Sci

Nelder-Mead
User’s Manual

— The Fminsearch Function —

Michaél BAUDIN

Version 0.3
September 2009

Contents

1 The fminsearch function 3
1.1 fminsearch’s algorithm 3
1.1.1 The algorithm 3

1.1.2 The initial simplex 3

1.1.3 The number of iterations 3

1.1.4 The termination criteria 4

1.2 Numerical experiments L 4
1.2.1 Algorithm and numerical precision 5

1.2.2 Output and plot functions 9

1.2.3 Predefined plot functions oo o 11

1.3 Conclusion e 13
Bibliography 15
Index 15

Chapter 1

The fminsearch function

In this chapter, we analyze the implementation of the fminsearch which is provided in Scilab. In
the first part, we describe the specific choices of this implementation with respect to the Nelder-
Mead algorithm. In the second part, we present some numerical experiments which allows to
check that the feature is behaving as expected, by comparison to Matlab’s fminsearch.

1.1 fmansearch’s algorithm

In this section, we analyse the specific choices used in fminsearch’s algorithm. We detail what
specific variant of the Nelder-Mead algorithm is performed, what initial simplex is used, the
default number of iterations and the termination criteria.

1.1.1 The algorithm

The algorithm used is the Nelder-Mead algorithm. This corresponds to the "variable” value of
the "-method” option of the neldermead. The "non greedy” version is used, that is, the expansion
point is accepted only if it improves over the reflection point.

1.1.2 The initial simplex

The fminsearch algorithm uses a special initial simplex, which is an heuristic depending on the
initial guess. The strategy chosen by fminsearch corresponds to the -simplexOmethod flag of the
neldermead component, with the "pfeffer” method. It is associated with the - simplexOdeltausual
= 0.05 and -simplexOdeltazero = 0.0075 parameters. Pfeffer’s method is an heuristic which is
presented in "Global Optimization Of Lennard-Jones Atomic Clusters” by Ellen Fan [1]. It is due
to L. Pfeffer at Stanford. See in the help of optimsimplex for more details.

1.1.3 The number of iterations

In this section, we present the default values for the number of iterations in fminsearch.

The options input argument is an optionnal data structure which can contain the options.MaxIter
field. It stores the maximum number of iterations. The default value is 200n, where n is the num-
ber of variables. The factor 200 has not been chosen by chance, but is the result of experiments
performed against quadratic functions with increasing space dimension.

Chapter 1. The fminsearch function 4

This result is presented in "Effect of dimensionality on the nelder-mead simplex method” by
Lixing Han and Michael Neumann [3]. This paper is based on Lixing Han’s PhD, "Algorithms in
Unconstrained Optimization” [2]. The study is based on numerical experiment with a quadratic
function where the number of terms depends on the dimension of the space (i.e. the number
of variables). Their study shows that the number of iterations required to reach the tolerance
criteria is roughly 100n. Most iterations are based on inside contractions. Since each step of
the Nelder-Mead algorithm only require one or two function evaluations, the number of required
function evaluations in this experiment is also roughly 100n.

1.1.4 The termination criteria

The algorithm used by fminsearch uses a particular termination criteria, based both on the abso-
lute size of the simplex and the difference of the function values in the simplex. This termination
criteria corresponds to the "-tolssizedeltafvmethod” termination criteria of the neldermead com-
ponent.

The size of the simplex is computed with the ¢ — + method, which corresponds to the
"sigmaplus” method of the optimsimplexr component. The tolerance associated with this criteria
is given by the "TolX” parameter of the options data structure. Its default value is 1.e-4.

The function value difference is the difference between the highest and the lowest function value
in the simplex. The tolerance associated with this criteria is given by the "TolFun” parameter of
the options data structure. Its default value is 1.e-4.

