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Abstract

Most of the time, the mathematical formula is directly used in the Scilab source code.
But, in many algorithms, some additionnal work is performed, which takes into account the
fact that the computer do not process mathematical real values, but performs computations
with their floating point representation. The goal of this article is to show that, in many
situations, Scilab is not näıve and use algorithms which have been specifically tailored for
floating point computers. We analyse in this article the particular case of the quadratic
equation, the complex division and the numerical derivatives, and show that one these
examples, the näıve algorithm is not sufficiently accurate.
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1 Introduction

Scilab take cares with your numbers. While most mathematic books deals with exact formulas,
Scilab uses algorithms which are specifically designed for computers.

As a practical example of the problem considered in this document, consider the following
experiments. The following is an example of a Scilab 5.1 session, where we compute 0.1 by two
ways.

-->format(25)

-->0.1

ans =

0.1000000000000000055511

-->1.0-0.9

ans =

0.0999999999999999777955

I guess that for a person who has never heard of these problems, this experiment may be a
shock. To get things clearer, let’s check that the sinus function is approximated.

-->format(25)

-->sin(0.0)

ans =

0.

-->sin(%pi)

ans =

0.0000000000000001224647

The difficulty is generated by the fact that, while the mathematics treat with real numbers,
the computer deals with their floating point representations. This is the difference between the
naive, mathematical, approach, and the numerical, floating-point aware, implementation. (The
detailed explanations of the previous examples are presented in the appendix of this document.)

In this article, we will show examples of these problems by using the following theoric and
experimental approach.

1. First, we will derive the basic theory at the core of a numerical formula.

2. Then we will implement it in Scilab and compare with the result given by the primitive
provided by Scilab. As we will see, some particular cases do not work well with our formula,
while the Scilab primitive computes a correct result.

3. Then we will analyse the reasons of the differences.

When we compute errors, we use the relative error formula

er =
|xc − xe|
|xe|

, xe 6= 0 (1)

where xc ∈ R is the computed value, and xe ∈ R is the expected value, i.e. the mathematically
exact result. The relative error is linked with the number of significant digits in the computed
value xc. For example, if the relative error er = 10−6, then the number of significant digits is 6.
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When the expected value is zero, the relative error cannot be computed, and we then use the
absolute error instead

ea = |xc − xe|. (2)

Before getting into the details, it is important to know that real variables in the Scilab language
are stored in double precision variables. Since Scilab is following the IEEE 754 standard, that
means that real variables are stored with 64 bits precision. As we shall see later, this has a strong
influence on the results.

4



2 Quadratic equation

In this section, we detail the computation of the roots of a quadratic polynomial. As we shall see,
there is a whole world from the mathematics formulas to the implementation of such computations.
In the first part, we briefly report the formulas which allow to compute the real roots of a
quadratic equation with real coefficients. We then present the näıve algorithm based on these
mathematical formulas. In the second part, we make some experiments in Scilab and compare
our näıve algorithm with the roots Scilab primitive. In the third part, we analyse why and how
floating point numbers must be taken into account when the implementation of such roots is
required.

2.1 Theory

We consider the following quadratic equation, with real coefficients a, b, c ∈ R [2, 1, 3] :

ax2 + bx+ c = 0. (3)

The real roots of the quadratic equations are

x− =
−b−

√
b2 − 4ac

2a
, (4)

x+ =
−b+

√
b2 − 4ac

2a
, (5)

with the hypothesis that the discriminant ∆ = b2 − 4ac is positive.
The naive, simplified, algorithm which computes the roots of the quadratic is presented in

figure 1.

∆← b2 − 4ac
s←

√
∆

x− ← (−b− s)/(2a)
x+ ← (−b+ s)/(2a)

Figure 1: Naive algorithm to compute the real roots of a quadratic equation

2.2 Experiments

The following Scilab function is a straitforward implementation of the previous formulas.

1 function r=myroots (p)
2 c=coeff (p , 0 ) ;
3 b=coeff (p , 1 ) ;
4 a=coeff (p , 2 ) ;
5 r=zeros ( 2 , 1 ) ;
6 r (1)=(−b+sqrt (bˆ2−4∗a∗c ) )/ (2∗ a ) ;
7 r (2)=(−b−sqrt (bˆ2−4∗a∗c ) )/ (2∗ a ) ;
8 endfunction
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The goal of this section is to show that some additionnal work is necessary to compute the roots
of the quadratic equation with sufficient accuracy. We will especially pay attention to rounding
errors and overflow problems. In this section, we show that the roots command of the Scilab
language is not naive, in the sense that it takes into account for the floating point implementation
details that we will see in the next section.

2.2.1 Rounding errors

We analyse the rounding errors which are appearing when the discriminant of the quadratic
equation is such that b2 ≈ 4ac. We consider the following quadratic equation

εx2 + (1/ε)x− ε = 0 (6)

with ε = 0.0001 = 10−4.
The two real solutions of the quadratic equation are

x− =
−1/ε−

√
1/ε2 + 4ε2

2ε
≈ −1/ε2, (7)

x+ =
−1/ε+

√
1/ε2 + 4ε2

2ε
≈ ε2 (8)

The following Scilab script shows an example of the computation of the roots of such a poly-
nomial with the roots primitive and with a naive implementation. Only the positive root x+ ≈ ε2

is considered in this test (the x− root is so that x− → −∞ in both implementations).

1 p=poly ( [−0.0001 10000.0 0 . 0 0 0 1 ] , ”x ” , ” c o e f f ” ) ;
2 e1 = 1e−8;
3 roo t s1 = myroots (p ) ;
4 r1 = root s1 ( 1 ) ;
5 roo t s2 = roots (p ) ;
6 r2 = root s2 ( 1 ) ;
7 e r r o r 1 = abs ( r1−e1 )/ e1 ;
8 e r r o r 2 = abs ( r2−e1 )/ e1 ;
9 printf ( ”Expected : %e\n” , e1 ) ;

10 printf ( ”Naive method : %e ( e r r o r=%e)\n” , r1 , e r r o r 1 ) ;
11 printf ( ”S c i l a b method : %e ( e r r o r=%e)\n” , r2 , e r r o r 2 ) ;

The script then prints out :

Expected : 1.000000e-008

Naive method : 9.094947e-009 (error=9.050530e-002)

Scilab method : 1.000000e-008 (error=1.654361e-016)

The result is surprising, since the naive root has no correct digit and a relative error which is
14 orders of magnitude greater than the relative error of the Scilab root.

