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Notations

n number of variables

x = (x1, x2, . . . , xn)T ∈ Rn the unknown

x0 ∈ Rn the initial guess

v ∈ Rn a vertex

S = {vi}i=1,m a complex, where m ≥ n+ 1 is the number of vertices

S = {vi}i=1,n+1 a simplex (with n+ 1 vertices)

(vi)j the j-th component of the i-th vertex

S0 the initial simplex

Sk the simplex at iteration k

f : Rn → R the cost function

Fig. 1 : Notations used in this document



Chapter 1

Nelder-Mead method

In this chapter, we present Nelder and Mead’s [8] algorithm. We begin by the analysis of the

algorithm, which is based on a variable shape simplex. Then, we present geometric situations

where the various steps of the algorithm are used. In the third part, we present the rate of

convergence toward the optimum of the Nelder-Mead algorithm. This part is mainly based on

Han and Neumann’s paper [3], which makes use of a class of quadratic functions with a special

initial simplex. The core of this chapter is the analysis of several numerical experiments which

have been performed with the neldermead component. We analyze the behavior of the algorithm

on quadratic functions and present several counter examples where the Nelder-Mead algorithm is

known to fail.

1.1 Introduction

In this section, we present the Nelder-Mead algorithm for unconstrained optimization. This

algorithm is based on the iterative update of a simplex. Then we present various geometric

situations which might occur during the algorithm.

1.1.1 Overview

The goal of the Nelder and Mead algorithm is to solve the following unconstrained optimization

problem

min f(x) (1.1)

where x ∈ Rn, n is the number of optimization parameters and f is the objective function

f : Rn → R.

The Nelder-Mead method is an improvement over the Spendley’s et al. method with the goal

of allowing the simplex to vary in shape, and not only in size, as in Spendley’s et al. algorithm.
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This algorithms is based on the iterative update of a simplex made of n + 1 points S =

{vi}i=1,n+1. Each point in the simplex is called a vertex and is associated with a function value

fi = f(vi) for i = 1, n+ 1.

The vertices are sorted by increasing function values so that the best vertex has index 1 and

the worst vertex has index n+ 1

f1 ≤ f2 ≤ . . . ≤ fn ≤ fn+1. (1.2)

The v1 vertex (resp. the vn+1 vertex) is called the best vertex (resp. worst), because it is

associated with the lowest (resp. highest) function value.

The centroid of the simplex x(j) is the center of the vertices where the vertex vj has been

excluded. This centroid is

x(j) =
1

n

∑
i=1,n+1,i 6=j

vi. (1.3)

The algorithm makes use of one coefficient ρ > 0, called the reflection factor. The standard value

of this coefficient is ρ = 1. The algorithm attempts to replace some vertex vj by a new vertex

x(ρ, j) on the line from the vertex vj to the centroid x(j). The new vertex x(ρ, j) is defined by

x(ρ, j) = (1 + ρ)x(j)− ρvj. (1.4)

1.1.2 Algorithm

In this section, we analyze the Nelder-Mead algorithm, which is presented in figure 1.1.

The Nelder-Mead algorithm makes use of four parameters: the coefficient of reflection ρ, ex-

pansion χ, contraction γ and shrinkage σ. When the expansion or contraction steps are performed,

the shape of the simplex is changed, thus ”adapting itself to the local landscape” [8].

These parameters should satisfy the following inequalities [8, 5]

ρ > 0, χ > 1, χ > ρ, 0 < γ < 1 and 0 < σ < 1. (1.5)

The standard values for these coefficients are

ρ = 1, χ = 2, γ =
1

2
and σ =

1

2
. (1.6)

In [4], the Nelder-Mead algorithm is presented with other parameter names, that is µr = ρ,

µe = ρχ, µic = −γ and µoc = ργ. These coefficients must satisfy the following inequality

− 1 < µic < 0 < µoc < µr < µe. (1.7)

At each iteration, we compute the centroid x(n + 1) where the worst vertex vn+1 has been

excluded. This centroid is

x(n+ 1) =
1

n

∑
i=1,n

vi. (1.8)
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Compute an initial simplex S0

Sorts the vertices S0 with increasing function values

S ← S0

while σ(S) > tol do

x← x(n+ 1)

xr ← x(ρ, n+ 1) {Reflect}
fr ← f(xr)

if fr < f1 then

xe ← x(ρχ, n+ 1) {Expand}
fe ← f(xe)

if fe < fr then

Accept xe

else

Accept xr

end if

else if f1 ≤ fr < fn then

Accept xr

else if fn ≤ fr < fn+1 then

xc ← x(ργ, n+ 1) {Outside contraction}
fc ← f(xc)

if fc < fr then

Accept xc

else

Compute the points xi = x1 + σ(xi − x1), i = 2, n+ 1 {Shrink}
Compute fi = f(vi) for i = 2, n+ 1

end if

else

xc ← x(−γ, n+ 1) {Inside contraction}
fc ← f(xc)

if fc < fn+1 then

Accept xc

else

Compute the points xi = x1 + σ(xi − x1), i = 2, n+ 1 {Shrink}
Compute fi = f(vi) for i = 2, n+ 1

end if

end if

Sort the vertices of S with increasing function values

end while

Fig. 1.1 : Nelder-Mead algorithm – Standard version
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We perform a reflection with respect to the worst vertex vn+1, which creates the reflected point

xr defined by

xr = x(ρ, n+ 1) = (1 + ρ)x(n+ 1)− ρvn+1 (1.9)

We then compute the function value of the reflected point as fr = f(xr).

From that point, there are several possibilities, which are listed below. Most steps try to

replace the worst vertex vn+1 by a better point, which is computed depending on the context.

• In the case where fr < f1, the reflected point xr were able to improve (i.e. reduce) the

function value. In that case, the algorithm tries to expand the simplex so that the function

value is improved even more. The expansion point is computed by

xe = x(ρχ, n+ 1) = (1 + ρχ)x(n+ 1)− ρχvn+1 (1.10)

and the function is computed at this point, i.e. we compute fe = f(xe). If the expansion

point allows to improve the function value, the worst vertex vn+1 is rejected from the simplex

and the expansion point xe is accepted. If not, the reflection point xr is accepted.

• In the case where f1 ≤ fr < fn, the worst vertex vn+1 is rejected from the simplex and the

reflected point xr is accepted.

• In the case where fn ≤ fr < fn+1, we consider the point

xc = x(ργ, n+ 1) = (1 + ργ)x(n+ 1)− ργvn+1 (1.11)

is considered. If the point xc is better than the reflection point xr, then it is accepted. If

not, a shrink step is performed, where all vertices are moved toward the best vertex v1.

• In other cases, we consider the point

xc = x(−γ, n+ 1) = (1− γ)x(n+ 1) + γvn+1. (1.12)

If the point xc is better than the worst vertex xn+1, then it is accepted. If not, a shrink

step is performed.

The algorithm from figure 1.1 is the most popular variant of the Nelder-Mead algorithm. But

the original paper is based on a ”greedy” expansion, where the expansion point is accepted if it is

better than the best point (and not if it is better than the reflection point). This ”greedy” version

is implemented in AS47 by O’Neill in [9] and the corresponding algorithm is presented in figure

1.2.
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[...]

xe ← x(ρχ, n+ 1) {Expand}
fe ← f(xe)

if fe < f1 then

Accept xe

else

Accept xr

end if

[...]

Fig. 1.2 : Nelder-Mead algorithm – Greedy version
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R = Reflexion

H = Highest

L = Lowest

N = Next to highest

E = Expansion

Ci = Contraction 
       (inside)

Co = Contraction 
       (outside)

CiShrink

Fig. 1.3 : Nelder-Mead simplex steps
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R

H

L

N

E

R = Reflexion

H = Highest

L = Lowest

N = Next to highest

E = Expansion

Accepted

Fig. 1.4 : Nelder-Mead simplex moves – Reflection

1.2 Geometric analysis

The figure 1.3 presents the various moves of the simplex in the Nelder-Mead algorithm.

The figures 1.4 to 1.9 present the detailed situations when each type of step occur. We

emphasize that these figures are not the result of numerical experiments. These figures been

created in order to illustrate the following specific points of the algorithm.

• Obviously, the expansion step is performed when the simplex is far away from the optimum.

The direction of descent is then followed and the worst vertex is moved into that direction.

• When the reflection step is performed, the simplex is getting close to an valley, since the

expansion point does not improve the function value.

• When the simplex is near the optimum, the inside and outside contraction steps may be

performed, which allows to decrease the size of the simplex. The figure 1.6, which illustrates

the inside contraction step, happens in ”good” situations. As presented in section 1.4.4,

applying repeatedly the inside contraction step can transform the simplex into a degenerate

simplex, which may let the algorithm converge to a non stationnary point.

