CGAL 4.3 - dD Spatial Searching
|
Namespaces | |
cpp11 | |
IO | |
Classes | |
class | Aff_transformation_2 |
class | Aff_transformation_3 |
class | Identity_transformation |
class | Reflection |
class | Rotation |
class | Scaling |
class | Translation |
class | Bbox_2 |
class | Bbox_3 |
class | Cartesian |
class | Cartesian_converter |
class | Circle_2 |
class | Circle_3 |
class | Ambient_dimension |
class | Dimension_tag |
class | Dynamic_dimension_tag |
class | Feature_dimension |
class | Direction_2 |
class | Direction_3 |
class | Exact_predicates_exact_constructions_kernel |
class | Exact_predicates_exact_constructions_kernel_with_sqrt |
class | Exact_predicates_inexact_constructions_kernel |
class | Filtered_kernel_adaptor |
class | Filtered_kernel |
class | Filtered_predicate |
class | Homogeneous |
class | Homogeneous_converter |
class | Iso_cuboid_3 |
class | Iso_rectangle_2 |
class | Kernel_traits |
class | Line_2 |
class | Line_3 |
class | Null_vector |
class | Origin |
class | Plane_3 |
class | Point_2 |
class | Point_3 |
class | Projection_traits_xy_3 |
class | Projection_traits_xz_3 |
class | Projection_traits_yz_3 |
class | Ray_2 |
class | Ray_3 |
class | Segment_2 |
class | Segment_3 |
class | Simple_cartesian |
class | Simple_homogeneous |
class | Sphere_3 |
class | Tetrahedron_3 |
class | Triangle_2 |
class | Triangle_3 |
class | Vector_2 |
class | Vector_3 |
class | Compact_container_base |
class | Compact_container |
class | Compact_container_traits |
class | Compact |
class | Fast |
class | Default |
class | Fourtuple |
class | Cast_function_object |
class | Compare_to_less |
class | Creator_1 |
class | Creator_2 |
class | Creator_3 |
class | Creator_4 |
class | Creator_5 |
class | Creator_uniform_2 |
class | Creator_uniform_3 |
class | Creator_uniform_4 |
class | Creator_uniform_5 |
class | Creator_uniform_6 |
class | Creator_uniform_7 |
class | Creator_uniform_8 |
class | Creator_uniform_9 |
class | Creator_uniform_d |
class | Dereference |
class | Get_address |
class | Identity |
class | Project_facet |
class | Project_next |
class | Project_next_opposite |
class | Project_normal |
class | Project_opposite_prev |
class | Project_plane |
class | Project_point |
class | Project_prev |
class | Project_vertex |
class | In_place_list_base |
class | In_place_list |
class | Const_oneset_iterator |
class | Counting_iterator |
class | Dispatch_or_drop_output_iterator |
class | Dispatch_output_iterator |
class | Emptyset_iterator |
class | Filter_iterator |
class | Insert_iterator |
class | Inverse_index |
class | Join_input_iterator_1 |
class | Join_input_iterator_2 |
class | Join_input_iterator_3 |
class | N_step_adaptor |
class | Oneset_iterator |
class | Random_access_adaptor |
class | Random_access_value_adaptor |
class | Location_policy |
class | Multiset |
class | Object |
class | Sixtuple |
class | Boolean_tag |
struct | Null_functor |
struct | Sequential_tag |
struct | Parallel_tag |
class | Null_tag |
class | Threetuple |
class | Twotuple |
class | Uncertain |
class | Quadruple |
class | Triple |
class | Algebraic_structure_traits |
class | Euclidean_ring_tag |
class | Field_tag |
class | Field_with_kth_root_tag |
class | Field_with_root_of_tag |
class | Field_with_sqrt_tag |
class | Integral_domain_tag |
class | Integral_domain_without_division_tag |
class | Unique_factorization_domain_tag |
class | Coercion_traits |
class | Fraction_traits |
class | Real_embeddable_traits |
class | Circulator_from_container |
class | Circulator_from_iterator |
class | Circulator_traits |
class | Container_from_circulator |
struct | Circulator_tag |
struct | Iterator_tag |
struct | Forward_circulator_tag |
