wxWindows 2.1.14: A portable C++ and Python GUI toolkit

Julian Smart, Robert Roebling, Vadim Zeitlin, Robin Dunn, et al

March 19th 2000

Contents

(@70] o) Y/ a o] a1 M g Lo] o] =SSR Xiii
[y oo 11 ox 1 [o] o EU PP 1
WHaL iS WXWINAOWS? ... 1
Why another cross-platform development t00I72.........coooiiiiiii i 1
Changes frOM VEISION LXX ...iieiiiiiiiee ettt e e ettt e e e e e e e ettt e e e e e e e eesbbaa e aaeas 2
Changes fromM VEISION 2.0ot e ettt e e e e e e e abba e as 4
WXWINAOWS FEQUITEIMENTS ...ttt ettt e ettt e e e e e e ea bbb e e e e e e e ee ittt e e e eaeaeeenennnns 4
Availability and location of WXWINAOWScouuiuiiiiiiiiiiiiiii e e 4
ACKNOWIBAGMENLS ...t e et e e ettt e e e e e e e e ettt e aaeaeaeeenennnns 5
Multi-platform development with WXWINAOWS............ccooviiiiiiiiiiiiiiiiiiiin 6
INCIUAE fIlES e 6
LIBraries ... 6
L07e] o1 {Te U1 £=11 o] o HA TP 7
MAKETIES ... 7
WINAOWS-SPECITIC IlES ... et eeeeaaaanas 7
Allocating and deleting WXWINdOWS ODJECLSiiiiiiiiiiiiii e 8
ArChiteCtUre dEPENUENCYi ittt e et e e e e e e e ettt e e e e e e eeeeenanas 9
Conditional COMPIIATION.......coiiiiiii e e e et e e e e e e bbb 9
08 RS U T PP PP PP PP PP PPPPPPPPPPPPPP 9
L1 L= o P=T g Lo |1 o To PRSPPI 10
Programming Strat@gIeScooiiiiiiiiiiiie et 12
Strategies for reducing pProgramming ©ITOFSceuuuuuuiiaaeieeeiiii e e eeeeeriia e e aeeearaa s 12
Strategies for POrtability ... 12
Strategies for deBUGGINGoooeiiii e 12
Alphabetical Class referenCe...........ooouuuiiiii i 15
WXACCEIBIAONENTIY ... ettt e e e e e e atbb e e e e aaeenes 15
WXACCEIEIALOI TADIE ... 16
WXACHVALEEVENT ... 19
{120 o] o T TP 20
2N 1 = | T PP 31
N =\ 1] o TSR RURPPPPIIN 42
WXAULOMALIONODJECT. ... et e e et eeaaeeaes 48
2= g =T o TR TURPPPPRIN 52
WXBItMAPHEANAIET ... et e e e e e e e e e bbb e e e e aaeenes 65

CONTENTS

WXBITMAPBULION ... e et ettt e e e e e e ee bbb e e e e e e e e eatbba e e e aeaaaeaes 69
WXBItMAaPDAtAODJECLceeiiiiii et e e et aaaaeae 74
WXBOOIFOIMYAIHALON. ...t e e e e ee bbb eeeaaaenes 75
WXBOOILISTVAITALON ...t e et et e e e e e e e e bbb e e e e aaeenes 75
WXBIOXSIZET ...ttt e ettt e e e e e et e bbb e e e e e e e bbb e aaaaeaes 75
WWXBIIUSKH L. e et oo e ettt e e e e e e et e bbb e e e e e e e e ee bbb e e aaaaeaes 78
WWXBIUSKILIST ...ttt e et ettt e e e e e e et e bbb e e e e e e e e eetbba e e e aaaaaenes 83
WXBUSYCUISOT ...ttt ettt ettt ettt ettt e e e et e e e e et e e e ettt e e e eba e e aeebaaeaenens 85
WXBUSYINTO .. ettt e e et e et et e e e e e e e ee bbb e e e e aaeeae 86
WXBULION L.t e ettt e e et e e e et e e e e et e e e eba e e eeba e eaeneas 87
WXBUFFEredINPUEISTIIEAIMuueiii ettt e e e e e e et e e e aaeeaes 90
WXBUEr@AOULPULSTIEAIM. ettt e e e e e et r e e e e e e ee bbb e e e e eaaeene 90
WXCAICUIAIELAYOULEVENT. ettt e et et e e e e e e eatbb e e e e aaaene 91
T2 (OF= 11T g To F- 1 4 o TSR TURPPPPIIN 93
(O 1= Ted =10 PP RURPPPPIIN 93
WXCNECKLISIBOX ..ottt ettt e e e e e e et e et b e e e e e e e e ee bbb e e e eeaaeenes 95
[0 g [o] (o TR RTSRPPPPRIN 98
WXCTASSINTO .ottt e e e e e e e et e e e e e e e eeabba e e e aaaaaeee 103
11O =T o 1 T PP OOPPPPPRPRR 105
10 [T o] o= o NPT PSPPI 106
WXCIOSEEVENT. ...ttt e ettt e e e e e e e e ettt e e e e e e e e eebbba e e e aaaaaenes 109
112 (@do] o] | TR PSRPPPPIIN 111
[0 (@de] 0111 4 D= | - H TR PSUPPPPIIN 114
WXCOIOUIDALADASEciiiiiiiiii ettt e e e e e ettt e e e e e e e eetbba e e e e aaaaeees 116
112 (@de] (o101 4 D] =1 oo [H PP PSRPPPPIIN 117
[0 (@de]] o o] =Te) QTSR 118
WXCOIMIMANG ..ottt ettt e e e et et ettt e e e e e e e e et bbb e e e e e aeeeesbban e e aaaaaaeees 126
WXCOMMANAEVENT ...ttt e e e et e ettt e e e e e e e eesbba e e e aaaaaeees 127
WXCOMMANAPTOCESSON ...ttt ettt ettt e e et et et e e e e e e e e et bbb e e e e e aaeeesbbn e e aaaaaaeees 132
12 (@do] s [o 1 1Te] o DTSRRI 135
WXCONTIGBASE ...ttt e et ettt e e e e e e e e ettt e e e e e e e e eeabba e e e aaaaaeees 136
112 (@do] 1 (| TSR 150
WXCOUNtINGOULPUESTIAM ...ttt ettt e e e e e e ettt e e e e e e e eeabbaa e e e aaaeaeees 151
WXCHIHICAISECHION ... e et et e e e e e e ee ittt e e e aeaeeees 152
WXCHIICAISECHONLOCKET et a e 153
WXCUSIOMDALAOD]ECT ...ttt e et e et e e e e e e eettb e e aaeaaeees 154
12O U1 =T PP P PP UPPRT 156
WXDALADASE. ... et aeae 160
WXDALAFOIMIAL ...ttt e et e e e et e e e et e e e e aa e e e e aeaeas 166
WXDAEAODJECE ...ttt e ettt e e e e e e e b e e e e e e e et e aaaaaee 169

CONTENTS

WXDataODJECICOMPOSITEuniiieiiiieitit ettt e et et e e e e e e eabbb e e e e e e e eesbba e e e aaaeaeees 172
WXDAtaODJECISIMPIE ... e e et e e e e eeab e eaaaaaeans 173
WXDALAINPUESTIEAIM ...t e et e e e et e e e et e e e e ab e e e eba e eaeenns 175
WXDAtAOULPULISTIIEAM ...ttt e et e et e e e et e e e et e e e e tb e e e ebaaeaeenns 177
WXDALE ...t eae 178
WXDAIETIMIE L. 186
1712 L O PP PRSPPI 191
WXDDECHENT ...ciiiiei ittt e e ekttt e e e e e s s e s bt bbb e e e e e e e s s anbbbbeeaaaaeeaaann 208
WXDDECONNECHON ... 209
WXDD ESEIVETitiiii ettt et e e et e e e een 213
WXDEDUQGCONTIEXE ...ttt e ettt e e e e e e e et bbb e e e e e e e eesbba e e e aaaaaene 214
WXDEDbUQGSTIEaMBUT ... et e e et aaaaeaes 220
WXDIAIOQ -ttt e ettt e e e e e e et aaaaaeae 220
10| TP RSPPPPPIPN 228
{21 B =1 T TR 230
WXDOCCRHIIAFTAME ... 232
Do 1o\ F= g = To [T PP TP PP UPPPTI 234
WXDOCMDICRIAFIAME ... 242
WXDOCMDIPAIrENtFIAME.oviiiiiieiiiieeie e e e enns 244
WXDOCPAIENTFTAME ...ttt e e 246
WXDOCTEMPIALEt e e e et e ettt e e e e e e e eetbba e e e aaaaaeees 247
WXDOCUMEBNT ..ottt e e e e e e e e a e e e e e eeens 252
B = Te [T g F= Lo [PSP UP PP UPPRT 260
WXDIOPFIESEVENL. ...t e ettt e e e e e ee ittt eeaaaaaeees 264
WWXDIOPSOUICE ...ttt e et e ettt e e ettt e e e e ta e e e e et e e e e aa e e aeebaaeeennns 265
D] o] o B 1= 10 1= PSP PRSPPI 267
WXENCOAINGCONVEITET ...ttt ettt e e e et e et e e e e e e e eebbba e e e aaaaaeees 270
WXEFASEEVENT ..o e 273
WXEVENT ... e e 274
WXEVEHANAIET ... 277
{2 o] ST TP PPTTR PP 284
WXEXPIDALADASEot aaaeae 291
1T | = PP PSRRI 294
10 [T PP PSRRI 301
WXFIIEDATAODJECT ...ttt e ettt e e e e e e e bbb e e aaaeee 305
WXFIIEDIAIOQ . .ottt e e e e et e ettt e e e e e e e eeabb e e e aaaaeee 306
12T B do] o = 10 =] TR PSRRI 310
WXFTTEHISTOMY ..t e e et ettt e e e e e e e e eabba e e e e aaaaeees 311
WXFIEINPUESTIIEAIM ...t e ettt e e e e ee et aeaaaaaeees 314
WXFIEOULPULSTIIEAIM ...ttt e e e e et ettt e e e e e e e eetbba e e e aaaaaeees 315

CONTENTS

WXFIIESITEAIM. ... ettt e e e et e ettt e e e e e e e eebbba e e e aaaaaeees 317
WXFFIIRINPUESTIEAIM ...t e et ettt e e e e e e e e bbb e e e e aaaaeees 317
WXFFIEOUIPUESTIEAM ...ttt e et e e et e e e e e e e eebbba e e e e aaaaeees 318
WXFFIIESIIBAM ... ettt e e e ettt e e e e e e e eebbb e e aaaaaeees 319
WXFIleNamELIStValIatoroooi e eeees 320
WXFIIESYSTEIM ...t e e e et et e e e e e e e eeebba e e e aaaaaeees 320
WXFIESYSIEMHANAIET ... et aeeeeees 322
1= Y oL PP PSRRI 325
WXFIEITNPUESTIEAIM ...ttt e et et e e e e e e e e ebbba e e e aaaaaeees 329
WXFIEEIrOULPUESTIEAM ...ttt e e et ettt e e e e e e e eebbba e e e aaaaaeees 330
WXFOCUSEVENT ... ettt e et e e et e e e e e e e e eba e e eeenas 330
120 | PP PPTTR PP 331
WXFONID@LA ...t e et ettt e e e et e e e et e e e e aa e e e eb e aeaeas 338
WX ONTDIAIOQ. ettt e ettt e e e e e et ettt e e e e e e e eebbba e e aaaaaeee 341
WXFONTENUMETALOLc.ee ittt e et e e e et e e e e et e e e eba e eaeenns 342
1o] TP 344
o LY =T o] o1 TP P PP UPPPT 345
o = 10 [T PP PPTTS PP 348
WX Sl e ———— 360
172l 1 = 363
{2 CT= 18 (o [PP P PRSPPI 367
WXGDIODJECT ... ——— 371
WXGLCABNVAS ...ttt ettt e ettt ettt e e e e et e e e e ba e e e e et e e e e eb e aeeba e eaennas 371
WXGENEICVAITALON ...ttt e et et e e e e ee bbb e e e aaaeeees 373
1121 1 o PP PSPPI 375
WXHASNTADIE. ... e ettt e e e et aeaaeees 388
WXHEIDCONIIOIET ...t e et e e e e e e ee ittt e e e aaaaaeees 391
WXHEMICIL ... et e et ettt e e e e e e e eebbba e e e e aeeaeees 395
WXHEIMICOIOUICEIL et e e e e e e e e e aaeees 401
WXHEIMICONTAINEICEIL ... et e e et aaaaaeees 401
WXHEMIDCRENUEIE ...ttt e e e e e et ettt e e e e e e e eeabba e e e aaaaaeees 407
WXHEMIEQSYPIINTING ...t e et et e e e e e e ee bbb aeaaaaaeees 409
WXHEMIFILEE <. et e e ettt e e e e e e eeabba e e e e aaaaeees 412
WXHEIMIHEIPCONIIOIET ... et aeaeeees 413
WXHEMIHEIPDALA. ...t e e et e e e e e e eebbb e e aaaaaeees 417
WXHEIMIHEIDFIAME ... et e e e et aaaaeees 419
WXHEMILINKINTO ... et e e e et eaaaeeees 422
WXHEMIPAISEL ...ttt e e e e e e ettt e e e e e e e eetbba e e e aaaaaeees 423
WXHEMIPTINTOUL ...t e e e ettt e e e e e e ee bbb e e e e e aaaeees 428
10 110 0] I =T PRSPPI 429

CONTENTS

WXHEIMITAGHANAIET ...t e e e e e et aaaaaeees 433
WXHEIMITAGSMOAUIE ... et e e e e e ettt aaaaaeees 434
WXHEIMIWIAQEICEID ...t e e e e e e ettt eaaeaaeees 435
WXHEMIWINGOW ... 436
WXHEIMIWINPAISEE ... 442
WXHIMIWINTAGHANAIETee e e et aaaeeees 448
WUXH T TP ettt e oottt et e e oo s o ekt bbbt e e e e e e e s e abb b bbb e e e e e e s s anbbbbeeeaaaeenaann 449
WXIAIEEVENT ... 450
WWUXICOM L.ttt e e et e e e e et e e e e e e e e e ean 451
T2 E= T = PP TUPPTTR PP 458
WXIMAGEHANAIET ...t e ettt e e e e e ee it eeaaaaaeees 472
o = Vo =] L PP TPSUPPPPIIN 475
WXINAiVIAUAILAYOULCONSIIAINT ...t e e e e ee e e e aeeeees 479
WXINIEDIAIOGEVENT ... ettt e et e ettt e e e e e e e eeabba e e e e aeaaenes 482
WXINPUESTIEEIM ..ot ettt e e et et e e e et e e e e et e e e e rb e e e e eba e eaenens 483
WXINTEGEIFOrMVAlIAALON et e e e e e aeees 485
WXINEEGEILISTVAlIAALON ...ttt e e ettt e e e e e ee bbb e e e aeaaeees 486
WXIPVAQAUIESS ... 486
WWXJOYSTICK .ttt e ettt e et e e e e e e e e et bbb e e e e e e e e eebbba e e e aaaaaeee 488
WXJOYSHCKEVENT ...ttt e e ettt e e e e e e ee bbb e e e e aaaaeees 495
WXKBYEVENT ...ttt e et e e e et e e e et e e e e ab e e e eba e e aeneas 497
WXLAYOULAIGOITNM ...t e e e e e et aeaeeees 500
WXLAYOULCONSLIAINTS ...ttt ettt ettt e e e e e e e e et e e e e e e e eeebbaa e e e aaaaaeee 503
1] PR PSRRI 505
WWXLISTBOX .o 512
WXLISTCHIT <. 520
WXLISTEVENT .. 534
WXLIStOFSIHNGSLISTVAlIALONcciiieiiieie e e e e e e eeees 536
WXLOCAIE ...t 537
1712 oo PSP PPTTS PP 540
T2 e g Lo | o] o o PP PRSPPI 545
WXIMIBISK L. 548
WXMDICHIAFTAME ... 550
WXMDICHENTWINAOW ... 553
WXMDIPAIrENIFIAME......oiiiiiiiiiii e e e e e eens 555
WXMEMOIYDIC ...t ettt et e et et e e e et e e e et e e e e ab e e aeebaaeaenens 562
WXMEMOIYFSHANAIET ... et e e e e e et eaaaaeees 563
WXMEMOIYINPUESTIIEAIM ...ttt e et e e et e e e e e e e et e aeeeas 565
WXMEMOIYOULPULSTIEAIM ... ittt e et e et e e et e e e et e e e e rb e e e et e eaeenns 565
12 L=] o 11 TR PP PP TRPPPPPP 566

CONTENTS

WXIMEBINUBAT ... ettt e e et e e e et e e e et e e e e tb e e e eba e eaeeens 576
Y =T TU] =T o o TP TP PP UPPPT 585
WXMENUENVENT. ...ttt e e et e e e et e e e e ab e e e eba e eeenns 590
WXMESSAGEDIAIOQ ...t a e e e aaeae 592
WXIMETATIIE ... ettt e e e e ettt e e e e e aaeees 593
WXMETATIEDIC ...ttt e e e ettt e e e e e e e e e bbb e e e aaaaeees 594
WXMIMETYPESIMBNAGET ...ttt ettt ettt e et e e et e e e e e e e ea bbb e e e e e aaaeesbba e e aaaaaaeees 596
WXIMIINIFTEIME ..ot e ettt e e e e e e ettt bbb e e e e e e e e eesbba e e e aaaaaenes 599
WXIMIOAUIE ..ottt oo e ettt e e e e e e e e et bbb e e e e e e e e eebbba e e e aaaaaenes 601
WXMOUSEEVENT ... et e et e e et e e e e e e eeeas 604
WXMOVEBEVENT ... ettt e et e e et e e eba e e eeeas 611
WXMUILIPIECNOICEDIAIOQttt e e e e ee et eaeaeaeees 612
Y U= TP PRSPPI 612
WXIMUEEXLOCKET ...ttt e e e e ee it e e e aaaaeees 615
WXNOTEDOOKSIZETttt e e e e ettt eaaaaaeees 616
WXINOOEBBASE ...ttt e ettt e et e e e e e e e e ettt e e e e e e e e eesbba e e e aaaaaenes 617
WXNOLEDOOK. ... et e e e e e et eaaaaeees 618
WXNOTEDOOKEVENL. ...ttt e ettt e e e e e e e eebbba e e e aaaaeees 624
WXINOTITYEVENT. ...t e et ettt e e e e e e e e ettt e e e e e e e e eebbba e e e aaaaaene 626
112 (@] o] =T o TR RSRPPPPIIN 627
WXODJECIREIDALAL. ...ttt e ettt e e e e e e ee et e e e aaaeee 631
WXOULPULSTIEAM ...ttt e ettt e e e et e e ettt e e e e tb e e e e et e e e e sb e e aeebaaeaenens 632
WXPAGESEIUPDIAIOGDALAot eeieieeeiiee ettt e ettt e e e e e e bbb e aaaaeae 633
WXPAGESEIUPDIAIOQceeeitiiiii ettt e ettt e e e e e e bbb aaaaeee 638
WXPAINTDC ... ————— 640
WXP@INTEVENT. ...ttt e ettt e e e e e e e ettt e e e e e e e eebbba e e e aaaeaene 640
WXPAIETEE. ...t ettt e e e e et e et bbb e e e e e e e ebbb e aaaaeae 641
WXPANEL ... ettt e ettt e e e e e e bbb aaaaeae 645
WXPANEITADVIBW ...ttt e e et e e e e e e e ettt e e e aaaaeees 648
WXPAETNLIST ...ttt e e e e et e ettt e e e e e e e bbb aaaaaeae 649
1T ad=T o PSP P PP UPPPTI 651
T o]) ST RSRPPPPIIN 658
WXPIOTCUIVE ...t e ettt e e e e et ettt e e e e e e e eebbba e e e aaaeaeees 660
10 d (o1 VAT T o [0V TR RSRPPPPIIN 662
10 o1 TP PSPPI 665
WXPOSESCHPEIDC ...ttt e ettt e e e e e e e e ettt e e e e e e e eesbba e e e aaeaaeees 666
WXPTEVIEWECANVASciiiiiiiiiie ettt ettt e e e ettt et e e e e e e e e ee bbb e e e e aaeeesbba e e aaaaaaeees 667
WXPTEVIEWCONIIOIBA ...ttt ettt e et ettt e e e e e e ee et e e e aaaaaeees 668
WXPTEVIBWETAIME ...t e ettt e e e e e e eetbb e e aaaaeeees 669
{0 11 011D = - TP RSUPPPPIIN 671

Vi

CONTENTS

WXPIINEDIAIOQ vttt ettt e e e e et ettt e e e e e e e eebbba e e e aaaaaeee 677
WXPHINEDIAIOGDALA ...ttt e et ettt e e e e e e eenb b e e aaaaeees 678
2 1111 (= TR 683
WXPTINTEIDC ... 685
WXPTINEOUL ... 685
WXPTINEPTEVIEW ..o 689
WXPHIVALEDIOPTAIGEL ...ttt e e e e e e et e e e e e e e eeebba e e e aaaaaeees 693
WXPTOCESS ...t e et e e e e ean 693
{0 o To [(=TT B =1 (o Lo RSP 696
WXPTOCESSEVENTottt e e e e e e e e een 698
TR (0] 1= 4 YA TP PP UPPPT 699
WXPTOPErtyFOrMDIAlOQ ...c.evveieiie et e e e e e et aaaaeees 701
WXPTOPEITYFOIMITAIME ...t e et et e e e e e e e e aeeens 702
WXPTOPErtyFOrMPANELee et aaaaeees 703
WXPTOpertyFOrMValIdatorcooiiiiii e a e eeees 703
WXPTOPEITYFOIMVIBW. ...ttt e e e et ettt e e e e e e e eebbba e e e aaaaaeees 704
WXPTOPEITYLISIDIAIOQ ettt e e e ettt e e e e e e ee bbb e e e e aaaeees 707
WXPTOPEIYLISTFIAME ...ttt e e e e ee ittt eaaaaaeees 707
WXPTOPEIMYLISIPANEL ...ttt e e et eaaaaeees 708
WXPTOPEIMYLISTVAITALON ...ttt e e e e et aeaaeees 709
WXPTOPEITYLISIVIBW ...ttt e e ettt e e e e e e e ee bbb e e e e aaaaeees 711
WXPTOPEITY SO ... ettt e e e e e e ettt eaaaaaeees 714
WXPTOPEIMYVAIAALON ...t e e e e e e e aaeees 715
WXPTropertyValidatorREGISIIYccoiiiiiiii et e e aeeaeees 716
WXPTOPEITYVAIUR ...t e ettt e e e e ee bbb eaaaaaeees 717
{0 o] o =T 1Y AV =T PP RSRPPPPIIN 723
WXPTOTOCOL. ..o 725
2@ VL] oY O | BTSRRI 727
WXQUEIYFIEIA ... ettt e e e e e e eeatb e e e e aaaaeees 730
WXQUENYLAYOULINTOEVENT ...t e e e ee et eaeaeeees 732
WXRAAIOBOX ... 734
WXRAIOBULION ... 740
WXREAIFOIMVAIAALON ... 743
WXREAILISTVAIAALON ... 743
WXREAIPOINT ... 743
WXRECT .. et 744
WXRECOITSEL ... 748
10 =Te (o] o E PP RSRPPPPIIN 760
DT o (0] g1 (=T 7= (o] PRSPPI 764
WXSASNEVENT. ... 767

Vil

CONTENTS

WXSASNLAYOUIWINTOW.evveiiieii ettt e e e ettt e e e e e e e eeebba e e e aaaaaeees 769
WXSASNWINAOW ... e et ettt e e e e e e e ettt e e e aaaaeees 772
WXSCIEENDIC ...t et e e et e e ettt e e e et e e e et e e e e an e e e eba e aeanas 776
S Tel (] |17 | TR 777
WXSCIOIWVWINEVENT. ... ettt e e e e ee bbb e e e aaaaeees 782
WXSCIOIEVENT. ...t e ettt e e e e e e e ettt e e e e e e e e eeabba e e e aaaaaenes 784
JV0eS et (o] 1 [=To LVAV/ 1 To [0 1V TR PSPPI 786
WXSINGIECNOICEDIAIOY ...ttt e e e e e e eeatb e e aaaaeees 794
1S 17 TP 796
WXSIZEEVENL. ...t e ettt e e e e et e et bbb e e e e e e e eebbba e e aaaaaeee 797
[0S 1A= TR PSRRI 798
110 eS] o [T SRRSO 803
WWXSOCKAGUIESS ... ettt e ettt e e e e e e e e et bbb e s e e e e e e eesbba e e aaaaaaenes 811
WXSOCKEIBASE ...ttt e et ettt e e e e e e e e et bbb e e e e e e e eebbba e e e aaaaaeee 812
WXSOCKEECTENT ...ttt e e e et ettt e e e e e e e eeabba e e e e aaaaeees 829
WXSOCKEIEVENT ...ttt ettt e e e e e e e ettt e e e e e e e eeatba e e e aaaaaene 831
WXSOCKEESEIVE ...ttt ettt e e e e e e e e ettt e e e e e e e e eeabba e e e aaaaaeees 832
WXSOCKELINPUESTIEAIM ...ttt e e et ettt e e e e e e eebbb e e e aaaaaeees 835
WXSOCKEIOULPUESTIBAM ...ttt ettt e e et e ettt e e e e e e e eebbba e e e aaaeaeees 835
10 eS] o1 1 =101 o] o NPT PSRRI 836
110 eS] o1 @4 1 ¢ TP PSRRI 839
WXSPIEEEIEVENT. ...ttt e e e e e e ettt e e e e e e e eesbba e e e aaaaaeees 842
JV0eS] o] L1 (=T VAV T To [0 TR 844
S] =1 Tod =] 1 T T o J TR 854
[0S] = 1 o] = o) G TP RSUPPPPIIN 856
WXSTATICBOXSIZET ...ttt e ettt e e e e e et e et bbb e e e e e e e e eeebba e e aaaaaaenes 858
[0S] = L (o I 1 PP PSRRI 858
S] = Lol o TR 860
WXSTAEUSBAL ...ttt e et ettt e e e et e e e et e e e e rb e e e eba e aeeeas 862
WXSTOPWALCK ..t e et ettt e e e e e e eeabb e e e aaaaeees 868
WXSTIEAMBASE ... iiiitii ettt ettt ettt e e ettt e e e et e e e e et e e e e sb e aeeba e aeenas 869
WXSTTEAMBUTTEI ... e e ettt e e e e ee ittt eaaaaaeees 871
110 eS] 11 T [T RPN 877
WXSTHNGFOMMVAIITALONvvteiiee et e e et e e e e eeabb e e e aaaaeees 899
1S L[oo | I TP RSRPPPPIIN 900
WXSTHNGLISTVAIAAION ...t e e e e ettt eaaaeeees 901
WXSTINGTOKENIZEN ...t e ettt e e e e e e ee bbb e e e aaaaeees 902
WXSYSCOIOUIChANGEAEVENTttt e e e e ee et e e e e e aaeees 904
WXSYSEEMSEIEINGS ... eieeeitti ettt ettt e e e et e ee bbb e e e e e e e e eetba e e e e e aaaeesbban e e eaaaaaenes 905
WXTADDEADIAIOG ..ot e e et aaaeee 908

viii

CONTENTS

WXTADDEAPANEL..... ..o et a e aeaes 909
O Ir= 1] O] o] 1 o] PP PSRPPPPIIN 910
WXTAIDVIBW ..ottt e et e e e ettt bbb e e e e e e e eeabba e e e aaaaaeees 914
10 Ir=1 o] O 1 PP PSUPPPPIIN 922
= o] Y =T o | TR PSRRI 927
WXTASKBAITCON ...ttt e e e e et ettt e e e e e e e eeebba e e e aaaaaeees 928
WXTC P I . ————— 930
{0 O ol o] o o T=Tex 1 o] o TR 932
WX T CP SBIVEL ...t e e e e et e e e et e e e et e e e eba e eaennas 936
WXTEIMPFIE ... ettt e e e et e et r e e e e e e eeabba e e e aaaaaeees 937
WXTEXECHIT ..o ettt e e e e et ettt b e e e e e e e eebbba e e e aaaaaeee 939
WXTEXIDALAODJECT ...ttt e e e e e ettt e e e e e e e eebbba e e e aaaaeee 952
WX TEXUNPUESTIIEAIMt e et e e et e e et e e e e e e e e eba e aeenns 953
WX TEXEOULPULSTIEAIM ...ttt ettt e et e e ettt e e e et e e e e et e e e e ab e e aeeba e eaennns 955
= =l a1/ B = 1o o PP RRSRPPPPIIN 957
LSy D o] ol =T o =] TSP PPTTR PP 958
WXTEXEVAIIALON ...ttt ettt e e e e e et ettt e e e e e e e eebbba e e e aaaaaeee 959
WXTEXEFIIE ..ot e ettt e e e e e e e e ettt r e e e e e e eesbba e e e aaaaaeee 962
10 1 (=T Lo PP RSRPPPPIIN 968
1 41T PR RSUPPPPIIN 974
141 ST RSUPPPPIIN 980
WXTIMEIEVENT. ...ttt e et et et e e e e e e e e et bbb s e e e e e e e eebbba e e e aaaaaeees 982
O o] (01T [T TR RSRPPPPIIN 983
WXTOOIBAL ...ttt e ettt e e e e e e e e et bbb s e e e e e e e eesbba e e e aaaaanees 984
O (1 1 TP RSUPPPPIIN 999
WXTTEEITEIMDALA ...ttt e e et e e et e e e et e e eaba e aaes 1014
WXTEEEEVENT ...t et e et ettt e e et e e e et e eaeaa e eaes 1015
WXTEEELAYOUL......eeee ettt ettt e e et e e e et e e et et e e e e bt s e e e et e eeenbaaaaes 1017
WXTTEELAYOULSTIONEA. ...ttt ettt e e e e e e ettt e e e e aaaeees 1023
WXUPAAEUIBVENT. ...t e e e ettt e e e e e e e bbb aeaaaaaeees 1025
VXU R L e ————— 1028
2 AVZ= 1o F= 1o] TP TTUUPPPTRIN 1031
DA Z= T A= o | TSP TUUPPPTPIN 1033
WXV AITANTDALA ...ttt e ettt e e e e e et etbb e e e e e e e eesbbb e e aaaaaeees 1041
VUXV BV .ttt oottt e e e etttk e oo e o2 4o e et bbb oo e e e et e e eebba e e e e e e e e ebbba e e e aaaaanes 1042
WXWWBIV .ttt ettt e et e ettt e e e e th e e e e et e e ettt e e e e ba e e e eba e aenr e aae 1046
WXWWINAOW ...ttt e e e e et ettt e e e e e e e e e etbba e e e e e e e eetbbbn e e e aaaaaeees 1048
WXWINAOWDIC ...ttt e ettt e e e e e e e e etbba e e e e e e e eebbba e e e aaaaaeees 1096
WXWINAOWDISADIET ... et e e e eees 1097
WXZIPINPUESTIAM. ...ttt e e e e e et e tbb e s e e e e e e etbbb e e e aaaaaeees 1098

CONTENTS

WXZIIBINPUESTIEAIM ...ttt e e e e ettt e e e e aaaeees 1098
WXZIIDOULPULSTIIEAIM ...ttt e e e e e ettt e e e e e e ebbbb e e aaaaaeees 1099
FUNCHIONS .. e e ettt e e e e e e e e e eeaenna 1100
TRrEAA fUNCLIONS ... ettt e e e e e et e e e e e eeb b 1100
FlE FUNCHIONS ...ttt e e e et et ettt e e e e e e e e eetbba e e e aeaaaeaes 1101
NEIWOTK FUNCHIONS ...t e et e ettt e e e e e e e e eetbba e e e e aaaeeees 1106
USEr identifiCAtIONoeeiiiii ettt e e e e e et e e e aeeaes 1107
SHING FUNCHIONS ... e et et ettt e e e e e e eabb b e e e e e e e eenenannns 1108
DIalog FUNCHIONS ...t ettt r e e e e e e e ettt e e e e e e e e eetbba e e e aaaaeenes 1110
L1 B 100 o T i o] £ PPPTTTTR 1116
e 101 (T RS 1] 0o [TSP 1117
(04 110] oo =170 I {81 [ex 0] o < PRSPPI 1119
MiSCElIANEOUS TUNCLIONS ... ittt e e e e eeabb e e e e aaeeees 1122
1Y F=Tod {0 ST PP TP TUPPPTRPPN 1139
WXWINAOWS reSOUICE fUNCLIONSceuuiiiiiee ettt e e et aaaaeeees 1146
(oo I8 {1 0o 1 o] o < TSP PURPUPPRIN 1150
Debugging macros and fUNCHIONS ...t eeaeeees 1153
KBYCOUES ...ttt ettt e e e e et ettt e et e e e e e ettt b e e e e e e e e ee bbb e e aaaaaaee 1155
ClasSSES DY CAtEQOIYuuiiii i e s 1158
TOPIC OVEIVIEWS ...ttt e e e e e e et ettt e e e e e e e e e e e eaasa e e e eeeaees 1168
Notes 0N USING the FEfEIrENCEuuue et 1168
Writing a wxWindows application: a rough guide................oooiiiiiiiiiiii e 1168
WXWINAOWS "HEIO WOTIA"t e e eeees 1169
WXWINAOWS SAMPIES ...ttt e e ettt e e e e e e bbb a e e aaaaeees 1172
WWXADD OVEIVIBW. ...ttt ettt e ettt ettt e e e e e e e et tbba e s e e e e e e eetbba e e e e aeeeesbban e e aaaaaaenes 1179
Run time class information OVEIVIEWoouuuuiiiii it eeees 1180
WXSTIING OVEIVIEW. ...ttt ettt e e ettt ettt e e e e e e e e eetbba e e e e aeaeesbban e e aaaaaaeees 1182
Unicode support in WXWINAOWSuiiiiiiiiiiii ettt e e e e et e e e eeees 1187
INEErNAtIONANIZATION ...t e e e ettt e e e e e e e abb e e e e e aaaeees 1190
Writing non-English appliCationsoooo oo 1191
COoNLAINET ClASSES OVEIVIEWcevuvuiiieeeii ettt e e et ettt e e e e e e eatbb e e e e e e e eennnannns 1193
File classes and fUNCLONS OVEIVIEWcccooiuuuuiiiieaiie et eaaeeees 1194
WXSTITEAIMS OVEIVIEW ...ttt e ettt e ettt e e e e et ettt bt e s e e e e e e eetbba e e e aaaaeesbban e e aaaaaaeees 1195
WXLOQ ClASSES OVEIVIEW ...ttt e et et ettt e e e e e e e bbb e e aaaaaeees 1196
DEDUQGGING OVEIVIEW ...ttt ettt e e e e e e e ettt e e e e e e e e eetbba e e e aaaaaeaes 1199
WXCONTIQ ClASSES OVEIVIEW ... ittt e e e e e ettt e e e e aaaeees 1202
WWXEXPE OVEIVIEW. ... ittt e ettt e e e e e e e e etbb e s e e e e e e e tbbaa e e e aaaaaeees 1202
WXFIIESYSTEIM ...ttt e et et ettt e e e e e e e ettt e e e aaaaeees 1206

CONTENTS

Event handliNng OVEIVIEWooii et e e e e ee b eeaaaeeees 1207
WINAOW SEYIES ..ttt e e ettt e e e e e e et ettt e e e e e e e eebbbb e e aaaaaenes 1214
WiINAOW deletion OVEIVIEWcoiiiiiiiii ettt e e e e e et e e e aaaeees 1214
WXDIAIOG OVEIVIEW ...ttt ettt e e e e e e eeabb e e e e e e e e etbbba e e e aaaaaeee 1217
WXV AlIHALOT OVEIVIEW ...ttt ettt e e e e e e e ettt e e e e e e e e ettt e e aaaaaeees 1217
CONSITAINTS OVEIVIEW ...ttt e ettt e e e et e e e e e e e e e ettt e s e e e e e e eatbba e e e e eeeeenrnannns 1220
The WXWINAOWS F€SOUICE SYSTEIMoeiiiiiiiieeeee ettt e ettt e e e e e et e e e e eeeb e 1223
SCIOIING OVEIVIBW. ...ttt e e e e e et ettt e e e e e e e eatbba e e e e e e aeennnannns 1230
Bitmaps and ICONS OVEIVIEW........ceuuiuii ettt e ettt e e e e e eetbt e e e e e e e eetbba e e e aaaaeenes 1232
DEVICE CONTEXE OVEIVIBW ...ttt ettt ettt e e e e e e e ettt e e e e e e e e eetbba e e e aaaaaenes 1235
WWXFONE OVEIVIBW ...ttt e ettt e e e e e e e e ettt e e e e e e e e etbbba e e e e aaaaenes 1236
FONt @NCOAING OVEIVIEW ...ttt e et e ettt e e e e e e e eetbba e e e e e aaeenes 1236
WXSPHIEENVINAOW OVEIVIEW.ciiiiiiiiii ettt e e et e e e e e e ebba e e e e aaaeees 1238
WXTTEECIT OVEIVIBW ...ttt e e e et et ettt e e e e e e e e ettt e e aaaaaeees 1239
WXLISTCIIT OVEIVIBW ...ttt ettt e et e ettt e e e e e e e e ettt e e aaaaaeees 1241
WXIMAGELIST OVEIVIEW ...ttt ettt e e e e e e e ettt e e e e e e e e ebbba e e aaaaaene 1241
COoMMON AIBIOGS OVEIVIEW ...t e ettt e ettt e e e e e e e atb b e e e e e e e eeebaannns 1241
DOCUMENT/VIEW OVEIVIBW ...ttt ettt e e e e e e e ettt s e e e e e e e eeabba e e e aaaaaenes 1245
WXTAD ClASSES OVEIVIEW ...ttt e e e e ettt e e e aaaeees 1251
WXTADVIEW OVEIVIBW ...ttt ettt e e et e e ettt e e e e e e e e ettt e e aaaaaeees 1255
TOOIDAI OVEIVIEBW ...ttt e e e e e e et e e e e e e e eabba e e as 1255
WXGHIA ClASSES OVEIVIEW. ... ittt ettt e e e et et ettt e e e e e e e e eebbb e e e aaaaaenes 1261
WXTIPPTOVIAET OVEIVIEW ...ttt e e e et ettt e e e e e e e ettt e e aaaaaeees 1261
PrINTING OVEIVIEW ...ttt e e e et e e ettt e e e e e e e e eetbba e e e e aaaaenes 1262
MUILIENrEAAING OVEIVIEWt e et e e e e eetbb e e e e aaeeees 1263
Drag N DIOP OVEIVIEW.uuuieeeieeetiite e e e e ettt e e e e e e e ettt e e e e e e e eeetbta e e e e e aeeeetbbna e aaaaaaaeees 1264
WXDAtAODJECT OVEIVIEW ...ttt ettt e e e et e e ettt e e e e e e e e ebbba e e e aaaaaeees 1265
Database ClaSSES OVEIVIEW.couuiuiii ettt e e e ettt e e e e e eetbb e e aeaaeeees 1266
Interprocess COMMUNICAtION OVEIVIEW.ccuuuueiiieeeieeeeiiia e e e e ettt e e e e eeabbi e e e aaeeees 1271
WXHTML NOTES ... e e e e e ees 1276
WXHTML QUICK STAIM ...ttt e e e e e e ettt e e e e e e ettt e e aaaaaeees 1276
HTIML PIINEING ©ee ettt e et e ettt e e e e e e e e ettt e e e e e e e e eesbba e e e aaaaaeaes 1277
HEIP FlES FOIMALot e et e e e e e e e tbb e e e e aaaeaes 1277
INPUL FIIEEIS e oottt e e e et et ettt e e e e e e e eeabba e e e aeaaaeees 1279
CellS AN CONLAINEISunieeiiieeeeie e e e e e ettt e e e e e e eatb e e e e e e e eeannannns 1279
Tag HANAIBIS ... e e et e e e e e et 1280
Tags supported DY WXHTML e 1283
Property Sheet ClaSSESoo e 1287
INEFOAUCTION ...t oo et ettt e e e e e et ettt e e e e e e e eeabba e e e eeaaaenes 1287

Xi

CONTENTS

HEAEIS. ... 1289
TOPIC OVEIVIEBWS ...t e ettt ettt e e et et ettt e e e e e e e ettt b e e e e e e e e ee bbb e e e e e e e eeebbaa e e eaeas 1289
ClaSSES DY CAtBYONY ...eniiiee et e et e e e e eaeaaaaas 1297
WXPYENON NOTES ... e e e e e eeanane 1299
Whaat IS WXPYINONT? ...ttt e e e e e e bbb a e e e aaaeees 1299
WHY USE WXPYINONT ...t e e e e et et e e e aaaeees 1299
Other PYtNON GUISeei e e et e e e e eeaaaaans 1300
BUIIING WXPYENON ...ttt e e e e et e e e aeees 1300
USING WXPYENON..... et e e et e e ettt e e e e e e e e eetbba e e e aaaaaeees 1302
wxWindows classes implemented in WXPYIhON ... 1305
Where t0 9O fOr NEIP ... ettt a e e eees 1308
Porting from WXWINAOWS L.XX .ccceiiiiiiiiieeeeeeieeiiiiiiee e e et eeeeeeeaennes 1310
Preparing for VEISION 2.0........coiiiiii et e e e e e et e eaaaeaes 1310
THE NEW EVENT SYSTEIM ... ittt e e e e e et e e e e e e eabbaa e as 1312
ClaSS NIBIAICNYo e et e e e e e eeeaaaaas 1312
(€1 B] le] o] [=Tox (=3P 1313
Dialogs @nd CONLIOISuuuiie ittt e e e e eeabb e e e e aaaeees 1313
Device contexts and PAINTINGccuuuuuiaiiiiiiii et e e e e et e e e e e eesaba e e aaaeeaes 1314
MISCEIIANEOUS.......ccoiiiiiiieee e 1315
Backward COMPatibilitycooiiiiiii e 1316
L@ 18 [od [1] (=] (=T [= PP 1316
RETEIENCES ... ettt e e e e e e eeaenne 1320
L0 [PP PUUPPPPPRRRN 1322

Xii

Copyright notice

(c) 1999 Julian Smart, Robert Roebling, Vadim Zeitlin and other members of the
wxWindows team
Portions (c) 1996 Artificial Intelligence Applications Institute

Please also see the wxWindows licence files (preamble.txt, Igpl.txt, gpl.txt, licence.txt,
licendoc.txt) for conditions of software and documentation use.

wxWindows Library License, Version 3
Copyright (C) 1998 Julian Smart, Robert Roebling, Vadim Zeitlin et al.

Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

WXWINDOWS LIBRARY LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

This library is free software; you can redistribute it and/or modify it under the terms of
the GNU Library General Public License as published by the Free Software Foundation;
either version 2 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY:; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Library General Public License for
more details.

You should have received a copy of the GNU Library General Public License along with
this software, usually in a file named COPYING.LIB. If not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.

EXCEPTION NOTICE

1. As a special exception, the copyright holders of this library give permission for
additional uses of the text contained in this release of the library as licensed under the
wxWindows Library License, applying either version 3 of the License, or (at your option)
any later version of the License as published by the copyright holders of version 3 of the
License document.

2. The exception is that you may create binary object code versions of any works using
this library or based on this library, and use, copy, modify, link and distribute such binary
object code files unrestricted under terms of your choice.

3. If you copy code from files distributed under the terms of the GNU General Public
License or the GNU Library General Public License into a copy of this library, as this
license permits, the exception does not apply to the code that you add in this way. To
avoid misleading anyone as to the status of such modified files, you must delete this
exception notice from such code and/or adjust the licensing conditions notice
accordingly.

Xiii

COPYRIGHT

4. If you write modifications of your own for this library, it is your choice whether to
permit this exception to apply to your modifications. If you do not wish that, you must
delete the exception notice from such code and/or adjust the licensing conditions notice
accordingly.

GNU Library General Public License, Version 2

Copyright (C) 1991 Free Software Foundation, Inc. 675 Mass Ave, Cambridge, MA
02139, USA

Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

[This is the first released version of the library GPL. It is numbered 2 because it goes
with version 2 of the ordinary GPL.]

Preamble

The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public Licenses are intended to guarantee your
freedom to share and change free software -- to make sure the software is free for all its
users.

This license, the Library General Public License, applies to some specially designated
Free Software Foundation software, and to any other libraries whose authors decide to
use it. You can use it for your libraries, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute
copies of free software (and charge for this service if you wish), that you receive source
code or can get it if you want it, that you can change the software or use pieces of it in
new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these
rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the library, or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you must
give the recipients all the rights that we gave you. You must make sure that they, too,
receive or can get the source code. If you link a program with the library, you must
provide complete object files to the recipients so that they can relink them with the
library, after making changes to the library and recompiling it. And you must show them
these terms so they know their rights.

Our method of protecting your rights has two steps: (1) copyright the library, and (2) offer
you this license which gives you legal permission to copy, distribute and/or modify the
library.

Also, for each distributor's protection, we want to make certain that everyone
understands that there is no warranty for this free library. If the library is modified by

Xiv

COPYRIGHT

someone else and passed on, we want its recipients to know that what they have is not
the original version, so that any problems introduced by others will not reflect on the
original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that companies distributing free software will individually obtain patent
licenses, thus in effect transforming the program into proprietary software. To prevent
this, we have made it clear that any patent must be licensed for everyone's free use or
not licensed at all.

Most GNU software, including some libraries, is covered by the ordinary GNU General
Public License, which was designed for utility programs. This license, the GNU Library
General Public License, applies to certain designated libraries. This license is quite
different from the ordinary one; be sure to read it in full, and don't assume that anything
in it is the same as in the ordinary license.

The reason we have a separate public license for some libraries is that they blur the
distinction we usually make between modifying or adding to a program and simply using
it. Linking a program with a library, without changing the library, is in some sense simply
using the library, and is analogous to running a utility program or application program.
However, in a textual and legal sense, the linked executable is a combined work, a
derivative of the original library, and the ordinary General Public License treats it as
such.

Because of this blurred distinction, using the ordinary General Public License for libraries
did not effectively promote software sharing, because most developers did not use the
libraries. We concluded that weaker conditions might promote sharing better.

However, unrestricted linking of non-free programs would deprive the users of those
programs of all benefit from the free status of the libraries themselves. This Library
General Public License is intended to permit developers of non-free programs to use
free libraries, while preserving your freedom as a user of such programs to change the
free libraries that are incorporated in them. (We have not seen how to achieve this as
regards changes in header files, but we have achieved it as regards changes in the
actual functions of the Library.) The hope is that this will lead to faster development of
free libraries.

The precise terms and conditions for copying, distribution and modification follow. Pay
close attention to the difference between a "work based on the library" and a "work that
uses the library". The former contains code derived from the library, while the latter only
works together with the library.

Note that it is possible for a library to be covered by the ordinary General Public License
rather than by this special one.

GNU LIBRARY GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library which contains a notice placed
by the copyright holder or other authorized party saying it may be distributed under the
terms of this Library General Public License (also called "this License"). Each licensee is

XV

COPYRIGHT

addressed as "you".

A "library" means a collection of software functions and/or data prepared so as to be
conveniently linked with application programs (which use some of those functions and
data) to form executables.

The "Library", below, refers to any such software library or work which has been
distributed under these terms. A "work based on the Library" means either the Library or
any derivative work under copyright law: that is to say, a work containing the Library or a
portion of it, either verbatim or with modifications and/or translated straightforwardly into
another language. (Hereinafter, translation is included without limitation in the term
"modification".)

"Source code"” for a work means the preferred form of the work for making modifications
to it. For a library, complete source code means all the source code for all modules it
contains, plus any associated interface definition files, plus the scripts used to control
compilation and installation of the library.

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running a program using the Library is not
restricted, and output from such a program is covered only if its contents constitute a
work based on the Library (independent of the use of the Library in a tool for writing it).
Whether that is true depends on what the Library does and what the program that uses
the Library does.

1. You may copy and distribute verbatim copies of the Library's complete source code as
you receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all
the notices that refer to this License and to the absence of any warranty; and distribute a
copy of this License along with the Library.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it, thus forming a
work based on the Library, and copy and distribute such modifications or work under the
terms of Section 1 above, provided that you also meet all of these conditions:

a) The modified work must itself be a software library.

b) You must cause the files modified to carry prominent notices stating that you
changed the files and the date of any change.

¢) You must cause the whole of the work to be licensed at no charge to all third
parties under the terms of this License.

d) If a facility in the modified Library refers to a function or a table of data to be
supplied by an application program that uses the facility, other than as an
argument passed when the facility is invoked, then you must make a good faith
effort to ensure that, in the event an application does not supply such function or
table, the facility still operates, and performs whatever part of its purpose remains

XVi

COPYRIGHT

meaningful.

(For example, a function in a library to compute square roots has a purpose that is
entirely well-defined independent of the application. Therefore, Subsection 2d
requires that any application-supplied function or table used by this function must
be optional: if the application does not supply it, the square root function must still
compute square roots.)

These requirements apply to the modified work as a whole. If identifiable sections of that
work are not derived from the Library, and can be reasonably considered independent
and separate works in themselves, then this License, and its terms, do not apply to
those sections when you distribute them as separate works. But when you distribute the
same sections as part of a whole which is a work based on the Library, the distribution of
the whole must be on the terms of this License, whose permissions for other licensees
extend to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work
written entirely by you; rather, the intent is to exercise the right to control the distribution
of derivative or collective works based on the Library.

In addition, mere aggregation of another work not based on the Library with the Library
(or with a work based on the Library) on a volume of a storage or distribution medium
does not bring the other work under the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public License instead
of this License to a given copy of the Library. To do this, you must alter all the notices
that refer to this License, so that they refer to the ordinary GNU General Public License,
version 2, instead of to this License. (If a newer version than version 2 of the ordinary
GNU General Public License has appeared, then you can specify that version instead if
you wish.) Do not make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the ordinary
GNU General Public License applies to all subsequent copies and derivative works
made from that copy.

This option is useful when you wish to copy part of the code of the Library into a program
that is not a library.

4. You may copy and distribute the Library (or a portion or derivative of it, under Section
2) in object code or executable form under the terms of Sections 1 and 2 above provided
that you accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange.

If distribution of object code is made by offering access to copy from a designated place,
then offering equivalent access to copy the source code from the same place satisfies
the requirement to distribute the source code, even though third parties are not
compelled to copy the source along with the object code.

5. A program that contains no derivative of any portion of the Library, but is designed to
work with the Library by being compiled or linked with it, is called a "work that uses the

XVil

COPYRIGHT

Library". Such a work, in isolation, is not a derivative work of the Library, and therefore
falls outside the scope of this License.

However, linking a "work that uses the Library" with the Library creates an executable
that is a derivative of the Library (because it contains portions of the Library), rather than
a "work that uses the library". The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.

When a "work that uses the Library" uses material from a header file that is part of the
Library, the object code for the work may be a derivative work of the Library even though
the source code is not. Whether this is true is especially significant if the work can be
linked without the Library, or if the work is itself a library. The threshold for this to be true
is not precisely defined by law.

If such an object file uses only numerical parameters, data structure layouts and
accessors, and small macros and small inline functions (ten lines or less in length), then
the use of the object file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the Library will still fall
under Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute the object code
for the work under the terms of Section 6. Any executables containing that work also fall
under Section 6, whether or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also compile or link a "work that uses
the Library" with the Library to produce a work containing portions of the Library, and
distribute that work under terms of your choice, provided that the terms permit
modification of the work for the customer's own use and reverse engineering for
debugging such modifications.

You must give prominent notice with each copy of the work that the Library is used in it
and that the Library and its use are covered by this License. You must supply a copy of
this License. If the work during execution displays copyright notices, you must include
the copyright notice for the Library among them, as well as a reference directing the user
to the copy of this License. Also, you must do one of these things:

a) Accompany the work with the complete corresponding machine-readable source
code for the Library including whatever changes were used in the work (which
must be distributed under Sections 1 and 2 above); and, if the work is an
executable linked with the Library, with the complete machine-readable "work that
uses the Library", as object code and/or source code, so that the user can modify
the Library and then relink to produce a modified executable containing the
modified Library. (It is understood that the user who changes the contents of
definitions files in the Library will not necessarily be able to recompile the
application to use the modified definitions.)

b) Accompany the work with a written offer, valid for at least three years, to give
the same user the materials specified in Subsection 6a, above, for a charge no
more than the cost of performing this distribution.

c) If distribution of the work is made by offering access to copy from a designated

Xvili

COPYRIGHT

place, offer equivalent access to copy the above specified materials from the same
place.

d) Verify that the user has already received a copy of these materials or that you
have already sent this user a copy.

For an executable, the required form of the "work that uses the Library" must include any
data and utility programs needed for reproducing the executable from it. However, as a
special exception, the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler, kernel,
and so on) of the operating system on which the executable runs, unless that component
itself accompanies the executable.

It may happen that this requirement contradicts the license restrictions of other
proprietary libraries that do not normally accompany the operating system. Such a
contradiction means you cannot use both them and the Library together in an executable
that you distribute.

7. You may place library facilities that are a work based on the Library side-by-side in a
single library together with other library facilities not covered by this License, and
distribute such a combined library, provided that the separate distribution of the work
based on the Library and of the other library facilities is otherwise permitted, and
provided that you do these two things:

a) Accompany the combined library with a copy of the same work based on the
Library, uncombined with any other library facilities. This must be distributed under
the terms of the Sections above.

b) Give prominent notice with the combined library of the fact that part of it is a
work based on the Library, and explaining where to find the accompanying
uncombined form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute the Library except as
expressly provided under this License. Any attempt otherwise to copy, modify,
sublicense, link with, or distribute the Library is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

9. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Library or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Library (or any work based on the Library), you indicate
your acceptance of this License to do so, and all its terms and conditions for copying,
distributing or modifying the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the Library), the
recipient automatically receives a license from the original licensor to copy, distribute,
link with or modify the Library subject to these terms and conditions. You may not
impose any further restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to this License.