• The shrink steps (be it after an outside contraction or an inside contraction) occurs only in

very special situations. In practical experiments, shrink steps are rare.

1.3 Convergence properties on a quadratic

In this section, we reproduce one result presented by Han and Neumann [3], which states the

rate of convergence toward the optimum on a class of quadratic functions with a special initial

simplex. Some additional results are also presented in the Phd thesis by Lixing Han [2]. We study



Chapter 1. Nelder-Mead method 10
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Fig. 1.5 : Nelder-Mead simplex moves – Expansion

R
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N

Accepted

Ci

R = Reflexion

H = Highest

L = Lowest

N = Next to highest

Ci = Contraction 
       (inside)

f(R) ≥ f(H)

Fig. 1.6 : Nelder-Mead simplex moves - Inside contraction

R
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R = Reflexion

H = Highest

L = Lowest

N = Next to highest

Co = Contraction 
       (outside)

f(N)≤f(R)<f(H)

Fig. 1.7 : Nelder-Mead simplex moves – Outside contraction
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Shrink

Ci

R = Reflexion

H = Highest

L = Lowest

N = Next to highest

E = Expansion

Ci = Contraction 
       (inside)

Fig. 1.8 : Nelder-Mead simplex moves – Shrink after inside contraction.
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Outside Contraction

Co

R = Reflexion

H = Highest

L = Lowest

N = Next to highest

Co = Contraction 
       (outside)

f(N)≤f(R)<f(H)

f(Co)>f(R)

Fig. 1.9 : Nelder-Mead simplex moves – Shrink after outside contraction
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a generalized quadratic and use a particular initial simplex. We show that the vertices follow a

recurrence equation, which is associated with a characteristic equation. The study of the roots of

these characteristic equations give an insight of the behavior of the Nelder-Mead algorithm when

the dimension n increases.

Let us suppose than we want to minimize the function

f(x) = x2
1 + . . .+ x2

n (1.13)

with the initial simplex

S0 =
[
0,v

(0)
1 , . . . ,v(0)

n

]
(1.14)

With this choice of the initial simplex, the best vertex remains fixed at 0 = (0, 0, . . . , 0)T ∈ Rn.

As the cost function 1.13 is strictly convex, the Nelder-Mead method never performs the shrink

step. Therefore, at each iteration, a new simplex is formed by replacing the worst vertex v
(k)
n ,

by a new, better vertex. Assume that the Nelder-Mead method generates a sequence of simplices

{Sk}k≥0 in Rn, where

Sk =
[
0,v

(k)
1 , . . . ,v(n)

n

]
(1.15)

We wish that the sequence of simplices Sk → 0 ∈ Rn as k → ∞. To measure the progress of

convergence, Han and Neumann use the oriented length σ+(Sk) of the simplex Sk, defined by

σ+(S) = max
i=2,m

‖vi − v1‖2. (1.16)

We say that a sequence of simplices {Sk}k≥0 converges to the minimizer 0 ∈ Rn of the function

in equation 1.13 if limk→∞ σ+(Sk) = 0.

We measure the rate of convergence defined by

ρ(S0, n) = lim supk→∞

( ∑
i=0,k−1

σ(Si+1)

σ(Si)

)1/k

. (1.17)

That definition can be viewed as the geometric mean of the ratio of the oriented lengths between

successive simplices and the minimizer 0. This definition implies

ρ(S0, n) = lim supk→∞

(
σ(Sk+1)

σ(S0)

)1/k

. (1.18)

According to the definition, the algorithm is convergent if ρ(S0, n) < 1. The larger the ρ(S0, n),

the slower the convergence. In particular, the convergence is very slow when ρ(S0, n) is close to 1.

The analysis is based on the fact that the Nelder-Mead method generates a sequence of simplices

in Rn satisfying

Sk =
[
0,v(k+n−1), . . . ,v(k+1),v(k)

]
, (1.19)
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where 0,v(k+n−1), . . . ,v(k+1),v(k) ∈ Rn are the vertices of the k − th simplex, with

f(0) < f
(
v(k+n−1)

)
< f

(
v(k+1)

)
< f

(
v(k)

)
, (1.20)

for k ≥ 0.

To simplify the analysis, we consider that only one type of step of the Nelder-Mead method

is applied repeatedly. This allows to establish recurrence equations for the successive simplex

vertices. As the shrink step is never used, and the expansion steps is never used neither (since

the best vertex is already at 0), the analysis focuses on the outside contraction, inside contraction

and reflection steps.

The centroid of the n best vertices of Sk is given by

v(k) =
1

n

(
v(k+1) + . . .+ v(k+n−1) + 0

)
(1.21)

=
1

n

(
v(k+1) + . . .+ v(k+n−1)

)
(1.22)

=
1

n

∑
i=1,n−1

v(k+i) (1.23)

1.3.1 With default parameters

In this section, we analyze the roots of the characteristic equation with fixed, standard inside and

outside contraction coefficients.

Outside contraction

If the outside contraction step is repeatedly performed with µoc = ργ = 1
2
, then

v(k+n) = v(k) +
1

2

(
v(k) − v(k)

)
. (1.24)

By plugging the definition of the centroid 1.23 into the previous equality, we find the recurrence

formula

2nv(k+n) − 3v(k+1) − . . .− 3v(k+n−1) + nv(k) = 0. (1.25)

The associated characteristic equation is

2nµn − 3µn−1 − . . .− 3µ+ n = 0. (1.26)

Inside contraction

If the inside contraction step is repeatedly performed with µic = −γ = −1
2
, then

v(k+n) = v(k) − 1

2

(
v(k) − v(k)

)
. (1.27)

By plugging the definition of the centroid 1.23 into the previous equality, we find the recurrence

formula

2nv(k+n) − v(k+1) − . . .− v(k+n−1) − nv(k) = 0. (1.28)
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The associated characteristic equation is

2nµn − µn−1 − . . .− µ− n = 0. (1.29)

Reflection

If the reflection step is repeatedly performed with µr = ρ = 1, then

v(k+n) = v(k) +
(
v(k) − v(k)

)
. (1.30)

By plugging the definition of the centroid 1.23 into the previous equality, we find the recurrence

formula

nv(k+n) − 2v(k+1) − . . .− 2v(k+n−1) + nv(k) = 0. (1.31)

The associated characteristic equation is

nµn − 2µn−1 − . . .− 2µ+ n = 0. (1.32)

The recurrence equations 1.26, 1.29 and 1.32 are linear. Their general solutions are of the

form

v(k) = µk1a1 + . . .+ µknan, (1.33)

where {µi}i=1,n are the roots of the characteristic equations and {ai}i=1,n ∈ Cn are independent

vectors such that v(k) ∈ Rn for all k ≥ 0.

The analysis by Han and Neumann [3] gives a deep understanding of the convergence rate for

this particular situation. For n = 1, they show that the convergence rate is 1
2
. For n = 2, the

convergence rate is
√

2
2
≈ 0.7 with a particular choice for the initial simplex. For n ≥ 3, Han and

Neumann [3] perform a numerical analysis of the roots.

In the following Scilab script, we compute the roots of these 3 characteristic equations.
//

// computeroots1 −−
// Compute the roots of the characterist ic equations of

// usual Nelder−Mead method.

//

function computeroots1 ( n )

// Polynomial for outside contraction :

// n − 3x − . . . − 3xˆ(n−1) + 2n xˆ(n) = 0

mprintf (”Polynomial for outside contraction :\n” ) ;

c o e f f s = zeros (1 , n+1);

c o e f f s (1 ) = n

c o e f f s ( 2 : n) = −3

c o e f f s (n+1) = 2 ∗ n

p=poly ( c o e f f s , ”x” ,”coeff ”)

disp (p)

mprintf (”Roots :\n” ) ;

r = roots (p)

for i =1:n

mprintf (”Root #%d/%d |%s|=%f\n” , i , length ( r ) , string ( r ( i ) ) , abs ( r ( i ) ) )

end

// Polynomial for inside contraction :

// − n − x − . . . − xˆ(n−1) + 2n xˆ(n)= 0

mprintf (”Polynomial for inside contraction :\n” ) ;

c o e f f s = zeros (1 , n+1);

c o e f f s (1 ) = −n

c o e f f s ( 2 : n) = −1
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c o e f f s (n+1) = 2 ∗ n

p=poly ( c o e f f s , ”x” ,”coeff ”)

disp (p)

mprintf (”Roots :\n” ) ;

r = roots (p)

for i =1:n

mprintf (”Root #%d/%d |%s|=%f\n” , i , length ( r ) , string ( r ( i ) ) , abs ( r ( i ) ) )

end

// Polynomial for ref lect ion :

// n − 2x − . . . − 2xˆ(n−1) + n xˆ(n) = 0

mprintf (”Polynomial for ref lect ion :\n” ) ;

c o e f f s = zeros (1 , n+1);

c o e f f s (1 ) = n

c o e f f s ( 2 : n) = −2

c o e f f s (n+1) = n

p=poly ( c o e f f s , ”x” ,”coeff ”)

disp (p)

r = roots (p)

mprintf (”Roots :\n” ) ;

for i =1:n

mprintf (”Root #%d/%d |%s|=%f\n” , i , length ( r ) , string ( r ( i ) ) , abs ( r ( i ) ) )

end

endfunction

If we execute the previous script with n = 10, the following output is produced.

