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Chapter 1

Introduction

1.1 What is Scilab

Developed at INRIA and ENPC, Scilab has been developed for engineering applications. It is
freely distributed (see the copyright file) and the source code is available.

Scilab is made of three distinct parts: an interpreter, a set of libraries of Fortran and C routines
linked with Scilab and a number of toolboxes written in Scilab language. The numerical librairies
(which, strictly speaking, do not belong to Scilab but are interactively called by the interpreter)
are of independent interest and most of them are available through the Web.

A key feature of the Scilab syntax is its ability to handle matrices: basic matrix manipula-
tions such as concatenation, extraction or transpose are immediately performed as well as basic
operations such as addition or multiplication. The syntax for manipulating matrices is mostly com-
patible with Matlab. Scilab also aims at handling more complex objects than numerical matrices.
This is done in Scilab by manipulating structures which allows a natural symbolic representation
of complicated objects such as transfer functions, linear systems or graphs (see Section 2.8).

Mathematical objects such as polynomials, polynomials matrices and rational polynomial ma-
trices are also defined and the syntax used for manipulating these matrices is identical to that used
for manipulating numerical vectors and matrices.

Scilab provides a variety of powerful primitives for the analysis of non-linear systems. Inte-
gration of explicit and implicit dynamic systems can be accomplished numerically. The scicos
toolbox allows the graphic definition and simulation of complex interconnected hybrid systems.
Documentation about scicos can be found at its the Web page scicos.org.

There exist numerical optimization facilities for non linear optimization (including non differ-
entiable optimization), quadratic optimization and linear optimization (see also the contribution
directory on the Scilab Web page).

Scilab has an open programming environment where the creation of functions and libraries
of functions is completely in the hands of the user (see Chapter 3). Functions are recognized as
data objects in Scilab and, thus, can be manipulated or created as other data objects. For example,
functions can be defined inside Scilab and passed as input or output arguments of other functions.

In addition Scilab supports a character string data type which, in particular, allows the on-line
creation of functions. Matrices of character strings are also manipulated with the same syntax as
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ordinary matrices.
Finally, Scilab is easily interfaced with Fortran or C subprograms. This allows use of stan-

dardized packages and libraries in the interpreted environment of Scilab.
The general philosophy of Scilab is to provide the following sort of computing environment:

• To have data types which are varied and flexible with a syntax which is natural and easy to
use.

• To provide a reasonable set of primitives which serve as a basis for a wide variety of calcu-
lations.

• To have an open programming environment where new primitives are easily added.

• To support library development through “toolboxes” of functions devoted to specific appli-
cations (linear control, signal processing, network analysis, non-linear control, etc.)

The objective of this introduction manual is to give the user an idea of what Scilab can do. On
line documentation about all functions is available (help command).

1.2 Software Organization

Scilab is divided into a set of directories. The main directory SCIDIR contains the following
files: scilab.star (startup file), the copyright file notice.tex, and the configure files
(see(1.3)). The main subdirectories are the following:

• bin is the directory of the executable files. The starting script scilab on Unix/Linux
systems and runscilab.exe on Windows. The executable code of Scilab: scilex on
Unix/Linux systems and scilex.exe on Windows are there. This directory also contains
Shell scripts for managing or printing Postscript/LATEX files produced by Scilab.

• demos is the directory of demos. This directory contains the codes corresponding to various
demos. They are often useful for inspiring new users. The file alldems.dem is used by
the “Demos” button. Most of plot commands are illustrated by simple demo examples. Note
that running a graphic function without input parameter provides an example of use for this
function (for instance plot2d() displays an example for using plot2d function).

• examples contains examples of specific topics. It is shown in appropriate subdirecto-
ries how to add new C or Fortran program to Scilab (see addinter-tutorial). More
complex examples are given in addinter-examples. The directory mex-examples
contains examples of interfaces realized by emulating the Matlab mexfiles. The directory
link-examples illustrates the use of the call function which allows to call external
function within Scilab.

• macros contains the libraries of functions which are available on-line. New libraries can
easily be added (see the Makefile). This directory is divided into a number of subdirectories
which contain “Toolboxes” for control, signal processing, etc... Strictly speaking Scilab
is not organized in toolboxes : functions of a specific subdirectory can call functions of
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other directories; so, for example, the subdirectory signal is not self-contained but all the
functions there are devoted to signal processing.

• man is the directory containing the manual divided into submanuals, corresponding to the
on-line help.

To get information about an item, one should enter help item in Scilab or use the help
window facility obtained with help button. To get information corresponding to a key-word,
one should enter apropos key-word or use apropos in the help window. All the
items and key-words known by the help and apropos commands are in .html and
whatis files located in the man subdirectories.

To add new items to the help and apropos commands the user can extend the list of
directories available to the help browser by adapting the variable %helps.

• routines is a directory which contains the source code of all the numerical routines.
The subdirectory default is important since it contains the source code of routines which
are necessary to customize Scilab. In particular user’s C or Fortran routines for ODE/DAE
simulation or optimization can be included here (they can be also dynamically linked)

• tests : this directory contains evaluation programs for testing Scilab’s installation on a
machine. The file “demos.tst” tests all the demos.

• intersci contains a program which can be used to build interface programs for adding
new Fortran or C primitives to Scilab. This program is executed by the intersci script
in the bin/intersci directory.

1.3 Installing Scilab. System Requirements

Scilab is distributed in source code format; binaries for Windows98/NT/XP systems and several
popular Unix/Linux-XWindow systems are also available. See the Scilab Web page and the con-
tributions for specific ports. All of these binaries versions include tk/tcl interface.

The installation requirements are the following :
- for the source version: Scilab requires approximately 130Mb of disk storage to unpack and

install (all sources included). You a C compiler and a Fortran compiler.
- for the binary version: the minimum for running Scilab (without sources) is about 40 Mb

when decompressed.
Scilab uses a large internal stack for its calculations. This size of this stack can be reduced

or enlarged by the stacksize. command. The default dimension of the internal stack can be
adapted by modifying the variable newstacksize in the scilab.star script.

