flags
being used. For a detailed explanation, see wxSocketBase::SetFlags (p. 707).

See also

wxSocketBase::Error (p. 709), wxSocketBase::LastError (p. 710),
wxSocketBase::LastCount (p. 710), wxSocketBase::SetFlags (p. 707)

wxSocketBase::WriteMsg

wxSocketBase& WriteMsg(const char * buffer, wxUint32 nbytes)

This function writes a buffer of nbytes bytes from the socket, but it writes a short header
before so that ReadMsg can alloc the right size for the buffer. So, a buffer sent with
WriteMsg must be read with ReadMsg. This function always waits for the entire buffer to
be sent, unless an error occurs.

Use LastCount to verify the number of bytes actually written.

Use Error to determine if the operation succeeded.

Parameters

buffer
Buffer with the data to be sent.

nbytes
Number of bytes.

CHAPTER 4

713

Return value

Returns a reference to the current object.

Remark/Warning

wxSocketBase::WriteMsg() will behave as if the wxSOCKET_WAITALL flag was always
set and it will always ignore the wxSOCKET_NOWAIT flag. The exact behaviour of
WriteMsg depends on the wxSOCKET_BLOCK flag. For a detailed explanation, see
wxSocketBase::SetFlags (p. 707).

See also

wxSocketBase::Error (p. 709), wxSocketBase::LastError (p. 710),
wxSocketBase::LastCount (p. 710), wxSocketBase::SetFlags (p. 707),
wxSocketBase::ReadMsg (p. 713)

wxSocketBase::ReadMsg

wxSocketBase& ReadMsg(char * buffer, wxUint32 nbytes)

This function reads a buffer sent by WriteMsg on a socket. If the buffer passed to the
function isn't big enough, the remaining bytes will be discarded. This function always
waits for the buffer to be entirely filled, unless an error occurs.

Use LastCount to verify the number of bytes actually read.

Use Error to determine if the operation succeeded.

Parameters

buffer
Buffer where to put read data.

nbytes
Number of bytes allocated for the buffer.

Return value

Returns a reference to the current object.

Remark/Warning

wxSocketBase::ReadMsg() will behave as if the wxSOCKET_WAITALL flag was always
set and it will always ignore the wxSOCKET_NOWAIT flag. The exact behaviour of
ReadMsg depends on the wxSOCKET_SPEED flag. For a detailed explanation, see
wxSocketBase::SetFlags (p. 707).

See also

CHAPTER 4

714

wxSocketBase::Error (p. 709), wxSocketBase::LastError (p. 710),
wxSocketBase::LastCount (p. 710), wxSocketBase::SetFlags (p. 707),
wxSocketBase::WriteMsg (p. 712)

wxSocketBase::Unread

wxSocketBase& Unread(const char * buffer, wxUint32 nbytes)

This function unreads a buffer. That is, the data in the buffer is put back in the incoming
queue. This function is not affected by wxSocket flags.

If you use LastCount, it will always return nbytes.

If you use Error, it will always return FALSE.

Parameters

buffer
Buffer to be unread.

nbytes
Number of bytes.

Return value

Returns a reference to the current object.

See also

wxSocketBase::Error (p. 709), wxSocketBase::LastCount (p. 710),
wxSocketBase::LastError (p. 710)

wxSocketBase::Discard

wxSocketBase& Discard()

This function simply deletes all bytes in the incoming queue. This function doesn't wait.
That is, it will behave as if the wxSOCKET_NOWAIT flag was set. The
wxSOCKET_SPEED and wxSOCKET_WAITALL flags have no effect on this function.

Use LastCount to see the number of bytes discarded.

If you use Error, it will always return FALSE.

wxSocketBase::Wait

bool Wait(long seconds = -1, long millisecond = 0)

CHAPTER 4

715

This function waits until one of the following conditions is true: there is data available for
reading; the output buffer is empty (you can send new data); the connection has been
lost; an incoming connection arrived (only for servers); a connection request has
completed (only for clients).

Parameters

seconds
Number of seconds to wait. If -1, it will wait for the default timeout set with
SetTimeout.

millisecond
Number of milliseconds to wait.

Return value

Returns TRUE if an event occured, FALSE if the timeout was reached.

See also

wxSocketBase::WaitForRead (p. 715), wxSocketBase::WaitForWrite (p. 715),
wxSocketBase::WaitForLost (p. 716)

wxSocketBase::WaitForRead

bool WaitForRead(long seconds = -1, long millisecond = 0)

This function waits until there is data available to be read.

Parameters

seconds
Number of seconds to wait. If -1, it will wait for the default timeout set with
SetTimeout.

millisecond
Number of milliseconds to wait.

Return value

Returns TRUE if there is data to be read, FALSE if the timeout was reached.

See also

wxSocketBase::Wait (p. 714), wxSocketBase::WaitForWrite (p. 715),
wxSocketBase::WaitForLost (p. 716)

wxSocketBase::WaitForWrite

CHAPTER 4

716

bool WaitForWrite(long seconds = -1, long millisecond = 0)

This function waits until you can write to the socket.

Parameters

seconds
Number of seconds to wait. If -1, it will wait for the default timeout set with
SetTimeout.

millisecond
Number of milliseconds to wait.

Return value

Returns TRUE if you can write to the socket, FALSE if the timeout was reached.

See also

wxSocketBase::Wait (p. 714), wxSocketBase::WaitForRead (p. 715),
wxSocketBase::WaitForLost (p. 716)

wxSocketBase::WaitForLost

bool Wait(long seconds = -1, long millisecond = 0)

This function waits until the connection is lost. This may happen if the peer closes the
connection or if the connection breaks.

Parameters

seconds
Number of seconds to wait. If -1, it will wait for the default timeout set with
SetTimeout.

millisecond
Number of milliseconds to wait.

Return value

Returns TRUE if the connection was lost, FALSE if the timeout was reached.

See also

wxSocketBase::WaitForRead (p. 715), wxSocketBase::WaitForWrite (p. 715),
wxSocketBase::WaitForLost (p. 716)

wxSocketBase::RestoreState

CHAPTER 4

717

void RestoreState()

This function restores the previous state of the socket, as saved with SaveState.

Calls to SaveState / RestoreState can be nested.

See also

wxSocketBase::SaveState (p. 717)

wxSocketBase::SaveState

void SaveState()

This function saves the current state of the socket object in a stack: actually it saves all
flags (those set with SetFlags, SetNotify, Notfy) and the state of the asynchronous
callbacks (Callback, CallbackData).

Calls to SaveState / RestoreState can be nested.

See also

wxSocketBase::RestoreState (p. 716)

wxSocketBase::GetLocal

wxsocketbasegetlocal

bool GetLocal(wxSockAddress& addr_man) const

This function returns the local address field of the socket. The local address field
contains the complete local address of the socket (local address, local port, ...).

Return value

It returns TRUE if no errors happened, FALSE otherwise.

wxSocketBase::GetPeer

wxsocketbasegetlocal

bool GetPeer(wxSockAddress& addr_man) const

This function returns the peer address field of the socket. The peer address field
contains the complete peer host address of the socket (address, port, ...).

CHAPTER 4

718

Return value

It returns TRUE if no errors happened, FALSE otherwise.

wxSocketBase::SetEventHandler

void SetEventHandler(wxEvtHandler& evt_hdlr, int id = -1)

Sets an event handler to be called when a socket event occurs. The handler will be
called for those events for which notification is enabled with SetNotify and Notify.

You can also specify a C callback to be called when an event occurs. See Callback and
CallbackData.

Parameters

evt_hdlr
Specifies the event handler you want to use.

id
The id of socket event.

See also

wxSocketBase::SetNotify (p. 708), wxSocketBase::Notify (p. 709), wxSocketEvent (p.
721), wxEvtHandler (p. 240), wxSocketBase::Callback (p. 718),
wxSocketBase::CallbackData (p. 719)

wxSocketBase::Callback

wxSocketBase::wxSockCbk Callback(wxSocketBase::wxSockCbk callback)

You can setup a C callback to be called when an event occurs. The callback will be
called only for those events for which notification has been enabled with Notify and
SetNotify. The prototype of the callback must be as follows:

void SocketCallback(wxSocketBase& sock,wxSocketNotify evt,char *cdata);

The first parameter is a reference to the socket object in which the event occured. The
second parameter tells you which event occured. (See wxSocket events (p. 705)). The
third parameter is the user data you specified using CallbackData (p. 719).

Return value

A pointer to the previous callback.

See also

wxSocketBase::CallbackData (p. 719), wxSocketBase::SetNotify (p. 708),

CHAPTER 4

719

wxSocketBase::Notify (p. 709)

wxSocketBase::CallbackData

char * CallbackData(char *cdata)

This function sets the the user data which will be passed to a C callback (p. 718).

Return value

A pointer to the previous user data.

wxSocketBase::Callback (p. 718), wxSocketBase::SetNotify (p. 708),
wxSocketBase::Notify (p. 709)

wxSocketClient

Derived from

wxSocketBase (p. 705)

Include files

<wx/socket.h>

wxSocketClient::wxSocketClient

 wxSocketClient(wxSockFlags flags = wxSocketBase::NONE)

Constructs a new wxSocketClient.

Parameters

flags
Socket flags (See wxSocketBase::SetFlags (p. 707))

wxSocketClient::~wxSocketClient

 ~wxSocketClient()

Destroys a wxSocketClient object.

wxSocketClient::Connect

bool Connect(wxSockAddress& address, bool wait = TRUE)

CHAPTER 4

720

Connects to a server using the specified address.

If wait is TRUE, Connect will wait until the connection completes and the socket is ready
to send or receive data, or until an event occurs.

Warning ! This will block the GUI.

If wait is FALSE, Connect will try to establish the connection and return immediately,
without blocking the GUI. When used this way, even if Connect returns FALSE, the
connection request can be completed later. To detect this, use WaitConnection, or watch
"connection" events (for succesful establishment) and "lost" events (for connection
failure).

Parameters

address
Address of the server.

wait
If true, waits for the connection to be ready.

Return value

Returns TRUE if the connection is established and no error occurs.

If wait was TRUE, and Connect returns FALSE, an error occured and the connection
failed.

If wait was FALSE, and Connect returns FALSE, you should still be prepared to handle
the completion of this connection request, either with WaitOnConnect or by watching
"connection" and "lost" events.

See also

wxSocketClient::WaitOnConnect (p. 720), wxSocketBase::SetNotify (p. 708),
wxSocketBase::Notify (p. 709)

wxSocketClient::WaitOnConnect

bool WaitOnConnect(long seconds = -1, long milliseconds = 0)

Wait until the connection is succesfully established or until it fails. Use this function after
a call to Connect with wait set to FALSE.

Parameters

seconds
Number of seconds to wait. If -1, it will wait for the default timeout set with
SetTimeout.

CHAPTER 4

721

millisecond
Number of milliseconds to wait.

Return value

If the connection is succesfully established, it returns TRUE.

If the timeout expires, or if the connection fails, it returns FALSE.

See also

wxSocketClient::Connect (p. 719)

wxSocketEvent

This event class contains information about socket events.

Derived from

wxEvent (p. 237)

Include files

<wx/socket.h>

Event table macros

To process a socket event, use these event handler macros to direct input to member
functions that take a wxSocketEvent argument.

EVT_SOCKET(id, func) Process a socket event, supplying the member
function.

[TODO:] A brief note on how to use events. The wxSOCKET_INPUT event is generated
when the

See also

wxSocketBase (p. 705), wxSocketClient (p. 719), wxSocketServer (p. 722)

wxSocketEvent::wxSocketEvent

 wxSocketEvent(int id = 0)

Constructor.

CHAPTER 4

722

wxSocketEvent::SocketEvent

wxSocketNotify SocketEvent() const

Returns the socket event type.

wxSocketServer

Derived from

wxSocketBase (p. 705)

Include files

<wx/socket.h>

wxSocketServer::wxSocketServer

 wxSocketServer(wxSockAddress& address, wxSockFlags flags =
wxSocketBase::NONE)

Constructs a new wxSocketServer.

Parameters

address
Specifies the local address for the server (e.g. port number).

flags
Socket flags (See wxSocketBase::SetFlags (p. 707))

wxSocketServer::~wxSocketServer

 ~wxSocketServer()

Destroys a wxSocketServer object (it doesn't close the accepted connections).

wxSocketServer::Accept

wxSocketBase * Accept(bool wait = TRUE)

Creates a new object wxSocketBase and accepts an incoming connection.

If wait is TRUE and there are no pending connections to be accepted, it will wait for the
next incoming connection to arrive.Warning ! This will block the GUI.

CHAPTER 4

723

If wait is FALSE, it will try to accept a pending connection if there is one, but it will
always return immediately without blocking the GUI. If you want to use Accept in this
way, you can either check for incoming connections with WaitForAccept or watch
"connection" events, then call Accept once you know that there is an incoming
connection waiting to be accepted.

Return value

Returns an opened socket connection, or NULL if an error occured or if the wait
parameter was FALSE and there were no pending connections.

See also

wxSocketServer::WaitForAccept (p. 723), wxSocketBase::SetNotify (p. 708),
wxSocketBase::Notify (p. 709), wxSocketServer::AcceptWith (p. 723)

wxSocketServer::AcceptWith

bool AcceptWith(wxSocketBase& socket, bool wait = TRUE)

Accept an incoming connection using the specified socket object. This is useful when
someone wants to inherit wxSocketBase.

Parameters

socket
Socket to be initialized

Return value

Returns TRUE on success, or FALSE if an error occured or if thewait parameter was
FALSE and there were no pending connections.

wxSocketServer::WaitForAccept (p. 723), wxSocketBase::SetNotify (p. 708),
wxSocketBase::Notify (p. 709), wxSocketServer::Accept (p. 722)

wxSocketServer::WaitForAccept

bool WaitForAccept(long seconds = -1, long millisecond = 0)

This function waits for an incoming connection. Use it if you want to call Accept or
AcceptWith with wait set to FALSE, to detect when an incoming connection is waiting to
be accepted.

Parameters

seconds
Number of seconds to wait. If -1, it will wait for the default timeout set with

CHAPTER 4

724

SetTimeout.

millisecond
Number of milliseconds to wait.

Return value

Returns TRUE if an incoming connection arrived, FALSE if the timeout expired.

See also

wxSocketServer::Accept (p. 722), wxSocketServer::AcceptWith (p. 723)

wxSplitterEvent

This class represents the events generated by a splitter control. Also there is only one
event class, the data associated to the different events is not the same and so not all
accessor functions may be called for each event. The documentation mentions the kind
of event(s) for which the given acessor function makes sense: calling it for other types of
events will result in assert failure (in debug mode) and will return meaningless results.

Derived from

wxCommandEvent (p. 108)
wxEvent (p. 237)
wxObject (p. 555)

Include files

<wx/splitter.h>

Event table macros

To process a splitter event, use these event handler macros to direct input to member
functions that take a wxSplitterEvent argument.

EVT_SPLITTER_SASH_POS_CHANGING(id, func) The sash position is in the
process of being changed.
May be used to modify the
position of the tracking bar to
properly reflect the position
that would be set if the drag
were to be completed at this
point. Processes a
wxEVT_COMMAND_SPLITT
ER_SASH_POS_CHANGIN
G event.

EVT_SPLITTER_SASH_POS_CHANGED(id, func) The sash position was
changed. May be used to
modify the sash position
before it is set, or to prevent

CHAPTER 4

725

the change from taking place.
Processes a
wxEVT_COMMAND_SPLITT
ER_SASH_POS_CHANGED
event.

EVT_SPLITTER_UNSPLIT(id, func) The splitter has been just
unsplit. Processes a
wxEVT_COMMAND_SPLITT
ER_UNSPLIT event.

EVT_SPLITTER_DOUBLECLICKED(id, func) The sash was double clicked.
The default behaviour is to
unsplit the window when this
happens (unless the
minimum pane size has been
set to a value greater than
zero). Processes a
wxEVT_COMMAND_SPLITT
ER_DOUBLECLICKED
event.

See also

wxSplitterWindow (p. 731), Event handling overview (p. 1072)

wxSplitterEvent::wxSplitterEvent

 wxSplitterEvent(wxEventType eventType = wxEVT_NULL,
wxSplitterWindow * splitter = NULL)

Constructor. Used internally by wxWindows only.

wxSplitterEvent::GetSashPosition

int GetSashPosition() const

Returns the new sash position.

May only be called while processing
wxEVT_COMMAND_SPLITTER_SASH_POS_CHANGING and
wxEVT_COMMAND_SPLITTER_SASH_POS_CHANGED events.

wxSplitterEvent::GetX

int GetX() const

CHAPTER 4

726

Returns the x coordinate of the double-click point.

May only be called while processing
wxEVT_COMMAND_SPLITTER_DOUBLECLICKED events.

wxSplitterEvent::GetY

int GetY() const

Returns the y coordinate of the double-click point.

May only be called while processing
wxEVT_COMMAND_SPLITTER_DOUBLECLICKED events.

wxSplitterEvent::GetWindowBeingRemoved

wxWindow* GetWindowBeingRemoved() const

Returns a pointer to the window being removed when a splitter window is unsplit.

May only be called while processing wxEVT_COMMAND_SPLITTER_UNSPLIT events.

wxSplitterEvent::SetSashPosition

void SetSashPosition(intpos)

In the case of wxEVT_COMMAND_SPLITTER_SASH_POS_CHANGED events, sets
the the new sash position. In the case of
wxEVT_COMMAND_SPLITTER_SASH_POS_CHANGING events, sets the new
tracking bar position so visual feedback during dragging will represent that change that
will actually take place. Set to -1 from the event handler code to prevent repositioning.

May only be called while processing
wxEVT_COMMAND_SPLITTER_SASH_POS_CHANGING and
wxEVT_COMMAND_SPLITTER_SASH_POS_CHANGED events.

Paramters

pos
New sash position.

wxSocketInputStream

Derived from

wxInputStream (p. 425)

CHAPTER 4

727

Include files

<wx/sckstrm.h>

See also

wxStreamBuffer (p. 755), wxSocketBase (p. 705)

wxSocketInputStream::wxSocketInputStream

 wxSocketInputStream(wxSocketBase& s)

Initializes a new read-only socket stream using the specified initialized socket
connection.

wxSocketOutputStream

Derived from

wxOutputStream (p. 559)

Include files

<wx/sckstrm.h>

See also

wxStreamBuffer (p. 755), wxSocketBase (p. 705)

wxSocketOutputStream::wxSocketOutputStream

 wxSocketInputStream(wxSocketBase& s)

Initializes a new write-only socket stream using the specified initialized socket
connection.

wxSpinButton

A wxSpinButton has two small up and down (or left and right) arrow buttons. It is often
used next to a text control for increment and decrementing a value.

Derived from

CHAPTER 4

728

wxControl (p. 130)
wxWindow (p. 915)
wxEvtHandler (p. 240)
wxObject (p. 555)

Include files

<wx/spinbutt.h>

Window styles

wxSP_HORIZONTAL Specifies a horizontal spin button.
wxSP_VERTICAL Specifies a vertical spin button.
wxSP_ARROW_KEYS The user can use arrow keys.
wxSP_WRAP The value wraps at the minimum and maximum.

See also window styles overview (p. 1093).

Event handling

To process input from a spin button, use one of these event handler macros to direct
input to member functions that take a wxScrollEvent (p. 678) argument:

EVT_SPIN(id, func) Catch all scroll commands.
EVT_SPIN_UP(id, func) Catch up (or left) commands. Win32 only.
EVT_SPIN_DOWN(id, func) Catch down (or right) commands. Win32 only.
EVT_COMMAND_TOP(id, func) Catch a command to put the scroll thumb at the

maximum position.
EVT_COMMAND_SCROLL(id, func) Catch all scroll commands.
EVT_COMMAND_TOP(id, func) Catch a command to put the scroll thumb at the

maximum position.
EVT_COMMAND_BOTTOM(id, func) Catch a command to put the scroll thumb at the

maximum position.
EVT_COMMAND_LINEUP(id, func) Catch a line up command.
EVT_COMMAND_LINEDOWN(id, func)Catch a line down command.
EVT_COMMAND_PAGEUP(id, func) Catch a page up command.
EVT_COMMAND_PAGEDOWN(id, func) Catch a page down command.
EVT_COMMAND_THUMBTRACK(id, func) Catch a thumbtrack command

(continuous movement of the scroll thumb).

See also

Event handling overview (p. 1072)

wxSpinButton::wxSpinButton

CHAPTER 4

729

 wxSpinButton()

Default constructor.

 wxSpinButton(wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxSP_HORIZONTAL, const wxValidator& validator = wxDefaultValidator, const
wxString& name = "spinButton")

Constructor, creating and showing a spin button.

Parameters

parent
Parent window. Must not be NULL.

id
Window identifier. A value of -1 indicates a default value.

pos
Window position. If the position (-1, -1) is specified then a default position is
chosen.

size
Window size. If the default size (-1, -1) is specified then a default size is chosen.

style
Window style. See wxSpinButton (p. 727).

validator
Window validator.

name
Window name.

See also

wxSpinButton::Create (p. 729), wxValidator (p. 897)

wxSpinButton::~wxSpinButton

void ~wxSpinButton()

Destructor, destroying the spin button.

wxSpinButton::Create

bool Create(wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =

CHAPTER 4

730

wxSP_HORIZONTAL, const wxValidator& validator = wxDefaultValidator, const
wxString& name = "spinButton")

Scrollbar creation function called by the spin button constructor. See
wxSpinButton::wxSpinButton (p. 728) for details.

wxSpinButton::GetMax

int GetMax() const

Returns the maximum permissable value.

See also

wxSpinButton::SetRange (p. 730)

wxSpinButton::GetMin

int GetMin() const

Returns the minimum permissable value.

See also

wxSpinButton::SetRange (p. 730)

wxSpinButton::GetValue

int GetValue() const

Returns the current spin button value.

See also

wxSpinButton::SetValue (p. 731)

wxSpinButton::SetRange

void SetRange(int min, int max)

Sets the range of the spin button.

Parameters

min
The minimum value for the spin button.

CHAPTER 4

731

max
The maximum value for the spin button.

See also

wxSpinButton::GetMin (p. 730), wxSpinButton::GetMax (p. 730)

wxSpinButton::SetValue

void SetValue(int value)

Sets the value of the spin button.

Parameters

value
The value for the spin button.

See also

wxSpinButton::GetValue (p. 730)

wxSplitterWindow

wxSplitterWindow overview (p. 1044)

This class manages up to two subwindows. The current view can be split into two
programmatically (perhaps from a menu command), and unsplit either programmatically
or via the wxSplitterWindow user interface.

Appropriate 3D shading for the Windows 95 user interface is an option. This is also
recommended for GTK.

Window styles

wxSP_3D Draws a 3D effect border and sash.
wxSP_BORDER Draws a thin black border around the window,

and a black sash.
wxSP_NOBORDER No border, and a black sash.
wxSP_PERMIT_UNSPLIT Always allow to unsplit, even with the minimum

pane size other than zero.
wxSP_LIVE_UPDATE Don't draw XOR line but resize the child

windows immediately.

See also window styles overview (p. 1093).

Derived from

CHAPTER 4

732

wxWindow (p. 915)
wxEvtHandler (p. 240)
wxObject (p. 555)

Include files

<wx/splitter.h>

Event handling

To process input from a splitter control, use the following event handler macros to direct
input to member functions that take a wxSplitterEvent (p. 724) argument.

EVT_SPLITTER_SASH_POS_CHANGING(id, func) The sash position is in the
process of being changed.
May be used to modify the
position of the tracking bar to
properly reflect the position
that would be set if the drag
were to be completed at this
point. Processes a
wxEVT_COMMAND_SPLITT
ER_SASH_POS_CHANGIN
G event.

EVT_SPLITTER_SASH_POS_CHANGED(id, func) The sash position was
changed. May be used to
modify the sash position
before it is set, or to prevent
the change from taking place.
Processes a
wxEVT_COMMAND_SPLITT
ER_SASH_POS_CHANGED
event.

EVT_SPLITTER_UNSPLIT(id, func) The splitter has been just
unsplit. Processes a
wxEVT_COMMAND_SPLITT
ER_UNSPLIT event.

EVT_SPLITTER_DOUBLECLICKED(id, func) The sash was double clicked.
The default behaviour is to
unsplit the window when this
happens (unless the
minimum pane size has been
set to a value greater than
zero). Processes a
wxEVT_COMMAND_SPLITT
ER_DOUBLECLICKED
event.

See also

CHAPTER 4

733

wxSplitterEvent (p. 724)

wxSplitterWindow::wxSplitterWindow

 wxSplitterWindow()

Default constructor.

 wxSplitterWindow(wxWindow* parent, wxWindowID id, const wxPoint& point =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style=wxSP_3D, const
wxString& name = "splitterWindow")

Constructor for creating the window.

Parameters

parent
The parent of the splitter window.

id
The window identifier.

pos
The window position.

size
The window size.

style
The window style. See wxSplitterWindow (p. 731).

name
The window name.

Remarks

After using this constructor, you must create either one or two subwindows with the
splitter window as parent, and then call one of wxSplitterWindow::Initialize (p. 735),
wxSplitterWindow::SplitVertically (p. 739) and wxSplitterWindow::SplitHorizontally (p.
738) in order to set the pane(s).

You can create two windows, with one hidden when not being shown; or you can create
and delete the second pane on demand.

See also

wxSplitterWindow::Initialize (p. 735), wxSplitterWindow::SplitVertically (p. 739),
wxSplitterWindow::SplitHorizontally (p. 738), wxSplitterWindow::Create (p. 734)

CHAPTER 4

734

wxSplitterWindow::~wxSplitterWindow

 ~wxSplitterWindow()

Destroys the wxSplitterWindow and its children.

wxSplitterWindow::Create

bool Create(wxWindow* parent, wxWindowID id, int x, const wxPoint& point =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style=wxSP_3D, const
wxString& name = "splitterWindow")

Creation function, for two-step construction. See wxSplitterWindow::wxSplitterWindow
(p. 733) for details.

wxSplitterWindow::GetMinimumPaneSize

int GetMinimumPaneSize() const

Returns the current minimum pane size (defaults to zero).

See also

wxSplitterWindow::SetMinimumPaneSize (p. 738)

wxSplitterWindow::GetSashPosition

int GetSashPosition()

Returns the current sash position.

See also

wxSplitterWindow::SetSashPosition (p. 737)

wxSplitterWindow::GetSplitMode

int GetSplitMode() const

Gets the split mode.

See also

wxSplitterWindow::SetSplitMode (p. 738), wxSplitterWindow::SplitVertically (p. 739),

CHAPTER 4

735

wxSplitterWindow::SplitHorizontally (p. 738).

wxSplitterWindow::GetWindow1

wxWindow* GetWindow1() const

Returns the left/top or only pane.

wxSplitterWindow::GetWindow2

wxWindow* GetWindow2() const

Returns the right/bottom pane.

wxSplitterWindow::Initialize

void Initialize(wxWindow* window)

Initializes the splitter window to have one pane.

Parameters

window
The pane for the unsplit window.

Remarks

This should be called if you wish to initially view only a single pane in the splitter window.

See also

wxSplitterWindow::SplitVertically (p. 739), wxSplitterWindow::SplitHorizontally (p. 738)

wxSplitterWindow::IsSplit

bool IsSplit() const

Returns TRUE if the window is split, FALSE otherwise.

wxSplitterWindow::OnDoubleClickSash

virtual void OnDoubleClickSash(int x, int y)

Application-overridable function called when the sash is double-clicked with the left
mouse button.

CHAPTER 4

736

Parameters

x
The x position of the mouse cursor.

y
The y position of the mouse cursor.

Remarks

The default implementation of this function calls Unsplit (p. 740) if the minimum pane
size is zero.

See also

wxSplitterWindow::Unsplit (p. 740)

wxSplitterWindow::OnUnsplit

virtual void OnUnsplit(wxWindow* removed)

Application-overridable function called when the window is unsplit, either
programmatically or using the wxSplitterWindow user interface.

Parameters

removed
The window being removed.

Remarks

The default implementation of this function simply hides removed. You may wish to
delete the window.

wxSplitterWindow::OnSashPositionChange

virtual bool OnSashPositionChange(int newSashPosition)

Application-overridable function called when the sash position is changed by user. It
may return FALSE to prevent the change or TRUE to allow it.

Parameters

newSashPosition
The new sash position (always positive or zero)

Remarks

CHAPTER 4

737

The default implementation of this function verifies that the sizes of both panes of the
splitter are greater than minimum pane size.

wxSplitterWindow::ReplaceWindow

bool ReplaceWindow(wxWindow * winOld, wxWindow * winNew)

This function replaces one of the windows managed by the wxSplitterWindow with
another one. It is in general better to use it instead of calling Unsplit() and then resplitting
the window back because it will provoke much less flicker (if any). It is valid to call this
function whether the splitter has two windows or only one.

Both parameters should be non NULL and winOld must specify one of the windows
managed by the splitter. If the parameters are incorrect or the window couldn't be
replaced, FALSE is returned. Otherwise the function will return TRUE, but please notice
that it will not delete the replaced window and you may wish to do it yourself.

See also

wxSplitterWindow::GetMinimumPaneSize (p. 734)

See also

wxSplitterWindow::Unsplit (p. 740)
wxSplitterWindow::SplitVertically (p. 739)
wxSplitterWindow::SplitHorizontally (p. 738)

wxSplitterWindow::SetSashPosition

void SetSashPosition(int position, const bool redraw = TRUE)

Sets the sash position.

Parameters

position
The sash position in pixels.

redraw
If TRUE, resizes the panes and redraws the sash and border.

Remarks

Does not currently check for an out-of-range value.

See also

wxSplitterWindow::GetSashPosition (p. 734)

CHAPTER 4

738

wxSplitterWindow::SetMinimumPaneSize

void SetMinimumPaneSize(int paneSize)

Sets the minimum pane size.

Parameters

paneSize
Minimum pane size in pixels.

Remarks

The default minimum pane size is zero, which means that either pane can be reduced to
zero by dragging the sash, thus removing one of the panes. To prevent this behaviour
(and veto out-of-range sash dragging), set a minimum size, for example 20 pixels. If the
wxSP_PERMIT_UNSPLIT style is used when a splitter window is created, the window
may be unsplit even if minimum size is non-zero.

See also

wxSplitterWindow::GetMinimumPaneSize (p. 734)

wxSplitterWindow::SetSplitMode

void SetSplitMode(int mode)

Sets the split mode.

Parameters

mode
Can be wxSPLIT_VERTICAL or wxSPLIT_HORIZONTAL.

Remarks

Only sets the internal variable; does not update the display.

See also

wxSplitterWindow::GetSplitMode (p. 734), wxSplitterWindow::SplitVertically (p. 739),
wxSplitterWindow::SplitHorizontally (p. 738).

wxSplitterWindow::SplitHorizontally

bool SplitHorizontally(wxWindow* window1, wxWindow* window2, int sashPosition =
0)

CHAPTER 4

739

Initializes the top and bottom panes of the splitter window.

Parameters

window1
The top pane.

window2
The bottom pane.

sashPosition
The initial position of the sash. If this value is positive, it specifies the size of the
upper pane. If it's negative, it's absolute value gives the size of the lower pane.
Finally, specify 0 (default) to choose the default position (half of the total window
height).

Return value

TRUE if successful, FALSE otherwise (the window was already split).

Remarks

This should be called if you wish to initially view two panes. It can also be called at any
subsequent time, but the application should check that the window is not currently split
using IsSplit (p. 735).

See also

wxSplitterWindow::SplitVertically (p. 739), wxSplitterWindow::IsSplit (p. 735),
wxSplitterWindow::Unsplit (p. 740)

wxSplitterWindow::SplitVertically

bool SplitVertically(wxWindow* window1, wxWindow* window2, int sashPosition = 0)

Initializes the left and right panes of the splitter window.

Parameters

window1
The left pane.

window2
The right pane.

sashPosition
The initial position of the sash. If this value is positive, it specifies the size of the
left pane. If it's negative, it's absolute value gives the size of the right pane. Finally,
specify 0 (default) to choose the default position (half of the total window width).

CHAPTER 4

740

Return value

TRUE if successful, FALSE otherwise (the window was already split).

Remarks

This should be called if you wish to initially view two panes. It can also be called at any
subsequent time, but the application should check that the window is not currently split
using IsSplit (p. 735).

See also

wxSplitterWindow::SplitHorizontally (p. 738), wxSplitterWindow::IsSplit (p. 735),
wxSplitterWindow::Unsplit (p. 740).

wxSplitterWindow::Unsplit

bool Unsplit(wxWindow* toRemove = NULL)

Unsplits the window.

Parameters

toRemove
The pane to remove, or NULL to remove the right or bottom pane.

Return value

TRUE if successful, FALSE otherwise (the window was not split).

Remarks

This call will not actually delete the pane being removed; it calls OnUnsplit (p. 736)
which can be overridden for the desired behaviour. By default, the pane being removed
is hidden.

See also

wxSplitterWindow::SplitHorizontally (p. 738), wxSplitterWindow::SplitVertically (p. 739),
wxSplitterWindow::IsSplit (p. 735), wxSplitterWindow::OnUnsplit (p. 736)

wxStaticBitmap

A static bitmap control displays a bitmap.

Derived from

wxControl (p. 130)
wxWindow (p. 915)

CHAPTER 4

741

wxEvtHandler (p. 240)
wxObject (p. 555)

Include files

<wx/statbmp.h>

Window styles

There are no special styles for this control.

See also window styles overview (p. 1093).

See also

wxStaticBitmap (p. 740), wxStaticBox (p. 743)

Remarks

The bitmap to be displayed should have a small number of colours, such as 16, to avoid
palette problems.

wxStaticBitmap::wxStaticBitmap

 wxStaticBitmap()

Default constructor.

 wxStaticBitmap(wxWindow* parent, wxWindowID id, const wxBitmap& label = "",
const wxPoint& pos, const wxSize& size = wxDefaultSize, long style = 0, const
wxString& name = "staticBitmap")

Constructor, creating and showing a text control.

Parameters

parent
Parent window. Should not be NULL.

id
Control identifier. A value of -1 denotes a default value.

label
Bitmap label.

pos
Window position.

CHAPTER 4

742

size
Window size.

style
Window style. See wxStaticBitmap (p. 740).

name
Window name.

See also

wxStaticBitmap::Create (p. 742)

wxStaticBitmap::Create

bool Create(wxWindow* parent, wxWindowID id, const wxBitmap& label = "", const
wxPoint& pos, const wxSize& size = wxDefaultSize, long style = 0, const wxString&
name = "staticBitmap")

Creation function, for two-step construction. For details see
wxStaticBitmap::wxStaticBitmap (p. 741).

wxStaticBitmap::GetBitmap

wxBitmap& GetBitmap() const

Returns a reference to the label bitmap.

See also

wxStaticBitmap::SetBitmap (p. 742)

wxStaticBitmap::SetBitmap

virtual void SetBitmap(const wxBitmap& label)

Sets the bitmap label.

Parameters

label
The new bitmap.

See also

wxStaticBitmap::GetBitmap
wxstaticbitmapgetbitmap

CHAPTER 4

743

wxStaticBox

A static box is a rectangle drawn around other panel items to denote a logical grouping
of items.

Derived from

wxControl (p. 130)
wxWindow (p. 915)
wxEvtHandler (p. 240)
wxObject (p. 555)

Include files

<wx/statbox.h>

Window styles

There are no special styles for this control.

See also window styles overview (p. 1093).

See also

wxStaticText (p. 746)

wxStaticBox::wxStaticBox

 wxStaticBox()

Default constructor.

 wxStaticBox(wxWindow* parent, wxWindowID id, const wxString& label, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
0, const wxString& name = "staticBox")

Constructor, creating and showing a static box.

Parameters

parent
Parent window. Must not be NULL.

id
Window identifier. A value of -1 indicates a default value.

label

CHAPTER 4

744

Text to be displayed in the static box, the empty string for no label.

pos
Window position. If the position (-1, -1) is specified then a default position is
chosen.

size
Checkbox size. If the size (-1, -1) is specified then a default size is chosen.

style
Window style. See wxStaticBox (p. 743).

name
Window name.

See also

wxStaticBox::Create (p. 744)

wxStaticBox::~wxStaticBox

void ~wxStaticBox()

Destructor, destroying the group box.

wxStaticBox::Create

bool Create(wxWindow* parent, wxWindowID id, const wxString& label, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
0, const wxString& name = "staticBox")

Creates the static box for two-step construction. See wxStaticBox::wxStaticBox (p. 743)
for further details.

wxStaticLine

A static line is just a line which may be used in a dialog to separate the groups of
controls. The line may be only vertical or horizontal.

Derived from

wxControl (p. 130)
wxWindow (p. 915)
wxEvtHandler (p. 240)
wxObject (p. 555)

Include files

CHAPTER 4

745

<wx/statline.h>

Window styles

wxLI_HORIZONTAL Creates a horizontal line.
wxLI_VERTICAL Creates a vertical line.

See also

wxStaticBox (p. 743)

wxStaticLine::wxStaticLine

 wxStaticLine()

Default constructor.

 wxStaticLine(wxWindow* parent, wxWindowID id, const wxString& label, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxLI_HORIZONTAL, const wxString& name = "staticLine")

Constructor, creating and showing a static line.

Parameters

parent
Parent window. Must not be NULL.

id
Window identifier. A value of -1 indicates a default value.

pos
Window position. If the position (-1, -1) is specified then a default position is
chosen.

size
Size. Note that either the height or the width (depending on whether the line if
horizontal or vertical) is ignored.

style
Window style (either wxLI_HORIZONTAL or wxLI_VERTICAL).

name
Window name.

See also

CHAPTER 4

746

wxStaticLine::Create (p. 746)

wxStaticLine::Create

bool Create(wxWindow* parent, wxWindowID id, const wxString& label, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
0, const wxString& name = "staticLine")

Creates the static line for two-step construction. See wxStaticLine::wxStaticLine (p. 745)
for further details.

wxStaticLine::IsVertical

bool IsVertical() const

Returns TRUE if the line is vertical, FALSE if horizontal.

wxStaticLine::GetDefaultSize

int GetDefaultSize()

This static function returns the size which will be given to the smaller dimension of the
static line, i.e. its height for a horizontal line or its width for a vertical one.

wxStaticText

A static text control displays one or more lines of read-only text.

Derived from

wxControl (p. 130)
wxWindow (p. 915)
wxEvtHandler (p. 240)
wxObject (p. 555)

Include files

<wx/stattext.h>

Window styles

wxALIGN_LEFT Align the text to the left
wxALIGN_RIGHT Align the text to the right
wxALIGN_CENTRE Center the text (horisontally)
wxST_NO_AUTORESIZE By default, the control will adjust its size to exactly fit to the

size of the text when SetLabel (p. 748) is called. If this style
flag is given, the control will not change its size (this style is

CHAPTER 4

747

especially useful with controls which also have
wxALIGN_RIGHT or CENTER style because otherwise
they won't make sense any longer after a call to SetLabel)

See also window styles overview (p. 1093).

See also

wxStaticBitmap (p. 740), wxStaticBox (p. 743)

wxStaticText::wxStaticText

 wxStaticText()

Default constructor.

 wxStaticText(wxWindow* parent, wxWindowID id, const wxString& label = "", const
wxPoint& pos, const wxSize& size = wxDefaultSize, long style = 0, const wxString&
name = "staticText")

Constructor, creating and showing a text control.

Parameters

parent
Parent window. Should not be NULL.

id
Control identifier. A value of -1 denotes a default value.

label
Text label.

pos
Window position.

size
Window size.

style
Window style. See wxStaticText (p. 746).

name
Window name.

See also

CHAPTER 4

748

wxStaticText::Create (p. 748)

wxStaticText::Create

bool Create(wxWindow* parent, wxWindowID id, const wxString& label = "", const
wxPoint& pos, const wxSize& size = wxDefaultSize, long style = 0, const wxString&
name = "staticText")

Creation function, for two-step construction. For details see wxStaticText::wxStaticText
(p. 747).

wxStaticText::GetLabel

wxString GetLabel() const

Returns the contents of the control.

wxStaticText::SetLabel

virtual void SetLabel(const wxString& label)

Sets the static text label and updates the controls size to exactly fit the label unless the
control has wxST_NO_AUTORESIZE flag.

Parameters

label
The new label to set. It may contain newline characters.

wxStatusBar

A status bar is a narrow window that can be placed along the bottom of a frame to give
small amounts of status information. It can contain one or more fields, one or more of
which can be variable length according to the size of the window.

wxWindow (p. 915)
wxEvtHandler (p. 240)
wxObject (p. 555)

Derived from

wxWindow (p. 915)
wxEvtHandler (p. 240)
wxObject (p. 555)

Include files

CHAPTER 4

749

<wx/statusbr.h>

Window styles

wxSB_SIZEGRIP On Windows 95, displays a gripper at right-hand side of the
status bar.

See also window styles overview (p. 1093).

Remarks

It is possible to create controls and other windows on the status bar. Position these
windows from an OnSize event handler.

See also

wxFrame (p. 299)

wxStatusBar::wxStatusBar

 wxStatusBar()

Default constructor.

 wxStatusBar(wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style = 0, const
wxString& name = "statusBar")

Constructor, creating the window.

Parameters

parent
The window parent, usually a frame.

id
The window identifier. It may take a value of -1 to indicate a default value.

pos
The window position. A value of (-1, -1) indicates a default position, chosen by
either the windowing system or wxWindows, depending on platform.

size
The window size. A value of (-1, -1) indicates a default size, chosen by either the
windowing system or wxWindows, depending on platform.

style

CHAPTER 4

750

The window style. See wxStatusBar (p. 748).

name
The name of the window. This parameter is used to associate a name with the
item, allowing the application user to set Motif resource values for individual
windows.

See also

wxStatusBar::Create (p. 750)

wxStatusBar::~wxStatusBar

void ~wxStatusBar()

Destructor.

wxStatusBar::Create

bool Create(wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style = 0, const
wxString& name = "statusBar")

Creates the window, for two-step construction.

See wxStatusBar::wxStatusBar (p. 749) for details.

wxStatusBar::GetFieldRect

virtual bool GetFieldRect(int i, wxRect& rect) const

Returns the size and position of a fields internal bounding rectangle.

Parameters

i
The field in question.

rect
The rectangle values are placed in this variable.

Return value

TRUE if the field index is valid, FALSE otherwise.

See also

CHAPTER 4

751

wxRect (p. 637)

wxStatusBar::GetFieldsCount

int GetFieldsCount() const

Returns the number of fields in the status bar.

wxStatusBar::GetStatusText

virtual wxString GetStatusText(int ir = 0) const

Returns the string associated with a status bar field.

Parameters

i
The number of the status field to retrieve, starting from zero.

Return value

The status field string if the field is valid, otherwise the empty string.

See also

wxStatusBar::SetStatusText (p. 753)

wxStatusBar::DrawField

virtual void DrawField(wxDC& dc, int i)

Draws a field, including shaded borders and text.

Parameters

dc
The device context to draw onto.

i
The field to be drawn.

See also

wxStatusBar::DrawFieldText (p. 751)

wxStatusBar::DrawFieldText

CHAPTER 4

752

virtual void DrawFieldText(wxDC& dc, int i)

Draws a field's text.

Parameters

dc
The device context to draw onto.

i
The field whose text is to be drawn.

See also

wxStatusBar::DrawField (p. 751)

wxStatusBar::InitColours

virtual void InitColours()

Sets up the background colour and shading pens using suitable system colours
(Windows) or tasteful shades of grey (other platforms).

Remarks

This function is called when the window is created, and also from
wxStatusBar::OnSysColourChanged (p. 752) on Windows.

See also

wxStatusBar::OnSysColourChanged (p. 752)

wxStatusBar::OnSysColourChanged

void OnSysColourChanged(wxSysColourChangedEvent& event)

Handles a system colour change by calling wxStatusBar::InitColours (p. 752), and
refreshes the window.

Parameters

event
The colour change event.

See also

wxStatusBar::InitColours (p. 752)

CHAPTER 4

753

wxStatusBar::SetFieldsCount

virtual void SetFieldsCount(int number = 1, int* widths = NULL)

Sets the number of fields, and optionally the field widths.

Parameters

number
The number of fields.

widths
An array of n integers, each of which is a status field width in pixels. A value of -1
indicates that the field is variable width; at least one field must be -1.

wxStatusBar::SetStatusText

virtual void SetStatusText(const wxString& text, int i = 0)

Sets the text for one field.

Parameters

text
The text to be set. Use an empty string ("") to clear the field.

i
The field to set, starting from zero.

See also

wxStatusBar::GetStatusText (p. 751), wxFrame::SetStatusText (p. 309)

wxStatusBar::SetStatusWidths

virtual void SetStatusWidths(int n, int *widths)

Sets the widths of the fields in the status line.

Parameters

n
The number of fields in the status bar.

widths
Must contain an array of n integers, each of which is a status field width in pixels. A
value of -1 indicates that the field is variable width; at least one field must be -1.

CHAPTER 4

754

You should delete this array after calling SetStatusWidths.

Remarks

The widths of the variable fields are calculated from the total width of all fields, minus the
sum of widths of the non-variable fields, divided by the number of variable fields.

See also

wxStatusBar::SetFieldsCount (p. 753), wxFrame::SetStatusWidths (p. 310)

wxStreamBase

Derived from

None

Include files

<wx/stream.h>

See also

wxStreamBuffer (p. 755)

wxStreamBase::wxStreamBase

 wxStreamBase()

Creates a dummy stream object. It doesn't do anything.

wxStreamBase::~wxStreamBase

 ~wxStreamBase()

Destructor.

wxStreamBase::LastError

wxStreamError LastError() const

This function returns the last error.wxStream_NOERROR No error occured.
wxStream_EOF An End-Of-File occured.
wxStream_WRITE_ERR A generic error occured on the last write call.
wxStream_READ_ERR A generic error occured on the last read call.

CHAPTER 4

755

wxStreamBase::OnSysRead

size_t OnSysRead(void* buffer, size_t bufsize)

Internal function. It is called when the stream buffer needs a buffer of the specified size.
It should return the size that was actually read.

wxStreamBase::OnSysSeek

off_t OnSysSeek(off_t pos, wxSeekMode mode)

Internal function. It is called when the stream buffer needs to change the current position
in the stream. See wxStreamBuffer::Seek (p. 759)

wxStreamBase::OnSysTell

off_t OnSysTell() const

Internal function. Is is called when the stream buffer needs to know the real position in
the stream.

wxStreamBase::OnSysWrite

size_t OnSysWrite(void *buffer, size_t bufsize)

See OnSysRead (p. 755).

wxStreamBase::GetSize

size_t GetSize() const

This function returns the size of the stream. For example, for a file it is the size of the
file).

Warning

There are streams which do not have size by definition, such as socket streams. In that
cases, GetSize returns an invalid size represented by

~(size_t)0

wxStreamBuffer

CHAPTER 4

756

Derived from

None

Include files

<wx/stream.h>

See also

wxStreamBase (p. 754)

wxStreamBuffer::wxStreamBuffer

 wxStreamBuffer(wxStreamBase& stream, BufMode mode)

Constructor, creates a new stream buffer using stream as a parent stream and mode as
the IO mode. mode can be: wxStreamBuffer::read, wxStreamBuffer::write,
wxStreamBuffer::read_write. One stream can have many stream buffers but only one is
used internally to pass IO call (e.g. wxInputStream::Read() -> wxStreamBuffer::Read()).
But you can call directly wxStreamBuffer::Read without any problems.

Warning

All errors and messages linked to the stream are stored in the stream object.

 streambuffer.Read(...);
 streambuffer2.Read(...); /* This one erases previous error messages
set by
 ``streambuffer'' */

 wxStreamBuffer(BufMode mode)

Constructor, creates a new empty stream buffer which won't flush any data to a stream.
mode specifies the type of the buffer (read, write, read_write). This stream buffer has the
advantage to be stream independent and to work only on memory buffers but it is still
compatible with the rest of the wxStream classes. You can write, read to this special
stream and it will grow (if it is allowed by the user) its internal buffer. Briefly, it has all
functionality of a "normal'' stream.

Warning

The "read_write" mode may not work: it isn't completely finished. You can create
"memory" streams by this way:

 wxStreamBuffer *sb = new wxStreamBuffer(wxStreamBuffer::read)
 wxInputStream *input = new wxInputStream(sb);

CHAPTER 4

757

 sb->Fixed(FALSE); // It can change the size of the buffer.

 // input is now a read-only memory stream.

But you should take care when destroying the stream buffer yourself.

 wxStreamBuffer(const wxStreamBuffer&buffer)

Constructor. It initializes the stream buffer with the data of the specified stream buffer.
The new stream buffer is nearly exactly the same as the original: it has the same
attributes, the same size, the same position, shares the same internal buffer. The
interresting point is that they can differ in the future but the root is the same.

Warning

The fact that the two stream buffers shared the same buffer could generate
segmentation violation if the parent is destroyed and the children continues operating. It
is advised to use this feature only in very local area of the program.

See also

wxStreamBuffer:SetBufferIO (p. 759)

wxStreamBuffer::~wxStreamBuffer

 wxStreamBuffer(~wxStreamBuffer)

Destructor. It finalizes all IO calls and frees all internal buffers if necessary. In the case
of a children stream buffer, the internal buffer isn't freed, this is the job of the parent. The
"Write-Back" buffer is freed.

wxStreamBuffer::Read

size_t Read(void *buffer, size_t size)

Reads a block of the specified size and stores datas in buffer. This function uses also
the "Write-Back" buffer: in the case there are datas waiting in this buffer, they are used
before anything else. After that, if there are still datas to be read, the stream is read and
the stream buffer position is incremented.

Return value

It returns the real read size. If returned size is different of the specified size, an error
occured and should be tested using LastError (p. 754).

See also

wxStreamBuffer::Write (p. 758)

CHAPTER 4

758

size_t Read(wxStreamBuffer *buffer)

Reads a buffer. The function returns when buffer is full or when there aren't datas
anymore in the current buffer.

wxStreamBuffer::Write

size_t Write(const void *buffer, size_t size)

Writes a block of the specified size using datas of buffer. The datas are cached in a
buffer before being sent in one block to the stream.

size_t Write(wxStreamBuffer *buffer)

See Read (p. 757).

wxStreamBuffer::GetChar

char GetChar()

Gets a single char from the stream buffer. It acts like the Read call.

Problem

You aren't directly notified if an error occured during the IO call.

See also

wxStreamBuffer::Read (p. 757)

wxStreamBuffer::PutChar

void PutChar(char c)

Puts a single char to the stream buffer.

Problem

You aren't directly notified if an error occured during the IO call.

See also

wxStreamBuffer::Read (p. 758)

wxStreamBuffer::Tell

CHAPTER 4

759

off_t Tell() const

Gets the current position in the stream. This position is calculated from the real position
in the stream and from the internal buffer position: so it gives you the position in the real
stream counted from the start of the stream.

Return value

Returns the current position in the stream if possible, wxInvalidOffset in the other case.

wxStreamBuffer::Seek

off_t Seek(off_t pos, wxSeekMode mode)

Changes the current position.

mode may be one of the following:

wxFromStart The position is counted from the start of the stream.
wxFromCurrent The position is counted from the current position of the

stream.
wxFromEnd The position is counted from the end of the stream.

Return value

Upon successful completion, it returns the new offset as measured in bytes from the
beginning of the stream. Otherwise, it returns wxInvalidOffset.

wxStreamBuffer::ResetBuffer

void ResetBuffer()

Resets to the initial state variables concerning the buffer.

wxStreamBuffer::SetBufferIO

void SetBufferIO(char* buffer_start, char* buffer_end)

Specifies which pointers to use for stream buffering. You need to pass a pointer on the
start of the buffer end and another on the end. The object will use this buffer to cache
stream data. It may be used also as a source/destination buffer when you create an
empty stream buffer (See wxStreamBuffer::wxStreamBuffer (p. 756)).

Remarks

When you use this function, you'll have to destroy the IO buffers yourself after the

CHAPTER 4

760

stream buffer is destroyed or don't use it anymore. In the case you use it with an empty
buffer, the stream buffer will not grow it when it is full.

See also

wxStreamBuffer constructor (p. 756)
wxStreamBuffer::Fixed (p. 761)
wxStreamBuffer::Flushable (p. 761)

void SetBufferIO(size_t bufsize)

Destroys or invalidates the previous IO buffer and allocates a new one of the specified
size.

Warning

All previous pointers aren't valid anymore.

Remark

The created IO buffer is growable by the object.

See also

wxStreamBuffer::Fixed (p. 761)
wxStreamBuffer::Flushable (p. 761)

wxStreamBuffer::GetBufferStart

char * GetBufferStart() const

Returns a pointer on the start of the stream buffer.

wxStreamBuffer::GetBufferEnd

char * GetBufferEnd() const

Returns a pointer on the end of the stream buffer.

wxStreamBuffer::GetBufferPos

char * GetBufferPos() const

Returns a pointer on the current position of the stream buffer.

wxStreamBuffer::GetIntPosition

CHAPTER 4

761

off_t GetIntPosition() const

Returns the current position (counted in bytes) in the stream buffer.

wxStreamBuffer::SetIntPosition

void SetIntPosition()

Sets the current position (in bytes) in the stream buffer.

Warning

Since it is a very low-level function, there is no check on the position: specify an invalid
position can induce unexpected results.

wxStreamBuffer::GetLastAccess

size_t GetLastAccess() const

Returns the amount of bytes read during the last IO call to the parent stream.

wxStreamBuffer::Fixed

void Fixed(bool fixed)

Toggles the fixed flag. Usually this flag is toggled at the same time as flushable. This flag
allows (when it has the FALSE value) or forbids (when it has the TRUE value) the
stream buffer to resize dynamically the IO buffer.

See also

wxStreamBuffer::SetBufferIO (p. 759)

wxStreamBuffer::Flushable

void Flushable(bool flushable)

Toggles the flushable flag. If flushable is disabled, no datas are sent to the parent
stream.

wxStreamBuffer::FlushBuffer

bool FlushBuffer()

CHAPTER 4

762

Flushes the IO buffer.

wxStreamBuffer::FillBuffer

bool FillBuffer()

Fill the IO buffer.

wxStreamBuffer::GetDataLeft

size_t GetDataLeft()

Returns the amount of available datas in the buffer.

wxStreamBuffer::Stream

wxStreamBase* Stream()

Returns the parent stream of the stream buffer.

wxString

wxString is a class representing a character string. Please see the wxString overview (p.
1027) for more information about it. As explained there, wxString implements about 90%
of methods of the std::string class (iterators are not supported, nor all methods which
use them). These standard functions are not documented in this manual so please see
the STL documentation. The behaviour of all these functions is identical to the behaviour
described there.

Derived from

None

Include files

<wx/string.h>

Predefined objects

Objects:

wxEmptyString

See also

Overview (p. 1027)

CHAPTER 4

763

Constructors and assignment operators

A strign may be constructed either from a C string, (some number of copies of) a single
character or a wide (UNICODE) string. For all constructors (except the default which
creates an empty string) there is also a corresponding assignment operator.

wxString (p. 769)
operator = (p. 780)
~wxString (p. 769)

String length

These functions return the string length and check whether the string is empty or empty
it.

Len (p. 776)
IsEmpty (p. 774)
operator! (p. 780)
Empty (p. 772)
Clear (p. 771)

Character access

Many functions in this section take a character index in the string. As with C strings
and/or arrays, the indices start from 0, so the first character of a string is string[0].
Attempt to access a character beyond the end of the string (which may be even 0 if the
string is empty) will provocate an assert failure in debug build (p. 1060), but no checks
are done in release builds.

This section also contains both implicit and explicit conversions to C style strings.
Although implicit conversion is quite convenient, it is advised to use explicit c_str() (p.
771) method for the sake of clarity. Also see overview (p. 1028) for the cases where it is
necessary to use it.

GetChar (p. 773)
GetWritableChar (p. 773)
SetChar (p. 778)
Last (p. 775)
operator [] (p. 781)
c_str (p. 771)
operator const char* (p. 782)

Concatenation

CHAPTER 4

764

Anything may be concatenated (appended to) with a string. However, you can't append
something to a C string (including literal constants), so to do this it should be converted
to a wxString first.

operator << (p. 781)
operator += (p. 781)
operator + (p. 780)
Append (p. 770)
Prepend (p. 777)

Comparison

The default comparison function Cmp (p. 771) is case-sensitive and so is the default
version of IsSameAs (p. 775). For case insensitive comparisons you should use
CmpNoCase (p. 772) or give a second parameter to IsSameAs. This last function is may
be more convenient if only equality of the strings matters because it returns a boolean
true value if the strings are the same and not 0 (which is usually FALSE in C) as Cmp
does.

Matches (p. 776) is a poor man's regular expression matcher: it only understands '*' and
'?' metacharacters in the sense of DOS command line interpreter.

Cmp (p. 771)
CmpNoCase (p. 772)
IsSameAs (p. 775)
Matches (p. 776)

Substring extraction

These functions allow to extract substring from this string. All of them don't modify the
original string and return a new string containing the extracted substring.

Mid (p. 777)
operator() (p. 781)
Left (p. 775)
Right (p. 778)
BeforeFirst (p. 771)
BeforeLast (p. 771)
AfterFirst (p. 770)
AfterLast (p. 770)

Case conversion

The MakeXXX() variants modify the string in place, while the other functions return a
new string which containts the original text converted to the upper or lower case and
leave the original string unchanged.

CHAPTER 4

765

MakeUpper (p. 776)
Upper (p. 779)
MakeLower (p. 776)
Lower (p. 776)

Searching and replacing

These functions replace the standard strchr() and strstr() functions.

Find (p. 772)
Replace (p. 778)

Writing values into the string

Both formatted versions (Printf (p. 777)) and stream-like insertion operators exist (for
basic types only).

Printf (p. 777)
PrintfV (p. 777)
operator << (p. 781)

Memory management

These are "advanced" functions and they will be needed quite rarily. Alloc (p. 769) and
Shrink (p. 778) are only interesting for optimization purposes. GetWriteBuf (p. 773) may
be very useful when working with some external API which requires the caller to provide
a writable buffer, but extreme care should be taken when using it: before performing any
other operation on the string UngetWriteBuf (p. 779) must be called!

Alloc (p. 769)
Shrink (p. 778)
GetWriteBuf (p. 773)
UngetWriteBuf (p. 779)

Miscellaneous

Other string functions.

Trim (p. 779)
Pad (p. 777)
Truncate (p. 779)

wxWindows 1.xx compatiblity functions

These functiosn are deprecated, please consider using new wxWindows 2.0 functions

CHAPTER 4

766

instead of them (or, even better, std::string compatible variants).

SubString (p. 779)
sprintf (p. 779)
CompareTo (p. 772)
Length (p. 776)
Freq (p. 773)
LowerCase (p. 776)
UpperCase (p. 780)
Strip (p. 779)
Index (p. 774)
Remove (p. 778)
First (p. 773)
Last (p. 775)
Contains (p. 772)
IsNull (p. 774)
IsAscii (p. 774)
IsNumber (p. 774)
IsWord (p. 775)

std::string compatibility functions

The supported functions are only listed here, please see any STL reference for their
documentation.

 // take nLen chars starting at nPos
 wxString(const wxString& str, size_t nPos, size_t nLen);
 // take all characters from pStart to pEnd (poor man's iterators)
 wxString(const void *pStart, const void *pEnd);

 // lib.string.capacity
 // return the length of the string
 size_t size() const;
 // return the length of the string
 size_t length() const;
 // return the maximum size of the string
 size_t max_size() const;
 // resize the string, filling the space with c if c != 0
 void resize(size_t nSize, char ch = '\0');
 // delete the contents of the string
 void clear();
 // returns true if the string is empty
 bool empty() const;

 // lib.string.access
 // return the character at position n
 char at(size_t n) const;
 // returns the writable character at position n
 char& at(size_t n);

 // lib.string.modifiers
 // append a string
 wxString& append(const wxString& str);

CHAPTER 4

767

 // append elements str[pos], ..., str[pos+n]
 wxString& append(const wxString& str, size_t pos, size_t n);
 // append first n (or all if n == npos) characters of sz
 wxString& append(const char *sz, size_t n = npos);

 // append n copies of ch
 wxString& append(size_t n, char ch);

 // same as `this_string = str'
 wxString& assign(const wxString& str);
 // same as ` = str[pos..pos + n]
 wxString& assign(const wxString& str, size_t pos, size_t n);
 // same as `= first n (or all if n == npos) characters of sz'
 wxString& assign(const char *sz, size_t n = npos);
 // same as `= n copies of ch'
 wxString& assign(size_t n, char ch);

 // insert another string
 wxString& insert(size_t nPos, const wxString& str);
 // insert n chars of str starting at nStart (in str)
 wxString& insert(size_t nPos, const wxString& str, size_t nStart,
size_t n);

 // insert first n (or all if n == npos) characters of sz
 wxString& insert(size_t nPos, const char *sz, size_t n = npos);
 // insert n copies of ch
 wxString& insert(size_t nPos, size_t n, char ch);

 // delete characters from nStart to nStart + nLen
 wxString& erase(size_t nStart = 0, size_t nLen = npos);

 // replaces the substring of length nLen starting at nStart
 wxString& replace(size_t nStart, size_t nLen, const char* sz);
 // replaces the substring with nCount copies of ch
 wxString& replace(size_t nStart, size_t nLen, size_t nCount, char
ch);
 // replaces a substring with another substring
 wxString& replace(size_t nStart, size_t nLen,
 const wxString& str, size_t nStart2, size_t nLen2);
 // replaces the substring with first nCount chars of sz
 wxString& replace(size_t nStart, size_t nLen,
 const char* sz, size_t nCount);

 // swap two strings
 void swap(wxString& str);

 // All find() functions take the nStart argument which specifies
the
 // position to start the search on, the default value is 0. All
functions
 // return npos if there were no match.

 // find a substring
 size_t find(const wxString& str, size_t nStart = 0) const;

 // find first n characters of sz
 size_t find(const char* sz, size_t nStart = 0, size_t n = npos)

CHAPTER 4

768

const;

 // find the first occurence of character ch after nStart
 size_t find(char ch, size_t nStart = 0) const;

 // rfind() family is exactly like find() but works right to left

 // as find, but from the end
 size_t rfind(const wxString& str, size_t nStart = npos) const;

 // as find, but from the end
 size_t rfind(const char* sz, size_t nStart = npos,
 size_t n = npos) const;
 // as find, but from the end
 size_t rfind(char ch, size_t nStart = npos) const;

 // find first/last occurence of any character in the set

 //
 size_t find_first_of(const wxString& str, size_t nStart = 0) const;
 //
 size_t find_first_of(const char* sz, size_t nStart = 0) const;
 // same as find(char, size_t)
 size_t find_first_of(char c, size_t nStart = 0) const;
 //
 size_t find_last_of (const wxString& str, size_t nStart = npos)
const;
 //
 size_t find_last_of (const char* s, size_t nStart = npos) const;
 // same as rfind(char, size_t)
 size_t find_last_of (char c, size_t nStart = npos) const;

 // find first/last occurence of any character not in the set

 //
 size_t find_first_not_of(const wxString& str, size_t nStart = 0)
const;
 //
 size_t find_first_not_of(const char* s, size_t nStart = 0) const;
 //
 size_t find_first_not_of(char ch, size_t nStart = 0) const;
 //
 size_t find_last_not_of(const wxString& str, size_t nStart=npos)
const;
 //
 size_t find_last_not_of(const char* s, size_t nStart = npos) const;
 //
 size_t find_last_not_of(char ch, size_t nStart = npos) const;

 // All compare functions return a negative, zero or positive value
 // if the [sub]string is less, equal or greater than the compare()
argument.

 // just like strcmp()
 int compare(const wxString& str) const;
 // comparison with a substring
 int compare(size_t nStart, size_t nLen, const wxString& str) const;

CHAPTER 4

769

 // comparison of 2 substrings
 int compare(size_t nStart, size_t nLen,
 const wxString& str, size_t nStart2, size_t nLen2) const;
 // just like strcmp()
 int compare(const char* sz) const;
 // substring comparison with first nCount characters of sz
 int compare(size_t nStart, size_t nLen,
 const char* sz, size_t nCount = npos) const;

 // substring extraction
 wxString substr(size_t nStart = 0, size_t nLen = npos) const;

wxString::wxString

 wxString()

Default constructor.

 wxString(const wxString& x)

Copy constructor.

 wxString(char ch, size_t n = 1)

Constructs a string of n copies of character ch.

 wxString(const char* psz, size_t nLength = wxSTRING_MAXLEN)

Takes first nLength characters from the C string psz. The default value of
wxSTRING_MAXLEN means take all the string.

 wxString(const unsigned char* psz, size_t nLength = wxSTRING_MAXLEN)

For compilers using unsigned char: takes first nLength characters from the C string psz.
The default value of wxSTRING_MAXLEN means take all the string.

 wxString(const wchar_t* psz)

Constructs a string from the wide (UNICODE) string.

wxString::~wxString

 ~wxString()

String destructor. Note that this is not virtual, so wxString must not be inherited from.

wxString::Alloc

CHAPTER 4

770

void Alloc(size_t nLen)

Preallocate enough space for wxString to store nLen characters. This function may be
used to increase speed when the string is constructed by repeated concatenation as in

// delete all vowels from the string
wxString DeleteAllVowels(const wxString& original)
{
 wxString result;

 size_t len = original.length();

 result.Alloc(len);

 for (size_t n = 0; n < len; n++)
 {
 if (strchr("aeuio", tolower(original[n])) == NULL)
 result += original[n];
 }

 return result;
}

because it will avoid the need of reallocating string memory many times (in case of long
strings). Note that it does not set the maximal length of a string - it will still expand if
more than nLen characters are stored in it. Also, it does not truncate the existing string
(use Truncate() (p. 779) for this) even if its current length is greater than nLen

wxString::Append

wxString& Append(const char* psz)

Concatenates psz to this string, returning a reference to it.

wxString& Append(char ch, int count = 1)

Concatenates character ch to this string, count times, returning a reference to it.

wxString::AfterFirst

wxString AfterFirst(char ch) const

Gets all the characters after the first occurence of ch. Returns the empty string if ch is
not found.

wxString::AfterLast

CHAPTER 4

771

wxString AfterLast(char ch) const

Gets all the characters after the last occurence of ch. Returns the whole string if ch is not
found.

wxString::BeforeFirst

wxString BeforeFirst(char ch) const

Gets all characters before the first occurence of ch. Returns the whole string if ch is not
found.

wxString::BeforeLast

wxString BeforeLast(char ch) const

Gets all characters before the last occurence of ch. Returns the empty string if ch is not
found.

wxString::c_str

const char * c_str() const

Returns a pointer to the string data.

wxString::Clear

void Clear()

Empties the string and frees memory occupied by it.

See also: Empty (p. 772)

wxString::Cmp

int Cmp(const char* psz) const

Case-sensitive comparison.

Returns a positive value if the string is greater than the argument, zero if it si equal to it
or negative value if it is less than argument (same semantics as the standard strcmp()
function).

See also CmpNoCase (p. 772), IsSameAs (p. 775).

CHAPTER 4

772

wxString::CmpNoCase

int CmpNoCase(const char* psz) const

Case-insensitive comparison.

Returns a positive value if the string is greater than the argument, zero if it si equal to it
or negative value if it is less than argument (same semantics as the standard strcmp()
function).

See also Cmp (p. 771), IsSameAs (p. 775).

wxString::CompareTo

#define NO_POS ((int)(-1)) // undefined position
enum caseCompare {exact, ignoreCase};

int CompareTo(const char* psz, caseCompare cmp = exact) const

Case-sensitive comparison. Returns 0 if equal, 1 if greater or -1 if less.

wxString::Contains

bool Contains(const wxString& str) const

Returns 1 if target appears anyhere in wxString; else 0.

wxString::Empty

void Empty()

Makes the string empty, but doesn't free memory occupied by the string.

See also: Clear() (p. 771).

wxString::Find

int Find(char ch, bool fromEnd = FALSE) const

Searches for the given character. Returns the starting index, or -1 if not found.

int Find(const char* sz) const

Searches for the given string. Returns the starting index, or -1 if not found.

CHAPTER 4

773

wxString::First

size_t First(char c)

size_t First(const char* psz) const

size_t First(const wxString& str) const

size_t First(const char ch) const

Returns the first occurrence of the item.

wxString::Freq

int Frec(char ch) const

Returns the number of occurences of it ch in the string.

wxString::GetChar

char GetChar(size_t n) const

Returns the character at position n (read-only).

wxString::GetData

const char* GetData() const

wxWindows compatibility conversion. Returns a constant pointer to the data in the string.

wxString::GetWritableChar

char& GetWritableChar(size_t n)

Returns a reference to the character at position n.

wxString::GetWriteBuf

char* GetWriteBuf(size_t len)

Returns a writable buffer of at least len bytes.

Call wxString::UngetWriteBuf (p. 779) as soon as possible to put the string back into a
reasonable state.

CHAPTER 4

774

wxString::Index

size_t Index(char ch, int startpos = 0) const

Same as wxString::Find (p. 772).

size_t Index(const char* sz) const

Same as wxString::Find (p. 772).

size_t Index(const char* sz, bool caseSensitive = TRUE, bool fromEnd = FALSE)
const

Search the element in the array, starting from either side.

If fromEnd is TRUE, reverse search direction.

If caseSensitive, comparison is case sensitive (the default).

Returns the index of the first item matched, or NOT_FOUND.

wxString::IsAscii

bool IsAscii() const

Returns TRUE if the string is ASCII.

wxString::IsEmpty

bool IsEmpty() const

Returns TRUE if the string is NULL.

wxString::IsNull

bool IsNull() const

Returns TRUE if the string is NULL (same as IsEmpty).

wxString::IsNumber

bool IsNumber() const

Returns TRUE if the string is a number.

CHAPTER 4

775

wxString::IsSameAs

bool IsSameAs(const char* psz, bool caseSensitive = TRUE) const

Test for string equality, case-sensitive (default) or not.

caseSensitive is TRUE by default (case matters).

Returns TRUE if strings are equal, FALSE otherwise.

See also Cmp (p. 771), CmpNoCase (p. 772), IsSameAs (p. 775)

wxString::IsSameAs

bool IsSameAs(char c, bool caseSensitive = TRUE) const

Test whether the string is equal to the single character c. The test is case-sensitive if
caseSensitive is TRUE (default) or not if it is FALSE.

Returns TRUE if the string is equal to the character, FALSE otherwise.

See also Cmp (p. 771), CmpNoCase (p. 772), IsSameAs (p. 775)

wxString::IsWord

bool IsWord() const

Returns TRUE if the string is a word. TODO: what's the definition of a word?

wxString::Last

char Last() const

Returns the last character.

char& Last()

Returns a reference to the last character (writable).

wxString::Left

wxString Left(size_t count) const

Returns the first count characters.

CHAPTER 4

776

wxString Left(char ch) const

Returns all characters before the first occurence of ch. Returns the whole string if ch is
not found.

wxString::Len

size_t Len() const

Returns the length of the string.

wxString::Length

size_t Length() const

Returns the length of the string (same as Len).

wxString::Lower

wxString Lower() const

Returns this string converted to the lower case.

wxString::LowerCase

void LowerCase()

Same as MakeLower.

wxString::MakeLower

void MakeLower()

Converts all characters to lower case.

wxString::MakeUpper

void MakeUpper()

Converts all characters to upper case.

wxString::Matches

CHAPTER 4

777

bool Matches(const char* szMask) const

Returns TRUE if the string contents matches a mask containing '*' and '?'.

wxString::Mid

wxString Mid(size_t first, size_t count = wxSTRING_MAXLEN) const

Returns a substring starting at first, with length count, or the rest of the string if count is
the default value.

wxString::Pad

wxString& Pad(size_t count, char pad = ' ', bool fromRight = TRUE)

Adds count copies of pad to the beginning, or to the end of the string (the default).

Removes spaces from the left or from the right (default).

wxString::Prepend

wxString& Prepend(const wxString& str)

Prepends str to this string, returning a reference to this string.

wxString::Printf

int Printf(const char* pszFormat, ...)

Similar to the standard function sprintf(). Returns the number of characters written, or an
integer less than zero on error.

NB: This function will use a safe version of vsprintf() (usually called vsnprintf())
whenever available to always allocate the buffer of correct size. Unfortunately, this
function is not available on all platforms and the dangerous vsprintf() will be used then
which may lead to buffer overflows.

wxString::PrintfV

int PrintfV(const char* pszFormat, va_list argPtr)

Similar to vprintf. Returns the number of characters written, or an integer less than zero
on error.

CHAPTER 4

778

wxString::Remove

wxString& Remove(size_t pos)

Same as Truncate. Removes the portion from pos to the end of the string.

wxString& Remove(size_t pos, size_t len)

Removes the last len characters from the string, starting at pos.

wxString::RemoveLast

wxString& RemoveLast()

Removes the last character.

wxString::Replace

size_t Replace(const char* szOld, const char* szNew, bool replaceAll = TRUE)

Replace first (or all) occurences of substring with another one.

replaceAll: global replace (default), or only the first occurence.

Returns the number of replacements made.

wxString::Right

wxString Right(size_t count) const

Returns the last count characters.

wxString::SetChar

void SetChar(size_t n, charch)

Sets the character at position n.

wxString::Shrink

void Shrink()

Minimizes the string's memory. This can be useful after a call to Alloc() (p. 769) if too
much memory were preallocated.

CHAPTER 4

779

wxString::sprintf

void sprintf(const char* fmt)

The same as Printf.

wxString::Strip

enum stripType {leading = 0x1, trailing = 0x2, both = 0x3};

wxString Strip(stripType s = trailing) const

Strip characters at the front and/or end. The same as Trim except that it doesn't change
this string.

wxString::SubString

wxString SubString(size_t to, size_t from) const

Same as Mid (p. 777).

wxString::Trim

wxString& Trim(bool fromRight = TRUE)

Removes spaces from the left or from the right (default).

wxString::Truncate

wxString& Truncate(size_t len)

Truncate the string to the given length.

wxString::UngetWriteBuf

void UngetWriteBuf()

Puts the string back into a reasonable state, after wxString::GetWriteBuf (p. 773) was
called.

wxString::Upper

CHAPTER 4

780

wxString Upper() const

Returns this string converted to upper case.

wxString::UpperCase

void UpperCase()

The same as MakeUpper.

wxString::operator!

bool operator!() const

Empty string is FALSE, so !string will only return TRUE if the string is empty. This allows
the tests for NULLness of a const char * pointer and emptyness of the string to look the
same in the code and makes it easier to port old code to wxString.

See also IsEmpty() (p. 774).

wxString::operator =

wxString& operator =(const wxString& str)

wxString& operator =(const char* psz)

wxString& operator =(char c)

wxString& operator =(const unsigned char* psz)

wxString& operator =(const wchar_t* pwz)

Assignment: the effect of each operation is the same as for the corresponding
constructor (see wxString constructors (p. 769)).

operator wxString::+

Concatenation: all these operators return a new strign equal to the sum of the operands.

wxString operator +(const wxString& x, const wxString& y)

wxString operator +(const wxString& x, const char* y)

wxString operator +(const wxString& x, char y)

wxString operator +(const char* x, const wxString& y)

CHAPTER 4

781

wxString::operator +=

void operator +=(const wxString& str)

void operator +=(const char* psz)

void operator +=(char c)

Concatenation in place: the argument is appended to the string.

wxString::operator []

char& operator [](size_t i)

char operator [](size_t i)

char operator [](int i)

Element extraction.

wxString::operator ()

wxString operator ()(size_t start, size_t len)

Same as Mid (substring extraction).

wxString::operator <<

wxString& operator <<(const wxString& str)

wxString& operator <<(const char* psz)

wxString& operator <<(char ch)

Same as +=.

wxString& operator <<(int i)

wxString& operator <<(float f)

wxString& operator <<(double d)

These functions work as C++ stream insertion operators: they insert the given value into
the string. Precision or format cannot be set using them, you can use Printf (p. 777) for
this.

CHAPTER 4

782

wxString::operator >>

friend istream& operator >>(istream& is, wxString& str)

Extraction from a stream.

wxString::operator const char*

 operator const char*() const

Implicit conversion to a C string.

Comparison operators

bool operator ==(const wxString& x, const wxString& y)

bool operator ==(const wxString& x, const char* t)

bool operator !=(const wxString& x, const wxString& y)

bool operator !=(const wxString& x, const char* t)

bool operator >(const wxString& x, const wxString& y)

bool operator >(const wxString& x, const char* t)

bool operator >=(const wxString& x, const wxString& y)

bool operator >=(const wxString& x, const char* t)

bool operator <(const wxString& x, const wxString& y)

bool operator <(const wxString& x, const char* t)

bool operator <=(const wxString& x, const wxString& y)

bool operator <=(const wxString& x, const char* t)

Remarks

These comparisons are case-sensitive.

wxStringList

A string list is a list which is assumed to contain strings. Memory is allocated when
strings are added to the list, and deallocated by the destructor or by the Delete member.

CHAPTER 4

783

Derived from

wxList (p. 446)
wxObject (p. 555)

Include files

<wx/list.h>

See also

wxString (p. 762), wxList (p. 446)

wxStringList::wxStringList

 wxStringList()

Constructor.

void wxStringList(char* first, ...)

Constructor, taking NULL-terminated string argument list. wxStringList allocates memory
for the strings.

wxStringList::~wxStringList

 ~wxStringList()

Deletes string list, deallocating strings.

wxStringList::Add

wxNode * Add(const wxString& s)

Adds string to list, allocating memory.

wxStringList::Clear

void Clear()

Clears all strings from the list.

CHAPTER 4

784

wxStringList::Delete

void Delete(const wxString& s)

Searches for string and deletes from list, deallocating memory.

wxStringList::ListToArray

char* ListToArray(bool new_copies = FALSE)

Converts the list to an array of strings, only allocating new memory if new_copies is
TRUE.

wxStringList::Member

bool Member(const wxString& s)

Returns TRUE if s is a member of the list (tested using strcmp).

wxStringList::Sort

void Sort()

Sorts the strings in ascending alphabetical order. Note that all nodes (but not strings) get
deallocated and new ones allocated.

wxStringTokenizer

wxStringTokenizer helps you to break a string up into a number of tokens.

Derived from

wxObject (p. 555)

Include files

<wx/tokenzr.h>

wxStringTokenizer::wxStringTokenizer

 wxStringTokenizer()

Default constructor.

CHAPTER 4

785

 wxStringTokenizer(const wxString& to_tokenize, const wxString& delims = " \t\r\n",
bool ret_delim = FALSE)

Constructor. Pass the string to tokenize, a string containing delimiters, a flag specifying
whether delimiters are retained.

wxStringTokenizer::~wxStringTokenizer

 ~wxStringTokenizer()

Destructor.

wxStringTokenizer::CountTokens

int CountTokens() const

Returns the number of tokens in the input string.

wxStringTokenizer::HasMoreTokens

bool HasMoreTokens() const

Returns TRUE if the tokenizer has further tokens.

wxStringTokenizer::GetNextToken

wxString GetNextToken() const

Returns the next token.

wxStringTokenizer::GetString

wxString GetString() const

Returns the input string.

wxStringTokenizer::SetString

void SetString(const wxString& to_tokenize, const wxString& delims = " \t\r\n", bool
ret_delim = FALSE)

Initializes the tokenizer.

Pass the string to tokenize, a string containing delimiters, a flag specifying whether

CHAPTER 4

786

delimiters are retained.

wxSysColourChangedEvent

This class is used for system colour change events, which are generated when the user
changes the colour settings using the control panel. This is only appropriate under
Windows.

Derived from

wxEvent (p. 237)
wxObject (p. 555)

Include files

<wx/event.h>

Event table macros

To process a system colour changed event, use this event handler macro to direct input
to a member function that takes a wxSysColourChanged argument.

EVT_SYS_COLOUR_CHANGED(func) Process a wxEVT_SYS_COLOUR_CHANGED
event.

Remarks

The default event handler for this event propagates the event to child windows, since
Windows only sends the events to top-level windows. If intercepting this event for a top-
level window, remember to call the base class handler, or to pass the event on to the
window's children explicitly.

See also

wxWindow::OnSysColourChanged (p. 946), Event handling overview (p. 1072)

wxSysColourChangedEvent::wxSysColourChanged

 wxSysColourChanged()

Constructor.

wxSystemSettings

wxSystemSettings allows the application to ask for details about the system. This can
include settings such as standard colours, fonts, and user interface element sizes.

CHAPTER 4

787

Derived from

wxObject (p. 555)

Include files

<wx/settings.h>

See also

wxFont (p. 285), wxColour (p. 91)

wxSystemSettings::wxSystemSettings

 wxSystemSettings()

Default constructor. You don't need to create an instance of wxSystemSettings since all
of its functions are static.

wxSystemSettings::GetSystemColour

static wxColour GetSystemColour(int index)

Returns a system colour.

index can be one of:

wxSYS_COLOUR_SCROLLBAR The scrollbar grey area.
wxSYS_COLOUR_BACKGROUND The desktop colour.
wxSYS_COLOUR_ACTIVECAPTION Active window caption.
wxSYS_COLOUR_INACTIVECAPTION Inactive window caption.
wxSYS_COLOUR_MENU Menu background.
wxSYS_COLOUR_WINDOW Window background.
wxSYS_COLOUR_WINDOWFRAME Window frame.
wxSYS_COLOUR_MENUTEXT Menu text.
wxSYS_COLOUR_WINDOWTEXT Text in windows.
wxSYS_COLOUR_CAPTIONTEXT Text in caption, size box and scrollbar arrow

box.
wxSYS_COLOUR_ACTIVEBORDER Active window border.
wxSYS_COLOUR_INACTIVEBORDER Inactive window border.
wxSYS_COLOUR_APPWORKSPACE Background colour MDI applications.
wxSYS_COLOUR_HIGHLIGHT Item(s) selected in a control.
wxSYS_COLOUR_HIGHLIGHTTEXT Text of item(s) selected in a control.
wxSYS_COLOUR_BTNFACE Face shading on push buttons.
wxSYS_COLOUR_BTNSHADOW Edge shading on push buttons.
wxSYS_COLOUR_GRAYTEXT Greyed (disabled) text.

CHAPTER 4

788

wxSYS_COLOUR_BTNTEXT Text on push buttons.
wxSYS_COLOUR_INACTIVECAPTIONTEXT Colour of text in active captions.
wxSYS_COLOUR_BTNHIGHLIGHT Highlight colour for buttons (same as

wxSYS_COLOUR_3DHILIGHT).
wxSYS_COLOUR_3DDKSHADOW Dark shadow for three-dimensional dispaly

elements.
wxSYS_COLOUR_3DLIGHT Light colour for three-dimensional display

elements.
wxSYS_COLOUR_INFOTEXT Text colour for tooltip controls.
wxSYS_COLOUR_INFOBK Background colour for tooltip controls.
wxSYS_COLOUR_DESKTOP Same as wxSYS_COLOUR_BACKGROUND.
wxSYS_COLOUR_3DFACE Same as wxSYS_COLOUR_BTNFACE.
wxSYS_COLOUR_3DSHADOW Same as wxSYS_COLOUR_BTNSHADOW.
wxSYS_COLOUR_3DHIGHLIGHT Same as wxSYS_COLOUR_BTNHIGHLIGHT.
wxSYS_COLOUR_3DHILIGHT Same as wxSYS_COLOUR_BTNHIGHLIGHT.
wxSYS_COLOUR_BTNHILIGHT Same as wxSYS_COLOUR_BTNHIGHLIGHT.

wxPython note: This static method is implemented in Python as a standalone function
named wxSystemSettings_GetSystemColour

wxSystemSettings::GetSystemFont

static wxFont GetSystemFont(int index)

Returns a system font.

index can be one of:

wxSYS_OEM_FIXED_FONT Original equipment manufacturer dependent
fixed-pitch font.

wxSYS_ANSI_FIXED_FONT Windows fixed-pitch font.
wxSYS_ANSI_VAR_FONT Windows variable-pitch (proportional) font.
wxSYS_SYSTEM_FONT System font.
wxSYS_DEVICE_DEFAULT_FONT Device-dependent font (Windows NT only).
wxSYS_DEFAULT_GUI_FONT Default font for user interface objects such as

menus and dialog boxes. Not available in
versions of Windows earlier than Windows 95
or Windows NT 4.0.

wxPython note: This static method is implemented in Python as a standalone function
named wxSystemSettings_GetSystemFont

wxSystemSettings::GetSystemMetric

static int GetSystemMetric(int index)

CHAPTER 4

789

Returns a system metric.

index can be one of:

wxSYS_MOUSE_BUTTONS Number of buttons on mouse, or zero if no
mouse was installed.

wxSYS_BORDER_X Width of single border.
wxSYS_BORDER_Y Height of single border.
wxSYS_CURSOR_X Width of cursor.
wxSYS_CURSOR_Y Height of cursor.
wxSYS_DCLICK_X Width in pixels of rectangle within which two

successive mouse clicks must fall to generate a
double-click.

wxSYS_DCLICK_Y Height in pixels of rectangle within which two
successive mouse clicks must fall to generate a
double-click.

wxSYS_DRAG_X Width in pixels of a rectangle centered on a
drag point to allow for limited movement of the
mouse pointer before a drag operation begins.

wxSYS_DRAG_Y Height in pixels of a rectangle centered on a
drag point to allow for limited movement of the
mouse pointer before a drag operation begins.

wxSYS_EDGE_X Width of a 3D border, in pixels.
wxSYS_EDGE_Y Height of a 3D border, in pixels.
wxSYS_HSCROLL_ARROW_X Width of arrow bitmap on horizontal scrollbar.
wxSYS_HSCROLL_ARROW_Y Height of arrow bitmap on horizontal scrollbar.
wxSYS_HTHUMB_X Width of horizontal scrollbar thumb.
wxSYS_ICON_X The default width of an icon.
wxSYS_ICON_Y The default height of an icon.
wxSYS_ICONSPACING_X Width of a grid cell for items in large icon view,

in pixels. Each item fits into a rectangle of this
size when arranged.

wxSYS_ICONSPACING_Y Height of a grid cell for items in large icon view,
in pixels. Each item fits into a rectangle of this
size when arranged.

wxSYS_WINDOWMIN_X Minimum width of a window.
wxSYS_WINDOWMIN_Y Minimum height of a window.
wxSYS_SCREEN_X Width of the screen in pixels.
wxSYS_SCREEN_Y Height of the screen in pixels.
wxSYS_FRAMESIZE_X Width of the window frame for a

wxTHICK_FRAME window.
wxSYS_FRAMESIZE_Y Height of the window frame for a

wxTHICK_FRAME window.
wxSYS_SMALLICON_X Recommended width of a small icon (in window

captions, and small icon view).
wxSYS_SMALLICON_Y Recommended height of a small icon (in

window captions, and small icon view).
wxSYS_HSCROLL_Y Height of horizontal scrollbar in pixels.
wxSYS_VSCROLL_X Width of vertical scrollbar in pixels.
wxSYS_VSCROLL_ARROW_X Width of arrow bitmap on a vertical scrollbar.
wxSYS_VSCROLL_ARROW_Y Height of arrow bitmap on a vertical scrollbar.

CHAPTER 4

790

wxSYS_VTHUMB_Y Height of vertical scrollbar thumb.
wxSYS_CAPTION_Y Height of normal caption area.
wxSYS_MENU_Y Height of single-line menu bar.
wxSYS_NETWORK_PRESENT 1 if there is a network present, 0 otherwise.
wxSYS_PENWINDOWS_PRESENT 1 if PenWindows is installed, 0 otherwise.
wxSYS_SHOW_SOUNDS Non-zero if the user requires an application to

present information visually in situations where
it would otherwise present the information only
in audible form; zero otherwise.

wxSYS_SWAP_BUTTONS Non-zero if the meanings of the left and right
mouse buttons are swapped; zero otherwise.

wxPython note: This static method is implemented in Python as a standalone function
named wxSystemSettings_GetSystemMetric

wxTabbedDialog

A dialog suitable for handling tabs.

Please note that the preferred class for programming tabbed windows is wxNotebook (p.
546). This class is retained for backward compatibility.

Derived from

wxDialog (p. 193)
wxEvtHandler (p. 240)
wxObject (p. 555)

Include files

<wx/tab.h>

See also

Tab classes overview (p. 1094)

wxTabbedDialog::wxTabbedDialog

 wxTabbedDialog(wxWindow *parent, wxWindowID id, const wxString& title, const
wxPoint& pos, const wxSize& size, long style=wxDEFAULT_DIALOG_STYLE, const
wxString& name="dialogBox")

Constructor.

wxTabbedDialog::~wxTabbedDialog

CHAPTER 4

791

 ~wxTabbedDialog()

Destructor. This destructor deletes the tab view associated with the dialog box. If you do
not wish this to happen, set the tab view to NULL before destruction (for example, in the
OnCloseWindow event handler).

wxTabbedDialog::SetTabView

void SetTabView(wxTabView *view)

Sets the tab view associated with the dialog box.

wxTabbedDialog::GetTabView

wxTabView * GetTabView()

Returns the tab view associated with the dialog box.

wxTabbedPanel

A panel suitable for handling tabs.

Please note that the preferred class for programming tabbed windows is wxNotebook (p.
546). This class is retained for backward compatibility.

Derived from

wxPanel (p. 572)
wxEvtHandler (p. 240)
wxObject (p. 555)

Include files

<wx/tab.h>

See also

Tab classes overview (p. 1094)

wxTabbedPanel::wxTabbedPanel

 wxTabbedPanel(wxWindow *parent, wxWindowID id, const wxPoint& pos, const
wxSize& size, long style=0, const wxString& name="panel")

CHAPTER 4

792

Constructor.

wxTabbedPanel::SetTabView

void SetTabView(wxTabView *view)

Sets the tab view associated with the panel.

wxTabbedPanel::GetTabView

wxTabView * GetTabView()

Returns the tab view associated with the panel.

wxTabControl

You will rarely need to use this class directly.

Please note that the preferred class for programming tabbed windows is wxNotebook (p.
546). This class is retained for backward compatibility.

Derived from

wxObject (p. 555)

Include files

<wx/tab.h>

See also

Tab classes overview (p. 1094)

wxTabControl::wxTabControl

void wxTabControl(wxTabView *view = NULL)

Constructor.

wxTabControl::GetColPosition

int GetColPosition()

Returns the position of the tab in the tab column.

CHAPTER 4

793

wxTabControl::GetFont

wxFont * GetFont()

Returns the font to be used for this tab.

wxTabControl::GetHeight

int GetHeight()

Returns the tab height.

wxTabControl::GetId

int GetId()

Returns the tab identifier.

wxTabControl::GetLabel

wxString GetLabel()

Returns the tab label.

wxTabControl::GetRowPosition

int GetRowPosition()

Returns the position of the tab in the layer or row.

wxTabControl::GetSelected

bool GetSelected()

Returns the selected flag.

wxTabControl::GetWidth

int GetWidth()

Returns the tab width.

CHAPTER 4

794

wxTabControl::GetX

int GetX()

Returns the x offset from the top-left of the view area.

wxTabControl::GetY

int GetY()

Returns the y offset from the top-left of the view area.

wxTabControl::HitTest

bool HitTest(int x, int y)

Returns TRUE if the point x, y is within the tab area.

wxTabControl::OnDraw

void OnDraw(wxDC& dc, bool lastInRow)

Draws the tab control on the given device context.

wxTabControl::SetColPosition

void SetColPosition(int pos)

Sets the position in the column.

wxTabControl::SetFont

void SetFont(wxFont *font)

Sets the font to be used for this tab.

wxTabControl::SetId

void SetId(int id)

Sets the tab identifier.

CHAPTER 4

795

wxTabControl::SetLabel

void SetLabel(const wxString& str)

Sets the label for the tab.

wxTabControl::SetPosition

void SetPosition(int x, int y)

Sets the x and y offsets for this tab, measured from the top-left of the view area.

wxTabControl::SetRowPosition

void SetRowPosition(int pos)

Sets the position on the layer (row).

wxTabControl::SetSelected

void SetSelected(bool selected)

Sets the selection flag for this tab (does not set the current tab for the view; use
wxTabView::SetSelectedTab for that).

wxTabControl::SetSize

void SetSize(int width, int height)

Sets the width and height for this tab.

wxTabView

Responsible for drawing tabs onto a window, and dealing with input.

Please note that the preferred class for programming tabbed windows is wxNotebook (p.
546). This class is retained for backward compatibility.

Derived from

wxObject (p. 555)

Include files

<wx/tab.h>

CHAPTER 4

796

See also

wxTabView overview (p. 1097), wxPanelTabView (p. 575)

wxTabView::wxTabView

 wxTabView(long style = wxTAB_STYLE_DRAW_BOX |
wxTAB_STYLE_COLOUR_INTERIOR)

Constructor.

style may be a bit list of the following:

wxTAB_STYLE_DRAW_BOX Draw a box around the view area. Most
commonly used for dialogs.

wxTAB_STYLE_COLOUR_INTERIOR Draw tab backgrounds in the specified colour.
Omitting this style will ensure that the tab
background matches the dialog background.

wxTabView::AddTab

wxTabControl * AddTab(int id, const wxString& label, wxTabControl
*existingTab=NULL)

Adds a tab to the view.

id is the application-chosen identifier for the tab, which will be used in subsequent tab
operations.

label is the label to give the tab.

existingTab maybe NULL to specify a new tab, or non-NULL to indicate that an existing
tab should be used.

A new layer (row) is started when the current layer has been filled up with tabs.

wxTabView::CalculateTabWidth

int CalculateTabWidth(int noTabs, bool adjustView = FALSE)

The application can specify the tab width using this function, in terms of the number of
tabs per layer (row) which will fit the view area, which should have been set previously
with SetViewRect.

CHAPTER 4

797

noTabs is the number of tabs which should take up the full width of the view area.

adjustView can be set to TRUE in order to readjust the view width to exactly fit the given
number of tabs.

The new tab width is returned.

wxTabView::ClearTabs

void ClearTabs(bool deleteTabs=TRUE)

Clears the tabs, deleting them if deleteTabs is TRUE.

wxTabView::Draw

void Draw(wxDC& dc)

Draws the tabs and (optionally) a box around the view area.

wxTabView::FindTabControlForId

wxTabControl * FindTabControlForId(int id)

Finds the wxTabControl corresponding to id.

wxTabView::FindTabControlForPosition

wxTabControl * FindTabControlForPosition(int layer, int position)

Finds the wxTabControl at layer layer, position in layer position, both starting from zero.
Note that tabs change layer as they are selected or deselected.

wxTabView::GetBackgroundBrush

wxBrush * GetBackgroundBrush()

Returns the brush used to draw in the background colour. It is set when
SetBackgroundColour is called.

wxTabView::GetBackgroundColour

wxColour GetBackgroundColour()

Returns the colour used for each tab background. By default, this is light grey. To ensure

CHAPTER 4

798

a match with the dialog or panel background, omit the
wxTAB_STYLE_COLOUR_INTERIOR flag from the wxTabView constructor.

wxTabView::GetBackgroundPen

wxPen * GetBackgroundPen()

Returns the pen used to draw in the background colour. It is set when
SetBackgroundColour is called.

wxTabView::GetHighlightColour

wxColour GetHighlightColour()

Returns the colour used for bright highlights on the left side of '3D' surfaces. By default,
this is white.

wxTabView::GetHighlightPen

wxPen * GetHighlightPen()

Returns the pen used to draw 3D effect highlights. This is set when SetHighlightColour is
called.

wxTabView::GetHorizontalTabOffset

int GetHorizontalTabOffset()

Returns the horizontal spacing by which each tab layer is offset from the one below.

wxTabView::GetNumberOfLayers

int GetNumberOfLayers()

Returns the number of layers (rows of tabs).

wxTabView::GetSelectedTabFont

wxFont * GetSelectedTabFont()

Returns the font to be used for the selected tab label.

wxTabView::GetShadowColour

CHAPTER 4

799

wxColour GetShadowColour()

Returns the colour used for shadows on the right-hand side of '3D' surfaces. By default,
this is dark grey.

wxTabView::GetTabHeight

int GetTabHeight()

Returns the tab default height.

wxTabView::GetTabFont

wxFont * GetTabFont()

Returns the tab label font.

wxTabView::GetTabSelectionHeight

int GetTabSelectionHeight()

Returns the height to be used for the currently selected tab; normally a few pixels higher
than the other tabs.

wxTabView::GetTabStyle

long GetTabStyle()

Returns the tab style. See constructor documentation for details of valid styles.

wxTabView::GetTabWidth

int GetTabWidth()

Returns the tab default width.

wxTabView::GetTextColour

wxColour GetTextColour()

Returns the colour used to draw label text. By default, this is black.

CHAPTER 4

800

wxTabView::GetTopMargin

int GetTopMargin()

Returns the height between the top of the view area and the bottom of the first row of
tabs.

wxTabView::GetShadowPen

wxPen * GetShadowPen()

Returns the pen used to draw 3D effect shadows. This is set when SetShadowColour is
called.

wxTabView::GetViewRect

wxRectangle GetViewRect()

Returns the rectangle specifying the view area (above which tabs are placed).

wxTabView::GetVerticalTabTextSpacing

int GetVerticalTabTextSpacing()

Returns the vertical spacing between the top of an unselected tab, and the tab label.

wxTabView::GetWindow

wwxWindow * GetWindow()

Returns the window for the view.

wxTabView::OnCreateTabControl

wxTabControl * OnCreateTabControl()

Creates a new tab control. By default, this returns a wxTabControl object, but the
application may wish to define a derived class, in which case the tab view should be
subclassed and this function overridden.

wxTabView::LayoutTabs

void LayoutTabs()

CHAPTER 4

801

Recalculates the positions of the tabs, and adjusts the layer of the selected tab if
necessary.

You may want to call this function if the view width has changed (for example, from an
OnSize handler).

wxTabView::OnEvent

bool OnEvent(wxMouseEvent& event)

Processes mouse events sent from the panel or dialog. Returns TRUE if the event was
processed, FALSE otherwise.

wxTabView::OnTabActivate

void OnTabActivate(int activateId, int deactivateId)

Called when a tab is activated, with the new active tab id, and the former active tab id.

wxTabView::OnTabPreActivate

bool OnTabPreActivate(int activateId, int deactivateId)

Called just before a tab is activated, with the new active tab id, and the former active tab
id.

If the function returns FALSE, the tab is not activated.

wxTabView::SetBackgroundColour

void SetBackgroundColour(const wxColour& col)

Sets the colour to be used for each tab background. By default, this is light grey. To
ensure a match with the dialog or panel background, omit the
wxTAB_STYLE_COLOUR_INTERIOR flag from the wxTabView constructor.

wxTabView::SetHighlightColour

void SetHighlightColour(const wxColour& col)

Sets the colour to be used for bright highlights on the left side of '3D' surfaces. By
default, this is white.

wxTabView::SetHorizontalTabOffset

CHAPTER 4

802

void SetHorizontalTabOffset(int offset)

Sets the horizontal spacing by which each tab layer is offset from the one below.

wxTabView::SetSelectedTabFont

void SetSelectedTabFont(wxFont *font)

Sets the font to be used for the selected tab label.

wxTabView::SetShadowColour

void SetShadowColour(const wxColour& col)

Sets the colour to be used for shadows on the right-hand side of '3D' surfaces. By
default, this is dark grey.

wxTabView::SetTabFont

void SetTabFont(wxFont *font)

Sets the tab label font.

wxTabView::SetTabStyle

void SetTabStyle(long tabStyle)

Sets the tab style. See constructor documentation for details of valid styles.

wxTabView::SetTabSize

void SetTabSize(int width, int height)

Sets the tab default width and height.

wxTabView::SetTabSelectionHeight

void SetTabSelectionHeight(int height)

Sets the height to be used for the currently selected tab; normally a few pixels higher
than the other tabs.