-->computeroots1 ( 10 )

Polynomial for outside contraction :

2 3 4 5 6 7 8 9 10

10 - 3x - 3x - 3x - 3x - 3x - 3x - 3x - 3x - 3x + 20x

Roots :

Root #1/10 |0.5822700+%i*0.7362568|=0.938676

Root #2/10 |0.5822700-%i*0.7362568|=0.938676

Root #3/10 |-0.5439060+%i*0.7651230|=0.938747

Root #4/10 |-0.5439060-%i*0.7651230|=0.938747

Root #5/10 |0.9093766+%i*0.0471756|=0.910599

Root #6/10 |0.9093766-%i*0.0471756|=0.910599

Root #7/10 |0.0191306+%i*0.9385387|=0.938734

Root #8/10 |0.0191306-%i*0.9385387|=0.938734

Root #9/10 |-0.8918713+%i*0.2929516|=0.938752

Root #10/10 |-0.8918713-%i*0.2929516|=0.938752

Polynomial for inside contraction :

2 3 4 5 6 7 8 9 10

- 10 - x - x - x - x - x - x - x - x - x + 20x

Roots :

Root #1/10 |0.7461586+%i*0.5514088|=0.927795

Root #2/10 |0.7461586-%i*0.5514088|=0.927795

Root #3/10 |-0.2879931+%i*0.8802612|=0.926175

Root #4/10 |-0.2879931-%i*0.8802612|=0.926175

Root #5/10 |-0.9260704|=0.926070

Root #6/10 |0.9933286|=0.993329

Root #7/10 |0.2829249+%i*0.8821821|=0.926440
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Root #8/10 |0.2829249-%i*0.8821821|=0.926440

Root #9/10 |-0.7497195+%i*0.5436596|=0.926091

Root #10/10 |-0.7497195-%i*0.5436596|=0.926091

Polynomial for reflection :

2 3 4 5 6 7 8 9 10

10 - 2x - 2x - 2x - 2x - 2x - 2x - 2x - 2x - 2x + 10x

Roots :

Root #1/10 |0.6172695+%i*0.7867517|=1.000000

Root #2/10 |0.6172695-%i*0.7867517|=1.000000

Root #3/10 |-0.5801834+%i*0.8144859|=1.000000

Root #4/10 |-0.5801834-%i*0.8144859|=1.000000

Root #5/10 |0.9946011+%i*0.1037722|=1.000000

Root #6/10 |0.9946011-%i*0.1037722|=1.000000

Root #7/10 |0.0184670+%i*0.9998295|=1.000000

Root #8/10 |0.0184670-%i*0.9998295|=1.000000

Root #9/10 |-0.9501543+%i*0.3117800|=1.000000

Root #10/10 |-0.9501543-%i*0.3117800|=1.000000

The following Scilab script allows to compute the minimum and the maximum of the modulus

of the roots. The ”e” option of the ”roots” command has been used to force the use of the

eigenvalues of the companion matrix as the computational method. The default algorithm, based

on the Jenkins-Traub Rpoly method is generating a convergence error and cannot be used in this

case.
function [ rminoc , rmaxoc , rminic , rmaxic ] = computeroot s1 abst ract ( n )

// Polynomial for outside contraction :

// n − 3x − . . . − 3xˆ(n−1) + 2n xˆ(n) = 0

c o e f f s = zeros (1 , n+1);

c o e f f s (1 ) = n

c o e f f s ( 2 : n) = −3

c o e f f s (n+1) = 2 ∗ n

p=poly ( c o e f f s , ”x” ,”coeff ”)

r = roots (p , ”e”)

rminoc = min(abs ( r ) )

rmaxoc = max(abs ( r ) )

// Polynomial for inside contraction :

// − n − x − . . . − xˆ(n−1) + 2n xˆ(n)= 0

c o e f f s = zeros (1 , n+1);

c o e f f s (1 ) = −n

c o e f f s ( 2 : n) = −1

c o e f f s (n+1) = 2 ∗ n

p=poly ( c o e f f s , ”x” ,”coeff ”)

r = roots (p , ”e”)

rminic = min(abs ( r ) )

rmaxic = max(abs ( r ) )

mprintf (”%d & %f & %f & %f & %f\\\\\n” , n , rminoc , rmaxoc , rminic , rmaxic )

endfunction

function drawf igure1 ( nbmax )

rminoctable = zeros (1 ,nbmax)

rmaxoctable = zeros (1 ,nbmax)

rmin i c tab l e = zeros (1 ,nbmax)

rmaxictab le = zeros (1 ,nbmax)

for n = 1 : nbmax

[ rminoc , rmaxoc , rminic , rmaxic ] = computeroot s1 abst ract ( n )

rminoctable ( n ) = rminoc

rmaxoctable ( n ) = rmaxoc

rmin i c tab l e ( n ) = rminic
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rmaxictab le ( n ) = rmaxic

end

plot2d ( 1 : nbmax , [ rminoctable ’ , rmaxoctable ’ , rmin ic tab le ’ , rmaxictable ’ ] )

f = gcf ( ) ;

f . c h i l d r en . t i t l e . t ext = ”Nelder−Mead characterist ic equation roots” ;

f . c h i l d r en . x l a b e l . t ext = ”Number of variables (n)” ;

f . c h i l d r en . y l a b e l . t ext = ”Roots of the characterist ic equation” ;

capt ions ( f . c h i l d r en . ch i l d r en . ch i ld ren , [ ”R−max−IC” ,”R−min−IC” ,”R−max−OC” ,”R−min−OC” ] ) ;

f . c h i l d r en . ch i l d r en ( 1 ) . l e g e nd l o c a t i o n=”in lower right ” ;

for i = 1 :4

mypoly = f . ch i l d r en . ch i l d r en ( 2 ) . ch i l d r en ( i ) ;

mypoly . foreground=i ;

mypoly . l i n e s t y l e=i ;

end

xs2png (0 , ”neldermead−roots .png” ) ;

endfunction

For the reflection characteristic equation, the roots all have a unity modulus. The minimum

and maximum roots of the inside contraction (”ic” in the table) and outside contraction (”oc” in

the table) steps are presented in table 1.10. These roots are presented graphically in figure 1.11.

We see that the roots start from 0.5 when n = 1 and converge rapidly toward 1 when n→∞.

1.3.2 With variable parameters

In this section, we analyze the roots of the characteristic equation with variable inside and outside

contraction coefficients.

Outside contraction

If the outside contraction step is repeatedly performed with variable µoc ∈ [0, µr[, then

v(k+n) = v(k) + µoc
(
v(k) − v(k)

)
(1.34)

= (1 + µoc)v
(k) − µocv(k) (1.35)

By plugging the definition of the centroid into the previous equality, we find the recurrence formula

nv(k+n) − (1 + µoc)v
(k+1) − . . .− (1 + µoc)v

(k+n−1) + nµocv
(k) = 0 (1.36)

The associated characteristic equation is

nµn − (1 + µoc)µ
n−1 − . . .− (1 + µoc)µ+ nµoc = 0. (1.37)

Inside contraction

We suppose that the inside contraction step is repeatedly performed with −1 < µic < 0. The

characteristic equation is the same as 1.37, but it is here studied in the range µic ∈]− 1, 0[.

To study the convergence of the method, we simply have to study the roots of equation 1.37,

where the range ]− 1, 0[ corresponds to the inside contraction (with −1/2 as the standard value)

and where the range ]0, µr[ corresponds to the outside contraction (with 1/2 as the standard

value).

