
Nelder-Mead
Toolbox Manual

– Spendley et al. algorithm –

Version 0.2
September 2009

Michaël BAUDIN

Contents

1 Spendley’s et al. method 4

1.1 Introduction . 4

1.1.1 Overview . 4

1.1.2 Algorithm . 5

1.1.3 Geometric analysis . 7

1.1.4 General features of the algorithm . 9

1.2 Numerical experiments . 9

1.2.1 Quadratic function . 9

1.2.2 Badly scaled quadratic function . 10

1.2.3 Sensitivity to dimension . 13

1.3 Conclusion . 16

Bibliography 20

Index 20

Notations

n number of variables

x = (x1, x2, . . . , xn)T ∈ Rn the unknown

x0 ∈ Rn the initial guess

v ∈ Rn a vertex

S = {vi}i=1,m a complex, where m ≥ n+ 1 is the number of vertices

S = {vi}i=1,n+1 a simplex (with n+ 1 vertices)

(vi)j the j-th component of the i-th vertex

S0 the initial simplex

Sk the simplex at iteration k

f : Rn → R the cost function

Fig. 1 : Notations used in this document

Chapter 1

Spendley’s et al. method

In this chapter, we present Spendley, Hext and Himsworth algorithm [6] for unconstrained opti-

mization.

We begin by presenting a global overview of the algorithm. Then we present various geometric

situations which might occur during the algorithm. In the second section, we present several

numerical experiments which allow to get some insight in the behavior of the algorithm on some

simple situations. The two first cases are involving only 2 variables and are based on a quadratic

function. The last numerical experiment explores the behavior of the algorithm when the number

of variables increases.

1.1 Introduction

In this section, we present Spendley’s et al algorithm for unconstrained optimization. This algo-

rithm is based on the iterative update of a simplex. At each iteration, either a reflection of a shrink

step is performed, so that the shape of the simplex does not change during the iterations. Then

we present various geometric situations which might occur during the algorithm. This allows to

understand when exactly a reflection or a shrink is performed in practice.

1.1.1 Overview

The goal of Spendley’s et al. algorithm is to solve the following unconstrained optimization

problem

min f(x) (1.1)

where x ∈ Rn, n is the number of optimization parameters and f is the objective function

f : Rn → R.

This algorithms is based on the iterative update of a simplex made of n + 1 points S =

{vi}i=1,n+1. Each point in the simplex is called a vertex and is associated with a function value

fi = f(vi) for i = 1, n+ 1.

Chapter 1. Spendley’s et al. method 5

The vertices are sorted by increasing function values so that the best vertex has index 1 and

the worst vertex has index n+ 1

f1 ≤ f2 ≤ . . . ≤ fn ≤ fn+1. (1.2)

The v1 vertex (resp. the vn+1 vertex) is called the best vertex (resp. worst), because it is

associated with the lowest (resp. highest) function value. As we are going to see, the next-to-worst

vertex vn has a special role in this algorithm.

The centroid of the simplex x(j) is the center of the vertices where the vertex vj has been

excluded. This centroid is

x(j) =
1

n

∑
i=1,n+1,i 6=j

vi. (1.3)

The algorithm makes use of one coefficient ρ > 0, called the reflection factor. The standard value

of this coefficient is ρ = 1. The algorithm attempts to replace some vertex vj by a new vertex

x(ρ, j) on the line from the vertex vj to the centroid x(j). The new vertex x(ρ, j) is defined by

x(ρ, j) = (1 + ρ)x(j)− ρvj. (1.4)

1.1.2 Algorithm

In this section, we analyze Spendley’s et al algorithm, which is presented in figure 1.1.

