

i

MMedia for wxWindows

Guilhem Lavaux

March 2000

i

Contents

Introduction....................................... ..1
File structure.. 1

MMboard: a sample MMedia application3

Class reference4

wxCDAudio.. 4
wxCDAudioLinux ... 4
wxCDAudioWin.. 5
CDtoc .. 6
wxSoundStream .. 8
wxSoundFileStream... 13
This is called by wxSoundFileStream when it needs to put new sound data received from the
device driver (or from a conversion codec). This must be eventually overidden by the file
codec class. The default behaviour is simply to write to the input
stream.wxSoundFormatBase ... 17

Topic overviews.................................... .. 19
MMedia extension overview... 19

Bugs... .. 20

Change log 21

Index 22

1

Introduction

The MMedia wxWindows extension is a wxWindows library which provides you a full set
of multimedia classes including sound recording/playing, cd audio playing and video
playing. The API is portable and can be used on any supported systems with the
insurance the behaviour will be the same.

File structure

These are the files that comprise the mmedia library.

 sndbase.h Header for wxSoundStream base class and wxSoundFormat base
class.

 sndbase.cpp Basic objects implementation.

 sndfile.h wxSoundFileStream base class header.

 sndfile.cpp wxSoundFileStream base class implementation.

 sndpcm.h wxSoundFormatPcm class header.

 sndpcm.cpp wxSoundFormatPcm class implementation.

 sndcpcm.h wxSoundCodecPcm class header (PCM converter).

 sndcpcm.cpp wxSoundCodecPcm class implementation (PCM converter).

 sndulaw.h

 sndulaw.cpp

 sndg72x.h

 sndg72x.cpp

 sndoss.h

 sndoss.cpp

 sndesd.h

 sndesd.cpp

 sndwin.h

 sndwin.cpp

 cdbase.h

 cdbase.cpp

CHAPTER 1

2

 cdunix.h

 cdunix.cpp

 cdwin.h

 cdwin.cpp

 vidbase.h

 vidbase.cpp

 vidxanm.h

 vidxanm.cpp

 vidwin.h

 vidwin.cpp

3

MMboard: a sample MMedia application

To be written.

4

Class reference

These are the main Mmedia classes.

wxCDAudio

Derived from

wxObject

Data structures

typedef struct wxCDtime {
 wxUint8 track
};

typedef enum PLAYING, PAUSED, STOPPED CDstatus

wxCDAudioLinux

Derived from

wxCDAudio (p. 4)

Data structures

wxCDAudioLinux::wxCDAudioLinux

 wxCDAudioLinux ()

 wxCDAudioLinux (const char* dev_name)

wxCDAudioLinux::~wxCDAudioLinux

 ~wxCDAudioLinux ()

wxCDAudioLinux::Play

bool Play(const wxCDtime& beg_time, const wxCDtime& end_time)

wxCDAudioLinux::Pause

bool Pause ()

CHAPTER 3

5

wxCDAudioLinux::Resume

bool Resume ()

wxCDAudioLinux::GetStatus

CDstatus GetStatus ()

wxCDAudioLinux::GetTime

wxCDtime GetTime ()

wxCDAudioLinux::GetToc

CDtoc& GetToc ()

wxCDAudioLinux::Ok

bool Ok() const

wxCDAudioLinux::OpenDevice

void OpenDevice (const char* dev_name)

wxCDAudioWin

Derived from

wxCDAudio (p. 4)

Data structures

typedef struct CDAW_Internal {
 MCIDEVICEID dev_id
};

wxCDAudioWin::wxCDAudioWin

 wxCDAudioWin ()

 wxCDAudioWin (const char* dev_name)

wxCDAudioWin::~wxCDAudioWin

 ~wxCDAudioWin ()