The explanation for such a behaviour is that the expression of the positive root is the following

x+ =
−1/ε+

√
1/ε2 + 4ε2

2ε
(9)

and is numerically evalutated as
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\sqrt{1/\epsilon^2+4\epsilon^2} = 10000.000000000001818989

As we see, the first digits are correct, but the last digits are polluted with rounding errors.
When the expression −1/ε+

√
1/ε2 + 4ε2 is evaluated, the following computations are performed :

-1/\epsilon+ \sqrt{1/\epsilon^2+4\epsilon^2}

= -10000.0 + 10000.000000000001818989

= 0.0000000000018189894035

The user may think that the result is extreme, but it is not. Reducing furter the value of ε
down to ε = 10−11, we get the following output :

Expected : 1.000000e-022

Naive method : 0.000000e+000 (error=1.000000e+000)

Scilab method : 1.000000e-022 (error=1.175494e-016)

The relative error is this time 16 orders of magnitude greater than the relative error of the
Scilab root. In fact, the naive implementation computes a false root x+ even for a value of epsilon
equal to ε = 10−3, where the relative error is 7 times greater than the relative error produced by
the roots primitive.

2.2.2 Overflow

In this section, we analyse the overflow exception which is appearing when the discriminant of
the quadratic equation is such that b2 >> 4ac. We consider the following quadratic equation

x2 + (1/ε)x+ 1 = 0 (10)

with ε→ 0.
The roots of this equation are

x− ≈ −1/ε→ −∞, ε→ 0 (11)

x+ ≈ −ε→ 0−, ε→ 0 (12)

To create a difficult case, we search ε so that 1/ε2 = 10310, because we know that 10308 is the
maximum value available with double precision floating point numbers. One possible solution is
ε = 10−155.

The following Scilab script shows an example of the computation of the roots of such a poly-
nomial with the roots primitive and with a naive implementation.

1 // Test #3 : ove r f l ow because o f b
2 e =1.e−155
3 a = 1 ;
4 b = 1/ e ;
5 c = 1 ;
6 p=poly ( [ c b a ] , ”x ” , ” c o e f f ” ) ;
7 expected = [−e ;−1/e ] ;
8 roo t s1 = myroots (p ) ;
9 roo t s2 = roots (p ) ;

10 e r r o r 1 = abs ( roots1−expected )/norm( expected ) ;
11 e r r o r 2 = abs ( roots2−expected )/norm( expected ) ;
12 printf ( ”Expected : %e %e\n” , expected ( 1 ) , expected ( 2 ) ) ;
13 printf ( ”Naive method : %e %e ( e r r o r=%e)\n” , roo t s1 ( 1 ) , r oo t s1 ( 2 ) , e r r o r 1 ) ;
14 printf ( ”S c i l a b method : %e %e ( e r r o r=%e)\n” , roo t s2 ( 1 ) , r oo t s2 ( 2 ) , e r r o r 2 ) ;
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The script then prints out :

Expected : -1.000000e-155 -1.000000e+155

Naive method : Inf Inf (error=Nan)

Scilab method : -1.000000e-155 -1.000000e+155 (error=0.000000e+000)

As we see, the b2 − 4ac term has been evaluated as 1/ε2 − 4, which is approximately equal to
10310. This number cannot be represented in a floating point number. It therefore produces the
IEEE overflow exception and set the result as Inf.

2.3 Explanations

The following tricks are extracted from the quad routine of the RPOLY algorithm by Jenkins
[11]. This algorithm is used by Scilab in the roots primitive, where a special case is handled when
the degree of the equation is equal to 2, i.e. a quadratic equation.

2.3.1 Properties of the roots

One can easily show that the sum and the product of the roots allow to recover the coefficients
of the equation which was solve. One can show that

x− + x+ =
−b
a

(13)

x−x+ =
c

a
(14)

Put in another form, one can state that the computed roots are solution of the normalized equation

x2 −
(
x− + x+

a

)
x+ x−x+ = 0 (15)

Other transformation leads to an alternative form for the roots. The original quadratic equa-
tion can be written as a quadratic equation on 1/x

c(1/x)2 + b(1/x) + a = 0 (16)

Using the previous expressions for the solution of ax2 +bx+c = 0 leads to the following expression
of the roots of the quadratic equation when the discriminant is positive

x− =
2c

−b+
√
b2 − 4ac

, (17)

x+ =
2c

−b−
√
b2 − 4ac

(18)

These roots can also be computed from 4, with the multiplication by −b+
√
b2 − 4ac.
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2.3.2 Conditionning of the problem

The conditionning of the problem may be evaluated with the computation of the partial derivatives
of the roots of the equations with respect to the coefficients. These partial derivatives measure
the sensitivity of the roots of the equation with respect to small errors which might pollute the
coefficients of the quadratic equations.

In the following, we note x− = −b−
√

∆
2a

and x+ = −b+
√

∆
2a

when a 6= 0. If the discriminant is
stricly positive and a 6= 0, i.e. if the roots of the quadratic are real, the partial derivatives of the
roots are the following :

∂x−
∂a

=
c

a
√

∆
+
b+
√

∆

2a2
, a 6= 0, ∆ 6= 0 (19)

∂x+

∂a
= − c

a
√

∆
+
b−
√

∆

2a2
(20)

∂x−
∂b

=
−1− b/

√
∆

2a
(21)

∂x+

∂b
=
−1 + b/

√
∆

2a
(22)

∂x−
∂c

=
1√
∆

(23)

∂x+

∂c
= − 1√

∆
(24)

If the discriminant is zero, the partial derivatives of the double real root are the following :

∂x±
∂a

=
b

2a2
, a 6= 0 (25)

∂x±
∂b

=
−1

2a
(26)

∂x±
∂c

= 0 (27)

The partial derivates indicate that if a ≈ 0 or ∆ ≈ 0, the problem is ill-conditionned.

2.3.3 Floating-Point implementation : fixing rounding error

In this section, we show how to compute the roots of a quadratic equation with protection against
rounding errors, protection against overflow and a minimum amount of multiplications and divi-
sions.

Few but important references deals with floating point implementations of the roots of a
quadratic polynomial. These references include the important paper [9] by Golberg, the Numerical
Recipes [18], chapter 5, section 5.6 and [6], [17], [13].

The starting point is the mathematical solution of the quadratic equation, depending on the
sign of the discriminant ∆ = b2 − 4ac :

• If ∆ > 0, there are two real roots,

x± =
−b±

√
∆

2a
, a 6= 0 (28)
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• If ∆ = 0, there are one double root,

x± = − b

2a
, a 6= 0 (29)

• If ∆ < 0,

x± =
−b
2a
± i
√
−∆

2a
, a 6= 0 (30)

In the following, we make the hypothesis that a 6= 0.
The previous experiments suggest that the floating point implementation must deal with two

different problems :

• rounding errors when b2 ≈ 4ac because of the cancelation of the terms which have opposite
signs,

• overflow in the computation of the discriminant ∆ when b is large in magnitude with respect
to a and c.

When ∆ > 0, the rounding error problem can be splitted in two cases

• if b < 0, then −b+
√
b2 − 4ac may suffer of rounding errors,

• if b > 0, then −b−
√
b2 − 4ac may suffer of rounding errors.