CHAPTER 4

803

wxTabView::SetTabSelection

void SetTabSelection(int sel, bool activateTool=TRUE)

Sets the selected tab, calling the application's OnTabActivate function.

If activateTool is FALSE, OnTabActivate will not be called.

wxTabView::SetTextColour

void SetTextColour(const wxColour& col)

Sets the colour to be used to draw label text. By default, this is black.

wxTabView::SetTopMargin

void SetTopMargin(int margin)

Sets the height between the top of the view area and the bottom of the first row of tabs.

wxTabView::SetVerticalTabTextSpacing

void SetVerticalTabTextSpacing(int spacing)

Sets the vertical spacing between the top of an unselected tab, and the tab label.

wxTabView::SetViewRect

void SetViewRect(const wxRectangle& rect)

Sets the rectangle specifying the view area (above which tabs are placed). This must be
set by the application.

wxTabView::SetWindow

void SetWindow(wxWindow *window)

Set the window that the tab view will use for drawing onto.

wxTabCtrl

This class represents a tab control, which manages multiple tabs.

Derived from

CHAPTER 4

804

wxControl (p. 130)
wxWindow (p. 915)
wxEvtHandler (p. 240)
wxObject (p. 555)

Include files

<wx/tabctrl.h>

See also

wxTabEvent (p. 809), wxImageList (p. 418), wxNotebook (p. 546)

wxTabCtrl::wxTabCtrl

 wxTabCtrl()

Default constructor.

 wxTabCtrl(wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size, long style = 0, const wxString& name =
"tabCtrl")

Constructs a tab control.

Parameters

parent
The parent window. Must be non-NULL.

id
The window identifier.

pos
The window position.

size
The window size.

style
The window style. Its value is a bit list of zero or more of wxTC_MULTILINE,
wxTC_RIGHTJUSTIFY, wxTC_FIXEDWIDTH and wxTC_OWNERDRAW.

wxTabCtrl::~wxTabCtrl

 ~wxTabCtrl()

CHAPTER 4

805

Destroys the wxTabCtrl object.

wxTabCtrl::Create

bool Create(wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size, long style = 0, const wxString& name =
"tabCtrl")

Creates a tab control. See wxTabCtrl::wxTabCtrl (p. 804) for a description of the
parameters.

wxTabCtrl::DeleteAllItems

bool DeleteAllItems()

Deletes all tab items.

wxTabCtrl::DeleteItem

bool DeleteItem(int item)

Deletes the specified tab item.

wxTabCtrl::GetCurFocus

int GetCurFocus() const

Returns the index for the tab with the focus, or -1 if none has the focus.

wxTabCtrl::GetImageList

wxImageList* GetImageList() const

Returns the associated image list.

See also

wxImageList (p. 418), wxTabCtrl::SetImageList (p. 808)

wxTabCtrl::GetItemCount

int GetItemCount() const

Returns the number of tabs in the tab control.

CHAPTER 4

806

wxTabCtrl::GetItemData

void* GetItemData() const

Returns the client data for the given tab.

wxTabCtrl::GetItemImage

int GetItemImage() const

Returns the image index for the given tab.

wxTabCtrl::GetItemRect

bool GetItemRect(int item, wxRect& rect) const

Returns the rectangle bounding the given tab.

See also

wxRect (p. 637)

wxTabCtrl::GetItemText

wxString GetItemText() const

Returns the string for the given tab.

wxTabCtrl::GetRowCount

int GetRowCount() const

Returns the number of rows in the tab control.

wxTabCtrl::GetSelection

int GetSelection() const

Returns the index for the currently selected tab.

See also

wxTabCtrl::SetSelection (p. 809)

CHAPTER 4

807

wxTabCtrl::HitTest

int HitTest(const wxPoint& pt, long& flags)

Tests whether a tab is at the specified position.

Parameters

pt
Specifies the point for the hit test.

flags
Return value for detailed information. One of the following values:

wxTAB_HITTEST_NOWHERE There was no tab under this point.
wxTAB_HITTEST_ONICON The point was over an icon.
wxTAB_HITTEST_ONLABEL The point was over a label.
wxTAB_HITTEST_ONITEM The point was over an item, but not on

the label or icon.

Return value

Returns the zero-based tab index or -1 if no tab is at the specified position.

wxTabCtrl::InsertItem

void InsertItem(int item, const wxString& text, int imageId = -1, void* clientData =
NULL)

Inserts a new tab.

Parameters

item
Specifies the index for the new item.

text
Specifies the text for the new item.

imageId
Specifies the optional image index for the new item.

clientData
Specifies the optional client data for the new item.

Return value

CHAPTER 4

808

TRUE if successful, FALSE otherwise.

wxTabCtrl::SetItemData

bool SetItemData(int item, void* data)

Sets the client data for a tab.

wxTabCtrl::SetItemImage

bool SetItemImage(int item, int image)

Sets the image index for the given tab. image is an index into the image list which was
set with wxTabCtrl::SetImageList (p. 808).

wxTabCtrl::SetImageList

void SetImageList(wxImageList* imageList)

Sets the image list for the tab control.

See also

wxImageList (p. 418)

wxTabCtrl::SetItemSize

void SetItemSize(const wxSize& size)

Sets the width and height of the tabs.

wxTabCtrl::SetItemText

bool SetItemText(int item, const wxString& text)

Sets the text for the given tab.

wxTabCtrl::SetPadding

void SetPadding(const wxSize& padding)

Sets the amount of space around each tab's icon and label.

CHAPTER 4

809

wxTabCtrl::SetSelection

int SetSelection(int item)

Sets the selection for the given tab, returning the index of the previously selected tab.
Returns -1 if the call was unsuccessful.

See also

wxTabCtrl::GetSelection (p. 806)

wxTabEvent

This class represents the events generated by a tab control.

Derived from

wxCommandEvent (p. 108)
wxEvent (p. 237)
wxEvtHandler (p. 240)
wxObject (p. 555)

Include files

<wx/tabctrl.h>

Event table macros

To process a tab event, use these event handler macros to direct input to member
functions that take a wxTabEvent argument.

EVT_TAB_SEL_CHANGED(id, func) Process a wxEVT_TAB_SEL_CHANGED
event, indicating that the tab selection has
changed.

EVT_TAB_SEL_CHANGING(id, func) Process a wxEVT_TAB_SEL_CHANGING
event, indicating that the tab selection is
changing.

See also

wxTabCtrl (p. 803)

wxTabEvent::wxTabEvent

 wxTabEvent(WXTYPE commandType = 0, int id = 0)

CHAPTER 4

810

Constructor.

wxTaskBarIcon

This class represents a Windows 95 taskbar icon, appearing in the 'system tray' and
responding to mouse clicks. An icon has an optional tooltip. This class is only supported
for Windows 95/NT.

Derived from

wxObject (p. 555)

Include files

<wx/taskbar.h>

wxTaskBarIcon::wxTaskBarIcon

 wxTaskBarIcon()

Default constructor.

wxTaskBarIcon::~wxTaskBarIcon

 ~wxTaskBarIcon()

Destroys the wxTaskBarIcon object, removing the icon if not already removed.

wxTaskBarIcon::IsIconInstalled

bool IsIconInstalled()

Returns TRUE if SetIcon (p. 812) was called with no subsequent RemoveIcon (p. 811).

wxTaskBarIcon::IsOK

bool IsOK()

Returns TRUE if the object initialized successfully.

wxTaskBarIcon::OnLButtonDown

virtual void OnLButtonDown()

CHAPTER 4

811

Override this function to intercept left mouse button down events.

wxTaskBarIcon::OnLButtonDClick

virtual void OnLButtonDClick()

Override this function to intercept left mouse button double-click events.

wxTaskBarIcon::OnLButtonUp

virtual void OnLButtonUp()

Override this function to intercept left mouse button up events.

wxTaskBarIcon::OnRButtonDown

virtual void OnRButtonDown()

Override this function to intercept right mouse button down events.

wxTaskBarIcon::OnRButtonDClick

virtual void OnRButtonDClick()

Override this function to intercept right mouse button double-click events.

wxTaskBarIcon::OnRButtonUp

virtual void OnRButtonUp()

Override this function to intercept right mouse button up events.

wxTaskBarIcon::OnMouseMove

virtual void OnMouseMove()

Override this function to intercept mouse move events.

wxTaskBarIcon::RemoveIcon

bool RemoveIcon()

CHAPTER 4

812

Removes the icon previously set with SetIcon (p. 812).

wxTaskBarIcon::SetIcon

bool SetIcon(const wxIcon& icon, const wxString& tooltip)

Sets the icon, and optional tooltip text.

wxTCPClient

A wxTCPClient object represents the client part of a client-server conversation. It
emulates a DDE-style protocol, but uses TCP/IP which is available on most platforms.

A DDE-based implementation for Windows is available using wxDDEClient (p. 181).

To create a client which can communicate with a suitable server, you need to derive a
class from wxTCPConnection and another from wxTCPClient. The custom
wxTCPConnection class will intercept communications in a 'conversation' with a server,
and the custom wxTCPServer is required so that a user-overriden
wxTCPClient::OnMakeConnection (p. 813) member can return a wxTCPConnection of
the required class, when a connection is made.

Derived from

wxClientBase
wxObject (p. 555)

Include files

<wx/sckipc.h>

See also

wxTCPServer (p. 817), wxTCPConnection (p. 813), Interprocess communications
overview (p. 1080)

wxTCPClient::wxTCPClient

 wxTCPClient()

Constructs a client object.

wxTCPClient::MakeConnection

wxConnectionBase * MakeConnection(const wxString& host, const wxString&

CHAPTER 4

813

service, const wxString& topic)

Tries to make a connection with a server specified by the host (a machine name under
Unix), service name (must contain an integer port number under Unix), and a topic
string. If the server allows a connection, a wxTCPConnection object will be returned. The
type of wxTCPConnection returned can be altered by overriding the
wxTCPClient::OnMakeConnection (p. 813) member to return your own derived
connection object.

wxTCPClient::OnMakeConnection

wxConnectionBase * OnMakeConnection()

The type of wxTCPConnection (p. 813) returned from a wxTCPClient::MakeConnection
(p. 812) call can be altered by deriving the OnMakeConnection member to return your
own derived connection object. By default, a wxTCPConnection object is returned.

The advantage of deriving your own connection class is that it will enable you to
intercept messages initiated by the server, such as wxTCPConnection::OnAdvise (p.
815). You may also want to store application-specific data in instances of the new class.

wxTCPClient::ValidHost

bool ValidHost(const wxString& host)

Returns TRUE if this is a valid host name, FALSE otherwise.

wxTCPConnection

A wxTCPClient object represents the connection between a client and a server. It
emulates a DDE-style protocol, but uses TCP/IP which is available on most platforms.

A DDE-based implementation for Windows is available using wxDDEConnection (p.
182).

A wxTCPConnection object can be created by making a connection using a
wxTCPClient (p. 812) object, or by the acceptance of a connection by a wxTCPServer
(p. 817) object. The bulk of a conversation is controlled by calling members in a
wxTCPConnection object or by overriding its members.

An application should normally derive a new connection class from wxTCPConnection,
in order to override the communication event handlers to do something interesting.

Derived from

wxConnectionBase
wxObject (p. 555)

CHAPTER 4

814

Include files

<wx/sckipc.h>

Types

wxIPCFormat is defined as follows:

enum wxIPCFormat
{
 wxIPC_INVALID = 0,
 wxIPC_TEXT = 1, /* CF_TEXT */
 wxIPC_BITMAP = 2, /* CF_BITMAP */
 wxIPC_METAFILE = 3, /* CF_METAFILEPICT */
 wxIPC_SYLK = 4,
 wxIPC_DIF = 5,
 wxIPC_TIFF = 6,
 wxIPC_OEMTEXT = 7, /* CF_OEMTEXT */
 wxIPC_DIB = 8, /* CF_DIB */
 wxIPC_PALETTE = 9,
 wxIPC_PENDATA = 10,
 wxIPC_RIFF = 11,
 wxIPC_WAVE = 12,
 wxIPC_UNICODETEXT = 13,
 wxIPC_ENHMETAFILE = 14,
 wxIPC_FILENAME = 15, /* CF_HDROP */
 wxIPC_LOCALE = 16,
 wxIPC_PRIVATE = 20
};

See also

wxTCPClient (p. 812), wxTCPServer (p. 817), Interprocess communications overview (p.
1080)

wxTCPConnection::wxTCPConnection

 wxTCPConnection()

 wxTCPConnection(char* buffer, int size)

Constructs a connection object. If no user-defined connection object is to be derived
from wxTCPConnection, then the constructor should not be called directly, since the
default connection object will be provided on requesting (or accepting) a connection.
However, if the user defines his or her own derived connection object, the
wxTCPServer::OnAcceptConnection (p. 818) and/or wxTCPClient::OnMakeConnection
(p. 813) members should be replaced by functions which construct the new connection
object. If the arguments of the wxTCPConnection constructor are void, then a default
buffer is associated with the connection. Otherwise, the programmer must provide a a
buffer and size of the buffer for the connection object to use in transactions.

CHAPTER 4

815

wxTCPConnection::Advise

bool Advise(const wxString& item, char* data, int size = -1, wxIPCFormat format =
wxCF_TEXT)

Called by the server application to advise the client of a change in the data associated
with the given item. Causes the client connection's wxTCPConnection::OnAdvise (p.
815)member to be called. Returns TRUE if successful.

wxTCPConnection::Execute

bool Execute(char* data, int size = -1, wxIPCFormat format = wxCF_TEXT)

Called by the client application to execute a command on the server. Can also be used
to transfer arbitrary data to the server (similar to wxTCPConnection::Poke (p. 816) in that
respect). Causes the server connection's wxTCPConnection::OnExecute (p. 816)
member to be called. Returns TRUE if successful.

wxTCPConnection::Disconnect

bool Disconnect()

Called by the client or server application to disconnect from the other program; it causes
the wxTCPConnection::OnDisconnect (p. 815) message to be sent to the corresponding
connection object in the other program. The default behaviour of OnDisconnect is to
delete the connection, but the calling application must explicitly delete its side of the
connection having called Disconnect. Returns TRUE if successful.

wxTCPConnection::OnAdvise

virtual bool OnAdvise(const wxString& topic, const wxString& item, char* data, int
size, wxIPCFormat format)

Message sent to the client application when the server notifies it of a change in the data
associated with the given item.

wxTCPConnection::OnDisconnect

virtual bool OnDisconnect()

Message sent to the client or server application when the other application notifies it to
delete the connection. Default behaviour is to delete the connection object.

CHAPTER 4

816

wxTCPConnection::OnExecute

virtual bool OnExecute(const wxString& topic, char* data, int size, wxIPCFormat
format)

Message sent to the server application when the client notifies it to execute the given
data. Note that there is no item associated with this message.

wxTCPConnection::OnPoke

virtual bool OnPoke(const wxString& topic, const wxString& item, char* data, int
size, wxIPCFormat format)

Message sent to the server application when the client notifies it to accept the given
data.

wxTCPConnection::OnRequest

virtual char* OnRequest(const wxString& topic, const wxString& item, int *size,
wxIPCFormat format)

Message sent to the server application when the client calls wxTCPConnection::Request
(p. 817). The server should respond by returning a character string from OnRequest, or
NULL to indicate no data.

wxTCPConnection::OnStartAdvise

virtual bool OnStartAdvise(const wxString& topic, const wxString& item)

Message sent to the server application by the client, when the client wishes to start an
'advise loop' for the given topic and item. The server can refuse to participate by
returning FALSE.

wxTCPConnection::OnStopAdvise

virtual bool OnStopAdvise(const wxString& topic, const wxString& item)

Message sent to the server application by the client, when the client wishes to stop an
'advise loop' for the given topic and item. The server can refuse to stop the advise loop
by returning FALSE, although this doesn't have much meaning in practice.

wxTCPConnection::Poke

bool Poke(const wxString& item, char* data, int size = -1, wxIPCFormat format =
wxCF_TEXT)

CHAPTER 4

817

Called by the client application to poke data into the server. Can be used to transfer
arbitrary data to the server. Causes the server connection's wxTCPConnection::OnPoke
(p. 816) member to be called. Returns TRUE if successful.

wxTCPConnection::Request

char* Request(const wxString& item, int *size, wxIPCFormat format = wxIPC_TEXT)

Called by the client application to request data from the server. Causes the server
connection's wxTCPConnection::OnRequest (p. 816) member to be called. Returns a
character string (actually a pointer to the connection's buffer) if successful, NULL
otherwise.

wxTCPConnection::StartAdvise

bool StartAdvise(const wxString& item)

Called by the client application to ask if an advise loop can be started with the server.
Causes the server connection's wxTCPConnection::OnStartAdvise (p. 816) member to
be called. Returns TRUE if the server okays it, FALSE otherwise.

wxTCPConnection::StopAdvise

bool StopAdvise(const wxString& item)

Called by the client application to ask if an advise loop can be stopped. Causes the
server connection's wxTCPConnection::OnStopAdvise (p. 816) member to be called.
Returns TRUE if the server okays it, FALSE otherwise.

wxTCPServer

A wxTCPServer object represents the server part of a client-server conversation. It
emulates a DDE-style protocol, but uses TCP/IP which is available on most platforms.

A DDE-based implementation for Windows is available using wxDDEServer (p. 186).

Derived from

wxServerBase
wxObject (p. 555)

Include files

<wx/sckipc.h>

See also

CHAPTER 4

818

wxTCPClient (p. 812), wxTCPConnection (p. 813), IPC overview (p. 1080)

wxTCPServer::wxTCPServer

 wxTCPServer()

Constructs a server object.

wxTCPServer::Create

bool Create(const wxString& service)

Registers the server using the given service name. Under Unix, the string must contain
an integer id which is used as an Internet port number. FALSE is returned if the call
failed (for example, the port number is already in use).

wxTCPServer::OnAcceptConnection

virtual wxConnectionBase * OnAcceptConnection(const wxString& topic)

When a client calls MakeConnection, the server receives the message and this
member is called. The application should derive a member to intercept this message and
return a connection object of either the standard wxTCPConnection type, or of a user-
derived type. If the topic is "STDIO'', the application may wish to refuse the connection.
Under Unix, when a server is created the OnAcceptConnection message is always sent
for standard input and output.

wxTempFile

wxTempFile provides a relatively safe way to replace the contents of the existing file.
The name is explained by the fact that it may be also used as just a temporary file if you
don't replace the old file contents.

Usually, when a program replaces the contents of some file it first opens it for writing,
thus losing all of the old data and then starts recreating it. This approach is not very safe
because during the regeneration of the file bad things may happen: the program may
find that there is an internal error preventing it from completing file generation, the user
may interrupt it (especially if file generation takes long time) and, finally, any other
external interrupts (power supply failure or a disk error) will leave you without either the
original file or the new one.

wxTempFile addresses this problem by creating a temporary file which is meant to
replace the original file - but only after it is fully written. So, if the user interrupts the
program during the file generation, the old file won't be lost. Also, if the program

CHAPTER 4

819

discovers itself that it doesn't want to replace the old file there is no problem - in fact,
wxTempFile will not replace the old file by default, you should explicitly call Commit (p.
820) to do it. Calling Discard (p. 820) explicitly discards any modifications: it closes and
deletes the temporary file and leaves the original file unchanged. If you don't call neither
of Commit() and Discard(), the destructor will call Discard() automatically.

To summarize: if you want to replace another file, create an instance of wxTempFile
passing the name of the file to be replaced to the constructor (you may also use default
constructor and pass the file name to Open (p. 819)). Then you can write (p. 820) to
wxTempFile using wxFile (p. 257)-like functions and later call Commit() to replace the
old file (and close this one) or call Discard() to cancel the modifications.

Derived from

No base class

Include files

<wx/file.h>

See also:

wxFile (p. 257)

wxTempFile::wxTempFile

 wxTempFile()

Default constructor - Open (p. 819) must be used to open the file.

wxTempFile::wxTempFile

 wxTempFile(const wxString& strName)

Associates wxTempFile with the file to be replaced and opens it. You should
useIsOpened (p. 820) to verify if the constructor succeeded.

wxTempFile::Open

bool Open(const wxString& strName)

Open the temporary file (strName is the name of file to be replaced), returns TRUE on
success, FALSE if an error occured.

CHAPTER 4

820

wxTempFile::IsOpened

bool IsOpened() const

Returns TRUE if the file was successfully opened.

wxTempFile::Write

bool Write(const void *p, size_t n)

Write to the file, return TRUE on success, FALSE on failure.

wxTempFile::Write

bool Write(const wxString& str)

Write to the file, return TRUE on success, FALSE on failure.

wxTempFile::Commit

bool Commit()

Validate changes: deletes the old file of name m_strName and renames the new file to
the old name. Returns TRUE if both actions succeeded. If FALSE is returned it may
unfortunately mean two quite different things: either that either the old file couldn't be
deleted or that the new file couldn't be renamed to the old name.

wxTempFile::Discard

void Discard()

Discard changes: the old file contents is not changed, temporary file is deleted.

wxTempFile::~wxTempFile

 ~wxTempFile()

Destructor calls Discard() (p. 820) if temporary file is still opened.

wxTextCtrl

A text control allows text to be displayed and edited. It may be single line or multi-line.

Derived from

CHAPTER 4

821

streambuf
wxControl (p. 130)
wxWindow (p. 915)
wxEvtHandler (p. 240)
wxObject (p. 555)

Include files

<wx/textctrl.h>

Window styles

wxTE_PROCESS_ENTER The control will generate the message
wxEVENT_TYPE_TEXT_ENTER_COMMAND (otherwise
pressing <Enter> is either processed internally by the
control or used for navigation between dialog controls).

wxTE_PROCESS_TAB The control will receieve EVT_CHAR messages for TAB
pressed - normally, TAB is used for passing to the next
control in a dialog instead. For the control created with this
style, you can still use Ctrl-Enter to pass to the next control
from the keyboard.

wxTE_MULTILINE The text control allows multiple lines.
wxTE_PASSWORD The text will be echoed as asterisks.
wxTE_READONLY The text will not be user-editable.
wxHSCROLL A horizontal scrollbar will be created. No effect under

GTK+.

See also window styles overview (p. 1093) andwxTextCtrl::wxTextCtrl (p. 822).

Remarks

This class multiply-inherits from streambuf where compilers allow, allowing code such
as the following:

 wxTextCtrl *control = new wxTextCtrl(...);

 ostream stream(control)

 stream << 123.456 << " some text\n";
 stream.flush();

If your compiler does not support derivation from streambuf and gives a compile error,
define the symbol NO_TEXT_WINDOW_STREAM in the wxTextCtrl header file.

Note that any use of C++ iostreams (including this one) deprecated and might get
completely removed in the future.

Event handling

The following commands are processed by default event handlers in wxTextCtrl:

CHAPTER 4

822

wxID_CUT, wxID_COPY, wxID_PASTE, wxID_UNDO, wxID_REDO. The associated UI
update events are also processed automatically, when the control has the focus.

To process input from a text control, use these event handler macros to direct input to
member functions that take a wxCommandEvent (p. 108) argument.

EVT_TEXT(id, func) Respond to a
wxEVT_COMMAND_TEXT_UPDATED event,
generated when the text changes. Notice that
this event will always be sent when the text
controls contents changes - whether this is due
to user input or comes from the program itself
(for example, if SetValue() is called)

EVT_TEXT_ENTER(id, func) Respond to a
wxEVT_COMMAND_TEXT_ENTER event,
generated when enter is pressed in a single-
line text control.

wxTextCtrl::wxTextCtrl

 wxTextCtrl()

Default constructor.

 wxTextCtrl(wxWindow* parent, wxWindowID id, const wxString& value = "", const
wxPoint& pos, const wxSize& size = wxDefaultSize, long style = 0, const
wxValidator& validator, const wxString& name = "text")

Constructor, creating and showing a text control.

Parameters

parent
Parent window. Should not be NULL.

id
Control identifier. A value of -1 denotes a default value.

value
Default text value.

pos
Text control position.

size
Text control size.

CHAPTER 4

823

style
Window style. See wxTextCtrl (p. 820).

validator
Window validator.

name
Window name.

Remarks

The horizontal scrollbar (wxTE_HSCROLL style flag) will only be created for multi-line
text controls. Without a horizontal scrollbar, text lines that don't fit in the control's size will
be wrapped (but no newline character is inserted). Single line controls don't have a
horizontal scrollbar, the text is automatically scrolled so that the insertion point (p. 825) is
always visible.

Under Windows, if the wxTE_MULTILINE style is used, the window is implemented as a
Windows rich text control with unlimited capacity. Otherwise, normal edit control limits
apply.

See also

wxTextCtrl::Create (p. 825), wxValidator (p. 897)

wxTextCtrl::~wxTextCtrl

 ~wxTextCtrl()

Destructor, destroying the text control.

wxTextCtrl::AppendText

void AppendText(const wxString& text)

Appends the text to the end of the text control.

Parameters

text
Text to write to the text control.

Remarks

After the text is appended, the insertion point will be at the end of the text control. If this
behaviour is not desired, the programmer should use GetInsertionPoint (p. 825) and
SetInsertionPoint (p. 831).

See also

CHAPTER 4

824

wxTextCtrl::WriteText (p. 832)

wxTextCtrl::CanCopy

virtual bool CanCopy()

Returns TRUE if the selection can be copied to the clipboard.

wxTextCtrl::CanCut

virtual bool CanCut()

Returns TRUE if the selection can be cut to the clipboard.

wxTextCtrl::CanPaste

virtual bool CanPaste()

Returns TRUE if the contents of the clipboard can be pasted into the text control. On
some platforms (Motif, GTK) this is an approximation and returns TRUE if the control is
editable, FALSE otherwise.

wxTextCtrl::CanRedo

virtual bool CanRedo()

Returns TRUE if there is a redo facility available and the last operation can be redone.

wxTextCtrl::CanUndo

virtual bool CanUndo()

Returns TRUE if there is an undo facility available and the last operation can be undone.

wxTextCtrl::Clear

virtual void Clear()

Clears the text in the control.

wxTextCtrl::Copy

CHAPTER 4

825

virtual void Copy()

Copies the selected text to the clipboard under Motif and MS Windows.

wxTextCtrl::Create

bool Create(wxWindow* parent, wxWindowID id, const wxString& value = "", const
wxPoint& pos, const wxSize& size = wxDefaultSize, long style = 0, const
wxValidator& validator, const wxString& name = "text")

Creates the text control for two-step construction. Derived classes should call or replace
this function. See wxTextCtrl::wxTextCtrl (p. 822) for further details.

wxTextCtrl::Cut

virtual void Cut()

Copies the selected text to the clipboard and removes the selection.

wxTextCtrl::DiscardEdits

void DiscardEdits()

Resets the internal 'modified' flag as if the current edits had been saved.

wxTextCtrl::GetInsertionPoint

virtual long GetInsertionPoint() const

Returns the insertion point. This is defined as the zero based index of the character
position to the right of the insertion point. For example, if the insertion point is at the end
of the text control, it is equal to both GetValue() (p. 827).Length() andGetLastPosition()
(p. 825).

The following code snippet safely returns the character at the insertion point or the zero
character if the point is at the end of the control.

 char GetCurrentChar(wxTextCtrl *tc) {
 if (tc->GetInsertionPoint() == tc->GetLastPosition())
 return '\0';
 return tc->GetValue[tc->GetInsertionPoint()];
 }

wxTextCtrl::GetLastPosition

CHAPTER 4

826

virtual long GetLastPosition() const

Returns the zero based index of the last position in the text control, which is equal to the
number of characters in the control.

wxTextCtrl::GetLineLength

int GetLineLength(long lineNo) const

Gets the length of the specified line, not including any trailing newline character(s).

Parameters

lineNo
Line number (starting from zero).

Return value

The length of the line, or -1 if lineNo was invalid.

wxTextCtrl::GetLineText

wxString GetLineText(long lineNo) const

Returns the contents of a given line in the text control, not including any trailing newline
character(s).

Parameters

lineNo
The line number, starting from zero.

Return value

The contents of the line.

wxTextCtrl::GetNumberOfLines

int GetNumberOfLines() const

Returns the number of lines in the text control buffer.

Remarks

Note that even empty text controls have one line (where the insertion point is), so
GetNumberOfLines() never returns 0.

CHAPTER 4

827

For gtk_text (multi-line) controls, the number of lines is calculated by actually counting
newline characters in the buffer. You may wish to avoid using functions that work with
line numbers if you are working with controls that contain large amounts of text.

wxTextCtrl::GetSelection

virtual void GetSelection(long* from, long* to)

Gets the current selection span. If the returned values are equal, there was no selection.

Parameters

from
The returned first position.

to
The returned last position.

wxPython note: The wxPython version of this method returns a tuple consisting of the
from and to values.

wxTextCtrl::GetValue

wxString GetValue() const

Gets the contents of the control.

wxTextCtrl::IsModified

bool IsModified() const

Returns TRUE if the text has been modified.

wxTextCtrl::LoadFile

bool LoadFile(const wxString& filename)

Loads and displays the named file, if it exists.

Parameters

filename
The filename of the file to load.

Return value

CHAPTER 4

828

TRUE if successful, FALSE otherwise.

wxTextCtrl::OnChar

void OnChar(wxKeyEvent& event)

Default handler for character input.

Remarks

It is possible to intercept character input by overriding this member. Call this function to
let the default behaviour take place; not calling it results in the character being ignored.
You can replace the keyCode member of event to translate keystrokes.

Note that Windows and Motif have different ways of implementing the default behaviour.
In Windows, calling wxTextCtrl::OnChar immediately processes the character. In Motif,
calling this function simply sets a flag to let default processing happen. This might affect
the way in which you write your OnChar function on different platforms.

See also

wxKeyEvent (p. 438)

wxTextCtrl::OnDropFiles

void OnDropFiles(wxDropFilesEvent& event)

This event handler function implements default drag and drop behaviour, which is to load
the first dropped file into the control.

Parameters

event
The drop files event.

Remarks

This is not yet implemented for the GTK.

See also

wxDropFilesEvent (p. 231)

wxTextCtrl::Paste

virtual void Paste()

CHAPTER 4

829

Pastes text from the clipboard to the text item.

wxTextCtrl::PositionToXY

bool PositionToXY(long pos, long *x, long *y) const

Converts given position to a zero-based column, line number pair.

Parameters

pos
Position.

x
Receives zero based column number.

y
Receives zero based line number.

Return value

TRUE on success, FALSE on failure (most likely due to a too large position parameter).

See also

wxTextCtrl::XYToPosition (p. 832)

wxPython note: In Python, PositionToXY() returns a tuple containing the x and y
values, so (x,y) = PositionToXY() is equivalent to the call described above.

wxTextCtrl::Redo

virtual void Redo()

If there is a redo facility and the last operation can be redone, redoes the last operation.
Does nothing if there is no redo facility.

wxTextCtrl::Remove

virtual void Remove(long from, long to)

Removes the text starting at the first given position up to (but not including) the character
at the last position.

Parameters

from

CHAPTER 4

830

The first position.

to
The last position.

wxTextCtrl::Replace

virtual void Replace(long from, long to, const wxString& value)

Replaces the text starting at the first position up to (but not including) the character at
the last position with the given text.

Parameters

from
The first position.

to
The last position.

value
The value to replace the existing text with.

wxTextCtrl::SaveFile

bool SaveFile(const wxString& filename)

Saves the contents of the control in a text file.

Parameters

filename
The name of the file in which to save the text.

Return value

TRUE if the operation was successful, FALSE otherwise.

wxTextCtrl::SetEditable

virtual void SetEditable(const bool editable)

Makes the text item editable or read-only, overriding the wxTE_READONLYflag.

Parameters

editable

CHAPTER 4

831

If TRUE, the control is editable. If FALSE, the control is read-only.

wxTextCtrl::SetInsertionPoint

virtual void SetInsertionPoint(long pos)

Sets the insertion point at the given position.

Parameters

pos
Position to set.

wxTextCtrl::SetInsertionPointEnd

virtual void SetInsertionPointEnd()

Sets the insertion point at the end of the text control. This is equivalent to
SetInsertionPoint (p. 831)(GetLastPosition (p. 825)()).

wxTextCtrl::SetSelection

virtual void SetSelection(long from, long to)

Selects the text starting at the first position up to (but not including) the character at the
last position.

Parameters

from
The first position.

to
The last position.

wxTextCtrl::SetValue

virtual void SetValue(const wxString& value)

Sets the text value.

Parameters

value
The new value to set. It may contain newline characters if the text control is multi-
line.

CHAPTER 4

832

wxTextCtrl::ShowPosition

void ShowPosition(long pos)

Makes the line containing the given position visible.

Parameters

pos
The position that should be visible.

wxTextCtrl::Undo

virtual void Undo()

If there is an undo facility and the last operation can be undone, undoes the last
operation. Does nothing if there is no undo facility.

wxTextCtrl::WriteText

void WriteText(const wxString& text)

Writes the text into the text control at the current insertion position.

Parameters

text
Text to write to the text control.

Remarks

Newlines in the text string are the only control characters allowed, and they will cause
appropriate line breaks. See wxTextCtrl::<< (p. 833) and wxTextCtrl::AppendText (p.
823) for more convenient ways of writing to the window.

After the write operation, the insertion point will be at the end of the inserted text, so
subsequent write operations will be appended. To append text after the user may have
interacted with the control, call wxTextCtrl::SetInsertionPointEnd (p. 831) before writing.

wxTextCtrl::XYToPosition

long XYToPosition(long x, long y)

Converts the given zero based column and line number to a position.

CHAPTER 4

833

Parameters

x
The column number.

y
The line number.

Return value

The position value.

wxTextCtrl::operator <<

wxTextCtrl& operator <<(const wxString& s)

wxTextCtrl& operator <<(int i)

wxTextCtrl& operator <<(long i)

wxTextCtrl& operator <<(float f)

wxTextCtrl& operator <<(double d)

wxTextCtrl& operator <<(char c)

Operator definitions for appending to a text control, for example:

 wxTextCtrl *wnd = new wxTextCtrl(my_frame);

 (*wnd) << "Welcome to text control number " << 1 << ".\n";

wxTextDataObject

wxTextDataObject is a specialization of wxDataObject for text data. It can be used
without change to paste data into the wxClipboard (p. 87)or a wxDropSource (p. 232). A
user may wish to derive a new class from this class for providing text on-demand in
order to minimize memory consumption when offering data in several formats, such as
plain text and RTF because by default the text is stored in a string in this class, but it
might as well be generated when requested. For this,GetTextLength (p. 834)
andGetText (p. 834) will have to be overridden.

Note that if you already have the text inside a string, you will not achieve any efficiency
gain by overriding these functions because copying wxStrings is already a very efficient
operation (data is not actually copied because wxStrings are reference counted).

wxPython note: If you wish to create a derived wxTextDataObject class in wxPython
you should derive the class from wxPyTextDataObject in order to get Python-aware
capabilities for the various virtual methods.

CHAPTER 4

834

Virtual functions to override

This class may be used as is, but all of data transfer functions may be overridden to
increase efficiency.

Derived from

wxDataObjectSimple (p. 152)
wxDataObject (p. 148)

Include files

<wx/dataobj.h>

See also

Clipboard and drag and drop overview (p. 1038),wxDataObject (p.
148),wxDataObjectSimple (p. 152),wxFileDataObject (p. 263),wxBitmapDataObject (p.
57)

wxTextDataObject::wxTextDataObject

 wxTextDataObject(const wxString& text = wxEmptyString)

Constructor, may be used to initialise the text (otherwiseSetText (p. 835) should be used
later).

wxTextDataObject::GetTextLength

virtual size_t GetTextLength() const

Returns the data size. By default, returns the size of the text data set in the constructor
or using SetText (p. 835). This can be overridden to provide text size data on-demand. It
is recommended to return the text length plus 1 for a trailing zero, but this is not strictly
required.

wxTextDataObject::GetText

virtual wxString GetText() const

Returns the text associated with the data object. You may wish to override this method
when offering data on-demand, but this is not required by wxWindows' internals. Use this
method to get data in text form from the wxClipboard (p. 87).

CHAPTER 4

835

wxTextDataObject::SetText

virtual void SetText(const wxString& strText)

Sets the text associated with the data object. This method is called when the data object
receives the data and, by default, copies the text into the member variable. If you want to
process the text on the fly you may wish to override this function.

wxTextInputStream

This class provides functions that read text datas using an input stream. So, you can
read text floats, integers.

The wxTextInputStream correctly reads text files (or streams) in DOS, Macintosh and
Unix formats and reports a single newline char as a line ending.

Operator >> is overloaded and you can use this class like a standard C++ iostream.
Note, however, that the arguments are the fixed size types wxUint32, wxInt32 etc and on
a typical 32-bit computer, none of these match to the "long" type (wxInt32 is defined as
int on 32-bit architectures) so that you cannot use long. To avoid problems (here and
elsewhere), make use of the wxInt32, wxUint32, etc types.

For example:
 wxFileInputStream input("mytext.txt");
 wxTextInputStream text(input);
 wxUint8 i1;
 float f2;
 wxString line;

 text >> i1; // read a 8 bit integer.
 text >> i1 >> f2; // read a 8 bit integer followed by float.
 text >> line; // read a text line

Include files

<wx/txtstrm.h>

wxTextInputStream::wxTextInputStream

 wxTextInputStream(wxInputStream& stream)

Constructs a text stream object from an input stream. Only read methods will be
available.

Parameters

stream
The input stream.

CHAPTER 4

836

wxTextInputStream::~wxTextInputStream

 ~wxTextInputStream()

Destroys the wxTextInputStream object.

wxTextInputStream::Read8

wxUint8 Read8()

Reads a single byte from the stream.

wxTextInputStream::Read16

wxUint16 Read16()

Reads a 16 bit integer from the stream.

wxTextInputStream::Read32

wxUint16 Read32()

Reads a 32 bit integer from the stream.

wxTextInputStream::ReadDouble

double ReadDouble()

Reads a double (IEEE encoded) from the stream.

wxTextInputStream::ReadString

wxString wxTextInputStream::ReadString()

Reads a line from the stream. A line is a string which ends with\n or \r\n or \r.

wxTextOutputStream

This class provides functions that write text datas using an output stream. So, you can
write text floats, integers.

You can also simulate the C++ cout class:
 wxFFileOutputStream output(stderr);

CHAPTER 4

837

 wxTextOutputStream cout(output);

 cout << "This is a text line" << endl;
 cout << 1234;
 cout << 1.23456;

The wxTextOutputStream writes text files (or streams) on DOS, Macintosh and Unix in
their native formats (concerning the line ending).

wxTextOutputStream::wxTextOutputStream

 wxTextOutputStream(wxOutputStream& stream)

Constructs a text stream object from an output stream. Only write methods will be
available.

Parameters

stream
The output stream.

wxTextOutputStream::~wxTextOutputStream

 ~wxTextOutputStream()

Destroys the wxTextOutputStream object.

wxTextOutputStream::Write8

void wxTextOutputStream::Write8(wxUint8 i8)

Writes the single byte i8 to the stream.

wxTextOutputStream::Write16

void wxTextOutputStream::Write16(wxUint16 i16)

Writes the 16 bit integer i16 to the stream.

wxTextOutputStream::Write32

void wxTextOutputStream::Write32(wxUint32 i32)

Writes the 32 bit integer i32 to the stream.

CHAPTER 4

838

wxTextOutputStream::WriteDouble

void wxTextOutputStream::WriteDouble(double f)

Writes the double f to the stream using the IEEE format.

wxTextOutputStream::WriteString

void wxTextOutputStream::WriteString(const wxString& string)

Writes string as a line. Depending on the operating system, it adds\n or \r\n.

wxTextEntryDialog

This class represents a dialog that requests a one-line text string from the user. It is
implemented as a generic wxWindows dialog.

Derived from

wxDialog (p. 193)
wxWindow (p. 915)
wxEvtHandler (p. 240)
wxObject (p. 555)

Include files

<wx/textdlg.h>

See also

wxTextEntryDialog overview (p. 1050)

wxTextEntryDialog::wxTextEntryDialog

 wxTextEntryDialog(wxWindow* parent, const wxString& message, const
wxString& caption = "Please enter text", const wxString& defaultValue = "", long style
= wxOK | wxCANCEL | wxCENTRE, const wxPoint& pos = wxDefaultPosition)

Constructor. Use wxTextEntryDialog::ShowModal (p. 839) to show the dialog.

Parameters

parent
Parent window.

CHAPTER 4

839

message
Message to show on the dialog.

defaultValue
The default value, which may be the empty string.

style
A dialog style, specifying the buttons (wxOK, wxCANCEL) and an optional
wxCENTRE style.

pos
Dialog position.

wxTextEntryDialog::~wxTextEntryDialog

 ~wxTextEntryDialog()

Destructor.

wxTextEntryDialog::GetValue

wxString GetValue() const

Returns the text that the user has entered if the user has pressed OK, or the original
value if the user has pressed Cancel.

wxTextEntryDialog::SetValue

void SetValue(const wxString& value)

Sets the default text value.

wxTextEntryDialog::ShowModal

int ShowModal()

Shows the dialog, returning wxID_OK if the user pressed OK, and wxOK_CANCEL
otherwise.

wxTextDropTarget

A predefined drop target for dealing with text data.

Derived from

CHAPTER 4

840

wxDropTarget (p. 234)

Include files

<wx/dnd.h>

See also

Drag and drop overview (p. 1038), wxDropSource (p. 232), wxDropTarget (p. 234),
wxFileDropTarget (p. 268)

wxTextDropTarget::wxTextDropTarget

 wxTextDropTarget()

Constructor.

wxTextDropTarget::GetFormatCount

virtual size_t GetFormatCount() const

See wxDropTarget::GetFormatCount (p. 235). This function is implemented
appropriately for text.

wxTextDropTarget::GetFormat

virtual wxDataFormat GetFormat(size_t n) const

See wxDropTarget::GetFormat (p. 235). This function is implemented appropriately for
text.

wxTextDropTarget::OnDrop

virtual bool OnDrop(long x, long y, const void *data, size_t size)

See wxDropTarget::OnDrop (p. 235). This function is implemented appropriately for text,
and calls wxTextDropTarget::OnDropText (p. 840).

wxTextDropTarget::OnDropText

virtual bool OnDropText(long x, long y, const char *data)

Override this function to receive dropped text.

CHAPTER 4

841

Parameters

x
The x coordinate of the mouse.

y
The y coordinate of the mouse.

data
The data being dropped: a NULL-terminated string.

Return value

Return TRUE to accept the data, FALSE to veto the operation.

wxTextValidator

wxTextValidator validates text controls, providing a variety of filtering behaviours.

For more information, please see Validator overview (p. 1103).

Derived from

wxValidator (p. 897)
wxEvtHandler (p. 240)
wxObject (p. 555)

Include files

<wx/valtext.h>

See also

Validator overview (p. 1103), wxValidator (p. 897),wxGenericValidator (p. 321)

wxTextValidator::wxTextValidator

 wxTextValidator(const wxTextValidator& validator)

Copy constructor.

 wxTextValidator(long style = wxFILTER_NONE, wxString* valPtr = NULL)

Constructor, taking a style and optional pointer to a wxString variable.

Parameters

CHAPTER 4

842

style
A bitlist of flags, which can be:

wxFILTER_NONE No filtering takes place.
wxFILTER_ASCII Non-ASCII characters are filtered out.
wxFILTER_ALPHA Non-alpha characters are filtered out.
wxFILTER_ALPHANUMERIC Non-alphanumeric characters are filtered out.
wxFILTER_NUMERIC Non-numeric characters are filtered out.
wxFILTER_INCLUDE_LIST Use an include list. The validator checks if the user

input is on the list, complaining if not.
wxFILTER_EXCLUDE_LISTUse an exclude list. The validator checks if the user

input is on the list, complaining if it is.

valPtr
A pointer to a wxString variable that contains the value. This variable should have
a lifetime equal to or longer than the validator lifetime (which is usually determined
by the lifetime of the window). If NULL, the validator uses its own internal storage
for the value.

wxTextValidator::~wxTextValidator

 ~wxTextValidator()

Destructor.

wxTextValidator::Clone

virtual wxValidator* Clone() const

Clones the text validator using the copy constructor.

wxTextValidator::GetExcludeList

wxStringList& GetExcludeList() const

Returns a reference to the exclude list (the list of invalid values).

wxTextValidator::GetIncludeList

wxStringList& GetIncludeList() const

Returns a reference to the include list (the list of valid values).

wxTextValidator::GetStyle

CHAPTER 4

843

long GetStyle() const

Returns the validator style.

wxTextValidator::OnChar

void OnChar(wxKeyEvent& event)

Receives character input from the window and filters it according to the current validator
style.

wxTextValidator::SetExcludeList

void SetExcludeList(const wxStringList& stringList)

Sets the exclude list (invalid values for the user input).

wxTextValidator::SetIncludeList

void SetIncludeList(const wxStringList& stringList)

Sets the include list (valid values for the user input).

wxTextValidator::SetStyle

void SetStyle(long style)

Sets the validator style.

wxTextValidator::TransferFromWindow

virtual bool TransferFromWindow()

Transfers the string value to the window.

wxTextValidator::TransferToWindow

virtual bool TransferToWindow()

Transfers the window value to the string.

wxTextValidator::Validate

CHAPTER 4

844

virtual bool Validate(wxWindow* parent)

Validates the window contents against the include or exclude lists, depending on the
validator style.

wxTextFile

The wxTextFile is a simple class which allows to work with text files on line by line basis.
It also understands the differences in line termination characters under different
platforms and will not do anything bad to files with "non native" line termination
sequences - in fact, it can be also used to modify the text files and change the line
termination characters from one type (say DOS) to another (say Unix).

One word of warning: the class is not at all optimized for big files and so it will load the
file entirely into memory when opened. Of course, you should not work in this way with
large files (as an estimation, anything over 1 Megabyte is surely too big for this class).
On the other hand, it is not a serious limitation for the small files like configuration files or
programs sources which are well handled by wxTextFile.

The typical things you may do with wxTextFile in order are:

• Create and open it: this is done with Open (p. 845) function which opens the file
(name may be specified either as Open argument or in the constructor), reads
its contents in memory and closes it. If all of these operations are successful,
Open() will return TRUE and FALSE on error.

• Work with the lines in the file: this may be done either with "direct access"
functions like GetLineCount (p. 846) and GetLine (p. 846) (operator[] does
exactly the same but looks more like array addressing) or with "sequential
access" functions which include GetFirstLine (p. 847)/GetNextLine (p. 847) and
also GetLastLine (p. 847)/GetPrevLine (p. 847). For the sequential access
functions the current line number is maintained: it is returned by GetCurrentLine
(p. 846) and may be changed with GoToLine (p. 847).

• Add/remove lines to the file: AddLine (p. 848) and InsertLine (p. 848) add new
lines while RemoveLine (p. 848) deletes the existing ones.

• Save your changes: notice that the changes you make to the file will not be
saved automatically; calling Close (p. 846) or doing nothing discards them! To
save the changes you must explicitly call Write (p. 848) - here, you may also
change the line termination type if you wish.

Derived from

No base class

Include files

<wx/textfile.h>

Data structures

CHAPTER 4

845

The following constants identify the line termination type:
enum wxTextFileType
{
 wxTextFileType_None, // incomplete (the last line of the file
only)
 wxTextFileType_Unix, // line is terminated with 'LF' = 0xA = 10 =
'\n'
 wxTextFileType_Dos, // 'CR' 'LF'
 wxTextFileType_Mac // 'CR' = 0xD = 13 =
'\r'
};

See also

wxFile (p. 257)

wxTextFile::wxTextFile

 wxTextFile() const

Default constructor, use Open(string) to initialize the object.

wxTextFile::wxTextFile

 wxTextFile(const wxString& strFile) const

Constructor does not load the file into memory, use Open() to do it.

wxTextFile::Exists

bool Exists() const

Return TRUE if file exists - the name of the file should have been specified in the
constructor before calling Exists().

wxTextFile::Open

bool Open() const

Open() opens the file with the name which was given in the constructor (p. 845) and
also loads file in memory on success.

wxTextFile::Open

CHAPTER 4

846

bool Open(const wxString& strFile) const

Same as Open() (p. 845) but allows to specify the file name (must be used if the default
constructor was used to create the object).

wxTextFile::Close

bool Close() const

Closes the file and frees memory, losing all changes. Use Write() (p. 848) if you want
to save them.

wxTextFile::IsOpened

bool IsOpened() const

Returns TRUE if the file is currently opened.

wxTextFile::GetLineCount

size_t GetLineCount() const

Get the number of lines in the file.

wxTextFile::GetLine

wxString& GetLine(size_t n) const

Retrieves the line number n from the file. The returned line may be modified but you
shouldn't add line terminator at the end - this will be done by wxTextFile.

wxTextFile::operator[]

wxString& operator[](size_t n) const

The same as GetLine (p. 846).

wxTextFile::GetCurrentLine

size_t GetCurrentLine() const

Returns the current line: it has meaning only when you're using
GetFirstLine()/GetNextLine() functions, it doesn't get updated when you're using "direct
access" functions like GetLine(). GetFirstLine() and GetLastLine() also change the value

CHAPTER 4

847

of the current line, as well as GoToLine().

wxTextFile::GoToLine

void GoToLine(size_t n) const

Changes the value returned by GetCurrentLine (p. 846) and used by GetFirstLine() (p.
847)/GetNextLine() (p. 847).

wxTextFile::Eof

bool Eof() const

Returns TRUE if the current line is the last one.

wxTextFile::GetFirstLine

wxString& GetFirstLine() const

This method together with GetNextLine() (p. 847) allows more "iterator-like" traversal of
the list of lines, i.e. you may write something like:

for (str = GetFirstLine(); !Eof(); str = GetNextLine())
{
 // do something with the current line in str
}

wxTextFile::GetNextLine

wxString& GetNextLine()

Gets the next line (see GetFirstLine (p. 847) for the example).

wxTextFile::GetPrevLine

wxString& GetPrevLine()

Gets the previous line in the file.

wxTextFile::GetLastLine

wxString& GetLastLine()

Gets the last line of the file.

CHAPTER 4

848

wxTextFile::GetLineType

wxTextFileType GetLineType(size_t n) const

Get the type of the line (see also GetEOL (p. 849))

wxTextFile::GuessType

wxTextFileType GuessType() const

Guess the type of file (which is supposed to be opened). If sufficiently many lines of the
file are in DOS/Unix/Mac format, the corresponding value will be returned. If the
detection mechanism fails wxTextFileType_None is returned.

wxTextFile::GetName

const char* GetName() const

Get the name of the file.

wxTextFile::AddLine

void AddLine(const wxString& str, wxTextFileType type = typeDefault) const

Adds a line to the end of file.

wxTextFile::InsertLine

void InsertLine(const wxString& str, size_t n, wxTextFileType type = typeDefault)
const

Insert a line before the line number n.

wxTextFile::RemoveLine

void RemoveLine(size_t n) const

Delete line number n from the file.

wxTextFile::Write

bool Write(wxTextFileType typeNew = wxTextFileType_None) const

CHAPTER 4

849

Change the file on disk. The typeNew parameter allows you to change the file format
(default argument means "don't change type") and may be used to convert, for example,
DOS files to Unix.

Returns TRUE if operation succeeded, FALSE if it failed.

wxTextFile::GetEOL

static const char* GetEOL(wxTextFileType type = typeDefault) const

Get the line termination string corresponding to given constant. typeDefault is the value
defined during the compilation and corresponds to the native format of the platform, i.e. it
will be wxTextFileType_Dos under Windows, wxTextFileType_Unix under Unix and
wxTextFileType_Mac under Mac.

wxTextFile::~wxTextFile

 ~wxTextFile() const

Destructor does nothing.

wxThread

A thread is basically a path of execution through a program. Threads are also
sometimes called light-weight processes, but the fundamental difference between
threads and processes is that memory spaces of different processes are separated while
all threads share the same address space. While it makes it much easier to share
common data between several threads, it also makes much easier to shoot oneself in
the foot, so careful use of synchronization objects such as mutexes (p. 541) and/or
critical sections (p. 131) is recommended.

Derived from

None.

Include files

<wx/thread.h>

See also

wxMutex (p. 541), wxCondition (p. 115), wxCriticalSection (p. 131)

wxThread::wxThread

CHAPTER 4

850

 wxThread()

Default constructor: it doesn't create nor starts the thread.

wxThread::~wxThread

 ~wxThread()

wxThread destructor is private, so you can not call it directly - i.e., deleting wxThread
objects is forbidden. Instead, you should use Delete (p. 850) orKill (p. 852) methods.
This also means that thread objects should eb always allocated on the heap (i.e. with
new) because the functions mentioned above will try to reclaim the storage from the
heap.

wxThread::Create

wxThreadError Create()

Creates a new thread. The thread object is created in the suspended state, you should
call Run (p. 852) to start running it.

Return value

One of:

wxTHREAD_NO_ERROR There was no error.
wxTHREAD_NO_RESOURCE There were insufficient resources to create a

new thread.
wxTHREAD_RUNNING The thread is already running.

wxThread::Delete

void Delete()

This function should be called to terminate this thread. Unlike Kill (p. 852), it gives the
target thread the time to terminate gracefully. Because of this, however, this function
may not return immediately and if the thread is "hung" won't return at all. Also, message
processing is not stopped during this function execution, so the message handlers may
be called from inside it.

Delete() may be called for thread in any state: running, paused or even not yet created.
Moreover, it must be called if Create (p. 850) or Run (p. 852) fail to free the memory
occupied by the thread object.

wxThread::Entry

CHAPTER 4

851

virtual void * Entry()

This is the entry point of the thread. This function is pure virtual and must be
implemented by any derived class. The thread execution will start here.

The returned value is the thread exit code but is currently ignored in wxWindows
implementation (this will change in near future).

wxThread::GetID

unsigned long GetID() const

Gets the thread identifier: this is a platform dependent number which uniquely identifies
the thread throughout the system during its existence (i.e. the thread identifiers may be
reused).

wxThread::GetPriority

int GetPriority() const

Gets the priority of the thread, between zero and 100.

The following priorities are already defined:

WXTHREAD_MIN_PRIORITY 0
WXTHREAD_DEFAULT_PRIORITY 50
WXTHREAD_MAX_PRIORITY 100

wxThread::IsAlive

bool IsAlive() const

Returns TRUE if the thread is alive (i.e. started and not terminating).

wxThread::IsMain

bool IsMain() const

Returns TRUE if the calling thread is the main application thread.

wxThread::IsPaused

bool IsPaused() const

CHAPTER 4

852

Returns TRUE if the thread is paused.

wxThread::IsRunning

bool IsRunning() const

Returns TRUE if the thread is running.

wxThread::Kill

wxThreadError Kill()

Immediately terminates the target thread. This function is dangerous and should be
used with extreme care (and not used at all whenever possible)! The resources
allocated to the thread will not be freed and the state of the C runtime library may
become inconsistent. Use Delete() (p. 850) instead.

wxThread::OnExit

void OnExit()

Called when the thread exits. This function is called in the context of the thread
associated with the wxThread object, not in the context of the main thread.

wxThread::Run

wxThreadError Run()

Runs the thread.

wxThread::SetPriority

void SetPriority(int priority)

Sets the priority of the thread, between zero and 100. This must be set before the thread
is created.

The following priorities are already defined:

WXTHREAD_MIN_PRIORITY 0
WXTHREAD_DEFAULT_PRIORITY 50
WXTHREAD_MAX_PRIORITY 100

CHAPTER 4

853

wxThread::Sleep

 Sleep(unsigned long milliseconds)

Pauses the thread execution for the given amount of time.

This function should be used instead of wxSleep (p. 996) by all worker (i.e. all except the
main one) threads.

wxThread::This

wxThread * This()

Return the thread object for the calling thread. NULL is returned if the calling thread is
the main (GUI) thread, but IsMain (p. 851) should be used to test whether the thread is
really the main one because NULL may also be returned for the thread not created with
wxThread class. Generally speaking, the return value for such thread is undefined.

wxThread::Yield

 Yield()

Give the rest of the thread time slice to the system allowing the other threads to run. See
also Sleep() (p. 853).

wxTime

Representation of time and date.

NOTE: this class should be used with caution, since it is not fully tested. It will be
replaced with a new wxDateTime class in the near future.

Derived from

wxObject (p. 555)

Include files

<wx/time.h>

Data structures

typedef unsigned short hourTy;
typedef unsigned short minuteTy;
typedef unsigned short secondTy;
typedef unsigned long clockTy;

CHAPTER 4

854

enum tFormat wx12h, wx24h ;
enum tPrecision wxStdMinSec, wxStdMin ;

See also

wxDate (p. 157)

wxTime::wxTime

 wxTime()

Initialize the object using the current time.

 wxTime(clockTy s)

Initialize the object using the number of seconds that have elapsed since ???.

 wxTime(const wxTime& time)

Copy constructor.

 wxTime(hourTy h, minuteTy m, secondTy s = 0, bool dst = FALSE)

Initialize using hours, minutes, seconds, and whether DST time.

 wxTime(const wxDate& date, hourTy h = 0, minuteTy m = 0, secondTy s = 0, bool
dst = FALSE)

Initialize using a wxDate (p. 157) object, hours, minutes, seconds, and whether DST
time.

wxTime::GetDay

int GetDay() const

Returns the day of the month.

wxTime::GetDayOfWeek

int GetDayOfWeek() const

Returns the day of the week, a number from 0 to 6 where 0 is Sunday and 6 is Saturday.

wxTime::GetHour

CHAPTER 4

855

hourTy GetHour() const

Returns the hour in local time.

wxTime::GetHourGMT

hourTy GetHourGMT() const

Returns the hour in GMT.

wxTime::GetMinute

minuteTy GetMinute() const

Returns the minute in local time.

wxTime::GetMinuteGMT

minuteTy GetMinuteGMT() const

Returns the minute in GMT.

wxTime::GetMonth

int GetMonth() const

Returns the month.

wxTime::GetSecond

secondTy GetSecond() const

Returns the second in local time or GMT.

wxTime::GetSecondGMT

secondTy GetSecondGMT() const

Returns the second in GMT.

wxTime::GetSeconds

CHAPTER 4

856

clockTy GetSeconds() const

Returns the number of seconds since ???.

wxTime::GetYear

int GetYear() const

Returns the year.

wxTime::FormatTime

char* FormatTime() const

Formats the time according to the current formatting options: see wxTime::SetFormat (p.
856).

wxTime::IsBetween

bool IsBetween(const wxTime& a, const wxTime& b) const

Returns TRUE if this time is between the two given times.

wxTime::Max

wxTime Max(const wxTime& time) const

Returns the maximum of the two times.

wxTime::Min

wxTime Min(const wxTime& time) const

Returns the minimum of the two times.

wxTime::SetFormat

static void SetFormat(const tFormat format = wx12h, const tPrecision precision =
wxStdMinSec)

Sets the format and precision.

wxTime::operator char*

CHAPTER 4

857

operator char*()

Returns a pointer to a static char* containing the formatted time.

wxTime::operator wxDate

operator wxDate() const

Converts the wxTime into a wxDate.

wxTime::operator =

void operator =(const wxTime& t)

Assignment operator.

wxTime::operator <

bool operator <(const wxTime& t) const

Less than operator.

wxTime::operator <=

bool operator <=(const wxTime& t) const

Less than or equal to operator.

wxTime::operator >

bool operator >(const wxTime& t) const

Greater than operator.

wxTime::operator >=

bool operator >=(const wxTime& t) const

Greater than or equal to operator.

wxTime::operator ==

CHAPTER 4

858

bool operator ==(const wxTime& t) const

Equality operator.

wxTime::operator !=

bool operator !=(const wxTime& t) const

Inequality operator.

wxTime::operator +

bool operator +(long sec) const

Addition operator.

wxTime::operator -

bool operator -(long sec) const

Subtraction operator.

wxTime::operator +=

bool operator +=(long sec) const

Increment operator.

wxTime::operator -=

bool operator -=(long sec) const

Decrement operator.

wxTimer

The wxTimer class allows you to execute code at specified intervals. To use it, derive a
new class and override the Notify member to perform the required action. Start with
Start, stop with Stop, it's as simple as that.

Derived from

wxObject (p. 555)

Include files

CHAPTER 4

859

<wx/timer.h>

See also

::wxStartTimer (p. 996), ::wxGetElapsedTime (p. 990)

wxTimer::wxTimer

 wxTimer()

Constructor.

wxTimer::~wxTimer

 ~wxTimer()

Destructor. Stops the timer if activated.

wxTimer::Interval

int Interval()

Returns the current interval for the timer.

wxTimer::Notify

void Notify()

This member should be overridden by the user. It is called on timeout.

wxTimer::Start

bool Start(int milliseconds = -1, bool oneShot=FALSE)

(Re)starts the timer. If milliseconds is absent or -1, the previous value is used. Returns
FALSE if the timer could not be started, TRUE otherwise (in MS Windows timers are a
limited resource).

If oneShot is FALSE (the default), the Notify function will be repeatedly called. If TRUE,
Notify will be called only once.

CHAPTER 4

860

wxTimer::Stop

void Stop()

Stops the timer.

wxTipProvider

This is the class used together with wxShowTip (p. 977) function. It must implement
GetTip (p. 860) function and return the current tip from it (different tip each time it is
called).

You will never use this class yourself, but you need it to show startup tips with
wxShowTip. Also, if you want to get the tips text from elsewhere than a simple text file,
you will want to derive a new class from wxTipProvider and use it instead of the one
returned by wxCreateFileTipProvider (p. 972).

Derived from

None.

Include files

<wx/tipdlg.h>

See also

Startup tips overview (p. 1115), ::wxShowTip (p. 977)

wxTipProvider::wxTipProvider

 wxTipProvider(size_t currentTip)

Constructor.

currentTip
The starting tip index.

wxTipProvider::GetTip

wxString GetTip()

Return the text of the current tip and pass to the next one. This function is pure virtual, it
should be implemented in the derived classes.

CHAPTER 4

861

wxCurrentTipProvider::GetCurrentTip

size_t GetCurrentTip() const

Returns the index of the current tip (i.e. the one which would be returned by GetTip).

The program usually remembers the value returned by this function after calling
wxShowTip (p. 977). Note that it is not the same as the value which was passed to
wxShowTip + 1 because the user might have pressed the "Next" button in the tip dialog.

wxToolBar

The name wxToolBar is defined to be a synonym for one of the following classes:

• wxToolBar95 The native Windows 95 toolbar. Used on Windows 95, NT 4 and
above.

• wxToolBarMSW A Windows implementation. Used on 16-bit Windows.
• wxToolBarGTK The GTK toolbar.
• wxToolBarSimple A simple implementation, with scrolling. Used on platforms

with no native toolbar control, or where scrolling is required.

Note that the base class wxToolBarBase defines automatic scrolling management
functionality which is identical to wxScrolledWindow (p. 680), so please refer to this class
also. Not all toolbars support scrolling, but wxToolBarSimple does.

Derived from

wxToolBarBase
wxControl (p. 130)
wxWindow (p. 915)
wxEvtHandler (p. 240)
wxObject (p. 555)

Include files

<wx/toolbar.h> (to allow wxWindows to select an appropriate toolbar class)
<wx/tbarbase.h> (the base class)
<wx/tbarmsw.h> (the non-Windows 95 Windows toolbar class)
<wx/tbar95.h> (the Windows 95/98 toolbar class)
<wx/tbarsmpl.h> (the generic simple toolbar class)

Remarks

You may also create a toolbar that is managed by the frame, by calling
wxFrame::CreateToolBar (p. 303).

wxToolBar95: Note that this toolbar paints tools to reflect user-selected colours. The
toolbar orientation must always be wxHORIZONTAL.

wxToolBarGtk: The toolbar orientation is ignored and is always wxHORIZONTAL.

CHAPTER 4

862

Window styles

wxTB_FLAT Gives the toolbar a flat look ('coolbar' or 'flatbar' style).
Windows 95 and GTK 1.2 only.

wxTB_DOCKABLE Makes the toolbar floatable and dockable. GTK only.
wxTB_HORIZONTAL Specifies horizontal layout.
wxTB_VERTICAL Specifies vertical layout (not available for the GTK and

Windows 95 toolbar).
wxTB_3DBUTTONS Gives wxToolBarSimple a mild 3D look to its buttons.

See also window styles overview (p. 1093).

Event handling

The toolbar class emits menu commands in the same was that a frame menubar does,
so you can use one EVT_MENU macro for both a menu item and a toolbar button. The
event handler functions take a wxCommandEvent argument. For most event macros, the
identifier of the tool is passed, but for EVT_TOOL_ENTER the toolbar window is passed
and the tool id is retrieved from the wxCommandEvent. This is because the id may be -1
when the mouse moves off a tool, and -1 is not allowed as an identifier in the event
system.

Note that tool commands (and UI update events for tools) are first sent to the focus
window within the frame that contains the toolbar. If no window within the frame has the
focus, then the events are sent directly to the toolbar (and up the hierarchy to the frame,
depending on where the application has put its event handlers). This allows command
and UI update handling to be processed by specific windows and controls, and not
necessarily by the application frame.

EVT_TOOL(id, func) Process a
wxEVT_COMMAND_TOOL_CLICKED event (a
synonym for
wxEVT_COMMAND_MENU_SELECTED).
Pass the id of the tool.

EVT_MENU(id, func) The same as EVT_TOOL.
EVT_TOOL_RANGE(id1, id2, func) Process a

wxEVT_COMMAND_TOOL_CLICKED event
for a range id identifiers. Pass the ids of the
tools.

EVT_MENU_RANGE(id1, id2, func) The same as EVT_TOOL_RANGE.

EVT_TOOL_RCLICKED(id, func) Process a
wxEVT_COMMAND_TOOL_RCLICKED event.
Pass the id of the tool.

EVT_TOOL_RCLICKED_RANGE(id1, id2, func) Process a
wxEVT_COMMAND_TOOL_RCLICKED event
for a range of ids. Pass the ids of the tools.

EVT_TOOL_ENTER(id, func) Process a wxEVT_COMMAND_TOOL_ENTER
event. Pass the id of the toolbar itself. The

CHAPTER 4

863

value of wxCommandEvent::GetSelection is
the tool id, or -1 if the mouse cursor has moved
off a tool.

See also

Toolbar overview (p. 1098), wxScrolledWindow (p. 680)

wxToolBar::wxToolBar

 wxToolBar()

Default constructor.

 wxToolBar(wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxTB_HORIZONTAL | wxNO_BORDER, const wxString& name = wxPanelNameStr)

Constructs a toolbar.

Parameters

parent
Pointer to a parent window.

id
Window identifier. If -1, will automatically create an identifier.

pos
Window position. wxDefaultPosition is (-1, -1) which indicates that wxWindows
should generate a default position for the window. If using the wxWindow class
directly, supply an actual position.

size
Window size. wxDefaultSize is (-1, -1) which indicates that wxWindows should
generate a default size for the window.

style
Window style. See wxToolBar (p. 861) for details.

name
Window name.

Remarks

After a toolbar is created, you use wxToolBar::AddTool (p. 864) and perhaps
wxToolBar::AddSeparator (p. 864), and then you must call wxToolBar::Realize (p. 872)

CHAPTER 4

864

to construct and display the toolbar tools.

You may also create a toolbar that is managed by the frame, by calling
wxFrame::CreateToolBar (p. 303).

wxToolBar::~wxToolBar

void ~wxToolBar()

Toolbar destructor.

wxToolBar::AddSeparator

void AddSeparator()

Adds a separator for spacing groups of tools.

See also

wxToolBar::AddTool (p. 864), wxToolBar::SetToolSeparation (p. 874)

wxToolBar::AddTool

wxToolBarTool* AddTool(int toolIndex, const wxBitmap& bitmap1, const
wxBitmap& bitmap2 = wxNullBitmap, bool isToggle = FALSE, long xPos = -1, long
yPos = -1, wxObject* clientData = NULL, const wxString& shortHelpString = "", const
wxString& longHelpString = "")

Adds a tool to the toolbar.

Parameters

toolIndex
An integer by which the tool may be identified in subsequent operations.

isToggle
Specifies whether the tool is a toggle or not: a toggle tool may be in two states,
whereas a non-toggle tool is just a button.

bitmap1
The primary tool bitmap for toggle and button tools.

bitmap2
The second bitmap specifies the on-state bitmap for a toggle tool. If this is
wxNullBitmap, either an inverted version of the primary bitmap is used for the on-
state of a toggle tool (monochrome displays) or a black border is drawn around the
tool (colour displays) or the pixmap is shown as a pressed button (GTK).

CHAPTER 4

865

xPos
Specifies the x position of the tool if automatic layout is not suitable.

yPos
Specifies the y position of the tool if automatic layout is not suitable.

clientData
An optional pointer to client data which can be retrieved later using
wxToolBar::GetToolClientData (p. 868).

shortHelpString
Used for displaying a tooltip for the tool in the Windows 95 implementation of
wxButtonBar. Pass the empty string if this is not required.

longHelpString
Used to displayer longer help, such as status line help. Pass the empty string if this
is not required.

Remarks

After you have added tools to a toolbar, you must call wxToolBar::Realize (p. 872) in
order to have the tools appear.

See also

wxToolBar::AddSeparator (p. 864),wxToolBar::Realize (p. 872),

wxToolBar::CreateTools

bool CreateTools()

This function is implemented for some toolbar classes to create the tools and display
them. The portable way of calling it is to call wxToolBar::Realize (p. 872) after you have
added tools and separators.

See also

wxToolBar::AddTool (p. 864), wxToolBar::Realize (p. 872)

wxToolBar::DrawTool

void DrawTool(wxMemoryDC& memDC, wxToolBarTool* tool)

Draws the specified tool onto the window using the given memory device context.

Parameters

memDC

CHAPTER 4

866

A memory DC to be used for drawing the tool.

tool
Tool to be drawn.

Remarks

For internal use only.

wxToolBar::EnableTool

void EnableTool(int toolIndex, const bool enable)

Enables or disables the tool.

Parameters

toolIndex
Tool to enable or disable.

enable
If TRUE, enables the tool, otherwise disables it.

Remarks

For wxToolBarSimple, does nothing. Some other implementations will change the visible
state of the tool to indicate that it is disabled.

See also

wxToolBar::GetToolEnabled (p. 868), wxToolBar::ToggleTool (p. 874)

wxToolBar::FindToolForPosition

wxToolBarTool* FindToolForPosition(const float x, const float y) const

Finds a tool for the given mouse position.

Parameters

x
X position.

y
Y position.

Return value

A pointer to a tool if a tool is found, or NULL otherwise.

CHAPTER 4

867

Remarks

Used internally, and should not need to be used by the programmer.

wxToolBar::GetToolSize

wxSize GetToolSize()

Returns the size of a whole button, which is usually larger than a tool bitmap because of
added 3D effects.

See also

wxToolBar::SetToolBitmapSize (p. 872), wxToolBar::GetToolBitmapSize (p. 867)

wxToolBar::GetToolBitmapSize

wxSize GetToolBitmapSize()

Returns the size of bitmap that the toolbar expects to have. The default bitmap size is 16
by 15 pixels.

Remarks

Note that this is the size of the bitmap you pass to wxToolBar::AddTool (p. 864), and not
the eventual size of the tool button.

See also

wxToolBar::SetToolBitmapSize (p. 872), wxToolBar::GetToolSize (p. 867)

wxToolBar::GetMargins

wxSize GetMargins() const

Returns the left/right and top/bottom margins, which are also used for inter-toolspacing.

See also

wxToolBar::SetMargins (p. 872)

wxToolBar::GetMaxSize

wxSize GetMaxSize() const

CHAPTER 4

868

Gets the maximum size taken up by the tools after layout, including margins. This can be
used to size a frame around the toolbar window.

wxToolBar::GetToolClientData

wxObject* GetToolClientData(int toolIndex) const

Get any client data associated with the tool.

Parameters

toolIndex
Index of the tool, as passed to wxToolBar::AddTool (p. 864).

Return value

Client data, or NULL if there is none.

wxToolBar::GetToolEnabled

bool GetToolEnabled(int toolIndex) const

Called to determine whether a tool is enabled (responds to user input).

Parameters

toolIndex
Index of the tool in question.

Return value

TRUE if the tool is enabled, FALSE otherwise.

wxToolBar::GetToolLongHelp

wxString GetToolLongHelp(int toolIndex) const

Returns the long help for the given tool.

Parameters

toolIndex
The tool in question.

See also

wxToolBar::SetToolLongHelp (p. 873), wxToolBar::SetToolShortHelp (p. 874)

CHAPTER 4

869

wxToolBar::GetToolPacking

int GetToolPacking() const

Returns the value used for packing tools.

See also

wxToolBar::SetToolPacking (p. 873)

wxToolBar::GetToolSeparation

int GetToolSeparation() const

Returns the default separator size.

See also

wxToolBar::SetToolSeparation (p. 874)

wxToolBar::GetToolShortHelp

wxString GetToolShortHelp(int toolIndex) const

Returns the short help for the given tool.

Returns the long help for the given tool.

Parameters

toolIndex
The tool in question.

See also

wxToolBar::GetToolLongHelp (p. 868), wxToolBar::SetToolShortHelp (p. 874)

wxToolBar::GetToolState

bool GetToolState(int toolIndex) const

Gets the on/off state of a toggle tool.

Parameters

CHAPTER 4

870

toolIndex
The tool in question.

Return value

TRUE if the tool is toggled on, FALSE otherwise.

wxToolBar::Layout

void Layout()

Called by the application after the tools have been added to automatically lay the tools
out on the window. If you have given absolute positions when adding the tools, do not
call this.

This function is only implemented for some toolbar classes. The portable way of calling it
is to call wxToolBar::Realize (p. 872) after you have added tools and separators.

See also

wxToolBar::AddTool (p. 864), wxToolBar::Realize (p. 872)

wxToolBar::OnLeftClick

bool OnLeftClick(int toolIndex, bool toggleDown)

Called when the user clicks on a tool with the left mouse button.

This is the old way of detecting tool clicks; although it will still work, you should use the
EVT_MENU or EVT_TOOL macro instead.

Parameters

toolIndex
The identifier passed to wxToolBar::AddTool (p. 864).

toggleDown
TRUE if the tool is a toggle and the toggle is down, otherwise is FALSE.

Return value

If the tool is a toggle and this function returns FALSE, the toggle toggle state (internal
and visual) will not be changed. This provides a way of specifying that toggle operations
are not permitted in some circumstances.

See also

wxToolBar::OnMouseEnter (p. 871), wxToolBar::OnRightClick (p. 871)

CHAPTER 4

871

wxToolBar::OnMouseEnter

void OnMouseEnter(int toolIndex)

This is called when the mouse cursor moves into a tool or out of the toolbar.

This is the old way of detecting mouse enter events; although it will still work, you should
use the EVT_TOOL_ENTER macro instead.

Parameters

toolIndex
Greater than -1 if the mouse cursor has moved into the tool, or -1 if the mouse
cursor has moved. The programmer can override this to provide extra information
about the tool, such as a short description on the status line.

Remarks

With some derived toolbar classes, if the mouse moves quickly out of the toolbar,
wxWindows may not be able to detect it. Therefore this function may not always be
called when expected.

wxToolBar::OnRightClick

void OnRightClick(int toolIndex, float x, float y)

Called when the user clicks on a tool with the right mouse button. The programmer
should override this function to detect right tool clicks.

This is the old way of detecting tool right clicks; although it will still work, you should use
the EVT_TOOL_RCLICKED macro instead.

Parameters

toolIndex
The identifier passed to wxToolBar::AddTool (p. 864).

x
The x position of the mouse cursor.

y
The y position of the mouse cursor.

Remarks

A typical use of this member might be to pop up a menu.

See also

CHAPTER 4

872

wxToolBar::OnMouseEnter (p. 871), wxToolBar::OnLeftClick (p. 870)

wxToolBar::Realize

bool Realize()

This function should be called after you have added tools. It calls, according to the
implementation, either wxToolBar::CreateTools (p. 865) or wxToolBar::Layout (p. 870).

If you are using absolute positions for your tools when using a wxToolBarSimple object,
do not call this function. You must call it at all other times.

wxToolBar::SetToolBitmapSize

void SetToolBitmapSize(const wxSize& size)

Sets the default size of each tool bitmap. The default bitmap size is 16 by 15 pixels.

Parameters

size
The size of the bitmaps in the toolbar.

Remarks

This should be called to tell the toolbar what the tool bitmap size is. Call it before you
add tools.

Note that this is the size of the bitmap you pass to wxToolBar::AddTool (p. 864), and not
the eventual size of the tool button.

See also

wxToolBar::GetToolBitmapSize (p. 867), wxToolBar::GetToolSize (p. 867)

wxToolBar::SetMargins

void SetMargins(const wxSize& size)

void SetMargins(int x, int y)

Set the values to be used as margins for the toolbar.

Parameters

size
Margin size.

CHAPTER 4

873

x
Left margin, right margin and inter-tool separation value.

y
Top margin, bottom margin and inter-tool separation value.

Remarks

This must be called before the tools are added if absolute positioning is to be used, and
the default (zero-size) margins are to be overridden.

See also

wxToolBar::GetMargins (p. 867), wxSize (p. 689)

wxToolBar::SetToolLongHelp

void SetToolLongHelp(int toolIndex, const wxString& helpString)

Sets the long help for the given tool.

Parameters

toolIndex
The tool in question.

helpString
A string for the long help.

Remarks

You might use the long help for displaying the tool purpose on the status line.

See also

wxToolBar::GetToolLongHelp (p. 868), wxToolBar::SetToolShortHelp (p. 874),

wxToolBar::SetToolPacking

void SetToolPacking(int packing)

Sets the value used for spacing tools. The default value is 1.

Parameters

packing
The value for packing.

CHAPTER 4

874

Remarks

The packing is used for spacing in the vertical direction if the toolbar is horizontal, and
for spacing in the horizontal direction if the toolbar is vertical.

See also

wxToolBar::GetToolPacking (p. 869)

wxToolBar::SetToolShortHelp

void SetToolShortHelp(int toolIndex, const wxString& helpString)

Sets the short help for the given tool.

Parameters

toolIndex
The tool in question.

helpString
The string for the short help.

Remarks

An application might use short help for identifying the tool purpose in a tooltip.

See also

wxToolBar::GetToolShortHelp (p. 869), wxToolBar::SetToolLongHelp (p. 873)

wxToolBar::SetToolSeparation

void SetToolSeparation(int separation)

Sets the default separator size. The default value is 5.

Parameters

separation
The separator size.

See also

wxToolBar::AddSeparator (p. 864)

wxToolBar::ToggleTool

CHAPTER 4

875

void ToggleTool(int toolIndex, const bool toggle)

Toggles a tool on or off. This does not cause any event to get emitted.

Parameters

toolIndex
Tool in question.

toggle
If TRUE, toggles the tool on, otherwise toggles it off.

Remarks

Only applies to a tool that has been specified as a toggle tool.

See also

wxToolBar::GetToolState (p. 869)

wxTreeCtrl

A tree control presents information as a hierarchy, with items that may be expanded to
show further items. Items in a tree control are referenced by wxTreeItemId handles.

To intercept events from a tree control, use the event table macros described in
wxTreeEvent (p. 890).

Derived from

wxControl (p. 130)
wxWindow (p. 915)
wxEvtHandler (p. 240)
wxObject (p. 555)

Include files

<wx/treectrl.h>

Window styles

wxTR_HAS_BUTTONS Use this style to show + and - buttons to the left of parent
items. Win32 only.

wxTR_EDIT_LABELS Use this style if you wish the user to be able to edit labels
in the tree control.

wxTR_MULTIPLE Use this style to allow the user to select more than one
item in the control - by default, only one item may be
selected.

CHAPTER 4

876

See also window styles overview (p. 1093).

Event handling

To process input from a tree control, use these event handler macros to direct input to
member functions that take a wxTreeEvent (p. 890) argument.

EVT_TREE_BEGIN_DRAG(id, func) Begin dragging with the left mouse button.
EVT_TREE_BEGIN_RDRAG(id, func) Begin dragging with the right mouse button.
EVT_TREE_BEGIN_LABEL_EDIT(id, func) Begin editing a label. This can be

prevented by calling Veto() (p. 554).
EVT_TREE_END_LABEL_EDIT(id, func) Finish editing a label. This can be prevented

by calling Veto() (p. 554).
EVT_TREE_DELETE_ITEM(id, func) Delete an item.
EVT_TREE_GET_INFO(id, func) Request information from the application.
EVT_TREE_SET_INFO(id, func) Information is being supplied.
EVT_TREE_ITEM_EXPANDED(id, func) Parent has been expanded.
EVT_TREE_ITEM_EXPANDING(id, func) Parent is being expanded. This can be

prevented by calling Veto() (p. 554).
EVT_TREE_SEL_CHANGED(id, func) Selection has changed.
EVT_TREE_SEL_CHANGING(id, func) Selection is changing. This can be prevented

by calling Veto() (p. 554).
EVT_TREE_KEY_DOWN(id, func) A key has been pressed.

See also

wxTreeItemData (p. 888), wxTreeCtrl overview (p. 1046), wxListBox (p. 452), wxListCtrl
(p. 461), wxImageList (p. 418), wxTreeEvent (p. 890)

wxTreeCtrl::wxTreeCtrl

 wxTreeCtrl()

Default constructor.

 wxTreeCtrl(wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxTR_HAS_BUTTONS, const wxValidator& validator = wxDefaultValidator, const
wxString& name = "listCtrl")

Constructor, creating and showing a tree control.

Parameters

parent
Parent window. Must not be NULL.

CHAPTER 4

877

id
Window identifier. A value of -1 indicates a default value.

pos
Window position.

size
Window size. If the default size (-1, -1) is specified then the window is sized
appropriately.

style
Window style. See wxTreeCtrl (p. 875).

validator
Window validator.

name
Window name.

See also

wxTreeCtrl::Create (p. 878), wxValidator (p. 897)

wxTreeCtrl::~wxTreeCtrl

void ~wxTreeCtrl()

Destructor, destroying the list control.

wxTreeCtrl::AddRoot

wxTreeItemId AddRoot(const wxString& text, int image = -1, int selImage = -1,
wxTreeItemData* data = NULL)

Adds the root node to the tree, returning the new item.

If image > -1 and selImage is -1, the same image is used for both selected and
unselected items.

wxTreeCtrl::AppendItem

wxTreeItemId AppendItem(const wxTreeItemId& parent, const wxString& text, int
image = -1, int selImage = -1, wxTreeItemData* data = NULL)

Appends an item to the end of the branch identified by parent, return a new item id.

If image > -1 and selImage is -1, the same image is used for both selected and

CHAPTER 4

878

unselected items.

wxTreeCtrl::Collapse

void Collapse(const wxTreeItemId& item)

Collapses the given item.

wxTreeCtrl::CollapseAndReset

void CollapseAndReset(const wxTreeItemId& item)

Collapses the given item and removes all children.

wxTreeCtrl::Create

bool wxTreeCtrl(wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxTR_HAS_BUTTONS, const wxValidator& validator = wxDefaultValidator, const
wxString& name = "listCtrl")

Creates the tree control. See wxTreeCtrl::wxTreeCtrl (p. 876) for further details.

wxTreeCtrl::Delete

void Delete(const wxTreeItemId& item)

Deletes the specified item.

wxTreeCtrl::DeleteAllItems

void DeleteAllItems()

Deletes all the items in the control.

wxTreeCtrl::EditLabel

void EditLabel(const wxTreeItemId& item)

Starts editing the label of the given item. This function generates a
EVT_TREE_BEGIN_LABEL_EDIT event which can be vetoed so that no text control will
appear for in-place editing.

If the user changed the label (i.e. s/he does not press ESC or leave the text control

CHAPTER 4

879

without changes, a EVT_TREE_END_LABEL_EDIT event will be sent which can be
vetoed as well.

See also

wxTreeCtrl::EndEditLabel (p. 879),wxTreeEvent (p. 890)

wxTreeCtrl::EndEditLabel

void EndEditLabel(bool cancelEdit)

Ends label editing. If cancelEdit is TRUE, the edit will be cancelled.

This function is currently supported under Windows only.

See also

wxTreeCtrl::EditLabel (p. 878)

wxTreeCtrl::EnsureVisible

void EnsureVisible(const wxTreeItemId& item)

Scrolls and/or expands items to ensure that the given item is visible.

wxTreeCtrl::Expand

void Expand(const wxTreeItemId& item)

Expands the given item.

wxTreeCtrl::GetBoundingRect

bool GetBoundingRect(const wxTreeItemId& item, wxRect& rect, bool textOnly =
FALSE) const

Retrieves the rectangle bounding the item. If textOnly is TRUE, only the rectangle
around the items label will be returned, otherwise the items image is also taken into
account.

The return value is TRUE if the rectangle was successfully retrieved or FALSE if it was
not (in this case rect is not changed) - for example, if the item is currently invisible.

wxPython note: The wxPython version of this method requires only theitem and
textOnly parameters. The return value is either awxRect object or None.

CHAPTER 4

880

wxTreeCtrl::GetChildrenCount

size_t GetChildrenCount(const wxTreeItemId& item, bool recursively = TRUE) const

Returns the number of items in the branch. If recursively is TRUE, returns the total
number of descendants, otherwise only one level of children is counted.

wxTreeCtrl::GetCount

int GetCount() const

Returns the number of items in the control.

wxTreeCtrl::GetEditControl

wxTextCtrl& GetEditControl() const

Returns the edit control used to edit a label.

wxTreeCtrl::GetFirstChild

wxTreeItemId GetFirstChild(const wxTreeItemId& item, long& cookie) const

Returns the first child; call wxTreeCtrl::GetNextChild (p. 882) for the next child.

For this enumeration function you must pass in a 'cookie' parameter which is opaque for
the application but is necessary for the library to make these functions reentrant (i.e.
allow more than one enumeration on one and the same object simultaneously). The
cookie passed to GetFirstChild and GetNextChild should be the same.

Returns an invalid tree item if there are no further children.

See also

wxTreeCtrl::GetNextChild (p. 882)

wxPython note: In wxPython the returned wxTreeItemId and the new cookie value are
both returned as a tuple containing the two values.

wxTreeCtrl::GetFirstVisibleItem

wxTreeItemId GetFirstVisibleItem() const

Returns the first visible item.

CHAPTER 4

881

wxTreeCtrl::GetImageList

wxImageList* GetImageList(int which = wxIMAGE_LIST_NORMAL) const

Returns the specified image list. which may be one of:

wxIMAGE_LIST_NORMAL The normal (large icon) image list.
wxIMAGE_LIST_SMALL The small icon image list.
wxIMAGE_LIST_STATE The user-defined state image list (unimplemented).

wxTreeCtrl::GetIndent

int GetIndent() const

Returns the current tree control indentation.

wxTreeCtrl::GetItemData

wxTreeItemData* GetItemData(const wxTreeItemId& item) const

Returns the tree item data associated with the item.

See also

wxTreeItemData (p. 888)

wxPython note: wxPython provides the following shortcut method:

GetPyData(item) Returns the Python Object associated with the
wxTreeItemData for the given item Id.

wxTreeCtrl::GetItemImage

int GetItemImage(const wxTreeItemId& item,wxTreeItemIcon which =
wxTreeItemIcon_Normal) const

Gets the specified item image. The value of which may be:
•_Normal to get the normal item image
•_Selected to get the selected item image (i.e. the image which is shown when the

item is currently selected)
•_Expanded to get the expanded image (this only makes sense for items which have

children - then this image is shown when the item is expanded and the normal
image is shown when it is collapsed)

•_SelectedExpanded to get the selected expanded image (which is shown when an

CHAPTER 4

882

expanded item is currently selected)

wxTreeCtrl::GetItemText

wxString GetItemText(const wxTreeItemId& item) const

Returns the item label.

wxTreeCtrl::GetLastChild

wxTreeItemId GetLastChild(const wxTreeItemId& item) const

Returns the last child of the item (or an invalid tree item if this item has no children).

See also

GetFirstChild (p. 880),GetLastChild (p. 882)

wxTreeCtrl::GetNextChild

wxTreeItemId GetNextChild(const wxTreeItemId& item, long& cookie) const

Returns the next child; call wxTreeCtrl::GetFirstChild (p. 880) for the first child.

For this enumeration function you must pass in a 'cookie' parameter which is opaque for
the application but is necessary for the library to make these functions reentrant (i.e.
allow more than one enumeration on one and the same object simultaneously). The
cookie passed to GetFirstChild and GetNextChild should be the same.

Returns an invalid tree item if there are no further children.

See also

wxTreeCtrl::GetFirstChild (p. 880)

wxPython note: In wxPython the returned wxTreeItemId and the new cookie value are
both returned as a tuple containing the two values.

wxTreeCtrl::GetNextSibling

wxTreeItemId GetNextSibling(const wxTreeItemId& item) const

Returns the next sibling of the specified item; call wxTreeCtrl::GetPrevSibling (p. 883) for
the previous sibling.

Returns an invalid tree item if there are no further siblings.

CHAPTER 4

883

See also

wxTreeCtrl::GetPrevSibling (p. 883)

wxTreeCtrl::GetNextVisible

wxTreeItemId GetNextVisible(const wxTreeItemId& item) const

Returns the next visible item.

wxTreeCtrl::GetParent

wxTreeItemId GetParent(const wxTreeItemId& item) const

Returns the item's parent.

wxTreeCtrl::GetPrevSibling

wxTreeItemId GetPrevSibling(const wxTreeItemId& item) const

Returns the previous sibling of the specified item; call wxTreeCtrl::GetNextSibling (p.
882) for the next sibling.

Returns an invalid tree item if there are no further children.

See also

wxTreeCtrl::GetNextSibling (p. 882)

wxTreeCtrl::GetPrevVisible

wxTreeItemId GetPrevVisible(const wxTreeItemId& item) const

Returns the previous visible item.

wxTreeCtrl::GetRootItem

wxTreeItemId GetRootItem() const

Returns the root item for the tree control.

wxTreeCtrl::GetItemSelectedImage

CHAPTER 4

884

int GetItemSelectedImage(const wxTreeItemId& item) const

Gets the selected item image (this function is obsolete, useGetItemImage(item,
wxTreeItemIcon_Selected instead).

wxTreeCtrl::GetSelection

wxTreeItemId GetSelection() const

Returns the selection, or an invalid item if there is no selection. This function only works
with the controls without wxTR_MULTIPLE style, useGetSelections (p. 884) for the
controls which do have this style.

wxTreeCtrl::GetSelections

size_t GetSelections(wxArrayTreeItemIds& selection) const

Fills the array of tree items passed in with the currently selected items. This function can
be called only if the control has the wxTR_MULTIPLE style.

Returns the number of selected items.

wxPython note: The wxPython version of this method accepts no parameters and
returns a Python list of wxTreeItemId's.

wxTreeCtrl::HitTest

long HitTest(const wxPoint& point, int& flags)

Calculates which (if any) item is under the given point, returning extra information in
flags. flags is a bitlist of the following:

wxTREE_HITTEST_ABOVE Above the client area.
wxTREE_HITTEST_BELOW Below the client area.
wxTREE_HITTEST_NOWHERE In the client area but below the last item.
wxTREE_HITTEST_ONITEMBUTTON On the button associated with an item.
wxTREE_HITTEST_ONITEMICON On the bitmap associated with an item.
wxTREE_HITTEST_ONITEMINDENT In the indentation associated with an item.
wxTREE_HITTEST_ONITEMLABEL On the label (string) associated with an item.
wxTREE_HITTEST_ONITEMRIGHT In the area to the right of an item.
wxTREE_HITTEST_ONITEMSTATEICON On the state icon for a tree view item that is

in a user-defined state.
wxTREE_HITTEST_TOLEFTTo the right of the client area.
wxTREE_HITTEST_TORIGHT To the left of the client area.

CHAPTER 4

885

wxTreeCtrl::InsertItem

wxTreeItemId InsertItem(const wxTreeItemId& parent, const wxTreeItemId&
previous, const wxString& text, int image = -1, int selImage = -1, wxTreeItemData*
data = NULL)

Inserts an item after a given one.

If image > -1 and selImage is -1, the same image is used for both selected and
unselected items.

wxTreeCtrl::IsBold

bool IsBold(const wxTreeItemId& item) const

Returns TRUE if the given item is in bold state.

See also: SetItemBold (p. 887)

wxTreeCtrl::IsExpanded

bool IsExpanded(const wxTreeItemId& item) const

Returns TRUE if the item is expanded (only makes sense if it has children).

wxTreeCtrl::IsSelected

bool IsSelected(const wxTreeItemId& item) const

Returns TRUE if the item is selected.

wxTreeCtrl::IsVisible

bool IsVisible(const wxTreeItemId& item) const

Returns TRUE if the item is visible (it might be outside the view, or not expanded).

wxTreeCtrl::ItemHasChildren

bool ItemHasChildren(const wxTreeItemId& item) const

Returns TRUE if the item has children.

wxTreeCtrl::OnCompareItems

CHAPTER 4

886

int OnCompareItems(const wxTreeItemId& item1, const wxTreeItemId& item2)

Override this function in the derived class to change the sort order of the items in the
tree control. The function should return a negative, zero or positive value if the first item
is less than, equal to or greater than the second one.

The base class version compares items alphabetically.

See also: SortChildren (p. 888)

wxTreeCtrl::PrependItem

wxTreeItemId PrependItem(const wxTreeItemId& parent, const wxString& text, int
image = -1, int selImage = -1, wxTreeItemData* data = NULL)

Appends an item as the first child of parent, return a new item id.

If image > -1 and selImage is -1, the same image is used for both selected and
unselected items.

wxTreeCtrl::ScrollTo

void ScrollTo(const wxTreeItemId& item)

Scrolls the specified item into view.

wxTreeCtrl::SelectItem

bool SelectItem(const wxTreeItemId& item)

Selects the given item.

wxTreeCtrl::SetIndent

void SetIndent(int indent)

Sets the indentation for the tree control.

wxTreeCtrl::SetImageList

void SetImageList(wxImageList* imageList, int which = wxIMAGE_LIST_NORMAL)

Sets the image list. which should be one of wxIMAGE_LIST_NORMAL,
wxIMAGE_LIST_SMALL and wxIMAGE_LIST_STATE.

CHAPTER 4

887

wxTreeCtrl::SetItemBold

void SetItemBold(const wxTreeItemId& item, bool bold = TRUE)

Makes item appear in bold font if bold parameter is TRUE or resets it to the normal state.

See also: IsBold (p. 885)

wxTreeCtrl::SetItemData

void SetItemData(const wxTreeItemId& item, wxTreeItemData* data)

Sets the item client data.

wxPython note: wxPython provides the following shortcut method:

SetPyData(item, obj) Associate the given Python Object with the
wxTreeItemData for the given item Id.

wxTreeCtrl::SetItemHasChildren

void SetItemHasChildren(const wxTreeItemId& item, bool hasChildren = TRUE)

Force appearance of the button next to the item. This is useful to allow the user to
expand the items which don't have any children now, but instead adding them only when
needed, thus minimizing memory usage and loading time.

wxTreeCtrl::SetItemImage

void SetItemImage(const wxTreeItemId& item,int image,wxTreeItemIcon which =
wxTreeItemIcon_Normal)

Sets the specified item image. See GetItemImage (p. 881)for the description of which
parameter.

wxTreeCtrl::SetItemSelectedImage

void SetItemSelectedImage(const wxTreeItemId& item, int selImage)

Sets the selected item image (this function is obsolete, useSetItemImage(item,
wxTreeItemIcon_Selected instead).

CHAPTER 4

888

wxTreeCtrl::SetItemText

void SetItemText(const wxTreeItemId& item, const wxString& text)

Sets the item label.

wxTreeCtrl::SortChildren

void SortChildren(const wxTreeItemId& item)

Sorts the children of the given item usingOnCompareItems (p. 885) method of
wxTreeCtrl. You should override that method to change the sort order (default is
ascending alphabetical order).

See also

wxTreeItemData (p. 888), OnCompareItems (p. 885)

wxTreeCtrl::Toggle

void Toggle(const wxTreeItemId& item)

Toggles the given item between collapsed and expanded states.

wxTreeCtrl::Unselect

void Unselect()

Removes the selection from the currently selected item (if any).

wxTreeCtrl::UnselectAll

void UnselectAll()

This function either behaves the same as Unselect (p. 888)if the control doesn't have
wxTR_MULTIPLE style, or removes the selection from all items if it does have this style.

wxTreeItemData

wxTreeItemData is some (arbitrary) user class associated with some item. The main
advantage of having this class (compared to the old untyped interface) is that
wxTreeItemData's are destroyed automatically by the tree and, as this class has virtual
dtor, it means that the memory will be automatically freed. We don't just use wxObject
instead of wxTreeItemData because the size of this class is critical: in any real
application, each tree leaf will have wxTreeItemData associated with it and number of
leaves may be quite big.

CHAPTER 4

889

Because the objects of this class are deleted by the tree, they should always be
allocated on the heap.

Derived from

wxTreeItemId

Include files

<wx/treectrl.h>

See also

wxTreeCtrl (p. 875)

wxTreeItemData::wxTreeItemData

 wxTreeItemData()

Default constructor.

wxPython note: The wxPython version of this constructor optionally accepts any Python
object as a parameter. This object is then associated with the tree item using the
wxTreeItemData as a container.

In addition, the following methods are added in wxPython for accessing the object:

GetData() Returns a reference to the Python Object
SetData(obj) Associates a new Python Object with the

wxTreeItemData

wxTreeItemData::~wxTreeItemData

void ~wxTreeItemData()

Virtual destructor.

wxTreeItemData::GetId

const wxTreeItem& GetId()

Returns the item associated with this node.

CHAPTER 4

890

wxTreeItemData::SetId

void SetId(const wxTreeItemId& id)

Sets the item associated with this node.

wxTreeEvent

A tree event holds information about events associated with wxTreeCtrl objects.

Derived from

wxNotifyEvent (p. 553)
wxCommandEvent (p. 108)
wxEvent (p. 237)
wxObject (p. 555)

Include files

<wx/treectrl.h>

Event table macros

To process input from a tree control, use these event handler macros to direct input to
member functions that take a wxTreeEvent argument.