CHAPTER 3

6

wxCDAudioWin::Play

bool Play(const wxCDtime& beg_time, const wxCDtime& end_time)

wxCDAudioWin::Pause

bool Pause ()

wxCDAudioWin::Resume

bool Resume ()

wxCDAudioWin::GetStatus

CDstatus GetStatus ()

wxCDAudioWin::GetTime

wxCDtime GetTime ()

wxCDAudioWin::GetToc

const CDtoc& GetToc ()

wxCDAudioWin::Ok

bool Ok() const

wxCDAudioWin::PrepareToc

void PrepareToc ()

CDtoc

Table of contents manager

Derived from

No base class

Data structures

CDtoc::CDtoc

 CDtoc (wxCDtime& tot_tm, wxCDtime* trks_tm, wxCDtime* trks_pos)

CHAPTER 3

7

CDtoc::GetTrackTime

wxCDtime GetTrackTime (wxUint8 track) const

Returns the length of the specified track track: track to get length

CDtoc::GetTrackPos

wxCDtime GetTrackPos (wxUint8 track) const

Returns the position of the specified track track: track to get position

CDtoc::GetTotalTime

wxCDtime GetTotalTime () const

Returns the total time

wxCDAudio::wxCDAudio

 wxCDAudio ()

wxCDAudio::~wxCDAudio

 ~wxCDAudio ()

wxCDAudio::Play

bool Play(const wxCDtime& beg_play, const wxCDtime& end_play)

Play audio at the specified position

bool Play(const wxCDtime& beg_play)

Play audio from the specified to the end of the CD audio

bool Play(wxUint8 beg_track, wxUint8 end_track = 0)

wxCDAudio::Pause

bool Pause ()

Pause the audio playing

wxCDAudio::Resume

bool Resume ()

Resume a paused audio playing

CHAPTER 3

8

wxCDAudio::GetStatus

CDstatus GetStatus ()

Get the current CD status

wxCDAudio::GetTime

wxCDtime GetTime ()

Get the current playing time

wxCDAudio::GetToc

const CDtoc& GetToc ()

Returns the table of contents

wxCDAudio::Ok

bool Ok() const

CD ok

wxSoundStream

Base class for sound streams

Derived from

No base class

Include files

<wx/mmedia/sndbase.h>

Data structures

wxSoundStream errors

wxSOUND_NOERR No error occurred

wxSOUND_IOERR An input/output error occurred, it may concern
either a driver or a file

wxSOUND_INVFRMT The sound format passed to the function is
invalid. Generally, it means that you passed out
of range values to the codec stream or you
don't pass the right sound format object to the
right sound codec stream.

wxSOUND_INVDEV Invalid device. Generally, it means that the

CHAPTER 3

9

sound stream didn't manage to open the device
driver due to an invalid parameter or to the fact
that sound is not supported on this computer.

wxSOUND_NOEXACT No exact matching sound codec has been
found for this sound format. It means that the
sound driver didn't manage to setup the sound
card with the specified values.

wxSOUND_NOCODEC No matching codec has been found. Generally,
it may happen when you call
wxSoundRouterStream::SetSoundFormat().

wxSOUND_MEMERR Not enough memory.

C callback for wxSound event

When a sound event is generated, it may either call the internal sound event processor
(which can be inherited) or call a C function. Its definition is:

 typedef void (*wxSoundCallback)(wxSoundStream *stream, int evt,
 void *cdata);

The stream parameter represents the current wxSoundStream.

The evt parameter represents the sound event which is the cause of the calling. (See
wxSound events (p. 8)).

The cdata parameter represents the user callback data which were specified when the
user called wxSoundStream::Register (p. 12).

Note: There are two other ways to catch sound events: you can inherit the sound stream
and redefine wxSoundStream::OnSoundEvent (p. 13), or you can reroute the events to
another sound stream using wxSoundStream::SetEventHandler (p. 12).

wxSound streaming mode

The wxSoundStream object can work in three different modes. These modes are
specified at the call to wxSoundStream::StartProduction (p. 12) and cannot be changed
until you call wxSoundStream::StopProduction (p. 12).