At each iteration, we compute the centroid x(n + 1) where the worst vertex vn+1 has been

excluded. This centroid is

x(n+ 1) =
1

n

∑
i=1,n

vi. (1.5)

We perform a reflection with respect to the worst vertex vn+1, which creates the reflected point

xr defined by

xr = x(ρ, n+ 1) = (1 + ρ)x(n+ 1)− ρvn+1 (1.6)

We then compute the function value of the reflected point as fr = f(xr). If the function value

fr is better than the worst function value fn+1, i.e. if fr < fn+1, then the worst vertex vn+1 is

rejected from the simplex and the reflected point xr is accepted. If the reflection point does not

improve the function value fn+1, we consider the centroid x(n), i.e. the centroid where the next-

to-worst vertex vn has been excluded. We then consider the reflected point x′r, computed from

the next-to-worst vertex vn and the centroid x(n). We compute the function value f ′r = f(x′r).

If the function value f ′r improves over the worst function value fn+1, then the worst vertex vn+1

is rejected from the simplex and the new reflection point x′r is accepted.

At that point of the algorithm, neither the reflection with respect to vn+1 nor the reflection with

respect to vn were able to improve over the worst function value fn+1. Therefore, the algorithm

shrinks the simplex toward the best vertex v1. That last step uses the shrink coefficient 0 < σ < 1.

The standard value for this coefficient is σ = 1
2
.

Chapter 1. Spendley’s et al. method 6

Compute an initial simplex S0

Sorts the vertices S0 with increasing function values

S ← S0

while σ(S) > tol do

x← x(n+ 1) {Compute the centroid}
xr ← x(ρ, n+ 1) {Reflect with respect to worst}
fr ← f(xr)

if fr < fn+1 then

Accept xr

else

x← x(n) {Compute the centroid}
x′r ← x(ρ, n) {Reflect with respect to next-to-worst}
f ′r ← f(x′r)

if f ′r < fn+1 then

Accept x′r
else

Compute the vertices vi = v1 + σ(vi − v1) for i = 2, n+ 1 {Shrink}
Compute fi = f(vi) for i = 2, n+ 1

end if

end if

Sort the vertices of S with increasing function values

end while

Fig. 1.1 : Spendley’s et al. algorithm

Chapter 1. Spendley’s et al. method 7

R

H

L

N R = Reflection #1

H = Highest

L = Lowest

N = Next to highest

Shrink

R2 = Reflection #2
R2

Fig. 1.2 : Spendley et al. simplex moves

R

H

L

N R = Reflection #1

H = Highest

L = Lowest

N = Next to highest

Fig. 1.3 : Spendley et al. simplex moves – Reflection with respect to highest point

1.1.3 Geometric analysis

The figure 1.2 presents the various moves of the Spendley et al. algorithm. It is obvious from

the picture that the algorithm explores a pattern which is entirely determined from the initial

simplex.

In Spendley’s et al. original paper, the authors use a regular simplex, where the edges all have

the same length. In practice, however, any non degenerate simplex can be used.

The various situations in which these moves are performed are presented in figures 1.3, 1.4

and 1.5.

The basic move is the reflection step, presented in figure 1.3 and 1.4. These two figures show

that Spendley’s et al. algorithm is based on a discretization of the parameter space. The optimum

is searched on that grid, which is based on regular simplices. When no move is possible to improve

the situation on that grid, a shrink step is necessary, as presented in figure 1.5.

In the situation of figure 1.5, neither the reflection #1 or reflection #2 have improved the

simplex. Diminishing the size of the simplex by performing a shrink step is the only possible

move because the simplex has vertices which are located across the valley. This allows to refine

the discretization grid on which the optimum is searched.

Chapter 1. Spendley’s et al. method 8

R

H

L

N
R = Reflection #1

H = Highest

L = Lowest

N = Next to highest

R2 = Reflection #2
R2

Fig. 1.4 : Spendley et al. simplex moves – Reflection with respect to next-to-highest point. It may
happen that the next iteration is a shrink step.

R

H

L

N
R = Reflection #1

H = Highest

L = Lowest

N = Next to highest

R2 = Reflection #2
R2

Fig. 1.5 : Spendley et al. simplex moves – The shrink step is the only possible move.