In the following Scilab script, we compute the minimum and maximum root of the character-

istic equation, with n fixed.
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n mini=1,n µ
oc
i maxi=1,n µ

oc
i mini=1,n µ

ic
i maxi=1,n µ

ic
i

1 0.500000 0.500000 0.500000 0.500000

2 0.707107 0.707107 0.593070 0.843070

3 0.776392 0.829484 0.734210 0.927534

4 0.817185 0.865296 0.802877 0.958740

5 0.844788 0.888347 0.845192 0.973459

6 0.864910 0.904300 0.872620 0.981522

7 0.880302 0.916187 0.892043 0.986406

8 0.892487 0.925383 0.906346 0.989584

9 0.902388 0.932736 0.917365 0.991766

10 0.910599 0.938752 0.926070 0.993329

11 0.917524 0.943771 0.933138 0.994485

12 0.923446 0.948022 0.938975 0.995366

13 0.917250 0.951672 0.943883 0.996051

14 0.912414 0.954840 0.948062 0.996595

15 0.912203 0.962451 0.951666 0.997034

16 0.913435 0.968356 0.954803 0.997393

17 0.915298 0.972835 0.957559 0.997691

18 0.917450 0.976361 0.959999 0.997940

19 0.919720 0.979207 0.962175 0.998151

20 0.922013 0.981547 0.964127 0.998331

21 0.924279 0.983500 0.965888 0.998487

22 0.926487 0.985150 0.967484 0.998621

23 0.928621 0.986559 0.968938 0.998738

24 0.930674 0.987773 0.970268 0.998841

25 0.932640 0.988826 0.971488 0.998932

26 0.934520 0.989747 0.972613 0.999013

27 0.936316 0.990557 0.973652 0.999085

28 0.938030 0.991274 0.974616 0.999149

29 0.939666 0.991911 0.975511 0.999207

30 0.941226 0.992480 0.976346 0.999259

31 0.942715 0.992991 0.977126 0.999306

32 0.944137 0.993451 0.977856 0.999348

33 0.945495 0.993867 0.978540 0.999387

34 0.946793 0.994244 0.979184 0.999423

35 0.948034 0.994587 0.979791 0.999455

36 0.949222 0.994900 0.980363 0.999485

37 0.950359 0.995187 0.980903 0.999513

38 0.951449 0.995450 0.981415 0.999538

39 0.952494 0.995692 0.981900 0.999561

40 0.953496 0.995915 0.982360 0.999583

45 0.957952 0.996807 0.984350 0.999671

50 0.961645 0.997435 0.985937 0.999733

55 0.964752 0.997894 0.987232 0.999779

60 0.967399 0.998240 0.988308 0.999815

65 0.969679 0.998507 0.989217 0.999842

70 0.971665 0.998718 0.989995 0.999864

75 0.973407 0.998887 0.990669 0.999881

80 0.974949 0.999024 0.991257 0.999896

85 0.976323 0.999138 0.991776 0.999908

90 0.977555 0.999233 0.992236 0.999918

95 0.978665 0.999313 0.992648 0.999926

100 0.979671 0.999381 0.993018 0.999933

Fig. 1.10 : Roots of the characteristic equations of the Nelder-Mead method with standard coefficients.
(Some results are not displayed to make the table fit the page).
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Fig. 1.11 : Modulus of the roots of the characteristic equations of the Nelder-Mead method with
standard coefficients – R-max-IC is the maximum of the modulus of the root of the Inside Contraction
steps

//

// rootsvariable −−
// Compute roots of the characterist ic equation

// of Nelder−Mead with variable coef f i c ient mu.

// Polynomial for outside/inside contraction :

// n mu − (1+mu)x − . . . − (1+mu)xˆ(n−1) + n xˆ(n) = 0

//

function [ rmin , rmax ] = r o o t s v a r i a b l e ( n , mu )

c o e f f s = zeros (1 , n+1);

c o e f f s (1 ) = n ∗ mu

c o e f f s ( 2 : n) = −(1+mu)

c o e f f s (n+1) = n

p=poly ( c o e f f s , ”x” ,”coeff ”)

r = roots (p , ”e”)

rmin = min(abs ( r ) )

rmax = max(abs ( r ) )

mprintf (”%f & %f & %f\\\\\n” , mu, rmin , rmax)

endfunction

function d raw f i gu r e va r i ab l e ( n , nmumax )

rmintable = zeros (1 ,nmumax)

rmaxtable = zeros (1 ,nmumax)

mutable = linspace ( −1 , 1 , nmumax )

for index = 1 : nmumax

mu = mutable ( index )

[ rmin , rmax ] = r o o t s v a r i a b l e ( n , mu )

rmintable ( index ) = rmin

rmaxtable ( index ) = rmax

end

plot2d ( mutable , [ rmintable ’ , rmaxtable ’ ] )

f = gcf ( ) ;

pause

f . c h i l d r en . t i t l e . t ext = ”Nelder−Mead characterist ic equation roots” ;

f . c h i l d r en . x l a b e l . t ext = ”Contraction coef f i c ient ” ;

f . c h i l d r en . y l a b e l . t ext = ”Roots of the characterist ic equation” ;

capt ions ( f . c h i l d r en . ch i l d r en . ch i ld ren , [ ”R−max” ,”R−min” ] ) ;

f . c h i l d r en . ch i l d r en ( 1 ) . l e g e nd l o c a t i o n=”in lower right ” ;

for i = 1 :2

mypoly = f . ch i l d r en . ch i l d r en ( 2 ) . ch i l d r en ( i ) ;

mypoly . foreground=i ;

mypoly . l i n e s t y l e=i ;

end

xs2png (0 , ”neldermead−roots−variable .png” ) ;
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Fig. 1.12 : Modulus of the roots of the characteristic equations of the Nelder-Mead method with
variable contraction coefficient and n = 10 – R-max is the maximum of the modulus of the root of the
characteristic equation

endfunction

The figure 1.12 presents the minimum and maximum modulus of the roots of the characteristic

equation with n = 10. The result is that when µoc is close to 0, the minimum root has a modulus

close to 0. The maximum root remains close to 1, whatever the value of the contraction coefficient.

This result would mean that either modifying the contraction coefficient has no effect (because

the maximum modulus of the roots is close to 1) or diminishing the contraction coefficient should

improve the convergence speed (because the minimum modulus of the roots gets closer to 0).

This is the expected result because the more the contraction coefficient is close to 0, the more the

new vertex is close to 0, which is, in our particular situation, the global minimizer. No general

conclusion can be drawn from this single experiment.

1.4 Numerical experiments

In this section, we present some numerical experiments with the Nelder-Mead algorithm. The

two first numerical experiments involve simple quadratic functions. These experiments allows

to see the difference between Spendley’s et al. algorithm and the Nelder-Mead algorithm. We

then present several experiments taken from the bibliography. The O’Neill experiments [9] are

performed in order to check that our algorithm is a correct implementation. We then present

several numerical experiments where the Nelder-Mead does not converge properly. We analyze

the Mc Kinnon counter example from [6]. We show the behavior of the Nelder-Mead simplex

method for a family of examples which cause the method to converge to a non stationnary point.
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We analyze the counter examples presented by Han in his Phd thesis [2]. In these experiments,

the Nelder-Mead algorithm degenerates by applying repeatedly the inside contraction step. We

also reproduce numerical experiments extracted from Torczon’s Phd Thesis [12], where Virginia

Torczon presents the multi-directional direct search algorithm.

1.4.1 Quadratic function

The function we try to minimize is the following quadratic in 2 dimensions

f(x1, x2) = x2
1 + x2

2 − x1x2. (1.38)

The stopping criteria is based on the relative size of the simplex with respect to the size of

the initial simplex

σ+(S) < tol × σ+(S0), (1.39)

where the tolerance is set to tol = 10−8.

The initial simplex is a regular simplex with unit length.

The following Scilab script allows to perform the optimization.
function [ y , index ] = quadrat i c ( x , index )

y = x (1)ˆ2 + x (2)ˆ2 − x (1) ∗ x ( 2 ) ;

endfunction

nm = neldermead new ( ) ;

nm = ne ldermead con f igure (nm, ”−numberofvariables” , 2 ) ;

nm = ne ldermead con f igure (nm, ”−function” , quadrat i c ) ;

nm = ne ldermead con f igure (nm, ”−x0” , [ 2 . 0 2 . 0 ] ’ ) ;

nm = ne ldermead con f igure (nm, ”−maxiter” , 1 00 ) ;

nm = ne ldermead con f igure (nm, ”−maxfunevals” , 3 00 ) ;

nm = ne ldermead con f igure (nm, ”−tolxmethod” ,%f ) ;

nm = ne ldermead con f igure (nm, ”−tolsimplexizerelative ” , 1 . e−8);

nm = ne ldermead con f igure (nm, ”−simplex0method” ,”spendley” ) ;

nm = ne ldermead con f igure (nm, ”−method” ,”variable” ) ;

nm = neldermead search (nm) ;

ne ldermead di sp lay (nm) ;

nm = neldermead destroy (nm) ;

The numerical results are presented in table 1.13.

Iterations 65

Function Evaluations 130

x0 (2.0, 2.0)

Relative tolerance on simplex size 10−8

Exact x? (0., 0.)

Computed x? (−2.519D − 09, 7.332D − 10)

Computed f(x?) 8.728930e− 018

Fig. 1.13 : Numerical experiment with Nelder-Mead method on the quadratic function f(x1, x2) =
x2

1 + x2
2 − x1x2

The various simplices generated during the iterations are presented in figure 1.14.
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Fig. 1.14 : Nelder-Mead numerical experiment – history of simplex

The figure 1.15 presents the history of the oriented length of the simplex. The length is

updated at each iteration, which generates a continuous evolution of the length, compared to the

step-by-step evolution of the simplex with the Spendley et al. algorithm.