EVT_TREE_BEGIN_DRAG(id, func) Begin dragging with the left mouse button.
EVT_TREE_BEGIN_RDRAG(id, func) Begin dragging with the right mouse button.
EVT_TREE_BEGIN_LABEL_EDIT(id, func) Begin editing a label. This can be

prevented by calling Veto() (p. 554).
EVT_TREE_END_LABEL_EDIT(id, func) Finish editing a label. This can be prevented

by calling Veto() (p. 554).
EVT_TREE_DELETE_ITEM(id, func) Delete an item.
EVT_TREE_GET_INFO(id, func) Request information from the application.
EVT_TREE_SET_INFO(id, func) Information is being supplied.
EVT_TREE_ITEM_EXPANDED(id, func) Parent has been expanded.
EVT_TREE_ITEM_EXPANDING(id, func) Parent is being expanded. This can be

prevented by calling Veto() (p. 554).
EVT_TREE_SEL_CHANGED(id, func) Selection has changed.
EVT_TREE_SEL_CHANGING(id, func) Selection is changing. This can be prevented

by calling Veto() (p. 554).
EVT_TREE_KEY_DOWN(id, func) A key has been pressed.

See also

wxTreeCtrl (p. 875)

CHAPTER 4

891

wxTreeEvent::wxTreeEvent

 wxTreeEvent(WXTYPE commandType = 0, int id = 0)

Constructor.

wxTreeEvent::GetItem

wxTreeItemId GetItem() const

Returns he item (valid for all events).

wxTreeEvent::GetOldItem

wxTreeItemId GetOldItem() const

Returns the old item index (valid for EVT_TREE_ITEM_CHANGING and CHANGED
events)

wxTreeEvent::GetPoint()

wxPoint GetPoint() const

Returns the position of the mouse pointer if the event is a drag event.

wxTreeEvent::GetCode

int GetCode() const

The key code if the event was is a key event.

wxTreeEvent::GetLabel

const wxString& GetLabel() const

Returns the label if the event was a begin or end edit label event.

wxUpdateUIEvent

This class is used for pseudo-events which are called by wxWindows to give an
application the chance to update various user interface elements.

Derived from

CHAPTER 4

892

wxEvent (p. 237)
wxObject (p. 555)

Include files

<wx/event.h>

Event table macros

To process an update event, use these event handler macros to direct input to member
functions that take a wxUpdateUIEvent argument.

EVT_UPDATE_UI(id, func) Process a wxEVT_UPDATE_UI event.

Remarks

Without update UI events, an application has to work hard to check/uncheck,
enable/disable, and set the text for elements such as menu items and toolbar buttons.
The code for doing this has to be mixed up with the code that is invoked when an action
is invoked for a menu item or button.

With update UI events, you define an event handler to look at the state of the application
and change UI elements accordingly. wxWindows will call your member functions in idle
time, so you don't have to worry where to call this code. In addition to being a clearer
and more declarative method, it also means you don't have to worry whether you're
updating a toolbar or menubar identifier. The same handler can update a menu item and
toolbar button, if the identifier is the same.

Instead of directly manipulating the menu or button, you call functions in the event
object, such as wxUpdateUIEvent::Check (p. 893). wxWindows will determine whether
such a call has been made, and which UI element to update.

These events will work for popup menus as well as menubars. Just before a menu is
popped up, wxMenu::UpdateUI (p. 507) is called to process any UI events for the
window that owns the menu.

See also

Event handling overview (p. 1072)

wxUpdateUIEvent::wxUpdateUIEvent

 wxUpdateUIEvent(wxWindowID commandId = 0)

Constructor.

CHAPTER 4

893

wxUpdateUIEvent::m_checked

bool m_checked

TRUE if the element should be checked, FALSE otherwise.

wxUpdateUIEvent::m_enabled

bool m_checked

TRUE if the element should be enabled, FALSE otherwise.

wxUpdateUIEvent::m_setChecked

bool m_setChecked

TRUE if the application has set the m_checked member.

wxUpdateUIEvent::m_setEnabled

bool m_setEnabled

TRUE if the application has set the m_enabled member.

wxUpdateUIEvent::m_setText

bool m_setText

TRUE if the application has set the m_text member.

wxUpdateUIEvent::m_text

wxString m_text

Holds the text with which the the application wishes to update the UI element.

wxUpdateUIEvent::Check

void Check(bool check)

Check or uncheck the UI element.

wxUpdateUIEvent::Enable

CHAPTER 4

894

void Enable(bool enable)

Enable or disable the UI element.

wxUpdateUIEvent::GetChecked

bool GetChecked() const

Returns TRUE if the UI element should be checked.

wxUpdateUIEvent::GetEnabled

bool GetEnabled() const

Returns TRUE if the UI element should be enabled.

wxUpdateUIEvent::GetSetChecked

bool GetSetChecked() const

Returns TRUE if the application has called SetChecked. For wxWindows internal use
only.

wxUpdateUIEvent::GetSetEnabled

bool GetSetEnabled() const

Returns TRUE if the application has called SetEnabled. For wxWindows internal use
only.

wxUpdateUIEvent::GetSetText

bool GetSetText() const

Returns TRUE if the application has called SetText. For wxWindows internal use only.

wxUpdateUIEvent::GetText

wxString GetText() const

Returns the text that should be set for the UI element.

CHAPTER 4

895

wxUpdateUIEvent::SetText

void SetText(const wxString& text)

Sets the text for this UI element.

wxURL

Derived from

wxObject (p. 555)

Include files

<wx/url.h>

See also

wxSocketBase (p. 705), wxProtocol (p. 619)

Example

 wxURL url("http://a.host/a.dir/a.file");
 wxInputStream *in_stream;

 in_stream = url.GetInputStream();
 // Then, you can use all IO calls of in_stream (See wxStream)

wxURL::wxURL

 wxURL(const wxString& url)

Constructs an URL object from the string.

Parameters

url
Url string to parse.

wxURL::~wxURL

 ~wxURL()

Destroys the URL object.

wxURL::GetProtocolName

CHAPTER 4

896

wxString GetProtocolName() const

Returns the name of the protocol which will be used to get the URL.

wxURL::GetProtocol

wxProtocol& GetProtocol()

Returns a reference to the protocol which will be used to get the URL.

wxURL::GetPath

wxString GetPath()

Returns the path of the file to fetch. This path was encoded in the URL.

wxURL::GetError

wxURLError GetError() const

Returns the last error. This error refers to the URL parsing or to the protocol. It can be
one of these errors:

wxURL_NOERR No error.
wxURL_SNTXERR Syntax error in the URL string.
wxURL_NOPROTO Found no protocol which can get this URL.
wxURL_NOHOST An host name is required for this protocol.
wxURL_NOPATH A path is required for this protocol.
wxURL_CONNERR Connection error.
wxURL_PROTOERR An error occured during negotiation.

wxURL::GetInputStream

wxInputStream * GetInputStream()

Creates a new input stream on the the specified URL. You can use all but seek
functionnality of wxStream. Seek isn't available on all stream. For example, http or ftp
streams doesn't deal with it.

Return value

Returns the initialized stream. You will have to delete it yourself.

See also

CHAPTER 4

897

wxInputStream

wxURL::SetDefaultProxy

static void SetDefaultProxy(const wxString& url_proxy)

Sets the default proxy server to use to get the URL. The string specifies the proxy like
this: <hostname>:<port number>.

Parameters

url_proxy
Specifies the proxy to use

See also

wxURL::SetProxy (p. 897)

wxURL::SetProxy

void SetProxy(const wxString& url_proxy)

Sets the proxy to use for this URL.

See also

wxURL::SetDefaultProxy (p. 897)

wxURL::ConvertToValidURI

static wxString ConvertToValidURI(const wxString& uri)

It converts a non-standardized URI to a valid network URI. It encodes non standard
characters.

wxValidator

wxValidator is the base class for a family of validator classes that mediate between a
class of control, and application data.

A validator has three major roles:

1. to transfer data from a C++ variable or own storage to and from a control;
2. to validate data in a control, and show an appropriate error message;
3. to filter events (such as keystrokes), thereby changing the behaviour of the

associated control.

CHAPTER 4

898

Validators can be plugged into controls dynamically.

To specify a default, 'null' validator, use the symbol wxDefaultValidator.

For more information, please see Validator overview (p. 1103).

wxPython note: If you wish to create a validator class in wxPython you should derive
the class from wxPyValidator in order to get Python-aware capabilities for the various
virtual methods.

Derived from

wxEvtHandler (p. 240)
wxObject (p. 555)

Include files

<wx/validate.h>

See also

Validator overview (p. 1103),wxTextValidator (p. 841),wxGenericValidator (p. 321),

wxValidator::wxValidator

 wxValidator()

Constructor.

wxValidator::~wxValidator

 ~wxValidator()

Destructor.

wxValidator::Clone

virtual wxValidator* Clone() const

All validator classes must implement the Clone function, which returns an identical copy
of itself. This is because validators are passed to control constructors as references
which must be copied. Unlike objects such as pens and brushes, it does not make sense
to have a reference counting scheme to do this cloning, because all validators should
have separate data.

CHAPTER 4

899

This base function returns NULL.

wxValidator::GetWindow

wxWindow* GetWindow() const

Returns the window associated with the validator.

wxValidator::SetBellOnError

wxvalidatorsetbellonerror

void SetBellOnError(bool doIt = TRUE)

This functions switches on or turns off the error sound produced by the validators if an
invalid key is pressed.

wxValidator::SetWindow

void SetWindow(wxWindow* window)

Associates a window with the validator.

wxValidator::TransferFromWindow

virtual bool TransferToWindow()

This overridable function is called when the value in the window must be transferred to
the validator. Return FALSE if there is a problem.

wxValidator::TransferToWindow

virtual bool TransferToWindow()

This overridable function is called when the value associated with the validator must be
transferred to the window. Return FALSE if there is a problem.

wxValidator::Validate

virtual bool Validate(wxWindow* parent)

This overridable function is called when the value in the associated window must be
validated. Return FALSE if the value in the window is not valid; you may pop up an error

CHAPTER 4

900

dialog.

wxVariant

The wxVariant class represents a container for any type. A variant's value can be
changed at run time, possibly to a different type of value.

As standard, wxVariant can store values of type bool, char, double, long, string, string
list, time, date, void pointer, list of strings, and list of variants. However, an application
can extend wxVariant's capabilities by deriving from the class wxVariantData (p. 908)
and using the wxVariantData form of the wxVariant constructor or assignment operator
to assign this data to a variant. Actual values for user-defined types will need to be
accessed via the wxVariantData object, unlike the case for basic data types where
convenience functions such as GetLong can be used.

This class is useful for reducing the programming for certain tasks, such as an editor for
different data types, or a remote procedure call protocol.

An optional name member is associated with a wxVariant. This might be used, for
example, in CORBA or OLE automation classes, where named parameters are required.

wxVariant is similar to wxExpr and also to wxPropertyValue. However, wxExpr is
efficiency-optimized for a restricted range of data types, whereas wxVariant is less
efficient but more extensible. wxPropertyValue may be replaced by wxVariant
eventually.

Derived from

wxObject (p. 555)

Include files

<wx/variant.h>

See also

wxVariantData (p. 908)

wxVariant::wxVariant

 wxVariant()

Default constructor.

 wxVariant(const wxVariant& variant)

Copy constructor.

CHAPTER 4

901

 wxVariant(const char* value, const wxString& name = "")
 wxVariant(const wxString& value, const wxString& name = "")

Construction from a string value.

 wxVariant(char value, const wxString& name = "")

Construction from a character value.

 wxVariant(long value, const wxString& name = "")

Construction from an integer value. You may need to cast to (long) to avoid confusion
with other constructors (such as the bool constructor).

 wxVariant(bool value, const wxString& name = "")

Construction from a boolean value.

 wxVariant(double value, const wxString& name = "")

Construction from a double-precision floating point value.

 wxVariant(const wxList& value, const wxString& name = "")

Construction from a list of wxVariant objects. This constructor copies value, the
application is still responsible for deleting value and its contents.

 wxVariant(const wxStringList& value, const wxString& name = "")

Construction from a list of strings. This constructor copies value, the application is still
responsible for deleting value and its contents.

 wxVariant(const wxTime& value, const wxString& name = "")

Construction from a time.

 wxVariant(const wxDate& value, const wxString& name = "")

Construction from a date.

 wxVariant(void* value, const wxString& name = "")

Construction from a void pointer.

 wxVariant(wxVariantData* data, const wxString& name = "")

Construction from user-defined data. The variant holds on to the data pointer.

wxVariant::~wxVariant

CHAPTER 4

902

 ~wxVariant()

Destructor.

wxVariant::Append

void Append(const wxVariant& value)

Appends a value to the list.

wxVariant::ClearList

void ClearList()

Deletes the contents of the list.

wxVariant::GetCount

int GetCount() const

Returns the number of elements in the list.

wxVariant::Delete

bool Delete(int item)

Deletes the zero-based item from the list.

wxVariant::GetBool

bool GetBool() const

Returns the boolean value.

wxVariant::GetChar

char GetChar() const

Returns the character value.

wxVariant::GetData

wxVariantData* GetData() const

CHAPTER 4

903

Returns a pointer to the internal variant data.

wxVariant::GetDate

wxDate GetDate() const

Gets the date value.

wxVariant::GetDouble

double GetDouble() const

Returns the floating point value.

wxVariant::GetLong

long GetLong() const

Returns the integer value.

wxVariant::GetName

const wxString& GetName() const

Returns a constant reference to the variant name.

wxVariant::GetString

wxString GetString() const

Gets the string value.

wxVariant::GetTime

wxTime GetTime() const

Gets the time value.

wxVariant::GetType

wxString GetType() const

CHAPTER 4

904

Returns the value type as a string. The built-in types are: bool, char, date, double, list,
long, string, stringlist, time, void*.

If the variant is null, the value type returned is the string "null" (not the empty string).

wxVariant::GetVoidPtr

void* GetVoidPtr() const

Gets the void pointer value.

wxVariant::Insert

void Insert(const wxVariant& value)

Inserts a value at the front of the list.

wxVariant::IsNull

bool IsNull() const

Returns TRUE if there is no data associated with this variant, FALSE if there is data.

wxVariant::IsType

bool IsType(const wxString& type) const

Returns TRUE if type matches the type of the variant, FALSE otherwise.

wxVariant::MakeNull

void MakeNull()

Makes the variant null by deleting the internal data.

wxVariant::MakeString

wxString MakeString() const

Makes a string representation of the variant value (for any type).

wxVariant::Member

CHAPTER 4

905

bool Member(const wxVariant& value) const

Returns TRUE if value matches an element in the list.

wxVariant::NullList

void NullList()

Makes an empty list. This differs from a null variant which has no data; a null list is of
type list, but the number of elements in the list is zero.

wxVariant::SetData

void SetData(wxVariantData* data)

Sets the internal variant data, deleting the existing data if there is any.

wxVariant::operator =

void operator =(const wxVariant& value)

void operator =(wxVariantData* value)

void operator =(const wxString& value)

void operator =(const char* value)

void operator =(char value)

void operator =(const long value)

void operator =(const bool value)

void operator =(const double value)

void operator =(const wxDate& value)

void operator =(const wxTime& value)

void operator =(void* value)

void operator =(const wxList& value)

void operator =(const wxStringList& value)

Assignment operators.

CHAPTER 4

906

wxVariant::operator ==

bool operator ==(const wxVariant& value)

bool operator ==(const wxString& value)

bool operator ==(const char* value)

bool operator ==(char value)

bool operator ==(const long value)

bool operator ==(const bool value)

bool operator ==(const double value)

bool operator ==(const wxDate& value)

bool operator ==(const wxTime& value)

bool operator ==(void* value)

bool operator ==(const wxList& value)

bool operator ==(const wxStringList& value)

Equality test operators.

wxVariant::operator !=

bool operator !=(const wxVariant& value)

bool operator !=(const wxString& value)

bool operator !=(const char* value)

bool operator !=(char value)

bool operator !=(const long value)

bool operator !=(const bool value)

bool operator !=(const double value)

bool operator !=(const wxDate& value)

bool operator !=(const wxTime& value)

bool operator !=(void* value)

CHAPTER 4

907

bool operator !=(const wxList& value)

bool operator !=(const wxStringList& value)

Inequality test operators.

wxVariant::operator []

wxVariant operator [](size_t idx) const

Returns the value at idx (zero-based).

wxVariant& operator [](size_t idx)

Returns a reference to the value at idx (zero-based). This can be used to change the
value at this index.

wxVariant::operator char

char operator char() const

Operator for implicit conversion to a char, using wxVariant::GetChar (p. 902).

wxVariant::operator double

double operator double() const

Operator for implicit conversion to a double, using wxVariant::GetDouble (p. 903).

long operator long() const

Operator for implicit conversion to a long, using wxVariant::GetLong (p. 903).

wxVariant::operator wxDate

wxDate operator wxDate() const

Operator for implicit conversion to a wxDate, using wxVariant::GetDate (p. 903).

wxVariant::operator wxString

wxString operator wxString() const

Operator for implicit conversion to a string, using wxVariant::MakeString (p. 904).

CHAPTER 4

908

wxVariant::operator wxTime

wxTime operator wxTime() const

Operator for implicit conversion to a wxTime, using wxVariant::GetTime (p. 903).

wxVariant::operator void*

void* operator void*() const

Operator for implicit conversion to a pointer to a void, using wxVariant::GetVoidPtr (p.
904).

wxVariantData

The wxVariantData is used to implement a new type for wxVariant. Derive from
wxVariantData, and override the pure virtual functions.

Derived from

wxObject (p. 555)

Include files

<wx/variant.h>

See also

wxVariant (p. 900)

wxVariantData::wxVariantData

 wxVariantData()

Default constructor.

wxVariantData::Copy

void Copy(wxVariantData& data)

Copy the data from 'this' object to data.

CHAPTER 4

909

wxVariantData::Eq

bool Eq(wxVariantData& data) const

Returns TRUE if this object is equal to data.

wxVariantData::GetType

wxString GetType() const

Returns the string type of the data.

wxVariantData::Read

bool Read(ostream& stream)

bool Read(wxString& string)

Reads the data from stream or string.

wxVariantData::Write

bool Write(ostream& stream) const

bool Write(wxString& string) const

Writes the data to stream or string.

wxView

The view class can be used to model the viewing and editing component of an
application's file-based data. It is part of the document/view framework supported by
wxWindows, and cooperates with the wxDocument (p. 223), wxDocTemplate (p. 218)
and wxDocManager (p. 205) classes.

Derived from

wxEvtHandler (p. 240)
wxObject (p. 555)

Include files

<wx/docview.h>

See also

wxView overview (p. 1068), wxDocument (p. 223), wxDocTemplate (p. 218),

CHAPTER 4

910

wxDocManager (p. 205)

wxView::m_viewDocument

wxDocument* m_viewDocument

The document associated with this view. There may be more than one view per
document, but there can never be more than one document for one view.

wxView::m_viewFrame

wxFrame* m_viewFrame

Frame associated with the view, if any.

wxView::m_viewTypeName

wxString m_viewTypeName

The view type name given to the wxDocTemplate constructor, copied to this variable
when the view is created. Not currently used by the framework.

wxView::wxView

 wxView()

Constructor. Define your own default constructor to initialize application-specific data.

wxView::~wxView

 ~wxView()

Destructor. Removes itself from the document's list of views.

wxView::Activate

virtual void Activate(bool activate)

Call this from your view frame's OnActivate member to tell the framework which view is
currently active. If your windowing system doesn't call OnActivate, you may need to call
this function from OnMenuCommand or any place where you know the view must be
active, and the framework will need to get the current view.

CHAPTER 4

911

The prepackaged view frame wxDocChildFrame calls wxView::Activate from its
OnActivate member and from its OnMenuCommand member.

This function calls wxView::OnActivateView.

wxView::Close

virtual bool Close(bool deleteWindow = TRUE)

Closes the view by calling OnClose. If deleteWindow is TRUE, this function should
delete the window associated with the view.

wxView::GetDocument

wxDocument* GetDocument() const

Gets a pointer to the document associated with the view.

wxView::GetDocumentManager

wxDocumentManager* GetDocumentManager() const

Returns a pointer to the document manager instance associated with this view.

wxView::GetFrame

wxFrame * GetFrame()

Gets the frame associated with the view (if any).

wxView::GetViewName

wxString GetViewName() const

Gets the name associated with the view (passed to the wxDocTemplate constructor).
Not currently used by the framework.

wxView::OnActivateView

virtual void OnActivateView(bool activate, wxView *activeView, wxView
*deactiveView)

Called when a view is activated by means of wxView::Activate. The default

CHAPTER 4

912

implementation does nothing.

wxView::OnChangeFilename

virtual void OnChangeFilename()

Called when the filename has changed. The default implementation constructs a suitable
title and sets the title of the view frame (if any).

wxView::OnClose

virtual bool OnClose(bool deleteWindow)

Implements closing behaviour. The default implementation calls wxDocument::Close to
close the associated document. Does not delete the view. The application may wish to
do some cleaning up operations in this function, if a call to wxDocument::Close
succeeded. For example, if your application's all share the same window, you need to
disassociate the window from the view and perhaps clear the window. If deleteWindow is
TRUE, delete the frame associated with the view.

wxView::OnCreate

virtual bool OnCreate(wxDocument* doc, long flags)

Called just after view construction to give the view a chance to initialize itself based on
the passed document and flags (unused). By default, simply returns TRUE. If the
function returns FALSE, the view will be deleted.

The predefined document child frame, wxDocChildFrame, calls this function
automatically.

wxView::OnCreatePrintout

virtual wxPrintout* OnCreatePrintout()

If the printing framework is enabled in the library, this function returns a wxPrintout (p.
606) object for the purposes of printing. It should create a new object everytime it is
called; the framework will delete objects it creates.

By default, this function returns an instance of wxDocPrintout, which prints and previews
one page by calling wxView::OnDraw.

Override to return an instance of a class other than wxDocPrintout.

wxView::OnUpdate

CHAPTER 4

913

virtual void OnUpdate(wxView* sender, wxObject* hint)

Called when the view should be updated. sender is a pointer to the view that sent the
update request, or NULL if no single view requested the update (for instance, when the
document is opened). hint is as yet unused but may in future contain application-specific
information for making updating more efficient.

wxView::SetDocument

void SetDocument(wxDocument* doc)

Associates the given document with the view. Normally called by the framework.

wxView::SetFrame

void SetFrame(wxFrame* frame)

Sets the frame associated with this view. The application should call this if possible, to
tell the view about the frame.

wxView::SetViewName

void SetViewName(const wxString& name)

Sets the view type name. Should only be called by the framework.

wxWave

This class represents a short wave file, in Windows WAV format, that can be stored in
memory and played. Currently this class is for Windows only.

Derived from

wxObject (p. 555)

Include files

<wx/wave.h>

wxWave::wxWave

 wxWave()

CHAPTER 4

914

Default constructor.

 wxWave(const wxString& fileName, bool isResource = FALSE)

Constructs a wave object from a file or resource. Call wxWave::IsOk (p. 914) to
determine whether this succeeded.

Parameters

fileName
The filename or Windows resource.

isResource
TRUE if fileName is a resource, FALSE if it is a filename.

wxWave::~wxWave

 ~wxWave()

Destroys the wxWave object.

wxWave::Create

bool Create(const wxString& fileName, bool isResource = FALSE)

Constructs a wave object from a file or resource.

Parameters

fileName
The filename or Windows resource.

isResource
TRUE if fileName is a resource, FALSE if it is a filename.

Return value

TRUE if the call was successful, FALSE otherwise.

wxWave::IsOk

bool IsOk() const

Returns TRUE if the object contains a successfully loaded file or resource, FALSE
otherwise.

CHAPTER 4

915

wxWave::Play

bool Play(bool async = TRUE, bool looped = FALSE) const

Plays the wave file synchronously or asynchronously, looped or single-shot.

wxWindow

wxWindow is the base class for all windows. Any children of the window will be deleted
automatically by the destructor before the window itself is deleted.

Please note that we documented a number of handler functions (OnChar(), OnMouse()
etc.) in this help text. These must not be called by a user program and are documented
only for illustration. On several platforms, only a few of these handlers are actually
written (they are not always needed) and if you are uncertain on how to add a certain
behaviour to a window class, intercept the respective event as usual and call
wxEvent::Skip (p. 240) so that the native platform can implement its native behaviour or
just ignore the event if nothing needs to be done.

Derived from

wxEvtHandler (p. 240)
wxObject (p. 555)

Include files

<wx/window.h>

Window styles

The following styles can apply to all windows, although they will not always make sense
for a particular window class or on all platforms.

wxSIMPLE_BORDER Displays a thin border around the window. wxBORDER is
the old name for this style.

wxDOUBLE_BORDER Displays a double border. Windows only.
wxSUNKEN_BORDER Displays a sunken border.
wxRAISED_BORDER Displays a raised border. GTK only.
wxSTATIC_BORDER Displays a border suitable for a static control. Windows

only.
wxTRANSPARENT_WINDOW The window is transparent, that is, it will not receive

paint events. Windows only.
wxNO_3D Prevents the children of this window taking on 3D styles,

even though the application-wide policy is for 3D controls.
Windows only.

wxTAB_TRAVERSAL Use this to enable tab traversal for non-dialog windows.
wxWANTS_CHARS Use this to indicate that the window wants to get all char

events - even for keys like TAB or ENTER which are
usually used for dialog navigation and which wouldn't be
generated without this style

wxNO_FULLREPAINT_ON_RESIZE Disables repainting the window completely

CHAPTER 4

916

when its size is changed - you will have to repaint the new
window area manually if you use style. Currently only has
effect for Windows.

wxVSCROLL Use this style to enable a vertical scrollbar. (Still used?)
wxHSCROLL Use this style to enable a horizontal scrollbar. (Still used?)
wxCLIP_CHILDREN Use this style to eliminate flicker caused by the background

being repainted, then children being painted over them.
Windows only.

See also window styles overview (p. 1093).

See also

Event handling overview (p. 1072)

wxWindow::wxWindow

 wxWindow()

Default constructor.

 wxWindow(wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, long style = 0, const
wxString& name = wxPanelNameStr)

Constructs a window, which can be a child of a frame, dialog or any other non-control
window.

Parameters

parent
Pointer to a parent window.

id
Window identifier. If -1, will automatically create an identifier.

pos
Window position. wxDefaultPosition is (-1, -1) which indicates that wxWindows
should generate a default position for the window. If using the wxWindow class
directly, supply an actual position.

size
Window size. wxDefaultSize is (-1, -1) which indicates that wxWindows should
generate a default size for the window. If no suitable size can be found, the
window will be sized to 20x20 pixels so that the window is visible but obviously not
correctly sized.

CHAPTER 4

917

style
Window style. For generic window styles, please see wxWindow (p. 915).

name
Window name.

wxWindow::~wxWindow

 ~wxWindow()

Destructor. Deletes all subwindows, then deletes itself. Instead of using the delete
operator explicitly, you should normally use wxWindow::Destroy (p. 922) so that
wxWindows can delete a window only when it is safe to do so, in idle time.

See also

Window deletion overview (p. 1062), wxWindow::OnCloseWindow (p. 937),
wxWindow::Destroy (p. 922), wxCloseEvent (p. 89)

wxWindow::AddChild

virtual void AddChild(wxWindow* child)

Adds a child window. This is called automatically by window creation functions so
should not be required by the application programmer.

Parameters

child
Child window to add.

wxWindow::CaptureMouse

virtual void CaptureMouse()

Directs all mouse input to this window. Call wxWindow::ReleaseMouse (p. 948) to
release the capture.

See also

wxWindow::ReleaseMouse (p. 948)

wxWindow::Center

void Center(int direction)

CHAPTER 4

918

A synonym for Centre (p. 918).

wxWindow::CenterOnParent

void CenterOnParent(int direction)

A synonym for CentreOnParent (p. 918).

wxWindow::Centre

void Centre(int direction = wxHORIZONTAL)

Centres the window.

Parameters

direction
Specifies the direction for the centering. May be wxHORIZONTAL, wxVERTICAL or
wxBOTH. It may also include wxCENTRE_ON_SCREEN flag if you want to center the
window on the entire screen and not on its parent window.

The flag wxCENTRE_FRAME is obsolete and should not be used any longer.

Remarks

If the window is a top level one (i.e. doesn't have a parent), it will be centered relative to
the screen anyhow.

See also

wxWindow::Center (p. 917)

wxWindow::CentreOnParent

void CentreOnParent(int direction = wxHORIZONTAL)

Centres the window.

Parameters

direction
Specifies the direction for the centering. May be wxHORIZONTAL, wxVERTICAL or
wxBOTH.

Remarks

This methods provides for a way to center top level windows over their parents instead

CHAPTER 4

919

of the entire screen. If there is no parent or if the window is not a top level window, then
behaviour is the same aswxWindow::Centre (p. 918).

See also

wxWindow::CenterOnParent (p. 918)

wxWindow::Clear

void Clear()

Clears the window by filling it with the current background colour. Does not cause an
erase background event to be generated.

wxWindow::ClientToScreen

virtual void ClientToScreen(int* x, int* y) const

virtual wxPoint ClientToScreen(const wxPoint& pt) const

Converts to screen coordinates from coordinates relative to this window.

x
A pointer to a integer value for the x coordinate. Pass the client coordinate in, and
a screen coordinate will be passed out.

y
A pointer to a integer value for the y coordinate. Pass the client coordinate in, and
a screen coordinate will be passed out.

pt
The client position for the second form of the function.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

ClientToScreen(point) Accepts and returns a wxPoint
ClientToScreenXY(x, y) Returns a 2-tuple, (x, y)

wxWindow::Close

virtual bool Close(const bool force = FALSE)

The purpose of this call is to provide a safer way of destroying a window than using the
delete operator.

CHAPTER 4

920

Parameters

force
FALSE if the window's close handler should be able to veto the destruction of this
window, TRUE if it cannot.

Remarks

Close calls the close handler (p. 89) for the window, providing an opportunity for the
window to choose whether to destroy the window.

The close handler should check whether the window is being deleted forcibly, using
wxCloseEvent::GetForce (p. 90), in which case it should destroy the window using
wxWindow::Destroy (p. 922).

Applies to managed windows (wxFrame and wxDialog classes) only.

Note that calling Close does not guarantee that the window will be destroyed; but it
provides a way to simulate a manual close of a window, which may or may not be
implemented by destroying the window. The default implementation of
wxDialog::OnCloseWindow does not necessarily delete the dialog, since it will simply
simulate an wxID_CANCEL event which itself only hides the dialog.

To guarantee that the window will be destroyed, call wxWindow::Destroy (p. 922)
instead.

See also

Window deletion overview (p. 1062), wxWindow::OnCloseWindow (p. 937),
wxWindow::Destroy (p. 922), wxCloseEvent (p. 89)

wxWindow::ConvertDialogToPixels

wxPoint ConvertDialogToPixels(const wxPoint& pt)

wxSize ConvertDialogToPixels(const wxSize& sz)

Converts a point or size from dialog units to pixels.

For the x dimension, the dialog units are multiplied by the average character width and
then divided by 4.

For the y dimension, the dialog units are multiplied by the average character height and
then divided by 8.

Remarks

Dialog units are used for maintaining a dialog's proportions even if the font changes.
Dialogs created using Dialog Editor optionally use dialog units.

CHAPTER 4

921

You can also use these functions programmatically. A convenience macro is defined:

#define wxDLG_UNIT(parent, pt) parent->ConvertDialogToPixels(pt)

See also

wxWindow::ConvertPixelsToDialog (p. 921)

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

ConvertDialogPointToPixels(point) Accepts and returns a wxPoint
ConvertDialogSizeToPixels(size) Accepts and returns a wxSize

Additionally, the following helper functions are defined:

wxDLG_PNT(win, point) Converts a wxPoint from dialog units to pixels
wxDLG_SZE(win, size) Converts a wxSize from dialog units to pixels

wxWindow::ConvertPixelsToDialog

wxPoint ConvertPixelsToDialog(const wxPoint& pt)

wxSize ConvertPixelsToDialog(const wxSize& sz)

Converts a point or size from pixels to dialog units.

For the x dimension, the pixels are multiplied by 4 and then divided by the average
character width.

For the y dimension, the pixels are multipled by 8 and then divided by the average
character height.

Remarks

Dialog units are used for maintaining a dialog's proportions even if the font changes.
Dialogs created using Dialog Editor optionally use dialog units.

See also

wxWindow::ConvertDialogToPixels (p. 920)

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

CHAPTER 4

922

ConvertDialogPointToPixels(point) Accepts and returns a wxPoint
ConvertDialogSizeToPixels(size) Accepts and returns a wxSize

wxWindow::Destroy

virtual bool Destroy()

Destroys the window safely. Use this function instead of the delete operator, since
different window classes can be destroyed differently. Frames and dialogs are not
destroyed immediately when this function is called - they are added to a list of windows
to be deleted on idle time, when all the window's events have been processed. This
prevents problems with events being sent to non-existant windows.

Return value

TRUE if the window has either been successfully deleted, or it has been added to the list
of windows pending real deletion.

wxWindow::DestroyChildren

virtual void DestroyChildren()

Destroys all children of a window. Called automatically by the destructor.

wxWindow::DragAcceptFiles

virtual void DragAcceptFiles(const bool accept)

Enables or disables elibility for drop file events (OnDropFiles).

Parameters

accept
If TRUE, the window is eligible for drop file events. If FALSE, the window will not
accept drop file events.

Remarks

Windows only.

See also

wxWindow::OnDropFiles (p. 937)

wxWindow::Enable

CHAPTER 4

923

virtual void Enable(const bool enable)

Enable or disable the window for user input.

Parameters

enable
If TRUE, enables the window for input. If FALSE, disables the window.

See also

wxWindow::IsEnabled (p. 931)

wxWindow::FindFocus

static wxWindow* FindFocus()

Finds the window or control which currently has the keyboard focus.

Remarks

Note that this is a static function, so it can be called without needing a wxWindow
pointer.

See also

wxWindow::SetFocus (p. 953)

wxWindow::FindWindow

wxWindow* FindWindow(long id)

Find a child of this window, by identifier.

wxWindow* FindWindow(const wxString& name)

Find a child of this window, by name.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

FindWindowById(id) Accepts an integer
FindWindowByName(name) Accepts a string

wxWindow::Fit

CHAPTER 4

924

virtual void Fit()

Sizes the window so that it fits around its subwindows.

wxWindow::GetBackgroundColour

virtual wxColour GetBackgroundColour() const

Returns the background colour of the window.

See also

wxWindow::SetBackgroundColour (p. 951), wxWindow::SetForegroundColour (p. 954),
wxWindow::GetForegroundColour (p. 926), wxWindow::OnEraseBackground (p. 938)

wxWindow::GetCharHeight

virtual int GetCharHeight() const

Returns the character height for this window.

wxWindow::GetCharWidth

virtual int GetCharWidth() const

Returns the average character width for this window.

wxWindow::GetChildren

wxList& GetChildren()

Returns a reference to the list of the window's children.

wxWindow::GetClientSize

virtual void GetClientSize(int* width, int* height) const

virtual wxSize GetClientSize() const

This gets the size of the window 'client area' in pixels. The client area is the area which
may be drawn on by the programmer, excluding title bar, border etc.

Parameters

CHAPTER 4

925

width
Receives the client width in pixels.

height
Receives the client height in pixels.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

wxGetClientSizeTuple() Returns a 2-tuple of (width, height)
wxGetClientSize() Returns a wxSize object

wxWindow::GetConstraints

wxLayoutConstraints* GetConstraints() const

Returns a pointer to the window's layout constraints, or NULL if there are none.

wxWindow::GetDefaultItem

wxButton* GetDefaultItem() const

Returns a pointer to the button which is the default for this window, or NULL.

wxWindow::GetDropTarget

wxDropTarget* GetDropTarget() const

Returns the associated drop target, which may be NULL.

See also

wxWindow::SetDropTarget (p. 953),Drag and drop overview (p. 1038)

wxWindow::GetEventHandler

wxEvtHandler* GetEventHandler() const

Returns the event handler for this window. By default, the window is its own event
handler.

See also

wxWindow::SetEventHandler (p. 952), wxWindow::PushEventHandler (p. 947),
wxWindow::PopEventHandler (p. 947), wxEvtHandler::ProcessEvent (p. 243),

CHAPTER 4

926

wxEvtHandler (p. 240)

wxWindow::GetFont

wxFont& GetFont() const

Returns a reference to the font for this window.

See also

wxWindow::SetFont (p. 954)

wxWindow::GetForegroundColour

virtual wxColour GetForegroundColour()

Returns the foreground colour of the window.

Remarks

The interpretation of foreground colour is open to interpretation according to the window
class; it may be the text colour or other colour, or it may not be used at all.

See also

wxWindow::SetForegroundColour (p. 954), wxWindow::SetBackgroundColour (p. 951),
wxWindow::GetBackgroundColour (p. 924)

wxWindow::GetGrandParent

wxWindow* GetGrandParent() const

Returns the grandparent of a window, or NULL if there isn't one.

wxWindow::GetHandle

void* GetHandle() const

Returns the platform-specific handle of the physical window. Cast it to an appropriate
handle, such as HWND for Windows, Widget for Motif or GtkWidget for GTK.

wxPython note: This method will return an integer in wxPython.

wxWindow::GetId

CHAPTER 4

927

int GetId() const

Returns the identifier of the window.

Remarks

Each window has an integer identifier. If the application has not provided one (or the
default Id -1) an unique identifier with a negative value will be generated.

See also

wxWindow::SetId (p. 954) Window identifiers (p. 1076)

wxWindow::GetPosition

virtual void GetPosition(int* x, int* y) const

This gets the position of the window in pixels, relative to the parent window or if no
parent, relative to the whole display.

Parameters

x
Receives the x position of the window.

y
Receives the y position of the window.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

GetPosition() Returns a wxPoint
GetPositionTuple() Returns a tuple (x, y)

wxWindow::GetLabel

virtual wxString GetLabel() const

Generic way of getting a label from any window, for identification purposes.

Remarks

The interpretation of this function differs from class to class. For frames and dialogs, the
value returned is the title. For buttons or static text controls, it is the button text. This
function can be useful for meta-programs (such as testing tools or special-needs access
programs) which need to identify windows by name.

CHAPTER 4

928

wxWindow::GetName

virtual wxString GetName() const

Returns the window's name.

Remarks

This name is not guaranteed to be unique; it is up to the programmer to supply an
appropriate name in the window constructor or via wxWindow::SetName (p. 955).

See also

wxWindow::SetName (p. 955)

wxWindow::GetParent

virtual wxWindow* GetParent() const

Returns the parent of the window, or NULL if there is no parent.

wxWindow::GetRect

virtual wxRect GetRect() const

Returns the size and position of the window as a wxRect (p. 637) object.

wxWindow::GetScrollThumb

virtual int GetScrollThumb(int orientation)

Returns the built-in scrollbar thumb size.

See also

wxWindow::SetScrollbar (p. 955)

wxWindow::GetScrollPos

virtual int GetScrollPos(int orientation)

Returns the built-in scrollbar position.

See also

See wxWindow::SetScrollbar (p. 955)

CHAPTER 4

929

wxWindow::GetScrollRange

virtual int GetScrollRange(int orientation)

Returns the built-in scrollbar range.

See also

wxWindow::SetScrollbar (p. 955)

wxWindow::GetSize

virtual void GetSize(int* width, int* height) const

virtual wxSize GetSize() const

This gets the size of the entire window in pixels.

Parameters

width
Receives the window width.

height
Receives the window height.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

GetSize() Returns a wxSize
GetSizeTuple() Returns a 2-tuple (width, height)

wxWindow::GetTextExtent

virtual void GetTextExtent(const wxString& string, int* x, int* y, int* descent = NULL,
int* externalLeading = NULL, const wxFont* font = NULL, const bool use16 = FALSE)
const

Gets the dimensions of the string as it would be drawn on the window with the currently
selected font.

Parameters

string
String whose extent is to be measured.

CHAPTER 4

930

x
Return value for width.

y
Return value for height.

descent
Return value for descent (optional).

externalLeading
Return value for external leading (optional).

font
Font to use instead of the current window font (optional).

use16
If TRUE, string contains 16-bit characters. The default is FALSE.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

GetTextExtent(string) Returns a 2-tuple, (width, height)
GetFullTextExtent(string, font=NULL)Returns a 4-tuple, (width, height,

descent, externalLeading)

wxWindow::GetTitle

virtual wxString GetTitle()

Gets the window's title. Applicable only to frames and dialogs.

See also

wxWindow::SetTitle (p. 959)

wxWindow::GetUpdateRegion

virtual wxRegion GetUpdateRegion() const

Returns the region specifying which parts of the window have been damaged. Should
only be called within an OnPaint (p. 943) event handler.

See also

wxRegion (p. 653), wxRegionIterator (p. 658), wxWindow::OnPaint (p. 943)

CHAPTER 4

931

wxWindow::GetValidator

wxValidator* GetValidator() const

Returns a pointer to the current validator for the window, or NULL if there is none.

wxWindow::GetWindowStyleFlag

long GetWindowStyleFlag() const

Gets the window style that was passed to the consructor or Create
member.GetWindowStyle is synonymous.

wxWindow::InitDialog

void InitDialog()

Sends an wxWindow::OnInitDialog (p. 940) event, which in turn transfers data to the
dialog via validators.

See also

wxWindow::OnInitDialog (p. 940)

wxWindow::IsEnabled

virtual bool IsEnabled() const

Returns TRUE if the window is enabled for input, FALSE otherwise.

See also

wxWindow::Enable (p. 922)

wxWindow:IsExposed

bool IsExposed(int x, int y) const

bool IsExposed(wxPoint &pt) const

bool IsExposed(int x, int y, int w, int h) const

bool IsExposed(wxRect &rect) const

Returns TRUE if the given point or rectange area has been exposed since the last
repaint. Call this in an paint event handler to optimize redrawing by only redrawing those

CHAPTER 4

932

areas, which have been exposed.

wxWindow::IsRetained

virtual bool IsRetained() const

Returns TRUE if the window is retained, FALSE otherwise.

Remarks

Retained windows are only available on X platforms.

wxWindow::IsShown

virtual bool IsShown() const

Returns TRUE if the window is shown, FALSE if it has been hidden.

wxWindow::IsTopLevel

bool IsTopLevel() const

Returns TRUE if the given window is a top-level one. Currently all frames and dialogs
are considered to be top-level windows (even if they have a parent window).

wxWindow::Layout

void Layout()

Invokes the constraint-based layout algorithm or the sizer-based algorithm for this
window.

See wxWindow::SetAutoLayout (p. 950) on when this function gets called automatically
using auto layout.

wxWindow::LoadFromResource

virtual bool LoadFromResource(wxWindow* parent, const wxString&
resourceName, const wxResourceTable* resourceTable = NULL)

Loads a panel or dialog from a resource file.

Parameters

parent

CHAPTER 4

933

Parent window.

resourceName
The name of the resource to load.

resourceTable
The resource table to load it from. If this is NULL, the default resource table will be
used.

Return value

TRUE if the operation succeeded, otherwise FALSE.

wxWindow::Lower

void Lower()

Lowers the window to the bottom of the window hierarchy if it is a managed window
(dialog or frame).

wxWindow::MakeModal

virtual void MakeModal(const bool flag)

Disables all other windows in the application so that the user can only interact with this
window. (This function is not implemented anywhere).

Parameters

flag
If TRUE, this call disables all other windows in the application so that the user can
only interact with this window. If FALSE, the effect is reversed.

wxWindow::Move

void Move(int x, int y)

void Move(const wxPoint& pt)

Moves the window to the given position.

Parameters

x
Required x position.

y

CHAPTER 4

934

Required y position.

pt
wxPoint (p. 586) object representing the position.

Remarks

Implementations of SetSize can also implicitly implement the wxWindow::Move function,
which is defined in the base wxWindow class as the call:

 SetSize(x, y, -1, -1, wxSIZE_USE_EXISTING);

See also

wxWindow::SetSize (p. 957)

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

Move(point) Accepts a wxPoint
MoveXY(x, y) Accepts a pair of integers

wxWindow::OnActivate

void OnActivate(wxActivateEvent& event)

Called when a window is activated or deactivated.

Parameters

event
Object containing activation information.

Remarks

If the window is being activated, wxActivateEvent::GetActive (p. 6) returns TRUE,
otherwise it returns FALSE (it is being deactivated).

See also

wxActivateEvent (p. 5), Event handling overview (p. 1072)

wxWindow::OnChar

void OnChar(wxKeyEvent& event)

Called when the user has pressed a key that is not a modifier (SHIFT, CONTROL or
ALT).

CHAPTER 4

935

Parameters

event
Object containing keypress information. See wxKeyEvent (p. 438) for details about
this class.

Remarks

This member function is called in response to a keypress. To intercept this event, use
the EVT_CHAR macro in an event table definition. Your OnChar handler may call this
default function to achieve default keypress functionality.

Note that the ASCII values do not have explicit key codes: they are passed as ASCII
values.

Note that not all keypresses can be intercepted this way. If you wish to intercept modifier
keypresses, then you will need to use wxWindow::OnKeyDown (p. 938)
orwxWindow::OnKeyUp (p. 939).

Most, but not all, windows allow keypresses to be intercepted.

See also

wxWindow::OnKeyDown (p. 938), wxWindow::OnKeyUp (p. 939), wxKeyEvent (p. 438),
wxWindow::OnCharHook (p. 935), Event handling overview (p. 1072)

wxWindow::OnCharHook

void OnCharHook(wxKeyEvent& event)

This member is called to allow the window to intercept keyboard events before they are
processed by child windows.

Parameters

event
Object containing keypress information. See wxKeyEvent (p. 438) for details about
this class.

Remarks

This member function is called in response to a keypress, if the window is active. To
intercept this event, use the EVT_CHAR_HOOK macro in an event table definition. If
you do not process a particular keypress, call wxEvent::Skip (p. 240) to allow default
processing.

An example of using this function is in the implementation of escape-character
processing for wxDialog, where pressing ESC dismisses the dialog by OnCharHook
'forging' a cancel button press event.

CHAPTER 4

936

Note that the ASCII values do not have explicit key codes: they are passed as ASCII
values.

This function is only relevant to top-level windows (frames and dialogs), and under
Windows only. Under GTK the normal EVT_CHAR_ event has the functionality, i.e. you
can intercepts it and if you don't call wxEvent::Skip (p. 240)the window won't get the
event.

See also

wxKeyEvent (p. 438), wxWindow::OnCharHook (p. 935), wxApp::OnCharHook (p. 10),
Event handling overview (p. 1072)

wxWindow::OnCommand

virtual void OnCommand(wxEvtHandler& object, wxCommandEvent& event)

This virtual member function is called if the control does not handle the command event.

Parameters

object
Object receiving the command event.

event
Command event

Remarks

This virtual function is provided mainly for backward compatibility. You can also intercept
commands from child controls by using an event table, with identifiers or identifier
ranges to identify the control(s) in question.

See also

wxCommandEvent (p. 108), Event handling overview (p. 1072)

wxWindow::OnClose

virtual bool OnClose()

Called when the user has tried to close a a frame or dialog box using the window
manager (X) or system menu (Windows).

Note: This is an obsolete function. It is superceded by the wxWindow::OnCloseWindow
(p. 937) event handler.

Return value

CHAPTER 4

937

If TRUE is returned by OnClose, the window will be deleted by the system, otherwise the
attempt will be ignored. Do not delete the window from within this handler, although you
may delete other windows.

See also

Window deletion overview (p. 1062), wxWindow::Close (p. 919),
wxWindow::OnCloseWindow (p. 937), wxCloseEvent (p. 89)

wxWindow::OnCloseWindow

void OnCloseWindow(wxCloseEvent& event)

This is an event handler function called when the user has tried to close a a frame or
dialog box using the window manager (X) or system menu (Windows). It is called via the
wxWindow::Close (p. 919) function, so that the application can also invoke the handler
programmatically.

Use the EVT_CLOSE event table macro to handle close events.

You should check whether the application is forcing the deletion of the window using
wxCloseEvent::GetForce (p. 90). If this is TRUE, destroy the window using
wxWindow::Destroy (p. 922). If not, it is up to you whether you respond by destroying the
window.

(Note: GetForce is now superceded by CanVeto. So to test whether forced destruction of
the window is required, test for the negative of CanVeto. If CanVeto returns FALSE, it is
not possible to skip window deletion.)

If you don't destroy the window, you should call wxCloseEvent::Veto (p. 91) to let the
calling code know that you did not destroy the window. This allows the wxWindow::Close
(p. 919) function to return TRUE or FALSE depending on whether the close instruction
was honoured or not.

Remarks

The wxWindow::OnClose (p. 936) virtual function remains for backward compatibility
with earlier versions of wxWindows. The default OnCloseWindow handler for wxFrame
and wxDialog will call OnClose, destroying the window if it returns TRUE or if the close
is being forced.

See also

Window deletion overview (p. 1062), wxWindow::Close (p. 919), wxWindow::OnClose (p.
936), wxWindow::Destroy (p. 922), wxCloseEvent (p. 89), wxApp::OnQueryEndSession
(p. 12), wxApp::OnEndSession (p. 11)

wxWindow::OnDropFiles

CHAPTER 4

938

void OnDropFiles(wxDropFilesEvent& event)

Called when files have been dragged from the file manager to the window.

Parameters

event
Drop files event. For more information, see wxDropFilesEvent (p. 231).

Remarks

The window must have previously been enabled for dropping by calling
wxWindow::DragAcceptFiles (p. 922).

This event is only generated under Windows.

To intercept this event, use the EVT_DROP_FILES macro in an event table definition.

See also

wxDropFilesEvent (p. 231), wxWindow::DragAcceptFiles (p. 922), Event handling
overview (p. 1072)

wxWindow::OnEraseBackground

void OnEraseBackground(wxEraseEvent& event)

Called when the background of the window needs to be erased.

Parameters

event
Erase background event. For more information, see wxEraseEvent (p. 236).

Remarks

This event is only generated under Windows. It is therefore recommended that you set
the text background colour explicitly in order to prevent flicker. The default background
colour under GTK is grey.

To intercept this event, use the EVT_ERASE_BACKGROUND macro in an event table
definition.

See also

wxEraseEvent (p. 236), Event handling overview (p. 1072)

wxWindow::OnKeyDown

CHAPTER 4

939

void OnKeyDown(wxKeyEvent& event)

Called when the user has pressed a key, before it is translated into an ASCII value using
other modifier keys that might be pressed at the same time.

Parameters

event
Object containing keypress information. See wxKeyEvent (p. 438) for details about
this class.

Remarks

This member function is called in response to a key down event. To intercept this event,
use the EVT_KEY_DOWN macro in an event table definition. Your OnKeyDown handler
may call this default function to achieve default keypress functionality.

Note that not all keypresses can be intercepted this way. If you wish to intercept special
keys, such as shift, control, and function keys, then you will need to use
wxWindow::OnKeyDown (p. 938) orwxWindow::OnKeyUp (p. 939).

Most, but not all, windows allow keypresses to be intercepted.

See also

wxWindow::OnChar (p. 934), wxWindow::OnKeyUp (p. 939), wxKeyEvent (p. 438),
wxWindow::OnCharHook (p. 935), Event handling overview (p. 1072)

wxWindow::OnKeyUp

void OnKeyUp(wxKeyEvent& event)

Called when the user has released a key.

Parameters

event
Object containing keypress information. See wxKeyEvent (p. 438) for details about
this class.

Remarks

This member function is called in response to a key up event. To intercept this event,
use the EVT_KEY_UP macro in an event table definition. Your OnKeyUp handler may
call this default function to achieve default keypress functionality.

Note that not all keypresses can be intercepted this way. If you wish to intercept special
keys, such as shift, control, and function keys, then you will need to use
wxWindow::OnKeyDown (p. 938) orwxWindow::OnKeyUp (p. 939).

CHAPTER 4

940

Most, but not all, windows allow key up events to be intercepted.

See also

wxWindow::OnChar (p. 934), wxWindow::OnKeyDown (p. 938), wxKeyEvent (p. 438),
wxWindow::OnCharHook (p. 935), Event handling overview (p. 1072)

wxWindow::OnKillFocus

void OnKillFocus(wxFocusEvent& event)

Called when a window's focus is being killed.

Parameters

event
The focus event. For more information, see wxFocusEvent (p. 284).

Remarks

To intercept this event, use the macro EVT_KILL_FOCUS in an event table definition.

Most, but not all, windows respond to this event.

See also

wxFocusEvent (p. 284), wxWindow::OnSetFocus (p. 945), Event handling overview (p.
1072)

wxWindow::OnIdle

void OnIdle(wxIdleEvent& event)

Provide this member function for any processing which needs to be done when the
application is idle.

See also

wxApp::OnIdle (p. 11), wxIdleEvent (p. 394)

wxWindow::OnInitDialog

void OnInitDialog(wxInitDialogEvent& event)

Default handler for the wxEVT_INIT_DIALOG event. Calls
wxWindow::TransferDataToWindow (p. 960).

CHAPTER 4

941

Parameters

event
Dialog initialisation event.

Remarks

Gives the window the default behaviour of transferring data to child controls via the
validator that each control has.

See also

wxValidator (p. 897), wxWindow::TransferDataToWindow (p. 960)

wxWindow::OnMenuCommand

void OnMenuCommand(wxCommandEvent& event)

Called when a menu command is received from a menu bar.

Parameters

event
The menu command event. For more information, see wxCommandEvent (p. 108).

Remarks

A function with this name doesn't actually exist; you can choose any member function to
receive menu command events, using the EVT_COMMAND macro for individual
commands or EVT_COMMAND_RANGE for a range of commands.

See also

wxCommandEvent (p. 108), wxWindow::OnMenuHighlight (p. 941), Event handling
overview (p. 1072)

wxWindow::OnMenuHighlight

void OnMenuHighlight(wxMenuEvent& event)

Called when a menu select is received from a menu bar: that is, the mouse cursor is
over a menu item, but the left mouse button has not been pressed.

Parameters

event
The menu highlight event. For more information, see wxMenuEvent (p. 519).

CHAPTER 4

942

Remarks

You can choose any member function to receive menu select events, using the
EVT_MENU_HIGHLIGHT macro for individual menu items or
EVT_MENU_HIGHLIGHT_ALL macro for all menu items.

The default implementation for wxFrame::OnMenuHighlight (p. 307) displays help text in
the first field of the status bar.

This function was known as OnMenuSelect in earlier versions of wxWindows, but this
was confusing since a selection is normally a left-click action.

See also

wxMenuEvent (p. 519), wxWindow::OnMenuCommand (p. 941), Event handling
overview (p. 1072)

wxWindow::OnMouseEvent

void OnMouseEvent(wxMouseEvent& event)

Called when the user has initiated an event with the mouse.

Parameters

event
The mouse event. See wxMouseEvent (p. 532) for more details.

Remarks

Most, but not all, windows respond to this event.

To intercept this event, use the EVT_MOUSE_EVENTS macro in an event table
definition, or individual mouse event macros such as EVT_LEFT_DOWN.

See also

wxMouseEvent (p. 532), Event handling overview (p. 1072)

wxWindow::OnMove

void OnMove(wxMoveEvent& event)

Called when a window is moved.

Parameters

event
The move event. For more information, see wxMoveEvent (p. 539).

CHAPTER 4

943

Remarks

Use the EVT_MOVE macro to intercept move events.

Remarks

Not currently implemented.

See also

wxMoveEvent (p. 539), wxFrame::OnSize (p. 307), Event handling overview (p. 1072)

wxWindow::OnPaint

void OnPaint(wxPaintEvent& event)

Sent to the event handler when the window must be refreshed.

Parameters

event
Paint event. For more information, see wxPaintEvent (p. 568).

Remarks

Use the EVT_PAINT macro in an event table definition to intercept paint events.

In a paint event handler, the application should always create a wxPaintDC (p. 567)
object.

For example:

 void MyWindow::OnPaint(wxPaintEvent& event)
 {
 wxPaintDC dc(this);

 DrawMyDocument(dc);
 }

You can optimize painting by retrieving the rectangles that have been damaged and only
repainting these. The rectangles are in terms of the client area, and are unscrolled, so
you will need to do some calculations using the current view position to obtain logical,
scrolled units.

Here is an example of using the wxRegionIterator (p. 658) class:

// Called when window needs to be repainted.
void MyWindow::OnPaint(wxPaintEvent& event)

CHAPTER 4

944

{
 wxPaintDC dc(this);

 // Find Out where the window is scrolled to
 int vbX,vbY; // Top left corner of client
 ViewStart(&vbX,&vbY);

 int vX,vY,vW,vH; // Dimensions of client area in
pixels
 wxRegionIterator upd(GetUpdateRegion()); // get the update rect list

 while (upd)
 {
 vX = upd.GetX();
 vY = upd.GetY();
 vW = upd.GetW();
 vH = upd.GetH();

 // Alternatively we can do this:
 // wxRect rect;
 // upd.GetRect(&rect);

 // Repaint this rectangle
 ...some code...

 upd ++ ;
 }
}

See also

wxPaintEvent (p. 568), wxPaintDC (p. 567), Event handling overview (p. 1072)

wxWindow::OnScroll

void OnScroll(wxScrollWinEvent& event)

Called when a scroll window event is received from one of the window's built-in
scrollbars.

Parameters

event
Command event. Retrieve the new scroll position by calling
wxScrollEvent::GetPosition (p. 680), and the scrollbar orientation by calling
wxScrollEvent::GetOrientation (p. 679).

Remarks

Note that it is not possible to distinguish between horizontal and vertical scrollbars until
the function is executing (you can't have one function for vertical, another for horizontal
events).

CHAPTER 4

945

See also

wxScrollWinEvent (p. 676), Event handling overview (p. 1072)

wxWindow::OnSetFocus

void OnSetFocus(wxFocusEvent& event)

Called when a window's focus is being set.

Parameters

event
The focus event. For more information, see wxFocusEvent (p. 284).

Remarks

To intercept this event, use the macro EVT_SET_FOCUS in an event table definition.

Most, but not all, windows respond to this event.

See also

wxFocusEvent (p. 284), wxWindow::OnKillFocus (p. 940), Event handling overview (p.
1072)

wxWindow::OnSize

void OnSize(wxSizeEvent& event)

Called when the window has been resized.

Parameters

event
Size event. For more information, see wxSizeEvent (p. 691).

Remarks

You may wish to use this for frames to resize their child windows as appropriate.

Note that the size passed is of the whole window: call wxWindow::GetClientSize (p. 924)
for the area which may be used by the application.

See also

wxSizeEvent (p. 691), Event handling overview (p. 1072)

CHAPTER 4

946

wxWindow::OnSysColourChanged

void OnSysColourChanged(wxOnSysColourChangedEvent& event)

Called when the user has changed the system colours. Windows only.

Parameters

event
System colour change event. For more information, see
wxSysColourChangedEvent (p. 786).

See also

wxSysColourChangedEvent (p. 786), Event handling overview (p. 1072)

wxWindow::PopEventHandler

wxEvtHandler* PopEventHandler(bool deleteHandler = FALSE) const

Removes and returns the top-most event handler on the event handler stack.

Parameters

deleteHandler
If this is TRUE, the handler will be deleted after it is removed. The default value is
FALSE.

See also

wxWindow::SetEventHandler (p. 952), wxWindow::GetEventHandler (p. 925),
wxWindow::PushEventHandler (p. 947), wxEvtHandler::ProcessEvent (p. 243),
wxEvtHandler (p. 240)

wxWindow::PopupMenu

bool PopupMenu(wxMenu* menu, const wxPoint&pos)

bool PopupMenu(wxMenu* menu, int x, int y)

Pops up the given menu at the specified coordinates, relative to this window, and returns
control when the user has dismissed the menu. If a menu item is selected, the
corresponding menu event is generated and will be processed as usually.

Parameters

menu
Menu to pop up.

CHAPTER 4

947

pos
The position where the menu will appear.

x
Required x position for the menu to appear.

y
Required y position for the menu to appear.

See also

wxMenu (p. 499)

Remarks

Just before the menu is popped up, wxMenu::UpdateUI (p. 507) is called to ensure that
the menu items are in the correct state. The menu does not get deleted by the window.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

PopupMenu(menu, point) Specifies position with a wxPoint
PopupMenuXY(menu, x, y) Specifies position with two integers (x, y)

wxWindow::PushEventHandler

void PushEventHandler(wxEvtHandler* handler)

Pushes this event handler onto the event stack for the window.

Parameters

handler
Specifies the handler to be pushed.

Remarks

An event handler is an object that is capable of processing the events sent to a window.
By default, the window is its own event handler, but an application may wish to substitute
another, for example to allow central implementation of event-handling for a variety of
different window classes.

wxWindow::PushEventHandler (p. 947) allows an application to set up a chain of event
handlers, where an event not handled by one event handler is handed to the next one in
the chain. Use wxWindow::PopEventHandler (p. 946) to remove the event handler.

See also

CHAPTER 4

948

wxWindow::SetEventHandler (p. 952), wxWindow::GetEventHandler (p. 925),
wxWindow::PopEventHandler (p. 947), wxEvtHandler::ProcessEvent (p. 243),
wxEvtHandler (p. 240)

wxWindow::Raise

void Raise()

Raises the window to the top of the window hierarchy if it is a managed window (dialog
or frame).

wxWindow::Refresh

virtual void Refresh(const bool eraseBackground = TRUE, const wxRect* rect =
NULL)

Causes a message or event to be generated to repaint the window.

Parameters

eraseBackground
If TRUE, the background will be erased.

rect
If non-NULL, only the given rectangle will be treated as damaged.

wxWindow::ReleaseMouse

virtual void ReleaseMouse()

Releases mouse input captured with wxWindow::CaptureMouse (p. 917).

See also

wxWindow::CaptureMouse (p. 917)

wxWindow::RemoveChild

virtual void RemoveChild(wxWindow* child)

Removes a child window. This is called automatically by window deletion functions so
should not be required by the application programmer.

Parameters

child

CHAPTER 4

949

Child window to remove.

wxWindow::Reparent

virtual bool Reparent(wxWindow* newParent)

Reparents the window, i.e the window will be removed from its current parent window
(e.g. a non-standard toolbar in a wxFrame) and then re-inserted into another (e.g. a
wxMiniFrame for a floating toolbar). Available on Windows and GTK+.

Parameters

newParent
New parent.

wxWindow::ScreenToClient

virtual void ScreenToClient(int* x, int* y) const

virtual wxPoint ScreenToClient(const wxPoint& pt) const

Converts from screen to client window coordinates.

Parameters

x
Stores the screen x coordinate and receives the client x coordinate.

y
Stores the screen x coordinate and receives the client x coordinate.

pt
The screen position for the second form of the function.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

ScreenToClient(point) Accepts and returns a wxPoint
ScreenToClientXY(x, y) Returns a 2-tuple, (x, y)

wxWindow::ScrollWindow

virtual void ScrollWindow(int dx, int dy, const wxRect* rect = NULL)

Physically scrolls the pixels in the window and move child windows accordingly.

CHAPTER 4

950

Parameters

dx
Amount to scroll horizontally.

dy
Amount to scroll vertically.

rect
Rectangle to invalidate. If this is NULL, the whole window is invalidated. If you
pass a rectangle corresponding to the area of the window exposed by the scroll,
your painting handler can optimise painting by checking for the invalidated region.
This paramter is ignored under GTK, instead the regions to be invalidated are
calculated automatically.

Remarks

Use this function to optimise your scrolling implementations, to minimise the area that
must be redrawn. Note that it is rarely required to call this function from a user program.

wxWindow::SetAcceleratorTable

virtual void SetAcceleratorTable(const wxAcceleratorTable& accel)

Sets the accelerator table for this window. See wxAcceleratorTable (p. 2).

wxWindow::SetAutoLayout

void SetAutoLayout(const bool autoLayout)

Determines whether the wxWindow::Layout (p. 932) function will be called automatically
when the window is resized. Use in connection withwxWindow::SetSizer (p. 959)
andwxWindow::SetConstraints (p. 953) for layouting subwindows.

Parameters

autoLayout
Set this to TRUE if you wish the Layout function to be called from within
wxWindow::OnSize functions.

Remarks

Note that this function is actually disabled for wxWindow. It has effect for wxDialog,
wxFrame, wxPanel and wxScrolledWindow. Windows of other types that need to invoke
the Layout algorithm should provide an EVT_SIZE handler and callwxWindow::Layout
(p. 932) from within it.

See also

CHAPTER 4

951

wxWindow::SetConstraints (p. 953)

wxWindow::SetBackgroundColour

virtual void SetBackgroundColour(const wxColour& colour)

Sets the background colour of the window.

Parameters

colour
The colour to be used as the background colour.

Remarks

The background colour is usually painted by the default
wxWindow::OnEraseBackground (p. 938) event handler function under Windows and
automatically under GTK.

Note that setting the background colour does not cause an immediate refresh, so you
may wish to call wxWindow::Clear (p. 919) or wxWindow::Refresh (p. 948) after calling
this function.

Note that when using this functions under GTK, you will disable the so called "themes",
i.e. the user chosen apperance of windows and controls, including the themes of their
parent windows.

See also

wxWindow::GetBackgroundColour (p. 924), wxWindow::SetForegroundColour (p. 954),
wxWindow::GetForegroundColour (p. 926), wxWindow::Clear (p. 919),
wxWindow::Refresh (p. 948), wxWindow::OnEraseBackground (p. 938)

wxWindow::SetClientSize

virtual void SetClientSize(int width, int height)

virtual void SetClientSize(const wxSize& size)

This sets the size of the window client area in pixels. Using this function to size a window
tends to be more device-independent than wxWindow::SetSize (p. 957), since the
application need not worry about what dimensions the border or title bar have when
trying to fit the window around panel items, for example.

Parameters

width
The required client area width.

CHAPTER 4

952

height
The required client area height.

size
The required client size.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

SetClientSize(size) Accepts a wxSize
SetClientSizeWH(width, height)

wxWindow::SetCursor

virtual void SetCursor(const wxCursor&cursor)

Sets the window's cursor. Notice that setting the cursor for this window does not set it for
its children so you'll need to explicitly call SetCursor() for them too if you need it.

Parameters

cursor
Specifies the cursor that the window should normally display.

See also

::wxSetCursor (p. 978), wxCursor (p. 135)

wxWindow::SetEventHandler

void SetEventHandler(wxEvtHandler* handler)

Sets the event handler for this window.

Parameters

handler
Specifies the handler to be set.

Remarks

An event handler is an object that is capable of processing the events sent to a window.
By default, the window is its own event handler, but an application may wish to substitute
another, for example to allow central implementation of event-handling for a variety of
different window classes.

It is usually better to use wxWindow::PushEventHandler (p. 947) since this sets up a
chain of event handlers, where an event not handled by one event handler is handed to

CHAPTER 4

953

the next one in the chain.

See also

wxWindow::GetEventHandler (p. 925), wxWindow::PushEventHandler (p. 947),
wxWindow::PopEventHandler (p. 947), wxEvtHandler::ProcessEvent (p. 243),
wxEvtHandler (p. 240)

wxWindow::SetConstraints

void SetConstraints(wxLayoutConstraints* constraints)

Sets the window to have the given layout constraints. The window will then own the
object, and will take care of its deletion. If an existing layout constraints object is already
owned by the window, it will be deleted.

Parameters

constraints
The constraints to set. Pass NULL to disassociate and delete the window's
constraints.

Remarks

You must call wxWindow::SetAutoLayout (p. 950) to tell a window to use the constraints
automatically in OnSize; otherwise, you must override OnSize and call Layout()
explicitly. When setting both a wxLayoutConstraints and a wxSizer (p. 692), only the
sizer will have effect.

wxWindow::SetDropTarget

void SetDropTarget(wxDropTarget* target)

Associates a drop target with this window.

If the window already has a drop target, it is deleted.

See also

wxWindow::GetDropTarget (p. 925),Drag and drop overview (p. 1038)

wxWindow::SetFocus

virtual void SetFocus()

This sets the window to receive keyboard input.

CHAPTER 4

954

wxWindow::SetFont

void SetFont(const wxFont& font)

Sets the font for this window.

Parameters

font
Font to associate with this window.

See also

wxWindow::GetFont (p. 926)

wxWindow::SetForegroundColour

virtual void SetForegroundColour(const wxColour& colour)

Sets the foreground colour of the window.

Parameters

colour
The colour to be used as the foreground colour.

Remarks

The interpretation of foreground colour is open to interpretation according to the window
class; it may be the text colour or other colour, or it may not be used at all.

Note that when using this functions under GTK, you will disable the so called "themes",
i.e. the user chosen apperance of windows and controls, including the themes of their
parent windows.

See also

wxWindow::GetForegroundColour (p. 926), wxWindow::SetBackgroundColour (p. 951),
wxWindow::GetBackgroundColour (p. 924)

wxWindow::SetId

void SetId(int id)

Sets the identifier of the window.

Remarks

CHAPTER 4

955

Each window has an integer identifier. If the application has not provided one, an
identifier will be generated. Normally, the identifier should be provided on creation and
should not be modified subsequently.

See also

wxWindow::GetId (p. 926), Window identifiers (p. 1076)

wxWindow::SetName

virtual void SetName(const wxString& name)

Sets the window's name.

Parameters

name
A name to set for the window.

See also

wxWindow::GetName (p. 928)

wxWindow::SetPalette

virtual void SetPalette(wxPalette* palette)

Obsolete - use wxDC::SetPalette (p. 178) instead.

wxWindow::SetScrollbar

virtual void SetScrollbar(int orientation, int position, int thumbSize, int range, const
bool refresh = TRUE)

Sets the scrollbar properties of a built-in scrollbar.

Parameters

orientation
Determines the scrollbar whose page size is to be set. May be wxHORIZONTAL or
wxVERTICAL.

position
The position of the scrollbar in scroll units.

thumbSize

CHAPTER 4

956

The size of the thumb, or visible portion of the scrollbar, in scroll units.

range
The maximum position of the scrollbar.

refresh
TRUE to redraw the scrollbar, FALSE otherwise.

Remarks

Let's say you wish to display 50 lines of text, using the same font. The window is sized
so that you can only see 16 lines at a time.

You would use:

 SetScrollbar(wxVERTICAL, 0, 16, 50);

Note that with the window at this size, the thumb position can never go above 50 minus
16, or 34.

You can determine how many lines are currently visible by dividing the current view size
by the character height in pixels.

When defining your own scrollbar behaviour, you will always need to recalculate the
scrollbar settings when the window size changes. You could therefore put your scrollbar
calculations and SetScrollbar call into a function named AdjustScrollbars, which can be
called initially and also from your wxWindow::OnSize (p. 945) event handler function.

See also

Scrolling overview (p. 1065), wxScrollBar (p. 671), wxScrolledWindow (p. 680)

wxWindow::SetScrollPos

virtual void SetScrollPos(int orientation, int pos, const bool refresh = TRUE)

Sets the position of one of the built-in scrollbars.

Parameters

orientation
Determines the scrollbar whose position is to be set. May be wxHORIZONTAL or
wxVERTICAL.

pos
Position in scroll units.

CHAPTER 4

957

refresh
TRUE to redraw the scrollbar, FALSE otherwise.

Remarks

This function does not directly affect the contents of the window: it is up to the
application to take note of scrollbar attributes and redraw contents accordingly.

See also

wxWindow::SetScrollbar (p. 955), wxWindow::GetScrollPos (p. 956),
wxWindow::GetScrollThumb (p. 928), wxScrollBar (p. 671), wxScrolledWindow (p. 680)

wxWindow::SetSize

virtual void SetSize(int x, int y, int width, int height, int sizeFlags = wxSIZE_AUTO)

virtual void SetSize(const wxRect& rect)

Sets the size and position of the window in pixels.

virtual void SetSize(int width, int height)

virtual void SetSize(const wxSize& size)

Sets the size of the window in pixels.

Parameters

x
Required x position in pixels, or -1 to indicate that the existing value should be
used.

y
Required y position in pixels, or -1 to indicate that the existing value should be
used.

width
Required width in pixels, or -1 to indicate that the existing value should be used.

height
Required height position in pixels, or -1 to indicate that the existing value should be
used.

size
wxSize (p. 689) object for setting the size.

rect
wxRect (p. 637) object for setting the position and size.

CHAPTER 4

958

sizeFlags
Indicates the interpretation of other parameters. It is a bit list of the following:

wxSIZE_AUTO_WIDTH: a -1 width value is taken to indicate a wxWindows-
supplied default width.
wxSIZE_AUTO_HEIGHT: a -1 height value is taken to indicate a wxWindows-
supplied default width.
wxSIZE_AUTO: -1 size values are taken to indicate a wxWindows-supplied default
size.
wxSIZE_USE_EXISTING: existing dimensions should be used if -1 values are
supplied.
wxSIZE_ALLOW_MINUS_ONE: allow dimensions of -1 and less to be interpreted
as real dimensions, not default values.

Remarks

The second form is a convenience for calling the first form with default x and y
parameters, and must be used with non-default width and height values.

The first form sets the position and optionally size, of the window. Parameters may be -1
to indicate either that a default should be supplied by wxWindows, or that the current
value of the dimension should be used.

See also

wxWindow::Move (p. 933)

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

SetDimensions(x, y, width, height, sizeFlags=wxSIZE_AUTO)
SetSize(size)
SetPosition(point)

wxWindow::SetSizeHints

virtual void SetSizeHints(int minW=-1, int minH=-1, int maxW=-1, int maxH=-1, int
incW=-1, int incH=-1)

Allows specification of minimum and maximum window sizes, and window size
increments. If a pair of values is not set (or set to -1), the default values will be used.

Parameters

minW
Specifies the minimum width allowable.

minH
Specifies the minimum height allowable.

CHAPTER 4

959

maxW
Specifies the maximum width allowable.

maxH
Specifies the maximum height allowable.

incW
Specifies the increment for sizing the width (Motif/Xt only).

incH
Specifies the increment for sizing the height (Motif/Xt only).

Remarks

If this function is called, the user will not be able to size the window outside the given
bounds.

The resizing increments are only significant under Motif or Xt.

wxWindow::SetSizer

void SetSizer(wxSizer* sizer)

Sets the window to have the given layout sizer. The window will then own the object, and
will take care of its deletion. If an existing layout constraints object is already owned by
the window, it will be deleted.

Parameters

sizer
The sizer to set. Pass NULL to disassociate and delete the window's sizer.

Remarks

You must call wxWindow::SetAutoLayout (p. 950) to tell a window to use the sizer
automatically in OnSize; otherwise, you must override OnSize and call Layout()
explicitly. When setting both a wxSizer and a wxLayoutConstraints (p. 444), only the
sizer will have effect.

wxWindow::SetTitle

virtual void SetTitle(const wxString& title)

Sets the window's title. Applicable only to frames and dialogs.

Parameters

title

CHAPTER 4

960

The window's title.

See also

wxWindow::GetTitle (p. 930)

wxWindow::SetValidator

virtual void SetValidator(const wxValidator& validator)

Deletes the current validator (if any) and sets the window validator, having called
wxValidator::Clone to create a new validator of this type.

wxWindow::Show

virtual bool Show(const bool show)

Shows or hides the window.

Parameters

show
If TRUE, displays the window and brings it to the front. Otherwise, hides the
window.

See also

wxWindow::IsShown (p. 932)

wxWindow::TransferDataFromWindow

virtual bool TransferDataFromWindow()

Transfers values from child controls to data areas specified by their validators. Returns
FALSE if a transfer failed.

See also

wxWindow::TransferDataToWindow (p. 960), wxValidator (p. 897), wxWindow::Validate
(p. 961)

wxWindow::TransferDataToWindow

virtual bool TransferDataToWindow()

Transfers values to child controls from data areas specified by their validators.

CHAPTER 4

961

Return value

Returns FALSE if a transfer failed.

See also

wxWindow::TransferDataFromWindow (p. 960), wxValidator (p. 897),
wxWindow::Validate (p. 961)

wxWindow::Validate

virtual bool Validate()

Validates the current values of the child controls using their validators.

Return value

Returns FALSE if any of the validations failed.

See also

wxWindow::TransferDataFromWindow (p. 960), wxWindow::TransferDataFromWindow
(p. 960), wxValidator (p. 897)

wxWindow::WarpPointer

void WarpPointer(int x, int y)

Moves the pointer to the given position on the window.

Parameters

x
The new x position for the cursor.

y
The new y position for the cursor.

wxWindowDC

A wxWindowDC must be constructed if an application wishes to paint on the whole area
of a window (client and decorations). This should normally be constructed as a
temporary stack object; don't store a wxWindowDC object.

To draw on a window from inside OnPaint, construct a wxPaintDC (p. 567) object.

To draw on the client area of a window from outside OnPaint, construct a wxClientDC

CHAPTER 4

962

(p. 86) object.

To draw on the whole window including decorations, construct a wxWindowDC (p. 961)
object (Windows only).

Derived from

wxDC (p. 165)

Include files

<wx/dcclient.h>

See also

wxDC (p. 165), wxMemoryDC (p. 496), wxPaintDC (p. 567), wxClientDC (p. 86),
wxScreenDC (p. 670)

wxWindowDC::wxWindowDC

 wxWindowDC(wxWindow* window)

Constructor. Pass a pointer to the window on which you wish to paint.

wxZipInputStream

This class is input stream from ZIP archive. The archive must be local file (accessible via
FILE*). It has all features including GetSize and seeking.

Derived from

wxInputStream

wxZipInputStream::wxZipInputStream

 wxZipInputStream(const wxString& archive, const wxString& file)

Constructor.

Parameters

archive
name of ZIP file

CHAPTER 4

963

file
name of file stored in the archive

wxZlibInputStream

This stream uncompresses all data read from it. It uses the "filtered" stream to get new
compressed data.

Derived from

wxFilterInputStream (p. 283)

Include files

<wx/zstream.h>

See also

wxStreamBuffer (p. 755), wxInputStream (p. 425)

wxZlibOutputStream

This stream compresses all data written to it, and passes the compressed data to the
"filtered" stream.

Derived from

wxFilterOutputStream (p. 284)

Include files

<wx/zstream.h>

See also

wxStreamBuffer (p. 755), wxOutputStream (p. 559)

964

Functions

The functions defined in wxWindows are described here.

File functions

Include files

<wx/utils.h>

See also

wxPathList (p. 576)

::wxDirExists

bool wxDirExists(const wxString& dirname)

Returns TRUE if the directory exists.

::wxDos2UnixFilename

void Dos2UnixFilename(const wxString& s)

Converts a DOS to a Unix filename by replacing backslashes with forward slashes.

::wxFileExists

bool wxFileExists(const wxString& filename)

Returns TRUE if the file exists. It also returns TRUE if the file is a directory.

::wxFileNameFromPath

wxString wxFileNameFromPath(const wxString& path)

char* wxFileNameFromPath(char* path)

Returns the filename for a full path. The second form returns a pointer to temporary
storage that should not be deallocated.

::wxFindFirstFile

CHAPTER 5

965

wxString wxFindFirstFile(const char*spec, int flags = 0)

This function does directory searching; returns the first file that matches the path spec,
or the empty string. Use wxFindNextFile (p. 965) to get the next matching file. Neither
will report the current directory "." or the parent directory "..".

spec may contain wildcards.

flags may be wxDIR for restricting the query to directories, wxFILE for files or zero for
either.

For example:

 wxString f = wxFindFirstFile("/home/project/*.*");
 while (!f.IsEmpty())
 {
 ...
 f = wxFindNextFile();
 }

::wxFindNextFile

wxString wxFindNextFile()

Returns the next file that matches the path passed to wxFindFirstFile (p. 964).

See wxFindFirstFile (p. 964) for an example.

::wxGetOSDirectory

wxString wxGetOSDirectory()

Returns the Windows directory under Windows; on other platforms returns the empty
string.

::wxInitAllImageHandlers

void wxInitAllImageHandlers()

Adds some common image format handlers, which, depending on wxWindows
configuration, can be handlers for BMP (loading) (always installed), GIF (loading), PCX
(loading), PNM (loading and saving as raw rgb), PNG (loading and saving), JPEG
(loading and saving), file formats.

See also: wxImage (p. 402) wxImageHandler (p. 414)

::wxIsAbsolutePath

CHAPTER 5

966

bool wxIsAbsolutePath(const wxString& filename)

Returns TRUE if the argument is an absolute filename, i.e. with a slash or drive name at
the beginning.

::wxPathOnly

wxString wxPathOnly(const wxString& path)

Returns the directory part of the filename.

::wxUnix2DosFilename

void wxUnix2DosFilename(const wxString& s)

Converts a Unix to a DOS filename by replacing forward slashes with backslashes.

::wxConcatFiles

bool wxConcatFiles(const wxString& file1, const wxString& file2,const wxString&
file3)

Concatenates file1 and file2 to file3, returning TRUE if successful.

::wxCopyFile

bool wxCopyFile(const wxString& file1, const wxString& file2)

Copies file1 to file2, returning TRUE if successful.

::wxGetCwd

wxString wxGetCwd()

Returns a string containing the current (or working) directory.

::wxGetWorkingDirectory

wxString wxGetWorkingDirectory(char*buf=NULL, int sz=1000)

This function is obsolete: use wxGetCwd (p. 966) instead.

Copies the current working directory into the buffer if supplied, or copies the working

CHAPTER 5

967

directory into new storage (which you must delete yourself) if the buffer is NULL.

sz is the size of the buffer if supplied.

::wxGetTempFileName

char* wxGetTempFileName(const wxString& prefix, char* buf=NULL)

Makes a temporary filename based on prefix, opens and closes the file, and places the
name in buf. If buf is NULL, new store is allocated for the temporary filename using new.

Under Windows, the filename will include the drive and name of the directory allocated
for temporary files (usually the contents of the TEMP variable). Under Unix, the /tmp
directory is used.

It is the application's responsibility to create and delete the file.

::wxIsWild

bool wxIsWild(const wxString& pattern)

Returns TRUE if the pattern contains wildcards. See wxMatchWild (p. 967).

::wxMatchWild

bool wxMatchWild(const wxString& pattern, const wxString& text, bool dot_special)

Returns TRUE if the pattern matches the text; if dot_special is TRUE, filenames
beginning with a dot are not matched with wildcard characters. See wxIsWild (p. 967).

::wxMkdir

bool wxMkdir(const wxString& dir, int perm = 0777)

Makes the directory dir, returning TRUE if successful.

perm is the access mask for the directory for the systems on which it is supported (Unix)
and doesn't have effect for the other ones.

::wxRemoveFile

bool wxRemoveFile(const wxString& file)

Removes file, returning TRUE if successful.

CHAPTER 5

968

::wxRenameFile

bool wxRenameFile(const wxString& file1, const wxString& file2)

Renames file1 to file2, returning TRUE if successful.

::wxRmdir

bool wxRmdir(const wxString& dir, int flags=0)

Removes the directory dir, returning TRUE if successful. Does not work under VMS.

The flags parameter is reserved for future use.

::wxSetWorkingDirectory

bool wxSetWorkingDirectory(const wxString& dir)

Sets the current working directory, returning TRUE if the operation succeeded. Under
MS Windows, the current drive is also changed if dir contains a drive specification.

::wxSplitPath

void wxSplitPath(const char * fullname, const wxString * path, const wxString *
name, const wxString * ext)

This function splits a full file name into components: the path (including possible
disk/drive specification under Windows), the base name and the extension. Any of the
output parameters (path, name or ext) may be NULL if you are not interested in the
value of a particular component.

wxSplitPath() will correctly handle filenames with both DOS and Unix path separators
under Windows, however it will not consider backslashes as path separators under Unix
(where backslash is a valid character in a filename).

On entry, fullname should be non NULL (it may be empty though).

On return, path contains the file path (without the trailing separator), namecontains the
file name and ext contains the file extension without leading dot. All three of them may
be empty if the corresponding component is. The old contents of the strings pointed to
by these parameters will be overwritten in any case (if the pointers are not NULL).

::wxTransferFileToStream

bool wxTransferFileToStream(const wxString& filename, ostream& stream)

CHAPTER 5

969

Copies the given file to stream. Useful when converting an old application to use
streams (within the document/view framework, for example).

Use of this function requires the file wx_doc.h to be included.

::wxTransferStreamToFile

bool wxTransferStreamToFile(istream& stream const wxString& filename)

Copies the given stream to the file filename. Useful when converting an old application
to use streams (within the document/view framework, for example).

Use of this function requires the file wx_doc.h to be included.

Network functions

::wxGetFullHostName

wxString wxGetFullHostName()

Returns the FQDN (fully qualified domain host name) or an empty string on error.

See also: wxGetHostName (p. 969)

Include files

<wx/utils.h>

::wxGetEmailAddress

bool wxGetEmailAddress(const wxString& buf, int sz)

Copies the user's email address into the supplied buffer, by concatenating the values
returned by wxGetFullHostName (p. 969) and wxGetUserId (p. 970).

Returns TRUE if successful, FALSE otherwise.

Include files

<wx/utils.h>

::wxGetHostName

wxString wxGetHostName()bool wxGetHostName(char * buf, int sz)

CHAPTER 5

970

Copies the current host machine's name into the supplied buffer. Please note that the
returned name is not fully qualified, i.e. it does not include the domain name.

Under Windows or NT, this function first looks in the environment variable
SYSTEM_NAME; if this is not found, the entry HostName in the wxWindows section of
the WIN.INI file is tried.

The first variant of this function returns the hostname if successful or an empty string
otherwise. The second (deprecated) function returns TRUE if successful, FALSE
otherwise.

See also: wxGetFullHostName (p. 969)

Include files

<wx/utils.h>

User identification

::wxGetUserId

wxString wxGetUserId()bool wxGetUserId(char * buf, int sz)

This function returns the "user id" also known as "login name" under Unix i.e. something
like "jsmith". It uniquely identifies the current user (on this system).

Under Windows or NT, this function first looks in the environment variables USER and
LOGNAME; if neither of these is found, the entry UserId in the wxWindows section of
the WIN.INI file is tried.

The first variant of this function returns the login name if successful or an empty string
otherwise. The second (deprecated) function returns TRUE if successful, FALSE
otherwise.

See also: wxGetUserName (p. 970)

Include files

<wx/utils.h>

::wxGetUserName

wxString wxGetUserName()bool wxGetUserName(char * buf, int sz)

This function returns the full user name (something like "Mr. John Smith").

Under Windows or NT, this function looks for the entry UserName in the wxWindows
section of the WIN.INI file. If PenWindows is running, the entry Current in the section

CHAPTER 5

971

User of the PENWIN.INI file is used.

The first variant of this function returns the user name if successful or an empty string
otherwise. The second (deprecated) function returns TRUE if successful, FALSE
otherwise.

See also: wxGetUserId (p. 970)

Include files

<wx/utils.h>

String functions

::copystring

char* copystring(const char* s)

Makes a copy of the string s using the C++ new operator, so it can be deleted with the
delete operator.

::wxStringMatch

bool wxStringMatch(const wxString& s1, const wxString& s2,
 bool subString = TRUE, bool exact = FALSE)

Returns TRUE if the substring s1 is found within s2, ignoring case if exact is FALSE. If
subString is FALSE, no substring matching is done.

::wxStringEq

bool wxStringEq(const wxString& s1, const wxString& s2)

A macro defined as:

#define wxStringEq(s1, s2) (s1 && s2 && (strcmp(s1, s2) == 0))

::IsEmpty

bool IsEmpty(const char * p)

Returns TRUE if the string is empty, FALSE otherwise. It is safe to pass NULL pointer to
this function and it will return TRUE for it.

::Stricmp

CHAPTER 5

972

int Stricmp(const char *p1, const char *p2)

Returns a negative value, 0, or positive value if p1 is less than, equal to or greater than
p2. The comparison is case-insensitive.

This function complements the standard C function strcmp() which performs case-
sensitive comparison.

::Strlen

size_t Strlen(const char * p)

This is a safe version of standard function strlen(): it does exactly the same thing (i.e.
returns the length of the string) except that it returns 0 ifp is the NULL pointer.

::wxGetTranslation

const char * wxGetTranslation(const char * str)

This function returns the translation of string str in the current locale (p. 476). If the string
is not found in any of the loaded message catalogs (see i18n overview (p. 1111)), the
original string is returned. In debug build, an error message is logged - this should help
to find the strings which were not yet translated. As this function is used very often, an
alternative syntax is provided: the _() macro is defined as wxGetTranslation().

Dialog functions

Below are a number of convenience functions for getting input from the user or
displaying messages. Note that in these functions the last three parameters are optional.
However, it is recommended to pass a parent frame parameter, or (in MS Windows or
Motif) the wrong window frame may be brought to the front when the dialog box is
popped up.

::wxCreateFileTipProvider

wxTipProvider * wxCreateFileTipProvider(const wxString& filename, size_t
currentTip)

This function creates a wxTipProvider (p. 860) which may be used with wxShowTip (p.
977).

filename
The name of the file containing the tips, one per line

currentTip
The index of the first tip to show - normally this index is remembered between the
2 program runs.

CHAPTER 5

973

See also:

Tips overview (p. 1115)

Include files

<wx/tipdlg.h>

::wxFileSelector

wxString wxFileSelector(const wxString& message, const wxString& default_path =
"",
 const wxString& default_filename = "", const wxString& default_extension = "",
 const wxString& wildcard = "*.*'', int flags = 0, wxWindow *parent = "",
 int x = -1, int y = -1)

Pops up a file selector box. In Windows, this is the common file selector dialog. In X, this
is a file selector box with somewhat less functionality. The path and filename are distinct
elements of a full file pathname. If path is empty, the current directory will be used. If
filename is empty, no default filename will be supplied. The wildcard determines what
files are displayed in the file selector, and file extension supplies a type extension for the
required filename. Flags may be a combination of wxOPEN, wxSAVE,
wxOVERWRITE_PROMPT, wxHIDE_READONLY, or 0.

Both the Unix and Windows versions implement a wildcard filter. Typing a filename
containing wildcards (*, ?) in the filename text item, and clicking on Ok, will result in only
those files matching the pattern being displayed.

The wildcard may be a specification for multiple types of file with a description for each,
such as:

 "BMP files (*.bmp)|*.bmp|GIF files (*.gif)|*.gif"

The application must check for an empty return value (the user pressed Cancel). For
example:

const wxString& s = wxFileSelector("Choose a file to open");
if (s)
{
 ...
}

Include files

<wx/filedlg.h>

::wxGetNumberFromUser

CHAPTER 5

974

long wxGetNumberFromUser(const wxString& message, const wxString& prompt,
const wxString& caption, long value, long min = 0, long max = 100, wxWindow
*parent = NULL, const wxPoint& pos = wxDefaultPosition)

Shows a dialog asking the user for numeric input. The dialogs title is set to caption, it
contains a (possibly) multiline message above the single line prompt and the zone for
entering the number.

The number entered must be in the range min..max (both of which should be positive)
and value is the initial value of it. If the user enters an invalid value or cancels the dialog,
the function will return -1.

Dialog is centered on its parent unless an explicit position is given in pos.

Include files

<wx/textdlg.h>

::wxGetTextFromUser

wxString wxGetTextFromUser(const wxString& message, const wxString& caption
= "Input text",
 const wxString& default_value = "", wxWindow *parent = NULL,
 int x = -1, int y = -1, bool centre = TRUE)

Pop up a dialog box with title set to caption, message message, and a default_value.
The user may type in text and press OK to return this text, or press Cancel to return the
empty string.

If centre is TRUE, the message text (which may include new line characters) is centred;
if FALSE, the message is left-justified.

Include files

<wx/textdlg.h>

::wxGetMultipleChoice

int wxGetMultipleChoice(const wxString& message, const wxString& caption, int n,
const wxString& choices[],
 int nsel, int *selection, wxWindow *parent = NULL, int x = -1, int y = -1,
 bool centre = TRUE, int width=150, int height=200)

Pops up a dialog box containing a message, OK/Cancel buttons and a multiple-selection
listbox. The user may choose one or more item(s) and press OK or Cancel.

The number of initially selected choices, and array of the selected indices, are passed in;
this array will contain the user selections on exit, with the function returning the number
of selections. selection must be as big as the number of choices, in case all are

CHAPTER 5

975

selected.

If Cancel is pressed, -1 is returned.

choices is an array of n strings for the listbox.

If centre is TRUE, the message text (which may include new line characters) is centred;
if FALSE, the message is left-justified.

Include files

<wx/choicdlg.h>

::wxGetSingleChoice

wxString wxGetSingleChoice(const wxString& message, const wxString& caption,
int n, const wxString& choices[],
 wxWindow *parent = NULL, int x = -1, int y = -1,
 bool centre = TRUE, int width=150, int height=200)

Pops up a dialog box containing a message, OK/Cancel buttons and a single-selection
listbox. The user may choose an item and press OK to return a string or Cancel to return
the empty string.

choices is an array of n strings for the listbox.

If centre is TRUE, the message text (which may include new line characters) is centred;
if FALSE, the message is left-justified.

Include files

<wx/choicdlg.h>

::wxGetSingleChoiceIndex

int wxGetSingleChoiceIndex(const wxString& message, const wxString& caption,
int n, const wxString& choices[],
 wxWindow *parent = NULL, int x = -1, int y = -1,
 bool centre = TRUE, int width=150, int height=200)

As wxGetSingleChoice but returns the index representing the selected string. If the
user pressed cancel, -1 is returned.

Include files

<wx/choicdlg.h>

CHAPTER 5

976

::wxGetSingleChoiceData

wxString wxGetSingleChoiceData(const wxString& message, const wxString&
caption, int n, const wxString& choices[],
 const wxString& client_data[], wxWindow *parent = NULL, int x = -1,
 int y = -1, bool centre = TRUE, int width=150, int height=200)

As wxGetSingleChoice but takes an array of client data pointers corresponding to the
strings, and returns one of these pointers.

Include files

<wx/choicdlg.h>

::wxMessageBox

int wxMessageBox(const wxString& message, const wxString& caption =
"Message", int style = wxOK | wxCENTRE,
 wxWindow *parent = NULL, int x = -1, int y = -1)

General purpose message dialog. style may be a bit list of the following identifiers:

wxYES_NO Puts Yes and No buttons on the message box. May be
combined with wxCANCEL.

wxCANCEL Puts a Cancel button on the message box. May be
combined with wxYES_NO or wxOK.

wxOK Puts an Ok button on the message box. May be combined
with wxCANCEL.

wxCENTRE Centres the text.
wxICON_EXCLAMATION Under Windows, displays an exclamation mark symbol.
wxICON_HAND Under Windows, displays a hand symbol.
wxICON_QUESTION Under Windows, displays a question mark symbol.
wxICON_INFORMATION Under Windows, displays an information symbol.

The return value is one of: wxYES, wxNO, wxCANCEL, wxOK.

For example:

 ...
 int answer = wxMessageBox("Quit program?", "Confirm",
 wxYES_NO | wxCANCEL, main_frame);
 if (answer == wxYES)
 delete main_frame;
 ...

message may contain newline characters, in which case the message will be split into
separate lines, to cater for large messages.

Under Windows, the native MessageBox function is used unless wxCENTRE is specified

CHAPTER 5

977

in the style, in which case a generic function is used. This is because the native
MessageBox function cannot centre text. The symbols are not shown when the generic
function is used.

Include files

<wx/msgdlg.h>

::wxShowTip

bool wxShowTip(wxWindow *parent, wxTipProvider *tipProvider, bool showAtStartup
= TRUE)

This function shows a "startup tip" to the user.

parent
The parent window for the modal dialog

tipProvider
An object which is used to get the text of the tips. It may be created with the
wxCreateFileTipProvider (p. 972) function.

showAtStartup
Should be TRUE if startup tips are shown, FALSE otherwise. This is used as the
initial value for "Show tips at startup" checkbox which is shown in the tips dialog.

See also:

Tips overview (p. 1115)

Include files

<wx/tipdlg.h>

GDI functions

The following are relevant to the GDI (Graphics Device Interface).

Include files

<wx/gdicmn.h>

::wxColourDisplay

bool wxColourDisplay()

Returns TRUE if the display is colour, FALSE otherwise.

CHAPTER 5

978

::wxDisplayDepth

int wxDisplayDepth()

Returns the depth of the display (a value of 1 denotes a monochrome display).

::wxMakeMetafilePlaceable

bool wxMakeMetafilePlaceable(const wxString& filename, int minX, int minY, int
maxX, int maxY, float scale=1.0)

Given a filename for an existing, valid metafile (as constructed using wxMetafileDC (p.
523)) makes it into a placeable metafile by prepending a header containing the given
bounding box. The bounding box may be obtained from a device context after drawing
into it, using the functions wxDC::MinX, wxDC::MinY, wxDC::MaxX and wxDC::MaxY.

In addition to adding the placeable metafile header, this function adds the equivalent of
the following code to the start of the metafile data:

 SetMapMode(dc, MM_ANISOTROPIC);
 SetWindowOrg(dc, minX, minY);
 SetWindowExt(dc, maxX - minX, maxY - minY);

This simulates the wxMM_TEXT mapping mode, which wxWindows assumes.

Placeable metafiles may be imported by many Windows applications, and can be used
in RTF (Rich Text Format) files.

scale allows the specification of scale for the metafile.

This function is only available under Windows.

::wxSetCursor

void wxSetCursor(wxCursor *cursor)

Globally sets the cursor; only has an effect in Windows and GTK. See also wxCursor (p.
135), wxWindow::SetCursor (p. 952).

Printer settings

These routines are obsolete and should no longer be used!

The following functions are used to control PostScript printing. Under Windows,
PostScript output can only be sent to a file.

Include files

CHAPTER 5

979

<wx/dcps.h>

::wxGetPrinterCommand

wxString wxGetPrinterCommand()

Gets the printer command used to print a file. The default is lpr.

::wxGetPrinterFile

wxString wxGetPrinterFile()

Gets the PostScript output filename.

::wxGetPrinterMode

int wxGetPrinterMode()

Gets the printing mode controlling where output is sent (PS_PREVIEW, PS_FILE or
PS_PRINTER). The default is PS_PREVIEW.

::wxGetPrinterOptions

wxString wxGetPrinterOptions()

Gets the additional options for the print command (e.g. specific printer). The default is
nothing.

::wxGetPrinterOrientation

int wxGetPrinterOrientation()

Gets the orientation (PS_PORTRAIT or PS_LANDSCAPE). The default is
PS_PORTRAIT.

::wxGetPrinterPreviewCommand

wxString wxGetPrinterPreviewCommand()

Gets the command used to view a PostScript file. The default depends on the platform.

::wxGetPrinterScaling

CHAPTER 5

980

void wxGetPrinterScaling(float *x, float *y)

Gets the scaling factor for PostScript output. The default is 1.0, 1.0.

::wxGetPrinterTranslation

void wxGetPrinterTranslation(float *x, float *y)

Gets the translation (from the top left corner) for PostScript output. The default is 0.0,
0.0.

::wxSetPrinterCommand

void wxSetPrinterCommand(const wxString& command)

Sets the printer command used to print a file. The default is lpr.

::wxSetPrinterFile

void wxSetPrinterFile(const wxString& filename)

Sets the PostScript output filename.

::wxSetPrinterMode

void wxSetPrinterMode(int mode)

Sets the printing mode controlling where output is sent (PS_PREVIEW, PS_FILE or
PS_PRINTER). The default is PS_PREVIEW.

::wxSetPrinterOptions

void wxSetPrinterOptions(const wxString& options)

Sets the additional options for the print command (e.g. specific printer). The default is
nothing.

::wxSetPrinterOrientation

void wxSetPrinterOrientation(int orientation)

Sets the orientation (PS_PORTRAIT or PS_LANDSCAPE). The default is
PS_PORTRAIT.