Obviously, the rounding problem will not appear when ∆ < 0, since the complex roots do not
use the sum −b+

√
b2 − 4ac. When ∆ = 0, the double root does not cause further trouble. The

rounding error problem must be solved only when ∆ > 0 and the equation has two real roots.
A possible solution may found in combining the following expressions for the roots

x− =
−b−

√
b2 − 4ac

2a
, (31)

x− =
2c

−b+
√
b2 − 4ac

, (32)

x+ =
−b+

√
b2 − 4ac

2a
, (33)

x+ =
2c

−b−
√
b2 − 4ac

(34)

The trick is to pick the formula so that the sign of b is the same as the sign of the square root.
The following choice allow to solve the rounding error problem

• compute x− : if b < 0, then compute x− from 32, else (if b > 0), compute x− from 31,

• compute x+ : if b < 0, then compute x+ from 33, else (if b > 0), compute x+ from 34.
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The solution of the rounding error problem can be adressed, by considering the modified
Fagnano formulas

x1 = − 2c

b+ sgn(b)
√
b2 − 4ac

, (35)

x2 = −b+ sgn(b)
√
b2 − 4ac

2a
, (36)

where

sgn(b) =

{
1, if b ≥ 0,
−1, if b < 0,

(37)

The roots x1,2 correspond to x+,− so that if b < 0, x1 = x− and if b > 0, x1 = x+. On the other
hand, if b < 0, x2 = x+ and if b > 0, x2 = x−.

An additionnal remark is that the division by two (and the multiplication by 2) is exact with
floating point numbers so these operations cannot be a source of problem. But it is interesting
to use b/2, which involves only one division, instead of the three multiplications 2 ∗ c, 2 ∗ a and
4 ∗ a ∗ c. This leads to the following expressions of the real roots

x− = − c

(b/2) + sgn(b)
√

(b/2)2 − ac
, (38)

x+ = −
(b/2) + sgn(b)

√
(b/2)2 − ac

a
, (39)

which can be simplified into

b′ = b/2 (40)

h = −
(
b′ + sgn(b)

√
b′2 − ac

)
(41)

x1 =
c

h
, (42)

x2 =
h

a
, (43)

where the discriminant is positive, i.e. b′2 − ac > 0.
One can use the same value b′ = b/2 with the complex roots in the case where the discriminant

is negative, i.e. b′2 − ac < 0 :

x1 = −b
′

a
− i
√
ac− b′2
a

, (44)

x2 = −b
′

a
+ i

√
ac− b′2
a

, (45)

A more robust algorithm, based on the previous analysis is presented in figure 2. By comparing
1 and 2, we can see that the algorithms are different in many points.

2.3.4 Floating-Point implementation : fixing overflow problems

The remaining problem is to compute b′2 − ac without creating unnecessary overflows.
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if a = 0 then
if b = 0 then
x− ← 0
x+ ← 0

else
x− ← −c/b
x+ ← 0

end if
else if c = 0 then
x− ← −b/a
x+ ← 0

else
b′ ← b/2
∆← b′2 − ac
if ∆ < 0 then
s←

√
−∆

xR1 ← −b′/a
xI1 ← −s/a
xR2 ← xR−
xI2 ← −xI1

else if ∆ = 0 then
x1 ← −b′/a
x2 ← x2

else
s←

√
∆

if b > 0 then
g = 1

else
g = −1

end if
h = −(b′ + g ∗ s)
x1 ← c/h
x2 ← h/a

end if
end if

Figure 2: A more robust algorithm to compute the roots of a quadratic equation
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Notice that a small improvment has allread been done : if |b| is close to the upper bound 10154,
then |b′| may be less difficult to process since |b′| = |b|/2 < |b|. One can then compute the square
root by using normalization methods, so that the overflow problem can be drastically reduced.
The method is based on the fact that the term b′2 − ac can be evaluted with two equivalent
formulas

b′2 − ac = b′2 [1− (a/b′)(c/b′)] (46)

b′2 − ac = c [b′(b′/c)− a] (47)

• If |b′| > |c| > 0, then the expression involving (1− (a/b′)(c/b′)) is so that no overflow is
possible since |c/b′| < 1 and the problem occurs only when b is large in magnitude with
respect to a and c.

• If |c| > |b′| > 0, then the expression involving (b′(b′/c)− a) should limit the possible over-
flows since |b′/c| < 1.

These normalization tricks are similar to the one used by Smith in the algorithm for the division
of complex numbers [21].

2.4 References

The 1966 technical report by G. Forsythe [7] presents the floating point system and the possible
large error in using mathematical algorithms blindly. An accurate way of solving a quadratic is
outlined. A few general remarks are made about computational mathematics. The 1991 paper
by Goldberg [9] is a general presentation of the floating point system and its consequences. It
begins with background on floating point representation and rounding errors, continues with a
discussion of the IEEE floating point standard and concludes with examples of how computer
system builders can better support floating point. The section 1.4, ”Cancellation” specificaly con-
sider the computation of the roots of a quadratic equation. One can also consult the experiments
performed by Nievergelt in [17].

13



3 Numerical derivatives

In this section, we detail the computation of the numerical derivative of a given function.
In the first part, we briefly report the first order forward formula, which is based on the

Taylor theorem. We then present the näıve algorithm based on these mathematical formulas. In
the second part, we make some experiments in Scilab and compare our näıve algorithm with the
derivative Scilab primitive. In the third part, we analyse why and how floating point numbers
must be taken into account when the numerical derivatives are to compute.

3.1 Theory

The basic result is the Taylor formula with one variable [10]

f(x+ h) = f(x) + hf ′(x) +
h2

2
f ′′(x) +

h3

6
f ′′′(x) +

h4

24
f ′′′′(x) +O(h5) (48)

If we write the Taylor formulae of a one variable function f(x)

f(x+ h) ≈ f(x) + h
∂f

∂x
+
h2

2
f ′′(x) (49)

we get the forward difference which approximates the first derivate at order 1

f ′(x) ≈ f(x+ h)− f(x)

h
+
h

2
f ′′(x) (50)

The naive algorithm to compute the numerical derivate of a function of one variable is pre-
sented in figure 3.

f ′(x)← (f(x+ h)− f(x))/h

Figure 3: Naive algorithm to compute the numerical derivative of a function of one variable

3.2 Experiments

The following Scilab function is a straitforward implementation of the previous algorithm.

1 function fp = myfprime ( f , x , h )
2 fp = ( f ( x+h) − f ( x ) )/ h ;
3 endfunction

In our experiments, we will compute the derivatives of the square function f(x) = x2, which
is f ′(x) = 2x. The following Scilab script implements the square function.