The convergence is quite fast in this case, since less than 70 iterations allow to get a function

value lower than 10−15, as shown in figure 1.16.

Badly scaled quadratic function

The function we try to minimize is the following quadratic in 2 dimensions

f(x1, x2) = ax2
1 + x2

2, (1.40)

where a > 0 is a chosen scaling parameter. The more a is large, the more difficult the problem is

to solve with the simplex algorithm.

We set the maximum number of function evaluations to 400. The initial simplex is a regular

simplex with unit length. The stopping criteria is based on the relative size of the simplex with

respect to the size of the initial simplex

σ+(S) < tol × σ+(S0), (1.41)

where the tolerance is set to tol = 10−8.

The following Scilab script allows to perform the optimization.
a = 100 . 0 ;

function [ y , index ] = quadrat i c ( x , index )

y = a ∗ x (1)ˆ2 + x (2 ) ˆ 2 ;

endfunction

nm = neldermead new ( ) ;

nm = ne ldermead con f igure (nm, ”−numberofvariables” , 2 ) ;
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Fig. 1.15 : Nelder-Mead numerical experiment – History of logarithm of length of simplex

Fig. 1.16 : Nelder-Mead numerical experiment – History of logarithm of function
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nm = ne ldermead con f igure (nm, ”−function” , quadrat i c ) ;

nm = ne ldermead con f igure (nm, ”−x0” , [ 1 0 . 0 1 0 . 0 ] ’ ) ;

nm = ne ldermead con f igure (nm, ”−maxiter” , 4 00 ) ;

nm = ne ldermead con f igure (nm, ”−maxfunevals” , 4 00 ) ;

nm = ne ldermead con f igure (nm, ”−tolxmethod” ,%f ) ;

nm = ne ldermead con f igure (nm, ”−tolsimplexizerelative ” , 1 . e−8);

nm = ne ldermead con f igure (nm, ”−simplex0method” ,”spendley” ) ;

nm = ne ldermead con f igure (nm, ”−method” ,”variable” ) ;

nm = neldermead search (nm) ;

ne ldermead di sp lay (nm) ;

nm = neldermead destroy (nm) ;

The numerical results are presented in table 1.17, where the experiment is presented for

a = 100. We can check that the number of function evaluation (161 function evaluations) is much

lower than the number for the fixed shape Spendley et al. method (400 function evaluations) and

that the function value at optimum is very accurate (f(x?) ≈ 10−17 compared to Spendley’s et

al. f(x?) ≈ 0.08).

Nelder-Mead Spendley et al.

Iterations 82 340

Function Evaluations 164 Max=400

a 100.0 100.0

x0 (10.0, 10.0) (10.0, 10.0)

Initial simplex regular regular

Initial simplex length 1.0 1.0

Relative tolerance on simplex size 10−8 10−8

Exact x? (0., 0.) (0., 0.)

Computed x? (−2.D − 10− 1.D − 09) (0.001, 0.2)

Computed f(x?) 1.D − 017 0.08

Fig. 1.17 : Numerical experiment with Nelder-Mead method on a badly scaled quadratic function. The
variable shape Nelder-Mead algorithm improves the accuracy of the result compared to the fixed shaped
Spendley et al. method.

In figure 1.18, we analyze the behavior of the method with respect to scaling. We check that

the method behaves very smoothly, with a very small number of additional function evaluations

when the scaling deteriorates. This shows how much the Nelder-Mead algorithms improves over

Spendley’s et al. method.

1.4.2 Sensitivity to dimension

In this section, we try to reproduce the result presented by Han and Neumann [3], which shows

that the convergence rate of the Nelder-Mead algorithms rapidly deteriorates when the number

of variables increases. The function we try to minimize is the following quadratic in n-dimensions

f(x) =
∑
i=1,n

x2
i . (1.42)
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a Function Computed f(x?) Computed x?

Evaluations

1.0 147 1.856133e− 017 (1.920D − 09,−3.857D − 09)

10.0 156 6.299459e− 017 (2.482D − 09, 1.188D − 09)

100.0 164 1.140383e− 017 (−2.859D − 10,−1.797D − 09)

1000.0 173 2.189830e− 018 (−2.356D − 12, 1.478D − 09)

10000.0 189 1.128684e− 017 (2.409D − 11,−2.341D − 09)

Fig. 1.18 : Numerical experiment with Nelder-Mead method on a badly scaled quadratic function

The initial simplex is given to the solver. The first vertex is the origin ; this vertex is never

updated during the iterations. The other vertices are based on uniform random numbers in the

interval [−1, 1]. The vertices i = 2, n+ 1 are computed from

v
(0)
i = 2rand(n, 1)− 1, (1.43)

as prescribed by [3]. In Scilab, the rand function returns a matrix of uniform random numbers

in the interval [0, 1).

The stopping criteria is based on the absolute size of the simplex, i.e. the simulation is stopped

when

σ+(S) < tol, (1.44)

where the tolerance is set to tol = 10−8.

We perform the experiment for n = 1, . . . , 19. For each experiment, we compute the conver-

gence rate from

ρ(S0, n) =

(
σ(Sk)

σ(S0)

)1/k

, (1.45)

where k is the number of iterations.

The following Scilab script allows to perform the optimization.
function [ f , index ] = quadract icn ( x , index )

f = sum( x . ˆ 2 ) ;

endfunction

//

// solvepb −−
// Find the solution for the given number of dimensions

//

function [ nb f eva l s , n i t e r , rho ] = solvepb ( n )

rand (”seed” , 0 )

nm = neldermead new ( ) ;

nm = ne ldermead con f igure (nm, ”−numberofvariables” , n ) ;

nm = ne ldermead con f igure (nm, ”−function” , quadract icn ) ;

nm = ne ldermead con f igure (nm, ”−x0” , zeros (n , 1 ) ) ;

nm = ne ldermead con f igure (nm, ”−maxiter” , 2 000 ) ;

nm = ne ldermead con f igure (nm, ”−maxfunevals” , 2 000 ) ;

nm = ne ldermead con f igure (nm, ”−tolxmethod” ,%f ) ;

nm = ne ldermead con f igure (nm, ”−tolsimplexizerelative ” , 0 . 0 ) ;

nm = ne ldermead con f igure (nm, ”−tolsimplexizeabsolute” , 1 . e−8);

nm = ne ldermead con f igure (nm, ”−simplex0method” ,”given” ) ;

coords ( 1 , 1 : n) = zeros (1 , n ) ;
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for i = 2 : n+1

coords ( i , 1 : n ) = 2 .0 ∗ rand (1 , n) − 1 . 0 ;

end

nm = ne ldermead con f igure (nm, ”−coords0” , coords ) ;

nm = ne ldermead con f igure (nm, ”−method” ,”variable” ) ;

nm = neldermead search (nm) ;

s i 0 = neldermead get ( nm , ”−simplex0” ) ;

sigma0 = opt ims imp l ex s i z e ( s i 0 , ”sigmaplus” ) ;

s i op t = neldermead get ( nm , ”−simplexopt” ) ;

sigmaopt = opt ims imp l ex s i z e ( s i op t , ”sigmaplus” ) ;

n i t e r = neldermead get ( nm , ”−i terations ” ) ;

rho = ( sigmaopt/ sigma0 )ˆ ( 1 . 0/ n i t e r ) ;

nb f eva l s = neldermead get ( nm , ”−funevals” ) ;

mprintf ( ”%d %d %d %f\n” , n , nb f eva l s , n i t e r , rho ) ;

nm = neldermead destroy (nm) ;

endfunction

// Perform the 20 experiments

for n = 1:20

[ nb f eva l s n i t e r rho ] = solvepb ( n ) ;

a r ray rho (n) = rho ;

a r r ay nb f e va l s (n) = nb f eva l s ;

a r r a y n i t e r (n) = n i t e r ;

end

The figure 1.19 presents the results of this experiment. The rate of convergence, as measured

by ρ(S0, n) converges rapidly toward 1.

n Function evaluations Iterations ρ(S0, n)

1 56 27 0.513002

2 113 55 0.712168

3 224 139 0.874043

4 300 187 0.904293

5 388 249 0.927305

6 484 314 0.941782

7 583 383 0.951880

8 657 430 0.956872

9 716 462 0.959721

10 853 565 0.966588

11 910 596 0.968266

12 1033 685 0.972288

13 1025 653 0.970857

14 1216 806 0.976268

15 1303 864 0.977778

16 1399 929 0.979316

17 1440 943 0.979596

18 1730 1193 0.983774

19 1695 1131 0.982881

20 1775 1185 0.983603

Fig. 1.19 : Numerical experiment with Nelder-Mead method on a generalized quadratic function

We check that the number of function evaluations increases approximately linearly with the
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Fig. 1.20 : Nelder-Mead numerical experiment – Number of function evaluations depending on the
number of variables

dimension of the problem in figure 1.20. A rough rule of thumb is that, for n = 1, 19, the number

of function evaluations is equal to 100n.