CHAPTER 5

981

::wxSetPrinterPreviewCommand

void wxSetPrinterPreviewCommand(const wxString& command)

Sets the command used to view a PostScript file. The default depends on the platform.

::wxSetPrinterScaling

void wxSetPrinterScaling(float x, float y)

Sets the scaling factor for PostScript output. The default is 1.0, 1.0.

::wxSetPrinterTranslation

void wxSetPrinterTranslation(float x, float y)

Sets the translation (from the top left corner) for PostScript output. The default is 0.0,
0.0.

Clipboard functions

These clipboard functions are implemented for Windows only.

Include files

<wx/clipbrd.h>

::wxClipboardOpen

bool wxClipboardOpen()

Returns TRUE if this application has already opened the clipboard.

::wxCloseClipboard

bool wxCloseClipboard()

Closes the clipboard to allow other applications to use it.

::wxEmptyClipboard

bool wxEmptyClipboard()

Empties the clipboard.

CHAPTER 5

982

::wxEnumClipboardFormats

int wxEnumClipboardFormats(intdataFormat)

Enumerates the formats found in a list of available formats that belong to the clipboard.
Each call to this function specifies a known available format; the function returns the
format that appears next in the list.

dataFormat specifies a known format. If this parameter is zero, the function returns the
first format in the list.

The return value specifies the next known clipboard data format if the function is
successful. It is zero if the dataFormat parameter specifies the last format in the list of
available formats, or if the clipboard is not open.

Before it enumerates the formats function, an application must open the clipboard by
using the wxOpenClipboard function.

::wxGetClipboardData

wxObject * wxGetClipboardData(intdataFormat)

Gets data from the clipboard.

dataFormat may be one of:

• wxCF_TEXT or wxCF_OEMTEXT: returns a pointer to new memory containing
a null-terminated text string.

• wxCF_BITMAP: returns a new wxBitmap.

The clipboard must have previously been opened for this call to succeed.

::wxGetClipboardFormatName

bool wxGetClipboardFormatName(intdataFormat, const wxString& formatName,
intmaxCount)

Gets the name of a registered clipboard format, and puts it into the buffer formatName
which is of maximum length maxCount. dataFormat must not specify a predefined
clipboard format.

::wxIsClipboardFormatAvailable

bool wxIsClipboardFormatAvailable(intdataFormat)

CHAPTER 5

983

Returns TRUE if the given data format is available on the clipboard.

::wxOpenClipboard

bool wxOpenClipboard()

Opens the clipboard for passing data to it or getting data from it.

::wxRegisterClipboardFormat

int wxRegisterClipboardFormat(const wxString& formatName)

Registers the clipboard data format name and returns an identifier.

::wxSetClipboardData

bool wxSetClipboardData(intdataFormat, wxObject *data, intwidth, intheight)

Passes data to the clipboard.

dataFormat may be one of:

• wxCF_TEXT or wxCF_OEMTEXT: data is a null-terminated text string.
• wxCF_BITMAP: data is a wxBitmap.
• wxCF_DIB: data is a wxBitmap. The bitmap is converted to a DIB (device

independent bitmap).
• wxCF_METAFILE: data is a wxMetafile. width and height are used to give

recommended dimensions.

The clipboard must have previously been opened for this call to succeed.

Miscellaneous functions

::wxNewId

long wxNewId()

Generates an integer identifier unique to this run of the program.

Include files

<wx/utils.h>

::wxRegisterId

CHAPTER 5

984

void wxRegisterId(long id)

Ensures that ids subsequently generated by NewId do not clash with the given id.

Include files

<wx/utils.h>

::wxBeginBusyCursor

void wxBeginBusyCursor(wxCursor *cursor = wxHOURGLASS_CURSOR)

Changes the cursor to the given cursor for all windows in the application. Use
wxEndBusyCursor (p. 987) to revert the cursor back to its previous state. These two
calls can be nested, and a counter ensures that only the outer calls take effect.

See also wxIsBusy (p. 993), wxBusyCursor (p. 67).

Include files

<wx/utils.h>

::wxBell

void wxBell()

Ring the system bell.

Include files

<wx/utils.h>

::wxCreateDynamicObject

wxObject * wxCreateDynamicObject(const wxString& className)

Creates and returns an object of the given class, if the class has been registered with
the dynamic class system using DECLARE... and IMPLEMENT... macros.

::wxDDECleanUp

void wxDDECleanUp()

Called when wxWindows exits, to clean up the DDE system. This no longer needs to be
called by the application.

CHAPTER 5

985

See also helprefwxDDEInitializewxddeinitialize.

Include files

<wx/dde.h>

::wxDDEInitialize

void wxDDEInitialize()

Initializes the DDE system. May be called multiple times without harm.

This no longer needs to be called by the application: it will be called by wxWindows if
necessary.

See also wxDDEServer (p. 186), wxDDEClient (p. 181), wxDDEConnection (p. 182),
wxDDECleanUp (p. 984).

Include files

<wx/dde.h>

::wxDebugMsg

void wxDebugMsg(const wxString& fmt, ...)

Display a debugging message; under Windows, this will appear on the debugger
command window, and under Unix, it will be written to standard error.

The syntax is identical to printf: pass a format string and a variable list of arguments.

Note that under Windows, you can see the debugging messages without a debugger if
you have the DBWIN debug log application that comes with Microsoft C++.

Tip: under Windows, if your application crashes before the message appears in the
debugging window, put a wxYield call after each wxDebugMsg call. wxDebugMsg seems
to be broken under WIN32s (at least for Watcom C++): preformat your messages and
use OutputDebugString instead.

This function is now obsolete, replaced by Log functions (p. 1010).

Include files

<wx/utils.h>

::wxDisplaySize

CHAPTER 5

986

void wxDisplaySize(int *width, int *height)

Gets the physical size of the display in pixels.

Include files

<wx/gdicmn.h>

::wxEnableTopLevelWindows

void wxEnableTopLevelWindow(bool enable = TRUE)

This function enables or disables all top level windows. It is used by::wxSafeYield (p.
995).

Include files

<wx/utils.h>

::wxEntry

This initializes wxWindows in a platform-dependent way. Use this if you are not using the
default wxWindows entry code (e.g. main or WinMain). For example, you can initialize
wxWindows from an Microsoft Foundation Classes application using this function.

void wxEntry(HANDLE hInstance, HANDLE hPrevInstance, const wxString&
commandLine, int cmdShow, bool enterLoop = TRUE)

wxWindows initialization under Windows (non-DLL). If enterLoop is FALSE, the function
will return immediately after calling wxApp::OnInit. Otherwise, the wxWindows message
loop will be entered.

void wxEntry(HANDLE hInstance, HANDLE hPrevInstance, WORD wDataSegment,
WORD wHeapSize, const wxString& commandLine)

wxWindows initialization under Windows (for applications constructed as a DLL).

int wxEntry(int argc, const wxString& *argv)

wxWindows initialization under Unix.

Remarks

To clean up wxWindows, call wxApp::OnExit followed by the static function
wxApp::CleanUp. For example, if exiting from an MFC application that also uses
wxWindows:

int CTheApp::ExitInstance()
{

CHAPTER 5

987

 // OnExit isn't called by CleanUp so must be called explicitly.
 wxTheApp->OnExit();
 wxApp::CleanUp();

 return CWinApp::ExitInstance();
}

Include files

<wx/app.h>

::wxEndBusyCursor

void wxEndBusyCursor()

Changes the cursor back to the original cursor, for all windows in the application. Use
with wxBeginBusyCursor (p. 984).

See also wxIsBusy (p. 993), wxBusyCursor (p. 67).

Include files

<wx/utils.h>

::wxError

void wxError(const wxString& msg, const wxString& title = "wxWindows Internal
Error")

Displays msg and continues. This writes to standard error under Unix, and pops up a
message box under Windows. Used for internal wxWindows errors. See also
wxFatalError (p. 988).

Include files

<wx/utils.h>

::wxExecute

long wxExecute(const wxString& command, bool sync = FALSE, wxProcess
*callback = NULL)

long wxExecute(char **argv, bool sync = FALSE, wxProcess *callback = NULL)

Executes another program in Unix or Windows.

The first form takes a command string, such as "emacs file.txt".

CHAPTER 5

988

The second form takes an array of values: a command, any number of arguments,
terminated by NULL.

If sync is FALSE (the default), flow of control immediately returns. If TRUE, the current
application waits until the other program has terminated.

In the case of synchronous execution, the return value is the exit code of the process
(which terminates by the moment the function returns) and will be-1 if the process
couldn't be started and typically 0 if the process terminated successfully. Also, while
waiting for the process to terminate, wxExecute will call wxYield (p. 999). The caller
should ensure that this can cause no recursion, in the simples case by calling
wxEnableTopLevelWindows(FALSE) (p. 986).

For asynchronous execution, however, the return value is the process id and zero value
indicates that the command could not be executed.

If callback isn't NULL and if execution is asynchronous (note that callback parameter can
not be non NULL for synchronous execution), wxProcess::OnTerminate (p. 616) will be
called when the process finishes.

See also wxShell (p. 995), wxProcess (p. 615).

Include files

<wx/utils.h>

::wxExit

void wxExit()

Exits application after calling wxApp::OnExit (p. 10). Should only be used in an
emergency: normally the top-level frame should be deleted (after deleting all other
frames) to terminate the application. See wxWindow::OnCloseWindow (p. 937) and
wxApp (p. 6).

Include files

<wx/app.h>

::wxFatalError

void wxFatalError(const wxString& msg, const wxString& title = "wxWindows Fatal
Error")

Displays msg and exits. This writes to standard error under Unix, and pops up a
message box under Windows. Used for fatal internal wxWindows errors. See also
wxError (p. 987).

Include files

CHAPTER 5

989

<wx/utils.h>

::wxFindMenuItemId

int wxFindMenuItemId(wxFrame *frame, const wxString& menuString, const
wxString& itemString)

Find a menu item identifier associated with the given frame's menu bar.

Include files

<wx/utils.h>

::wxFindWindowByLabel

wxWindow * wxFindWindowByLabel(const wxString& label, wxWindow
*parent=NULL)

Find a window by its label. Depending on the type of window, the label may be a window
title or panel item label. If parent is NULL, the search will start from all top-level frames
and dialog boxes; if non-NULL, the search will be limited to the given window hierarchy.
The search is recursive in both cases.

Include files

<wx/utils.h>

::wxFindWindowByName

wxWindow * wxFindWindowByName(const wxString& name, wxWindow
*parent=NULL)

Find a window by its name (as given in a window constructor or Create function call). If
parent is NULL, the search will start from all top-level frames and dialog boxes; if non-
NULL, the search will be limited to the given window hierarchy. The search is recursive
in both cases.

If no such named window is found, wxFindWindowByLabel is called.

Include files

<wx/utils.h>

::wxGetActiveWindow

CHAPTER 5

990

wxWindow * wxGetActiveWindow()

Gets the currently active window (Windows only).

Include files

<wx/windows.h>

::wxGetDisplayName

wxString wxGetDisplayName()

Under X only, returns the current display name. See also wxSetDisplayName (p. 995).

Include files

<wx/utils.h>

::wxGetHomeDir

wxString wxGetHomeDir(const wxString& buf)

Fills the buffer with a string representing the user's home directory (Unix only).

Include files

<wx/utils.h>

::wxGetHostName

bool wxGetHostName(const wxString& buf, int bufSize)

Copies the host name of the machine the program is running on into the buffer buf, of
maximum size bufSize, returning TRUE if successful. Under Unix, this will return a
machine name. Under Windows, this returns "windows''.

Include files

<wx/utils.h>

::wxGetElapsedTime

long wxGetElapsedTime(bool resetTimer = TRUE)

Gets the time in milliseconds since the last ::wxStartTimer (p. 996).

CHAPTER 5

991

If resetTimer is TRUE (the default), the timer is reset to zero by this call.

See also wxTimer (p. 858).

Include files

<wx/timer.h>

::wxGetFreeMemory

long wxGetFreeMemory()

Returns the amount of free memory in Kbytes under environments which support it, and
-1 if not supported. Currently, returns a positive value under Windows, and -1 under
Unix.

Include files

<wx/utils.h>

::wxGetMousePosition

void wxGetMousePosition(int* x, int* y)

Returns the mouse position in screen coordinates.

Include files

<wx/utils.h>

::wxGetOsVersion

int wxGetOsVersion(int *major = NULL, int *minor = NULL)

Gets operating system version information.

Platform Return tyes
Macintosh Return value is wxMACINTOSH.
GTK Return value is wxGTK, major is 1, minor is 0. (for GTK

1.0.X)
Motif Return value is wxMOTIF_X, major is X version, minor is X

revision.
OS/2 Return value is wxOS2_PM.
Windows 3.1 Return value is wxWINDOWS, major is 3, minor is 1.
Windows NT Return value is wxWINDOWS_NT, major is 3, minor is 1.
Windows 95 Return value is wxWIN95, major is 3, minor is 1.
Win32s (Windows 3.1) Return value is wxWIN32S, major is 3, minor is 1.

CHAPTER 5

992

Watcom C++ 386 supervisor mode (Windows 3.1) Return value is wxWIN386, major is
3, minor is 1.

Include files

<wx/utils.h>

::wxGetResource

bool wxGetResource(const wxString& section, const wxString& entry, const
wxString& *value, const wxString& file = NULL)

bool wxGetResource(const wxString& section, const wxString& entry, float *value,
const wxString& file = NULL)

bool wxGetResource(const wxString& section, const wxString& entry, long *value,
const wxString& file = NULL)

bool wxGetResource(const wxString& section, const wxString& entry, int *value,
const wxString& file = NULL)

Gets a resource value from the resource database (for example, WIN.INI, or .Xdefaults).
If file is NULL, WIN.INI or .Xdefaults is used, otherwise the specified file is used.

Under X, if an application class (wxApp::GetClassName) has been defined, it is
appended to the string /usr/lib/X11/app-defaults/ to try to find an applications default file
when merging all resource databases.

The reason for passing the result in an argument is that it can be convenient to define a
default value, which gets overridden if the value exists in the resource file. It saves a
separate test for that resource's existence, and it also allows the overloading of the
function for different types.

See also wxWriteResource (p. 998), wxConfigBase (p. 117).

Include files

<wx/utils.h>

::wxGetUserId

bool wxGetUserId(const wxString& buf, int bufSize)

Copies the user's login identity (such as "jacs'') into the buffer buf, of maximum size
bufSize, returning TRUE if successful. Under Windows, this returns "user''.

Include files

CHAPTER 5

993

<wx/utils.h>

::wxGetUserName

bool wxGetUserName(const wxString& buf, int bufSize)

Copies the user's name (such as "Julian Smart'') into the buffer buf, of maximum size
bufSize, returning TRUE if successful. Under Windows, this returns "unknown''.

Include files

<wx/utils.h>

::wxKill

int wxKill(long pid, int sig)

Under Unix (the only supported platform), equivalent to the Unix kill function. Returns 0
on success, -1 on failure.

Tip: sending a signal of 0 to a process returns -1 if the process does not exist. It does
not raise a signal in the receiving process.

Include files

<wx/utils.h>

::wxIsBusy

bool wxIsBusy()

Returns TRUE if between two wxBeginBusyCursor (p. 984) and wxEndBusyCursor (p.
987) calls.

See also wxBusyCursor (p. 67).

Include files

<wx/utils.h>

::wxLoadUserResource

wxString wxLoadUserResource(const wxString& resourceName, const wxString&
resourceType="TEXT")

Loads a user-defined Windows resource as a string. If the resource is found, the function

CHAPTER 5

994

creates a new character array and copies the data into it. A pointer to this data is
returned. If unsuccessful, NULL is returned.

The resource must be defined in the .rc file using the following syntax:

myResource TEXT file.ext

where file.ext is a file that the resource compiler can find.

One use of this is to store .wxr files instead of including the data in the C++ file; some
compilers cannot cope with the long strings in a .wxr file. The resource data can then
be parsed using wxResourceParseString (p. 1009).

This function is available under Windows only.

Include files

<wx/utils.h>

::wxNow

wxString wxNow()

Returns a string representing the current date and time.

Include files

<wx/utils.h>

::wxPostDelete

void wxPostDelete(wxObject *object)

Tells the system to delete the specified object when all other events have been
processed. In some environments, it is necessary to use this instead of deleting a frame
directly with the delete operator, because some GUIs will still send events to a deleted
window.

Now obsolete: use wxWindow::Close (p. 919) instead.

Include files

<wx/utils.h>

::wxPostEvent

void wxPostEvent(wxEvtHandler *dest, wxEvent& event)

CHAPTER 5

995

This function posts the event to the specified dest object. The difference between
sending an event and posting it is that in the first case the event is processed before the
function returns (in wxWindows, event sending is done with ProcessEvent (p. 243)
function), but in the second, the function returns immediately and the event will be
processed sometime later - usually during the next even loop iteration.

Note that a copy of the event is made by the function, so the original copy can be
deleted as soon as function returns. This function can also be used to send events
between different threads safely.

Include files

<wx/app.h>

::wxSafeYield

bool wxSafeYield(wxWindow* win = NULL)

This function is similar to wxYield, except that it disables the user input to all program
windows before calling wxYield and re-enables it again afterwards. If win is not NULL,
this window will remain enabled, allowing the implementation of some limited user
interaction.

Returns the result of the call to ::wxYield (p. 999).

Include files

<wx/utils.h>

::wxSetDisplayName

void wxSetDisplayName(const wxString& displayName)

Under X only, sets the current display name. This is the X host and display name such
as "colonsay:0.0", and the function indicates which display should be used for creating
windows from this point on. Setting the display within an application allows multiple
displays to be used.

See also wxGetDisplayName (p. 990).

Include files

<wx/utils.h>

::wxShell

CHAPTER 5

996

bool wxShell(const wxString& command = NULL)

Executes a command in an interactive shell window. If no command is specified, then
just the shell is spawned.

See also wxExecute (p. 987).

Include files

<wx/utils.h>

::wxSleep

void wxSleep(int secs)

Sleeps for the specified number of seconds.

Include files

<wx/utils.h>

::wxStripMenuCodes

wxString wxStripMenuCodes(const wxString& in)

void wxStripMenuCodes(char* in, char* out)

Strips any menu codes from in and places the result in out (or returns the new string, in
the first form).

Menu codes include & (mark the next character with an underline as a keyboard
shortkey in Windows and Motif) and \t (tab in Windows).

Include files

<wx/utils.h>

::wxStartTimer

void wxStartTimer()

Starts a stopwatch; use ::wxGetElapsedTime (p. 990) to get the elapsed time.

See also wxTimer (p. 858).

Include files

CHAPTER 5

997

<wx/timer.h>

::wxToLower

char wxToLower(char ch)

Converts the character to lower case. This is implemented as a macro for efficiency.

Include files

<wx/utils.h>

::wxToUpper

char wxToUpper(char ch)

Converts the character to upper case. This is implemented as a macro for efficiency.

Include files

<wx/utils.h>

::wxTrace

void wxTrace(const wxString& fmt, ...)

Takes printf-style variable argument syntax. Output is directed to the current output
stream (see wxDebugContext (p. 1061)).

This function is now obsolete, replaced by Log functions (p. 1010).

Include files

<wx/memory.h>

::wxTraceLevel

void wxTraceLevel(int level, const wxString& fmt, ...)

Takes printf-style variable argument syntax. Output is directed to the current output
stream (see wxDebugContext (p. 1061)). The first argument should be the level at which
this information is appropriate. It will only be output if the level returned by
wxDebugContext::GetLevel is equal to or greater than this value.

This function is now obsolete, replaced by Log functions (p. 1010).

CHAPTER 5

998

Include files

<wx/memory.h>

::wxUsleep

void wxUsleep(unsigned long milliseconds)

Sleeps for the specified number of milliseconds. Notice that usage of this function is
encouraged instead of calling usleep(3) directly because the standard usleep() function
is not MT safe.

Include files

<wx/utils.h>

::wxWriteResource

bool wxWriteResource(const wxString& section, const wxString& entry, const
wxString& value, const wxString& file = NULL)

bool wxWriteResource(const wxString& section, const wxString& entry, float value,
const wxString& file = NULL)

bool wxWriteResource(const wxString& section, const wxString& entry, long value,
const wxString& file = NULL)

bool wxWriteResource(const wxString& section, const wxString& entry, int value,
const wxString& file = NULL)

Writes a resource value into the resource database (for example, WIN.INI, or
.Xdefaults). If file is NULL, WIN.INI or .Xdefaults is used, otherwise the specified file is
used.

Under X, the resource databases are cached until the internal function
wxFlushResources is called automatically on exit, when all updated resource
databases are written to their files.

Note that it is considered bad manners to write to the .Xdefaults file under Unix, although
the WIN.INI file is fair game under Windows.

See also wxGetResource (p. 992), wxConfigBase (p. 117).

Include files

<wx/utils.h>

CHAPTER 5

999

::wxYield

bool wxYield()

Yields control to pending messages in the windowing system. This can be useful, for
example, when a time-consuming process writes to a text window. Without an
occasional yield, the text window will not be updated properly, and (since Windows
multitasking is cooperative) other processes will not respond.

Caution should be exercised, however, since yielding may allow the user to perform
actions which are not compatible with the current task. Disabling menu items or whole
menus during processing can avoid unwanted reentrance of code: see ::wxSafeYield (p.
995) for a better function.

Include files

<wx/app.h> or <wx/utils.h>

Macros

These macros are defined in wxWindows.

wxINTXX_SWAP_ALWAYS

wxInt32 wxINT32_SWAP_ALWAYS(wxInt32 value)

wxUint32 wxUINT32_SWAP_ALWAYS(wxUint32 value)

wxInt16 wxINT16_SWAP_ALWAYS(wxInt16 value)

wxUint16 wxUINT16_SWAP_ALWAYS(wxUint16 value)

This macro will swap the bytes of the value variable from little endian to big endian or
vice versa.

wxINTXX_SWAP_ON_BE

wxInt32 wxINT32_SWAP_ON_BE(wxInt32 value)

wxUint32 wxUINT32_SWAP_ON_BE(wxUint32 value)

wxInt16 wxINT16_SWAP_ON_BE(wxInt16 value)

wxUint16 wxUINT16_SWAP_ON_BE(wxUint16 value)

This macro will swap the bytes of the value variable from little endian to big endian or
vice versa if the program is compiled on a big-endian architecture (such as Sun work
stations). If the program has been compiled on a little-endian architecture, the value will

CHAPTER 5

1000

be unchanged.

Use these macros to read data from and write data to a file that stores data in little
endian (Intel i386) format.

wxINTXX_SWAP_ON_LE

wxInt32 wxINT32_SWAP_ON_LE(wxInt32 value)

wxUint32 wxUINT32_SWAP_ON_LE(wxUint32 value)

wxInt16 wxINT16_SWAP_ON_LE(wxInt16 value)

wxUint16 wxUINT16_SWAP_ON_LE(wxUint16 value)

This macro will swap the bytes of the value variable from little endian to big endian or
vice versa if the program is compiled on a little-endian architecture (such as Intel PCs). If
the program has been compiled on a big-endian architecture, the value will be
unchanged.

Use these macros to read data from and write data to a file that stores data in big
endian format.

CLASSINFO

wxClassInfo * CLASSINFO(className)

Returns a pointer to the wxClassInfo object associated with this class.

Include files

<wx/object.h>

DECLARE_ABSTRACT_CLASS

 DECLARE_ABSTRACT_CLASS(className)

Used inside a class declaration to declare that the class should be made known to the
class hierarchy, but objects of this class cannot be created dynamically. The same as
DECLARE_CLASS.

Example:

class wxCommand: public wxObject
{
 DECLARE_ABSTRACT_CLASS(wxCommand)

 private:

CHAPTER 5

1001

 ...
 public:
 ...
};

Include files

<wx/object.h>

DECLARE_APP

 DECLARE_APP(className)

This is used in headers to create a forward declaration of the wxGetApp function
implemented by IMPLEMENT_APP. It creates the declaration className&
wxGetApp(void).

Example:

 DECLARE_APP(MyApp)

Include files

<wx/app.h>

DECLARE_CLASS

 DECLARE_CLASS(className)

Used inside a class declaration to declare that the class should be made known to the
class hierarchy, but objects of this class cannot be created dynamically. The same as
DECLARE_ABSTRACT_CLASS.

Include files

<wx/object.h>

DECLARE_DYNAMIC_CLASS

 DECLARE_DYNAMIC_CLASS(className)

Used inside a class declaration to declare that the objects of this class should be
dynamically createable from run-time type information.

Example:

class wxFrame: public wxWindow
{

CHAPTER 5

1002

 DECLARE_DYNAMIC_CLASS(wxFrame)

 private:
 const wxString\& frameTitle;
 public:
 ...
};

Include files

<wx/object.h>

IMPLEMENT_ABSTRACT_CLASS

 IMPLEMENT_ABSTRACT_CLASS(className, baseClassName)

Used in a C++ implementation file to complete the declaration of a class that has run-
time type information. The same as IMPLEMENT_CLASS.

Example:

IMPLEMENT_ABSTRACT_CLASS(wxCommand, wxObject)

wxCommand::wxCommand(void)
{
...
}

Include files

<wx/object.h>

IMPLEMENT_ABSTRACT_CLASS2

 IMPLEMENT_ABSTRACT_CLASS2(className, baseClassName1, baseClassName2)

Used in a C++ implementation file to complete the declaration of a class that has run-
time type information and two base classes. The same as IMPLEMENT_CLASS2.

Include files

<wx/object.h>

IMPLEMENT_APP

 IMPLEMENT_APP(className)

This is used in the application class implementation file to make the application class
known to wxWindows for dynamic construction. You use this instead of

CHAPTER 5

1003

Old form:

 MyApp myApp;

New form:

 IMPLEMENT_APP(MyApp)

See also DECLARE_APP (p. 1001).

Include files

<wx/app.h>

IMPLEMENT_CLASS

 IMPLEMENT_CLASS(className, baseClassName)

Used in a C++ implementation file to complete the declaration of a class that has run-
time type information. The same as IMPLEMENT_ABSTRACT_CLASS.

Include files

<wx/object.h>

IMPLEMENT_CLASS2

 IMPLEMENT_CLASS2(className, baseClassName1, baseClassName2)

Used in a C++ implementation file to complete the declaration of a class that has run-
time type information and two base classes. The same as
IMPLEMENT_ABSTRACT_CLASS2.

Include files

<wx/object.h>

IMPLEMENT_DYNAMIC_CLASS

 IMPLEMENT_DYNAMIC_CLASS(className, baseClassName)

Used in a C++ implementation file to complete the declaration of a class that has run-
time type information, and whose instances can be created dynamically.

Example:

IMPLEMENT_DYNAMIC_CLASS(wxFrame, wxWindow)

CHAPTER 5

1004

wxFrame::wxFrame(void)
{
...
}

Include files

<wx/object.h>

IMPLEMENT_DYNAMIC_CLASS2

 IMPLEMENT_DYNAMIC_CLASS2(className, baseClassName1, baseClassName2)

Used in a C++ implementation file to complete the declaration of a class that has run-
time type information, and whose instances can be created dynamically. Use this for
classes derived from two base classes.

Include files

<wx/object.h>

wxBITMAP

 wxBITMAP(bitmapName)

This macro loads a bitmap from either application resources (on the platforms for which
they exist, i.e. Windows and OS2) or from an XPM file. It allows to avoid using ifdefs
when creating bitmaps.

See also

Bitmaps and icons overview (p. 1040), wxICON (p. 1005)

Include files

<wx/gdicmn.h>

WXDEBUG_NEW

 WXDEBUG_NEW(arg)

This is defined in debug mode to be call the redefined new operator with filename and
line number arguments. The definition is:

#define WXDEBUG_NEW new(__FILE__,__LINE__)

In non-debug mode, this is defined as the normal new operator.

CHAPTER 5

1005

Include files

<wx/object.h>

wxDynamicCast

 wxDynamicCast(ptr, classname)

This macro returns the pointer ptr cast to the type classname * if the pointer is of this
type (the check is done during the run-time) or NULL otherwise. Usage of this macro is
prefered over obsoleted wxObject::IsKindOf() function.

The ptr argument may be NULL, in which case NULL will be returned.

Example:

 wxWindow *win = wxWindow::FindFocus();
 wxTextCtrl *text = wxDynamicCast(win, wxTextCtrl);
 if (text)
 {
 // a text control has the focus...
 }
 else
 {
 // no window has the focus or it's not a text control
 }

See also

RTTI overview (p. 1091)

wxICON

 wxICON(iconName)

This macro loads an icon from either application resources (on the platforms for which
they exist, i.e. Windows and OS2) or from an XPM file. It allows to avoid using ifdefs
when creating icons.

See also

Bitmaps and icons overview (p. 1040), wxBITMAP (p. 1004)

Include files

<wx/gdicmn.h>

CHAPTER 5

1006

WXTRACE

Include files

<wx/object.h>

 WXTRACE(formatString, ...)

Calls wxTrace with printf-style variable argument syntax. Output is directed to the current
output stream (see wxDebugContext (p. 1061)).

This macro is now obsolete, replaced by Log functions (p. 1010).

Include files

<wx/memory.h>

WXTRACELEVEL

 WXTRACELEVEL(level, formatString, ...)

Calls wxTraceLevel with printf-style variable argument syntax. Output is directed to the
current output stream (see wxDebugContext (p. 1061)). The first argument should be the
level at which this information is appropriate. It will only be output if the level returned by
wxDebugContext::GetLevel is equal to or greater than this value.

This function is now obsolete, replaced by Log functions (p. 1010).

Include files

<wx/memory.h>

wxWindows resource functions

wxWindows resource system (p. 1084)

This section details functions for manipulating wxWindows (.WXR) resource files and
loading user interface elements from resources.

Please note that this use of the word 'resource' is different from that used when talking
about initialisation file resource reading and writing, using such functions as
wxWriteResource and wxGetResource. It's just an unfortunate clash of terminology.

For an overview of the wxWindows resource mechanism, see the wxWindows resource
system (p. 1084).

See also wxWindow::LoadFromResource (p. 932) for loading from resource data.

Warning: this needs updating for wxWindows 2.

CHAPTER 5

1007

::wxResourceAddIdentifier

bool wxResourceAddIdentifier(const wxString& name, int value)

Used for associating a name with an integer identifier (equivalent to dynamically
#defining a name to an integer). Unlikely to be used by an application except perhaps for
implementing resource functionality for interpreted languages.

::wxResourceClear

void wxResourceClear()

Clears the wxWindows resource table.

::wxResourceCreateBitmap

wxBitmap * wxResourceCreateBitmap(const wxString& resource)

Creates a new bitmap from a file, static data, or Windows resource, given a valid
wxWindows bitmap resource identifier. For example, if the .WXR file contains the
following:

static const wxString\& aiai_resource = "bitmap(name =
'aiai_resource',\
 bitmap = ['aiai', wxBITMAP_TYPE_BMP_RESOURCE, 'WINDOWS'],\
 bitmap = ['aiai.xpm', wxBITMAP_TYPE_XPM, 'X']).";

then this function can be called as follows:

 wxBitmap *bitmap = wxResourceCreateBitmap("aiai_resource");

::wxResourceCreateIcon

wxIcon * wxResourceCreateIcon(const wxString& resource)

Creates a new icon from a file, static data, or Windows resource, given a valid
wxWindows icon resource identifier. For example, if the .WXR file contains the following:

static const wxString\& aiai_resource = "icon(name = 'aiai_resource',\
 icon = ['aiai', wxBITMAP_TYPE_ICO_RESOURCE, 'WINDOWS'],\
 icon = ['aiai', wxBITMAP_TYPE_XBM_DATA, 'X']).";

then this function can be called as follows:

 wxIcon *icon = wxResourceCreateIcon("aiai_resource");

CHAPTER 5

1008

::wxResourceCreateMenuBar

wxMenuBar * wxResourceCreateMenuBar(const wxString& resource)

Creates a new menu bar given a valid wxWindows menubar resource identifier. For
example, if the .WXR file contains the following:

static const wxString\& menuBar11 = "menu(name = 'menuBar11',\
 menu = \
 [\
 ['&File', 1, '', \
 ['&Open File', 2, 'Open a file'],\
 ['&Save File', 3, 'Save a file'],\
 [],\
 ['E&xit', 4, 'Exit program']\
],\
 ['&Help', 5, '', \
 ['&About', 6, 'About this program']\
]\
]).";

then this function can be called as follows:

 wxMenuBar *menuBar = wxResourceCreateMenuBar("menuBar11");

::wxResourceGetIdentifier

int wxResourceGetIdentifier(const wxString& name)

Used for retrieving the integer value associated with an identifier. A zero value indicates
that the identifier was not found.

See wxResourceAddIdentifier (p. 1007).

::wxResourceParseData

bool wxResourceParseData(const wxString& resource, wxResourceTable *table =
NULL)

Parses a string containing one or more wxWindows resource objects. If the resource
objects are global static data that are included into the C++ program, then this function
must be called for each variable containing the resource data, to make it known to
wxWindows.

resource should contain data in the following form:

dialog(name = 'dialog1',
 style = 'wxCAPTION | wxDEFAULT_DIALOG_STYLE',
 title = 'Test dialog box',

CHAPTER 5

1009

 x = 312, y = 234, width = 400, height = 300,
 modal = 0,
 control = [wxGroupBox, 'Groupbox', '0', 'group6', 5, 4, 380, 262,
 [11, 'wxSWISS', 'wxNORMAL', 'wxNORMAL', 0]],
 control = [wxMultiText, 'Multitext', 'wxVERTICAL_LABEL',
'multitext3',
 156, 126, 200, 70, 'wxWindows is a multi-platform, GUI toolkit.',
 [11, 'wxSWISS', 'wxNORMAL', 'wxNORMAL', 0],
 [11, 'wxSWISS', 'wxNORMAL', 'wxNORMAL', 0]]).

This function will typically be used after including a .wxr file into a C++ program as
follows:

#include "dialog1.wxr"

Each of the contained resources will declare a new C++ variable, and each of these
variables should be passed to wxResourceParseData.

::wxResourceParseFile

bool wxResourceParseFile(const wxString& filename, wxResourceTable *table =
NULL)

Parses a file containing one or more wxWindows resource objects in C++-compatible
syntax. Use this function to dynamically load wxWindows resource data.

::wxResourceParseString

bool wxResourceParseString(const wxString& resource, wxResourceTable *table =
NULL)

Parses a string containing one or more wxWindows resource objects. If the resource
objects are global static data that are included into the C++ program, then this function
must be called for each variable containing the resource data, to make it known to
wxWindows.

resource should contain data with the following form:

static const wxString\& dialog1 = "dialog(name = 'dialog1',\
 style = 'wxCAPTION | wxDEFAULT_DIALOG_STYLE',\
 title = 'Test dialog box',\
 x = 312, y = 234, width = 400, height = 300,\
 modal = 0,\
 control = [wxGroupBox, 'Groupbox', '0', 'group6', 5, 4, 380, 262,\
 [11, 'wxSWISS', 'wxNORMAL', 'wxNORMAL', 0]],\
 control = [wxMultiText, 'Multitext', 'wxVERTICAL_LABEL',
'multitext3',\
 156, 126, 200, 70, 'wxWindows is a multi-platform, GUI
toolkit.',\
 [11, 'wxSWISS', 'wxNORMAL', 'wxNORMAL', 0],\
 [11, 'wxSWISS', 'wxNORMAL', 'wxNORMAL', 0]]).";

CHAPTER 5

1010

This function will typically be used after calling wxLoadUserResource (p. 993) to load an
entire .wxr file into a string.

::wxResourceRegisterBitmapData

bool wxResourceRegisterBitmapData(const wxString& name, const wxString&
xbm_data, int width,int height, wxResourceTable *table = NULL)

bool wxResourceRegisterBitmapData(const wxString& name, const wxString&
*xpm_data)

Makes #included XBM or XPM bitmap data known to the wxWindows resource system.
This is required if other resources will use the bitmap data, since otherwise there is no
connection between names used in resources, and the global bitmap data.

::wxResourceRegisterIconData

Another name for wxResourceRegisterBitmapData (p. 1010).

Log functions

These functions provide a variety of logging functions: see Log classes overview (p.
1032) for further information.

Include files

<wx/log.h>

::wxLogError

void wxLogError(const char* formatString, ...)

The function to use for error messages, i.e. the messages that must be shown to the
user. The default processing is to pop up a message box to inform the user about it.

::wxLogFatalError

void wxLogFatalError(const char* formatString, ...)

Like wxLogError (p. 1010), but also terminates the program with the exit code 3. Using
abort() standard function also terminates the program with this exit code.

::wxLogWarning

CHAPTER 5

1011

void wxLogWarning(const char* formatString, ...)

For warnings - they are also normally shown to the user, but don't interrupt the program
work.

::wxLogMessage

void wxLogMessage(const char* formatString, ...)

for all normal, informational messages. They also appear in a message box by default
(but it can be changed). Notice that the standard behaviour is to not show informational
messages if there are any errors later - the logic being that the later error messages
make the informational messages preceding them meaningless.

::wxLogVerbose

void wxLogVerbose(const char* formatString, ...)

For verbose output. Normally, it's suppressed, but might be activated if the user wishes
to know more details about the program progress (another, but possibly confusing name
for the same function is wxLogInfo).

::wxLogStatus

void wxLogStatus(const char* formatString, ...)

For status messages - they will go into the status bar of the active or specified (as the
first argument) wxFrame (p. 299) if it has one.

::wxLogSysError

void wxLogSysError(const char* formatString, ...)

Mostly used by wxWindows itself, but might be handy for logging errors after system call
(API function) failure. It logs the specified message text as well as the last system error
code (errno or ::GetLastError() depending on the platform) and the corresponding error
message. The second form of this function takes the error code explitly as the first
argument.

::wxLogDebug

void wxLogDebug(const char* formatString, ...)

The right function for debug output. It only does anything at all in the debug mode (when
the preprocessor symbol __WXDEBUG__ is defined) and expands to nothing in release

CHAPTER 5

1012

mode (otherwise).

::wxLogTrace

void wxLogTrace(const char* formatString, ...)

void wxLogTrace(wxTraceMask mask, const char* formatString, ...)

As wxLogDebug, only does something in debug build. The reason for making it a
separate function from it is that usually there are a lot of trace messages, so it might
make sense to separate them from other debug messages which would be flooded in
them. Moreover, the second version of this function takes a trace mask as the first
argument which allows to further restrict the amount of messages generated. The value
of mask can be:

• wxTraceMemAlloc: trace memory allocation (new/delete)
• wxTraceMessages: trace window messages/X callbacks
• wxTraceResAlloc: trace GDI resource allocation
• wxTraceRefCount: trace various ref counting operations

Debugging macros and functions

Useful macros and functins for error checking and defensive programming. ASSERTs
are only compiled if __WXDEBUG__ is defined, whereas CHECK macros stay in release
builds.

Include files

<wx/debug.h>

::wxOnAssert

void wxOnAssert(const char* fileName, int lineNumber, const char* msg = NULL)

This function may be redefined to do something non trivial and is called whenever one of
debugging macros fails (i.e. condition is false in an assertion).
wxASSERT

 wxASSERT(condition)

Assert macro. An error message will be generated if the condition is FALSE in debug
mode, but nothing will be done in the release build.

Please note that the condition in wxASSERT() should have no side effects because it
will not be executed in release mode at all.

See also: wxASSERT_MSG (p. 1013)

CHAPTER 5

1013

wxASSERT_MSG

 wxASSERT_MSG(condition, msg)

Assert macro with message. An error message will be generated if the condition is
FALSE.

See also: wxASSERT (p. 1012)

wxFAIL

 wxFAIL()

Will always generate an assert error if this code is reached (in debug mode).

See also: wxFAIL_MSG (p. 1013)

wxFAIL_MSG

 wxFAIL_MSG(msg)

Will always generate an assert error with specified message if this code is reached (in
debug mode).

This macro is useful for marking unreachable" code areas, for example it may be used in
the "default:" branch of a switch statement if all possible cases are processed above.

See also: wxFAIL (p. 1013)

wxCHECK

 wxCHECK(condition, retValue)

Checks that the condition is true, returns with the given return value if not (FAILs in
debug mode). This check is done even in release mode.

wxCHECK_MSG

 wxCHECK_MSG(condition, retValue, msg)

Checks that the condition is true, returns with the given return value if not (FAILs in
debug mode). This check is done even in release mode.

This macro may be only used in non void functions, see also wxCHECK_RET (p. 1014).

CHAPTER 5

1014

wxCHECK_RET

 wxCHECK_RET(condition, msg)

Checks that the condition is true, and returns if not (FAILs with given error message in
debug mode). This check is done even in release mode.

This macro should be used in void functions instead of wxCHECK_MSG (p. 1013).

wxCHECK2

 wxCHECK2(condition, operation)

Checks that the condition is true and wxFAIL (p. 1013) and execute operation if it is not.
This is a generalisation of wxCHECK (p. 1013) and may be used when something else
than just returning from the function must be done when the condition is false.

This check is done even in release mode.

wxCHECK2_MSG

 wxCHECK2(condition, operation, msg)

This is the same as wxCHECK2 (p. 1014), but wxFAIL_MSG (p. 1013) with the specified
msg is called instead of wxFAIL() if the condition is false.

Keycodes

Keypresses are represented by an enumerated type, wxKeyCode. The possible values
are the ASCII character codes, plus the following:

 WXK_BACK = 8
 WXK_TAB = 9
 WXK_RETURN = 13
 WXK_ESCAPE = 27
 WXK_SPACE = 32
 WXK_DELETE = 127

 WXK_START = 300
 WXK_LBUTTON
 WXK_RBUTTON
 WXK_CANCEL
 WXK_MBUTTON
 WXK_CLEAR
 WXK_SHIFT
 WXK_CONTROL
 WXK_MENU
 WXK_PAUSE

CHAPTER 5

1015

 WXK_CAPITAL
 WXK_PRIOR
 WXK_NEXT
 WXK_END
 WXK_HOME
 WXK_LEFT
 WXK_UP
 WXK_RIGHT
 WXK_DOWN
 WXK_SELECT
 WXK_PRINT
 WXK_EXECUTE
 WXK_SNAPSHOT
 WXK_INSERT
 WXK_HELP
 WXK_NUMPAD0
 WXK_NUMPAD1
 WXK_NUMPAD2
 WXK_NUMPAD3
 WXK_NUMPAD4
 WXK_NUMPAD5
 WXK_NUMPAD6
 WXK_NUMPAD7
 WXK_NUMPAD8
 WXK_NUMPAD9
 WXK_MULTIPLY
 WXK_ADD
 WXK_SEPARATOR
 WXK_SUBTRACT
 WXK_DECIMAL
 WXK_DIVIDE
 WXK_F1
 WXK_F2
 WXK_F3
 WXK_F4
 WXK_F5
 WXK_F6
 WXK_F7
 WXK_F8
 WXK_F9
 WXK_F10
 WXK_F11
 WXK_F12
 WXK_F13
 WXK_F14
 WXK_F15
 WXK_F16
 WXK_F17
 WXK_F18
 WXK_F19
 WXK_F20
 WXK_F21
 WXK_F22
 WXK_F23
 WXK_F24
 WXK_NUMLOCK
 WXK_SCROLL

CHAPTER 5

1016

1017

Classes by category

A classification of wxWindows classes by category.

Managed windows

There are several types of window that are directly controlled by the window manager
(such as MS Windows, or the Motif Window Manager). Frames may contain windows,
and dialog boxes may directly contain controls.

wxDialog (p. 193) Dialog box
wxFrame (p. 299) Normal frame
wxMDIParentFrame (p. 490) MDI parent frame
wxMDIChildFrame (p. 485) MDI child frame
wxMiniFrame (p. 528) A frame with a small title bar
wxTabbedDialog (p. 790) Tabbed dialog

See also Common dialogs.

Miscellaneous windows

The following are a variety of windows that are derived from wxWindow.

wxGrid (p. 323) A grid (table) window
wxPanel (p. 572) A window whose colour changes according to current user

settings
wxSashWindow (p. 665) Window with four optional sashes that can be dragged
wxSashLayoutWindow (p. 662) Window that can be involved in an IDE-like layout

arrangement
wxScrolledWindow (p. 680) Window with automatically managed scrollbars
wxSplitterWindow (p. 731) Window which can be split vertically or horizontally
wxStatusBar (p. 748) Implements the status bar on a frame
wxToolBar (p. 861) Toolbar class
wxNotebook (p. 546) Notebook class

Common dialogs

Overview (p. 1047)

Common dialogs are ready-made dialog classes which are frequently used in an
application.

wxDialog (p. 193) Base class for common dialogs
wxColourDialog (p. 98) Colour chooser dialog
wxDirDialog (p. 200) Directory selector dialog
wxFileDialog (p. 264) File selector dialog
wxMultipleChoiceDialog (p. 540) Dialog to get one or more selections from a list
wxSingleChoiceDialog (p. 687) Dialog to get a single selection from a list and

CHAPTER 6

1018

return the string
wxTextEntryDialog (p. 838) Dialog to get a single line of text from the user
wxFontDialog (p. 295) Font chooser dialog
wxPageSetupDialog (p. 565) Standard page setup dialog
wxPrintDialog (p. 598) Standard print dialog
wxPageSetupDialog (p. 565) Standard page setup dialog
wxMessageDialog (p. 520) Simple message box dialog

Controls

Typically, these are small windows which provide interaction with the user. Controls that
are not static can have validators (p. 897) associated with them.

wxControl (p. 130) The base class for controls
wxButton (p. 69) Push button control, displaying text
wxBitmapButton (p. 52) Push button control, displaying a bitmap
wxCheckBox (p. 74) Checkbox control
wxCheckListBox (p. 77) A listbox with a checkbox to the left of each item
wxChoice (p. 79) Choice control (a combobox without the editable area)
wxComboBox (p. 99) A choice with an editable area
wxGauge (p. 317) A control to represent a varying quantity, such as time

remaining
wxStaticBox (p. 743) A static, or group box for visually grouping related controls
wxListBox (p. 452) A list of strings for single or multiple selection
wxListCtrl (p. 461) A control for displaying lists of strings and/or icons, plus a

multicolumn report view
wxTabCtrl (p. 803) Manages several tabs
wxTextCtrl (p. 820) Single or multline text editing control
wxTreeCtrl (p. 875) Tree (hierachy) control
wxScrollBar (p. 671) Scrollbar control
wxSpinButton (p. 727) A spin or 'up-down' control
wxStaticText (p. 746) One or more lines of non-editable text
wxStaticBitmap (p. 740) A control to display a bitmap
wxRadioBox (p. 629) A group of radio buttons
wxRadioButton (p. 634) A round button to be used with others in a mutually

exclusive way
wxSlider (p. 696) A slider that can be dragged by the user

Menus

wxMenu (p. 499) Displays a series of menu items for selection
wxMenuBar (p. 508) Contains a series of menus for use with a frame
wxMenuItem (p. 515) Represents a single menu item

Window layout

There are two different systems for layouting windows (and dialogs in particluar). One is

CHAPTER 6

1019

based upon so-called sizers and it requires less typing, thinking and calculating and will
in almost all cases produce dialogs looking equally well on all platforms, the other is
based on so-called constraints and allows for more detailed layouts.

These are the classes relevant to the sizer-based layout.

wxSizer (p. 692) Abstract base class
wxBoxSizer (p. 58) A sizer for laying out windows in a row or column
wxStaticBoxSizer (p. 669) Same as wxBoxSizer, but with surrounding static box

Overview (p. 1051) over the constraints-based layout.

These are the classes relevant to constraints-based window layout.

wxIndividualLayoutConstraint (p. 422) Represents a single constraint dimension
wxLayoutConstraints (p. 444)Represents the constraints for a window class

Device contexts

Overview (p. 1059)

Device contexts are surfaces that may be drawn on, and provide an abstraction that
allows parameterisation of your drawing code by passing different device contexts.

wxClientDC (p. 86) A device context to access the client area outside OnPaint
events

wxPaintDC (p. 567) A device context to access the client area inside OnPaint
events

wxWindowDC (p. 961) A device context to access the non-client area
wxScreenDC (p. 670) A device context to access the entire screen
wxDC (p. 165) The device context base class
wxMemoryDC (p. 496) A device context for drawing into bitmaps
wxMetafileDC (p. 523) A device context for drawing into metafiles
wxPostScriptDC (p. 587) A device context for drawing into PostScript files
wxPrinterDC (p. 606) A device context for drawing to printers

Graphics device interface

Bitmaps overview (p. 1040)

These classes are related to drawing on device contexts and windows.

wxColour (p. 91) Represents the red, blue and green elements of a colour
wxBitmap (p. 36) Represents a bitmap
wxBrush (p. 60) Used for filling areas on a device context
wxBrushList (p. 66) The list of previously-created brushes
wxCursor (p. 135) A small, transparent bitmap representing the cursor

CHAPTER 6

1020

wxFont (p. 285) Represents fonts
wxFontList (p. 298) The list of previously-created fonts
wxIcon (p. 395) A small, transparent bitmap for assigning to frames and

drawing on device contexts
wxImage (p. 402) A platform-independent image class
wxImageList (p. 418) A list of images, used with some controls
wxMask (p. 483) Represents a mask to be used with a bitmap for

transparent drawing
wxPen (p. 578) Used for drawing lines on a device context
wxPenList (p. 585) The list of previously-created pens
wxPalette (p. 568) Represents a table of indices into RGB values
wxRegion (p. 653) Represents a simple or complex region on a window or

device context

Events

Overview (p. 1072)

An event object contains information about a specific event. Event handlers (usually
member functions) have a single, event argument.

wxActivateEvent (p. 5) A window or application activation event
wxCalculateLayoutEvent (p. 73) Used to calculate window layout
wxCloseEvent (p. 89) A close window or end session event
wxCommandEvent (p. 108) An event from a variety of standard controls
wxDropFilesEvent (p. 231) A drop files event
wxEraseEvent (p. 236) An erase background event
wxEvent (p. 237) The event base class
wxFocusEvent (p. 284) A window focus event
wxKeyEvent (p. 438) A keypress event
wxIdleEvent (p. 394) An idle event
wxInitDialogEvent (p. 425) A dialog initialisation event
wxJoystickEvent (p. 436) A joystick event
wxListEvent (p. 474) A list control event
wxMenuEvent (p. 519) A menu event
wxMouseEvent (p. 532) A mouse event
wxMoveEvent (p. 539) A move event
wxNotebookEvent (p. 552) A notebook control event
wxNotifyEvent (p. 553) A notification event, which can be vetoed
wxPaintEvent (p. 568) A paint event
wxProcessEvent (p. 618) A process ending event
wxQueryLayoutInfoEvent (p. 626) Used to query layout information
wxScrollEvent (p. 678) A scroll event from sliders, stand-alone scrollbars and spin

buttons
wxScrollWinEvent (p. 676) A scroll event from scrolled windows
wxSizeEvent (p. 691) A size event
wxSocketEvent (p. 721) A socket event
wxSysColourChangedEvent (p. 786) A system colour change event
wxTabEvent (p. 809) A tab control event
wxTreeEvent (p. 890) A tree control event

CHAPTER 6

1021

wxUpdateUIEvent (p. 891) A user interface update event

Validators

Overview (p. 1103)

These are the window validators, used for filtering and validating user input.

wxValidator (p. 897) Base validator class
wxTextValidator (p. 841) Text control validator class
wxGenericValidator (p. 321) Generic control validator class

Data structures

These are the data structure classes supported by wxWindows.

wxExpr (p. 247) A class for flexible I/O
wxExprDatabase (p. 253) A class for flexible I/O
wxDate (p. 157) A class for date manipulation
wxHashTable (p. 337) A simple hash table implementation
wxList (p. 446) A simple linked list implementation
wxNode (p. 544) Represents a node in the wxList implementation
wxObject (p. 555) The root class for most wxWindows classes
wxPathList (p. 576) A class to help search multiple paths
wxPoint (p. 586) Representation of a point
wxRect (p. 637) A class representing a rectangle
wxRegion (p. 653) A class representing a region
wxString (p. 762) A string class
wxStringList (p. 782) A class representing a list of strings
wxStringTokenizer (p. 784) A class for interpreting a string as a list of tokens or words
wxRealPoint (p. 637) Representation of a point using floating point numbers
wxSize (p. 689) Representation of a size
wxTime (p. 853) A class for time manipulation
wxVariant (p. 900) A class for storing arbitrary types that may change at run-

time

Run-time class information system

Overview (p. 1091)

wxWindows supports run-time manipulation of class information, and dynamic creation
of objects given class names.

wxClassInfo (p. 84) Holds run-time class information
wxObject (p. 555) Root class for classes with run-time information
Macros (p. 999) Macros for manipulating run-time information

CHAPTER 6

1022

Debugging features

Overview (p. 1060)

wxWindows supports some aspects of debugging an application through classes,
functions and macros.

wxDebugContext (p. 187) Provides memory-checking facilities
wxLog (p. 479) Logging facility
Log functions (p. 1010) Error and warning logging functions
Debugging macros (p. 1012) Debug macros for assertion and checking
WXDEBUG_NEW (p. 1004) Use this macro to give further debugging information

Interprocess communication

Overview (p. 1080)

wxWindows provides a simple interprocess communications facilities based on DDE.
[Note that this is currently work in progress and may not function properly.]

wxDDEClient (p. 181) Represents a client
wxDDEConnection (p. 182) Represents the connection between a client and a server
wxDDEServer (p. 186) Represents a server
wxTCPClient (p. 812) Represents a client
wxTCPConnection (p. 813) Represents the connection between a client and a server
wxTCPServer (p. 817) Represents a server
wxSocketClient (p. 719) Represents a socket client
wxSocketServer (p. 722) Represents a socket server

Document/view framework

Overview (p. 1066)

wxWindows supports a document/view framework which provides housekeeping for a
document-centric application.

wxDocument (p. 223) Represents a document
wxView (p. 909) Represents a view
wxDocTemplate (p. 218) Manages the relationship between a document class and a

veiw class
wxDocManager (p. 205) Manages the documents and views in an application
wxDocChildFrame (p. 203) A child frame for showing a document view
wxDocParentFrame (p. 216) A parent frame to contain views

Printing framework

CHAPTER 6

1023

Overview (p. 1083)

A printing and previewing framework is implemented to make it relatively straighforward
to provide document printing facilities.

wxPreviewFrame (p. 590) Frame for displaying a print preview
wxPreviewCanvas (p. 588) Canvas for displaying a print preview
wxPreviewControlBar (p. 589) Standard control bar for a print preview
wxPrintDialog (p. 598) Standard print dialog
wxPageSetupDialog (p. 565) Standard page setup dialog
wxPrinter (p. 604) Class representing the printer
wxPrinterDC (p. 606) Printer device context
wxPrintout (p. 606) Class representing a particular printout
wxPrintPreview (p. 610) Class representing a print preview
wxPrintData (p. 592) Represents information about the document being printed
wxPrintDialogData (p. 599) Represents information about the print dialog
wxPageSetupDialogData (p. 560) Represents information about the page setup

dialog

Database classes

Database classes overview (p. 1054)

wxWindows provides two alternative sets of classes for accessing Microsoft's ODBC
(Open Database Connectivity) product. The new version by Remstar is documented in a
separate manual. The older classes are as follows:

wxDatabase (p. 139) Database class
wxQueryCol (p. 621) Class representing a column
wxQueryField (p. 624) Class representing a field
wxRecordSet (p. 641) Class representing one or more record

Drag and drop and clipboard classes

Drag and drop and clipboard overview (p. 1038)

wxDataObject (p. 148) Data object class
wxDataFormat (p. 145) Represents a data format
wxTextDataObject (p. 833) Text data object class
wxFileDataObject (p. 833) File data object class
wxBitmapDataObject (p. 57) Bitmap data object class
wxCustomDataObject (p. 133) Custom data object class
wxClipboard (p. 87) Clipboard class
wxDropTarget (p. 234) Drop target class
wxFileDropTarget (p. 268) File drop target class
wxTextDropTarget (p. 839) Text drop target class
wxDropSource (p. 232) Drop source class

CHAPTER 6

1024

File related classes

wxWindows has several small classes to work with disk files, see file classes overview
(p. 1110) for more details.

wxFile (p. 257) Low-level file input/output
wxTempFile (p. 818) Class to safely replace an existing file
wxTextFile (p. 844) Class for working with text files as with arrays of lines

Stream classes

wxWindows has its own set of stream classes, as an alternative to often buggy standard
stream libraries, and to provide enhanced functionality.

wxStreamBase (p. 754) Stream base class
wxStreamBuffer (p. 755) Stream buffer class
wxInputStream (p. 425) Input stream class
wxOutputStream (p. 559) Output stream class
wxFilterInputStream (p. 283) Filtered input stream class
wxFilterOutputStream (p. 284) Filtered output stream class
wxDataInputStream (p. 154) Platform-independent binary data input stream class
wxDataOutputStream (p. 156) Platform-independent binary data output stream

class
wxTextInputStream (p. 835) Platform-independent text data input stream class
wxTextOutputStream (p. 836) Platform-independent text data output stream class
wxFileInputStream (p. 272) File input stream class
wxFileOutputStream (p. 273) File output stream class
wxZlibInputStream (p. 963) Zlib (compression) input stream class
wxZlibOutputStream (p. 963) Zlib (compression) output stream class
wxSocketInputStream (p. 726) Socket input stream class
wxSocketOutputStream (p. 727) Socket output stream class

Miscellaneous

wxAcceleratorTable (p. 2) Accelerator table
wxApp (p. 6) Application class
wxAutomationObject (p. 32) OLE automation class
wxConfig (p. 117) Classes for configuration reading/writing
wxHelpController (p. 339) Family of classes for controlling help windows
wxLayoutAlgorithm (p. 441) An alternative window layout facility
wxProcess (p. 615) Process class
wxTimer (p. 858) Timer class
wxSystemSettings (p. 786) System settings class

1025

Topic overviews

This chapter contains a selection of topic overviews.

wxWindows samples

Probably the best way to learn wxWindows is by reading the source of some 50+
samples provided with it. Many aspects of wxWindows programming can be learnt from
them, but sometimes it is not simple to just choose the right sample to look at. This
overview aims at describing what each sample does/demonstrates to make it easier to
find the relevant one if a simple grep through all sources didn't help. They also provide
some notes about using the samples and what features of wxWindows are they
supposed to test.

Font sample

The font sample demonstrates wxFont (p. 285), wxFontEnumerator (p. 296) and
wxFontMapper (p. 299) classes. It allows you to see the fonts available (to wxWindows)
on the computer and shows all characters of the chosen font as well.

DnD sample

This sample shows both clipboard and drag and drop in action. It is quite non trivial and
may be safely used as a basis for implementing the clipboard and drag and drop
operations in a real-life program.

When you run the sample, its screen is split in several parts. On the top, there are two
listboxes which show the standard derivations of wxDropTarget (p. 234):
wxTextDropTarget (p. 839) and wxFileDropTarget (p. 268).

The middle of the sample window is taken by the log window which shows what is going
on (of course, this only works in debug builds) and may be helpful to see the sequence
of steps of data transfer.

Finally, the last part is used for two things: you can drag text from it to either one of the
listboxes (only one will accept it) or another application and, also, bitmap pasted from
clipboard will be shown there.

So far, everything we mentioned was implemented with minimal amount of code using
standard wxWindows classes. The more advanced features are demonstrated if you
create a shape frame from the main frame menu. A shape is a geometric object which
has a position, size and color. It models some application-specific data in this sample. A
shape object supports its own private wxDataFormat (p. 145) which means that you may
cut and paste it or drag and drop (between one and the same or different shapes) from
one sample instance to another (or the same). However, chances are that no other
program supports this format and so shapes can also be rendered as bitmaps which
allows them to be pasted/dropped in many other applications.

CHAPTER 7

1026

Take a look at DnDShapeDataObject class to see how you may use wxDataObject (p.
148) to achieve this.

wxApp overview

Classes: wxApp (p. 6)

A wxWindows application does not have a main procedure; the equivalent is the OnInit
(p. 12) member defined for a class derived from wxApp. OnInit will usually create a top
window as a bare minimum.

Unlike in earlier versions of wxWindows, OnInit does not return a frame. Instead it
returns a boolean value which indicates whether processing should continue (TRUE) or
not (FALSE). You call wxApp::SetTopWindow (p. 15) to let wxWindows know about the
top window.

Note that the program's command line arguments, represented by argc and argv, are
available from within wxApp member functions.

An application closes by destroying all windows. Because all frames must be destroyed
for the application to exit, it is advisable to use parent frames wherever possible when
creating new frames, so that deleting the top level frame will automatically delete child
frames. The alternative is to explicitly delete child frames in the top-level frame's
wxWindow::OnCloseWindow (p. 937) handler.

In emergencies the wxExit (p. 988) function can be called to kill the application.

An example of defining an application follows:

class DerivedApp : public wxApp
{
public:
 virtual bool OnInit();
};

IMPLEMENT_APP(DerivedApp)

bool DerivedApp::OnInit()
{
 wxFrame *the_frame = new wxFrame(NULL, argv[0]);
 ...
 SetTopWindow(the_frame);

 return TRUE;
}

Note the use of IMPLEMENT_APP(appClass), which allows wxWindows to dynamically
create an instance of the application object at the appropriate point in wxWindows
initialization. Previous versions of wxWindows used to rely on the creation of a global
application object, but this is no longer recommended, because required global
initialization may not have been performed at application object construction time.

CHAPTER 7

1027

You can also use DECLARE_APP(appClass) in a header file to declare the wxGetApp
function which returns a reference to the application object.

wxString overview

Classes: wxString (p. 762), wxArrayString (p. 26), wxStringTokenizer (p. 784)

Introduction

wxString is a class which represents a character string of arbitrary length (limited by
MAX_INT which is usually 2147483647 on 32 bit machines) and containing arbitrary
characters. The ASCII NUL character is allowed, although care should be taken when
passing strings containing it to other functions.

wxString only works with ASCII (8 bit characters) strings as of this release, but support
for UNICODE (16 but characters) is planned for the next one.

This class has all the standard operations you can expect to find in a string class:
dynamic memory management (string extends to accomodate new characters),
construction from other strings, C strings and characters, assignment operators, access
to individual characters, string concatenation and comparison, substring extraction, case
conversion, trimming and padding (with spaces), searching and replacing and both C-
like Printf() (p. 777) and stream-like insertion functions as well as much more - see
wxString (p. 762) for a list of all functions.

Comparison of wxString to other string classes

The advantages of using a special string class instead of working directly with C strings
are so obvious that there is a huge number of such classes available. The most
important advantage is the need to always remember to allocate/free memory for C
strings; working with fixed size buffers almost inevitably leads to buffer overflows. At last,
C++ has a standard string class (std::string). So why the need for wxString?

There are several advantages:

1. Efficiency This class was made to be as efficient as possible: both in terms of
size (each wxString objects takes exactly the same space as a char * pointer,
sing reference counting (p. 1029)) and speed. It also provides performance
statistics gathering code (p. 1030) which may be enabled to fine tune the
memory allocation strategy for your particular application - and the gain might be
quite big.

2. Compatibility This class tries to combine almost full compatibility with the old
wxWindows 1.xx wxString class, some reminiscence to MFC CString class and
90% of the functionality of std::string class.

3. Rich set of functions Some of the functions present in wxString are very useful
but don't exist in most of other string classes: for example, AfterFirst (p. 770),
BeforeLast (p. 771), operator<< (p. 781) or Printf (p. 777). Of course, all the
standard string operations are supported as well.

CHAPTER 7

1028

4. UNICODE In this release, wxString only supports construction from a UNICODE
string, but in the next one it will be capable of also storing its internal data in
either ASCII or UNICODE format.

5. Used by wxWindows And, of course, this class is used everywhere inside
wxWindows so there is no performance loss which would result from
conversions of objects of any other string class (including std::string) to wxString
internally by wxWindows.

However, there are several problems as well. The most important one is probably that
there are often several functions to do exactly the same thing: for example, to get the
length of the string either one of length() (p. 776), Len() (p. 776) or Length() (p. 776) may
be used. The first function, as almost all the other functions in lowercase, is std::string
compatible. The second one is "native" wxString version and the last one is wxWindows
1.xx way. So the question is: which one is better to use? And the answer is that:

The usage of std::string compatible functions is strongly advised! It will both make
your code more familiar to other C++ programmers (who are supposed to have
knowledge of std::string but not of wxString), let you reuse the same code in both
wxWindows and other programs (by just typedefing wxString as std::string when used
outside wxWindows) and by staying compatible with future versions of wxWindows
which will probably start using std::string sooner or later too.

In the situations where there is no correspondinw std::string function, please try to use
the new wxString methods and not the old wxWindows 1.xx variants which are
deprecated and may disappear in future versions.

Some advice about using wxString

Probably the main trap with using this class is the implicit conversion operator to const
char *. It is advised that you use c_str() (p. 771)instead to clearly indicate when the
conversion is done. Specifically, the danger of this implicit conversion may be seen in
the following code fragment:

// this function converts the input string to uppercase, output it to
the screen
// and returns the result
const char *SayHELLO(const wxString& input)
{
 wxString output = input.Upper();

 printf("Hello, %s!\n", output);

 return output;
}

There are two nasty bugs in these three lines. First of them is in the call to the printf()
function. Although the implicit conversion to C strings is applied automatically by the
compiler in the case of

 puts(output);

CHAPTER 7

1029

because the argument of puts() is known to be of the type const char *, this is not done
for printf() which is a function with variable number of arguments (and whose arguments
are of unknown types). So this call may do anything at all (including displaying the
correct string on screen), although the most likely result is a program crash. The solution
is to use c_str() (p. 771): just replace this line with

 printf("Hello, %s!\n", output.c_str());

The second bug is that returning output doesn't work. The implicit cast is used again, so
the code compiles, but as it returns a pointer to a buffer belonging to a local variable
which is deleted as soon as the function exits, its contents is totally arbitrary. The
solution to this problem is also easy: just make the function return wxString instead of a
C string.

This leads us to the following general advice: all functions taking string arguments
should take const wxString& (this makes assignment to the strings inside the function
faster because of reference counting (p. 1029)) and all functions returning strings should
return wxString - this makes it safe to return local variables.

Other string related functions and classes

As most programs use character strings, the standard C library provides quite a few
functions to work with them. Unfortunately, some of them have rather counter-intuitive
behaviour (like strncpy() which doesn't always terminate the resulting string with a NULL)
and are in general not very safe (passing NULL to them will probably lead to program
crash). Moreover, some very useful functions are not standard at all. This is why in
addition to all wxString functions, there are also a few global string functions which try to
correct these problems: IsEmpty() (p. 971) verifies whether the string is empty (returning
TRUE for NULL pointers), Strlen() (p. 972) also handles NULLs correctly and returns 0
for them and Stricmp() (p. 971) is just a platform-independent version of case-insensitive
string comparison function known either as stricmp() or strcasecmp() on different
platforms.

There is another class which might be useful when working with wxString:
wxStringTokenizer (p. 784). It is helpful when a string must be broken into tokens and
replaces the standard C library strtok() function.

And the very last string-related class is wxArrayString (p. 26): it is just a version of the
"template" dynamic array class which is specialized to work with strings. Please note
that this class is specially optimized (using its knowledge of the internal structure of
wxString) for storing strings and so it is vastly better from a performance point of view
than a wxObjectArray of wxStrings.

Reference counting and why you shouldn't care about it

wxString objects use a technique known as copy on write (COW). This means that when
a string is assigned to another, no copying really takes place: only the reference count
on the shared string data is incremented and both strings share the same data.

CHAPTER 7

1030

But as soon as one of the two (or more) strings is modified, the data has to be copied
because the changes to one of the strings shouldn't be seen in the otheres. As data
copying only happens when the string is written to, this is known as COW.

What is important to understand is that all this happens absolutely transparently to the
class users and that whether a string is shared or not is not seen from the outside of the
class - in any case, the result of any operation on it is the same.

Probably the unique case when you might want to think about reference counting is
when a string character is taken from a string which is not a constant (or a constant
reference). In this case, due to C++ rules, the "read-only" operator[] (which is the same
as GetChar() (p. 773)) cannot be chosen and the "read/write" operator[] (the same as
GetWritableChar() (p. 773)) is used instead. As the call to this operator may modify the
string, its data is unshared (COW is done) and so if the string was really shared there is
some performance loss (both in terms of speed and memory consumption). In the rare
cases when this may be important, you might prefer using GetChar() (p. 773) instead of
the array subscript operator for this reasons. Please note that at() (p. 766) method has
the same problem as the subscript operator in this situation and so using it is not really
better. Also note that if all string arguments to your functions are passed as const
wxString& (see the section Some advice (p. 1028)) this situation will almost never arise
because for constant references the correct operator is called automatically.

Tuning wxString for your application

Note: this section is strictly about performance issues and is absolutely not necessary to
read for using wxString class. Please skip it unless you feel familiar with profilers and
relative tools. If you do read it, please also read the preceding section about reference
counting (p. 1029).

For the performance reasons wxString doesn't allocate exactly the amount of memory
needed for each string. Instead, it adds a small amount of space to each allocated block
which allows it to not reallocate memory (a relatively expensive operation) too often as
when, for example, a string is constructed by subsequently adding one character at a
time to it, as for example in:

// delete all vowels from the string
wxString DeleteAllVowels(const wxString& original)
{
 wxString result;

 size_t len = original.length();
 for (size_t n = 0; n < len; n++)
 {
 if (strchr("aeuio", tolower(original[n])) == NULL)
 result += original[n];
 }

 return result;
}

This is quite a common situation and not allocating extra memory at all would lead to

CHAPTER 7

1031

very bad performance in this case because there would be as many memory
(re)allocations as there are consonants in the original string. Allocating too much extra
memory would help to improve the speed in this situation, but due to a great number of
wxString objects typically used in a program would also increase the memory
consumption too much.

The very best solution in precisely this case would be to use Alloc() (p. 769) function to
preallocate, for example, len bytes from the beginning - this will lead to exactly one
memory allocation being performed (because the result is at most as long as the original
string).

However, using Alloc() is tedious and so wxString tries to do its best. The default
algorithm assumes that memory allocation is done in granularity of at least 16 bytes
(which is the case on almost all of wide-spread platforms) and so nothing is lost if the
amount of memory to allocate is rounded up to the next multiple of 16. Like this, no
memory is lost and 15 iterations from 16 in the example above won't allocate memory
but use the already allocated pool.

The default approach is quite conservative. Allocating more memory may bring important
performance benefits for programs using (relatively) few very long strings. The amount
of memory allocated is configured by the setting of EXTRA_ALLOC in the file string.cpp
during compilation (be sure to understand why its default value is what it is before
modifying it!). You may try setting it to greater amount (say twice nLen) or to 0 (to see
performance degradation which will follow) and analyse the impact of it on your program.
If you do it, you will probably find it helpful to also define WXSTRING_STATISTICS
symbol which tells the wxString class to collect performance statistics and to show them
on stderr on program termination. This will show you the average length of strings your
program manipulates, their average initial length and also the percent of times when
memory wasn't reallocated when string concatenation was done but the alread
preallocated memory was used (this value should be about 98% for the default allocation
policy, if it is less than 90% you should really consider fine tuning wxString for your
application).

It goes without saying that a profiler should be used to measure the precise difference
the change to EXTRA_ALLOC makes to your program.

Container classes overview

Classes: wxList (p. 446), wxArray (p. 16)

wxWindows uses itself several container classes including doubly-linked lists and
dynamic arrays (i.e. arrays which expand automatically when they become full). For both
historical and portability reasons wxWindows does not use STL which provides the
standard implementation of many container classes in C++. First of all, wxWindows has
existed since well before STL was written, and secondly we don't believe that today
compilers can deal really well with all of STL classes (this is especially true for some less
common platforms). Of course, the compilers are evolving quite rapidly and hopefully
their progress will allow to base future versions of wxWindows on STL - but this is not
yet the case.

wxWindows container classes don't pretend to be as powerful or full as STL ones, but

CHAPTER 7

1032

they are quite useful and may be compiled with absolutely any C++ compiler. They're
used internally by wxWindows, but may, of course, be used in your programs as well if
you wish.

The list classes in wxWindows are doubly-linked lists which may either own the objects
they contain (meaning that the list deletes the object when it is removed from the list or
the list itself is destroyed) or just store the pointers depending on whether you called or
not wxList::DeleteContents (p. 450) method.

Dynamic arrays resemble C arrays but with two important differences: they provide run-
time range checking in debug builds and they expand automatically the allocated
memory when there is no more space for new items. They come in two sorts: the "plain"
arrays which store either built-in types such as "char", "int" or "bool" or the pointers to
arbitrary objects, or "object arrays" which own the object pointers to which they store.

For the same portability reasons, the container classes implementation in wxWindows
does not use templates, but is rather based on C preprocessor i.e. is done with the
macros: WX_DECLARE_LIST and WX_DEFINE_LIST for the linked lists and
WX_DECLARE_ARRAY, WX_DECLARE_OBJARRAY and WX_DEFINE_OBJARRAY
for the dynamic arrays. The "DECLARE" macro declares a new container class
containing the elements of given type and is needed for all three types of container
classes: lists, arrays and objarrays. The "DEFINE" classes must be inserted in your
program in a place where the full declaration of container element class is in scope
(i.e. not just forward declaration), otherwise destructors of the container elements will not
be called! As array classes never delete the items they contain anyhow, there is no
WX_DEFINE_ARRAY macro for them.

Examples of usage of these macros may be found in wxList (p. 446) and wxArray (p. 16)
documentation.

Finally, wxWindows predefines several commonly used container classes. wxList is
defined for compatibility with previous versions as a list containing wxObjects and
wxStringList as a list of C-style strings (char *), both of these classes are deprecated and
should not be used in new programs. The following array classes are defined:
wxArrayInt, wxArrayLong, wxArrayPtrVoid and wxArrayString. The first three store
elements of corresponding types, but wxArrayString is somewhat special: it is an
optimized version of wxArray which uses its knowledge about wxString (p. 762)
reference counting schema.

Log classes overview

Classes: wxLog (p. 479), wxLogStderr, wxLogOstream, wxLogTextCtrl, wxLogWindow,
wxLogGui, wxLogNull

This is a general overview of logging classes provided by wxWindows. The word logging
here has a broad sense, including all of the program output, not only non interactive
messages. The logging facilities included in wxWindows provide the base wxLog class
which defines the standard interface for a log target as well as several standard
implementations of it and a family of functions to use with them.

First of all, no knowledge of wxLog classes is needed to use them. For this, you should

CHAPTER 7

1033

only know about wxLogXXX() functions. All of them have the same syntax as printf(), i.e.
they take the format string as the first argument and a variable number of arguments.
Here are all of them:

• wxLogFatalError which is like wxLogError, but also terminates the program
with the exit code 3 (using abort() standard function also terminates the program
with this exit code).

• wxLogError is the function to use for error messages, i.e. the messages that
must be shown to the user. The default processing is to pop up a message box
to inform the user about it.

• wxLogWarning for warnings - they are also normally shown to the user, but
don't interrupt the program work.

• wxLogMessage is for all normal, informational messages. They also appear in
a message box by default (but it can be changed, see below). Notice that the
standard behaviour is to not show informational messages if there are any errors
later - the logic being that the later error messages make the informational
messages preceding them meaningless.

• wxLogVerbose is for verbose output. Normally, it's suppressed, but might be
activated if the user wishes to know more details about the program progress
(another, but possibly confusing name for the same function is wxLogInfo).

• wxLogStatus is for status messages - they will go into the status bar of the
active or specified (as the first argument) wxFrame (p. 299) if it has one.

• wxLogSysError is mostly used by wxWindows itself, but might be handy for
logging errors after system call (API function) failure. It logs the specified
message text as well as the last system error code (errno or ::GetLastError()
depending on the platform) and the corresponding error message. The second
form of this function takes the error code explitly as the first argument.

• wxLogDebug is the right function for debug output. It only does anything at all
in the debug mode (when the preprocessor symbol__WXDEBUG__ is defined)
and expands to nothing in release mode (otherwise).

• wxLogTrace as wxLogDebug only does something in debug build. The reason
for making it a separate function from it is that usually there are a lot of trace
messages, so it might make sense to separate them from other debug
messages which would be flooded in them. Moreover, the second version of this
function takes a trace mask as the first argument which allows to further restrict
the amount of messages generated.

The usage of these functions should be fairly straightforward, however it may be asked
why not use the other logging facilities, such as C standard stdio functions or C++
streams. The short answer is that they're all very good generic mechanisms, but are not
really adapted for wxWindows, while the log classes are. Some of advantages in using
wxWindows log functions are:

• Portability It's a common practice to use printf() statements or cout/cerr C++
streams for writing out some (debug or otherwise) information. Although it works
just fine under Unix, these messages go strictly nowhere under Windows where
the stdout of GUI programs is not assigned to anything. Thus, you might view
wxLogMessage() as a simple substitute for printf().

• Flexibility The output of wxLog functions can be redirected or suppressed
entirely based on their importance, which is either impossible or difficult to do

CHAPTER 7

1034

with traditional methods. For example, only error messages, or only error
messages and warnings might be logged, filtering out all informational
messages.

• Completeness Usually, an error message should be presented to the user
when some operation fails. Let's take a quite simple but common case of a file
error: suppose that you're writing your data file on disk and there is not enough
space. The actual error might have been detected inside wxWindows code (say,
in wxFile::Write), so the calling function doesn't really know the exact reason of
the failure, it only knows that the data file couldn't be written to the disk.
However, as wxWindows uses wxLogError() in this situation, the exact error
code (and the corresponding error message) will be given to the user together
with "high level" message about data file writing error.

After having enumerated all the functions which are normally used to log the messages,
and why would you want to use them we now describe how all this works.

wxWindows has the notion of a log target: it's just a class deriving from wxLog (p. 479).
As such, it implements the virtual functions of the base class which are called when a
message is logged. Only one log target is active at any moment, this is the one used by
wxLogXXX()functions. The normal usage of a log object (i.e. object of a class derived
from wxLog) is to install it as the active target with a call to SetActiveTarget() and it will
be used automatically by all subsequent calls to wxLogXXX() functions.

To create a new log target class you only need to derive it from wxLog and implement
one (or both) of DoLog() and DoLogString() in it. The second one is enough if you're
happy with the standard wxLog message formatting (prepending "Error:" or "Warning:",
timestamping &c) but just want to send the messages somewhere else. The first one
may be overridden to do whatever you want but you have to distinguish between the
different message types yourself.

There are some predefined classes deriving from wxLog and which might be helpful to
see how you can create a new log target class and, of course, may also be used without
any change. There are:

• wxLogStderr This class logs messages to a FILE *, using stderr by default as
its name suggests.

• wxLogStream This class has the same functionality as wxLogStderr, but uses
ostream and cerr instead of FILE * and stderr.

• wxLogGui This is the standard log target for wxWindows applications (it's used
by default if you don't do anything) and provides the most reasonable handling
of all types of messages for given platform.

• wxLogWindow This log target provides a "log console" which collects all
messages generated by the application and also passes them to the previous
active log target. The log window frame has a menu allowing user to clear the
log, close it completely or save all messages to file.

• wxLogNull The last log class is quite particular: it doesn't do anything. The
objects of this class may be instantiated to (temporarily) suppress output of
wxLogXXX() functions. As an example, trying to open a non-existing file will
usually provoke an error message, but if for some reasons it's unwanted, just
use this construction:

CHAPTER 7

1035

 wxFile file;

 // wxFile.Open() normally complains if file can't be opened, we
don't want it
 {
 wxLogNull logNo;
 if (!file.Open("bar"))
 ... process error ourselves ...
 } // ~wxLogNull called, old log sink restored

 wxLogMessage("..."); // ok

Config classes overview

Classes: wxConfig (p. 117)

This overview briefly describes what the config classes are and what they are for. All the
details about how to use them may be found in the description of the wxConfigBase (p.
117) class and the documentation of the file, registry and INI file based implementations
mentions all the features/limitations specific to each one of these versions.

The config classes provide a way to store some application configuration information.
They were especially designed for this usage and, although may probably be used for
many other things as well, should be limited to it. It means that this information should
be:

1. Typed, i.e. strings or numbers for the moment. You can not store binary data, for
example.

2. Small. For instance, it is not recommended to use the Windows registry for
amounts of data more than a couple of kilobytes.

3. Not performance critical, neither from speed nor from a memory consumption
point of view.

On the other hand, the features provided make them very useful for storing all kinds of
small to medium volumes of hierarchically-organized, heterogenous data. In short, this is
a place where you can conveniently stuff all your data (numbers and strings) organizing
it in a tree where you use the filesystem-like paths to specify the location of a piece of
data. In particular, these classes were designed to be as easy to use as possible.

From another point of view, they provide an interface which hides the differences
between the Windows registry and the standard Unix text format configuration files.
Other (future) implementations of wxConfigBase might also understand GTK resource
files or their analogues on the KDE side.

In any case, each implementation of wxConfigBase does its best to make the data look
the same way everywhere. Due to the limitations of the underlying physical storage as in

CHAPTER 7

1036

the case of wxIniConfig, it may not implement 100% of the base class functionality.

There are groups of entries and the entries themselves. Each entry contains either a
string or a number (or a boolean value; support for other types of data such as dates or
timestamps is planned) and is identified by the full path to it: something like
/MyApp/UserPreferences/Colors/Foreground. The previous elements in the path are the
group names, and each name may contain an arbitrary number of entries and
subgroups. The path components are always separated with a slash, even though some
implementations use the backslash internally. Further details (including how to read/write
these entries) may be found in the documentation for wxConfigBase (p. 117).

Unicode support in wxWindows

This section briefly describes the state of the Unicode support in wxWindows. Read it if
you want to know more about how to write programs able to work with characters from
languages other than English.

What is Unicode?

Starting with release 2.1 wxWindows has support for compiling in Unicode mode on the
platforms which support it. Unicode is a standard for character encoding which addreses
the shortcomings of the previous, 8 bit standards, by using 16 bit for encoding each
character. This allows to have 65536 characters instead of the usual 256 and is
sufficient to encode all of the world languages at once. More details about Unicode may
be found at www.unicode.org.

As this solution is obviously preferable to the previous ones (think of incompatible
encodings for the same language, locale chaos and so on), many modern ooperating
systems support it. The probably first example is Windows NT which uses only Unicode
internally since its very first version.

Writing internationalized programs is much easier with Unicode and, as the support for it
improves, it should become more and more so. Moreover, in the Windows NT/2000
case, even the program which uses only standard ASCII can profit from using Unicode
because they will work more efficiently - there will be no need for the system to convert
all strings hte program uses to/from Unicode each time a system call is made.

Unicode and ANSI modes

As not all platforms supported by wxWindows support Unicode (fully) yet, in many cases
it is unwise to write a program which can only work in Unicode environment. A better
solution is to write programs in such way that they may be compiled either in ANSI
(traditional) mode or in the Unicode one.

This can be achieved quite simply by using the means provided by wxWindows. Basicly,
there are only a few things to watch out for:

• Character type (char or wchar_t)

CHAPTER 7

1037

• Literal strings (i.e. "Hello, world!" or '*')

• String functions (strlen(), strcpy(), ...)

Let's look at them in order. First of all, each character in an Unicode program takes 2
bytes instead of usual one, so another type should be used to store the characters
(char only holds 1 byte usually). This type is called wchar_t which stands for wide-
character type.

Also, the string and character constants should be encoded on 2 bytes instead of one.
This is achieved by using the standard C (and C++) way: just put the letter 'L' after any
string constant and it becomes a longconstant, i.e. a wide character one. To make things
a bit more readable, you are also allowed to prefix the constant with 'L' instead of
putting it after it.

Finally, the standard C functions don't work with wchar_t strings, so another set of
functions exists which do the same thing but accept wchar_t * instead of char *. For
example, a function to get the length of a wide-character string is called wcslen()
(compare with strlen() - you see that the only difference is that the "str" prefix
standing for "string" has been replaced with "wcs" standing for "wide-character string").

To summarize, here is a brief example of how a program which can be compiled in both
ANSI and Unicode modes could look like:

#ifdef __UNICODE__
 wchar_t wch = L'*';
 const wchar_t *ws = L"Hello, world!";
 int len = wcslen(ws);
#else // ANSI
 char ch = '*';
 const char *s = "Hello, world!";
 int len = strlen(s);
#endif // Unicode/ANSI

Of course, it would be nearly impossibly to write such programs if it had to be done this
way (try to imagine the number of ifdef UNICODE an average program would have
had!). Luckily, there is another way - see the next section.

Unicode support in wxWindows

In wxWindows, the code fragment froim above should be written instead:

 wxChar ch = wxT('*');
 wxString s = wxT("Hello, world!");
 int len = s.Len();

What happens here? First of all, you see that there are no more ifdefs at all. Instead,
we define some types and macros which behave differently in the Unicode and ANSI
builds and allows us to avoid using conditional compilation in the program itself.

CHAPTER 7

1038

We have a wxChar type which maps either on char or wchar_t depending on the
mode in which program is being compiled. There is no need for a separate type for
strings though, because the standard wxString (p. 762) supports Unicode, i.e. it stores
either ANSI or Unicode strings depending on the compile mode.

Finally, there is a special wxT() macro which should enclose all literal strings in the
program. As it's easy to see comparing the last fragment with the one above, this macro
expands to nothing in the (usual) ANSI mode and prefixes 'L' to its argument in the
Unicode mode.

The important conclusion is that if you use wxChar instead of char, avoid using C style
strings and use wxString instead and don't forget to enclose all string literals inside
wxT() macro, your program automatically becomes (almost) Unicode compliant!

Just let us state once again the rules:

• Always use wxChar instead of char

• Always enclose literal string constants in wxT() macro unless they're already
converted to the right representation (another standard wxWindows macro _()
does it, so there is no need for wxT() in this case) or you intend to pass the
constant directly to an external function which doesn't accept wide-character
strings.

• Use wxString instead of C style strings.

Unicode and the outside world

We have seen that it was easy to write Unicode programs using wxWindows types and
macros, but it has been also mentioned that it isn't quite enough. Although everything
works fine inside the program, things can get nasty when it tries to communicate with the
outside world which, sadly, often expects ANSI strings (a notable exception is the entire
Win32 API which accepts either Unicode or ANSI strings and which thus makes it
unnecessary to ever perform any convertions in the program).

To get a ANSI string from a wxString, you may use the mb_str() function which always
returns an ANSI string (independently of the mode - while the usual c_str() (p. 771)
returns a pointer to the internal representation which is either ASCII or Unicode). More
rarely used, but still useful, is wc_str() function which always returns the Unicode string.

Clipboard and drag and drop overview

Classes: wxDataObject (p. 148), wxClipboard (p. 87), wxDataFormat (p. 145),
wxDropSource (p. 232), wxDropTarget (p. 234)

See also: DnD sample (p. 1025)

This overview discusses data transfer through clipboard or drag and drop. In

CHAPTER 7

1039

wxWindows, these two ways to transfer data (either between different applications or
inside one and the same) are very similar which allows to implement both of them using
almost the same code - or, in other words, if you implement drag and drop support for
your application, you get clipboard support for free and vice versa.

At the heart of both clipboard and drag and drop operations lies the wxDataObject (p.
148) class. The objects of this class (or, to be precise, classes derived from it) represent
the data which is being carried by the mouse during drag and drop operation or copied
to or pasted from the clipboard. wxDataObject is a "smart" piece of data because it
knows which formats it supports (see GetFormatCount and GetAllFormats) and knows
how to render itself in any of them (see GetDataHere). It can also receive its value from
the outside in a format it supports if it implements the SetData method. Please see the
documentation of this class for more details.

Both clipboard and drag and drop operations have two sides: the source and target, the
data provider and the data receiver. These which may be in the same application and
even the same window when, for example, you drag some text from one position to
another in a word processor. Let us describe what each of them should do.

The data provider (source) duties

The data provider is responsible for creating a wxDataObject (p. 148) containing the
data to be transfered. Then it should either pass it to the clipboard using SetData (p. 89)
function or to wxDropSource (p. 232) and call DoDragDrop (p. 234) function.

The only (but important) difference is that the object for the clipboard transfer must
always be created on the heap (i.e. using new) and it will be freed by the clipboard when
it is no longer needed (indeed, it is not known in advance when, if ever, the data will be
pasted from the clipboard). On the other hand, the object for drag and drop operation
must only exist while DoDragDrop (p. 234) executes and may be safely deleted
afterwards and so can be created either on heap or on stack (i.e. as a local variable).

Another small difference is that in the case of clipboard operation, the application usually
knows in advance whether it copies or cuts (i.e. copies and deletes) data - in fact, this
usually depends on which menu item the user chose. But for drag and drop it can only
know it after DoDragDrop (p. 234) returns (from its return value).

The data receiver (target) duties

To receive (paste in usual terminology) data from the clipboard, you should create a
wxDataObject (p. 148) derived class which supports the data formats you need and pass
it as argument to wxClipboard::GetData (p. 88). If it returns FALSE, no data in (any of)
the supported format(s) is available. If it returns TRUE, the data has been successfully
transfered to wxDataObject.

For drag and drop case, the wxDropTarget::OnData (p. 235) virtual function will be
called when a data object is dropped, from which the data itself may be requested by
calling wxDropTarget::GetData (p. 235) method which fills the data object.

CHAPTER 7

1040

Bitmaps and icons overview

Classes: wxBitmap (p. 36), wxBitmapHandler (p. 48), wxIcon (p. 395), wxCursor (p.
135).

The wxBitmap class encapsulates the concept of a platform-dependent bitmap, either
monochrome or colour. Platform-specific methods for creating a wxBitmap object from
an existing file are catered for, and this is an occasion where conditional compilation will
sometimes be required.

A bitmap created dynamically or loaded from a file can be selected into a memory device
context (instance of wxMemoryDC (p. 496)). This enables the bitmap to be copied to a
window or memory device context using wxDC::Blit (p. 166), or to be used as a drawing
surface. The wxToolBarSimple class is implemented using bitmaps, and the toolbar
demo shows one of the toolbar bitmaps being used for drawing a miniature version of
the graphic which appears on the main window.

See wxMemoryDC (p. 496) for an example of drawing onto a bitmap.

The following shows the conditional compilation required to load a bitmap under Unix
and in Windows. The alternative is to use the string version of the bitmap constructor,
which loads a file under Unix and a resource or file under Windows, but has the
disadvantage of requiring the XPM icon file to be available at run-time.

#if defined(__WXGTK__) || defined(__WXMOTIF__)
#include "mondrian.xpm"
#endif

A macro, wxICON (p. 1005), is available which creates an icon using an XPM on the
appropriate platform, or an icon resource on Windows.

wxIcon icon(wxICON(mondrian));

// Equivalent to:

#if defined(__WXGTK__) || defined(__WXMOTIF__)
wxIcon icon(mondrian_xpm);
#endif

#if defined(__WXMSW__)
wxIcon icon("mondrian");
#endif

There is also a corresponding wxBITMAP (p. 1004) macro which allows to create the
bitmaps in much the same way as wxICON (p. 1005) creates icons. It assumes that
bitmaps live in resources under Windows or OS2 and XPM files under all other platforms
(for XPMs, the corresponding file must be included before this macro is used, of course,
and the name of the bitmap should be the same as the resource name under Windows
with _xpmsuffix). For example:

// an easy and portable way to create a bitmap

CHAPTER 7

1041

wxBitmap bmp(wxBITMAP(bmpname));

// which is roughly equivalent to the following
#if defined(__WXMSW__) || defined(__WXPM__)
 wxBitmap bmp("bmpname", wxBITMAP_TYPE_RESOURCE);
#else // Unix
 wxBitmap bmp(bmpname_xpm, wxBITMAP_TYPE_XPM);
#endif

You should always use wxICON and wxBITMAP macros because they work for any
platform (unlike the code above which doesn't deal with wxMac, wxBe, ...) and are more
short and clear than versions with ifdefs.

Supported bitmap file formats

The following lists the formats handled on different platforms. Note that missing or
partially-implemented formats can be supplemented by using wxImage (p. 402) to load
the data, and then converting it to wxBitmap form.

wxBitmap

Under Windows, wxBitmap may load the following formats:

• Windows bitmap resource (wxBITMAP_TYPE_BMP_RESOURCE)
• Windows bitmap file (wxBITMAP_TYPE_BMP)
• PNG file (wxBITMAP_TYPE_PNG). Currently 4-bit (16-colour) PNG files do not

load properly.
• XPM data and file (wxBITMAP_TYPE_XPM)

Under wxGTK, wxBitmap may load the following formats:

• Windows bitmap file (wxBITMAP_TYPE_BMP)
• PNG (wxBITMAP_TYPE_PNG).
• XPM data and file (wxBITMAP_TYPE_XPM)

Under wxMotif, wxBitmap may load the following formats:

• XBM data and file (wxBITMAP_TYPE_XBM)
• XPM data and file (wxBITMAP_TYPE_XPM)

wxIcon

Under Windows, wxIcon may load the following formats:

• Windows icon resource (wxBITMAP_TYPE_ICO_RESOURCE)
• Windows icon file (wxBITMAP_TYPE_ICO)
• XPM data and file (wxBITMAP_TYPE_XPM)

Under wxGTK, wxIcon may load the following formats:

CHAPTER 7

1042

• PNG (wxBITMAP_TYPE_PNG).
• XPM data and file (wxBITMAP_TYPE_XPM)

Under wxMotif, wxIcon may load the following formats:

• XBM data and file (wxBITMAP_TYPE_XBM)
• XPM data and file (wxBITMAP_TYPE_XPM)

wxCursor

Under Windows, wxCursor may load the following formats:

• Windows cursor resource (wxBITMAP_TYPE_CUR_RESOURCE)
• Windows cursor file (wxBITMAP_TYPE_CUR)
• Windows icon file (wxBITMAP_TYPE_ICO)
• Windows bitmap file (wxBITMAP_TYPE_BMP)

Under wxGTK, wxCursor may load the following formats (in additional to stock cursors):

• None (stock cursors only).

Under wxMotif, wxCursor may load the following formats:

• XBM data and file (wxBITMAP_TYPE_XBM)

Bitmap format handlers

To provide extensibility, the functionality for loading and saving bitmap formats is not
implemented in the wxBitmap class, but in a number of handler classes, derived from
wxBitmapHandler. There is a static list of handlers which wxBitmap examines when a file
load/save operation is requested. Some handlers are provided as standard, but if you
have special requirements, you may wish to initialise the wxBitmap class with some
extra handlers which you write yourself or receive from a third party.

To add a handler object to wxBitmap, your application needs to include the header which
implements it, and then call the static function wxBitmap::AddHandler (p. 39). For
example:

 #include <wx/pnghand.h>
 #include <wx/xpmhand.h>
 ...
 // Initialisation
 wxBitmap::AddHandler(new wxPNGFileHandler);
 wxBitmap::AddHandler(new wxXPMFileHandler);
 wxBitmap::AddHandler(new wxXPMDataHandler);
 ...

CHAPTER 7

1043

Assuming the handlers have been written correctly, you should now be able to load and
save PNG files and XPM files using the usual wxBitmap API.

Note: bitmap handlers are not implemented on all platforms. Currently, the above is only
necessary on Windows, to save the extra overhead of formats that may not be
necessary (if you don't use them, they are not linked into the executable). Unix platforms
have PNG and XPM capability built-in (where supported).

wxDialog overview

Classes: wxDialog (p. 193)

A dialog box is similar to a panel, in that it is a window which can be used for placing
controls, with the following exceptions:

1. A surrounding frame is implicitly created.

2. Extra functionality is automatically given to the dialog box, such as tabbing
between items (currently Windows only).

3. If the dialog box is modal, the calling program is blocked until the dialog box is
dismissed.

Under Windows 3, modal dialogs have to be emulated using modeless dialogs and a
message loop. This is because Windows 3 expects the contents of a modal dialog to be
loaded from a resource file or created on receipt of a dialog initialization message. This
is too restrictive for wxWindows, where any window may be created and displayed
before its contents are created.

For a set of dialog convenience functions, including file selection, see Dialog functions
(p. 972).

See also wxPanel (p. 572) and wxWindow (p. 915) for inherited member functions.
Validation of data in controls is covered in Validator overview (p. 1103).

Font overview

Class: wxFont (p. 285)

A font is an object which determines the appearance of text, primarily when drawing text
to a window or device context. A font is determined by the following parameters (not all
of them have to be specified, of course):

Point size This is the standard way of referring to text size.
Family Supported families are: wxDEFAULT, wxDECORATIVE,

wxROMAN, wxSCRIPT, wxSWISS, wxMODERN.
wxMODERN is a fixed pitch font; the others are either fixed
or variable pitch.

Style The value can be wxNORMAL, wxSLANT or wxITALIC.
Weight The value can be wxNORMAL, wxLIGHT or wxBOLD.
Underlining The value can be TRUE or FALSE.

CHAPTER 7

1044

Face name An optional string specifying the actual typeface to be
used. If NULL, a default typeface will chosen based on the
family.

Encoding The font encoding (see
wxFONTENCODING_XXXconstants and the font overview
(p. 1112) for more details)

Specifying a family, rather than a specific typeface name, ensures a degree of portability
across platforms because a suitable font will be chosen for the given font family.

Under Windows, the face name can be one of the installed fonts on the user's system.
Since the choice of fonts differs from system to system, either choose standard Windows
fonts, or if allowing the user to specify a face name, store the family id with any file that
might be transported to a different Windows machine or other platform.

Note: There is currently a difference between the appearance of fonts on the two
platforms, if the mapping mode is anything other than wxMM_TEXT. Under X, font size
is always specified in points. Under MS Windows, the unit for text is points but the text is
scaled according to the current mapping mode. However, user scaling on a device
context will also scale fonts under both environments.

wxSplitterWindow overview

Classes: wxSplitterWindow (p. 731)

The following screenshot shows the appearance of a splitter window with a vertical split.

CHAPTER 7

1045

The style wxSP_3D has been used to show a 3D border and 3D sash.

Example

The following fragment shows how to create a splitter window, creating two subwindows
and hiding one of them.

 splitter = new wxSplitterWindow(this, -1, wxPoint(0, 0), wxSize(400,
400), wxSP_3D);

 leftWindow = new MyWindow(splitter);
 leftWindow->SetScrollbars(20, 20, 50, 50);

 rightWindow = new MyWindow(splitter);
 rightWindow->SetScrollbars(20, 20, 50, 50);
 rightWindow->Show(FALSE);

 splitter->Initialize(leftWindow);

 // Set this to prevent unsplitting
// splitter->SetMinimumPaneSize(20);

The next fragment shows how the splitter window can be manipulated after creation.

 void MyFrame::OnSplitVertical(wxCommandEvent& event)
 {
 if (splitter->IsSplit())
 splitter->Unsplit();
 leftWindow->Show(TRUE);
 rightWindow->Show(TRUE);
 splitter->SplitVertically(leftWindow, rightWindow);
 }

 void MyFrame::OnSplitHorizontal(wxCommandEvent& event)
 {
 if (splitter->IsSplit())
 splitter->Unsplit();
 leftWindow->Show(TRUE);
 rightWindow->Show(TRUE);
 splitter->SplitHorizontally(leftWindow, rightWindow);
 }

 void MyFrame::OnUnsplit(wxCommandEvent& event)
 {
 if (splitter->IsSplit())
 splitter->Unsplit();
 }

CHAPTER 7

1046

wxTreeCtrl overview

Classes: wxTreeCtrl (p. 875), wxImageList (p. 418)

The tree control displays its items in a tree like structure. Each item has its own
(optional) icon and a label. An item may be either collapsed (meaning that its children
are not visible) or expanded (meaning that its children are shown). Each item in the tree
is identified by its itemId which is of opaque data type wxTreeItemId.