1 function y = myfunction ( x )
2 y = x∗x ;
3 endfunction

The most näıve idea is that the computed relative error is small when the step h is small.
Because small is not a priori clear, we take ε ≈ 10−16 in double precision as a good candidate
for small. In the following script, we compare the computed relative error produced by our näıve
method with step h = ε and the derivative primitive with default step.
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1 x = 1 . 0 ;
2 f p r e f = derivative ( myfunction , x , order =1);
3 e = abs ( f p r e f −2 . 0 )/2 . 0 ;
4 mprintf ( ”S c i l a b f ’ ’=%e, e r r o r=%e\n” , f p r e f , e ) ;
5 h = 1 . e−16;
6 fp = myfprime ( myfunction , x , h ) ;
7 e = abs ( fp −2 . 0 )/2 . 0 ;
8 mprintf ( ”Naive f ’ ’=%e, h=%e, e r r o r=%e\n” , fp , h , e ) ;

When executed, the previous script prints out :

Scilab f’=2.000000e+000, error=7.450581e-009

Naive f’=0.000000e+000, h=1.000000e-016, error=1.000000e+000

Our näıve method seems to be quite inaccurate and has not even 1 significant digit ! The
Scilab primitive, instead, has 9 significant digits.

Since our faith is based on the truth of the mathematical theory, some deeper experiments
must be performed. We then make the following experiment, by taking an initial step h = 1.0
and then dividing h by 10 at each step of a loop with 20 iterations.

1 x = 1 . 0 ;
2 f p r e f = derivative ( myfunction , x , order =1);
3 e = abs ( f p r e f −2 . 0 )/2 . 0 ;
4 mprintf ( ”S c i l a b f ’ ’=%e, e r r o r=%e\n” , f p r e f , e ) ;
5 h = 1 . 0 ;
6 for i =1:20
7 h=h / 1 0 . 0 ;
8 fp = myfprime ( myfunction , x , h ) ;
9 e = abs ( fp −2 . 0 )/2 . 0 ;

10 mprintf ( ”Naive f ’ ’=%e, h=%e, e r r o r=%e\n” , fp , h , e ) ;
11 end

Scilab then produces the following output.

Scilab f’=2.000000e+000, error=7.450581e-009

Naive f’=2.100000e+000, h=1.000000e-001, error=5.000000e-002

Naive f’=2.010000e+000, h=1.000000e-002, error=5.000000e-003

Naive f’=2.001000e+000, h=1.000000e-003, error=5.000000e-004

Naive f’=2.000100e+000, h=1.000000e-004, error=5.000000e-005

Naive f’=2.000010e+000, h=1.000000e-005, error=5.000007e-006

Naive f’=2.000001e+000, h=1.000000e-006, error=4.999622e-007

Naive f’=2.000000e+000, h=1.000000e-007, error=5.054390e-008

Naive f’=2.000000e+000, h=1.000000e-008, error=6.077471e-009

Naive f’=2.000000e+000, h=1.000000e-009, error=8.274037e-008

Naive f’=2.000000e+000, h=1.000000e-010, error=8.274037e-008

Naive f’=2.000000e+000, h=1.000000e-011, error=8.274037e-008

Naive f’=2.000178e+000, h=1.000000e-012, error=8.890058e-005

Naive f’=1.998401e+000, h=1.000000e-013, error=7.992778e-004

Naive f’=1.998401e+000, h=1.000000e-014, error=7.992778e-004

Naive f’=2.220446e+000, h=1.000000e-015, error=1.102230e-001

Naive f’=0.000000e+000, h=1.000000e-016, error=1.000000e+000

Naive f’=0.000000e+000, h=1.000000e-017, error=1.000000e+000
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Naive f’=0.000000e+000, h=1.000000e-018, error=1.000000e+000

Naive f’=0.000000e+000, h=1.000000e-019, error=1.000000e+000

Naive f’=0.000000e+000, h=1.000000e-020, error=1.000000e+000

We see that the relative error begins by decreasing, and then is increasing. Obviously, the
optimum step is approximately h = 10−8, where the relative error is approximately er = 6.10−9.
We should not be surprised to see that Scilab has computed a derivative which is near the
optimum.

3.3 Explanations

3.3.1 Floating point implementation

With a floating point computer, the total error that we get from the forward difference approx-
imation is (skipping the multiplication constants) the sum of the linearization error El = h (i.e.
the O(h) term) and the rounding error rf(x) on the difference f(x+ h)− f(x)

E =
rf(x)

h
+
h

2
f ′′(x) (51)

When h → ∞, the error is then the sum of a term which converges toward +∞ and a term
which converges toward 0. The total error is minimized when both terms are equal. With a single
precision computation, the rounding error is r = 10−7 and with a double precision computation,
the rounding error is r = 10−16. We make here the assumption that the values f(x) and f ′′(x)
are near 1 so that the error can be written

E =
r

h
+ h (52)

We want to compute the step h from the rounding error r with a step satisfying

h = rα (53)

for some α > 0. The total error is therefore

E = r1−α + rα (54)

The total error is minimized when both terms are equal, that is, when the exponents are equal
1− α = α which leads to

α =
1

2
(55)

We conclude that the step which minimizes the error is

h = r1/2 (56)

and the associated error is

E = 2r1/2 (57)
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Typical values with single precision are h = 10−4 and E = 2.10−4 and with double precision
h = 10−8 and E = 2.10−8. These are the minimum error which are achievable with a forward
difference numerical derivate.

To get a significant value of the step h, the step is computed with respect to the point where
the derivate is to compute

h = r1/2x (58)

One can generalize the previous computation with the assumption that the scaling parameter
from the Taylor expansion is hα1 and the order of the formula is O(hα2). The total error is then

E =
r

hα1
+ hα2 (59)

The optimal step is then

h = r
1

α1+α2 (60)

and the associated error is

E = 2r
α2

α1+α2 (61)

An additional trick [18] is to compute the step h so that the rounding error for the sum x+ h
is minimum. This is performed by the following algorithm, which implies a temporary variable t

t = x+ h (62)

h = t− h (63)

3.3.2 Results

In the following results, the variable x is either a scalar xinR or a vector x ∈ Rn. When x is a
vector, the step hi is defined by

hi = (0, . . . , 0, 1, 0, . . . , 0) (64)

so that the only non-zero component of hi is the i-th component.

• First derivate : forward 2 points

f ′(x) ≈ f(x+ h)− f(x)

h
+O(h) (65)

Optimal step : h = r1/2 and error E = 2r1/2.
Single precision : h ≈ 10−4 and E ≈ 10−4.
Double precision h ≈ 10−8 and E ≈ 10−8.

• First derivate : backward 2 points

f ′(x) ≈ f(x)− f(x− h)

h
+O(h) (66)

Optimal step : h = r1/2 and error E = 2r1/2.
Single precision : h ≈ 10−4 and E ≈ 10−4.
Double precision h ≈ 10−8 and E ≈ 10−8.
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• First derivate : centered 2 points

f ′(x) ≈ f(x+ h)− f(x− h)

2h
+O(h2) (67)

Optimal step : h = r1/3 and error E = 2r2/3.
Single precision : h ≈ 10−3 and E ≈ 10−5.
Double precision h ≈ 10−5 and E ≈ 10−10.