The wxSOUND_INPUT mode is the recording mode. It generates wxSOUND_INPUT
events and you cannot use wxSoundStream::Write().

The wxSOUND_OUTPUT mode is the playing mode. It generates wxSOUND_OUTPUT
events and you cannot use wxSoundStream::Read().

The wxSOUND_DUPLEX mode activates the full duplex mode. The full duplex requires
you to make synchronous call to wxSoundStream::Read (p. 10) and
wxSoundStream::Write (p. 10). This means that you must be careful with realtime
problems. Each time you call Read you must call Write.

wxSoundStream events

CHAPTER 3

10

The sound events are generated when the sound driver (or the sound stream) completes
a previous sound buffer. There are two possible sound events and two meanings.

The wxSOUND_INPUT event is generated when the sound stream has a new input
buffer ready to be read. You know that you can read a buffer of the sizeGetBestSize() (p.
11) without blocking.

The wxSOUND_OUTPUT event is generated when the sound stream has completed a
previous buffer. This buffer has been sent to the sound driver and it is ready to process a
new buffer. Consequently, Write (p. 10) will not block too.

wxSoundStream::wxSoundStream

 wxSoundStream ()

Default constructor.

wxSoundStream::~wxSoundStream

 ~wxSoundStream ()

Destructor. The destructor stops automatically all started production and destroys any
temporary buffer.

wxSoundStream::Read

wxSoundStream& Read(void* buffer, wxUint32 len)

Reads len bytes from the sound stream. This call may block the user so use it carefully
when you need to intensively refresh the GUI. You may be interested by sound events:
see wxSoundStream::OnSoundEvent (p. 13).

It is better to use the size returned by wxSoundStream::GetBestSize (p. 11): this may
improve performance or accuracy of the sound event system.

Parameters

len

len is expressed in bytes. If you need to do conversions between bytes and
seconds use wxSoundFormat. See wxSoundFormatBase (p. 17),
wxSoundStream::GetSoundFormat (p. 11).

data

Data in buffer are coded using the sound format attached to this sound stream.
The format is specified with SetSoundFormat (p. 11).

wxSoundStream::Write

CHAPTER 3

11

wxSoundStream& Write (const void* buffer, wxUint32 len)

Writes len bytes to the sound stream. This call may block the user so use it carefully.
You may be interested by sound events: seewxSoundStream::OnSoundEvent (p. 13).

It is better to use the size returned by wxSoundStream::GetBestSize (p. 11): this may
improve performance or accuracy of the sound event system.

Parameters

len

This is expressed in bytes. If you need to do conversions between bytes and
seconds use wxSoundFormat. See wxSoundFormatBase (p. 17),
wxSoundStream::GetSoundFormat (p. 11).

buffer

Data in buffer are coded using the sound format attached to this sound stream.
The format is specified with SetSoundFormat (p. 11).

wxSoundStream::GetBestSize

wxUint32 GetBestSize () const

This function returns the best size for IO calls. The best size provides you a good
alignment for data to be written (or read) to (or from) the sound stream. So, when, for
example, a sound event is sent, you are sure the sound stream will not block for this
buffer size.

wxSoundStream::SetSoundFormat

bool SetSoundFormat (const wxSoundFormatBase& format)

SetSoundFormat is one of the key function of the wxSoundStream object. It specifies the
sound format the user needs. SetSoundFormat tries to apply the format to the current
sound stream (it can be a sound file or a sound driver). Then, either it manages to apply
it and it returns TRUE, or it could not and it returns FALSE . In this case, you must check
the error with wxSoundStream::GetError (p. 12). See wxSoundStream errors section (p.
8) for more details.

Note

The format object can be destroyed after the call. The object does not need it.