The items text and image may be retrieved and changed with GetItemText (p.
882)/SetItemText (p. 888) and GetItemImage (p. 881)/SetItemImage (p. 887). In fact, an
item may even have two images associated with it: the normal one and another one for
selected state which is set/retrieved with SetItemSelectedImage (p.
887)/GetItemSelectedImage (p. 883) functions, but this functionality might be
unavailable on some platforms.

Tree items have several attributes: an item may be selected or not, visible or not, bold or
not. It may also be expanded or collapsed. All these attributes may be retrieved with the
corresponding functions: IsSelected (p. 885), IsVisible (p. 885), IsBold (p. 885) and
IsExpanded (p. 885). Only one item at a time may be selected, selecting anopther one
(with SelectItem (p. 886)) automatically unselects the previously selected one.

In addition to its icon and label, a user-specific data structure may be associated with all
tree items. If you wish to do it, you should derive a class from wxTreeItemData which is
a very simple class having only one function GetId() which returns the id of the item this
data is associated with. This data will be freed by the control itself when the associated
item is deleted (all items are deleted when the control is destroyed), so you shouldn't
delete it yourself (if you do it, you should call SetItemData(NULL) (p. 887) to prevent the
tree from deleting the pointer second time). The associated data may be retrieved with
GetItemData() (p. 881) function.

Working with trees is relatively straightforward if all the items are added to the tree at the
moment of its creation. However, for large trees it may be very inefficient. To improve
the performance you may want to delay adding the items to the tree until the branch
containing the items is expanded: so, in the beginning, only the root item is created (with
AddRoot (p. 877)). Other items are added when EVT_TREE_ITEM_EXPANDING event
is received: then all items lying immediately under the item being expanded should be
added, but, of course, only when this event is received for the first time for this item -
otherwise, the items would be added twice if the user expands/collapses/reexapnds the
branch.

The tree control provides functions for enumerating its items. There are 3 groups of
enumeration functions: for the children of a given item, for the sibling of the given item
and for the visible items (those which are currently shown to the user: an item may be
invisible either because its branch is collapsed or because it is scrolled out of view).
Child enumeration functions require the caller to give them a cookie parameter: it is a
number which is opaque to the caller but is used by the tree control itself to allow
multiple enumerations to run simultaneously (this is explicitly allowed). The only thing to
remember is that the cookie passed to GetFirstChild (p. 880) and to GetNextChild (p.
882) should be the same variable (and that nothing should be done with it by the user

CHAPTER 7

1047

code).

Among other features of the tree control are: item sorting with SortChildren (p. 888)
which uses the user-defined comparison function OnCompareItems (p. 885) (by default
the comparison is the alphabetic comparison of tree labels), hit testing (determining to
which portion of the control the given point belongs, useful for implementing drag-and-
drop in the tree) with HitTest (p. 884) and editing of the tree item labels in place (see
EditLabel (p. 878)).

Finally, the tree control has a keyboard interface: the cursor navigation (arrow) keys may
be used to change the current selection. <HOME> and <END> are used to go to the
first/last sibling of the current item. '+', '-' and '*' expand, collapse and toggle the current
branch. Note, however, that and <INS> keys do nothing by default, but it is usual
to associate them with deleting item from a tree and inserting a new one into it.

wxListCtrl overview

Classes: wxListCtrl (p. 461), wxImageList (p. 418)

Sorry, this topic has yet to be written.

wxImageList overview

Classes: wxImageList (p. 418)

An image list is a list of images that may have transparent areas. The class helps an
application organise a collection of images so that they can be referenced by integer
index instead of by pointer.

Image lists are used in wxNotebook (p. 546), wxListCtrl (p. 461), wxTreeCtrl (p. 461) and
some other control classes.

Common dialogs overview

Classes: wxColourDialog (p. 98), wxFontDialog (p. 295), wxPrintDialog (p. 598),
wxFileDialog (p. 264), wxDirDialog (p. 200), wxTextEntryDialog (p. 838),
wxMessageDialog (p. 520), wxSingleChoiceDialog (p. 687), wxMultipleChoiceDialog (p.
540)

Common dialog classes and functions encapsulate commonly-needed dialog box
requirements. They are all 'modal', grabbing the flow of control until the user dismisses
the dialog, to make them easy to use within an application.

Some dialogs have both platform-dependent and platform-independent implementations,
so that if underlying windowing systems that do not provide the required functionality, the
generic classes and functions can stand in. For example, under MS Windows,
wxColourDialog uses the standard colour selector. There is also an equivalent called
wxGenericColourDialog for other platforms, and a macro defines wxColourDialog to be
the same as wxGenericColourDialog on non-MS Windows platforms. However, under
MS Windows, the generic dialog can also be used, for testing or other purposes.

CHAPTER 7

1048

wxColourDialog overview

Classes: wxColourDialog (p. 98), wxColourData (p. 94)

The wxColourDialog presents a colour selector to the user, and returns with colour
information.

The MS Windows colour selector

Under Windows, the native colour selector common dialog is used. This presents a
dialog box with three main regions: at the top left, a palette of 48 commonly-used colours
is shown. Under this, there is a palette of 16 'custom colours' which can be set by the
application if desired. Additionally, the user may open up the dialog box to show a right-
hand panel containing controls to select a precise colour, and add it to the custom colour
palette.

The generic colour selector

Under non-MS Windows platforms, the colour selector is a simulation of most of the
features of the MS Windows selector. Two palettes of 48 standard and 16 custom
colours are presented, with the right-hand area containing three sliders for the user to
select a colour from red, green and blue components. This colour may be added to the
custom colour palette, and will replace either the currently selected custom colour, or the
first one in the palette if none is selected. The RGB colour sliders are not optional in the
generic colour selector. The generic colour selector is also available under MS Windows;
use the name wxGenericColourDialog.

Example

In the samples/dialogs directory, there is an example of using the wxColourDialog class.
Here is an excerpt, which sets various parameters of a wxColourData object, including a
grey scale for the custom colours. If the user did not cancel the dialog, the application
retrieves the selected colour and uses it to set the background of a window.

 wxColourData data;
 data.SetChooseFull(TRUE);
 for (int i = 0; i < 16; i++)
 {
 wxColour colour(i*16, i*16, i*16);
 data.SetCustomColour(i, colour);
 }

 wxColourDialog dialog(this, &data);
 if (dialog.ShowModal() == wxID_OK)
 {
 wxColourData retData = dialog.GetColourData();
 wxColour col = retData.GetColour();
 wxBrush brush(col, wxSOLID);
 myWindow->SetBackground(brush);
 myWindow->Clear();

CHAPTER 7

1049

 myWindow->Refresh();
 }

wxFontDialog overview

Classes: wxFontDialog (p. 295), wxFontData (p. 292)

The wxFontDialog presents a font selector to the user, and returns with font and colour
information.

The MS Windows font selector

Under Windows, the native font selector common dialog is used. This presents a dialog
box with controls for font name, point size, style, weight, underlining, strikeout and text
foreground colour. A sample of the font is shown on a white area of the dialog box. Note
that in the translation from full MS Windows fonts to wxWindows font conventions,
strikeout is ignored and a font family (such as Swiss or Modern) is deduced from the
actual font name (such as Arial or Courier). The full range of Windows fonts cannot be
used in wxWindows at present.

The generic font selector

Under non-MS Windows platforms, the font selector is simpler. Controls for font family,
point size, style, weight, underlining and text foreground colour are provided, and a
sample is shown upon a white background. The generic font selector is also available
under MS Windows; use the name wxGenericFontDialog.

In both cases, the application is responsible for deleting the new font returned from
calling wxFontDialog::Show (if any). This returned font is guaranteed to be a new object
and not one currently in use in the application.

Example

In the samples/dialogs directory, there is an example of using the wxFontDialog class.
The application uses the returned font and colour for drawing text on a canvas. Here is
an excerpt:

 wxFontData data;
 data.SetInitialFont(canvasFont);
 data.SetColour(canvasTextColour);

 wxFontDialog dialog(this, &data);
 if (dialog.ShowModal() == wxID_OK)
 {
 wxFontData retData = dialog.GetFontData();
 canvasFont = retData.GetChosenFont();
 canvasTextColour = retData.GetColour();
 myWindow->Refresh();
 }

CHAPTER 7

1050

wxPrintDialog overview

Classes: wxPrintDialog (p. 598), wxPrintData (p. 592)

This class represents the print and print setup common dialogs. You may obtain a
wxPrinterDC (p. 606) device context from a successfully dismissed print dialog.

The samples/printing example shows how to use it: see Printing overview (p. 1083) for
an excerpt from this example.

wxFileDialog overview

Classes: wxFileDialog (p. 264)

Pops up a file selector box. In Windows, this is the common file selector dialog. In X, this
is a file selector box with somewhat less functionality. The path and filename are distinct
elements of a full file pathname. If path is "", the current directory will be used. If
filename is "", no default filename will be supplied. The wildcard determines what files
are displayed in the file selector, and file extension supplies a type extension for the
required filename. Flags may be a combination of wxOPEN, wxSAVE,
wxOVERWRITE_PROMPT, wxHIDE_READONLY, or 0. They are only significant at
present in Windows.

Both the X and Windows versions implement a wildcard filter. Typing a filename
containing wildcards (*, ?) in the filename text item, and clicking on Ok, will result in only
those files matching the pattern being displayed. In the X version, supplying no default
name will result in the wildcard filter being inserted in the filename text item; the filter is
ignored if a default name is supplied.

Under Windows (only), the wildcard may be a specification for multiple types of file with
a description for each, such as:

 "BMP files (*.bmp) | *.bmp | GIF files (*.gif) | *.gif"

wxDirDialog overview

Classes: wxDirDialog (p. 200)

This dialog shows a directory selector dialog, allowing the user to select a single
directory.

wxTextEntryDialog overview

Classes: wxTextEntryDialog (p. 838)

This is a dialog with a text entry field. The value that the user entered is obtained using
wxTextEntryDialog::GetValue (p. 839).

CHAPTER 7

1051

wxMessageDialog overview

Classes: wxMessageDialog (p. 520)

This dialog shows a message, plus buttons that can be chosen from OK, Cancel, Yes,
and No. Under Windows, an optional icon can be shown, such as an exclamation mark
or question mark.

The return value of wxMessageDialog::ShowModal (p. 522) indicates which button the
user pressed.

wxSingleChoiceDialog overview

Classes: wxSingleChoiceDialog (p. 687)

This dialog shows a list of choices, plus OK and (optionally) Cancel. The user can select
one of them. The selection can be obtained from the dialog as an index, a string or client
data.

wxMultipleChoiceDialog overview

Classes: wxMultipleChoiceDialog (p. 540)

This dialog shows a list of choices, plus OK and (optionally) Cancel. The user can select
one or more of them.

Constraints overview

Classes: wxLayoutConstraints (p. 444), wxIndividualLayoutConstraint (p. 422).

Objects of class wxLayoutConstraint can be associated with a window to define the way
its subwindows are laid out, with respect to their siblings or parent.

The class consists of the following eight constraints of class
wxIndividualLayoutConstraint, some or all of which should be accessed directly to set
the appropriate constraints.

• left: represents the left hand edge of the window
• right: represents the right hand edge of the window
• top: represents the top edge of the window
• bottom: represents the bottom edge of the window
• width: represents the width of the window
• height: represents the height of the window
• centreX: represents the horizontal centre point of the window
• centreY: represents the vertical centre point of the window

CHAPTER 7

1052

The constraints are initially set to have the relationship wxUnconstrained, which means
that their values should be calculated by looking at known constraints. To calculate the
position and size of the control, the layout algorithm needs to know exactly 4 constraints
(as it has 4 numbers to calculate from them), so you should always set exactly 4 of the
constraints from the above table.

If you want the controls height or width to have the default value, you may use a special
value for the constraint: wxAsIs. If the constraint is wxAsIs, the dimension will not be
changed which is useful for the dialog controls which often have the default size (e.g. the
buttons whose size is determined by their label).

The constrains calculation is done in wxWindow::Layout (p. 932) function which
evaluates constraints. To call it you can either call wxWindow::SetAutoLayout to tell
default OnSize handlers to call Layout automatically whenever the window size changes,
or override OnSize and call Layout yourself.

Constraint layout: more detail

By default, windows do not have a wxLayoutConstraints object. In this case, much layout
must be done explicitly, by performing calculations in OnSize members, except for the
case of frames that have exactly one subwindow (not counting toolbar and statusbar
which are also positioned by the frame automatically), where wxFrame::OnSize takes
care of resizing the child to always fill the frame.

To avoid the need for these rather awkward calculations, the user can create a
wxLayoutConstraints object and associate it with a window with
wxWindow::SetConstraints. This object contains a constraint for each of the window
edges, two for the centre point, and two for the window size. By setting some or all of
these constraints appropriately, the user can achieve quite complex layout by defining
relationships between windows.

In wxWindows, each window can be constrained relative to either its siblings on the
same window, or the parent. The layout algorithm therefore operates in a top-down
manner, finding the correct layout for the children of a window, then the layout for the
grandchildren, and so on. Note that this differs markedly from native Motif layout, where
constraints can ripple upwards and can eventually change the frame window or dialog
box size. We assume in wxWindows that the user is always 'boss' and specifies the size
of the outer window, to which subwindows must conform. Obviously, this might be a
limitation in some circumstances, but it suffices for most situations, and the simplification
avoids some of the nightmarish problems associated with programming Motif.

When the user sets constraints, many of the constraints for windows edges and
dimensions remain unconstrained. For a given window, the wxWindow::Layout algorithm
first resets all constraints in all children to have unknown edge or dimension values, and
then iterates through the constraints, evaulating them. For unconstrained edges and
dimensions, it tries to find the value using known relationships that always hold. For
example, an unconstrained width may be calculated from the left and right edges, if both
are currently known. For edges and dimensions with user-supplied constraints, these
constraints are evaulated if the inputs of the constraint are known.

CHAPTER 7

1053

The algorithm stops when all child edges and dimension are known (success), or there
there are unknown edges or dimensions but there has been no change in this cycle
(failure).

It then sets all the window positions and sizes according to the values it has found.

Because the algorithm is iterative, the order in which constraints are considered is
irrelevant, however you may reduce the number of iterations (and thus speed up the
layout calculations) by creating the controls in such order that as many constraints as
possible can be calculated during the first iteration. For example, if you have 2 buttons
which you'd like to position in the lower right corner, it is slighty more efficient to first
create the second button and specify that its right border IsSameAs(parent, wxRight)
and then create the first one by specifying that it should be LeftOf() the second one than
to do in a more natural left-to-right order.

Window layout examples

Example 1: subwindow layout

This example specifies a panel and a window side by side, with a text subwindow below
it.

 frame->panel = new wxPanel(frame, -1, wxPoint(0, 0), wxSize(1000,
500), 0);
 frame->scrollWindow = new MyScrolledWindow(frame, -1, wxPoint(0, 0),
wxSize(400, 400), wxRETAINED);
 frame->text_window = new MyTextWindow(frame, -1, wxPoint(0, 250),
wxSize(400, 250));

 // Set constraints for panel subwindow
 wxLayoutConstraints *c1 = new wxLayoutConstraints;

 c1->left.SameAs (frame, wxLeft);
 c1->top.SameAs (frame, wxTop);
 c1->right.PercentOf (frame, wxWidth, 50);
 c1->height.PercentOf (frame, wxHeight, 50);

 frame->panel->SetConstraints(c1);

 // Set constraints for scrollWindow subwindow
 wxLayoutConstraints *c2 = new wxLayoutConstraints;

 c2->left.SameAs (frame->panel, wxRight);
 c2->top.SameAs (frame, wxTop);
 c2->right.SameAs (frame, wxRight);
 c2->height.PercentOf (frame, wxHeight, 50);

 frame->scrollWindow->SetConstraints(c2);

 // Set constraints for text subwindow
 wxLayoutConstraints *c3 = new wxLayoutConstraints;
 c3->left.SameAs (frame, wxLeft);

CHAPTER 7

1054

 c3->top.Below (frame->panel);
 c3->right.SameAs (frame, wxRight);
 c3->bottom.SameAs (frame, wxBottom);

 frame->text_window->SetConstraints(c3);

Example 2: panel item layout

This example sizes a button width to 80 percent of the panel width, and centres it
horizontally. A listbox and multitext item are placed below it. The listbox takes up 40
percent of the panel width, and the multitext item takes up the remainder of the width.
Margins of 5 pixels are used.

 // Create some panel items
 wxButton *btn1 = new wxButton(frame->panel, -1, "A button") ;

 wxLayoutConstraints *b1 = new wxLayoutConstraints;
 b1->centreX.SameAs (frame->panel, wxCentreX);
 b1->top.SameAs (frame->panel, wxTop, 5);
 b1->width.PercentOf (frame->panel, wxWidth, 80);
 b1->height.PercentOf (frame->panel, wxHeight, 10);
 btn1->SetConstraints(b1);

 wxListBox *list = new wxListBox(frame->panel, -1, "A list",
 wxPoint(-1, -1), wxSize(200, 100));

 wxLayoutConstraints *b2 = new wxLayoutConstraints;
 b2->top.Below (btn1, 5);
 b2->left.SameAs (frame->panel, wxLeft, 5);
 b2->width.PercentOf (frame->panel, wxWidth, 40);
 b2->bottom.SameAs (frame->panel, wxBottom, 5);
 list->SetConstraints(b2);

 wxTextCtrl *mtext = new wxTextCtrl(frame->panel, -1, "Multiline
text", "Some text",
 wxPoint(-1, -1), wxSize(150, 100),
wxTE_MULTILINE);

 wxLayoutConstraints *b3 = new wxLayoutConstraints;
 b3->top.Below (btn1, 5);
 b3->left.RightOf (list, 5);
 b3->right.SameAs (frame->panel, wxRight, 5);
 b3->bottom.SameAs (frame->panel, wxBottom, 5);
 mtext->SetConstraints(b3);

Database classes overview

Classes: wxDatabase (p. 139), wxRecordSet (p. 641), wxQueryCol (p. 621),
wxQueryField (p. 624)

Note that more sophisticated ODBC classes are provided by the Remstar database
classes: please see the separate HTML and Word documentation.

CHAPTER 7

1055

wxWindows provides a set of classes for accessing a subset of Microsoft's ODBC (Open
Database Connectivity) product. Currently, this wrapper is available under MS Windows
only, although ODBC may appear on other platforms, and a generic or product-specific
SQL emulator for the ODBC classes may be provided in wxWindows at a later date.

ODBC presents a unified API (Application Programmer's Interface) to a wide variety of
databases, by interfacing indirectly to each database or file via an ODBC driver. The
language for most of the database operations is SQL, so you need to learn a small
amount of SQL as well as the wxWindows ODBC wrapper API. Even though the
databases may not be SQL-based, the ODBC drivers translate SQL into appropriate
operations for the database or file: even text files have rudimentry ODBC support, along
with dBASE, Access, Excel and other file formats.

The run-time files for ODBC are bundled with many existing database packages,
including MS Office. The required header files, sql.h and sqlext.h, are bundled with
several compilers including MS VC++ and Watcom C++. The only other way to obtain
these header files is from the ODBC SDK, which is only available with the MS Developer
Network CD-ROMs -- at great expense. If you have odbc.dll, you can make the required
import library odbc.lib using the tool 'implib'. You need to have odbc.lib in your compiler
library path.

The minimum you need to distribute with your application is odbc.dll, which must go in
the Windows system directory. For the application to function correctly, ODBC drivers
must be installed on the user's machine. If you do not use the database classes, odbc.dll
will be loaded but not called (so ODBC does not need to be setup fully if no ODBC calls
will be made).

A sample is distributed with wxWindows in samples/odbc. You will need to install the
sample dbf file as a data source using the ODBC setup utility, available from the control
panel if ODBC has been fully installed.

Procedures for writing an ODBC application

You first need to create a wxDatabase object. If you want to get information from the
ODBC manager instead of from a particular database (for example using
wxRecordSet::GetDataSources (p. 646)), then you do not need to call
wxDatabase::Open (p. 144). If you do wish to connect to a datasource, then call
wxDatabase::Open. You can reuse your wxDatabase object, calling wxDatabase::Close
and wxDatabase::Open multiple times.

Then, create a wxRecordSet object for retrieving or sending information. For ODBC
manager information retrieval, you can create it as a dynaset (retrieve the information as
needed) or a snapshot (get all the data at once). If you are going to call
wxRecordSet::ExecuteSQL (p. 644), you need to create it as a snapshot. Dynaset mode
is not yet implemented for user data.

Having called a function such as wxRecordSet::ExecuteSQL or
wxRecordSet::GetDataSources, you may have a number of records associated with the
recordset, if appropriate to the operation. You can now retrieve information such as the
number of records retrieved and the actual data itself. Use wxRecordSet::GetFieldData

CHAPTER 7

1056

(p. 647) orwxRecordSet::GetFieldDataPtr (p. 647) to get the data or a pointer to it,
passing a column index or name. The data returned will be for the current record. To
move around the records, use wxRecordSet::MoveNext (p. 652),
wxRecordSet::MovePrev (p. 652) and associated functions.

You can use the same recordset for multiple operations, or delete the recordset and
create a new one.

Note that when you delete a wxDatabase, any associated recordsets also get deleted,
so beware of holding onto invalid pointers.

wxDatabase overview

Database classes overview (p. 1054)

Class: wxDatabase (p. 139)

Every database object represents an ODBC connection. To do anything useful with a
database object you need to bind a wxRecordSet object to it. All you can do with
wxDatabase is opening/closing connections and getting some info about it (users,
passwords, and so on).

wxQueryCol overview

Database classes overview (p. 1054)

Class: wxQueryCol (p. 621)

Every data column is represented by an instance of this class. It contains the name and
type of a column and a list of wxQueryFields where the real data is stored. The links to
user-defined variables are stored here, as well.

wxQueryField overview

Database classes overview (p. 1054)

Class: wxQueryField (p. 624)

As every data column is represented by an instance of the class wxQueryCol, every data
item of a specific column is represented by an instance of wxQueryField. Each column
contains a list of wxQueryFields. If wxRecordSet is of the type
wxOPEN_TYPE_DYNASET, there will be only one field for each column, which will be
updated every time you call functions like wxRecordSet::Move or wxRecordSet::GoTo. If
wxRecordSet is of the type wxOPEN_TYPE_SNAPSHOT, all data returned by an ODBC
function will be loaded at once and the number of wxQueryField instances for each
column will depend on the number of records.

CHAPTER 7

1057

wxRecordSet overview

Database classes overview (p. 1054)

Class: wxRecordSet (p. 641)

Each wxRecordSet represents a database query. You can make multiple queries at a
time by using multiple wxRecordSets with a wxDatabase or you can make your queries
in sequential order using the same wxRecordSet.

ODBC SQL data types

Database classes overview (p. 1054)

These are the data types supported in ODBC SQL. Note that there are other, extended
level conformance types, not currently supported in wxWindows.

CHAR(n) A character string of fixed length n.
VARCHAR(n) A varying length character string of maximum length n.
LONG VARCHAR(n) A varying length character string: equivalent to VARCHAR

for the purposes of ODBC.
DECIMAL(p, s) An exact numeric of precision p and scale s.
NUMERIC(p, s) Same as DECIMAL.
SMALLINT A 2 byte integer.
INTEGER A 4 byte integer.
REAL A 4 byte floating point number.
FLOAT An 8 byte floating point number.
DOUBLE PRECISION Same as FLOAT.

These data types correspond to the following ODBC identifiers:

SQL_CHAR A character string of fixed length.
SQL_VARCHAR A varying length character string.
SQL_DECIMAL An exact numeric.
SQL_NUMERIC Same as SQL_DECIMAL.
SQL_SMALLINT A 2 byte integer.
SQL_INTEGER A 4 byte integer.
SQL_REAL A 4 byte floating point number.
SQL_FLOAT An 8 byte floating point number.
SQL_DOUBLE Same as SQL_FLOAT.

A selection of SQL commands

Database classes overview (p. 1054)

CHAPTER 7

1058

The following is a very brief description of some common SQL commands, with
examples.

Create

Creates a table.

Example:

CREATE TABLE Book
 (BookNumber INTEGER PRIMARY KEY
 , CategoryCode CHAR(2) DEFAULT 'RO' NOT NULL
 , Title VARCHAR(100) UNIQUE
 , NumberOfPages SMALLINT
 , RetailPriceAmount NUMERIC(5,2)
)

Insert

Inserts records into a table.

Example:

INSERT INTO Book
 (BookNumber, CategoryCode, Title)
 VALUES(5, 'HR', 'The Lark Ascending')

Select

The Select operation retrieves rows and columns from a table. The criteria for selection
and the columns returned may be specified.

Examples:

SELECT * FROM Book

Selects all rows and columns from table Book.

SELECT Title, RetailPriceAmount FROM Book WHERE RetailPriceAmount >
20.0

Selects columns Title and RetailPriceAmount from table Book, returning only the rows
that match the WHERE clause.

SELECT * FROM Book WHERE CatCode = 'LL' OR CatCode = 'RR'

Selects all columns from table Book, returning only the rows that match the WHERE
clause.

CHAPTER 7

1059

SELECT * FROM Book WHERE CatCode IS NULL

Selects all columns from table Book, returning only rows where the CatCode column is
NULL.

SELECT * FROM Book ORDER BY Title

Selects all columns from table Book, ordering by Title, in ascending order. To specify
descending order, add DESC after the ORDER BY Title clause.

SELECT Title FROM Book WHERE RetailPriceAmount >= 20.0 AND
RetailPriceAmount <= 35.0

Selects records where RetailPriceAmount conforms to the WHERE expression.

Update

Updates records in a table.

Example:

UPDATE Incident SET X = 123 WHERE ASSET = 'BD34'

This example sets a field in column 'X' to the number 123, for the record where the
column ASSET has the value 'BD34'.

Device context overview

Classes: wxDC (p. 165), wxPostScriptDC (p. 587), wxMetafileDC (p. 523),
wxMemoryDC (p. 496), wxPrinterDC (p. 606), wxScreenDC (p. 670), wxClientDC (p. 86),
wxPaintDC (p. 567), wxWindowDC (p. 961).

A wxDC is a device context onto which graphics and text can be drawn. The device
context is intended to represent a number of output devices in a generic way, with the
same API being used throughout.

Some device contexts are created temporarily in order to draw on a window. This is true
of wxScreenDC (p. 670), wxClientDC (p. 86), wxPaintDC (p. 567), and wxWindowDC (p.
961). The following describes the differences between these device contexts and when
you should use them.

• wxScreenDC. Use this to paint on the screen, as opposed to an individual
window.

• wxClientDC. Use this to paint on the client area of window (the part without
borders and other decorations), but do not use it from within an
wxWindow::OnPaint (p. 943) event.

• wxPaintDC. Use this to paint on the client area of a window, but only from within
an wxWindow::OnPaint (p. 943) event.

• wxWindowDC. Use this to paint on the whole area of a window, including
decorations. This may not be available on non-Windows platforms.

CHAPTER 7

1060

To use a client, paint or window device context, create an object on the stack with the
window as argument, for example:

 void MyWindow::OnMyCmd(wxCommandEvent& event)
 {
 wxClientDC dc(window);
 DrawMyPicture(dc);
 }

Try to write code so it is parameterised by wxDC - if you do this, the same piece of code
may write to a number of different devices, by passing a different device context. This
doesn't work for everything (for example not all device contexts support bitmap drawing)
but will work most of the time.

Debugging overview

Classes, functions and macros: wxDebugContext (p. 187), wxObject (p. 555), wxLog (p.
479), Log functions (p. 1010), Debug macros (p. 1012)

Various classes, functions and macros are provided in wxWindows to help you debug
your application. Most of these are only available if you compile both wxWindows, your
application and all libraries that use wxWindows with the __WXDEBUG__ symbol
defined. You can also test the __WXDEBUG__ symbol in your own applications to
execute code that should be active only in debug mode.

wxDebugContext

wxDebugContext (p. 187) is a class that never gets instantiated, but ties together various
static functions and variables. It allows you to dump all objects to that stream, write
statistics about object allocation, and check memory for errors.

It is good practice to define a wxObject::Dump (p. 556) member function for each class
you derive from a wxWindows class, so that wxDebugContext::Dump (p. 188) can call it
and give valuable information about the state of the application.

If you have difficulty tracking down a memory leak, recompile in debugging mode and
call wxDebugContext::Dump (p. 188) and wxDebugContext::PrintStatistics (p. 190) at
appropriate places. They will tell you what objects have not yet been deleted, and what
kinds of object they are. In fact, in debug mode wxWindows will automatically detect
memory leaks when your application is about to exit, and if there are any leaks, will give
you information about the problem. (How much information depends on the operating
system and compiler -- some systems don't allow all memory logging to be enabled).
See the memcheck sample for example of usage.

For wxDebugContext to do its work, the new and delete operators for wxObject have
been redefined to store extra information about dynamically allocated objects (but not
statically declared objects). This slows down a debugging version of an application, but
can find difficult-to-detect memory leaks (objects are not deallocated), overwrites (writing
past the end of your object) and underwrites (writing to memory in front of the object).

CHAPTER 7

1061

If debugging mode is on and the symbol wxUSE_GLOBAL_MEMORY_OPERATORS is
set to 1 in setup.h, 'new' is defined to be:

#define new new(__FILE__,__LINE__)

All occurrences of 'new' in wxWindows and your own application will use the overridden
form of the operator with two extra arguments. This means that the debugging output
(and error messages reporting memory problems) will tell you what file and on what line
you allocated the object. Unfortunately not all compilers allow this definition to work
properly, but most do.

Debug macros

You should also use debug macros (p. 1012) as part of a 'defensive programming'
strategy, scattering wxASSERTs liberally to test for problems in your code as early as
possible. Forward thinking will save a surprising amount of time in the long run.

wxASSERT (p. 1012) is used to pop up an error message box when a condition is not
true. You can also use wxASSERT_MSG (p. 1013) to supply your own helpful error
message. For example:

 void MyClass::MyFunction(wxObject* object)
 {
 wxASSERT_MSG((object != NULL), "object should not be NULL in
MyFunction!");

 ...
 };

The message box allows you to continue execution or abort the program. If you are
running the application inside a debugger, you will be able to see exactly where the
problem was.

Logging functions

You can use the wxLogDebug (p. 1011) and wxLogTrace (p. 1012) functions to output
debugging information in debug mode; it will do nothing for non-debugging code.

wxDebugContext overview

Debugging overview (p. 1060)

Class: wxDebugContext (p. 187)

wxDebugContext is a class for performing various debugging and memory tracing
operations.

CHAPTER 7

1062

This class has only static data and function members, and there should be no instances.
Probably the most useful members are SetFile (for directing output to a file, instead of
the default standard error or debugger output); Dump (for dumping the dynamically
allocated objects) and PrintStatistics (for dumping information about allocation of
objects). You can also call Check to check memory blocks for integrity.

Here's an example of use. The SetCheckpoint ensures that only the allocations done
after the checkpoint will be dumped.

 wxDebugContext::SetCheckpoint();

 wxDebugContext::SetFile("c:\\temp\\debug.log");

 wxString *thing = new wxString;

 char *ordinaryNonObject = new char[1000];

 wxDebugContext::Dump();
 wxDebugContext::PrintStatistics();

You can use wxDebugContext if __WXDEBUG__ is defined, or you can use it at any
other time (if wxUSE_DEBUG_CONTEXT is set to 1 in setup.h). It is not disabled in non-
debug mode because you may not wish to recompile wxWindows and your entire
application just to make use of the error logging facility.

Note: wxDebugContext::SetFile has a problem at present, so use the default stream
instead. Eventually the logging will be done through the wxLog facilities instead.

Window deletion overview

Classes: wxCloseEvent (p. 89), wxWindow (p. 915)

Window deletion can be a confusing subject, so this overview is provided to help make it
clear when and how you delete windows, or respond to user requests to close windows.

What is the sequence of events in a window deletion?

When the user clicks on the system close button or system close command, in a frame
or a dialog, wxWindows calls wxWindow::Close (p. 919). This in turn generates an
EVT_CLOSE event: see wxWindow::OnCloseWindow (p. 937).

It is the duty of the application to define a suitable event handler, and decide whether or
not to destroy the window. If the application is for some reason forcing the application to
close (wxCloseEvent::CanVeto (p. 90) returns FALSE), the window should always be
destroyed, otherwise there is the option to ignore the request, or maybe wait until the
user has answered a question before deciding whether it's safe to close. The handler for
EVT_CLOSE should signal to the calling code if it does not destroy the window, by
calling wxCloseEvent::Veto (p. 91). Calling this provides useful information to the calling
code.

The wxCloseEvent handler should only call wxWindow::Destroy (p. 922) to delete the
window, and not use the delete operator. This is because for some window classes,

CHAPTER 7

1063

wxWindows delays actual deletion of the window until all events have been processed,
since otherwise there is the danger that events will be sent to a non-existent window.

As reinforced in the next section, calling Close does not guarantee that the window will
be destroyed. Call wxWindow::Destroy (p. 922) if you want to be certain that the window
is destroyed.

How can the application close a window itself?

Your application can either use wxWindow::Close (p. 919) event just as the framework
does, or it can call wxWindow::Destroy (p. 922) directly. If using Close(), you can pass a
TRUE argument to this function to tell the event handler that we definitely want to delete
the frame and it cannot be vetoed.

The advantage of using Close instead of Destroy is that it will call any clean-up code
defined by the EVT_CLOSE handler; for example it may close a document contained in
a window after first asking the user whether the work should be saved. Close can be
vetoed by this process (return FALSE), whereas Destroy definitely destroys the window.

What is the default behaviour?

The default close event handler for wxDialog simulates a Cancel command, generating a
wxID_CANCEL event. Since the handler for this cancel event might itself call Close,
there is a check for infinite looping. The default handler for wxID_CANCEL hides the
dialog (if modeless) or calls EndModal(wxID_CANCEL) (if modal). In other words, by
default, the dialog is not destroyed (it might have been created on the stack, so the
assumption of dynamic creation cannot be made).

The default close event handler for wxFrame destroys the frame using Destroy().

Under Windows, wxDialog defines a handler for wxWindow::OnCharHook (p. 935) that
generates a Cancel event if the Escape key has been pressed.

What should I do when the user calls up Exit from a menu?

You can simply call wxWindow::Close (p. 919) on the frame. This will invoke your own
close event handler which may destroy the frame.

You can do checking to see if your application can be safely exited at this point, either
from within your close event handler, or from within your exit menu command handler.
For example, you may wish to check that all files have been saved. Give the user a
chance to save and quit, to not save but quit anyway, or to cancel the exit command
altogether.

What should I do to upgrade my 1.xx OnClose to 2.0?

In wxWindows 1.xx, the OnClose function did not actually delete 'this', but signalled to
the calling function (either Close, or the wxWindows framework) to delete or not delete
the window.

To update your code, you should provide an event table entry in your frame or dialog,

CHAPTER 7

1064

using the EVT_CLOSE macro. The event handler function might look like this:

 void MyFrame::OnCloseWindow(wxCloseEvent& event)
 {
 if (MyDataHasBeenModified())
 {
 wxMessageDialog* dialog = new wxMessageDialog(this,
 "Save changed data?", "My app", wxYES_NO|wxCANCEL);

 int ans = dialog->ShowModal();
 dialog->Destroy();

 switch (ans)
 {
 case wxID_YES: // Save, then destroy, quitting app
 SaveMyData();
 this->Destroy();
 break;
 case wxID_NO: // Don't save; just destroy, quitting app
 this->Destroy();
 break;
 case wxID_CANCEL: // Do nothing - so don't quit app.
 default:
 if (!event.CanVeto()) // Test if we can veto this deletion
 this->Destroy(); // If not, destroy the window anyway.
 else
 event.Veto(); // Notify the calling code that we didn't
delete the frame.
 break;
 }
 }
 }

How do I exit the application gracefully?

A wxWindows application automatically exits when the designated top window, or the
last frame or dialog, is destroyed. Put any application-wide cleanup code in
wxApp::OnExit (p. 10) (this is a virtual function, not an event handler).

Do child windows get deleted automatically?

Yes, child windows are deleted from within the parent destructor. This includes any
children that are themselves frames or dialogs, so you may wish to close these child
frame or dialog windows explicitly from within the parent close handler.

What about other kinds of window?

So far we've been talking about 'managed' windows, i.e. frames and dialogs. Windows
with parents, such as controls, don't have delayed destruction and don't usually have
close event handlers, though you can implement them if you wish. For consistency,
continue to use the wxWindow::Destroy (p. 922) function instead of the delete operator
when deleting these kinds of windows explicitly.

CHAPTER 7

1065

Scrolling overview

Classes: wxWindow (p. 915), wxScrolledWindow (p. 680), wxIcon (p. 395), wxScrollBar
(p. 671).

Scrollbars come in various guises in wxWindows. All windows have the potential to show
a vertical scrollbar and/or a horizontal scrollbar: it's a basic capability of a window.
However, in practice, not all windows do make use of scrollbars, such as a single-line
wxTextCtrl.

Because any class derived from wxWindow (p. 915) may have scrollbars, there are
functions to manipulate the scrollbars and event handlers to intercept scroll events. But
just because a window generates a scroll event, doesn't mean that the window
necessarily handles it and physically scrolls the window. The base class wxWindow in
fact doesn't have any default functionality to handle scroll events. If you created a
wxWindow object with scrollbars, and then clicked on the scrollbars, nothing at all would
happen. This is deliberate, because the interpretation of scroll events varies from one
window class to another.

wxScrolledWindow (p. 680) (formerly wxCanvas) is an example of a window that adds
functionality to make scrolling really work. It assumes that scrolling happens in
consistent units, not different-sized jumps, and that page size is represented by the
visible portion of the window. It's suited to drawing applications, but perhaps not so
suitable for a sophisticated editor in which the amount scrolled may vary according to the
size of text on a given line. For this, you would derive from wxWindow and implement
scrolling yourself. wxGrid (p. 323) is an example of a class that implements its own
scrolling, largely because columns and rows can vary in size.

The scrollbar model

The function wxWindow::SetScrollbar (p. 955) gives a clue about the way a scrollbar is
modelled. This function takes the following arguments:

orientation Which scrollbar: wxVERTICAL or wxHORIZONTAL.

position The position of the scrollbar in scroll units.

visible The size of the visible portion of the scrollbar, in scroll
units.

range The maximum position of the scrollbar.

refresh Whether the scrollbar should be repainted.

orientation determines whether we're talking about the built-in horizontal or vertical
scrollbar.

position is simply the position of the 'thumb' (the bit you drag to scroll around). It's given
in scroll units, and so is relative to the total range of the scrollbar.

CHAPTER 7

1066

visible gives the number of scroll units that represents the portion of the window
currently visible. Normally, a scrollbar is capable of indicating this visually by showing a
different length of thumb.

range is the maximum value of the scrollbar, where zero is the start position. You
choose the units that suit you, so if you wanted to display text that has 100 lines, you
would set this to 100. Note that this doesn't have to correspond to the number of pixels
scrolled - it's up to you how you actually show the contents of the window.

refresh just indicates whether the scrollbar should be repainted immediately or not.

An example

Let's say you wish to display 50 lines of text, using the same font. The window is sized
so that you can only see 16 lines at a time.

You would use:

 SetScrollbar(wxVERTICAL, 0, 16, 50);

Note that with the window at this size, the thumb position can never go above 50 minus
16, or 34.

You can determine how many lines are currently visible by dividing the current view size
by the character height in pixels.

When defining your own scrollbar behaviour, you will always need to recalculate the
scrollbar settings when the window size changes. You could therefore put your scrollbar
calculations and SetScrollbar call into a function named AdjustScrollbars, which can be
called initially and also from your wxWindow::OnSize (p. 945) event handler function.

Document/view overview

Classes: wxDocument (p. 223), wxView (p. 909), wxDocTemplate (p. 218),
wxDocManager (p. 205), wxDocParentFrame (p. 216), wxDocChildFrame (p. 203),
wxDocMDIParentFrame (p. 215), wxDocMDIChildFrame (p. 213), wxCommand (p. 106),
wxCommandProcessor (p. 113)

The document/view framework is found in most application frameworks, because it can
dramatically simplify the code required to build many kinds of application.

The idea is that you can model your application primarily in terms of documents to store
data and provide interface-independent operations upon it, and views to visualise and
manipulate the data. Documents know how to do input and output given stream objects,
and views are responsible for taking input from physical windows and performing the
manipulation on the document data. If a document's data changes, all views should be
updated to reflect the change.

CHAPTER 7

1067

The framework can provide many user-interface elements based on this model. Once
you have defined your own classes and the relationships between them, the framework
takes care of popping up file selectors, opening and closing files, asking the user to save
modifications, routing menu commands to appropriate (possibly default) code, even
some default print/preview functionality and support for command undo/redo. The
framework is highly modular, allowing overriding and replacement of functionality and
objects to achieve more than the default behaviour.

These are the overall steps involved in creating an application based on the
document/view framework:

1. Define your own document and view classes, overriding a minimal set of
member functions e.g. for input/output, drawing and initialization.

2. Define any subwindows (such as a scrolled window) that are needed for the
view(s). You may need to route some events to views or documents, for
example OnPaint needs to be routed to wxView::OnDraw.

3. Decide what style of interface you will use: Microsoft's MDI (multiple document
child frames surrounded by an overall frame), SDI (a separate, unconstrained
frame for each document), or single-window (one document open at a time, as
in Windows Write).

4. Use the appropriate wxDocParentFrame and wxDocChildFrame classes.
Construct an instance of wxDocParentFrame in your wxApp::OnInit, and a
wxDocChildFrame (if not single-window) when you initialize a view. Create
menus using standard menu ids (such as wxID_OPEN, wxID_PRINT), routing
non-application-specific identifiers to the base frame's OnMenuCommand.

5. Construct a single wxDocManager instance at the beginning of your
wxApp::OnInit, and then as many wxDocTemplate instances as necessary to
define relationships between documents and views. For a simple application,
there will be just one wxDocTemplate.

If you wish to implement Undo/Redo, you need to derive your own class(es) from
wxCommand and use wxCommandProcessor::Submit instead of directly executing
code. The framework will take care of calling Undo and Do functions as appropriate, so
long as the wxID_UNDO and wxID_REDO menu items are defined in the view menu.

Here are a few examples of the tailoring you can do to go beyond the default framework
behaviour:

• Override wxDocument::OnCreateCommandProcessor to define a different
Do/Undo strategy, or a command history editor.

• Override wxView::OnCreatePrintout to create an instance of a derived
wxPrintout (p. 606) class, to provide multi-page document facilities.

• Override wxDocManager::SelectDocumentPath to provide a different file
selector.

• Limit the maximum number of open documents and the maximum number of
undo commands.

Note that to activate framework functionality, you need to use some or all of the
wxWindows predefined command identifiers (p. 1072) in your menus.

CHAPTER 7

1068

wxDocument overview

Document/view framework overview (p. 1066)

Class: wxDocument (p. 223)

The wxDocument class can be used to model an application's file-based data. It is part
of the document/view framework supported by wxWindows, and cooperates with the
wxView (p. 909), wxDocTemplate (p. 218) and wxDocManager (p. 205) classes.

Using this framework can save a lot of routine user-interface programming, since a
range of menu commands -- such as open, save, save as -- are supported automatically.
The programmer just needs to define a minimal set of classes and member functions for
the framework to call when necessary. Data, and the means to view and edit the data,
are explicitly separated out in this model, and the concept of multiple views onto the
same data is supported.

Note that the document/view model will suit many but not all styles of application. For
example, it would be overkill for a simple file conversion utility, where there may be no
call for views on documents or the ability to open, edit and save files. But probably the
majority of applications are document-based.

See the example application in samples/docview.

To use the abstract wxDocument class, you need to derive a new class and override at
least the member functions SaveObject and LoadObject. SaveObject and LoadObject
will be called by the framework when the document needs to be saved or loaded.

Use the macros DECLARE_DYNAMIC_CLASS and IMPLEMENT_DYNAMIC_CLASS in
order to allow the framework to create document objects on demand. When you create a
wxDocTemplate (p. 218) object on application initialization, you should pass
CLASSINFO(YourDocumentClass) to the wxDocTemplate constructor so that it knows
how to create an instance of this class.

If you do not wish to use the wxWindows method of creating document objects
dynamically, you must override wxDocTemplate::CreateDocument to return an instance
of the appropriate class.

wxView overview

Document/view framework overview (p. 1066)

Class: wxView (p. 909)

The wxView class can be used to model the viewing and editing component of an
application's file-based data. It is part of the document/view framework supported by
wxWindows, and cooperates with the wxDocument (p. 223), wxDocTemplate (p.
218)and wxDocManager (p. 205) classes.

CHAPTER 7

1069

See the example application in samples/docview.

To use the abstract wxView class, you need to derive a new class and override at least
the member functions OnCreate, OnDraw, OnUpdate and OnClose. You'll probably want
to override OnMenuCommand to respond to menu commands from the frame containing
the view.

Use the macros DECLARE_DYNAMIC_CLASS and IMPLEMENT_DYNAMIC_CLASS in
order to allow the framework to create view objects on demand. When you create a
wxDocTemplate (p. 218) object on application initialization, you should pass
CLASSINFO(YourViewClass) to the wxDocTemplate constructor so that it knows how to
create an instance of this class.

If you do not wish to use the wxWindows method of creating view objects dynamically,
you must override wxDocTemplate::CreateView to return an instance of the appropriate
class.

wxDocTemplate overview

Document/view framework overview (p. 1066)

Class: wxDocTemplate (p. 218)

The wxDocTemplate class is used to model the relationship between a document class
and a view class. The application creates a document template object for each
document/view pair. The list of document templates managed by the wxDocManager
instance is used to create documents and views. Each document template knows what
file filters and default extension are appropriate for a document/view combination, and
how to create a document or view.

For example, you might write a small doodling application that can load and save lists of
line segments. If you had two views of the data -- graphical, and a list of the segments --
then you would create one document class DoodleDocument, and two view classes
(DoodleGraphicView and DoodleListView). You would also need two document
templates, one for the graphical view and another for the list view. You would pass the
same document class and default file extension to both document templates, but each
would be passed a different view class. When the user clicks on the Open menu item,
the file selector is displayed with a list of possible file filters -- one for each
wxDocTemplate. Selecting the filter selects the wxDocTemplate, and when a file is
selected, that template will be used for creating a document and view. Under non-
Windows platforms, the user will be prompted for a list of templates before the file
selector is shown, since most file selectors do not allow a choice of file filters.

For the case where an application has one document type and one view type, a single
document template is constructed, and dialogs will be appropriately simplified.

wxDocTemplate is part of the document/view framework supported by wxWindows, and
cooperates with the wxView (p. 909), wxDocument (p. 223)and wxDocManager (p. 205)
classes.

CHAPTER 7

1070

See the example application in samples/docview.

To use the wxDocTemplate class, you do not need to derive a new class. Just pass
relevant information to the constructor including CLASSINFO(YourDocumentClass) and
CLASSINFO(YourViewClass) to allow dynamic instance creation. If you do not wish to
use the wxWindows method of creating document objects dynamically, you must
override wxDocTemplate::CreateDocument and wxDocTemplate::CreateView to return
instances of the appropriate class.

NOTE: the document template has nothing to do with the C++ template construct. C++
templates are not used anywhere in wxWindows.

wxDocManager overview

Document/view framework overview (p. 1066)

Class: wxDocManager (p. 205)

The wxDocManager class is part of the document/view framework supported by
wxWindows, and cooperates with the wxView (p. 909), wxDocument (p. 223) and
wxDocTemplate (p. 218) classes.

A wxDocManager instance coordinates documents, views and document templates. It
keeps a list of document and and template instances, and much functionality is routed
through this object, such as providing selection and file dialogs. The application can use
this class 'as is' or derive a class and override some members to extend or change the
functionality. Create an instance of this class near the beginning of your application
initialization, before any documents, views or templates are manipulated.

There may be multiple wxDocManager instances in an application.

See the example application in samples/docview.

wxCommand overview

Document/view framework overview (p. 1066)

Classes: wxCommand (p. 106), wxCommandProcessor (p. 113)

wxCommand is a base class for modelling an application command, which is an action
usually performed by selecting a menu item, pressing a toolbar button or any other
means provided by the application to change the data or view.

Instead of the application functionality being scattered around switch statements and
functions in a way that may be hard to read and maintain, the functionality for a
command is explicitly represented as an object which can be manipulated by a
framework or application. When a user interface event occurs, the application submits a

CHAPTER 7

1071

command to a wxCommandProcessor (p. 1071) object to execute and store.

The wxWindows document/view framework handles Undo and Redo by use of
wxCommand and wxCommandProcessor objects. You might find further uses for
wxCommand, such as implementing a macro facility that stores, loads and replays
commands.

An application can derive a new class for every command, or, more likely, use one class
parameterized with an integer or string command identifier.

wxCommandProcessor overview

Document/view framework overview (p. 1066)

Classes: wxCommandProcessor (p. 113), wxCommand (p. 106)

wxCommandProcessor is a class that maintains a history of wxCommand instances,
with undo/redo functionality built-in. Derive a new class from this if you want different
behaviour.

wxFileHistory overview

Document/view framework overview (p. 1066)

Classes: wxFileHistory (p. 269), wxDocManager (p. 205)

wxFileHistory encapsulates functionality to record the last few files visited, and to allow
the user to quickly load these files using the list appended to the File menu.

Although wxFileHistory is used by wxDocManager, it can be used independently. You
may wish to derive from it to allow different behaviour, such as popping up a scrolling list
of files.

By calling wxFileHistory::FileHistoryUseMenu you can associate a file menu with the file
history, that will be used for appending the filenames. They are appended using menu
identifiers in the range wxID_FILE1 to wxID_FILE9.

In order to respond to a file load command from one of these identifiers, you need to
handle them using an event handler, for example:

BEGIN_EVENT_TABLE(wxDocParentFrame, wxFrame)
 EVT_MENU(wxID_EXIT, wxDocParentFrame::OnExit)
 EVT_MENU_RANGE(wxID_FILE1, wxID_FILE9, wxDocParentFrame::OnMRUFile)
END_EVENT_TABLE()

void wxDocParentFrame::OnExit(wxCommandEvent& WXUNUSED(event))
{
 Close();
}

CHAPTER 7

1072

void wxDocParentFrame::OnMRUFile(wxCommandEvent& event)
{
 wxString f(m_docManager->GetHistoryFile(event.GetSelection() -
wxID_FILE1));
 if (f != "")
 (void)m_docManager->CreateDocument(f, wxDOC_SILENT);
}

wxWindows predefined command identifiers

To allow communication between the application's menus and the document/view
framework, several command identifiers are predefined for you to use in menus. The
framework recognizes them and processes them if you forward commands from
wxFrame::OnMenuCommand (or perhaps from toolbars and other user interface
constructs).

• wxID_OPEN (5000)
• wxID_CLOSE (5001)
• wxID_NEW (5002)
• wxID_SAVE (5003)
• wxID_SAVEAS (5004)
• wxID_REVERT (5005)
• wxID_EXIT (5006)
• wxID_UNDO (5007)
• wxID_REDO (5008)
• wxID_HELP (5009)
• wxID_PRINT (5010)
• wxID_PRINT_SETUP (5011)
• wxID_PREVIEW (5012)

Event handling overview

Classes: wxEvtHandler (p. 240), wxWindow (p. 915), wxEvent (p. 237)

Introduction

Before version 2.0 of wxWindows, events were handled by the application either by
supplying callback functions, or by overriding virtual member functions such as OnSize.

From wxWindows 2.0, event tables are used instead, with a few exceptions.

An event table is placed in an implementation file to tell wxWindows how to map events
to member functions. These member functions are not virtual functions, but they all
similar in form: they take a single wxEvent-derived argument, and have a void return
type.

CHAPTER 7

1073

Here's an example of an event table.

BEGIN_EVENT_TABLE(MyFrame, wxFrame)
 EVT_MENU (wxID_EXIT, MyFrame::OnExit)
 EVT_MENU (DO_TEST, MyFrame::DoTest)
 EVT_SIZE (MyFrame::OnSize)
 EVT_BUTTON (BUTTON1, MyFrame::OnButton1)
END_EVENT_TABLE()

The first two entries map menu commands to two different member functions. The
EVT_SIZE macro doesn't need a window identifier, since normally you are only
interested in the current window's size events. (In fact you could intercept a particular
window's size event by using EVT_CUSTOM(wxEVT_SIZE, id, func).)

The EVT_BUTTON macro demonstrates that the originating event does not have to
come from the window class implementing the event table - if the event source is a
button within a panel within a frame, this will still work, because event tables are
searched up through the hierarchy of windows. In this case, the button's event table will
be searched, then the parent panel's, then the frame's.

As mentioned before, the member functions that handle events do not have to be virtual.
Indeed, the member functions should not be virtual as the event handler ignores that the
functions are virtual, i.e. overriding a virtual member function in a derived class will not
have any effect. These member functions take an event argument, and the class of
event differs according to the type of event and the class of the originating window. For
size events, wxSizeEvent (p. 691) is used. For menu commands and most control
commands (such as button presses), wxCommandEvent (p. 108) is used. When controls
get more complicated, then specific event classes are used, such as wxTreeEvent (p.
890) for events from wxTreeCtrl (p. 875) windows.

As well as the event table in the implementation file, there must be a
DECLARE_EVENT_TABLE macro in the class definition. For example:

class MyFrame: public wxFrame {

 DECLARE_DYNAMIC_CLASS(MyFrame)

public:
 ...
 void OnExit(wxCommandEvent& event);
 void OnSize(wxSizeEvent& event);
protected:
 int m_count;
 ...
 DECLARE_EVENT_TABLE()
};

How events are processed

When an event is received from the windowing system, wxWindows calls
wxEvtHandler::ProcessEvent (p. 243) on the first event handler object belonging to the

CHAPTER 7

1074

window generating the event.

It may be noted that wxWindows' event processing system implements something very
close to virtual methods in normal C++, i.e. it is possible to alter the behaviour of a class
by overriding its event handling functions. In many cases this works even for changing
the behaviour of native controls. For example it is possible to filter out a number of key
events sent by the system to a native text control by overriding wxTextCtrl and defining a
handler for key events using EVT_KEY_DOWN. This would indeed prevent any key
events from being sent to the native control - which might not be what is desired. In this
case the event handler function has to call Skip() so as to indicate that the search for the
event handler should continue.

To summarize, instead of explicitly calling the base class version as you would have
done with C++ virtual functions (i.e. wxTextCtrl::OnChar()), you should instead call Skip
(p. 240).

In practice, this would look like this if the derived text control only accepts 'a' to 'z' and 'A'
to 'Z':

void MyTextCtrl::OnChar(wxKeyEvent& event)
{
 if (isalpha(event.KeyCode()))
 {
 // key code is within legal range. we call event.Skip() so the
 // event can be processed either in the base wxWindows class
 // or the native control.

 event.Skip();
 }
 else
 {
 // illegal key hit. we don't call event.Skip() so the
 // event is not processed anywhere else.

 wxBell();
 }
}

The normal order of event table searching by ProcessEvent is as follows:

1. If the object is disabled (via a call to wxEvtHandler::SetEvtHandlerEnabled (p.
246)) the function skips to step (6).

2. If the object is a wxWindow, ProcessEvent is recursively called on the window's
wxValidator (p. 897). If this returns TRUE, the function exits.

3. SearchEventTable is called for this event handler. If this fails, the base class
table is tried, and so on until no more tables exist or an appropriate function was
found, in which case the function exits.

4. The search is applied down the entire chain of event handlers (usually the chain
has a length of one). If this succeeds, the function exits.

5. If the object is a wxWindow and the event is a wxCommandEvent,
ProcessEvent is recursively applied to the parent window's event handler. If
this returns TRUE, the function exits.

CHAPTER 7

1075

6. Finally, ProcessEvent is called on the wxApp object.

Pay close attention to Step 5. People often overlook or get confused by this powerful
feature of the wxWindows event processing system. To put it a different way, events
derived either directly or indirectly from wxCommandEvent will travel up the containment
heirarchy from child to parent until an event handler is found that doesn't call
event.Skip(). Events not derived from wxCommandEvent are sent only to the window
they occurred in and then stop.

Typically events that deal with a window as a window (size, motion, paint, mouse,
keyboard, etc.) are sent only to the window. Events that have a higher level of meaning
and/or are generated by the window itself, (button click, menu select, tree expand, etc.)
are command events and are sent up to the parent to see if it is interested in the event.

Note that your application may wish to override ProcessEvent to redirect processing of
events. This is done in the document/view framework, for example, to allow event
handlers to be defined in the document or view. To test for command events (which will
probably be the only events you wish to redirect), you may use
wxEvent::IsCommandEvent for efficiency, instead of using the slower run-time type
system.

As mentioned above, only command events are recursively applied to the parents event
handler. As this quite often causes confusion for users, here is a list of system events
which will NOT get sent to the parent's event handler:

wxEvent (p. 237) The event base class
wxActivateEvent (p. 5) A window or application activation event
wxCloseEvent (p. 89) A close window or end session event
wxEraseEvent (p. 236) An erase background event
wxFocusEvent (p. 284) A window focus event
wxKeyEvent (p. 438) A keypress event
wxIdleEvent (p. 394) An idle event
wxInitDialogEvent (p. 425) A dialog initialisation event
wxJoystickEvent (p. 436) A joystick event
wxMenuEvent (p. 519) A menu event
wxMouseEvent (p. 532) A mouse event
wxMoveEvent (p. 539) A move event
wxPaintEvent (p. 568) A paint event
wxQueryLayoutInfoEvent (p. 626) Used to query layout information
wxSizeEvent (p. 691) A size event
wxScrollWinEvent (p. 676) An event, sent by a scrolled window, not a scroll bar.
wxSysColourChangedEvent (p. 786) A system colour change event
wxUpdateUIEvent (p. 891) A user interface update event

In some cases, it might be desired by the programmer to get a certain number of system
events in a parent window, for example all key events sent to, but not used by, the native
controls in a dialog. In this case, a special event handler will have to be written that will
override ProcessEvent() in order to pass all events (or any selection of them) to the
parent window.

CHAPTER 7

1076

Redirection of command events to the window with the focus

The usual upward search through the window hierarchy for command event handlers
does not always meet an application's requirements. Say you have two wxTextCtrl
windows in a frame, plus a toolbar with Cut, Copy and Paste buttons. To avoid the need
to define event handlers in the frame and redirect them explicitly to the window with the
focus, command events are sent to the window with the focus first, for menu and toolbar
command and UI update events only. This means that each window can handle its own
commands and UI updates independently. In fact wxTextCtrl can handle Cut, Copy,
Paste, Undo and Redo commands and UI update requests, so no extra coding is
required to support them in your menus and toolbars.

Pluggable event handlers

In fact, you don't have to derive a new class from a window class if you don't want to.
You can derive a new class from wxEvtHandler instead, defining the appropriate event
table, and then call wxWindow::SetEventHandler (p. 952) (or, preferably,
wxWindow::PushEventHandler (p. 947)) to make this event handler the object that
responds to events. This way, you can avoid a lot of class derivation, and use the same
event handler object to handle events from instances of different classes. If you ever
have to call a window's event handler manually, use the GetEventHandler function to
retrieve the window's event handler and use that to call the member function. By default,
GetEventHandler returns a pointer to the window itself unless an application has
redirected event handling using SetEventHandler or PushEventHandler.

One use of PushEventHandler is to temporarily or permanently change the behaviour of
the GUI. For example, you might want to invoke a dialog editor in your application that
changes aspects of dialog boxes. You can grab all the input for an existing dialog box,
and edit it 'in situ', before restoring its behaviour to normal. So even if the application has
derived new classes to customize behaviour, your utility can indulge in a spot of body-
snatching. It could be a useful technique for on-line tutorials, too, where you take a user
through a serious of steps and don't want them to diverge from the lesson. Here, you
can examine the events coming from buttons and windows, and if acceptable, pass them
through to the original event handler. Use PushEventHandler/PopEventHandler to form
a chain of event handlers, where each handler processes a different range of events
independently from the other handlers.

Window identifiers

Window identifiers are integers, and are used to uniquely determine window identity in
the event system (though you can use it for other purposes). In fact, identifiers do not
need to be unique across your entire application just so long as they are unique within a
particular context you're interested in, such as a frame and its children. You may use the
wxID_OK identifier, for example, on any number of dialogs so long as you don't have
several within the same dialog.

If you pass -1 to a window constructor, an identifier will be generated for you, but

CHAPTER 7

1077

beware: if things don't respond in the way they should, it could be because of an id
conflict. It's safer to supply window ids at all times. Automatic generation of identifiers
starts at 1 so may well conflict with your own identifiers.

The following standard identifiers are supplied. You can use wxID_HIGHEST to
determine the number above which it is safe to define your own identifiers. Or, you can
use identifiers below wxID_LOWEST.

#define wxID_LOWEST 4999

#define wxID_OPEN 5000
#define wxID_CLOSE 5001
#define wxID_NEW 5002
#define wxID_SAVE 5003
#define wxID_SAVEAS 5004
#define wxID_REVERT 5005
#define wxID_EXIT 5006
#define wxID_UNDO 5007
#define wxID_REDO 5008
#define wxID_HELP 5009
#define wxID_PRINT 5010
#define wxID_PRINT_SETUP 5011
#define wxID_PREVIEW 5012
#define wxID_ABOUT 5013
#define wxID_HELP_CONTENTS 5014
#define wxID_HELP_COMMANDS 5015
#define wxID_HELP_PROCEDURES 5016
#define wxID_HELP_CONTEXT 5017

#define wxID_CUT 5030
#define wxID_COPY 5031
#define wxID_PASTE 5032
#define wxID_CLEAR 5033
#define wxID_FIND 5034
#define wxID_DUPLICATE 5035
#define wxID_SELECTALL 5036

#define wxID_FILE1 5050
#define wxID_FILE2 5051
#define wxID_FILE3 5052
#define wxID_FILE4 5053
#define wxID_FILE5 5054
#define wxID_FILE6 5055
#define wxID_FILE7 5056
#define wxID_FILE8 5057
#define wxID_FILE9 5058

#define wxID_OK 5100
#define wxID_CANCEL 5101
#define wxID_APPLY 5102
#define wxID_YES 5103
#define wxID_NO 5104
#define wxID_STATIC 5105

#define wxID_HIGHEST 5999

CHAPTER 7

1078

Event macros summary

Generic event table macros

EVT_CUSTOM(event, id, func) Allows you to add a custom event table
entry by specifying the event identifier
(such as wxEVT_SIZE), the window
identifier, and a member function to call.

EVT_CUSTOM_RANGE(event, id1, id2, func) The same as EVT_CUSTOM, but
responds to a range of window
identifiers.

EVT_COMMAND(id, event, func) The same as EVT_CUSTOM, but
expects a member function with a
wxCommandEvent argument.

EVT_COMMAND_RANGE(id1, id2, event, func) The same as
EVT_CUSTOM_RANGE, but expects a
member function with a
wxCommandEvent argument.

Macros listed by event class

The documentation for specific event macros is organised by event class. Please refer to
these sections for details.

wxActivateEvent (p. 5) The EVT_ACTIVATE and
EVT_ACTIVATE_APP macros intercept
activation and deactivation events.

wxCommandEvent (p. 108) A range of commonly-used control
events.

wxCloseEvent (p. 89) The EVT_CLOSE macro handles window
closure called via wxWindow::Close (p.
919).

wxDropFilesEvent (p. 231) The EVT_DROP_FILES macros handles
file drop events.

wxEraseEvent (p. 236) The EVT_ERASE_BACKGROUND
macro is used to handle window erase
requests.

wxFocusEvent (p. 284) The EVT_SET_FOCUS and
EVT_KILL_FOCUS macros are used to
handle keybaord focus events.

wxKeyEvent (p. 438) EVT_CHAR and EVT_CHAR_HOOK
macros handle keyboard input for any
window.

wxIdleEvent (p. 394) The EVT_IDLE macro handle application
idle events (to process background tasks,
for example).

wxInitDialogEvent (p. 425) The EVT_INIT_DIALOG macro is used to
handle dialog initialisation.

wxListEvent (p. 474) These macros handle wxListCtrl (p. 461)

CHAPTER 7

1079

events.
wxMenuEvent (p. 519) These macros handle special menu

events (not menu commands).
wxMouseEvent (p. 532) Mouse event macros can handle either

individual mouse events or all mouse
events.

wxMoveEvent (p. 539) The EVT_MOVE macro is used to handle
a window move.

wxPaintEvent (p. 568) The EVT_PAINT macro is used to handle
window paint requests.

wxScrollEvent (p. 678) These macros are used to handle scroll
events fromwxScrollBar (p. 671),
wxSlider (p. 696),and wxSpinButton (p.
727).

wxSizeEvent (p. 691) The EVT_SIZE macro is used to handle a
window resize.

wxSplitterEvent (p. 724) The
EVT_SPLITTER_SASH_POS_CHANGE
D, EVT_SPLITTER_UNSPLIT and
EVT_SPLITTER_DOUBLECLICKED
macros are used to handle the various
splitter window events.

wxSysColourChangedEvent (p. 786) The EVT_SYS_COLOUR_CHANGED
macro is used to handle events informing
the application that the user has changed
the system colours (Windows only).

wxTreeEvent (p. 890) These macros handle wxTreeCtrl (p. 875)
events.

wxUpdateUIEvent (p. 891) The EVT_UPDATE_UI macro is used to
handle user interface update pseudo-
events, which are generated to give the
application the chance to update the
visual state of menus, toolbars and
controls.

Writing a wxWindows application: a rough guide

To set a wxWindows application going, you'll need to derive a wxApp (p. 6) class and
override wxApp::OnInit (p. 12).

An application must have a top-level wxFrame (p. 299) or wxDialog (p. 193) window.
Each frame may contain one or more instances of classes such as wxPanel (p. 572),
wxSplitterWindow (p. 731) or other windows and controls.

A frame can have a wxMenuBar (p. 508), a wxToolBar (p. 861), a status line, and a
wxIcon (p. 395) for when the frame is iconized.

A wxPanel (p. 572) is used to place controls (classes derived from wxControl (p. 130))
which are used for user interaction. Examples of controls are wxButton (p. 69),
wxCheckBox (p. 74), wxChoice (p. 79), wxListBox (p. 452), wxRadioBox (p. 629),

CHAPTER 7

1080

wxSlider (p. 696).

Instances of wxDialog (p. 193) can also be used for controls and they have the
advantage of not requiring a separate frame.

Instead of creating a dialog box and populating it with items, it is possible to choose one
of the convenient common dialog classes, such as wxMessageDialog (p. 520) and
wxFileDialog (p. 264).

You never draw directly onto a window - you use a device context (DC). wxDC (p. 165)
is the base for wxClientDC (p. 86), wxPaintDC (p. 567), wxMemoryDC (p. 496),
wxPostScriptDC (p. 587), wxMemoryDC (p. 496), wxMetafileDC (p. 523) and
wxPrinterDC (p. 606). If your drawing functions have wxDC as a parameter, you can
pass any of these DCs to the function, and thus use the same code to draw to several
different devices. You can draw using the member functions of wxDC, such as
wxDC::DrawLine (p. 170) and wxDC::DrawText (p. 172). Control colour on a window
(wxColour (p. 91)) with brushes (wxBrush (p. 60)) and pens (wxPen (p. 578)).

To intercept events, you add a DECLARE_EVENT_TABLE macro to the window class
declaration, and put a BEGIN_EVENT_TABLE ... END_EVENT_TABLE block in the
implementation file. Between these macros, you add event macros which map the event
(such as a mouse click) to a member function. These might override predefined event
handlers such as wxWindow::OnChar (p. 934) and wxWindow::OnMouseEvent (p. 942).

Most modern applications will have an on-line, hypertext help system; for this, you need
wxHelp and the wxHelpController (p. 339) class to control wxHelp.

GUI applications aren't all graphical wizardry. List and hash table needs are catered for
by wxList (p. 446), wxStringList (p. 782) and wxHashTable (p. 337). You will undoubtedly
need some platform-independent file functions (p. 964), and you may find it handy to
maintain and search a list of paths using wxPathList (p. 576). There's a miscellany (p.
983) of operating system and other functions.

See also Classes by Category (p. 1017) for a list of classes.

Interprocess communication overview

Classes: wxDDEServer (p. 186), wxDDEConnection (p. 182), wxDDEClient (p. 181),
wxTCPServer (p. 817), wxTCPConnection (p. 813), wxTCPClient (p. 812)

wxWindows has a number of different classes to help with interprocess communication
and network programming. This section only discusses one family of classes - the DDE-
like protocol - but here's a list of other useful classes:

• wxSocketEvent (p. 721), wxSocketBase (p. 705), wxSocketClient (p. 719),
wxSocketServer (p. 722): classes for the low-level TCP/IP API.

• wxProtocol (p. 619), wxURL (p. 895), wxFTP (p. 313), wxHTTP: classes for
programming popular Internet protocols.

Further information on these classes will be available in due course.

CHAPTER 7

1081

wxWindows has a high-level protocol based on Windows DDE. There are two
implementations of this DDE-like protocol: one using real DDE running on Windows only,
and another using TCP/IP (sockets) that runs on most platforms. Since the API is the
same apart from the names of the classes, you should find it easy to switch between the
two implementations.

The following description refers to 'DDE' but remember that the equivalent wxTCP...
classes can be used in much the same way.

Three classes are central to the DDE API:

1. wxDDEClient. This represents the client application, and is used only within a
client program.

2. wxDDEServer. This represents the server application, and is used only within a
server program.

3. wxDDEConnection. This represents the connection from the current client or
server to the other application (server or client), and can be used in both server
and client programs. Most DDE transactions operate on this object.

Messages between applications are usually identified by three variables: connection
object, topic name and item name. A data string is a fourth element of some messages.
To create a connection (a conversation in Windows parlance), the client application
sends the message MakeConnection to the client object, with a string service name to
identify the server and a topic name to identify the topic for the duration of the
connection. Under Unix, the service name must contain an integer port identifier.

The server then responds and either vetos the connection or allows it. If allowed, a
connection object is created which persists until the connection is closed. The
connection object is then used for subsequent messages between client and server.

To create a working server, the programmer must:

1. Derive a class from wxDDEServer.
2. Override the handler OnAcceptConnection for accepting or rejecting a

connection, on the basis of the topic argument. This member must create and
return a connection object if the connection is accepted.

3. Create an instance of your server object, and call Create to activate it, giving it a
service name.

4. Derive a class from wxDDEConnection.
5. Provide handlers for various messages that are sent to the server side of a

wxDDEConnection.

To create a working client, the programmer must:

1. Derive a class from wxDDEClient.
2. Override the handler OnMakeConnection to create and return an appropriate

connection object.
3. Create an instance of your client object.
4. Derive a class from wxDDEConnection.
5. Provide handlers for various messages that are sent to the client side of a

wxDDEConnection.

CHAPTER 7

1082

6. When appropriate, create a new connection by sending a MakeConnection
message to the client object, with arguments host name (processed in Unix
only), service name, and topic name for this connection. The client object will
call OnMakeConnection to create a connection object of the desired type.

7. Use the wxDDEConnection member functions to send messages to the server.

Data transfer

These are the ways that data can be transferred from one application to another.

• Execute: the client calls the server with a data string representing a command
to be executed. This succeeds or fails, depending on the server's willingness to
answer. If the client wants to find the result of the Execute command other than
success or failure, it has to explicitly call Request.

• Request: the client asks the server for a particular data string associated with a
given item string. If the server is unwilling to reply, the return value is NULL.
Otherwise, the return value is a string (actually a pointer to the connection
buffer, so it should not be deallocated by the application).

• Poke: The client sends a data string associated with an item string directly to
the server. This succeeds or fails.

• Advise: The client asks to be advised of any change in data associated with a
particular item. If the server agrees, the server will send an OnAdvise message
to the client along with the item and data.

The default data type is wxCF_TEXT (ASCII text), and the default data size is the length
of the null-terminated string. Windows-specific data types could also be used on the PC.

Examples

See the sample programs server and client in the IPC samples directory. Run the
server, then the client. This demonstrates using the Execute, Request, and Poke
commands from the client, together with an Advise loop: selecting an item in the server
list box causes that item to be highlighted in the client list box.

More DDE details

A wxDDEClient object represents the client part of a client-server DDE (Dynamic Data
Exchange) conversation (available in both Windows and Unix).

To create a client which can communicate with a suitable server, you need to derive a
class from wxDDEConnection and another from wxDDEClient. The custom
wxDDEConnection class will intercept communications in a 'conversation' with a server,
and the custom wxDDEServer is required so that a user-overriden
wxDDEClient::OnMakeConnection (p. 182) member can return a wxDDEConnection of
the required class, when a connection is made.

For example:

CHAPTER 7

1083

class MyConnection: public wxDDEConnection
{
 public:
 MyConnection(void)::wxDDEConnection(ipc_buffer, 3999) {}
 ~MyConnection(void) { }
 bool OnAdvise(const wxString& topic, const wxString& item, char
*data, int size, wxIPCFormat format)
 { wxMessageBox(topic, data); }
};

class MyClient: public wxDDEClient
{
 public:
 MyClient(void) {}
 wxConnectionBase *OnMakeConnection(void) { return new MyConnection; }
};

Here, MyConnection will respond to OnAdvise (p. 184) messages sent by the server.

When the client application starts, it must create an instance of the derived
wxDDEClient. In the following, command line arguments are used to pass the host name
(the name of the machine the server is running on) and the server name (identifying the
server process). Calling wxDDEClient::MakeConnection (p. 182) implicitly creates an
instance of MyConnection if the request for a connection is accepted, and the client
then requests an Advise loop from the server, where the server calls the client when
data has changed.

 wxString server = "4242";
 wxString hostName;
 wxGetHostName(hostName);

 // Create a new client
 MyClient *client = new MyClient;
 connection = (MyConnection *)client->MakeConnection(hostName, server,
"IPC TEST");

 if (!connection)
 {
 wxMessageBox("Failed to make connection to server", "Client Demo
Error");
 return NULL;
 }
 connection->StartAdvise("Item");

Note that it is no longer necessary to call wxDDEInitialize or wxDDECleanUp, since
wxWindows will do this itself if necessary.

Printing overview

Classes: wxPrintout (p. 606), wxPrinter (p. 604), wxPrintPreview (p. 610), wxPrinterDC
(p. 606), wxPrintDialog (p. 598), wxPrintData (p. 592), wxPrintDialogData (p. 599),
wxPageSetupDialog (p. 565), wxPageSetupDialogData (p. 560)

CHAPTER 7

1084

The printing framework relies on the application to provide classes whose member
functions can respond to particular requests, such as 'print this page' or 'does this page
exist in the document?'. This method allows wxWindows to take over the housekeeping
duties of turning preview pages, calling the print dialog box, creating the printer device
context, and so on: the application can concentrate on the rendering of the information
onto a device context.

The document/view framework (p. 1066) creates a default wxPrintout object for every
view, calling wxView::OnDraw to achieve a prepackaged print/preview facility.

A document's printing ability is represented in an application by a derived wxPrintout
class. This class prints a page on request, and can be passed to the Print function of a
wxPrinter object to actually print the document, or can be passed to a wxPrintPreview
object to initiate previewing. The following code (from the printing sample) shows how
easy it is to initiate printing, previewing and the print setup dialog, once the wxPrintout
functionality has been defined. Notice the use of MyPrintout for both printing and
previewing. All the preview user interface functionality is taken care of by wxWindows.
For details on how MyPrintout is defined, please look at the printout sample code.

 case WXPRINT_PRINT:
 {
 wxPrinter printer;
 MyPrintout printout("My printout");
 printer.Print(this, &printout, TRUE);
 break;
 }
 case WXPRINT_PREVIEW:
 {
 // Pass two printout objects: for preview, and possible printing.
 wxPrintPreview *preview = new wxPrintPreview(new MyPrintout, new
MyPrintout);
 wxPreviewFrame *frame = new wxPreviewFrame(preview, this, "Demo
Print Preview", 100, 100, 600, 650);
 frame->Centre(wxBOTH);
 frame->Initialize();
 frame->Show(TRUE);
 break;
 }
 case WXPRINT_PRINT_SETUP:
 {
 wxPrintDialog printerDialog(this);
 printerDialog.GetPrintData().SetSetupDialog(TRUE);
 printerDialog.Show(TRUE);
 break;
 }

The wxWindows resource system

From version 1.61, wxWindows has an optional resource file facility, which allows
separation of dialog, menu, bitmap and icon specifications from the application code.

It is similar in principle to the Windows resource file (whose ASCII form is suffixed .RC

CHAPTER 7

1085

and whose binary form is suffixed .RES). The wxWindows resource file is currently
ASCII-only, suffixed .WXR. Note that under Windows, the .WXR file does not replace the
native Windows resource file, it merely supplements it. There is no existing native
resource format in X (except for the defaults file, which has limited expressive power).

Using wxWindows resources for panels and dialogs has an effect on how you deal with
panel item callbacks: you can't specify a callback function in a resource file, so how do
you achieve the same effect as with programmatic panel construction? The solution is
similar to that adopted by Windows, which is to use the parent panel or dialog to
intercept user events.

From 1.61, wxWindows routes panel item events that do not have a callback to the
OnCommand (p. 936) member of the panel (or dialog). So, to use panel or dialog
resources, you need to derive a new class and override the default (empty)
OnCommand member. The first argument is a reference to a wxWindow, and the
second is a reference to a wxCommandEvent. Check the name of the panel item that's
generating an event by using the wxWindow::GetName (p. 928) function and a string
comparison function such as wxStringEq (p. 971). You may need to cast the reference to
an appropriate specific type to perform some operations.

To obtain a pointer to a panel item when you only have the name (for example, when
you need to set a value of a text item from outside of the OnCommand function), use
the function wxFindWindowByName (p. 989).

For details of functions for manipulating resource files and loading user interface
elements, see wxWindows resource functions (p. 1006).

The format of a .WXR file

A wxWindows resource file may look a little odd at first. It's C++ compatible, comprising
mostly of static string variable declarations with PrologIO syntax within the string.

Here's a sample .WXR file:

/*
 * wxWindows Resource File
 * Written by wxBuilder
 *
 */

#include "noname.ids"

static char *aiai_resource = "bitmap(name = 'aiai_resource',\
 bitmap = ['aiai', wxBITMAP_TYPE_BMP_RESOURCE, 'WINDOWS'],\
 bitmap = ['aiai.xpm', wxBITMAP_TYPE_XPM, 'X']).";

static char *menuBar11 = "menu(name = 'menuBar11',\
 menu = \
 [\
 ['&File', 1, '', \
 ['&Open File', 2, 'Open a file'],\
 ['&Save File', 3, 'Save a file'],\

CHAPTER 7

1086

 [],\
 ['E&xit', 4, 'Exit program']\
],\
 ['&Help', 5, '', \
 ['&About', 6, 'About this program']\
]\
]).";

static char *project_resource = "icon(name = 'project_resource',\
 icon = ['project', wxBITMAP_TYPE_ICO_RESOURCE, 'WINDOWS'],\
 icon = ['project_data', wxBITMAP_TYPE_XBM, 'X']).";

static char *panel3 = "dialog(name = 'panel3',\
 style = '',\
 title = 'untitled',\
 button_font = [14, 'wxSWISS', 'wxNORMAL', 'wxBOLD', 0],\
 label_font = [10, 'wxSWISS', 'wxNORMAL', 'wxNORMAL', 0],\
 x = 0, y = 37, width = 292, height = 164,\
 control = [wxButton, 'OK', '', 'button5', 23, 34, -1, -1,
'aiai_resource'],\
 control = [wxMessage, 'A Label', '', 'message7', 166, 61, -1, -1,
'aiai_resource'],\
 control = [wxText, 'Text', 'wxVERTICAL_LABEL', 'text8', 24, 110, -1,
-1]).";

As you can see, C++-style comments are allowed, and apparently include files are
supported too: but this is a special case, where the included file is a file of defines
shared by the C++ application code and resource file to relate identifiers (such as
FILE_OPEN) to integers.

Each resource object is of standard PrologIO syntax, that is, an object name such as
dialog or icon, then an open parenthesis, a list of comma-delimited attribute/value pairs,
a closing parenthesis, and a full stop. Backslashes are required to escape newlines, for
the benefit of C++ syntax. If double quotation marks are used to delimit strings, they
need to be escaped with backslash within a C++ string (so it's easier to use single
quotation marks instead).

A note on PrologIO string syntax: A string that begins with an alphabetic character, and
contains only alphanumeric characters, hyphens and underscores, need not be quoted
at all. Single quotes and double quotes may be used to delimit more complex strings. In
fact, single-quoted and no-quoted strings are actually called words, but are treated as
strings for the purpose of the resource system.

A resource file like this is typically included in the application main file, as if it were a
normal C++ file. This eliminates the need for a separate resource file to be distributed
alongside the executable. However, the resource file can be dynamically loaded if
desired (for example by a non-C++ language such as CLIPS, Prolog or Python).

Once included, the resources need to be 'parsed' (interpreted), because so far the data
is just a number of static string variables. The function ::wxResourceParseData is
called early on in initialization of the application (usually in wxApp::OnInit) with a
variable as argument. This may need to be called a number of times, one for each
variable. However, more than one resource 'object' can be stored in one string variable

CHAPTER 7

1087

at a time, so you can get all your resources into one variable if you want to.

::wxResourceParseData parses the contents of the resource, ready for use by
functions such as ::wxResourceCreateBitmap and wxPanel::LoadFromResource.

If a wxWindows resource object (such as a bitmap resource) refers to a C++ data
structure, such as static XBM or XPM data, a further call
(::wxResourceRegisterBitmapData) needs to be made on initialization to tell
wxWindows about this data. The wxWindows resource object will refer to a string
identifier, such as 'project_data' in the example file above. This identifier will be looked
up in a table to get the C++ static data to use for the bitmap or icon.

In the C++ fragment below, the WXR resource file is included, and appropriate resource
initialization is carried out in OnInit. Note that at this stage, no actual wxWindows
dialogs, menus, bitmaps or icons are created; their 'templates' are merely being set up
for later use.

/*
 * File: noname.cc
 * Purpose: main application module, generated by wxBuilder.
 */

#include "wx.h"
#include "wx_help.h"
#include "noname.h"

// Includes the dialog, menu etc. resources
#include "noname.wxr"

// Includes XBM data
#include "project.xbm"

// Declare an instance of the application: allows the program to start
AppClass theApp;

// Called to initialize the program
wxFrame *AppClass::OnInit(void)
{
#ifdef wx_x
 wxResourceRegisterBitmapData("project_data", project_bits,
project_width, project_height);
#endif
 wxResourceParseData(menuBar11);
 wxResourceParseData(aiai_resource);
 wxResourceParseData(project_resource);
 wxResourceParseData(panel3);
 ...
}

Dialog resource format

A dialog resource object may be used for either panels or dialog boxes, and consists of
the following attributes. In the following, a font specification is a list consisting of point

CHAPTER 7

1088

size, family, style, weight, underlined, optional facename.

Attribute Value
name The name of the resource.
style Optional dialog box or panel window

style.
title The title of the dialog box (unused if a

panel).
.modal Whether modal: 1 if modal, 0 if modeless,

absent if a panel resource.
button_font The font used for control buttons: a list

comprising point size (integer), family
(string), font style (string), font weight
(string) and underlining (0 or 1).

label_font The font used for control labels: a list
comprising point size (integer), family
(string), font style (string), font weight
(string) and underlining (0 or 1).

x The x position of the dialog or panel.
y The y position of the dialog or panel.
width The width of the dialog or panel.
height The height of the dialog or panel.
background_colour The background colour of the dialog or

panel. Only valid if the style includes
wxUSER_COLOURS.

label_colour The default label colour for the children of
the dialog or panel. Only valid if the style
includes wxUSER_COLOURS.

button_colour The default button text colour for the
children of the dialog or panel. Only valid
if the style includes
wxUSER_COLOURS.

label_font Font spec
button_font Font spec

Then comes zero or more attributes named 'control' for each control (panel item) on the
dialog or panel. The value is a list of further elements. In the table below, the names in
the first column correspond to the first element of the value list, and the second column
details the remaining elements of the list.

Control Values
wxButton title (string), window style (string), name

(string), x, y, width, height, button bitmap
resource (optional string), button font
spec

wxCheckBox title (string), window style (string), name
(string), x, y, width, height, default value
(optional integer, 1 or 0), label font spec

wxChoice title (string), window style (string), name

CHAPTER 7

1089

(string), x, y, width, height, values
(optional list of strings), label font spec,
button font spec

wxComboBox title (string), window style (string), name
(string), x, y, width, height, default text
value, values (optional list of strings),
label font spec, button font spec

wxGauge title (string), window style (string), name
(string), x, y, width, height, value (optional
integer), range (optional integer), label
font spec, button font spec

wxGroupBox title (string), window style (string), name
(string), x, y, width, height, label font spec

wxListBox title (string), window style (string), name
(string), x, y, width, height, values
(optional list of strings), multiple (optional
string, wxSINGLE or wxMULTIPLE), label
font spec, button font spec

wxMessage title (string), window style (string), name
(string), x, y, width, height, message
bitmap resource (optional string), label
font spec

wxMultiText title (string), window style (string), name
(string), x, y, width, height, default value
(optional string), label font spec, button
font spec

wxRadioBox title (string), window style (string), name
(string), x, y, width, height, values
(optional list of strings), number of rows
or cols, label font spec, button font spec

wxRadioButton title (string), window style (string), name
(string), x, y, width, height, default value
(optional integer, 1 or 0), label font spec

wxScrollBar title (string), window style (string), name
(string), x, y, width, height, value (optional
integer), page length (optional integer),
object length (optional integer), view
length (optional integer)

wxSlider title (string), window style (string), name
(string), x, y, width, height, value (optional
integer), minimum (optional integer),
maximum (optional integer), label font
spec, button font spec

wxText title (string), window style (string), name
(string), x, y, width, height, default value
(optional string), label font spec, button
font spec

Menubar resource format

CHAPTER 7

1090

A menubar resource object consists of the following attributes.

Attribute Value
name The name of the menubar resource.
menu A list containing all the menus, as

detailed below.

The value of the menu attribute is a list of menu item specifications, where each menu
item specification is itself a list comprising:

• title (a string)
• menu item identifier (a string or non-zero integer, see below)
• help string (optional)
• 0 or 1 for the 'checkable' parameter (optional)
• optionally, further menu item specifications if this item is a pulldown menu.

If the menu item specification is the empty list ([]), this is interpreted as a menu
separator.

If further (optional) information is associated with each menu item in a future release of
wxWindows, it will be placed after the help string and before the optional pulldown menu
specifications.

Note that the menu item identifier must be an integer if the resource is being included as
C++ code and then parsed on initialisation. Unfortunately, #define substitution is not
performed inside strings, and therefore the program cannot know the mapping.
However, if the .WXR file is being loaded dynamically, wxWindows will attempt to
replace string identifiers with #defined integers, because it is able to parse the included
#defines.

Bitmap resource format

A bitmap resource object consists of a name attribute, and one or more bitmap
attributes. There can be more than one of these to allow specification of bitmaps that are
optimum for the platform and display.

• Bitmap name or filename.
• Type of bitmap; for example, wxBITMAP_TYPE_BMP_RESOURCE. See class

reference under wxBitmap for a full list).
• Platform this bitmap is valid for; one of WINDOWS, X, MAC and ANY.
• Number of colours (optional).
• X resolution (optional).
• Y resolution (optional).

Icon resource format

CHAPTER 7

1091

An icon resource object consists of a name attribute, and one or more icon attributes.
There can be more than one of these to allow specification of icons that are optimum for
the platform and display.

• Icon name or filename.
• Type of icon; for example, wxBITMAP_TYPE_ICO_RESOURCE. See class

reference under wxBitmap for a full list).
• Platform this bitmap is valid for; one of WINDOWS, X, MAC and ANY.
• Number of colours (optional).
• X resolution (optional).
• Y resolution (optional).

Resource format design issues

The .WXR file format is a recent addition and subject to change. The use of an ASCII
resource file format may seem rather inefficient, but this choice has a number of
advantages:

• Since it is C++ compatible, it can be included into an application's source code,
eliminating the problems associated with distributing a separate resource file
with the executable. However, it can also be loaded dynamically from a file,
which will be required for non-C++ programs that use wxWindows.

• No extra binary file format and separate converter need be maintained for the
wxWindows project (although others are welcome to add the equivalent of the
Windows 'rc' resource parser and a binary format).

• It would be difficult to append a binary resource component onto an executable
in a portable way.

• The file format is essentially the PrologIO object format, for which a parser
already exists, so parsing is easy. For those programs that use PrologIO
anyway, the size overhead of the parser is minimal.

The disadvantages of the approach include:

• Parsing adds a small execution overhead to program initialization.
• Under 16-bit Windows especially, global data is at a premium. Using a .RC

resource table for some wxWindows resource data may be a partial solution,
although .RC strings are limited to 255 characters.

• Without a resource preprocessor, it is not possible to substitute integers for
identifiers (so menu identifiers have to be written as integers in the resource
object, in addition to providing #defines for application code convenience).

Compiling the resource system

To enable the resource system, set wxUSE_WX_RESOURCES to 1 in setup.h. If your
wxWindows makefile supports it, set the same name in the makefile to 1.

Run time class information overview

CHAPTER 7

1092

Classes: wxObject (p. 555), wxClassInfo (p. 84).

One of the failings of C++ used to be that no run-time information was provided about a
class and its position in the inheritance hierarchy. Another, which still persists, is that
instances of a class cannot be created just by knowing the name of a class, which
makes facilities such as persistent storage hard to implement.

Most C++ GUI frameworks overcome these limitations by means of a set of macros and
functions and wxWindows is no exception. As it originated before the addition of RTTI to
the standard C++ and as support for it still missing from some (albeit old) compilers,
wxWindows doesn't (yet) use it, but provides its own macro-based RTTI system.

In the future, the standard C++ RTTI will be used though and you're encouraged to use
whenever possible wxDynamicCast() (p. 1005) macro which, for the implementations
that support it, is defined just as dynamic_cast<> and uses wxWindows RTTI for all the
others. This macro is limited to wxWindows classes only and only works with pointers
(unlike the real dynamic_cast<> which also accepts referencies).

Each class that you wish to be known the type system should have a macro such as
DECLARE_DYNAMIC_CLASS just inside the class declaration. The macro
IMPLEMENT_DYNAMIC_CLASS should be in the implementation file. Note that these
are entirely optional; use them if you wish to check object types, or create instances of
classes using the class name. However, it is good to get into the habit of adding these
macros for all classes.

Variations on these macros (p. 999) are used for multiple inheritance, and abstract
classes that cannot be instantiated dynamically or otherwise.

DECLARE_DYNAMIC_CLASS inserts a static wxClassInfo declaration into the class,
initialized by IMPLEMENT_DYNAMIC_CLASS. When initialized, the wxClassInfo object
inserts itself into a linked list (accessed through wxClassInfo::first and wxClassInfo::next
pointers). The linked list is fully created by the time all global initialisation is done.

IMPLEMENT_DYNAMIC_CLASS is a macro that not only initialises the static
wxClassInfo member, but defines a global function capable of creating a dynamic object
of the class in question. A pointer to this function is stored in wxClassInfo, and is used
when an object should be created dynamically.

wxObject::IsKindOf (p. 556) uses the linked list of wxClassInfo. It takes a wxClassInfo
argument, so use CLASSINFO(className) to return an appropriate wxClassInfo pointer
to use in this function.

The function wxCreateDynamicObject (p. 984) can be used to construct a new object of
a given type, by supplying a string name. If you have a pointer to the wxClassInfo object
instead, then you can simply call wxClassInfo::CreateObject.

wxClassInfo

Run time class information overview (p. 1091)

CHAPTER 7

1093

Class: wxClassInfo (p. 84)

This class stores meta-information about classes. An application may use macros such
as DECLARE_DYNAMIC_CLASS and IMPLEMENT_DYNAMIC_CLASS to record run-
time information about a class, including:

• its position in the inheritance hierarchy;
• the base class name(s) (up to two base classes are permitted);
• a string representation of the class name;
• a function that can be called to construct an instance of this class.

The DECLARE_... macros declare a static wxClassInfo variable in a class, which is
initialized by macros of the form IMPLEMENT_... in the implementation C++ file. Classes
whose instances may be constructed dynamically are given a global constructor function
which returns a new object.

You can get the wxClassInfo for a class by using the CLASSINFO macro, e.g.
CLASSINFO(wxFrame). You can get the wxClassInfo for an object using
wxObject::GetClassInfo.

See also wxObject (p. 555) and wxCreateDynamicObject (p. 984).

Example

In a header file frame.h:

class wxFrame : public wxWindow
{
DECLARE_DYNAMIC_CLASS(wxFrame)

private:
 wxString m_title;

public:
 ...
};

In a C++ file frame.cpp:

IMPLEMENT_DYNAMIC_CLASS(wxFrame, wxWindow)

wxFrame::wxFrame()
{
...
}

Window styles

Window styles are used to specify alternative behaviour and appearances for windows,
when they are created. The symbols are defined in such as way that they can be
combined in a 'bit-list' using the C++ bitwise-or operator. For example:

CHAPTER 7

1094

 wxCAPTION | wxMINIMIZE_BOX | wxMAXIMIZE_BOX | wxTHICK_FRAME

For the window styles specific to each window class, please see the documentation for
the window. Most windows can use the generic styles listed for wxWindow (p. 915) in
addition to their own styles.

Tab classes overview

Classes: wxTabView (p. 795), wxPanelTabView (p. 575), wxTabbedPanel (p. 791),
wxTabbedDialog (p. 790), wxTabControl (p. 792)

The tab classes provides a way to display rows of tabs (like file divider tabs), which can
be used to switch between panels or other information. Tabs are most commonly used in
dialog boxes where the number of options is too great to fit on one dialog.

Please note that the preferred class for programming tabbed windows is wxNotebook
(p. 546). The old tab classes are retained for backward compatibility and also to
implement wxNotebook on platforms that don't have native tab controls.

The appearance and behaviour of a wxTabbedDialog

The following screenshot shows the appearance of the sample tabbed dialog
application.

CHAPTER 7

1095

By clicking on the tabs, the user can display a different set of controls. In the example,
the Close and Help buttons remain constant. These two buttons are children of the main
dialog box, whereas the other controls are children of panels which are shown and
hidden according to which tab is active.

A tabbed dialog may have several layers (rows) of tabs, each being offset vertically and
horizontally from the previous. Tabs work in columns, in that when a tab is pressed, it
swaps place with the tab on the first row of the same column, in order to give the effect
of displaying that tab. All tabs must be of the same width. This is a constraint of the
implementation, but it also means that the user will find it easier to find tabs since there
are distinct tab columns. On some tabbed dialog implementations, tabs jump around
seemingly randomly because tabs have different widths. In this implementation, a tab
can always be found on the same column.

Tabs are always drawn along the top of the view area; the implementation does not
allow for vertical tabs or any other configuration.

Using tabs

The tab classes provide facilities for switching between contexts by means of 'tabs',
which look like file divider tabs.

You must create both a view to handle the tabs, and a window to display the tabs and
related information. The wxTabbedDialog and wxTabbedPanel classes are provided for
convenience, but you could equally well construct your own window class and derived
tab view.

If you wish to display a tabbed dialog - the most common use - you should follow these
steps.

1. Create a new wxTabbedDialog class, and any buttons you wish always to be
displayed (regardless of which tab is active).

2. Create a new wxPanelTabView, passing the dialog as the first argument.
3. Set the view rectangle with wxTabView::SetViewRect (p. 803), to specify the

area in which child panels will be shown. The tabs will sit on top of this view
rectangle.

4. Call wxTabView::CalculateTabWidth (p. 796) to calculate the width of the tabs
based on the view area. This is optional if, for example, you have one row of
tabs which does not extend the full width of the view area.

5. Call wxTabView::AddTab (p. 796) for each of the tabs you wish to create,
passing a unique identifier and a tab label.

6. Construct a number of windows, one for each tab, and call
wxPanelTabView::AddTabWindow (p. 575) for each of these, passing a tab
identifier and the window.

7. Set the tab selection.
8. Show the dialog.

Under Motif, you may also need to size the dialog just before setting the tab selection,
for unknown reasons.

Some constraints you need to be aware of:

CHAPTER 7

1096

• All tabs must be of the same width.
• Omit the wxTAB_STYLE_COLOUR_INTERIOR flag to ensure that the dialog

background and tab backgrounds match.