3.3.3 Robust algorithm

The robust algorithm to compute the numerical derivate of a function of one variable is presented
in figure 4.

h←
√
ε

f ′(x)← (f(x+ h)− f(x))/h

Figure 4: A more robust algorithm to compute the numerical derivative of a function of one
variable

3.4 One more step

In this section, we analyse the behaviour of derivative when the point x is either large x → ∞,
when x is small x → 0 and when x = 0. We compare these results with the numdiff command,
which does not use the same step strategy. As we are going to see, both commands performs the
same when x is near 1, but performs very differently when x is large or small.

We have allready explained the theory of the floating point implementation of the derivative
command. Is it completely bulletproof ? Not exactly.

See for example the following Scilab session, where one computes the numerical derivative of
f(x) = x2 for x = 10−100. The expected result is f ′(x) = 2.× 10−100.

-->fp = derivative(myfunction,1.e-100,order=1)

fp =

0.0000000149011611938477

-->fe=2.e-100

fe =

2.000000000000000040-100

-->e = abs(fp-fe)/fe

e =

7.450580596923828243D+91

The result does not have any significant digits.
The explanation is that the step is computed with h =

√
eps ≈ 10−8. Then f(x + h) =

f(10−100 + 10−8) ≈ f(10−8) = 10−16, because the term 10−100 is much smaller than 10−8. The
result of the computation is therefore (f(x+ h)− f(x))/h = (10−16 + 10−200)/10−8 ≈ 10−8.

The additionnal experiment
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-->sqrt(%eps)

ans =

0.0000000149011611938477

allows to check that the result of the computation simply is
√
eps. That experiment shows

that the derivative command uses a wrong defaut step h when x is very small.
To improve the accuracy of the computation, one can take control of the step h. A reasonable

solution is to use h =
√
ε|x| so that the step is scaled depending on x. The following script

illustrates than method, which produces results with 8 significant digits.

-->fp = derivative(myfunction,1.e-100,order=1,h=sqrt(%eps)*1.e-100)

fp =

2.000000013099139394-100

-->fe=2.e-100

fe =

2.000000000000000040-100

-->e = abs(fp-fe)/fe

e =

0.0000000065495696770794

But when x is exactly zero, the scaling method cannot work, because it would produce the
step h = 0, and therefore a division by zero exception. In that case, the default step provides a
good accuracy.

Another command is available in Scilab to compute the numerical derivatives of a given func-
tion, that is numdiff. The numdiff command uses the step

h =
√
ε(1 + 10−3|x|). (68)

In the following paragraphs, we try to analyse why this formula has been chosen. As we are going
to check experimentally, this step formula performs better than derivative when x is large.

As we can see the following session, the behaviour is approximately the same when the value
of x is 1.

-->fp = numdiff(myfunction,1.0)

fp =

2.0000000189353417390237

-->fe=2.0

fe =

2.

-->e = abs(fp-fe)/fe

e =

9.468D-09

The accuracy is slightly decreased with respect to the optimal value 7.450581e-009 which was
produced by derivative. But the number of significant digits is approximately the same, i.e. 9
digits.

The goal of this step is to produce good accuracy when the value of x is large, where the
numdiff command produces accurate results, while derivative performs poorly.
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-->numdiff(myfunction,1.e10)

ans =

2.000D+10

-->derivative(myfunction,1.e10,order=1)

ans =

0.

This step is a trade-off because it allows to keep a good accuracy with large values of x, but
produces a slightly sub-optimal step size when x is near 1. The behaviour near zero is the same,
i.e. both commands produce wrong results when x→ 0 and x 6= 0.

3.5 References

A reference for numerical derivates is [4], chapter 25. ”Numerical Interpolation, Differentiation
and Integration” (p. 875). The webpage [20] and the book [18] give results about the rounding
errors.
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4 Complex division

In that section, we analyse the problem of the complex division in Scilab. We especially detail the
difference between the mathematical, straitforward formula and the floating point implementation.
In the first part, we briefly report the formulas which allow to compute the real and imaginary
parts of the division of two complex numbers. We then present the näıve algorithm based on these
mathematical formulas. In the second part, we make some experiments in Scilab and compare our
näıve algorithm with the / Scilab operator. In the third part, we analyse why and how floating
point numbers must be taken into account when the implementation of such division is required.

4.1 Theory

The formula which allows to compute the real and imaginary parts of the division of two complex
numbers is

a+ ib

c+ id
=
ac+ bd

c2 + d2
+ i

bc− ad
c2 + d2

(69)

The naive algorithm for the computation of the complex division is presented in figure 5.

den← c2 + d2

e← (ac+ bd)/den
f ← (bc− ad)/den

Figure 5: Naive algorithm to compute the complex division

4.2 Experiments

The following Scilab function is a straitforward implementation of the previous formulas.

1 //
2 // naive −−
3 // Compute the complex d i v i s i o n wi th a naive method .
4 //
5 function [ cr , c i ] = naive ( ar , a i , br , b i )
6 den = br ∗ br + bi ∗ bi ;
7 cr = ( ar ∗ br + a i ∗ bi ) / den ;
8 c i = ( a i ∗ br − ar ∗ bi ) / den ;
9 endfunction

In the following script, one compares the naive implementation against the Scilab implemen-
tation with two cases.

1 // Check t ha t no obv ious bug i s in mathematical formula .
2 [ cr c i ] = naive ( 1 .0 , 2 . 0 , 3 . 0 , 4 . 0 )
3 ( 1 . 0 + 2 .0 ∗ %i ) / ( 3 . 0 + 4 .0 ∗ %i)
4 // Check t ha t mathematical formula does not perform we l l
5 // when l a r g e number are used .
6 [ cr c i ] = naive ( 1 .0 , 1 . 0 , 1 . 0 , 1 . e307 )
7 ( 1 . 0 + 1 .0 ∗ %i ) / ( 1 . 0 + 1 . e307 ∗ %i)

That prints out the following messages.

21



--> // Check that no obvious bug is in mathematical formula.

--> [cr ci] = naive ( 1.0 , 2.0 , 3.0 , 4.0 )

ci =

0.08

cr =

0.44

--> (1.0 + 2.0 * %i)/(3.0 + 4.0 * %i)

ans =

0.44 + 0.08i

--> // Check that mathematical formula does not perform well

--> // when large number are used.

--> [cr ci] = naive ( 1.0 , 1.0 , 1.0 , 1.e307 )

ci =

0.

cr =

0.