XiX

COPYRIGHT

11. If, as a consequence of a court judgment or allegation of patent infringement or for
any other reason (not limited to patent issues), conditions are imposed on you (whether
by court order, agreement or otherwise) that contradict the conditions of this License,
they do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Library at all. For
example, if a patent license would not permit royalty-free redistribution of the Library by
all those who receive copies directly or indirectly through you, then the only way you
could satisfy both it and this License would be to refrain entirely from distribution of the
Library.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply, and the section as a whole
is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property
right claims or to contest validity of any such claims; this section has the sole purpose of
protecting the integrity of the free software distribution system which is implemented by
public license practices. Many people have made generous contributions to the wide
range of software distributed through that system in reliance on consistent application of
that system; it is up to the author/donor to decide if he or she is willing to distribute
software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

12. If the distribution and/or use of the Library is restricted in certain countries either by
patents or by copyrighted interfaces, the original copyright holder who places the Library
under this License may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if written in the body
of this License.

13. The Free Software Foundation may publish revised and/or new versions of the
Library General Public License from time to time. Such new versions will be similar in
spirit to the present version, but may differ in detail to address new problems or
concerns.

Each version is given a distinguishing version number. If the Library specifies a version
number of this License which applies to it and "any later version”, you have the option of
following the terms and conditions either of that version or of any later version published
by the Free Software Foundation. If the Library does not specify a license version
number, you may choose any version ever published by the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose
distribution conditions are incompatible with these, write to the author to ask for
permission. For software which is copyrighted by the Free Software Foundation, write to
the Free Software Foundation; we sometimes make exceptions for this. Our decision will
be guided by the two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally.

XX

COPYRIGHT

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY
AND PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD THE LIBRARY
PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY TO OPERATE WITH
ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS
Appendix: How to Apply These Terms to Your New Libraries

If you develop a new library, and you want it to be of the greatest possible use to the
public, we recommend making it free software that everyone can redistribute and
change. You can do so by permitting redistribution under these terms (or, alternatively,
under the terms of the ordinary General Public License).

To apply these terms, attach the following notices to the library. It is safest to attach
them to the start of each source file to most effectively convey the exclusion of warranty;
and each file should have at least the "copyright" line and a pointer to where the full
notice is found.

<one line to give the library's nane and a brief idea of what it does.>
Copyright (C <year> <nane of author>

This library is free software; you can redistribute it and/or
modify it under the terns of the GNU Li brary General Public

Li cense as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any |ater version.

This library is distributed in the hope that it will be useful,
but W THOUT ANY WARRANTY; wi thout even the inplied warranty of
MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE. See the G\U
Li brary General Public License for nore details.

XXi

COPYRIGHT

You shoul d have received a copy of the GNU Library General Public
Li cense along with this library; if not, wite to the Free
Sof tware Foundation, Inc., 675 Mass Ave, Canbridge, MA 02139, USA

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a "copyright disclaimer" for the library, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclains all copyright interest in the
library "Frob' (a library for tweaking knobs) witten by Janes Random
Hacker .

<signature of Ty Coon>, 1 April 1990
Ty Coon, President of Vice

That's all there is to it!

XXil

Introduction
What is wxWindows?

wxWindows is a C++ framework providing GUI (Graphical User Interface) and other
facilities on more than one platform. Version 2 currently supports MS Windows (16-bit,
Windows 95 and Windows NT), Unix with GTK+, Unix with Motif, and Mac. An OS/2 port
is in progress.

wxWindows was originally developed at the Artificial Intelligence Applications Institute,
University of Edinburgh, for internal use, and was first made publicly available in 1993.
Version 2 is a vastly improved version written and maintained by Julian Smart, Robert
Roebling, Vadim Zeitlin and many others.

This manual discusses wxWindows in the context of multi-platform development.

Please note that in the following, "MS Windows" often refers to all platforms related to
Microsoft Windows, including 16-bit and 32-bit variants, unless otherwise stated. All
trademarks are acknowledged.

Why another cross-platform development tool?

wxWindows was developed to provide a cheap and flexible way to maximize investment
in GUI application development. While a number of commercial class libraries already
existed for cross-platform development, none met all of the following criteria:

low price;

source availability;

simplicity of programming;

support for a wide range of compilers.

PoONPE

Since wxWindows was started, several other free or almost-free GUI frameworks have
emerged. However, none has the range of features, flexibility, documentation and the
well-established development team that wxWindows has.

As open source software, wxWindows has benefited from comments, ideas, bug fixes,
enhancements and the sheer enthusiasm of users. This gives wxWindows a certain
advantage over its commercial competitors (and over free libraries without an
independent development team), plus a robustness against the transience of one
individual or company. This openness and availability of source code is especially
important when the future of thousands of lines of application code may depend upon
the longevity of the underlying class library.

Version 2 goes much further than previous versions in terms of generality and features,
allowing applications to be produced that are often indistinguishable from those
produced using single-platform toolkits such as Motif, GTK+ and MFC.

The importance of using a platform-independent class library cannot be overstated,
since GUI application development is very time-consuming, and sustained popularity of
particular GUIs cannot be guaranteed. Code can very quickly become obsolete if it

CHAPTER 2

addresses the wrong platform or audience. wxWindows helps to insulate the
programmer from these winds of change. Although wxWindows may not be suitable for
every application (such as an OLE-intensive program), it provides access to most of the
functionality a GUI program normally requires, plus many extras such as network
programming, PostScript output, and HTML rendering; and it can of course be extended
as needs dictate. As a bonus, it provides a far cleaner and easier programming
interface than the native APIs. Programmers may find it worthwhile to use wxWindows
even if they are developing on only one platform.

It is impossible to sum up the functionality of wxWindows in a few paragraphs, but here
are some of the benefits:

Low cost (free, in fact!)

You get the source.

Available on a variety of popular platforms.

Works with almost all popular C++ compilers and Python.
Over 50 example programs.

Over 1000 pages of printable and on-line documentation.

Includes Tex2RTF, to allow you to produce your own documentation in Windows
Help, HTML and Word RTF formats.

Simple-to-use, object-oriented API.

Flexible event system.

Graphics calls include lines, rounded rectangles, splines, polylines, etc.
Constraint-based and sizer-based layouting.

Print/preview and document/view architectures.

Toolbar, notebook, tree control, advanced list control classes.

PostScript generation under Unix, normal MS Windows printing on the PC.

MDI (Multiple Document Interface) support.

Can be used to create DLLs under Windows, dynamic libraries on Unix.
Common dialogs for file browsing, printing, colour selection, etc.

Under MS Windows, support for creating metafiles and copying them to the
clipboard.

An API for invoking help from applications.

Ready-to-use HTML window (supporting a subset of HTML).

Dialog Editor for building dialogs.

Network support via a family of socket and protocol classes.

Support for platform independent image procesing.

Built-in support for many file formats (BMP, PNG, JPEG, GIF, XPM, PNM, PCX).

Changes from version 1.xx
These are a few of the major differences between versions 1.xx and 2.0.
Removals:

XView is no longer supported;

all controls (panel items) no longer have labels attached to them;

wxForm has been removed;

wxCanvasDC, wxPanelDC removed (replaced by wxClientDC, wxWindowDC,

CHAPTER 2

wxPaintDC which can be used for any window);
wxMultiText, wxTextWindow, wxText removed and replaced by wxTextCtrl;
classes no longer divided into generic and platform-specific parts, for efficiency.

Additions and changes:

class hierarchy changed, and restrictions about subwindow nesting lifted;
header files reorganised to conform to normal C++ standards;

classes less dependent on each another, to reduce executable size;
wxString used instead of char* wherever possible;

the number of separate but mandatory utilities reduced;

the event system has been overhauled, with virtual functions and callbacks
being replaced with MFC-like event tables;

new controls, such as wxTreeCtrl, wxListCtrl, wxSpinButton;

less inconsistency about what events can be handled, so for example mouse
clicks or key presses on controls can now be intercepted;

the status bar is now a separate class, wxStatusBar, and is implemented in
generic wxWindows code;

some renaming of controls for greater consistency;

wxBitmap has the notion of bitmap handlers to allow for extension to new
formats without ifdefing;

new dialogs: wxPageSetupDialog, wxFileDialog, wxDirDialog,
wxMessageDialog, wxSingleChoiceDialog, wxTextEntryDialog;

GDI objects are reference-counted and are now passed to most functions by
reference, making memory management far easier;

wxSystemSettings class allows querying for various system-wide properties
such as dialog font, colours, user interface element sizes, and so on;

better platform look and feel conformance;

toolbar functionality now separated out into a family of classes with the same
API;

device contexts are no longer accessed using wxWindow::GetDC - they are
created temporarily with the window as an argument;

events from sliders and scrollbars can be handled more flexibly;

the handling of window close events has been changed in line with the new
event system;

the concept of validator has been added to allow much easier coding of the
relationship between controls and application data;

the documentation has been revised, with more cross-referencing.

Platform-specific changes:

The Windows header file (windows.h) is no longer included by wxWindows
headers;

wx.dll supported under Visual C++;

the full range of Windows 95 window decorations are supported, such as modal
frame borders;

MDI classes brought out of wxFrame into separate classes, and made more
flexible.

CHAPTER 2

Changes from version 2.0
These are a few of the differences between versions 2.0 and 2.2.

Removals:

GTK 1.0 no longer supported.

Additions and changes:

Corrected many classes to conform better to documented behaviour.
Added handlers for more image formats (Now GIF, JPEG, PCX, BMP, XPM,
PNG, PNM).

Improved support for socket and network functions.

Support for different national font encodings.

Sizer based layout system.

HTML widget and help system.

Added some controls (e.g. wxSpinCtrl) and supplemented many.
Many optical improvements to GTK port.

Support for menu accelerators in GTK port.

Enhanced and improved support for scrolling, including child windows.
Complete rewrite of clipboard and drag'n'drop classes.

Improved support for ODBC databases.

Improved tab traversal in dialogs.

wxWindows requirements

To make use of wxWindows, you currently need one or both of the following setups.
(a) PC:

1. A 486 or higher PC running MS Windows.

2. A Windows compiler: most are supported, but please see i nstal | . t xt for
details. Supported compilers include Microsoft Visual C++ 4.0 or higher, Borland
C++, Cygwin, Metrowerks CodeWatrrior.

3. Atleast 60 MB of disk space.

(b) Unix:
1. Almost any C++ compiler, including GNU C++ (EGCS 1.1.1 or above).

2. Almost any Unix workstation, and one of: GTK+ 1.2, Motif 1.2 or higher, Lesstif.
3. Atleast 60 MB of disk space.

Availability and location of wxWindows
wxWindows is available by anonymous FTP and World Wide Web from

ftp://lwww.remstar.com/pub/wxwin (f t p: / / www. r enst ar . com pub/ wxwi n) and/or
http://mww.wxwindows.org (ht t p: / / www. wxwi ndows. or g).

CHAPTER 2

You can also buy a CD-ROM using the form on the Web site, or by contacting:

Julian Smart

12 North Street West
Uppingham

Rutland

LE15 9SG
julian.smart@ukonline.co.uk

Acknowledgments

Thanks are due to AlAI for being willing to release the original version of wxWindows
into the public domain, and to our patient partners.

We would particularly like to thank the following for their contributions to wxWindows,
and the many others who have been involved in the project over the years. Apologies for
any unintentional omissions from this list. Yiorgos Adamopoulos, Jamshid Afshar,
Alejandro Aguilar-Sierra, AlAl, Patrick Albert, Karsten Ballueder, Michael Bedward, Kai
Bendorf, Yura Bidus, Keith Gary Boyce, Chris Breeze, Pete Britton, lan Brown, C.
Buckley, Dmitri Chubraev, Robin Corbet, Cecil Coupe, Andrew Davison, Neil Dudman,
Robin Dunn, Hermann Dunkel, Jos van Eijndhoven, Tom Felici, Thomas Fettig,
Matthew Flatt, Pasquale Foggia, Josep Fortiana, Todd Fries, Dominic Gallagher,
Guillermo Rodriguez Garcia, Wolfram Gloger, Norbert Grotz, Stefan Gunter, Bill Hale,
Patrick Halke, Stefan Hammes, Guillaume Helle, Harco de Hilster, Cord Hockemeyer,
Markus Holzem, Olaf Klein, Leif Jensen, Bart Jourquin, Guilhem Lavaux, Jan Lessner,
Nicholas Liebmann, Torsten Liermann, Per Lindgvist, Thomas Runge, Tatu Mannisto,
Scott Maxwell, Thomas Myers, Oliver Niedung, Stefan Neis, Hernan Otero, lan Perrigo,
Timothy Peters, Giordano Pezzoli, Harri Pasanen, Thomaso Paoletti, Garrett Potts,
Marcel Rasche, Robert Roebling, Dino Scaringella, Jobst Schmalenbach, Arthur Seaton,
Paul Shirley, Vaclav Slavik, Stein Somers, Petr Smilauer, Neil Smith, Kari Syst&, Arthur
Tetzlaff-Deas, Jonathan Tonberg, Jyrki Tuomi, David Webster, Janos Vegh, Andrea
Venturoli, Vadim Zeitlin, Xiaokun Zhu, Edward Zimmermann.

‘Graphplace’, the basis for the wxGraphLayout library, is copyright Dr. Jos T.J. van
Eijndhoven of Eindhoven University of Technology. The code has been used in
wxGraphLayout with his permission.

We also acknowledge the author of XFIG, the excellent Unix drawing tool, from the
source of which we have borrowed some spline drawing code. His copyright is included
below.

XFig2.1 is copyright (c) 1985 by Supoj Sutanthavibul. Permission to use, copy, modify,
distribute, and sell this software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in all copies and that both
that copyright notice and this permission notice appear in supporting documentation, and
that the name of M.L.T. not be used in advertising or publicity pertaining to distribution of
the software without specific, written prior permission. M.I.T. makes no representations
about the suitability of this software for any purpose. It is provided "as is" without
express or implied warranty.

Multi-platform development with wxWindows

This chapter describes the practical details of using wxWindows. Please see the file
install.txt for up-to-date installation instructions, and changes.txt for differences between
versions.

Include files

The main include file is " wx/ wx. h"; this includes the most commonly used modules of
wxWindows.

To save on compilation time, include only those header files relevant to the source file. If
you are using precompiled headers, you should include the following section before any
other includes:

/1 For conpilers that support preconpilation, includes "wx.h"
#i ncl ude <wx/wxprec. h>

#i fdef __ BORLANDC _
#pragma hdr st op
#endi f

#i f ndef WK_PRECOWP

/1 1nclude your mnimal set of headers here, or wx.h
#i ncl ude <wx/wx. h>

#endi f

now your other include files ...

The file " wx/ wxpr ec. h" includes " wx/ wx. h" . Although this incantation may seem
quirky, it is in fact the end result of a lot of experimentation, and several Windows
compilers to use precompilation (those tested are Microsoft Visual C++, Borland C++
and Watcom C++).

Borland precompilation is largely automatic. Visual C++ requires specification of

"wx/ wxprec. h" as the file to use for precompilation. Watcom C++ is automatic apart
from the specification of the .pch file. Watcom C++ is strange in requiring the
precompiled header to be used only for object files compiled in the same directory as
that in which the precompiled header was created. Therefore, the wxWindows Watcom
C++ makefiles go through hoops deleting and recreating a single precompiled header
file for each module, thus preventing an accumulation of many multi-megabyte .pch files.

Libraries

The GTK and Motif ports of wxWindow can create either a static library or a shared
library on most Unix or Unix-like systems. The static library is called libwx_gtk.a and
libwx_motif.a whereas the name of the shared library is dependent on the system it is
created on and the version you are using. The library name for the GTK version of
wxWindows 2.2 on Linux and Solaris will be libwx_gtk-2.2.50.0.0.0, on HP-UX, it will be
libwx_gtk-2.2.sl, on AIX just libwx_gtk.a etc.

Under Windows, use the library wx.lib (release) or wxd.lib (debug) for stand-alone

CHAPTER 3

Windows applications, or wxdll.lib (wxdlld.lib) for creating DLLSs.
Configuration

Options are configurable in the file " wx/ XXX/ set up. h" where XXX is the required
platform (such as msw, motif, gtk, mac). Some settings are a matter of taste, some help
with platform-specific problems, and others can be set to minimize the size of the library.
Please see the setup.h file and i nst al | . t xt files for details on configuration.

Under Unix (GTK and Motif) the corresponding setup.h files are generated automatically
when configuring the wxWindows using the "configure" script. When using the RPM
packages for installing wxWindows on Linux, a correct setup.h is shipped in the package
and this must not be changed.

Makefiles

At the moment there is no attempt to make Unix makefiles and PC makefiles compatible,
i.e. one makefile is required for each environment. The Unix ports use a sophisticated
system based on the GNU autoconf tool and this system will create the makefiles as
required on the respective platform. Although the makefiles are not identical in Windows,
Mac and Unix, care has been taken to make them relatively similar so that moving from
one platform to another will be painless.

Sample makefiles for Unix (suffix .unx), MS C++ (suffix .DOS and .NT), Borland C++
(.BCC and .B32) and Symantec C++ (.SC) are included for the library, demos and
utilities.

The controlling makefile for wxWindows is in the MS-Windows directory sr ¢/ nswfor the
different Windows compiler and in the build directory when using the Unix ports. The
build directory can be chosen by the user. It is the directory in which the "configure"
script is run. This can be the normal base directory (by running . / conf i gur e there) or
any other directory (e.g. . . / conf i gur e after creating a build-directory in the directory
level above the base directory).

Please see the platform-specifici nst al | . t xt file for further details.
Windows-specific files

wxWindows application compilation under MS Windows requires at least two extra files,
resource and module definition files.

Resource file

The least that must be defined in the Windows resource file (extension RC) is the
following statement:

rci ncl ude "wx/ nsw wx. rc"

which includes essential internal wxWindows definitions. The resource script may also

CHAPTER 3

contain references to icons, cursors, etc., for example:

WXi con i con WX.ico

The icon can then be referenced by name when creating a frame icon. See the MS
Windows SDK documentation.

Note: include wx.rc after any ICON statements so programs that search your executable
for icons (such as the Program Manager) find your application icon first.

Module definition file

A module definition file (extension DEF) is required for 16-bit applications, and looks like
the following:

NAVE Hell o

DESCRI PTION 'Hello

EXETYPE W NDOWNG

STUB "W NSTUB. EXE'

CODE PRELOAD MOVEABLE DI SCARDABLE
DATA PRELOAD MOVEABLE MJLTI PLE
HEAPSI ZE 1024

STACKSI ZE 8192

The only lines which will usually have to be changed per application are NAME and
DESCRIPTION.

Allocating and deleting wxWindows objects

In general, classes derived from wxWindow must dynamically allocated with new and
deleted with delete. If you delete a window, all of its children and descendants will be
automatically deleted, so you don't need to delete these descendants explicitly.

When deleting a frame or dialog, use Destroy rather than delete so that the wxWindows
delayed deletion can take effect. This waits until idle time (when all messages have been
processed) to actually delete the window, to avoid problems associated with the GUI
sending events to deleted windows.

Don't create a window on the stack, because this will interfere with delayed deletion.

If you decide to allocate a C++ array of objects (such as wxBitmap) that may be cleaned
up by wxwWindows, make sure you delete the array explicitly before wxWindows has a
chance to do so on exit, since calling delete on array members will cause memory
problems.

wxColour can be created statically: it is not automatically cleaned up and is unlikely to be
shared between other objects; it is lightweight enough for copies to be made.

Beware of deleting objects such as a wxPen or wxBitmap if they are still in use.
Windows is particularly sensitive to this: so make sure you make calls like

CHAPTER 3

wxDC::SetPen(wxNullPen) or wxDC::SelectObject(wxNullBitmap) before deleting a
drawing object that may be in use. Code that doesn't do this will probably work fine on
some platforms, and then fail under Windows.

Architecture dependency

A problem which sometimes arises from writing multi-platform programs is that the basic
C types are not defiend the same on all platforms. This holds true for both the length in
bits of the standard types (such as int and long) as well as their byte order, which might
be little endian (typically on Intel computers) or big endian (typically on some Unix
workstations). wxWindows defines types and macros that make it easy to write
architecture independent code. The types are:

wxInt32, wxInt16, wxInt8, wxUint32, wxUint16 = wxWord, wxUint8 = wxByte

where wxInt32 stands for a 32-bit signed integer type etc. You can also check which
architecture the program is compiled on using the wxBYTE_ORDER define which is
either wxBIG_ENDIAN or wxLITTLE_ENDIAN (in the future maybe wxPDP_ENDIAN as
well).

The macros handling bit-swapping with respect to the applications endianness are
described in the Macros (p. 1139) section.

Conditional compilation

One of the purposes of wxWindows is to reduce the need for conditional compilation in
source code, which can be messy and confusing to follow. However, sometimes it is
necessary to incorporate platform-specific features (such as metafile use under MS
Windows). The symbols listed in the file synbol s. t xt may be used for this purpose,
along with any user-supplied ones.

C++ issues

The following documents some miscellaneous C++ issues.

Templates

wxWindows does not use templates since it is a notoriously unportable feature.

RTTI

wxWindows does not use run-time type information since wxWindows provides its own
run-time type information system, implemented using macros.

Type of NULL

Some compilers (e.g. the native IRIX cc) define NULL to be OL so that no conversion to

CHAPTER 3

pointers is allowed. Because of that, all these occurences of NULL in the GTK port use
an explicit conversion such as

wxW ndow *ny_wi ndow = (wxW ndow*) NULL;

It is recommended to adhere to this in all code using wxWindows as this make the code
(a bit) more portable.

Precompiled headers

Some compilers, such as Borland C++ and Microsoft C++, support precompiled
headers. This can save a great deal of compiling time. The recommended approach is to
precompile " wx. h" , using this precompiled header for compiling both wxWindows itself
and any wxWindows applications. For Windows compilers, two dummy source files are
provided (one for normal applications and one for creating DLLS) to allow initial creation
of the precompiled header.

However, there are several downsides to using precompiled headers. One is that to take
advantage of the facility, you often need to include more header files than would
normally be the case. This means that changing a header file will cause more
recompilations (in the case of wxWindows, everything needs to be recompiled since
everything includes " wx. h" 1)

A related problem is that for compilers that don't have precompiled headers, including a
lot of header files slows down compilation considerably. For this reason, you will find (in
the common X and Windows parts of the library) conditional compilation that under Unix,
includes a minimal set of headers; and when using Visual C++, includes wx. h. This
should help provide the optimal compilation for each compiler, although it is biassed
towards the precompiled headers facility available in Microsoft C++.

File handling

When building an application which may be used under different environments, one
difficulty is coping with documents which may be moved to different directories on other
machines. Saving a file which has pointers to full pathnames is going to be inherently
unportable. One approach is to store filenames on their own, with no directory
information. The application searches through a number of locally defined directories to
find the file. To support this, the class wxPathList makes adding directories and
searching for files easy, and the global function wxFileNameFromPath allows the
application to strip off the filename from the path if the filename must be stored. This has
undesirable ramifications for people who have documents of the same name in different
directories.

As regards the limitations of DOS 8+3 single-case filenames versus unrestricted Unix
filenames, the best solution is to use DOS filenames for your application, and also for
document filenames if the user is likely to be switching platforms regularly. Obviously
this latter choice is up to the application user to decide. Some programs (such as YACC

10

CHAPTER 3

and LEX) generate filenames incompatible with DOS; the best solution here is to have
your Unix makefile rename the generated files to something more compatible before
transferring the source to DOS. Transferring DOS files to Unix is no problem, of course,
apart from EOL conversion for which there should be a utility available (such as
dos2unix).

See also the File Functions section of the reference manual for descriptions of
miscellaneous file handling functions.

11

Programming strategies

This chapter is intended to list strategies that may be useful when writing and debugging
wxWindows programs. If you have any good tips, please submit them for inclusion here.

Strategies for reducing programming errors

Use ASSERT

Although | haven't done this myself within wxWindows, it is good practice to use
ASSERT statements liberally, that check for conditions that should or should not hold,
and print out appropriate error messages. These can be compiled out of a non-
debugging version of wxWindows and your application. Using ASSERT is an example of
‘defensive programming': it can alert you to problems later on.

Use wxString in preference to character arrays

Using wxString can be much safer and more convenient than using char *. Again, |
haven't practised what I'm preaching, but I'm now trying to use wxString wherever
possible. You can reduce the possibility of memory leaks substantially, and it's much
more convenient to use the overloaded operators than functions such as strcmp.
wxString won't add a significant overhead to your program; the overhead is
compensated for by easier manipulation (which means less code).

The same goes for other data types: use classes wherever possible.

Strategies for portability

Use relative positioning or constraints

Don't use absolute panel item positioning if you can avoid it. Different GUIs have very
differently sized panel items. Consider using the constraint system, although this can be
complex to program.

Alternatively, you could use alternative .wrc (wxWindows resource files) on different

platforms, with slightly different dimensions in each. Or space your panel items out to
avoid problems.

Use wxWindows resource files
Use .wrc (wxWindows resource files) where possible, because they can be easily
changed independently of source code. Bitmap resources can be set up to load different

kinds of bitmap depending on platform (see the section on resource files).

Strategies for debugging

12

CHAPTER 4

Positive thinking

It's common to blow up the problem in one's imagination, so that it seems to threaten
weeks, months or even years of work. The problem you face may seem insurmountable:
but almost never is. Once you have been programming for some time, you will be able to
remember similar incidents that threw you into the depths of despair. But remember, you
always solved the problem, somehow!

Perseverance is often the key, even though a seemingly trivial problem can take an
apparently inordinate amount of time to solve. In the end, you will probably wonder why
you worried so much. That's not to say it isn't painful at the time. Try not to worry -- there
are many more important things in life.

Simplify the problem

Reduce the code exhibiting the problem to the smallest program possible that exhibits
the problem. If it is not possible to reduce a large and complex program to a very small
program, then try to ensure your code doesn't hide the problem (you may have
attempted to minimize the problem in some way: but now you want to expose it).

With luck, you can add a small amount of code that causes the program to go from
functioning to non-functioning state. This should give a clue to the problem. In some
cases though, such as memory leaks or wrong deallocation, this can still give totally
spurious results!

Use a debugger

This sounds like facetious advice, but it's surprising how often people don't use a
debugger. Often it's an overhead to install or learn how to use a debugger, but it really is
essential for anything but the most trivial programs.

Use logging functions

There is a variety of logging functions that you can use in your program: see Logging
functions (p. 1150).

Using tracing statements may be more convenient than using the debugger in some
circumstances (such as when your debugger doesn't support a lot of debugging code, or
you wish to print a bunch of variables).

Use the wxWindows debugging facilities
You can use wxDebugContext to check for memory leaks and corrupt memory: in fact in

debugging mode, wxWindows will automatically check for memory leaks at the end of
the program if wxWindows is suitably configured. Depending on the operating system

13

CHAPTER 4

and compiler, more or less specific information about the problem will be logged.

You should also use debug macros (p. 1153) as part of a ‘defensive programming'
strategy, scattering WxASSERTS liberally to test for problems in your code as early as
possible. Forward thinking will save a surprising amount of time in the long run.

See the debugging overview (p. 1199) for further information.

Check Windows debug messages

Under Windows, it's worth running your program with DbgView

(http://ww. sysi nt ernal s. com running or some other program that shows
Windows-generated debug messages. It's possible it'll show invalid handles being used.
You may have fun seeing what commercial programs cause these normally hidden
errors! Microsoft recommend using the debugging version of Windows, which shows up
even more problems. However, | doubt it's worth the hassle for most applications.
wxWindows is designed to minimize the possibility of such errors, but they can still
happen occasionally, slipping through unnoticed because they are not severe enough to
cause a crash.

Genetic mutation

If we had sophisticated genetic algorithm tools that could be applied to programming, we
could use them. Until then, a common -- if rather irrational -- technique is to just make
arbitrary changes to the code until something different happens. You may have an
intuition why a change will make a difference; otherwise, just try altering the order of
code, comment lines out, anything to get over an impasse. Obviously, this is usually a
last resort.

14

Alphabetical class reference

wxAcceleratorEntry

An object used by an application wishing to create an accelerator table (p. 16).
Derived from

None

Include files

<wx/accel.h>

See also

wxAcceleratorTable (p. 16), wxWindow::SetAcceleratorTable (p. 1084)

wxAcceleratorEntry::wxAcceleratorEntry

wxAcceleratorEntry()

Default constructor.

wxAcceleratorEntry(int flags, int keyCode, int cmd)

Constructor.

Parameters

flags
One of wxACCEL_ALT, wxACCEL_SHIFT, wxACCEL_CTRL and
WXACCEL_NORMAL. Indicates which maodifier key is held down.

keyCode
The keycode to be detected. See Keycodes (p. 1155) for a full list of keycodes.

cmd

The menu or control command identifier.
wxAcceleratoreEntry::GetCommand
int GetCommand() const

Returns the command identifier for the accelerator table entry.

15

CHAPTER 5

wxAcceleratorEntry::GetFlags
int GetFlags() const

Returns the flags for the accelerator table entry.

wxAcceleratoreEntry::GetKeyCode
int GetKeyCode() const

Returns the keycode for the accelerator table entry.

wxAcceleratorEntry::Set

void Set(int flags, int keyCode, int cmd)

Sets the accelerator entry parameters.

Parameters

flags
One of wxACCEL_ALT, wxACCEL_SHIFT, wxACCEL_CTRL and
WXACCEL_NORMAL. Indicates which modifier key is held down.

keyCode
The keycode to be detected. See Keycodes (p. 1155) for a full list of keycodes.

cmd
The menu or control command identifier.

wxAcceleratorTable
An accelerator table allows the application to specify a table of keyboard shortcuts for
menus or other commands. On Windows, menu or button commands are supported; on

GTK, only menu commands are supported.

The object wxNullAcceleratorTable is defined to be a table with no data, and is the
initial accelerator table for a window.

Derived from
wxObject (p. 627)
Include files

<wx/accel.h>

16

CHAPTER 5

Example

wxAccel eratorEntry entries[4];

entries[0].Set (WwACCEL_CTRL, (int) 'N, | D_NEW W NDOW ;
entries[1].Set (WwACCEL_CTRL, (int) 'X, wxl D EXIT);
entries[2].Set (WwACCEL_SHI FT, (int) 'A', | D_ABQUT) ;
entries[3]. Set (WxACCEL_NORVAL, WKK_DELETE, wx| D_CUT) ;

wxAccel er at or Tabl e accel (4, entries);
franme- >Set Accel er at or Tabl e(accel) ;

Remarks

An accelerator takes precedence over normal processing and can be a convenient way
to program some event handling. For example, you can use an accelerator table to
enable a dialog with a multi-line text control to accept CTRL-Enter as meaning 'OK' (but
not in GTK at present).

See also

wxAcceleratorEntry (p. 15), wxWindow::SetAcceleratorTable (p. 1084)

wxAcceleratorTable::wxAcceleratorTable
wxAcceleratorTable()

Default constructor.

wxAcceleratorTable(const wxAcceleratorTable& bitmap)

Copy constructor.

wxAcceleratorTable(int n, wxAcceleratorEntry entries][])

Creates from an array of wxAcceleratorEntry (p. 15) objects.
wxAcceleratorTable(const wxString& resource)

Loads the accelerator table from a Windows resource (Windows only).

Parameters

Number of accelerator entries.

entries
The array of entries.

17

CHAPTER 5

resource
Name of a Windows accelerator.

wxPython note: The wxPython constructor accepts a list of wxAcceleratorEntry objects,
or 3-tuples consisting of flags, keyCode, and cmd values like you would construct
wxAcceleratorEntry objects with.

wxAcceleratorTable::~wxAcceleratorTable

~wxAcceleratorTable()

Destroys the wxAcceleratorTable object.

wxAcceleratorTable::Ok
bool Ok() const

Returns TRUE if the accelerator table is valid.

wxAcceleratorTable::operator =
wxAcceleratorTable& operator =(const wxAcceleratorTable& accel)

Assignment operator. This operator does not copy any data, but instead passes a
pointer to the data in accel and increments a reference counter. It is a fast operation.

Parameters

accel
Accelerator table to assign.

Return value

Returns reference to this object.

wxAcceleratorTable::operator ==
bool operator ==(const wxAcceleratorTable& accel)

Equality operator. This operator tests whether the internal data pointers are equal (a fast
test).

Parameters

accel

18

CHAPTER 5

Accelerator table to compare with
Return value

Returns TRUE if the accelerator tables were effectively equal, FALSE otherwise.

wxAcceleratorTable::operator !=
bool operator !=(const wxAcceleratorTable& accel)

Inequality operator. This operator tests whether the internal data pointers are unequal (a
fast test).

Parameters

accel
Accelerator table to compare with

Return value

Returns TRUE if the accelerator tables were unequal, FALSE otherwise.
wxActivateEvent

An activate event is sent when a window or application is being activated or deactivated.
Derived from

wxEvent (p. 274)
wxObiject (p. 627)

Include files
<wx/event.h>
Event table macros

To process an activate event, use these event handler macros to direct input to a
member function that takes a wxActivateEvent argument.

EVT_ACTIVATE(func) Process a wxEVT_ACTIVATE event.
EVT_ACTIVATE_APP(func) Process a wxEVT_ACTIVATE_APP event.
Remarks

A top-level window (a dialog or frame) receives an activate event when is being
activated or deactivated. This is indicated visually by the title bar changing colour, and a
subwindow gaining the keyboard focus.

19

CHAPTER 5

An application is activated or deactivated when one of its frames becomes activated, or
a frame becomes inactivate resulting in all application frames being inactive. (Windows

only)

See also

wxWindow::OnActivate (p. 1068), wxApp::OnActivate (p. 24), Event handling overview
(p. 1207)

wxActivateEvent::wxActivateEvent
wxActivateEvent(WXTYPE eventType = 0, bool active = TRUE, int id = 0)

Constructor.

wxActivateEvent::m_active
bool m_active

TRUE if the window or application was activated.

wxActivateEvent::GetActive

bool GetActive() const

Returns TRUE if the application or window is being activated, FALSE otherwise.
WXApp

The wxApp class represents the application itself. It is used to:

set and get application-wide properties;

implement the windowing system message or event loop;

initiate application processing via wxApp::Onlinit (p. 26);

allow default processing of events not handled by other objects in the
application.

You should use the macro IMPLEMENT_APP(appClass) in your application
implementation file to tell wxWindows how to create an instance of your application
class.

Use DECLARE_APP(appClass) in a header file if you want the wxGetApp function
(which returns a reference to your application object) to be visible to other files.

Derived from

20

CHAPTER 5

wxEvtHandler (p. 277)
wxObiject (p. 627)

Include files
<wx/app.h>
See also

WXApp overview (p. 1179)

WXAppP::WXAPpP

void wxApp()

Constructor. Called implicitly with a definition of a wxApp object.

The argument is a language identifier; this is an experimental feature and will be
expanded and documented in future versions.

WXApPP::~WXApPP

void ~wxApp()

Destructor. Will be called implicitly on program exit if the wxApp object is created on the
stack.

WXApp::argc

int argc

Number of command line arguments (after environment-specific processing).

WXApp::argv
char ** argv

Command line arguments (after environment-specific processing).

WxApp::CreateLogTarget

virtual wxLog* CreateLogTarget()

21

CHAPTER 5

Creates a wxLog class for the application to use for logging errors. The default
implementation returns a new wxLogGui class.

See also

wxLog (p. 540)

WxApp::Dispatch
void Dispatch()
Dispatches the next event in the windowing system event queue.

This can be used for programming event loops, e.g.

whi l e (app. Pendi ng())
Di spatch();

See also

wxApp::Pending (p. 28)

WxApp::GetAppName

wxString GetAppName() const

Returns the application name.

Remarks

wxWindows sets this to a reasonable default before calling wxApp::Onlnit (p. 26), but the
application can reset it at will.

WxApp::GetAuto3D

bool GetAuto3D() const

Returns TRUE if 3D control mode is on, FALSE otherwise.

See also

wxApp::SetAuto3D (p. 29)

WxApp::GetClassName

wxString GetClassName() const

22

CHAPTER 5

Gets the class name of the application. The class name may be used in a platform
specific manner to refer to the application.

See also

wxApp::SetClassName (p. 29)

WXApp::GetExitOnFrameDelete
bool GetExitFrameOnDelete() const

Returns TRUE if the application will exit when the top-level window is deleted, FALSE
otherwise.

See also

wxApp::SetExitOnFrameDelete (p. 29)

WxApp::GetTopWindow
wxWindow * GetTopWindow() const
Returns a pointer to the top window.
Remarks

If the top window hasn't been set using wxApp::SetTopWindow (p. 30), this function will
find the first top-level window (frame or dialog) and return that.

See also

SetTopWindow (p. 30)

WxApp::GetUseBestVisual
bool GetUseBestVisual() const

Returns TRUE if the application will use the best visual on systems that support different
visuals, FALSE otherwise.

See also

SetUseBestVisual (p. 31)

WxApp::GetVendorName

23

CHAPTER 5

wxString GetVendorName() const

Returns the application's vendor name.

WxApp::ExitMainLoop

void ExitMainLoop()

Call this to explicitly exit the main message (event) loop. You should normally exit the
main loop (and the application) by deleting the top window.

WxApp::Initialized

bool Initialized()

Returns TRUE if the application has been initialized (i.e. if wxApp::Oninit (p. 26) has
returned successfully). This can be useful for error message routines to determine
which method of output is best for the current state of the program (some windowing
systems may not like dialogs to pop up before the main loop has been entered).
WXxApp::MainLoop

int MainLoop()

Called by wxWindows on creation of the application. Override this if you wish to provide
your own (environment-dependent) main loop.

Return value

Returns 0 under X, and the wParam of the WM_QUIT message under Windows.

WXxApp::OnActivate
void OnActivate(wxActivateEvent& event)

Provide this member function to know whether the application is being activated or
deactivated (Windows only).

See also

wxWindow::OnActivate (p. 1068), wxActivateEvent (p. 19)

WXAppP::OnExit

24

CHAPTER 5

int OnExit()

Provide this member function for any processing which needs to be done as the
application is about to exit.

WxApp::OnCharHook

void OnCharHook(wxKeyEvent& event)

This event handler function is called (under Windows only) to allow the window to
intercept keyboard events before they are processed by child windows.

Parameters

event
The keypress event.

Remarks
Use the wxEVT_CHAR_HOOK macro in your event table.

If you use this member, you can selectively consume keypress events by calling
wxEvent::Skip (p. 277) for characters the application is not interested in.

See also

wxKeyEvent (p. 497), wxWindow::OnChar (p. 1069), wxWindow::OnCharHook (p. 1069),
wxDialog::OnCharHook (p. 224)

WXxApp::OnFatalException

void OnFatalException()

This function may be called if something fatal happens: an unhandled exception under
Win32 or a a fatal signal under Unix, for example. However, this will not happen by
default: you have to explicitly call wxHandleFatalExceptions (p. 1132) to enable this.
Generally speaking, this function should only show a message to the user and return.
You may attempt to save unsaved data but this is not guaranteed to work and, in fact,
probably won't.

See also

wxHandleFatalExcetions (p. 1132)

WXxApp::Onidle

25

CHAPTER 5

void Onldle(wxldleEvent& event)

Override this member function for any processing which needs to be done when the
application is idle. You should call wxApp::Onldle from your own function, since this
forwards Onldle events to windows and also performs garbage collection for windows
whose destruction has been delayed.

wxWindows' strategy for Onldle processing is as follows. After pending user interface
events for an application have all been processed, wxWindows sends an Onldle event to
the application object. wxApp::Onldle itself sends an Onldle event to each application
window, allowing windows to do idle processing such as updating their appearance. If
either wxApp::Onldle or a window Onldle function requested more time, by caling
wxldleEvent::RequestMore (p. 451), wxWindows will send another Onldle event to the
application object. This will occur in a loop until either a user event is found to be
pending, or Onldle requests no more time. Then all pending user events are processed
until the system goes idle again, when Onldle is called, and so on.

See also

wxWindow::Onldle (p. 1074), wxldleEvent (p. 450), wxWindow::SendldleEvents (p. 28)

WXApp::OnEndSession

void OnEndSession(wxCloseEvent& event)

This is an event handler function called when the operating system or GUI session is
about to close down. The application has a chance to silently save information, and can
optionally close itself.

Use the EVT_END_SESSION event table macro to handle query end session events.

The default handler calls wxWindow::Close (p. 1053) with a TRUE argument (forcing the
application to close itself silently).

Remarks
Under X, OnEndSession is called in response to the 'die’ event.

Under Windows, OnEndSession is called in response to the WM_ENDSESSION
message.

See also

wxWindow::Close (p. 1053), wxWindow::OnCloseWindow (p. 1071), wxCloseEvent (p.
109), wxApp::OnQueryEndSession (p. 27)

WXAppP::Onlinit

bool Oninit()

26

CHAPTER 5

This must be provided by the application, and will usually create the application's main
window, optionally calling wxApp::SetTopWindow (p. 30).

Return TRUE to continue processing, FALSE to exit the application.

WXAppP::OnQueryEndSession

void OnQueryEndSession(wxCloseEvent& event)

This is an event handler function called when the operating system or GUI session is
about to close down. Typically, an application will try to save unsaved documents at this
point.

If wxCloseEvent::CanVeto (p. 109) returns TRUE, the application is allowed to veto the
shutdown by calling wxCloseEvent::Veto (p. 110). The application might veto the
shutdown after prompting for documents to be saved, and the user has cancelled the
save.

Use the EVT_QUERY_END_SESSION event table macro to handle query end session
events.

You should check whether the application is forcing the deletion of the window using
wxCloseEvent::GetForce (p. 110). If this is TRUE, destroy the window using
wxWindow::Destroy (p. 1055). If not, it is up to you whether you respond by destroying
the window.

The default handler calls wxWindow::Close (p. 1053) on the top-level window, and
vetoes the shutdown if Close returns FALSE. This will be sufficient for many
applications.

Remarks

Under X, OnQueryEndSession is called in response to the 'save session' event.

Under Windows, OnQueryEndSession is called in response to the
WM_QUERYENDSESSION message.

See also

wxWindow::Close (p. 1053), wxWindow::OnCloseWindow (p. 1071), wxCloseEvent (p.
109), wxApp::OnEndSession (p. 26)

WXApp::ProcessMessage

bool ProcessMessage(MSG *msg)

Windows-only function for processing a message. This function is called from the main
message loop, checking for windows that may wish to process it. The function returns

27

CHAPTER 5

TRUE if the message was processed, FALSE otherwise. If you use wxWindows with
another class library with its own message loop, you should make sure that this function
is called to allow wxWindows to receive messages. For example, to allow co-existance
with the Microsoft Foundation Classes, override the PreTranslateMessage function:

/1 Provide wxW ndows nessage | oop conpatibility
BOOL CTheApp: : PreTransl at eMessage(M5G *nsQ)

if (wxTheApp && wxTheApp- >Pr ocessMessage(nsg))
return TRUE;

el se
return CW nApp: : PreTransl at eMessage(nsg) ;

WxApp::Pending

bool Pending()

Returns TRUE if unprocessed events are in the window system event queue.
See also

wxApp::Dispatch (p. 22)

WxApp::SendldleEvents

bool SendldleEvents()

Sends idle events to all top-level windows.
bool SendldleEvents(wxWindow* win)
Sends idle events to a window and its children.
Remarks

These functions poll the top-level windows, and their children, for idle event processing.
If TRUE is returned, more Onldle processing is requested by one or more window.

See also

wxApp::Onldle (p. 25), wxWindow::Onldle (p. 1074), wxldleEvent (p. 450)

WxApp::SetAppName
void SetAppName(const wxString& name)

Sets the name of the application. The name may be used in dialogs (for example by the

28

CHAPTER 5

document/view framework). A default name is set by wxWindows.
See also

WxApp::GetAppName (p. 22)

WxApp::SetAuto3D

void SetAuto3D(const bool auto3D)

Switches automatic 3D controls on or off.

Parameters

auto3D
If TRUE, all controls will be created with 3D appearances unless overridden for a
control or dialog. The default is TRUE

Remarks

This has an effect on Windows only.

See also

WxApp::GetAuto3D (p. 22)

WxApp::SetClassName
void SetClassName(const wxString& name)

Sets the class name of the application. This may be used in a platform specific manner
to refer to the application.

See also

wxApp::GetClassName (p. 22)

WXApp::SetExitOnFrameDelete
void SetExitOnFrameDelete(bool flag)

Allows the programmer to specify whether the application will exit when the top-level
frame is deleted.

Parameters

flag

29

CHAPTER 5

If TRUE (the default), the application will exit when the top-level frame is deleted. If
FALSE, the application will continue to run.
WXApp::SetTopWindow
void SetTopWindow(wxWindow* window)
Sets the 'top' window. You can call this from within wxApp::Oninit (p. 26) to let
wxWindows know which is the main window. You don't have to set the top window; it's
only a convenience so that (for example) certain dialogs without parents can use a
specific window as the top window. If no top window is specified by the application,
wxWindows just uses the first frame or dialog in its top-level window list, when it needs
to use the top window.

Parameters

window
The new top window.

See also

WxApp::GetTopWindow (p. 23), wxApp::Onlnit (p. 26)

WxApp::SetVendorName
void SetVendorName(const wxString& name)

Sets the name of application's vendor. The name will be used in registry access. A
default name is set by wxWindows.

See also

wxApp::GetVendorName (p. 23)

WxApp::GetStdicon

virtual wxlcon GetStdlcon(int which) const

Returns the icons used by wxWindows internally, e.g. the ones used for message
boxes. This function is used internally and can be overridden by the user to change the
default icons.

Parameters

which
One of the wxICON_XXX specifies which icon to return.

30

CHAPTER 5

See wxMessageBox (p. 1114) for a list of icon identifiers.

WXApp::SetUseBestVisual
void SetUseBestVisual(bool flag)

Allows the programmer to specify whether the application will use the best visual on
systems that support several visual on the same display. This is typically the case under
Solaris and IRIX, where the default visual is only 8-bit whereas certain appications are
supposed to run in TrueColour mode.

Note that this function has to be called in the constructor of the wxApp instance and
won't have any effect when called later on.

This function currently only has effect under GTK.
Parameters

flag
If TRUE, the app will use the best visual.

WXArray

This section describes the so called dynamic arrays. This is a C array-like data structure
i.e. the member access time is constant (and not linear according to the number of
container elements as for linked lists). However, these arrays are dynamic in the sense
that they will automatically allocate more memory if there is not enough of it for adding a
new element. They also perform range checking on the index values but in debug mode
only, so please be sure to compile your application in debug mode to use it (see
debugging overview (p. 1199) for details). So, unlike the arrays in some other
languages, attempt to access an element beyond the arrays bound doesn't automatically
expand the array but provokes an assertion failure instead in debug build and does
nothing (except possibly crashing your program) in the release build.

The array classes were designed to be reasonably efficient, both in terms of run-time
speed and memory consumption and the executable size. The speed of array item
access is, of course, constant (independent of the number of elements) making them
much more efficient than linked lists (wxList (p. 505)). Adding items to the arrays is also
implemented in more or less constant time - but the price is preallocating the memory in
advance. In the memory management (p. 34) section you may find some useful hints
about optimizing wxArray memory usage. As for executable size, all wxArray functions
are inline, so they do not take any space at all.

wxWindows has three different kinds of array. All of them derive from wxBaseArray class
which works with untyped data and can not be used directly. The standard macros
WX_DEFINE_ARRAY(), WX_DEFINE_SORTED_ARRAY() and
WX_DEFINE_OBJARRAY() are used to define a new class deriving from it. The classes
declared will be called in this documentation wxArray, wxSortedArray and wxObjArray
but you should keep in mind that no classes with such names actually exist, each time

31

CHAPTER 5

you use one of WX_DEFINE_XXXARRAY macro you define a class with a new name. In
fact, these names are "template" names and each usage of one of the macros
mentioned above creates a template specialization for the given element type.

wxArray is suitable for storing integer types and pointers which it does not treat as
objects in any way, i.e. the element pointed to by the pointer is not deleted when the
element is removed from the array. It should be noted that all of wxArray's functions are
inline, so it costs strictly nothing to define as many array types as you want (either in
terms of the executable size or the speed) as long as at least one of them is defined and
this is always the case because wxArrays are used by wxWindows internally. This class
has one serious limitation: it can only be used for storing integral types (bool, char, short,
int, long and their unsigned variants) or pointers (of any kind). An attempt to use with
objects of sizeof() greater than sizeof(long) will provoke a runtime assertion failure,
however declaring a wxArray of floats will not (on the machines where sizeof(float) <=
sizeof(long)), yet it will not work, please use wxObjArray for storing floats and doubles
(NB: a more efficient wxArrayDouble class is scheduled for the next release of
wxWindows).

wxSortedArray is a wxArray variant which should be used when searching in the array is
a frequently used operation. It requires you to define an additional function for comparing
two elements of the array element type and always stores its items in the sorted order
(according to this function). Thus, it's Index() (p. 40) function execution time is O(log(N))
instead ofO(N) for the usual arrays but the Add() (p. 38) method is slower: it is O(log(N))
instead of constant time (neglecting time spent in memory allocation routine). However,
in a usual situation elements are added to an array much less often than searched inside
it, so wxSortedArray may lead to huge performance improvements compared to
wxArray. Finally, it should be noticed that, as wxArray, wxSortedArray can be only used
for storing integral types or pointers.

wxObjArray class treats its elements like "objects". It may delete them when they are
removed from the array (invoking the correct destructor) and copies them using the
objects copy constructor. In order to implement this behaviour the definition of the
wxObjArray arrays is split in two parts: first, you should declare the new wxObjArray
class using WX_DECLARE_OBJARRAY() macro and then you must include the file
defining the implementation of template type: <wx/arrimpl.cpp> and define the array
class with WX_DEFINE_OBJARRAY() macro from a point where the full (as opposed to
‘forward’) declaration of the array elements class is in scope. As it probably sounds very
complicated here is an example:

#i ncl ude <wx/dynarray. h>

/1 we must forward declare the array because it's used inside the class
/1 declaration

class MyDirectory;

cl ass MyFil e;

/1 this defines two new types: ArrayOfDirectories and ArrayO Fil es
whi ch can be

/1 now used as shown bel ow

WK_DECLARE_OBJARRAY(MyDirectory, ArrayOfDirectories);
WK_DECLARE_OBJARRAY(MYFi | e, ArrayO Fil es);

32

CHAPTER 5

class MyDirectory

{

ArrayOFrDirectories msubdirectories; // all subdirectories
ArrayOrFil es mfiles; /1 all files in this directory

/1 now that we have MyDirectory declaration in scope we may finish the
/! definition of ArrayODirectories -- note that this expands into sone
C++

/1 code and so should only be conpiled once (i.e., don't put this in

t he

/1 header, but into a source file or you will get linkin errors)
#include <wx/arrinpl.cpp>// this is a magic incantation which nust be
done!

WK_DEFI NE_OBJARRAY(ArrayOrDi rectori es);

/1 that's all!
Itis not as elegant as writing

typedef std::vector<MyDirectory> ArrayO Directories;

but is not that complicated and allows the code to be compiled with any, however dumb,
C++ compiler in the world.

Things are much simpler for wxArray and wxSortedArray however: it is enough just to
write

WK_DEFI NE_ARRAY(M/Di rectory *, ArrayOfrDirectories);
WK_DEFI NE_SORTED_ARRAY(MW/File *, ArrayOFiles);

See also:
Container classes overview (p. 1193), wxList (p. 505)
Include files

<wx/dynarray.h> for wxArray and wxSortedArray and additionally <wx/arrimpl.cpp> for
wxObjArray.

Macros for template array definition

To use an array you must first define the array class. This is done with the help of the
macros in this section. The class of array elements must be (at least) forward declared
for WX_DEFINE_ARRAY, WX_DEFINE_SORTED_ARRAY and
WX_DECLARE_OBJARRAY macros and must be fully declared before you use
WX_DEFINE_OBJARRAY macro.

33

CHAPTER 5

WX_DEFINE_ARRAY (p. 35)
WX_DEFINE_EXPORTED_ARRAY (p. 35)
WX_DEFINE_SORTED_ARRAY (p. 35)
WX_DEFINE_SORTED_EXPORTED_ARRAY (p. 35)
WX_DECLARE_EXPORTED_OBJARRAY (p. 36)
WX_DEFINE_OBJARRAY (p. 37)

Constructors and destructors

Array classes are 100% C++ objects and as such they have the appropriate copy
constructors and assignment operators. Copying wxArray just copies the elements but
copying wxObjArray copies the arrays items. However, for memory-efficiency sake,
neither of these classes has virtual destructor. It is not very important for wxArray which
has trivial destructor anyhow, but it does mean that you should avoid deleting
wxObjArray through a wxBaseArray pointer (as you would never use wxBaseArray
anyhow it shouldn't be a problem) and that you should not derive your own classes from
the array classes.

wxArray default constructor (p. 37)
wxArray copy constructors and assignment operators (p. 38)
~wxArray (p. 38)

Memory management

Automatic array memory management is quite trivial: the array starts by preallocating
some minimal amount of memory (defined by WX_ARRAY_DEFAULT_INITIAL_SIZE)
and when further new items exhaust already allocated memory it reallocates it adding
50% of the currently allocated amount, but no more than some maximal number which is
defined by ARRAY_MAXSIZE_INCREMENT constant. Of course, this may lead to some
memory being wasted (ARRAY_MAXSIZE_INCREMENT in the worst case, i.e. 4Kb in
the current implementation), so the Shrink() (p. 42) function is provided to unallocate the
extra memory. The Alloc() (p. 39) function can also be quite useful if you know in
advance how many items you are going to put in the array and will prevent the array
code from reallocating the memory more times than needed.

Alloc (p. 39)
Shrink (p. 42)

Number of elements and simple item access

Functions in this section return the total number of array elements and allow to retrieve
them - possibly using just the C array indexing [] operator which does exactly the same
as Item() (p. 41) method.