Note

If the error is wxSOUND_NOTEXACT , the stream tries to find the best approaching
format and setups it. You can check the format which it applied with
wxSoundStream::GetSoundFormat (p. 11).

wxSoundStream::GetSoundFormat

CHAPTER 3

12

wxSoundFormatBase& GetSoundFormat () const

It returns a reference to the current sound format of the stream represented by a
wxSoundFormatBase object. This object must not be destroyed by anyone except the
stream itself.

wxSoundStream::SetCallback

void Register (int evt, wxSoundCallback cbk, void* cdata)

It installs a C callback for wxSoundStream events. The C callbacks are still useful to
avoid hard inheritance. You can install only one callback per event. Each callback has its
callback data.

wxSoundStream::StartProduction

bool StartProduction (int evt)

StartProduction starts the sound streaming. evt may be one of wxSOUND_INPUT ,
wxSOUND_OUTPUT or wxSOUND_DUPLEX . You cannot specify several flags at the
same time. Starting the production may automaticaly in position of buffer underrun (only
in the case you activated recording). Actually this may happen the sound IO queue is too
short. It is also advised that you fill quickly enough the sound IO queue when the driver
requests it (through a wxSoundEvent).

wxSoundStream::StopProduction

bool StopProduction ()

I stops the async notifier and the sound streaming straightly.

wxSoundStream::SetEventHandler

void SetEventHandler (wxSoundStream* handler)

Sets the event handler: if it is non-null, all events are routed to it.

wxSoundStream::GetError

wxSoundError GetError () const

It returns the last error which occurred.

wxSoundStream::GetLastAccess

wxUint32 GetLastAccess () const

It returns the number of bytes which were effectively written to/read from the sound
stream.

CHAPTER 3

13

wxSoundStream::QueueFilled

bool QueueFilled () const

It returns whether the sound IO queue is full. When it is full, the next IO call will block
until the IO queue has at least one empty entry.

wxSoundStream::OnSoundEvent

void OnSoundEvent (int evt)

It is called by the wxSoundStream when a new sound event occurred.

wxSoundFileStream

Base class for file coders/decoders. This class is not constructor (it is an abstract class).

Derived from

wxSoundStream (p. 8)

Include file

wx/sndfile.h

Data structures

wxSoundFileStream::wxSoundFileStream

 wxSoundFileStream (wxInputStream& stream, wxSoundStream& io_sound)

It constructs a new file decoder object which will send audio data to the specified sound
stream. The stream is the input stream to be decoded. Theio_sound is the destination
sound stream. Once it has been constructed, you cannot change any of the specified
streams nor the direction of the stream.

You will have access to the playback functions.

 wxSoundFileStream (wxOutputStream& stream, wxSoundStream& io_sound)

It constructs a new file coder object which will get data to be recorded from the specified
sound stream. The stream is the output wxStream. The io_soundis the source sound
stream of the audio data. Once it has been constructed, you cannot change any of the
specified streams nor the direction of the stream.

wxSoundFileStream::~wxSoundFileStream

 ~wxSoundFileStream ()

It destroys the current sound file codec.

CHAPTER 3

14

wxSoundFileStream::Play

bool Play()

It starts playing the file. The playing begins, in background in nearly all cases, after the
return of the function. The codec returns to a stopped state when it reaches the end of
the file. On success, it returns TRUE.

wxSoundFileStream::Record

bool Record (wxUint32 time)

It starts recording data from the sound stream and writing them to the output stream.
You have to precise the recording length in parameter. This length is expressed in
seconds. If you want to control the record length (using Stop (p. 14)), you can set it to
wxSOUND_INFINITE_TIME.

On success, it returns TRUE.

wxSoundFileStream::Stop

bool Stop ()

It stops either recording or playing. Whatever happens (even unexpected errors), the
stream is stopped when the function returns. When you are in recording mode, the file
headers are updated and flushed if possible (ie: if the output stream is seekable).

On success, it returns TRUE.

wxSoundFileStream::Pause

bool Pause ()

The file codec tries to pause the stream: it means that it stops audio production but keep
the file pointer at the place.