1.2 Numerical experiments

In this section, we analyse the behaviour of Scilab’s fminsearch function, by comparison of Mat-

lab’s fminsearch. We especially analyse the results of the optimization, so that we can check that

the algorithm is indeed behaving the same way, even if the implementation is completely different.
We consider the unconstrained optimization problem [4]

min f(x) (1.1)
where x € R? and the objective function f is defined by
f(x) =100 % (25 — 22)* + (1 — 1) (1.2)
The initial guess is
x’ = (-1.2,1.)7, (1.3)
where the function value is
f(x°) =24.2. (1.4)
The global solution of this problem is
x*=(1,1.)" (1.5)

where the function value is

Chapter 1. The fminsearch function 5

1.2.1 Algorithm and numerical precision

In this section, we are concerned by the comparison of the behavior of the two algorithms. We
are going to check that the algorithms produces the same intermediate and final results. We also
analyze the numerical precision of the results, by detailing the number of significant digits.

To make a more living presentation of this topic, we will include small scripts which allow to
produce the output that we are going to analyze. Because of the similarity of the languages, in
order to avoid confusion, we will specify, for each script, the language we use by a small comment.
Scripts and outputs written in Matlab’s language will begin with

% Matlab
% ...

while script written in Scilab’s language will begin with

// Scilab
/7

The following Matlab script allows to see the behaviour of Matlab’s fminsearch function on
Rosenbrock’s test case.

% Matlab

format long

banana = @(x)100x*(x(2)—x(1)"2)"24(1—-x(1))"2;

[x,fval ,exitflag ,output] = fminsearch (banana,[—1.2, 1])
output . message

When this script is launched in Matlab, the following output is produced.

>> % Matlab
>> format long
>> banana = @Q(x)100x*(x(2)—x(1)"2)"24+(1—x(1))"2;
>> [x,fval] = fminsearch(banana,[—1.2, 1])
>> [x,fval ,exitflag ,output] = fminsearch(banana,[—1.2, 1])
x =
1.000022021783570 1.000042219751772
fval =
8.177661197416674e¢—10
exitflag =
1
output =
iterations: 85
funcCount: 159
algorithm: ’Nelder—Mead _simplex, direct _search’
message: [1x194 char]
>> output.message
ans =
Optimization terminated:
the current x satisfies the termination criteria using
OPTIONS. TolX of 1.000000e—04
and F(X) satisfies the convergence criteria using
OPTIONS. TolFun of 1.000000e—04

The following Scilab script allows to solve the problem with Scilab’s fminsearch.

// Scilab
format (25)
function y = banana (x)
y = 100%(x(2)—x(1)"2)"2 + (1—-x(1))"2;
endfunction
[x , fval , exitflag , output] = fminsearch (banana , [—1.2 1])
output . message

The output associated with this Scilab script is the following.

——>// Scilab
——>format (25)
—>function y = banana (x)
—> y = 100%(x(2)—x(1)"2)"2 + (1—-x(1))"2;
—>endfunction
——>[x , fval , exitflag , output] = fminsearch (banana , [—1.2 1])
output =
algorithm: ”Nelder—Mead _simplex_direct _search?”

funcCount: 159
iterations: 85
message: [3x1l string]
exitflag =
1.
fval =
0.0000000008177661099387
X =

1.0000220217835567027009 1.0000422197517710998227

Chapter 1. The fminsearch function 6

—>output. message
ans =

!'Optimization terminated:
1

!

: !
!'the current x satisfies the termination criteria using OPTIONS.TolX of 1.000000e—004 !
! !
!

land F(X) satisfies the convergence criteria using OPTIONS.TolFun of 1.000000e—004

Because the two softwares do not use the same formatting rules to produce their outputs, we
must perform additionnal checking in order to check our results.
The following Scilab script displays the results with 16 significant digits.

// Scilab

// Print the result with 15 significant digits
mprintf (*"%.15e” , fval);
mprintf ("%.15e _%.15e” , x(1) , x(2));

The previous script produces the following output.

——>// Scilab

—>mprintf (*%.15e” , fval);
8.177661099387146e—010

—>mprintf ("%.15e %.15e” , x(1) , x(2));
1.000022021783557e+000 1.000042219751771e+000

These results are reproduced verbatim in the table 1.1.

Matlab Iterations 85
Scilab Iterations 85
Matlab Function Evaluations | 159
Scilab Function Evaluations | 159

Matlab x* 1.000022021783570 1.000042219751772
Scilab x* 1.000022021783557¢+000 | 1.000042219751771e-+000
Matlab f(x") 8.177661197416674e-10

Scilab f(x*) 8.177661099387146e-010

Fig. 1.1 : Numerical experiment with Rosenbrock’s function — Comparison of results produced by
Matlab and Scilab.