- For more information on the installation, please look at the README files.

1.4 Documentation

The documentation is made of this User’s guide (Introduction to Scilab) and the Scilab on-line
manual. There are also reports devoted to specific toolboxes: Scicos (graphic system builder and
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simulator), Signal (Signal processing toolbox), Lmitool (interface for LMI problems), Metanet
(graph and network toolbox). An FAQ is available at Scilab home page:
(http://www.scilab.org).

Several documents are available in French, German, Spanish, Chinese etc. See the Scilab Web
page.

1.5 Scilab at a Glance. A Tutorial

1.5.1 Getting Started

After starting Scilab, you get:

===========
S c i l a b
===========

Scilab-x.y.z
Copyright (C) 1989-xx INRIA/ENPC

Startup execution:
loading initial environment

-->

A first contact with Scilab can be made by clicking on Demos with the left mouse button and
clicking then on Introduction to SCILAB : the execution of the session is then done by
entering empty lines and can be stopped with the buttons Stop and Abort.

Several libraries (see the SCIDIR/scilab.star file) are automatically loaded.
To give the user an idea of some of the capabilities of Scilab we will give later a sample session

in Scilab.

1.5.2 Editing a command line

Before the sample session, we briefly present how to edit a command line. You can enter a com-
mand line by typing after the prompt or clicking with the mouse on a part on a window and copy
it at the prompt in the Scilab window. The pointer may be moved using the directionnal arrows
(←↑

↓→). For Emacs customers, the usual Emacs commands are at your disposal for modifying
a command (Ctrl-<chr> means hold the CONTROL key while typing the character <chr>), for
example:
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• Ctrl-p recall previous line

• Ctrl-n recall next line

• Ctrl-b move backward one character

• Ctrl-f move forward one character

• Delete delete previous character

• Ctrl-h delete previous character

• Ctrl-d delete one character (at cursor)

• Ctrl-a move to beginning of line

• Ctrl-e move to end of line

• Ctrl-k delete to the end of the line

• Ctrl-u cancel current line

• Ctrl-y yank the text previously deleted

• !prev recall the last command line which begins by prev

• Ctrl-c interrupt Scilab and pause after carriage return. Clicking on the Control/stop button
enters a Ctrl-c.

As said before you can also cut and paste using the mouse. This way will be useful if you type
your commands in an editor. Another way to “load” files containing Scilab statements is available
with the File/File Operations button.

1.5.3 Sample Session for Beginners

We present now some simple commands. At the carriage return all the commands typed since the
last prompt are interpreted.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Give the values of 1 and 2 to the variables a and A . The semi-colon at the end of the command
suppresses the display of the result. Note that Scilab is case-sensitive. Then two commands are
processed and the second result is displayed because it is not followed by a semi-colon. The last
command shows how to write a command on several lines by using “...”. This sign is only
needed in the on-line typing for avoiding the effect of the carriage return. The chain of characters
which follow the // is not interpreted (it is a comment line).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We get the list of previously defined variables a b c A together with the initial environment
composed of the different libraries and some specific “permanent” variables.

Below is an example of an expression which mixes constants with existing variables. The
result is retained in the standard default variable ans.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Defining I, a vector of indices, W a random 2 x 4 matrix, and extracting submatrices from W.

The $ symbol stands for the last row or last column index of a matrix or vector. The colon symbol
stands for “all rows” or “all columns”.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Calling a function (or primitive) with a vector argument. The response is a complex vector.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A more complicated command which creates a polynomial.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Definition of a structure variable.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Definition of a polynomial matrix. The syntax for polynomial matrices is the same as for
numerical matrices. Calculation of the determinant of the polynomial matrix by the det function.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Definition of a matrix of rational polynomials. (The internal representation of F is a typed list
of the form tlist(’the type’,num,den) where num and den are two matrix polynomi-
als). Retrieving the numerator and denominator matrices of F by extraction operations in a typed
list. Last command is the direct extraction of entry 1,2 of the numerator matrix F.num.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Here we move into a new environment using the command pause and we obtain the new
prompt -1-> which indicates the level of the new environment (level 1). All variables that are
available in the first environment are also available in the new environment. Variables created
in the new environment can be returned to the original environment by using return. Use of
return without an argument destroys all the variables created in the new environment before
returning to the old environment. The pause facility is very useful for debugging purposes.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Definition of a rational polynomial by extraction of an entry of the matrix F defined above.
This is followed by the evaluation of the rational polynomial at the vector of complex frequency
values defined by frequencies. The evaluation of the rational polynomial is done by the primi-
tive freq. F12.num is the numerator polynomial and F12.den is the denominator polynomial
of the rational polynomial F12. Note that the polynomial F12.num can be also obtained by
extraction from the matrix F using the syntax F.num(1,2). The visualization of the resulting
evaluation is made by using the basic plot command plot2d (see Figure 1.5.3).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The function horner performs a (possibly symbolic) change of variables for a polynomial
(for example, here, to perform the bilinear transformation f(w(s))).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Definition of a linear system in state-space representation. The function syslin defines here
the continuous time (’c’) system Sl with state-space matrices (A,B,C). The function ss2tf
transforms Sl into transfer matrix representation.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Definition of the rational matrix R. Sl is the continuous-time linear system with (improper)
transfer matrix R. tf2ss puts Sl in state-space representation with a polynomial D matrix. Note
that linear systems are represented by specific typed lists (with 7 entries).
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
sl1 is the linear system in transfer matrix representation obtained by the parallel inter-connection

of Sl and 2*Sl +eye(). The same syntax is valid with Sl in state-space representation.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