If the file codec is already paused, it returns FALSE.

On success, it returns TREE.

wxSoundFileStream::Resume

bool Resume ()

When the file codec has been paused usingPause (p. 14), you could be interrested in
resuming it. This is the goal of this function.

wxSoundFileStream::IsStopped

bool IsStopped () const

CHAPTER 3

15

It returns TRUE when the stream is stopped, in another case it returns FALSE.

wxSoundFileStream::IsPaused

bool IsPaused () const

It returns TRUE when the stream is paused, in another case it returns FALSE.

wxSoundFileStream::StartProduction

bool StartProduction (int evt)

It is really not advised you call this function. From the wxSoundFileStream point of view
it is an internal function. Internally, it is called after the file stream has been prepared to
be played or to receive audio data and when it wants to start processing audio data.

wxSoundFileStream::StopProduction

bool StopProduction ()

As for StartProduction (p. 15), it is not advised for you to call this function. It is called
byStop (p. 14) when it needs to stop the audio data processing.

wxSoundFileStream::GetLength

wxUint32 GetLength ()

It returns the audio data length of the file stream. This length is expressed in bytes. If
you need the length in seconds, you will need to useGetSoundFormat (p. 11)
andGetTimeFromBytes (p. 18).

wxSoundFileStream::GetPosition

wxUint32 GetPosition ()

It returns the current position in the soundfile stream. The position is expressed in bytes.
If you need the length in seconds, you will need to useGetSoundFormat (p. 11)
andGetTimeFromBytes (p. 18).

wxSoundFileStream::SetPosition

wxUint32 SetPosition (wxUint32 new_position)

It sets the current in the soundfile stream. The position new_position must be expressed
in bytes. You can get a length/position in bytes from a time value usingGetSoundFormat
(p. 11) and GetTimeFromBytes (p. 18).

On success, it returns TRUE.

Warning

CHAPTER 3

16

Some wxStream may not be capable to support this function as it may not support the
seekable functionnality. If this happens, it returns FALSE and leave the stream at the
same position.

wxSoundFileStream::Read

wxSoundStream& Read(void* buffer, wxUint32 len)

You can obtain the audio data encoded in the file using this function. But it must be
considered as an internal function. Used carelessly, it may corrupt the current state of
the stream. Data are returned using in the original file coding (You must use a sound
format object to decode it).

wxSoundFileStream::Write

wxSoundStream& Write (const void* buffer, wxUint32 len)

You can put encoded audio data to the file using this function. But it must be considered
as an internal function. Used carelessly, it may corrupt the current state of the stream.
Data must be coded with the specified file coding (You must use a sound format object
to do this).

wxSoundFileStream::SetSoundFormat

bool SetSoundFormat (const wxSoundFormatBase& format)

wxSoundFileStream::GetCodecName

wxString GetCodecName () const

This function returns the Codec name. This is useful for those who want to build a player
(But also in some other case).

wxSoundFileStream::CanRead

bool CanRead ()

You should use this function to test whether this file codec can read the stream you
passed to it.

wxSoundFileStream::PrepareToPlay

bool PrepareToPlay ()

It is called by wxSoundFileStream to prepare the specific file loader to prepare itself to
play the file. Actually, this includes reading headers and setting the various parameters
of the sound format. This should not be called by an external user but it should be
implemented when you inherit wxSoundFileStream to build a new codec.