Count (p. 39)
GetCount (p. 40)

CHAPTER 5

ISEmpty (p. 41)
Item (p. 41)
Last (p. 41)

Adding items

Add (p. 38)
Insert (p. 40)
WX_APPEND_ARRAY (p. 37)

Removing items
WX_CLEAR_ARRAY (p. 37)
Empty (p. 39)

Clear (p. 39)

RemoveAt (p. 42)
Remove (p. 41)

Searching and sorting

Index (p. 40)
Sort (p. 42)

WX_DEFINE_ARRAY

WX_DEFINE_ARRAY(T, name)

WX_DEFINE_EXPORTED_ARRAY(T, name)

This macro defines a new array class named name and containing the elements of type
T. The second form is used when compiling DLL under Windows and array needs to be
visible outside the DLL. Example:

WK_DEFI NE_ARRAY(i nt, wxArraylnt):

cl ass Myd ass;
WK_DEFI NE_ARRAY(MW/O ass *, wxArrayOf Myd ass);

Note that wxWindows predefines the following standard array classes: wxArrayint,
wxArrayLong and wxArrayPtrVoid.
WX_DEFINE_SORTED_ARRAY

WX_DEFINE_SORTED_ARRAY(T, name)

35

CHAPTER 5

WX_DEFINE_SORTED_EXPORTED_ARRAY(T, name)

This macro defines a new sorted array class named name and containing the elements
of type T. The second form is used when compiling DLL under Windows and array
needs to be visible outside the DLL.

Example:
WK_DEFI NE_SORTED ARRAY(int, wxSortedArraylnt):

cl ass Myd ass;
WK_DEFI NE_SORTED_ARRAY(MW/ ass *, wxArrayOf Myd ass);

You will have to initialize the objects of this class by passing a comparaison function to
the array object constructor like this:

int Conparelnts(int nl, int n2)
{

}

wxSort edArrayl nt sorted(Conparelnts);

return nl - n2;

i nt ConpareM/C assObj ects(MyC ass *itenl, M/Class *iten?)
/] sort the itenms by their address...

return Stricnp(itenl->CGet Address(), itenR->CGetAddress());
}

WXAr raytf MyCl ass anot her (Conpar eMyd assObj ect s) ;

WX _DECLARE_OBJARRAY

WX_DECLARE_OBJARRAY(T, name)

WX_DECLARE_EXPORTED_OBJARRAY(T, name)

This macro declares a new object array class named name and containing the elements
of type T. The second form is used when compiling DLL under Windows and array

needs to be visible outside the DLL.

Example:

cl ass Myd ass;
WK_DEFI NE_OBJARRAY(MyCl ass, wxArrayOf Myd ass); // note: not "M/C ass

wn]

You must use WX_DEFINE_OBJARRAY() (p. 37) macro to define the array class -
otherwise you would get link errors.

36

CHAPTER 5

WX_DEFINE_OBJARRAY
WX_DEFINE_OBJARRAY (name)

This macro defines the methods of the array class name not defined by the
WX_DECLARE_OBJARRAY() (p- 36) macro. You must include the file <wx/arrimpl.cpp>
before using this macro and you must have the full declaration of the class of array
elements in scope! If you forget to do the first, the error will be caught by the compiler,
but, unfortunately, many compilers will not give any warnings if you forget to do the
second - but the objects of the class will not be copied correctly and their real destructor
will not be called.

Example of usage:

/|l first declare the cl ass!
cl ass Myd ass

{

publi c:
MyCl ass(const Myd assé&);
virtual ~Wyd ass();

3

#i ncl ude <wx/arrinmpl.cpp>

WK_DEFI NE_OBJARRAY(WxAr r ayOf Myd ass) ;

WX_APPEND_ARRAY

void WX_APPEND_ARRAY (wxArray& array, wxArray& other)

This macro may be used to append all elements of the other array to the array. The two
arrays must be of the same type.

WX_CLEAR_ARRAY

void WX_CLEAR_ARRAY (wxArray& array)

This macro may be used to delete all elements of the array before emptying it. It can not
be used with wxObjArrays - but they will delete their elements anyhow when you call

Empty().
Default constructors
wxArray()

wxObjArray()

37

CHAPTER 5

Default constructor initializes an empty array object.

wxSortedArray(int (*)(T first, T second)compareFunction)

There is no default constructor for wxSortedArray classes - you must initialize it with a
function to use for item comparaison. It is a function which is passed two arguments of
type T where T is the array element type and which should return a negative, zero or
positive value according to whether the first element passed to it is less than, equal to or
greater than the second one.

WxArray copy constructor and assignment operator

wxArray(const wxArray& array)

wxSortedArray(const wxSortedArray& array)

wxObjArray(const wxObjArray& array)

wxArray& operator=(const wxArray& array)

wxSortedArray& operator=(const wxSortedArray& array)

wxObjArray& operator=(const wxObjArray& array)

The copy constructors and assignment operators perform a shallow array copy (i.e. they
don't copy the objects pointed to even if the source array contains the items of pointer
type) for wxArray and wxSortedArray and a deep copy (i.e. the array element are copied
too) for wxObjArray.

WXArray::~wxArray

~wxArray()

~wxSortedArray()

~wxObjArray()

The wxObjArray destructor deletes all the items owned by the array. This is not done by
wxArray and wxSortedArray versions - you may use WX_CLEAR_ARRAY (p. 37) macro
for this.

wxArray::Add

void Add(T item)

void Add(T *item)

38

CHAPTER 5

void Add(T &item)

Appends a new element to the array (where T is the type of the array elements.)

The first version is used with wxArray and wxSortedArray. The second and the third are
used with wxObjArray. There is an important difference between them: if you give a
pointer to the array, it will take ownership of it, i.e. will delete it when the item is deleted
from the array. If you give a reference to the array, however, the array will make a copy
of the item and will not take ownership of the original item. Once again, it only makes
sense for wxObjArrays because the other array types never take ownership of their
elements.

You may also use WX_APPEND_ARRAY (p. 37) macro to append all elements of one
array to another one.

wxArray::Alloc

void Alloc(size_t count)

Preallocates memory for a given number of array elements. It is worth calling when the
number of items which are going to be added to the array is known in advance because
it will save unneeded memory reallocation. If the array already has enough memory for
the given number of items, nothing happens.

wxArray::Clear

void Clear()

This function does the same as Empty() (p. 39) and additionally frees the memory
allocated to the array.

wxArray::Count

size_t Count() const

Same as GetCount() (p. 40). This function is deprecated - it exists only for compatibility.

wxObjArray::Detach
T * Detach(size_t index)
Removes the element from the array, but, unlike, Remove() (p. 41) doesn't delete it. The

function returns the pointer to the removed element.

WxArray::Empty

39

CHAPTER 5

void Empty()

Empties the array. For wxObjArray classes, this destroys all of the array elements. For
wxArray and wxSortedArray this does nothing except marking the array of being empty -
this function does not free the allocated memory, use Clear() (p. 39) for this.
wxArray::GetCount

size_t GetCount() const

Return the number of items in the array.

wxArray::Index
int Index(T& item, bool searchFromEnd = FALSE)
int Index(T& item)

The first version of the function is for wxArray and wxObjArray, the second is for
wxSortedArray only.

Searches the element in the array, starting from either beginning or the end depending
on the value of searchFromEnd parameter. wxNOT_FOUND is returned if the element is
not found, otherwise the index of the element is returned.

Linear search is used for the wxArray and wxObjArray classes but binary search in the
sorted array is used for wxSortedArray (this is why searchFromEnd parameter doesn't
make sense for it).

NB: even for wxObjArray classes, the operator==() of the elements in the array is not
used by this function. It searches exactly the given element in the array and so will only
succeed if this element had been previously added to the array, but fail even if another,
identical, element is in the array.

WxArray::Insert

void Insert(T item, size_t n)

void Insert(T *item, size_t n)

void Insert(T &item, size_t n)

Insert a new item into the array before the item n - thus, Insert(something, Ou) will insert
an item in such way that it will become the first array element.

Please see Add() (p. 38) for explanation of the differences between the overloaded

40

CHAPTER 5

versions of this function.

WxArray::IsEmpty
bool IsEmpty() const

Returns TRUE if the array is empty, FALSE otherwise.

WxArray::ltem
T& Item(size_t index) const

Returns the item at the given position in the array. If index is out of bounds, an assert
failure is raised in the debug builds but nothing special is done in the release build.

The returned value is of type "reference to the array element type" for all of the array
classes.

WxArray::Last
T& Last() const

Returns the last element in the array, i.e. is the same as Item(GetCount() - 1). An assert
failure is raised in the debug mode if the array is empty.

The returned value is of type "reference to the array element type" for all of the array
classes.

WxArray::Remove
Remove(T item)

Removes the element from the array either by value: the first item of the array equal to
item is removed, an assert failure will result from an attempt to remove an item which
doesn't exist in the array.

When an element is removed from wxObjArray it is deleted by the array - use Detach()
(p- 39) if you don't want this to happen. On the other hand, when an object is removed
from a wxArray nothing happens - you should delete the it manually if required:

T *item= array[n];
delete item
array. Remove(n)

See also WX_CLEAR_ARRAY (p. 37) macro which deletes all elements of a wxArray
(supposed to contain pointers).

41

CHAPTER 5

WxArray::RemoveAt
RemoveAt(size_t index)

Removes the element from the array either by index. When an element is removed from
wxObijArray it is deleted by the array - use Detach() (p. 39) if you don't want this to
happen. On the other hand, when an object is removed from a wxArray nothing happens
- you should delete the it manually if required:

T *item= array[n];

delete item
array. RenmoveAt (n)

See also WX_CLEAR_ARRAY (p. 37) macro which deletes all elements of a wxArray
(supposed to contain pointers).

wxArray::Shrink
void Shrink()
Frees all memory unused by the array. If the program knows that no new items will be

added to the array it may call Shrink() to reduce its memory usage. However, if a new
item is added to the array, some extra memory will be allocated again.

WxATrray::Sort

void Sort(CMPFUNC<T> compareFunction)

The notation CMPFUNC<T> should be read as if we had the following declaration:
tenplate int CGWFUNC(T *first, T *second);

where T is the type of the array elements. l.e. it is a function returning int which is
passed two arguments of type T *.

Sorts the array using the specified compare function: this function should return a
negative, zero or positive value according to whether the first element passed to it is less
than, equal to or greater than the second one.

wxSortedArray doesn't have this function because it is always sorted.
WxArrayString

wxArrayString is an efficient container for storing wxString (p. 877) objects. It has the
same features as all wxArray (p. 31) classes, i.e. it dynamically expands when new
items are added to it (so it is as easy to use as a linked list), but the access time to the
elements is constant, instead of being linear in number of elements as in the case of
linked lists. It is also very size efficient and doesn't take more space than a C array

42

CHAPTER 5

wxString[] type (wxArrayString uses its knowledge of internals of wxString class to
achieve this).

This class is used in the same way as other dynamic arrays (p. 31), except that no
WX_DEFINE_ARRAY declaration is needed for it. When a string is added or inserted in
the array, a copy of the string is created, so the original string may be safely deleted
(e.g. ifitwas a char * pointer the memory it was using can be freed immediately after
this). In general, there is no need to worry about string memory deallocation when using
this class - it will always free the memory it uses itself.

The references returned by Item (p. 46), Last (p. 46) or operator([] (p. 44) are not
constant, so the array elements may be modified in place like this

array. Last (). MakeUpper();
There is also a varian of wxArrayString called wxSortedArrayString which has exactly
the same methods as wxArrayString, but which always keeps the string in it in
(alphabetical) order. wxSortedArrayString uses binary search in its Index (p. 45) function
(insteadf of linear search for wxArrayString::Index) which makes it much more efficient if
you add strings to the array rarely (because, of course, you have to pay for Index()
efficiency by having Add() be slower) but search for them often. Several methods should
not be used with sorted array (basicly, all which break the order of items) which is
mentioned in their description.

Final word: none of the methods of wxArrayString is virtual including its destructor, so
this class should not be used as a base class.

Derived from

Although this is not true strictly speaking, this class may be considered as a
specialization of wxArray (p. 31) class for the wxString member data: it is not
implemented like this, but it does have all of the wxArray functions.

Include files

<wx/string.h>

See also

wxArray (p. 31), wxString (p. 877), wxString overview (p. 1182)

WxArrayString::wxArrayString
wxArrayString()
wxArrayString(const wxArrayString& array)

Default and copy constructors.

43

CHAPTER 5

Note that when an array is assigned to a sorted array, its contents is automatically
sorted during construction.

WxATrrayString::~wxArrayString

~wxArrayString()

Destructor frees memory occupied by the array strings. For the performance reasons it
is not virtual, so this class should not be derived from.

WxArrayString::operator=

wxArrayString & operator =(const wxArrayString& array)

Assignment operator.

WxArrayString::operator(]

wxString& operator[](size_t nindex)

Return the array element at position nindex. An assert failure will result from an attempt
to access an element beyond the end of array in debug mode, but no check is done in

release mode.

This is the operator version of Item (p. 46) method.

wxArrayString::Add

size_t Add(const wxString& str)

Appends a new item to the array and return the index of th new item in the array.
Warning: For sorted arrays, the index of the inserted item will not be, in general, equal
to GetCount() (p. 45) - 1 because the item is inserted at the correct position to keep the

array sorted and not appended.

See also: Insert (p. 46)

wxArrayString::Alloc
void Alloc(size_t nCount)

Preallocates enough memory to store nCount items. This function may be used to
improve array class performance before adding a known number of items consecutively.

CHAPTER 5

See also: Dynamic array memory management (p. 34)

wxArrayString::Clear
void Clear()
Clears the array contents and frees memory.

See also: Empty (p. 45)

wxArrayString::Count

size_t Count() const

Returns the number of items in the array. This function is deprecated and is for
backwards compatibility only, please use GetCount (p. 45) instead.
WxArrayString::Empty

void Empty()

Empties the array: after a call to this function GetCount (p. 45) will return 0. However,
this function does not free the memory used by the array and so should be used when
the array is going to be reused for storing other strings. Otherwise, you should use Clear
(p. 45) to empty the array and free memory.

wxArrayString::GetCount

size_t GetCount() const

Returns the number of items in the array.

WxArrayString::Index
int Index(const char * sz, bool bCase = TRUE, bool bFromEnd = FALSE)

Search the element in the array, starting from the beginning ifbFromEnd is FALSE or
from end otherwise. If bCase, comparison is case sensitive (default), otherwise the case
is ignored.

This function uses linear search for wxArrayString and binary search for
wxSortedArrayString, but it ignores the bCase and bFromEnd parameters in the latter
case.

45

CHAPTER 5

Returns index of the first item matched or wxNOT_FOUND if there is no match.

wxArrayString::Insert
void Insert(const wxString& str, size_t nindex)

Insert a new element in the array before the position nindex. Thus, for example, to insert
the string in the beginning of the array you would write

Insert("foo", 0);

If nindex is equal to GetCount() + 1 this function behaves as Add (p. 44).

Warning: this function should not be used with sorted arrays because it could break the
order of items and, for example, subsequent calls to Index() (p. 45) would then not work!
WxArrayString::ISEmpty

ISEmpty()

Returns TRUE if the array is empty, FALSE otherwise. This function returns the same
result as GetCount() == 0 but is probably easier to read.

WxATrrayString::ltem

wxString& Item(size_t nindex) const

Return the array element at position nindex. An assert failure will result from an attempt
to access an element beyond the end of array in debug mode, but no check is done in

release mode.

See also operator[] (p. 44) for the operator version.

wxArrayString::Last

Last()

Returns the last element of the array. Attempt to access the last element of an empty
array will result in assert failure in debug build, however no checks are done in release
mode.

wxArrayString::Remove (by value)

void Remove(const char * sz)

46

CHAPTER 5

Removes the first item matching this value. An assert failure is provoked by an attempt
to remove an element which does not exist in debug build.

See also: Index (p. 45), Remove (p. 47)

wxArrayString::Remove (by index)
void Remove(size_t nindex)
Removes the item at given position.

See also: Remove (p. 46)

wxArrayString::Shrink
void Shrink()

Releases the extra memory allocated by the array. This function is useful to minimize the
array memory consumption.

See also: Alloc (p. 44), Dynamic array memory management (p. 34)

wxArrayString::Sort (alphabetically)
void Sort(bool reverseOrder = FALSE)

Sorts the array in alphabetical order or in reverse alphabetical order if reverseOrder is
TRUE.

Warning: this function should not be used with sorted array because it could break the
order of items and, for example, subsequent calls to Index() (p. 45) would then not work!

See also: Sort (p. 47)

wxArrayString::Sort (user defined)

void Sort(CompareFunction compareFunction)

Sorts the array using the specified compareFunction for item
comparison.CompareFunction is defined as a function taking two const wxString&
parameters and returning an int value less than, equal to or greater than O if the first
string is less than, equal to or greater than the second one.

Example

The following example sorts strings by their length.

a7

CHAPTER 5

static int ConpareStringLen(const wxString& first, const wxString&
second)

{
}

return first.length() - second.|ength();

WXArrayString array,
array. Add("one");
array. Add("two");
array. Add("three");
array. Add("four");

array. Sort (ConpareStringlLen);

Warning: this function should not be used with sorted array because it could break the
order of items and, for example, subsequent calls to Index() (p. 45) would then not work!

See also: Sort (p. 47)

wxAutomationObject

The wxAutomationObiject class represents an OLE automation object containing a
single data member, an IDispatch pointer. It contains a number of functions that make it
easy to perform automation operations, and set and get properties. The class makes
heavy use of the wxVariant (p. 1033) class.

The usage of these classes is quite close to OLE automation usage in Visual Basic. The
APl is high-level, and the application can specify multiple properties in a single string.

The following example gets the current Excel instance, and if it exists, makes the active
cell bold.

wxAut omat i onCbj ect excel Qbj ect ;
i f (excel Object.CGetlnstance("Excel . Application"))
excel oj ect . Put Property("ActiveCell.Font.Bold", TRUE);

Note that this class works under Windows only, and currently only for Visual C++.
Derived from

wxObiject (p. 627)

Include files

<wx/msw/ole/automtn.h>

See also

48

CHAPTER 5

wxVariant (p. 1033)

wxAutomationObject::wxAutomationObject
wxAutomationObject(WXIDISPATCH* dispatchPtr = NULL)

Constructor, taking an optional IDispatch pointer which will be released when the object
is deleted.

wxAutomationObject::~wxAutomationObject

~wxAutomationObject()

Destructor. If the internal IDispatch pointer is non-null, it will be released.

wxAutomationObject::CallMethod
wxVariant CallMethod(const wxString& method, int noArgs, wxVariant args[]) const
wxVariant CallMethod(const wxString& method, ...) const

Calls an automation method for this object. The first form takes a method name, number
of arguments, and an array of variants. The second form takes a method name and zero
to six constant references to variants. Since the variant class has constructors for the
basic data types, and C++ provides temporary objects automatically, both of the
following lines are syntactically valid:

wxVariant res = obj.Call Method("Suni, wxVariant(1l.2),
wxVari ant (3.4));
wxVari ant res

obj . Cal | Met hod("Sumt, 1.2, 3.4);

Note that method can contain dot-separated property names, to save the application
needing to call GetProperty several times using several temporary objects. For example:

obj ect. Cal | Met hod(" Acti veCel I . Font. ShowDi al og", "My caption");

wxAutomationObject::Createlnstance

bool Createlnstance(const wxString& classld) const

49

CHAPTER 5

Creates a new object based on the class id, returning TRUE if the object was
successfully created, or FALSE if not.
wxAutomationObject::GetDispatchPtr

IDispatch* GetDispatchPtr() const

Gets the IDispatch pointer.

wxAutomationObject::Getinstance

bool Getinstance(const wxString& classld) const

Retrieves the current object associated with a class id, and attaches the IDispatch
pointer to this object. Returns TRUE if a pointer was succesfully retrieved, FALSE
otherwise.

Note that this cannot cope with two instances of a given OLE object being active
simultaneously, such as two copies of Excel running. Which object is referenced cannot
currently be specified.

wxAutomationObject::GetObject

bool GetObject(wxAutomationObject&obj const wxString& property, int noArgs = 0,
wxVariant args[] = NULL) const

Retrieves a property from this object, assumed to be a dispatch pointer, and initialises
obj with it. To avoid having to deal with IDispatch pointers directly, use this function in
preference to wxAutomationObject::GetProperty (p. 50) when retrieving objects from
other objects.

Note that an IDispatch pointer is stored as a void* pointer in wxVariant objects.

See also

wxAutomationObject::GetProperty (p. 50)

wxAutomationObject::GetProperty

wxVariant GetProperty(const wxString& property, int noArgs, wxVariant argsl])
const

wxVariant GetProperty(const wxString& property, ...) const

Gets a property value from this object. The first form takes a property name, number of

50

CHAPTER 5

arguments, and an array of variants. The second form takes a property name and zero
to six constant references to variants. Since the variant class has constructors for the
basic data types, and C++ provides temporary objects automatically, both of the
following lines are syntactically valid:

wxVari ant res
wxVari ant res

obj . Get Property("Range", wxVariant("Al"));
obj . Get Property("Range", "Al1");

Note that property can contain dot-separated property names, to save the application
needing to call GetProperty several times using several temporary objects.

wxAutomationObject::Invoke

bool Invoke(const wxString& member, int action, wxVariant& retValue, int noArgs,
wxVariant args[], const wxVariant* ptrArgs[] = 0) const

This function is a low-level implementation that allows access to the IDispatch Invoke
function. It is not meant to be called directly by the application, but is used by other
convenience functions.

Parameters

member
The member function or property name.

action
Bitlist: may contain DISPATCH_PROPERTYPUT,
DISPATCH_PROPERTYPUTREF, DISPATCH_METHOD.
retValue
Return value (ignored if there is no return value)
NoArgs

Number of arguments in args or ptrArgs.

args
If non-null, contains an array of variants.

ptrArgs
If non-null, contains an array of constant pointers to variants.

Return value
TRUE if the operation was successful, FALSE otherwise.

Remarks

51

CHAPTER 5

Two types of argument array are provided, so that when possible pointers are used for
efficiency.

wxAutomationObject::PutProperty

bool PutProperty(const wxString& property, int noArgs, wxVariant args[]) const
bool PutProperty(const wxString& property, ...)

Puts a property value into this object. The first form takes a property name, number of
arguments, and an array of variants. The second form takes a property name and zero
to six constant references to variants. Since the variant class has constructors for the

basic data types, and C++ provides temporary objects automatically, both of the
following lines are syntactically valid:

obj . Put Property("Val ue", wxVariant(23));
obj . Put Property("Val ue", 23);

Note that property can contain dot-separated property names, to save the application
needing to call GetProperty several times using several temporary objects.
wxAutomationObject::SetDispatchPtr

void SetDispatchPtr(WXIDISPATCH* dispatchPtr)

Sets the IDispatch pointer. This function does not check if there is already an IDispatch
pointer.

You may need to cast from IDispatch* to WXIDISPATCH* when calling this function.
wxBitmap

This class encapsulates the concept of a platform-dependent bitmap, either
monochrome or colour.

Derived from

wxGDIObject (p. 371)
wxObiject (p. 627)

Include files
<wx/bitmap.h>

Predefined objects

52

CHAPTER 5

Objects:
wxNullBitmap
See also

wxBitmap overview (p. 1232),supported bitmap file formats (p. 1233),wxDC::Blit (p.
192),wxlcon (p. 451), wxCursor (p. 156), wxBitmap (p. 52),wxMemoryDC (p. 562)

wxBitmap::wxBitmap

wxBitmap()

Default constructor.

wxBitmap(const wxBitmap& bitmap)

Copy constructor.

wxBitmap(void* data, int type, int width, int height, int depth = -1)

Creates a bitmap from the given data which is interpreted in platform-dependent
manner.

wxBitmap(const char bits[], int width, int height
int depth = 1)

Creates a bitmap from an array of bits.

You should only use this function for monochrome bitmaps (depth 1) in portable
programs: in this case the bits parameter should contain an XBM image.

For other bit depths, the behaviour is platform dependent: under Windows, the data is
passed withotu any changes to the underlying Cr eat eBi t map() API. Under other
platforms, only monochrome bitmaps may be created using this constructor and
wxIlmage (p. 458) should be used for creating colour bitmaps from static data.
wxBitmap(int width, int height, int depth = -1)

Creates a new bitmap. A depth of -1 indicates the depth of the current screen or visual.
Some platforms only support 1 for monochrome and -1 for the current colour setting.

wxBitmap(const char** bits)
Creates a bitmap from XPM data.

wxBitmap(const wxString& name, long type)

53

CHAPTER 5

Loads a bitmap from a file or resource.
Parameters

bits
Specifies an array of pixel values.

width
Specifies the width of the bitmap.

height
Specifies the height of the bitmap.

depth
Specifies the depth of the bitmap. If this is omitted, the display depth of the screen
is used.

name
This can refer to a resource name under MS Windows, or a filename under MS
Windows and X. Its meaning is determined by the type parameter.

type
May be one of the following:

wWxBITMAP_TYPE_BMP Load a Windows bitmap file.

wWxBITMAP_TYPE_BMP_RESOURCE Load a Windows bitmap from the
resource database.

WxBITMAP_TYPE_GIF Load a GIF bitmap file.

WxBITMAP_TYPE_XBM Load an X bitmap file.

WXxBITMAP_TYPE_XPM Load an XPM bitmap file.
wWxBITMAP_TYPE_RESOURCE Load a Windows resource name.

The validity of these flags depends on the platform and wxWindows configuration.
If all possible wxWindows settings are used, the Windows platform supports BMP
file, BMP resource, XPM data, and XPM. Under wxGTK, the available formats are
BMP file, XPM data, XPM file, and PNG file. Under wxMotif, the available formats
are XBM data, XBM file, XPM data, XPM file.

In addition, wxBitmap can read all formats that wximage (p. 458) can, which
currently include wxBITMAP_TYPE_JPEG, wxBITMAP_TYPE_TIF,
WXBITMAP_TYPE_PNG, wxBITMAP_TYPE_GIF, wxBITMAP_TYPE_PCX, and
WxBITMAP_TYPE_PNM. Of course, you must have wxlmage handlers loaded.

Remarks

CHAPTER 5

The first form constructs a bitmap object with no data; an assignment or another
member function such as Create or LoadFile must be called subsequently.

The second and third forms provide copy constructors. Note that these do not copy the
bitmap data, but instead a pointer to the data, keeping a reference count. They are
therefore very efficient operations.

The fourth form constructs a bitmap from data whose type and value depends on the
value of the type argument.

The fifth form constructs a (usually monochrome) bitmap from an array of pixel values,
under both X and Windows.

The sixth form constructs a new bitmap.

The seventh form constructs a bitmap from pixmap (XPM) data, if wxWindows has been
configured to incorporate this feature.

To use this constructor, you must first include an XPM file. For example, assuming that
the file mybi t map. xpmcontains an XPM array of character pointers called mybitmap:

#i ncl ude "nybit map. xpnt

wxBi t map *bitmap = new wxBi t map(nybi t map) ;

The eighth form constructs a bitmap from a file or resource. name can refer to a
resource name under MS Windows, or a filename under MS Windows and X.

Under Windows, type defaults to wxBITMAP_TYPE_BMP_RESOURCE. Under X, type
defaults to wxBITMAP_TYPE_XPM.

See also
wxBitmap::LoadFile (p. 60)
wxPython note: Constructors supported by wxPython are:
wxBitmap(name, flag) Loads a bitmap from a file
wxBitmapFromData(data, type, width, height, depth=1) Creates a
bitmap from the given data, which can be of
arbitrary type.
wxNoRefBitmap(name, flag) This one won't own the reference, so
Python won't call the destructor, this is good for
toolbars and such where the parent will

manage the bitmap.

wxEmptyBitmap(width, height, depth = -1) Creates an empty bitmap

55

CHAPTER 5

with the given specifications

wxBitmap::~wxBitmap

~wxBitmap()

Destroys the wxBitmap object and possibly the underlying bitmap data. Because
reference counting is used, the bitmap may not actually be destroyed at this point - only

when the reference count is zero will the data be deleted.

If the application omits to delete the bitmap explicitly, the bitmap will be destroyed
automatically by wxWindows when the application exits.

Do not delete a bitmap that is selected into a memory device context.

wxBitmap::AddHandler

static void AddHandler(wxBitmapHandler* handler)

Adds a handler to the end of the static list of format handlers.

handler
A new bitmap format handler object. There is usually only one instance of a given
handler class in an application session.

See also

wxBitmapHandler (p. 65)

wxBitmap::CleanUpHandlers
static void CleanUpHandlers()
Deletes all bitmap handlers.

This function is called by wxWindows on exit.

wxBitmap::Create
virtual bool Create(int width, int height, int depth = -1)

Creates a fresh bitmap. If the final argument is omitted, the display depth of the screen is
used.

virtual bool Create(void* data, int type, int width, int height, int depth = -1)

56

CHAPTER 5

Creates a bitmap from the given data, which can be of arbitrary type.
Parameters

width
The width of the bitmap in pixels.

height
The height of the bitmap in pixels.

depth
The depth of the bitmap in pixels. If this is -1, the screen depth is used.

data
Data whose type depends on the value of type.

type
A bitmap type identifier - see wxBitmap::wxBitmap (p. 53) for a list of possible
values.

Return value

TRUE if the call succeeded, FALSE otherwise.

Remarks

The first form works on all platforms. The portability of the second form depends on the
type of data.

See also

wxBitmap::wxBitmap (p. 53)

wxBitmap::FindHandler

static wxBitmapHandler* FindHandler(const wxString& name)

Finds the handler with the given name.

static wxBitmapHandler* FindHandler(const wxString& extension, long bitmapType)
Finds the handler associated with the given extension and type.

static wxBitmapHandler* FindHandler(long bitmapType)

Finds the handler associated with the given bitmap type.

name
The handler name.

57

CHAPTER 5

extension
The file extension, such as "bmp".

bitmapType
The bitmap type, such as wxBITMAP_TYPE_BMP.

Return value
A pointer to the handler if found, NULL otherwise.
See also

wxBitmapHandler (p. 65)

wxBitmap::GetDepth
int GetDepth() const

Gets the colour depth of the bitmap. A value of 1 indicates a monochrome bitmap.

wxBitmap::GetHandlers

static wxList& GetHandlers()

Returns the static list of bitmap format handlers.
See also

wxBitmapHandler (p. 65)

wxBitmap::GetHeight
int GetHeight() const

Gets the height of the bitmap in pixels.

wxBitmap::GetPalette
wxPalette* GetPalette() const

Gets the associated palette (if any) which may have been loaded from a file or set for the
bitmap.

See also

58

CHAPTER 5

wxPalette (p. 641)

wxBitmap::GetMask
wxMask* GetMask() const

Gets the associated mask (if any) which may have been loaded from a file or set for the
bitmap.

See also

wxBitmap::SetMask (p. 63), wxMask (p. 548)

wxBitmap::GetWidth

int GetWidth() const

Gets the width of the bitmap in pixels.
See also

wxBitmap::GetHeight (p. 58)

wxBitmap::GetSubBitmap

wxBitmap GetSubBitmap(const wxRect&rect) const

Returns a sub bitmap of the current one as long as the rect belongs entirely to the
bitmap. This function preserves bit depth and mask information.
wxBitmap::InitStandardHandlers

static void InitStandardHandlers()

Adds the standard bitmap format handlers, which, depending on wxWindows
configuration, can be handlers for Windows bitmap, Windows bitmap resource, and
XPM.

This function is called by wxWindows on startup.

See also

wxBitmapHandler (p. 65)

wxBitmap::InsertHandler

59

CHAPTER 5

static void InsertHandler(wxBitmapHandler* handler)

Adds a handler at the start of the static list of format handlers.

handler
A new bitmap format handler object. There is usually only one instance of a given
handler class in an application session.

See also

wxBitmapHandler (p. 65)

wxBitmap::LoadFile

bool LoadFile(const wxString& name, long type)
Loads a bitmap from a file or resource.
Parameters

name

Either a filename or a Windows resource name. The meaning of name is
determined by the type parameter.

type
One of the following values:

wWxBITMAP_TYPE_BMP Load a Windows bitmap file.

wWxBITMAP_TYPE_BMP_RESOURCE Load a Windows bitmap from the
resource database.

WxBITMAP_TYPE_GIF Load a GIF bitmap file.

WXxBITMAP_TYPE_XBM Load an X bitmap file.

WXBITMAP_TYPE_XPM Load an XPM bitmap file.

The validity of these flags depends on the platform and wxWindows configuration.
In addition, wxBitmap can read all formats that wximage (p. 458) can
(WxBITMAP_TYPE_JPEG, wxBITMAP_TYPE_PNG, wxBITMAP_TYPE_GIF,
WXBITMAP_TYPE_PCX, wxBITMAP_TYPE_PNM). (Of course you must have
wxIimage handlers loaded.)

Return value

TRUE if the operation succeeded, FALSE otherwise.

60

CHAPTER 5

Remarks

A palette may be associated with the bitmap if one exists (especially for colour Windows
bitmaps), and if the code supports it. You can check if one has been created by using
the GetPalette (p. 58) member.

See also

wxBitmap::SaveFile (p. 61)

wxBitmap::Ok
bool Ok() const

Returns TRUE if bitmap data is present.

wxBitmap::RemoveHandler
static bool RemoveHandler(const wxString& name)
Finds the handler with the given name, and removes it. The handler is not deleted.

name
The handler name.

Return value
TRUE if the handler was found and removed, FALSE otherwise.
See also

wxBitmapHandler (p. 65)

wxBitmap::SaveFile

bool SaveFile(const wxString& name, int type, wxPalette* palette = NULL)
Saves a bitmap in the named file.

Parameters

name
A filename. The meaning of name is determined by the type parameter.

type
One of the following values:

61

CHAPTER 5

wWxBITMAP_TYPE_BMP Save a Windows bitmap file.
WxBITMAP_TYPE_GIF Save a GIF bitmap file.
WXBITMAP_TYPE_XBM Save an X bitmap file.
WXBITMAP_TYPE_XPM Save an XPM bitmap file.
The validity of these flags depends on the platform and wxWindows configuration.
In addition, wxBitmap can save all formats that wximage (p. 458) can
(WxBITMAP_TYPE_JPEG, wxBITMAP_TYPE_PNG). (Of course you must have
wxIimage handlers loaded.)

palette
An optional palette used for saving the bitmap.

Return value

TRUE if the operation succeeded, FALSE otherwise.

Remarks

Depending on how wxWindows has been configured, not all formats may be available.

See also

wxBitmap::LoadFile (p. 60)

wxBitmap::SetDepth
void SetDepth(int depth)
Sets the depth member (does not affect the bitmap data).
Parameters
depth
Bitmap depth.
wxBitmap::SetHeight
void SetHeight(int height)
Sets the height member (does not affect the bitmap data).
Parameters

height
Bitmap height in pixels.

62

CHAPTER 5

wxBitmap::SetMask

void SetMask(wxMask* mask)

Sets the mask for this bitmap.

Remarks

The bitmap object owns the mask once this has been called.
See also

wxBitmap::GetMask (p. 59), wxMask (p. 548)

wxBitmap::SetOk
void SetOk(int isOk)
Sets the validity member (does not affect the bitmap data).
Parameters
isOk
Validity flag.
wxBitmap::SetPalette
void SetPalette(wxPalette* palette)
Sets the associated palette: it will be deleted in the wxBitmap destructor, so if you do not
\(Ijvsgtg Jo be deleted automatically, reset the palette to NULL before the bitmap is

Parameters

palette
The palette to set.

Remarks
The bitmap object owns the palette once this has been called.
See also

wxPalette (p. 641)

63

CHAPTER 5

wxBitmap::SetWidth
void SetWidth(int width)
Sets the width member (does not affect the bitmap data).
Parameters
width
Bitmap width in pixels.
wxBitmap::operator =
wxBitmap& operator =(const wxBitmap& bitmap)

Assignment operator. This operator does not copy any data, but instead passes a
pointer to the data in bitmap and increments a reference counter. It is a fast operation.

Parameters

bitmap
Bitmap to assign.

Return value

Returns 'this' object.

wxBitmap::operator ==
bool operator ==(const wxBitmap& bitmap)

Equality operator. This operator tests whether the internal data pointers are equal (a fast
test).

Parameters

bitmap
Bitmap to compare with 'this’

Return value

Returns TRUE if the bitmaps were effectively equal, FALSE otherwise.

wxBitmap::operator =

bool operator !=(const wxBitmapé& bitmap)

CHAPTER 5

Inequality operator. This operator tests whether the internal data pointers are unequal (a
fast test).

Parameters

bitmap
Bitmap to compare with 'this’

Return value

Returns TRUE if the bitmaps were unequal, FALSE otherwise.
wxBitmapHandler

Overview (p. 1232)

This is the base class for implementing bitmap file loading/saving, and bitmap creation
from data. It is used within wxBitmap and is not normally seen by the application.

If you wish to extend the capabilities of wxBitmap, derive a class from wxBitmapHandler
and add the handler using wxBitmap::AddHandler (p. 56) in your application initialisation.

Derived from
wxObject (p. 627)
Include files
<wx/bitmap.h>
See also

wxBitmap (p. 52), wxlcon (p. 451), wxCursor (p. 156)

wxBitmapHandler::wxBitmapHandler

wxBitmapHandler()

Default constructor. In your own default constructor, initialise the members m_name,
m_extension and m_type.

wxBitmapHandler::~wxBitmapHandler

~wxBitmapHandler()

65

CHAPTER 5

Destroys the wxBitmapHandler object.

wxBitmapHandler::Create

virtual bool Create(wxBitmap* bitmap, void* data, int type, int width, int height, int
depth =-1)

Creates a bitmap from the given data, which can be of arbitrary type. The wxBitmap
object bitmap is manipulated by this function.

Parameters

bitmap
The wxBitmap object.

width
The width of the bitmap in pixels.

height
The height of the bitmap in pixels.

depth
The depth of the bitmap in pixels. If this is -1, the screen depth is used.

data
Data whose type depends on the value of type.

type
A bitmap type identifier - see wxBitmapHandler::wxBitmapHandler (p. 53) for a list
of possible values.

Return value

TRUE if the call succeeded, FALSE otherwise (the default).

wxBitmapHandler::GetName
wxString GetName() const

Gets the name of this handler.

wxBitmapHandler::GetExtension
wxString GetExtension() const

Gets the file extension associated with this handler.

66

CHAPTER 5

wxBitmapHandler::GetType
long GetType() const

Gets the bitmap type associated with this handler.

wxBitmapHandler::LoadFile

bool LoadFile(wxBitmap* bitmap, const wxString& name, long type)
Loads a bitmap from a file or resource, putting the resulting data into bitmap.
Parameters

bitmap
The bitmap object which is to be affected by this operation.

name

Either a filename or a Windows resource name. The meaning of name is
determined by the type parameter.

type
See wxBitmap::wxBitmap (p. 53) for values this can take.

Return value

TRUE if the operation succeeded, FALSE otherwise.
See also

wxBitmap::LoadFile (p. 60)

wxBitmap::SaveFile (p. 61)
wxBitmapHandler::SaveFile (p. 67)

wxBitmapHandler::SaveFile

bool SaveFile(wxBitmap* bitmap, const wxString& name, int type, wxPalette* palette
= NULL)

Saves a bitmap in the named file.
Parameters

bitmap
The bitmap object which is to be affected by this operation.

name

67

CHAPTER 5

A filename. The meaning of name is determined by the type parameter.

type
See wxBitmap::wxBitmap (p. 53) for values this can take.

palette
An optional palette used for saving the bitmap.

Return value
TRUE if the operation succeeded, FALSE otherwise.
See also
wxBitmap::LoadFile (p. 60)
wxBitmap::SaveFile (p. 61)
wxBitmapHandler::LoadFile (p. 67)
wxBitmapHandler::SetName
void SetName(const wxString& name)
Sets the handler name.
Parameters
name

Handler name.
wxBitmapHandler::SetExtension
void SetExtension(const wxString& extension)
Sets the handler extension.
Parameters
extension

Handler extension.
wxBitmapHandler::SetType
void SetType(long type)
Sets the handler type.

Parameters

68

CHAPTER 5

name
Handler type.

wxBitmapButton

A bitmap button is a control that contains a bitmap. It may be placed on a dialog box (p.
220) or panel (p. 645), or indeed almost any other window.

Derived from

wxButton (p. 87)

wxControl (p. 150)

wxWindow (p. 1048)

wxEvtHandler (p. 277)

wxObject (p. 627)

Include files

<wx/bmpbuttn.h>

Remarks

A bitmap button can be supplied with a single bitmap, and wxWindows will draw all

button states using this bitmap. If the application needs more control, additional bitmaps

for the selected state, unpressed focussed state, and greyed-out state may be supplied.

Window styles

wxBU_AUTODRAW If this is specified, the button will be drawn automatically
using the label bitmap only, providing a 3D-look border. If
this style is not specified, the button will be drawn without
borders and using all provided bitmaps.

See also window styles overview (p. 1214).

Event handling

EVT_BUTTON(id, func) Process a

wWXEVT_COMMAND_BUTTON_CLICKED
event, when the button is clicked.

See also

wxButton (p. 87)

69

CHAPTER 5

wxBitmapButton::wxBitmapButton

wxBitmapButton()

Default constructor.

wxBitmapButton(wxWindow* parent, wxWindowID id, const wxBitmap& bitmap,
const wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long
style = wxBU_AUTODRAW, const wxValidator& validator = wxDefaultValidator, const
wxString& name = "button")

Constructor, creating and showing a button.

Parameters

parent
Parent window. Must not be NULL.
id
Button identifier. A value of -1 indicates a default value.

bitmap
Bitmap to be displayed.

pos
Button position.

size
Button size. If the default size (-1, -1) is specified then the button is sized
appropriately for the bitmap.

style
Window style. See wxBitmapButton (p. 69).

validator
Window validator.

name
Window name.

Remarks

The bitmap parameter is normally the only bitmap you need to provide, and wxWindows
will draw the button correctly in its different states. If you want more control, call any of
the functions wxBitmapButton::SetBitmapSelected (p. 73),
wxBitmapButton::SetBitmapFocus (p. 72), wxBitmapButton::SetBitmapDisabled (p. 72).

Note that the bitmap passed is smaller than the actual button created.

See also

70

CHAPTER 5

wxBitmapButton::Create (p. 71), wxValidator (p. 1031)

wxBitmapButton::~wxBitmapButton
~wxBitmapButton()

Destructor, destroying the button.

wxBitmapButton::Create

bool Create(wxWindow* parent, wxWindowlID id, const wxBitmapé& bitmap, const
wxPoint& pos, const wxSize& size = wxDefaultSize, long style = 0, const
wxValidator& validator, const wxString& name = "button")

Button creation function for two-step creation. For more details, see
wxBitmapButton::wxBitmapButton (p. 70).
wxBitmapButton::GetBitmapDisabled

wxBitmap& GetBitmapLabel() const

Returns the bitmap for the disabled state.

Return value

A reference to the disabled state bitmap.

See also

wxBitmapButton::SetBitmapDisabled (p. 72)

wxBitmapButton::GetBitmapFocus
wxBitmap& GetBitmapFocus() const
Returns the bitmap for the focussed state.
Return value

A reference to the focussed state bitmap.
See also

wxBitmapButton::SetBitmapFocus (p. 72)

71

CHAPTER 5

wxBitmapButton::GetBitmapLabel

wxBitmap& GetBitmapLabel() const

Returns the label bitmap (the one passed to the constructor).

Return value
A reference to the button's label bitmap.
See also

wxBitmapButton::SetBitmapLabel (p. 73)

wxBitmapButton::GetBitmapSelected
wxBitmap& GetBitmapSelected() const
Returns the bitmap for the selected state.
Return value

A reference to the selected state bitmap.
See also

wxBitmapButton::SetBitmapSelected (p. 73)

wxBitmapButton::SetBitmapDisabled

void SetBitmapDisabled(const wxBitmapé& bitmap)
Sets the bitmap for the disabled button appearance.
Parameters

bitmap
The bitmap to set.

See also

wxBitmapButton::GetBitmapDisabled (p. 71), wxBitmapButton::SetBitmapLabel (p. 73),
wxBitmapButton::SetBitmapSelected (p. 73), wxBitmapButton::SetBitmapFocus (p. 72)

wxBitmapButton::SetBitmapFocus

void SetBitmapFocus(const wxBitmapé& bitmap)

72

CHAPTER 5

Sets the bitmap for the button appearance when it has the keyboard focus.
Parameters

bitmap
The bitmap to set.

See also

wxBitmapButton::GetBitmapFocus (p. 71), wxBitmapButton::SetBitmapLabel (p. 73),
wxBitmapButton::SetBitmapSelected (p. 73), wxBitmapButton::SetBitmapDisabled (p.
72)

wxBitmapButton::SetBitmapLabel

void SetBitmapLabel(const wxBitmapé& bitmap)

Sets the bitmap label for the button.

Parameters

bitmap
The bitmap label to set.

Remarks

This is the bitmap used for the unselected state, and for all other states if no other
bitmaps are provided.

See also

wxBitmapButton::GetBitmapLabel (p. 72)

wxBitmapButton::SetBitmapSelected

void SetBitmapSelected(const wxBitmapé& bitmap)

Sets the bitmap for the selected (depressed) button appearance.
Parameters

bitmap
The bitmap to set.

See also

wxBitmapButton::GetBitmapSelected (p. 72), wxBitmapButton::SetBitmapLabel (p. 73),
wxBitmapButton::SetBitmapFocus (p. 72), wxBitmapButton::SetBitmapDisabled (p. 72)

73

CHAPTER 5

wxBitmapDataObject

wxBitmapDataObiject is a specialization of wxDataObject for bitmap data. It can be used
without change to paste data into the wxClipboard (p. 106) or a wxDropSource (p. 265).
A user may wish to derive a new class from this class for providing a bitmap on-demand
in order to minimize memory consumption when offering data in several formats, such as
a bitmap and GIF.

wxPython note: If you wish to create a derived wxBitmapDataObiject class in wxPython
you should derive the class from wxPyBitmapDataObject in order to get Python-aware
capabilities for the various virtual methods.

Virtual functions to override

This class may be used as is, but GetBitmap (p. 74) may be overridden to increase
efficiency.

Derived from

wxDataObjectSimple (p. 173)
wxDataObject (p. 169)

Include files

<wx/dataobj.h>

See also

Clipboard and drag and drop overview (p. 1264), wxDataObject (p. 169),
wxDataObjectSimple (p. 173), wxFileDataObject (p. 305), wxTextDataObject (p. 952),
wxDataObject (p. 169)

wxBitmapDataObject(const wxBitmap& bitmap = wxNullBitmap)

Constructor, optionally passing a bitmap (otherwise use SetBitmap (p. 74) later).

wxBitmapDataObject::GetBitmap

virtual wxBitmap GetBitmap() const

Returns the bitmap associated with the data object. You may wish to override this
method when offering data on-demand, but this is not required by wxWindows' internals.
Use this method to get data in bitmap form from the wxClipboard (p. 106).

wxBitmapDataObject::SetBitmap

virtual void SetBitmap(const wxBitmap& bitmap)

74

CHAPTER 5

Sets the bitmap associated with the data object. This method is called when the data
object receives data. Usually there will be no reason to override this function.

wxBoolFormValidator

This class validates a boolean value for a form view (p. 704). The associated control
must be a wxCheckBox.

See also

Property validator classes (p. 1297)

wxBoolFormValidator::wxBoolFormValidator

void wxBoolFormValidator(long flags=0)

Constructor.

wxBoolListValidator

This class validates a boolean value for a property list view (p. 711).
See also

Validator classes (p. 1297)

wxBoolListValidator::wxBoolListValidator
void wxBoolListValidator(long flags=0)
Constructor.

wxBoxSizer

The basic idea behind a box sizer is that windows will most often be laid out in rather
simple basic geomerty, typically in a row or a column or several hierachies of either.

As an exmaple, we will construct a dialog that will contain a text field at the top and two
buttons at the bottom. This can be seen as a top-hierarchy column with the text at the
top and buttons at the bottom and a low-hierchary row with an OK button to the left and
a Cancel button to the right. In many cases (particulary dialogs under Unix and normal
frames) the main window will be resizable by the user and this change of size will have
to get propagated to its children. In our case, we want the text area to grow with the

75

CHAPTER 5

dialog, whereas the button shall have a fixed size. In addition, there will be a thin border
around all controls to make the dialog look nice and - to make matter worse - the buttons
shall be centred as the width of the dialog changes.

It is the unique feature of a box sizer, that it can grow in both directions (height and
width) but can distribute its growth in the main direction (horizontal for a row)
unevenlyamong its children. In our example case, the vertical sizer is supposed to
propagate all its height changes to only the text area, not to the button area. This is
determined by the option parameter when adding a window (or another sizer) to a sizer.
Itis interpreted as a weight factor, i.e. it can be zero, indicating that the window may not
be resized at all, or above zero. If several windows have a value above zero, the value is
interpreted relative to the sum of all weight factors of the sizer, so when adding two
windows with a value of 1, they will both get resized equally much and each half as
much as the sizer owning them. Then what do we do when a column sizer changes its
width? This behaviour is controlled by flags (the second parameter of the Add()
function): Zero or no flag indicates that the window will preserve it's original size,
WXGROW flag (same as wxEXPAND) forces the window to grow with the sizer, and
WXSHAPED flag tells the window to change it's size proportionally, preserving original
aspect ratio. When wxGROW flag is not used, the item can be aligned within available
space. WXALIGN_LEFT, wxALIGN_TOP, wxALIGN_RIGHT, wxALIGN_BOTTOM,
WXALIGN_CENTER_HORIZONTAL and wxALIGN_CENTER_VERTICAL do what they
say. WXALIGN_CENTRE (same as wxALIGN_CENTER) is defined as
(WXALIGN_CENTER_HORIZONTAL | wxALIGN_CENTER_VERTICAL). Default
alignment is wxALIGN_LEFT | wxALIGN_TOP.

As mentioned above, any window belonging to a sizer may have border, and it can be
specified which of the four sides may have this border, using the wxTOP, wxLEFT,
WXRIGHT and wxBOTTOM constants or wxALL for all directions (and you may also use
WXNORTH, wxWEST etc instead). These flags can be used in combintaion with the
alignement flags above as the second paramter of the Add() method using the binary or
operator |. The sizer of the border also must be made known, and it is the third
parameter in the Add() method. This means, that the entire behaviour of a sizer and its
children can be controlled by the three parameters of the Add() method.

/1 we want to get a dialog that is stretchabl e because it
/!l has a text ctrl at the top and two buttons at the bottom

MyDi al og: : MyDi al og(wxFrame *parent, wxWndow D id, const wxString
&itle)

wxDi al og(parent, id, title, wxDefaultPosition, wxDefaultSize,
wxDl ALOG STYLE | wxRESI ZE_BORDER)
{

wxBoxSi zer *topsizer = new wxBoxSi zer (wxVERTI CAL);

/] create text ctrl with mninal size 100x60
t opsi zer - >Add(

new wxTextCtrl (this, -1, "My text.", wxDefaultPosition,
wxSi ze(100, 60), WXTE_MULTI LI NE),

1, /1 make vertically stretchable

WXEXPAND | /1 make horizontally stretchable

WXALL, /1 and make border all around

10); /1 set border width to 10

76

CHAPTER 5

wxBoxSi zer *button_sizer = new wxBoxSi zer (wxHORI ZONTAL)
button_si zer - >Add(
new wxButton(this, wxlD OK "K'),

0, /1 make horizontally unstretchable
WXALL, /1 make border all around (inplicit top alignnent)
10); /1 set border width to 10

button_si zer - >Add(
new wxButton(this, wxlD CANCEL, "Cancel"),

0, /1 make horizontally unstretchable
WXALL, /1 make border all around (inplicit top alignnent)
10); /1 set border width to 10

t opsi zer - >Add(
button_si zer,
0, /1 make vertically unstretchable
WXALI GN_CENTER); // no border and centre horizontally

Set Aut oLayout (TRUE); /1 tell dialog to use sizer

Set Si zer (topsizer); /] actually set the sizer

topsizer->Fit(this); /] set size to mninmmsize as
cal cul ated by the sizer

topsi zer->Set Si zeHi nts(this); /1 set size hints to honour m ni num
si ze

}

Derived from

wxSizer (p. 798)

wxObject (p. 627)

wxBoxSizer::wxBoxSizer

wxBoxSizer(int orient)

Constructor for a wxBoxSizer. orient may be either of wx\VERTICAL or wxHORIZONTAL
for creating either a column sizer or a row sizer.

wxBoxSizer::RecalcSizes

void RecalcSizes()

Implements the calculation of a box sizer's dimensions and then sets the size of its its
children (calling wxWindow::SetSize (p. 1091) if the child is a window). It is used
internally only and must not be called by the user. Documented for information.
wxBoxSizer::CalcMin

wxSize CalcMin()

77

CHAPTER 5

Implements the calculation of a box sizer's minimal. It is used internally only and must
not be called by the user. Documented for information.

wxBoxSizer::GetOrientation

int GetOrientation()

Returns the orientation of the box sizer, either wxVERTICAL or wxHORIZONTAL.
wxBrush

A brush is a drawing tool for filling in areas. It is used for painting the background of
rectangles, ellipses, etc. It has a colour and a style.

Derived from

wxGDIObject (p. 371)
wxObiject (p. 627)

Include files
<wx/brush.h>
Predefined objects
Objects:
wxNullBrush
Pointers:

wxBLUE_BRUSH
WXGREEN_BRUSH
WXWHITE_BRUSH
WXBLACK_BRUSH
WXGREY_BRUSH
wWxXMEDIUM_GREY_BRUSH
WXLIGHT_GREY_BRUSH
WXTRANSPARENT_BRUSH
wWXCYAN_BRUSH
wWXRED_BRUSH

Remarks

On a monochrome display, wxWindows shows all brushes as white unless the colour is
really black.