struct | Bidirectional_circulator_tag |
struct | Random_access_circulator_tag |
struct | Circulator_base |
struct | Forward_circulator_base |
struct | Bidirectional_circulator_base |
struct | Random_access_circulator_base |
class | Forward_circulator_ptrbase |
class | Bidirectional_circulator_ptrbase |
class | Random_access_circulator_ptrbase |
class | Color |
class | Input_rep |
class | Output_rep |
class | Istream_iterator |
class | Ostream_iterator |
class | Verbose_ostream |
class | Cartesian_d |
class | Homogeneous_d |
class | Aff_transformation_d |
class | Direction_d |
class | Hyperplane_d |
class | Iso_box_d |
class | Line_d |
class | Point_d |
class | Ray_d |
class | Segment_d |
class | Sphere_d |
class | Vector_d |
class | Linear_algebraCd |
class | Linear_algebraHd |
class | Euclidean_distance |
The class Euclidean_distance provides an implementation of the concept OrthogonalDistance , with the Euclidean distance ( \( l_2\) metric). More... | |
class | Euclidean_distance_sphere_point |
The class Euclidean_distance_sphere_point provides an implementation of the GeneralDistance concept for the Euclidean distance ( \( l_2\) metric) between a \( d\)-dimensional sphere and a point, and the Euclidean distance between a \( d\)-dimensional sphere and a \( d\)-dimensional iso-rectangle defined as a \(k\)- \(d\) tree rectangle. More... | |
class | Fuzzy_iso_box |
The class Fuzzy_iso_box implements fuzzy d -dimensional iso boxes. More... | |
class | Fuzzy_sphere |
The class Fuzzy_sphere implements fuzzy d -dimensional spheres. More... | |
class | Incremental_neighbor_search |
The class Incremental_neighbor_search implements incremental nearest and furthest neighbor searching on a tree. More... | |
class | K_neighbor_search |
The class K_neighbor_search implements approximate k -nearest and k -furthest neighbor searching using standard search on a tree using a general distance class. More... | |
class | Kd_tree |
The class Kd_tree defines a k-d tree. More... | |
class | Kd_tree_node |
The class Kd_tree_node implements a node class for a k-d tree. More... | |
class | Kd_tree_rectangle |
The class Kd_tree_rectangle implements d -dimensional iso-rectangles and related operations, e.g., methods to compute bounding boxes of point sets. More... | |
class | Manhattan_distance_iso_box_point |
The class Manhattan_distance_iso_box_point provides an implementation of the GeneralDistance concept for the Manhattan distance ( \( l_1\) metric) between a d -dimensional iso-box and a d -dimensional point and the Manhattan distance between a d -dimensional iso-box and a d -dimensional iso-box defined as a k-d tree rectangle. More... | |
class | Orthogonal_incremental_neighbor_search |
The class Orthogonal_incremental_neighbor_search implements incremental nearest and furthest neighbor searching on a tree. More... | |
class | Orthogonal_k_neighbor_search |
The class Orthogonal_k_neighbor_search implements approximatek -nearest and k -furthest neighbor searching on a tree using an orthogonal distance class. More... | |
class | Plane_separator |
The class Plane_separator implements a plane separator, i.e., a hyperplane that is used to separate two half spaces. More... | |
class | Point_container |
A custom container for points used to build a tree. More... | |
class | Search_traits |
The class Search_traits can be used as a template parameter of the kd tree and the search classes. More... | |
class | Search_traits_2 |
The class Search_traits_2 can be used as a template parameter of the kd tree and the search classes. More... | |
class | Search_traits_3 |