It must return when the file is identified and the parameters have been set. In all other

CHAPTER 3

17

cases, you must return FALSE.

wxSoundFileStream::PrepareToRecord

bool PrepareToRecord (wxUint32 time)

wxSoundFileStream::FinishRecording

bool FinishRecording ()

wxSoundFileStream::RepositionStream

bool RepositionStream (wxUint32 position)

This is called by wxSoundFileStream::SetPosition to seek the input stream to the right
position. This must be overidden by the file codec class. The position is relative to the
beginning of the samples. If it is impossible (as for a piped input stream), you must
return FALSE.

wxSoundFileStream::FinishPreparation

void FinishPreparation (wxUint32 len)

This is an internal function but it must called by the file codec class when the "playing"
preparation is finished and you know the size of the stream. If it is an infinite stream, you
should set this to wxSOUND_INFINITE_TIME.

wxSoundFileStream::GetData

wxUint32 GetData (void* buffer, wxUint32 len)

This is called by wxSoundFileStream when it needs to get new sound data to send to the
device driver (or to a conversion codec). This must be eventually overidden by the file
codec class. The default behaviour is simply to read from the input stream.

wxSoundFileStream::PutData

wxUint32 PutData (const void* buffer, wxUint32 len)

This is called by wxSoundFileStream when it needs t o put new sound data
received from the device driver (or from a conversi on codec). This must be
eventually overidden by the file codec class. The d efault behaviour is
simply to write to the input stream.wxSoundFormatBa se

Base class for sound format specification

Derived from

No base class

CHAPTER 3

18

Data structures

typedef enum
 wxSOUND_NOFORMAT,
 wxSOUND_PCM,
 wxSOUND_ULAW,
 wxSOUND_G72X,
 wxSOUND_MSADPCM
 wxSoundFormatType

wxSoundFormatType: it specifies the format family of the sound data which will be
passed to the stream.

wxSoundFormatBase::wxSoundFormatBase

 wxSoundFormatBase ()

wxSoundFormatBase::~wxSoundFormatBase

 ~wxSoundFormatBase ()

wxSoundFormatBase::GetType

wxSoundFormatType GetType () const

It returns a "standard" format type.

wxSoundFormatBase::Clone

wxSoundFormatBase* Clone () const

It clones the current format.

wxSoundFormatBase::GetTimeFromBytes

wxUint32 GetTimeFromBytes (wxUint32 bytes) const

wxSoundFormatBase::GetBytesFromTime

wxUint32 GetBytesFromTime (wxUint32 time) const

wxSoundFormatBase::operator!=

bool operator!= (const wxSoundFormatBase& frmt2) const

19

Topic overviews

The following sections describe particular topics.

MMedia extension overview

To be written.

20

Bugs

These are the known bugs.

 • No bugs

21

Change log

22

Index

—~—
~wxCDAudio, 7
~wxCDAudioLinux, 4
~wxCDAudioWin, 5
~wxSoundFileStream, 13
~wxSoundFormatBase, 18
~wxSoundStream, 10

—C—
CanRead, 16
CDtoc, 6
CDtoc::CDtoc, 6
CDtoc::GetTotalTime, 7
CDtoc::GetTrackPos, 7
CDtoc::GetTrackTime, 7
Clone, 18

—F—
FinishPreparation, 17
FinishRecording, 17

—G—
GetBestSize, 11
GetBytesFromTime, 18
GetCodecName, 16
GetData, 17
GetError, 12
GetLastAccess, 12
GetLength, 15
GetPosition, 15
GetSoundFormat, 12
GetStatus, 5, 6, 8
GetTime, 5, 6, 8
GetTimeFromBytes, 18
GetToc, 5, 6, 8
GetTotalTime, 7
GetTrackPos, 7
GetTrackTime, 7
GetType, 18

—I—
IsPaused, 15
IsStopped, 14

—O—
Ok, 5, 6, 8
OnSoundEvent, 13
OpenDevice, 5

operator
=, 18

—P—
Pause, 4, 6, 7, 14
Play, 4, 6, 7, 14
PrepareToc, 6
PrepareToPlay, 16
PrepareToRecord, 17
PutData, 17

—Q—
QueueFilled, 13

—R—
Read, 10, 16
Record, 14
Register, 12
RepositionStream, 17
Resume, 5, 6, 7, 14

—S—
SetEventHandler, 12
SetPosition, 15
SetSoundFormat, 11, 16
StartProduction, 12, 15
Stop, 14
StopProduction, 12, 15