Do not initialize objects on the stack before the program commences, since other
required structures may not have been set up yet. Instead, define global pointers to

78

CHAPTER 5

objects and create them in wxApp::Onlnit (p. 26) or when required.

An application may wish to create brushes with different characteristics dynamically, and
there is the consequent danger that a large number of duplicate brushes will be created.
Therefore an application may wish to get a pointer to a brush by using the global list of
brushes wxTheBrushList, and calling the member function FindOrCreateBrush.
wxBrush uses a reference counting system, so assignments between brushes are very
cheap. You can therefore use actual wxBrush objects instead of pointers without
efficiency problems. Once one wxBrush object changes its data it will create its own
brush data internally so that other brushes, which previously shared the data using the
reference counting, are not affected.

See also

wxBrushList (p. 83), wxDC (p. 191), wxDC::SetBrush (p. 205)

wxBrush::wxBrush
wxBrush()

Default constructor. The brush will be uninitialised, and wxBrush::Ok (p. 81) will return
FALSE.

wxBrush(const wxColour& colour, int style)

Constructs a brush from a colour object and style.

wxBrush(const wxString& colourName, int style)

Constructs a brush from a colour name and style.

wxBrush(const wxBitmap& stippleBitmap)

Constructs a stippled brush using a bitmap.

wxBrush(const wxBrushé& brush)

Copy constructor. This uses reference counting so is a cheap operation.
Parameters

colour
Colour object.

colourName
Colour name. The name will be looked up in the colour database.

79

CHAPTER 5

style
One of:
WXTRANSPARENT Transparent (no fill).
wxSOLID Solid.
wxBDIAGONAL_HATCH Backward diagonal hatch.
WXCROSSDIAG_HATCH Cross-diagonal hatch.
wWxFDIAGONAL_HATCH Forward diagonal hatch.
WXCROSS_HATCH Cross hatch.
WxXHORIZONTAL_HATCH Horizontal hatch.
WXVERTICAL_HATCH Vertical hatch.

brush

Pointer or reference to a brush to copy.

stippleBitmap
A bitmap to use for stippling.

Remarks
If a stipple brush is created, the brush style will be set to wxSTIPPLE.
See also

wxBrushList (p. 83), wxColour (p. 111), wxColourDatabase (p. 116)

wxBrush::~wxBrush
void ~wxBrush()
Destructor.

Remarks

The destructor may not delete the underlying brush object of the native windowing
system, since wxBrush uses a reference counting system for efficiency.

Although all remaining brushes are deleted when the application exits, the application
should try to clean up all brushes itself. This is because wxWindows cannot know if a
pointer to the brush object is stored in an application data structure, and there is a risk of
double deletion.

wxBrush::GetColour

wxColour& GetColour() const

Returns a reference to the brush colour.

80

CHAPTER 5

See also

wxBrush::SetColour (p. 81)

wxBrush::GetStipple
wxBitmap * GetStipple() const

Gets a pointer to the stipple bitmap. If the brush does not have a wxSTIPPLE style, this
bitmap may be non-NULL but uninitialised (wxBitmap::Ok (p. 61) returns FALSE).

See also

wxBrush::SetStipple (p. 82)

wxBrush::GetStyle
int GetStyle() const

Returns the brush style, one of:

WXTRANSPARENT Transparent (no fill).
wxSOLID Solid.
wxBDIAGONAL_HATCH Backward diagonal hatch.
WXCROSSDIAG_HATCH Cross-diagonal hatch.
wWxFDIAGONAL_HATCH Forward diagonal hatch.
WxXCROSS_HATCH Cross hatch.
WXHORIZONTAL_HATCH Horizontal hatch.
WXVERTICAL_HATCH Vertical hatch.
WXSTIPPLE Stippled using a bitmap.
WXSTIPPLE_MASK_OPAQUE Stippled using a bitmap's mask.
See also

wxBrush::SetStyle (p. 82), wxBrush::SetColour (p. 81), wxBrush::SetStipple (p. 82)

wxBrush::Ok
bool Ok() const
Returns TRUE if the brush is initialised. It will return FALSE if the default constructor has

been used (for example, the brush is a member of a class, or NULL has been assigned
to it).

wxBrush::SetColour

81

CHAPTER 5

void SetColour(wxColour& colour)

Sets the brush colour using a reference to a colour object.

void SetColour(const wxString& colourName)

Sets the brush colour using a colour name from the colour database.

void SetColour(const unsigned char red, const unsigned char green, const
unsigned char blue)

Sets the brush colour using red, green and blue values.
See also

wxBrush::GetColour (p. 80)

wxBrush::SetStipple

void SetStipple(const wxBitmapé& bitmap)
Sets the stipple bitmap.

Parameters

bitmap
The bitmap to use for stippling.

Remarks

The style will be set to wxSTIPPLE, unless the bitmap has a mask associated to it, in
which case the style will be set to wxSTIPPLE_MASK_OPAQUE.

If the wxSTIPPLE variant is used, the bitmap will be used to fill out the area to be drawn.
If the wxSTIPPLE_MASK_OPAQUE is used, the current text foreground and text
background determine what colours are used for displaying and the bits in the mask
(which is a mono-bitmap actually) determine where to draw what.

Note that under Windows 95, only 8x8 pixel large stipple bitmaps are supported,
Windows 98 and NT as well as GTK support arbitrary bitmaps.

See also

wxBitmap (p. 52)

wxBrush::SetStyle

void SetStyle(int style)

82

CHAPTER 5

Sets the brush style.

style
One of:
WXTRANSPARENT Transparent (no fill).
wxSOLID Solid.
wxBDIAGONAL_HATCH Backward diagonal hatch.
WXCROSSDIAG_HATCH Cross-diagonal hatch.
wWxFDIAGONAL_HATCH Forward diagonal hatch.
WXCROSS_HATCH Cross hatch.
WxXHORIZONTAL_ HATCH Horizontal hatch.
WXVERTICAL_HATCH Vertical hatch.
WXSTIPPLE Stippled using a bitmap.
WXSTIPPLE_MASK_OPAQUE Stippled using a bitmap's mask.

See also

wxBrush::GetStyle (p. 81)

wxBrush::operator =
wxBrushé& operator =(const wxBrush& brush)

Assignment operator, using reference counting. Returns a reference to 'this'.

wxBrush::operator ==

bool operator ==(const wxBrushé& brush)

Equality operator. Two brushes are equal if they contain pointers to the same underlying
brush data. It does not compare each attribute, so two independently-created brushes
using the same parameters will fail the test.

wxBrush::operator !=

bool operator !=(const wxBrush& brush)

Inequality operator. Two brushes are not equal if they contain pointers to different
underlying brush data. It does not compare each attribute.

wxBrushList

A brush list is a list containing all brushes which have been created.

83

CHAPTER 5

Derived from

wxList (p. 505)
wxObject (p. 627)

Include files
<wx/gdicmn.h>
Remarks

There is only one instance of this class: wxTheBrushList. Use this object to search for
a previously created brush of the desired type and create it if not already found. In some
windowing systems, the brush may be a scarce resource, so it can pay to reuse old
resources if possible. When an application finishes, all brushes will be deleted and their
resources freed, eliminating the possibility of 'memory leaks'. However, it is best not to
rely on this automatic cleanup because it can lead to double deletion in some
circumstances.

There are two mechanisms in recent versions of wxWindows which make the brush list
less useful than it once was. Under Windows, scarce resources are cleaned up internally
if they are not being used. Also, a referencing counting mechanism applied to all GDI
objects means that some sharing of underlying resources is possible. You don't have to
keep track of pointers, working out when it is safe delete a brush, because the
referencing counting does it for you. For example, you can set a brush in a device
context, and then immediately delete the brush you passed, because the brush is
‘copied'.

So you may find it easier to ignore the brush list, and instead create and copy brushes
as you see fit. If your Windows resource meter suggests your application is using too
many resources, you can resort to using GDI lists to share objects explicitly.

The only compelling use for the brush list is for wxWindows to keep track of brushes in
order to clean them up on exit. It is also kept for backward compatibility with earlier
versions of wxWindows.

See also

wxBrush (p. 78)

wxBrushList::wxBrushList
void wxBrushList()

Constructor. The application should not construct its own brush list: use the object
pointer wxTheBrushList.

CHAPTER 5

wxBrushList::AddBrush
void AddBrush(wxBrush *brush)

Used internally by wxWindows to add a brush to the list.

wxBrushList::FindOrCreateBrush
wxBrush * FindOrCreateBrush(const wxColour& colour, int style)

Finds a brush with the specified attributes and returns it, else creates a new brush, adds
it to the brush list, and returns it.

wxBrush * FindOrCreateBrush(const wxString& colourName, int style)

Finds a brush with the specified attributes and returns it, else creates a new brush, adds
it to the brush list, and returns it.

Finds a brush of the given specification, or creates one and adds it to the list.
Parameters

colour
Colour object.

colourName
Colour name, which should be in the colour database.

swie Brush style. See wxBrush::SetStyle (p. 82) for a list of styles.
wxBrushList::RemoveBrush

void RemoveBrush(wxBrush *brush)

Used by wxWindows to remove a brush from the list.

wxBusyCursor

This class makes it easy to tell your user that the program is temporarily busy. Just
create a wxBusyCursor object on the stack, and within the current scope, the hourglass

will be shown.

For example:
wxBusyCur sor wait;

for (int i = 0; i < 100000; i ++)
DoACal cul ation();

85

CHAPTER 5

It works by calling wxBeginBusyCursor (p. 1122) in the constructor, and
wxEndBusyCursor (p. 1125) in the destructor.

Derived from
None
Include files
<wx/utils.h>
See also

wxBeginBusyCursor (p. 1122), wxEndBusyCursor (p. 1125), wxWindowDisabler (p.
1097)

wxBusyCursor::wxBusyCursor
wxBusyCursor(wxCursor* cursor = wxHOURGLASS_CURSOR)

Constructs a busy cursor object, calling wxBeginBusyCursor (p. 1122).

wxBusyCursor::~wxBusyCursor

~wxBusyCursor()

Destroys the busy cursor object, calling wxEndBusyCursor (p. 1125).
wxBusylnfo

This class makes it easy to tell your user that the program is temporarily busy. Just

create a wxBusylInfo object on the stack, and within the current scope, a message
window will be shown.

For example:
wxBusyl nfo wait("Pl ease wait, working...");
for (int i = 0; i < 100000; i ++)

DoACal cul ation();
It works by creating a window in the constructor, and deleting it in the destructor.
Derived from

None

86

CHAPTER 5

Include files

<wx/busyinfo.h>

wxBusyInfo::wxBusylnfo

wxBusylInfo(const wxString& msg)

Constructs a busy info object, displays msg.

wxButton

A button is a control that contains a text string, and is one of the commonest elements of

a GUL. It may be placed on a dialog box (p. 220) or panel (p. 645), or indeed almost any

other window.

Derived from

wxControl (p. 150)

wxWindow (p. 1048)

wxEvtHandler (p. 277)

wxObiject (p. 627)

Include files

<wx/button.h>

Window styles

There are no special styles for wxButton.

See also window styles overview (p. 1214).

Event handling

EVT_BUTTON(id, func) Process a
wWXEVT_COMMAND_BUTTON_CLICKED
event, when the button is clicked.

See also

wxBitmapButton (p. 69)

87

CHAPTER 5

wxButton::wxButton

wxButton()

Default constructor.

wxButton(wxWindow* parent, wxWindowID id, const wxString& label, const
wxPoint& pos, const wxSize& size = wxDefaultSize, long style = 0, const
wxValidator& validator, const wxString& name = "button")

Constructor, creating and showing a button.

Parameters

parent
Parent window. Must not be NULL.

id
Button identifier. A value of -1 indicates a default value.

label
Text to be displayed on the button.

pos
Button position.

size
Button size. If the default size (-1, -1) is specified then the button is sized
appropriately for the text.

style
Window style. See wxButton (p. 87).

validator
Window validator.

name
Window name.

See also

wxButton::Create (p. 89), wxValidator (p. 1031)

wxButton::~wxButton
~wxButton()

Destructor, destroying the button.

88

CHAPTER 5

wxButton::Create

bool Create(wxWindow* parent, wxWindowID id, const wxString& label, const
wxPoint& pos, const wxSize& size = wxDefaultSize, long style = 0, const
wxValidator& validator, const wxString& name = "button")

Button creation function for two-step creation. For more details, see wxButton::wxButton
(p- 88).

wxButton::GetLabel

wxString GetLabel() const

Returns the string label for the button.

Return value

The button's label.

See also

wxButton::SetLabel (p. 90)

wxButton::GetDefaultSize
wxSize GetDefaultSize()
Returns the default size for the buttons. It is advised to make all the dialog buttons of the

same size and this function allows to retrieve the (platform and current font dependent
size) which should be the best suited for this.

wxButton::SetDefault

void SetDefault()

This sets the button to be the default item for the panel or dialog box.

Remarks

Under Windows, only dialog box buttons respond to this function. As normal under
Windows and Motif, pressing return causes the default button to be depressed when the
return key is pressed. See also wxWindow::SetFocus (p. 1088) which sets the keyboard
focus for windows and text panel items, and wxPanel::SetDefaultltem (p. 648).

Note that under Motif, calling this function immediately after creation of a button and

before the creation of other buttons will cause misalignment of the row of buttons, since
default buttons are larger. To get around this, call SetDefault after you have created a

89

CHAPTER 5

row of buttons: wxWindows will then set the size of all buttons currently on the panel to
the same size.

wxButton::SetLabel

void SetLabel(const wxString& label)

Sets the string label for the button.

Parameters

label
The label to set.

See also

wxButton::GetLabel (p. 89)

wxBufferedinputStream

This stream acts as a cache. It caches the bytes read from the specified input stream
(See wxFilterInputStream (p. 329)). It uses wxStreamBuffer and sets the default in-buffer
size to 1024 bytes. This class may not be used without some other stream to read the
data from (such as a file stream or a memory stream).

Derived from

wxFilterinputStream (p. 329)

Include files

<wx/stream.h>

See also

wxStreamBuffer (p. 871), wxInputStream (p. 483),wxBufferedOutputStream (p. 90)
wxBufferedOutputStream

This stream acts as a cache. It caches the bytes to be written to the specified output
stream (See wxFilterOutputStream (p. 330)). The data is only written when the cache is

full, when the buffered stream is destroyed or when calling SeekO().

This class may not be used without some other stream to write the data to (such as a file
stream or a memory stream).

Derived from

wxFilterOutputStream (p. 330)

90

CHAPTER 5

Include files
<wx/stream.h>
See also

wxStreamBuffer (p. 871), wxOutputStream (p. 632)

wxBufferedOutputStream::wxBufferedOutputStream
wxBufferedOutputStream(const wxOutputStream& parent)

Creates a buffered stream using a buffer of a default size of 1024 bytes for cashing the
stream parent.

wxBufferedOutputStream::~wxBufferedOutputStream
~wxBufferedOutputStream()

Destructor. Calls Sync() and destroys the internal buffer.

wxBufferedOutputStream::SeekO
off_t SeekO(off_t pos, wxSeekMode mode)

Calls Sync() and changes the stream position.

wxBufferedOutputStream::Sync

void Sync()

Flushes the buffer and calls Sync() on the parent stream.
wxCalculateLayoutEvent

This event is sent by wxLayoutAlgorithm (p. 500) to calculate the amount of the
remaining client area that the window should occupy.

Derived from

wxEvent (p. 274)
wxObiject (p. 627)

91

CHAPTER 5

Include files

<wx/laywin.h>

Event table macros

EVT_CALCULATE_LAYOUT(func) Process a wxEVT_CALCULATE_LAYOUT

event, which asks the window to take a 'bite’
out of a rectangle provided by the algorithm.

See also

wxQueryLayoutinfoEvent (p. 732), wxSashLayoutWindow (p. 769), wxLayoutAlgorithm
(p. 500).

wxCalculateLayoutEvent::wxCalculateLayoutEvent
wxCalculateLayoutEvent(wxWindowlID id = 0)

Constructor.

wxCalculateLayoutEvent::GetFlags
int GetFlags() const

Returns the flags associated with this event. Not currently used.

wxCalculateLayoutEvent::GetRect

wxRect GetRect() const

Before the event handler is entered, returns the remaining parent client area that the
window could occupy. When the event handler returns, this should contain the remaining
parent client rectangle, after the event handler has subtracted the area that its window
occupies.

wxCalculateLayoutEvent::SetFlags

void SetFlags(int flags)

Sets the flags associated with this event. Not currently used.

92

CHAPTER 5

wxCalculateLayoutEvent::SetRect
void SetRect(const wxRect& rect)

Call this to specify the new remaining parent client area, after the space occupied by the
window has been subtracted.

wxCalendarCtrl

The calendar control allows the user to pick a date interactively.
Include files

<wx/calctrl.h>

See also:

Calendar sample (p. 1172)

wxCheckBox

A checkbox is a labelled box which is either on (checkmark is visible) or off (no
checkmark).

Derived from

wxControl (p. 150)

wxWindow (p. 1048)

wxEvtHandler (p. 277)

wxObject (p. 627)

Include files

<wx/checkbox.h>

Window styles

There are no special styles for wxCheckBox.
See also window styles overview (p. 1214).
Event handling

EVT_CHECKBOX(id, func) Process a

wxEVT_COMMAND_CHECKBOX_ CLICKED
event, when the checkbox is clicked.

See also

93

CHAPTER 5

wxRadioButton (p. 740), wxCommandEvent (p. 127)

wxCheckBox::wxCheckBox

wxCheckBox()

Default constructor.

wxCheckBox(wxWindow* parent, wxWindowID id, const wxString& label, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
0, const wxValidator& val, const wxString& name = "checkBox")

Constructor, creating and showing a checkbox.

Parameters

parent
Parent window. Must not be NULL.

id
Checkbox identifier. A value of -1 indicates a default value.
label
Text to be displayed next to the checkbox.
pos
Checkbox position. If the position (-1, -1) is specified then a default position is
chosen.
size
Checkbox size. If the default size (-1, -1) is specified then a default size is chosen.
style
Window style. See wxCheckBox (p. 93).
validator
Window validator.
name
Window name.
See also

wxCheckBox::Create (p. 95), wxValidator (p. 1031)

wxCheckBox::~wxCheckBox

94

CHAPTER 5

~wxCheckBox()

Destructor, destroying the checkbox.

wxCheckBox::Create

bool Create(wxWindow* parent, wxWindowID id, const wxString& label, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
0, const wxValidator& val, const wxString& name = "checkBox")

Creates the checkbox for two-step construction. See wxCheckBox::wxCheckBox (p. 94)
for details.

wxCheckBox::GetValue

bool GetValue() const

Gets the state of the checkbox.

Return value

Returns TRUE if it is checked, FALSE otherwise.

wxCheckBox::SetValue
void SetValue(const bool state)

Sets the checkbox to the given state. This does not cause a
WXEVT_COMMAND_CHECKBOX_CLICKED event to get emitted.

Parameters

state
If TRUE, the check is on, otherwise it is off.

wxCheckListBox
A checklistbox is like a listbox, but allows items to be checked or unchecked.

This class is currently implemented under Windows and GTK. When using this class
under Windows wxWindows must be compiled with USE_OWNER_DRAWN set to 1.

Only the new functions for this class are documented; see also wxListBox (p. 512).
Derived from

wxListBox (p. 512)

95

CHAPTER 5

wxControl (p. 150)

wxWindow (p. 1048)

wxEvtHandler (p. 277)

wxObject (p. 627)

Include files

<wx/checklst.h>

Window styles

See wxListBox (p. 512).

Event handling

EVT_CHECKLISTBOX(id, func) Process a
WXEVT_COMMAND_CHECKLISTBOX_TOGG
LE event, when an item in the check list box is
checked or unchecked.

See also

wxListBox (p. 512), wxChoice (p. 98), wxComboBox (p. 118), wxListCtrl (p. 520),
wxCommandEvent (p. 127)

wxCheckListBox::wxCheckListBox

wxCheckListBox()

Default constructor.

wxCheckListBox(wxWindow* parent, wxWindowlID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, int n, const wxString
choices[] = NULL, long style = 0, const wxValidator& validator = wxDefaultValidator,
const wxString& name = "listBox")

Constructor, creating and showing a list box.

Parameters

parent
Parent window. Must not be NULL.

id
Window identifier. A value of -1 indicates a default value.

pos

96

CHAPTER 5

Window position.

size

Window size. If the default size (-1, -1) is specified then the window is sized

appropriately.
n

Number of strings with which to initialise the control.
choices

An array of strings with which to initialise the control.
style

Window style. See wxCheckListBox (p. 95).
validator

Window validator.
name

Window name.

wxPython note: The wxCheckListBox constructor in wxPython reduces the nand
choi ces arguments are to a single argument, which is a list of strings.

wxCheckListBox::~wxCheckListBox
void ~wxCheckListBox()

Destructor, destroying the list box.

wxCheckListBox::Check

void Check(int item, bool check = TRUE)
Checks the given item.

Parameters

item
Index of item to check.

check
TRUE if the item is to be checked, FALSE otherwise.

wxCheckListBox::IsChecked

bool IsChecked(int item) const

97

CHAPTER 5

Returns TRUE if the given item is checked, FALSE otherwise.
Parameters

item
Index of item whose check status is to be returned.

wxChoice

A choice item is used to select one of a list of strings. Unlike a listbox, only the selection
is visible until the user pulls down the menu of choices.

Derived from

wxControl (p. 150)

wxWindow (p. 1048)

wxEvtHandler (p. 277)

wxObject (p. 627)

Include files

<wx/choice.h>

Window styles

There are no special styles for wxChoice.

See also window styles overview (p. 1214).

Event handling

EVT_CHOICE(id, func) Process a
WXEVT_COMMAND_CHOICE_SELECTED
event, when an item on the list is selected.

See also

wxListBox (p. 512), wxComboBox (p. 118), wxCommandEvent (p. 127)

wxChoice::wxChoice
wxChoice()
Default constructor.

wxChoice(wxWindow *parent, wxWindowlID id, const wxPoint& pos, const wxSize&

98

CHAPTER 5

size, int n, const wxString choices|[], long style = 0, const wxValidator& validator =
wxDefaultValidator, const wxString& name = "choice")

Constructor, creating and showing a choice.
Parameters

parent
Parent window. Must not be NULL.

id
Window identifier. A value of -1 indicates a default value.

pos
Window position.

size
Window size. If the default size (-1, -1) is specified then the choice is sized
appropriately.
Number of strings with which to initialise the choice control.

choices
An array of strings with which to initialise the choice control.

style
Window style. See wxChoice (p. 98).

validator
Window validator.

name
Window name.

See also

wxChoice::Create (p. 100), wxValidator (p. 1031)

wxPython note: The wxChoice constructor in wxPython reduces the nand choi ces
arguments are to a single argument, which is a list of strings.
wxChoice::~wxChoice

~wxChoice()

Destructor, destroying the choice item.

99

CHAPTER 5

wxChoice::Append

void Append(const wxString& item)

Adds the item to the end of the choice control.

void Append(const wxString& item, void* clientData)

Adds the item to the end of the combobox, associating the given data with the item.
Parameters

item
String to add.

clientData

Client data to associate with the item.
wxChoice::Clear
void Clear()

Clears the strings from the choice item.

wxChoice::Create

bool Create(wxWindow *parent, wxWindowID id, const wxPoint& pos, const
wxSize& size, int n, const wxString choices|[], long style = 0, const wxString& name
= "choice")

Creates the choice for two-step construction. See wxChoice::wxChoice (p. 98).

wxChoice::FindString

int FindString(const wxString& string) const
Finds a choice matching the given string.
Parameters

string
String to find.

Return value

Returns the position if found, or -1 if not found.

100

CHAPTER 5

wxChoice::GetColumns

int GetColumns() const

Gets the number of columns in this choice item.
Remarks

This is implemented for Motif only.

wxChoice::GetClientData

void* GetClientData(int n) const

Returns a pointer to the client data associated with the given item (if any).
Parameters

n
An item, starting from zero.

Return value

A pointer to the client data, or NULL if the item was not found.

wxChoice::GetSelection
int GetSelection() const

Gets the id (position) of the selected string, or -1 if there is no selection.

wxChoice::GetString

wxString GetString(int n) const
Returns the string at the given position.
Parameters

n
The zero-based position.

Return value

The string at the given position, or the empty string if n is invalid.

101

CHAPTER 5

wxChoice::GetStringSelection

wxString GetStringSelection() const

Gets the selected string, or the empty string if no string is selected.

wxChoice::Number
int Number() const

Returns the number of strings in the choice control.

wxChoice::SetClientData

void SetClientData(int n, void* data)

Associates the given client data pointer with the given item.
Parameters

n
The zero-based item.

data
The client data.
wxChoice::SetColumns
void SetColumns(int n = 1)
Sets the number of columns in this choice item.

Parameters

Number of columns.
Remarks

This is implemented for Motif only.

wxChoice::SetSelection

void SetSelection(int n)

102

CHAPTER 5

Sets the choice by passing the desired string position. This does not cause a
WXEVT_COMMAND_CHOICE_SELECTED event to get emitted.

Parameters

n
The string position to select, starting from zero.

See also

wxChoice::SetStringSelection (p. 103)

wxChoice::SetStringSelection
void SetStringSelection(const wxString& string)

Sets the choice by passing the desired string. This does not cause a
WXEVT_COMMAND_CHOICE_SELECTED event to get emitted.

Parameters

string
The string to select.

See also

wxChoice::SetSelection (p. 102)

wxClassInfo

This class stores meta-information about classes. Instances of this class are not
generally defined directly by an application, but indirectly through use of macros such as
DECLARE_DYNAMIC_CLASS and IMPLEMENT_DYNAMIC_CLASS.

Derived from

No parent class.

Include files

<wx/object.h>

See also

Overview (p. 1181), wxObject (p. 627)

103

CHAPTER 5

wxClassInfo::wxClassInfo

wxClassiInfo(char* className, char* baseClassl, char* baseClass2, int size,
wxObjectConstructorFn fn)

Constructs a wxClassInfo object. The supplied macros implicitly construct objects of this
class, so there is no need to create such objects explicitly in an application.
wxClassinfo::CreateObject

wxObject* CreateObject()

Creates an object of the appropriate kind. Returns NULL if the class has not been
declared dynamically createable (typically, it's an abstract class).
wxClassiInfo::FindClass

static wxClassInfo * FindClass(char* name)

Finds the wxClassInfo object for a class of the given string name.

wxClassInfo::GetBaseClassNamel
char* GetBaseClassNamel() const

Returns the name of the first base class (NULL if none).

wxClassiInfo::GetBaseClassName2
char* GetBaseClassName2() const

Returns the name of the second base class (NULL if none).

wxClassInfo::GetClassName
char * GetClassName() const

Returns the string form of the class name.

wxClassinfo::GetSize
int GetSize() const

Returns the size of the class.

104

CHAPTER 5

wxClassInfo::InitializeClasses

static void InitializeClasses()

Initializes pointers in the wxClassInfo objects for fast execution of IsKindOf. Called in
base wxWindows library initialization.

wxClassInfo::IsKindOf

bool IsKindOf(wxClassInfo* info)

Returns TRUE if this class is a kind of (inherits from) the given class.

wxClientDC

A wxClientDC must be constructed if an application wishes to paint on the client area of
a window from outside an OnPaint event. This should normally be constructed as a
temporary stack object; don't store a wxClientDC object.

To draw on a window from within OnPaint, construct a wxPaintDC (p. 640) object.

To draw on the whole window including decorations, construct a wxWindowDC (p. 1096)
object (Windows only).

Derived from

wxWindowDC (p. 1096)
wxDC (p. 191)

Include files
<wx/dcclient.h>
See also

wxDC (p. 191), wxMemoryDC (p. 562), wxPaintDC (p. 640), wxWindowDC (p. 1096),
wxScreenDC (p. 776)

wxClientDC::wxClientDC
wxClientDC(wxWindow* window)

Constructor. Pass a pointer to the window on which you wish to paint.

105

CHAPTER 5

wxClipboard

A class for manipulating the clipboard. Note that this is not compatible with the clipboard
class from wxWindows 1.xx, which has the same name but a different implementation.

To use the clipboard, you call member functions of the global wxTheClipboard object.
See also the wxDataObject overview (p. 1265) for further information.

Call wxClipboard::Open (p. 108) to get ownership of the clipboard. If this operation
returns TRUE, you now own the clipboard. Call wxClipboard::SetData (p. 108) to put
data on the clipboard, or wxClipboard::GetData (p. 107) to retrieve data from the
clipboard. Call wxClipboard::Close (p. 107) to close the clipboard and relinquish
ownership. You should keep the clipboard open only momentarily.

For example:

/!l Wite sone text to the clipboard
if (wxThed i pboar d->0Open())

{
/1 This data objects are held by the clipboard,
/! so do not delete themin the app.
wxThed i pboar d- >Set Dat a(new wxText Dat aCbj ect (" Some text"));
wxThed i pboar d- >Cl ose() ;
}

/] Read sone text
if (wxThed i pboar d->0Open())

i f (wxThed i pboar d->I sSupported(wxDF_TEXT))

{
wxText Dat aCbj ect dat a;

wxThed i pboar d- >Get Data(data);
wxMessageBox(data. Get Text());

}
wxThed i pboar d- >Cl ose() ;
}

Derived from
wxObject (p. 627)
Include files
<wx/clipbrd.h>
See also

Drag and drop overview (p. 1264), wxDataObject (p. 169)

106

CHAPTER 5

wxClipboard::wxClipboard
wxClipboard()

Constructor.

wxClipboard::~wxClipboard
~wxClipboard()

Destructor.

wxClipboard::AddData
bool AddData(wxDataObject* data)

Call this function to add the data object to the clipboard. You may call this function
repeatedly after having cleared the clipboard using wxClipboard::Clear (p. 107).

After this function has been called, the clipboard owns the data, so do not delete the
data explicitly.

See also

wxClipboard::SetData (p. 108)

wxClipboard::Clear
void Clear()

Clears the global clipboard object and the system's clipboard if possible.

wxClipboard::Close

bool Close()

Call this function to close the clipboard, having opened it with wxClipboard::Open (p.
108).

wxClipboard::GetData

bool GetData(wxDataObject& data)

Call this function to fill data with data on the clipboard, if available in the required format.
Returns TRUE on success.

107

CHAPTER 5

wxClipboard::IsOpened
bool IsOpened() const

Returns TRUE if the clipboard has been opened.

wxClipboard::IsSupported
bool IsSupported(const wxDataFormat& format)

Returns TRUE if the format of the given data object is available on the clipboard.

wxClipboard::Open
bool Open()

Call this function to open the clipboard before calling wxClipboard::SetData (p. 108) and
wxClipboard::GetData (p. 107).

Call wxClipboard::Close (p. 107) when you have finished with the clipboard. You should
keep the clipboard open for only a very short time.

Returns TRUE on success. This should be tested (as in the sample shown above).

wxClipboard::SetData
bool SetData(wxDataObject* data)

Call this function to set the data object to the clipboard. This function will clear all
previous contents in the clipboard, so calling it several times does not make any sense.

After this function has been called, the clipboard owns the data, so do not delete the
data explicitly.

See also

wxClipboard::AddData (p. 107)

wxClipboard::UsePrimarySelection
void UsePrimarySelection(bool primary = TRUE)

On platforms supporting it (currently only GTK), selects the so called PRIMARY
SELECTION as the clipboard as opposed to the normal clipboard, if primary is TRUE.

108

CHAPTER 5

wxCloseEvent

This event class contains information about window and session close events.
Derived from

wxEvent (p. 274)

Include files

<wx/event.h>

Event table macros

To process a close event, use these event handler macros to direct input to member
functions that take a wxCloseEvent argument.

EVT_CLOSE(func) Process a close event, supplying the member
function. This event applies to wxFrame and
wxDialog classes.

EVT_QUERY_END_SESSION(func) Process a query end session event, supplying
the member function. This event applies to
WXApp only.

EVT_END_SESSION(func) Process an end session event, supplying the
member function. This event applies to wxApp
only.

See also
wxWindow::OnCloseWindow (p. 1071), wxWindow::Close (p. 1053),

WxApp::OnQueryEndSession (p. 27), wxApp::OnEndSession (p. 26), Window deletion
overview (p. 1214)

wxCloseEvent::wxCloseEvent
wxCloseEvent(WXTYPE commandEventType = 0, intid = 0)

Constructor.

wxCloseEvent::CanVeto
bool CanVeto()

Returns TRUE if you can veto a system shutdown or a window close event. Vetoing a

109

CHAPTER 5

window close event is not possible if the calling code wishes to force the application to
exit, and so this function must be called to check this.
wxCloseEvent::GetLoggingOff

bool GetLoggingOff() const

Returns TRUE if the user is logging off.

wxCloseEvent::GetSessionEnding
bool GetSessionEnding() const

Returns TRUE if the session is ending.

wxCloseEvent::GetForce

bool GetForce() const

Returns TRUE if the application wishes to force the window to close. This will shortly be
obsolete, replaced by CanVeto.

wxCloseEvent::SetCanVeto

void SetCanVeto(bool canVeto)

Sets the 'can veto' flag.

wxCloseEvent::SetForce
void SetForce(bool force) const

Sets the 'force' flag.

wxCloseEvent::SetLoggingOff
void SetLoggingOff(bool loggingOff) const

Sets the 'logging off' flag.

wxCloseEvent::Veto

void Veto(bool veto = TRUE)

110

CHAPTER 5

Call this from your event handler to veto a system shutdown or to signal to the calling
application that a window close did not happen.

You can only veto a shutdown if wxCloseEvent::CanVeto (p. 109) returns TRUE.

wxColour

A colour is an object representing a combination of Red, Green, and Blue (RGB)
intensity values, and is used to determine drawing colours. See the entry for
wxColourDatabase (p. 116) for how a pointer to a predefined, named colour may be
returned instead of creating a new colour.

Valid RGB values are in the range 0 to 255.

Derived from

wxObject (p. 627)

Include files

<wx/colour.h>

Predefined objects

Objects:

wxNullColour

Pointers:

WxBLACK

WXWHITE

WXRED

wxBLUE

WXGREEN

WXCYAN

WXLIGHT_GREY

See also

wxColourDatabase (p. 116), wxPen (p. 651), wxBrush (p. 78), wxColourDialog (p. 117)

wxColour::wxColour
wxColour()

Default constructor.

111

CHAPTER 5

wxColour(const unsigned char red, const unsigned char green, const unsigned
char blue)

Constructs a colour from red, green and blue values.

wxColour(const wxString& colourNname)

Constructs a colour object using a colour name listed in wxTheColourDatabase.
wxColour(const wxColouré& colour)

Copy constructor.

Parameters

red
The red value.

green
The green value.

blue
The blue value.

colourName
The colour name.

colour
The colour to copy.

See also
wxColourDatabase (p. 116)
wxPython note: Constructors supported by wxPython are:

wxColour(red=0, green=0, blue=0)
wxNamedColour(name)

wxColour::Blue
unsigned char Blue() const

Returns the blue intensity.

wxColour::GetPixel

112

CHAPTER 5

long GetPixel() const

Returns a pixel value which is platform-dependent. On Windows, a COLORREF is
returned. On X, an allocated pixel value is returned.

-1 is returned if the pixel is invalid (on X, unallocated).

wxColour::Green
unsigned char Green() const

Returns the green intensity.

wxColour::0Ok

bool Ok() const

Returns TRUE if the colour object is valid (the colour has been initialised with RGB
values).

wxColour::Red

unsigned char Red() const

Returns the red intensity.

wxColour::Set

void Set(const unsigned char red, const unsigned char green, const unsigned char
blue)

Sets the RGB intensity values.

wxColour::operator =

wxColour& operator =(const wxColouré& colour)

Assignment operator, taking another colour object.

wxColour& operator =(const wxString& colourName)

Assignment operator, using a colour name to be found in the colour database.

See also

113

CHAPTER 5

wxColourDatabase (p. 116)

wxColour::operator ==
bool operator ==(const wxColour& colour)

Tests the equality of two colours by comparing individual red, green blue colours.

wxColour::operator !=

bool operator I=(const wxColour& colour)

Tests the inequality of two colours by comparing individual red, green blue colours.
wxColourData

This class holds a variety of information related to colour dialogs.

Derived from

wxObject (p. 627)

Include files

<wx/cmndata.h>

See also

wxColour (p. 111), wxColourDialog (p. 117), wxColourDialog overview (p. 1241)

wxColourData::wxColourData

wxColourData()

Constructor. Initializes the custom colours to white, the data colour setting to black, and
the choose full setting to TRUE.

wxColourData::~wxColourData

~wxColourData()

Destructor.

114

CHAPTER 5

wxColourData::GetChooseFull
bool GetChooseFull() const

Under Windows, determines whether the Windows colour dialog will display the full
dialog with custom colour selection controls. Has no meaning under other platforms.

The default value is TRUE.

wxColourData::GetColour
wxColour& GetColour() const
Gets the current colour associated with the colour dialog.

The default colour is black.

wxColourData::GetCustomColour
wxColour& GetCustomColour(int i) const

Gets the ith custom colour associated with the colour dialog. i should be an integer
between 0 and 15.

The default custom colours are all white.

wxColourData::SetChooseFull
void SetChooseFull(const bool flag)

Under Windows, tells the Windows colour dialog to display the full dialog with custom
colour selection controls. Under other platforms, has no effect.

The default value is TRUE.

wxColourData::SetColour
void SetColour(const wxColouré& colour)
Sets the default colour for the colour dialog.

The default colour is black.

wxColourData::SetCustomColour

115

CHAPTER 5

void SetColour(int i, const wxColour& colour)
Sets the ith custom colour for the colour dialog. i should be an integer between 0 and 15.

The default custom colours are all white.

wxColourData::operator =

void operator =(const wxColourData& data)
Assingment operator for the colour data.
wxColourDatabase

wxWindows maintains a database of standard RGB colours for a predefined set of
named colours (such as "BLACK", "LIGHT GREY"). The application may add to this set
if desired by using Append. There is only one instance of this class:
wxTheColourDatabase.

Derived from

wxList (p. 505)
wxObject (p. 627)

Include files

<wx/gdicmn.h>

Remarks

The colours in the standard database are as follows:

AQUAMARINE, BLACK, BLUE, BLUE VIOLET, BROWN, CADET BLUE, CORAL,
CORNFLOWER BLUE, CYAN, DARK GREY, DARK GREEN, DARK OLIVE GREEN,
DARK ORCHID, DARK SLATE BLUE, DARK SLATE GREY DARK TURQUOISE, DIM
GREY, FIREBRICK, FOREST GREEN, GOLD, GOLDENROD, GREY, GREEN, GREEN
YELLOW, INDIAN RED, KHAKI, LIGHT BLUE, LIGHT GREY, LIGHT STEEL BLUE,
LIME GREEN, MAGENTA, MAROON, MEDIUM AQUAMARINE, MEDIUM BLUE,
MEDIUM FOREST GREEN, MEDIUM GOLDENROD, MEDIUM ORCHID, MEDIUM
SEA GREEN, MEDIUM SLATE BLUE, MEDIUM SPRING GREEN, MEDIUM
TURQUOISE, MEDIUM VIOLET RED, MIDNIGHT BLUE, NAVY, ORANGE, ORANGE
RED, ORCHID, PALE GREEN, PINK, PLUM, PURPLE, RED, SALMON, SEA GREEN,
SIENNA, SKY BLUE, SLATE BLUE, SPRING GREEN, STEEL BLUE, TAN, THISTLE,
TURQUOISE, VIOLET, VIOLET RED, WHEAT, WHITE, YELLOW, YELLOW GREEN.

See also

wxColour (p. 111)

116

CHAPTER 5

wxColourDatabase::wxColourDatabase
wxColourDatabase()

Constructs the colour database.

wxColourDatabase::FindColour
wxColour* FindColour(const wxString& colourName)

Finds a colour given the name. Returns NULL if not found.

wxColourDatabase::FindName
wxString FindName(const wxColour& colour) const

Finds a colour name given the colour. Returns NULL if not found.

wxColourDatabase::Initialize
void Initialize()

Initializes the database with a number of stock colours. Called by wxWindows on start-
up.

wxColourDialog

This class represents the colour chooser dialog.
Derived from

wxDialog (p. 220)

wxWindow (p. 1048)

wxEvtHandler (p. 277)

wxObiject (p. 627)

Include files

<wx/colordlg.h>

See also

wxColourDialog Overview (p. 1241), wxColour (p. 111), wxColourData (p. 114)

117

CHAPTER 5

wxColourDialog::wxColourDialog
wxColourDialog(wxWindow* parent, wxColourData* data = NULL)

Constructor. Pass a parent window, and optionally a pointer to a block of colour data,
which will be copied to the colour dialog's colour data.

See also

wxColourData (p. 114)

wxColourDialog::~wxColourDialog
~wxColourDialog()

Destructor.

wxColourDialog::GetColourData
wxColourData& GetColourData()

Returns the colour data (p. 114) associated with the colour dialog.

wxColourDialog::ShowModal
int ShowModal()

Shows the dialog, returning wxID_OK if the user pressed OK, and wxOK_CANCEL
otherwise.

wxComboBox

A combobox is like a combination of an edit control and a listbox. It can be displayed as
static list with editable or read-only text field; or a drop-down list with text field; or a drop-
down list without a text field.

A combobox permits a single selection only. Combobox items are numbered from zero.
Derived from

wxChoice (p. 98)
wxControl (p. 150)
wxWindow (p. 1048)
wxEvtHandler (p. 277)
wxObject (p. 627)

118

CHAPTER 5

Include files

<wx/combo.h>

wxCB_SIMPLE

wxCB_DROPDOWN

wxCB_SORT

Creates a combobox with a permanently

Creates a combobox with a drop-down list.
Creates a combo box consisting of a drop-
down list and static text item displaying the

Sorts the ent

See also window styles overview 1214).

EVT_COMBOBOX(id, func)

EVT_TEXT(id, func)

wxListBox (p.), wxTextCtrl ~ 939),

wxComboBox::wxComboBox

wxComboBox()

wxComboBox wxWindow* parent wxWindowlID id const wxString& value =

Process a
D event, when an item on the list is selected.

WXEVT_COMMAND_TEXT_UPDATED event,
when the combobox text changes.

(p- 98 wxCommandEvent (p.)

nn

const wxPoint& pos = wxDefaultPosition const wxSize& size = wxDefaultSize intn
const wxString choices[] long style = 0 const wxValidator& validator =

, const wxString&

)

Constructor, creating and showing a combobox.

parent

CHAPTER 5

Parent window. Must not be NULL.

Window identifier. A value of -1 indicates a default value.

pos
Window position.

size

Window size. If the default size (-1, -1) is specified then the window is sized

appropriately.

Number of strings with which to initialise the control.

choices
An array of strings with which to initialise the control.

style
Window style. See wxComboBox (p. 118).

validator
Window validator.

name
Window name.

See also
wxComboBox::Create (p. 121), wxValidator (p. 1031)

wxPython note: The wxComboBox constructor in wxPython reduces the nand
choi ces arguments are to a single argument, which is a list of strings.

wxComboBox::~wxComboBox
~wxComboBox()

Destructor, destroying the combobox.

wxComboBox::Append
void Append(const wxString& item)
Adds the item to the end of the combobox.

void Append(const wxString& item, void* clientData)

120

CHAPTER 5

Adds the item to the end of the combobox, associating the given data with the item.
Parameters

item
The string to add.

clientData

Client data to associate with the item.
wxComboBox::Clear
void Clear()

Clears all strings from the combobox.

wxComboBox::Create

nn

bool Create(wxWindow* parent, wxWindowID id, const wxString& value =", const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, int n, const
wxString choices|], long style = 0, const wxValidator& validator = wxDefaultValidator,
const wxString& name = "comboBox")

Creates the combobox for two-step construction. Derived classes should call or replace
this function. See wxComboBox::wxComboBox (p. 119) for further details.
wxComboBox::Copy

void Copy()

Copies the selected text to the clipboard.

wxComboBox::Cut
void Cut()

Copies the selected text to the clipboard and removes the selection.

wxComboBox::Delete
void Delete(int n)
Deletes an item from the combobox.

Parameters

121

CHAPTER 5

The item to delete, starting from zero.

wxComboBox::FindString

int FindString(const wxString& string)
Finds a choice matching the given string.
Parameters

string
The item to find.

Return value

The position if found, or -1 if not found.

wxComboBox::GetClientData

void* GetClientData(int n) const

Returns a pointer to the client data associated with the given item (if any).

Parameters

An item, starting from zero.
Return value

A pointer to the client data, or NULL if the item was not found.

wxComboBox::GetinsertionPoint
long GetlnsertionPoint() const

Returns the insertion point for the combobox's text field.

wxComboBox::GetLastPosition
long GetLastPosition() const

Returns the last position in the combobox text field.

122

CHAPTER 5

wxComboBox::GetSelection
int GetSelection()

Gets the position of the selected string, or -1 if there is no selection.

wxComboBox::GetString
GetString intn const
Returns the string at position

Parameters

The item position, starting from zero.

Return value

wxComboBox::GetStringSelection
wxString GetStringSelection()

Gets the selected string.

wxComboBox::GetValue
GetValue const

Returns the current value in the combobox text field.

int () const

wxComboBox::Paste

void Paste()

CHAPTER 5

wxComboBox::Replace

void Replace(long from, long to, const wxString& text)

Replaces the text between two positions with the given text, in the combobox text field.
Parameters

from
The first position.

to
The second position.

text
The text to insert.

wxComboBox::Remove
void Remove(long from, long to)
Removes the text between the two positions in the combobox text field.

Parameters

from
The first position.

to
The last position.

wxComboBox::SetClientData
void SetClientData(int n, void* data)
Associates the given client data pointer with the given item.

Parameters

n
The zero-based item.

data
The client data.

wxComboBox::SetlnsertionPoint

124

CHAPTER 5

SetInsertionPoint long pos
Sets the insertion point in the combobox text field.

Parameters

The new insertion point.

wxComboBox::SetlnsertionPointEnd
SetlnsertionPointEnd

Sets the insertion point at the end of the combobox text field.

wxComboBox::SetSelection
SetSelection int n

Selects the given item in the combobox list. This does not cause a
WXEVT_COMMAND_COMBOBOX_SELECTED event to get emitted.

SetSelection long from long to
Selects the text between the two positions, in the combobox text field.

Parameters

The zero-based item to select.
from
to

The second position.

The second form of this method is called Set Mar k

wxComboBox::SetValue

void SetValue(text)

Parameters

125

CHAPTER 5

text
The text to set.

wxCommand

wxCommand is a base class for modelling an application command, which is an action
usually performed by selecting a menu item, pressing a toolbar button or any other
means provided by the application to change the data or view.

Derived from

wxObject (p. 627)

Include files

<wx/docview.h>

See also

Overview (p. 1249)

wxCommand::wxCommand
wxCommand(bool canUndo = FALSE, const wxString& name = NULL)

Constructor. wxCommand is an abstract class, so you will need to derive a new class
and call this constructor from your own constructor.

canUndo tells the command processor whether this command is undo-able. You can
achieve the same functionality by overriding the CanUndo member function (if for
example the criteria for undoability is context-dependant).

name must be supplied for the command processor to display the command name in the
application's edit menu.

wxCommand::~wxCommand

~wxCommand()

Destructor.

wxCommand::CanUndo

bool CanUndo()

126

CHAPTER 5

Returns TRUE if the command can be undone, FALSE otherwise.

wxCommand::Do
bool Do()

Override this member function to execute the appropriate action when called. Return
TRUE to indicate that the action has taken place, FALSE otherwise. Returning FALSE
will indicate to the command processor that the action is not undoable and should not be
added to the command history.

wxCommand::GetName
wxString GetName()

Returns the command name.

wxCommand::Undo
bool Undo()

Override this member function to un-execute a previous Do. Return TRUE to indicate
that the action has taken place, FALSE otherwise. Returning FALSE will indicate to the
command processor that the action is not redoable and no change should be made to
the command history.

How you implement this command is totally application dependent, but typical strategies
include:

Perform an inverse operation on the last modified piece of data in the document.
When redone, a copy of data stored in command is pasted back or some
operation reapplied. This relies on the fact that you know the ordering of Undos;
the user can never Undo at an arbitrary position in the command history.
Restore the entire document state (perhaps using document transactioning).
Potentially very inefficient, but possibly easier to code if the user interface and
data are complex, and an 'inverse execute' operation is hard to write.

The docview sample uses the first method, to remove or restore segments in the
drawing.

wxCommandEvent
This event class contains information about command events, which originate from a
variety of simple controls. More complex controls, such as wxTreeCitrl (p. 999), have

separate command event classes.

Derived from

127

CHAPTER 5

wxEvent (p. 274)
Include files
<wx/event.h>

Event table macros

To process a menu command event, use these event handler macros to direct input to
member functions that take a wxCommandEvent argument.

EVT_COMMAND(id, event, func) Process a command, supplying the window
identifier, command event identifier, and
member function.

EVT_COMMAND_RANGE(id1, id2, event, func) Process a command for a range of
window identifiers, supplying the minimum and
maximum window identifiers, command event
identifier, and member function.

EVT_BUTTON(id, func) Process a
wXEVT_COMMAND_BUTTON_CLICKED
command, which is generated by a wxButton
control.

EVT_CHECKBOX(id, func) Process a
WXEVT_COMMAND_CHECKBOX_CLICKED
command, which is generated by a
wxCheckBox control.

EVT_CHOICE(id, func) Process a
WXEVT_COMMAND_CHOICE_SELECTED
command, which is generated by a wxChoice
control.

EVT_LISTBOX(id, func) Process a
WXEVT_COMMAND_LISTBOX_SELECTED
command, which is generated by a wxListBox
control.

EVT_LISTBOX_DCLICK(id, func) Process a
WXEVT_COMMAND_LISTBOX_DOUBLECLIC
KED command, which is generated by a
wxListBox control.

EVT_TEXT(id, func) Process a
WXEVT_COMMAND_TEXT_UPDATED
command, which is generated by a wxTextCtrl

control.

EVT_TEXT_ENTER(id, func) Process a wxEVT_COMMAND_TEXT_ENTER
command, which is generated by a wxTextCtrl
control.

EVT_MENU(id, func) Process a

wWXEVT_COMMAND_MENU_SELECTED

command, which is generated by a menu item.
EVT_MENU_RANGE(id1, id2, func) Process a

WXEVT_COMMAND_MENU_RANGE

128

CHAPTER 5

EVT_RADIOBOX(id, func)

EVT_RADIOBUTTON(id, func)

EVT_COMBOBOX(id, func)

EVT_TOOL(id, func)

EVT_TOOL_RANGE(id1, id2, func)

command, which is generated by a range of
menu items.

Process a
wWXEVT_COMMAND_SLIDER_UPDATED

control.

wWXEVT_COMMAND_RADIOBOX_SELECTED
command, which is generated by a

Process a

TED command, which is generated by a
wxRadioButton control.

Process a
WXEVT_COMMAND_SCROLLBAR_UPDATED

control. This is provided for compatibility only;
more specific scrollbar event macros should be
wxScrollEvent (p.))-

WXEVT_COMMAND_COMBOBOX_SELECTE
D command, which is generated by a

Process a

synonym for
WXEVT_COMMAND_MENU_SELECTED).

Process a

for a range id identifiers. Pass the ids of the
tools.

Process a
WXEVT_COMMAND_TOOL_RCLICKED event.

EVT_TOOL_RCLICKED_RANGE(id1, id2, func) Process a

EVT_TOOL_ENTER(id, func)

for a range of ids. Pass the ids of the tools.

event. Pass the id of the toolbar itself. The
value of wxCommandEvent::GetSelection is

off a tool.

EVT_COMMAND_LEFT_CLICK(id, func)

WXEVT_COMMAND_LEFT_CLICK command,
which is generated by a control (Windows 95

EVT_COMMAND_LEFT_DCLICK(id, func) Process a

command, which is generated by a control

CHAPTER 5

(Windows 95 and NT only).
EVT_COMMAND_RIGHT_CLICK(id, func) Process a
WXEVT_COMMAND_RIGHT_CLICK
command, which is generated by a control
(Windows 95 and NT only).
EVT_COMMAND_SET_FOCUS(id, func) Process a
wWXEVT_COMMAND_SET_FOCUS command,
which is generated by a control (Windows 95
and NT only).
EVT_COMMAND_KILL_FOCUS(id, func) Process a
WXEVT_COMMAND_KILL_FOCUS command,
which is generated by a control (Windows 95
and NT only).
EVT_COMMAND_ENTER(id, func) Process a wxEVT_COMMAND_ENTER
command, which is generated by a control.

wxCommandEvent::m_clientData

void* m_clientData

Contains a pointer to client data for listboxes and choices, if the event was a selection.
Beware, this is not implemented anyway...

wxCommandEvent::m_commandint

int m_commandint

Contains an integer identifier corresponding to a listbox, choice or radiobox selection
(only if the event was a selection, not a deselection), or a boolean value representing the
value of a checkbox.

wxCommandEvent::m_commandString

char* m_commandString

Contains a string corresponding to a listbox or choice selection.

wxCommandEvent::m_extraLong
long m_extraLong

Extra information. If the event comes from a listbox selection, it is a boolean determining
whether the event was a selection (TRUE) or a deselection (FALSE). A listbox

130

CHAPTER 5

deselection only occurs for multiple-selection boxes, and in this case the index and
string values are indeterminate and the listbox must be examined by the application.
wxCommandEvent::wxCommandEvent

wxCommandEvent(WXTYPE commandEventType =0, int id = 0)

Constructor.

wxCommandEvent::Checked
bool Checked()

Returns TRUE or FALSE for a checkbox selection event.

wxCommandEvent::GetClientData

void* GetClientData()

Returns client data pointer for a listbox or choice selection event (not valid for a
deselection). Beware, this is not implmented anywhere...
wxCommandEvent::GetExtraLong

long GetExtraL.ong()

Returns the m_extraLong member.

wxCommandEvent::Getlnt
int GetInt()

Returns the m_commandint member.

wxCommandEvent::GetSelection
int GetSelection()

Returns item index for a listbox or choice selection event (not valid for a deselection).

wxCommandEvent::GetString

char* GetString()

131

CHAPTER 5

Returns item string for a listbox or choice selection event (not valid for a deselection).

wxCommandEvent::IsSelection

bool IsSelection()

For a listbox or choice event, returns TRUE if it is a selection, FALSE if itis a
deselection.

wxCommandEvent::SetClientData

void SetClientData(void* clientData)

Sets the client data for this event.

wxCommandEvent::SetExtraLong
void SetExtraLong(int extraLong)

Sets the m_extraLong member.

wxCommandEvent::Setint
void SetInt(int intCommand)

Sets the m_commandint member.

wxCommandEvent::SetString

void SetString(char* string)

Sets the m_commandString member.

wxCommandProcessor

wxCommandProcessor is a class that maintains a history of wxCommands, with
undo/redo functionality built-in. Derive a new class from this if you want different
behaviour.