The figure 1.21 presents the rate of convergence depending on the number of variables. The

figure shows that the rate of convergence rapidly gets close to 1 when the number of variables

increases. That shows that the rate of convergence is slower and slower as the number of variables

increases, as explained by Han & Neumann.

1.4.3 O’Neill test cases

In this section, we present the results by O’Neill, who implemented a fortran 77 version of the

Nelder-Mead algorithm [9].

The O’Neill implementation of the Nelder-Mead algorithm has the following particularities

• the initial simplex is computed from the axes and a (single) length,

• the stopping rule is based on variance (not standard deviation) of function value,

• the expansion is greedy, i.e. the expansion point is accepted if it is better than the lower

point,

• an automatic restart is performed if a factorial test shows that the computed optimum is

greater than a local point computed with a relative epsilon equal to 1.e-3 and a step equal

to the length of the initial simplex.
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Fig. 1.21 : Nelder-Mead numerical experiment – Rate of convergence depending on the number of
variables

In order to get an accurate view on O’Neill’s factorial test, we must describe explicitely the

algorithm. This algorithm is given a vector of lengths, stored in the step variable. It is also given

a small value ε. The algorithm is presented in figure 1.22.

O’Neill’s factorial test requires a large number of function evaluations, namely 2n function

evaluations. In O’Neill’s implementation, the parameter ε is set to the constant value 1.e− 3. In

Scilab’s implementation, this parameter can be customized, thanks to the -restarteps option. Its

default value is %eps, the machine epsilon. In O’Neill’s implementation, the parameter step is

equal to the vector of length used in order to compute the initial simplex. In Scilab’s implemen-

tation, the two parameters are different, and the step used in the factorial test can be customized

with the -restartstep option. Its default value is 1.0, which is expanded into a vector with size n.

The following tests are presented by O’Neill :

• Rosenbrock’s parabolic valley [11]

f(x1, x2) = 100(x2 − x2
1)

2 + (1− x1)
2 (1.46)

with starting point x0 = (x1, x2) = (−1.2, 1)T . The function value at initial guess is

f(x0) = 24.2. The solution is x? = (1, 1)T where the function value is f(x?) = 0.

• Powell’s quartic function [10]

f(x1, x2, x3, x4) = (x1 + 10x2)
2 + 5(x3 − x4)

2 + (x2 − 2x3)
4 + 10(x1 − x4)

4 (1.47)

with starting point x0 = (x1, x2, x3, x4) = (3,−1, 0, 1)T . The function value at initial guess

is f(x0) = 215.. The solution is x? = (0, 0, 0, 0)T where the function value is f(x?) = 0..
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x← x?

istorestart = FALSE

for i = 1 to n do

δ = step(i) ∗ ε
if δ == 0.0 then

δ = ε

end if

x(i) = x(i) + δ

fv = f(x)

if fv < fopt then

istorestart = TRUE

break

end if

x(i) = x(i)− δ − δ
fv = f(x)

if fv < fopt then

istorestart = TRUE

break

end if

x(i) = x(i) + δ

end for

Fig. 1.22 : O’Neill’s factorial test
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• Fletcher and Powell’s helical valley [1]

f(x1, x2, x3) = 100 (x3 + 10θ(x1, x2))
2 +

(√
x2

1 + x2
2 − 1

)2

+ x2
3 (1.48)

where

2πθ(x1, x2) =

{
arctan(x2, x1), if x1 > 0

π + arctan(x2, x1), if x1 < 0
(1.49)

with starting point x0 = (x1, x2, x3) = (−1, 0, 0). The function value at initial guess is

f(x0) = 2500. The solution is x? = (1, 0, 0)T where the function value is f(x?) = 0.. Note

that since arctan(0/0) is not defined neither the function f on the line (0, 0, x3). This line

is excluded by assigning a very large value to the function.

• the sum of powers

f(x1, . . . , x10) =
∑
i=1,10

x4
i (1.50)

with starting point x0 = (x1, . . . , x10) = (1, . . . , 1). The function value at initial guess is

f(x0) = 10. The solution is x? = (0, . . . , 0)T where the function value is f(x?) = 0..

The parameters are set to (following O’Neill’s notations)

• REQMIN = 10−16, the absolute tolerance on the variance of the function values in the

simplex,

• STEP = 1.0, the absolute side length of the initial simplex,

• ICOUNT = 1000, the maximum number of function evaluations.

The following Scilab script allows to define the objective functions.
// Rosenbrock ’ s ”banana” function

// init ia lguess [−1.2 1.0 ]

// xoptimum [1.0 1.0}
// foptimum 0.0

function [ y , index ] = rosenbrock ( x , index )

y = 100∗(x(2)−x(1)ˆ2)ˆ2+(1−x ( 1 ) ) ˆ 2 ;

endfunction

// Powell ’ s quartic valley

// in it ia lguess [3 .0 −1.0 0.0 1.0 ]

// xoptimum [0.0 0.0 0.0 0.0 ]

// foptimum 0.0

function [ f , index ] = powe l l qua r t i c ( x , index )

f = (x (1)+10.0∗x (2) )ˆ2 + 5 .0 ∗ ( x(3)−x (4) )ˆ2 + (x(2)−2.0∗x (3) )ˆ4 + 10.0 ∗ ( x (1) − x (4) )ˆ4

endfunction

// Fletcher and Powell he l ica l valley

// in it ia lguess [−1.0 0.0 0.0 ]

// xoptimum [1.0 0.0 0.0 ]

// foptimum 0.0

function [ f , index ] = f l e t c h e r p ow e l l h e l i c a l ( x , index )

rho = sqrt ( x (1) ∗ x (1) + x (2) ∗ x (2 ) )

twopi = 2 ∗ %pi

i f ( x(1)==0.0 ) then

f = 1 . e154

else

i f ( x(1)>0 ) then
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theta = atan ( x (2)/ x ( 1 ) ) / twopi

e l s e i f ( x(1)<0 ) then

theta = (%pi + atan ( x (2)/ x ( 1 ) ) ) / twopi

end

f = 100.0 ∗ ( x (3)−10.0∗ theta )ˆ2 + ( rho − 1 .0 )ˆ2 + x (3)∗x (3)

end

endfunction

// Sum of powers

// in it ia lguess ones(10 ,1)

// xoptimum zeros (10 ,1)

// foptimum 0.0

function [ f , index ] = sumpowers ( x , index )

f = sum( x ( 1 : 1 0 ) . ˆ 4 ) ;

endfunction

The following Scilab function solves an optimization problem, given the number of parameters,

the cost function and the initial guess.
//

// solvepb −−
// Find the solution for the given problem .

// Arguments

// n : number of variables

// cfun : cost function

// x0 : i n i t i a l guess

//

function [ nb f eva l s , n i t e r , nb r e s t a r t , f opt , cputime ] = solvepb ( n , cfun , x0 )

t i c ( ) ;

nm = neldermead new ( ) ;

nm = ne ldermead con f igure (nm, ”−numberofvariables” , n ) ;

nm = ne ldermead con f igure (nm, ”−function” , c fun ) ;

nm = ne ldermead con f igure (nm, ”−x0” , x0 ) ;

nm = ne ldermead con f igure (nm, ”−maxiter” , 1 000 ) ;

nm = ne ldermead con f igure (nm, ”−maxfunevals” , 1 000 ) ;

nm = ne ldermead con f igure (nm, ”−tolxmethod” ,%f ) ;

nm = ne ldermead con f igure (nm, ”−tolsimplexizemethod” ,%f ) ;

// Turn ON the tolerance on variance

nm = ne ldermead con f igure (nm, ”−tolvarianceflag ” ,%t ) ;

nm = ne ldermead con f igure (nm, ”−tolabsolutevariance” , 1 . e−16);

nm = ne ldermead con f igure (nm, ”−tolrelativevariance ” , 0 . 0 ) ;

// Turn ON automatic restart

nm = ne ldermead con f igure (nm, ”−restartf lag ” ,%t ) ;

nm = ne ldermead con f igure (nm, ”−restarteps” , 1 . e−3);

nm = ne ldermead con f igure (nm, ”−restartstep” , 1 . 0 ) ;

// Turn ON greedy expansion

nm = ne ldermead con f igure (nm, ”−greedy” ,%t ) ;

// Set i n i t i a l simplex to axis−by−axis ( this i s already the default anyway)

nm = ne ldermead con f igure (nm, ”−simplex0method” ,”axes” ) ;

nm = ne ldermead con f igure (nm, ”−simplex0length” , 1 . 0 ) ;

nm = ne ldermead con f igure (nm, ”−method” ,”variable” ) ;