The class Search_traits_3 can be used as a template parameter of the kd tree and the search classes. More... | |
class | Distance_adapter |
A class that uses a point property map to adapt a distance class to work on a key as point type. More... | |
class | Search_traits_adapter |
The class Search_traits_adapter can be used as a template parameter of the kd tree and the search classes. More... | |
class | Search_traits_d |
The class Search_traits_d can be used as a template parameter of the kd tree and the search classes. More... | |
class | Fair |
Implements the fair splitting rule. More... | |
class | Median_of_max_spread |
Implements the median of max spread splitting rule. More... | |
class | Median_of_rectangle |
Implements the median of rectangle splitting rule. More... | |
class | Midpoint_of_max_spread |
Implements the midpoint of max spread splitting rule. More... | |
class | Midpoint_of_rectangle |
Implements the midpoint of rectangle splitting rule. More... | |
class | Sliding_fair |
Implements the sliding fair splitting rule. More... | |
class | Sliding_midpoint |
Implements the sliding midpoint splitting rule. More... | |
class | Weighted_Minkowski_distance |
The class Weighted_Minkowski_distance provides an implementation of the concept OrthogonalDistance , with a weighted Minkowski metric on \( d\)-dimensional points defined by \( l_p(w)(r,q)= ({\Sigma_{i=1}^{i=d} \, w_i(r_i-q_i)^p})^{1/p}\) for \( 0 < p <\infty\) and defined by \( l_{\infty}(w)(r,q)=max \{w_i |r_i-q_i| \mid 1 \leq i \leq d\}\). More... | |
Typedefs | |
typedef Interval_nt< false > | Interval_nt_advanced |
typedef Interval_nt< false > | Interval_nt_advanced |
Functions | |
NT | abs (const NT &x) |
result_type | compare (const NT &x, const NT &y) |
result_type | div (const NT1 &x, const NT2 &y) |
void | div_mod (const NT1 &x, const NT2 &y, result_type &q, result_type &r) |
result_type | gcd (const NT1 &x, const NT2 &y) |
result_type | integral_division (const NT1 &x, const NT2 &y) |
NT | inverse (const NT &x) |
result_type | is_negative (const NT &x) |
result_type | is_one (const NT &x) |
result_type | is_positive (const NT &x) |
result_type | is_square (const NT &x) |
result_type | is_square (const NT &x, NT &y) |
result_type | is_zero (const NT &x) |
NT | kth_root (int k, const NT &x) |
result_type | mod (const NT1 &x, const NT2 &y) |
NT | root_of (int k, InputIterator begin, InputIterator end) |
result_type | sign (const NT &x) |
void | simplify (const NT &x) |
NT | sqrt (const NT &x) |
NT | square (const NT &x) |
double | to_double (const NT &x) |
std::pair< double, double > | to_interval (const NT &x) |
NT | unit_part (const NT &x) |
void | Assert_circulator (const C &c) |
void | Assert_iterator (const I &i) |
void | Assert_circulator_or_iterator (const IC &i) |
void | Assert_input_category (const I &i) |
void | Assert_output_category (const I &i) |
void | Assert_forward_category (const IC &ic) |
void | Assert_bidirectional_category (const IC &ic) |
void | Assert_random_access_category (const IC &ic) |
C::difference_type | circulator_distance (C c, C d) |
C::size_type | circulator_size (C c) |
bool | is_empty_range (const IC &i, const IC &j) |
iterator_traits< IC > ::difference_type | iterator_distance (IC ic1, IC ic2) |
Iterator_tag | query_circulator_or_iterator (const I &i) |
Circulator_tag | query_circulator_or_iterator (const C &c) |
Mode | get_mode (std::ios &s) |
Mode | set_ascii_mode (std::ios &s) |
Mode | set_binary_mode (std::ios &s) |
Mode | set_mode (std::ios &s, IO::Mode m) |
Mode | set_pretty_mode (std::ios &s) |
bool | is_ascii (std::ios &s) |
bool | is_binary (std::ios &s) |
bool | is_pretty (std::ios &s) |
Output_rep< T > | oformat (const T &t) |