Derived from

wxObject (p. 627)

Include files

132

CHAPTER 5

<wx/docview.h>
See also

(p- 1249 wxCommand (p.)

wxCommandProcessor::wxCommandProcessor

wxCommandProcessor(maxCommands = 100)

maxCommands defaults to a rather arbitrary 100, but can be set from 1 to any integer. If

commands stored to a smaller number.

wxCommandProcessor::~wxCommandProcessor

~wxCommandProcessor()

wxCommandProcessor::CanUndo

virtual bool CanUndo()

wxCommandProcessor::ClearCommands

virtual void ClearCommands()

wxCommandProcessor::Do

virtual bool Do()

any).

CHAPTER 5

wxCommandProcessor::GetCommands
wxList& GetCommands() const

Returns the list of commands.

wxCommandProcessor::GetMaxCommands
int GetMaxCommands() const

Returns the maximum number of commands that the command processor stores.

wxCommandProcessor::GetEditMenu
wxMenu* GetEditMenu() const

Returns the edit menu associated with the command processor.

wxCommandProcessor::Initialize

virtual void Initialize()

Initializes the command processor, setting the current command to the last in the list (if
any), and updating the edit menu (if one has been specified).
wxCommandProcessor::SetEditMenu

void SetEditMenu(wxMenu* menu)

Tells the command processor to update the Undo and Redo items on this menu as
appropriate. Set this to NULL if the menu is about to be destroyed and command
operations may still be performed, or the command processor may try to access an
invalid pointer.

wxCommandProcessor::Submit

virtual bool Submit(wxCommand *command, bool storelt = TRUE)

Submits a new command to the command processor. The command processor calls
wxCommand::Do to execute the command; if it succeeds, the command is stored in the
history list, and the associated edit menu (if any) updated appropriately. If it fails, the
command is deleted immediately. Once Submit has been called, the passed command

should not be deleted directly by the application.

storelt indicates whether the successful command should be stored in the history list.

134

CHAPTER 5

wxCommandProcessor::Undo

virtual bool Undo()

Undoes the command just executed.

wxCondition

wxCondition variables correspond to pthread conditions or to Win32 event objects. They
may be used in a multithreaded application to wait until the given condition becomes true
which happens when the condition becomes signaled.

For example, if a worker thread is doing some long task and another thread has to wait
until it's finished, the latter thread will wait on the condition object and the worker thread
will signal it on exit (this example is not perfect because in this particular case it would
be much better to just Wait() (p. 974) for the worker thread, but if there are several
worker threads it already makes much more sense).

Derived from

None.

Include files

<wx/thread.h>

See also

wxThread (p. 968), wxMutex (p. 612)

wxCondition::wxCondition
wxCondition()

Default constructor.

wxCondition::~wxCondition
~wxCondition()

Destroys the wxCondition object.

wxCondition::Broadcast

135

CHAPTER 5

void Broadcast()

Broadcasts to all waiting objects.

wxCondition::Signal
void Signal()

Signals the object.

wxCondition::Wait

void Wait(wxMutex& mutex)

Waits indefinitely.

bool Wait(wxMutex& mutex, unsigned long sec, unsigned long nsec)
Waits until a signal is raised or the timeout has elapsed.

Parameters

mutex
wxMutex object.

sec
Timeout in seconds

nsec
Timeout nanoseconds component (added to sec).

Return value
The second form returns if the signal was raised, or FALSE if there was a timeout.
wxConfigBase

wxConfigBase class defines the basic interface of all config classes. It can not be used
by itself (it's an abstract base class) and you'll always use one of its derivations:
wxIniConfig, wxFileConfig, wxRegConfig or any other.

However, usually you don't even need to know the precise nature of the class you're
working with but you would just use the wxConfigBase methods. This allows you to write
the same code regardless of whether you're working with the registry under Win32 or
text-based config files under Unix (or even Windows 3.1 .INI files if you're really
unlucky). To make writing the portable code even easier, wxWindows provides a typedef
wxConfig which is mapped onto the native wxConfigBase implementation on the given

136

CHAPTER 5

platform: i.e. wxRegConfig under Win32, wxIniConfig under Win16 and wxFileConfig
otherwise.

config overview (p.) for the descriptions of all features of this class.

It is highly recommended to use static functions and/or Set()
look at them. (p.)

Derived from

Include files
<wx/config.h> (to let wxWindows choose a wxConfig class for your platform)

<wx/fileconf.h> (wxFileconfig class)
<wx/msw/regconf.h> (wxRegConfig class)

Example

Here is how you would typically use this class:

enhances
/1 portability of the code

wxString str;
if (config->Read("LastPrompt", &str)) {

i'S now
/]l in str

}

el se {

}

/1 anot her exanple: using default values and the full path instead of

/1 key name: if the key is not found , the value 17 is returned
| ong val ue = config->Read("/Last Run/ Cal cul at edVval ues/ MaxVal ue", -1);

config->Wite("LastPronpt", str);
config->Wite("/LastRun/Cal cul at edVal ues/ MaxVal ue", val ue);

del ete config;

CHAPTER 5

This basic example, of course, doesn't show all wxConfig features, such as enumerating,
testing for existence and deleting the entries and groups of entries in the config file, its
abilities to automatically store the default values or expand the environment variables on
the fly. However, the main idea is that using this class is easy and that it should normally
do what you expect it to.

NB: in the documentation of this class, the words "config file" also mean "registry hive"
for wxRegConfig and, generally speaking, might mean any physical storage where a
wxConfigBase-derived class stores its data.

Static functions

These functions deal with the "default" config object. Although its usage is not at all
mandatory it may be convenient to use a global config object instead of creating and
deleting the local config objects each time you need one (especially because creating a
wxFileConfig object might be a time consuming operation). In this case, you may create
this global config object in the very start of the program and Set() it as the default. Then,
from anywhere in your program, you may access it using the Get() function. Of course,
you should delete it on the program termination (otherwise, not only a memory leak will
result, but even more importantly the changes won't be written back!).

As it happens, you may even further simplify the procedure described above: you may
forget about calling Set(). When Get() is called and there is no current object, it will
create one using Create() function. To disable this behaviour DontCreateOnDemand() is
provided.

Note: You should use either Set() or Get() because wxWindows library itself would take
advantage of it and could save various information in it. For example wxFontMapper (p.
345) or Unix version of wxFileDialog (p. 306) have ability to use wxConfig class.

Set (p. 149)

Get (p. 145)

Create (p. 143)
DontCreateOnDemand (p. 144)

Constructor and destructor

wxConfigBase (p. 142)

~wxConfigBase (p. 143)

Path management

As explained in config overview (p. 1202), the config classes support a file system-like

hierarchy of keys (files) and groups (directories). As in the file system case, to specify a
key in the config class you must use a path to it. Config classes also support the notion

138

CHAPTER 5

of the current group, which makes it possible to use the relative paths. To clarify all this,
here is an example (it's only for the sake of demonstration, it doesn't do anything
sensible!):

wxConfig *config = new wxConfi g("FooBar App") ;

/1 right now the current path is '/’
conf->Wite("RootEntry", 1);

/1 go to sone other place: if the group(s) don't exist, they will be
creat ed
conf - >Set Pat h("/ Gr oup/ Subgr oup”) ;

/! create an entry in subgroup
conf->Wite("SubgroupEntry", 3);

/1 '.." is understood
conf->Wite("../&GoupEntry", 2);
conf->SetPath("..");

WXASSERT(conf - >Read(" Subgr oup/ Subgr oupEntry”, 0l) == 3);

/1 use absolute path: it's allowed, too
WXASSERT(conf->Read("/RootEntry", 0l) ==1);

Warning: it's probably a good idea to always restore the path to its old value on function
exit:

voi d foo(wxConfigBase *confi g)

{
wxString strddPath = config->GetPat h();

confi g->Set Pat h("/ Foo/ Dat a") ;

confi g->Set Pat h(strd dPat h) ;
}

because otherwise the assert in the following example will surely fail (we suppose here
that foo() function is the same as above except that it doesn't save and restore the path):

voi d bar (wxConfi gBase *confi g)

{
config->Wite("Test", 17);

foo(config);

/1l we're reading "/Foo/Data/ Test" here! -1 will probably be
returned. ..
WXASSERT(confi g->Read("Test", -1) == 17);
}

Finally, the path separator in wxConfigBase and derived classes is always '/', regardless
of the platform (i.e. it's not \\' under Windows).

139

CHAPTER 5

SetPath (p. 149)
GetPath (p. 146)

Enumeration

The functions in this section allow to enumerate all entries and groups in the config file.
All functions here return FALSE when there are no more items.

You must pass the same index to GetNext and GetFirst (don't modify it). Please note
that it's not the index of the current item (you will have some great surprizes with
wxRegConfig if you assume this) and you shouldn't even look at it: it's just a "cookie"
which stores the state of the enumeration. It can't be stored inside the class because it
would prevent you from running several enumerations simultaneously, that's why you
must pass it explicitly.

Having said all this, enumerating the config entries/groups is very simple:

WXArrayString aNames;

/] enuneration vari abl es
wxString str;
| ong dumy;

/1 first enumall entries
bool bCont = config->GetFirstEntry(str, dummy);
while (bCont) {

aNanes. Add(str);

bCont = Get Config()->Get NextEntry(str, dunmy);
}

we have all entry nanmes in aNames...

/1 now all groups...
bCont = GetConfig()->CGetFirstGoup(str, dummy);
while (bCont) {

aNanes. Add(str);

bCont = Get Confi g()->Get Next G oup(str, dunmy);
}

we have all group (and entry) nanmes in aNanes...

There are also functions to get the number of entries/subgroups without actually
enumerating them, but you will probably never need them.

GetFirstGroup (p. 145)
GetNextGroup (p. 146)
GetFirstEntry (p. 145)
GetNextEntry (p. 146)
GetNumberOfEntries (p. 146)

140

CHAPTER 5

GetNumberOfGroups (p. 146)

Tests of existence

HasGroup (p. 147)
HasEntry (p. 147)
Exists (p. 144)
GetEntryType (p. 145)

Miscellaneous accessors

GetAppName (p. 145)
GetVendorName (p. 146)

Key access

These function are the core of wxConfigBase class: they allow you to read and write
config file data. All Read function take a default value which will be returned if the
specified key is not found in the config file.

Currently, only two types of data are supported: string and long (but it might change in
the near future). To work with other types: for int or bool you can work with function
taking/returning long and just use the casts. Better yet, just use long for all variables
which you're going to save in the config file: chances are that si zeof (bool) ==

si zeof (i nt) == sizeof (I ong) anyhow on your system. For float, double and, in
general, any other type you'd have to translate them to/from string representation and
use string functions.

Try not to read long values into string variables and vice versa: although it just might
work with wxFileConfig, you will get a system error with wxRegConfig because in the
Windows registry the different types of entries are indeed used.

Final remark: the szKey parameter for all these functions can contain an arbitrary path
(either relative or absolute), not just the key name.

Read (p. 147)
Write (p. 150)
Flush (p. 144)

Rename entries/groups

The functions in this section allow to rename entries or subgroups of the current group.
They will return FALSE on error. typically because either the entry/group with the original
name doesn't exist, because the entry/group with the new name already exists or
because the function is not supported in this wxConfig implementation.

141

CHAPTER 5

RenameEntry (p. 149)
RenameGroup (p. 149)

Delete entries/groups

The functions in this section delete entries and/or groups of entries from the config file.
DeleteAll() is especially useful if you want to erase all traces of your program presence:
for example, when you uninstall it.

DeleteEntry (p. 144)
DeleteGroup (p. 144)
DeleteAll (p. 144)

Options

Some aspects of wxConfigBase behaviour can be changed during run-time. The first of
them is the expansion of environment variables in the string values read from the config
file: for example, if you have the following in your config file:

config fi
UserData =

le for ny program
$HOWE/ dat a

the following syntax is valud only under W ndows
UserData = % ndir %\ dat a. dat

the call to conf i g- >Read(" User Dat a") will return something
like"/ horre/ zei t | i n/ dat a" if you're lucky enough to run a Linux system ;-)

Although this feature is very useful, it may be annoying if you read a value which
containts '$' or '%' symbols (% is used for environment variables expansion under
Windows) which are not used for environment variable expansion. In this situation you
may call SetExpandEnvVars(FALSE) just before reading this value and
SetExpandEnvVars(TRUE) just after. Another solution would be to prefix the offending
symbols with a backslash.

The following functions control this option:
IsExpandingEnvVars (p. 147)
SetExpandingEnvVars (p. 149)

SetRecordDefaults (p. 149)
IsRecordingDefaults (p. 147)

wxConfigBase::wxConfigBase

wxConfigBase(const wxString& appName = wxEmptyString, const wxString&
vendorName = wxEmptyString, const wxString& localFilename = wxEmptyString,

142

CHAPTER 5

const wxString& globalFilename = wxEmptyString, long style = 0)
This is the default and only constructor of the wxConfigBase class, and derived classes.
Parameters

appName
The application name. If this is empty, the class will normally use
wxApp::GetAppName (p. 22) to set it. The application name is used in the registry
key on Windows, and can be used to deduce the local filename parameter if that is
missing.

vendorName
The vendor name. If this is empty, it is assumed that no vendor name is wanted, if
this is optional for the current config class. The vendor nhame is appended to the
application name for wxRegConfig.

localFilename
Some config classes require a local filename. If this is not present, but required,
the application name will be used instead.

globalFilename
Some config classes require a global filename. If this is not present, but required,
the application name will be used instead.

style
Can be one of wxCONFIG_USE_LOCAL_FILE and
WXCONFIG_USE_GLOBAL_FILE. The style interpretation depends on the config
class and is ignored by some. For wxFileConfig, these styles determine whether a
local or global config file is created or used. If the flag is present but the parameter
is empty, the parameter will be set to a default. If the parameter is present but the
style flag not, the relevant flag will be added to the style. For wxFileConfig you can
also add wxCONFIG_USE_RELATIVE_PATH by logicaly or'ing it to either of the
_FILE options to tell wxFileConfig to use relative instead of absolute paths.

Remarks

By default, environment variable expansion is on and recording defaults is off.

wxConfigBase::~wxConfigBase
~wxConfigBase()

Empty but ensures that dtor of all derived classes is virtual.

wxConfigBase::Create

static wxConfigBase * Create()

143

CHAPTER 5

Create a new config object: this function will create the "best" implementation of
wxConfig available for the current platform, see comments near the definition of
WXCONFIG_WIN32_NATIVE for details. It returns the created object and also sets it as
the current one.

wxConfigBase::DontCreateOnDemand

void DontCreateOnDemand()

Calling this function will prevent Get() from automatically creating a new config object if
the current one is NULL. It might be useful to call it near the program end to prevent new
config object "accidental” creation.

wxConfigBase::DeleteAll

bool DeleteAll()

Delete the whole underlying object (disk file, registry key, ...). Primarly for use by
desinstallation routine.

wxConfigBase::DeleteEntry

bool DeleteEntry(const wxString& key, boolbDeleteGrouplfEmpty = TRUE)

Deletes the specified entry and the group it belongs to if it was the last key in it and the
second parameter is true.

wxConfigBase::DeleteGroup

bool DeleteGroup(const wxString& key)

Delete the group (with all subgroups)

wxConfigBase::Exists
bool Exists(wxString& strName) const

returns TRUE if either a group or an entry with a given name exists

wxConfigBase::Flush
bool Flush(bool bCurrentOnly = FALSE)

permanently writes all changes (otherwise, they're only written from object's destructor)

144

CHAPTER 5

wxConfigBase::Get

wxConfigBase * Get(bool CreateOnDemand = TRUE)

Get the current config object. If there is no current object andCreateOnDemand is
TRUE, creates one (using Create) unless DontCreateOnDemand was called previously.
wxConfigBase::GetAppName

wxString GetAppName() const

Returns the application name.

wxConfigBase::GetEntryType

enum wxConfigBase::EntryType GetEntryType(const wxString& name) const
Returns the type of the given entry or Unknown if the entry doesn't exist. This function
should be used to decide which version of Read() should be used because some of
wxConfig implementations will complain about type mismatch otherwise: e.g., an attempt
to read a string value from an integer key with wxRegConfig will fail.

The result is an element of enum EntryType:
enum Ent ryType

{
Unknown,
String,
Bool ean,
I nt eger,
Fl oat

wxConfigBase::GetFirstGroup

bool GetFirstGroup(wxString& str, long&index) const

Gets the first group.

wxPython note: The wxPython version of this method returns a 3-tuple consisting of the
continue flag, the value string, and the index for the next call.
wxConfigBase::GetFirstEntry

bool GetFirstEntry(wxString& str, long&index) const

145

CHAPTER 5

Gets the first entry.

wxPython note: The wxPython version of this method returns a 3-tuple consisting of the
continue flag, the value string, and the index for the next call.
wxConfigBase::GetNextGroup

bool GetNextGroup(wxString& str, long&index) const

Gets the next group.

wxPython note: The wxPython version of this method returns a 3-tuple consisting of the
continue flag, the value string, and the index for the next call.
wxConfigBase::GetNextEntry

bool GetNextEntry(wxString& str, long&index) const

Gets the next entry.

wxPython note: The wxPython version of this method returns a 3-tuple consisting of the
continue flag, the value string, and the index for the next call.
wxConfigBase::GetNumberOfEntries

uint GetNumberOfEntries(bool bRecursive = FALSE) const

wxConfigBase::GetNumberOfGroups
uint GetNumberOfGroups(bool bRecursive = FALSE) const

Get number of entries/subgroups in the current group, with or without its subgroups.

wxConfigBase::GetPath
const wxString& GetPath() const

Retrieve the current path (always as absolute path).

wxConfigBase::GetVendorName

wxString GetVendorName() const

146

CHAPTER 5

Returns the vendor name.

wxConfigBase::HasEntry
bool HasEntry(wxString& strName) const

returns TRUE if the entry by this name exists

wxConfigBase::HasGroup
bool HasGroup(const wxString& strName) const

returns TRUE if the group by this name exists

wxConfigBase::IsExpandingEnvVars
bool IsExpandingEnvVars() const

Returns TRUE if we are expanding environment variables in key values.

wxConfigBase::IsRecordingDefaults
bool IsRecordingDefaults() const

Returns TRUE if we are writing defaults back to the config file.

wxConfigBase::Read
bool Read(const wxString& key, wxString*str) const

Read a string from the key, returning TRUE if the value was read. If the key was not
found, str is not changed.

bool Read(const wxString& key, wxString*str, const wxString& defaultVal) const
Read a string from the key. The default value is returned if the key was not found.
Returns TRUE if value was really read, FALSE if the default was used.

wxString Read(const wxString& key, const wxString& defaultVal) const

Another version of Read(), returning the string value directly.

bool Read(const wxString& key, long* l) const

147

CHAPTER 5

Reads a long value, returning TRUE if the value was found. If the value was not found, |
is not changed.

bool Read(const wxString& key, long* |,long defaultVal) const

Reads a long value, returning TRUE if the value was found. If the value was not found,
defaultVal is used instead.

long Read(const wxString& key, longdefaultVal) const

Reads a long value from the key and returns it. defaultVal is returned if the key is not
found.

NB: writing

conf - >Read(" key", 0);

won't work because the call is ambiguous: compiler can not choose between twoRead
functions. Instead, write:

conf - >Read(" key", O0l);
bool Read(const wxString& key, double* d) const

Reads a double value, returning TRUE if the value was found. If the value was not
found, d is not changed.

bool Read(const wxString& key, double* d, double defaultVal) const

Reads a double value, returning TRUE if the value was found. If the value was not
found, defaultVal is used instead.

bool Read(const wxString& key, bool* b) const

Reads a bool value, returning TRUE if the value was found. If the value was not found, b
is not changed.

bool Read(const wxString& key, bool* d,bool defaultVal) const

Reads a bool value, returning TRUE if the value was found. If the value was not found,
defaultVal is used instead.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

Read(key, default=""") Returns a string.
ReadInt(key, default=0) Returns an int.
ReadFloat(key, default=0.0) Returns a floating point number.

148

CHAPTER 5

wxConfigBase::RenameEntry

bool RenameEntry(oldName, newName)

one) shouldn't contain backslashes, i.e. only simple names and not arbitrary paths are
accepted by this function.

oldName doesn't exist or if already exists.

wxConfigBase::RenameGroup
RenameGroup const wxString& oldName const wxString& newName

Renames a subgroup of the current group. The subgroup names (both the old and the
new one) shouldn't contain backslashes, i.e. only simple names and not arbitrary paths

Returns FALSE if the oldName newName already exists.

wxConfigBase * (wxConfigBase *)

Sets the config object as the current one, returns the pointer to the previous current

wxConfigBase::SetExpandingEnvVars

void SetExpandEnvVars (bDolt = TRUE)

wxConfigBase::SetPath

void SetPath(strPath)

path. '.." is supported. If the strPath doesn't exist it is created.

wxConfigBase::SetRecordDefaults

SetRecordDefaults bool bDolt = TRUE

CHAPTER 5

Sets whether defaults are written back to the config file.

If on (default is off) all default values are written back to the config file. This allows the
user to see what config options may be changed and is probably useful only for
wxFileConfig.

wxConfigBase::Write

bool Write(const wxString& key, const wxString& value)

bool Write(const wxString& key, long value)

bool Write(const wxString& key, double value)

bool Write(const wxString& key, bool value)

These functions write the specified value to the config file and return TRUE on success.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

Write(key, value) Writes a string.
Writelnt(key, value) Writes an int.
WriteFloat(key, value) Writes a floating point number.

wxControl
This is the base class for a control or 'widget'.

A control is generally a small window which processes user input and/or displays one or
more item of data.

Derived from
wxWindow (p. 1048)
wxEvtHandler (p. 277)
wxObiject (p. 627)
Include files
<wx/control.h>

See also

wxValidator (p. 1031)

150

CHAPTER 5

wxControl::Command
void Command(event)
wxCommandEvent
(-)
wxControl::GetLabel
GetLabel

Returns the control's text.

wxControl::SetLabel
SetLabel const wxString& label
Sets the item's text.
wxCountingOutputStream
anyway, instead it counts how many bytes would get written if this were a normal
stream. This can sometimes be useful or required if some data gets serialized to a

stream cannot be known other than pretending to write the stream. One case where the
resulting size would have to be known is if the data has to be written to a piece of

always the case when writing to a memaory stream).
Derived from
(p. 632 wxStreamBase (p.)

Include files

wxCountingOutputStream::wxCountingOutputStream

0

Creates a wxCountingOutputStream object.

CHAPTER 5

wxCountingOutputStream::~wxCountingOutputStream
~wxCountingOutputStream()

Destructor.

wxCountingOutputStream::GetSize

size_t GetSize() const

Returns the current size of the stream.

wxCriticalSection

A critical section object is used for the same exactly purpose as mutexes (p. 612). The
only difference is that under Windows platform critical sections are only visible inside
one process, while mutexes may be shared between processes, so using critical
sections is slightly more efficient. The terminology is also slightly different: mutex may be
locked (or acquired) and unlocked (or released) while critical section is entered and left
by the program.

Finally, you should try to use wxCriticalSectionLocker (p. 153) class whenever possible
instead of directly using wxCriticalSection for the same reasons wxMutexLocker (p. 615)
is preferrable to wxMutex (p. 612) - please see wxMutex for an example.

Derived from

None.

Include files

<wx/thread.h>

See also

wxThread (p. 968), wxCondition (p. 135), wxMutexLocker (p. 615), wxCriticalSection (p.
152)

wxCriticalSection::wxCriticalSection
wxCriticalSection()

Default constructor initializes critical section object.

152

wxCriticalSection::~wxCriticalSection

~wxCriticalSection()

wxCriticalSection::Enter
void Enter()

function. After entering the critical section protecting some global data the thread running
in critical section may safely use/modify it.

void 0

Leave the critical section allowing other threads use the global data protected by it.

wxCriticalSectionLocker

This is a small helper class to be used with (p- 152
wxCriticalSectionLocker enters the critical section in the constructor and leaves it in the
destructor making it much more difficult to forget to leave a critical section (which, in

Example of using it:
voi d Set Foo()

/1 gs_critSect is some (global) critical section guarding access to

t he
wxCritical Secti onLocker | ocker(gs_critSect);
if (...)
/1 do sonething
}
/1 do sonething el se
return;
}

153

CHAPTER 5

Without wxCriticalSectionLocker, you would need to remember to manually leave the
critical section before each r et ur n.

Derived from
None.
Include files
<wx/thread.h>
See also

wxClriticalSection (p. 152), wxMutexLocker (p. 615)

wxCriticalSectionLocker::wxCriticalSectionLocker
wxCriticalSectionLocker(wxCriticalSection& criticalsection)

Constructs a wxCriticalSectionLocker object associated with givencriticalsection and
enters it.

wxCriticalSectionLocker::~wxCriticalSectionLocker
~wxCriticalSectionLocker()

Destuctor leaves the critical section.

wxCustomDataObject

wxCustomDataObiject is a specialization of wxDataObjectSimple (p. 173) for some
application-specific data in arbitrary (either custom or one of the standard ones). The
only restriction is that it is supposed that this data can be copied bitwise (i.e. with

mencpy()), so it would be a bad idea to make it contain a C++ object (though C struct is
fine).

By default, wxCustomDataObject stores the data inside in a buffer. To put the data into
the buffer you may use either SetData (p. 156) or TakeData (p. 156) depending on
whether you want the object to make a copy of data or not.

If you already store the data in another place, it may be more convenient and efficient to
provide the data on-demand which is possible too if you override the virtual functions
mentioned below.

Virtual functions to override

154

This class may be used as is, but if you don't want store the data inside the object but

GetSize (p.), GetData 156)

SetData (p.) (or may be only the first two or only the last one if you only allow
reading/writing the data)

wxDataObjectSimple (p.)
wxDataObject 169)

<wx/dataobj.h>

See also

(p. 169

wxCustomDataObject::wxCustombDataObject

(const wxDataFormaté&)
The constructor accepts a argument which specifies the (single) format supported
by this object. If it isn't set here, (p- 174

wxCustomDataObject::~wxCustomDataObject

0

The destructor will free the data hold by the object. Notice that although it calls a virtual
(p. 155

calling virtual functions from constructors or destructors), so if you override Fr ee()

should override the destructor in your class as well (which would probably just call the

derived class' version of).

wxCustomDataObiject::Alloc
Alloc size_t size
This function is called to allocate size

version just uses the operator new.

wxCustomDataObiject::Free

155

CHAPTER 5

wxPython note: This method expects a string in wxPython. You can pass nearly any
object by pickling it first.

virtual void Free()

This function is called when the data is freed, you may override it to anything you want
(or may be nothing at all). The default version calls operator delete[] on the data.
wxCustomDataObiject::GetSize

virtual size_t GetSize() const

Returns the data size in bytes.

wxCustomDataObiject::GetData
virtual void * GetData() const

Returns a pointer to the data.

wxCustomDataObiject::SetData
virtual void SetData(size_t size, const void *data)

Set the data. The data object will make an internal copy.

wxCustomDataObiject::TakeData
virtual void TakeData(size_t size, const void *data)

Like SetData (p. 156), but doesn't copy the data - instead the object takes ownership of
the pointer.

wxCursor

A cursor is a small bitmap usually used for denoting where the mouse pointer is, with a
picture that might indicate the interpretation of a mouse click. As with icons, cursors in X
and MS Windows are created in a different manner. Therefore, separate cursors will be
created for the different environments. Platform-specific methods for creating a
wxCursor object are catered for, and this is an occasion where conditional compilation
will probably be required (see wxlcon (p. 451) for an example).

A single cursor object may be used in many windows (any subwindow type). The
wxWindows convention is to set the cursor for a window, as in X, rather than to set it
globally as in MS Windows, although a global ::wxSetCursor (p. 1117) is also available

156

CHAPTER 5

for MS Windows use.
Derived from

wxBitmap (p. 52)
wxGDIObject (p. 371)
wxObiject (p. 627)

Include files
<wx/cursor.h>

Predefined objects
Objects:

wxNullCursor

Pointers:

WXSTANDARD CURSOR
WXHOURGLASS CURSOR
wWxCROSS CURSOR

See also

wxBitmap (p. 52), wxlcon (p. 451), wxWindow::SetCursor (p. 1086), ::wxSetCursor (p.
1117)

wxCursor::wxCursor
wxCursor()
Default constructor.

wxCursor(const char bits[], int width, int height, int hotSpotX=-1, int hotSpotY=-1,
const char maskBits[]=NULL)

Constructs a cursor by passing an array of bits (Motif and Xt only). maskBits is used only
under Motif.

If either hotSpotX or hotSpotY is -1, the hotspot will be the centre of the cursor image
(Motif only).

wxCursor(const wxString& cursorName, long type, int hotSpotX=0, int hotSpotY=0)

Constructs a cursor by passing a string resource name or filename.

157

CHAPTER 5

hotSpotX and hotSpotY are currently only used under Windows when loading from an
icon file, to specify the cursor hotspot relative to the top left of the image.

wxCursor(int cursorld)

Constructs a cursor using a cursor identifier.

wxCursor(const wxCursoré& cursor)

Copy constructor. This uses reference counting so is a cheap operation.

Parameters

bits

An array of bits.

maskBits

width

Bits for a mask bitmap.

Cursor width.

height

Cursor height.

hotSpotX

Hotspot x coordinate.

hotSpotY

type

Hotspot y coordinate.

Icon type to load. Under Motif, type defaults to wxBITMAP_TYPE_XBM. Under
Windows, it defaults to wxBITMAP_TYPE_CUR_RESOURCE.

Under X, the permitted cursor types are:

WxBITMAP_TYPE_XBM Load an X bitmap file.

Under Windows, the permitted types are:

wWxBITMAP_TYPE_CUR Load a cursor from a .cur cursor file (only if

USE_RESOURCE_LOADING_IN_MSW is
enabled in setup.h).

wWxBITMAP_TYPE_CUR_RESOURCE Load a Windows resource (as
specified in the .rc file).
wWxBITMAP_TYPE_ICO Load a cursor from a .ico icon file (only if

USE_RESOURCE_LOADING_IN_MSW is
enabled in setup.h). Specify hotSpotX and
hotSpotY.

158

CHAPTER 5

cursorld
A stock cursor identifier. May be one of:

WxCURSOR_ARROW A standard arrow cursor.

WXCURSOR_BULLSEYE Bullseye cursor.

WXCURSOR_CHAR Rectangular character cursor.

WXCURSOR_CROSS A cross cursor.

WxCURSOR_HAND A hand cursor.

wWxCURSOR_IBEAM An I-beam cursor (vertical line).

WXCURSOR_LEFT BUTTON Represents a mouse with the left button
depressed.

WXCURSOR_MAGNIFIER A magnifier icon.

wWxCURSOR_MIDDLE_BUTTON Represents a mouse with the middle button
depressed.

WXCURSOR_NO_ENTRY A no-entry sign cursor.

WxXCURSOR_PAINT_BRUSH A paintbrush cursor.

WXCURSOR_PENCIL A pencil cursor.

WXCURSOR_POINT_LEFT A cursor that points left.

WXCURSOR_POINT_RIGHT A cursor that points right.
WXCURSOR_QUESTION_ARROW An arrow and question mark.
WXCURSOR_RIGHT_BUTTON Represents a mouse with the right button

depressed.
WXCURSOR_SIZENESW A sizing cursor pointing NE-SW.
WXCURSOR_SIZENS A sizing cursor pointing N-S.
WXCURSOR_SIZENWSE A sizing cursor pointing NW-SE.
wWxCURSOR_SIZEWE A sizing cursor pointing W-E.
WXCURSOR_SIZING A general sizing cursor.
WXCURSOR_SPRAYCAN A spraycan cursor.
WXCURSOR_WAIT A walit cursor.
WXCURSOR_WATCH A watch cursor.

Note that not all cursors are available on all platforms.

cursor
Pointer or reference to a cursor to copy.

wxPython note: Constructors supported by wxPython are:
wxCursor(name, flags, hotSpotX=0, hotSpotY=0) Constructs a cursor

from a filename
wxStockCursor(id) Constructs a stock cursor

wxCursor::~wxCursor
~wxCursor()

Destroys the cursor. A cursor can be reused for more than one window, and does not

159

CHAPTER 5

get destroyed when the window is destroyed. wxWindows destroys all cursors on
application exit, although it's best to clean them up explicitly.

wxCursor::0k

bool Ok() const

Returns TRUE if cursor data is present.

wxCursor::operator =
wxCursoré& operator =(const wxCursoré& cursor)

Assignment operator, using reference counting. Returns a reference to 'this'.

wxCursor::operator ==

bool operator ==(const wxCursor& cursor)

Equality operator. Two cursors are equal if they contain pointers to the same underlying
cursor data. It does not compare each attribute, so two independently-created cursors
using the same parameters will fail the test.

wxCursor::operator !=

bool operator !=(const wxCursor& cursor)

Inequality operator. Two cursors are not equal if they contain pointers to different
underlying cursor data. It does not compare each attribute.

wxDatabase

Every database object represents an ODBC connection. The connection may be closed
and reopened.

Note: this class is considered obsolete, replaced by the Remstar wxDB/wxTable classes
(documented separately in Word and PDF format, as odbc.doc and odbc.pdf).

Derived from
wxObiject (p. 627)
Include files

<wx/odbc.h>

160

CHAPTER 5

See also

wxDatabase overview (p. 1268), wxRecordSet (p. 748)

wxDatabase::wxDatabase

wxDatabase()

Constructor. The constructor of the first wxDatabase instance of an application initializes
the ODBC manager.

wxDatabase::~wxDatabase

~wxDatabase()

Destructor. Resets and destroys any associated wxRecordSet instances.

The destructor of the last wxDatabase instance will deinitialize the ODBC manager.

wxDatabase::BeginTrans
bool BeginTrans()

Not implemented.

wxDatabase::Cancel
void Cancel()

Not implemented.

wxDatabase::CanTransact
bool CanTransact()

Not implemented.

wxDatabase::CanUpdate
bool CanUpdate()

Not implemented.

161

CHAPTER 5

wxDatabase::Close

bool Close()

Resets the statement handles of any associated wxRecordSet objects, and disconnects
from the current data source.

wxDatabase::CommitTrans

bool CommitTrans()

Commits previous transactions. Not implemented.

wxDatabase::ErrorOccured
bool ErrorOccured()

Returns TRUE if the last action caused an error.

wxDatabase::ErrorSnapshot

void ErrorSnapshot(HSTMT statement = SQL_NULL_HSTMT)

This function will be called whenever an ODBC error occured. It stores the error related
information returned by ODBC. If a statement handle of the concerning ODBC action is
available it should be passed to the function.

wxDatabase::GetDatabaseName

wxString GetDatabaseName()

Returns the name of the database associated with the current connection.

wxDatabase::GetDataSource
wxString GetDataSource()

Returns the name of the connected data source.

wxDatabase::GetErrorClass

wxString GetErrorClass()

162

CHAPTER 5

Returns the error class of the last error. The error class consists of five characters where
the first two characters contain the class and the other three characters contain the
subclass of the ODBC error. See ODBC documentation for further details.
wxDatabase::GetErrorCode

WXRETCODE GetErrorCode()

Returns the error code of the last ODBC function call. This will be one of:

SQL_ERROR General error.

SQL_INVALID_HANDLE An invalid handle was passed to an ODBC function.
SQL_NEED_DATA ODBC expected some data.

SQL_NO_DATA_FOUND No data was found by this ODBC call.

SQL_SUCCESS The call was successful.

SQL_SUCCESS_WITH_INFO The call was successful, but further information can

be obtained from the ODBC manager.

wxDatabase::GetErrorMessage
wxString GetErrorMessage()

Returns the last error message returned by the ODBC manager.

wxDatabase::GetErrorNumber
long GetErrorNumber()

Returns the last native error. A native error is an ODBC driver dependent error number.

wxDatabase::GetHDBC
HDBC GetHDBC()

Returns the current ODBC database handle.

wxDatabase::GetHENV
HENV GetHENV()

Returns the ODBC environment handle.

163

CHAPTER 5

wxDatabase::GetInfo
bool Getinfo(long infoType, long *buf)
bool Getinfo(long infoType, const wxString& buf, int bufSize=-1)

Returns requested information. The return value is TRUE if successful, FALSE
otherwise.

infoType is an ODBC identifier specifying the type of information to be returned.

buf is a character or long integer pointer to storage which must be allocated by the
application, and which will contain the information if the function is successful.

bufSize is the size of the character buffer. A value of -1 indicates that the size should be
computed by the GetlInfo function.

wxDatabase::GetPassword

wxString GetPassword()

Returns the password of the current user.

wxDatabase::GetUsername
wxString GetUsername()

Returns the current username.

wxDatabase::GetODBCVersionFloat
float GetODBCVersionFloat(bool implementation=TRUE)
Returns the version of ODBC in floating point format, e.g. 2.50.

implementation should be TRUE to get the DLL version, or FALSE to get the version
defined in the sql . h header file.

This function can return the value 0.0 if the header version number is not defined (for
early versions of ODBC).

wxDatabase::GetODBCVersionString

wxString GetODBCVersionString(bool implementation=TRUE)

Returns the version of ODBC in string format, e.g. "02.50".

164

CHAPTER 5

implementation should be TRUE to get the DLL version, or FALSE to get the version
defined in the sql . h header file.

This function can return the value "00.00" if the header version number is not defined
(for early versions of ODBC).

wxDatabase::InWaitForDataSource

bool InWaitForDataSource()

Not implemented.

wxDatabase::IsOpen
bool IsOpen()

Returns TRUE if a connection is open.

wxDatabase::Open

bool Open(const wxString& datasource, bool exclusive = FALSE, bool readOnly =
TRUE, const wxString& username = "ODBC", const wxString& password = "")

Connect to a data source. datasource contains the name of the ODBC data source. The
parameters exclusive and readOnly are not used.

wxDatabase::OnSetOptions

void OnSetOptions(wxRecordSet *recordSet)

Not implemented.

wxDatabase::OnWaitForDataSource
void OnWaitForDataSource(bool stillExecuting)

Not implemented.

wxDatabase::RollbackTrans
bool RollbackTrans()

Sends a rollback to the ODBC driver. Not implemented.

165

CHAPTER 5

wxDatabase::SetDataSource
void SetDataSource(const wxString& s)

Sets the name of the data source. Not implemented.

wxDatabase::SetLoginTimeout
void SetLoginTimeout(long seconds)

Sets the time to wait for an user login. Not implemented.

wxDatabase::SetPassword
void SetPassword(const wxString& s)

Sets the password of the current user. Not implemented.

wxDatabase::SetSynchronousMode

void SetSynchronousMode(bool synchronous)

Toggles between synchronous and asynchronous mode. Currently only synchronous
mode is supported, so this function has no effect.
wxDatabase::SetQueryTimeout

void SetQueryTimeout(long seconds)

Sets the time to wait for a response to a query. Not implemented.

wxDatabase::SetUsername

void SetUsername(const wxString& s)

Sets the name of the current user. Not implemented.

wxDataFormat

A wxDataFormat is an encapsulation of a platform-specific format handle which is used
by the system for the clipboard and drag and drop operations. The applications are

usually only interested in, for example, pasting data from the clipboard only if the data is
in a format the program understands and a data format is something which uniquely

166

CHAPTER 5

identifies this format.

On the system level, a data format is usually just a number (CLI PFORMATunder
Windows or At omunder X11, for example) and the standard formats are, indeed, just
numbers which can be implicitly converted to wxDataFormat. The standard formats are:

wxDF_INVALID An invalid format - used as default argument for functions
taking a wxDataFormat argument sometimes

wxDF_TEXT Text format (wxString)
wxDF_BITMAP A bitmap (wxBitmap)
wxDF_METAFILE A metafile (wxMetafile, Windows only)
wxDF_FILENAME A list of filenames

As mentioned above, these standard formats may be passed to any function taking
wxDataFormat argument because wxDataFormat has an implicit conversion from them
(or, to be precise from the type wxDat aFor mat : : Nat i veFor mat which is the type
used by the underlying platform for data formats).

Aside the standard formats, the application may also use custom formats which are
identified by their names (strings) and not numeric identifiers. Although internally custom
format must be created (or registered) first, you shouldn't care about it because it is done
automatically the first time the wxDataFormat object corresponding to a given format
name is created. The only implication of this is that you should avoid having global
wxDataFormat objects with non-default constructor because their constructors are
executed before the program has time to perform all necessary initialisations and so an
attempt to do clipboard format registration at this time will usually lead to a crash!
Virtual functions to override

None

Derived from

None

See also

Clipboard and drag and drop overview (p. 1264), DnD sample (p. 1175), wxDataObject
(p. 169)

wxDataFormat::wxDataFormat

167

CHAPTER 5

wxDataFormat(NativeFormat format = wxDF_INVALID)

Constructs a data format object for one of the standard data formats or an empty data
object (use SetType (p. 168) or Setld (p. 168) later in this case)
wxDataFormat::wxDataFormat

wxDataFormat(const wxChar *format)

Constructs a data format object for a custom format identified by its name format.

wxDataFormat::operator ==
bool operator ==(const wxDataFormat& format) const

Returns TRUE if the formats are equal.

wxDataFormat::operator !=
bool operator !=(const wxDataFormat& format) const

Returns TRUE if the formats are different.

wxDataFormat::Getld
wxString Getld() const

Returns the name of a custom format (this function will fail for a standard format).

wxDataFormat::GetType
NativeFormat GetType() const

Returns the platform-specific number identifying the format.

wxDataFormat::Setld
void Setld(const wxChar *format)

Sets the format to be the custom format identified by the given name.

wxDataFormat::SetType

168

CHAPTER 5

void SetType(NativeFormat format)
Sets the format to the given value, which should be one of wxDF_XXX constants.
wxDataObject

A wxDataObiject represents data that can be copied to or from the clipboard, or dragged
and dropped. The important thing about wxDataObject is that this is a 'smatrt' piece of
data unlike usual 'dumb'’ data containers such as memory buffers or files. Being 'smart’
here means that the data object itself should know what data formats it supports and
how to render itself in each of supported formats.

A supported format, incidentally, is exactly the format in which the data can be requested
from a data object or from which the data object may be set. In the general case, an
object may support different formats on 'input' and ‘output’, i.e. it may be able to render
itself in a given format but not be created from data on this format or vice versa.
wxDataObject defines an enumeration type

enum Di recti on
{
Cet
Set

0x01, /1 format is supported by GCetDataHere()
0x02 /1 format is supported by SetData()

b

which allows to distinguish between them. See wxDataFormat (p. 166) documentation
for more about formats.

Not surprizingly, being 'smart' comes at a price of added complexity. This is reasonable
for the situations when you really need to support multiple formats, but may be annoying
if you only want to do something simple like cut and paste text.

To provide a solution for both cases, wxWindows has two predefined classes which
derive from wxDataObject: wxDataObjectSimple (p. 173) and wxDataObjectComposite
(p- 172). wxDataObjectSimple (p. 173) is the simplest wxDataObject possible and only
holds data in a single format (such as HTML or text) and wxDataObjectComposite (p.
172) is the simplest way to implement wxDataObject which does support multiple
formats because it achievs this by simply holding several wxDataObjectSimple objects.

So, you have several solutions when you need a wxDataObject class (and you need one
as soon as you want to transfer data via the clipboard or drag and drop):

1. Use one of the built-in classes You may use wxTextDataObject,
wxBitmapDataObject or wxFileDataObject in the simplest
cases when you only need to support one format and your
data is either text, bitmap or list of files.

2. Use wxDataObjectSimple Deriving from wxDataObjectSimple is the simplest
solution for custom data - you will only support one format
and so probably won't be able to communicate with other
programs, but data transfer will work in your program (or
between different copies of it).

169

CHAPTER 5

3. Use wxDataObjectComposite This is a simple but powerful solution which allows
you to support any number of formats (either standard or
custom if you combine it with the previous solution).

4. Use wxDataObject directly This is the solution for maximal flexibility and
efficiency, but it is also is the most difficult to implement.

Please note that the easiest way to use drag and drop and the clipboard with multiple
formats is by using wxDataObjectComposite, but it is not the most efficient one as each
wxDataObjectSimple would contain the whole data in its respective formats. Now
imagine that you want to paste 200 pages of text in your proprietary format, as well as
Word, RTF, HTML, Unicode and plain text to the clipboard and even today's computers
are in trouble. For this case, you will have to derive from wxDataObject directly and
make it enumerate its formats and provide the data in the requested format on demand.

Note that neither the GTK data transfer mechanisms for the clipboard and drag and
drop, nor the OLE data transfer copy any data until another application actually requests
the data. This is in contrast to the 'feel’ offered to the user of a program who would
normally think that the data resides in the clipboard after having pressed 'Copy’ - in
reality it is only declared to be available.

There are several predefined data object classes derived from wxDataObjectSimple:
wxFileDataObject (p. 305), wxTextDataObject (p. 952) and wxBitmapDataObject (p. 74)
which can be used without change.

You may also derive your own data object classes from wxCustomDataObject (p. 154)
for user-defined types. The format of user-defined data is given as mime-type string
literal, such as "application/word" or "image/png". These strings are used as they are
under Unix (so far only GTK) to identify a format and are translated into their Windows
equivalent under Win32 (using the OLE IDataObject for data exchange to and from the
clipboard and for drag and drop). Note that the format string translation under Windows
is not yet finished.

wxPython note: At this time this class is not directly usable from wxPython. Derive a
class from wxPyDataObjectSimple (p. 173) instead.

Virtual functions to override

Each class derived directly from wxDataObject must override and implement all of its
functions which are pure virtual in the base class.

The data objects which only render their data or only set it (i.e. work in only one
direction), should return 0 from GetFormatCount (p. 172).

Derived from
None

Include files

170

CHAPTER 5

<wx/dataobj.h>

See also

Clipboard and drag and drop overview (p. 1264), DnD sample (p. 1175),
wxFileDataObject (p. 305), wxTextDataObject (p. 952), wxBitmapDataObject (p. 74),

wxCustomDataObiject (p. 154), wxDropTarget (p. 267), wxDropSource (p. 265),
wxTextDropTarget (p. 958), wxFileDropTarget (p. 310)

wxDataObject::wxDataObject
wxDataObject()

Constructor.

wxDataObject::~wxDataObject
~wxDataObject()

Destructor.

wxDataObject::GetAllFormats

virtual void GetAllFormats(wxDataFormat *formats, Direction dir = Get) const
Copy all supported formats in the given direction to the array pointed to by formats.
There is enough space for GetFormatCount(dir) formats in it.
wxDataObject::GetDataHere

virtual bool GetDataHere(const wxDataFormat& format, void *buf) const

The method will write the data of the format format in the buffer buf and return TRUE on
success, FALSE on failure.

wxDataObject::GetDataSize

virtual size_t GetDataSize(const wxDataFormat& format) const

Returns the data size of the given format format.

171

CHAPTER 5

wxDataObject::GetFormatCount
virtual size_t GetFormatCount(Direction dir = Get) const

Returns the number of available formats for rendering or setting the data.

wxDataObject::GetPreferredFormat
virtual wxDataFormat GetPreferredFormat(Direction dir = Get) const

Returns the preferred format for either rendering the data (if dir is Get , its default value)
or for setting it. Usually this will be the native format of the wxDataObiject.

wxDataObject::SetData

virtual bool SetData(const wxDataFormat& format, size_t len, const void *buf)

Set the data in the format format of the length len provided in the buffer buf.

Returns TRUE on success, FALSE on failure.

wxDataObjectComposite

wxDataObjectComposite is the simplest wxDataObject (p. 169) derivation which may be
sued to support multiple formats. It contains several wxDataObjectSimple (p. 173)
objects and supports any format supported by at least one of them. Only one of these
data objects ispreferred (the first one if not explicitly changed by using the second
parameter of Add (p. 173)) and its format determines the preferred format of the

composite data object as well.

See wxDataObject (p. 169) documentation for the reasons why you might prefer to use
wxDataObject directly instead of wxDataObjectComposite for efficiency reasons.

Virtual functions to override

None, this class should be used directly.
Derived from

wxDataObject (p. 169)

Include files

<wx/dataobj.h>

See also

Clipboard and drag and drop overview (p. 1264), wxDataObject (p. 169),

172

CHAPTER 5

wxDataObjectSimple (p. 173), wxFileDataObject (p. 305), wxTextDataObject (p. 952),
wxBitmapDataObject (p. 74)

wxDataObjectComposite::wxDataObjectComposite
wxDataObjectComposite()

The default constructor.

wxDataObjectComposite::Add
void Add(wxDataObjectSimple *dataObject, bool preferred = FALSE)

Adds the dataObject to the list of supported objects and it becomes the preferred object
if preferred is TRUE.

wxDataObjectSimple
This is the simplest possible implementation of the wxDataObject (p. 169) class. The
data object of (a class derived from) this class only supports one format, so the number

of virtual functions to be implemented is reduced.

Notice that this is still an abstract base class and cannot be used but should be derived
from.

wxPython note: If you wish to create a derived wxDataObjectSimple class in wxPython
you should derive the class from wxPyDataObjectSimple in order to get Python-aware
capabilities for the various virtual methods.

Virtual functions to override

The objects supporting rendering the data must override GetDataSize (p. 174) and
GetDataHere (p. 174) while the objects which may be set must override SetData (p.
174). Of course, the objects supporting both operations must override all threee
methods.

Derived from

wxDataObject (p. 169)

Include files

<wx/dataobj.h>

See also

173

CHAPTER 5

Clipboard and drag and drop overview (p. 1264), DnD sample (p. 1175),
wxFileDataObject (p. 305), wxTextDataObject (p. 952), wxBitmapDataObject (p. 74)

wxDataObjectSimple::wxDataObjectSimple

wxDataObjectSimple(const wxDataFormat& format = wxFormatinvalid)

Constructor accepts the supported format (none by default) which may also be set later
with SetFormat (p. 174).

wxDataObjectSimple::GetFormat

const wxDataFormat& GetFormat() const

Returns the (one and only one) format supported by this object. It is supposed that the
format is supported in both directions.

wxDataObjectSimple::SetFormat

void SetFormat(const wxDataFormat& format)

Sets the supported format.

wxDataObjectSimple::GetDataSize

virtual size_t GetDataSize() const

Gets the size of our data. Must be implemented in the derived class if the object
supports rendering its data.

wxDataObjectSimple::GetDataHere

virtual bool GetDataHere(void *buf) const

Copy the data to the buffer, return TRUE on success. Must be implemented in the
derived class if the object supports rendering its data.

wxPython note: When implementing this method in wxPython, no additional parameters
are required and the data should be returned from the method as a string.

wxDataObjectSimple::SetData

174

CHAPTER 5

virtual bool SetData(size_t len, const void *buf)

Copy the data from the buffer, return TRUE on success. Must be implemented in the
derived class if the object supports setting its data.

wxPython note: When implementing this method in wxPython, the data comes as a
single string parameter rather than the two shown here.

wxDatalnputStream

This class provides functions that read binary data types in a portable way. Data can be
read in either big-endian or litte-endian format, little-endian being the default on all
architectures.

If you want to read data from text files (or streams) use wxTextInputStream (p. 953)
instead.

The >> operator is overloaded and you can use this class like a standard C++ iostream.
Note, however, that the arguments are the fixed size types wxUint32, wxInt32 etc and on
a typical 32-bit computer, none of these match to the "long" type (wxInt32 is defined as
signed int on 32-bit architectures) so that you cannot use long. To avoid problems (here
and elsewhere), make use of the wxInt32, wxUint32, etc types.

For example:

wxFi | el nput Stream i nput("nytext.dat");
wxDat al nput St ream store(input);

wxUi nt8 i1;

float f2;

wxString |line;

store >> i1; /!l read a 8 bit integer.

store >> i1 >> f2; // read a 8 bit integer followed by float.
store >> |ine; /1 read a text line

See also wxDataOutputStream (p. 177).
Derived from

None

Include files

<wx/datstrm.h>

wxDatalnputStream::wxDatalnputStream

wxDatalnputStream(wxInputStreamé& stream)

175

CHAPTER 5

Constructs a datastream object from an input stream. Only read methods will be

available.
Parameters
stream

The input stream.
wxDatalnputStream::~wxDatalnputStream
~wxDatalnputStream()

Destroys the wxDatalnputStream object.

wxDatalnputStream::BigEndianOrdered

void BigEndianOrdered(bool be_order)

If be_order is TRUE, all data will be read in big-endian order, such as written by
programs on a big endian architecture (e.g. Sparc) or written by Java-Streams (which

always use big-endian order).
wxDatalnputStream::Read8

wxUint8 Read8()

Reads a single byte from the stream.

wxDatalnputStream::Read16
wxUintl6 Read16()

Reads a 16 bit integer from the stream.

wxDatalnputStream::Read32
wxUint32 Read32()

Reads a 32 bit integer from the stream.

wxDatalnputStream::ReadDouble

double ReadDouble()

Reads a double (IEEE encoded) from the stream.