//nm = neldermead configure (nm,”−verbose ” ,1) ;

//nm = neldermead configure (nm,”−verbosetermination ” ,1) ;

//

// Perform optimization

//

nm = neldermead search (nm) ;

//neldermead display(nm) ;

n i t e r = neldermead get ( nm , ”−i terations ” ) ;

nb f eva l s = neldermead get ( nm , ”−funevals” ) ;

f opt = neldermead get ( nm , ”−fopt” ) ;

xopt = neldermead get ( nm , ”−xopt” ) ;

nb r e s t a r t = neldermead get ( nm , ”−restartnb” ) ;

s t a tu s = neldermead get ( nm , ”−status” ) ;

nm = neldermead destroy (nm) ;

cputime = toc ( ) ;

mprintf ( ”=============================\n”)

mprintf ( ”status = %s\n” , s t a tu s )

mprintf ( ”xopt = [%s]\n” , strcat ( string ( xopt ) , ” ”) )

mprintf ( ”fopt = %e\n” , f opt )

mprintf ( ”niter = %d\n” , n i t e r )

mprintf ( ”nbfevals = %d\n” , nb f eva l s )

mprintf ( ”nbrestart = %d\n” , nb r e s t a r t )

mprintf ( ”cputime = %f\n” , cputime )

//mprintf ( ”%d %d %e %d %f\n”, nbfevals , nbrestart , fopt , niter , cputime ) ;

endfunction

The following Scilab script solves the 4 cases.
// Solve Rosenbrock ’ s



Chapter 1. Nelder-Mead method 32

x0 = [−1.2 1 . 0 ] . ’ ;

[ nb f eva l s , n i t e r , nb r e s t a r t , f opt , cputime ] = solvepb ( 2 , rosenbrock , x0 ) ;

// Solve Powell ’ s quartic valley

x0 = [ 3 . 0 −1.0 0 .0 1 . 0 ] . ’ ;

[ nb f eva l s , n i t e r , nb r e s t a r t , f opt , cputime ] = solvepb ( 4 , powe l l qua r t i c , x0 ) ;

// Solve Fletcher and Powell he l ica l valley

x0 = [−1.0 0 .0 0 . 0 ] . ’ ;

[ nb f eva l s , n i t e r , nb r e s t a r t , f opt , cputime ] = solvepb ( 3 , f l e t c h e r p ow e l l h e l i c a l , x0 ) ;

// Solve Sum of powers

x0 = ones ( 1 0 , 1 ) ;

[ nb f eva l s , n i t e r , nb r e s t a r t , f opt , cputime ] = solvepb ( 10 , sumpowers , x0 ) ;

The table 1.23 presents the results which were computed by O’Neill compared with Scilab’s.

For most experiments, the results are very close in terms of number of function evaluations.

The problem #4 exhibits a different behavior than the results presented by O’Neill. For Scilab,

the tolerance on variance of function values is reach after 3 restarts, whereas for O’Neill, the

algorithm is restarted once and gives the result with 474 function evaluations. We did not find

any explanation for this behavior. A possible cause of difference may be the floating point system

which are different and may generate different simplices in the algorithms. Although the CPU

times cannot be compared (the article is dated 1972 !), let’s mention that the numerical experiment

were performed by O’Neill on a ICL 4-50 where the two problem 1 and 2 were solved in 3.34 seconds

and the problems 3 and 4 were solved in 22.25 seconds.

Author Problem Function Number Of Function Iterations CPU

Evaluations Restarts Value Time

O’Neill 1 148 0 3.19e-9 ? ?

Scilab 1 155 0 1.158612e-007 80 0.625000

O’Neill 2 209 0 7.35e-8 ? ?

Scilab 2 234 0 1.072588e-008 126 0.938000

O’Neill 3 250 0 5.29e-9 ? ?

Scilab 3 263 0 4.560288e-008 137 1.037000

O’Neill 4 474 1 3.80e-7 ? ?

Scilab 4 616 3 3.370756e-008 402 2.949000

Fig. 1.23 : Numerical experiment with Nelder-Mead method on O’Neill test cases - O’Neill results and
Scilab’s results

1.4.4 Convergence to a non stationnary point

In this section, we analyze the Mc Kinnon counter example from [6]. We show the behavior of

the Nelder-Mead simplex method for a family of examples which cause the method to converge

to a non stationnary point.

Consider a simplex in two dimensions with vertices at 0 (i.e. the origin), v(n+1) and v(n).
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Assume that

f(0) < f(v(n+1)) < f(v(n)). (1.51)

The centroid of the simplex is v = v(n+1)/2, the midpoint of the line joining the best and

second vertex. The reflected point is then computed as

r(n) = v + ρ(v − v(n)) = v(n+1) − v(n) (1.52)

Assume that the reflection point r(n) is rejected, i.e. that f(v(n)) < f(r(n)). In this case,

the inside contraction step is taken and the point v(n+2) is computed using the reflection factor

−γ = −1/2 so that

v(n+2) = v − γ(v − v(n)) =
1

4
v(n+1) − 1

2
v(n) (1.53)

Assume then that the inside contraction point is accepted, i.e. f(v(n+2)) < f(v(n+1)). If this

sequence of steps repeats, the simplices are subject to the following linear recurrence formula

4v(n+2) − v(n+1) + 2v(n) = 0 (1.54)

Their general solutions are of the form

v(n) = λk1a1 + λk2a2 (1.55)

where λii=1,2 are the roots of the characteristic equation and aii=1,2 ∈ Rn. The characteristic

equation is

4λ2 − λ+ 2λ = 0 (1.56)

and has the roots

λ1 =
1 +
√

33

8
≈ 0.84307, λ2 =

1−
√

33

8
≈ −0.59307 (1.57)

After Mc Kinnon has presented the computation of the roots of the characteristic equation, he

presents a special initial simplex for which the simplices degenerates because of repeated failure

by inside contraction (RFIC in his article). Consider the initial simplex with vertices v(0) = (1, 1)

and v(1) = (λ1, λ2) and 0. If follows that the particular solution for these initial conditions is

v(n) = (λn1 , λ
n
2 ).

Consider the function f(x1, x2) given by

f(x1, x2) = θφ|x1|τ + x2 + x2
2, x1 ≤ 0, (1.58)

= θxτ1 + x2 + x2
2, x1 ≥ 0. (1.59)

where θ and φ are positive constants. Note that (0,−1) is a descent direction from the origin

(0, 0) and that f is stricly convex provided τ > 1. f has continuous first derivatives if τ > 1,

continuous second derivatives if τ > 2 and continuous third derivatives if τ > 3.
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Mc Kinnon computed the conditions on θ, φ and τ so that the function values are ordered

as expected, i.e. so that the reflection step is rejected and the inside contraction is accepted.

Examples of values which makes these equations hold are as follows : for τ = 1, θ = 15 and

φ = 10, for τ = 2, θ = 6 and φ = 60 and for τ = 3, θ = 6 and φ = 400.

We consider here the more regular case τ = 3, θ = 6 and φ = 400, i.e. the function is defined

by

f(x1, x2) =

{
−2400x3

1 + x2 + x2
2, if x1 ≤ 0,

6x3
1 + x2 + x2

2, if x1 ≥ 0.
(1.60)

The solution is x? = (0,−0.5)T .

The following Scilab script solves the optimization problem.
function [ f , index ] = mckinnon3 ( x , index )

i f ( length ( x ) ˜= 2 )

error ( ’ Error : function expects a two dimens iona l input\n ’ ) ;

end

tau = 3 . 0 ;

theta = 6 . 0 ;

phi = 400 . 0 ;

i f ( x (1) <= 0.0 )

f = theta ∗ phi ∗ abs ( x (1) ) . ˆ tau + x (2) ∗ ( 1 .0 + x (2) ) ;

else

f = theta ∗ x ( 1 ) . ˆ tau + x (2) ∗ ( 1 .0 + x (2) ) ;

end

endfunction

lambda1 = (1 . 0 + sqrt ( 3 3 . 0 ) ) / 8 . 0 ;

lambda2 = (1 . 0 − sqrt ( 3 3 . 0 ) ) / 8 . 0 ;

coords0 = [

1 .0 1 .0

0 .0 0 .0

lambda1 lambda2

] ;

x0 = [ 1 . 0 1 . 0 ] ’ ;

nm = nmplot new ( ) ;

nm = nmplot con f i gure (nm, ”−numberofvariables” , 2 ) ;

nm = nmplot con f i gure (nm, ”−function” , mckinnon3 ) ;

nm = nmplot con f i gure (nm, ”−x0” , x0 ) ;

nm = nmplot con f i gure (nm, ”−maxiter” , 2 00 ) ;

nm = nmplot con f i gure (nm, ”−maxfunevals” , 3 00 ) ;

nm = nmplot con f i gure (nm, ”−tolfunrelative ” ,10∗%eps ) ;

nm = nmplot con f i gure (nm, ”−tolxrelative ” ,10∗%eps ) ;

nm = nmplot con f i gure (nm, ”−simplex0method” ,”given” ) ;

nm = nmplot con f i gure (nm, ”−coords0” , coords0 ) ;

nm = nmplot con f i gure (nm, ”−simplex0length” , 1 . 0 ) ;

nm = nmplot con f i gure (nm, ”−method” ,”variable” ) ;

nm = nmplot search (nm) ;

nmplot d i sp lay (nm) ;

nm = nmplot destroy (nm) ;

The figure 1.24 shows the contour plot of this function and the first steps of the Nelder-Mead

method. The global minimum is located at (0,−1/2). Notice that the simplex degenerates to the

point (0, 0), which is a non stationnary point.