Example

The following fragment is taken from the file test.cpp.

void MyDialog::Init(void)
{
 int dialogWidth = 365;
 int dialogHeight = 390;

 wxButton *okButton = new wxButton(this, wxID_OK, "Close",
wxPoint(100, 330), wxSize(80, 25));
 wxButton *cancelButton = new wxButton(this, wxID_CANCEL, "Cancel",
wxPoint(185, 330), wxSize(80, 25));
 wxButton *HelpButton = new wxButton(this, wxID_HELP, "Help",
wxPoint(270, 330), wxSize(80, 25));
 okButton->SetDefault();

 // Note, omit the wxTAB_STYLE_COLOUR_INTERIOR, so we will guarantee a
match
 // with the panel background, and save a bit of time.
 wxPanelTabView *view = new wxPanelTabView(this,
wxTAB_STYLE_DRAW_BOX);

 wxRectangle rect;
 rect.x = 5;
 rect.y = 70;
 // Could calculate the view width from the tab width and spacing,
 // as below, but let's assume we have a fixed view width.
// rect.width = view->GetTabWidth()*4 + 3*view-
>GetHorizontalTabSpacing();
 rect.width = 326;
 rect.height = 250;

 view->SetViewRect(rect);

 // Calculate the tab width for 4 tabs, based on a view width of 326
and
 // the current horizontal spacing. Adjust the view width to exactly
fit
 // the tabs.
 view->CalculateTabWidth(4, TRUE);

 if (!view->AddTab(TEST_TAB_CAT, wxString("Cat")))
 return;

 if (!view->AddTab(TEST_TAB_DOG, wxString("Dog")))
 return;
 if (!view->AddTab(TEST_TAB_GUINEAPIG, wxString("Guinea Pig")))

CHAPTER 7

1097

 return;
 if (!view->AddTab(TEST_TAB_GOAT, wxString("Goat")))
 return;
 if (!view->AddTab(TEST_TAB_ANTEATER, wxString("Ant-eater")))
 return;
 if (!view->AddTab(TEST_TAB_SHEEP, wxString("Sheep")))
 return;
 if (!view->AddTab(TEST_TAB_COW, wxString("Cow")))
 return;
 if (!view->AddTab(TEST_TAB_HORSE, wxString("Horse")))
 return;
 if (!view->AddTab(TEST_TAB_PIG, wxString("Pig")))
 return;
 if (!view->AddTab(TEST_TAB_OSTRICH, wxString("Ostrich")))
 return;
 if (!view->AddTab(TEST_TAB_AARDVARK, wxString("Aardvark")))
 return;
 if (!view->AddTab(TEST_TAB_HUMMINGBIRD,wxString("Hummingbird")))
 return;

 // Add some panels
 wxPanel *panel1 = new wxPanel(this, -1, wxPoint(rect.x + 20, rect.y +
10), wxSize(290, 220), wxTAB_TRAVERSAL);
 (void)new wxButton(panel1, -1, "Press me", wxPoint(10, 10));
 (void)new wxTextCtrl(panel1, -1, "1234", wxPoint(10, 40), wxSize(120,
150));

 view->AddTabWindow(TEST_TAB_CAT, panel1);

 wxPanel *panel2 = new wxPanel(this, -1, wxPoint(rect.x + 20, rect.y +
10), wxSize(290, 220));

 wxString animals[] = { "Fox", "Hare", "Rabbit", "Sabre-toothed
tiger", "T Rex" };
 (void)new wxListBox(panel2, -1, wxPoint(5, 5), wxSize(170, 80), 5,
animals);

 (void)new wxTextCtrl(panel2, -1, "Some notes about the animals in
this house", wxPoint(5, 100), wxSize(170, 100)),
 wxTE_MULTILINE;

 view->AddTabWindow(TEST_TAB_DOG, panel2);

 // Don't know why this is necessary under Motif...
#ifdef wx_motif
 this->SetSize(dialogWidth, dialogHeight-20);
#endif

 view->SetTabSelection(TEST_TAB_CAT);

 this->Centre(wxBOTH);
}

wxTabView overview

CHAPTER 7

1098

Classes: wxTabView (p. 795), wxPanelTabView (p. 575)

A wxTabView manages and draws a number of tabs. Because it is separate from the
tabbed window implementation, it can be reused in a number of contexts. This library
provides tabbed dialog and panel classes to use with the wxPanelTabView class, but an
application could derive other kinds of view from wxTabView.

For example, a help application might draw a representation of a book on a window, with
a row of tabs along the top. The new tab view class might be called wxCanvasTabView,
for example, with the wxBookCanvas posting the OnEvent function to the
wxCanvasTabView before processing further, application-specific event processing.

A window class designed to work with a view class must call the view's OnEvent and
Draw functions at appropriate times.

Toolbar overview

Classes: wxToolBar (p. 861)

The toolbar family of classes allows an application to use toolbars in a variety of
configurations and styles.

The toolbar is a popular user interface component and contains a set of bitmap buttons
or toggles. A toolbar gives faster access to an application's facilities than menus, which
have to be popped up and selected rather laboriously.

Instead of supplying one toolbar class with a number of different implementations
depending on platform, wxWindows separates out the classes. This is because there are
a number of different toolbar styles that you may wish to use simultaneously, and also,
future toolbar implementations will emerge which cannot all be shoe-horned into the one
class.

For each platform, the symbol wxToolBar is defined to be one of the specific toolbar
classes.

The following is a summary of the toolbar classes and their differences.

• wxToolBarBase. This is a base class with pure virtual functions, and should not
be used directly.

• wxToolBarSimple. A simple toolbar class written entirely with generic
wxWindows functionality. A simple 3D effect for buttons is possible, but it is not
consistent with the Windows look and feel. This toolbar can scroll, and you can
have arbitrary numbers of rows and columns.

• wxToolBarMSW. This class implements an old-style Windows toolbar, only on
Windows. There are small, three-dimensional buttons, which do not (currently)
reflect the current Windows colour settings: the buttons are grey. This is the
default wxToolBar on 16-bit windows.

• wxToolBar95. Uses the native Windows 95 toolbar class. It dynamically adjusts
its background and button colours according to user colour settings.

CHAPTER 7

1099

CreateTools must be called after the tools have been added. No absolute
positioning is supported but you can specify the number of rows, and add tool
separators with AddSeparator. Tooltips are supported. OnRightClick is not
supported. This is the default wxToolBar on Windows 95, Windows NT 4 and
above. With the style wxTB_FLAT, the flat toolbar look is used, with a border
that is highlit when the cursor moves over the buttons.

A toolbar might appear as a single row of images under the menubar, or it might be in a
separate frame layout in several rows and columns. The class handles the layout of the
images, unless explicit positioning is requested.

A tool is a bitmap which can either be a button (there is no 'state', it just generates an
event when clicked) or it can be a toggle. If a toggle, a second bitmap can be provided to
depict the 'on' state; if the second bitmap is omitted, either the inverse of the first bitmap
will be used (for monochrome displays) or a thick border is drawn around the bitmap (for
colour displays where inverting will not have the desired result).

The Windows-specific toolbar classes expect 16-colour bitmaps that are 16 pixels wide
and 15 pixels high. If you want to use a different size, call SetToolBitmapSize as the
demo shows, before adding tools to the button bar. Don't supply more than one bitmap
for each tool, because the toolbar generates all three images (normal, depressed and
checked) from the single bitmap you give it.

Using the toolbar library

Include "wx/toolbar.h", or if using a class directly, one of:

• "wx/msw/tbarmsw.h for wxToolBarMSW
• "wx/msw/tbar95.h for wxToolBar95
• "wx/tbarsmpl.h for wxToolBarSimple

Example of toolbar use are given in the sample program "toolbar''. The source is given
below. In fact it's out of date because recommended practise is to use event handlers
(using EVT_MENU or EVT_TOOL) instead of overriding OnLeftClick.

///
//////
// Name: test.cpp
// Purpose: wxToolBar sample
// Author: Julian Smart
// Modified by:
// Created: 04/01/98
// RCS-ID: $Id: ttoolbar.tex,v 1.6 1999/04/07 21:33:12 JS Exp $
// Copyright: (c) Julian Smart
// Licence: wxWindows licence
///
//////

// For compilers that support precompilation, includes "wx/wx.h".
#include "wx/wxprec.h"

CHAPTER 7

1100

#ifdef __BORLANDC__
#pragma hdrstop
#endif

#ifndef WX_PRECOMP
#include "wx/wx.h"
#endif

#include "wx/toolbar.h"
#include <wx/log.h>

#include "test.h"

#if defined(__WXGTK__) || defined(__WXMOTIF__)
#include "mondrian.xpm"
#include "bitmaps/new.xpm"
#include "bitmaps/open.xpm"
#include "bitmaps/save.xpm"
#include "bitmaps/copy.xpm"
#include "bitmaps/cut.xpm"
#include "bitmaps/print.xpm"
#include "bitmaps/preview.xpm"
#include "bitmaps/help.xpm"
#endif

IMPLEMENT_APP(MyApp)

// The `main program' equivalent, creating the windows and returning
the
// main frame
bool MyApp::OnInit(void)
{
 // Create the main frame window
 MyFrame* frame = new MyFrame((wxFrame *) NULL, -1, (const wxString)
"wxToolBar Sample",
 wxPoint(100, 100), wxSize(450, 300));

 // Give it a status line
 frame->CreateStatusBar();

 // Give it an icon
 frame->SetIcon(wxICON(mondrian));

 // Make a menubar
 wxMenu *fileMenu = new wxMenu;
 fileMenu->Append(wxID_EXIT, "E&xit", "Quit toolbar sample");

 wxMenu *helpMenu = new wxMenu;
 helpMenu->Append(wxID_HELP, "&About", "About toolbar sample");

 wxMenuBar* menuBar = new wxMenuBar;

 menuBar->Append(fileMenu, "&File");
 menuBar->Append(helpMenu, "&Help");

 // Associate the menu bar with the frame

CHAPTER 7

1101

 frame->SetMenuBar(menuBar);

 // Create the toolbar
 frame->CreateToolBar(wxNO_BORDER|wxHORIZONTAL|wxTB_FLAT, ID_TOOLBAR);

 frame->GetToolBar()->SetMargins(2, 2);

 InitToolbar(frame->GetToolBar());

 // Force a resize. This should probably be replaced by a call to a
wxFrame
 // function that lays out default decorations and the remaining
content window.
 wxSizeEvent event(wxSize(-1, -1), frame->GetId());
 frame->OnSize(event);
 frame->Show(TRUE);

 frame->SetStatusText("Hello, wxWindows");

 SetTopWindow(frame);

 return TRUE;
}

bool MyApp::InitToolbar(wxToolBar* toolBar)
{
 // Set up toolbar
 wxBitmap* toolBarBitmaps[8];

#ifdef __WXMSW__
 toolBarBitmaps[0] = new wxBitmap("icon1");
 toolBarBitmaps[1] = new wxBitmap("icon2");
 toolBarBitmaps[2] = new wxBitmap("icon3");
 toolBarBitmaps[3] = new wxBitmap("icon4");
 toolBarBitmaps[4] = new wxBitmap("icon5");
 toolBarBitmaps[5] = new wxBitmap("icon6");
 toolBarBitmaps[6] = new wxBitmap("icon7");
 toolBarBitmaps[7] = new wxBitmap("icon8");
#else
 toolBarBitmaps[0] = new wxBitmap(new_xpm);
 toolBarBitmaps[1] = new wxBitmap(open_xpm);
 toolBarBitmaps[2] = new wxBitmap(save_xpm);
 toolBarBitmaps[3] = new wxBitmap(copy_xpm);
 toolBarBitmaps[4] = new wxBitmap(cut_xpm);
 toolBarBitmaps[5] = new wxBitmap(preview_xpm);
 toolBarBitmaps[6] = new wxBitmap(print_xpm);
 toolBarBitmaps[7] = new wxBitmap(help_xpm);
#endif

#ifdef __WXMSW__
 int width = 24;
#else
 int width = 16;
#endif
 int currentX = 5;

 toolBar->AddTool(wxID_NEW, *(toolBarBitmaps[0]), wxNullBitmap, FALSE,

CHAPTER 7

1102

currentX, -1, (wxObject *) NULL, "New file");
 currentX += width + 5;
 toolBar->AddTool(wxID_OPEN, *(toolBarBitmaps[1]), wxNullBitmap,
FALSE, currentX, -1, (wxObject *) NULL, "Open file");
 currentX += width + 5;
 toolBar->AddTool(wxID_SAVE, *(toolBarBitmaps[2]), wxNullBitmap,
FALSE, currentX, -1, (wxObject *) NULL, "Save file");
 currentX += width + 5;
 toolBar->AddSeparator();
 toolBar->AddTool(wxID_COPY, *(toolBarBitmaps[3]), wxNullBitmap,
FALSE, currentX, -1, (wxObject *) NULL, "Copy");
 currentX += width + 5;
 toolBar->AddTool(wxID_CUT, *(toolBarBitmaps[4]), wxNullBitmap, FALSE,
currentX, -1, (wxObject *) NULL, "Cut");
 currentX += width + 5;
 toolBar->AddTool(wxID_PASTE, *(toolBarBitmaps[5]), wxNullBitmap,
FALSE, currentX, -1, (wxObject *) NULL, "Paste");
 currentX += width + 5;
 toolBar->AddSeparator();
 toolBar->AddTool(wxID_PRINT, *(toolBarBitmaps[6]), wxNullBitmap,
FALSE, currentX, -1, (wxObject *) NULL, "Print");
 currentX += width + 5;
 toolBar->AddSeparator();
 toolBar->AddTool(wxID_HELP, *(toolBarBitmaps[7]), wxNullBitmap,
FALSE, currentX, -1, (wxObject *) NULL, "Help");

 toolBar->Realize();

 // Can delete the bitmaps since they're reference counted
 int i;
 for (i = 0; i < 8; i++)
 delete toolBarBitmaps[i];

 return TRUE;
}

// wxID_HELP will be processed for the 'About' menu and the toolbar
help button.

BEGIN_EVENT_TABLE(MyFrame, wxFrame)
 EVT_MENU(wxID_EXIT, MyFrame::OnQuit)
 EVT_MENU(wxID_HELP, MyFrame::OnAbout)
 EVT_CLOSE(MyFrame::OnCloseWindow)
 EVT_TOOL_RANGE(wxID_OPEN, wxID_PASTE, MyFrame::OnToolLeftClick)
 EVT_TOOL_ENTER(wxID_OPEN, MyFrame::OnToolEnter)
END_EVENT_TABLE()

// Define my frame constructor
MyFrame::MyFrame(wxFrame* parent, wxWindowID id, const wxString& title,
const wxPoint& pos,
 const wxSize& size, long style):
 wxFrame(parent, id, title, pos, size, style)
{
 m_textWindow = new wxTextCtrl(this, -1, "", wxPoint(0, 0), wxSize(-1,
-1), wxTE_MULTILINE);
}

CHAPTER 7

1103

void MyFrame::OnQuit(wxCommandEvent& WXUNUSED(event))
{
 Close(TRUE);
}

void MyFrame::OnAbout(wxCommandEvent& WXUNUSED(event))
{
 (void)wxMessageBox("wxWindows toolbar sample", "About wxToolBar");
}

// Define the behaviour for the frame closing
// - must delete all frames except for the main one.
void MyFrame::OnCloseWindow(wxCloseEvent& WXUNUSED(event))
{
 Destroy();
}

void MyFrame::OnToolLeftClick(wxCommandEvent& event)
{
 wxString str;
 str.Printf("Clicked on tool %d", event.GetId());
 SetStatusText(str);
}

void MyFrame::OnToolEnter(wxCommandEvent& event)
{
 if (event.GetSelection() > -1)
 {
 wxString str;
 str.Printf("This is tool number %d", event.GetSelection());
 SetStatusText(str);
 }
 else
 SetStatusText("");
}

Validator overview

Classes: wxValidator (p. 897), wxTextValidator (p. 841), wxGenericValidator (p. 321)

The aim of the validator concept is to make dialogs very much easier to write. A validator
is an object that can be plugged into a control (such as a wxTextCtrl), and mediates
between C++ data and the control, transferring the data in either direction and validating
it. It also is able to intercept events generated by the control, providing filtering behaviour
without the need to derive a new control class.

You can use a stock validator, such as wxTextValidator (p. 841) (which does text control
data transfer, validation and filtering) and wxGenericValidator (p. 321) (which does data
transfer for a range of controls); or you can write your own.

Example

CHAPTER 7

1104

Here is an example of wxTextValidator usage.

 wxTextCtrl *txt1 = new wxTextCtrl(this, VALIDATE_TEXT, "",
 wxPoint(10, 10), wxSize(100, 80), 0,
 wxTextValidator(wxFILTER_ALPHA, &g_data.m_string));

In this example, the text validator object provides the following functionality:

1. It transfers the value of g_data.m_string (a wxString variable) to the wxTextCtrl
when the dialog is initialised.

2. It transfers the wxTextCtrl data back to this variable when the dialog is
dismissed.

3. It filters input characters so that only alphabetic characters are allowed.

The validation and filtering of input is accomplished in two ways. When a character is
input, wxTextValidator checks the character against the allowed filter flag
(wxFILTER_ALPHA in this case). If the character is inappropriate, it is vetoed (does not
appear) and a warning beep sounds. The second type of validation is performed when
the dialog is about to be dismissed, so if the default string contained invalid characters
already, a dialog box is shown giving the error, and the dialog is not dismissed.

Anatomy of a validator

A programmer creating a new validator class should provide the following functionality.

A validator constructor is responsible for allowing the programmer to specify the kind of
validation required, and perhaps a pointer to a C++ variable that is used for storing the
data for the control. If such a variable address is not supplied by the user, then the
validator should store the data internally.

The wxValidator::Validate (p. 899) member function should return TRUE if the data in
the control (not the C++ variable) is valid. It should also show an appropriate message if
data was not valid.

The wxValidator::TransferToWindow (p. 899) member function should transfer the data
from the validator or associated C++ variable to the control.

The wxValidator::TransferFromWindow (p. 899) member function should transfer the
data from the control to the validator or associated C++ variable.

There should be a copy constructor, and a wxValidator::Clone (p. 898) function which
returns a copy of the validator object. This is important because validators are passed by
reference to window constructors, and must therefore be cloned internally.

You can optionally define event handlers for the validator, to implement filtering. These
handlers will capture events before the control itself does.

For an example implementation, see the valtext.h and valtext.cpp files in the wxWindows
library.

How validators interact with dialogs

CHAPTER 7

1105

For validators to work correctly, validator functions must be called at the right times
during dialog initialisation and dismissal.

When a wxDialog::Show (p. 200) is called (for a modeless dialog) or
wxDialog::ShowModal (p. 200) is called (for a modal dialog), the function
wxWindow::InitDialog (p. 931) is automatically called. This in turn sends an initialisation
event to the dialog. The default handler for the wxEVT_INIT_DIALOG event is defined in
the wxWindow class to simply call the function wxWindow::TransferDataToWindow (p.
960). This function finds all the validators in the window's children and calls the
TransferToWindow function for each. Thus, data is transferred from C++ variables to the
dialog just as the dialog is being shown.

If you are using a window or panel instead of a dialog, you will need to call
wxWindow::InitDialog (p. 931) explicitly before showing the window.

When the user clicks on a button, for example the OK button, the application should first
call wxWindow::Validate (p. 961), which returns FALSE if any of the child window
validators failed to validate the window data. The button handler should return
immediately if validation failed. Secondly, the application should call
wxWindow::TransferDataFromWindow (p. 960) and return if this failed. It is then safe to
end the dialog by calling EndModal (if modal) or Show (if modeless).

In fact, wxDialog contains a default command event handler for the wxID_OK button. It
goes like this:

void wxDialog::OnOK(wxCommandEvent& event)
{

if (Validate() && TransferDataFromWindow())
{

 if (IsModal())
 EndModal(wxID_OK);
 else
 {

 SetReturnCode(wxID_OK);
 this->Show(FALSE);

 }
}

}

So if using validators and a normal OK button, you may not even need to write any code
for handling dialog dismissal.

If you load your dialog from a resource file, you'll need to iterate through the controls
setting validators, since validators can't be specified in a dialog resource.

wxExpr overview

wxExpr is a C++ class reading and writing a subset of Prolog-like syntax, supporting
objects attribute/value pairs.

wxExpr can be used to develop programs with readable and robust data files. Within

CHAPTER 7

1106

wxWindows itself, it is used to parse the .wxr dialog resource files.

History of wxExpr

During the development of the tool Hardy within the AIAI, a need arose for a data file
format for C++ that was easy for both humans and programs to read, was robust in the
face of fast-moving software development, and that provided some compatibility with AI
languages such as Prolog and LISP.

The result was the wxExpr library (formerly called PrologIO), which is able to read and
write a Prolog-like attribute-value syntax, and is additionally capable of writing LISP
syntax for no extra programming effort. The advantages of such a library are as follows:

1. The data files are readable by humans;
2. I/O routines are easier to write and debug compared with using binary files;
3. the files are robust: unrecognised data will just be ignored by the application
4. Inbuilt hashing gives a random access capability, useful for when linking up C++

objects as data is read in;
5. Prolog and LISP programs can load the files using a single command.

The library was extended to use the ability to read and write Prolog-like structures for
remote procedure call (RPC) communication. The next two sections outline the two main
ways the library can be used.

wxExpr for data file manipulation

The fact that the output is in Prolog syntax is irrelevant for most programmers, who just
need a reasonable I/O facility. Typical output looks like this:

diagram_definition(type = "Spirit Belief Network").

node_definition(type = "Model",
 image_type = "Diamond",
 attribute_for_label = "name",
 attribute_for_status_line = "label",
 colour = "CYAN",
 default_width = 120,
 default_height = 80,
 text_size = 10,
 can_resize = 1,
 has_hypertext_item = 1,
 attributes = ["name", "combining_function", "level_of_belief"]).

arc_definition(type = "Potentially Confirming",
 image_type = "Spline",
 arrow_type = "End",
 line_style = "Solid",
 width = 1,
 segmentable = 0,
 attribute_for_label = "label",
 attribute_for_status_line = "label",
 colour = "BLACK",

CHAPTER 7

1107

 text_size = 10,
 has_hypertext_item = 1,
 can_connect_to = ["Evidence", "Cluster", "Model", "Evidence",
"Evidence", "Cluster"],
 can_connect_from = ["Data", "Evidence", "Cluster", "Evidence",
"Data", "Cluster"]).

This is substantially easier to read and debug than a series of numbers and strings.

Note the object-oriented style: a file comprises a series of clauses. Each clause is an
object with a functor or object name, followed by a list of attribute-value pairs enclosed in
parentheses, and finished with a full stop. Each attribute value may be a string, a word
(no quotes), an integer, a real number, or a list with potentially recursive elements.

The way that the facility is used by an application to read in a file is as follows:

1. The application creates a wxExprDatabase instance.
2. The application tells the database to read in the entire file.
3. The application searches the database for objects it requires, decomposing the

objects using the wxExpr API. The database may be hashed, allowing rapid
linking-up of application data.

4. The application deletes or clears the wxExprDatabase.

Writing a file is just as easy:

1. The application creates a wxExprDatabase instance.
2. The application adds objects to the database using the API.
3. The application tells the database to write out the entire database, in Prolog or

LISP notation.
4. The application deletes or clears the wxExprDatabase.

To use the library, include "wxexpr.h".

wxExpr compilation

For UNIX compilation, ensure that YACC and LEX or FLEX are on your system. Check
that the makefile uses the correct programs: a common error is to compile y_tab.c with a
C++ compiler. Edit the CCLEX variable in make.env to specify a C compiler. Also, do not
attempt to compile lex_yy.c since it is included by y_tab.c.

For DOS compilation, the simplest thing is to copy dosyacc.c to y_tab.c, and doslex.c to
lex_yy.c. It is y_tab.c that must be compiled (lex_yy.c is included by y_tab.c) so if adding
source files to a project file, ONLY add y_tab.c plus the .cc files. If you wish to alter the
parser, you will need YACC and FLEX on DOS.

The DOS tools are available at the AIAI ftp site, in the tools directory. Note that for FLEX
installation, you need to copy flex.skl into the directory c:/lib.

If you are using Borland C++ and wish to regenerate lex_yy.c and y_tab.c you need to
generate lex_yy.c with FLEX and then comment out the 'malloc' and 'free' prototypes in

CHAPTER 7

1108

lex_yy.c. It will compile with lots of warnings. If you get an undefined _PROIO_YYWRAP
symbol when you link, you need to remove USE_DEFINE from the makefile and
recompile. This is because the parser.y file has a choice of defining this symbol as a
function or as a define, depending on what the version of FLEX expects. See the bottom
of parser.y, and if necessary edit it to make it compile in the opposite way to the current
compilation.

To test out wxExpr compile the test program (samples/wxexpr/wxexpr.exe), and try
loading test.exp into the test program. Then save it to another file. If the second is
identical to the first, wxExpr is in a working state.

Bugs

These are the known bugs:

1. Functors are permissable only in the main clause (object). Therefore nesting of
structures must be done using lists, not predicates as in Prolog.

2. There is a limit to the size of strings read in (about 5000 bytes).

Using wxExpr

This section is a brief introduction to using the wxExpr package.

First, some terminology. A wxExprDatabase is a list of clauses, each of which
represents an object or record which needs to be saved to a file. A clause has a functor
(name), and a list of attributes, each of which has a value. Attributes may take the
following types of value: string, word, integer, floating point number, and list. A list can
itself contain any type, allowing for nested data structures.

Consider the following code.

wxExprDatabase db;

wxExpr *my_clause = new wxExpr("object");
my_clause->AddAttributeValue("id", (long)1);
my_clause->AddAttributeValueString("name", "Julian Smart");
db.Append(my_clause);

ofstream file("my_file");
db.Write(file);

This creates a database, constructs a clause, adds it to the database, and writes the
whole database to a file. The file it produces looks like this:

object(id = 1,
 name = "Julian Smart").

To read the database back in, the following will work:

wxExprDatabase db;

CHAPTER 7

1109

db.Read("my_file");

db.BeginFind();

wxExpr *my_clause = db.FindClauseByFunctor("object");
int id = 0;
wxString name = "None found";

my_clause->GetAttributeValue("id", id);
my_clause->GetAttributeValue("name", name);

cout << "Id is " << id << ", name is " << name << "\n";

Note the setting of defaults before attempting to retrieve attribute values, since they may
not be found.

wxGrid classes overview

wxGrid is a class for displaying and editing tabular information.

To use wxGrid, include the wxgrid.h header file and link with the wxGrid library. Create a
wxGrid object, or, if you need to override some default behaviour, create an object of a
class derived from wxGrid. You need to call CreateGrid before there are any cells in the
grid.

All row and column positions start from zero, and dimensions are in pixels.

If you make changes to row or column dimensions, call UpdateDimensions and then
AdjustScrollbars. If you make changes to the grid appearance (such as a change of cell
background colour or font), call Refresh for the changes to be shown.

Example

The following fragment is taken from the file samples/grid/test.cpp. Note the call to
UpdateDimensions, which is required if the application has changed any dimensions
such as column width or row height. You may also need to call AdjustScrollbars. In this
case, AdjustScrollbars isn't necessary because it will be called by wxGrid::OnSize which
is invoked when the window is first displayed.

 // Make a grid
 frame->grid = new wxGrid(frame, 0, 0, 400, 400);

 frame->grid->CreateGrid(10, 8);
 frame->grid->SetColumnWidth(3, 200);
 frame->grid->SetRowHeight(4, 45);
 frame->grid->SetCellValue("First cell", 0, 0);
 frame->grid->SetCellValue("Another cell", 1, 1);
 frame->grid->SetCellValue("Yet another cell", 2, 2);
 frame->grid->SetCellTextFont(wxTheFontList->FindOrCreateFont(12,
wxROMAN, wxITALIC, wxNORMAL), 0, 0);
 frame->grid->SetCellTextColour(*wxRED, 1, 1);
 frame->grid->SetCellBackgroundColour(*wxCYAN, 2, 2);

CHAPTER 7

1110

 frame->grid->UpdateDimensions();

Multithreading overview

Classes: wxThread (p. 849), wxMutex (p. 541), wxCriticalSection (p. 131), wxCondition
(p. 115)

wxWindows provides a complete set of classes encapsulating objects necessary in
multithreaded (MT) programs: the thread (p. 849) class itself and different
synchronization objects: mutexes (p. 541) and critical sections (p. 131) with conditions
(p. 115).

These classes will hopefully make writing MT programs easier and they also provide
some extra error checking (compared to the native (be it Win32 or Posix) thread API),
however it is still an untrivial undertaking especially for large projects. Before starting an
MT application (or starting to add MT features to an existing one) it is worth asking
oneself if there is no easier and safer way to implement the same functionality. Of
course, in some situations threads really make sense (classical example is a server
application which launches a new thread for each new client), but in others it might be a
very poor choice (example: launching a separate thread when doing a long computation
to show a progress dialog). Other implementation choices are available: for the progress
dialog example it is far better to do the calculations in the idle handler (p. 394) or call
wxYield() (p. 999)periodically to update the screen.

If you do decide to use threads in your application, it is strongly recommended that no
more than one thread calls GUI functions. The thread sample shows that it is possible
for many different threads to call GUI functions at once (all the threads created in the
sample access GUI), but it is a very poor design choice for anything except an example.
The design which uses one GUI thread and several worker threads which communicate
with the main one using events is much more robust and will undoubtedly save you
countless problems (example: under Win32 a thread can only access GDI objects such
as pens, brushes, &c created by itself and not by the other threads).

Final note: in the current release of wxWindows, there are no specific facilities for
communicating between the threads. However, the usual ProcessEvent() (p. 243)
function may be used for thread communication too - but you should provide your own
synchronisation mechanism if you use it (e.g. just use a critical section before sending a
message) because there is no built-in synchronisation.

File classes and functions overview

Classes: wxFile (p. 257), wxTempFile (p. 818), wxTextFile (p. 844)

Functions: see file functions (p. 964).

wxWindows provides some functions and classes to facilitate working with files. As
usual, the accent is put on cross-platform features which explains, for example, the
wxTextFile (p. 844) class which may be used to convert between different types of text
files (DOS/Unix/Mac).

wxFile may be used for low-level IO. It contains all usual functions to work with files

CHAPTER 7

1111

(opening/closing, reading/writing, seeking...) but, compared to using standard C
functions, brings error checking (in case of an error a message is logged using wxLog
(p. 479) facilities) and closes the file automatically in destructor which may be quite
convenient.

wxTempFile is a very small file designed to make replacing the files contents safer - see
its documentation (p. 818) for more details.

wxTextFile is a general purpose class for working with small text files on line by line
basis. It is especially well suited for working with configuration files and program source
files. It can be also used to work with files with "non native" line termination characters
and write them as "native" files if needed (in fact, the files may be written in any format).

Internationalization

Although internationalization (i18n for short) of an application involves far more than just
translating its text messages to another message (date, time and currency formats need
changing too, some languages are written left to right and others right to left, character
encoding may differ and many other things may need changing too), it is a necessary
first step. wxWindows provides facilities for the messages translation with its wxLocale
(p. 476) class and is itself fully translated into several languages. Please consult
wxWindows home page for the most up-to-date translations - and if you translate it into
one of the languages not done yet, your translations would be gratefully accepted for
inclusion into the future versions of the library!

The wxWindows approach to i18n closely follows GNU gettext package. wxWindows
uses the message catalogs which are binary compatible with gettext catalogs and this
allows to use all of the programs in this package to work with them. But note that no
additional libraries are needed during the run-time, however, so you have only the
message catalogs to distribute and nothing else.

During program development you will need the gettext package for working with
message catalogs. Warning: gettext versions < 0.10 are known to be buggy, so you
should find a later version of it!

There are two kinds of message catalogs: source catalogs which are text files with
extension .po and binary catalogs which are created from the source ones with msgfmt
program (part fo gettext package) and have the extension .mo. Only the binary files are
needed during program execution.

The program i18n involves several steps:

1. Translating the strings in the program text using wxGetTranslation (p. 972) or
equivalently the _() macro.

2. Extracting the strings to be translated from the program: this uses the work done
in the previous step because xgettext program used for string extraction may be
told (using its -k option) to recognise _() and wxGetTranslation and extract all
strings inside the calls to these functions. Alternatively, you may use -a option to
extract all the strings, but it will usually result in many strings being found which
don't have to be translated at all. This will create a text message catalog - a .po
file.

CHAPTER 7

1112

3. Translating the strings extracted in the previous step to other language(s). It
involves editing the .po file.

4. Compiling the .po file into .mo file to be used by the program.
5. Setting the appropriate locale in your program to use the strings for the given

language: see wxLocale (p. 476).

See also the GNU gettext documentation linked from docs/html/index.htm in your
wxWindows distribution.

Font encoding overview

wxWindows has support for multiple font encodings starting from release 2.2. By
encoding we mean here the mapping between the character codes and the letters.
Probably the most well-known encoding is (7 bit) ASCII one which is used almost
universally now to represent the letters of the English alphabet and some other common
characters. However, it is not enough to represent the letters of foreign alphabetes and
here other encodings come into play. Please note that we will only discuss 8-bit fonts
here and not Unicode (p. 1036).

Font encoding support is assured by several classes: wxFont (p. 285) itself, but also
wxFontEnumerator (p. 296) and wxFontMapper (p. 299). wxFont encoding support is
reflected by a (new) constructor parameter encoding which takes one of the following
values (elements of enumeration type wxFontEncoding):

wxFONTENCODING_SYSTEM The default encoding of the underlying
operating system (notice that this might
be a "foreign" encoding for foreign
versions of Windows 9x/NT).

wxFONTENCODING_DEFAULT The applications default encoding as
returned by wxFont::GetDefaultEncoding
(p. 287). On program startup, the
applications default encoding is the same
as wxFONTENCODING_SYSTEM, but
may be changed to make all the fonts
created later to use it (by default).

wxFONTENCODING_ISO8859_1..15 ISO8859 family encodings which are
usually used by all non-Microsoft
operating systems

wxFONTENCODING_KOI8 Standard cyrillic encoding for the Internet
(but see also
wxFONTENCODING_ISO8859_5 and
wxFONTENCODING_CP1251)

wxFONTENCODING_CP1250 Microsoft analogue of ISO8859-2

wxFONTENCODING_CP1251 Microsoft analogue of ISO8859-5

CHAPTER 7

1113

wxFONTENCODING_CP1252 Microsoft analogue of ISO8859-1

As you may see, Microsofts encoding partly mirror the standard ISO8859 ones, but there
are (minor) differences even between ISO8859-1 (Latin1, ISO encoding for Western
Europe) and CP1251 (WinLatin1, standard code page for English versions of Windows)
and there are more of them for other encodings.

The situation is particularly complicated with cyrillic encodings for which (more than)
three incompatible encodings exist: KOI8 (the old standard, widely used on the Internet),
ISO8859-5 (ISO standard for cyrillic) and CP1251 (WinCyrillic).

This abundance of (incompatible) encodigns should make it clear that using encodings is
less easy than it might seem. The problems arise both from the fact that the standard
encodigns for the given language (say Russian, which is written in cyrillic) are different
on different platforms and because the fonts in the given encoding might just not be
installed (this is especially a problem with Unix, or, in general, not Win32, systems).

To allow to see clearer in this, wxFontEnumerator (p. 296) class may be used to
enumerate both all available encodings and to find the facename(s) in which the given
encoding exists. If you can find the font in the correct encoding with wxFontEnumerator
then your troubles are over, but, unfortunately, sometimes this is not enough. For
example, there is no standard way (I know of, please tell me if you do!) to find a font on a
Windows system for KOI8 encoding (only for WinCyrillic one which is quite different), so
wxFontEnumerator (p. 296) will never return one, even if the user has installed a KOI8
font on his system.

To solve this problem, a wxFontMapper (p. 299) class is provided. This class stores the
mapping between the encodings and the font face names which support them in
wxConfig (p. 1035) object. Of course, it would be fairly useless if it tried to determine
these mappings by itself, so, instead, it (optionally) ask the user and remember his
answers so that the next time the program will automatically choose the correct font.

All these topics are illustrated by the font sample (p. 1025), please refer to it and the
documentation of the classes mentioned here for further explanations.

Streams in wxWindows overview

Classes: wxStreamBase (p. 754), wxStreamBuffer (p. 755), wxInputStream (p. 425),
wxOutputStream (p. 559), wxFilterInputStream (p. 283), wxFilterOutputStream (p. 284)

Purpose of wxStream

We had troubles with standard C++ streams on several platforms: they react quite well in
most cases, but in the multi-threaded case, for example, they have many problems.
Some Borland Compilers refuse to work at all with them and using iostreams on Linux
makes writing programs, that are binary compatible across different Linux distributions,
impossible.

Therefore, wxStreams have been added to wxWindows because an application should
compile and run on all supported platforms and we don't want users to depend on

CHAPTER 7

1114

release X.XX of libg++ or some other compiler to run the program.

wxStreams is divided in two main parts:

1. the core: wxStreamBase, wxStreamBuffer, wxInputStream, wxOutputStream,
wxFilterIn/OutputStream

2. the "IO" classes: wxSocketIn/OutputStream, wxDataIn/OutputStream,
wxFileIn/OutputStream, ...

wxStreamBase is the base definition of a stream. It defines, for example, the API of
OnSysRead, OnSysWrite, OnSysSeek and OnSysTell. These functions are are really
implemented by the "IO" classes. wxInputStream and wxOutputStream inherit from it.

wxStreamBuffer is a cache manager for wxStreamBase (it manages a stream buffer
linked to a stream). One stream can have multiple stream buffers but one stream have
always one autoinitialized stream buffer.

wxInputStream is the base class for read-only streams. It implements Read, SeekI (I for
Input), and all read or IO generic related functions. wxOutputStream does the same
thing but it is for write-only streams.

wxFilterIn/OutputStream is base class definition for stream filtering. I mean by stream
filtering, a stream which does no syscall but filter datas which are passed to it and then
pass them to another stream. For example, wxZLibInputStream is an inline stream
decompressor.

The "IO" classes implements the specific parts of the stream. This could be nothing in
the case of wxMemoryIn/OutputStream which bases itself on wxStreamBuffer. This
could also be a simple link to the a true syscall (for example read(...), write(...)).

Generic usage: an example

Usage is simple. We can take the example of wxFileInputStream and here is some
sample code:

 ...
 // The constructor initializes the stream buffer and open the file
descriptor
 // associated to the name of the file.
 wxFileInputStream in_stream("the_file_to_be_read");

 // Ok, read some bytes ... nb_datas is expressed in bytes.
 in_stream.Read(data, nb_datas);
 if (in_stream.LastError() != wxStream_NOERROR) {
 // Oh oh, something bad happens.
 // For a complete list, look into the documentation at wxStreamBase.
 }

 // You can also inline all like this.
 if (in_stream.Read(data, nb_datas).LastError() != wxStream_NOERROR) {
 // Do something.
 }

CHAPTER 7

1115

 // You can also get the last number of bytes REALLY put into the
buffer.
 size_t really_read = in_stream.LastRead();

 // Ok, moves to the beginning of the stream. SeekI returns the last
position
 // in the stream counted from the beginning.
 off_t old_position = in_stream.SeekI(0, wxFromBeginning);

 // What is my current position ?
 off_t position = in_stream.TellI();

 // wxFileInputStream will close the file descriptor on the
destruction.

Compatibility with C++ streams

As I said previously, we could add a filter stream so it takes an istream argument and
builds a wxInputStream from it: I don't think it should be difficult to implement it and it
may be available in the fix of wxWindows 2.0.

Notes on using the reference

In the descriptions of the wxWindows classes and their member functions, note that
descriptions of inherited member functions are not duplicated in derived classes unless
their behaviour is different. So in using a class such as wxScrolledWindow, be aware
that wxWindow functions may be relevant.

Note also that arguments with default values may be omitted from a function call, for
brevity. Size and position arguments may usually be given a value of -1 (the default), in
which case wxWindows will choose a suitable value.

Most strings are returned as wxString objects. However, for remaining char * return
values, the strings are allocated and deallocated by wxWindows. Therefore, return
values should always be copied for long-term use, especially since the same buffer is
often used by wxWindows.

The member functions are given in alphabetical order except for constructors and
destructors which appear first.

Startup tips overview

Many "modern" Windows programs have a feature (some would say annoyance) of
presenting the user tips at program startup. While this is probably useless to the
advanced users of the program, the experience shows that the tips may be quite helpful
for the novices and so more and more programs now do this.

For a wxWindows programmer, implementing this feature is extremely easy. To show a
tip, it's enough to just call wxShowTip (p. 977) function like this:

 if (...show tips at startup?...)
 {

CHAPTER 7

1116

 wxTipProvider *tipProvider =
wxCreateFileTipProvider("tips.txt", 0);
 wxShowTip(windowParent, tipProvider);
 delete tipProvider;
 }

Of course, you need to get the text of the tips from somewhere - in the example above,
the text is supposed to be in the file tips.txt from where it's read by the tip provider. The
tip provider is just an object of a class deriving from wxTipProvider (p. 860). It has to
implement one pure virtual function of the base class: GetTip (p. 860). In the case of the
tip provider created by wxCreateFileTipProvider (p. 972), the tips are just the lines of the
text file.

If you want to implement your own tip provider (for example, if you wish to hardcode the
tips inside your program), you just have to derive another class from wxTipProvider and
pass a pointer to the object of this class to wxShowTip - then you don't need
wxCreateFileTipProvider at all.

Finally, you will probably want to save somewhere the index of the tip last shown - so
that the program doesn't always show the same tip on startup. As you also need to
remember whether to show tips or not (you shouldn't do it if the user unchecked "Show
tips on startup" checkbox in the dialog), you will probably want to store both the index of
the last shown tip (as returned by wxTipProvider::GetCurrentTip (p. 861) and the flag
telling whether to show the tips at startup at all.

File Systems

The wxHTML library uses a virtual file systems mechanism similar to the one used in
Midnight Commander, Dos Navigator, FAR or almost any modern file manager. (Do you
remember? You can press enter on ZIP file and its contents is displayed as if it were a
local directory...)

Classes

Three classes are used in order to provide full VFS:

• The wxFSFile (p. 311) class provides information on opened file (name, input
stream, mime type and anchor).

• The wxFileSystem (p. 275) class is the interface. Its main methods are
ChangePathTo() and OpenFile(). This class is most often used by the end user.

• The wxFileSystemHandler (p. 277) is the core if VFS mechanism. You can
derive your own handler and pass it to wxFileSystem's AddHandler() method. In
the new handler you only need to overwrite OpenFile() and CanOpen() methods.

Locations

Locations (aka filenames aka addresses) are constructed from 4 parts:

• protocol - handler can recognize if it is able to open a file by checking its
protocol. Examples are "http", "file" or "ftp".

• right location - is the name of file within the protocol. In

CHAPTER 7

1117

"http://www.wxwindows.org/index.html" the right location is
"//www.wxwindows.org/index.html".

• anchor - anchor is optional and is usually not present. In "index.htm#chapter2"
the anchor is "chapter2".

• left location - this is usually an empty string. It is used by 'local' protocols such
as ZIP. See Combined Protocols paragraph for details.

Combined Protocols

Left location pretends protocol in URL string. It's not used by global protocols like HTTP
but it's used by local ones - for example you can see this address:

file:archives/cpp_doc.zip#zip:reference/fopen.htm#syntax

In this example, protocol is "zip", left location is "reference/fopen.htm", anchor is "syntax"
and right location is "file:archives/cpp_doc.zip". It is used by zip handler to determine in
what file this particular zip VFS is stored.

In fact there are two protocols used in this example: zip and file. You can construct even
more complicated addresses like this one:

http://www.archives.org/myarchive.zip#zip:local/docs/cpp/stdio.zip#zip:index.htm

In this example you access zip VFS stdio.zip stored in another zip (myarchive.zip) which
is at WWW.

File Systems Included in wxHTML

1. Local files
2. HTTP protocol
3. FTP protocol
4. .ZIP archives

1

wxHTML Notes

This addendum is written by Vaclav Slavik, the author of the wxHTML library.

The wxHTML library provides classes for parsing and displaying HTML.

(It is not intended to be a high-end HTML browser. If you're looking for something like
that try http://www.mozilla.org (http://www.mozilla.org) - there's a chance you'll
be able to make their widget wxWindows-compatible. I'm sure everyone will enjoy your
work in that case...)

wxHTML can be used as a generic rich text viewer - for example to display a nice About
Box (like those of GNOME apps) or to display the result of database searching. There is
a wxFileSystem (p. 275) class which allows you to use your own virtual file systems.

wxHtmlWindow supports tag handlers. This means that you can easily extend wxHtml
library with new, unsupported tags. Not only that, you can even use your own application
specific tags! See lib/mod_*.cpp files for details.

There is a generic (non-wxHtmlWindow) wxHtmlParser class.

wxHTML quick start

Displaying HMTL

First of all, you must include <wx/wxhtml.h>.

Class wxHtmlWindow (p. 382) (derived from wxScrolledWindow) is used to display
HTML documents. It has two important methods: LoadPage (p. 384) and SetPage (p.
386). LoadPage loads and displays HTML file while SetPage displays directly the
passed string. See the example:

 mywin -> LoadPage("test.htm");
 mywin -> SetPage("<html><body>"
 "<h1>Error</h1>"

 "Some error occured :-H)"
 "</body></hmtl>");

I think the difference is quite clear.

Displaying Help

See wxHtmlHelpController (p. 361).

Setting up wxHtmlWindow

Because wxHtmlWindow is derived from wxScrolledWindow and not from wxFrame, it
doesn't have visible frame. But the user usually want to see the title of HTML page
displayed somewhere and frame's titlebar is ideal place for it.

wxHtmlWindow provides 2 methods in order to handle this: SetRelatedFrame (p. 386)

CHAPTER 8

2

and SetRelatedStatusBar (p. 387). See the example:

 html = new wxHtmlWindow(this);
 html -> SetRelatedFrame(this, "HTML : %%s");
 html -> SetRelatedStatusBar(0);

The first command associates html object with it's parent frame (this points to wxFrame
object there) and sets format of title. Page title "Hello, world!" will be displayed as "HTML
: Hello, world!" in this example.

The second command sets which frame's status bar should be used to display browser's
messages (such as "Loading..." or "Done" or hypertext links).

Customizing wxHtmlWindow

You can customize wxHtmlWindow by setting font size, font face and borders (space
between border of window and displayed HTML). Related functions:

• SetFonts (p. 385)
• SetBorders (p. 385)
• ReadCustomization (p. 384)
• WriteCustomization (p. 387)

The last two functions are used to store user customization info wxConfig stuff (for
example in the registry under Windows, or in a dotfile under Unix).

HTML Printing

The wxHTML library provides printing facilities with several levels of complexity.

The easiest way to print an HTML document is to use wxHtmlEasyPrinting class (p.
357). It lets you print HTML documents with only one command and you don't have to
worry about deriving from the wxPrintout class at all. It is only a simple wrapper around
the wxHtmlPrintout (p. 374), normal wxWindows printout class.

And finally there is the low level class wxHtmlDCRenderer (p. 354) which you can use to
render HTML into a rectangular area on any DC. It supports rendering into multiple
rectangles with the same width. (The most common use of this is placing one rectangle
on each page or printing into two columns.)

Help Files Format

wxHTML library uses a reduced version of MS HTML Workshop format. Tex2RTF can
produce these files when generating HTML, if you set htmlWorkshopFiles to true in
your tex2rtf.ini file.

(See wxHtmlHelpController (p. 361) for help controller description.)

A book consists of three files : header file, contents file and index file.

Header file (.hhp)

CHAPTER 8

3

Header file must contain these lines (and may contain additional lines which are ignored)
:

Contents file=@filename.hhc@
Index file=@filename.hhk@
Title=@title of your book@
Default topic=@default page to be displayed.htm@

All filenames (including the Default topic) are relative to the location of .hhp file.

For larger projects I recommend storing everything but .hhp file into one .zip archive.
(The contents file would then be referred to as myhelp.zip#zip:contents.hhc)

Contents file (.hhc)

Contents file has HTML syntax and it can be parsed by regular HTML parser. It contains
exactly one list (.... statement):

 <object>
 <param name="Name" value="@topic name@">

 <param name="ID" value=@numeric_id@>
 <param name="Local" value="@filename.htm@">

 </object>
 <object>
 <param name="Name" value="@topic name@">

 <param name="ID" value=@numeric_id@>
 <param name="Local" value="@filename.htm@">

 </object>
 ...

You can modify value attributes of param tags. topic name is name of chapter/topic as is
displayed in contents, filename.htm is HTML page name (relative to .hhp file) and
numeric_id is optional - it is used only when you use wxHtmlHelpController::Display(int)
(p. 362)

Items in the list may be nested - one statement may contain a sub-statement:

 <object>
 <param name="Name" value="Top node">

 <param name="Local" value="top.htm">
 </object>

 <object>
 <param name="Name" value="subnode in topnode">

 <param name="Local" value="subnode1.htm">
 </object>

 ...

CHAPTER 8

4

 <object>
 <param name="Name" value="Another Top">

 <param name="Local" value="top2.htm">
 </object>
 ...

Index file (.hhk)

Index files have same format as contents file except that ID params are ignored and
sublists are not allowed.

Input Filters

The wxHTML library provides a mechanism for reading and displaying files of many
different file formats.

wxHtmlWindow::LoadPage (p. 384) can load not only HTML files but any known file. To
make a file type known to wxHtmlWindow you must create a wxHtmlFilter (p. 360) filter
and register it using wxHtmlWindow::AddFilter (p. 382).

Cells and Containers

This article describes mechanism used by wxHtmlWinParser (p. 387) and
wxHtmlWindow (p. 382) to parse and display HTML documents.

Cells

You can divide any text (or HTML) into small fragments. Let's call these fragments cells.
Cell is for example one word, horizontal line, image or any other part of document. Each
cell has width and height (except special "magic" cells with zero dimensions - e.g. colour
changers or font changers).

See wxHtmlCell (p. 343).

Containers

Container is kind of cell that may contain sub-cells. Its size depends on number and
sizes of its sub-cells (and also depends on width of window).

See wxHtmlContainerCell (p. 349), wxHtmlCell::Layout (p. 347).

Using Containers in Tag Handler

wxHtmlWinParser (p. 387) provides a user-friendly way of managing containers. It's
based on the idea of opening and closing containers.

Use OpenContainer (p. 391) to open new a container within an already opened

CHAPTER 8

5

container. This new container is a sub-container of the old one. (If you want to create a
new container with the same depth level you can call CloseContainer();
OpenContainer();.)

Use CloseContaier (p. 388) to close the container. This doesn't create a new container
with same depth level but it returns "control" to the parent container.

It's clear there must be same number of calls to OpenContainer as to CloseContainer...

Example

This code creates a new paragraph (container at same depth level) with "Hello, world!":

m_WParser -> CloseContainer();
c = m_WParser -> OpenContainer();

m_WParser -> AddWord("Hello, ");
m_WParser -> AddWord("world!");

m_WParser -> CloseContainer();
m_WParser -> OpenContainer();

You can see that there was opened container before running the code. We closed it,
created our own container, then closed our container and opened new container. The
result was that we had same depth level after executing. This is general rule that should
be followed by tag handlers: leave depth level of containers unmodified (in other words,
number of OpenContainer and CloseContainer calls should be same within HandleTag
(p. 379)'s body).

Tag Handlers

The wxHTML library provides architecture of pluggable tag handlers. Tag handler is
class that understands particular HTML tag (or tags) and is able to interpret it.

wxHtmlWinParser (p. 387) has static table of modules. Each module contains one or
more tag handlers. Each time a new wxHtmlWinParser object is constructed all modules
are scanned and handlers are added to wxHtmlParser's list of available handlers (note:
wxHtmlParser's list is non-static).

How it works

Common tag handler's HandleTag (p. 379) method works in four steps:

1. Save state of parent parser into local variables
2. Change parser state according to tag's params
3. Parse text between the tag and paired ending tag (if present)
4. Restore original parser state

See wxHtmlWinParser (p. 387) for methods for modifying parser's state. In general you
can do things like opening/closing containers, changing colors, fonts etc.

CHAPTER 8

6

Providing own tag handlers

You should create new .cpp file and place following lines into it:

#include <mod_templ.h>
#include <forcelink.h>
FORCE_LINK_ME(yourmodulefilenamewithoutcpp)

Then you must define handlers and one module.

Tag handlers

The handler is derived from wxHtmlWinTagHandler (p. 392)(or directly from
wxHtmlTagHandler (p. 379))

You can use set of macros to define the handler (see src/mod_*.cpp files for details).
Handler definition must start with TAG_HANDLER_BEGIN macro and end with
TAG_HANDLER_END macro. I strongly recommend to have a look at
include/wxhtml/mod_templ.h file. Otherwise you won't understand the structure of
macros. See macros reference:

TAG_HANDLER_BEGIN(name, tags)

Starts handler definition. name is handler identifier (in fact part of class name), tags is
string containing list of tags supported by this handler (in uppercase). This macro derives
new class from wxHtmlWinTagHandler and implements it's GetSupportedTags (p. 379)
method.

Example: TAG_HANDLER_BEGIN(FONTS, "B,I,U,T")

TAG_HANDLER_VARS

This macro starts block of variables definitions. (Variables are identical to class
attributes.) Example:

TAG_HANDLER_BEGIN(VARS_ONLY, "CRAZYTAG")
 TAG_HANDLER_VARS
 int my_int_var;

wxString something_else;
TAG_HANDLER_END(VARS_ONLY)

This macro is used only in rare cases.

TAG_HANDLER_CONSTR(name)

This macro supplies object constructor. name is same name as the one from
TAG_HANDLER_BEGIN macro. Body of constructor follow after this macro (you must
use and). Example:

TAG_HANDLER_BEGIN(VARS2, "CRAZYTAG")
 TAG_HANDLER_VARS
 int my_int_var;

CHAPTER 8

7

 TAG_HANDLER_CONSTR(vars2)
 { // !!!!!!

 my_int_var = 666;
} // !!!!!!

TAG_HANDLER_END(VARS2)

Never used in wxHTML :-)

TAG_HANDLER_PROC(varib)

This is very important macro. It defines HandleTag (p. 379)method. varib is name of
parameter passed to the method, usuallytag. Body of method follows after this macro.
Note than you must use and ! Example:

TAG_HANDLER_BEGIN(TITLE, "TITLE")
 TAG_HANDLER_PROC(tag)
 {

 printf("TITLE found...\n");
}

TAG_HANDLER_END(TITLE)

TAG_HANDLER_END(name)

Ends definition of tag handler name.

Tags Modules

You can use set of 3 macros TAGS_MODULE_BEGIN, TAGS_MODULE_ADD and
TAGS_MODULE_END to inherit new module fromwxHtmlTagsModule (p. 380) and to
create instance of it. See macros reference:

TAGS_MODULE_BEGIN(modname)

Begins module definition. modname is part of class name and must be unique.

TAGS_MODULE_ADD(name)

Adds the handler to this module. name is the identifier from TAG_HANDLER_BEGIN.

TAGS_MODULE_END(modname)

Ends the definition of module.

Example:

TAGS_MODULE_BEGIN(Examples)
 TAGS_MODULE_ADD(VARS_ONLY)
 TAGS_MODULE_ADD(VARS2)
 TAGS_MODULE_ADD(TITLE)
TAGS_MODULE_END(Examples)

Tags supported by wxHTML

CHAPTER 8

8

wxHTML is not full implementation of HTML standard. Instead, it supports most common
tags so that it is possible to display simple HTML documents with it. (For example it
works fine with pages created in Netscape Composer or generated by tex2rtf).

Following tables list all tags known to wxHTML, together with supported parameters. A
tag has general form of <tagname param_1 param_2 ... param_n> where
param_i is either paramname="paramvalue" or paramname=paramvalue - these
two are equivalent. Unless stated otherwise, wxHTML is case-insensitive.

Table of common parameter values

We will use these substitutions in tags descriptions:

[alignment] CENTER
 LEFT
 RIGHT

[v_alignment] TOP
 BOTTOM
 CENTER

[color] #nnnnnn
 where n is hexadecimal digit

[fontsize] -2
 -1
 +0
 +1
 +2
 +3
 +4

[pixels] integer value that represents dimension in pixels

[percent] i%
 where i is integer

[url] an URL

[string] text string

[coords] c(1),c(2),c(3),...,c(n)
 where c(i) is integer

Document layout and structure

P ALIGN=[alignment]

BR ALIGN=[alignment]

DIV ALIGN=[alignment]

CENTER

CHAPTER 8

9

BLOCKQUOTE

TITLE

BODY TEXT=[color]
 LINK=[color]
 BGCOLOR=[color]

HR ALIGN=[alignment]
 SIZE=[pixels]
 WIDTH=[percent]
 WIDTH=[pixels]

FONT COLOR=[color]
 SIZE=[fontsize]

U

B

I

TT

H1

H2

H3

H4

H5

H6

A NAME=[string]
 HREF=[url]

PRE

LI

UL

OL

TABLE ALIGN=[alignment]
 WIDTH=[percent]
 WIDTH=[pixels]
 BORDER=[pixels]
 VALIGN=[v_alignment]
 BGCOLOR=[color]
 CELLSPACING=[pixels]
 CELLPADDING=[pixels]

CHAPTER 8

10

TR ALIGN=[alignment]
 VALIGN=[v_alignment]
 BGCOLOR=[color]

TH ALIGN=[alignment]
 VALIGN=[v_alignment]
 BGCOLOR=[color]
 WIDTH=[percent]
 WIDTH=[pixels]
 COLSPAN=[pixels]
 ROWSPAN=[pixels]

TD ALIGN=[alignment]
 VALIGN=[v_alignment]
 BGCOLOR=[color]
 WIDTH=[percent]
 WIDTH=[pixels]
 COLSPAN=[pixels]
 ROWSPAN=[pixels]

IMG SRC=[url]
 WIDTH=[pixels]
 HEIGHT=[pixels]
 ALIGN=TEXTTOP
 ALIGN=CENTER
 ALIGN=ABSCENTER
 ALIGN=BOTTOM
 USEMAP=[url]

MAP NAME=[string]

AREA SHAPE=POLY
 SHAPE=CIRCLE
 SHAPE=RECT
 COORDS=[coords]
 HREF=[url]

1

wxPython Notes

This addendum is written by Robin Dunn, author of the wxPython wrapper

What is wxPython?

wxPython is a blending of the wxWindows GUI classes and thePython
(http://www.python.org/) programming language.

Python

So what is Python? Go tohttp://www.python.org (http://www.python.org) to learn
more, but in a nutshell Python is an interpreted, interactive, object-oriented programming
language. It is often compared to Tcl, Perl, Scheme or Java.

Python combines remarkable power with very clear syntax. It has modules, classes,
exceptions, very high level dynamic data types, and dynamic typing. There are
interfaces to many system calls and libraries, and new built-in modules are easily written
in C or C++. Python is also usable as an extension language for applications that need a
programmable interface.

Python is copyrighted but freely usable and distributable, even for commercial use.

wxPython

wxPython is a Python package that can be imported at runtime that includes a collection
of Python modules and an extension module (native code). It provides a series of Python
classes that mirror (or shadow) many of the wxWindows GUI classes. This extension
module attempts to mirror the class heiarchy of wxWindows as closely as possble. This
means that there is a wxFrame class in wxPython that looks, smells, tastes and acts
almost the same as the wxFrame class in the C++ version.

wxPython is very versitile. It can be used to create standalone GUI applications, or in
situations where Python is embedded in a C++ application as an internal scripting or
macro language.

Currently wxPython is available for Win32 platforms and the GTK toolkit (wxGTK) on
most Unix/X-windows platforms. The effort to enable wxPython for wxMotif will begin
shortly. See Building Python (p. 2) for details about getting wxPython working for you.

Why use wxPython?

So why would you want to use wxPython over just C++ and wxWindows? Personally I
prefer using Python for everything. I only use C++ when I absolutely have to eek more
performance out of an algorithm, and even then I ususally code it as an extension
module and leave the majority of the program in Python.

Another good thing to use wxPython for is quick prototyping of your wxWindows apps.
With C++ you have to continuously go though the edit-compile-link-run cycle, which can
be quite time consuming. With Python it is only an edit-run cycle. You can easily build an

CHAPTER 9

2

application in a few hours with Python that would normally take a few days or longer with
C++. Converting a wxPython app to a C++/wxWindows app should be a straight forward
task.

Other Python GUIs

There are other GUI solutions out there for Python.

Tkinter

Tkinter is the defacto standard GUI for Python. It is available on nearly every platform
that Python and Tcl/TK are. Why Tcl/Tk? Well because Tkinter is just a wrapper around
Tcl's GUI toolkit, Tk. This has its upsides and its downsides...

The upside is that Tk is a pretty versatile toolkit. It can be made to do a lot of things in a
lot of different environments. It is fairly easy to create new widgets and use them
interchangably in your programs.

The downside is Tcl. When using Tkinter you actually have two separate language
interpreters running, the Python interpreter and the Tcl interpreter for the GUI. Since the
guts of Tcl is mostly about string processing, it is fairly slow as well. (Not too bad on a
fast Pentium II, but you really notice the difference on slower machines.)

It wasn't until the lastest version of Tcl/Tk that native Look and Feel was possible on
non-Motif platforms. This is because Tk usually implements its own widgets (controls)
even when there are native controls available.

Tkinter is a pretty low-level toolkit. You have to do a lot of work (verbose program code)
to do things that would be much simpler with a higher level of abstraction.

PythonWin

PythonWin is an add-on package for Python for the Win32 platform. It includes wrappers
for MFC as well as much of the Win32 API. Because of its foundation, it is very familiar
for programmers who have experience with MFC and the Win32 API. It is obviously not
compatible with other platforms and toolkits. PythonWin is organized as separate
packages and modules so you can use the pieces you need without having to use the
GUI portions.

Others

There are quite a few other GUI modules available for Python, some in active use, some
that havn't been updated for ages. Most are simple wrappers around some C or C++
toolkit or another, and most are not cross-platform compatible. See this link
(http://www.python.org/download/Contributed.html#Graphics) for a
listing of a few of them.

Building wxPython

I used SWIG (http://www.swig.org (http://www.swig.org)) to to create the source

CHAPTER 9

3

code for the extension module. This enabled me to only have to deal with a small
amount of code and only have to bother with the exceptional issues. SWIG takes care of
the rest and generates all the repetative code for me. You don't need SWIG to build the
extension module as all the generated C++ code is included under the src directory.

I added a few minor features to SWIG to control some of the code generation. If you
want to play around with this you will need to get a recent version of SWIG from their
CVS or from a daily build. Seehttp://www.swig.org/ (http://www.swig.org/) for
details.

wxPython is organized as a Python package. This means that the directory containing
the results of the build process should be a subdirectory of a directory on the
PYTHONPATH. (And preferably should be named wxPython.) You can control where the
build process will dump wxPython by setting the TARGETDIR variable for the build utility
(see below).

1. Build wxWindows as described in its BuildCVS.txt file. For Unix systems I run
configure with these flags:

 --with-gtk
 --with-libjpeg
 --without-odbc
 --enable-unicode=no
 --enable-threads=yes
 --enable-socket=yes
 --enable-static=no
 --enable-shared=yes
 --disable-std_iostreams

You can use whatever flags you want, but I know these work.

For Win32 systems I use Visual C++ 6.0, but 5.0 should work also. The build
utility currently does not support any other Win32 compilers.

2. At this point you may want to make an alias or symlink, script, batch file,
whatever on the PATH that invokes
$(WXWIN)/utils/wxPython/distrib/build.py to help simplify matters
somewhat. For example, on my Win32 system I have a file named build.bat in
a directory on the PATH that contains:

python %WXWIN/utils/wxPython/distrib/build.py %1 %2 %3 %4
%5 %6

3. Change into the $(WXWIN)/utils/wxPython/src directory.
4. Type "build -b" to build wxPython and "build -i" to install it, or "build -

bi" to do both steps at once.

The build.py script actually generates a Makefile based on what it finds on your
system and information found in the build.cfg file. If you have troubles building or
you want it built or installed in a different way, take a look at the docstring in
build.py. You are able to to override many configuration options in a file named
build.local.

5. To build and install the add-on modules, change to the appropriate directory

CHAPTER 9

4

under $(WXWIN)/utils/wxPython/modules and run the build utility again.
6. Change to the $(WXWIN)/utils/wxPython/demo directory.
7. Try executing the demo program. For example:

python demo.py

To run it without requiring a console on Win32, you can use thepythonw.exe
version of Python either from the command line or from a shortcut.

Using wxPython

First things first...

I'm not going to try and teach the Python language here. You can do that at the Python
Tutorial (http://www.python.org/doc/tut/tut.html). I'm also going to assume
that you know a bit about wxWindows already, enough to notice the similarities in the
classes used.

Take a look at the following wxPython program. You can find a similar program in the
wxPython/demo directory, named DialogUnits.py. If your Python and wxPython are
properly installed, you should be able to run it by issuing this command:

 python DialogUnits.py

001: ## import all of the wxPython GUI package
002: from wxPython.wx import *
003:
004: ## Create a new frame class, derived from the wxPython Frame.
005: class MyFrame(wxFrame):
006:
007: def __init__(self, parent, id, title):
008: # First, call the base class' __init__ method to create
the frame
009: wxFrame.__init__(self, parent, id, title,
010: wxPoint(100, 100), wxSize(160, 100))
011:
012: # Associate some events with methods of this class
013: EVT_SIZE(self, self.OnSize)
014: EVT_MOVE(self, self.OnMove)
015:
016: # Add a panel and some controls to display the size and
position
017: panel = wxPanel(self, -1)
018: wxStaticText(panel, -1, "Size:",
019: wxDLG_PNT(panel, wxPoint(4, 4)),
wxDefaultSize)
020: wxStaticText(panel, -1, "Pos:",
021: wxDLG_PNT(panel, wxPoint(4, 14)),
wxDefaultSize)
022: self.sizeCtrl = wxTextCtrl(panel, -1, "",
023: wxDLG_PNT(panel, wxPoint(24,

CHAPTER 9

5

4)),
024: wxDLG_SZE(panel, wxSize(36, -
1)),
025: wxTE_READONLY)
026: self.posCtrl = wxTextCtrl(panel, -1, "",
027: wxDLG_PNT(panel, wxPoint(24,
14)),
028: wxDLG_SZE(panel, wxSize(36, -
1)),
029: wxTE_READONLY)
030:
031:
032: # This method is called automatically when the CLOSE event is
033: # sent to this window
034: def OnCloseWindow(self, event):
035: # tell the window to kill itself
036: self.Destroy()
037:
038: # This method is called by the system when the window is
resized,
039: # because of the association above.
040: def OnSize(self, event):
041: size = event.GetSize()
042: self.sizeCtrl.SetValue("%s, %s" % (size.width,
size.height))
043:
044: # tell the event system to continue looking for an event
handler,
045: # so the default handler will get called.
046: event.Skip()
047:
048: # This method is called by the system when the window is
moved,
049: # because of the association above.
050: def OnMove(self, event):
051: pos = event.GetPosition()
052: self.posCtrl.SetValue("%s, %s" % (pos.x, pos.y))
053:
054:
055: # Every wxWindows application must have a class derived from wxApp
056: class MyApp(wxApp):
057:
058: # wxWindows calls this method to initialize the application
059: def OnInit(self):
060:
061: # Create an instance of our customized Frame class
062: frame = MyFrame(NULL, -1, "This is a test")
063: frame.Show(true)
064:
065: # Tell wxWindows that this is our main window
066: self.SetTopWindow(frame)
067:
068: # Return a success flag
069: return true
070:
071:
072: app = MyApp(0) # Create an instance of the application class

CHAPTER 9

6

073: app.MainLoop() # Tell it to start processing events
074:

Things to notice

1. At line 2 the wxPython classes, constants, and etc. are imported into the current
module's namespace. If you prefer to reduce namespace pollution you can use
"from wxPython import wx" and then access all the wxPython identifiers
through the wx module, for example, "wx.wxFrame".

2. At line 13 the frame's sizing and moving events are connected to methods of the
class. These helper functions are intended to be like the event table macros that
wxWindows employs. But since static event tables are impossible with
wxPython, we use helpers that are named the same to dynamically build the
table. The only real difference is that the first arguemnt to the event helpers is
always the window that the event table entry should be added to.

3. Notice the use of wxDLG_PNT and wxDLG_SZE in lines 19 - 29 to convert from
dialog units to pixels. These helpers are unique to wxPython since Python can't
do method overloading like C++.

4. There is an OnCloseWindow method at line 34 but no call to EVT_CLOSE to
attach the event to the method. Does it really get called? The answer is, yes it
does. This is because many of thestandard events are attached to windows that
have the associatedstandard method names. I have tried to follow the lead of
the C++ classes in this area to determine what is standard but since that
changes from time to time I can make no guarentees, nor will it be fully
documented. When in doubt, use an EVT_*** function.

5. At lines 17 to 21 notice that there are no saved references to the panel or the
static text items that are created. Those of you who know Python might be
wondering what happens when Python deletes these objects when they go out
of scope. Do they disappear from the GUI? They don't. Remember that in
wxPython the Python objects are just shadows of the coresponding C++ objects.
Once the C++ windows and controls are attached to their parents, the parents
manage them and delete them when necessary. For this reason, most wxPython
objects do not need to have a __del__ method that explicitly causes the C++
object to be deleted. If you ever have the need to forcibly delete a window, use
the Destroy() method as shown on line 36.

6. Just like wxWindows in C++, wxPython apps need to create a class derived from
wxApp (line 56) that implements a method namedOnInit, (line 59.) This
method should create the application's main window (line 62) and use
wxApp.SetTopWindow() (line 66) to inform wxWindows about it.

7. And finally, at line 72 an instance of the application class is created. At this point
wxPython finishes initializing itself, and calls the OnInit method to get things
started. (The zero parameter here is a flag for functionality that isn't quite

CHAPTER 9

7

implemented yet. Just ignore it for now.) The call to MainLoop at line 73 starts
the event loop which continues until the application terminates or all the top level
windows are closed.

wxWindows classes implemented in wxPython

The following classes are supported in wxPython. Most provide nearly full
implementations of the public interfaces specified in the C++ documentation, others are
less so. They will all be brought as close as possible to the C++ spec over time.

• wxAcceleratorEntry (p. 1)
• wxAcceleratorTable (p. 2)
• wxActivateEvent (p. 5)
• wxBitmapButton (p. 52)
• wxBitmap (p. 36)
• wxBMPHandler
• wxBoxSizer (p. 58)
• wxBrush (p. 60)
• wxBusyInfo (p. 68)
• wxBusyCursor (p. 67)
• wxButton (p. 69)
• wxCalculateLayoutEvent (p. 73)
• wxCaret
• wxCheckBox (p. 74)
• wxCheckListBox (p. 77)
• wxChoice (p. 79)
• wxClientDC (p. 86)
• wxCloseEvent (p. 89)
• wxColourData (p. 94)
• wxColourDialog (p. 98)
• wxColour (p. 91)
• wxComboBox (p. 99)
• wxCommandEvent (p. 108)
• wxConfig (p. 117)
• wxControl (p. 130)
• wxCursor (p. 135)
• wxDC (p. 165)
• wxDialog (p. 193)
• wxDirDialog (p. 200)
• wxDropFilesEvent (p. 231)
• wxEraseEvent (p. 236)
• wxEvent (p. 237)
• wxEvtHandler (p. 240)
• wxFileDialog (p. 264)
• wxFocusEvent (p. 284)
• wxFontData (p. 292)
• wxFontDialog (p. 295)
• wxFont (p. 285)

CHAPTER 9

8

• wxFrame (p. 299)
• wxGauge (p. 317)
• wxGIFHandler
• wxGLCanvas
• wxGridCell
• wxGridEvent
• wxGrid (p. 323)
• wxHtmlCell (p. 343)
• wxHtmlContainerCell (p. 349)
• wxHtmlDCRenderer (p. 354)
• wxHtmlEasyPrinting (p. 357)
• wxHtmlParser (p. 369)
• wxHtmlTagHandler (p. 379)
• wxHtmlTag (p. 376)
• wxHtmlWinParser (p. 387)
• wxHtmlPrintout (p. 374)
• wxHtmlWinTagHandler (p. 392)
• wxHtmlWindow (p. 382)
• wxIconizeEvent
• wxIcon (p. 395)
• wxIdleEvent (p. 394)
• wxImage (p. 402)
• wxImageHandler (p. 414)
• wxImageList (p. 418)
• wxIndividualLayoutConstraint (p. 422)
• wxInitDialogEvent (p. 425)
• wxJoystickEvent (p. 436)
• wxJPEGHandler
• wxKeyEvent (p. 438)
• wxLayoutAlgorithm (p. 441)
• wxLayoutConstraints (p. 444)
• wxListBox (p. 452)
• wxListCtrl (p. 461)
• wxListEvent (p. 474)
• wxListItem (p. 471)
• wxMDIChildFrame (p. 485)
• wxMDIClientWindow (p. 488)
• wxMDIParentFrame (p. 490)
• wxMask (p. 483)
• wxMaximizeEvent
• wxMemoryDC (p. 496)
• wxMenuBar (p. 508)
• wxMenuEvent (p. 519)
• wxMenuItem (p. 515)
• wxMenu (p. 499)
• wxMessageDialog (p. 520)
• wxMetaFileDC (p. 523)
• wxMiniFrame (p. 528)

CHAPTER 9

9

• wxMouseEvent (p. 532)
• wxMoveEvent (p. 539)
• wxNotebookEvent (p. 552)
• wxNotebook (p. 546)
• wxPageSetupDialogData (p. 560)
• wxPageSetupDialog (p. 565)
• wxPaintDC (p. 567)
• wxPaintEvent (p. 568)
• wxPalette (p. 568)
• wxPanel (p. 572)
• wxPen (p. 578)
• wxPNGHandler
• wxPoint (p. 586)
• wxPostScriptDC (p. 587)
• wxPreviewFrame (p. 590)
• wxPrintData (p. 592)
• wxPrintDialogData (p. 599)
• wxPrintDialog (p. 598)
• wxPrinter (p. 604)
• wxPrintPreview (p. 610)
• wxPrinterDC (p. 606)
• wxPrintout (p. 606)
• wxQueryLayoutInfoEvent (p. 626)
• wxRadioBox (p. 629)
• wxRadioButton (p. 634)
• wxRealPoint (p. 637)
• wxRect (p. 637)
• wxRegionIterator (p. 658)
• wxRegion (p. 653)
• wxSashEvent (p. 660)
• wxSashLayoutWindow (p. 662)
• wxSashWindow (p. 665)
• wxScreenDC (p. 670)
• wxScrollBar (p. 671)
• wxScrollEvent (p. 678)
• wxScrolledWindow (p. 680)
• wxScrollWinEvent (p. 676)
• wxShowEvent
• wxSingleChoiceDialog (p. 687)
• wxSizeEvent (p. 691)
• wxSize (p. 689)
• wxSizer (p. 692)
• wxSizerItem
• wxSlider (p. 696)
• wxSpinButton (p. 727)
• wxSpinEvent
• wxSplitterWindow (p. 731)
• wxStaticBitmap (p. 740)

CHAPTER 9

10

• wxStaticBox (p. 743)
• wxStaticBoxSizer (p. 669)
• wxStaticLine (p. 744)
• wxStaticText (p. 746)
• wxStatusBar (p. 748)
• wxSysColourChangedEvent (p. 786)
• wxTaskBarIcon (p. 810)
• wxTextCtrl (p. 820)
• wxTextEntryDialog (p. 838)
• wxTimer (p. 858)
• wxToolBarTool
• wxToolBar (p. 861)
• wxToolTip
• wxTreeCtrl (p. 875)
• wxTreeEvent (p. 890)
• wxTreeItemData (p. 888)
• wxTreeItemId
• wxUpdateUIEvent (p. 891)
• wxValidator (p. 897)
• wxWindowDC (p. 961)
• wxWindow (p. 915)

Where to go for help

Since wxPython is a blending of multiple technologies, help comes from multiple
sources. See http://alldunn.com/wxPython (http://alldunn.com/wxPython) for
details on various sources of help, but probably the best source is the wxPython-users
mail list. You can view the archive or subscribe by going to

http://starship.python.net/mailman/listinfo/wxpython-users
(http://starship.python.net/mailman/listinfo/wxpython-users)

Or you can send mail directly to the list using this address:

wxpython-users@starship.python.net

CHAPTER 9

11

12

Index

—:—
::copystring, 971
::IsEmpty, 971
::Stricmp, 971
::Strlen, 972
::wxBeginBusyCursor, 984
::wxBell, 984
::wxClipboardOpen, 981
::wxCloseClipboard, 981
::wxColourDisplay, 977
::wxConcatFiles, 966
::wxCopyFile, 966
::wxCreateDynamicObject, 984
::wxCreateFileTipProvider, 972
::wxDDECleanUp, 984
::wxDDEInitialize, 985
::wxDebugMsg, 985
::wxDirExists, 964
::wxDisplayDepth, 978
::wxDisplaySize, 985
::wxDos2UnixFilename, 964
::wxEmptyClipboard, 981
::wxEnableTopLevelWindows, 986
::wxEndBusyCursor, 987
::wxEntry, 986
::wxEnumClipboardFormats, 982
::wxError, 987
::wxExecute, 987
::wxExit, 988
::wxFatalError, 988
::wxFileExists, 964
::wxFileNameFromPath, 964
::wxFileSelector, 973
::wxFindFirstFile, 964
::wxFindMenuItemId, 989
::wxFindNextFile, 965
::wxFindWindowByLabel, 989
::wxFindWindowByName, 989
::wxGetActiveWindow, 989
::wxGetClipboardData, 982
::wxGetClipboardFormatName, 982
::wxGetCwd, 966
::wxGetDisplayName, 990
::wxGetElapsedTime, 990
::wxGetEmailAddress, 969
::wxGetFreeMemory, 991
::wxGetFullHostName, 969
::wxGetHomeDir, 990
::wxGetHostName, 969, 990
::wxGetMousePosition, 991
::wxGetMultipleChoice, 974
::wxGetNumberFromUser, 973
::wxGetOSDirectory, 965
::wxGetOsVersion, 991
::wxGetPrinterCommand, 979
::wxGetPrinterFile, 979

::wxGetPrinterMode, 979
::wxGetPrinterOptions, 979
::wxGetPrinterOrientation, 979
::wxGetPrinterPreviewCommand, 979
::wxGetPrinterScaling, 979
::wxGetPrinterTranslation, 980
::wxGetResource, 992
::wxGetSingleChoice, 975
::wxGetSingleChoiceData, 976
::wxGetSingleChoiceIndex, 975
::wxGetTempFileName, 967
::wxGetTextFromUser, 974
::wxGetTranslation, 972
::wxGetUserId, 970, 992
::wxGetUserName, 970, 993
::wxGetWorkingDirectory, 966
::wxInitAllImageHandlers, 965
::wxIsAbsolutePath, 965
::wxIsBusy, 993
::wxIsClipboardFormatAvailable, 982
::wxIsWild, 967
::wxKill, 993
::wxLoadUserResource, 993
::wxLogDebug, 1011
::wxLogError, 1010
::wxLogFatalError, 1010
::wxLogMessage, 1011
::wxLogStatus, 1011
::wxLogSysError, 1011
::wxLogTrace, 1012
::wxLogVerbose, 1011
::wxLogWarning, 1010
::wxMakeMetafilePlaceable, 978
::wxMatchWild, 967
::wxMessageBox, 976
::wxMkdir, 967
::wxNewId, 983
::wxNow, 994
::wxOnAssert, 1012
::wxOpenClipboard, 983
::wxPathOnly, 966
::wxPostDelete, 994
::wxPostEvent, 994
::wxRegisterClipboardFormat, 983
::wxRegisterId, 983
::wxRemoveFile, 967
::wxRenameFile, 968
::wxResourceAddIdentifier, 1007
::wxResourceClear, 1007
::wxResourceCreateBitmap, 1007
::wxResourceCreateIcon, 1007
::wxResourceCreateMenuBar, 1008
::wxResourceGetIdentifier, 1008
::wxResourceParseData, 1008
::wxResourceParseFile, 1009
::wxResourceParseString, 1009
::wxResourceRegisterBitmapData, 1010
::wxResourceRegisterIconData, 1010

INDEX

13

::wxRmdir, 968
::wxSafeYield, 995
::wxSetClipboardData, 983
::wxSetCursor, 978
::wxSetDisplayName, 995
::wxSetPrinterCommand, 980
::wxSetPrinterFile, 980
::wxSetPrinterMode, 980
::wxSetPrinterOptions, 980
::wxSetPrinterOrientation, 980
::wxSetPrinterPreviewCommand, 981
::wxSetPrinterScaling, 981
::wxSetPrinterTranslation, 981
::wxSetWorkingDirectory, 968
::wxShell, 995
::wxShowTip, 977
::wxSleep, 996
::wxSplitPath, 968
::wxStartTimer, 996
::wxStringEq, 971
::wxStringMatch, 971
::wxStripMenuCodes, 996
::wxToLower, 997
::wxToUpper, 997
::wxTrace, 997
::wxTraceLevel, 997
::wxTransferFileToStream, 968
::wxTransferStreamToFile, 969
::wxUnix2DosFilename, 966
::wxUsleep, 998
::wxWriteResource, 998
::wxYield, 999

—~—
~wxAcceleratorTable, 4
~wxApp, 7
~wxArray, 22
~wxArrayString, 27
~wxAutomationObject, 32
~wxBitmap, 39
~wxBitmapButton, 54
~wxBitmapHandler, 49
~wxBrush, 62
~wxBusyCursor, 68
~wxButton, 71
~wxCheckBox, 76
~wxCheckListBox, 78
~wxChoice, 81
~wxClipboard, 88
~wxColourData, 95
~wxColourDialog, 98
~wxComboBox, 101
~wxCommand, 107
~wxCommandProcessor, 114
~wxCondition, 116
~wxConfigBase, 124
~wxCriticalSection, 132
~wxCriticalSectionLocker, 133
~wxCursor, 138
~wxCustomDataObject, 134
~wxDatabase, 140

~wxDataInputStream, 155
~wxDataObject, 150
~wxDataOutputStream, 156
~wxDate, 159
~wxDC, 166
~wxDialog, 195
~wxDirDialog, 201
~wxDocChildFrame, 204
~wxDocManager, 207
~wxDocMDIChildFrame, 214
~wxDocMDIParentFrame, 216
~wxDocParentFrame, 217
~wxDocTemplate, 220
~wxDocument, 225
~wxDropSource, 233
~wxDropTarget, 235
~wxEvtHandler, 241
~wxExpr, 248
~wxExprDatabase, 255
~wxFile, 259
~wxFileDialog, 265
~wxFileHistory, 270
~wxFileInputStream, 273, 498
~wxFileOutputStream, 274
~wxFileType, 281
~wxFont, 287
~wxFontData, 293
~wxFontDialog, 296
~wxFrame, 301
~wxGauge, 318
~wxGenericValidator, 323
~wxHashTable, 338
~wxHelpController, 340
~wxIcon, 399
~wxImage, 405
~wxImageHandler, 415
~wxInputStream, 426
~wxJoystick, 429
~wxLayoutAlgorithm, 444
~wxList, 449
~wxListBox, 454
~wxListCtrl, 463
~wxLocale, 477
~wxMask, 485
~wxMDIChildFrame, 487
~wxMDIClientWindow, 490
~wxMDIParentFrame, 492
~wxMemoryOutputStream, 499
~wxMenu, 500
~wxMenuBar, 509
~wxMenuItem, 516
~wxMessageDialog, 522, 618
~wxMetafile, 522
~wxMetafileDC, 524
~wxMimeTypesManager, 526
~wxMiniFrame, 530
~wxModule, 531
~wxMutex, 542
~wxMutexLocker, 544
~wxNotebook, 547
~wxObjArray, 22
~wxOutputStream, 559

INDEX

14

~wxPageSetupDialog, 566
~wxPageSetupDialogData, 561
~wxPalette, 570
~wxPanel, 574
~wxPanelTabView, 575
~wxPen, 581
~wxPreviewCanvas, 589
~wxPreviewControlBar, 590
~wxPreviewFrame, 591
~wxPrintData, 593
~wxPrintDialog, 598
~wxPrintDialogData, 600
~wxPrinter, 604, 611
~wxPrintout, 607
~wxProcess, 615
~wxQueryCol, 622
~wxQueryField, 624
~wxRadioBox, 631
~wxRadioButton, 636
~wxRecordSet, 642
~wxRegion, 654
~wxSashLayoutWindow, 663
~wxSashWindow, 667
~wxScrollBar, 673
~wxScrolledWindow, 682
~wxSingleChoiceDialog, 689
~wxSizer, 693
~wxSlider, 699
~wxSockAddress, 705
~wxSocketBase, 707
~wxSocketClient, 719
~wxSocketServer, 722
~wxSortedArray, 22
~wxSpinButton, 729
~wxSplitterWindow, 734
~wxStaticBox, 744
~wxStatusBar, 750
~wxStreamBase, 754
~wxString, 769
~wxStringList, 783
~wxStringTokenizer, 785
~wxTabbedDialog, 791
~wxTabCtrl, 804
~wxTaskBarIcon, 810
~wxTempFile, 820
~wxTextCtrl, 823
~wxTextEntryDialog, 839
~wxTextFile, 849
~wxTextInputStream, 836
~wxTextOutputStream, 837
~wxTextValidator, 842
~wxThread, 850
~wxTimer, 859
~wxToolBar, 864
~wxTreeCtrl, 877
~wxTreeItemData, 889
~wxURL, 895
~wxValidator, 898
~wxVariant, 902
~wxView, 910
~wxWave, 914
~wxWindow, 917

—A—
A selection of SQL commands, 1057
Abort, 604, 620
Above, 423
Absolute, 423
Accept, 722
AcceptWith, 723
Access, 259
Activate, 487, 910
ActivateNext, 493
ActivatePrevious, 493
ActivateView, 207
Add, 23, 28, 152, 419, 577, 693, 783
AddAttributeValue, 248
AddAttributeValueString, 248
AddAttributeValueStringList, 249
AddAttributeValueWord, 249
AddBook, 362, 364
AddBrush, 67
AddCatalog, 477
AddCatalogLookupPathPrefix, 478
AddChild, 917
AddDocument, 207
AddEnvList, 577
AddFallbacks, 526
AddFile, 264
AddFilesToMenu, 271
AddFileToHistory, 207, 271
AddFilter, 382
AddFont, 299
AddHandler, 39, 275, 405
Adding items, 19
AddLine, 848
AddModule, 388
AddMonths, 159
AddNew, 642
AddPage, 547
AddPen, 586
AddRoot, 877
AddSeparator, 864
AddTab, 796
AddTabPanel, 576
AddTag, 370
AddTagHandler, 370
AddTool, 864
AddView, 225
AddWeeks, 159
AddWord, 371
AddYears, 159
AdjustPagebreak, 344
AdjustScrollbars, 324
AdvanceSelection, 548
Advise, 184, 815
AfterFirst, 770
AfterLast, 771
Alloc, 23, 28, 134, 770
AllocData, 625
AltDown, 440, 535
Append, 81, 101, 249, 255, 449, 454, 501, 509,

770, 902
AppendCols, 324

INDEX

15

AppendField, 623
AppendItem, 877
AppendRows, 324
AppendSeparator, 502
AppendText, 823
Arg, 249
argc, 7
argv, 7
Arrange, 463
ArrangeIcons, 493
AsIs, 423
AssociateTemplate, 207
Attach, 259
AttributeValue, 250

—B—
BeforeFirst, 771
BeforeLast, 771
BeginBatch, 325
BeginDrawing, 166
BeginFind, 255, 338
BeginQuery, 642
BeginTrans, 140
Below, 423
BigEndianOrdered, 155, 156
BindVar, 622, 642, 643
Bitmap format handlers, 1042
Bitmap resource format, 1090
Blit, 166
Blue, 93
bottom, 445
Break, 502
Broadcast, 116
Bugs, 1108
Button, 535
ButtonDClick, 535
ButtonDown, 436, 535
ButtonIsDown, 437
ButtonUp, 437, 536

—C—
c_str, 771
CalcMin, 60, 696
CalcScrolledPosition, 682
CalculateTabWidth, 796
CalcUnscrolledPosition, 682
Callback, 718
CallbackData, 719
CallMethod, 33
CanAppend, 643
Cancel, 140, 643
CanCopy, 824
CanCut, 824
CanOpen, 277
CanPaste, 824
CanRead, 360
CanRedo, 824
CanRestart, 643
CanScroll, 643
CanTransact, 140, 643

CanUndo, 107, 114, 824
CanUpdate, 140, 643
CanVeto, 90
CaptureMouse, 917
Cascade, 493
Case conversion, 764
CellHitTest, 325
Center, 917
CenterOnParent, 918
Centre, 195, 302, 918
CentreOnParent, 918
centreX, 445
centreY, 446
ChangePathTo, 275
char*, 857
Character access, 763
ChDir, 314
Check, 78, 188, 502, 509, 516, 893
Check Windows debug messages, 13
Checked, 111
CLASSINFO, 1000
CleanUpHandlers, 40, 405
CleanupModules, 531
Clear, 23, 28, 81, 88, 101, 168, 338, 450, 455,

655, 705, 771, 783, 824, 919
ClearAll, 464
ClearCommands, 114
ClearData, 625
ClearDatabase, 255
ClearList, 902
ClearSel, 699
ClearTabs, 797
ClearTicks, 699
ClearWindows, 576
ClientToScreen, 919
Clone, 323, 842, 898
Close, 88, 141, 225, 259, 524, 846, 911, 919
CloseContainer, 388
Cmp, 771
CmpNoCase, 772
Collapse, 878
CollapseAndReset, 878
Command, 131, 302
Commit, 820
CommitTrans, 141
CompareTo, 772
Comparison, 764
Comparison of wxString to other string classes,

1027
Comparison operators, 782
Compiling the resource system, 1091
Concatenation, 763
Connect, 241, 719
Constraint layout: more detail, 1052
ConstructDefaultSQL, 644
Constructor and destructor, 119, 525
Constructors and assignment operators, 763
Constructors and destructors, 18
Contains, 655, 772
ControlDown, 440, 536
ConvertDialogToPixels, 920
ConvertPixelsToDialog, 921

INDEX

16

ConvertToBitmap, 405
ConvertToValidURI, 897
Copy, 102, 250, 825, 908
copystring, 971
CopyTo, 499
Count, 23, 28
CountTokens, 785
Create, 40, 49, 54, 71, 76, 81, 102, 124, 187,

195, 260, 302, 319, 367, 405, 420, 455, 464,
485, 488, 493, 530, 548, 570, 574, 631, 636,
674, 683, 699, 730, 734, 742, 744, 746, 748,
750, 805, 818, 825, 850, 914, 1058

CreateAbortWindow, 605
CreateButtons, 590
CreateCanvas, 591
CreateClient, 490
CreateContents, 367
CreateControlBar, 591
CreateCurrentFont, 388
CreateDocument, 207, 220
CreateGrid, 325
CreateIndex, 367
CreateInstance, 33
CreateLogTarget, 7
CreateObject, 85
CreateSearch, 367
CreateStatusBar, 302
CreateToolBar, 303
CreateTools, 865
CreateView, 208, 221
CrossHair, 168
CurrentCellVisible, 325
Customization, 480
Cut, 102, 825

—D—
Data, 545
Data transfer, 1082
DECLARE_ABSTRACT_CLASS, 1000
DECLARE_APP, 1001
DECLARE_CLASS, 1001
DECLARE_DYNAMIC_CLASS, 1001
Default, 242
Default constructors, 21
delete, 558
Delete, 102, 338, 455, 503, 644, 784, 850, 878,

902
Delete entries/groups, 122
DeleteAll, 124
DeleteAllItems, 464, 805, 878
DeleteAllPages, 548
DeleteAllViews, 225
DeleteAttributeValue, 250
DeleteCols, 326
DeleteColumn, 464
DeleteContents, 450
DeleteEntry, 124
DeleteGroup, 124
DeleteItem, 464, 805
DeleteNode, 450
DeleteObject, 450

DeletePage, 548
DeleteRows, 326
DeleteSubMenu, 516
Deselect, 455
Destroy, 406, 922
DestroyChildren, 922
DestroyClippingRegion, 168
Detach, 23, 260, 616
DeviceToLogicalX, 168
DeviceToLogicalXRel, 168
DeviceToLogicalY, 168
DeviceToLogicalYRel, 169
Dialog resource format, 1087
DisassociateTemplate, 208
Discard, 714, 820
DiscardEdits, 825
Disconnect, 184, 815
Dispatch, 8
Display, 362, 368
DisplayBlock, 341
DisplayContents, 341, 363, 368
DisplayIndex, 363, 368
DisplaySection, 341
DnD sample, 1025
Do, 107, 114
DoDragDrop, 234
DoneParser, 371
DontCreateOnDemand, 124, 481
DoParsing, 371
Dos2UnixFilename, 964
DragAcceptFiles, 922
Dragging, 536
Draw, 344, 420, 797
DrawArc, 169
DrawBitmap, 169
DrawBlankPage, 611
DrawEllipse, 169
DrawEllipticArc, 169
DrawField, 751
DrawFieldText, 752
DrawIcon, 170
DrawInvisible, 344
DrawLine, 170
DrawLines, 170
DrawPoint, 171
DrawPolygon, 170
DrawRectangle, 171
DrawRoundedRectangle, 171
DrawSpline, 171
DrawText, 172
DrawTool, 865
Dump, 188, 556

—E—
Edges and relationships, 422
Edit, 644
EditLabel, 464, 878
Empty, 24, 29, 772
Enable, 503, 510, 516, 631, 894, 923
EnableEffects, 293
EnableHelp, 561, 600

INDEX

17

EnableMargins, 561
EnableOrientation, 561
EnablePageNumbers, 600
EnablePaper, 562
EnablePrinter, 562
EnablePrintToFile, 600
EnableScrolling, 683
EnableSelection, 600
EnableTool, 866
EnableTop, 510
EndBatch, 326
EndDoc, 172
EndDrawing, 172
EndDrawingOnTop, 671
EndEditLabel, 879
EndModal, 196
EndPage, 172
EndQuery, 644
EnsureFileAccessible, 577
EnsureVisible, 464, 879
Enter, 132
Entering, 536
Entry, 851
EnumerateEncodings, 297
EnumerateFacenames, 297
Enumeration, 120
Eof, 260, 847
Eq, 909
Error, 709
ErrorOccured, 141
ErrorSnapshot, 141
Event macros summary, 1078
EVT_COMMAND(id, event, func), 1078
EVT_COMMAND_RANGE(id1, id2, event, func),

1078
EVT_CUSTOM(event, id, func), 1078
EVT_CUSTOM_RANGE(event, id1, id2, func),

1078
Example, 1045, 1093, 1096, 1109
Example 1: subwindow layout, 1053
Example 2: panel item layout, 1054
Examples, 1082
Execute, 184, 815
ExecuteSQL, 644
Exists, 125, 260, 845
Exit, 531
ExitMainLoop, 9
Expand, 879
ExpandCommand, 283

—F—
fd, 260
FileHistoryAddFilesToMenu, 208
FileHistoryLoad, 208
FileHistoryRemoveMenu, 208
FileHistorySave, 209
FileHistoryUseMenu, 209
FillBuffer, 762
FillHandlersTable, 381
FillVar, 622
FillVars, 644

Find, 345, 450, 772
FindAbsoluteValidPath, 577
FindClass, 85
FindClause, 255
FindClauseByFunctor, 256
FindColour, 97
FindFirst, 276, 278
FindFocus, 923
FindHandler, 41, 406
FindHandlerMime, 406
FindItem, 465, 503, 504, 511
FindItemForId, 504
FindMenuItem, 510
FindName, 97
FindNext, 276, 279
FindOrCreateBrush, 67
FindOrCreateFont, 299
FindOrCreatePen, 586
FindPageById, 365
FindPageByName, 365
FindString, 81, 102, 456, 631
FindTabControlForId, 797
FindTabControlForPosition, 797
FindTemplateForPath, 209
FindToolForPosition, 866
FindValidPath, 578
FindWindow, 923
First, 773
Fit, 696, 924
Fixed, 761
FloodFill, 172
Flush, 125, 260, 482
Flushable, 761
FlushActive, 482
FlushBuffer, 761
Font sample, 1025
FormatDate, 159
FormatTime, 856
Frec, 773
Free, 135
Functions and macros, 253
Functor, 251

—G—
Genetic mutation, 13
Get, 125, 338
GetActive, 6
GetActiveChild, 495
GetActiveTarget, 481
GetActualColor, 388
GetAlign, 389
GetAlignHor, 349
GetAlignment, 627, 663
GetAlignVer, 350
GetAllFormats, 150
GetAllowSymbols, 293
GetAllPages, 600
GetAllParams, 376
GetAnchor, 278, 312
GetAppName, 8, 125
GetAttributeValue, 249, 250

INDEX

18

GetAttributeValueStringList, 250
GetAuto3D, 8
GetBackground, 173
GetBackgroundBrush, 797
GetBackgroundColour, 516, 797, 924
GetBackgroundPen, 798
GetBaseClassName1, 85
GetBaseClassName2, 85
GetBatchCount, 326
GetBeginPos, 376
GetBezelFace, 319
GetBitmap, 57, 516, 742
GetBitmapFocus, 54
GetBitmapLabel, 54, 55
GetBitmapSelected, 55
GetBlue, 407
GetBookRecArray, 365
GetBool, 902
GetBottom, 639
GetBoundingRect, 879
GetBox, 655
GetBrush, 173
GetBufferEnd, 760
GetBufferPos, 760
GetBufferStart, 760
GetButtonChange, 437
GetButtonState, 429, 437
GetC, 426
GetCanvas, 611
GetCap, 581
GetCell, 326
GetCellAlignment, 327
GetCellBackgroundColour, 327
GetCells, 327
GetCellTextColour, 327
GetCellTextFont, 328
GetCellValue, 328
GetChar, 758, 773, 902
GetCharHeight, 173, 389, 924
GetCharWidth, 173, 389, 924
GetChecked, 894
GetCheckPrevious, 188
GetChildren, 924
GetChildrenCount, 880
GetChooseFull, 95
GetChosenFont, 293
GetClassInfo, 556
GetClassName, 8, 86
GetClientData, 82, 103, 112, 242, 251, 456
GetClientSize, 494, 924
GetClientWindow, 495
GetClippingBox, 173
GetCode, 891
GetCollate, 593, 601
GetColName, 644
GetColour, 63, 95, 293, 581, 593
GetColourData, 99
GetColPosition, 792
GetCols, 328
GetColType, 645
GetColumn, 465
GetColumns, 82, 645

GetColumnWidth, 328, 465
GetCommand, 1
GetCommandProcessor, 225
GetCommands, 114
GetConstraints, 925
GetContainer, 389
GetContents, 365
GetContentsCnt, 365
GetContentType, 621
GetCount, 24, 29, 880, 902
GetCountPerPage, 465
GetCurFocus, 805
GetCurrentDocument, 209
GetCurrentLine, 846
GetCurrentPage, 611
GetCurrentRecord, 645
GetCurrentRect, 328
GetCurrentTip, 861
GetCurrentView, 209
GetCurrentWindow, 576
GetCursorColumn, 329
GetCursorRow, 329
GetCustomColour, 96
GetDashes, 581
GetData, 88, 135, 368, 407, 622, 625, 773, 902
GetDatabase, 646
GetDatabaseName, 141
GetDataHere, 150, 153
GetDataLeft, 762
GetDataSize, 150, 153
GetDataSource, 141
GetDataSources, 646
GetDate, 903
GetDay, 160, 854
GetDayOfWeek, 160, 854
GetDayOfWeekName, 160
GetDayOfYear, 160
GetDaysInMonth, 160
GetDC, 237, 389, 607
GetDebugMode, 189
GetDefaultConnect, 646
GetDefaultEncoding, 287
GetDefaultExtension, 221
GetDefaultInfo, 563
GetDefaultItem, 925
GetDefaultMinMargins, 562
GetDefaultSize, 71, 746
GetDefaultSQL, 646
GetDepth, 41, 399
GetDescent, 345
GetDescription, 221, 282
GetDirectory, 221, 266
GetDispatchPtr, 33
GetDocument, 204, 214, 911
GetDocumentManager, 221, 226, 911
GetDocumentName, 221, 226
GetDocuments, 209
GetDocumentTemplate, 226
GetDocumentWindow, 226
GetDouble, 903
GetDragRect, 661
GetDragStatus, 662