176

CHAPTER 5

wxDatalnputStream::ReadString
wxString ReadString()

Reads a string from a stream. Actually, this function first reads a long integer specifying
the length of the string (without the last null character) and then reads the string.

wxDataOutputStream
This class provides functions that write binary data types in a portable way. Data can be
written in either big-endian or litte-endian format, little-endian being the default on all

architectures.

If you want to write data to text files (or streams) use wxTextOutputStream (p. 955)
instead.

The << operator is overloaded and you can use this class like a standard C++ iostream.
See wxDatalnputStream (p. 175) for its usage and caveats.

See also wxDatalnputStream (p. 175).
Derived from

None

wxDataOutputStream::wxDataOutputStream
wxDataOutputStream(wxOutputStreamé& stream)

Constructs a datastream object from an output stream. Only write methods will be
available.

Parameters
stream

The output stream.
wxDataOutputStream::~wxDataOutputStream
~wxDataOutputStream()

Destroys the wxDataOutputStream object.

177

CHAPTER 5

wxDataOutputStream::BigEndianOrdered

void BigEndianOrdered(bool be_order)

If be_order is TRUE, all data will be written in big-endian order, e.g. for reading on a
Sparc or from Java-Streams (which always use big-endian order), otherwise data will be
written in little-endian order.

wxDataOutputStream::Write8

void Write8(wxUint8 i8)

Writes the single byte i8 to the stream.

wxDataOutputStream::Write16
void Write1l6(wxUint16 i16)

Writes the 16 bit integer i16 to the stream.

wxDataOutputStream::Write32
void Write32(wxUint32 i32)

Writes the 32 bit integer i32 to the stream.

wxDataOutputStream::WriteDouble
void WriteDouble(double f)

Writes the double f to the stream using the IEEE format.

wxDataOutputStream::WriteString
void WriteString(const wxString& string)

Writes string to the stream. Actually, this method writes the size of the string before
writing string itself.

wxDate
A class for manipulating dates.

NOTE: this class is retained only for compatibility, and has been replaced by
wxDateTime (p. 186). wxDate may be withdrawn in future versions of wxWindows.

Derived from

178

CHAPTER 5

wxObject (p. 627)
Include files
<wx/date.h>

See also

wxTime (p. 974)

wxDate::wxDate

wxDate()

Default constructor.

wxDate(const wxDate& date)

Copy constructor.

wxDate(int month, int day, int year)

Constructor taking month, day and year.

wxDate(long julian)

Constructor taking an integer representing the Julian date. This is the number of days
since 1st January 4713 B.C., so to convert from the number of days since 1st January
1901, construct a date for 1/1/1901, and add the number of days.

wxDate(const wxString& dateString)

Constructor taking a string representing a date. This must be either the string TODAY, or
of the form MM DY YYYY or MVt DD- YYYY. For example:

wxDat e date("11/26/1966");
Parameters

date
Date to copy.

month
Month: a number between 1 and 12.

day
Day: a number between 1 and 31.

179

CHAPTER 5

year
Year, such as 1995, 2005.

wxDate::~wxDate

void ~wxDate()

Destructor.

wxDate::AddMonths
wxDate& AddMonths(int months=1)

Adds the given number of months to the date, returning a reference to 'this'.

wxDate::AddWeeks
wxDate& AddWeeks(int weeks=1)

Adds the given number of weeks to the date, returning a reference to 'this'.

wxDate::AddYears
wxDate& AddYears(int years=1)

Adds the given number of months to the date, returning a reference to 'this'.

wxDate::FormatDate
wxString FormatDate(int type=-1) const

Formats the date according to type if not -1, or according to the current display type if -1.

Parameters
type
-1 or one of:
wxDAY Format day only.
WXMONTH Format month only.
wxMDY Format MONTH, DAY, YEAR.
wxFULL Format day, month and year in US style:
DAYOFWEEK, MONTH, DAY, YEAR.
wWXEUROPEAN Format day, month and year in European style: DAY,

180

CHAPTER 5

MONTH, YEAR.

wxDate::GetDay
int GetDay() const

Returns the numeric day (in the range 1 to 31).

wxDate::GetDayOfWeek
int GetDayOfWeek() const

Returns the integer day of the week (in the range 1 to 7).

wxDate::GetDayOfWeekName
wxString GetDayOfWeekName() const

Returns the name of the day of week.

wxDate::GetDayOfYear
long GetDayOfYear() const

Returns the day of the year (from 1 to 365).

wxDate::GetDaysInMonth
int GetDaysInMonth() const

Returns the number of days in the month (in the range 1 to 31).

wxDate::GetFirstDayOfMonth
int GetFirstDayOfMonth() const

Returns the day of week that is first in the month (in the range 1 to 7).

wxDate::GetJulianDate

long GetJulianDate() const

181

CHAPTER 5

Returns the Julian date.

wxDate::GetMonth
int GetMonth() const

Returns the month number (in the range 1 to 12).

wxDate::GetMonthEnd
wxDate GetMonthEnd()

Returns the date representing the last day of the month.

wxDate::GetMonthName

wxString GetMonthName() const

Returns the name of the month. Do not delete the returned storage.

wxDate::GetMonthStart
wxDate GetMonthStart() const

Returns the date representing the first day of the month.

wxDate::GetWeekOfMonth
int GetWeekOfMonth() const

Returns the week of month (in the range 1 to 6).

wxDate::GetWeekOfYear
int GetWeekOfYear() const

Returns the week of year (in the range 1 to 52).

wxDate::GetYear
int GetYear() const

Returns the year as an integer (such as '1995").

182

CHAPTER 5

wxDate::GetYearEnd
wxDate GetYearEnd() const

Returns the date representing the last day of the year.

wxDate::GetYearStart
wxDate GetYearStart() const

Returns the date representing the first day of the year.

wxDate::IsLeapYear
bool IsLeapYear() const

Returns TRUE if the year of this date is a leap year.

wxDate::Set

wxDate& Set()

Sets the date to current system date, returning a reference to 'this'.
wxDate& Set(long julian)

Sets the date to the given Julian date, returning a reference to 'this'.
wxDate& Set(int month, int day, int year)

Sets the date to the given date, returning a reference to 'this'.
month is a number from 1 to 12.

day is a number from 1 to 31.

year is a year, such as 1995, 2005.

wxDate::SetFormat
void SetFormat(int format)

Sets the current format type.

183

CHAPTER 5

Parameters
format
-1 or one of:
WxDAY Format day only.
WXMONTH Format month only.
wxMDY Format MONTH, DAY, YEAR.
wxFULL Format day, month and year in US style:
DAYOFWEEK, MONTH, DAY, YEAR.
WXEUROPEAN Format day, month and year in European style: DAY,
MONTH, YEAR.

wxDate::SetOption

int SetOption(int option, const bool enable=TRUE)
Enables or disables an option for formatting.
Parameters

option
May be one of:

wWxNO_CENTURY The century is not formatted.

wxDATE_ABBR Month and day names are abbreviated to 3
characters when formatting.

wxDate::operator wxString
operator wxString()

Conversion operator, to convert wxDate to wxString by calling FormatDate.

wxDate::operator +
wxDate operator +(long i)
wxDate operator +(int i)

Adds an integer number of days to the date, returning a date.

wxDate::operator -

184

CHAPTER 5

wxDate operator -(long i)

wxDate operator -(int i)

Subtracts an integer number of days from the date, returning a date.
long operator -(const wxDate& date)

Subtracts one date from another, return the number of intervening days.

wxDate::operator +=

wxDate& operator +=(long i)

Postfix operator: adds an integer number of days to the date, returning a reference to
'this' date.

wxDate::operator -=

wxDate& operator -=(long i)

Postfix operator: subtracts an integer number of days from the date, returning a
reference to 'this' date.

wxDate::operator ++

wxDate& operator ++()

Increments the date (postfix or prefix).

wxDate::operator --
wxDate& operator --()

Decrements the date (postfix or prefix).

wxDate::operator <
friend bool operator <(const wxDate& datel, const wxDate& date?2)

Function to compare two dates, returning TRUE if datel is earlier than date?2.

wxDate::operator <=

185

CHAPTER 5

friend bool operator <=(const wxDate& datel, const wxDate& date?)

Function to compare two dates, returning TRUE if datel is earlier than or equal to date?2.

wxDate::operator >
friend bool operator >(const wxDate& datel, const wxDate& date?2)

Function to compare two dates, returning TRUE if datel is later than date2.

wxDate::operator >=
friend bool operator >=(const wxDate& datel, const wxDate& date?)

Function to compare two dates, returning TRUE if datel is later than or equal to date?2.

wxDate::operator ==
friend bool operator ==(const wxDate& datel, const wxDate& date?2)

Function to compare two dates, returning TRUE if datel is equal to date2.

wxDate::operator !=
friend bool operator !=(const wxDate& datel, const wxDate& date2)

Function to compare two dates, returning TRUE if datel is not equal to date2.

wxDate::operator <<

friend ostream& operator <<(ostreamé& o0s, const wxDate& date)
Function to output a wxDate to an ostream.

wxDateTime

wxDateTime class represents an absolute moment in the time.
Types

The type wxDat eTi nme_t is typedefed as unsi gned short and is used to contain the
number of years, hours, minutes, seconds and milliseconds.

Constants

186

CHAPTER 5

Global constant wxDef aul t Dat eTi me and synonym for it wxl nval i dDat eTi e are
defined. This constant will be different from any valid wxDateTime object.

All the following constants are defined inside wxDateTime class (i.e., to refer to them you

should prepend their names with wxDat eTi ne: :).

Time zone symbolic names:

enum TZ

{

// the time in the current tine zone
Local ,

/1 zones from GVl (= Greenwhich Mean Tine): they're guaranteed

to be

/1 consequent nunbers, so witing sonething |ike “~GVI0 +

offset' is
/] safe if abs(offset) <= 12

/] underscore stands for m nus

GV _12, GMIr_11, GWVIr_10, GvVr 9, Gwr_8, QGwvr 7,
GMI_ 6, GV 5, GMI_4, GWMI_3, GWI_2, GMI_1,
GMIO,

GMI'1, GMr2, GMr3, GMr4, GMVrs, GMIe,

GMr7, GMIrs, GMr9, GMrio, Gwrii, Gvriz,

/1 Note that GMI12 and GWI_12 are not the sane: there is a
di fference

/1 of exactly one day between them

/1 sone synbolic names for TZ

/1 Europe

VWET = GVITO, /1 \Western Europe Tine

VEST = QGWII1, /1 \Western Europe Sumer
Ti me

CET = @wryi, /1 Central Europe Tine

CEST = GVIr2, /1 Central Europe Sumrer
Ti me

EET = GWIT2, /1 Eastern Europe Tine

EEST = QGMI3, /| Eastern Europe Sumer
Ti me

MBK = GMIT3, /1 Moscow Ti e

MSD = GVIT4, /1 Moscow Summer Tinme

/1 US and Canada

AST = GVIT_4, /1 Atlantic Standard Tine

ADT = GVIT_3, /1 Atlantic Daylight Tine

EST = GWIT_5, /! Eastern Standard Tine

EDT = GMVIT_4, /1 Eastern Daylight Saving
Ti me

CST = GVIT_6, /1l Central Standard Tine

CDT = QwIr_5, /1 Central Daylight Saving
Ti me

MST = GVIT_7, /1 NMountain Standard Tine

MDT = GMT_6, /1 Mountain Daylight Saving
Ti me

187

CHAPTER 5

PST = GWII_8, /1l Pacific Standard Tinme

PDT = GVIT_7, /1 Pacific Daylight Saving
Ti me

HST = GVIr_10, /! Hawaiian Standard Ti ne

AKST = GMI_9, /1 Al aska Standard Tine

AKDT = QGMI_8, /1 Al aska Daylight Saving
Ti me

/1 Australia

A WBT = GWVIT8, /1 \Western Standard Tinme

A CST = Gvr12 + 1, /1l Central Standard Tine
(+9.5)

A EST = @QwIrio, /! Eastern Standard Tinme

A ESST = QGwIril, /!l Eastern Sumrer Tine

/1 Universal Coordinated Time = the new and politically correct
name

/1 for QGMI

UTC = GVITO

1

Month names: Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec and
Inv_Month for an invalid.month value are the values of wxDat eTi ne: : Mont h enum.

Likely, Sun, Mon, Tue, Wed, Thu, Fri, Sat, and Inv_WeekDay are the values in
wxDat eTi nme: : WeekDay enum.

Finally, Inv_Year is defined to be an invalid value for year parameter.
Derived from

No base class

Include files

<wx/datetime.h>

See also

wxTimeSpan, wxDateSpan, wxCalendarCtrl (p. 93)

Static functions

For convenience, all static functions are collected here. These functions either set or
return the static variables of wxDateSpan (the country), return the current moment, year,
month or number of days in it, or do some general calendar-related actions.

SetCountry (p. 191)
GetCountry (p. 190)

188

CHAPTER 5

IsWestEuropeanCountry (p. 191)
GetCurrentYear (p. 190)
ConvertYearToBC (p. 189)
GetCurrentMonth (p. 190)
IsLeapYear (p. 191)
GetCentury (p. 190)
GetNumberOfDays (p. 191)
GetNumberOfDays (p. 191)
GetMonthName (p. 190)
GetWeekDayName (p. 191)
GetAmPmStrings (p. 190)
IsSDSTApplicable (p. 191)
GetBeginDST (p. 190)
GetEndDST (p. 190)

Now (p. 191)

Today (p. 191)

Constructors, assignment operators and setters

Accessors

Date comparison

Date arithmetics

Parsing and formatting dates

Calendar calculations

Astronomical/historical functions

Time zone support

wxDateTime::ConvertYearToBC
static int ConvertYearToBC(int year)

Converts the year in absolute notation (i.e. a number which can be negative, positive or
zero) to the year in BC/AD notation. For the positive years, nothing is done, but the year

189

CHAPTER 5

0 is year 1 BC and so for other years there is a difference of 1.
This function should be used like this:

wxDateTine dt(...);

int y = dt.CetYear();

printf("The year is %l%", wxDateTi nme::ConvertYear ToBC(y), vy > 0 ?
"AD' : "BC');
wxDateTime::GetAmPmStrings

static void GetAmPmStrings(wxString *am, wxString *pm)

wxDateTime::GetBeginDST

static wxDateTime GetBeginDST(int year = Inv_Year, Country country =
Country_Default)

wxDateTime::GetCountry

static Country GetCountry()

wxDateTime::GetCurrentYear

static int GetCurrentYear(Calendar cal = Gregorian)

wxDateTime::GetCurrentMonth

static Month GetCurrentMonth(Calendar cal = Gregorian)

wxDateTime::GetCentury

static int GetCentury(int year = Inv_Year)

wxDateTime::GetEndDST

static wxDateTime GetEndDST(int year = Inv_Year, Country country =
Country_Default)

wxDateTime::GetMonthName

static wxString GetMonthName(Month month, NameFlags flags = Name_Full)

190

CHAPTER 5

wxDateTime::GetNumberOfDays

static wxDateTime_t GetNumberOfDays(int year, Calendar cal = Gregorian)

static wxDateTime_t GetNumberOfDays(Month month, int year = Inv_Year, Calendar
cal = Gregorian)

wxDateTime::GetWeekDayName

static wxString GetWeekDayName(WeekDay weekday, NameFlags flags =
Name_Full)

wxDateTime::IsLeapYear

static bool IsLeapYear(int year = Inv_Year, Calendar cal = Gregorian)

wxDateTime::IsWestEuropeanCountry

static bool IsWestEuropeanCountry(Country country = Country_Default)

wxDateTime::IsDSTApplicable

static bool IsDSTApplicable(int year = Inv_Year, Country country = Country_Default)

wxDateTime::Now

static wxDateTime Now()

wxDateTime::SetCountry

static void SetCountry(Country country)

wxDateTime::Today

static wxDateTime Today()

wxDC

A wxDC is a device context onto which graphics and text can be drawn. It is intended to

represent a number of output devices in a generic way, so a window can have a device
context associated with it, and a printer also has a device context. In this way, the same

191

CHAPTER 5

piece of code may write to a number of different devices, if the device context is used as
a parameter.

Derived types of wxDC have documentation for specific features only, so refer to this
section for most device context information.

Derived from
wxObject (p. 627)
Include files
<wx/dc.h>

See also

Overview (p. 1235)

wxDC::wxDC
wxDC()

Constructor.

wxDC::~wxDC
~wxDC()

Destructor.

wxDC::BeginDrawing
void BeginDrawing()

Allows optimization of drawing code under MS Windows. Enclose drawing primitives
between BeginDrawing and EndDrawing calls.

Drawing to a wxDialog panel device context outside of a system-generated OnPaint
event requires this pair of calls to enclose drawing code. This is because a Windows
dialog box does not have a retained device context associated with it, and selections
such as pen and brush settings would be lost if the device context were obtained and
released for each drawing operation.

wxDC::Blit

192

CHAPTER 5

bool Blit(wxCoord xdest, wxCoord ydest, wxCoord width, wxCoord height, wxDC*
source, wxCoord xsrc, wxCoord ysrc, int logicalFunc = wxCOPY, bool useMask =

FALSE)

Copy from a source DC to this DC, specifying the destination coordinates, size of area to
copy, source DC, source coordinates, and logical function.

Parameters

xdest

Destination device context x position.

ydest

Destination device context y position.

width

Width of source area to be copied.

height

Height of source area to be copied.

source

Source device context.

XSrc

Source device context x position.

ysrc

Source device context y position.

logicalFunc

Logical function to use: see wxDC::SetLogicalFunction (p. 205).

useMask

If TRUE, Blit does a transparent blit using the mask that is associated with the
bitmap selected into the source device context. The Windows implementation does

the following:

1. Creates a temporary bitmap and copies the destination area into it.

2. Copies the source area into the temporary bitmap using the specified
logical function.

3. Sets the masked area in the temporary bitmap to BLACK by ANDing the
mask bitmap with the temp bitmap with the foreground colour set to
WHITE and the bg colour set to BLACK.

4. Sets the unmasked area in the destination area to BLACK by ANDing the
mask bitmap with the destination area with the foreground colour set to
BLACK and the background colour set to WHITE.

5. ORs the temporary bitmap with the destination area.

6. Deletes the temporary bitmap.

193

CHAPTER 5

This sequence of operations ensures that the source's transparent area need not
be black, and logical functions are supported.

Remarks

There is partial support for Blit in wxPostScriptDC, under X.
See wxMemoryDC (p. 562) for typical usage.

See also

wxMemoryDC (p. 562), wxBitmap (p. 52), wxMask (p. 548)

wxDC::Clear
void Clear()

Clears the device context using the current background brush.

wxDC::CrossHair

void CrossHair(wxCoord x, wxCoord y)

Displays a cross hair using the current pen. This is a vertical and horizontal line the
height and width of the window, centred on the given point.
wxDC::DestroyClippingRegion

void DestroyClippingRegion()

Destroys the current clipping region so that none of the DC is clipped. See also
wxDC::SetClippingRegion (p. 204).

wxDC::DeviceTolLogicalX

wxCoord DeviceToLogicalX(wxCoord x)

Convert device X coordinate to logical coordinate, using the current mapping mode.

wxDC::DeviceToLogicalXRel
wxCoord DeviceToLogicalXRel(wxCoord x)

Convert device X coordinate to relative logical coordinate, using the current mapping
mode. Use this function for converting a width, for example.

194

CHAPTER 5

wxDC::DeviceTolLogicalY
wxCoord DeviceToLogicalY(wxCoord y)

Converts device Y coordinate to logical coordinate, using the current mapping mode.

wxDC::DeviceTolLogicalYRel

wxCoord DeviceTolLogicalYRel(wxCoord y)

Convert device Y coordinate to relative logical coordinate, using the current mapping
mode. Use this function for converting a height, for example.

wxDC::DrawArc

void DrawArc(wxCoord x1, wxCoord y1, wxCoord x2, wxCoord y2, double xc,
double yc)

Draws an arc of a circle, centred on (xc, yc), with starting point (x1, y1) and ending at
(x2, y2). The current pen is used for the outline and the current brush for filling the
shape.

The arc is drawn in an anticlockwise direction from the start point to the end point.

wxDC::DrawBitmap

void DrawBitmap(const wxBitmap& bitmap, wxCoord x, wxCoord y, bool
transparent)

Draw a bitmap on the device context at the specified point. If transparent is TRUE and
the bitmap has a transparency mask, the bitmap will be drawn transparently.

When drawing a mono-bitmap, the current text foreground colour will be used to draw
the foreground of the bitmap (all bits set to 1), and the current text background colour to
draw the background (all bits set to 0). See also SetTextForeground (p. 207),
SetTextBackground (p. 207) and wxMemoryDC (p. 562).

wxDC::DrawCheckMark

void DrawCheckMark(wxCoord x, wxCoord y, wxCoord width, wxCoord height)

void DrawCheckMark(const wxRect &rect)

Draws a check mark inside the given rectangle.

195

CHAPTER 5

wxDC::DrawEllipse

void DrawEllipse(wxCoord x, wxCoord y, wxCoord width, wxCoord height)

Draws an ellipse contained in the rectangle with the given top left corner, and with the
given size. The current pen is used for the outline and the current brush for filling the
shape.

wxDC::DrawEllipticArc

void DrawEllipticArc(wxCoord x, wxCoord y, wxCoord width, wxCoord height,
double start, double end)

Draws an arc of an ellipse. The current pen is used for drawing the arc and the current
brush is used for drawing the pie. This function is currently only available for X window
and PostScript device contexts.

x and y specify the x and y coordinates of the upper-left corner of the rectangle that
contains the ellipse.

width and height specify the width and height of the rectangle that contains the ellipse.
start and end specify the start and end of the arc relative to the three-o'clock position
from the center of the rectangle. Angles are specified in degrees (360 is a complete
circle). Positive values mean counter-clockwise motion. If start is equal to end, a
complete ellipse will be drawn.

wxDC::Drawlcon

void Drawlcon(const wxlcon& icon, wxCoord x, wxCoord y)

Draw an icon on the display (does nothing if the device context is PostScript). This can
be the simplest way of drawing bitmaps on a window.

wxDC::DrawLine

void DrawLine(wxCoord x1, wxCoord y1, wxCoord x2, wxCoord y2)

Draws a line from the first point to the second. The current pen is used for drawing the
line.

wxDC::DrawLines

void DrawLines(int n, wxPoint points[], wxCoord xoffset = 0, wxCoord yoffset = 0)

196

CHAPTER 5

void DrawLines(wxList *points, wxCoord xoffset = 0, wxCoord yoffset = 0)

Draws lines using an array of points of size n, or list of pointers to points, adding the
optional offset coordinate. The current pen is used for drawing the lines. The
programmer is responsible for deleting the list of points.

wxPython note: The wxPython version of this method accepts a Python list of wxPoint
objects.

wxDC::DrawPolygon

void DrawPolygon(int n, wxPoint points[], wxCoord xoffset = 0, wxCoord yoffset = 0,
int fill_style = wxODDEVEN_RULE)

void DrawPolygon(wxList *points, wxCoord xoffset = 0, wxCoord yoffset = 0,
int fill_style = wxODDEVEN_RULE)

Draws a filled polygon using an array of points of size n, or list of pointers to points,
adding the optional offset coordinate.

The last argument specifies the fill rule: wxODDEVEN_RULE (the default) or
WXWINDING_RULE.

The current pen is used for drawing the outline, and the current brush for filling the
shape. Using a transparent brush suppresses filling. The programmer is responsible for
deleting the list of points.

Note that wxWindows automatically closes the first and last points.

wxPython note: The wxPython version of this method accepts a Python list of wxPoint
objects.

wxDC::DrawPoint

void DrawPoint(wxCoord x, wxCoord y)

Draws a point using the current pen.

wxDC::DrawRectangle
void DrawRectangle(wxCoord x, wxCoord y, wxCoord width, wxCoord height)

Draws a rectangle with the given top left corner, and with the given size. The current
pen is used for the outline and the current brush for filling the shape.

197

CHAPTER 5

wxDC::DrawRotatedText

void DrawRotatedText(const wxString& text, wxCoord x, wxCoord y, double angle)
Draws the text rotated by angle degrees.

See also

DrawText (p. 198)

wxDC::DrawRoundedRectangle

void DrawRoundedRectangle(wxCoord x, wxCoord y, wxCoord width, wxCoord
height, double radius = 20)

Draws a rectangle with the given top left corner, and with the given size. The corners
are quarter-circles using the given radius. The current pen is used for the outline and the
current brush for filling the shape.

If radius is positive, the value is assumed to be the radius of the rounded corner. If
radius is negative, the absolute value is assumed to be the proportion of the smallest
dimension of the rectangle. This means that the corner can be a sensible size relative to

the size of the rectangle, and also avoids the strange effects X produces when the
corners are too big for the rectangle.

wxDC::DrawSpline

void DrawSpline(wxList *points)

Draws a spline between all given control points, using the current pen. Doesn't delete
the wxList and contents. The spline is drawn using a series of lines, using an algorithm

taken from the X drawing program 'XFIG'.

void DrawSpline(wxCoord x1, wxCoord y1, wxCoord x2, wxCoord y2, wxCoord x3,
wxCoord y3)

Draws a three-point spline using the current pen.

wxPython note: The wxPython version of this method accepts a Python list of wxPoint
objects.

wxDC::DrawText

void DrawText(const wxString& text, wxCoord x, wxCoord y)

Draws a text string at the specified point, using the current text font, and the current text
foreground and background colours.

198

CHAPTER 5

The coordinates refer to the top-left corner of the rectangle bounding the string. See
wxDC::GetTextExtent (p. 202) for how to get the dimensions of a text string, which can
be used to position the text more precisely.

wxDC::EndDoc

void EndDoc()

Ends a document (only relevant when outputting to a printer).

wxDC::EndDrawing

void EndDrawing()

Allows optimization of drawing code under MS Windows. Enclose drawing primitives
between BeginDrawing and EndDrawing calls.

wxDC::EndPage

void EndPage()

Ends a document page (only relevant when outputting to a printer).

wxDC::FloodFill

void FloodFill(wxCoord x, wxCoord y, wxColour *colour, int
style=wxFLOOD_SURFACE)

Flood fills the device context starting from the given point, in the given colour, and using
a style:

wxFLOOD_SURFACE: the flooding occurs until a colour other than the given
colour is encountered.
wxFLOOD_BORDER: the area to be flooded is bounded by the given colour.

Note: this function is available in MS Windows only.

wxDC::GetBackground
wxBrushé& GetBackground()

Gets the brush used for painting the background (see wxDC::SetBackground (p. 204)).

199

CHAPTER 5

wxDC::GetBrush
wxBrushé& GetBrush()

Gets the current brush (see wxDC::SetBrush (p. 205)).

wxDC::GetCharHeight
wxCoord GetCharHeight()

Gets the character height of the currently set font.

wxDC::GetCharWidth
wxCoord GetCharWidth()

Gets the average character width of the currently set font.

wxDC::GetClippingBox

void GetClippingBox(wxCoord *x, wxCoord *y, wxCoord *width, wxCoord *height)
Gets the rectangle surrounding the current clipping region.

wxPython note: No arguments are required and the four values defining the rectangle
are returned as a tuple.

wxDC::GetFont

wxFont& GetFont()

Gets the current font (see wxDC::SetFont (p. 205)).

wxDC::GetLogicalFunction
int GetLogicalFunction()

Gets the current logical function (see wxDC::SetLogicalFunction (p. 205)).

wxDC::GetMapMode
int GetMapMode()

Gets the mapping mode for the device context (see wxDC::SetMapMode (p. 206)).

200

CHAPTER 5

wxDC::GetOptimization

bool GetOptimization()

Returns TRUE if device context optimization is on. See wxDC::SetOptimization (p. 207)
for detalils.

wxDC::GetPen

wxPen& GetPen()

Gets the current pen (see wxDC::SetPen (p. 207)).

wxDC::GetPixel
bool GetPixel(wxCoord x, wxCoord y, wxColour *colour)

Sets colour to the colour at the specified location. Windows only; an X implementation is
being worked on. Not available for wxPostScriptDC or wxMetafileDC.

wxPython note: For wxPython the wxColour value is returned and is not required as a
parameter.

wxDC::GetSize
void GetSize(wxCoord *width, wxCoord *height)

For a PostScript device context, this gets the maximum size of graphics drawn so far on
the device context.

For a Windows printer device context, this gets the horizontal and vertical resolution. It
can be used to scale graphics to fit the page when using a Windows printer device
context. For example, if maxX and maxyY represent the maximum horizontal and vertical
‘pixel’ values used in your application, the following code will scale the graphic to fit on
the printer page:

wxCoord w, h;

dc. Get Si ze(&w, &h);

doubl e scal eX=(doubl e) (maxX/ w) ;

doubl e scal eY=(doubl e) (maxY/ h);

dc. Set User Scal e(m n(scal eX, scal eY), m n(scal eX, scal eY));

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

GetSize() Returns a wxSize

201

CHAPTER 5

GetSizeTuple() Returns a 2-tuple (width, height)

wxDC::GetTextBackground
wxColour& GetTextBackground()

Gets the current text background colour (see wxDC::SetTextBackground (p. 207)).

wxDC::GetTextExtent
void GetTextExtent(const wxString& string, wxCoord *w, wxCoord *h,

wxCoord *descent = NULL, wxCoord *externalLeading = NULL, wxFont *font =
NULL)
Gets the dimensions of the string using the currently selected font. string is the text
string to measure, w and h are the total width and height respectively, descent is the
dimension from the baseline of the font to the bottom of the descender, and
externalLeading is any extra vertical space added to the font by the font designer
(usually is zero).
The optional parameter font specifies an alternative to the currently selected font: but
note that this does not yet work under Windows, so you need to set a font for the device
context first.
See also wxFont (p. 331), wxDC::SetFont (p. 205).
wxPython note: The following methods are implemented in wxPython:

GetTextExtent(string) Returns a 2-tuple, (width, height)

GetFullTextExtent(string, font=NULL)Returns a 4-tuple, (width, height,
descent, externalLeading)

wxDC::GetTextForeground
wxColour& GetTextForeground()

Gets the current text foreground colour (see wxDC::SetTextForeground (p. 207)).

wxDC::GetUserScale

void GetUserScale(double *x, double *y)

202

CHAPTER 5

Gets the current user scale factor (set by SetUserScale (p. 208)).

wxDC::LogicalToDeviceX
wxCoord LogicalToDeviceX(wxCoord x)

Converts logical X coordinate to device coordinate, using the current mapping mode.

wxDC::LogicalToDeviceXRel

wxCoord LogicalToDeviceXRel(wxCoord x)

Converts logical X coordinate to relative device coordinate, using the current mapping
mode. Use this for converting a width, for example.

wxDC::LogicalToDeviceY

wxCoord LogicalToDeviceY(wxCoord y)

Converts logical Y coordinate to device coordinate, using the current mapping mode.

wxDC::LogicalToDeviceYRel

wxCoord LogicalToDeviceYRel(wxCoord y)

Converts logical Y coordinate to relative device coordinate, using the current mapping
mode. Use this for converting a height, for example.

wxDC::MaxX

wxCoord MaxX()

Gets the maximum horizontal extent used in drawing commands so far.

wxDC::MaxY
wxCoord MaxY()

Gets the maximum vertical extent used in drawing commands so far.

wxDC::MinX

wxCoord MinX()

203

CHAPTER 5

Gets the minimum horizontal extent used in drawing commands so far.

wxDC::MinY
wxCoord MinY()

Gets the minimum vertical extent used in drawing commands so far.

wxDC::0k
bool Ok()

Returns TRUE if the DC is ok to use.

wxDC::SetDeviceOrigin

void SetDeviceOrigin(wxCoord x, wxCoord y)

Sets the device origin (i.e., the origin in pixels after scaling has been applied).

This function may be useful in Windows printing operations for placing a graphic on a
page.

wxDC::SetBackground

void SetBackground(const wxBrushé& brush)

Sets the current background brush for the DC.

wxDC::SetBackgroundMode

void SetBackgroundMode(int mode)

mode may be one of wxSOLID and wxTRANSPARENT. This setting determines whether
text will be drawn with a background colour or not.

wxDC::SetClippingRegion

void SetClippingRegion(wxCoord x, wxCoord y, wxCoord width, wxCoord height)
void SetClippingRegion(const wxRegion& region)

Sets the clipping region for the DC. The clipping region is an area to which drawing is

204

CHAPTER 5

restricted. Possible uses for the clipping region are for clipping text or for speeding up
window redraws when only a known area of the screen is damaged.

See also

wxDC::DestroyClippingRegion (p. 194), wxRegion (p. 760)

wxDC::SetPalette

void SetPalette(const wxPalette& palette)

If this is a window DC or memory DC, assigns the given palette to the window or bitmap
associated with the DC. If the argument is wxNullPalette, the current palette is selected

out of the device context, and the original palette restored.

See wxPalette (p. 641) for further details.

wxDC::SetBrush
void SetBrush(const wxBrush& brush)
Sets the current brush for the DC.

If the argument is wxNullBrush, the current brush is selected out of the device context,
and the original brush restored, allowing the current brush to be destroyed safely.

See also wxBrush (p. 78).

See also wxMemoryDC (p. 562) for the interpretation of colours when drawing into a
monochrome bitmap.

wxDC::SetFont

void SetFont(const wxFont& font)

Sets the current font for the DC.

If the argument is wxNullFont, the current font is selected out of the device context, and
the original font restored, allowing the current font to be destroyed safely.

See also wxFont (p. 331).

wxDC::SetLogicalFunction

void SetLogicalFunction(int function)

205

CHAPTER 5

Sets the current logical function for the device context. This determines how a source
pixel (from a pen or brush colour, or source device context if using wxDC::Blit (p. 192))
combines with a destination pixel in the current device context.

The possible values and their meaning in terms of source and destination pixel values

are as follows:

wx AND

WXAND | NVERT
WxAND REVERSE
wx CLEAR

wx COPY

wx EQUI V

wx | NVERT

wx NAND

wx NOR
wxNO_COP

wx OR

WX OR_| NVERT
wx OR_REVERSE
WX SET

WX SRC_| NVERT
wx XOR

src AND dst

(NOT src) AND dst

src AND (NOT dst)

0

src

(NOT src) XOR dst

NOT dst

(NOT src) OR (NOT dst)
(NOT src) AND (NOT dst)
dst

src OR dst

(NOT src) OR dst

src OR (NOT dst)

1

NOT src

src XOR dst

The default is wxCOPY, which simply draws with the current colour. The others combine
the current colour and the background using a logical operation. WxINVERT is
commonly used for drawing rubber bands or moving outlines, since drawing twice

reverts to the original colour.

wxDC::SetMapMode
void SetMapMode(int int)

The mapping mode of the device context defines the unit of measurement used to
convert logical units to device units. Note that in X, text drawing isn't handled
consistently with the mapping mode; a font is always specified in point size. However,
setting the user scale (see wxDC::SetUserScale (p. 208)) scales the text appropriately.
In Windows, scaleable TrueType fonts are always used; in X, results depend on
availability of fonts, but usually a reasonable match is found.

Note that the coordinate origin should ideally be selectable, but for now is always at the
top left of the screen/printer.

Drawing to a Windows printer device context under UNIX uses the current mapping
mode, but mapping mode is currently ignored for PostScript output.

The mapping mode can be one of the following:

WXMM_TWIPS
WXMM_POINTS

WXMM_METRIC

Each logical unit is 1/20 of a point, or 1/1440 of an inch.
Each logical unit is a point, or 1/72 of an inch.
Each logical unit is 1 mm.

206

CHAPTER 5

wxMM_LOMETRIC Each logical unit is 1/10 of a mm.
WXMM_TEXT Each logical unit is 1 pixel.

wxDC::SetOptimization

void SetOptimization(bool optimize)

If optimize is TRUE (the default), this function sets optimization mode on. This currently
means that under X, the device context will not try to set a pen or brush property if it is
known to be set already. This approach can fall down if non-wxWindows code is using
the same device context or window, for example when the window is a panel on which
the windowing system draws panel items. The wxWindows device context 'memory’ will
now be out of step with reality.

Setting optimization off, drawing, then setting it back on again, is a trick that must
occasionally be employed.

wxDC::SetPen

void SetPen(const wxPen& pen)

Sets the current pen for the DC.

If the argument is wxNullPen, the current pen is selected out of the device context, and
the original pen restored.

See also wxMemoryDC (p. 562) for the interpretation of colours when drawing into a
monochrome bitmap.

wxDC::SetTextBackground

void SetTextBackground(const wxColouré& colour)

Sets the current text background colour for the DC.

wxDC::SetTextForeground
void SetTextForeground(const wxColouré& colour)
Sets the current text foreground colour for the DC.

See also wxMemoryDC (p. 562) for the interpretation of colours when drawing into a
monochrome bitmap.

207

CHAPTER 5

wxDC::SetUserScale
void SetUserScale(double xScale, double yScale)

Sets the user scaling factor, useful for applications which require 'zooming'.

wxDC::StartDoc

bool StartDoc(const wxString& message)

Starts a document (only relevant when outputting to a printer). Message is a message to
show whilst printing.

wxDC::StartPage

bool StartPage()

Starts a document page (only relevant when outputting to a printer).

wxDDEClient

A wxDDEClient object represents the client part of a client-server DDE (Dynamic Data
Exchange) conversation.

To create a client which can communicate with a suitable server, you need to derive a
class from wxDDEConnection and another from wxDDECIient. The custom
wxDDEConnection class will intercept communications in a '‘conversation' with a server,
and the custom wxDDEServer is required so that a user-overriden
wxDDEClient::OnMakeConnection (p. 209) member can return a wxDDEConnection of
the required class, when a connection is made.

This DDE-based implementation is available on Windows only, but a platform-
independent, socket-based version of this API is available using wxTCPClient (p. 930).

Derived from

wxClientBase
wxObject (p. 627)

Include files
<wx/dde.h>
See also

wxDDEServer (p. 213), wxDDEConnection (p. 209), Interprocess communications
overview (p. 1271)

208

CHAPTER 5

wxDDECIlient::wxDDEClient
wxDDEClient()

Constructs a client object.

wxDDECIlient::MakeConnection

wxConnectionBase * MakeConnection(const wxString& host, const wxString&
service, const wxString& topic)

Tries to make a connection with a server specified by the host (machine name under
UNIX, ignored under Windows), service name (must contain an integer port number
under UNIX), and topic string. If the server allows a connection, a wxDDEConnection
object will be returned. The type of wxDDEConnection returned can be altered by
overriding the wxDDEClIient::OnMakeConnection (p. 209) member to return your own
derived connection object.

wxDDECIlient::OnMakeConnection

wxConnectionBase * OnMakeConnection()

The type of wxDDEConnection (p. 209) returned from a wxDDEClient::MakeConnection
(p- 209) call can be altered by deriving the OnMakeConnection member to return your
own derived connection object. By default, a wxDDEConnection object is returned.

The advantage of deriving your own connection class is that it will enable you to
intercept messages initiated by the server, such as wxDDEConnection::OnAdvise (p.
211). You may also want to store application-specific data in instances of the new class.
wxDDEClIient::ValidHost

bool ValidHost(const wxString& host)

Returns TRUE if this is a valid host name, FALSE otherwise. This always returns TRUE
under MS Windows.

wxDDEConnection

A wxDDEConnection object represents the connection between a client and a server. It
can be created by making a connection using a wxDDECIient (p. 208) object, or by the
acceptance of a connection by a wxDDEServer (p. 213) object. The bulk of a DDE
(Dynamic Data Exchange) conversation is controlled by calling members in a
wxDDEConnection object or by overriding its members.

209

CHAPTER 5

An application should normally derive a new connection class from wxDDEConnection,
in order to override the communication event handlers to do something interesting.

This DDE-based implementation is available on Windows only, but a platform-
independent, socket-based version of this API is available using wxTCPConnection (p.
932).

Derived from

wxConnectionBase
wxObiject (p. 627)

Include files

<wx/dde.h>

Types

wxIPCFormat is defined as follows:

enum wx| PCFor mat

{
wx!| PC_I NVALI D = 0,
wx| PC_TEXT = 1, /* CF_TEXT */
wx| PC_BI TMAP = 2, [|* CF_BITVAP */
wx| PC_METAFI LE = 3, [* CF_METAFILEPICT */
wx| PC_SYLK = 4,
wxl PC DI F = 5,
wx!| PC Tl FF = 6,
wx| PC_CEMTEXT = 7, |* CF_CEMIEXT */
wxl PC DI B = 8, /* CF DB */
wx| PC_PALETTE = 9,
wx| PC_PENDATA = 10,
wx!l PC_RI FF = 11,
wx| PC_WAVE = 12,
wx| PC_UNI CODETEXT = 13,
wx| PC_ENHMETAFI LE = 14,
wx| PC_FI LENAME = 15, /* CF_HDROP */
wx| PC_LOCALE = 16,
wx| PC_PRI VATE = 20

s

See also

wxDDEClient (p. 208), wxDDEServer (p. 213), Interprocess communications overview
(p. 1271)

wxDDEConnection::wxDDEConnection

210

CHAPTER 5

wxDDEConnection()
wxDDEConnection(char* buffer, int size)

Constructs a connection object. If no user-defined connection object is to be derived
from wxDDEConnection, then the constructor should not be called directly, since the
default connection object will be provided on requesting (or accepting) a connection.
However, if the user defines his or her own derived connection object, the
wxDDEServer::OnAcceptConnection (p. 214) and/or wxDDECIlient::OnMakeConnection
(p- 209) members should be replaced by functions which construct the new connection
object. If the arguments of the wxDDEConnection constructor are void, then a default
buffer is associated with the connection. Otherwise, the programmer must provide a a
buffer and size of the buffer for the connection object to use in transactions.

wxDDEConnection::Advise

bool Advise(const wxString& item, char* data, int size = -1, wxIPCFormat format =
WXCF_TEXT)

Called by the server application to advise the client of a change in the data associated
with the given item. Causes the client connection's wxDDEConnection::OnAdvise (p.
211)member to be called. Returns TRUE if successful.

wxDDEConnection::Execute

bool Execute(char* data, int size = -1, wxIPCFormat format = wxCF_TEXT)

Called by the client application to execute a command on the server. Can also be used
to transfer arbitrary data to the server (similar to wxDDEConnection::Poke (p. 213) in
that respect). Causes the server connection's wxDDEConnection::OnExecute (p. 212)
member to be called. Returns TRUE if successful.

wxDDEConnection::Disconnect

bool Disconnect()

Called by the client or server application to disconnect from the other program; it causes
the wxDDEConnection::OnDisconnect (p. 212) message to be sent to the corresponding
connection object in the other program. The default behaviour of OnDisconnect is to
delete the connection, but the calling application must explicitly delete its side of the
connection having called Disconnect. Returns TRUE if successful.

wxDDEConnection::OnAdvise

virtual bool OnAdvise(const wxString& topic, const wxString& item, char* data, int
size, wxIPCFormat format)

211

CHAPTER 5

Message sent to the client application when the server notifies it of a change in the data
associated with the given item.

wxDDEConnection::OnDisconnect

virtual bool OnDisconnect()

Message sent to the client or server application when the other application notifies it to
delete the connection. Default behaviour is to delete the connection object.
wxDDEConnection::OnExecute

virtual bool OnExecute(const wxString& topic, char* data, int size, wxIPCFormat
format)

Message sent to the server application when the client notifies it to execute the given
data. Note that there is no item associated with this message.
wxDDEConnection::OnPoke

virtual bool OnPoke(const wxString& topic, const wxString& item, char* data, int
size, wxIPCFormat format)

Message sent to the server application when the client notifies it to accept the given
data.
wxDDEConnection::OnRequest

virtual char* OnRequest(const wxString& topic, const wxString& item, int *size,
wxIPCFormat format)

Message sent to the server application when the client calls
wxDDEConnection::Request (p. 213). The server should respond by returning a
character string from OnRequest, or NULL to indicate no data.
wxDDEConnection::OnStartAdvise

virtual bool OnStartAdvise(const wxString& topic, const wxString& item)
Message sent to the server application by the client, when the client wishes to start an

‘advise loop' for the given topic and item. The server can refuse to participate by
returning FALSE.

212

CHAPTER 5

wxDDEConnection::OnStopAdvise

virtual bool OnStopAdvise(const wxString& topic, const wxString& item)
Message sent to the server application by the client, when the client wishes to stop an
‘advise loop' for the given topic and item. The server can refuse to stop the advise loop
by returning FALSE, although this doesn't have much meaning in practice.

wxDDEConnection::Poke

bool Poke(const wxString& item, char* data, int size = -1, wxIPCFormat format =
WXCF_TEXT)

Called by the client application to poke data into the server. Can be used to transfer
arbitrary data to the server. Causes the server connection's wxDDEConnection::OnPoke
(p- 212) member to be called. Returns TRUE if successful.
wxDDEConnection::Request

char* Request(const wxString& item, int *size, wxIPCFormat format = wxIPC_TEXT)
Called by the client application to request data from the server. Causes the server

connection's wxDDEConnection::OnRequest (p. 212) member to be called. Returns a
character string (actually a pointer to the connection's buffer) if successful, NULL

otherwise.

wxDDEConnection::StartAdvise

bool StartAdvise(const wxString& item)

Called by the client application to ask if an advise loop can be started with the server.
Causes the server connection's wxDDEConnection::OnStartAdvise (p. 212) member to
be called. Returns TRUE if the server okays it, FALSE otherwise.
wxDDEConnection::StopAdvise

bool StopAdvise(const wxString& item)

Called by the client application to ask if an advise loop can be stopped. Causes the
server connection's wxDDEConnection::OnStopAdvise (p. 213) member to be called.
Returns TRUE if the server okays it, FALSE otherwise.

wxDDEServer

A wxDDEServer object represents the server part of a client-server DDE (Dynamic Data
Exchange) conversation.

213

CHAPTER 5

This DDE-based implementation is available on Windows only, but a platform-
independent, socket-based version of this API is available using wxTCPServer (p. 936).

Derived from
wxServerBase
Include files
<wx/dde.h>
See also

wxDDEClient (p. 208), wxDDEConnection (p. 209), IPC overview (p. 1271)

wxDDEServer::wxDDEServer
wxDDEServer()

Constructs a server object.

wxDDEServer::Create
bool Create(const wxString& service)

Registers the server using the given service name. Under UNIX, the string must contain
an integer id which is used as an Internet port number. FALSE is returned if the call
failed (for example, the port number is already in use).

wxDDEServer::OnAcceptConnection
virtual wxConnectionBase * OnAcceptConnection(const wxString& topic)

When a client calls MakeConnection, the server receives the message and this
member is called. The application should derive a member to intercept this message and
return a connection object of either the standard wxDDEConnection type, or of a user-
derived type. If the topic is "STDIO", the application may wish to refuse the connection.
Under UNIX, when a server is created the OnAcceptConnection message is always sent
for standard input and output, but in the context of DDE messages it doesn't make a lot
of sense.

wxDebugContext

A class for performing various debugging and memory tracing operations. Full

214

CHAPTER 5

functionality (such as printing out objects currently allocated) is only present in a
debugging build of wxWindows, i.e. if the _ WXDEBUG__ symbol is defined.
wxDebugContext and related functions and macros can be compiled out by setting
wxUSE_DEBUG_CONTEXT to 0 is setup.h

Derived from

No parent class.

Include files

<wx/memory.h>

See also

Overview (p. 1201)

wxDebugContext::Check

int Check()

Checks the memory blocks for errors, starting from the currently set checkpoint.
Return value

Returns the number of errors, so a value of zero represents success. Returns -1 if an
error was detected that prevents further checking.

wxDebugContext::Dump

bool Dump()

Performs a memory dump from the currently set checkpoint, writing to the current debug
stream. Calls the Dump member function for each wxObject derived instance.

Return value

TRUE if the function succeeded, FALSE otherwise.

wxDebugContext::GetCheckPrevious
bool GetCheckPrevious()

Returns TRUE if the memory allocator checks all previous memaory blocks for errors. By
default, this is FALSE since it slows down execution considerably.

215

CHAPTER 5

See also

wxDebugContext::SetCheckPrevious (p. 218)

wxDebugContext::GetDebugMode

bool GetDebugMode()

Returns TRUE if debug mode is on. If debug mode is on, the wxObject new and delete
operators store or use information about memory allocation. Otherwise, a straight malloc
and free will be performed by these operators.

See also

wxDebugContext::SetDebugMode (p. 218)

wxDebugContext::GetLevel

int GetLevel()

Gets the debug level (default 1). The debug level is used by the wxTraceLevel function
and the WXTRACELEVEL macro to specify how detailed the trace information is; setting
a different level will only have an effect if trace statements in the application specify a
value other than one.

This is obsolete, replaced by wxLog (p. 540) functionality.

See also

wxDebugContext::SetLevel (p. 219)

wxDebugContext::GetStream

ostream& GetStream()

Returns the output stream associated with the debug context.
This is obsolete, replaced by wxLog (p. 540) functionality.
See also

wxDebugContext::SetStream (p. 219)

wxDebugContext::GetStreamBuf

216

CHAPTER 5

streambuf* GetStreamBuf()

Returns a pointer to the output stream buffer associated with the debug context. There
may not necessarily be a stream buffer if the stream has been set by the user.

This is obsolete, replaced by wxLog (p. 540) functionality.

wxDebugContext::HasStream

bool HasStream()

Returns TRUE if there is a stream currently associated with the debug context.
This is obsolete, replaced by wxLog (p. 540) functionality.

See also

wxDebugContext::SetStream (p. 219), wxDebugContext::GetStream (p. 216)

wxDebugContext::PrintClasses
bool PrintClasses()

Prints a list of the classes declared in this application, giving derivation and whether
instances of this class can be dynamically created.

See also

wxDebugContext::PrintStatistics (p. 217)

wxDebugContext::PrintStatistics
bool PrintStatistics(bool detailed = TRUE)
Performs a statistics analysis from the currently set checkpoint, writing to the current
debug stream. The number of object and non-object allocations is printed, together with
the total size.
Parameters
detailed
If TRUE, the function will also print how many objects of each class have been
allocated, and the space taken by these class instances.

See also

wxDebugContext::PrintStatistics (p. 217)

217

CHAPTER 5

wxDebugContext::SetCheckpoint
void SetCheckpoint(bool all = FALSE)
Sets the current checkpoint: Dump and PrintStatistics operations will be performed from
this point on. This allows you to ignore allocations that have been performed up to this
point.
Parameters
all
If TRUE, the checkpoint is reset to include all memory allocations since the
program started.
wxDebugContext::SetCheckPrevious

void SetCheckPrevious(bool check)

Tells the memory allocator to check all previous memory blocks for errors. By default,
this is FALSE since it slows down execution considerably.

See also

wxDebugContext::GetCheckPrevious (p. 215)

wxDebugContext::SetDebugMode

void SetDebugMode(bool debug)

Sets the debug mode on or off. If debug mode is on, the wxObject new and delete
operators store or use information about memory allocation. Otherwise, a straight malloc
and free will be performed by these operators.

By default, debug mode is on if _ WXDEBUG___is defined. If the application uses this
function, it should make sure that all object memory allocated is deallocated with the
same value of debug mode. Otherwise, the delete operator might try to look for memory
information that does not exist.

See also

wxDebugContext::GetDebugMode (p. 216)

wxDebugContext::SetFile

bool SetFile(const wxString& filename)

218

CHAPTER 5

Sets the current debug file and creates a stream. This will delete any existing stream
and stream buffer. By default, the debug context stream outputs to the debugger
(Windows) or standard error (other platforms).

wxDebugContext::SetLevel

void SetLevel(int level)

Sets the debug level (default 1). The debug level is used by the wxTraceLevel function
and the WXTRACELEVEL macro to specify how detailed the trace information is; setting
a different level will only have an effect if trace statements in the application specify a
value other than one.

This is obsolete, replaced by wxLog (p. 540) functionality.

See also

wxDebugContext::GetLevel (p. 216)

wxDebugContext::SetStandardError
bool SetStandardError()

Sets the debugging stream to be the debugger (Windows) or standard error (other
platforms). This is the default setting. The existing stream will be flushed and deleted.

This is obsolete, replaced by wxLog (p. 540) functionality.

wxDebugContext::SetStream
void SetStream(ostream* stream, streambuf* streamBuf = NULL)

Sets the stream and optionally, stream buffer associated with the debug context. This
operation flushes and deletes the existing stream (and stream buffer if any).

This is obsolete, replaced by wxLog (p. 540) functionality.
Parameters

stream
Stream to associate with the debug context. Do not set this to NULL.

streamBuf
Stream buffer to associate with the debug context.

See also

219

CHAPTER 5

wxDebugContext::GetStream (p. 216), wxDebugContext::HasStream (p. 217)
wxDebugStreamBuf

This class allows you to treat debugging output in a similar (stream-based) fashion on
different platforms. Under Windows, an ostream constructed with this buffer outputs to
the debugger, or other program that intercepts debugging output. On other platforms, the
output goes to standard error (cerr).

This is soon to be obsolete, replaced by wxLog (p. 540) functionality.

Derived from

streambuf

Include files

<wx/memory.h>

Example

wxDebugSt r eanBuf st reanBuf ;
ost ream streamn(&st r eanBuf) ;

stream << "Hello world!'" << endl;
See also
Overview (p. 1201)
wxDialog

A dialog box is a window with a title bar and sometimes a system menu, which can be
moved around the screen. It can contain controls and other windows.

Derived from
wxPanel (p. 645)
wxWindow (p. 1048)
wxEvtHandler (p. 277)
wxObject (p. 627)
Include files
<wx/dialog.h>

Remarks

There are two kinds of dialog - modal and modeless. A modal dialog blocks program
flow and user input on other windows until it is dismissed, whereas a modeless dialog

220

CHAPTER 5

behaves more like a frame in that program flow continues, and input on other windows is
still possible. You specify the type of dialog with the wxDIALOG_MODAL and
WXDIALOG_MODELESS window styles.