--> (1.0 + 1.0 * %i)/(1.0 + 1.e307 * %i)

ans =

1.000-307 - 1.000-307i

The simple calculation confirms that there is no bug in the naive implementation. But differ-
ences are apprearing when large numbers are used. In the second case, the naive implementation
does not give a single exact digit !

To make more complete tests, the following script allows to compare the results of the naive
and the Scilab methods. We use three kinds of relative errors

1. the relative error on the complex numbers, as a whole e = |e−c|
|e| ,

2. the relative error on the real part e = |er−er|
er

,

3. the relative error on the imaginary part e = |ei−ei|
ei

.

1 //
2 // compare −−
3 // Compare 3 methods f o r complex d i v i s i o n :
4 // ∗ naive method
5 // ∗ Smith method
6 // ∗ C99 method
7 //
8 function compare ( ar , a i , br , bi , rr , r i )
9 printf ( ”∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n” ) ;

10 printf ( ” a = %10 . 5 e + %10 . 5 e ∗ I \n” , ar , a i ) ;
11 printf ( ” b = %10 . 5 e + %10 . 5 e ∗ I \n” , br , b i ) ;
12 [ c r c i ] = naive ( ar , a i , br , b i ) ;
13 printf ( ”Naive −−> c = %10 . 5 e + %10 . 5 e ∗ I \n” , cr , c i ) ;
14 c = cr + %i ∗ c i
15 r = r r + %i ∗ r i ;
16 e r r o r 1 = abs ( r − c )/abs ( r ) ;
17 i f ( r r ==0.0) then
18 e r r o r 2 = abs ( r r − cr ) ;
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19 else
20 e r r o r 2 = abs ( r r − cr )/abs ( r r ) ;
21 end
22 i f ( r i ==0.0) then
23 e r r o r 3 = abs ( r i − c i ) ;
24 else
25 e r r o r 3 = abs ( r i − c i )/abs ( r i ) ;
26 end
27 printf ( ” e1 = %10 . 5 e , e2 = %10 . 5 e , e3 = %10 . 5 e\n” , e r ror1 , e r ror2 , e r r o r 3 ) ;
28
29 a = ar + a i ∗ %i ;
30 b = br + bi ∗ %i ;
31 c = a/b ;
32 cr = real ( c ) ;
33 c i = imag( c ) ;
34 printf ( ”S c i l a b −−> c = %10 . 5 e + %10 . 5 e ∗ I \n” , cr , c i ) ;
35 c = cr + %i ∗ c i
36 e r r o r 1 = abs ( r − c )/abs ( r ) ;
37 i f ( r r ==0.0) then
38 e r r o r 2 = abs ( r r − cr ) ;
39 else
40 e r r o r 2 = abs ( r r − cr )/abs ( r r ) ;
41 end
42 i f ( r i ==0.0) then
43 e r r o r 3 = abs ( r i − c i ) ;
44 else
45 e r r o r 3 = abs ( r i − c i )/abs ( r i ) ;
46 end
47 printf ( ” e1 = %10 . 5 e , e2 = %10 . 5 e , e3 = %10 . 5 e\n” , e r ror1 , e r ror2 , e r r o r 3 ) ;
48 endfunction

In the following script, we compare the naive and the Scilab implementations of the complex
division with 4 couples of complex numbers. The first instruction ”ieee(2)” configures the IEEE
system so that Inf and Nan numbers are generated instead of Scilab error messages.

1 ieee ( 2 ) ;
2 // Check t ha t naive implementat ion does not have a bug
3 ar = 1 ;
4 a i = 2 ;
5 br = 3 ;
6 b i = 4 ;
7 r r = 11/25;
8 r i = 2/25 ;
9 compare ( ar , a i , br , bi , rr , r i ) ;

10
11 // Check t ha t naive implementat ion i s not robus t wi th r e s p e c t to ove r f l ow
12 ar = 1 ;
13 a i = 1 ;
14 br = 1 ;
15 b i = 1 e307 ;
16 r r = 1e−307;
17 r i = −1e−307;
18 compare ( ar , a i , br , bi , rr , r i ) ;
19
20 // Check t ha t naive implementat ion i s not robus t wi th r e s p e c t to under f low
21 ar = 1 ;
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22 a i = 1 ;
23 br = 1e−308;
24 b i = 1e−308;
25 r r = 1 e308 ;
26 r i = 0 . 0 ;
27 compare ( ar , a i , br , bi , rr , r i ) ;

The script then prints out the following messages.

****************

a = 1.00000e+000 + 2.00000e+000 * I

b = 3.00000e+000 + 4.00000e+000 * I

Naive --> c = 4.40000e-001 + 8.00000e-002 * I

e1 = 0.00000e+000, e2 = 0.00000e+000, e3 = 0.00000e+000

Scilab --> c = 4.40000e-001 + 8.00000e-002 * I

e1 = 0.00000e+000, e2 = 0.00000e+000, e3 = 0.00000e+000

****************

a = 1.00000e+000 + 1.00000e+000 * I

b = 1.00000e+000 + 1.00000e+307 * I

Naive --> c = 0.00000e+000 + -0.00000e+000 * I

e1 = 1.00000e+000, e2 = 1.00000e+000, e3 = 1.00000e+000

Scilab --> c = 1.00000e-307 + -1.00000e-307 * I

e1 = 2.09614e-016, e2 = 1.97626e-016, e3 = 1.97626e-016

****************

a = 1.00000e+000 + 1.00000e+000 * I

b = 1.00000e-308 + 1.00000e-308 * I

Naive --> c = Inf + Nan * I

e1 = Nan, e2 = Inf, e3 = Nan

Scilab --> c = 1.00000e+308 + 0.00000e+000 * I

e1 = 0.00000e+000, e2 = 0.00000e+000, e3 = 0.00000e+000

The case #2 and #3 shows very surprising results. With case #2, the relative errors shows that
the naive implementation does not give any correct digits. In case #3, the naive implementation
produces Nan and Inf results. In both cases, the Scilab command ”/” gives accurate results, i.e.,
with at least 16 significant digits.

4.3 Explanations

In this section, we analyse the reason why the naive implementation of the complex division leads
to unaccurate results. In the first section, we perform algebraic computations and shows the
problems of the naive formulas. In the second section, we present the Smith’s method.

4.3.1 Algebraic computations

Let’s analyse the second test and check the division of test #2 :

1 + I

1 + 10307I
= 10307 − I ∗ 10−307 (70)
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The naive formulas leads to the following results.

den = c2 + d2 = 12 + (10307)2 = 1 + 10614 ≈ 10614 (71)

e = (ac+ bd)/den = (1 ∗ 1 + 1 ∗ 10307)/1e614 ≈ 10307/10614 ≈ 10−307 (72)

f = (bc− ad)/den = (1 ∗ 1− 1 ∗ 10307)/1e614 ≈ −10307/10614 ≈ −10−307 (73)

To understand what happens with the naive implementation, one should focus on the inter-
mediate numbers. If one uses the naive formula with double precision numbers, then

den = c2 + d2 = 12 + (10307)2 = Inf (74)

This generates an overflow, because (10307)2 = 10614 is not representable as a double precision
number.