Chapter 1. Spendley’s et al. method 9

1.1.4 General features of the algorithm

From the performance point of viewn when a reflection step is performed, only 1 or 2 function

evaluations are required. Instead, when a shrink step is performed, there are n function evaluations

required. In practice, reflection steps are performed when the simplex is away from the optimum.

When the simplex is closer to the optimum, or enters in a narrow valley, shrink steps are used.

As stated in [5], the main feature of Spendley’s et al. algorithm is that the simplex can vary

in size, but not in shape. As we are going to see in the numerical experiments, this leads to a slow

convergence when a narrow valley is encountered. In that situation, the shrink steps are required,

which leads to a large number of iterations and function evaluations.

In fact, the Spendley’s et al. algorithm is a pattern search algorithm [7]. This is a consequence

of the fact that the search pattern used in the method is constant. Therefore, the design never

degenerates. As stated in [7], ”under very mild assumptions on f , these simple heuristics provide

enough structure to guarantee global convergence. This is not the case for the Nelder-Mead

algorithm, which might converge to non-stationnary points [4, 3, 1, 8]. In all cases, the difficulty

is that a sequence of simplices produced by the Nelder-Mead simplex method can come arbitrarily

close to degeneracy.

1.2 Numerical experiments

In this section, we present some numerical experiments with Spendley’s et al. algorithm. The first

numerical experiments involves one quadratic function in 2 dimensions. The second experiment

is based on a badly scaled quadratic in 2 dimension. In the third experiment, we analyze the

behavior of the algorithm with respect to the number of variables.

1.2.1 Quadratic function

The function we try to minimize is the following quadratic in 2 dimensions

f(x1, x2) = x2
1 + x2

2 − x1x2. (1.7)

The stopping criteria is based on the relative size of the simplex with respect to the size of

the initial simplex

σ+(S) < tol × σ+(S0). (1.8)

The oriented length σ+(S) is defined by

σ+(S) = max
i=2,n+1

‖vi − v1‖2 (1.9)

where ‖.‖2 is the euclidian norm defined by

‖x‖2 =
∑
i=1,n

x2
i . (1.10)

Chapter 1. Spendley’s et al. method 10

In this experiment, we use tol = 10−8 as the relative tolerance on simplex size.

The initial simplex is a regular simplex with length unity.

The following Scilab script performs the optimization.
function y = quadrat i c (x)

y = x (1)ˆ2 + x (2)ˆ2 − x (1) ∗ x (2) ;

endfunction

nm = neldermead new () ;

nm = ne ldermead con f igure (nm, ”−numberofvariables” , 2) ;

nm = ne ldermead con f igure (nm, ”−function” , quadrat i c) ;

nm = ne ldermead con f igure (nm, ”−x0” , [2 . 0 2 . 0] ’) ;

nm = ne ldermead con f igure (nm, ”−maxiter” , 1 00) ;

nm = ne ldermead con f igure (nm, ”−maxfunevals” , 3 00) ;

nm = ne ldermead con f igure (nm, ”−tolxmethod” ,”disabled”) ;

nm = ne ldermead con f igure (nm, ”−tolsimplexizerelative ” , 1 . e−8);

nm = ne ldermead con f igure (nm, ”−simplex0method” ,”spendley”) ;

nm = ne ldermead con f igure (nm, ”−method” ,”fixed”) ;

nm = ne ldermead con f igure (nm, ”−verbose” , 1) ;

nm = ne ldermead con f igure (nm, ”−verbosetermination” , 0) ;

nm = neldermead search (nm) ;

ne ldermead di sp lay (nm) ;

nm = neldermead destroy (nm) ;

The numerical results are presented in table 1.6.

Iterations 49

Function Evaluations 132

x0 (2.0, 2.0)

Relative tolerance on simplex size 10−8

Exact x? (0., 0.)

Computed x? (2.169e− 10, 2.169e− 10)

Exact f(x?) 0.