A dialog may be loaded from a wxWindows resource file (extension wxr).

An application can define an OnCloseWindow (p. 1071) handler for the dialog to respond
to system close events.

Window styles
WxCAPTION Puts a caption on the dialog box (Motif only).

WXDEFAULT_DIALOG_STYLE Equivalent to a combination of wxCAPTION,
wxSYSTEM_MENU and wxTHICK_FRAME

WXRESIZE_BORDER Display a resizeable frame around the window (Unix only).

WXSYSTEM_MENU Display a system menu.

WXTHICK_FRAME Display a thick frame around the window.

WXSTAY_ON_TOP The dialog stays on top of all other windows (Windows
only).

wxNO_3D Under Windows, specifies that the child controls should not

have 3D borders unless specified in the control.
Under Unix or Linux, MWM (the Motif Window Manager) or other window managers
reckognizing the MHM hints should be running for any of these styles to have an effect.
See also Generic window styles (p. 1214).
See also

wxDialog overview (p. 1217), wxFrame (p. 348), Resources (p. 7), Validator overview (p.
1217)

wxDialog::wxDialog

wxDialog()

Default constructor.

wxDialog(wxWindow* parent, wxWindowlID id, const wxString& title, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
WXDEFAULT_DIALOG_STYLE, const wxString& name = "dialogBox")

Constructor.

Parameters

parent

221

CHAPTER 5

Can be NULL, a frame or another dialog box.

id
An identifier for the dialog. A value of -1 is taken to mean a default.

title
The title of the dialog.

pos
The dialog position. A value of (-1, -1) indicates a default position, chosen by either
the windowing system or wxWindows, depending on platform.

size
The dialog size. A value of (-1, -1) indicates a default size, chosen by either the
windowing system or wxWindows, depending on platform.

style
The window style. See wxDialog (p. 220).

name
Used to associate a name with the window, allowing the application user to set
Motif resource values for individual dialog boxes.

See also

wxDialog::Create (p. 222)

wxDialog::~wxDialog
~wxDialog()

Destructor. Deletes any child windows before deleting the physical window.

wxDialog::Centre
void Centre(int direction = wxBOTH)
Centres the dialog box on the display.
Parameters
direction
May be wx HORI ZONTAL, wx VERTI CAL or wx BOTH.
wxDialog::Create

bool Create(wxWindow* parent, wxWindowID id, const wxString& title, const

222

CHAPTER 5

wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
WXDEFAULT_DIALOG_STYLE, const wxString& name = "dialogBox")

Used for two-step dialog box construction. See wxDialog::wxDialog (p. 221) for details.

wxDialog::EndModal
void EndModal(int retCode)

Ends a modal dialog, passing a value to be returned from the wxDialog::ShowModal (p.
227) invocation.

Parameters

retCode
The value that should be returned by ShowModal.

See also

wxDialog::ShowModal (p. 227), wxDialog::GetReturnCode (p. 223),
wxDialog::SetReturnCode (p. 226)

wxDialog::GetReturnCode

int GetReturnCode()

Gets the return code for this window.

Remarks

A return code is normally associated with a modal dialog, where wxDialog::ShowModal
(p. 227) returns a code to the application.

See also

wxDialog::SetReturnCode (p. 226), wxDialog::ShowModal (p. 227), wxDialog::EndModal
(p. 223)

wxDialog::GetTitle

wxString GetTitle() const

Returns the title of the dialog box.

wxDialog::lconize

223

CHAPTER 5

void Iconize(const bool iconize)
Iconizes or restores the dialog. Windows only.
Parameters

iconize
If TRUE, iconizes the dialog box; if FALSE, shows and restores it.

Remarks
Note that in Windows, iconization has no effect since dialog boxes cannot be iconized.
However, applications may need to explicitly restore dialog boxes under Motif which

have user-iconizable frames, and under Windows calling | coni ze(FALSE) will bring
the window to the front, as does Show(TRUE) .

wxDialog::Islconized

bool Islconized() const

Returns TRUE if the dialog box is iconized. Windows only.
Remarks

Always returns FALSE under Windows since dialogs cannot be iconized.

wxDialog::IsModal
bool IsModal() const

Returns TRUE if the dialog box is modal, FALSE otherwise.

wxDialog::OnCharHook
void OnCharHook(wxKeyEvent& event)

This member is called to allow the window to intercept keyboard events before they are
processed by child windows.

For more information, see wxWindow::OnCharHook (p. 1069)
Remarks

wxDialog implements this handler to fake a cancel command if the escape key has been
pressed. This will dismiss the dialog.

224

CHAPTER 5

wxDialog::OnApply

void OnApply(wxCommandEvent& event)

The default handler for the wxID_APPLY identifier.
Remarks

This function calls wxWindow::Validate (p. 1096) and
wxWindow::TransferDataToWindow (p. 1095).

See also

wxDialog::OnOK (p. 225), wxDialog::OnCancel (p. 225)

wxDialog::OnCancel

void OnCancel(wxCommandEvent& event)

The default handler for the wxID_CANCEL identifier.
Remarks

The function either calls EndModal(wxID_CANCEL) if the dialog is modal, or sets the
return value to wxID_CANCEL and calls Show(FALSE) if the dialog is modeless.

See also

wxDialog::OnOK (p. 225), wxDialog::OnApply (p. 225)

wxDialog::OnOK

void OnOK(wxCommandEvent& event)

The default handler for the wxID_OK identifier.

Remarks

The function calls wxWindow::Validate (p. 1096), then

wxWindow:: TransferDataFromWindow (p. 1095). If this returns TRUE, the function either
calls EndModal(wxID_OK) if the dialog is modal, or sets the return value to wxID_OK
and calls Show(FALSE) if the dialog is modeless.

See also

wxDialog::OnCancel (p. 225), wxDialog::OnApply (p. 225)

225

CHAPTER 5

wxDialog::OnSysColourChanged

void OnSysColourChanged(wxSysColourChangedEvent& event)
The default handler for wxEVT_SYS_COLOUR_CHANGED.
Parameters

event
The colour change event.

Remarks

Changes the dialog's colour to conform to the current settings (Windows only). Add an
event table entry for your dialog class if you wish the behaviour to be different (such as
keeping a user-defined background colour). If you do override this function, call
wxWindow::0OnSysColourChanged (p. 1080) to propagate the notification to child
windows and controls.

See also

wxSysColourChangedEvent (p. 904)

wxDialog::SetModal
void SetModal(const bool flag)

Allows the programmer to specify whether the dialog box is modal (wxDialog::Show
blocks control until the dialog is hidden) or modeless (control returns immediately).

Parameters
flag
If TRUE, the dialog will be modal, otherwise it will be modeless.
wxDialog::SetReturnCode
void SetReturnCode(int retCode)
Sets the return code for this window.
Parameters

retCode
The integer return code, usually a control identifier.

Remarks

226

CHAPTER 5

A return code is normally associated with a modal dialog, where wxDialog::ShowModal
(p. 227) returns a code to the application. The function wxDialog::EndModal (p. 223)
calls SetReturnCode.

See also

wxDialog::GetReturnCode (p. 223), wxDialog::ShowModal (p. 227), wxDialog::EndModal
(p. 223)

wxDialog::SetTitle

void SetTitle(const wxString& title)

Sets the title of the dialog box.

Parameters

title
The dialog box title.

wxDialog::Show

bool Show(const bool show)

Hides or shows the dialog.

Parameters

show
If TRUE, the dialog box is shown and brought to the front; otherwise the box is
hidden. If FALSE and the dialog is modal, control is returned to the calling
program.

Remarks

The preferred way of dismissing a modal dialog is to use wxDialog::EndModal (p. 223).

wxDialog::ShowModal
int ShowModal()

Shows a modal dialog. Program flow does not return until the dialog has been dismissed
with wxDialog::EndModal (p. 223).

Return value

The return value is the value set with wxDialog::SetReturnCode (p. 226).

227

CHAPTER 5

See also

wxDialog::EndModal (p. 223), wxDialog:GetReturnCode (p. 223),
wxDialog::SetReturnCode (p. 226)

wxDir

wxDir is a portable equivalent of Unix open/read/closedir functions which allow
enumerating of the files in a directory. wxDir allows enumerate files as well as
directories.

Example of use:
wxDir dir(wxGetOnd());
if (!'dir.IsOpened())
/! deal with the error here - wxDir would already |og an error
nmessage

/1 explaining the exact reason of the failure
return;

}

put s("Enumerating object files in current directory:");
wxString fil enane;

bool cont = dir.GetFirst(&ilenane, filespec, flags);
while (cont)

printf("%\n", filename.c_str());

cont = dir. CGetNext (& il enamne);
}

Derived from
No base class
Constants

These flags define what kind of filenames is included in the list of files enumerated by
GetFirst/GetNext

enum

{
wxDl R_FI LES = 0x0001, /] include files
wxDl R_DI RS = 0x0002, /1 include directories
wxDl R_HI DDEN = 0x0004, /1 include hidden files
wx DI R_DOTDOT = 0x0008, // include '.' and '
/1 by default, enunerate everything except '.' and

228

CHAPTER 5

wxDl R DEFAULT = wxDIR FILES | wDIR_DIRS | wxDI R_HI DDEN

Include files

<wx/dir.h>

wxDir::Exists
static bool Exists(const wxString& dir)

Test for existence of a directory with the given name

wxDir::wxDir

wxDir()

Default constructor, use Open() (p. 229) afterwards.
wxDir(const wxString& dir)

Opens the directory for enumeration, use IsOpened() (p. 229) to test for errors.

wxDir::~wxDir

~wxDir()

Destructor cleans up the associated ressources. It is not virtual and so this class is not
meant to be used polymorphically.

wxDir::Open

bool Open(const wxString& dir)

Open the directory for enumerating, returns TRUE on success or FALSE if an error
occured.

wxDir::IsOpened

bool IsOpened() const

Returns TRUE if the directory was successfully opened by a previous call to Open (p.

229

CHAPTER 5

229).

wxDir::GetFirst

bool GetFirst(wxString* filename, const wxString& filespec = wxEmptyString, int
flags = wxDIR_DEFAULT) const

Start enumerating all files matching filespec (or all files if it is empty) and flags, return
TRUE on success.

wxDir::GetNext
bool GetNext(wxString* filename) const

Continue enumerating files satisfying the criteria specified by the last call to GetFirst (p.
230).

wxDirDialog

This class represents the directory chooser dialog.
Derived from

wxDialog (p. 220)

wxWindow (p. 1048)

wxEvtHandler (p. 277)

wxObiject (p. 627)

Include files

<wx/dirdlg.h>

See also

wxDirDialog overview (p. 1244), wxFileDialog (p. 306)

wxDirDialog::wxDirDialog

wxDirDialog(wxWindow* parent, const wxString& message = "Choose a directory"”,
const wxString& defaultPath = "™, long style = 0, const wxPoint& pos =
wxDefaultPosition)

Constructor. Use wxDirDialog::ShowModal (p. 232) to show the dialog.

Parameters

230

CHAPTER 5

parent
Parent window.

message
Message to show on the dialog.

defaultPath
The default path, or the empty string.

style
A dialog style, currently unused.

pos

Dialog position. Not implemented.
wxDirDialog::~wxDirDialog
~wxDirDialog()

Destructor.

wxDirDialog::GetPath
wxString GetPath() const

Returns the default or user-selected path.

wxDirDialog::GetMessage

wxString GetMessage() const

Returns the message that will be displayed on the dialog.

wxDirDialog::GetStyle
long GetStyle() const

Returns the dialog style.

wxDirDialog::SetMessage
void SetMessage(const wxString& message)

Sets the message that will be displayed on the dialog.

231

CHAPTER 5

wxDirDialog::SetPath
void SetPath(const wxString& path)

Sets the default path.

wxDirDialog::SetStyle
void SetStyle(long style)

Sets the dialog style. This is currently unused.

wxDirDialog::ShowModal
int ShowModal()

Shows the dialog, returning wxID_OK if the user pressed OK, and wxOK_CANCEL
otherwise.

wxDocChildFrame

The wxDocChildFrame class provides a default frame for displaying documents on
separate windows. This class can only be used for SDI (not MDI) child frames.

The class is part of the document/view framework supported by wxWindows, and
cooperates with the wxView (p. 1042), wxDocument (p. 252), wxDocManager (p. 234)
and wxDocTemplate (p. 247) classes.

See the example application in sanpl es/ docvi ew.

Derived from

wxFrame (p. 348)

wxWindow (p. 1048)

wxEvtHandler (p. 277)

wxObject (p. 627)

Include files

<wx/docview.h>

See also

Document/view overview (p. 1245), wxFrame (p. 348)

232

CHAPTER 5

wxDocChildFrame::m_childDocument
wxDocument* m_childDocument

The document associated with the frame.

wxDocChildFrame::m_childView
wxView* m_childView

The view associated with the frame.

wxDocChildFrame::wxDocChildFrame

wxDocChildFrame(wxDocument* doc, wxView* view, wxFrame* parent,

wxWindowID id, const wxString& title, const wxPoint& pos = wxDefaultPosition,
const wxSize& size = wxDefaultSize, long style = wxDEFAULT_FRAME_STYLE,

const wxString& name = "frame")

Constructor.

wxDocChildFrame::~wxDocChildFrame
~wxDocChildFrame()

Destructor.

wxDocChildFrame::GetDocument

wxDocument* GetDocument() const

Returns the document associated with this frame.

wxDocChildFrame::GetView
wxView* GetView() const

Returns the view associated with this frame.

wxDocChildFrame::OnActivate

void OnActivate(wxActivateEvent event)

Sets the currently active view to be the frame's view. You may need to override (but still

233

CHAPTER 5

call) this function in order to set the keyboard focus for your subwindow.

wxDocChildFrame::OnCloseWindow
void OnCloseWindow(wxCloseEvent& event)

Closes and deletes the current view and document.

wxDocChildFrame::SetDocument
void SetDocument(wxDocument *doc)

Sets the document for this frame.

wxDocChildFrame::SetView

void SetView(wxView *view)

Sets the view for this frame.

wxDocManager

The wxDocManager class is part of the document/view framework supported by
wxWindows, and cooperates with the wxView (p. 1042), wxDocument (p. 252) and
wxDocTemplate (p. 247) classes.

Derived from

wxEvtHandler (p. 277)
wxObiject (p. 627)

Include files
<wx/docview.h>
See also

wxDocManager overview (p. 1248), wxDocument (p. 252), wxView (p. 1042),
wxDocTemplate (p. 247), wxFileHistory (p. 311)

wxDocManager::m_currentView

wxView* m_currentView

234

CHAPTER 5

The currently active view.

wxDocManager::m_defaultDocumentNameCounter
int m_defaultbocumentNameCounter

Stores the integer to be used for the next default document name.

wxDocManager::m_fileHistory

wxFileHistory* m_fileHistory

A pointer to an instance of wxFileHistory (p. 311), which manages the history of recently-
visited files on the File menu.

wxDocManager::m_maxDocsOpen

int m_maxDocsOpen

Stores the maximum number of documents that can be opened before existing
documents are closed. By default, this is 10,000.

wxDocManager::m_docs

wxList m_docs

A list of all documents.

wxDocManager::m_flags
long m_flags

Stores the flags passed to the constructor.

wxDocManager::m_lastDirectory
The directory last selected by the user when opening a file.

wxFileHistory* m_fileHistory

wxDocManager::m_templates

wxList mnTemplates

235

CHAPTER 5

A list of all document templates.

wxDocManager::wxDocManager

void wxDocManager(long flags = wxDEFAULT_DOCMAN_FLAGS, bool initialize =
TRUE)

Constructor. Create a document manager instance dynamically near the start of your
application before doing any document or view operations.

flags is currently unused.

If initialize is TRUE, the Initialize (p. 240) function will be called to create a default history
list object. If you derive from wxDocManager, you may wish to call the base constructor
with FALSE, and then call Initialize in your own constructor, to allow your own Initialize
or OnCreateFileHistory functions to be called.

wxDocManager::~wxDocManager

void ~wxDocManager()

Destructor.

wxDocManager::ActivateView
void ActivateView(wxView* doc, bool activate, bool deleting)

Sets the current view.

wxDocManager::AddDocument
void AddDocument(wxDocument *doc)

Adds the document to the list of documents.

wxDocManager::AddFileToHistory
void AddFileToHistory(const wxString& filename)

Adds a file to the file history list, if we have a pointer to an appropriate file menu.

wxDocManager::AssociateTemplate

236

CHAPTER 5

void AssociateTemplate(wxDocTemplate *temp)

Adds the template to the document manager's template list.

wxDocManager::CreateDocument
wxDocument* CreateDocument(const wxString& path, long flags)
Creates a new document in a manner determined by the flags parameter, which can be:

wxDOC_NEW Creates a fresh document.
wxDOC_SILENT Silently loads the given document file.

If wxDOC_NEW is present, a new document will be created and returned, possibly after
asking the user for a template to use if there is more than one document template. If
wxDOC_SILENT is present, a new document will be created and the given file loaded
into it. If neither of these flags is present, the user will be presented with a file selector
for the file to load, and the template to use will be determined by the extension
(Windows) or by popping up a template choice list (other platforms).

If the maximum number of documents has been reached, this function will delete the
oldest currently loaded document before creating a new one.
wxDocManager::CreateView

wxView* CreateView(wxDocument*doc, long flags)

Creates a new view for the given document. If more than one view is allowed for the
document (by virtue of multiple templates mentioning the same document type), a choice
of view is presented to the user.

wxDocManager::DisassociateTemplate

void DisassociateTemplate(wxDocTemplate *temp)

Removes the template from the list of templates.

wxDocManager::FileHistoryAddFilesToMenu

void FileHistoryAddFilesToMenu()

Appends the files in the history list, to all menus managed by the file history object.
void FileHistoryAddFilesToMenu(wxMenu* menu)

Appends the files in the history list, to the given menu only.

237

CHAPTER 5

wxDocManager::FileHistoryLoad

void FileHistoryLoad(wxConfigBase& config)
Loads the file history from a config object.

See also

wxConfig (p. 136)

wxDocManager::FileHistoryRemoveMenu
void FileHistoryRemoveMenu(wxMenu* menu)

Removes the given menu from the list of menus managed by the file history object.

wxDocManager::FileHistorySave
void FileHistorySave(wxConfigBase& resourceFile)

Saves the file history into a config object. This must be called explicitly by the
application.

See also

wxConfig (p. 136)

wxDocManager::FileHistoryUseMenu

void FileHistoryUseMenu(wxMenu* menu)

Use this menu for appending recently-visited document filenames, for convenient
access. Calling this function with a valid menu pointer enables the history list
functionality.

Note that you can add multiple menus using this function, to be managed by the file
history object.

wxDocManager::FindTemplateForPath

wxDocTemplate * FindTemplateForPath(const wxString& path)

Given a path, try to find template that matches the extension. This is only an
approximate method of finding a template for creating a document.

238

CHAPTER 5

wxDocManager::GetCurrentDocument

wxDocument * GetCurrentDocument()

Returns the document associated with the currently active view (if any).

wxDocManager::GetCurrentView
wxView * GetCurrentView()

Returns the currently active view

wxDocManager::GetDocuments
wxList& GetDocuments()

Returns a reference to the list of documents.

wxDocManager::GetFileHistory
wxFileHistory * GetFileHistory()

Returns a pointer to file history.

wxDocManager::GetLastDirectory

wxString GetLastDirectory() const

Returns the directory last selected by the user when opening a file. Initially empty.

wxDocManager::GetMaxDocsOpen
int GetMaxDocsOpen()

Returns the number of documents that can be open simultaneously.

wxDocManager::GetNoHistoryFiles
int GetNoHistoryFiles()

Returns the number of files currently stored in the file history.

239

CHAPTER 5

wxDocManager::Initialize

bool Initialize()

Initializes data; currently just calls OnCreateFileHistory. Some data cannot always be
initialized in the constructor because the programmer must be given the opportunity to
override functionality. If OnCreateFileHistory was called from the constructor, an
overridden virtual OnCreateFileHistory would not be called due to C++'s ‘interesting’
constructor semantics. In fact Initialize is called from the wxDocManager constructor, but
this can be vetoed by passing FALSE to the second argument, allowing the derived
class's constructor to call Initialize, possibly calling a different OnCreateFileHistory from
the default.

The bottom line: if you're not deriving from Initialize, forget it and construct
wxDocManager with no arguments.

wxDocManager::MakeDefaultName

bool MakeDefaultName(const wxString& buf)

Copies a suitable default name into buf. This is implemented by appending an integer
counter to the string unnamed and incrementing the counter.
wxDocManager::OnCreateFileHistory

wxFileHistory * OnCreateFileHistory()

A hook to allow a derived class to create a different type of file history. Called from
Initialize (p. 240).

wxDocManager::OnFileClose

void OnFileClose()

Closes and deletes the currently active document.

wxDocManager::OnFileNew
void OnFileNew()

Creates a document from a list of templates (if more than one template).

wxDocManager::OnFileOpen

240

CHAPTER 5

void OnFileOpen()

Creates a new document and reads in the selected file.

wxDocManager::OnFileSave
void OnFileSave()

Saves the current document by calling wxDocument::Save for the current document.

wxDocManager::OnFileSaveAs
void OnFileSaveAs()

Calls wxDocument::SaveAs for the current document.

wxDocManager::OnMenuCommand
void OnMenuCommand(int cmd)

Processes menu commands routed from child or parent frames. This deals with the
following predefined menu item identifiers:

wxID_OPEN Creates a new document and opens a file into it.
wxID_CLOSE Closes the current document.

wxID_NEW Creates a new document.

wxID_SAVE Saves the document.

wxID_SAVE_AS Saves the document into a specified filename.

Unrecognized commands are routed to the currently active wxView's
OnMenuCommand.

wxDocManager::RemoveDocument

void RemoveDocument(wxDocument *doc)

Removes the document from the list of documents.

wxDocManager::SelectDocumentPath

wxDocTemplate * SelectDocumentPath(wxDocTemplate **templates, int
noTemplates, const wxString& path, const wxString& bufSize, long flags, bool save)

Under Windows, pops up a file selector with a list of filters corresponding to document
templates. The wxDocTemplate corresponding to the selected file's extension is

241

CHAPTER 5

returned.

On other platforms, if there is more than one document template a choice list is popped
up, followed by a file selector.

This function is used in wxDocManager::CreateDocument.

wxDocManager::SelectDocumentType

wxDocTemplate * SelectDocumentType(wxDocTemplate **templates, int
noTemplates)

Returns a document template by asking the user (if there is more than one template).
This function is used in wxDocManager::CreateDocument.
wxDocManager::SelectViewType

wxDocTemplate * SelectViewType(wxDocTemplate **templates, int noTemplates)
Returns a document template by asking the user (if there is more than one template),
displaying a list of valid views. This function is used in wxDocManager::CreateView. The
dialog normally won't appear because the array of templates only contains those
relevant to the document in question, and often there will only be one such.
wxDocManager::SetLastDirectory

void SetLastDirectory(const wxString& dir)

Sets the directory to be displayed to the user when opening a file. Initially this is empty.

wxDocManager::SetMaxDocsOpen

void SetMaxDocsOpen(int n)

Sets the maximum number of documents that can be open at a time. By default, this is
10,000. If you set it to 1, existing documents will be saved and deleted when the user
tries to open or create a new one (similar to the behaviour of Windows Write, for

example). Allowing multiple documents gives behaviour more akin to MS Word and
other Multiple Document Interface applications.

wxDocMDIChildFrame

The wxDocMDIChildFrame class provides a default frame for displaying documents on
separate windows. This class can only be used for MDI child frames.

The class is part of the document/view framework supported by wxWindows, and

242

CHAPTER 5

cooperates with the wxView (p. 1042), wxDocument (p. 252), wxDocManager (p. 234)
and wxDocTemplate (p. 247) classes.

See the example application in sanpl es/ docvi ew.
Derived from

wxMDIChildFrame (p. 550)

wxFrame (p. 348)

wxWindow (p. 1048)

wxEvtHandler (p. 277)

wxObject (p. 627)

Include files

<wx/docmdi.h>

See also

Document/view overview (p. 1245), wxMDIChildFrame (p. 550)

wxDocMDIChildFrame::m_childDocument
wxDocument* m_childDocument

The document associated with the frame.

wxDocMDIChildFrame::m_childView
wxView* m_childView

The view associated with the frame.

wxDocMDIChildFrame::wxDocMDIChildFrame
wxDocMDIChildFrame(wxDocument* doc, wxView* view, wxFrame* parent,
wxWindowID id, const wxString& title, const wxPoint& pos = wxDefaultPosition,
const wxSize& size = wxDefaultSize, long style = wxDEFAULT_FRAME_STYLE,
const wxString& name = "frame")

Constructor.

wxDocMDIChildFrame::~wxDocMDIChildFrame

~wxDocMDIChildFrame()

243

CHAPTER 5

Destructor.

wxDocMDIChildFrame::GetDocument
wxDocument* GetDocument() const

Returns the document associated with this frame.

wxDocMDIChildFrame::GetView
wxView* GetView() const

Returns the view associated with this frame.

wxDocMDIChildFrame::OnActivate

void OnActivate(wxActivateEvent event)

Sets the currently active view to be the frame's view. You may need to override (but still
call) this function in order to set the keyboard focus for your subwindow.
wxDocMDIChildFrame::OnCloseWindow

void OnCloseWindow(wxCloseEvent& event)

Closes and deletes the current view and document.

wxDocMDIChildFrame::SetDocument
void SetDocument(wxDocument *doc)

Sets the document for this frame.

wxDocMDIChildFrame::SetView
void SetView(wxView *view)

Sets the view for this frame.
wxDocMDIParentFrame

The wxDocMDIParentFrame class provides a default top-level frame for applications
using the document/view framework. This class can only be used for MDI parent frames.

244

CHAPTER 5

It cooperates with the wxView (p. 1042), wxDocument (p. 252), wxDocManager (p. 234)
and wxDocTemplates (p. 247) classes.

See the example application in sanpl es/ docvi ew.
Derived from

wxMDIParentFrame (p. 555)

wxFrame (p. 348)

wxWindow (p. 1048)

wxEvtHandler (p. 277)

wxObject (p. 627)

Include files

<wx/docmdi.h>

See also

Document/view overview (p. 1245), wxMDIParentFrame (p. 555)

wxDocMDIParentFrame::wxDocMDIParentFrame
wxDocParentFrame(wxDocManager* manager, wxFrame *parent, wxWindowID id,
const wxString& title, const wxPoint& pos = wxDefaultPosition, const wxSize& size =
wxDefaultSize, long style = wxDEFAULT_FRAME_STYLE, const wxString& name =
"frame")

Constructor.

wxDocMDIParentFrame::~wxDocMDIParentFrame
~wxDocMDIParentFrame()

Destructor.

wxDocMDIParentFrame::OnCloseWindow
void OnCloseWindow(wxCloseEvent& event)

Deletes all views and documents. If no user input cancelled the operation, the frame will
be destroyed and the application will exit.

Since understanding how document/view clean-up takes place can be difficult, the
implementation of this function is shown below.

245

CHAPTER 5

voi d wxDocPar ent Franme: : OnCl oseW ndow wxCl oseEvent & event)
i f (m.docManager->C ear(!event. CanVeto()))

{
t hi s->Destroy();

}

el se
event. Veto();
}
wxDocParentFrame
The wxDocParentFrame class provides a default top-level frame for applications using
the document/view framework. This class can only be used for SDI (not MDI) parent

frames.

It cooperates with the wxView (p. 1042), wxDocument (p. 252), wxDocManager (p. 234)
and wxDocTemplates (p. 247) classes.

See the example application in sanpl es/ docvi ew.
Derived from

wxFrame (p. 348)

wxWindow (p. 1048)

wxEvtHandler (p. 277)

wxObject (p. 627)

Include files

<wx/docview.h>

See also

Document/view overview (p. 1245), wxFrame (p. 348)

wxDocParentFrame::wxDocParentFrame

wxDocParentFrame(wxDocManager* manager, wxFrame *parent, wxWindowID id,
const wxString& title, const wxPoint& pos = wxDefaultPosition, const wxSize& size =
wxDefaultSize, long style = wxDEFAULT_FRAME_STYLE, const wxString& name =
"frame")

Constructor.

wxDocParentFrame::~wxDocParentFrame

246

CHAPTER 5

~wxDocParentFrame()

Destructor.

wxDocParentFrame::OnCloseWindow
void OnCloseWindow(wxCloseEvent& event)

Deletes all views and documents. If no user input cancelled the operation, the frame will
be destroyed and the application will exit.

Since understanding how document/view clean-up takes place can be difficult, the
implementation of this function is shown below.

voi d wxDocPar ent Franme: : OnCl oseW ndow wxCl oseEvent & event)

i f (m.docManager->C ear(!event. CanVeto()))

{
t hi s->Destroy();

}

el se
event. Veto();
}

wxDocTemplate

The wxDocTemplate class is used to model the relationship between a document class
and a view class.

Derived from
wxObject (p. 627)
Include files
<wx/docview.h>
See also

wxDocTemplate overview (p. 1248), wxDocument (p. 252), wxView (p. 1042)

wxDocTemplate::m_defaultExt
wxString m_defaultExt

The default extension for files of this type.

247

CHAPTER 5

wxDocTemplate::m_description
wxString m_description

A short description of this template.

wxDocTemplate::m_directory
wxString m_directory

The default directory for files of this type.

wxDocTemplate::m_docClassinfo

wxClassinfo* m_docClassinfo

Run-time class information that allows document instances to be constructed
dynamically.

wxDocTemplate::m_docTypeName

wxString m_docTypeName

The named type of the document associated with this template.

wxDocTemplate::m_documentManager
wxDocTemplate* m_documentManager

A pointer to the document manager for which this template was created.

wxDocTemplate::m_fileFilter
wxString m_fileFilter

The file filter (such as *. t xt) to be used in file selector dialogs.

wxDocTemplate::m_flags
long m_flags

The flags passed to the constructor.

248

CHAPTER 5

wxDocTemplate::m_viewClassInfo
wxClassiInfo* m_viewClassInfo

Run-time class information that allows view instances to be constructed dynamically.

wxDocTemplate::m_viewTypeName
wxString m_viewTypeName

The named type of the view associated with this template.

wxDocTemplate::wxDocTemplate

wxDocTemplate(wxDocManager* manager, const wxString& descr, const
wxString& filter, const wxString& dir, const wxString& ext, const wxString&
docTypeName, const wxString& viewTypeName, wxClassinfo* docClassinfo = NULL,
wxClassiInfo* viewClassinfo = NULL, long flags = wxDEFAULT_TEMPLATE_FLAGS)

Constructor. Create instances dynamically near the start of your application after
creating a wxDocManager instance, and before doing any document or view operations.

manager is the document manager object which manages this template.

descr is a short description of what the template is for. This string will be displayed in the
file filter list of Windows file selectors.

filter is an appropriate file filter such as *. t xt .
dir is the default directory to use for file selectors.
ext is the default file extension (such as txt).

docTypeName is a name that should be unique for a given type of document, used for
gathering a list of views relevant to a particular document.

viewTypeName is a name that should be unique for a given view.

docClasslinfo is a pointer to the run-time document class information as returned by the
CLASSINFO macro, e.g. CLASSINFO(MyDocumentClass). If this is not supplied, you
will need to derive a new wxDocTemplate class and override the CreateDocument
member to return a new document instance on demand.

viewClassinfo is a pointer to the run-time view class information as returned by the
CLASSINFO macro, e.g. CLASSINFO(MyViewClass). If this is not supplied, you will
need to derive a new wxDocTemplate class and override the CreateView member to

249

CHAPTER 5

return a new view instance on demand.

flags is a bit list of the following:
WXTEMPLATE_VISIBLE The template may be displayed to the user in dialogs.
WXTEMPLATE_INVISIBLE The template may not be displayed to the user in
dialogs.
WXDEFAULT_TEMPLATE_FLAGS Defined as WxXTEMPLATE_VISIBLE.
wxDocTemplate::~wxDocTemplate

void ~wxDocTemplate()

Destructor.

wxDocTemplate::CreateDocument

wxDocument * CreateDocument(const wxString& path, long flags = 0)

Creates a new instance of the associated document class. If you have not supplied a
wxClassInfo parameter to the template constructor, you will need to override this
function to return an appropriate document instance.
wxDocTemplate::CreateView

wxView * CreateView(wxDocument *doc, long flags = 0)

Creates a new instance of the associated view class. If you have not supplied a
wxClassInfo parameter to the template constructor, you will need to override this
function to return an appropriate view instance.
wxDocTemplate::GetDefaultExtension

wxString GetDefaultExtension()

Returns the default file extension for the document data, as passed to the document
template constructor.

wxDocTemplate::GetDescription

wxString GetDescription()

Returns the text description of this template, as passed to the document template
constructor.

250

CHAPTER 5

wxDocTemplate::GetDirectory
wxString GetDirectory()

Returns the default directory, as passed to the document template constructor.

wxDocTemplate::GetDocumentManager

wxDocManager * GetDocumentManager()

Returns a pointer to the document manager instance for which this template was
created.

wxDocTemplate::GetDocumentName

wxString GetDocumentName()

Returns the document type name, as passed to the document template constructor.

wxDocTemplate::GetFileFilter
wxString GetFileFilter()

Returns the file filter, as passed to the document template constructor.

wxDocTemplate::GetFlags
long GetFlags()

Returns the flags, as passed to the document template constructor.

wxDocTemplate::GetViewName
wxString GetViewName()

Returns the view type name, as passed to the document template constructor.

wxDocTemplate::IsVisible
bool IsVisible()

Returns TRUE if the document template can be shown in user dialogs, FALSE
otherwise.

251

CHAPTER 5

wxDocTemplate::SetDefaultExtension
void SetDefaultExtension(const wxString& ext)

Sets the default file extension.

wxDocTemplate::SetDescription
void SetDescription(const wxString& descr)

Sets the template description.

wxDocTemplate::SetDirectory
void SetDirectory(const wxString& dir)

Sets the default directory.

wxDocTemplate::SetDocumentManager

void SetDocumentManager(wxDocManager *manager)

Sets the pointer to the document manager instance for which this template was created.
Should not be called by the application.

wxDocTemplate::SetFileFilter

void SetFileFilter(const wxString& filter)

Sets the file filter.

wxDocTemplate::SetFlags
void SetFlags(long flags)

Sets the internal document template flags (see the constructor description for more
details).

wxDocument
The document class can be used to model an application's file-based data. It is part of

the document/view framework supported by wxWindows, and cooperates with the
wxView (p. 1042), wxDocTemplate (p. 247) and wxDocManager (p. 234) classes.

252

CHAPTER 5

Derived from

wxEvtHandler (p. 277)
wxObiject (p. 627)

Include files
<wx/docview.h>

See also

wxDocument overview (p. 1246), wxView (p. 1042), wxDocTemplate (p. 247),

wxDocManager (p. 234)

wxDocument::m_commandProcessor

wxCommandProcessor* m_commandProcessor

A pointer to the command processor associated with this document.

wxDocument::m_documentFile
wxString m_documentFile

Filename associated with this document (" if none).

wxDocument::m_documentModified
bool m_documentModified

TRUE if the document has been modified, FALSE otherwise.

wxDocument::m_documentTemplate
wxDocTemplate * m_documentTemplate

A pointer to the template from which this document was created.

wxDocument::m_documentTitle

wxString m_documentTitle

253

CHAPTER 5

Document title. The document title is used for an associated frame (if any), and is
usually constructed by the framework from the filename.
wxDocument::m_documentTypeName

wxString m_documentTypeName

The document type name given to the wxDocTemplate constructor, copied to this
variable when the document is created. If several document templates are created that
use the same document type, this variable is used in wxDocManager::CreateView to
collate a list of alternative view types that can be used on this kind of document. Do not
change the value of this variable.

wxDocument::m_documentViews

wxList m_documentViews

List of wxView instances associated with this document.

wxDocument::wxDocument
wxDocument()

Constructor. Define your own default constructor to initialize application-specific data.

wxDocument::~wxDocument
~wxDocument()

Destructor. Removes itself from the document manager.

wxDocument::AddView

virtual bool AddView(wxView *view)

If the view is not already in the list of views, adds the view and calls
OnChangedViewList.

wxDocument::Close

virtual bool Close()

Closes the document, by calling OnSaveModified and then (if this returned TRUE)
OnCloseDocument. This does not normally delete the document object: use

254

CHAPTER 5

DeleteAllViews to do this implicitly.

wxDocument::DeleteAllViews

virtual bool DeleteAllViews()

Calls wxView::Close and deletes each view. Deleting the final view will implicitly delete
the document itself, because the wxView destructor calls RemoveView. This in turns
calls wxDocument::OnChangedViewList, whose default implemention is to save and
delete the document if no views exist.

wxDocument::GetCommandProcessor

wxCommandProcessor* GetCommandProcessor() const

Returns a pointer to the command processor associated with this document.

See wxCommandProcessor (p. 132).

wxDocument::GetDocumentTemplate
wxDocTemplate* GetDocumentTemplate() const

Gets a pointer to the template that created the document.

wxDocument::GetDocumentManager
wxDocManager* GetDocumentManager() const

Gets a pointer to the associated document manager.

wxDocument::GetDocumentName

wxString GetDocumentName() const

Gets the document type name for this document. See the comment for
documentTypeName (p. 254).
wxDocument::GetDocumentWindow

wxWindow* GetDocumentWindow() const

Intended to return a suitable window for using as a parent for document-related dialog
boxes. By default, uses the frame associated with the first view.

255

CHAPTER 5

wxDocument::GetFilename
wxString GetFilename() const

Gets the filename associated with this document, or ™ if none is associated.

wxDocument::GetFirstView
wxView * GetFirstView() const

A convenience function to get the first view for a document, because in many cases a
document will only have a single view.

See also: GetViews (p. 256)

wxDocument::GetPrintableName

virtual void GetPrintableName(wxString& name) const

Copies a suitable document name into the supplied name buffer. The default function
uses the title, or if there is no title, uses the filename; or if no filename, the string
unnamed.

wxDocument::GetTitle

wxString GetTitle() const

Gets the title for this document. The document title is used for an associated frame (if
any), and is usually constructed by the framework from the filename.
wxDocument::GetViews

wxList & GetViews() const

Returns the list whose elements are the views on the document.

See also: GetFirstView (p. 256)

wxDocument::IsModified
virtual bool IsModified() const

Returns TRUE if the document has been modified since the last save, FALSE otherwise.

256

CHAPTER 5

You may need to override this if your document view maintains its own record of being
modified (for example if using wxTextWindow to view and edit the document).

See also Modify (p. 257).

wxDocument::LoadObject

virtual istream& LoadObject(istream& stream)

virtual wxlnputStream& LoadObject(wxInputStreamé& stream)

Override this function and call it from your own LoadObject before streaming your own
data. LoadObiject is called by the framework automatically when the document contents

need to be loaded.

Note that only one of these forms exists, depending on how wxWindows was configured.

wxDocument::Modify

virtual void Modify(bool modify)

Call with TRUE to mark the document as modified since the last save, FALSE otherwise.
You may need to override this if your document view maintains its own record of being

modified (for example if using wxTextWindow to view and edit the document).

See also IsModified (p. 256).

wxDocument::OnChangedViewList

virtual void OnChangedViewList()

Called when a view is added to or deleted from this document. The default
implementation saves and deletes the document if no views exist (the last one has just
been removed).

wxDocument::OnCloseDocument

virtual bool OnCloseDocument()

The default implementation calls DeleteContents (an empty implementation) sets the

modified flag to FALSE. Override this to supply additional behaviour when the document
is closed with Close.

wxDocument::OnCreate

257

CHAPTER 5

virtual bool OnCreate(const wxString& path, long flags)

Called just after the document object is created to give it a chance to initialize itself. The
default implementation uses the template associated with the document to create an
initial view. If this function returns FALSE, the document is deleted.
wxDocument::OnCreateCommandProcessor

virtual wxCommandProcessor* OnCreateCommandProcessor ()

Override this function if you want a different (or no) command processor to be created
when the document is created. By default, it returns an instance of

wxCommandProcessor.

See wxCommandProcessor (p. 132).

wxDocument::OnNewDocument

virtual bool OnNewDocument()

The default implementation calls OnSaveModified and DeleteContents, makes a default
title for the document, and notifies the views that the filename (in fact, the title) has
changed.

wxDocument::OnOpenDocument

virtual bool OnOpenDocument(const wxString& filename)

Constructs an input file stream for the given filename (which must not be empty), and
calls LoadObject. If LoadObject returns TRUE, the document is set to unmodified,;
otherwise, an error message box is displayed. The document's views are notified that
the filename has changed, to give windows an opportunity to update their titles. All of the
document's views are then updated.

wxDocument::OnSaveDocument

virtual bool OnSaveDocument(const wxString& filename)

Constructs an output file stream for the given filename (which must not be empty), and
calls SaveObject. If SaveObject returns TRUE, the document is set to unmodified,;
otherwise, an error message box is displayed.

wxDocument::OnSaveModified

virtual bool OnSaveModified()

258

CHAPTER 5

If the document has been modified, prompts the user to ask if the changes should be
changed. If the user replies Yes, the Save function is called. If No, the document is
marked as unmodified and the function succeeds. If Cancel, the function fails.
wxDocument::RemoveView

virtual bool RemoveView(wxView* view)

Removes the view from the document's list of views, and calls OnChangedViewList.

wxDocument::Save

virtual bool Save()

Saves the document by calling OnSaveDocument if there is an associated filename, or
SaveAs if there is no filename.

wxDocument::SaveAs

virtual bool SaveAs()

Prompts the user for a file to save to, and then calls OnSaveDocument.

wxDocument::SaveObject

virtual ostreamé& SaveObject(ostreamé& stream)

virtual wxOutputStream& SaveObject(wxOutputStreamé& stream)

Override this function and call it from your own SaveObject before streaming your own
data. SaveObiject is called by the framework automatically when the document contents

need to be saved.

Note that only one of these forms exists, depending on how wxWindows was configured.

wxDocument::SetCommandProcessor

virtual void SetCommandProcessor(wxCommandProcessor *processor)

Sets the command processor to be used for this document. The document will then be
responsible for its deletion. Normally you should not call this; override

OnCreateCommandProcessor instead.

See wxCommandProcessor (p. 132).

259

CHAPTER 5

wxDocument::SetDocumentName

void SetDocumentName(const wxString& name)

Sets the document type name for this document. See the comment for
documentTypeName (p. 254).

wxDocument::SetDocumentTemplate

void SetDocumentTemplate(wxDocTemplate* templ)

Sets the pointer to the template that created the document. Should only be called by the
framework.

wxDocument::SetFilename

void SetFilename(const wxString& filename)

Sets the filename for this document. Usually called by the framework.

wxDocument::SetTitle

void SetTitle(const wxString& title)

Sets the title for this document. The document title is used for an associated frame (if
any), and is usually constructed by the framework from the filename.
wxDocument::UpdateAllViews

void UpdateAllViews(wxView* sender = NULL)

Updates all views. If sender is non-NULL, does not update this view.
wxDraglmage

This class is used when you wish to drag an object on the screen, and a simple cursor is
not enough.

On Windows, the WIN32 API is used to do achieve smooth dragging. On other
platforms, wxGenericDraglmage is used. Applications may also prefer to use
wxGenericDraglmage on Windows, too.

To use this class, when you wish to start dragging an image, create a wxDragimage
object and store it somewhere you can access it as the drag progresses. Call BeginDrag

260

CHAPTER 5

to start, and EndDrag to stop the drag. To move the image, initially call Show and then
Move. If you wish to update the screen contents during the drag (for example, highlight
an item as in the dragimag sample), first call Hide, update the screen, call Move, and
then call Show.

You can drag within one window, or you can use full-screen dragging either across the
whole screen, or just restricted to one area of the screen to save resources. If you want
the user to drag between two windows, then you will need to use full-screen dragging.
Please see sanpl es/ dr agi mag for an example.

Derived from

wxObiject (p. 627)

Include files

<wx/dragimag.h>
<wx/generic/dragimgg.h>

wxDraglmage::wxDraglmage
wxDraglmage()
Default constructor.

wxDraglmage(const wxBitmap& image, const wxCursor& cursor = wxNullCursor,
const wxPoint&hotspot = wxPoint(0, 0))

Constructs a drag image from a bitmap and optional cursor.

wxDraglmage(const wxlcon& image, const wxCursor& cursor = wxNullCursor,
const wxPoint&hotspot = wxPoint(0, 0))

Constructs a drag image from an icon and optional cursor.

wxDraglmage(const wxString& text, const wxCursor& cursor = wxNullCursor, const
wxPoint&hotspot = wxPoint(0, 0))

Constructs a drag image from a text string and optional cursor.

wxDraglmage(const wxTreeCtrl& treeCtrl, wxTreeltemId& id)

Constructs a drag image from the text in the given tree control item, and optional cursor.
wxDraglmage(const wxListCtrl& treeCtrl, long id)

Constructs a drag image from the text in the given tree control item, and optional cursor.

261

CHAPTER 5

Parameters

image
Icon or bitmap to be used as the drag image. The bitmap can have a mask.

text
Text used to construct a drag image.

cursor
Optional cursor to combine with the image.

hotspot
Position of the hotspot within the new image.

treeCtrl
Tree control for constructing a tree drag image.

listCtrl
List control for constructing a list drag image.

Tree or list control item id.

wxDraglmage::BeginDrag

bool BeginDrag(const wxPoint& hotspot, wxWindow* window, bool fullScreen =
FALSE, wxRect* rect = NULL)

Start dragging the image, in a window or full screen.

bool BeginDrag(const wxPoint& hotspot, wxWindow* window, wxWindow*
boundingWindow)

Start dragging the image, using the first window to capture the mouse and the second to
specify the bounding area. This form is equivalent to using the first form, but more
convenient than working out the bounding rectangle explicitly.

You need to then call wxDraglmage::Show (p. 264) and wxDraglmage::Move (p. 263) to
show the image on the screen.

Call wxDraglmage::EndDrag (p. 263) when the drag has finished.
Note that this call automatically calls CaptureMouse.
Parameters

hotspot
The location of the drag position relative to the upper-left corner of the image.

262

CHAPTER 5

window
The window that captures the mouse, and within which the dragging is limited
unless fullScreen is TRUE.

boundingWindow
In the second form of the function, specifies the area within which the drag occurs.

fullScreen
If TRUE, specifies that the drag will be visible over the full screen, or over as much
of the screen as is specified by rect. Note that the mouse will still be captured in
window.

rect
If non-NULL, specifies the rectangle (in screen coordinates) that bounds the
dragging operation. Specifying this can make the operation more efficient by
cutting down on the area under consideration, and it can also make a visual
difference since the drag is clipped to this area.

wxDraglmage::EndDrag

bool EndDrag()

Call this when the drag has finished.

Note that this call automatically calls ReleaseMouse.

wxDraglmage::Hide

bool Hide()

Hides the image. You may wish to call this before updating the window contents
(perhaps highlighting an item). Then call wxDragimage::Move (p. 263) and
wxDraglmage::Show (p. 264).

wxDraglmage::Move

bool Move(const wxPoint& pt)

Call this to move the image to a new position. The image will only be shown if
wxDraglmage::Show (p. 264) has been called previously (for example at the start of the

drag).

pt is the position in window coordinates (or screen coordinates if no window was
specified to BeginDrag.

You can move the image either when the image is hidden or shown, but in general
dragging will be smoother if you move the image when it is shown.

263

CHAPTER 5

wxDraglmage::Show

bool Show()

Shows the image. Call this at least once when dragging.
wxDropFilesEvent

This class is used for drop files events, that is, when files have been dropped onto the
window. This functionality is currently only available under Windows.

Important note: this is a separate implementation to the more general drag and drop
implementation documented here (p. 1264). It uses the older, Windows message-based
approach of dropping files.

Derived from

wxEvent (p. 274)
wxObject (p. 627)

Include files
<wx/event.h>
Event table macros

To process a drop files event, use these event handler macros to direct input to a
member function that takes a wxDropFilesEvent argument.

EVT_DROP_FILES(func) Process a wxEVT_DROP_FILES event.

See also

wxWindow::OnDropFiles (p. 1072), Event handling overview (p. 1207)

wxDropFilesEvent::wxDropFilesEvent
wxDropFilesEvent(WXTYPE id = 0, int noFiles = 0, wxString* files = NULL)

Constructor.

wxDropFilesEvent::m_files

264

CHAPTER 5

wxString* m_files

An array of filenames.

wxDropFilesEvent::m_noFiles
int m_noFiles

The number of files dropped.

wxDropFilesEvent::m_pos
wxPoint m_pos

The point at which the drop took place.

wxDropFilesEvent::GetFiles
wxString* GetFiles() const

Returns an array of filenames.

wxDropFilesEvent::GetNumberOfFiles
int GetNumberOfFiles() const

Returns the number of files dropped.

wxDropFilesEvent::GetPosition

wxPoint GetPosition() const

Returns the position at which the files were dropped.
Returns an array of filenames.

wxDropSource

This class represents a source for a drag and drop operation.

See Drag'n'Drop overview (p. 1264) and wxDataObject overview (p. 1265) for more

information.

Derived from

265

CHAPTER 5

None
Include files
<wx/dnd.h>
Types

wxDragResult is defined as follows:

enum wxDr agResul t

{

wxDr agEr r or, /1 error prevented the d&d operation from
conpl eti ng

wxDr agNone, /1 drag target didn't accept the data

wxDr agCopy, /1 the data was successfully copied

wxDr agMove, /! the data was successfully noved

wxDr agCancel /1 the operation was cancelled by user (not an
error)
i
See also

wxDropTarget (p. 267), wxTextDropTarget (p. 958), wxFileDropTarget (p. 310)

wxDropSource::wxDropSource
wxDropSource(wxWindow* win = NULL)

Default/wxGTK-specific constructor. If you use the default constructor you must call
SetData (p. 266) later.

Note that win is required by the GTK port and therefore should always be set.

wxDropSource::~wxDropSource

virtual ~wxDropSource()

wxDropSource::SetData
void SetData(wxDataObject& data)

Sets the data wxDataObject (p. 169) associated with the drop source. This will not
delete any previously associated data.

266

CHAPTER 5

wxDropSource::DoDragDrop
virtual wxDragResult DoDragDrop(bool allowMove = FALSE)
Do it (call this in response to a mouse button press, for example).

If allowMove is FALSE, data can only be copied.

wxDropSource::GiveFeedback

virtual bool GiveFeedback(wxDragResult effect, bool scrolling)

Overridable: you may give some custom Ul feedback during the drag and drop operation
in this function. It is called on each mouse move, so your implementation must not be
too slow.

Parameters

effect
The effect to implement. One of wxDragCopy, wxDragMove and wxDragNone.

scrolling
TRUE if the window is scrolling. MSW only.

Return value

Return FALSE if you want default feedback, or TRUE if you implement your own
feedback. The return values is ignored under GTK.

wxDropTarget

This class represents a target for a drag and drop operation. A wxDataObject (p.
169)can be associated with it and by default, this object will be filled with the data from
the drag source, if the data formats supported by the data object match the drag source
data format.

There are various virtual handler functions defined in this class which may be overridden
to give visual feedback or react in a more fine-tuned way, e.g. by not accepting data on
the whole window area, but only a small portion of it. The normal sequence of calls
isOnEnter (p. 269), possibly many times OnDragOver (p. 270),0OnDrop (p. 269) and
finally OnData (p. 268).

See Drag'n'Drop overview (p. 1264) and wxDataObject overview (p. 1265)for more
information.

Derived from

None

267

CHAPTER 5

Include files
<wx/dnd.h>
Types

wxDragResult is defined as follows:

enum wxDr agResul t

{

wxDr agEr r or, /1 error prevented the d&d operation from
conpl eti ng

wxDr agNone, /1 drag target didn't accept the data

wxDr agCopy, /1 the data was successfully copied

wxDr agMove, /! the data was successfully noved

wxDr agCancel /1 the operation was cancelled by user (not an
error)
i
See also

wxDropSource (p. 265), wxTextDropTarget (p. 958), wxFileDropTarget (p.
310),wxDataFormat (p. 166), wxDataObject (p. 169)

wxDropTarget::wxDropTarget
wxDropTarget(wxDataObject* data = NULL)

Constructor. data is the data to be associated with the drop target.

wxDropTarget::~wxDropTarget
~wxDropTarget()

Destructor. Deletes the associated data object, if any.

wxDropTarget::GetData
virtual void GetData()
This method may only be called from within OnData (p. 268). By default, this method

copies the data from the drop source to the wxDataObject (p. 169) associated with this
drop target, calling its wxDataObject::SetData (p. 172) method.

wxDropTarget::OnData

268

CHAPTER 5

virtual wxDragResult OnData(wxCoord x, wxCoord y, wxDragResult def)

Called after OnDrop (p. 269) returns TRUE. By default this will usually GetData (p. 268)
and will return the suggested default value def.

wxDropTarget::OnDrop

virtual bool OnDrop(wxCoord x, wxCoord y)

Called when the user drops a data object on the target. Return FALSE to veto the
operation.

Parameters
X
The x coordinate of the mouse.
The y coordinate of the mouse.
Return value

Return TRUE to accept the data, FALSE to veto the operation.

wxDropTarget::OnEnter
virtual wxDragResult OnEnter(wxCoord x, wxCoord y, wxDragResult def)

Called when the mouse enters the drop target. By default, this calls OnDragOver (p.
270).

Parameters

X
The x coordinate of the mouse.
The y coordinate of the mouse.

def
Suggested default for return value. Determined by SHIFT or CONTROL key states.

Return value

Returns the desired operation or wxDr agNone. This is used for optical feedback from
the side of the drop source, typically in form of changing the icon.

269

CHAPTER 5

wxDropTarget::OnDragOver
virtual wxDragResult OnDragOver(wxCoord x, wxCoord y, wxDragResult def)

Called when the mouse is being dragged over the drop target. By default, this calls
functions return the suggested return value def.