On-line definition of a function, called compenwhich calculates the state space representation
(Cl) of a linear system (Sl) controlled by an observer with gain Ko and a controller with gain Kr.
Note that matrices are constructed in block form using other matrices.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Call to the function compen defined above where the gains were calculated by a call to the
primitive ppol which performs pole placement. The resulting Aclosed matrix is displayed and
the placement of its poles is checked using the primitive spec which calculates the eigenvalues
of a matrix. (The function compen is defined here on-line by as an example of function which
receive a linear system (Sl) as input and returns a linear system (Cl) as output. In general Scilab
functions are defined in files and loaded in Scilab by exec or by getf ).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Relation with the host environment.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Definition of a column vector of character strings used for defining a C function file. The rou-
tine is compiled (needs a compiler), and a shared library is done. The libary is dynamically linked
to Scilab by the link command, and interactively called by the function myplus. myplus
passes variables from Scilab to C and conversely.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Definition of a function which calculates a first order vector differential f(t,y). This is
followed by the definition of the constant a used in the function. The primitive ode then integrates
the differential equation defined by the Scilab function f(t,y) for y0=[1;0] at t=0 and where
the solution is given at the time values t = 0, .02, .04, . . . , 20. (Function f can be defined as a
C or Fortran program). The result is plotted in Figure 0 where the first element of the integrated
vector is plotted against the second element of this vector.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Definition of a matrix containing character strings. By default, the operation of symbolic
multiplication of two matrices of character strings is not defined in Scilab. However, the (on-line)
function definition for %cmc defines the multiplication of matrices of character strings. The %
which begins the function definition for %cmc allows the definition of an operation which did not
previously exist in Scilab, and the name cmc means “chain multiply chain”. This example is not
very useful: it is simply given to show how operations such as * can be defined on complex data
structures by mean of scpecific Scilab functions.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A simple example which illustrates the passing of a function as an argument to another func-
tion. Scilab functions are objects which may be defined, loaded, or manipulated as other objects
such as matrices or lists.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

-->quit
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Exit from Scilab.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A Simple Response

: Phase Plot



Chapter 2

Data Types

Scilab recognizes several data types. Scalar objects are numerical constants, booleans, polynomi-
als, strings and rationals (quotients of polynomials). These objects in turn allow to define matrices
which admit these scalars as entries. Other basic objects are lists, typed-lists and functions. The
objective of this chapter is to describe the use of each of these data types.

2.1 Special Constants

Scilab provides special constants %i, %pi, %e, and %eps as primitives. The %i constant rep-
resents

√
−1, %pi is π = 3.1415927 · · · , %e is the trigonometric constant e = 2.7182818 · · · ,

and %eps is a constant representing the precision of the machine (%eps is the biggest number for
which 1 +%eps = 1). %inf and %nan stand for “Infinity” and “NotANumber” respectively. %s
is the polynomial s=poly(0,’s’) with symbol s.

(More generally, given a vector rts, p=poly(rts,’x’) defines the polynomial p(x) with
variable x and such that roots(p) = rts).

Finally boolean constants are %t and %f which stand for “true” and “false” respectively. Note
that %t is the same as 1==1 and %f is the same as ~%t.

These variables are considered as “predefined”. They are protected, cannot be deleted and are
not saved by the save command. It is possible for a user to have his own “predefined” variables
by using the predef command. The best way is probably to set these special variables in his own
startup file <home dir>/.scilab. Of course, the user can use e.g. i=sqrt(-1) instead of
%i.

2.2 Constant Matrices

Scilab considers a number of data objects as matrices. Scalars and vectors are all considered as
matrices. The details of the use of these objects are revealed in the following Scilab sessions.

Scalars Scalars are either real or complex numbers. The values of scalars can be assigned to
variable names chosen by the user.

9
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--> a=5+2*%i //a complex number
a =

5. + 2.i

--> B=-2+%i;

--> b=4-3*%i
b =

4. - 3.i

--> a*b
ans =

26. - 7.i

-->a*B
ans =

- 12. + i

Note that Scilab evaluates immediately lines that end with a carriage return. Instructions that ends
with a semi-colon are evaluated but are not displayed on screen.

Vectors The usual way of creating vectors is as follows, using commas (or blanks) and semi-
columns:

--> v=[2,-3+%i,7]
v =

! 2. - 3. + i 7. !

--> v’
ans =

! 2. !
! - 3. - i !
! 7. !

--> w=[-3;-3-%i;2]
w =

! - 3. !
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! - 3. - i !
! 2. !

--> v’+w
ans =

! - 1. !
! - 6. - 2.i !
! 9. !

--> v*w
ans =

18.

--> w’.*v
ans =

! - 6. 8. - 6.i 14. !

Notice that vector elements that are separated by commas (or by blanks) yield row vectors and
those separated by semi-colons give column vectors. The empty matrix is [] ; it has zero rows
and zero columns. Note also that a single quote is used for transposing a vector (one obtains the
complex conjugate for complex entries). Vectors of same dimension can be added and subtracted.
The scalar product of a row and column vector is demonstrated above. Element-wise multiplica-
tion (.*) and division (./) is also possible as was demonstrated.

Note with the following example the role of the position of the blank:

-->v=[1 +3]
v =

! 1. 3. !

-->w=[1 + 3]
w =

! 1. 3. !

-->w=[1+ 3]
w =

4.

-->u=[1, + 8- 7]
u =
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! 1. 1. !

Vectors of elements which increase or decrease incrementely are constructed as follows

--> v=5:-.5:3
v =

! 5. 4.5 4. 3.5 3. !

The resulting vector begins with the first value and ends with the third value stepping in increments
of the second value. When not specified the default increment is one. A constant vector can be
created using the ones and zeros facility

--> v=[1 5 6]
v =

! 1. 5. 6. !

--> ones(v)
ans =

! 1. 1. 1. !

--> ones(v’)
ans =

! 1. !
! 1. !
! 1. !

--> ones(1:4)
ans =

! 1. 1. 1. 1. !

--> 3*ones(1:4)
ans =

! 3. 3. 3. 3. !

-->zeros(v)
ans =
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! 0. 0. 0. !

-->zeros(1:5)
ans =

! 0. 0. 0. 0. 0. !

Notice that ones or zeros replace its vector argument by a vector of equivalent dimensions
filled with ones or zeros.