—W—
Write, 11, 16
wxCDAudio, 7
wxCDAudio::~wxCDAudio, 7
wxCDAudio::GetStatus, 8
wxCDAudio::GetTime, 8
wxCDAudio::GetToc, 8
wxCDAudio::Ok, 8
wxCDAudio::Pause, 7
wxCDAudio::Play, 7
wxCDAudio::Resume, 7
wxCDAudio::wxCDAudio, 7
wxCDAudioLinux, 4
wxCDAudioLinux::~wxCDAudioLinux, 4
wxCDAudioLinux::GetStatus, 5
wxCDAudioLinux::GetTime, 5
wxCDAudioLinux::GetToc, 5
wxCDAudioLinux::Ok, 5
wxCDAudioLinux::OpenDevice, 5
wxCDAudioLinux::Pause, 4
wxCDAudioLinux::Play, 4

INDEX

23

wxCDAudioLinux::Resume, 5
wxCDAudioLinux::wxCDAudioLinux, 4
wxCDAudioWin, 5
wxCDAudioWin::~wxCDAudioWin, 5
wxCDAudioWin::GetStatus, 6
wxCDAudioWin::GetTime, 6
wxCDAudioWin::GetToc, 6
wxCDAudioWin::Ok, 6
wxCDAudioWin::Pause, 6
wxCDAudioWin::Play, 6
wxCDAudioWin::PrepareToc, 6
wxCDAudioWin::Resume, 6
wxCDAudioWin::wxCDAudioWin, 5
wxSoundFileStream, 13
wxSoundFileStream::~wxSoundFileStream, 13
wxSoundFileStream::CanRead, 16
wxSoundFileStream::FinishPreparation, 17
wxSoundFileStream::FinishRecording, 17
wxSoundFileStream::GetCodecName, 16
wxSoundFileStream::GetData, 17
wxSoundFileStream::GetLength, 15
wxSoundFileStream::GetPosition, 15
wxSoundFileStream::IsPaused, 15
wxSoundFileStream::IsStopped, 14
wxSoundFileStream::Pause, 14
wxSoundFileStream::Play, 14
wxSoundFileStream::PrepareToPlay, 16
wxSoundFileStream::PrepareToRecord, 17
wxSoundFileStream::PutData, 17
wxSoundFileStream::Read, 16
wxSoundFileStream::Record, 14
wxSoundFileStream::RepositionStream, 17

wxSoundFileStream::Resume, 14
wxSoundFileStream::SetPosition, 15
wxSoundFileStream::SetSoundFormat, 16
wxSoundFileStream::StartProduction, 15
wxSoundFileStream::Stop, 14
wxSoundFileStream::StopProduction, 15
wxSoundFileStream::Write, 16
wxSoundFileStream::wxSoundFileStream, 13
wxSoundFormatBase, 18
wxSoundFormatBase::~wxSoundFormatBase, 18
wxSoundFormatBase::Clone, 18
wxSoundFormatBase::GetBytesFromTime, 18
wxSoundFormatBase::GetTimeFromBytes, 18
wxSoundFormatBase::GetType, 18
wxSoundFormatBase::operator!=, 18
wxSoundFormatBase::wxSoundFormatBase, 18
wxSoundStream, 10
wxSoundStream::~wxSoundStream, 10
wxSoundStream::GetBestSize, 11
wxSoundStream::GetError, 12
wxSoundStream::GetLastAccess, 12
wxSoundStream::GetSoundFormat, 11
wxSoundStream::OnSoundEvent, 13
wxSoundStream::QueueFilled, 13
wxSoundStream::Read, 10
wxSoundStream::SetCallback, 12
wxSoundStream::SetEventHandler, 12
wxSoundStream::SetSoundFormat, 11
wxSoundStream::StartProduction, 12
wxSoundStream::StopProduction, 12
wxSoundStream::Write, 10
wxSoundStream::wxSoundStream, 10