Computed f(x?) 4.706e− 20

Fig. 1.6 : Numerical experiment with Spendley’s et al. method on the quadratic function f(x1, x2) =
x2

1 + x2
2 − x1x2

The various simplices generated during the iterations are presented in figure 1.7. The method

use reflections in the early iterations. Then there is no possible improvement using reflections and

shrinking is necessary. That behavior is an illustration of the discretization which has already

been discussed.

The figure 1.8 presents the history of the oriented length of the simplex. The length is updated

step by step, where each step corresponds to a shrink in the algorithm.

The convergence is quite fast in this case, since less than 60 iterations allow to get a function

value lower than 10−15, as shown in figure 1.9.

1.2.2 Badly scaled quadratic function

The function we try to minimize is the following quadratic in 2 dimensions

f(x1, x2) = ax2
1 + x2

2, (1.11)

Chapter 1. Spendley’s et al. method 11

Fig. 1.7 : Spendley et al. numerical experiment – History of simplex

Fig. 1.8 : Spendley et al. numerical experiment – History of logarithm of the size of the simplex

Chapter 1. Spendley’s et al. method 12

Fig. 1.9 : Spendley et al. numerical experiment – History of logarithm of function

where a > 0 is a chosen scaling parameter. The more a is large, the more difficult the problem is

to solve with the simplex algorithm. Indeed, let us compute the Hessian matrix associated with

the cost function. We have

H =

(
2a 0

0 2

)
. (1.12)

Therefore, the eigenvalues of the Hessian matrix are 2a and 2, which are stricly positive if a > 0.

Hence, the cost function is stricly convex and there is only one global solution, that is x? =

(0, 0, . . . , 0)T . The ratio between these two eigenvalues is a. This leads to an elongated valley,

which is extremely narrow when a is large.

The stopping criteria is based on the relative size of the simplex with respect to the size of

the initial simplex

σ+(S) < tol × σ+(S0). (1.13)

In this experiment, we use tol = 10−8 as the relative tolerance on simplex size.

We set the maximum number of function evaluations to 400. The initial simplex is a regular

simplex with length unity.

The following Scilab script allows to perform the optimization.
a = 100 ;

function y = quadrat i c (x)

y = a ∗ x (1)ˆ2 + x (2) ˆ 2 ;

endfunction

nm = nmplot new () ;

nm = nmplot con f i gure (nm, ”−numberofvariables” , 2) ;

nm = nmplot con f i gure (nm, ”−function” , quadrat i c) ;

nm = nmplot con f i gure (nm, ”−x0” , [1 0 . 0 1 0 . 0] ’) ;

nm = nmplot con f i gure (nm, ”−maxiter” , 4 00) ;

nm = nmplot con f i gure (nm, ”−maxfunevals” , 4 00) ;

Chapter 1. Spendley’s et al. method 13

nm = nmplot con f i gure (nm, ”−tolxmethod” ,”disabled”) ;

nm = nmplot con f i gure (nm, ”−tolsimplexizerelative ” , 1 . e−8);

nm = nmplot con f i gure (nm, ”−simplex0method” ,”spendley”) ;

nm = nmplot con f i gure (nm, ”−method” ,”fixed”) ;

nm = nmplot con f i gure (nm, ”−verbose” , 1) ;

nm = nmplot con f i gure (nm, ”−verbosetermination” , 0) ;

nm = nmplot con f i gure (nm, ”−simplexfn” ,”rosenbrock . fixed . history . simplex . txt”) ;

nm = nmplot con f i gure (nm, ”−fbarfn” ,”rosenbrock . fixed . history . fbar . txt”) ;

nm = nmplot con f i gure (nm, ”−foptfn” ,”rosenbrock . fixed . history . fopt . txt”) ;

nm = nmplot con f i gure (nm, ”−sigmafn” ,”rosenbrock . fixed . history . sigma . txt”) ;

nm = nmplot search (nm) ;

nmplot d i sp lay (nm) ;

nm = nmplot destroy (nm) ;

The numerical results are presented in table 1.6, where the experiment is presented for a = 100.