Matrices Row elements are separated by commas or spaces and column elements by semi-
colons. Multiplication of matrices by scalars, vectors, or other matrices is in the usual sense.
Addition and subtraction of matrices is element-wise and element-wise multiplication and division
can be accomplished with the .* and ./ operators.

--> A=[2 1 4;5 -8 2]
A =

! 2. 1. 4. !
! 5. - 8. 2. !

--> b=ones(2,3)
b =

! 1. 1. 1. !
! 1. 1. 1. !

--> A.*b
ans =

! 2. 1. 4. !
! 5. - 8. 2. !

--> A*b’
ans =

! 7. 7. !
! - 1. - 1. !

Notice that the ones operator with two real numbers as arguments separated by a comma creates
a matrix of ones using the arguments as dimensions (same for zeros). Matrices can be used as
elements to larger matrices. Furthermore, the dimensions of a matrix can be changed.
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--> A=[1 2;3 4]
A =

! 1. 2. !
! 3. 4. !

--> B=[5 6;7 8];

--> C=[9 10;11 12];

--> D=[A,B,C]
D =

! 1. 2. 5. 6. 9. 10. !
! 3. 4. 7. 8. 11. 12. !

--> E=matrix(D,3,4)
E =

! 1. 4. 6. 11. !
! 3. 5. 8. 10. !
! 2. 7. 9. 12. !

-->F=eye(E)
F =

! 1. 0. 0. 0. !
! 0. 1. 0. 0. !
! 0. 0. 1. 0. !

-->G=eye(4,3)
G =

! 1. 0. 0. !
! 0. 1. 0. !
! 0. 0. 1. !
! 0. 0. 0. !

Notice that matrix D is created by using other matrix elements. The matrix primitive creates
a new matrix E with the elements of the matrix D using the dimensions specified by the second
two arguments. The element ordering in the matrix D is top to bottom and then left to right which
explains the ordering of the re-arranged matrix in E.
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The function eye creates an m× n matrix with 1 along the main diagonal (if the argument is
a matrix E , m and n are the dimensions of E ) .

Sparse constant matrices are defined through their nonzero entries (type help sparse for
more details). Once defined, they are manipulated as full matrices.

2.3 Matrices of Character Strings

Character strings can be created by using single or double quotes. Concatenation of strings is
performed by the + operation. Matrices of character strings are constructed as ordinary matrices,
e.g. using brackets. An important feature of matrices of character strings is the capacity to manip-
ulate and create functions. Furthermore, symbolic manipulation of mathematical objects can be
implemented using matrices of character strings. The following illustrates some of these features.

--> A=[’x’ ’y’;’z’ ’w+v’]
A =

!x y !
! !
!z w+v !

--> At=trianfml(A)
At =

!z w+v !
! !
!0 z*y-x*(w+v) !

--> x=1;y=2;z=3;w=4;v=5;

--> evstr(At)
ans =

! 3. 9. !
! 0. - 3. !

Note that in the above Scilab session the function trianfml performs the symbolic triangu-
larization of the matrix A. The value of the resulting symbolic matrix can be obtained by using
evstr.

The following table gives the list of some useful functions:
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ascii ascii code of strings
execstr executes the string
grep looks for a chain into a matrix

sort, gsort sorting (lexicographic,...)
part extract a subchain

mmscanf formated read into a chain
msprintf construct a chain/vector
strindex location of a subchain
string convert into a string

stripblanks remove blank characters
strsubst chain replacement
tokens cuts a chain
strcat catenates chains
length chain length

A string matrices can be used to create new functions (for more on functions see Section 3.2).
An example of automatically creating a function is illustrated in the following Scilab session where
it is desired to study a polynomial of two variables s and t. Since polynomials in two independent
variables are not directly supported in Scilab, we can construct a new data structure using a list
(see Section 2.8). The polynomial to be studied is (t2 + 2t3)− (t+ t2)s+ ts2 + s3.

-->s=poly(0,’s’);t=poly(0,’t’);

-->p=list(t^2+2*t^3,-t-t^2,t,1+0*t);

-->pst=makefunction(p) //pst is a function
// t->p (number->polynomial)
pst =

[p]=pst(t)

-->pst(1)
ans =

2 3
3 - 2s + s + s

Here the polynomial is represented by the command which puts the coefficients of the variable
s in the list p. The list p is then processed by the function makefunction which makes a
new function pst. The contents of the new function can be displayed and this function can be
evaluated at values of t. The creation of the new function pst is accomplished as follows

Here the function makefunction takes the list p and creates the function pst. Inside of
makefunction there is a call to another function makestr which makes the string which
represents each term of the new two variable polynomial. The functions addf and mulf are used
for adding and multiplying strings (i.e. addf(x,y) yields the string x+y). Finally, the essential
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command for creating the new function is the primitive deff. The deff primitive creates a
function defined by two matrices of character strings. Here the function p is defined by the two
character strings ’[p]=newfunction(t)’ and text where the string text evaluates to the
polynomial in two variables.

2.4 Polynomials and Polynomial Matrices

Polynomials are easily created and manipulated in Scilab. Manipulation of polynomial matrices is
essentially identical to that of constant numerical matrices. The poly primitive in Scilab can be
used to specify the coefficients of a polynomial or the roots of a polynomial.

-->p=poly([1 2],’s’) //polynomial defined by its roots
p =

2
2 - 3s + s

-->q=poly([1 2],’s’,’c’) //polynomial defined by its coefficients
q =

1 + 2s

-->p+q
ans =

2
3 - s + s

-->p*q
ans =

2 3
2 + s - 5s + 2s

--> q/p
ans =

1 + 2s
-----------

2
2 - 3s + s

Note that the polynomial p has the roots 1 and 2 whereas the polynomial q has the coefficients 1
and 2. It is the third argument in the poly primitive which specifies the coefficient flag option. In
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the case where the first argument of poly is a square matrix and the roots option is in effect the
result is the characteristic polynomial of the matrix.