The e and f terms are then computed as

e = (ac+ bd)/den = (1 ∗ 1 + 1 ∗ 10307)/Inf = 10307/Inf = 0 (75)

f = (bc− ad)/den = (1 ∗ 1− 1 ∗ 10307)/Inf = −10307/Inf = 0 (76)

The result is then computed without any single correct digit, even though the initial numbers
are all representable as double precision numbers.

Let us check that the case #3 is associated with an underflow. We want to compute the
following complex division :

1 + I

10−308 + 10−308I
= 10308 (77)

The naive mathematical formula gives

den = c2 + d2 = (10−308)2 + (10−308)2 = 10−61610−616 + 10−616 = 2× 10−616 (78)

e = (ac+ bd)/den = (1 ∗ 10−308 + 1 ∗ 10−308)/(2× 10−616) (79)

≈ (2× 10−308)/(2× 10−616) ≈ 10−308 (80)

f = (bc− ad)/den = (1 ∗ 10−308 − 1 ∗ 10−308)/(2× 10−616) ≈ 0/10−616 ≈ 0 (81)

With double precision numbers, the computation is not performed this way. Terms which are
lower than 10−308 are too small to be representable in double precision and will be reduced to 0
so that an underflow occurs.

den = c2 + d2 = (10−308)2 + (10−308)2 = 10−616 + 10−616 = 0 (82)

e = (ac+ bd)/den = (1 ∗ 10−308 + 1 ∗ 10−308)/0 ≈ 2× 10−308/0 ≈ Inf (83)

f = (bc− ad)/den = (1 ∗ 10−308 − 1 ∗ 10−308)/0 ≈ 0/0 ≈ NaN (84)

(85)
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4.3.2 The Smith’s method

In this section, we analyse the Smith’s method and present the detailed steps of this algorithm
in the cases #2 and #3.

In Scilab, the algorithm which allows to perform the complex division is done by the the
wwdiv routine, which implements the Smith’s method [22], [9]. The Smith’s algorithm is based
on normalization, which allow to perform the division even if the terms are large.

The starting point of the method is the mathematical definition

a+ ib

c+ id
=
ac+ bd

c2 + d2
+ i

bc− ad
c2 + d2

(86)

The method of Smith is based on the rewriting of this formula in two different, but math-
ematically equivalent formulas. The basic trick is to make the terms d/c or c/d appear in the
formulas. When c is larger than d, the formula involving d/c is used. Instead, when d is larger
than c, the formula involving c/d is used. That way, the intermediate terms in the computations
rarely exceeds the overflow limits.

Indeed, the complex division formula can be written as

a+ ib

c+ id
=
a+ b(d/c)

c+ d(d/c)
+ i

b− a(d/c)

c+ d(d/c)
(87)

a+ ib

c+ id
=
a(c/d) + b

c(d/c) + d
+ i

b(c/d)− a
c(d/c) + d

(88)

These formulas can be simplified as

a+ ib

c+ id
=
a+ br

c+ dr
+ i

b− ar
c+ dr

, r = d/c (89)

a+ ib

c+ id
=
ar + b

cr + d
+ i

br − a
cr + d

, r = c/d (90)

The Smith’s method is based on the following algorithm.

if (|d| <= |c|) then
r ← d/c
den← c+ r ∗ d
e← (a+ b ∗ r)/den
f ← (b− a ∗ r)/den

else
r ← c/d
den← d+ r ∗ c
e← (a ∗ r + b)/den
f ← (b ∗ r − a)/den

end if

As we are going to check immediately, the Smith’s method performs very well in cases #2 and
#3.

In the case #2 1+i
1+10−308i

, the Smith’s method is
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If ( |1e308| <= |1| ) > test false

Else

r = 1 / 1e308 = 0

den = 1e308 + 0 * 1 = 1e308

e = (1 * 0 + 1) / 1e308 =

f = (1 * 0 - 1) / 1e308 = -1e-308

In the case #3 1+i
10−308+10−308i

, the Smith’s method is

If ( |1e-308| <= |1e-308| ) > test true

r = 1e-308 / 1e308 = 1

den = 1e-308 + 1 * 1e-308 = 2e308

e = (1 + 1 * 1) / 2e308 = 1e308

f = (1 - 1 * 1) / 2e308 = 0

4.4 One more step

In that section, we show the limitations of the Smith’s method.
Suppose that we want to perform the following division

10307 + i10−307

10205 + i10−205
= 10102− i10−308 (91)

The following Scilab script allows to compare the naive implementation and Scilab’s imple-
mentation based on Smith’s method.

1 // Check t ha t Smith method i s not robus t in compl ica ted cases
2 ar = 1 e307 ;
3 a i = 1e−307;
4 br = 1 e205 ;
5 b i = 1e−205;
6 r r = 1 e102 ;
7 r i = −1e−308;
8 compare ( ar , a i , br , bi , rr , r i ) ;

When executed, the script produces the following output.

****************

a = 1.00000e+307 + 1.00000e-307 * I

b = 1.00000e+205 + 1.00000e-205 * I

Naive --> c = Nan + -0.00000e+000 * I

e1 = 0.00000e+000, e2 = Nan, e3 = 1.00000e+000

Scilab --> c = 1.00000e+102 + 0.00000e+000 * I

e1 = 0.00000e+000, e2 = 0.00000e+000, e3 = 1.00000e+000

As expected, the naive method produces a Nan. More surprisingly, the Scilab output is also
quite approximated. More specifically, the imaginary part is computed as zero, although we know
that the exact result is 10−308, which is representable as a double precision number. The relative
error based on the norm of the complex number is accurate (e1 = 0.0), but the relative error
based on the imaginary part only is wrong (e3 = 1.0), without any correct digits.
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The reference [5] cites an analysis by Hough which gives a bound for the relative error produced
by the Smith’s method

|zcomp− zref | <= eps|zref | (92)

The paper [23] (1985), though, makes a distinction between the norm |zcomp− zref | and the
relative error for the real and imaginary parts. It especially gives an example where the imaginary
part is wrong.

In the following paragraphs, we detail the derivation of an example inspired by [23], but which
shows the problem with double precision numbers (the example in [23] is based on an abstract
machine with exponent range ±99).