We can check that the number of function evaluations is equal to its maximum limit, even if the

value of the function at optimum is very inaccurate (f(x?) ≈ 0.08).

Iterations 340

Function Evaluations 400

a 100.0

x0 (10.0, 10.0)

Relative tolerance on simplex size 10−8

Exact x? (0., 0.)

Computed x? (0.001, 0.2)

Computed f(x?) 0.08

Fig. 1.10 : Numerical experiment with Spendley’s et al. method on a badly scaled quadratic function

The various simplices generated during the iterations are presented in figure 1.11. The method

use reflections in the early iterations. Then there is no possible improvement using reflections, so

that shrinking is necessary. But the repeated shrink steps makes the simplex very small, leading

to a large number of iterations. This is a limitation of the method, which is based on a simplex

which can vary its size, but not its shape.

In figure 1.12, we analyze the behavior of the method with respect to scaling. We check that

the method behave poorly when the scaling is bad. The convergence speed is slower and slower

and impractical when a > 10

1.2.3 Sensitivity to dimension

In this section, we try to study the convergence of the Spendley et al. algorithm with respect to

the number of variables, as presented by Han & Neumann in [2]. We emphasize, though, that

Han & Neumann present their numerical experiment with the Nelder-Mead algorithm, while we

present in this section the Spendley et al. algorithm. The function we try to minimize is the

following quadratic function in n-dimensions

f(x) =
∑
i=1,n

x2
i . (1.14)

Chapter 1. Spendley’s et al. method 14

Fig. 1.11 : Spendley et al. numerical experiment with f(x1, x2) = ax2
1 + x2

2 and a = 100 – History of
simplex

a Function evaluations Computed f(x?)

1.0 160 2.35e− 18

10.0 222 1.2e− 17

100.0 400 0.083

1000.0 400 30.3

10000.0 400 56.08

Fig. 1.12 : Numerical experiment with Spendley’s et al. method on a badly scaled quadratic function

Chapter 1. Spendley’s et al. method 15

The initial guess is the origin x0 = (0, 0, . . . , 0)T , which is also the global solution of the

problem. We have f(x0) = 0 so that this vertex is never updated during the iterations. The initial

simplex is computed with a random number generator. The first vertex of the initial simplex is the

origin. The other vertices are uniform in the [−1, 1] interval. An absolute termination criteria on

the size of the simplex is used, that is, the algorithm is stopped when the inequality σ+(Sk) ≤ 10−8

is satisfied.

For this test, we compute the rate of convergence as presented in Han & Neuman [2]. This

rate is defined as

ρ(S0, n) = lim supk→∞

(∏
i=0,k−1

σ(Si+1)

σ(Si)

)1/k

, (1.15)

where k is the number of iterations. That definition can be viewed as the geometric mean of the

ratio of the oriented lengths between successive simplices. This definition implies

ρ(S0, n) = lim supk→∞

(
σ(Sk)

σ(S0)

)1/k

, (1.16)

If k is the number of iterations required to obtain convergence, as indicated by the termination

criteria, the rate of convergence is practically computed as

ρ(S0, n, k) =

(
σ(Sk)

σ(S0)

)1/k

. (1.17)

The following Scilab script allows to perform the optimization.
function y = quadrat i c (x)

y = x (:) . ’ ∗ x (:) ;

endfunction

//

// myoutputcmd −−
// This command i s called back by the Nelder−Mead

// algorithm .