INDEX

19

GetDropTarget, 925
GetDuplex, 594
GetEdge, 661
GetEditable, 329
GetEditControl, 466, 880
GetEditInPlace, 329
GetEditMenu, 114
GetEnabled, 894
GetEnableEffects, 293
GetEnableHelp, 563
GetEnableMargins, 562
GetEnableOrientation, 562
GetEnablePaper, 562
GetEnablePrinter, 562
GetEncodings, 297
GetEndPos1, 376
GetEndPos2, 377
GetEntryType, 125
GetEOL, 849
GetError, 621, 896
GetErrorClass, 141
GetErrorCode, 142, 646
GetErrorCount, 256
GetErrorMessage, 142
GetErrorNumber, 142
GetEventClass, 239
GetEventHandler, 925
GetEventObject, 239
GetEventType, 239
GetEvtHandlerEnabled, 243
GetExcludeList, 842
GetExitOnDelete, 9
GetExtension, 49, 415
GetExtensions, 282
GetExtraLong, 112
GetFaceName, 288
GetFacenames, 298
GetFamily, 288
GetFieldData, 647
GetFieldDataPtr, 647
GetFieldRect, 750
GetFieldsCount, 751
GetFileFilter, 222
GetFileHistory, 210
GetFilename, 226, 266
GetFilenames, 264
GetFiles, 232
GetFileTypeFromExtension, 527
GetFileTypeFromMimeType, 527
GetFilter, 647
GetFilterIndex, 266
GetFirst, 251, 450
GetFirstCell, 350
GetFirstChild, 880
GetFirstDayOfMonth, 160
GetFirstEntry, 126
GetFirstGroup, 126
GetFirstLine, 847
GetFirstView, 226
GetFirstVisibleItem, 880
GetFlags, 2, 74, 222, 627
GetFont, 173, 517, 793, 926

GetFontBold, 389
GetFontData, 296
GetFontFixed, 390
GetFontId, 288
GetFontItalic, 390
GetFontSize, 390
GetFontUnderlined, 390
GetForce, 90
GetForegroundColour, 926
GetFormat, 153, 235, 268, 840
GetFormatCount, 150, 235, 268, 840
GetFrame, 612, 911
GetFrameParameters, 342
GetFromPage, 601
GetFS, 371
GetGrandParent, 926
GetGreen, 407
GetH, 659
GetHandle, 926
GetHandlers, 41, 407
GetHDBC, 142
GetHeader, 394
GetHeight, 42, 346, 399, 408, 639, 690, 793
GetHelp, 517
GetHelpString, 504, 511
GetHENV, 142
GetHighlightColour, 798
GetHighlightPen, 798
GetHistoryFile, 271
GetHorizontalTabOffset, 798
GetHorizScrollBar, 329
GetHour, 855
GetHourGMT, 855
GetIcon, 282
GetId, 147, 239, 517, 615, 793, 889, 927
GetID, 851
GetImageCount, 421
GetImageList, 466, 549, 805, 881
GetIncludeList, 842
GetIndent, 350, 881
GetIndentUnits, 350
GetIndex, 365
GetIndexCnt, 365
GetInfo, 142, 143
GetInitialFont, 294
GetInputStream, 316, 393, 620, 896
GetInsertionPoint, 103, 825
GetInstance, 33
GetInt, 112
GetInternalRepresentation, 383
GetIntPosition, 761
GetItem, 466, 891
GetItemCount, 467, 805
GetItemData, 466, 806, 881
GetItemImage, 806, 881
GetItemPosition, 466
GetItemRect, 467, 806
GetItemSelectedImage, 884
GetItemSpacing, 467
GetItemState, 467
GetItemText, 467, 806, 882
GetJoin, 582

INDEX

20

GetJoystick, 438
GetJulianDate, 160
GetKeyCode, 2
GetLabel, 71, 131, 505, 512, 632, 748, 793, 891,

927
GetLabelAlignment, 329
GetLabelBackgroundColour, 329
GetLabelSize, 330
GetLabelTextColour, 330
GetLabelTextFont, 330
GetLabelTop, 512
GetLabelValue, 330
GetLast, 251, 451
GetLastAccess, 761
GetLastChild, 882
GetLastDirectory, 210
GetLastLine, 847
GetLastPosition, 103, 826
GetLastResult, 313
GetLeft, 639
GetLeftLocation, 278
GetLevel, 189
GetLine, 846
GetLineCount, 846
GetLineLength, 826
GetLineSize, 699
GetLineText, 826
GetLineType, 848
GetLink, 346, 390
GetLinkColor, 390
GetList, 315
GetLocal, 717
GetLocale, 477
GetLocation, 312
GetLoggingOff, 90
GetLogicalFunction, 174
GetLogicalPosition, 536
GetLong, 903
GetManufacturerId, 430
GetMapMode, 174
GetMarginBottomRight, 563
GetMargins, 867
GetMarginTopLeft, 563, 564
GetMarginWidth, 517
GetMask, 42
GetMaskBlue, 408
GetMaskGreen, 408
GetMaskRed, 408
GetMax, 700, 730
GetMaxCommands, 114
GetMaxDocsOpen, 210
GetMaxFiles, 271
GetMaximumSizeX, 667
GetMaximumSizeY, 667
GetMaxLineWidth, 350
GetMaxPage, 601, 612
GetMaxSize, 867
GetMenu, 512
GetMenuBar, 304
GetMenuCount, 513
GetMenuId, 520
GetMessage, 202, 266

GetMimeType, 281, 313, 416
GetMimeTypeFromExt, 278
GetMin, 700, 730
GetMinimumPaneSize, 734
GetMinimumSizeX, 667
GetMinimumSizeY, 668
GetMinMarginBottomRight, 563
GetMinMarginTopLeft, 563
GetMinPage, 601, 612
GetMinSize, 695
GetMinute, 855
GetMinuteGMT, 855
GetMonth, 161, 855
GetMonthEnd, 161
GetMonthName, 161
GetMonthStart, 161
GetMovementThreshold, 430
GetName, 49, 107, 377, 415, 478, 517, 623, 848,

903, 928
GetNext, 251, 346
GetNextChild, 882
GetNextEntry, 126
GetNextGroup, 126
GetNextHandler, 243
GetNextItem, 467
GetNextLine, 847
GetNextSibling, 882
GetNextToken, 785
GetNextVisible, 883
GetNoCopies, 594, 601
GetNoHistoryFiles, 210, 271
GetNumberAxes, 430
GetNumberButtons, 430
GetNumberCols, 648
GetNumberFields, 648
GetNumberJoysticks, 430
GetNumberOfEntries, 126
GetNumberOfFiles, 232
GetNumberOfGroups, 126
GetNumberOfLayers, 798
GetNumberOfLines, 826
GetNumberParams, 649
GetNumberRecords, 649
GetObject, 34
GetObjectType, 239
GetODBCVersionFloat, 143
GetODBCVersionString, 143
GetOldItem, 891
GetOldSelection, 553
GetOpenCommand, 282
GetOpenedPage, 383
GetOptimization, 174
GetOptions, 649
GetOrientation, 60, 594, 627, 664, 678, 679
GetOutputStream, 316
GetPage, 549
GetPageCount, 549
GetPageImage, 549
GetPageInfo, 607
GetPageSetupData, 360, 567
GetPageSize, 674, 700
GetPageSizeMM, 608

INDEX

21

GetPageSizePixels, 608
GetPageText, 549
GetPalette, 42
GetPaperId, 563, 594
GetPaperSize, 564
GetParam, 377
GetParent, 346, 883, 928
GetPassword, 143
GetPath, 127, 202, 266, 276, 896
GetPeer, 717
GetPen, 174
GetPid, 619
GetPixel, 93, 174, 570, 571
GetPoint, 891
GetPointSize, 288
GetPollingMax, 430
GetPollingMin, 430
GetPosition, 232, 431, 438, 441, 536, 540, 639,

678, 680, 695, 927
GetPosX, 347
GetPosY, 347
GetPOVCTSPosition, 431
GetPOVPosition, 431
GetPPIPrinter, 608
GetPPIScreen, 608
GetPreferredFormat, 151
GetPrevious, 545
GetPreviousHandler, 243
GetPrevLine, 847
GetPrevSibling, 883
GetPrevVisible, 883
GetPrimaryKeys, 648, 649
GetPrintableName, 226
GetPrintCommand, 282
GetPrintData, 359, 564, 601, 612
GetPrintDC, 599
GetPrintDialogData, 599, 605
GetPrinterName, 594
GetPrintout, 612
GetPrintoutForPrinting, 612
GetPrintPreview, 590
GetPrintToFile, 601
GetPriority, 851
GetProduct, 371
GetProductId, 431
GetProductName, 431
GetProperty, 34
GetProtocol, 278, 896
GetProtocolName, 896
GetQuality, 594
GetRange, 319, 674
GetRect, 74, 659, 928
GetRed, 407
GetRefData, 556
GetRelatedFrame, 383
GetRequestedLength, 627
GetResultSet, 649
GetReturnCode, 196
GetRight, 639
GetRightLocation, 278
GetRootItem, 883
GetRowCount, 549, 806

GetRowHeight, 330
GetRowPosition, 793
GetRows, 330
GetRudderMax, 431
GetRudderMin, 431
GetRudderPosition, 432
GetSashPosition, 725, 734
GetSashVisible, 667
GetScrollPixelsPerUnit, 683
GetScrollPos, 928
GetScrollPosX, 330
GetScrollPosY, 331
GetScrollRange, 929
GetScrollThumb, 928
GetSecond, 855
GetSecondGMT, 855
GetSeconds, 856
GetSelected, 793
GetSelectedItemCount, 468
GetSelectedTabFont, 798
GetSelection, 82, 103, 112, 456, 550, 553, 602,

632, 689, 806, 827, 884
GetSelectionClientData, 689
GetSelections, 457, 884
GetSelEnd, 700
GetSelStart, 700
GetSessionEnding, 90
GetSetChecked, 894
GetSetEnabled, 894
GetSetText, 894
GetShadowColour, 799
GetShadowPen, 800
GetShadowWidth, 319
GetShowHelp, 294
GetSize, 86, 135, 174, 623, 625, 628, 640, 692,

695, 755, 929
GetSkipped, 239
GetSortString, 649
GetSource, 372
GetSplitMode, 734
GetSQL, 650
GetStaticBox, 670
GetStatusBar, 304
GetStatusText, 751
GetStdIcon, 15
GetStipple, 63, 582
GetStream, 189, 313
GetStreamBuf, 189
GetString, 82, 103, 112, 457, 479, 634, 785, 903
GetStringSelection, 83, 104, 458, 632, 689
GetStyle, 63, 202, 266, 288, 582, 843
GetSubImage, 408
GetSubMenu, 517
GetSupportedTags, 379
GetSystemColour, 787
GetSystemFont, 788
GetSystemMetric, 788
GetTabFont, 799
GetTabHeight, 799
GetTableName, 650
GetTables, 650
GetTabSelectionHeight, 799

INDEX

22

GetTabStyle, 799
GetTabView, 791, 792
GetTabWidth, 799
GetTabWindow, 576
GetTempData, 372
GetText, 834, 894
GetTextBackground, 175
GetTextColour, 468, 517, 799
GetTextExtent, 175, 929
GetTextForeground, 176
GetTextItem, 331
GetTextLength, 834
GetThumbLength, 674, 701
GetThumbPosition, 674
GetTickFreq, 701
GetTime, 903
GetTimestamp, 240, 483
GetTip, 860
GetTitle, 196, 227, 304, 505, 930
GetToolBar, 304, 495
GetToolBitmapSize, 867
GetToolClientData, 868
GetToolEnabled, 868
GetToolLongHelp, 868
GetToolPacking, 869
GetToolSeparation, 869
GetToolShortHelp, 869
GetToolSize, 867
GetToolState, 869
GetTop, 640
GetToPage, 602
GetTopItem, 468
GetTopMargin, 800
GetTopWindow, 9
GetTotalHeight, 357
GetType, 50, 147, 416, 623, 625, 650, 903, 909
GetUMax, 432
GetUMin, 432
GetUnderlined, 289
GetUpdateRegion, 930
GetUPosition, 432
GetUsername, 143
GetValidator, 931
GetValue, 76, 104, 320, 636, 701, 730, 827, 839
GetVendorName, 127
GetVerbose, 482
GetVerticalTabTextSpacing, 800
GetVertScrollBar, 331
GetView, 204, 214
GetViewName, 222, 911
GetViewRect, 800
GetViews, 227
GetVirtualSize, 684
GetVMax, 432
GetVMin, 432
GetVoidPtr, 904
GetVPosition, 432
GetW, 659
GetWeekOfMonth, 161
GetWeekOfYear, 161
GetWeight, 289
GetWidth, 42, 347, 399, 408, 582, 640, 659, 690,

793
GetWildcard, 266
GetWindow, 390, 800, 899
GetWindow1, 735
GetWindow2, 735
GetWindowBeingRemoved, 726
GetWindowStyleFlag, 931
GetWritableChar, 773
GetWriteBuf, 773
GetX, 441, 537, 640, 658, 725, 794
GetXMax, 433
GetXMin, 433
GetY, 441, 537, 640, 658, 726, 794
GetYear, 161, 856
GetYearEnd, 162
GetYearStart, 162
GetYMax, 433
GetYMin, 433
GetZMax, 433
GetZoomControl, 590
GetZPosition, 433, 438
GiveFeedback, 234
GoTo, 650
GoToLine, 847
Green, 93
GuessType, 848

—H—
HandleTag, 380
HasBorder, 668
HasEnding, 378
HasEntry, 127
HasGroup, 127
HashFind, 256
HasMask, 408
HasMoreTokens, 785
HasPage, 609
HasParam, 378
HasPendingMessages, 482
HasPOV, 434
HasPOV4Dir, 434
HasPOVCTS, 434
HasRudder, 434
HasStream, 190
HasU, 434
HasV, 434
HasZ, 434
HaveRects, 659
height, 446, 639
Helper functions, 525
HistoryBack, 383
HistoryClear, 383
HistoryForward, 383
HitTest, 468, 794, 807, 884
Hostname, 428
How events are processed, 1073

—I—
Icon resource format, 1090
Iconize, 196, 305

INDEX

23

identifiers, 1076
IMPLEMENT_ABSTRACT_CLASS, 1002
IMPLEMENT_ABSTRACT_CLASS2, 1002
IMPLEMENT_APP, 1002
IMPLEMENT_CLASS, 1003
IMPLEMENT_CLASS2, 1003
IMPLEMENT_DYNAMIC_CLASS, 1003
IMPLEMENT_DYNAMIC_CLASS2, 1004
Index, 24, 29, 774
IndexOf, 451, 546
Init, 478, 531
InitColours, 752
InitDialog, 574, 931
Initialization functions, 526
Initialize, 98, 115, 210, 341, 592, 735
InitializeClasses, 86
Initialized, 9
InitializeModules, 532
InitParser, 372
InitStandardHandlers, 42, 409
Insert, 24, 29, 249, 451, 904, 1058
InsertCell, 351
InsertCols, 331
InsertColumn, 469
InsertHandler, 43, 409
InsertItem, 469, 470, 807, 885
InsertItems, 458
InsertLine, 848
InsertPage, 550
InsertRows, 331
IntegerValue, 251
Intersect, 655, 656
Interval, 859
Introduction, 1027, 1072
Invoke, 34
InWaitForDataSource, 144
IsAlive, 851
IsAllowed, 554
IsAscii, 774
IsBetween, 856
IsBOF, 650
IsBold, 885
IsButton, 438, 537
IsCheckable, 518
IsChecked, 79, 505, 513, 518
IsColNullable, 651
IsConnected, 709
IsData, 709
IsDeleted, 651
IsDirty, 625
IsDisconnected, 709
IsEmpty, 25, 30, 656, 774, 971
IsEnabled, 506, 513, 518, 931
IsEnding, 378
IsEOF, 651
IsExpanded, 885
IsExpandingEnvVars, 127
IsExposed, 931
IsFieldDirty, 651
IsFieldNull, 651
IsIconInstalled, 810
IsIconized, 197, 305

IsKindOf, 86, 556
IsLeapYear, 162
IsLoaded, 478
IsLocked, 542
IsMain, 851
IsMaximized, 305
IsModal, 197
IsModified, 227, 827
IsMove, 438
IsNoWait, 710
IsNull, 774, 904
IsNullable, 623
IsNumber, 774
IsOfType, 527
IsOk, 435, 544, 914
IsOK, 810
IsOpen, 144, 651
IsOpened, 260, 820, 846
IsPaused, 851
IsPreview, 609
IsRecordingDefaults, 127
IsRetained, 684, 932
IsRowDirty, 623
IsRunning, 852
IsSameAs, 775
IsSelected, 885
IsSelection, 112
IsSeparator, 518
IsShown, 932
IsSplit, 735
IsSupported, 88
IsTopLevel, 932
IsType, 904
IsVertical, 746
IsVisible, 222, 885
IsWord, 775
IsZMove, 438
Item, 25, 30
ItemHasChildren, 885

—K—
Key access, 121
KeyCode, 441
KeywordSearch, 342, 363, 368
Kill, 852

—L—
Last, 25, 30, 775
LastCount, 710
LastError, 710, 754
LastRead, 426
LastWrite, 559
Layout, 347, 696, 870, 932
LayoutFrame, 444
LayoutMDIFrame, 444
LayoutTabs, 800
LayoutWindow, 444
Leave, 132
Leaving, 537
left, 446

INDEX

24

Left, 775, 776
LeftDClick, 537
LeftDown, 537
LeftIsDown, 537
LeftOf, 424
LeftUp, 538
Len, 776
Length, 261, 776
ListToArray, 784
Load, 271
LoadCachedBook, 366
LoadFile, 43, 50, 342, 400, 409, 416, 827
LoadFromResource, 932
LoadMSProject, 366
LoadObject, 227
LoadPage, 384
LocalHost, 429
Lock, 543
LogicalToDeviceX, 176
LogicalToDeviceXRel, 176
LogicalToDeviceY, 176
LogicalToDeviceYRel, 176
Lower, 776, 933
LowerCase, 776

—M—
m_active, 6
m_altDown, 439, 533
m_cancelled, 476
m_checked, 893
m_childDocument, 203, 214
m_childView, 203, 214
m_clientData, 111
m_code, 475
m_col, 475
m_commandInt, 111
m_commandProcessor, 223
m_commandString, 111
m_controlDown, 439, 533
m_count, 558
m_currentView, 205
m_dc, 237
m_defaultDocumentNameCounter, 205
m_defaultExt, 218
m_description, 218
m_directory, 218
m_docClassInfo, 218
m_docs, 206
m_docTypeName, 219
m_documentFile, 224
m_documentManager, 219
m_documentModified, 224
m_documentTemplate, 224
m_documentTitle, 224
m_documentTypeName, 224
m_documentViews, 224
m_eventHandle, 238
m_eventObject, 238
m_eventType, 238
m_extraLong, 111
m_fileFilter, 219

m_fileHistory, 205, 206, 270
m_fileHistoryN, 270
m_fileMaxFiles, 270
m_fileMenu, 270
m_files, 232
m_flags, 206, 219
m_id, 238
m_item, 476
m_itemIndex, 475
m_keyCode, 439
m_leftDown, 533, 534
m_maxDocsOpen, 205
m_menuId, 520
m_metaDown, 440, 534
m_middleDown, 533
m_noFiles, 232
m_oldItemIndex, 475
m_pid, 619
m_pointDrag, 476
m_pos, 232
m_refData, 555
m_rightDown, 534
m_setChecked, 893
m_setEnabled, 893
m_setText, 893
m_shiftDown, 440, 534
m_skipped, 238
m_text, 893
m_timeStamp, 239
m_viewClassInfo, 219
m_viewDocument, 910
m_viewFrame, 910
m_viewTypeName, 219, 910
m_x, 440, 534
m_y, 440, 534
Macros for template array definition, 18
MainLoop, 10
MakeConnection, 182, 813
MakeDefaultName, 210
MakeKey, 338
MakeLower, 776
MakeModal, 933
MakeNull, 904
MakeString, 904
MakeUpper, 776
Matches, 777
Max, 856
Maximize, 305, 488
MaxX, 176
MaxY, 176
Member, 451, 578, 784, 905
Memory management, 19, 765
Menubar resource format, 1089
Message buffering, 480
MessageParameters class, 280
MetaDown, 441, 538
Mid, 777
MiddleDClick, 538
MiddleDown, 538
MiddleIsDown, 538
MiddleUp, 539
Min, 856

INDEX

25

MinX, 177
MinY, 177
Miscellaneous, 765
Miscellaneous accessors, 121
MkDir, 314
mnTemplates, 206
Modify, 227
Module definition file, 7
More DDE details, 1082
MoreRequested, 395
Move, 652, 933
MoveFirst, 652
MoveLast, 652
MoveNext, 652
MovePrev, 652
Moving, 539

—N—
new, 558
Next, 339, 545
Notify, 709, 859
Nth, 252, 451
NullList, 905
Number, 83, 104, 451, 458, 633
Number of elements and simple item access, 19

—O—
ODBC SQL data types, 1057
Ok, 4, 44, 64, 93, 139, 177, 273, 274, 400, 410,

523, 571, 582, 612, 709
OnAcceptConnection, 187, 818
OnActivate, 10, 204, 214, 306, 331, 934
OnActivateView, 911
OnAdvise, 184, 815
OnApply, 197
OnBeginDocument, 609
OnBeginPrinting, 609
OnCalculateLayout, 664
OnCancel, 198
OnChangedViewList, 228
OnChangeFilename, 912
OnChangeLabels, 332
OnChangeSelectionLabel, 332
OnChar, 828, 843, 934
OnCharHook, 10, 197, 935
OnClose, 912, 936
OnCloseDocument, 228
OnCloseWindow, 204, 215, 216, 217, 592, 937
OnCommand, 936
OnCompareItems, 886
OnCreate, 228, 912
OnCreateCell, 332
OnCreateClient, 495
OnCreateCommandProcessor, 228
OnCreateFileHistory, 211
OnCreatePrintout, 912
OnCreateStatusBar, 306
OnCreateTabControl, 800
OnCreateToolBar, 307
OnData, 235

OnDisconnect, 185, 815
OnDoubleClickSash, 735
OnDraw, 685, 794
OnDrop, 235, 269, 840
OnDropFiles, 269, 828, 938
OnDropText, 840
OnEndDocument, 609
OnEndPrinting, 610
OnEndSession, 11
OnEnter, 236
OnEraseBackground, 938
OnEvent, 801
OnExecute, 185, 816
OnExit, 10, 532, 852
OnFacename, 298
OnFileClose, 211
OnFileNew, 211
OnFileOpen, 211
OnFileSave, 211
OnFileSaveAs, 211
OnFontEncoding, 298
OnIdle, 11, 940
OnInit, 12, 532
OnInitDialog, 940
OnKeyDown, 939
OnKeyUp, 939
OnKillFocus, 940
OnLButtonDClick, 811
OnLButtonDown, 810
OnLButtonUp, 811
OnLeave, 236
OnLeftClick, 332, 870
OnLinkClicked, 384
OnLog, 481
OnMakeConnection, 182, 813
OnMenuCommand, 212, 307, 941
OnMenuHighlight, 307, 941
OnMouseClick, 347
OnMouseEnter, 871
OnMouseEvent, 942
OnMouseMove, 811
OnMove, 942
OnNewDocument, 228
OnOK, 198
OnOpenDocument, 229
OnPaint, 589, 943
OnPoke, 185, 816
OnPreparePrinting, 610
OnPrintPage, 610
OnQueryEndSession, 12
OnQueryLayoutInfo, 664
OnQuit, 343
OnRButtonDClick, 811
OnRButtonDown, 811
OnRButtonUp, 811
OnRequest, 185, 816
OnRightClick, 332, 333, 871
OnSashPositionChange, 736
OnSaveDocument, 229
OnSaveModified, 229
OnScroll, 944
OnSelChange, 550

INDEX

26

OnSelectCell, 333
OnSelectCellImplementation, 333
OnSetFocus, 945
OnSetOptions, 144
OnSize, 307, 945
OnStartAdvise, 185, 816
OnStopAdvise, 185, 816
OnSysColourChanged, 198, 574, 752, 946
OnSysRead, 755
OnSysSeek, 755
OnSysTell, 755
OnSysWrite, 755
OnTabActivate, 801
OnTabPreActivate, 801
OnTerminate, 616
OnUnsplit, 736
OnUpdate, 913
OnWaitForDataSource, 144
Open, 89, 144, 261, 819, 845, 846
OpenContainer, 391
OpenFile, 276, 279
operator, 780
operator

=, 147, 858
operator -, 163, 164, 858
operator --, 164
operator !=, 5, 48, 66, 94, 139, 165, 292, 402,

414, 572, 585, 641, 782, 906, 907
operator (), 781
operator [], 781, 907
operator +, 163, 780, 858
operator ++, 164, 660
operator +=, 164, 781, 858
operator <, 164, 782, 857
operator <<, 165, 781, 833
operator <=, 164, 782, 857
operator =, 4, 27, 47, 65, 94, 96, 139, 291, 295,

401, 413, 565, 572, 584, 598, 603, 641, 657,
691, 780, 857, 905

operator -=, 164, 858
operator ==, 4, 47, 65, 94, 139, 147, 165, 292,

402, 414, 572, 584, 641, 782, 858, 906
operator >, 165, 782, 857
operator >=, 165, 782, 857
operator >>, 782
operator bool, 660
operator char, 907
operator const char*, 782
operator double, 907
operator long, 907
operator void*, 908
operator wxDate, 907
operator wxString, 163, 907
operator wxString::+, 780
operator wxTime, 908
operator[], 28, 846
operator=, 22
Options, 122
Other string related functions and classes, 1029

—P—
Pad, 777
PageSetup, 359
PaintPage, 613
Parse, 372
ParseInner, 380
Paste, 104, 828
Path management, 119
Peek, 426, 710
Pending, 13
PercentOf, 424
Play, 523, 915
Pluggable event handlers, 1076
Poke, 186, 816
PopEventHandler, 946
PopTagHandler, 373
PopupMenu, 946
PositionToXY, 829
Positive thinking, 12
Precompiled headers, 9
PrepareDC, 684
Prepend, 694, 777
PrependItem, 886
PreviewFile, 357
PreviewText, 358
Print, 605, 613
PrintClasses, 190
PrintDialog, 605
PrinterSetup, 358
Printf, 777
PrintFile, 358
PrintfV, 777
PrintStatistics, 190
PrintText, 358
Procedures for writing an ODBC application,

1055
ProcessEvent, 243
ProcessMessage, 13
PushEventHandler, 947
PushTagHandler, 373
Put, 339
PutC, 559
PutChar, 758
PutProperty, 35
Pwd, 314

—Q—
Query, 652
Query database, 526
Quit, 343

—R—
Raise, 948
Read, 127, 128, 129, 256, 261, 426, 711, 757,

758, 909
Read16, 155, 836
Read32, 155, 836
Read8, 155, 836
ReadCustomization, 363, 369, 384

INDEX

27

ReadDouble, 155, 836
ReadFile, 360
ReadFromString, 257
ReadMailcap, 527
ReadMimeTypes, 527
ReadMsg, 713
Realize, 872
RealValue, 252
RecalcSizes, 60, 695
Reconnect, 620
RecordCountFinal, 652
Red, 94
Redirection of command events to the window

with the focus, 1076
Redo, 829
Ref, 557
Reference counting and why you shouldn't care

about it, 1029
Refresh, 513, 948
RefreshLists, 369
RegisterModule, 532
RegisterModules, 532
ReleaseCapture, 435
ReleaseMouse, 948
Remove, 25, 30, 105, 421, 695, 778, 829
RemoveAll, 421
RemoveBrush, 67
RemoveChild, 948
RemoveDocument, 212
RemoveFont, 299
RemoveHandler, 44, 410
RemoveIcon, 811
RemoveLast, 778
RemoveLine, 848
RemoveMenu, 272
RemovePage, 551
RemovePen, 586
RemoveView, 229
Removing items, 19
Rename, 314
Rename entries/groups, 122
RenameEntry, 129
RenameGroup, 129
Render, 356
RenderPage, 613
Reparent, 949
Replace, 104, 421, 778, 830
ReplaceWindow, 737
ReportError, 605
Requery, 652
Request, 186, 817
RequestMore, 395
Rescale, 412
Reset, 659
ResetBuffer, 759
Resource file, 7
Resource format design issues, 1091
Restore, 488
RestoreState, 717
Resume, 618
right, 446
Right, 778

RightDClick, 539
RightDown, 539
RightIsDown, 539
RightOf, 424
RightUp, 539
RmDir, 314
RmFile, 314
RollbackTrans, 144
RTTI, 9
Run, 852

—S—
SameAs, 424
Save, 229, 272
SaveAs, 229
SaveCachedBook, 366
SaveFile, 44, 50, 411, 416, 830
SaveObject, 230
SaveState, 717
Scale, 412
ScanParam, 378
ScreenToClient, 949
Scroll, 685
ScrollList, 470
ScrollTo, 886
ScrollWindow, 949
SearchEventTable, 244
Searching and replacing, 765
Searching and sorting, 19
Seek, 261, 759
SeekEnd, 262
SeekI, 427
SeekO, 560
Select, 1058
SelectDocumentPath, 212
SelectDocumentType, 212
Selected, 458
SelectItem, 886
SelectObject, 497
SelectViewType, 212
SendCommand, 313
SendIdleEvents, 13
Service, 428
Set, 2, 94, 129, 162, 424, 459, 691
SetAcceleratorTable, 950
SetActiveTarget, 481
SetActualColor, 391
SetAlign, 351, 391
SetAlignHor, 351
SetAlignment, 628, 664
SetAlignVer, 351
SetAllowSymbols, 294
SetAppName, 14
SetAuto3D, 14
SetAutoLayout, 950
SetBackground, 177
SetBackgroundColour, 352, 470, 518, 801, 951
SetBackgroundMode, 177
SetBellOnError, 899
SetBezelFace, 320
SetBitmap, 58, 742

INDEX

28

SetBitmapDisabled, 55
SetBitmapFocus, 56
SetBitmapLabel, 56
SetBitmaps, 518
SetBitmapSelected, 56
SetBorder, 352
SetBorders, 385
SetBrush, 178
SetBufferIO, 759, 760
SetCanvas, 613
SetCanVeto, 91
SetCap, 583
SetCapture, 435
SetCellAlignment, 333
SetCellBackgroundColour, 334
SetCellTextColour, 334
SetCellTextFont, 334
SetCellValue, 334
SetChar, 778
SetCheckpoint, 190
SetCheckPrevious, 191
SetChooseFull, 96
SetChosenFont, 294
SetClassName, 14
SetClientData, 83, 105, 112, 245, 252, 459
SetClientSize, 951
SetClipboard, 523
SetClippingRegion, 177, 178
SetCollate, 595, 602
SetColour, 64, 96, 294, 583, 595
SetColPosition, 794
SetColumn, 471
SetColumns, 83
SetColumnWidth, 335, 471
SetCommandProcessor, 230
SetConstraints, 953
SetCurrentPage, 613
SetCursor, 952
SetDashes, 583
SetData, 89, 135, 151, 153, 233, 413, 545, 623,

625, 905
SetDataSource, 145
SetDC, 355, 391
SetDebugMode, 191
SetDefault, 71
SetDefaultEncoding, 289
SetDefaultExtension, 222
SetDefaultInfo, 564
SetDefaultMinMargins, 564
SetDefaultProxy, 897
SetDefaultSize, 664
SetDefaultSQL, 653
SetDepth, 45, 400
SetDescription, 222
SetDeviceOrigin, 177
SetDimension, 695
SetDirectory, 222, 267
SetDirty, 626
SetDispatchPtr, 36
SetDividerPen, 335
SetDocument, 204, 215, 913
SetDocumentManager, 223

SetDocumentName, 230
SetDocumentTemplate, 230
SetDropTarget, 953
SetDuplex, 595
SetEditable, 335, 830
SetEditInPlace, 335
SetEditMenu, 115
SetEventHandler, 718, 952
SetEventObject, 240
SetEventType, 240
SetEvtHandlerEnabled, 246
SetExcludeList, 843
SetExitOnDelete, 15
SetExpandEnvVars, 129
SetExtension, 51, 417
SetExtraLong, 113
SetFaceName, 289
SetFamily, 290
SetFieldDirty, 624, 653
SetFieldNull, 653
SetFieldsCount, 753
SetFile, 191
SetFileFilter, 223
SetFilename, 230, 267
SetFilterIndex, 267
SetFirstItem, 459
SetFlags, 74, 223, 628, 707
SetFocus, 953
SetFont, 178, 518, 794, 954
SetFontBold, 391
SetFontFixed, 391
SetFontItalic, 392
SetFonts, 385, 392
SetFontSize, 392
SetFontUnderlined, 392
SetFooter, 359, 374
SetForce, 91
SetForegroundColour, 954
SetFormat, 153, 162, 856
SetFrame, 613, 913
SetFrameParameters, 342
SetFromPage, 602
SetFS, 374
SetGridCursor, 335
SetHeader, 359, 374, 394
SetHeight, 45, 401, 640, 691
SetHelp, 519
SetHelpString, 506, 513
SetHighlightColour, 801
SetHorizontalTabOffset, 802
SetHtmlFile, 375
SetHtmlText, 355, 375
SetIcon, 308, 812
SetId, 147, 240, 614, 794, 890, 954
SetImageList, 471, 551, 808, 886
SetIncludeList, 843
SetIndent, 352, 886
SetInitialFont, 295
SetInsertionPoint, 105, 831
SetInsertionPointEnd, 105, 831
SetInt, 113
SetIntPosition, 761

INDEX

29

SetItem, 471, 472
SetItemBold, 887
SetItemData, 472, 808, 887
SetItemHasChildren, 887
SetItemImage, 472, 808, 887
SetItemPosition, 473
SetItemSelectedImage, 887
SetItemSize, 808
SetItemState, 473
SetItemText, 473, 808, 888
SetJoin, 583
SetLabel, 72, 131, 507, 514, 633, 748, 795
SetLabelAlignment, 335
SetLabelBackgroundColour, 336
SetLabelSize, 336
SetLabelTextColour, 336
SetLabelTextFont, 336
SetLabelTop, 514
SetLabelValue, 336
SetLastDirectory, 213
SetLevel, 192
SetLineSize, 702
SetLink, 348, 392
SetLinkColor, 392
SetLoggingOff, 91
SetLogicalFunction, 178
SetLoginTimeout, 145
SetMapMode, 179
SetMarginBottomRight, 564
SetMargins, 375, 872
SetMarginWidth, 519
SetMask, 46, 413
SetMaskColour, 413
SetMaxDocsOpen, 213
SetMaximumSizeX, 668
SetMaximumSizeY, 668
SetMaxPage, 602
SetMenuBar, 309
SetMessage, 202, 267
SetMimeType, 418
SetMinHeight, 353
SetMinimumPaneSize, 738
SetMinimumSizeX, 668
SetMinimumSizeY, 668
SetMinMarginBottomRight, 565
SetMinMarginTopLeft, 564
SetMinPage, 602
SetModal, 199
SetMovementThreshold, 436
SetName, 51, 417, 519, 624, 955
SetNext, 348
SetNextHandler, 246
SetNoCopies, 595, 602
SetNotify, 708
SetNullable, 624
SetOk, 46, 401
SetOldSelection, 553
SetOptimization, 180
SetOption, 163
SetOptions, 653
SetOrientation, 595, 628, 665
SetPadding, 551, 808

SetPage, 386
SetPageImage, 551
SetPageSize, 551, 703
SetPageText, 551
SetPalette, 46, 178, 955
SetPaperId, 565, 595
SetPaperSize, 565
SetParent, 348
SetParser, 380
SetPassword, 145, 315, 621
SetPath, 130, 202, 267
SetPen, 180
SetPid, 619
SetPointSize, 290
SetPos, 348
SetPosition, 795
SetPreviousHandler, 246
SetPrintData, 565, 603
SetPrinterName, 597
SetPrintout, 614
SetPrintToFile, 603
SetPriority, 852
SetProxy, 897
SetQuality, 597
SetQueryTimeout, 145
SetRange, 295, 320, 702, 730
SetRecordDefaults, 130
SetRect, 74
SetRefData, 557
SetRelatedFrame, 386
SetRelatedStatusBar, 387
SetRequestedLength, 628
SetReturnCode, 199
SetRGB, 413
SetRowHeight, 336
SetRowPosition, 795
SetSashBorder, 669
SetSashPosition, 726, 737
SetSashVisible, 669
SetScrollbar, 675, 955
SetScrollbars, 686
SetScrollPos, 956
SetSelected, 795
SetSelectedTabFont, 802
SetSelection, 84, 106, 460, 552, 553, 603, 633,

703, 809, 831
SetSetupDialog, 603
SetShadowColour, 802
SetShadowWidth, 320
SetShowHelp, 295
SetSingleStyle, 473
SetSize, 355, 626, 628, 795, 957
SetSizeHints, 696, 958
SetSizer, 959
SetSplitMode, 738
SetStandardError, 192
SetStatusBar, 309
SetStatusText, 309, 753
SetStatusWidths, 310, 753
SetStipple, 64, 584
SetStream, 192
SetString, 113, 460, 785

INDEX

30

SetStringSelection, 84, 460, 633
SetStyle, 65, 202, 267, 291, 584, 843
SetSynchronousMode, 145
SetTabFont, 802
SetTableName, 653
SetTabSelection, 803
SetTabSelectionHeight, 802
SetTabSize, 802
SetTabStyle, 802
SetTabView, 791, 792
SetTargetWindow, 687
SetTempDir, 363, 366
SetText, 835, 895
SetTextBackground, 180
SetTextColour, 473, 519, 803
SetTextForeground, 180
SetThumbLength, 703
SetThumbPosition, 675
SetTick, 704
SetTickFreq, 702
SetTimeout, 708
SetTimestamp, 240, 482
SetTitle, 200, 230, 310, 507, 959
SetTitleFormat, 363, 369
SetToolBar, 310, 496
SetToolBitmapSize, 872
SetToolLongHelp, 873
SetToolPacking, 873
SetToolSeparation, 874
SetToolShortHelp, 874
SetToPage, 603
SetTopMargin, 803
SetTopWindow, 15
SetTraceMask, 483
SetType, 51, 147, 417, 624, 626, 653
SetUnderlined, 291
Setup, 605
SetUser, 314, 621
SetUsername, 145
SetUserScale, 180
SetValidator, 960
SetValue, 76, 106, 321, 637, 704, 731, 831, 839
SetVerbose, 482
SetVerticalTabTextSpacing, 803
SetView, 204, 215
SetViewer, 342
SetViewName, 913
SetViewRect, 803
SetWeight, 291
SetWidth, 47, 401, 584, 640, 691
SetWidthFloat, 354
SetWildcard, 267
SetWindow, 803, 899
SetWindowStyleFlag, 473
SetX, 641
SetY, 641
SetZoom, 614
SetZoomControl, 590
ShiftDown, 441, 539
Show, 200, 634, 960
ShowModal, 99, 200, 202, 268, 296, 522, 567,

599, 689, 839

ShowPosition, 832
ShowWindowForTab, 576
Shrink, 26, 30, 778
Signal, 116
Simplify the problem, 12
Skip, 240
Sleep, 853
SockAddrLen, 705
SocketEvent, 722
Some advice about using wxString, 1028
Sort, 26, 31, 452, 784
SortChildren, 888
SortItems, 474
SplitHorizontally, 738
SplitVertically, 739
sprintf, 779
Start, 859
StartAdvise, 186, 817
StartDoc, 181
StartDrawingOnTop, 670, 671
StartPage, 181
Static functions, 118, 479
std::string compatibility functions, 766
Stop, 860
StopAdvise, 186, 817
Stream, 762
Stricmp, 972
String length, 763
StringValue, 252
Strip, 779
Strlen, 972
Submit, 115
SubString, 779
Substring extraction, 764
Subtract, 656
Supported bitmap file formats, 1041

—T—
TakeData, 135
Tell, 262, 759
TellI, 427
TellO, 560
Templates, 9
Tests of existence, 121
The data provider (source) duties, 1039
The data receiver (target) duties, 1039
The format of a .WXR file, 1085
This, 853
Tile, 496
Toggle, 888
ToggleTool, 875
top, 446
TransferDataFromWindow, 960
TransferDataToWindow, 960
TransferFromWindow, 843
TransferToWindow, 323, 843, 899
Trim, 779
Truncate, 779
TryLock, 543
Tuning wxString for your application, 1030
Type, 252

INDEX

31

Type of NULL, 9

—U—
Unconstrained, 424
Undo, 108, 115, 832
Ungetch, 427
UngetWriteBuf, 779
Unicode and ANSI modes, 1036
Unicode and the outside world, 1038
Unicode support in wxWindows, 1037
Union, 656, 657
Unlock, 543
Unread, 714
UnRef, 558
Unselect, 888
UnselectAll, 888
Unsplit, 740
Update, 618, 653, 1059
UpdateAllViews, 231
UpdateDimensions, 336
UpdateUI, 507
Upper, 780
UpperCase, 780
Use a debugger, 12
Use ASSERT, 11
Use logging functions, 12
Use relative positioning or constraints, 11
Use the wxWindows debugging facilities, 12
Use wxString in preference to character arrays,

11
Use wxWindows resource files, 11
UseConfig, 364, 369
UseMenu, 272
UsePrimarySelection, 89
Using the toolbar library, 1099
Using wxExpr, 1108

—V—
Validate, 844, 899, 961
ValidHost, 182, 813
Veto, 91, 554
ViewStart, 687

—W—
Wait, 116, 714, 716
WaitForAccept, 723
WaitForRead, 715
WaitForWrite, 716
WaitOnConnect, 720
WarpPointer, 961
What is Unicode?, 1036
width, 446, 639
Window identifiers, 1076
Window layout examples, 1053
WordValue, 253
Write, 130, 257, 262, 263, 560, 711, 758, 820,

848, 909
WriteClause, 253
WriteCustomization, 364, 369, 387

WriteExpr, 253
WriteMsg, 712
WriteText, 832
Writing values into the string, 765
WX_CLEAR_ARRAY, 21
WX_DECLARE_OBJARRAY, 20
WX_DEFINE_ARRAY, 20
WX_DEFINE_OBJARRAY, 21
WX_DEFINE_SORTED_ARRAY, 20
wxAcceleratorEntry, 1
wxAcceleratorEntry::GetCommand, 1
wxAcceleratorEntry::GetFlags, 2
wxAcceleratorEntry::GetKeyCode, 2
wxAcceleratorEntry::Set, 2
wxAcceleratorEntry::wxAcceleratorEntry, 1
wxAcceleratorTable, 3
wxAcceleratorTable::~wxAcceleratorTable, 4
wxAcceleratorTable::Ok, 4
wxAcceleratorTable::operator !=, 5
wxAcceleratorTable::operator =, 4
wxAcceleratorTable::operator ==, 4
wxAcceleratorTable::wxAcceleratorTable, 3
wxActivateEvent, 6
wxActivateEvent::GetActive, 6
wxActivateEvent::m_active, 6
wxActivateEvent::wxActivateEvent, 6
wxALIGN_CENTRE, 746
wxALIGN_LEFT, 746
wxALIGN_RIGHT, 746
wxApp, 7
wxApp::~wxApp, 7
wxApp::argc, 7
wxApp::argv, 7
wxApp::CreateLogTarget, 7
wxApp::Dispatch, 8
wxApp::ExitMainLoop, 9
wxApp::GetAppName, 8
wxApp::GetAuto3D, 8
wxApp::GetClassName, 8
wxApp::GetExitOnDelete, 9
wxApp::GetStdIcon, 15
wxApp::GetTopWindow, 9
wxApp::Initialized, 9
wxApp::MainLoop, 10
wxApp::OnActivate, 10
wxApp::OnCharHook, 10
wxApp::OnEndSession, 11
wxApp::OnExit, 10
wxApp::OnIdle, 11
wxApp::OnInit, 12
wxApp::OnQueryEndSession, 12
wxApp::Pending, 13
wxApp::ProcessMessage, 13
wxApp::SendIdleEvents, 13
wxApp::SetAppName, 14
wxApp::SetAuto3D, 14
wxApp::SetClassName, 14
wxApp::SetExitOnDelete, 15
wxApp::SetTopWindow, 15
wxApp::wxApp, 7
wxArray, 22
wxArray copy constructor and assignment

INDEX

32

operator, 22
wxArray::~wxArray, 22
wxArray::Add, 22
wxArray::Alloc, 23
wxArray::Clear, 23
wxArray::Count, 23
wxArray::Empty, 24
wxArray::GetCount, 24
wxArray::Index, 24
wxArray::Insert, 24
wxArray::IsEmpty, 25
wxArray::Item, 25
wxArray::Last, 25
wxArray::Remove, 25
wxArray::Shrink, 25
wxArray::Sort, 26
wxArrayString, 27
wxArrayString::~wxArrayString, 27
wxArrayString::Add, 28
wxArrayString::Alloc, 28
wxArrayString::Clear, 28
wxArrayString::Count, 28
wxArrayString::Empty, 29
wxArrayString::GetCount, 29
wxArrayString::Index, 29
wxArrayString::Insert, 29
wxArrayString::IsEmpty, 29
wxArrayString::Item, 30
wxArrayString::Last, 30
wxArrayString::operator[], 28
wxArrayString::operator=, 27
wxArrayString::Remove (by index), 30
wxArrayString::Remove (by value), 30
wxArrayString::Shrink, 30
wxArrayString::Sort (alphabetically), 31
wxArrayString::Sort (user defined), 31
wxArrayString::wxArrayString, 27
wxASSERT, 1012
wxASSERT_MSG, 1013
wxAutomationObject, 32
wxAutomationObject::~wxAutomationObject, 32
wxAutomationObject::CallMethod, 33
wxAutomationObject::CreateInstance, 33
wxAutomationObject::GetDispatchPtr, 33
wxAutomationObject::GetInstance, 33
wxAutomationObject::GetObject, 34
wxAutomationObject::GetProperty, 34
wxAutomationObject::Invoke, 34
wxAutomationObject::PutProperty, 35
wxAutomationObject::SetDispatchPtr, 36
wxAutomationObject::wxAutomationObject, 32
wxBeginBusyCursor, 984
wxBell, 984
wxBitmap, 36, 37
wxBITMAP, 1004
wxBitmap::~wxBitmap, 39
wxBitmap::AddHandler, 39
wxBitmap::CleanUpHandlers, 40
wxBitmap::Create, 40
wxBitmap::FindHandler, 41
wxBitmap::GetDepth, 41
wxBitmap::GetHandlers, 41

wxBitmap::GetHeight, 42
wxBitmap::GetMask, 42
wxBitmap::GetPalette, 42
wxBitmap::GetWidth, 42
wxBitmap::InitStandardHandlers, 42
wxBitmap::InsertHandler, 43
wxBitmap::LoadFile, 43
wxBitmap::Ok, 44
wxBitmap::operator !=, 48
wxBitmap::operator =, 47
wxBitmap::operator ==, 47
wxBitmap::RemoveHandler, 44
wxBitmap::SaveFile, 44
wxBitmap::SetDepth, 45
wxBitmap::SetHeight, 45
wxBitmap::SetMask, 46
wxBitmap::SetOk, 46
wxBitmap::SetPalette, 46
wxBitmap::SetWidth, 47
wxBitmap::wxBitmap, 36
wxBITMAP_TYPE_BMP, 38, 404
wxBITMAP_TYPE_BMP_RESOURCE, 38
wxBITMAP_TYPE_CUR, 137
wxBITMAP_TYPE_CUR_RESOURCE, 137
wxBITMAP_TYPE_GIF, 38, 398
wxBITMAP_TYPE_ICO, 137, 398
wxBITMAP_TYPE_ICO_RESOURCE, 398
wxBITMAP_TYPE_JPEG, 404
wxBITMAP_TYPE_PNG, 404
wxBITMAP_TYPE_RESOURCE, 38
wxBITMAP_TYPE_XBM, 38, 137, 398
wxBITMAP_TYPE_XPM, 38, 398
wxBitmapButton, 53
wxBitmapButton::~wxBitmapButton, 54
wxBitmapButton::Create, 54
wxBitmapButton::GetBitmapDisabled, 54
wxBitmapButton::GetBitmapFocus, 54
wxBitmapButton::GetBitmapLabel, 55
wxBitmapButton::GetBitmapSelected, 55
wxBitmapButton::SetBitmapDisabled, 55
wxBitmapButton::SetBitmapFocus, 56
wxBitmapButton::SetBitmapLabel, 56
wxBitmapButton::SetBitmapSelected, 56
wxBitmapButton::wxBitmapButton, 53
wxBitmapDataObject, 57
wxBitmapDataObject::GetBitmap, 57
wxBitmapDataObject::SetBitmap, 58
wxBitmapHandler, 48
wxBitmapHandler::~wxBitmapHandler, 48
wxBitmapHandler::Create, 49
wxBitmapHandler::GetExtension, 49
wxBitmapHandler::GetName, 49
wxBitmapHandler::GetType, 50
wxBitmapHandler::LoadFile, 50
wxBitmapHandler::SaveFile, 50
wxBitmapHandler::SetExtension, 51
wxBitmapHandler::SetName, 51
wxBitmapHandler::SetType, 51
wxBitmapHandler::wxBitmapHandler, 48
wxBoxSizer, 59
wxBoxSizer::CalcMin, 60
wxBoxSizer::GetOrientation, 60

INDEX

33

wxBoxSizer::RecalcSizes, 60
wxBoxSizer::wxBoxSizer, 59
wxBrush, 61, 62
wxBrush::~wxBrush, 62
wxBrush::GetColour, 63
wxBrush::GetStipple, 63
wxBrush::GetStyle, 63
wxBrush::Ok, 64
wxBrush::operator !=, 65
wxBrush::operator =, 65
wxBrush::operator ==, 65
wxBrush::SetColour, 64
wxBrush::SetStipple, 64
wxBrush::SetStyle, 65
wxBrush::wxBrush, 61
wxBrushList, 67
wxBrushList::AddBrush, 67
wxBrushList::FindOrCreateBrush, 67
wxBrushList::RemoveBrush, 67
wxBrushList::wxBrushList, 67
wxBU_AUTODRAW, 52
wxBusyCursor, 68
wxBusyCursor::~wxBusyCursor, 68
wxBusyCursor::wxBusyCursor, 68
wxBusyInfo, 69
wxBusyInfo::wxBusyInfo, 69
wxButton, 70
wxButton::~wxButton, 71
wxButton::Create, 71
wxButton::GetDefaultSize, 71
wxButton::GetLabel, 71
wxButton::SetDefault, 71
wxButton::SetLabel, 72
wxButton::wxButton, 70
wxCalculateLayoutEvent, 73
wxCalculateLayoutEvent::GetFlags, 74
wxCalculateLayoutEvent::GetRect, 74
wxCalculateLayoutEvent::SetFlags, 74
wxCalculateLayoutEvent::SetRect, 74
wxCalculateLayoutEvent::wxCalculateLayoutEve

nt, 73
wxCAPTION, 194, 300, 486, 491, 528
wxCB_DROPDOWN, 99
wxCB_READONLY, 99
wxCB_SIMPLE, 99
wxCB_SORT, 99
wxCHECK, 1013
wxCHECK_MSG, 1013
wxCHECK_RET, 1014
wxCHECK2, 1014
wxCHECK2_MSG, 1014
wxCheckBox, 75
wxCheckBox::~wxCheckBox, 76
wxCheckBox::Create, 76
wxCheckBox::GetValue, 76
wxCheckBox::SetValue, 76
wxCheckBox::wxCheckBox, 75
wxCheckListBox, 77
wxCheckListBox::~wxCheckListBox, 78
wxCheckListBox::Check, 78
wxCheckListBox::IsChecked, 79
wxCheckListBox::wxCheckListBox, 77

wxChoice, 80
wxChoice::~wxChoice, 81
wxChoice::Append, 81
wxChoice::Clear, 81
wxChoice::Create, 81
wxChoice::FindString, 81
wxChoice::GetClientData, 82
wxChoice::GetColumns, 82
wxChoice::GetSelection, 82
wxChoice::GetString, 82
wxChoice::GetStringSelection, 83
wxChoice::Number, 83
wxChoice::SetClientData, 83
wxChoice::SetColumns, 83
wxChoice::SetSelection, 84
wxChoice::SetStringSelection, 84
wxChoice::wxChoice, 80
wxClassInfo, 85, 1092
wxClassInfo::CreateObject, 85
wxClassInfo::FindClass, 85
wxClassInfo::GetBaseClassName1, 85
wxClassInfo::GetBaseClassName2, 85
wxClassInfo::GetClassName, 85
wxClassInfo::GetSize, 86
wxClassInfo::InitializeClasses, 86
wxClassInfo::IsKindOf, 86
wxClassInfo::wxClassInfo, 85
wxClientDC, 87
wxClientDC::wxClientDC, 87
wxCLIP_CHILDREN, 916
wxClipboard, 88
wxClipboard::~wxClipboard, 88
wxClipboard::Clear, 88
wxClipboard::Close, 88
wxClipboard::GetData, 88
wxClipboard::IsSupported, 88
wxClipboard::Open, 89
wxClipboard::SetData, 89
wxClipboard::UsePrimarySelection, 89
wxClipboard::wxClipboard, 88
wxClipboardOpen, 981
wxCloseClipboard, 981
wxCloseEvent, 90
wxCloseEvent::CanVeto, 90
wxCloseEvent::GetForce, 90
wxCloseEvent::GetLoggingOff, 90
wxCloseEvent::GetSessionEnding, 90
wxCloseEvent::SetCanVeto, 91
wxCloseEvent::SetForce, 91
wxCloseEvent::SetLoggingOff, 91
wxCloseEvent::Veto, 91
wxCloseEvent::wxCloseEvent, 90
wxColour, 92
wxColour::Blue, 93
wxColour::GetPixel, 93
wxColour::Green, 93
wxColour::Ok, 93
wxColour::operator !=, 94
wxColour::operator =, 94
wxColour::operator ==, 94
wxColour::Red, 94
wxColour::Set, 94

INDEX

34

wxColour::wxColour, 92
wxColourData, 95
wxColourData::~wxColourData, 95
wxColourData::GetChooseFull, 95
wxColourData::GetColour, 95
wxColourData::GetCustomColour, 95
wxColourData::operator =, 96
wxColourData::SetChooseFull, 96
wxColourData::SetColour, 96
wxColourData::SetCustomColour, 96
wxColourData::wxColourData, 95
wxColourDatabase, 97
wxColourDatabase::FindColour, 97
wxColourDatabase::FindName, 97
wxColourDatabase::Initialize, 98
wxColourDatabase::wxColourDatabase, 97
wxColourDialog, 98
wxColourDialog overview, 1048
wxColourDialog::~wxColourDialog, 98
wxColourDialog::GetColourData, 99
wxColourDialog::ShowModal, 99
wxColourDialog::wxColourDialog, 98
wxColourDisplay, 977
wxComboBox, 100
wxComboBox::~wxComboBox, 101
wxComboBox::Append, 101
wxComboBox::Clear, 101
wxComboBox::Copy, 102
wxComboBox::Create, 101
wxComboBox::Cut, 102
wxComboBox::Delete, 102
wxComboBox::FindString, 102
wxComboBox::GetClientData, 103
wxComboBox::GetInsertionPoint, 103
wxComboBox::GetLastPosition, 103
wxComboBox::GetSelection, 103
wxComboBox::GetString, 103
wxComboBox::GetStringSelection, 104
wxComboBox::GetValue, 104
wxComboBox::Number, 104
wxComboBox::Paste, 104
wxComboBox::Remove, 104
wxComboBox::Replace, 104
wxComboBox::SetClientData, 105
wxComboBox::SetInsertionPoint, 105
wxComboBox::SetInsertionPointEnd, 105
wxComboBox::SetSelection, 105
wxComboBox::SetValue, 106
wxComboBox::wxComboBox, 100
wxCommand, 107
wxCommand overview, 1070
wxCommand::~wxCommand, 107
wxCommand::CanUndo, 107
wxCommand::Do, 107
wxCommand::GetName, 107
wxCommand::Undo, 108
wxCommand::wxCommand, 107
wxCommandEvent, 111
wxCommandEvent::Checked, 111
wxCommandEvent::GetClientData, 111
wxCommandEvent::GetExtraLong, 112
wxCommandEvent::GetInt, 112

wxCommandEvent::GetSelection, 112
wxCommandEvent::GetString, 112
wxCommandEvent::IsSelection, 112
wxCommandEvent::m_clientData, 111
wxCommandEvent::m_commandInt, 111
wxCommandEvent::m_commandString, 111
wxCommandEvent::m_extraLong, 111
wxCommandEvent::SetClientData, 112
wxCommandEvent::SetExtraLong, 113
wxCommandEvent::SetInt, 113
wxCommandEvent::SetString, 113
wxCommandEvent::wxCommandEvent, 111
wxCommandProcessor, 113
wxCommandProcessor overview, 1071
wxCommandProcessor::~wxCommandProcessor

, 114
wxCommandProcessor::CanUndo, 114
wxCommandProcessor::ClearCommands, 114
wxCommandProcessor::Do, 114
wxCommandProcessor::GetCommands, 114
wxCommandProcessor::GetEditMenu, 114
wxCommandProcessor::GetMaxCommands, 114
wxCommandProcessor::Initialize, 115
wxCommandProcessor::SetEditMenu, 115
wxCommandProcessor::Submit, 115
wxCommandProcessor::Undo, 115
wxCommandProcessor::wxCommandProcessor,

113
wxConcatFiles, 966
wxCondition, 116
wxCondition::~wxCondition, 116
wxCondition::Broadcast, 116
wxCondition::Signal, 116
wxCondition::Wait, 116
wxCondition::wxCondition, 116
wxConfigBase, 123
wxConfigBase::~wxConfigBase, 124
wxConfigBase::Create, 124
wxConfigBase::DeleteAll, 124
wxConfigBase::DeleteEntry, 124
wxConfigBase::DeleteGroup, 124
wxConfigBase::DontCreateOnDemand, 124
wxConfigBase::Exists, 125
wxConfigBase::Flush, 125
wxConfigBase::Get, 125
wxConfigBase::GetAppName, 125
wxConfigBase::GetEntryType, 125
wxConfigBase::GetFirstEntry, 126
wxConfigBase::GetFirstGroup, 126
wxConfigBase::GetNextEntry, 126
wxConfigBase::GetNextGroup, 126
wxConfigBase::GetNumberOfEntries, 126
wxConfigBase::GetNumberOfGroups, 126
wxConfigBase::GetPath, 127
wxConfigBase::GetVendorName, 127
wxConfigBase::HasEntry, 127
wxConfigBase::HasGroup, 127
wxConfigBase::IsExpandingEnvVars, 127
wxConfigBase::IsRecordingDefaults, 127
wxConfigBase::Read, 127
wxConfigBase::RenameEntry, 129
wxConfigBase::RenameGroup, 129

INDEX

35

wxConfigBase::Set, 129
wxConfigBase::SetExpandingEnvVars, 129
wxConfigBase::SetPath, 130
wxConfigBase::SetRecordDefaults, 130
wxConfigBase::Write, 130
wxConfigBase::wxConfigBase, 123
wxControl::Command, 131
wxControl::GetLabel, 131
wxControl::SetLabel, 131
wxCopyFile, 966
wxCreateDynamicObject, 984
wxCreateFileTipProvider, 972
wxCriticalSection, 132
wxCriticalSection::~wxCriticalSection, 132
wxCriticalSection::Enter, 132
wxCriticalSection::Leave, 132
wxCriticalSection::wxCriticalSection, 132
wxCriticalSectionLocker, 133
wxCriticalSectionLocker::~wxCriticalSectionLock

er, 133
wxCriticalSectionLocker::wxCriticalSectionLocker

, 133
wxCurrentTipProvider::GetCurrentTip, 861
wxCursor, 136, 137
wxCursor::~wxCursor, 138
wxCursor::Ok, 139
wxCursor::operator !=, 139
wxCursor::operator =, 139
wxCursor::operator ==, 139
wxCursor::wxCursor, 136
wxCustomDataObject, 134
wxCustomDataObject::~wxCustomDataObject,

134
wxCustomDataObject::Alloc, 134
wxCustomDataObject::Free, 134
wxCustomDataObject::GetData, 135
wxCustomDataObject::GetSize, 135
wxCustomDataObject::SetData, 135
wxCustomDataObject::TakeData, 135
wxCustomDataObject::wxCustomDataObject,

134
wxDatabase, 140
wxDatabase overview, 1056
wxDatabase::~wxDatabase, 140
wxDatabase::BeginTrans, 140
wxDatabase::Cancel, 140
wxDatabase::CanTransact, 140
wxDatabase::CanUpdate, 140
wxDatabase::Close, 140
wxDatabase::CommitTrans, 141
wxDatabase::ErrorOccured, 141
wxDatabase::ErrorSnapshot, 141
wxDatabase::GetDatabaseName, 141
wxDatabase::GetDataSource, 141
wxDatabase::GetErrorClass, 141
wxDatabase::GetErrorCode, 142
wxDatabase::GetErrorMessage, 142
wxDatabase::GetErrorNumber, 142
wxDatabase::GetHDBC, 142
wxDatabase::GetHENV, 142
wxDatabase::GetInfo, 142
wxDatabase::GetODBCVersionFloat, 143

wxDatabase::GetODBCVersionString, 143
wxDatabase::GetPassword, 143
wxDatabase::GetUsername, 143
wxDatabase::InWaitForDataSource, 144
wxDatabase::IsOpen, 144
wxDatabase::OnSetOptions, 144
wxDatabase::OnWaitForDataSource, 144
wxDatabase::Open, 144
wxDatabase::RollbackTrans, 144
wxDatabase::SetDataSource, 144
wxDatabase::SetLoginTimeout, 145
wxDatabase::SetPassword, 145
wxDatabase::SetQueryTimeout, 145
wxDatabase::SetSynchronousMode, 145
wxDatabase::SetUsername, 145
wxDatabase::wxDatabase, 140
wxDataFormat, 146, 147
wxDataFormat::GetId, 147
wxDataFormat::GetType, 147
wxDataFormat::operator !=, 147
wxDataFormat::operator ==, 147
wxDataFormat::SetId, 147
wxDataFormat::SetType, 147
wxDataFormat::wxDataFormat, 146, 147
wxDataInputStream, 154
wxDataInputStream::~wxDataInputStream, 155
wxDataInputStream::BigEndianOrdered, 155
wxDataInputStream::Read16, 155
wxDataInputStream::Read32, 155
wxDataInputStream::Read8, 155
wxDataInputStream::ReadDouble, 155
wxDataInputStream::ReadString, 155, 156
wxDataInputStream::wxDataInputStream, 154
wxDataObject, 150
wxDataObject::~wxDataObject, 150
wxDataObject::GetAllFormats, 150
wxDataObject::GetDataHere, 150
wxDataObject::GetDataSize, 150
wxDataObject::GetFormatCount, 150
wxDataObject::GetPreferredFormat, 151
wxDataObject::SetData, 151
wxDataObject::wxDataObject, 150
wxDataObjectComposite, 152
wxDataObjectComposite::Add, 152
wxDataObjectComposite::wxDataObjectComposi

te, 152
wxDataObjectSimple, 153
wxDataObjectSimple::GetDataHere, 153
wxDataObjectSimple::GetDataSize, 153
wxDataObjectSimple::GetFormat, 153
wxDataObjectSimple::SetData, 153
wxDataObjectSimple::SetFormat, 153
wxDataObjectSimple::wxDataObjectSimple, 153
wxDataOutputStream, 156
wxDataOutputStream::~wxDataOutputStream,

156
wxDataOutputStream::BigEndianOrdered, 156
wxDataOutputStream::Write16, 157
wxDataOutputStream::Write32, 157
wxDataOutputStream::Write8, 157
wxDataOutputStream::WriteDouble, 157
wxDataOutputStream::WriteString, 157

INDEX

36

wxDataOutputStream::wxDataOutputStream, 156
wxDate, 158, 857
wxDate::~wxDate, 159
wxDate::AddMonths, 159
wxDate::AddWeeks, 159
wxDate::AddYears, 159
wxDate::FormatDate, 159
wxDate::GetDay, 160
wxDate::GetDayOfWeek, 160
wxDate::GetDayOfWeekName, 160
wxDate::GetDayOfYear, 160
wxDate::GetDaysInMonth, 160
wxDate::GetFirstDayOfMonth, 160
wxDate::GetJulianDate, 160
wxDate::GetMonth, 161
wxDate::GetMonthEnd, 161
wxDate::GetMonthName, 161
wxDate::GetMonthStart, 161
wxDate::GetWeekOfMonth, 161
wxDate::GetWeekOfYear, 161
wxDate::GetYear, 161
wxDate::GetYearEnd, 161
wxDate::GetYearStart, 162
wxDate::IsLeapYear, 162
wxDate::operator -, 163
wxDate::operator --, 164
wxDate::operator !=, 165
wxDate::operator +, 163
wxDate::operator ++, 164
wxDate::operator +=, 164
wxDate::operator <, 164
wxDate::operator <<, 165
wxDate::operator <=, 164
wxDate::operator -=, 164
wxDate::operator ==, 165
wxDate::operator >, 165
wxDate::operator >=, 165
wxDate::operator wxString, 163
wxDate::Set, 162
wxDate::SetFormat, 162
wxDate::SetOption, 163
wxDate::wxDate, 158
wxDC, 166
wxDC::~wxDC, 166
wxDC::BeginDrawing, 166
wxDC::Blit, 166
wxDC::Clear, 168
wxDC::CrossHair, 168
wxDC::DestroyClippingRegion, 168
wxDC::DeviceToLogicalX, 168
wxDC::DeviceToLogicalXRel, 168
wxDC::DeviceToLogicalY, 168
wxDC::DeviceToLogicalYRel, 168
wxDC::DrawArc, 169
wxDC::DrawBitmap, 169
wxDC::DrawEllipse, 169
wxDC::DrawEllipticArc, 169
wxDC::DrawIcon, 170
wxDC::DrawLine, 170
wxDC::DrawLines, 170
wxDC::DrawPoint, 171
wxDC::DrawPolygon, 170

wxDC::DrawRectangle, 171
wxDC::DrawRoundedRectangle, 171
wxDC::DrawSpline, 171
wxDC::DrawText, 172
wxDC::EndDoc, 172
wxDC::EndDrawing, 172
wxDC::EndPage, 172
wxDC::FloodFill, 172
wxDC::GetBackground, 173
wxDC::GetBrush, 173
wxDC::GetCharHeight, 173
wxDC::GetCharWidth, 173
wxDC::GetClippingBox, 173
wxDC::GetFont, 173
wxDC::GetLogicalFunction, 173
wxDC::GetMapMode, 174
wxDC::GetOptimization, 174
wxDC::GetPen, 174
wxDC::GetPixel, 174
wxDC::GetSize, 174
wxDC::GetTextBackground, 175
wxDC::GetTextExtent, 175
wxDC::GetTextForeground, 175
wxDC::LogicalToDeviceX, 176
wxDC::LogicalToDeviceXRel, 176
wxDC::LogicalToDeviceY, 176
wxDC::LogicalToDeviceYRel, 176
wxDC::MaxX, 176
wxDC::MaxY, 176
wxDC::MinX, 177
wxDC::MinY, 177
wxDC::Ok, 177
wxDC::SetBackground, 177
wxDC::SetBackgroundMode, 177
wxDC::SetBrush, 178
wxDC::SetClippingRegion, 177
wxDC::SetDeviceOrigin, 177
wxDC::SetFont, 178
wxDC::SetLogicalFunction, 178
wxDC::SetMapMode, 179
wxDC::SetOptimization, 180
wxDC::SetPalette, 178
wxDC::SetPen, 180
wxDC::SetTextBackground, 180
wxDC::SetTextForeground, 180
wxDC::SetUserScale, 180
wxDC::StartDoc, 181
wxDC::StartPage, 181
wxDC::wxDC, 166
wxDDECleanUp, 984
wxDDEClient, 181
wxDDEClient::MakeConnection, 182
wxDDEClient::OnMakeConnection, 182
wxDDEClient::ValidHost, 182
wxDDEClient::wxDDEClient, 181
wxDDEConnection, 183
wxDDEConnection::Advise, 184
wxDDEConnection::Disconnect, 184
wxDDEConnection::Execute, 184
wxDDEConnection::OnAdvise, 184
wxDDEConnection::OnDisconnect, 184
wxDDEConnection::OnExecute, 185

INDEX

37

wxDDEConnection::OnPoke, 185
wxDDEConnection::OnRequest, 185
wxDDEConnection::OnStartAdvise, 185
wxDDEConnection::OnStopAdvise, 185
wxDDEConnection::Poke, 186
wxDDEConnection::Request, 186
wxDDEConnection::StartAdvise, 186
wxDDEConnection::StopAdvise, 186
wxDDEConnection::wxDDEConnection, 183
wxDDEInitialize, 985
wxDDEServer, 187
wxDDEServer::Create, 187
wxDDEServer::OnAcceptConnection, 187
wxDDEServer::wxDDEServer, 187
WXDEBUG_NEW, 1004
wxDebugContext overview, 1061
wxDebugContext::Check, 188
wxDebugContext::Dump, 188
wxDebugContext::GetCheckPrevious, 188
wxDebugContext::GetDebugMode, 189
wxDebugContext::GetLevel, 189
wxDebugContext::GetStream, 189
wxDebugContext::GetStreamBuf, 189
wxDebugContext::HasStream, 190
wxDebugContext::PrintClasses, 190
wxDebugContext::PrintStatistics, 190
wxDebugContext::SetCheckpoint, 190
wxDebugContext::SetCheckPrevious, 191
wxDebugContext::SetDebugMode, 191
wxDebugContext::SetFile, 191
wxDebugContext::SetLevel, 192
wxDebugContext::SetStandardError, 192
wxDebugContext::SetStream, 192
wxDebugMsg, 985
wxDEFAULT_DIALOG_STYLE, 194
wxDEFAULT_FRAME_STYLE, 300, 486, 491,

528
wxDialog, 194
wxDialog::~wxDialog, 195
wxDialog::Centre, 195
wxDialog::Create, 195
wxDialog::EndModal, 196
wxDialog::GetReturnCode, 196
wxDialog::GetTitle, 196
wxDialog::Iconize, 196
wxDialog::IsIconized, 197
wxDialog::IsModal, 197
wxDialog::OnApply, 197
wxDialog::OnCancel, 198
wxDialog::OnCharHook, 197
wxDialog::OnOK, 198
wxDialog::OnSysColourChanged, 198
wxDialog::SetModal, 199
wxDialog::SetReturnCode, 199
wxDialog::SetTitle, 200
wxDialog::Show, 200
wxDialog::ShowModal, 200
wxDialog::wxDialog, 194
wxDirDialog, 201
wxDirDialog overview, 1050
wxDirDialog::~wxDirDialog, 201
wxDirDialog::GetMessage, 202

wxDirDialog::GetPath, 202
wxDirDialog::GetStyle, 202
wxDirDialog::SetMessage, 202
wxDirDialog::SetPath, 202
wxDirDialog::SetStyle, 202
wxDirDialog::ShowModal, 202
wxDirDialog::wxDirDialog, 201
wxDirExists, 964
wxDisplayDepth, 978
wxDisplaySize, 986
wxDocChildFrame, 203
wxDocChildFrame::~wxDocChildFrame, 204
wxDocChildFrame::GetDocument, 204
wxDocChildFrame::GetView, 204
wxDocChildFrame::m_childDocument, 203
wxDocChildFrame::m_childView, 203
wxDocChildFrame::OnActivate, 204
wxDocChildFrame::OnCloseWindow, 204
wxDocChildFrame::SetDocument, 204
wxDocChildFrame::SetView, 204
wxDocChildFrame::wxDocChildFrame, 203
wxDocManager, 206
wxDocManager overview, 1070
wxDocManager::~wxDocManager, 206
wxDocManager::ActivateView, 207
wxDocManager::AddDocument, 207
wxDocManager::AddFileToHistory, 207
wxDocManager::AssociateTemplate, 207
wxDocManager::CreateDocument, 207
wxDocManager::CreateView, 208
wxDocManager::DisassociateTemplate, 208
wxDocManager::FileHistoryAddFilesToMenu,

208
wxDocManager::FileHistoryLoad, 208
wxDocManager::FileHistoryRemoveMenu, 208
wxDocManager::FileHistorySave, 208
wxDocManager::FileHistoryUseMenu, 209
wxDocManager::FindTemplateForPath, 209
wxDocManager::GetCurrentDocument, 209
wxDocManager::GetCurrentView, 209
wxDocManager::GetDocuments, 209
wxDocManager::GetFileHistory, 210
wxDocManager::GetLastDirectory, 210
wxDocManager::GetMaxDocsOpen, 210
wxDocManager::GetNoHistoryFiles, 210
wxDocManager::Initialize, 210
wxDocManager::m_currentView, 205
wxDocManager::m_defaultDocumentNameCount

er, 205
wxDocManager::m_docs, 206
wxDocManager::m_fileHistory, 205
wxDocManager::m_flags, 206
wxDocManager::m_lastDirectory, 206
wxDocManager::m_maxDocsOpen, 205
wxDocManager::m_templates, 206
wxDocManager::MakeDefaultName, 210
wxDocManager::OnCreateFileHistory, 211
wxDocManager::OnFileClose, 211
wxDocManager::OnFileNew, 211
wxDocManager::OnFileOpen, 211
wxDocManager::OnFileSave, 211
wxDocManager::OnFileSaveAs, 211

INDEX

38

wxDocManager::OnMenuCommand, 211
wxDocManager::RemoveDocument, 212
wxDocManager::SelectDocumentPath, 212
wxDocManager::SelectDocumentType, 212
wxDocManager::SelectViewType, 212
wxDocManager::SetLastDirectory, 213
wxDocManager::SetMaxDocsOpen, 213
wxDocManager::wxDocManager, 206
wxDocMDIChildFrame, 214
wxDocMDIChildFrame::~wxDocMDIChildFrame,

214
wxDocMDIChildFrame::GetDocument, 214
wxDocMDIChildFrame::GetView, 214
wxDocMDIChildFrame::m_childDocument, 214
wxDocMDIChildFrame::m_childView, 214
wxDocMDIChildFrame::OnActivate, 214
wxDocMDIChildFrame::OnCloseWindow, 215
wxDocMDIChildFrame::SetDocument, 215
wxDocMDIChildFrame::SetView, 215
wxDocMDIChildFrame::wxDocMDIChildFrame,

214
wxDocMDIParentFrame::~wxDocMDIParentFram

e, 216
wxDocMDIParentFrame::OnCloseWindow, 216
wxDocMDIParentFrame::wxDocMDIParentFrame

, 216
wxDocParentFrame, 216, 217
wxDocParentFrame::~wxDocParentFrame, 217
wxDocParentFrame::OnCloseWindow, 217
wxDocParentFrame::wxDocParentFrame, 217
wxDocTemplate, 219
wxDocTemplate overview, 1069
wxDocTemplate::~wxDocTemplate, 220
wxDocTemplate::CreateDocument, 220
wxDocTemplate::CreateView, 221
wxDocTemplate::GetDefaultExtension, 221
wxDocTemplate::GetDescription, 221
wxDocTemplate::GetDirectory, 221
wxDocTemplate::GetDocumentManager, 221
wxDocTemplate::GetDocumentName, 221
wxDocTemplate::GetFileFilter, 222
wxDocTemplate::GetFlags, 222
wxDocTemplate::GetViewName, 222
wxDocTemplate::IsVisible, 222
wxDocTemplate::m_defaultExt, 218
wxDocTemplate::m_description, 218
wxDocTemplate::m_directory, 218
wxDocTemplate::m_docClassInfo, 218
wxDocTemplate::m_docTypeName, 219
wxDocTemplate::m_documentManager, 219
wxDocTemplate::m_fileFilter, 219
wxDocTemplate::m_flags, 219
wxDocTemplate::m_viewClassInfo, 219
wxDocTemplate::m_viewTypeName, 219
wxDocTemplate::SetDefaultExtension, 222
wxDocTemplate::SetDescription, 222
wxDocTemplate::SetDirectory, 222
wxDocTemplate::SetDocumentManager, 223
wxDocTemplate::SetFileFilter, 223
wxDocTemplate::SetFlags, 223
wxDocTemplate::wxDocTemplate, 219
wxDocument, 225

wxDocument overview, 1068
wxDocument::~wxDocument, 225
wxDocument::AddView, 225
wxDocument::Close, 225
wxDocument::DeleteAllViews, 225
wxDocument::GetCommandProcessor, 225
wxDocument::GetDocumentManager, 226
wxDocument::GetDocumentName, 226
wxDocument::GetDocumentTemplate, 226
wxDocument::GetDocumentWindow, 226
wxDocument::GetFilename, 226
wxDocument::GetFirstView, 226
wxDocument::GetPrintableName, 226
wxDocument::GetTitle, 227
wxDocument::GetViews, 227
wxDocument::IsModified, 227
wxDocument::LoadObject, 227
wxDocument::m_commandProcessor, 223
wxDocument::m_documentFile, 224
wxDocument::m_documentModified, 224
wxDocument::m_documentTemplate, 224
wxDocument::m_documentTitle, 224
wxDocument::m_documentTypeName, 224
wxDocument::m_documentViews, 224
wxDocument::Modify, 227
wxDocument::OnChangedViewList, 228
wxDocument::OnCloseDocument, 228
wxDocument::OnCreate, 228
wxDocument::OnCreateCommandProcessor,

228
wxDocument::OnNewDocument, 228
wxDocument::OnOpenDocument, 229
wxDocument::OnSaveDocument, 229
wxDocument::OnSaveModified, 229
wxDocument::RemoveView, 229
wxDocument::Save, 229
wxDocument::SaveAs, 229
wxDocument::SaveObject, 230
wxDocument::SetCommandProcessor, 230
wxDocument::SetDocumentName, 230
wxDocument::SetDocumentTemplate, 230
wxDocument::SetFilename, 230
wxDocument::SetTitle, 230
wxDocument::UpdateAllViews, 231
wxDocument::wxDocument, 225
wxDOUBLE_BORDER, 915
wxDragResult, 233
wxDropFilesEvent, 231
wxDropFilesEvent::GetFiles, 232
wxDropFilesEvent::GetNumberOfFiles, 232
wxDropFilesEvent::GetPosition, 232
wxDropFilesEvent::m_files, 231
wxDropFilesEvent::m_noFiles, 232
wxDropFilesEvent::m_pos, 232
wxDropFilesEvent::wxDropFilesEvent, 231
wxDropSource, 233
wxDropSource::~wxDropSource, 233
wxDropSource::DoDragDrop, 234
wxDropSource::GiveFeedback, 234
wxDropSource::SetData, 233
wxDropSource::wxDropSource, 233
wxDropTarget, 235

INDEX

39

wxDropTarget::~wxDropTarget, 235
wxDropTarget::GetFormat, 235
wxDropTarget::GetFormatCount, 235
wxDropTarget::OnData, 235
wxDropTarget::OnDrop, 235
wxDropTarget::OnEnter, 236
wxDropTarget::OnLeave, 236
wxDropTarget::wxDropTarget, 235
wxDynamicCast, 1005
wxEdge, 422
wxEmptyClipboard, 981
wxEnableTopLevelWindow, 986
wxEndBusyCursor, 987
wxEntry, 986
wxEnumClipboardFormats, 982
wxEraseEvent, 237
wxEraseEvent::GetDC, 237
wxEraseEvent::m_dc, 237
wxEraseEvent::wxEraseEvent, 237
wxError, 987
wxEvent, 238
wxEvent::GetEventClass, 239
wxEvent::GetEventObject, 239
wxEvent::GetEventType, 239
wxEvent::GetId, 239
wxEvent::GetObjectType, 239
wxEvent::GetSkipped, 239
wxEvent::GetTimestamp, 239
wxEvent::m_eventHandle, 238
wxEvent::m_eventObject, 238
wxEvent::m_eventType, 238
wxEvent::m_id, 238
wxEvent::m_skipped, 238
wxEvent::m_timeStamp, 238
wxEvent::SetEventObject, 240
wxEvent::SetEventType, 240
wxEvent::SetId, 240
wxEvent::SetTimestamp, 240
wxEvent::Skip, 240
wxEvent::wxEvent, 238
wxEvtHandler, 241
wxEvtHandler::~wxEvtHandler, 241
wxEvtHandler::Connect, 241
wxEvtHandler::Default, 242
wxEvtHandler::GetClientData, 242
wxEvtHandler::GetEvtHandlerEnabled, 243
wxEvtHandler::GetNextHandler, 243
wxEvtHandler::GetPreviousHandler, 243
wxEvtHandler::ProcessEvent, 243
wxEvtHandler::SearchEventTable, 244
wxEvtHandler::SetClientData, 245
wxEvtHandler::SetEvtHandlerEnabled, 246
wxEvtHandler::SetNextHandler, 246
wxEvtHandler::SetPreviousHandler, 246
wxEvtHandler::wxEvtHandler, 241
wxExecute, 987
wxExit, 988
wxExpr, 247
wxExpr compilation, 1107
wxExpr for data file manipulation, 1106
wxExpr::~wxExpr, 248
wxExpr::AddAttributeValue, 248

wxExpr::AddAttributeValueString, 248
wxExpr::AddAttributeValueStringList, 248
wxExpr::AddAttributeValueWord, 249
wxExpr::Append, 249
wxExpr::Arg, 249
wxExpr::AttributeValue, 250
wxExpr::Copy, 250
wxExpr::DeleteAttributeValue, 250
wxExpr::Functor, 250
wxExpr::GetAttributeValue, 249
wxExpr::GetAttributeValueStringList, 250
wxExpr::GetClientData, 251
wxExpr::GetFirst, 251
wxExpr::GetLast, 251
wxExpr::GetNext, 251
wxExpr::Insert, 249
wxExpr::IntegerValue, 251
wxExpr::Nth, 252
wxExpr::RealValue, 252
wxExpr::SetClientData, 252
wxExpr::StringValue, 252
wxExpr::Type, 252
wxExpr::WordValue, 253
wxExpr::WriteClause, 253
wxExpr::WriteExpr, 253
wxExpr::wxExpr, 247
wxExprCleanUp, 253
wxExprDatabase, 254
wxExprDatabase::~wxExprDatabase, 254
wxExprDatabase::Append, 255
wxExprDatabase::BeginFind, 255
wxExprDatabase::ClearDatabase, 255
wxExprDatabase::FindClause, 255
wxExprDatabase::FindClauseByFunctor, 256
wxExprDatabase::GetErrorCount, 256
wxExprDatabase::HashFind, 256
wxExprDatabase::Read, 256
wxExprDatabase::ReadFromString, 256
wxExprDatabase::Write, 257
wxExprDatabase::wxExprDatabase, 254
wxExprIsFunctor, 253
wxFAIL, 1013
wxFAIL_MSG, 1013
wxFatalError, 988
wxFile, 258
wxFile::~wxFile, 259
wxFile::Access, 259
wxFile::Attach, 259
wxFile::Close, 259
wxFile::Create, 259
wxFile::Detach, 260
wxFile::Eof, 260
wxFile::Exists, 260
wxFile::fd, 260
wxFile::Flush, 260
wxFile::IsOpened, 260
wxFile::Length, 261
wxFile::Open, 261
wxFile::Read, 261
wxFile::Seek, 261
wxFile::SeekEnd, 262
wxFile::Tell, 262

INDEX

40

wxFile::Write, 262, 263
wxFile::wxFile, 258
wxFileDataObject, 263
wxFileDataObject::AddFile, 264
wxFileDataObject::GetFilenames, 264
wxFileDialog, 265
wxFileDialog overview, 1050
wxFileDialog::~wxFileDialog, 265
wxFileDialog::GetDirectory, 266
wxFileDialog::GetFilename, 266
wxFileDialog::GetFilterIndex, 266
wxFileDialog::GetMessage, 266
wxFileDialog::GetPath, 266
wxFileDialog::GetStyle, 266
wxFileDialog::GetWildcard, 266
wxFileDialog::SetDirectory, 267
wxFileDialog::SetFilename, 267
wxFileDialog::SetFilterIndex, 267
wxFileDialog::SetMessage, 267
wxFileDialog::SetPath, 267
wxFileDialog::SetStyle, 267
wxFileDialog::SetWildcard, 267
wxFileDialog::ShowModal, 268
wxFileDialog::wxFileDialog, 265
wxFileDropTarget, 268
wxFileDropTarget::GetFormat, 268
wxFileDropTarget::GetFormatCount, 268
wxFileDropTarget::OnDrop, 269
wxFileDropTarget::OnDropFiles, 269
wxFileDropTarget::wxFileDropTarget, 268
wxFileExists, 964
wxFileHistory, 270
wxFileHistory overview, 1071
wxFileHistory::~wxFileHistory, 270
wxFileHistory::AddFilesToMenu, 271
wxFileHistory::AddFileToHistory, 270
wxFileHistory::GetHistoryFile, 271
wxFileHistory::GetMaxFiles, 271
wxFileHistory::GetNoHistoryFiles, 271
wxFileHistory::Load, 271
wxFileHistory::m_fileHistory, 270
wxFileHistory::m_fileHistoryN, 270
wxFileHistory::m_fileMaxFiles, 270
wxFileHistory::m_fileMenu, 270
wxFileHistory::RemoveMenu, 272
wxFileHistory::Save, 272
wxFileHistory::UseMenu, 272
wxFileHistory::wxFileHistory, 270
wxFileInputStream, 273
wxFileInputStream::~wxFileInputStream, 273
wxFileInputStream::Ok, 273
wxFileInputStream::wxFileInputStream, 272
wxFileNameFromPath, 964
wxFileOutputStream, 274
wxFileOutputStream::~wxFileOutputStream, 274
wxFileOutputStream::Ok, 274
wxFileOutputStream::wxFileOutputStream, 273
wxFileSelector, 973
wxFileStream, 274
wxFileStream::wxFileStream, 274
wxFileSystem, 275
wxFileSystem::AddHandler, 275

wxFileSystem::ChangePathTo, 275
wxFileSystem::FindFirst, 276
wxFileSystem::FindNext, 276
wxFileSystem::GetPath, 276
wxFileSystem::OpenFile, 276
wxFileSystem::wxFileSystem, 275
wxFileSystemHandler, 277
wxFileSystemHandler::CanOpen, 277
wxFileSystemHandler::FindFirst, 278
wxFileSystemHandler::FindNext, 279
wxFileSystemHandler::GetAnchor, 277
wxFileSystemHandler::GetLeftLocation, 278
wxFileSystemHandler::GetMimeTypeFromExt,

278
wxFileSystemHandler::GetProtocol, 278
wxFileSystemHandler::GetRightLocation, 278
wxFileSystemHandler::OpenFile, 279
wxFileSystemHandler::wxFileSystemHandler,

277
wxFileType, 281
wxFileType::~wxFileType, 281
wxFileType::ExpandCommand, 283
wxFileType::GetDescription, 282
wxFileType::GetExtensions, 282
wxFileType::GetIcon, 282
wxFileType::GetMimeType, 281
wxFileType::GetOpenCommand, 282
wxFileType::GetPrintCommand, 282
wxFileType::wxFileType, 281
wxFilterInputStream, 284
wxFilterInputStream::wxFilterInputStream, 284
wxFilterOutputStream, 284
wxFilterOutputStream::wxFilterOutputStream,

284
wxFindFirstFile, 965
wxFindMenuItemId, 989
wxFindNextFile, 965
wxFindWindowByLabel, 989
wxFindWindowByName, 989
wxFocusEvent, 285
wxFocusEvent::wxFocusEvent, 285
wxFont, 286
wxFont::~wxFont, 287
wxFont::GetDefaultEncoding, 287
wxFont::GetFaceName, 288
wxFont::GetFamily, 288
wxFont::GetFontId, 288
wxFont::GetPointSize, 288
wxFont::GetStyle, 288
wxFont::GetUnderlined, 289
wxFont::GetWeight, 289
wxFont::operator !=, 292
wxFont::operator =, 291
wxFont::operator ==, 292
wxFont::SetDefaultEncoding, 289
wxFont::SetFaceName, 289
wxFont::SetFamily, 290
wxFont::SetPointSize, 290
wxFont::SetStyle, 290
wxFont::SetUnderlined, 291
wxFont::SetWeight, 291
wxFont::wxFont, 286

INDEX

41

wxFontData, 292
wxFontData::~wxFontData, 292
wxFontData::EnableEffects, 293
wxFontData::GetAllowSymbols, 293
wxFontData::GetChosenFont, 293
wxFontData::GetColour, 293
wxFontData::GetEnableEffects, 293
wxFontData::GetInitialFont, 294
wxFontData::GetShowHelp, 294
wxFontData::operator =, 295
wxFontData::SetAllowSymbols, 294
wxFontData::SetChosenFont, 294
wxFontData::SetColour, 294
wxFontData::SetInitialFont, 294
wxFontData::SetRange, 295
wxFontData::SetShowHelp, 295
wxFontData::wxFontData, 292
wxFontDialog, 296
wxFontDialog overview, 1049
wxFontDialog::~wxFontDialog, 296
wxFontDialog::GetFontData, 296
wxFontDialog::ShowModal, 296
wxFontDialog::wxFontDialog, 296
wxFontEnumerator::EnumerateEncodings, 297
wxFontEnumerator::EnumerateFacenames, 297
wxFontEnumerator::GetEncodings, 297
wxFontEnumerator::GetFacenames, 297
wxFontEnumerator::OnFacename, 298
wxFontEnumerator::OnFontEncoding, 298
wxFontList, 298
wxFontList::AddFont, 299
wxFontList::FindOrCreateFont, 299
wxFontList::RemoveFont, 299
wxFontList::wxFontList, 298
wxFrame, 300, 301
wxFrame::~wxFrame, 301
wxFrame::Centre, 302
wxFrame::Command, 302
wxFrame::Create, 302
wxFrame::CreateStatusBar, 302
wxFrame::CreateToolBar, 303
wxFrame::GetMenuBar, 304
wxFrame::GetStatusBar, 304
wxFrame::GetTitle, 304
wxFrame::GetToolBar, 304
wxFrame::Iconize, 305
wxFrame::IsIconized, 305
wxFrame::IsMaximized, 305
wxFrame::Maximize, 305
wxFrame::OnActivate, 306
wxFrame::OnCreateStatusBar, 306
wxFrame::OnCreateToolBar, 307
wxFrame::OnMenuCommand, 307
wxFrame::OnMenuHighlight, 307
wxFrame::OnSize, 307
wxFrame::SetIcon, 308
wxFrame::SetMenuBar, 309
wxFrame::SetStatusBar, 309
wxFrame::SetStatusText, 309
wxFrame::SetStatusWidths, 310
wxFrame::SetTitle, 310
wxFrame::SetToolBar, 310

wxFrame::wxFrame, 300
wxFRAME_FLOAT_ON_PARENT, 300
wxFRAME_TOOL_WINDOW, 300
wxFSFile, 311
wxFSFile::GetAnchor, 312
wxFSFile::GetLocation, 312
wxFSFile::GetMimeType, 312
wxFSFile::GetStream, 313
wxFSFile::wxFSFile, 311
wxFTP::ChDir, 314
wxFTP::GetInputStream, 316
wxFTP::GetLastResult, 313
wxFTP::GetList, 315
wxFTP::GetOutputStream, 316
wxFTP::MkDir, 314
wxFTP::Pwd, 314
wxFTP::Rename, 314
wxFTP::RmDir, 314
wxFTP::RmFile, 314
wxFTP::SendCommand, 313
wxFTP::SetPassword, 315
wxFTP::SetUser, 314
wxGA_HORIZONTAL, 317
wxGA_PROGRESSBAR, 317
wxGA_VERTICAL, 317
wxGauge, 318
wxGauge::~wxGauge, 318
wxGauge::Create, 319
wxGauge::GetBezelFace, 319
wxGauge::GetRange, 319
wxGauge::GetShadowWidth, 319
wxGauge::GetValue, 320
wxGauge::SetBezelFace, 320
wxGauge::SetRange, 320
wxGauge::SetShadowWidth, 320
wxGauge::SetValue, 321
wxGauge::wxGauge, 317
wxGDIObject, 321
wxGDIObject::wxGDIObject, 321
wxGenericValidator, 322
wxGenericValidator::~wxGenericValidator, 323
wxGenericValidator::Clone, 323
wxGenericValidator::TransferFromWindow, 323
wxGenericValidator::TransferToWindow, 323
wxGenericValidator::wxGenericValidator, 322
wxGetActiveWindow, 990
wxGetClipboardData, 982
wxGetClipboardFormatName, 982
wxGetCwd, 966
wxGetDisplayName, 990
wxGetElapsedTime, 990
wxGetEmailAddress, 969
wxGetFreeMemory, 991
wxGetFullHostName, 969
wxGetHomeDir, 990
wxGetHostName, 969, 990
wxGetMousePosition, 991
wxGetMultipleChoice, 974
wxGetNumberFromUser, 974
wxGetOSDirectory, 965
wxGetOsVersion, 991
wxGetPrinterCommand, 979

INDEX

42

wxGetPrinterFile, 979
wxGetPrinterMode, 979
wxGetPrinterOptions, 979
wxGetPrinterOrientation, 979
wxGetPrinterPreviewCommand, 979
wxGetPrinterScaling, 980
wxGetPrinterTranslation, 980
wxGetResource, 992
wxGetSingleChoice, 975
wxGetSingleChoiceData, 976
wxGetSingleChoiceIndex, 975
wxGetTempFileName, 967
wxGetTextFromUser, 974
wxGetTranslation, 972
wxGetUserId, 970, 992
wxGetUserName, 970, 993
wxGetWorkingDirectory, 966
wxGrid, 324
wxGrid::AdjustScrollbars, 324
wxGrid::AppendCols, 324
wxGrid::AppendRows, 324
wxGrid::BeginBatch, 325
wxGrid::CellHitTest, 325
wxGrid::CreateGrid, 325
wxGrid::CurrentCellVisible, 325
wxGrid::DeleteCols, 326
wxGrid::DeleteRows, 326
wxGrid::EndBatch, 326
wxGrid::GetBatchCount, 326
wxGrid::GetCell, 326
wxGrid::GetCellAlignment, 326
wxGrid::GetCellBackgroundColour, 327
wxGrid::GetCells, 327
wxGrid::GetCellTextColour, 327
wxGrid::GetCellTextFont, 328
wxGrid::GetCellValue, 328
wxGrid::GetCols, 328
wxGrid::GetColumnWidth, 328
wxGrid::GetCurrentRect, 328
wxGrid::GetCursorColumn, 329
wxGrid::GetCursorRow, 329
wxGrid::GetEditable, 329
wxGrid::GetEditInPlace, 329
wxGrid::GetHorizScrollBar, 329
wxGrid::GetLabelAlignment, 329
wxGrid::GetLabelBackgroundColour, 329
wxGrid::GetLabelSize, 330
wxGrid::GetLabelTextColour, 330
wxGrid::GetLabelTextFont, 330
wxGrid::GetLabelValue, 330
wxGrid::GetRowHeight, 330
wxGrid::GetRows, 330
wxGrid::GetScrollPosX, 330
wxGrid::GetScrollPosY, 331
wxGrid::GetTextItem, 331
wxGrid::GetVertScrollBar, 331
wxGrid::InsertCols, 331
wxGrid::InsertRows, 331
wxGrid::OnActivate, 331
wxGrid::OnCellLeftClick, 332
wxGrid::OnCellRightClick, 332
wxGrid::OnChangeLabels, 331

wxGrid::OnChangeSelectionLabel, 332
wxGrid::OnCreateCell, 332
wxGrid::OnLabelLeftClick, 332
wxGrid::OnLabelRightClick, 333
wxGrid::OnSelectCell, 333
wxGrid::OnSelectCellImplementation, 333
wxGrid::SetCellAlignment, 333
wxGrid::SetCellBackgroundColour, 333
wxGrid::SetCellTextColour, 334
wxGrid::SetCellTextFont, 334
wxGrid::SetCellValue, 334
wxGrid::SetColumnWidth, 335
wxGrid::SetDividerPen, 335
wxGrid::SetEditable, 335
wxGrid::SetEditInPlace, 335
wxGrid::SetGridCursor, 335
wxGrid::SetLabelAlignment, 335
wxGrid::SetLabelBackgroundColour, 336
wxGrid::SetLabelSize, 336
wxGrid::SetLabelTextColour, 336
wxGrid::SetLabelTextFont, 336
wxGrid::SetLabelValue, 336
wxGrid::SetRowHeight, 336
wxGrid::UpdateDimensions, 336
wxGrid::wxGrid, 324
wxHashTable, 338
wxHashTable::~wxHashTable, 338
wxHashTable::BeginFind, 338
wxHashTable::Clear, 338
wxHashTable::Delete, 338
wxHashTable::Get, 338
wxHashTable::MakeKey, 338
wxHashTable::Next, 339
wxHashTable::Put, 339
wxHashTable::wxHashTable, 337
wxHelpController, 340
wxHelpController::~wxHelpController, 340
wxHelpController::DisplayBlock, 341
wxHelpController::DisplayContents, 341
wxHelpController::DisplaySection, 341
wxHelpController::GetFrameParameters, 342
wxHelpController::Initialize, 341
wxHelpController::KeywordSearch, 342
wxHelpController::LoadFile, 342
wxHelpController::OnQuit, 343
wxHelpController::Quit, 343
wxHelpController::SetFrameParameters, 342
wxHelpController::SetViewer, 342
wxHelpController::wxHelpController, 340
wxHF_CONTENTS, 361, 367
wxHF_INDEX, 362, 367
wxHF_SEARCH, 362, 367
wxHF_TOOLBAR, 361, 367
wxHSCROLL, 491, 821, 916
wxHtmlCell, 344
wxHtmlCell::AdjustPagebreak, 344
wxHtmlCell::Draw, 344
wxHtmlCell::DrawInvisible, 344
wxHtmlCell::Find, 345
wxHtmlCell::GetDescent, 345
wxHtmlCell::GetHeight, 346
wxHtmlCell::GetLink, 346