Suppose that m,n are integers so that the following conditions are satisfied

m >> 0 (93)

n >> 0 (94)

n >> m (95)

One can easily proove that the complex division can be approximated as

10n + i10−n

10m + i10−m
=

10n+m + 10−(m+n)

102m + 10−2m
+ i

10m−n − 10n−m

102m + 10−2m
(96)

Because of the above assumptions, that leads to the following approximation

10n + i10−n

10m + i10−m
≈ 10n−m − i10n−3m (97)

which is correct up to approximately several 100 digits.
One then consider m,n < 308 but so that

n− 3m = −308 (98)

For example, the couple m = 205, n = 307 satisfies all conditions. That leads to the complex
division

10307 + i10−307

10205 + i10−205
= 10102 − i10−308 (99)

It is easy to check that the naive implementation does not proove to be accurate on that
example. We have already shown that the Smith’s method is failing to produce a non zero
imaginary part. Indeed, the steps of the Smith algorithm are the following

If ( |1e-205| <= |1e205| ) > test true

r = 1e-205 / 1e205 = 0

den = 1e205 + 0 * 1e-205 = 1e205

e = (10^307 + 10^-307 * 0) / 1e205 = 1e102

f = (10^-307 - 10^307 * 0) / 1e205 = 0
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The real part is accurate, but the imaginary part has no correct digit. One can also check
that the inequality |zcomp− zref | <= eps|zref | is still true.

The limits of Smith’s method have been reduced in Stewart’s paper [23]. The new algorithm
is based on the theorem which states that if x1 . . . xn are n floating point representable numbers
then mini=1,n(xi) maxi=1,n(xi) is also representable. The algorithm uses that theorem to perform
a correct computation.

Stewart’s algorithm is superseded by the one by Li et Al [15], but also by Kahan’s [12], which,
from [19], is the one implemented in the C99 standard.

4.5 References

The 1962 paper by R. Smith [22] describes the algorithm which is used in Scilab. The Goldberg
paper [9] introduces many of the subjects presented in this document, including the problem of
the complex division. The 1985 paper by Stewart [23] gives insight to distinguish between the
relative error of the complex numbers and the relative error made on real and imaginary parts. It
also gives an algorithm based on min and max functions. Knuth’s bible [14] presents the Smith’s
method in section 4.2.1, as exercize 16. Knuth gives also references [25] and [8]. The 1967 paper
by Friedland [8] describes two algorithm to compute the absolute value of a complex number
|x+ iy| =

√
x2 + y2 and the square root of a complex number

√
x+ iy.
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5 Conclusion

We have presented several cases where the mathematically perfect algorithm (i.e. without obvious
bugs) do not produce accurate results with the computer in particular situations. In this paper,
we have shown that specific methods can be used to cure some of the problems. We have also
shown that these methods do not cure all the problems.

All Scilab algorithms take floating point values as inputs, and returns floating point values as
output. Problems arrive when the intermediate calculations involve terms which are not repre-
sentable as floating point values.

That article should not discourage us from implementing our own algorithms. Rather, it
should warn us and that some specific work is to do when we translate the mathematical material
into a algorithm. That article shows us that accurate can be obtained with floating point numbers,
provided that we are less näıve.
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A Simple experiments

In this section, we analyse the examples given in the introduction of this article.

A.1 Why 0.1 is rounded

In this section, we present a brief explanation for the following Scilab session.

-->format(25)

-->x1=0.1

x1 =

0.1000000000000000055511

-->x2 = 1.0-0.9

x2 =

0.0999999999999999777955

-->x1==x2

ans =

F

In fact, only the 17 first digits 0.100000000000000005 are significant and the last digits are a
artifact of Scilab’s displaying system.

The number 0.1 can be represented as the normalized number 1.0 × 10−1. But the binary
floating point representation of 0.1 is approximately [9] 1.100110011001100110011001... × 2−4.
As you see, the decimal representation is made of a finite number of digits while the binary
representation is made of an infinite sequence of digits. Because Scilab computations are based
on double precision numbers and because that numbers only have 64 bits to represent the number,
some rounding must be performed.

In our example, it happens that 0.1 falls between two different binary floating point numbers.
After rounding, the binary floating point number is associated with the decimal representation
”0.100000000000000005”, that is ”rounding up”in this case. On the other side, 0.9 is also not repre-
sentable as an exact binary floating point number (but 1.0 is exactly represented). It happens that,
after the substraction ”1.0-0.9”, the decimal representation of the result is ”0.09999999999999997”,
which is different from the rounded value of 0.1.

A.2 Why sin(π) is rounded

In this section, we present a brief explanation of the following Scilab 5.1 session, where the function
sinus is applied to the number π.

-->format(25)

-->sin(0.0)

ans =

0.

-->sin(%pi)

ans =

0.0000000000000001224647

Two kinds of approximations are associated with the previous result
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• π = 3.1415926... is approximated by Scilab as the value returned by 4 ∗ atan(1.0),

• the sin function is approximated by a polynomial.

This article is too short to make a complete presentation of the computation of elementary
functions. The interested reader may consider the direct analysis of the Fdlibm library as very
instructive [24]. The ”Elementary Functions” book by Muller [16] is a complete reference on this
subject.

In Scilab, the ”sin” function is directly performed by a fortran source code (sci f sin.f) and
no additionnal algorithm is performed directly by Scilab. At the compiler level, though, the
”sin” function is provided by a library which is compiler-dependent. The main structure of the
algorithm which computes ”in” is probably the following

• scale the input x so that in lies in a restricted interval,

• use a polynomial approximation of the local behaviour of ”sin” in the neighbourhood of 0,
with a guaranteed precision.

In the Fdlibm library for example, the scaling interval is [−π/4, π/4]. The polynomial approx-
imation of the sine function has the general form

sin(x) ≈ x+ a3x
3 + . . .+ a2n+1x

2n+1 (100)

≈ x+ x3p(x2) (101)

In the Fdlibm library, 6 terms are used.
For the inverse tan ”atan” function, which is used to compute an approximated value of π,

the process is the same. All these operations are guaranteed with some precision. For example,
suppose that the functions are guaranteed with 14 significant digits. That means that 17-14
+ 1 = 3 digits may be rounded in the process. In our current example, the value of sin(π) is
approximated with 17 digits after the point as ”0.00000000000000012”. That means that 2 digits
have been rounded.

A.3 One more step

In fact, it is possible to reduce the number of significant digits of the sine function to as low as
0 significant digits. The mathematical theory is sin(2nπ) = 0, but that is not true with floating
point numbers. In the following Scilab session, we

-->for i = 1:5

-->k=10*i;

-->n = 2^k;

-->sin(n*%pi)

-->end

ans =

- 0.0000000000001254038322

ans =

- 0.0000000001284135242063
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ans =

- 0.0000001314954487872237

ans =

- 0.0001346513391512239052

ans =

- 0.1374464882277985633419

For sin(250), all significant digits are lost. This computation may sound extreme, but it must
be noticed that it is inside the double precision possibility, since 250 ≈ 3.1015 � 10308. The
solution may be to use multiple precision numbers, such as in the Gnu Multiple Precision system.

If you know a better algorithm, based on double precision only, which allows to compute
accurately such kind of values, the Scilab team will surely be interested to hear from you !
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