// Arguments

// state : the current state of the algorithm

// ”in i t ”, ”i ter ”, ”done”

// data : the data at the current state

// This i s a t l i s t with the following entries :

// ∗ x : the optimal vector of parameters

// ∗ fval : the minimum function value

// ∗ simplex : the simplex , as a simplex object

// ∗ iteration : the number of iterations performed

// ∗ funccount : the number of function evaluations

// ∗ step : the type of step in the previous iteration

//

function myoutputcmd (s t a t e , data , s tep)

global STEP COUNTER

STEP COUNTER(step) = STEP COUNTER(step) + 1

endfunction

// OptimizeHanNeumann −−
// Perform the optimization and returns the object

// Arguments

// N : the dimension

function nm = OptimizeHanNeumann (N)

global STEP COUNTER

STEP COUNTER(”in i t ”) = 0 ;

STEP COUNTER(”done”) = 0 ;

STEP COUNTER(”ref lect ion ”) = 0 ;

STEP COUNTER(”expansion”) = 0 ;

STEP COUNTER(”insidecontraction”) = 0 ;

Chapter 1. Spendley’s et al. method 16

STEP COUNTER(”outsidecontraction”) = 0 ;

STEP COUNTER(”expansion”) = 0 ;

STEP COUNTER(”shrink”) = 0 ;

STEP COUNTER(”reflectionnext ”) = 0 ;

x0 = zeros (N, 1) ;

nm = neldermead new () ;

nm = ne ldermead con f igure (nm, ”−numberofvariables” ,N) ;

nm = ne ldermead con f igure (nm, ”−function” , quadrat i c) ;

nm = ne ldermead con f igure (nm, ”−x0” , x0) ;

nm = ne ldermead con f igure (nm, ”−maxiter” , 10000) ;

nm = ne ldermead con f igure (nm, ”−maxfunevals” , 10000) ;

nm = ne ldermead con f igure (nm, ”−tolxmethod” ,”disabled”) ;

nm = ne ldermead con f igure (nm, ”−tolsimplexizeabsolute” , 1 . e−8);

nm = ne ldermead con f igure (nm, ”−tolsimplexizerelative ” , 0) ;

nm = ne ldermead con f igure (nm, ”−simplex0method” ,”given”) ;

coords0 (1 , 1 :N) = zeros (1 ,N) ;

coords0 (2 :N+1 ,1:N) = 2 ∗ rand (N,N) − 1 ;

nm = ne ldermead con f igure (nm, ”−coords0” , coords0) ;

nm = ne ldermead con f igure (nm, ”−method” ,”fixed”) ;

nm = ne ldermead con f igure (nm, ”−verbose” , 0) ;

nm = ne ldermead con f igure (nm, ”−verbosetermination” , 0) ;

nm = ne ldermead con f igure (nm, ”−outputcommand” ,myoutputcmd) ;

//

// Perform optimization

//

nm = neldermead search (nm) ;

endfunction

for N = 1:10

nm = OptimizeHanNeumann (N) ;

n i t e r = neldermead get (nm , ”−i terations ”) ;

f uneva l s = neldermead get (nm , ”−funevals”) ;

s implex0 = neldermead get (nm , ”−simplex0”) ;

sigma0 = opt ims imp l ex s i z e (s implex0 , ”sigmaplus”) ;

s implexopt = neldermead get (nm , ”−simplexopt”) ;

sigmaopt = opt ims imp l ex s i z e (s implexopt , ”sigmaplus”) ;

rho = (sigmaopt / sigma0) ˆ (1 / n i t e r) ;

//mprintf (”%d %d %d %e\n” , N , funevals , niter , rho) ;

mprintf (”%d %s\n” ,N, strcat (string (STEP COUNTER) , ” ”))

nm = neldermead destroy (nm) ;

end

The figure 1.13 presents the type of steps which are performed for each number of variables.

We see that the algorithm mostly performs shrink steps.

The figure 1.14 presents the number of function evaluations depending on the number of

variables. We can see that the number of function evaluations increases approximately linearly

with the dimension of the problem in figure 1.15. A rough rule of thumb is that, for n = 1, 20, the

number of function evaluations is equal to 30n: most iterations are shrink steps and approximately

30 iterations are required, almost independently of n.

The table 1.14 also shows the interesting fact that the convergence rate is almost constant

and very close to 1/2. This is a consequence of the shrink steps, which are dividing the size of

the simplex at each iteration by 2.