--> poly([1 2;3 4],’s’)
ans =

2
- 2 - 5s + s

Polynomials can be added, subtracted, multiplied, and divided, as usual, but only between poly-
nomials of same formal variable.

Polynomials, like real and complex constants, can be used as elements in matrices. This is a
very useful feature of Scilab for systems theory.

-->s=poly(0,’s’);

-->A=[1 s;s 1+s^2]; //Polynomial matrix

--> B=[1/s 1/(1+s);1/(1+s) 1/s^2]
B =

! 1 1 !
! ------ ------ !
! s 1 + s !
! !
! 1 1 !
! --- --- !
! 2 !
! 1 + s s !

From the above examples it can be seen that matrices can be constructed from polynomials and
rationals.

2.4.1 Rational polynomial simplification

Scilab automatically performs pole-zero simplifications when the the built-in primitive simp
finds a common factor in the numerator and denominator of a rational polynomial num/den.
Pole-zero simplification is a difficult problem from a numerical viewpoint and simp function is
usually conservative. When making calculations with polynomials, it is sometimes desirable to
avoid pole-zero simplifications: this is possible by switching Scilab into a “no-simplify” mode:
help simp_mode. The function trfmod can also be used for simplifying specific pole-zero
pairs.
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2.5 Boolean Matrices

Boolean constants are %t and %f. They can be used in boolean matrices. The syntax is the same
as for ordinary matrices i.e. they can be concatenated, transposed, etc...

Operations symbols used with boolean matrices or used to create boolean matrices are == and
~.

If B is a matrix of booleans or(B) and and(B) perform the logical or and and.

-->%t
%t =

T

-->[1,2]==[1,3]
ans =

! T F !

-->[1,2]==1
ans =

! T F !

-->a=1:5; a(a>2)
ans =

! 3. 4. 5. !

-->A=[%t,%f,%t,%f,%f,%f];

-->B=[%t,%f,%t,%f,%t,%t]
B =

! T F T F T T !

-->A|B
ans =

! T F T F T T !

-->A&B
ans =

! T F T F F F !
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Sparse boolean matrices are generated when, e.g., two constant sparse matrices are compared.
These matrices are handled as ordinary boolean matrices.

2.6 Integer Matrices

There are 6 integer data types defined in Scilab, all these types have the same major type (see the
type function) which is 8 and different sub-types (see the inttype function)

• 32 bit signed integers (sub-type 4)

• 32 bit unsigned integers (sub-type 14)

• 16 bit signed integers (sub-type 2)

• 16 bit unsigned integers (sub-type 23)

• 8 bit signed integers (sub-type 2)

• 8 bit unsigned integers (sub-type 12)

It is possible to build these integer data types from standard matrix (see 2.2) using the int32,
uint32, int16, uint16, int8, uint8 conversion functions

-->x=[0 3.2 27 135] ;

-->int32(x)
ans =

!0 3 27 135 !

-->int8(x)
ans =

!0 3 27 -121!
-->uint8(x)
ans =

!0 3 27 135 !

The same function can also convert from one sub-type to another one. The double function
transform any of the integer type in a standard type:

-->y=int32([2 5 285])
y =
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!2 5 285 !

-->uint8(y)
ans =

!2 5 29 !

-->double(ans)
ans =

! 2. 5. 29. !

Arithmetic and comparison operations can be applied to this type

-->x=int16([1 5 12])
x =

!1 5 12 !

-->x([1 3])
ans =

!1 12 !

-->x+x

ans =

!2 10 24 !

-->x*x’
ans =

170
-->y=int16([1 7 11])
y =

!1 7 11 !
-->x>y
ans =

! F F T !
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The operators &, | and used with these datatypes correspond to AND, OR and NOT bit-wise
operations.

-->x=int16([1 5 12])
x =

!1 5 12 !

-->x|int16(2)
ans =

!3 7 14 !

-->int16(14)&int16(2)
ans =

2
-->~uint8(2)
ans =

253

2.7 N-dimensionnal arrays

N-dimensionnal array can be defined and handled in simple way:

-->M(2,2,2)=3
M =

(:,:,1)

! 0. 0. !
! 0. 0. !
(:,:,2)

! 0. 0. !
! 0. 3. !

-->M(:,:,1)=rand(2,2)
M =

(:,:,1)

! 0.9329616 0.312642 !
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! 0.2146008 0.3616361 !
(:,:,2)

! 0. 0. !
! 0. 3. !

-->M(2,2,:)
ans =

(:,:,1)

0.3616361
(:,:,2)

3.
-->size(M)
ans =

! 2. 2. 2. !

-->size(M,3)
ans =

2.

They can be created from a vector of data and a vector of dimension

-->hypermat([2 3,2],1:12)
ans =

(:,:,1)

! 1. 3. 5. !
! 2. 4. 6. !
(:,:,2)

! 7. 9. 11. !
! 8. 10. 12. !

N-dimensionnal matrices are coded as mlists with 2 fields :

-->M=hypermat([2,3,2],1:12);
-->M.dims
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ans =

! 2. 3. 2. !
-->M.entries’
ans =

column 1 to 11

! 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. !

column 12

! 12. !

2.8 Lists

Scilab has a list data type. The list is a collection of data objects not necessarily of the same type.
A list can contain any of the already discussed data types (including functions) as well as other
lists. Lists are useful for defining structured data objects.

There are two kinds of lists, ordinary lists and typed-lists. A list is defined by the list
function. Here is a simple example:

-->L=list(1,’w’,ones(2,2)) //L is a list made of 3 entries
L =

L(1)

1.
L(2)

w
L(3)

! 1. 1. !
! 1. 1. !

-->L(3); //extracting entry 3 of list L

-->L(3)(2,2) //entry 2,2 of matrix L(3)
ans =

1.

-->L(2)=list(’w’,rand(2,2)) //nested list: L(2) is now a list
L =

L(1)

1.
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L(2)
L(2)(1)

w
L(2)(2)

! 0.6653811 0.8497452 !
! 0.6283918 0.6857310 !