Input_rep< T > | iformat (const T &t) |
Output_rep< T, F > | oformat (const T &t, F) |
ostream & | operator<< (ostream &os, Class c) |
istream & | operator>> (istream &is, Class c) |
Polynomial_traits_d < Polynomial_d > ::Canonicalize::result_type | canonicalize (const Polynomial_d &p) |
Polynomial_traits_d < Polynomial_d > ::Compare::result_type | compare (const Polynomial_d &p, const Polynomial_d &q) |
Polynomial_traits_d < Polynomial_d > ::Degree::result_type | degree (const Polynomial_d &p, int i, index=Polynomial_traits_d< Polynomial_d >::d-1) |
Polynomial_traits_d < Polynomial_d > ::Degree_vector::result_type | degree_vector (const Polynomial_d &p) |
Polynomial_traits_d < Polynomial_d > ::Differentiate::result_type | differentiate (const Polynomial_d &p, index=Polynomial_traits_d< Polynomial_d >::d-1) |
Polynomial_traits_d < Polynomial_d > ::Evaluate_homogeneous::result_type | evaluate_homogeneous (const Polynomial_d &p, Polynomial_traits_d< Polynomial_d >::Coefficient_type u, Polynomial_traits_d< Polynomial_d >::Coefficient_type v) |
Polynomial_traits_d < Polynomial_d > ::Evaluate::result_type | evaluate (const Polynomial_d &p, Polynomial_traits_d< Polynomial_d >::Coefficient_type x) |
Polynomial_traits_d < Polynomial_d > ::Gcd_up_to_constant_factor::result_type | gcd_up_to_constant_factor (const Polynomial_d &p, const Polynomial_d &q) |
Polynomial_traits_d < Polynomial_d > ::get_coefficient::result_type | get_coefficient (const Polynomial_d &p, int i) |
Polynomial_traits_d < Polynomial_d > ::get_innermost_coefficient::result_type | get_innermost_coefficient (const Polynomial_d &p, Exponent_vector ev) |
Polynomial_traits_d < Polynomial_d > ::Innermost_leading_coefficient::result_type | innermost_leading_coefficient (const Polynomial_d &p) |
Polynomial_traits_d < Polynomial_d > ::Integral_division_up_to_constant_factor::result_type | integral_division_up_to_constant_factor (const Polynomial_d &p, const Polynomial_d &q) |
Polynomial_traits_d < Polynomial_d > ::Invert::result_type | invert (const Polynomial_d &p, int index=Polynomial_traits_d< Polynomial_d >::d-1) |
Polynomial_traits_d < Polynomial_d > ::Is_square_free::result_type | is_square_free (const Polynomial_d &p) |
Polynomial_traits_d < Polynomial_d > ::Is_zero_at_homogeneous::result_type | is_zero_at_homogeneous (const Polynomial_d &p, InputIterator begin, InputIterator end) |
Polynomial_traits_d < Polynomial_d > ::Is_zero_at::result_type | is_zero_at (const Polynomial_d &p, InputIterator begin, InputIterator end) |
Polynomial_traits_d < Polynomial_d > ::Leading_coefficient::result_type | leading_coefficient (const Polynomial_d &p) |
Polynomial_traits_d < Polynomial_d > ::Make_square_free::result_type | make_square_free (const Polynomial_d &p) |
Polynomial_traits_d < Polynomial_d > ::Move::result_type | move (const Polynomial_d &p, int i, int j) |
Polynomial_traits_d < Polynomial_d > ::Multivariate_content::result_type | multivariate_content (const Polynomial_d &p) |
Polynomial_traits_d < Polynomial_d > ::Negate::result_type | negate (const Polynomial_d &p, int index=Polynomial_traits_d< Polynomial_d >::d-1) |
int | number_of_real_roots (Polynomial_d f) |
int | number_of_real_roots (InputIterator start, InputIterator end) |
Polynomial_traits_d < Polynomial_d > ::Permute::result_type | permute (const Polynomial_d &p, InputIterator begin, InputIterator end) |
OutputIterator | polynomial_subresultants (Polynomial_d p, Polynomial_d q, OutputIterator out) |
OutputIterator1 | polynomial_subresultants_with_cofactors (Polynomial_d p, Polynomial_d q, OutputIterator1 sres_out, OutputIterator2 coP_out, OutputIterator3 coQ_out) |