We must compute the common number of significant digits in order to check the consistency

of the results. The following Scilab script computes the relative error between Scilab and Matlab
results.

// Scilab

// Compare the result

xmb = [1.000022021783570 1.000042219751772];
err = norm(x — xmb) / norm(xmb);

mprintf (”Relative_Error_on_x_: _%e\n”, err);
fmb = 8.177661197416674e—10;

err = abs(fval — fmb) / abs(fmb);

mprintf (”Relative Error_on_f_: %e\n”, err);

The previous script produces the following output.

// Scilab
Relative Error on x : 9.441163e—015
Relative Error on f : 1.198748e—008

We must take into account for the floating point implementations of both Matlab and Scilab.
In both these numerical softwares, double precision floating point numbers are used, i.e. the
relative precision is both these softwares is € ~ 10716, That implies that there are approximately
16 significant digits. Therefore, the relative error on x, which is equivalent to 15 significant digits,
is acceptable.

Therefore, the result is as close as possible to the result produced by Matlab. More specifically

Chapter 1. The fminsearch function 7

the optimum x is the same up to 15 significant digits,

the function value at optimum is the same up to 8 significant digits,

the number of iterations is the same,

the number of function evaluations is the same,

the exit flag is the same,

the content of the output is the same (but the string is not display the same way).

The output of the two functions is the same. We must now check that the algorithms performs
the same way, that is, produces the same intermediate steps.

The following Matlab script allows to get deeper information by printing a message at each
iteration with the "Display” option.

% Matlab
opt = optimset (’Display’,’iter’);
[x,fval ,exitflag ,output] = fminsearch (banana,[—1.2, 1] , opt);

The previous script produces the following output.

% Matlab
Iteration Func—count min f(x) Procedure

0 1 24.2

1 3 20.05 initial simplex
2 5 5.1618 expand

3 7 4.4978 reflect

4 9 4.4978 contract outside
5 11 4.38136 contract inside
6 13 4.24527 contract inside
7 15 4.21762 reflect

8 17 4.21129 contract inside
9 19 4.13556 expand

10 21 4.13556 contract inside
11 23 4.01273 expand

12 25 3.93738 expand

13 27 3.60261 expand

14 28 3.60261 reflect

15 30 3.46622 reflect

16 32 3.21605 expand

17 34 3.16491 reflect

18 36 2.70687 expand

19 37 2.70687 reflect

20 39 2.00218 expand

21 41 2.00218 contract inside
22 43 2.00218 contract inside
23 45 1.81543 expand

24 47 1.73481 contract outside
25 49 1.31697 expand

26 50 1.31697 reflect

27 51 1.31697 reflect

28 53 1.1595 reflect

29 55 1.07674 contract inside
30 57 0.883492 reflect

31 59 0.883492 contract inside
32 61 0.669165 expand

33 63 0.669165 contract inside
34 64 0.669165 reflect

35 66 0.536729 reflect

36 68 0.536729 contract inside
37 70 0.423294 expand

38 72 0.423294 contract outside
39 74 0.398527 reflect

40 76 0.31447 expand

41 T 0.31447 reflect

42 79 0.190317 expand

43 81 0.190317 contract inside
44 82 0.190317 reflect

45 84 0.13696 reflect

46 86 0.13696 contract outside
47 88 0.113128 contract outside
48 90 0.11053 contract inside
49 92 0.10234 reflect

50 94 0.101184 contract inside
51 96 0.0794969 expand

52 97 0.0794969 reflect

53 98 0.0794969 reflect

54 100 0.0569294 expand

55 102 0.0569294 contract inside
56 104 0.0344855 expand

Chapter 1. The fminsearch function 8

57 106 0.0179534 expand

58 108 0.0169469 contract outside
59 110 0.00401463 reflect

60 112 0.00401463 contract inside
61 113 0.00401463 reflect

62 115 0.000369954 reflect

63 117 0.000369954 contract inside
64 118 0.000369954 reflect

65 120 0.000369954 contract inside
66 122 5.90111e—-005 contract outside
67 124 3.36682e—005 contract inside
68 126 3.36682e—005 contract outside
69 128 1.89159e—-005 contract outside
70 130 8.46083e—006 contract inside
71 132 2.88255e—006 contract inside
72 133 2.88255e—006 reflect