L(3)
! 1. 1. !
! 1. 1. !

-->L(2)(2)(1,2) //extracting entry 1,2 of entry 2 of L(2)
ans =

0.8497452

-->L(2)(2)(1,2)=5; //assigning a new value to this entry.

Typed lists have a specific first entry. This first entry must be a character string (the type) or
a vector of character string (the first component is then the type, and the following elements the
names given to the entries of the list). Typed lists entries can be manipulated by using character
strings (the names) as shown below.

-->L=tlist([’Car’;’Name’;’Dimensions’],’Nevada’,[2,3])
L =

L(1)
!Car !
! !
!Name !
! !
!Dimensions !

L(2)
Nevada

L(3)
! 2. 3. !

-->L.Name //same as L(2)
ans =
Nevada

-->L.Dimensions(1,2)=2.3

L =
L(1)
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!Car !
! !
!Name !
! !
!Dimensions !

L(2)
Nevada

L(3)

! 2. 2.3 !

-->L(3)(1,2)
ans =

2.3

-->L(1)(1)
ans =

Car

An important feature of typed-lists is that it is possible to define operators acting on them (over-
loading), i.e., it is possible to define e.g. the multiplication L1*L2 of the two typed lists L1 and
L2.

2.9 Functions

Functions are collections of commands which are executed in a new environment thus isolating
function variables from the original environments variables. Functions can be created and executed
in a number of different ways. Furthermore, functions can pass arguments, have programming
features such as conditionals and loops, and can be recursively called. Functions can be arguments
to other functions and can be elements in lists. The most useful way of creating functions is by
using a text editor, however, functions can be created directly in the Scilab environment using the
syntax function or the deff primitive.

--> function [x]=foo(y)
--> if y>0 then, x=1; else, x=-1; end
--> endfunction

--> foo(5)
ans =
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1.

--> foo(-3)
ans =

- 1.

Usually functions are defined in a file using an editor and loaded into Scilab with:
exec(’filename’).
This can be done also by clicking in the File operation button. This latter syntax loads the
function(s) in filename and compiles them. The first line of filename must be as follows:

function [y1,...,yn]=macname(x1,...,xk)

where the yi’s are output variables and the xi’s the input variables.
For more on the use and creation of functions see Section 3.2.

2.10 Libraries

Libraries are collections of functions which can be either automatically loaded into the Scilab
environment when Scilab is called, or loaded when desired by the user. Libraries are created by
the lib command. Examples of librairies are given in the SCIDIR/macros directory. Note
that in these directory there is an ASCII file “names” which contains the names of each function
of the library, a set of .sci files which contains the source code of the functions and a set of
.bin files which contains the compiled code of the functions. The Makefile invokes scilab for
compiling the functions and generating the .bin files. The compiled functions of a library are
automatically loaded into Scilab at their first call. To build a library the command genlib can
be used (help genlib).

2.11 Objects

We conclude this chapter by noting that the function typeof returns the type of the various Scilab
objects. The following objects are defined:

• usual for matrices with real or complex entries.

• polynomial for polynomial matrices: coefficients can be real or complex.

• boolean for boolean matrices.

• character for matrices of character strings.

• function for functions.

• rational for rational matrices (syslin lists)

• state-space for linear systems in state-space form (syslin lists).
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• sparse for sparse constant matrices (real or complex)

• boolean sparse for sparse boolean matrices.

• list for ordinary lists.

• tlist for typed lists.

• mlist for matrix oriented typed lists.

• state-space (or rational) for syslin lists.

• library for library definition.

2.12 Matrix Operations

The following table gives the syntax of the basic matrix operations available in Scilab.

SYMBOL OPERATION
[ ] matrix definition, concatenation
; row separator
( ) extraction m=a(k)
( ) insertion: a(k)=m
.’ transpose
’ conjugate transpose
+ addition
- subtraction
* multiplication
\ left division
/ right division
^ exponent
.* elementwise multiplication
.\ elementwise left division
./ elementwise right division
.^ elementwise exponent
.*. kronecker product
./. kronecker right division
.\. kronecker left division

2.13 Indexing

The following sample sessions shows the flexibility which is offered for extracting and inserting
entries in matrices or lists. For additional details enter help extraction or help insertion.
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2.13.1 Indexing in matrices

Indexing in matrices can be done by giving the indices of selected rows and columns or by boolean
indices or by using the $ symbol. Here is a sample of commands:

2.13.2 Indexing in lists

The following session illustrates how to create lists and insert/extract entries in list and tlist
or mlist. Enter help insertion and help extraction for additinal examples. Below
is a sample of commands:

2.13.3 Structs and Cells à la Matlab

The command X=tlist(...) or Y=mlist(...) creates a Scilab variable X of type tlist
or mlist. The entries of X are obtained by the names of their fields.

For instance, if X=tlist([’mytype’,’a’,’b’],A,B) the command X.a returns A. If
A is a matrix the command X.a(2,3) returns the entry at row 2 and column 3 of X;a, i.e. A(2,3).
Similarly, if Y=mlist([’mytype’,’a’,’b’],A,B), we can use the syntax Y(2,3), once
the extraction function %mytype_e(varargin) has been defined.

Also the syntax Y(2,3)=33 can be given a meaning through the function %s_i_mytype(varargin).
This powerful overloading mechanism allows to define complex objects with a general indexing
where indices can be fields (string) or a set of integers.

If the variable X is not defined in the Scilab workspace, then the command X.a=A cre-
ates a particular mlist which behaves as a Matlab struct. Its internal representation is similar
to X=mlist([’st’,’dims’,’a’],int32([1,1]),A). It is a one dimensional struct
with one field called ’a’ and the value of X.a is A. Multidimensional structs are created and ma-
nipulated in a similar way. For instance X(2,3).a.b(2)=4 creates a 2 x 3 struct with one field
a. It is represented as

mlist([’st’,’dims’,’a’],int32([2,3]),list([],[],[],[],[],w))

where w is a struct with one field ’b’, and w.b is the vector [0,4]. A particular display is done for
structs. Here, we have:

-->X(2,3)
ans =

a: [1x1 struct]

-->X(2,3).a
ans =

b: [0;4]

All the struct manipulations are implemented by soft coded operations i.e. Scilab overloaded
functions. As structs are not basic data types some operations are slow. They have been imple-
mented for a better Matlab compatibility.