The figure 1.25 presents the first steps of the algorithm in this numerical experiment. Because

of the particular shape of the contours of the function, the reflected point is always worse that

the worst vertex xn+1. This leads to the inside contraction step. The vertices constructed by Mc

Kinnon are so that the situation loops without end.
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Fig. 1.24 : Nelder-Mead numerical experiment – Mc Kinnon example for convergence toward a non
stationnary point

R1

H

L

N

R = Reflexion

H = Highest

L = Lowest
N = Next to highest

R2

X✶

Fig. 1.25 : Nelder-Mead numerical experiment – Detail of the first steps. The simplex converges to a
non stationnary point, after repeated inside contractions.
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Fig. 1.26 : Nelder-Mead numerical experiment – Han example #1 for convergence toward a non
stationnary point

1.4.5 Han counter examples

In his Phd thesis [2], Han presents two counter examples in which the Nelder-Mead algorithm

degenerates by applying repeatedly the inside contraction step.

First counter example

The first counter example is based on the function

f(x1, x2) = x2
1 + x2(x2 + 2)(x2 − 0.5)(x2 − 2) (1.61)

This function is nonconvex, bounded below and has bounded level sets. The initial simplex

is chosen as S0 = [(0.,−1), (0, 1), (1, 0)]. Han proves that the Nelder-Mead algorithm generates a

sequence of simplices Sk = [(0.,−1), (0, 1), ( 1
2k
, 0)].

The figure 1.26 presents the isovalues and the simplices during the steps of the Nelder-Mead

algorithm. Note that the limit simplex contains no minimizer of the function. The failure is

caused by repeated inside contractions.

Second counter example

The second counter example is based on the function

f(x1, x2) = x2
1 + ρ(x2) (1.62)
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Fig. 1.27 : Nelder-Mead numerical experiment – Han example #2 for convergence toward a non
stationnary point

where ρ is a continuous convex function with bounded level sets defined by{
ρ(x2) = 0, if |x2| ≤ 1,

ρ(x2) ≥ 0, if |x2| > 1.
(1.63)

The example given by Han for such a ρ function is

ρ(x2) =


0, if |x2| ≤ 1,

x2 − 1, if x2 > 1,

−x2 − 1, if x2 < −1.

(1.64)

The initial simplex is chosen as S0 = [(0., 1/2), (0,−1/2), (1, 0)]. Han prooves that the Nelder-

Mead algorithm generates a sequence of simplices Sk = [(0., 1/2), (0,−1/2), ( 1
2k
, 0)].

The figure 1.27 presents the isovalues and the simplices during the steps of the Nelder-Mead

algorithm. The failure is caused by repeated inside contractions.

These two examples of non convergence show that the Nelder-Mead method may unreliable.

They also reveal that the Nelder-Mead method can generate simplices which collapse into a

degenerate simplex, by applying repeated inside contractions.

1.4.6 Torczon’s numerical experiments

In her Phd Thesis [12], Virginia Torczon presents the multi-directional direct search algorithm. In

order to analyze the performances of her new algorithm, she presents some interesting numerical

experiments with the Nelder-Mead algorithm. These numerical experiments are based on the

collection of test problems [7], published in the ACM by Moré, Garbow and Hillstrom in 1981.
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These test problems are associated with varying number of variables. In her Phd, Torczon presents

numerical experiments with n from 8 to 40. The stopping rule is based on the relative size of the

simplex. The angle between the descent direction (given by the worst point and the centroid),

and the gradient of the function is computed when the algorithm is stopped. Torczon shows that,

when the tolerance on the relative simplex size is decreased, the angle converges toward 90̊ . This

fact is observed even for moderate number of dimensions.

In this section, we try to reproduce Torczon numerical experiments.

All experiments are associated with the following sum of squares cost function

f(x) =
∑
i=1,m

fi(x)2, (1.65)

where m ≥ 1 is the number of functions fi in the problem.

The stopping criteria is based on the relative size of the simplex and is the following

1

∆
max
i=2,n+1

‖vi − v1‖ ≤ ε, (1.66)

where ∆ = max(1, ‖v1‖). Decreasing the value of ε allows to get smaller simplex sizes.

Penalty #1

The first test function is the Penalty #1 function :

fi(x) =
√

1.e− 5(xi − 1), i = 1, n (1.67)

fn+1 = −1

4
+
∑
j=1,n

x2
j . (1.68)

The initial guess is given by x0 = ((x0)1, (x0)2, . . . , (x0)n)T and (x0)j = j for j = 1, n.

The problem given by Moré, Garbow and Hillstrom in [7] is associated with the size n = 4.

The value of the cost function at the initial guess x0 = (1, 2, 3, 4)T is f(x0) = 885.063. The value

of the function at the optimum is given in [7] as f(x?) = 2.24997d− 5.

Torzcon shows an experiment with the Penalty #1 test case and n = 8. For this particular

case, the initial function value is f(x0) = 4.151406.104. The figure 1.28 presents the results of

these experiments. The number of function evaluations is not the same so that we can conclude

that the algorithm may be different variants of the Nelder-Mead algorithms. We were not able to

explain why the number of function evaluations is so different.

The figure 1.29 presents the angle between the gradient of the function −gk and the search

direction xc−xh, where xc is the centroid of the best vertices and xh is the worst (or high) vertex.

The numerical experiment shows that the conditioning of the matrix of simplex direction has

an increasing condition number. This corresponds to the fact that the simplex is increasingly

distorted.
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Author Step f(v?1) Function Angle (̊)

Tolerance Evaluations

Torzcon 1.e-1 7.0355e-5 1605 89.396677792198

Scilab 1.e-1 8.2272e-5 530 87.7654

Torzcon 1.e-2 6.2912e-5 1605 89.935373548613

Scilab 1.e-2 7.4854e-5 1873 89.9253

Torzcon 1.e-3 6.2912e-5 3600 89.994626919197

Scilab 1.e-3 7.4815e-5 2135 90.0001

Torzcon 1.e-4 6.2912e-5 3670 89.999288284747

Scilab 1.e-4 7.481546e-5 2196 89.9991

Torzcon 1.e-5 6.2912e-5 3750 89.999931862232

Scilab 1.e-5 7.427212e-5 4626 89.999990

Fig. 1.28 : Numerical experiment with Nelder-Mead method on Torczon test cases - Torczon results
and our results

Fig. 1.29 : Nelder-Mead numerical experiment – Penalty #1 function – We see that the angle between
the gradient and the search direction is very close to 90◦, especially for large number of iterations.
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1.5 Conclusion

The main advantage of the Nelder-Mead algorithm over Spendley et al. algorithm is that the

shape of the simplex is dynamically updated. That allows to get a reasonably fast convergence

rate on badly scaled quadratics, or more generally when the cost function is made of a sharp

valley. Nevertheless, the behavior of the algorithm when the dimension of the problem increases

is disappointing : the more there are variables, the more the algorithm is slow. In general, it is

expected that the number of function evaluations is roughly equal to 100n.



Bibliography

[1] R. Fletcher and M. J. D. Powell. A Rapidly Convergent Descent Method for Minimization.

The Computer Journal, 6(2):163–168, 1963.

[2] Lixing Han. Algorithms in Unconstrained Optimization. Ph.D., The University of Connecti-

cut, 2000.

[3] Lixing Han and Michael Neumann. Effect of dimensionality on the nelder-mead simplex

method. Optimization Methods and Software, 21(1):1–16, 2006.

[4] C. T. Kelley. Iterative Methods for Optimization, volume 19. SIAM Frontiers in Applied

Mathematics, 1999.

[5] Jeffrey C. Lagarias, James A. Reeds, Margaret H. Wright, and Paul E. Wright. Conver-

gence properties of the nelder–mead simplex method in low dimensions. SIAM Journal on

Optimization, 9(1):112–147, 1998.

[6] K. I. M. McKinnon. Convergence of the nelder–mead simplex method to a nonstationary

point. SIAM J. on Optimization, 9(1):148–158, 1998.
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