73 135 7.48997e—-007 contract inside
74 137 7.48997e—-007 contract inside
75 139 6.20365e—007 contract inside
76 141 2.16919e—-007 contract outside
7T 143 1.00244e—-007 contract inside
78 145 5.23487e—008 contract inside
79 147 5.03503e—008 contract inside
80 149 2.0043e—-008 contract inside
81 151 1.12293e—-009 contract inside
82 153 1.12293e—-009 contract outside
83 155 1.12293e—009 contract inside
84 157 1.10755e—-009 contract outside
85 159 8.17766e—010 contract inside

Optimization terminated :
the current x satisfies the termination criteria using OPTIONS.TolX of 1.000000e—004
and F(X) satisfies the convergence criteria using OPTIONS.TolFun of 1.000000e—004

The following Scilab script set the "Display” option to "iter” and run the fminsearch function.

// Scilab
opt = optimset (”Display” , ”iter”);
[x , fval , exitflag , output] = fminsearch (banana , [—1.2 1] , opt);
// Scilab
Iteration Func—count min f(x) Procedure
0 3 24.2
3 20.05 initial simplex
2 5 5.161796 expand
3 7 4.497796 reflect
4 9 4.497796 contract outside
5 11 4.3813601 contract inside
6 13 4.2452728 contract inside
7 15 4.2176247 reflect
8 17 4.2112906 contract inside
9 19 4.1355598 expand
10 21 4.1355598 contract inside
11 23 4.0127268 expand
12 25 3.9373812 expand
13 27 3.602606 expand
14 28 3.602606 reflect
15 30 3.4662211 reflect
16 32 3.2160547 expand
17 34 3.1649126 reflect
18 36 2.7068692 expand
19 37 2.7068692 reflect
20 39 2.0021824 expand
21 41 2.0021824 contract inside
22 43 2.0021824 contract inside
23 45 1.8154337 expand
24 47 1.7348144 contract outside
25 49 1.3169723 expand
26 50 1.3169723 reflect
27 51 1.3169723 reflect
28 53 1.1595038 reflect
29 55 1.0767387 contract inside
30 57 0.8834921 reflect
31 59 0.8834921 contract inside
32 61 0.6691654 expand
33 63 0.6691654 contract inside
34 64 0.6691654 reflect
35 66 0.5367289 reflect
36 68 0.5367289 contract inside
37 70 0.4232940 expand
38 72 0.4232940 contract outside
39 74 0.3985272 reflect
40 76 0.3144704 expand
41 T 0.3144704 reflect
42 79 0.1903167 expand
43 81 0.1903167 contract inside
44 82 0.1903167 reflect
45 84 0.1369602 reflect
46 86 0.1369602 contract outside
47 88 0.1131281 contract outside
48 90 0.1105304 contract inside
49 92 0.1023402 reflect

Chapter 1. The fminsearch function 9

50 94 0.1011837 contract inside
51 96 0.0794969 expand

52 97 0.0794969 reflect

53 98 0.0794969 reflect

54 100 0.0569294 expand

55 102 0.0569294 contract inside
56 104 0.0344855 expand

57 106 0.0179534 expand

58 108 0.0169469 contract outside
59 110 0.0040146 reflect

60 112 0.0040146 contract inside
61 113 0.0040146 reflect

62 115 0.0003700 reflect

63 117 0.0003700 contract inside
64 118 0.0003700 reflect

65 120 0.0003700 contract inside
66 122 0.0000590 contract outside
67 124 0.0000337 contract inside
68 126 0.0000337 contract outside
69 128 0.0000189 contract outside
70 130 0.0000085 contract inside
71 132 0.0000029 contract inside
72 133 0.0000029 reflect