CHAPTER 2. DATA TYPES 30

The Matlab cells are also easily emulated. A cell is seen as a particular struct with one field
called ’entries’. We just show a simple example:

-->X=cell(1,2)
X =

!{} {} !

-->X(2).entries=11
X =

!{} !
! !
!11 !

Note that Matlab uses braces X{2} for extracting entries from a cell.
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Programming

One of the most useful features of Scilab is its ability to create and use functions. This allows the
development of specialized programs which can be integrated into the Scilab package in a simple
and modular way through, for example, the use of libraries. In this chapter we treat the following
subjects:

• Programming Tools

• Defining and Using Functions

• Definition of Operators for New Data Types

• Debbuging

Creation of libraries is discussed in a later chapter.

3.1 Programming Tools

Scilab supports a full list of programming tools including loops, conditionals, case selection, and
creation of new environments. Most programming tasks should be accomplished in the environ-
ment of a function. Here we explain what programming tools are available.

3.1.1 Comparison Operators

There exist five methods for making comparisons between the values of data objects in Scilab.
These comparisons are listed in the following table.

== equal to
< smaller than
> greater than
<= smaller or equal to
>= greater or equal to

<> or ~= not equal to

These comparison operators are used for evaluation of conditionals.

31
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3.1.2 Loops

Two types of loops exist in Scilab: the for loop and the while loop. The for loop steps through
a vector of indices performing each time the commands delimited by end.

--> x=1;for k=1:4,x=x*k,end
x =

1.
x =

2.
x =

6.
x =

24.

The for loop can iterate on any vector or matrix taking for values the elements of the vector or
the columns of the matrix.

--> x=1;for k=[-1 3 0],x=x+k,end
x =

0.
x =

3.
x =

3.

The for loop can also iterate on lists. The syntax is the same as for matrices. The index takes as
values the entries of the list.

-->l=list(1,[1,2;3,4],’str’)

-->for k=l, disp(k),end

1.

! 1. 2. !
! 3. 4. !
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str

The while loop repeatedly performs a sequence of commands until a condition is satisfied.

--> x=1; while x<14,x=2*x,end
x =

2.
x =

4.
x =

8.
x =

16.

A for or while loop can be ended by the command break :

-->a=0;for i=1:5:100,a=a+1;if i > 10 then break,end; end

-->a
a =

3.

In nested loops, break exits from the innermost loop.

-->for k=1:3; for j=1:4; if k+j>4 then break;else disp(k);end;end;end

1.

1.

1.

2.

2.

3.
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3.1.3 Conditionals

Two types of conditionals exist in Scilab: the if-then-else conditional and the select-
case conditional. The if-then-else conditional evaluates an expression and if true executes
the instructions between the then statement and the else statement (or end statement). If false
the statements between the else and the end statement are executed. The else is not required.
The elseif has the usual meaning and is a also a keyword recognized by the interpreter.

--> x=1
x =

1.

--> if x>0 then,y=-x,else,y=x,end
y =

- 1.

--> x=-1
x =

- 1.

--> if x>0 then,y=-x,else,y=x,end
y =

- 1.

The select-case conditional compares an expression to several possible expressions and
performs the instructions following the first case which equals the initial expression.

--> x=-1
x =

- 1.

--> select x,case 1,y=x+5,case -1,y=sqrt(x),end
y =

i

It is possible to include an else statement for the condition where none of the cases are satisfied.
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3.2 Defining and Using Functions

It is possible to define a function directly in the Scilab environment, however, the most convenient
way is to create a file containing the function with a text editor. In this section we describe
the structure of a function and several Scilab commands which are used almost exclusively in a
function environment.

3.2.1 Function Structure

Function structure must obey the following format

function [y1,...,yn]=foo(x1,...,xm)
.
.
.

where foo is the function name, the xi are the m input arguments of the function, the yj are the
n output arguments from the function, and the three vertical dots represent the list of instructions
performed by the function. An example of a function which calculates k! is as follows

function [x]=fact(k)
k=int(k)
if k<1 then k=1,end
x=1;
for j=1:k,x=x*j;end

endfunction

If this function is contained in a file called fact.sci the function must be “loaded” into Scilab
by the exec or getf command and before it can be used:

--> exists(’fact’)
ans =

0.

--> exec(’../macros/fact.sci’,-1);

--> exists(’fact’)
ans =

1.

--> x=fact(5)
x =

120.
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In the above Scilab session, the command exists indicates that fact is not in the environment
(by the 0 answer to exist). The function is loaded into the environment using exec and now
exists indicates that the function is there (the 1 answer). The example calculates 5!.

3.2.2 Loading Functions

Functions are usually defined in files. A file which contains a function must obey the following
format

function [y1,...,yn]=foo(x1,...,xm)
.
.
.

where foo is the function name. The xi’s are the input parameters and the the yj’s are the
output parameters, and the three vertical dots represent the set of instructions performed by the
function to evaluate the yj’s, given the xi’s. Inputs and ouputs parameters can be any Scilab
object (including functions themeselves).

Functions are Scilab objects and should not be considered as files. To be used in Scilab, func-
tions defined in files must be loaded by the command getf(filename) or exec(filename,-1)
; . If the file filename contains the function foo, the function foo can be executed only if
it has been previously loaded by the command getf(filename). A file may contain several
functions. Functions can also be defined “on line” by the command using the function/endfunction
syntax or by using the function deff. This is useful if one wants to define a function as the output
parameter of a other function.

Collections of functions can be organized as libraries (see lib command). Standard Scilab
librairies (linear algebra, control,. . . ) are defined in the subdirectories of SCIDIR/macros/.