1.3 Conclusion

We saw in the first numerical experiment that the method behave reasonably when the function

is correctly scaled. When the function is badly scaled, as in the second numerical experiment, the

Spendley et al. algorithm produces a large number of function evaluations and converges very

slowly. This limitation occurs with even moderate badly scaled functions and generates a very

slow method in these cases.

Chapter 1. Spendley’s et al. method 17

n #Iterations # Reflections # Reflection #Shrink

/ High / Next to High

1 27 0 0 26

2 28 0 0 27

3 30 2 0 27

4 31 1 1 28

5 29 0 0 28

6 31 2 0 28

7 29 0 0 28

8 29 0 0 28

9 29 0 0 28

10 29 0 0 28

11 29 0 0 28

12 29 0 0 28

13 31 0 2 28

14 29 0 0 28

15 29 0 0 28

16 31 0 1 29

17 30 0 0 29

18 30 0 0 29

19 31 0 1 29

20 32 2 0 29

Fig. 1.13 : Numerical experiment with Spendley et al method on a generalized quadratic function –
Number of iterations and types of steps performed

Chapter 1. Spendley’s et al. method 18

n Function Iterations ρ(S0, n)

Evaluations

1 81 27 0.513002

2 112 28 0.512532

3 142 29 0.524482

4 168 28 0.512532

5 206 31 0.534545

6 232 29 0.512095

7 262 30 0.523127

8 292 30 0.523647

9 321 30 0.523647

10 348 29 0.512095

11 377 29 0.512095

12 406 29 0.512095

13 435 29 0.512095

14 464 29 0.512095

15 493 29 0.512095

16 540 30 0.511687

17 570 30 0.511687

18 600 30 0.511687

19 630 30 0.511687

20 660 30 0.511687

Fig. 1.14 : Numerical experiment with Spendley et al. method on a generalized quadratic function

Chapter 1. Spendley’s et al. method 19

Fig. 1.15 : Spendley et al. numerical experiment – Number of function evaluations depending on the
number of variables

In the last experiment, we have explored what happens when the number of iterations is

increasing. In this experiment, the rate of convergence is close to 1/2 and the number of function

evaluations is a linear function of the number of variables (approximately 30n).

Bibliography

[1] Lixing Han. Algorithms in Unconstrained Optimization. Ph.D., The University of Connecticut,

2000.

[2] Lixing Han and Michael Neumann. Effect of dimensionality on the nelder-mead simplex

method. Optimization Methods and Software, 21(1):1–16, 2006.

[3] Lixing Han, Michael Neumann, and Jianhong Xu. On the roots of certain polynomials arising

from the analysis of the nelder-mead simplex method. Linear Algebra and its Applications,

363:109–124, 2003.

[4] K. I. M. McKinnon. Convergence of the nelder–mead simplex method to a nonstationary

point. SIAM J. on Optimization, 9(1):148–158, 1998.

[5] A. Singer and J. Nelder. Nelder-mead algorithm. Scholarpedia, 4(7):2928, 2009.

[6] W. Spendley, G. R. Hext, and F. R. Himsworth. Sequential application of simplex designs in

optimisation and evolutionary operation. Technometrics, 4(4):441–461, 1962.

[7] Virginia Torczon and Michael W. Trosset. From evolutionary operation to parallel direct

search: Pattern search algorithms for numerical optimization. Computing Science and Statis-

tics, 29:396–401, 1998.

[8] Virginia Joanne Torczon. Multi-directional search: A direct search algorithm for parallel

machines. Technical report, Rice University, 1989.

Index

Hext, G. R., 4

Himsworth, F. R., 4

Spendley, W., 4

	Spendley's et al. method
	Introduction
	Overview
	Algorithm
	Geometric analysis
	General features of the algorithm

	Numerical experiments
	Quadratic function
	Badly scaled quadratic function
	Sensitivity to dimension

	Conclusion

	Bibliography
	Index