73 135 0.0000007 contract inside
74 137 0.0000007 contract inside
75 139 0.0000006 contract inside
76 141 0.0000002 contract outside
77 143 0.0000001 contract inside
78 145 5.235D—-08 contract inside
79 147 5.035D—-08 contract inside
80 149 2.004D-08 contract inside
81 151 1.123D-09 contract inside
82 153 1.123D-09 contract outside
83 155 1.123D—-09 contract inside
84 157 1.108D—-09 contract outside
85 159 8.178D—-10 contract inside

Optimization terminated:
the current x satisfies the termination criteria using OPTIONS.TolX of 1.000000e—004
and F(X) satisfies the convergence criteria using OPTIONS.TolFun of 1.000000e—004

We check that the two softwares produces indeed the same intermediate results in terms of
iteration, function evaluations, function values and type of steps. The only difference is the itera-
tion #0, which is associated with function evaluation #1 in Matlab and with function evaluation
#3 in Scilab. This is because Scilab calls back the output function once the initial simplex is
computed, which requires 3 function evaluations.

1.2.2 Output and plot functions

In this section, we check that the output and plot features of the fminsearch function are the
same. We also check that the fields and the content of the optim Values data structure and the
state variable are the same in both languages.

The following output function plots in the current graphic window the value of the current
parameter x. It also unloads the content of the optim Values data structure and prints a message
in the console. To let Matlab load that script, save the content in a .m file, in a directory known

by Matlab.

% Matlab

function stop = outfun(x, optimValues, state)
stop = false;

hold on;

plot (x(1),x(2),7.7);

fc = optimValues. funccount;

fv = optimValues. fval;

it = optimValues.iteration;

pr = optimValues.procedure;

disp (sprintf (’%d _%e %d —%s— %s\n’ , fc , fv , it , pr , state))
drawnow

The following Matlab script allows to perform the optimization so that the output function is
called back at each iteration.

% Matlab
options = optimset (’OutputFen’, Qoutfun);
[x fval] = fminsearch(banana, [—1.2, 1], options)

This produces the plot which is presented in figure 1.2.

Chapter 1. The fminsearch function 10

121

06} . +
0.4+ b

02r .
+

Fig. 1.2 : Plot produced by Matlab’s fminsearch, with customized output function.

Matlab also prints the following messages in the console.

% Matlab

1 2.420000e+4001 0 —— init

1 2.420000e+4001 0 —— iter

3 2.005000e+4001 1 —initial simplex— iter
5 5.161796e+4+000 2 —expand— iter

7 4.497796e+4+000 3 —reflect — iter

9 4.497796e4+000 4 —contract outside— iter

11 4.381360e+000 5 —contract inside— iter
13 4.245273e+000 6 —contract inside— iter

149 2.004302e—008 80 —contract inside— iter
151 1.122930e—009 81 —contract inside— iter
153 1.122930e—009 82 —contract outside— iter
155 1.122930e—009 83 —contract inside— iter
157 1.107549e—009 84 —contract outside— iter
159 8.177661e—010 85 —contract inside— iter
159 8.177661e—010 85 —contract inside— done

The following Scilab script sets the "OutputFcn” option and then calls the fminsearch in order
to perform the optimization.

// Scilab

function outfun (x , optimValues , state)
plot (x(1),x(2),".");
fc = optimValues. funccount;
fv optimValues. fval;

it optimValues.iteration ;

pr = optimValues.procedure;

mprintf (?%d_%e %d_—%s— %s\n” , fc , fv , it , pr , state)
endfunction
opt = optimset (”OutputFcn” , outfun);
[x fval] = fminsearch (banana , [—1.2 1] , opt);

The previous script produces the plot which is presented in figure 1.3.

Except for the size of the dots (which can be configured in both softwares), the graphics are
exactly the same.

Scilab also prints the following messages in the console.

// Scilab

3 2.420000e+001 0 — init

3 2.005000e+4001 1 —initial simplex— iter
5 5.161796e+4+000 2 —expand— iter

7 4.497796e+4+000 3 —reflect — iter

9 4.497796e+4+000 4 —contract outside— iter
11 4.381360e+4+000 5 —contract inside— iter
13 4.245273e+000 6 —contract inside— iter

149 2.004302e¢—008 80 —contract inside— iter

Chapter 1. The fminsearch function 11

1.2
o
1.0 e © ?
°
]
0.8 ° F
) L]
L]
0.6 ° °
0.4 bt
L]
0.2 ‘
j o .
[
see g
80 e
-0.2

T T T
0.5 o0 08

Fig. 1.3 : Plot produced by Scilab’s fminsearch, with customized output function.