INDEX

43

wxHtmlCell::GetNext, 346
wxHtmlCell::GetParent, 346
wxHtmlCell::GetPosX, 346
wxHtmlCell::GetPosY, 347
wxHtmlCell::GetWidth, 347
wxHtmlCell::Layout, 347
wxHtmlCell::OnMouseClick, 347
wxHtmlCell::SetLink, 348
wxHtmlCell::SetNext, 348
wxHtmlCell::SetParent, 348
wxHtmlCell::SetPos, 348
wxHtmlCell::wxHtmlCell, 344
wxHtmlColourCell, 349
wxHtmlColourCell::wxHtmlColourCell, 349
wxHtmlContainerCell, 349
wxHtmlContainerCell::GetAlignHor, 349
wxHtmlContainerCell::GetAlignVer, 350
wxHtmlContainerCell::GetFirstCell, 350
wxHtmlContainerCell::GetIndent, 350
wxHtmlContainerCell::GetIndentUnits, 350
wxHtmlContainerCell::GetMaxLineWidth, 350
wxHtmlContainerCell::InsertCell, 350
wxHtmlContainerCell::SetAlign, 351
wxHtmlContainerCell::SetAlignHor, 351
wxHtmlContainerCell::SetAlignVer, 351
wxHtmlContainerCell::SetBackgroundColour, 352
wxHtmlContainerCell::SetBorder, 352
wxHtmlContainerCell::SetIndent, 352
wxHtmlContainerCell::SetMinHeight, 353
wxHtmlContainerCell::SetWidthFloat, 354
wxHtmlContainerCell::wxHtmlContainerCell, 349
wxHtmlDCRenderer, 355
wxHtmlDCRenderer::GetTotalHeight, 357
wxHtmlDCRenderer::Render, 356
wxHtmlDCRenderer::SetDC, 355
wxHtmlDCRenderer::SetHtmlText, 355
wxHtmlDCRenderer::SetSize, 355
wxHtmlDCRenderer::wxHtmlDCRenderer, 355
wxHtmlEasyPrinting, 357
wxHtmlEasyPrinting::GetPageSetupData, 359
wxHtmlEasyPrinting::GetPrintData, 359
wxHtmlEasyPrinting::PageSetup, 358
wxHtmlEasyPrinting::PreviewFile, 357
wxHtmlEasyPrinting::PreviewText, 358
wxHtmlEasyPrinting::PrinterSetup, 358
wxHtmlEasyPrinting::PrintFile, 358
wxHtmlEasyPrinting::PrintText, 358
wxHtmlEasyPrinting::SetFooter, 359
wxHtmlEasyPrinting::SetHeader, 359
wxHtmlEasyPrinting::wxHtmlEasyPrinting, 357
wxHtmlFilter, 360
wxHtmlFilter::CanRead, 360
wxHtmlFilter::ReadFile, 360
wxHtmlFilter::wxHtmlFilter, 360
wxHtmlHelpController, 361
wxHtmlHelpController::AddBook, 362
wxHtmlHelpController::Display, 362
wxHtmlHelpController::DisplayContents, 363
wxHtmlHelpController::DisplayIndex, 363
wxHtmlHelpController::KeywordSearch, 363
wxHtmlHelpController::ReadCustomization, 363
wxHtmlHelpController::SetTempDir, 363

wxHtmlHelpController::SetTitleFormat, 363
wxHtmlHelpController::UseConfig, 364
wxHtmlHelpController::WriteCustomization, 364
wxHtmlHelpController::wxHtmlHelpController,

361
wxHtmlHelpData, 364
wxHtmlHelpData::AddBook, 364
wxHtmlHelpData::FindPageById, 365
wxHtmlHelpData::FindPageByName, 365
wxHtmlHelpData::GetBookRecArray, 365
wxHtmlHelpData::GetContents, 365
wxHtmlHelpData::GetContentsCnt, 365
wxHtmlHelpData::GetIndex, 365
wxHtmlHelpData::GetIndexCnt, 365
wxHtmlHelpData::LoadCachedBook, 365
wxHtmlHelpData::LoadMSProject, 366
wxHtmlHelpData::SaveCachedBook, 366
wxHtmlHelpData::SetTempDir, 366
wxHtmlHelpData::wxHtmlHelpData, 364
wxHtmlHelpFrame, 366
wxHtmlHelpFrame::Create, 367
wxHtmlHelpFrame::CreateContents, 367
wxHtmlHelpFrame::CreateIndex, 367
wxHtmlHelpFrame::CreateSearch, 367
wxHtmlHelpFrame::Display, 368
wxHtmlHelpFrame::DisplayContents, 368
wxHtmlHelpFrame::DisplayIndex, 368
wxHtmlHelpFrame::GetData, 368
wxHtmlHelpFrame::KeywordSearch, 368
wxHtmlHelpFrame::ReadCustomization, 368
wxHtmlHelpFrame::RefreshLists, 369
wxHtmlHelpFrame::SetTitleFormat, 369
wxHtmlHelpFrame::UseConfig, 369
wxHtmlHelpFrame::WriteCustomization, 369
wxHtmlHelpFrame::wxHtmlHelpFrame, 366
wxHtmlParser, 370
wxHtmlParser::AddTag, 370
wxHtmlParser::AddTagHandler, 370
wxHtmlParser::AddText, 370
wxHtmlParser::DoneParser, 371
wxHtmlParser::DoParsing, 371
wxHtmlParser::GetFS, 371
wxHtmlParser::GetProduct, 371
wxHtmlParser::GetSource, 371
wxHtmlParser::GetTempData, 372
wxHtmlParser::InitParser, 372
wxHtmlParser::Parse, 372
wxHtmlParser::PopTagHandler, 373
wxHtmlParser::PushTagHandler, 373
wxHtmlParser::SetFS, 374
wxHtmlParser::wxHtmlParser, 370
wxHtmlPrintout, 374
wxHtmlPrintout::SetFooter, 374
wxHtmlPrintout::SetHeader, 374
wxHtmlPrintout::SetHtmlFile, 375
wxHtmlPrintout::SetHtmlText, 375
wxHtmlPrintout::SetMargins, 375
wxHtmlPrintout::wxHtmlPrintout, 374
wxHtmlTag, 376
wxHtmlTag::GetAllParams, 376
wxHtmlTag::GetBeginPos, 376
wxHtmlTag::GetEndPos1, 376

INDEX

44

wxHtmlTag::GetEndPos2, 377
wxHtmlTag::GetName, 377
wxHtmlTag::GetParam, 377
wxHtmlTag::HasEnding, 378
wxHtmlTag::HasParam, 378
wxHtmlTag::IsEnding, 378
wxHtmlTag::ScanParam, 378
wxHtmlTag::wxHtmlTag, 376
wxHtmlTagHandler, 379
wxHtmlTagHandler::GetSupportedTags, 379
wxHtmlTagHandler::HandleTag, 379
wxHtmlTagHandler::m_Parser, 379
wxHtmlTagHandler::ParseInner, 380
wxHtmlTagHandler::SetParser, 380
wxHtmlTagHandler::wxHtmlTagHandler, 379
wxHtmlTagsModule::FillHandlersTable, 381
wxHtmlWidgetCell, 381
wxHtmlWidgetCell::wxHtmlWidgetCell, 381
wxHtmlWindow, 382
wxHtmlWindow::AddFilter, 382
wxHtmlWindow::GetInternalRepresentation, 383
wxHtmlWindow::GetOpenedPage, 383
wxHtmlWindow::GetRelatedFrame, 383
wxHtmlWindow::HistoryBack, 383
wxHtmlWindow::HistoryClear, 383
wxHtmlWindow::HistoryForward, 383
wxHtmlWindow::LoadPage, 384
wxHtmlWindow::OnLinkClicked, 384
wxHtmlWindow::ReadCustomization, 384
wxHtmlWindow::SetBorders, 385
wxHtmlWindow::SetFonts, 385
wxHtmlWindow::SetPage, 386
wxHtmlWindow::SetRelatedFrame, 386
wxHtmlWindow::SetRelatedStatusBar, 387
wxHtmlWindow::WriteCustomization, 387
wxHtmlWindow::wxHtmlWindow, 382
wxHtmlWinParser, 388
wxHtmlWinParser::AddModule, 388
wxHtmlWinParser::CloseContainer, 388
wxHtmlWinParser::CreateCurrentFont, 388
wxHtmlWinParser::GetActualColor, 388
wxHtmlWinParser::GetAlign, 389
wxHtmlWinParser::GetCharHeight, 389
wxHtmlWinParser::GetCharWidth, 389
wxHtmlWinParser::GetContainer, 389
wxHtmlWinParser::GetDC, 389
wxHtmlWinParser::GetFontBold, 389
wxHtmlWinParser::GetFontFixed, 390
wxHtmlWinParser::GetFontItalic, 390
wxHtmlWinParser::GetFontSize, 390
wxHtmlWinParser::GetFontUnderlined, 390
wxHtmlWinParser::GetLink, 390
wxHtmlWinParser::GetLinkColor, 390
wxHtmlWinParser::GetWindow, 390
wxHtmlWinParser::OpenContainer, 391
wxHtmlWinParser::SetActualColor, 391
wxHtmlWinParser::SetAlign, 391
wxHtmlWinParser::SetDC, 391
wxHtmlWinParser::SetFontBold, 391
wxHtmlWinParser::SetFontFixed, 391
wxHtmlWinParser::SetFontItalic, 391
wxHtmlWinParser::SetFonts, 392

wxHtmlWinParser::SetFontSize, 392
wxHtmlWinParser::SetFontUnderlined, 392
wxHtmlWinParser::SetLink, 392
wxHtmlWinParser::SetLinkColor, 392
wxHtmlWinParser::wxHtmlWinParser, 388
wxHtmlWinTagHandler::m_WParser, 393
wxHTTP::GetHeader, 394
wxHTTP::GetInputStream, 393
wxHTTP::SetHeader, 394
wxIcon, 396, 397
wxICON, 1005
wxIcon::~wxIcon, 399
wxIcon::GetDepth, 399
wxIcon::GetHeight, 399
wxIcon::GetWidth, 399
wxIcon::LoadFile, 400
wxIcon::Ok, 400
wxIcon::operator !=, 402
wxIcon::operator =, 401
wxIcon::operator ==, 402
wxIcon::SetDepth, 400
wxIcon::SetHeight, 401
wxIcon::SetOk, 401
wxIcon::SetWidth, 401
wxIcon::wxIcon, 396
wxICONIZE, 300, 486, 491, 528
wxID, 1076
wxIdleEvent, 395
wxIdleEvent::MoreRequested, 395
wxIdleEvent::RequestMore, 395
wxIdleEvent::wxIdleEvent, 395
wxImage, 403
wxImage::~wxImage, 405
wxImage::AddHandler, 405
wxImage::CleanUpHandlers, 405
wxImage::ConvertToBitmap, 405
wxImage::Create, 405
wxImage::Destroy, 406
wxImage::FindHandler, 406
wxImage::GetBlue, 407
wxImage::GetData, 407
wxImage::GetGreen, 407
wxImage::GetHandlers, 407
wxImage::GetHeight, 407
wxImage::GetMaskBlue, 408
wxImage::GetMaskGreen, 408
wxImage::GetMaskRed, 408
wxImage::GetRed, 407
wxImage::GetSubImage, 408
wxImage::GetWidth, 408
wxImage::HasMask, 408
wxImage::InitStandardHandlers, 409
wxImage::InsertHandler, 409
wxImage::LoadFile, 409
wxImage::Ok, 410
wxImage::operator !=, 414
wxImage::operator =, 413
wxImage::operator ==, 414
wxImage::RemoveHandler, 410
wxImage::Rescale, 412
wxImage::SaveFile, 411
wxImage::Scale, 412

INDEX

45

wxImage::SetData, 413
wxImage::SetMask, 413
wxImage::SetMaskColour, 413
wxImage::SetRGB, 413
wxImage::wxImage, 403
wxIMAGE_LIST_NORMAL, 466, 881
wxIMAGE_LIST_SMALL, 466, 881
wxIMAGE_LIST_STATE, 466, 881
wxImageHandler, 415
wxImageHandler::~wxImageHandler, 415
wxImageHandler::GetExtension, 415
wxImageHandler::GetMimeType, 416
wxImageHandler::GetName, 415
wxImageHandler::GetType, 416
wxImageHandler::LoadFile, 416
wxImageHandler::SaveFile, 416
wxImageHandler::SetExtension, 417
wxImageHandler::SetMimeType, 418
wxImageHandler::SetName, 417
wxImageHandler::SetType, 417
wxImageHandler::wxImageHandler, 415
wxImageList, 418
wxImageList::Add, 419
wxImageList::Create, 420
wxImageList::Draw, 420
wxImageList::GetImageCount, 421
wxImageList::Remove, 421
wxImageList::RemoveAll, 421
wxImageList::Replace, 421
wxImageList::wxImageList, 418
wxIndividualLayoutConstraint, 423
wxIndividualLayoutConstraint::Above, 423
wxIndividualLayoutConstraint::Absolute, 423
wxIndividualLayoutConstraint::AsIs, 423
wxIndividualLayoutConstraint::Below, 423
wxIndividualLayoutConstraint::LeftOf, 424
wxIndividualLayoutConstraint::PercentOf, 424
wxIndividualLayoutConstraint::RightOf, 424
wxIndividualLayoutConstraint::SameAs, 424
wxIndividualLayoutConstraint::Set, 424
wxIndividualLayoutConstraint::Unconstrained,

424
wxIndividualLayoutConstraint::wxIndividualLayou

tConstraint, 423
wxInitAllImageHandlers, 965
wxInitDialogEvent, 425
wxInitDialogEvent::wxInitDialogEvent, 425
wxInputStream, 426
wxInputStream::~wxInputStream, 426
wxInputStream::GetC, 426
wxInputStream::LastRead, 426
wxInputStream::Peek, 426
wxInputStream::Read, 426
wxInputStream::SeekI, 427
wxInputStream::TellI, 427
wxInputStream::Ungetch, 427
wxInputStream::wxInputStream, 425
wxINT16_SWAP_ALWAYS, 999
wxINT16_SWAP_ON_BE, 999
wxINT16_SWAP_ON_LE, 1000
wxINT32_SWAP_ALWAYS, 999
wxINT32_SWAP_ON_BE, 999

wxINT32_SWAP_ON_LE, 1000
wxINTXX_SWAP_ALWAYS, 999
wxINTXX_SWAP_ON_BE, 999
wxINTXX_SWAP_ON_LE, 1000
wxIPCFormat, 183, 814
wxIPV4address::Hostname, 428
wxIPV4address::LocalHost, 429
wxIPV4address::Service, 428
wxIsAbsolutePath, 966
wxIsBusy, 993
wxIsClipboardFormatAvailable, 982
wxIsWild, 967
wxJoystick, 429
wxJoystick::~wxJoystick, 429
wxJoystick::GetButtonState, 429
wxJoystick::GetManufacturerId, 430
wxJoystick::GetMovementThreshold, 430
wxJoystick::GetNumberAxes, 430
wxJoystick::GetNumberButtons, 430
wxJoystick::GetNumberJoysticks, 430
wxJoystick::GetPollingMax, 430
wxJoystick::GetPollingMin, 430
wxJoystick::GetPosition, 431
wxJoystick::GetPOVCTSPosition, 431
wxJoystick::GetPOVPosition, 431
wxJoystick::GetProductId, 431
wxJoystick::GetProductName, 431
wxJoystick::GetRudderMax, 431
wxJoystick::GetRudderMin, 431
wxJoystick::GetRudderPosition, 432
wxJoystick::GetUMax, 432
wxJoystick::GetUMin, 432
wxJoystick::GetUPosition, 432
wxJoystick::GetVMax, 432
wxJoystick::GetVMin, 432
wxJoystick::GetVPosition, 432
wxJoystick::GetXMax, 433
wxJoystick::GetXMin, 433
wxJoystick::GetYMax, 433
wxJoystick::GetYMin, 433
wxJoystick::GetZMax, 433
wxJoystick::GetZMin, 433
wxJoystick::GetZPosition, 433
wxJoystick::HasPOV, 434
wxJoystick::HasPOV4Dir, 434
wxJoystick::HasPOVCTS, 434
wxJoystick::HasRudder, 434
wxJoystick::HasU, 434
wxJoystick::HasV, 434
wxJoystick::HasZ, 434
wxJoystick::IsOk, 435
wxJoystick::ReleaseCapture, 435
wxJoystick::SetCapture, 435
wxJoystick::SetMovementThreshold, 435
wxJoystick::wxJoystick, 429
wxJoystickEvent, 436
wxJoystickEvent::ButtonDown, 436
wxJoystickEvent::ButtonIsDown, 437
wxJoystickEvent::ButtonUp, 437
wxJoystickEvent::GetButtonChange, 437
wxJoystickEvent::GetButtonState, 437
wxJoystickEvent::GetJoystick, 438

INDEX

46

wxJoystickEvent::GetPosition, 438
wxJoystickEvent::GetZPosition, 438
wxJoystickEvent::IsButton, 438
wxJoystickEvent::IsMove, 438
wxJoystickEvent::IsZMove, 438
wxJoystickEvent::wxJoystickEvent, 436
wxKeyEvent, 440
wxKeyEvent::AltDown, 440
wxKeyEvent::ControlDown, 440
wxKeyEvent::GetPosition, 441
wxKeyEvent::GetX, 440
wxKeyEvent::GetY, 441
wxKeyEvent::KeyCode, 441
wxKeyEvent::m_altDown, 439
wxKeyEvent::m_controlDown, 439
wxKeyEvent::m_keyCode, 439
wxKeyEvent::m_metaDown, 439
wxKeyEvent::m_shiftDown, 440
wxKeyEvent::m_x, 440
wxKeyEvent::m_y, 440
wxKeyEvent::MetaDown, 441
wxKeyEvent::ShiftDown, 441
wxKeyEvent::wxKeyEvent, 440
wxKill, 993
wxLayoutAlgorithm, 443
wxLayoutAlgorithm::~wxLayoutAlgorithm, 444
wxLayoutAlgorithm::LayoutFrame, 444
wxLayoutAlgorithm::LayoutMDIFrame, 444
wxLayoutAlgorithm::LayoutWindow, 444
wxLayoutAlgorithm::wxLayoutAlgorithm, 443
wxLayoutConstraints, 445
wxLayoutConstraints::bottom, 445
wxLayoutConstraints::centreX, 445
wxLayoutConstraints::centreY, 446
wxLayoutConstraints::height, 446
wxLayoutConstraints::left, 446
wxLayoutConstraints::right, 446
wxLayoutConstraints::top, 446
wxLayoutConstraints::width, 446
wxLayoutConstraints::wxLayoutConstraints, 445
wxLB_ALWAYS_SB, 453
wxLB_EXTENDED, 453
wxLB_HSCROLL, 453
wxLB_MULTIPLE, 453
wxLB_NEEDED_SB, 453
wxLB_SINGLE, 453
wxLB_SORT, 453
wxLC_ALIGN_LEFT, 461
wxLC_ALIGN_TOP, 461
wxLC_AUTOARRANGE, 461
wxLC_EDIT_LABELS, 461
wxLC_ICON, 461
wxLC_LIST, 461
wxLC_NO_HEADER, 461
wxLC_REPORT, 461
wxLC_SINGLE_SEL, 461
wxLC_SMALL_ICON, 461
wxLC_SORT_ASCENDING, 461
wxLC_SORT_DESCENDING, 461
wxLC_USER_TEXT, 461
wxLI_HORIZONTAL, 745
wxLI_VERTICAL, 745

wxList, 449
wxList::~wxList, 449
wxList::Append, 449
wxList::Clear, 450
wxList::DeleteContents, 450
wxList::DeleteNode, 450
wxList::DeleteObject, 450
wxList::Find, 450
wxList::GetFirst, 450
wxList::GetLast, 451
wxList::IndexOf, 451
wxList::Insert, 451
wxList::Member, 451
wxList::Nth, 451
wxList::Number, 451
wxList::Sort, 451
wxList::wxList, 449
wxListBox, 453
wxListBox::~wxListBox, 454
wxListBox::Append, 454
wxListBox::Clear, 455
wxListBox::Create, 455
wxListBox::Delete, 455
wxListBox::Deselect, 455
wxListBox::FindString, 456
wxListBox::GetClientData, 456
wxListBox::GetSelection, 456
wxListBox::GetSelections, 457
wxListBox::GetString, 457
wxListBox::GetStringSelection, 458
wxListBox::InsertItems, 458
wxListBox::Number, 458
wxListBox::Selected, 458
wxListBox::Set, 459
wxListBox::SetClientData, 459
wxListBox::SetFirstItem, 459
wxListBox::SetSelection, 460
wxListBox::SetString, 460
wxListBox::SetStringSelection, 460
wxListBox::wxListBox, 453
wxListCtrl, 462
wxListCtrl::~wxListCtrl, 463
wxListCtrl::Arrange, 463
wxListCtrl::ClearAll, 464
wxListCtrl::Create, 463
wxListCtrl::DeleteAllItems, 464
wxListCtrl::DeleteColumn, 464
wxListCtrl::DeleteItem, 464
wxListCtrl::EditLabel, 464
wxListCtrl::EnsureVisible, 464
wxListCtrl::FindItem, 465
wxListCtrl::GetColumn, 465
wxListCtrl::GetColumnWidth, 465
wxListCtrl::GetCountPerPage, 465
wxListCtrl::GetEditControl, 466
wxListCtrl::GetImageList, 466
wxListCtrl::GetItem, 466
wxListCtrl::GetItemCount, 467
wxListCtrl::GetItemData, 466
wxListCtrl::GetItemPosition, 466
wxListCtrl::GetItemRect, 466
wxListCtrl::GetItemSpacing, 467

INDEX

47

wxListCtrl::GetItemState, 467
wxListCtrl::GetItemText, 467
wxListCtrl::GetNextItem, 467
wxListCtrl::GetSelectedItemCount, 468
wxListCtrl::GetTextColour, 468
wxListCtrl::GetTopItem, 468
wxListCtrl::HitTest, 468
wxListCtrl::InsertColumn, 469
wxListCtrl::InsertItem, 469
wxListCtrl::ScrollList, 470
wxListCtrl::SetBackgroundColour, 470
wxListCtrl::SetColumn, 471
wxListCtrl::SetColumnWidth, 471
wxListCtrl::SetImageList, 471
wxListCtrl::SetItem, 471
wxListCtrl::SetItemData, 472
wxListCtrl::SetItemImage, 472
wxListCtrl::SetItemPosition, 473
wxListCtrl::SetItemState, 473
wxListCtrl::SetItemText, 473
wxListCtrl::SetSingleStyle, 473
wxListCtrl::SetTextColour, 473
wxListCtrl::SetWindowStyleFlag, 473
wxListCtrl::SortItems, 473
wxListCtrl::wxListCtrl, 462
wxListEvent, 475
wxListEvent::m_cancelled, 476
wxListEvent::m_code, 475
wxListEvent::m_col, 475
wxListEvent::m_item, 476
wxListEvent::m_itemIndex, 475
wxListEvent::m_oldItemIndex, 475
wxListEvent::m_pointDrag, 476
wxListEvent::wxListEvent, 475
wxLoadUserResource, 993
wxLocale, 476, 477
wxLocale::~wxLocale, 477
wxLocale::AddCatalog, 477
wxLocale::AddCatalogLookupPathPrefix, 477
wxLocale::GetLocale, 477
wxLocale::GetName, 478
wxLocale::GetString, 479
wxLocale::Init, 478
wxLocale::IsLoaded, 478
wxLocale::wxLocale, 476
wxLog::DontCreateOnDemand, 481
wxLog::Flush, 482
wxLog::FlushActive, 482
wxLog::GetActiveTarget, 481
wxLog::GetTimestamp, 483
wxLog::GetTraceMask, 483
wxLog::GetVerbose, 482
wxLog::HasPendingMessages, 482
wxLog::OnLog, 481
wxLog::SetActiveTarget, 481
wxLog::SetTimestamp, 482
wxLog::SetTraceMask, 483
wxLog::SetVerbose, 482
wxLogDebug, 1011
wxLogError, 1010
wxLogFatalError, 1010
wxLogMessage, 1011

wxLogStatus, 1011
wxLogSysError, 1011
wxLogTrace, 1012
wxLogVerbose, 1011
wxLogWarning, 1011
wxMakeMetafilePlaceable, 978
wxMask, 484
wxMask::~wxMask, 485
wxMask::Create, 485
wxMask::wxMask, 484
wxMatchWild, 967
wxMAXIMIZE, 300, 486, 491, 528
wxMAXIMIZE_BOX, 300, 486, 491, 528
wxMDIChildFrame, 486, 487
wxMDIChildFrame::~wxMDIChildFrame, 487
wxMDIChildFrame::Activate, 487
wxMDIChildFrame::Create, 488
wxMDIChildFrame::Maximize, 488
wxMDIChildFrame::Restore, 488
wxMDIChildFrame::wxMDIChildFrame, 486
wxMDIClientWindow, 489
wxMDIClientWindow::~wxMDIClientWindow, 490
wxMDIClientWindow::CreateClient, 490
wxMDIClientWindow::wxMDIClientWindow, 489
wxMDIParentFrame, 491
wxMDIParentFrame::~wxMDIParentFrame, 492
wxMDIParentFrame::ActivateNext, 492
wxMDIParentFrame::ActivatePrevious, 493
wxMDIParentFrame::ArrangeIcons, 493
wxMDIParentFrame::Cascade, 493
wxMDIParentFrame::Create, 493
wxMDIParentFrame::GetActiveChild, 494
wxMDIParentFrame::GetClientSize, 494
wxMDIParentFrame::GetClientWindow, 495
wxMDIParentFrame::GetToolBar, 495
wxMDIParentFrame::OnCreateClient, 495
wxMDIParentFrame::SetToolBar, 495
wxMDIParentFrame::Tile, 496
wxMDIParentFrame::wxMDIParentFrame, 491
wxMemoryDC, 497
wxMemoryDC::SelectObject, 497
wxMemoryDC::wxMemoryDC, 497
wxMemoryInputStream, 498
wxMemoryInputStream::~wxMemoryInputStream,

498
wxMemoryInputStream::wxMemoryInputStream,

498
wxMemoryOutputStream, 498
wxMemoryOutputStream::~wxMemoryOutputStre

am, 499
wxMemoryOutputStream::CopyTo, 499
wxMemoryOutputStream::wxMemoryOutputStrea

m, 498
wxMenu, 500
wxMenu::~wxMenu, 500
wxMenu::Append, 501
wxMenu::AppendSeparator, 502
wxMenu::Break, 502
wxMenu::Check, 502
wxMenu::Delete, 503
wxMenu::Enable, 503
wxMenu::FindItem, 503

INDEX

48

wxMenu::FindItemForId, 504
wxMenu::GetHelpString, 504
wxMenu::GetLabel, 505
wxMenu::GetTitle, 505
wxMenu::IsChecked, 505
wxMenu::IsEnabled, 506
wxMenu::SetHelpString, 506
wxMenu::SetLabel, 506
wxMenu::SetTitle, 507
wxMenu::UpdateUI, 507
wxMenu::wxMenu, 500
wxMenuBar, 508
wxMenuBar::~wxMenuBar, 509
wxMenuBar::Append, 509
wxMenuBar::Check, 509
wxMenuBar::Enable, 509
wxMenuBar::EnableTop, 510
wxMenuBar::FindItem, 511
wxMenuBar::FindMenuItem, 510
wxMenuBar::GetHelpString, 511
wxMenuBar::GetLabel, 512
wxMenuBar::GetLabelTop, 512
wxMenuBar::GetMenu, 512
wxMenuBar::GetMenuCount, 513
wxMenuBar::IsChecked, 513
wxMenuBar::IsEnabled, 513
wxMenuBar::Refresh, 513
wxMenuBar::SetHelpString, 513
wxMenuBar::SetLabel, 514
wxMenuBar::SetLabelTop, 514
wxMenuBar::wxMenuBar, 508
wxMenuEvent, 520
wxMenuEvent::GetMenuId, 520
wxMenuEvent::m_menuId, 520
wxMenuEvent::wxMenuEvent, 520
wxMenuItem, 515
wxMenuItem::~wxMenuItem, 516
wxMenuItem::Check, 516
wxMenuItem::DeleteSubMenu, 516
wxMenuItem::Enable, 516
wxMenuItem::GetBackgroundColour, 516
wxMenuItem::GetBitmap, 516
wxMenuItem::GetFont, 517
wxMenuItem::GetHelp, 517
wxMenuItem::GetId, 517
wxMenuItem::GetMarginWidth, 517
wxMenuItem::GetName, 517
wxMenuItem::GetSubMenu, 517
wxMenuItem::GetTextColour, 517
wxMenuItem::IsCheckable, 518
wxMenuItem::IsChecked, 518
wxMenuItem::IsEnabled, 518
wxMenuItem::IsSeparator, 518
wxMenuItem::SetBackgroundColour, 518
wxMenuItem::SetBitmaps, 518
wxMenuItem::SetFont, 518
wxMenuItem::SetHelp, 519
wxMenuItem::SetMarginWidth, 519
wxMenuItem::SetName, 519
wxMenuItem::SetTextColour, 519
wxMenuItem::wxMenuItem, 515
wxMessageBox, 976

wxMessageDialog, 521
wxMessageDialog overview, 1051
wxMessageDialog::~wxMessageDialog, 522
wxMessageDialog::ShowModal, 522
wxMessageDialog::wxMessageDialog, 521
wxMetafile, 522
wxMetafile::~wxMetafile, 522
wxMetafile::Ok, 523
wxMetafile::Play, 523
wxMetafile::SetClipboard, 523
wxMetafile::wxMetafile, 522
wxMetafileDC, 524
wxMetafileDC::~wxMetafileDC, 524
wxMetafileDC::Close, 524
wxMetafileDC::wxMetafileDC, 524
wxMimeTypesManager, 526
wxMimeTypesManager::~wxMimeTypesManager

, 526
wxMimeTypesManager::AddFallbacks, 526
wxMimeTypesManager::GetFileTypeFromExtensi

on, 526
wxMimeTypesManager::GetFileTypeFromMimeT

ype, 527
wxMimeTypesManager::IsOfType, 527
wxMimeTypesManager::ReadMailcap, 527
wxMimeTypesManager::ReadMimeTypes, 527
wxMimeTypesManager::wxMimeTypesManager,

526
wxMiniFrame, 529
wxMiniFrame::~wxMiniFrame, 530
wxMiniFrame::Create, 530
wxMiniFrame::wxMiniFrame, 529
wxMINIMIZE, 300, 486, 491, 528
wxMINIMIZE_BOX, 300, 486, 491, 528
wxMkdir, 967
wxModule, 531
wxModule::~wxModule, 531
wxModule::CleanupModules, 531
wxModule::Exit, 531
wxModule::Init, 531
wxModule::InitializeModules, 532
wxModule::OnExit, 532
wxModule::OnInit, 532
wxModule::RegisterModule, 532
wxModule::RegisterModules, 532
wxModule::wxModule, 531
wxMouseEvent, 534
wxMouseEvent::AltDown, 535
wxMouseEvent::Button, 535
wxMouseEvent::ButtonDClick, 535
wxMouseEvent::ButtonDown, 535
wxMouseEvent::ButtonUp, 536
wxMouseEvent::ControlDown, 536
wxMouseEvent::Dragging, 536
wxMouseEvent::Entering, 536
wxMouseEvent::GetLogicalPosition, 536
wxMouseEvent::GetPosition, 536
wxMouseEvent::GetX, 537
wxMouseEvent::GetY, 537
wxMouseEvent::IsButton, 537
wxMouseEvent::Leaving, 537
wxMouseEvent::LeftDClick, 537

INDEX

49

wxMouseEvent::LeftDown, 537
wxMouseEvent::LeftIsDown, 537
wxMouseEvent::LeftUp, 538
wxMouseEvent::m_altDown, 533
wxMouseEvent::m_controlDown, 533
wxMouseEvent::m_leftDown, 533, 534
wxMouseEvent::m_metaDown, 534
wxMouseEvent::m_middleDown, 533
wxMouseEvent::m_rightDown, 534
wxMouseEvent::m_shiftDown, 534
wxMouseEvent::m_x, 534
wxMouseEvent::m_y, 534
wxMouseEvent::MetaDown, 538
wxMouseEvent::MiddleDClick, 538
wxMouseEvent::MiddleDown, 538
wxMouseEvent::MiddleIsDown, 538
wxMouseEvent::MiddleUp, 538
wxMouseEvent::Moving, 539
wxMouseEvent::RightDClick, 539
wxMouseEvent::RightDown, 539
wxMouseEvent::RightIsDown, 539
wxMouseEvent::RightUp, 539
wxMouseEvent::ShiftDown, 539
wxMouseEvent::wxMouseEvent, 534
wxMoveEvent, 540
wxMoveEvent::GetPosition, 540
wxMoveEvent::wxMoveEvent, 540
wxMultipleChoiceDialog overview, 1051
wxMutex, 542
wxMutex::~wxMutex, 542
wxMutex::IsLocked, 542
wxMutex::Lock, 543
wxMutex::TryLock, 543
wxMutex::Unlock, 543
wxMutex::wxMutex, 542
wxMutexLocker, 544
wxMutexLocker::~wxMutexLocker, 544
wxMutexLocker::IsOk, 544
wxMutexLocker::wxMutexLocker, 544
wxNewId, 983
wxNO_3D, 194, 915
wxNO_FULLREPAINT_ON_RESIZE, 915
wxNodeBase::GetData, 545
wxNodeBase::GetNext, 545
wxNodeBase::GetPrevious, 545
wxNodeBase::IndexOf, 546
wxNodeBase::SetData, 545
wxNotebook, 546, 547
wxNotebook::~wxNotebook, 547
wxNotebook::AddPage, 547
wxNotebook::AdvanceSelection, 548
wxNotebook::Create, 548
wxNotebook::DeleteAllPages, 548
wxNotebook::DeletePage, 548
wxNotebook::GetImageList, 549
wxNotebook::GetPage, 549
wxNotebook::GetPageCount, 549
wxNotebook::GetPageImage, 549
wxNotebook::GetPageText, 549
wxNotebook::GetRowCount, 549
wxNotebook::GetSelection, 549
wxNotebook::InsertPage, 550

wxNotebook::OnSelChange, 550
wxNotebook::RemovePage, 551
wxNotebook::SetImageList, 551
wxNotebook::SetPadding, 551
wxNotebook::SetPageImage, 551
wxNotebook::SetPageSize, 551
wxNotebook::SetPageText, 551
wxNotebook::SetSelection, 551
wxNotebook::wxNotebook, 546
wxNotebookEvent, 553
wxNotebookEvent::GetOldSelection, 553
wxNotebookEvent::GetSelection, 553
wxNotebookEvent::SetOldSelection, 553
wxNotebookEvent::SetSelection, 553
wxNotebookEvent::wxNotebookEvent, 553
wxNotifyEvent, 554
wxNotifyEvent::IsAllowed, 554
wxNotifyEvent::Veto, 554
wxNotifyEvent::wxNotifyEvent, 554
wxNow, 994
wxObjArray, 22
wxObjArray::Detach, 23
wxObject, 555
wxObject::~wxObject, 555
wxObject::Dump, 556
wxObject::GetClassInfo, 556
wxObject::GetRefData, 556
wxObject::IsKindOf, 556
wxObject::m_refData, 555
wxObject::operator delete, 558
wxObject::operator new, 558
wxObject::Ref, 557
wxObject::SetRefData, 557
wxObject::UnRef, 557
wxObject::wxObject, 555
wxObjectRefData, 559
wxObjectRefData::~wxObjectRefData, 559
wxObjectRefData::m_count, 558
wxObjectRefData::wxObjectRefData, 559
wxOnAssert, 1012
wxOpenClipboard, 983
wxOutputStream, 559
wxOutputStream::~wxOutputStream, 559
wxOutputStream::LastWrite, 559
wxOutputStream::PutC, 559
wxOutputStream::SeekO, 560
wxOutputStream::TellO, 560
wxOutputStream::Write, 560
wxOutputStream::wxOutputStream, 559
wxPageSetupDialog, 566
wxPageSetupDialog::~wxPageSetupDialog, 566
wxPageSetupDialog::GetPageSetupData, 566
wxPageSetupDialog::ShowModal, 567
wxPageSetupDialog::wxPageSetupDialog, 566
wxPageSetupDialogData, 561
wxPageSetupDialogData::~wxPageSetupDialogD

ata, 561
wxPageSetupDialogData::EnableHelp, 561
wxPageSetupDialogData::EnableMargins, 561
wxPageSetupDialogData::EnableOrientation, 561
wxPageSetupDialogData::EnablePaper, 561
wxPageSetupDialogData::EnablePrinter, 562

INDEX

50

wxPageSetupDialogData::GetDefaultInfo, 563
wxPageSetupDialogData::GetDefaultMinMargins,

562
wxPageSetupDialogData::GetEnableHelp, 562
wxPageSetupDialogData::GetEnableMargins,

562
wxPageSetupDialogData::GetEnableOrientation,

562
wxPageSetupDialogData::GetEnablePaper, 562
wxPageSetupDialogData::GetEnablePrinter, 562
wxPageSetupDialogData::GetMarginBottomRight

, 563
wxPageSetupDialogData::GetMarginTopLeft, 563
wxPageSetupDialogData::GetMinMarginBottomR

ight, 563
wxPageSetupDialogData::GetMinMarginTopLeft,

563
wxPageSetupDialogData::GetPaperId, 563
wxPageSetupDialogData::GetPaperSize, 564
wxPageSetupDialogData::GetPrintData, 564
wxPageSetupDialogData::operator =, 565
wxPageSetupDialogData::SetDefaultInfo, 564
wxPageSetupDialogData::SetDefaultMinMargins,

564
wxPageSetupDialogData::SetMarginBottomRight

, 564
wxPageSetupDialogData::SetMarginTopLeft, 564
wxPageSetupDialogData::SetMinMarginBottomRi

ght, 565
wxPageSetupDialogData::SetMinMarginTopLeft,

564
wxPageSetupDialogData::SetPaperId, 565
wxPageSetupDialogData::SetPaperSize, 565
wxPageSetupDialogData::SetPrintData, 565
wxPageSetupDialogData::wxPageSetupDialogDa

ta, 561
wxPaintDC, 567
wxPaintDC::wxPaintDC, 567
wxPaintEvent, 568
wxPaintEvent::wxPaintEvent, 568
wxPalette, 569
wxPalette::~wxPalette, 569
wxPalette::Create, 570
wxPalette::GetPixel, 570
wxPalette::GetRGB, 571
wxPalette::Ok, 571
wxPalette::operator !=, 572
wxPalette::operator =, 571
wxPalette::operator ==, 572
wxPalette::wxPalette, 569
wxPanel, 573
wxPanel::~wxPanel, 574
wxPanel::Create, 574
wxPanel::InitDialog, 574
wxPanel::OnSysColourChanged, 574
wxPanel::wxPanel, 573
wxPanelTabView, 575
wxPanelTabView::~wxPanelTabView, 575
wxPanelTabView::AddTabWindow, 575
wxPanelTabView::ClearWindows, 576
wxPanelTabView::GetCurrentWindow, 576
wxPanelTabView::GetTabWindow, 576

wxPanelTabView::ShowWindowForTab, 576
wxPanelTabView::wxPanelTabView, 575
wxPaperSize, 595
wxPathList, 577
wxPathList::Add, 577
wxPathList::AddEnvList, 577
wxPathList::EnsureFileAccessible, 577
wxPathList::FindAbsoluteValidPath, 577
wxPathList::FindValidPath, 578
wxPathList::Member, 578
wxPathList::wxPathList, 577
wxPathOnly, 966
wxPen, 579
wxPen::~wxPen, 580
wxPen::GetCap, 581
wxPen::GetColour, 581
wxPen::GetDashes, 581
wxPen::GetJoin, 582
wxPen::GetStipple, 582
wxPen::GetStyle, 582
wxPen::GetWidth, 582
wxPen::Ok, 582
wxPen::operator !=, 585
wxPen::operator =, 584
wxPen::operator ==, 584
wxPen::SetCap, 583
wxPen::SetColour, 583
wxPen::SetDashes, 583
wxPen::SetJoin, 583
wxPen::SetStipple, 584
wxPen::SetStyle, 584
wxPen::SetWidth, 584
wxPen::wxPen, 579
wxPenList, 585
wxPenList::AddPen, 586
wxPenList::FindOrCreatePen, 586
wxPenList::RemovePen, 586
wxPenList::wxPenList, 585
wxPoint, 587
wxPoint::wxPoint, 587
wxPoint::x, 587
wxPoint::y, 587
wxPostDelete, 994
wxPostEvent, 994
wxPostScriptDC, 588
wxPostScriptDC::wxPostScriptDC, 588
wxPreviewCanvas, 589
wxPreviewCanvas::~wxPreviewCanvas, 589
wxPreviewCanvas::OnPaint, 589
wxPreviewCanvas::wxPreviewCanvas, 588
wxPreviewControlBar, 589
wxPreviewControlBar::~wxPreviewControlBar,

590
wxPreviewControlBar::CreateButtons, 590
wxPreviewControlBar::GetPrintPreview, 590
wxPreviewControlBar::GetZoomControl, 590
wxPreviewControlBar::SetZoomControl, 590
wxPreviewControlBar::wxPreviewControlbar, 589
wxPreviewFrame, 591
wxPreviewFrame::~wxPreviewFrame, 591
wxPreviewFrame::CreateCanvas, 591
wxPreviewFrame::CreateControlBar, 591

INDEX

51

wxPreviewFrame::Initialize, 592
wxPreviewFrame::OnCloseWindow, 592
wxPreviewFrame::wxPreviewFrame, 591
wxPrintData, 593
wxPrintData::~wxPrintData, 593
wxPrintData::GetCollate, 593
wxPrintData::GetColour, 593
wxPrintData::GetDuplex, 594
wxPrintData::GetNoCopies, 594
wxPrintData::GetOrientation, 594
wxPrintData::GetPaperId, 594
wxPrintData::GetPrinterName, 594
wxPrintData::GetQuality, 594
wxPrintData::operator =, 597
wxPrintData::SetCollate, 595
wxPrintData::SetColour, 595
wxPrintData::SetDuplex, 595
wxPrintData::SetNoCopies, 595
wxPrintData::SetOrientation, 595
wxPrintData::SetPaperId, 595
wxPrintData::SetPrinterName, 597
wxPrintData::SetQuality, 597
wxPrintData::wxPrintData, 593
wxPrintDialog, 598
wxPrintDialog overview, 1050
wxPrintDialog::~wxPrintDialog, 598
wxPrintDialog::GetPrintDC, 599
wxPrintDialog::GetPrintDialogData, 599
wxPrintDialog::ShowModal, 599
wxPrintDialog::wxPrintDialog, 598
wxPrintDialogData, 561, 599, 600
wxPrintDialogData::~wxprintdialogdata, 600
wxPrintDialogData::EnableHelp, 600
wxPrintDialogData::EnablePageNumbers, 600
wxPrintDialogData::EnablePrintToFile, 600
wxPrintDialogData::EnableSelection, 600
wxPrintDialogData::GetAllPages, 600
wxPrintDialogData::GetCollate, 601
wxPrintDialogData::GetFromPage, 601
wxPrintDialogData::GetMaxPage, 601
wxPrintDialogData::GetMinPage, 601
wxPrintDialogData::GetNoCopies, 601
wxPrintDialogData::GetPrintData, 601
wxPrintDialogData::GetPrintToFile, 601
wxPrintDialogData::GetSelection, 602
wxPrintDialogData::GetToPage, 602
wxPrintDialogData::operator =, 603
wxPrintDialogData::SetCollate, 602
wxPrintDialogData::SetFromPage, 602
wxPrintDialogData::SetMaxPage, 602
wxPrintDialogData::SetMinPage, 602
wxPrintDialogData::SetNoCopies, 602
wxPrintDialogData::SetPrintData, 603
wxPrintDialogData::SetPrintToFile, 603
wxPrintDialogData::SetSelection, 603
wxPrintDialogData::SetSetupDialog, 603
wxPrintDialogData::SetToPage, 603
wxPrintDialogData::wxPrintDialogData, 599
wxPrinter, 604
wxPrinter::~wxPrinter, 604
wxPrinter::Abort, 604
wxPrinter::CreateAbortWindow, 605

wxPrinter::GetPrintDialogData, 605
wxPrinter::Print, 605
wxPrinter::PrintDialog, 605
wxPrinter::ReportError, 605
wxPrinter::Setup, 605
wxPrinter::wxPrinter, 604
wxPrinterDC, 606
wxPrinterDC::wxPrinterDC, 606
wxPrintout, 607
wxPrintout::~wxPrintout, 607
wxPrintout::GetDC, 607
wxPrintout::GetPageInfo, 607
wxPrintout::GetPageSizeMM, 608
wxPrintout::GetPageSizePixels, 608
wxPrintout::GetPPIPrinter, 608
wxPrintout::GetPPIScreen, 608
wxPrintout::HasPage, 609
wxPrintout::IsPreview, 609
wxPrintout::OnBeginDocument, 609
wxPrintout::OnBeginPrinting, 609
wxPrintout::OnEndDocument, 609
wxPrintout::OnEndPrinting, 610
wxPrintout::OnPreparePrinting, 610
wxPrintout::OnPrintPage, 610
wxPrintout::wxPrintout, 607
wxPrintPreview, 611
wxPrintPreview::~wxPrintPreview, 611
wxPrintPreview::DrawBlankPage, 611
wxPrintPreview::GetCanvas, 611
wxPrintPreview::GetCurrentPage, 611
wxPrintPreview::GetFrame, 612
wxPrintPreview::GetMaxPage, 612
wxPrintPreview::GetMinPage, 612
wxPrintPreview::GetPrintData, 612
wxPrintPreview::GetPrintout, 612
wxPrintPreview::GetPrintoutForPrinting, 612
wxPrintPreview::Ok, 612
wxPrintPreview::PaintPage, 613
wxPrintPreview::Print, 613
wxPrintPreview::RenderPage, 613
wxPrintPreview::SetCanvas, 613
wxPrintPreview::SetCurrentPage, 613
wxPrintPreview::SetFrame, 613
wxPrintPreview::SetPrintout, 614
wxPrintPreview::SetZoom, 614
wxPrintPreview::wxPrintPreview, 611
wxPrivateDropTarget, 614
wxPrivateDropTarget::GetId, 614
wxPrivateDropTarget::SetId, 614
wxPrivateDropTarget::wxPrivateDropTarget, 614
wxProcess, 615
wxProcess::~wxProcess, 615
wxProcess::Detach, 616
wxProcess::OnTerminate, 616
wxProcess::wxProcess, 615
wxProcessEvent, 619
wxProcessEvent::GetPid, 619
wxProcessEvent::m_pid, 619
wxProcessEvent::SetPid, 619
wxProcessEvent::wxProcessEvent, 619
wxProgressDialog, 617
wxProgressDialog::~wxProgressDialog, 618

INDEX

52

wxProgressDialog::Resume, 618
wxProgressDialog::Update, 618
wxProgressDialog::wxProgressDialog, 616
wxProtocol::Abort, 620
wxProtocol::GetContentType, 621
wxProtocol::GetError, 621
wxProtocol::GetInputStream, 620
wxProtocol::Reconnect, 620
wxProtocol::SetPassword, 621
wxProtocol::SetUser, 621
wxQueryCol, 622
wxQueryCol overview, 1056
wxQueryCol::~wxQueryCol, 622
wxQueryCol::AppendField, 623
wxQueryCol::BindVar, 622
wxQueryCol::FillVar, 622
wxQueryCol::GetData, 622
wxQueryCol::GetName, 623
wxQueryCol::GetSize, 623
wxQueryCol::GetType, 623
wxQueryCol::IsNullable, 623
wxQueryCol::IsRowDirty, 623
wxQueryCol::SetData, 623
wxQueryCol::SetFieldDirty, 624
wxQueryCol::SetName, 624
wxQueryCol::SetNullable, 624
wxQueryCol::SetType, 624
wxQueryCol::wxQueryCol, 622
wxQueryField, 624
wxQueryField overview, 1056
wxQueryField::~wxQueryField, 624
wxQueryField::AllocData, 625
wxQueryField::ClearData, 625
wxQueryField::GetData, 625
wxQueryField::GetSize, 625
wxQueryField::GetType, 625
wxQueryField::IsDirty, 625
wxQueryField::SetData, 625
wxQueryField::SetDirty, 626
wxQueryField::SetSize, 626
wxQueryField::SetType, 626
wxQueryField::wxQueryField, 624
wxQueryLayoutInfoEvent, 627
wxQueryLayoutInfoEvent::GetAlignment, 627
wxQueryLayoutInfoEvent::GetFlags, 627
wxQueryLayoutInfoEvent::GetOrientation, 627
wxQueryLayoutInfoEvent::GetRequestedLength,

627
wxQueryLayoutInfoEvent::GetSize, 628
wxQueryLayoutInfoEvent::SetAlignment, 628
wxQueryLayoutInfoEvent::SetFlags, 628
wxQueryLayoutInfoEvent::SetOrientation, 628
wxQueryLayoutInfoEvent::SetRequestedLength,

628
wxQueryLayoutInfoEvent::SetSize, 628
wxQueryLayoutInfoEvent::wxQueryLayoutInfoEv

ent, 627
wxRA_SPECIFY_COLS, 629
wxRA_SPECIFY_ROWS, 629
wxRadioBox, 629
wxRadioBox::~wxRadioBox, 630
wxRadioBox::Create, 631

wxRadioBox::Enable, 631
wxRadioBox::FindString, 631
wxRadioBox::GetLabel, 632
wxRadioBox::GetSelection, 632
wxRadioBox::GetString, 634
wxRadioBox::GetStringSelection, 632
wxRadioBox::Number, 633
wxRadioBox::SetLabel, 633
wxRadioBox::SetSelection, 633
wxRadioBox::SetStringSelection, 633
wxRadioBox::Show, 634
wxRadioBox::wxRadioBox, 629
wxRadioButton, 635
wxRadioButton::~wxRadioButton, 636
wxRadioButton::Create, 636
wxRadioButton::GetValue, 636
wxRadioButton::SetValue, 637
wxRadioButton::wxRadioButton, 635
wxRAISED_BORDER, 915
wxRB_GROUP, 635
wxRealPoint, 637
wxRealPoint::wxRealPoint, 637
wxRecordSet, 642
wxRecordSet overview, 1057
wxRecordSet::~wxRecordSet, 642
wxRecordSet::AddNew, 642
wxRecordSet::BeginQuery, 642
wxRecordSet::BindVar, 642
wxRecordSet::CanAppend, 643
wxRecordSet::Cancel, 643
wxRecordSet::CanRestart, 643
wxRecordSet::CanScroll, 643
wxRecordSet::CanTransact, 643
wxRecordSet::CanUpdate, 643
wxRecordSet::ConstructDefaultSQL, 643
wxRecordSet::Delete, 644
wxRecordSet::Edit, 644
wxRecordSet::EndQuery, 644
wxRecordSet::ExecuteSQL, 644
wxRecordSet::FillVars, 644
wxRecordSet::GetColName, 644
wxRecordSet::GetColType, 645
wxRecordSet::GetColumns, 645
wxRecordSet::GetCurrentRecord, 645
wxRecordSet::GetDatabase, 645
wxRecordSet::GetDataSources, 646
wxRecordSet::GetDefaultConnect, 646
wxRecordSet::GetDefaultSQL, 646
wxRecordSet::GetErrorCode, 646
wxRecordSet::GetFieldData, 647
wxRecordSet::GetFieldDataPtr, 647
wxRecordSet::GetFilter, 647
wxRecordSet::GetForeignKeys, 647
wxRecordSet::GetNumberCols, 648
wxRecordSet::GetNumberFields, 648
wxRecordSet::GetNumberParams, 649
wxRecordSet::GetNumberRecords, 649
wxRecordSet::GetOptions, 649
wxRecordSet::GetPrimaryKeys, 649
wxRecordSet::GetResultSet, 649
wxRecordSet::GetSortString, 649
wxRecordSet::GetSQL, 650

INDEX

53

wxRecordSet::GetTableName, 650
wxRecordSet::GetTables, 650
wxRecordSet::GetType, 650
wxRecordSet::GoTo, 650
wxRecordSet::IsBOF, 650
wxRecordSet::IsColNullable, 651
wxRecordSet::IsDeleted, 651
wxRecordSet::IsEOF, 651
wxRecordSet::IsFieldDirty, 651
wxRecordSet::IsFieldNull, 651
wxRecordSet::IsOpen, 651
wxRecordSet::Move, 652
wxRecordSet::MoveFirst, 652
wxRecordSet::MoveLast, 652
wxRecordSet::MoveNext, 652
wxRecordSet::MovePrev, 652
wxRecordSet::Query, 652
wxRecordSet::RecordCountFinal, 652
wxRecordSet::Requery, 652
wxRecordSet::SetDefaultSQL, 653
wxRecordSet::SetFieldDirty, 653
wxRecordSet::SetFieldNull, 653
wxRecordSet::SetOptions, 653
wxRecordSet::SetTableName, 653
wxRecordSet::SetType, 653
wxRecordSet::Update, 653
wxRecordSet::wxRecordSet, 642
wxRect, 638
wxRect::GetBottom, 639
wxRect::GetHeight, 639
wxRect::GetLeft, 639
wxRect::GetPosition, 639
wxRect::GetRight, 639
wxRect::GetSize, 639
wxRect::GetTop, 640
wxRect::GetWidth, 640
wxRect::GetX, 640
wxRect::GetY, 640
wxRect::height, 639
wxRect::operator !=, 641
wxRect::operator =, 641
wxRect::operator ==, 641
wxRect::SetHeight, 640
wxRect::SetWidth, 640
wxRect::SetX, 640
wxRect::SetY, 641
wxRect::width, 639
wxRect::wxRect, 638
wxRect::x, 638
wxRect::y, 638
wxRegion, 654
wxRegion::~wxRegion, 654
wxRegion::Clear, 654
wxRegion::Contains, 655
wxRegion::GetBox, 655
wxRegion::Intersect, 655
wxRegion::IsEmpty, 656
wxRegion::operator =, 657
wxRegion::Subtract, 656
wxRegion::Union, 656
wxRegion::wxRegion, 654
wxRegion::Xor, 657

wxRegionIterator, 658
wxRegionIterator::GetH, 659
wxRegionIterator::GetHeight, 659
wxRegionIterator::GetRect, 659
wxRegionIterator::GetW, 659
wxRegionIterator::GetWidth, 659
wxRegionIterator::GetX, 658
wxRegionIterator::GetY, 658
wxRegionIterator::HaveRects, 659
wxRegionIterator::operator ++, 660
wxRegionIterator::operator bool, 660
wxRegionIterator::Reset, 659
wxRegionIterator::wxRegionIterator, 658
wxRegisterClipboardFormat, 983
wxRegisterId, 984
wxRelationship, 422
wxRemoveFile, 967
wxRenameFile, 968
wxRESIZE_BORDER, 194, 300, 486, 491, 528
wxResourceAddIdentifier, 1007
wxResourceClear, 1007
wxResourceCreateBitmap, 1007
wxResourceCreateIcon, 1007
wxResourceCreateMenuBar, 1008
wxResourceGetIdentifier, 1008
wxResourceParseData, 1008
wxResourceParseFile, 1009
wxResourceParseString, 1009
wxResourceRegisterBitmapData, 1010
wxRETAINED, 681
wxRmdir, 968
wxSafeYield, 995
wxSashEvent, 661
wxSashEvent::GetDragRect, 661
wxSashEvent::GetDragStatus, 662
wxSashEvent::GetEdge, 661
wxSashEvent::wxSashEvent, 661
wxSashLayoutWindow, 663
wxSashLayoutWindow::~wxSashLayoutWindow,

663
wxSashLayoutWindow::GetAlignment, 663
wxSashLayoutWindow::GetOrientation, 664
wxSashLayoutWindow::OnCalculateLayout, 664
wxSashLayoutWindow::OnQueryLayoutInfo, 664
wxSashLayoutWindow::SetAlignment, 664
wxSashLayoutWindow::SetDefaultSize, 664
wxSashLayoutWindow::SetOrientation, 665
wxSashLayoutWindow::wxSashLayoutWindow,

663
wxSashWindow, 666
wxSashWindow::~wxSashWindow, 667
wxSashWindow::GetMaximumSizeX, 667
wxSashWindow::GetMaximumSizeY, 667
wxSashWindow::GetMinimumSizeX, 667
wxSashWindow::GetMinimumSizeY, 667
wxSashWindow::GetSashVisible, 667
wxSashWindow::HasBorder, 668
wxSashWindow::SetMaximumSizeX, 668
wxSashWindow::SetMaximumSizeY, 668
wxSashWindow::SetMinimumSizeX, 668
wxSashWindow::SetMinimumSizeY, 668
wxSashWindow::SetSashBorder, 669

INDEX

54

wxSashWindow::SetSashVisible, 669
wxSashWindow::wxSashWindow, 666
wxSB_HORIZONTAL, 672
wxSB_SIZEGRIP, 749
wxSB_VERTICAL, 672
wxScreenDC, 670
wxScreenDC::EndDrawingOnTop, 671
wxScreenDC::StartDrawingOnTop, 670
wxScreenDC::wxScreenDC, 670
wxScrollBar, 673
wxScrollBar::~wxScrollBar, 673
wxScrollBar::Create, 674
wxScrollBar::GetPageSize, 674
wxScrollBar::GetRange, 674
wxScrollBar::GetThumbLength, 674
wxScrollBar::GetThumbPosition, 674
wxScrollBar::SetScrollbar, 675
wxScrollBar::SetThumbPosition, 675
wxScrollBar::wxScrollBar, 673
wxScrolledWindow, 681
wxScrolledWindow::~wxScrolledWindow, 682
wxScrolledWindow::CalcScrolledPosition, 682
wxScrolledWindow::CalcUnscrolledPosition, 682
wxScrolledWindow::Create, 683
wxScrolledWindow::EnableScrolling, 683
wxScrolledWindow::GetScrollPixelsPerUnit, 683
wxScrolledWindow::GetVirtualSize, 684
wxScrolledWindow::IsRetained, 684
wxScrolledWindow::OnDraw, 685
wxScrolledWindow::PrepareDC, 684
wxScrolledWindow::Scroll, 685
wxScrolledWindow::SetScrollbars, 686
wxScrolledWindow::SetTargetWindow, 687
wxScrolledWindow::ViewStart, 687
wxScrolledWindow::wxScrolledWindow, 681
wxScrollEvent, 679
wxScrollEvent::GetOrientation, 679
wxScrollEvent::GetPosition, 680
wxScrollEvent::wxScrollEvent, 679
wxScrollWinEvent, 677
wxScrollWinEvent::GetOrientation, 678
wxScrollWinEvent::GetPosition, 678
wxScrollWinEvent::wxScrollWinEvent, 677
wxSetClipboardData, 983
wxSetCursor, 978
wxSetDisplayName, 995
wxSetPrinterCommand, 980
wxSetPrinterFile, 980
wxSetPrinterMode, 980
wxSetPrinterOptions, 980
wxSetPrinterOrientation, 980
wxSetPrinterPreviewCommand, 981
wxSetPrinterScaling, 981
wxSetPrinterTranslation, 981
wxSetWorkingDirectory, 968
wxShell, 996
wxShowTip, 977
wxSIMPLE_BORDER, 300, 915
wxSingleChoiceDialog, 688
wxSingleChoiceDialog overview, 1051
wxSingleChoiceDialog::~wxSingleChoiceDialog,

689

wxSingleChoiceDialog::GetSelection, 689
wxSingleChoiceDialog::GetSelectionClientData,

689
wxSingleChoiceDialog::GetStringSelection, 689
wxSingleChoiceDialog::ShowModal, 689
wxSingleChoiceDialog::wxSingleChoiceDialog,

688
wxSize, 690
wxSize::GetHeight, 690
wxSize::GetWidth, 690
wxSize::operator =, 691
wxSize::Set, 690
wxSize::SetHeight, 691
wxSize::SetWidth, 691
wxSize::wxSize, 690
wxSizeEvent, 692
wxSizeEvent::GetSize, 692
wxSizeEvent::wxSizeEvent, 692
wxSizer, 693
wxSizer::~wxSizer, 693
wxSizer::Add, 693
wxSizer::CalcMin, 696
wxSizer::Fit, 696
wxSizer::GetMinSize, 695
wxSizer::GetPosition, 695
wxSizer::GetSize, 695
wxSizer::Layout, 696
wxSizer::Prepend, 694
wxSizer::RecalcSizes, 695
wxSizer::Remove, 694
wxSizer::SetDimension, 695
wxSizer::SetSizeHints, 696
wxSizer::wxSizer, 693
wxSL_AUTOTICKS, 697
wxSL_HORIZONTAL, 697
wxSL_LABELS, 697
wxSL_LEFT, 697
wxSL_RIGHT, 697
wxSL_SELRANGE, 697
wxSL_TOP, 697
wxSL_VERTICAL, 697
wxSleep, 996
wxSlider, 698
wxSlider::~wxSlider, 698
wxSlider::ClearSel, 699
wxSlider::ClearTicks, 699
wxSlider::Create, 699
wxSlider::GetLineSize, 699
wxSlider::GetMax, 699
wxSlider::GetMin, 700
wxSlider::GetPageSize, 700
wxSlider::GetSelEnd, 700
wxSlider::GetSelStart, 700
wxSlider::GetThumbLength, 701
wxSlider::GetTickFreq, 701
wxSlider::GetValue, 701
wxSlider::SetLineSize, 702
wxSlider::SetPageSize, 703
wxSlider::SetRange, 702
wxSlider::SetSelection, 703
wxSlider::SetThumbLength, 703
wxSlider::SetTick, 704

INDEX

55

wxSlider::SetTickFreq, 702
wxSlider::SetValue, 704
wxSlider::wxSlider, 698
wxSockAddress, 705
wxSockAddress::~wxSockAddress, 705
wxSockAddress::Clear, 705
wxSockAddress::SockAddrLen, 705
wxSockAddress::wxSockAddress, 705
wxSocketBase, 707
wxSocketBase::~wxSocketBase, 707
wxSocketBase::Callback, 718
wxSocketBase::CallbackData, 719
wxSocketBase::Discard, 714
wxSocketBase::Error, 709
wxSocketBase::GetLocal, 717
wxSocketBase::GetPeer, 717
wxSocketBase::IsConnected, 709
wxSocketBase::IsData, 709
wxSocketBase::IsDisconnected, 709
wxSocketBase::IsNoWait, 710
wxSocketBase::LastCount, 710
wxSocketBase::LastError, 710
wxSocketBase::Notify, 709
wxSocketBase::Ok, 709
wxSocketBase::Peek, 710
wxSocketBase::Read, 711
wxSocketBase::ReadMsg, 713
wxSocketBase::RestoreState, 716
wxSocketBase::SaveState, 717
wxSocketBase::SetEventHandler, 718
wxSocketBase::SetFlags, 707
wxSocketBase::SetNotify, 708
wxSocketBase::SetTimeout, 708
wxSocketBase::Unread, 714
wxSocketBase::Wait, 714
wxSocketBase::WaitForLost, 716
wxSocketBase::WaitForRead, 715
wxSocketBase::WaitForWrite, 715
wxSocketBase::Write, 711
wxSocketBase::WriteMsg, 712
wxSocketBase::wxSocketBase, 707
wxSocketClient, 719
wxSocketClient::~wxSocketClient, 719
wxSocketClient::Connect, 719
wxSocketClient::WaitOnConnect, 720
wxSocketClient::wxSocketClient, 719
wxSocketEvent, 721
wxSocketEvent::SocketEvent, 722
wxSocketEvent::wxSocketEvent, 721
wxSocketInputStream, 727
wxSocketInputStream::wxSocketInputStream,

727
wxSocketOutputStream::wxSocketOutputStream,

727
wxSocketServer, 722
wxSocketServer::~wxSocketServer, 722
wxSocketServer::Accept, 722
wxSocketServer::AcceptWith, 723
wxSocketServer::WaitForAccept, 723
wxSocketServer::wxSocketServer, 722
wxSortedArray, 22
wxSP_3D, 731

wxSP_ARROW_KEYS, 728
wxSP_BORDER, 731
wxSP_HORIZONTAL, 728
wxSP_LIVE_UPDATE, 731
wxSP_NOBORDER, 731
wxSP_PERMIT_UNSPLIT, 731
wxSP_VERTICAL, 728
wxSP_WRAP, 728
wxSpinButton, 729
wxSpinButton::~wxSpinButton, 729
wxSpinButton::Create, 729
wxSpinButton::GetMax, 730
wxSpinButton::GetMin, 730
wxSpinButton::GetValue, 730
wxSpinButton::SetRange, 730
wxSpinButton::SetValue, 731
wxSpinButton::wxSpinButton, 728
wxSplitPath, 968
wxSplitterEvent, 725
wxSplitterEvent::GetSashPosition, 725
wxSplitterEvent::GetWindowBeingRemoved, 726
wxSplitterEvent::GetX, 725
wxSplitterEvent::GetY, 726
wxSplitterEvent::SetSashPosition, 726
wxSplitterEvent::wxSplitterEvent, 725
wxSplitterWindow, 733
wxSplitterWindow::~wxSplitterWindow, 734
wxSplitterWindow::Create, 734
wxSplitterWindow::GetMinimumPaneSize, 734
wxSplitterWindow::GetSashPosition, 734
wxSplitterWindow::GetSplitMode, 734
wxSplitterWindow::GetWindow1, 735
wxSplitterWindow::GetWindow2, 735
wxSplitterWindow::Initialize, 735
wxSplitterWindow::IsSplit, 735
wxSplitterWindow::OnDoubleClickSash, 735
wxSplitterWindow::OnSashPositionChange, 736
wxSplitterWindow::OnUnsplit, 736
wxSplitterWindow::ReplaceWindow, 737
wxSplitterWindow::SetMinimumPaneSize, 738
wxSplitterWindow::SetSashPosition, 737
wxSplitterWindow::SetSplitMode, 738
wxSplitterWindow::SplitHorizontally, 738
wxSplitterWindow::SplitVertically, 739
wxSplitterWindow::Unsplit, 740
wxSplitterWindow::wxSplitterWindow, 733
wxST_NO_AUTORESIZE, 746
wxStartTimer, 996
wxSTATIC_BORDER, 915
wxStaticBitmap, 741
wxStaticBitmap::Create, 742
wxStaticBitmap::GetBitmap, 742
wxStaticBitmap::SetBitmap, 742
wxStaticBitmap::wxStaticBitmap, 741
wxStaticBox, 743
wxStaticBox::~wxStaticBox, 744
wxStaticBox::Create, 744
wxStaticBox::wxStaticBox, 743
wxStaticBoxSizer, 670
wxStaticBoxSizer::GetStaticBox, 670
wxStaticBoxSizer::wxStaticBoxSizer, 670
wxStaticLine, 745

INDEX

56

wxStaticLine::Create, 746
wxStaticLine::GetDefaultSize, 746
wxStaticLine::IsVertical, 746
wxStaticLine::wxStaticLine, 745
wxStaticText, 747
wxStaticText::Create, 748
wxStaticText::GetLabel, 748
wxStaticText::SetLabel, 748
wxStaticText::wxStaticText, 747
wxStatusBar, 749
wxStatusBar::~wxStatusBar, 750
wxStatusBar::Create, 750
wxStatusBar::DrawField, 751
wxStatusBar::DrawFieldText, 751
wxStatusBar::GetFieldRect, 750
wxStatusBar::GetFieldsCount, 751
wxStatusBar::GetStatusText, 751
wxStatusBar::InitColours, 752
wxStatusBar::OnSysColourChanged, 752
wxStatusBar::SetFieldsCount, 753
wxStatusBar::SetStatusText, 753
wxStatusBar::SetStatusWidths, 753
wxStatusBar::wxStatusBar, 749
wxSTAY_ON_TOP, 194, 300, 486, 491, 528
wxStreamBase, 754
wxStreamBase::~wxStreamBase, 754
wxStreamBase::GetSize, 755
wxStreamBase::LastError, 754
wxStreamBase::OnSysRead, 755
wxStreamBase::OnSysSeek, 755
wxStreamBase::OnSysTell, 755
wxStreamBase::OnSysWrite, 755
wxStreamBase::wxStreamBase, 754
wxStreamBuffer, 756, 757
wxStreamBuffer::~wxStreamBuffer, 757
wxStreamBuffer::FillBuffer, 762
wxStreamBuffer::Fixed, 761
wxStreamBuffer::Flushable, 761
wxStreamBuffer::FlushBuffer, 761
wxStreamBuffer::GetBufferEnd, 760
wxStreamBuffer::GetBufferPos, 760
wxStreamBuffer::GetBufferStart, 760
wxStreamBuffer::GetChar, 758
wxStreamBuffer::GetDataLeft, 762
wxStreamBuffer::GetIntPosition, 760
wxStreamBuffer::GetLastAccess, 761
wxStreamBuffer::PutChar, 758
wxStreamBuffer::Read, 757
wxStreamBuffer::ResetBuffer, 759
wxStreamBuffer::Seek, 759
wxStreamBuffer::SetBufferIO, 759
wxStreamBuffer::SetIntPosition, 761
wxStreamBuffer::Stream, 762
wxStreamBuffer::Tell, 758
wxStreamBuffer::Write, 758
wxStreamBuffer::wxStreamBuffer, 756
wxString, 769
wxString::~wxString, 769
wxString::AfterFirst, 770
wxString::AfterLast, 770
wxString::Alloc, 769
wxString::Append, 770

wxString::BeforeFirst, 771
wxString::BeforeLast, 771
wxString::c_str, 771
wxString::Clear, 771
wxString::Cmp, 771
wxString::CmpNoCase, 772
wxString::CompareTo, 772
wxString::Contains, 772
wxString::Empty, 772
wxString::Find, 772
wxString::First, 773
wxString::Freq, 773
wxString::GetChar, 773
wxString::GetData, 773
wxString::GetWritableChar, 773
wxString::GetWriteBuf, 773
wxString::Index, 774
wxString::IsAscii, 774
wxString::IsEmpty, 774
wxString::IsNull, 774
wxString::IsNumber, 774
wxString::IsSameAs, 775
wxString::IsWord, 775
wxString::Last, 775
wxString::Left, 775
wxString::Len, 776
wxString::Length, 776
wxString::Lower, 776
wxString::LowerCase, 776
wxString::MakeLower, 776
wxString::MakeUpper, 776
wxString::Matches, 776
wxString::Mid, 777
wxString::operator (), 781
wxString::operator [], 781
wxString::operator +=, 781
wxString::operator <<, 781
wxString::operator =, 780
wxString::operator >>, 782
wxString::operator const char*, 782
wxString::operator!, 780
wxString::Pad, 777
wxString::Prepend, 777
wxString::Printf, 777
wxString::PrintfV, 777
wxString::Remove, 778
wxString::RemoveLast, 778
wxString::Replace, 778
wxString::Right, 778
wxString::SetChar, 778
wxString::Shrink, 778
wxString::sprintf, 779
wxString::Strip, 779
wxString::SubString, 779
wxString::Trim, 779
wxString::Truncate, 779
wxString::UngetWriteBuf, 779
wxString::Upper, 779
wxString::UpperCase, 780
wxString::wxString, 769
wxStringEq, 971
wxStringList, 783

INDEX

57

wxStringList::~wxStringList, 783
wxStringList::Add, 783
wxStringList::Clear, 783
wxStringList::Delete, 784
wxStringList::ListToArray, 784
wxStringList::Member, 784
wxStringList::Sort, 784
wxStringList::wxStringList, 783
wxStringMatch, 971
wxStringTokenizer, 784, 785
wxStringTokenizer::~wxStringTokenizer, 785
wxStringTokenizer::CountTokens, 785
wxStringTokenizer::GetNextToken, 785
wxStringTokenizer::GetString, 785
wxStringTokenizer::HasMoreTokens, 785
wxStringTokenizer::SetString, 785
wxStringTokenizer::wxStringTokenizer, 784
wxStripMenuCodes, 996
wxSUNKEN_BORDER, 915
wxSW_3D, 665
wxSysColourChanged, 786
wxSysColourChangedEvent::wxSysColourChang

ed, 786
wxSYSTEM_MENU, 194, 300, 486, 491, 528
wxSystemSettings, 787
wxSystemSettings::GetSystemColour, 787
wxSystemSettings::GetSystemFont, 788
wxSystemSettings::GetSystemMetric, 788
wxSystemSettings::wxSystemSettings, 787
wxTAB_TRAVERSAL, 915
wxTabbedDialog, 790
wxTabbedDialog::~wxTabbedDialog, 790
wxTabbedDialog::GetTabView, 791
wxTabbedDialog::SetTabView, 791
wxTabbedDialog::wxTabbedDialog, 790
wxTabbedPanel, 791
wxTabbedPanel::GetTabView, 792
wxTabbedPanel::SetTabView, 792
wxTabbedPanel::wxTabbedPanel, 791
wxTabControl, 792
wxTabControl::GetColPosition, 792
wxTabControl::GetFont, 793
wxTabControl::GetHeight, 793
wxTabControl::GetId, 793
wxTabControl::GetLabel, 793
wxTabControl::GetRowPosition, 793
wxTabControl::GetSelected, 793
wxTabControl::GetWidth, 793
wxTabControl::GetX, 794
wxTabControl::GetY, 794
wxTabControl::HitTest, 794
wxTabControl::OnDraw, 794
wxTabControl::SetColPosition, 794
wxTabControl::SetFont, 794
wxTabControl::SetId, 794
wxTabControl::SetLabel, 795
wxTabControl::SetPosition, 795
wxTabControl::SetRowPosition, 795
wxTabControl::SetSelected, 795
wxTabControl::SetSize, 795
wxTabControl::wxTabControl, 792
wxTabCtrl, 804

wxTabCtrl::~wxTabCtrl, 804
wxTabCtrl::Create, 805
wxTabCtrl::DeleteAllItems, 805
wxTabCtrl::DeleteItem, 805
wxTabCtrl::GetCurFocus, 805
wxTabCtrl::GetImageList, 805
wxTabCtrl::GetItemCount, 805
wxTabCtrl::GetItemData, 806
wxTabCtrl::GetItemImage, 806
wxTabCtrl::GetItemRect, 806
wxTabCtrl::GetItemText, 806
wxTabCtrl::GetRowCount, 806
wxTabCtrl::GetSelection, 806
wxTabCtrl::HitTest, 807
wxTabCtrl::InsertItem, 807
wxTabCtrl::SetImageList, 808
wxTabCtrl::SetItemData, 808
wxTabCtrl::SetItemImage, 808
wxTabCtrl::SetItemSize, 808
wxTabCtrl::SetItemText, 808
wxTabCtrl::SetPadding, 808
wxTabCtrl::SetSelection, 809
wxTabCtrl::wxTabCtrl, 804
wxTabEvent, 809
wxTabEvent::wxTabEvent, 809
wxTabView, 796
wxTabView::AddTab, 796
wxTabView::CalculateTabWidth, 796
wxTabView::ClearTabs, 797
wxTabView::Draw, 797
wxTabView::FindTabControlForId, 797
wxTabView::FindTabControlForPosition, 797
wxTabView::GetBackgroundBrush, 797
wxTabView::GetBackgroundColour, 797
wxTabView::GetBackgroundPen, 798
wxTabView::GetHighlightColour, 798
wxTabView::GetHighlightPen, 798
wxTabView::GetHorizontalTabOffset, 798
wxTabView::GetNumberOfLayers, 798
wxTabView::GetSelectedTabFont, 798
wxTabView::GetShadowColour, 798
wxTabView::GetShadowPen, 800
wxTabView::GetTabFont, 799
wxTabView::GetTabHeight, 799
wxTabView::GetTabSelectionHeight, 799
wxTabView::GetTabStyle, 799
wxTabView::GetTabWidth, 799
wxTabView::GetTextColour, 799
wxTabView::GetTopMargin, 800
wxTabView::GetVerticalTabTextSpacing, 800
wxTabView::GetViewRect, 800
wxTabView::GetWindow, 800
wxTabView::LayoutTabs, 800
wxTabView::OnCreateTabControl, 800
wxTabView::OnEvent, 801
wxTabView::OnTabActivate, 801
wxTabView::OnTabPreActivate, 801
wxTabView::SetBackgroundColour, 801
wxTabView::SetHighlightColour, 801
wxTabView::SetHorizontalTabOffset, 801
wxTabView::SetSelectedTabFont, 802
wxTabView::SetShadowColour, 802

INDEX

58

wxTabView::SetTabFont, 802
wxTabView::SetTabSelection, 803
wxTabView::SetTabSelectionHeight, 802
wxTabView::SetTabSize, 802
wxTabView::SetTabStyle, 802
wxTabView::SetTextColour, 803
wxTabView::SetTopMargin, 803
wxTabView::SetVerticalTabTextSpacing, 803
wxTabView::SetViewRect, 803
wxTabView::SetWindow, 803
wxTabView::wxTabView, 796
wxTaskBarIcon, 810
wxTaskBarIcon::~wxTaskBarIcon, 810
wxTaskBarIcon::IsIconInstalled, 810
wxTaskBarIcon::IsOK, 810
wxTaskBarIcon::OnLButtonDClick, 811
wxTaskBarIcon::OnLButtonDown, 810
wxTaskBarIcon::OnLButtonUp, 811
wxTaskBarIcon::OnMouseMove, 811
wxTaskBarIcon::OnRButtonDClick, 811
wxTaskBarIcon::OnRButtonDown, 811
wxTaskBarIcon::OnRButtonUp, 811
wxTaskBarIcon::RemoveIcon, 811
wxTaskBarIcon::SetIcon, 812
wxTaskBarIcon::wxTaskBarIcon, 810
wxTB_3DBUTTONS, 862
wxTB_DOCKABLE, 862
wxTB_FLAT, 862
wxTB_HORIZONTAL, 862
wxTB_VERTICAL, 862
wxTCPClient, 812
wxTCPClient::MakeConnection, 812
wxTCPClient::OnMakeConnection, 813
wxTCPClient::ValidHost, 813
wxTCPClient::wxTCPClient, 812
wxTCPConnection, 814
wxTCPConnection::Advise, 815
wxTCPConnection::Disconnect, 815
wxTCPConnection::Execute, 815
wxTCPConnection::OnAdvise, 815
wxTCPConnection::OnDisconnect, 815
wxTCPConnection::OnExecute, 816
wxTCPConnection::OnPoke, 816
wxTCPConnection::OnRequest, 816
wxTCPConnection::OnStartAdvise, 816
wxTCPConnection::OnStopAdvise, 816
wxTCPConnection::Poke, 816
wxTCPConnection::Request, 817
wxTCPConnection::StartAdvise, 817
wxTCPConnection::StopAdvise, 817
wxTCPConnection::wxTCPConnection, 814
wxTCPServer, 818
wxTCPServer::Create, 818
wxTCPServer::OnAcceptConnection, 818
wxTCPServer::wxTCPServer, 818
wxTE_MULTILINE, 821
wxTE_PASSWORD, 821
wxTE_PROCESS_ENTER, 821
wxTE_PROCESS_TAB, 821
wxTE_READONLY, 821
wxTempFile, 819
wxTempFile::~wxTempFile, 820

wxTempFile::Commit, 820
wxTempFile::Discard, 820
wxTempFile::IsOpened, 820
wxTempFile::Open, 819
wxTempFile::Write, 820
wxTempFile::wxTempFile, 819
wxTextCtrl, 822
wxTextCtrl::~wxTextCtrl, 823
wxTextCtrl::AppendText, 823
wxTextCtrl::CanCopy, 824
wxTextCtrl::CanCut, 824
wxTextCtrl::CanPaste, 824
wxTextCtrl::CanRedo, 824
wxTextCtrl::CanUndo, 824
wxTextCtrl::Clear, 824
wxTextCtrl::Copy, 824
wxTextCtrl::Create, 825
wxTextCtrl::Cut, 825
wxTextCtrl::DiscardEdits, 825
wxTextCtrl::GetInsertionPoint, 825
wxTextCtrl::GetLastPosition, 825
wxTextCtrl::GetLineLength, 826
wxTextCtrl::GetLineText, 826
wxTextCtrl::GetNumberOfLines, 826
wxTextCtrl::GetSelection, 827
wxTextCtrl::GetValue, 827
wxTextCtrl::IsModified, 827
wxTextCtrl::LoadFile, 827
wxTextCtrl::OnChar, 828
wxTextCtrl::OnDropFiles, 828
wxTextCtrl::operator <<, 833
wxTextCtrl::Paste, 828
wxTextCtrl::PositionToXY, 829
wxTextCtrl::Redo, 829
wxTextCtrl::Remove, 829
wxTextCtrl::Replace, 830
wxTextCtrl::SaveFile, 830
wxTextCtrl::SetEditable, 830
wxTextCtrl::SetInsertionPoint, 831
wxTextCtrl::SetInsertionPointEnd, 831
wxTextCtrl::SetSelection, 831
wxTextCtrl::SetValue, 831
wxTextCtrl::ShowPosition, 832
wxTextCtrl::Undo, 832
wxTextCtrl::WriteText, 832
wxTextCtrl::wxTextCtrl, 822
wxTextCtrl::XYToPosition, 832
wxTextDataObject, 834
wxTextDataObject::GetText, 834
wxTextDataObject::GetTextLength, 834
wxTextDataObject::SetText, 835
wxTextDataObject::wxTextDataObject, 834
wxTextDropTarget, 840
wxTextDropTarget::GetFormat, 840
wxTextDropTarget::GetFormatCount, 840
wxTextDropTarget::OnDrop, 840
wxTextDropTarget::OnDropText, 840
wxTextDropTarget::wxTextDropTarget, 840
wxTextEntryDialog, 838
wxTextEntryDialog overview, 1050
wxTextEntryDialog::~wxTextEntryDialog, 839
wxTextEntryDialog::GetValue, 839

INDEX

59

wxTextEntryDialog::SetValue, 839
wxTextEntryDialog::ShowModal, 839
wxTextEntryDialog::wxTextEntryDialog, 838
wxTextFile, 845
wxTextFile::~wxTextFile, 849
wxTextFile::AddLine, 848
wxTextFile::Close, 846
wxTextFile::Eof, 847
wxTextFile::Exists, 845
wxTextFile::GetCurrentLine, 846
wxTextFile::GetEOL, 849
wxTextFile::GetFirstLine, 847
wxTextFile::GetLastLine, 847
wxTextFile::GetLine, 846
wxTextFile::GetLineCount, 846
wxTextFile::GetLineType, 848
wxTextFile::GetName, 848
wxTextFile::GetNextLine, 847
wxTextFile::GetPrevLine, 847
wxTextFile::GoToLine, 847
wxTextFile::GuessType, 848
wxTextFile::InsertLine, 848
wxTextFile::IsOpened, 846
wxTextFile::Open, 845
wxTextFile::operator[], 846
wxTextFile::RemoveLine, 848
wxTextFile::Write, 848
wxTextFile::wxTextFile, 845
wxTextInputStream, 835
wxTextInputStream::~wxTextInputStream, 836
wxTextInputStream::Read16, 836
wxTextInputStream::Read32, 836
wxTextInputStream::Read8, 836
wxTextInputStream::ReadDouble, 836
wxTextInputStream::ReadString, 836
wxTextInputStream::wxTextInputStream, 835
wxTextOutputStream, 837
wxTextOutputStream::~wxTextOutputStream,

837
wxTextOutputStream::Write16, 837
wxTextOutputStream::Write32, 837
wxTextOutputStream::Write8, 837
wxTextOutputStream::WriteDouble, 838
wxTextOutputStream::WriteString, 838
wxTextOutputStream::wxTextOutputStream, 837
wxTextValidator, 841
wxTextValidator::~wxTextValidator, 842
wxTextValidator::Clone, 842
wxTextValidator::GetExcludeList, 842
wxTextValidator::GetIncludeList, 842
wxTextValidator::GetStyle, 842
wxTextValidator::OnChar, 843
wxTextValidator::SetExcludeList, 843
wxTextValidator::SetIncludeList, 843
wxTextValidator::SetStyle, 843
wxTextValidator::TransferFromWindow, 843
wxTextValidator::TransferToWindow, 843
wxTextValidator::Validate, 843
wxTextValidator::wxTextValidator, 841
wxTHICK_FRAME, 194, 300, 486, 491, 528
wxThread, 850
wxThread::~wxThread, 850

wxThread::Create, 850
wxThread::Delete, 850
wxThread::Entry, 850
wxThread::GetID, 851
wxThread::GetPriority, 851
wxThread::IsAlive, 851
wxThread::IsMain, 851
wxThread::IsPaused, 851
wxThread::IsRunning, 852
wxThread::Kill, 852
wxThread::OnExit, 852
wxThread::Run, 852
wxThread::SetPriority, 852
wxThread::Sleep, 853
wxThread::This, 853
wxThread::wxThread, 849
wxThread::Yield, 853
wxTime, 854
wxTime::FormatTime, 856
wxTime::GetDay, 854
wxTime::GetDayOfWeek, 854
wxTime::GetHour, 854
wxTime::GetHourGMT, 855
wxTime::GetMinute, 855
wxTime::GetMinuteGMT, 855
wxTime::GetMonth, 855
wxTime::GetSecond, 855
wxTime::GetSecondGMT, 855
wxTime::GetSeconds, 855
wxTime::GetYear, 856
wxTime::IsBetween, 856
wxTime::Max, 856
wxTime::Min, 856
wxTime::operator -, 858
wxTime::operator !=, 858
wxTime::operator +, 858
wxTime::operator +=, 858
wxTime::operator <, 857
wxTime::operator <=, 857
wxTime::operator =, 857
wxTime::operator -=, 858
wxTime::operator ==, 857
wxTime::operator >, 857
wxTime::operator >=, 857
wxTime::operator char*, 856
wxTime::operator wxDate, 857
wxTime::SetFormat, 856
wxTime::wxTime, 854
wxTimer, 859
wxTimer::~wxTimer, 859
wxTimer::Interval, 859
wxTimer::Notify, 859
wxTimer::Start, 859
wxTimer::Stop, 860
wxTimer::wxTimer, 859
wxTINY_CAPTION_HORIZ, 528
wxTINY_CAPTION_VERT, 528
wxTipProvider, 860
wxTipProvider::GetTip, 860
wxTipProvider::wxTipProvider, 860
wxToLower, 997
wxToolBar, 863

INDEX

60

wxToolBar::~wxToolBar, 864
wxToolBar::AddSeparator, 864
wxToolBar::AddTool, 864
wxToolBar::CreateTools, 865
wxToolBar::DrawTool, 865
wxToolBar::EnableTool, 866
wxToolBar::FindToolForPosition, 866
wxToolBar::GetMargins, 867
wxToolBar::GetMaxSize, 867
wxToolBar::GetToolBitmapSize, 867
wxToolBar::GetToolClientData, 868
wxToolBar::GetToolEnabled, 868
wxToolBar::GetToolLongHelp, 868
wxToolBar::GetToolPacking, 869
wxToolBar::GetToolSeparation, 869
wxToolBar::GetToolShortHelp, 869
wxToolBar::GetToolSize, 867
wxToolBar::GetToolState, 869
wxToolBar::Layout, 870
wxToolBar::OnLeftClick, 870
wxToolBar::OnMouseEnter, 871
wxToolBar::OnRightClick, 871
wxToolBar::Realize, 872
wxToolBar::SetMargins, 872
wxToolBar::SetToolBitmapSize, 872
wxToolBar::SetToolLongHelp, 873
wxToolBar::SetToolPacking, 873
wxToolBar::SetToolSeparation, 874
wxToolBar::SetToolShortHelp, 874
wxToolBar::ToggleTool, 874
wxToolBar::wxToolBar, 863
wxToUpper, 997
wxTR_EDIT_LABELS, 875
wxTR_HAS_BUTTONS, 875
wxTR_MULTIPLE, 875
wxTrace, 997
WXTRACE, 1006
wxTraceLevel, 997
WXTRACELEVEL, 1006
wxTransferFileToStream, 968
wxTransferStreamToFile, 969
wxTRANSPARENT_WINDOW, 915
wxTreeCtrl, 876, 878
wxTreeCtrl::~wxTreeCtrl, 877
wxTreeCtrl::AddRoot, 877
wxTreeCtrl::AppendItem, 877
wxTreeCtrl::Collapse, 878
wxTreeCtrl::CollapseAndReset, 878
wxTreeCtrl::Create, 878
wxTreeCtrl::Delete, 878
wxTreeCtrl::DeleteAllItems, 878
wxTreeCtrl::EditLabel, 878
wxTreeCtrl::EndEditLabel, 879
wxTreeCtrl::EnsureVisible, 879
wxTreeCtrl::Expand, 879
wxTreeCtrl::GetBoundingRect, 879
wxTreeCtrl::GetChildrenCount, 880
wxTreeCtrl::GetCount, 880
wxTreeCtrl::GetEditControl, 880
wxTreeCtrl::GetFirstChild, 880
wxTreeCtrl::GetFirstVisibleItem, 880
wxTreeCtrl::GetImageList, 881

wxTreeCtrl::GetIndent, 881
wxTreeCtrl::GetItemData, 881
wxTreeCtrl::GetItemImage, 881
wxTreeCtrl::GetItemSelectedImage, 883
wxTreeCtrl::GetItemText, 882
wxTreeCtrl::GetLastChild, 882
wxTreeCtrl::GetNextChild, 882
wxTreeCtrl::GetNextSibling, 882
wxTreeCtrl::GetNextVisible, 883
wxTreeCtrl::GetParent, 883
wxTreeCtrl::GetPrevSibling, 883
wxTreeCtrl::GetPrevVisible, 883
wxTreeCtrl::GetRootItem, 883
wxTreeCtrl::GetSelection, 884
wxTreeCtrl::GetSelections, 884
wxTreeCtrl::HitTest, 884
wxTreeCtrl::InsertItem, 885
wxTreeCtrl::IsBold, 885
wxTreeCtrl::IsExpanded, 885
wxTreeCtrl::IsSelected, 885
wxTreeCtrl::IsVisible, 885
wxTreeCtrl::ItemHasChildren, 885
wxTreeCtrl::OnCompareItems, 885
wxTreeCtrl::PrependItem, 886
wxTreeCtrl::ScrollTo, 886
wxTreeCtrl::SelectItem, 886
wxTreeCtrl::SetImageList, 886
wxTreeCtrl::SetIndent, 886
wxTreeCtrl::SetItemBold, 887
wxTreeCtrl::SetItemData, 887
wxTreeCtrl::SetItemHasChildren, 887
wxTreeCtrl::SetItemImage, 887
wxTreeCtrl::SetItemSelectedImage, 887
wxTreeCtrl::SetItemText, 888
wxTreeCtrl::SortChildren, 888
wxTreeCtrl::Toggle, 888
wxTreeCtrl::Unselect, 888
wxTreeCtrl::UnselectAll, 888
wxTreeCtrl::wxTreeCtrl, 876
wxTreeEvent, 891
wxTreeEvent::GetCode, 891
wxTreeEvent::GetItem, 891
wxTreeEvent::GetLabel, 891
wxTreeEvent::GetOldItem, 891
wxTreeEvent::GetPoint(), 891
wxTreeEvent::wxTreeEvent, 891
wxTreeItemData, 889
wxTreeItemData::~wxTreeItemData, 889
wxTreeItemData::GetId, 889
wxTreeItemData::SetId, 890
wxTreeItemData::wxTreeItemData, 889
wxUINT16_SWAP_ALWAYS, 999
wxUINT16_SWAP_ON_BE, 999
wxUINT16_SWAP_ON_LE, 1000
wxUINT32_SWAP_ALWAYS, 999
wxUINT32_SWAP_ON_BE, 999
wxUINT32_SWAP_ON_LE, 1000
wxUnix2DosFilename, 966
wxUpdateUIEvent, 892
wxUpdateUIEvent::Check, 893
wxUpdateUIEvent::Enable, 893
wxUpdateUIEvent::GetChecked, 894

INDEX

61

wxUpdateUIEvent::GetEnabled, 894
wxUpdateUIEvent::GetSetChecked, 894
wxUpdateUIEvent::GetSetEnabled, 894
wxUpdateUIEvent::GetSetText, 894
wxUpdateUIEvent::GetText, 894
wxUpdateUIEvent::m_checked, 893
wxUpdateUIEvent::m_enabled, 893
wxUpdateUIEvent::m_setChecked, 893
wxUpdateUIEvent::m_setEnabled, 893
wxUpdateUIEvent::m_setText, 893
wxUpdateUIEvent::m_text, 893
wxUpdateUIEvent::SetText, 895
wxUpdateUIEvent::wxUpdateUIEvent, 892
wxURL, 895
wxURL::~wxURL, 895
wxURL::ConvertToValidURI, 897
wxURL::GetError, 896
wxURL::GetInputStream, 896
wxURL::GetPath, 896
wxURL::GetProtocol, 896
wxURL::GetProtocolName, 895
wxURL::SetDefaultProxy, 897
wxURL::SetProxy, 897
wxURL::wxURL, 895
wxUsleep, 998
wxValidator, 898
wxValidator::~wxValidator, 898
wxValidator::Clone, 898
wxValidator::GetWindow, 899
wxValidator::SetBellOnError, 899
wxValidator::SetWindow, 899
wxValidator::TransferFromWindow, 899
wxValidator::TransferToWindow, 899
wxValidator::Validate, 899
wxValidator::wxValidator, 898
wxVariant, 900, 901
wxVariant::~wxVariant, 901
wxVariant::Append, 902
wxVariant::ClearList, 902
wxVariant::Delete, 902
wxVariant::GetBool, 902
wxVariant::GetChar, 902
wxVariant::GetCount, 902
wxVariant::GetData, 902
wxVariant::GetDate, 903
wxVariant::GetDouble, 903
wxVariant::GetLong, 903
wxVariant::GetName, 903
wxVariant::GetString, 903
wxVariant::GetTime, 903
wxVariant::GetType, 903
wxVariant::GetVoidPtr, 904
wxVariant::Insert, 904
wxVariant::IsNull, 904
wxVariant::IsType, 904
wxVariant::MakeNull, 904
wxVariant::MakeString, 904
wxVariant::Member, 904
wxVariant::NullList, 905
wxVariant::operator !=, 906
wxVariant::operator [], 907
wxVariant::operator =, 905

wxVariant::operator ==, 906
wxVariant::operator char, 907
wxVariant::operator double, 907
wxVariant::operator void*, 908
wxVariant::operator wxDate, 907
wxVariant::operator wxString, 907
wxVariant::operator wxTime, 908
wxVariant::SetData, 905
wxVariant::wxVariant, 900
wxVariantData, 908
wxVariantData::Copy, 908
wxVariantData::Eq, 909
wxVariantData::GetType, 909
wxVariantData::Read, 909
wxVariantData::Write, 909
wxVariantData::wxVariantData, 908
wxView, 910
wxView overview, 1068
wxView::~wxView, 910
wxView::Activate, 910
wxView::Close, 911
wxView::GetDocument, 911
wxView::GetDocumentManager, 911
wxView::GetFrame, 911
wxView::GetViewName, 911
wxView::m_viewDocument, 910
wxView::m_viewFrame, 910
wxView::m_viewTypeName, 910
wxView::OnActivateView, 911
wxView::OnChangeFilename, 912
wxView::OnClose, 912
wxView::OnCreate, 912
wxView::OnCreatePrintout, 912
wxView::OnUpdate, 912
wxView::SetDocument, 913
wxView::SetFrame, 913
wxView::SetViewName, 913
wxView::wxView, 910
wxVSCROLL, 491, 916
wxWANTS_CHARS, 915
wxWave, 913, 914
wxWave::~wxWave, 914
wxWave::Create, 914
wxWave::IsOk, 914
wxWave::Play, 915
wxWave::wxWave, 913
wxWindow, 916
wxWindow::~wxWindow, 917
wxWindow::AddChild, 917
wxWindow::CaptureMouse, 917
wxWindow::Center, 917
wxWindow::CenterOnParent, 918
wxWindow::Centre, 918
wxWindow::CentreOnParent, 918
wxWindow::Clear, 919
wxWindow::ClientToScreen, 919
wxWindow::Close, 919
wxWindow::ConvertDialogToPixels, 920
wxWindow::ConvertPixelsToDialog, 921
wxWindow::Destroy, 922
wxWindow::DestroyChildren, 922
wxWindow::DragAcceptFiles, 922

INDEX

62

wxWindow::Enable, 922
wxWindow::FindFocus, 923
wxWindow::FindWindow, 923
wxWindow::Fit, 923
wxWindow::GetBackgroundColour, 924
wxWindow::GetCharHeight, 924
wxWindow::GetCharWidth, 924
wxWindow::GetChildren, 924
wxWindow::GetClientSize, 924
wxWindow::GetConstraints, 925
wxWindow::GetDefaultItem, 925
wxWindow::GetDropTarget, 925
wxWindow::GetEventHandler, 925
wxWindow::GetFont, 926
wxWindow::GetForegroundColour, 926
wxWindow::GetGrandParent, 926
wxWindow::GetHandle, 926
wxWindow::GetId, 926
wxWindow::GetLabel, 927
wxWindow::GetName, 928
wxWindow::GetParent, 928
wxWindow::GetPosition, 927
wxWindow::GetRect, 928
wxWindow::GetScrollPos, 928
wxWindow::GetScrollRange, 929
wxWindow::GetScrollThumb, 928
wxWindow::GetSize, 929
wxWindow::GetTextExtent, 929
wxWindow::GetTitle, 930
wxWindow::GetUpdateRegion, 930
wxWindow::GetValidator, 931
wxWindow::GetWindowStyleFlag, 931
wxWindow::InitDialog, 931
wxWindow::IsEnabled, 931
wxWindow::IsRetained, 932
wxWindow::IsShown, 932
wxWindow::IsTopLevel, 932
wxWindow::Layout, 932
wxWindow::LoadFromResource, 932
wxWindow::Lower, 933
wxWindow::MakeModal, 933
wxWindow::Move, 933
wxWindow::OnActivate, 934
wxWindow::OnChar, 934
wxWindow::OnCharHook, 935
wxWindow::OnClose, 936
wxWindow::OnCloseWindow, 937
wxWindow::OnCommand, 936
wxWindow::OnDropFiles, 937
wxWindow::OnEraseBackground, 938
wxWindow::OnIdle, 940
wxWindow::OnInitDialog, 940
wxWindow::OnKeyDown, 938
wxWindow::OnKeyUp, 939
wxWindow::OnKillFocus, 940
wxWindow::OnMenuCommand, 941
wxWindow::OnMenuHighlight, 941
wxWindow::OnMouseEvent, 942
wxWindow::OnMove, 942
wxWindow::OnPaint, 943
wxWindow::OnScroll, 944
wxWindow::OnSetFocus, 945

wxWindow::OnSize, 945
wxWindow::OnSysColourChanged, 946
wxWindow::PopEventHandler, 946
wxWindow::PopupMenu, 946
wxWindow::PushEventHandler, 947
wxWindow::Raise, 948
wxWindow::Refresh, 948
wxWindow::ReleaseMouse, 948
wxWindow::RemoveChild, 948
wxWindow::Reparent, 949
wxWindow::ScreenToClient, 949
wxWindow::ScrollWindow, 949
wxWindow::SetAcceleratorTable, 950
wxWindow::SetAutoLayout, 950
wxWindow::SetBackgroundColour, 951
wxWindow::SetClientSize, 951
wxWindow::SetConstraints, 953
wxWindow::SetCursor, 952
wxWindow::SetDropTarget, 953
wxWindow::SetEventHandler, 952
wxWindow::SetFocus, 953
wxWindow::SetFont, 954
wxWindow::SetForegroundColour, 954
wxWindow::SetId, 954
wxWindow::SetName, 955
wxWindow::SetPalette, 955
wxWindow::SetScrollbar, 955
wxWindow::SetScrollPos, 956
wxWindow::SetSize, 957
wxWindow::SetSizeHints, 958
wxWindow::SetSizer, 959
wxWindow::SetTitle, 959
wxWindow::SetValidator, 960
wxWindow::Show, 960
wxWindow::TransferDataFromWindow, 960
wxWindow::TransferDataToWindow, 960
wxWindow::Validate, 961
wxWindow::WarpPointer, 961
wxWindow::wxWindow, 916
wxWindow:IsExposed, 931
wxWindowDC, 962
wxWindowDC::wxWindowDC, 962
wxWindows 1.xx compatiblity functions, 765
wxWindows predefined command identifiers,

1072
wxWriteResource, 998
wxYield, 999
wxZipInputStream, 962
wxZipInputStream::wxZipInputStream, 962

—X—
x, 637
x, 587, 638
Xor, 657
XYToPosition, 832

—Y—
y, 587, 637
y, 638
Yield, 853

63