OutputIterator | principal_sturm_habicht_sequence (typename Polynomial_d f, OutputIterator out) |
OutputIterator | principal_subresultants (Polynomial_d p, Polynomial_d q, OutputIterator out) |
void | pseudo_division (const Polynomial_d &f, const Polynomial_d &g, Polynomial_d &q, Polynomial_d &r, Polynomial_traits_d< Polynomial_d >::Coefficient_type &D) |
Polynomial_traits_d < Polynomial_d > ::Pseudo_division_quotient::result_type | pseudo_division_quotient (const Polynomial_d &p, const Polynomial_d &q) |
Polynomial_traits_d < Polynomial_d > ::Pseudo_division_remainder::result_type | pseudo_division_remainder (const Polynomial_d &p, const Polynomial_d &q) |
Polynomial_traits_d < Polynomial_d > ::Resultant::result_type | resultant (const Polynomial_d &p, const Polynomial_d &q) |
Polynomial_traits_d < Polynomial_d > ::Scale_homogeneous::result_type | scale_homogeneous (const Polynomial_d &p, const Polynomial_traits_d< Polynomial_d >::Innermost_coefficient_type &u, const Polynomial_traits_d< Polynomial_d >::Innermost_coefficient_type &v, int index=Polynomial_traits_d< Polynomial_d >::d-1) |
Polynomial_traits_d < Polynomial_d > ::Scale::result_type | scale (const Polynomial_d &p, const Polynomial_traits_d< Polynomial_d >::Innermost_coefficient_type &a, int index=Polynomial_traits_d< Polynomial_d >::d-1) |
Polynomial_traits_d < Polynomial_d > ::Shift::result_type | shift (const Polynomial_d &p, int i, int index=Polynomial_traits_d< Polynomial_d >::d-1) |
Polynomial_traits_d < Polynomial_d > ::Sign_at_homogeneous::result_type | sign_at_homogeneous (const Polynomial_d &p, InputIterator begin, InputIterator end) |
Polynomial_traits_d < Polynomial_d > ::Sign_at::result_type | sign_at (const Polynomial_d &p, InputIterator begin, InputIterator end) |
OutputIterator | square_free_factorize (const Polynomial_d &p, OutputIterator it, Polynomial_traits_d< Polynomial >::Innermost_coefficient &a) |
OutputIterator | square_free_factorize (const Polynomial_d &p, OutputIterator it) |
OutputIterator | square_free_factorize_up_to_constant_factor (const Polynomial_d &p, OutputIterator it) |
OutputIterator | sturm_habicht_sequence (Polynomial_d f, OutputIterator out) |
OutputIterator1 | sturm_habicht_sequence_with_cofactors (Polynomial_d f, OutputIterator1 stha_out, OutputIterator2 cof_out, OutputIterator3 cofx_out) |
CGAL::Coercion_traits < Polynomial_traits_d < Polynomial_d > ::Innermost_coefficient, std::iterator_traits < Input_iterator >::value_type > ::Type | substitute_homogeneous (const Polynomial_d &p, InputIterator begin, InputIterator end) |
CGAL::Coercion_traits < Polynomial_traits_d < Polynomial_d > ::Innermost_coefficient, std::iterator_traits < Input_iterator >::value_type > ::Type | substitute (const Polynomial_d &p, InputIterator begin, InputIterator end) |
Polynomial_traits_d < Polynomial_d > ::Swap::result_type | swap (const Polynomial_d &p, int i, int j) |
Polynomial_traits_d < Polynomial_d > ::Total_degree::result_type | total_degree (const Polynomial_d &p) |
Polynomial_traits_d < Polynomial_d > ::Translate_homogeneous::result_type | translate_homogeneous (const Polynomial_d &p, const Polynomial_traits_d< Polynomial_d >::Innermost_coefficient_type &u, const Polynomial_traits_d< Polynomial_d >::Innermost_coefficient_type &v, int index=Polynomial_traits_d< Polynomial_d >::d-1) |
Polynomial_traits_d < Polynomial_d > ::Translate::result_type | translate (const Polynomial_d &p, const Polynomial_traits_d< Polynomial_d >::Innermost_coefficient_type &a, int index=Polynomial_traits_d< Polynomial_d >::d-1) |
Polynomial_traits_d < Polynomial_d > ::Univariate_content::result_type | univariate_content (const Polynomial_d &p) |