151 1.122930e—-009 81 —contract inside— iter
153 1.122930e—009 82 —contract outside— iter
155 1.122930e—009 83 —contract inside— iter
157 1.107549e—009 84 —contract outside— iter
159 8.177661e—010 85 —contract inside— iter
159 8.177661e—010 85 —— done

We see that the output produced by the two software are identical, expect for the two first
lines and the last line. The lines #1 and #2 are different is because Scilab computes the function
values of all the vertices before calling back the output function. The last line is different because
Scilab considers that once the optimization is performed, the type of the step is an empty string.
Instead, Matlab displays the type of the last performed step.

1.2.3 Predefined plot functions

Several pre-defined plot functions are provided with the fminsearch function. These functions are
e optimplotfval,
e optimplotz,
e optimplotfunccount.

In the following Matlab script, we use the optimplotfval pre-defined function.

% Matlab
options = optimset (’PlotFcns’
[x fval] = fminsearch (banana |,

,Qoptimplotfval);
[-1.2, 1] , options)

The previous script produces the plot which is presented in figure 1.4.
The following Scilab script uses the optimplotfval pre-defined function.
// Scilab

opt = optimset (”OutputFcn” |,
[x fval] = fminsearch (banana ,

optimplotfval);
[-1.2 1] , opt);

Chapter 1. The fminsearch function

12

Current Function Value: 8.1777e-010
25
&

08

Function value

0 10 20 30 40 50 =l 70 80 90
Stop Iteration

Fig. 1.4 : Plot produced by Matlab’s fminsearch, with the optimplotfval function.

Current Function Value: 31776612010

25

Function value
L

lteration

Fig. 1.5 : Plot produced by Scilab’s fminsearch, with the optimplotfval function.

Chapter 1. The fminsearch function 13

[iR=R!

Current point
o
o
|

=
I
1

0.z

oo—

1 2
Number of variables: 2

Fig. 1.6 : Plot produced by Scilab’s fminsearch, with the optimplotz function.

The previous script produces the plot which is presented in figure 1.5.

The comparison between the figures 1.4 and 1.5 shows that the two features produce very
similar plots. Notice that Scilab’s fminsearch does not provide the "Stop” and "Pause” buttons.

The figures 1.6 and 1.7 present the results of Scilab’s optimplotr and optimplotfunccount
functions.

1.3 Conclusion

The current version of Scilab’s fminsearch provides the same algorithm as Matlab’s fminsearch.
The numerical precision is the same. The optimset and optimget functions allows to configure the
optimization, as well as the output and plotting function. Pre-defined plotting function allows to
get a fast and nice plot of the optimization.

Chapter 1. The fminsearch function

14

Total Function Evaluations: 159

Function evaluations

lteration

Fig. 1.7 : Plot produced by Scilab’s fminsearch, with the optimplotfunccount function.

Bibliography

[1] Ellen Fan. Global optimization of lennard-jones atomic clusters. Technical report, McMaster
University, February 2002.

2] Lixing Han. Algorithms in Unconstrained Optimization. Ph.D., The University of Connecticut,
2000.

[3] Lixing Han and Michael Neumann. Effect of dimensionality on the nelder-mead simplex
method. Optimization Methods and Software, 21(1):1-16, 2006.

[4] H. H. Rosenbrock. An automatic method for finding the greatest or least value of a function.
The Computer Journal, 3(3):175-184, March 1960.

Index

Fan, Ellen, 3
fminsearch, 3

optimplotfunccount, 11
optimplotfval, 11
optimplotx, 11
optimset, 7-11

Pfeffer, L., 3

	The fminsearch function
	fminsearch's algorithm
	The algorithm
	The initial simplex
	The number of iterations
	The termination criteria

	Numerical experiments
	Algorithm and numerical precision
	Output and plot functions
	Predefined plot functions

	Conclusion

	Bibliography
	Index