Parameters

X
The x coordinate of the mouse.
The y coordinate of the mouse.

def
Suggested value for return value. Determined by SHIFT or CONTROL key states.

Return value

Returns the desired operation or wxDr agNone. This is used for optical feedback from
the side of the drop source, typically in form of changing the icon.
wxDropTarget::OnLeave

virtual void OnLeave()

Called when the mouse leaves the drop target.

wxDropTarget::SetDataObject
void SetDataObject(wxDataObject* data)

Sets the data wxDataObject (p. 169) associated with the drop target and deletes any
previously associated data object.

wxEncodingConverter

This class is capable of converting strings between any two 8-bit encodings/charsets. It
can also convert from/to Unicode (but only if you compiled wxWindows with
wxUSE_UNICODE set to 1).

Derived from

wxObiject (p. 627)

Include files

270

CHAPTER 5

<wx/encconv.h>
See also

wxFontMapper (p. 345), Writing non-English applications (p. 1191)

wxEncodingConverter::wxEncodingConverter
wxEncodingConverter()

Constructor.

wxEncodingConverter::Init

bool Init(wxFontEncoding input_enc, wxFontEncoding output_enc, int method =
WXCONVERT_STRICT)

Initialize convertion. Both output or input encoding may be
WXFONTENCODING_UNICODE, but only if wxUSE_ENCODING is set to 1. All
subsequent calls to Convert() (p. 271) will interpret its argument as a string in input_enc
encoding and will output string in output_enc encoding. You must call this method before
calling Convert. You may call it more than once in order to switch to another
conversion.Method affects behaviour of Convert() in case input character cannot be
converted because it does not exist in output encoding:

WXCONVERT_STRICT follow behaviour of GNU Recode - just copy
unconvertable characters to output and don't
change them (its integer value will stay the
same)

WXCONVERT_SUBSTITUTE try some (lossy) substitutions - e.g. replace
unconvertable latin capitals with acute by
ordinary capitals, replace en-dash or em-dash
by '-' etc.

Both modes gurantee that output string will have same length as input string.
Return value
FALSE if given conversion is impossible, TRUE otherwise (conversion may be

impossible either if you try to convert to Unicode with hon-Unicode build of wxWindows
or if input or output encoding is not supported.)

wxEncodingConverter::Convert

271

CHAPTER 5

wxString Convert(const wxString& input)

void Convert(const wxChar* input, wxChar* output)

void Convert(wxChar* str)

void Convert(const char* input, wxChar* output)

Convert input string according to settings passed to Init (p. 271). Note that you must call
Init before using Convert!

wxEncodingConverter::GetPlatformEquivalents

static wxFontEncodingArray GetPlatformEquivalents(wxFontEncoding enc, int
platform = wxPLATFORM_CURRENT)

Return equivalents for given font that are used under given platform. Supported
platforms:

WXPLATFORM_UNIX
WXPLATFORM_WINDOWS
WXPLATFORM_0OS2
WXPLATFORM_MAC
WXPLATFORM_CURRENT

WXPLATFORM_CURRENT means the plaform this binary was compiled for.

Examples:

current platform enc returned val ue
uni x CP1250 {1S08859_2}
uni x | SC8859_2 {1S08859_2}
wi ndows | SC8859_2 { CP1250}
uni x CP1252 {1SCB859_1, | SC8859_15}

Equivalence is defined in terms of convertibility: 2 encodings are equivalent if you can
convert text between then without loosing information (it may - and will - happen that you
loose special chars like quotation marks or em-dashes but you shouldn't loose any
diacritics and language-specific characters when converting between equivalent
encodings).

Remember that this function does NOT check for presence of fonts in system. It only
tells you what are most suitable encodings. (It usually returns only one encoding.)

Notes

Note that argument enc itself may be present in the returned array, so that you
can - as a side effect - detect whether the encoding is native for this platform or

272

CHAPTER 5

not.

helprefConvertwxencodingconverterconvert is not limited to converting between
equivalent encodings, it can convert between arbitrary two encodings.

If enc is present in returned array, then it is always first item of it.

Please note that the returned array may not contain any items at all.

wxEncodingConverter::GetAllEquivalents
static wxFontEncodingArray GetAllEquivalents(wxFontEncoding enc)

Similar to GetPlatformEquivalents (p. 272), but this one will return ALL equivalent
encodings, regardless the platform, and including itself.

This platform's encodings are before others in the array. And again, if enc is in the array,
it is the very first item in it.

wxEraseEvent
An erase event is sent when a window's background needs to be repainted.
Derived from

wxEvent (p. 274)
wxObiject (p. 627)

Include files
<wx/event.h>
Event table macros

To process an erase event, use this event handler macro to direct input to a member
function that takes a wxEraseEvent argument.

EVT_ERASE_BACKGROUND(func) Process a wxEVT_ERASE_BACKGROUND
event.

Remarks

If the m_DC member is non-NULL, draw into this device context.

See also

wxWindow::OnEraseBackground (p. 1072), Event handling overview (p. 1207)

273

CHAPTER 5

wXxEraseEvent::wxEraseEvent
wxEraseEvent(int id = 0, wxDC* dc = NULL)

Constructor.

wxEraseEvent::m_dc
wxDC* m_dc

The device context associated with the erase event (may be NULL).

wxEraseEvent::GetDC
wxDC* GetDC() const

Returns the device context to draw into. If this is non-NULL, you should draw into it to
perform the erase operation.

wxEvent

An event is a structure holding information about an event passed to a callback or
member function. wxEvent used to be a multipurpose event object, and is an abstract
base class for other event classes (see below).

Derived from

wxObiject (p. 627)

Include files

<wx/event.h>

See also

wxCommandEvent (p. 127), wxMouseEvent (p. 604)

wxEvent::wxEvent
wxEvent(int id = 0)

Constructor. Should not need to be used directly by an application.

wxEvent::m_eventHandle

274

CHAPTER 5

char* m_eventHandle

Handle of an underlying windowing system event handle, such as XEvent. Not
guaranteed to be instantiated.

wxEvent::m_eventObject

wxObject* m_eventObject

The object (usually a window) that the event was generated from, or should be sent to.

wxEvent::m_eventType
WXTYPE m_eventType

The type of the event, such as wxEVENT_TYPE_BUTTON_COMMAND.

wxEvent::m_id
intm_id

Identifier for the window.

wxEvent::m_skipped
bool m_skipped

Set to TRUE by Skip if this event should be skipped.

wxEvent::m_timeStamp
long m_timeStamp

Timestamp for this event.

wxEvent::GetEventClass
WXTYPE GetEventClass()

Returns the identifier of the given event class, such as wxTYPE_MOUSE_EVENT.

wxEvent::GetEventObject

275

CHAPTER 5

wxObject* GetEventObject()

Returns the object associated with the event, if any.

wxEvent::GetEventType

WXTYPE GetEventType()

Returns the identifier of the given event type, such as
WXEVENT_TYPE_BUTTON_COMMAND.
wxEvent::Getld

int Getld()

Returns the identifier associated with this event, such as a button command id.

wxEvent::GetObjectType
WXTYPE GetObjectType()

Returns the type of the object associated with the event, such as wxTYPE_BUTTON.

wxEvent::GetSkipped
bool GetSkipped()

Returns TRUE if the event handler should be skipped, FALSE otherwise.

wxEvent::GetTimestamp
long GetTimestamp()

Gets the timestamp for the event.

wxEvent::SetEventObject
void SetEventObject(wxObject* object)

Sets the originating object.

wxEvent::SetEventType

276

CHAPTER 5

void SetEventType(WXTYPE typ)

Sets the event type.

wxEvent::Setld
void Setld(int id)

Sets the identifier associated with this event, such as a button command id.

wxEvent::SetTimestamp
void SetTimestamp(long timeStamp)
Sets the timestamp for the event.

Sets the originating object.

wxEvent::Skip
void Skip(bool skip = TRUE)

Called by an event handler to tell the event system that the event handler should be
skipped, and the next valid handler used instead.

wxEvtHandler

A class that can handle events from the windowing system. wxWindow (and therefore all
window classes) are derived from this class.

Derived from
wxObiject (p. 627)
Include files
<wx/event.h>
See also

Event handling overview (p. 1207)

wxEvtHandler::wxEvtHandler

277

CHAPTER 5

wxEvtHandler()

Constructor.

wxEvtHandler::~wxEvtHandler

~wxEvtHandler()

Destructor. If the handler is part of a chain, the destructor will unlink itself and restore the
previous and next handlers so that they point to each other.
wxEvtHandler::AddPendingEvent

virtual void AddPendingEvent(wxEvent& event)

Adds an event to be processed later. The function will return immediately and the event
will get processed in idle time using the wxEvtHandler::ProcessEvent (p. 281) method.

Parameters

event
Event to add to process queue.

Remarks

Note that this requires that the event has a fully implemented Clone() method so that the
event can be duplicated and stored until it gets processed later. Not all events in
wxWindows currently have a fully implemented Clone() method, so you may have to look
at the source to verify this.

This methods automatically wakes up idle handling even if the underlying window
system is currently idle anyway and thus would not send any idle events. (Waking up the
idle handling is done calling ::wxWakeUpldle (p. 1139).)

This is also the method to call for inter-thread communication. In a multi-threaded
program, you will often have to inform the main GUI thread about the status of other
working threads and this has to be done using this method - which also means that this
method is thread safe by means of using crtical sections where needed.

Furthermore, it may be noted that some ports of wxWindows will probably move to using
this method more and more in preference over calling ProcessEvent() directly so as to
avoid problems with reentrant code.

wxEvtHandler::Connect

void Connect(int id, wxEventType eventType, wxObjectEventFunction function,

278

CHAPTER 5

wxObject* userData = NULL)

void Connect(int id, int lastld, wxEventType eventType, wxObjectEventFunction
function, wxObject* userData = NULL)

Connects the given function dynamically with the event handler, id and event type. This
is an alternative to the use of static event tables. See the 'dynamic' sample for usage.

Parameters

id
The identifier (or first of the identifier range) to be associated with the event
handler function.

lastld
The second part of the identifier range to be associated with the event handler
function.

eventType
The event type to be associated with this event handler.

function
The event handler function.

userData
Data to be associated with the event table entry.

Example

franme- >Connect (wxl D_EXI T,
WX EVT_COMVAND _MENU_SELECTED,
(wxnj ect Event Functi on) (wxEvent Functi on) (wxConmandEvent Functi on)
MyFrane: : OnQuit);

wxEvtHandler::Disconnect

bool Disconnect(int id, wxEventType eventType = wxEVT_NULL,
wxObjectEventFunction function = NULL, wxObject* userData = NULL)

bool Disconnect(int id, int lastld = -1, wxEventType eventType = wxEVT_NULL,
wxObjectEventFunction function = NULL, wxObject* userData = NULL)

Disconnects the given function dynamically from the event handler, using the specified
parameters as search criteria and returning TRUE if a matching function has been found
and removed. This method can only disconnect functions which have been added using
the wxEvtHandler::Connect (p. 278) method. There is no way to disconnect functions
connected using the (static) event tables.

Parameters

279

CHAPTER 5

The identifier (or first of the identifier range) associated with the event handler
function.

lastld
The second part of the identifier range associated with the event handler function.

eventType
The event type associated with this event handler.

function
The event handler function.

userData
Data associated with the event table entry.
wxEvtHandler::GetClientData
void* GetClientData()
Gets user-supplied client data.
Remarks

Normally, any extra data the programmer wishes to associate with the object should be
made available by deriving a new class with new data members.

See also

wxEvtHandler::SetClientData (p. 283)

wxEvtHandler::GetEvtHandlerEnabled

bool GetEvtHandlerEnabled()

Returns TRUE if the event handler is enabled, FALSE otherwise.
See also

wxEvtHandler::SetEvtHandlerEnabled (p. 283)

wxEvtHandler::GetNextHandler
wxEvtHandler* GetNextHandler()

Gets the pointer to the next handler in the chain.

280

CHAPTER 5

See also
wxEvtHandler::SetNextHandler (p. 284), wxEvtHandler::GetPreviousHandler (p. 281),

wxEvtHandler::SetPreviousHandler (p. 284), wxWindow::PushEventHandler (p. 1081),
wxWindow::PopEventHandler (p. 1080)

wxEvtHandler::GetPreviousHandler

wxEvtHandler* GetPreviousHandler()

Gets the pointer to the previous handler in the chain.

See also

wxEvtHandler::SetPreviousHandler (p. 284), wxEvtHandler::GetNextHandler (p. 280),
wxEvtHandler::SetNextHandler (p. 284), wxWindow::PushEventHandler (p. 1081),
wxWindow::PopEventHandler (p. 1080)

wxEvtHandler::ProcessEvent

virtual bool ProcessEvent(wxEvent& event)

Processes an event, searching event tables and calling zero or more suitable event
handler function(s).

Parameters

event
Event to process.

Return value

TRUE if a suitable event handler function was found and executed, and the function did
not call wxEvent::Skip (p. 277).

Remarks

Normally, your application would not call this function: it is called in the wxWindows
implementation to dispatch incoming user interface events to the framework (and
application).

However, you might need to call it if implementing new functionality (such as a new
control) where you define new event types, as opposed to allowing the user to override
virtual functions.

An instance where you might actually override the ProcessEvent function is where you
want to direct event processing to event handlers not normally noticed by wxWindows.
For example, in the document/view architecture, documents and views are potential
event handlers. When an event reaches a frame, ProcessEvent will need to be called

281

CHAPTER 5

on the associated document and view in case event handler functions are associated
with these objects. The property classes library (wxProperty) also overrides
ProcessEvent for similar reasons.

The normal order of event table searching is as follows:

1. Ifthe object is disabled (via a call to wxEvtHandler::SetEvtHandlerEnabled (p.
283)) the function skips to step (6).

2. If the object is a wxWindow, ProcessEvent is recursively called on the window's
wxValidator (p. 1031). If this returns TRUE, the function exits.

3. SearchEventTable is called for this event handler. If this fails, the base class
table is tried, and so on until no more tables exist or an appropriate function was
found, in which case the function exits.

4. The search is applied down the entire chain of event handlers (usually the chain
has a length of one). If this succeeds, the function exits.

5. If the object is a wxWindow and the event is a wxCommandEvent,
ProcessEvent is recursively applied to the parent window's event handler. If
this returns TRUE, the function exits.

6. Finally, ProcessEvent is called on the wxApp object.

See also

wxEvtHandler::SearchEventTable (p. 282)

wxEvtHandler::SearchEventTable
bool SearchEventTable(wxEventTable& table, wxEvent& event)

Searches the event table, executing an event handler function if an appropriate one is
found.

Parameters

table
Event table to be searched.

event
Event to be matched against an event table entry.

Return value

TRUE if a suitable event handler function was found and executed, and the function did
not call wxEvent::Skip (p. 277).

Remarks

This function looks through the object's event table and tries to find an entry that will
match the event.

An entry will match if:

282

CHAPTER 5

1. The event type matches, and
2. the identifier or identifier range matches, or the event table entry's identifier is
zero.

If a suitable function is called but calls wxEvent::Skip (p. 277), this function will fail, and
searching will continue.

See also

wxEvtHandler::ProcessEvent (p. 281)

wxEvtHandler::SetClientData
void SetClientData(void* data)
Sets user-supplied client data.
Parameters

data
Data to be associated with the event handler.

Remarks

Normally, any extra data the programmer wishes to associate with the object should be
made available by deriving a new class with new data members.

See also

wxEvtHandler::GetClientData (p. 280)

wxEvtHandler::SetEvtHandlerEnabled
void SetEvtHandlerEnabled(bool enabled)
Enables or disables the event handler.
Parameters

enabled
TRUE if the event handler is to be enabled, FALSE if it is to be disabled.

Remarks

You can use this function to avoid having to remove the event handler from the chain, for
example when implementing a dialog editor and changing from edit to test mode.

See also

283

CHAPTER 5

wxEvtHandler::GetEvtHandlerEnabled (p. 280)

wxEvtHandler::SetNextHandler

void SetNextHandler(wxEvtHandler* handler)
Sets the pointer to the next handler.
Parameters

handler
Event handler to be set as the next handler.

See also
wxEvtHandler::GetNextHandler (p. 280), wxEvtHandler::SetPreviousHandler (p. 284),

wxEvtHandler::GetPreviousHandler (p. 281), wxWindow::PushEventHandler (p. 1081),
wxWindow::PopEventHandler (p. 1080)

wxEvtHandler::SetPreviousHandler

void SetPreviousHandler(wxEvtHandler* handler)
Sets the pointer to the previous handler.
Parameters

handler
Event handler to be set as the previous handler.

See also
wxEvtHandler::GetPreviousHandler (p. 281), wxEvtHandler::SetNextHandler (p. 284),

wxEvtHandler::GetNextHandler (p. 280), wxWindow::PushEventHandler (p. 1081),
wxWindow::PopEventHandler (p. 1080)

WXEXpr

The wxExpr class is the building brick of expressions similar to Prolog clauses, or
objects. It can represent an expression of type long integer, float, string, word, or list,
and lists can be nested.

Derived from

None

Include files

284

CHAPTER 5

<wx/wxexpr.h>
See also

WXEXxpr overview (p. 1202), wxExprDatabase (p. 291)

WXEXpr::wxExpr
WxExpr(const wxString&functor)

Construct a new clause with this form, supplying the functor name. A clause is an object
that will appear in the data file, with a list of attribute/value pairs.

WXEXpr(wxExprType type, const wxString& wordOrString = ")

Construct a new empty list, or a word (will be output with no quotes), or a string,
depending on the value of type.

type can be wxExprList, wxExprWord, or wxExprString. If type is wxExprList, the
value of wordOrString will be ignored.

wxExpr(long value)

Construct an integer expression.

wxExpr(float value)

Construct a floating point expression.

WXExpr(wxList* value)

Construct a list expression. The list's nodes' data should themselves be wxExprs.
WXExpr no longer uses the wxList internally, so this constructor turns the list into its
internal format (assuming a non-nested list) and then deletes the supplied list.
WXEXpr::~wWxExpr

~WXEXxpr()

Destructor.

wWxExpr::AddAttributeValue

285

CHAPTER 5

Use these on clauses ONLY. Note that the functions for adding strings and words must
be differentiated by function name which is why they are missing from this group (see
wWXExpr::AddAttributeValueString (p. 286) and wxExpr::AddAttributeValueWord (p. 286)).
void AddAttributeValue(const wxString& attribute, float value)

Adds an attribute and floating point value pair to the clause.

void AddAttributeValue(const wxString& attribute, long value)

Adds an attribute and long integer value pair to the clause.

void AddAttributeValue(const wxString& attribute, wxList* value)

Adds an attribute and list value pair to the clause, converting the list into internal form
and then deleting value. Note that the list should not contain nested lists (except if in
internal wxExpr form.)

void AddAttributeValue(const wxString& attribute, wxExpr* value)

Adds an attribute and wxExpr value pair to the clause. Do not delete value once this
function has been called.

WxExpr::AddAttributeValueString

void AddAttributeValueString(const wxString& attribute, const wxString& value)

Adds an attribute and string value pair to the clause.

wxExpr::AddAttributeValueStringList

void AddAttributeValueStringList(const wxString& attribute, wxList* value)

Adds an attribute and string list value pair to the clause.

Note that the list passed to this function is a list of strings, NOT a list of wxEXprs; it gets
turned into a list of wxExprs automatically. This is a convenience function, since lists of
strings are often manipulated in C++.

wxExpr::AddAttributeValueWord

void AddAttributeValueWord(const wxString& attribute, const wxString& value)

Adds an attribute and word value pair to the clause.

WXEXxpr::Append

286

CHAPTER 5

void Append(wxExpr* value)

Append the value to the end of the list. 'this' must be a list.

WXEXpr::Arg

WXExpr* Arg(wxExprType type, int n) const

Get nth arg of the given clause (starting from 1). NULL is returned if the expression is
not a clause, or n is invalid, or the given type does not match the actual type. See also
WXEXxpr::Nth (p. 289).

WXEXxpr::Insert

void Insert(wxExpr* value)

Insert the value at the start of the list. 'this' must be a list.

WXEXxpr::GetAttributeValue

These functions are the easiest way to retrieve attribute values, by passing a pointer to
variable. If the attribute is present, the variable will be filled with the appropriate value. If
not, the existing value is left alone. This style of retrieving attributes makes it easy to set
variables to default values before calling these functions; no code is necessary to check
whether the attribute is present or not.

bool GetAttributeValue(const wxString& attribute, wxString& value) const

Retrieve a string (or word) value.

bool GetAttributeValue(const wxString& attribute, float& value) const

Retrieve a floating point value.

bool GetAttributeValue(const wxString& attribute, int& value) const

Retrieve an integer value.

bool GetAttributeValue(const wxString& attribute, long& value) const

Retrieve a long integer value.

bool GetAttributeValue(const wxString& attribute, wxExpr** value) const

Retrieve a wxExpr pointer.

287

CHAPTER 5

WxEXxpr::GetAttributeValueStringList

void GetAttributeValueStringList(const wxString&attribute, wxList* value) const
Use this on clauses ONLY. See above for comments on this style of attribute value
retrieval. This function expects to receive a pointer to a new list (created by the calling
application); it will append strings to the list if the attribute is present in the clause.
WXEXpr::AttributeValue

WXEXxpr* AttributeValue(const wxString& word) const

Use this on clauses ONLY. Searches the clause for an attribute matching word, and
returns the value associated with it.

WXEXxpr::Copy

wxExpr* Copy() const

Recursively copies the expression, allocating new storage space.

wxExpr::DeleteAttributeValue
void DeleteAttributeValue(const wxString& attribute)

Use this on clauses only. Deletes the attribute and its value (if any) from the clause.

WXEXxpr::Functor
wxString Functor() const

Use this on clauses only. Returns the clause's functor (object name).

wxExpr::GetClientData
wxObject* GetClientData() const
Retrieve arbitrary data stored with this clause. This can be useful when reading in data

for storing a pointer to the C++ object, so when another clause makes a reference to this
clause, its C++ object can be retrieved. See wxExpr::SetClientData (p. 290).

WXEXxpr::GetFirst

288

CHAPTER 5

WXExpr* GetFirst() const
If this is a list expression (or clause), gets the first element in the list.

See also wxExpr::GetLast (p. 289), wxExpr::GetNext (p. 289), wxExpr::Nth (p. 289).

WXEXpr::GetLast
WXEXxpr* GetLast() const
If this is a list expression (or clause), gets the last element in the list.

See also wxExpr::GetFirst (p. 288), wxExpr::GetNext (p. 289), wxExpr::Nth (p. 289).

WXEXpr::GetNext
WXExpr* GetNext() const

If this is a node in a list (any wxExpr may be a node in a list), gets the next element in
the list.

See also wxExpr::GetFirst (p. 288), wxExpr::GetLast (p. 289), wxExpr::Nth (p. 289).

WxExpr::IntegerValue
long IntegerValue() const

Returns the integer value of the expression.

WXEXpr::Nth
wxExpr* Nth(int n) const

Get nth arg of the given list expression (starting from 0). NULL is returned if the
expression is not a list expression, or n is invalid. See also wxExpr::Arg (p. 287).

Normally, you would use attribute-value pairs to add and retrieve data from objects
(clauses) in a data file. However, if the data gets complex, you may need to store
attribute values as lists, and pick them apart yourself.

wxExpr::RealValue

float RealValue() const

Returns the floating point value of the expression.

289

CHAPTER 5

wxExpr::SetClientData

void SetClientData(wxObject *data)

Associate arbitrary data with this clause. This can be useful when reading in data for
storing a pointer to the C++ object, so when another clause makes a reference to this
clause, its C++ object can be retrieved. See wxExpr::GetClientData (p. 288).
WxEXxpr::StringValue

wxString StringValue() const

Returns the string value of the expression.

WXEXpr::Type
WXExprType Type() const

Returns the type of the expression. wxExprType is defined as follows:

typedef enum {
wxExpr Nul |,
WXExpr | nt eger,
wxExpr Real ,
wWxExpr Vor d,
WXExpr Stri ng,
WxExpr Li st

} wxExpr Type;

wWxExpr::WordValue

wxString WordValue() const

Returns the word value of the expression.

WxEXxpr::WriteClause
void WriteClause(FILE * stream)
Writes the clause to the given stream in Prolog format. Not normally needed, since the

whole wxExprDatabase will usually be written at once. The format is: functor, open
parenthesis, list of comma-separated expressions, close parenthesis, full stop.

WXEXpr::WriteExpr

290

CHAPTER 5

void WriteExpr(FILE * stream)

Writes the expression (not clause) to the given stream in Prolog format. Not normally
needed, since the whole wxExprDatabase will usually be written at once. Lists are
written in square bracketed, comma-delimited format.

Functions and macros

Below are miscellaneous functions and macros associated with wxExpr objects.
bool wxExprisFunctor(wxExpr *expr, const wxString& functor)

Checks that the functor of expr is functor.

void wxExprCleanUp()

Cleans up the wxExpr system (YACC/LEX buffers) to avoid memory-checking warnings
as the program exits.

#def i ne wxMakel nt eger (x) (new wxExpr ((1 ong)x))

#def i ne wxMakeReal (x) (new wxExpr ((fl oat)x))

#def i ne wxMakeString(x) (new wxExpr(PrologString, x))
#def i ne wxMakeWor d(x) (new wxExpr (Prol ogWrd, x))
#def i ne wxMake(x) (new wxExpr (x))

Macros to help make wxExpr objects.
wxExprDatabase

The wxExprDatabase class represents a database, or list, of Prolog-like expressions.
Instances of this class are used for reading, writing and creating data files.

Derived from

wxList (p. 505)
wxObject (p. 627)

See also

WXEXpr overview (p. 1202), wxExpr (p. 284)

wxExprDatabase::wxExprDatabase
void wxExprDatabase(proioErrorHandler handler = 0)

Construct a new, unhashed database, with an optional error handler. The error handler

291

CHAPTER 5

must be a function returning a bool and taking an integer and a string argument. When
an error occurs when reading or writing a database, this function is called. The error is
given as the first argument (currently one of WXEXPR_ERROR_GENERAL,
WXEXPR_ERROR_SYNTAX) and an error message is given as the second argument. If
FALSE is returned by the error handler, processing of the wxExpr operation stops.

Another way of handling errors is simply to call wxExprDatabase::GetErrorCount (p. 293)
after the operation, to check whether errors have occurred, instead of installing an error

handler. If the error count is more than zero, wxExprDatabase::Write (p. 294) and
wxExprDatabase::Read (p. 294) will return FALSE to the application.

For example:
bool nyErrorHandl er(int err, chat *nsg)

if (err == WKEXPR ERROR SYNTAX)
{

wxMessageBox(nsg, "Syntax error");

}
return FALSE;

}
wxExpr Dat abase dat abase(nyErrorHandl er);

wxExprDatabase(wWxExprType type, const wxString&attribute, int size = 500,
proioErrorHandler handler = 0)

Construct a new database hashed on a combination of the clause functor and a named
attribute (often an integer identification).

See above for an explanation of the error handler.

wxExprDatabase::~wxExprDatabase
~wxExprDatabase()

Delete the database and contents.

wxExprDatabase::Append

void Append(wxExpr* clause)

Append a clause to the end of the database. If the database is hashing, the functor and
a user-specified attribute will be hashed upon, giving the option of random access in
addition to linear traversal of the database.

wxExprDatabase::BeginFind

void BeginFind()

292

CHAPTER 5

Reset the current position to the start of the database. Subsequent
wxExprDatabase::FindClause (p. 293) calls will move the pointer.
wxExprDatabase::ClearDatabase

void ClearDatabase()

Clears the contents of the database.

wxExprDatabase::FindClause

Various ways of retrieving clauses from the database. A return value of NULL indicates
no (more) clauses matching the given criteria. Calling the functions repeatedly retrieves
more matching clauses, if any.

wxExpr* FindClause(long id)

Find a clause based on the special "id" attribute.

wWXExpr* FindClause(const wxString& attribute, const wxString& value)

Find a clause which has the given attribute set to the given string or word value.
wxExpr* FindClause(const wxString& attribute, long value)

Find a clause which has the given attribute set to the given integer value.

wxExpr* FindClause(const wxString& attribute, float value)

Find a clause which has the given attribute set to the given floating point value.

wxExprDatabase::FindClauseByFunctor
wxExpr* FindClauseByFunctor(const wxString& functor)

Find the next clause with the specified functor.

wxExprDatabase::GetErrorCount
int GetErrorCount() const

Returns the number of errors encountered during the last read or write operation.

wxExprDatabase::HashFind

293

CHAPTER 5

WXExpr* HashFind(const wxString& functor, long value) const

Finds the clause with the given functor and with the attribute specified in the database
constructor having the given integer value.

For example,

/1 Hash on a conbination of functor and integer "id" attribute when
reading in
wxExpr Dat abase db(wxExprlnteger, "id");

/[l Read it in
db. ReadPr ol og("data");

/!l Retrieve a clause with specified functor and id
wWxExpr *cl ause = db. HashFi nd("node", 24);

This would retrieve a clause which is written: node(id = 24, ...,).

WXExpr* HashFind(const wxString& functor, const wxString& value)

Finds the clause with the given functor and with the attribute specified in the database
constructor having the given string value.

wxExprDatabase::Read

bool Read(const wxString& filename)

Reads in the given file, returning TRUE if successful.

wxExprDatabase::ReadFromString
bool ReadFromString(const wxString& buffer)

Reads a Prolog database from the given string buffer, returning TRUE if successful.

wxExprDatabase::Write

bool Write(FILE *stream)

bool Write(const wxString& filename)
Writes the database as a Prolog-format file.
wxFile

A wxFile performs raw file I/O. This is a very small class designed to minimize the

294

CHAPTER 5

overhead of using it - in fact, there is hardly any overhead at all, but using it brings you
automatic error checking and hides differences between platforms and compilers. wxFile
also automatically closes the file in its destructor making it unnecessary to worry about
forgetting to do it.

Derived from
None.
Include files
<wx/file.h>
Constants

wx/file.h defines the following constants:

#defi ne wxS_I RUSR 00400
#defi ne wxS_I WUSR 00200
#defi ne wxS_I XUSR 00100

#defi ne wxS_I RGRP 00040
#defi ne wxS_I WGRP 00020
#defi ne wxS_I XGRP 00010

#defi ne wxS_I ROTH 00004
#defi ne wxS_I| WOTH 00002
#defi ne wxS_I XOTH 00001

/1 default node for the new files: corresponds to umask 022
#define wxS_DEFAULT (WxS_IRUSR | wxS |WIUSR | wxS_IRGRP | wxS_| WGRP |
wWXS_| ROTH | wxS_| WOTH)

These constants define the file access rights and are used with wxFile::Create (p. 297)
and wxFile::Open (p. 299).

The OpenMode enumeration defines the different modes for opening a file, it's defined
inside wxFile class so its members should be specified with wxFile:: scope resolution
prefix. It is also used with wxFile::Access (p. 297) function.

wxFile::read Open file for reading or test if it can be opened
for reading with Access()
wxFile::write Open file for writing deleting the contents of the

file if it already exists or test if it can be opened
for writing with Access()

wxFile::read_write Open file for reading and writing; can not be
used with Access()
wxFile::write_append Open file for appending: the file is opened for

writing, but the old contents of the file is not
erased and the file pointer is initially placed at
the end of the file; can not be used with
Access()

295

CHAPTER 5

Other constants defined elsewhere but used by wxFile functions are wxInvalidOffset
which represents an invalid value of type off_t and is returned by functions returning off_t
on error and the seek mode constants used with Seek() (p. 299):

wxFromStart Count offset from the start of the file

wxFromCurrent Count offset from the current position of the file
pointer

wxFromEnd Count offset from the end of the file
(backwards)

wxFile::wxFile

wxFile()

Default constructor.

wxFile(const char* filename, wxFile::OpenMode mode = wxFile::read)

Opens a file with the given mode. As there is no way to return whether the operation was
successful or not from the constructor you should test the return value of IsOpened (p.
298) to check that it didn't fail.

wxFile(int fd)

Associates the file with the given file descriptor, which has already been opened.

Parameters

filename
The filename.

mode
The mode in which to open the file. May be one of wxFile::read, wxFile::write
and wxFile::read_write.

fd

An existing file descriptor (see Attach() (p. 297) for the list of predefined
descriptors)

wxFile::~wxFile
~wxFile()

Destructor will close the file.

296

CHAPTER 5

NB: it is not virtual so you should use wxFile polymorphically.

wxFile::Access

static bool Access(const char * name, OpenMode mode)

This function verifies if we may access the given file in specified mode. Only values of
wxFile::read or wxFile::write really make sense here.

wxFile::Attach

void Attach(int fd)

Attaches an existing file descriptor to the wxFile object. Example of predefined file
descriptors are 0, 1 and 2 which correspond to stdin, stdout and stderr (and have

symbolic names of wxFile::fd_stdin, wxFile::fd_stdout and wxFile::fd_stderr).

The descriptor should be already opened and it will be closed by wxFile object.

wxFile::Close
void Close()

Closes the file.

wxFile::Create

bool Create(const char* filename, bool overwrite = FALSE, int access =
wxS_DEFAULT)

Creates a file for writing. If the file already exists, setting overwrite to TRUE will ensure
it is overwritten.

wxFile::Detach

void Detach()

Get back a file descriptor from wxFile object - the caller is responsible for closing the file
if this descriptor is opened. IsOpened() (p. 298) will return FALSE after call to Detach().

wxFile::fd

int fd() const

297

CHAPTER 5

Returns the file descriptor associated with the file.

wxFile::Eof

bool Eof() const

Returns TRUE if the end of the file has been reached.

Note that the behaviour of the file pointer based class wxFFile (p. 301) is different as
wxFFile::Eof (p. 302) will return TRUE here only if an attempt has been made to read
past the last byte of the file, while wxFile::Eof() will return TRUE even before such
attempt is made if the file pointer is at the last position in the file.

Note also that this function doesn't work on unseekable file descriptors (examples
include pipes, terminals and sockets under Unix) and an attempt to use it will result in an
error message in such case.

wxFile::Exists

static bool Exists(const char* filename)

Returns TRUE if the given name specifies an existing regular file (not a directory or a
link)

wxFile::Flush

bool Flush()

Flushes the file descriptor.

Note that wxFile::Flush is not implemented on some Windows compilers due to a
missing fsync function, which reduces the usefulness of this function (it can still be called
but it will do nothing on unsupported compilers).

wxFile::IsOpened

bool IsOpened() const

Returns TRUE if the file has been opened.

wxFile::Length

off_t Length() const

298

CHAPTER 5

Returns the length of the file.

wxFile::Open

bool Open(const char* filename, wxFile::OpenMode mode = wxFile::read)
Opens the file, returning TRUE if successful.

Parameters

filename
The filename.

mode

The mode in which to open the file. May be one of wxFile::read, wxFile::write
and wxFile::read_write.

wxFile::Read

off_t Read(void* buffer, off_t count)

Reads the specified number of bytes into a buffer, returning the actual number read.
Parameters

buffer
A buffer to receive the data.

count
The number of bytes to read.

Return value

The number of bytes read, or the symbol wxInvalidOffset (-1) if there was an error.

wxFile::Seek

off_t Seek(off_t ofs, wxSeekMode mode = wxFromStart)
Seeks to the specified position.

Parameters

ofs
Offset to seek to.

mode

299

CHAPTER 5

One of wxFromStart, wxFromEnd, wxFromCurrent.
Return value

The actual offset position achieved, or wxInvalidOffset on failure.

wxFile::SeekEnd

off_t SeekEnd(off_t ofs = 0)

Moves the file pointer to the specified number of bytes before the end of the file.
Parameters

ofs
Number of bytes before the end of the file.

Return value

The actual offset position achieved, or wxInvalidOffset on failure.

wxFile::Tell

off_t Tell() const

Returns the current position or wxInvalidOffset if file is not opened or if another error
occured.

wxFile::Write

bool Write(const void* buffer, off_t count)

Writes the specified number of bytes from a buffer.

Parameters

buffer
A buffer containing the data.

count
The number of bytes to write.

Return value

TRUE if the operation was successful.

300

CHAPTER 5

wxFile::Write

bool Write(const wxString& s)

Writes the contents of the string to the file, returns TRUE on success.

wxFFile

A wxFFile performs raw file 1/0. This is a very small class designed to minimize the
overhead of using it - in fact, there is hardly any overhead at all, but using it brings you

automatic error checking and hides differences between platforms and compilers.

Derived from

None.

Include files

<wx/ffile.h>

wxFromStart Count offset from the start of the file

wxFromCurrent Count offset from the current position of the file
pointer

wxFromEnd Count offset from the end of the file
(backwards)

wxFFile::wxFFile

wxFFile()

Default constructor.

wxFFile(const char* filename, const char* mode = "r")

Opens a file with the given mode. As there is no way to return whether the operation was
successful or not from the constructor you should test the return value of IsOpened (p.
303) to check that it didn't fail.

WxFFile(FILE* fp)

Opens a file with the given file pointer, which has already been opened.

Parameters

filename
The filename.

301

CHAPTER 5

mode
The mode in which to open the file using standard C strings.

fp
An existing file descriptor, such as stderr.
wxFFile::~wxFFile
~wxFFile()
Destructor will close the file.

NB: it is not virtual so you should not derive from wxFFile!

wxFFile::Attach
void Attach(FILE* fp)
Attaches an existing file pointer to the wxFFile object.

The descriptor should be already opened and it will be closed by wxFFile object.

wxFFile::Close
bool Close()

Closes the file and returns TRUE on success.

wxFFile::Detach

void Detach()

Get back a file pointer from wxFFile object - the caller is responsible for closing the file if
this descriptor is opened. IsOpened() (p. 303) will return FALSE after call to Detach().
wxFFile::fp

FILE * fp() const

Returns the file pointer associated with the file.

wxFFile::Eof

302

CHAPTER 5

bool Eof() const

Returns TRUE if the an attempt has been made to read pastthe end of the file.

Note that the behaviour of the file descriptor based classwxFile (p. 294) is different as
wxFile::Eof (p. 298)will return TRUE here as soon as the last byte of the file has been
read.

wxFFile::Flush

bool Flush()

Flushes the file and returns TRUE on success.

wxFFile::IsOpened
bool IsOpened() const

Returns TRUE if the file has been opened.

wxFFile::Length
size_t Length() const

Returns the length of the file.

wxFFile::Open

bool Open(const char* filename, const char* mode = "r")
Opens the file, returning TRUE if successful.

Parameters

filename
The filename.

mode

The mode in which to open the file.
wxFFile::Read
size_t Read(void* buffer, off_t count)

Reads the specified number of bytes into a buffer, returning the actual number read.

303

CHAPTER 5

Parameters

buffer
A buffer to receive the data.

count
The number of bytes to read.

Return value

The number of bytes read.

wxFFile::Seek

bool Seek(long ofs, wxSeekMode mode = wxFromStart)
Seeks to the specified position and returs TRUE on success.
Parameters

ofs
Offset to seek to.

mode

One of wxFromStart, wxFromEnd, wxFromCurrent.
wxFFile::SeekEnd
bool SeekEnd(long ofs = 0)

Moves the file pointer to the specified number of bytes before the end of the file and
returns TRUE on success.

Parameters
ofs
Number of bytes before the end of the file.
wxFFile::Tell
size_t Tell() const

Returns the current position.

wxFFile::Write

304

CHAPTER 5

size_t Write(const void* buffer, size_t count)

Writes the specified number of bytes from a buffer.

Parameters

buffer
A buffer containing the data.

count
The number of bytes to write.

Return value

Number of bytes written.

wxFFile::Write

bool Write(const wxString& s)

Writes the contents of the string to the file, returns TRUE on success.

wxFileDataObject

wxFileDataObiject is a specialization of wxDataObject (p. 169) for file names. The
program works with it just as if it were a list of absolute file names, but internally it uses
the same format as Explorer and other compatible programs under Windows or
GNOME/KDE filemanager under Unix which makes it possible to receive files from them

using this class.

Warning: Under all non-Windows platforms this class is currently "input-only", i.e. you
can receieve the files from another application, but copying (or dragging) file(s) from a

wxWindows application is not currently supported.
Virtual functions to override

None.

Derived from

wxDataObjectSimple (p. 173)
wxDataObject (p. 169)

Include files
<wx/dataobj.h>

See also

305

CHAPTER 5

wxDataObject (p. 169), wxDataObjectSimple (p. 173), wxTextDataObject (p. 952),
wxBitmapDataObject (p. 74), wxDataObject (p. 169)

wxFileDataObject
wxFileDataObject()

Constructor.

wxFileDataObject::AddFile
virtual void AddFile(const wxString& file)

MSW only: adds a file to the file list represented by this data object.

wxFileDataObject::GetFilenames

const wxArrayString& GetFilenames() const

Returns the array (p. 42) of file names.

wxFileDialog

This class represents the file chooser dialog.

Derived from

wxDialog (p. 220)

wxWindow (p. 1048)

wxEvtHandler (p. 277)

wxObiject (p. 627)

Include files

<wx/filedlg.h>

See also

wxFileDialog overview (p. 1243), wxFileSelector (p. 1110)
Remarks

Pops up a file selector box. In Windows, this is the common file selector dialog. In X, this

is a file selector box with somewhat less functionality. The path and filename are distinct
elements of a full file pathname. If path is "™, the current directory will be used. If

306

CHAPTER 5

nn

filename is "™, no default filename will be supplied. The wildcard determines what files
are displayed in the file selector, and file extension supplies a type extension for the
required filename. Flags may be a combination of wxOPEN, wxSAVE,
WXOVERWRITE_PROMPT, wxHIDE_READONLY, wxFILE_MUST_EXIST,
WXMULTIPLE or 0.

Both the X and Windows versions implement a wildcard filter. Typing a filename
containing wildcards (*, ?) in the filename text item, and clicking on Ok, will result in only
those files matching the pattern being displayed. The wildcard may be a specification for
multiple types of file with a description for each, such as:

"BWP files (*.bmp)|*.bnp| G F files (*.qgif)|*.qgif"

wxFileDialog::wxFileDialog

wxFileDialog(wxWindow* parent, const wxString& message = "Choose a file", const
wxString& defaultDir = ", const wxString& defaultFile =", const wxString& wildcard
="**" long style = 0, const wxPoint& pos = wxDefaultPosition)

Constructor. Use wxFileDialog::ShowModal (p. 310) to show the dialog.

Parameters

parent
Parent window.

message
Message to show on the dialog.

defaultDir
The default directory, or the empty string.

defaultFile
The default filename, or the empty string.

wildcard
A wildcard, such as "*.*".

style
A dialog style. A bitlist of:
WxOPEN This is an open dialog.
WXSAVE This is a save dialog.
wxHIDE_READONLY Hide read-only files.
WXOVERWRITE_PROMPT Prompt for a conformation if a file will be overridden.
WXMULTIPLE For open dialog only: allows selecting multiple files

307

CHAPTER 5

pos

Dialog position. Not implemented.
wxFileDialog::~wxFileDialog
~wxFileDialog()

Destructor.

wxFileDialog::GetDirectory
wxString GetDirectory() const

Returns the default directory.

wxFileDialog::GetFilename
wxString GetFilename() const

Returns the default filename.

wxFileDialog::GetFilenames

void GetFilenames(wxArrayString& filenames) const

Fills the array filenames with the names of the files chosen. This function should only be
used with the dialogs which have wxMJLTI PLE style, use GetFilename (p. 308) for the
others.

wxFileDialog::GetFilterIndex

int GetFilterindex() const

Returns the index into the list of filters supplied, optionally, in the wildcard parameter.
Before the dialog is shown, this is the index which will be used when the dialog is first
displayed. After the dialog is shown, this is the index selected by the user.
wxFileDialog::GetMessage

wxString GetMessage() const

Returns the message that will be displayed on the dialog.

308

CHAPTER 5

wxFileDialog::GetPath
wxString GetPath() const

Returns the full path (directory and filename) of the selected file.

wxFileDialog::GetPaths

void GetPaths(wxArrayString& paths) const

Fills the array paths with the full paths of the files chosen. This function should only be
used with the dialogs which have wxMULTI PLE style, use GetPath (p. 309) for the
others.

wxFileDialog::GetStyle

long GetStyle() const

Returns the dialog style.

wxFileDialog::GetWildcard
wxString GetWildcard() const

Returns the file dialog wildcard.

wxFileDialog::SetDirectory
void SetDirectory(const wxString& directory)

Sets the default directory.

wxFileDialog::SetFilename
void SetFilename(const wxString& setfilename)

Sets the default filename.

wxFileDialog::SetFilterindex
void SetFilterindex(int filterindex)

Sets the default filter index, starting from zero. Windows only.

309

CHAPTER 5

wxFileDialog::SetMessage
void SetMessage(const wxString& message)

Sets the message that will be displayed on the dialog.

wxFileDialog::SetPath

void SetPath(const wxString& path)

Sets the path (the combined directory and filename that will be returned when the dialog
is dismissed).

wxFileDialog::SetStyle

void SetStyle(long style)

Sets the dialog style. See wxFileDialog::wxFileDialog (p. 307) for details.

wxFileDialog::SetWildcard
void SetWildcard(const wxString& wildCard)

Sets the wildcard, which in Windows can contain multiple file types.

wxFileDialog::ShowModal
int ShowModal()

Shows the dialog, returning wxID_OK if the user pressed OK, and wxOK_CANCEL
otherwise.

wxFileDropTarget

A drop target which accepts files (dragged from File Manager or Explorer).
Derived from

wxDropTarget (p. 267)

Include files

<wx/dnd.h>

See also

310

CHAPTER 5

Drag and drop overview (p. 1264), wxDropSource (p. 265), wxDropTarget (p. 267),
wxTextDropTarget (p. 958)

wxFileDropTarget::wxFileDropTarget
wxFileDropTarget()

Constructor.

wxFileDropTarget::OnDrop
virtual bool OnDrop(long x, long y, const void *data, size_t size)
See wxDropTarget::OnDrop (p. 269). This function is implemented appropriately for files,
and calls wxFileDropTarget::OnDropFiles (p. 311).
wxFileDropTarget::OnDropFiles
virtual bool OnDropFiles(long x, long y, size_t nFiles, const char * constfiles[])
Override this function to receive dropped files.
Parameters
X

The x coordinate of the mouse.

The y coordinate of the mouse.

nFiles
The number of files being dropped.

files
An array of filenames.

Return value
Return TRUE to accept the data, FALSE to veto the operation.
wxFileHistory

The wxFileHistory encapsulates a user interface convenience, the list of most recently
visited files as shown on a menu (usually the File menu).

311

CHAPTER 5

wxFileHistory can manage one or more file menus. More than one menu may be
required in an MDI application, where the file history should appear on each MDI child
menu as well as the MDI parent frame.

Derived from

wxObject (p. 627)

Include files

<wx/docview.h>

See also

wxFileHistory overview (p. 1250), wxDocManager (p. 234)

wxFileHistory::m_fileHistory
char** m_fileHistory

A character array of strings corresponding to the most recently opened files.

wxFileHistory::m_fileHistoryN
int m_fileHistoryN

The number of files stored in the history array.

wxFileHistory::m_fileMaxFiles
int m_fileMaxFiles

The maximum number of files to be stored and displayed on the menu.

wxFileHistory::m_fileMenu
wxMenu* m_fileMenu

The file menu used to display the file history list (if enabled).

wxFileHistory::wxFileHistory

312

CHAPTER 5

wxFileHistory(int maxFiles = 9)

Constructor. Pass the maximum number of files that should be stored and displayed.

wxFileHistory::~wxFileHistory
~wxFileHistory()

Destructor.

wxFileHistory::AddFileToHistory
void AddFileToHistory(const wxString& filename)

Adds a file to the file history list, if the object has a pointer to an appropriate file menu.

wxFileHistory::AddFilesToMenu

void AddFilesToMenu()

Appends the files in the history list, to all menus managed by the file history object.
void AddFilesToMenu(wxMenu* menu)

Appends the files in the history list, to the given menu only.

wxFileHistory::GetHistoryFile
wxString GetHistoryFile(int index) const

Returns the file at this index (zero-based).

wxFileHistory::GetMaxFiles
int GetMaxFiles() const

Returns the maximum number of files that can be stored.

wxFileHistory::GetNoHistoryFiles
int GetNoHistoryFiles() const

Returns the number of files currently stored in the file history.

313

CHAPTER 5

wxFileHistory::Load
void Load(wxConfigBase& config)

Loads the file history from the given config object. This function should be called
explicitly by the application.

See also

wxConfig (p. 136)

wxFileHistory::RemoveMenu
void RemoveMenu(wxMenu* menu)

Removes this menu from the list of those managed by this object.

wxFileHistory::Save
void Save(wxConfigBase& config)

Saves the file history into the given config object. This must be called explicitly by the
application.

See also

wxConfig (p. 136)

wxFileHistory::UseMenu

void UseMenu(wxMenu* menu)

Adds this menu to the list of those managed by this object.
wxFilelnputStream

This class represents data read in from a file. There are actually two such groups of
classes: this one is based on wxFile (p. 294) whereas wxFFilelnputStream (p. 317) is
based in the wxFFile (p. 301) class.

Note that wxFile (p. 294) and wxFFile (p. 301) differ in one aspect, namely when to
report that the end of the file has been reached. This is documented in wxFile::Eof (p.
298) and wxFFile::Eof (p. 302) and the behaviour of the stream classes reflects this
difference, i.e. wxFilelnputStream will report wxSTREAM_EOF after having read the last
byte whereas wxFFilelnputStream will report wxSTREAM_EOF after trying to read past
the last byte.

314

CHAPTER 5

Derived from
wxInputStream (p. 483)
Include files
<wx/wfstream.h>

See also

wxBufferedInputStream (p. 90), wxFileOutputStream (p. 315), wxFFileOutputStream (p.
318)

wxFilelnputStream::wxFilelnputStream
wxFilelnputStream(const wxString& ifileName)

Opens the specified file using its iflename name in read-only mode.
wxFilelnputStream(wxFile& file)

Initializes a file stream in read-only mode using the file I/O object file.
wxFilelnputStream(int fd)

Initializes a file stream in read-only mode using the specified file descriptor.

wxFilelnputStream::~wxFilelnputStream
~wxFilelnputStream()

Destructor.

wxFileInputStream::Ok

bool Ok() const

Returns TRUE if the stream is initialized and ready.

wxFileOutputStream

This class represents data written to a file. There are actually two such groups of

classes: this one is based on wxFile (p. 294) whereas wxFFilelnputStream (p. 317) is
based in the wxFFile (p. 301) class.

315

CHAPTER 5

Note that wxFile (p. 294) and wxFFile (p. 301) differ in one aspect, namely when to
report that the end of the file has been reached. This is documented in wxFile::Eof (p.
298) and wxFFile::Eof (p. 302) and the behaviour of the stream classes reflects this
difference, i.e. wxFilelnputStream will report wxSTREAM_EOF after having read the last
byte whereas wxFFilelnputStream will report wxSTREAM_EOF after trying to read past
the last byte.

Derived from

wxOutputStream (p. 632)

Include files

<wx/wfstream.h>

See also

wxBufferedOutputStream (p. 90), wxFilelnputStream (p. 314), wxFFilelnputStream (p.
317)

wxFileOutputStream::wxFileOutputStream

wxFileOutputStream(const wxString& ofileName)

Creates a new file with ofilename name and initializes the stream in write-only mode.
wxFileOutputStream(wxFile& file)

Initializes a file stream in write-only mode using the file I/O object file.
wxFileOutputStream(int fd)

Initializes a file stream in write-only mode using the file descriptor fd.

wxFileOutputStream::~wxFileOutputStream
~wxFileOutputStream()

Destructor.

wxFileOutputStream::Ok

bool Ok() const

316

CHAPTER 5

Returns TRUE if the stream is initialized and ready.
wxFileStream

Derived from

wxFileOutputStream (p. 315), wxFilelnputStream (p. 314)
Include files

<wx/wfstream.h>

See also

wxStreamBuffer (p. 871)

wxFileStream::wxFileStream
wxFileStream(const wxString& iofileName)

Initializes a new file stream in read-write mode using the specified iofilename name.

wxFFilelnputStream

This class represents data read in from a file. There are actually two such groups of
classes: this one is based on wxFFile (p. 301) whereas wxFilelnputStream (p. 314) is
based in the wxFile (p. 294) class.

Note that wxFile (p. 294) and wxFFile (p. 301) differ in one aspect, namely when to
report that the end of the file has been reached. This is documented in wxFile::Eof (p.
298) and wxFFile::Eof (p. 302) and the behaviour of the stream classes reflects this
difference, i.e. wxFilelnputStream will report wxSTREAM_EOF after having read the last
byte whereas wxFFilelnputStream will report wxSTREAM_EOF after trying to read past
the last byte.

Derived from

wxInputStream (p. 483)

Include files

<wx/wfstream.h>

See also

wxBufferedInputStream (p. 90), wxFFileOutputStream (p. 318), wxFileOutputStream (p.
315)

317

CHAPTER 5

wxFFilelnputStream::wxFFilelnputStream
wxFFilelnputStream(const wxString& ifleName)

Opens the specified file using its iflename name in read-only mode.
wxFFilelnputStream(wxFFile& file)

Initializes a file stream in read-only mode using the file I/O object file.
wxFFilelnputStream(FILE * fp)

Initializes a file stream in read-only mode using the specified file pointer fp.

wxFFilelnputStream::~wxFFilelnputStream
~wxFFilelnputStream()

Destructor.

wxFFilelnputStream::Ok

bool Ok() const

Returns TRUE if the stream is initialized and ready.

wxFFileOutputStream

This class represents data written to a file. There are actually two such groups of
classes: this one is based on wxFFile (p. 301) whereas wxFilelnputStream (p. 317) is
based in the wxFile (p. 294) class.

Note that wxFile (p. 294) and wxFFile (p. 301) differ in one aspect, namely when to
report that the end of the file has been reached. This is documented in wxFile::Eof (p.
298) and wxFFile::Eof (p. 302) and the behaviour o