Polynomial_traits_d < Polynomial_d > ::Univariate_content_up_to_constant_factor::result_type | univariate_content_up_to_constant_factor (const Polynomial_d &p) |
bool | has_in_x_range (const Circular_arc_2< CircularKernel > &ca, const Circular_arc_point_2< CircularKernel > &p) |
bool | has_in_x_range (const Line_arc_2< CircularKernel > &ca, const Circular_arc_point_2< CircularKernel > &p) |
bool | has_on (const Circle_2< CircularKernel > &c, const Circular_arc_point_2< CircularKernel > &p) |
OutputIterator | make_x_monotone (const Circular_arc_2< CircularKernel > &ca, OutputIterator res) |
OutputIterator | make_xy_monotone (const Circular_arc_2< CircularKernel > &ca, OutputIterator res) |
Circular_arc_point_2 < CircularKernel > | x_extremal_point (const Circle_2< CircularKernel > &c, bool b) |
OutputIterator | x_extremal_points (const Circle_2< CircularKernel > &c, OutputIterator res) |
Circular_arc_point_2 < CircularKernel > | y_extremal_point (const Circle_2< CircularKernel > &c, bool b) |
OutputIterator | y_extremal_points (const Circle_2< CircularKernel > &c, OutputIterator res) |
CGAL::Comparison_result | compare_y_to_right (const Circular_arc_2< CircularKernel > &ca1, const Circular_arc_2< CircularKernel > &ca2, Circular_arc_point_2< CircularKernel > &p) |
bool | is_finite (double x) |
bool | is_finite (float x) |
bool | is_finite (long double x) |
OutputIterator | compute_roots_of_2 (const RT &a, const RT &b, const RT &c, OutputIterator oit) |
Root_of_traits< RT >::Root_of_2 | make_root_of_2 (const RT &a, const RT &b, const RT &c, bool s) |
Root_of_traits< RT >::Root_of_2 | make_root_of_2 (RT alpha, RT beta, RT gamma) |
Root_of_traits< RT >::Root_of_2 | make_sqrt (const RT &x) |
Rational | simplest_rational_in_interval (double d1, double d2) |
Rational | to_rational (double d) |
bool | is_valid (const T &x) |
T | max (const T &x, const T &y) |
T | min (const T &x, const T &y) |
Point_d< R > | center_of_sphere (ForwardIterator first, ForwardIterator last) |
Point_d< R > | lift_to_paraboloid (const Point_d< R > &p) |
OutputIterator | linear_base (ForwardIterator first, ForwardIterator last, OutputIterator result) |
Point_d< R > | midpoint (const Point_d< R > &p, const Point_d< R > &q) |
Point_d< R > | project_along_d_axis (const Point_d< R > &p) |
FT | squared_distance (Point_d< R > p, Point_d< R > q) |
bool | do_intersect (Type1< R > obj1, Type2< R > obj2) |
cpp11::result_of < R::Intersect_d(Type1< R > , Type2< R >)>::type | intersection (Type1< R > f1, Type2< R > f2) |
bool | affinely_independent (ForwardIterator first, ForwardIterator last) |
int | affine_rank (ForwardIterator first, ForwardIterator last) |
Comparison_result | compare_lexicographically (const Point_d< R > &p, const Point_d< R > &q) |
bool | contained_in_affine_hull (ForwardIterator first, ForwardIterator last, const Point_d< R > &p) |
bool | contained_in_linear_hull (ForwardIterator first, ForwardIterator last, const Vector_d< R > &v) |
bool | contained_in_simplex (ForwardIterator first, ForwardIterator last, const Point_d< R > &p) |
bool | lexicographically_smaller (const Point_d< R > &p, const Point_d< R > &q) |
bool | lexicographically_smaller_or_equal (const Point_d< R > &p, const Point_d< R > &q) |
bool | linearly_independent (ForwardIterator first, ForwardIterator last) |
int | linear_rank (ForwardIterator first, ForwardIterator last) |
Orientation | orientation (ForwardIterator first, ForwardIterator last) |
Bounded_side | side_of_bounded_sphere (ForwardIterator first, ForwardIterator last, const Point_d< R > &p) |
Oriented_side | side_of_oriented_sphere (ForwardIterator first, ForwardIterator last, const Point_d< R > &p) |