3.2.3 Global and Local Variables

If a variable in a function is not defined (and is not among the input parameters) then it takes
the value of a variable having the same name in the calling environment. This variable however
remains local in the sense that modifying it within the function does not alter the variable in the
calling environment unless resume is used (see below). Functions can be invoked with less input
or output parameters. Here is an example:

function [y1,y2]=f(x1,x2)
y1=x1+x2
y2=x1-x2

endfunction

-->[y1,y2]=f(1,1)
y2 =

0.
y1 =

2.
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-->f(1,1)
ans =

2.

-->f(1)
y1=x1+x2;

!--error 4
undefined variable : x2
at line 2 of function f

-->x2=1;

-->[y1,y2]=f(1)
y2 =

0.
y1 =

2.

-->f(1)
ans =

2.

Note that it is not possible to call a function if one of the parameter of the calling sequence is
not defined:

function [y]=f(x1,x2)
if x1<0 then y=x1, else y=x2;end

endfunction

-->f(-1)
ans =

- 1.

-->f(-1,x2)
!--error 4

undefined variable : x2

-->f(1)
undefined variable : x2

at line 2 of function f called by :
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f(1)

-->x2=3;f(1)

-->f(1)
ans =

3

Global variable are defined by the global command. They can be read and modified inside
functions. Enter help global for details.

3.2.4 Special Function Commands

Scilab has several special commands which are used almost exclusively in functions. These are
the commands

• argn: returns the number of input and output arguments for the function

• error: used to suspend the operation of a function, to print an error message, and to return
to the previous level of environment when an error is detected.

• warning,

• pause: temporarily suspends the operation of a function.

• break: forces the end of a loop

• return or resume : used to return to the calling environment and to pass local variables
from the function environment to the calling environment.

The following example runs the following foo function which illustrates these commands.

• The function definition

function [z]=foo(x,y)
[out,in]=argn(0);
if x==0 then,

error(’division by zero’);
end,
slope=y/x;
pause,
z=sqrt(slope);
s=resume(slope);
endfunction
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• The function use

--> z=foo(0,1)
error(’division by zero’);

!--error 10000
division by zero
at line 4 of function foo called by :
z=foo(0,1)

--> z=foo(2,1)

-1-> resume
z =

0.7071068

--> s
s =

0.5

In the example, the first call to foo passes an argument which cannot be used in the calculation
of the function. The function discontinues operation and indicates the nature of the error to the
user. The second call to the function suspends operation after the calculation of slope. Here the
user can examine values calculated inside of the function, perform plots, and, in fact perform any
operations allowed in Scilab. The -1-> prompt indicates that the current environment created by
the pause command is the environment of the function and not that of the calling environment.
Control is returned to the function by the command return. Operation of the function can be
stopped by the command quit or abort. Finally the function terminates its calculation returning
the value of z. Also available in the environment is the variable s which is a local variable from
the function which is passed to the global environment.

3.3 Definition of Operations on New Data Types

It is possible to transparently define fundamental operations for new data types in Scilab (enter
help overloading for a full description of this feature). That is, the user can give a sense
to multiplication, division, addition, etc. on any two data types which exist in Scilab. As an
example, two linear systems (represented by lists) can be added together to represent their parallel
inter-connection or can be multiplied together to represent their series inter-connection. Scilab
performs these user defined operations by searching for functions (written by the user) which
follow a special naming convention described below.
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The naming convention Scilab uses to recognize operators defined by the user is determined
by the following conventions. The name of the user defined function is composed of four (or
possibly three) fields. The first field is always the symbol %. The third field is one of the characters
in the following table which represents the type of operation to be performed between the two data
types.

Third field
SYMBOL OPERATION

a +
b : (range generator)
c [a,b] column concatenation
d ./
e () extraction: m=a(k)
f [a;b] row concatenation
g | logical or
h & logical and
i () insertion: a(k)=m
j .^ element wise exponent
k .*.
l \ left division
m *
n <> inequality comparison
o == equality comparison
p ^ exponent
q .\
r / right division
s -
t ’ (transpose)
u *.
v /.
w \.
x .*
y ./.
z .\.
0 .’
1 <
2 >
3 <=
4 >=
5 ~ (not)

The second and fourth fields represent the type of the first and second data objects, respectively,
to be treated by the function and are represented by the symbols given in the following table.
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Second and Fourth fields
SYMBOL VARIABLE TYPE

s scalar
p polynomial
l list (untyped)
c character string
b boolean
sp sparse
spb boolean sparse
m function
xxx list (typed)

A typed list is one in which the first entry of the list is a character string where the first
characters of the string are represented by the xxx in the above table. For example a typed list
representing a linear system has the form:

tlist([’lss’,’A’,’B’,’C’,’D’,’X0’,’dt’],a,b,c,d,x0,’c’).
and, thus, the xxx above is lss.

An example of the function name which multiplies two linear systems together (to represent
their series inter-connection) is %lss_m_lss. Here the first field is %, the second field is lss
(linear state-space), the third field is m “multiply” and the fourth one is lss. A possible user
function which performs this multiplication is as follows

function [s]=%lss_m_lss(s1,s2)
[A1,B1,C1,D1,x1,dom1]=s1(2:7),
[A2,B2,C2,D2,x2]=s2(2:6),
B1C2=B1*C2,
s=lsslist([A1,B1C2;0*B1C2’ ,A2],...

[B1*D2;B2],[C1,D1*C2],D1*D2,[x1;x2],dom1),
endfunction

An example of the use of this function after having loaded it into Scilab (using for example getf
or inserting it in a library) is illustrated in the following Scilab session

-->A1=[1 2;3 4];B1=[1;1];C1=[0 1;1 0];

-->A2=[1 -1;0 1];B2=[1 0;2 1];C2=[1 1];D2=[1,1];

-->s1=syslin(’c’,A1,B1,C1);

-->s2=syslin(’c’,A2,B2,C2,D2);

-->ssprint(s1)
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. | 1 2 | | 1 |
x = | 3 4 |x + | 1 |u

| 0 1 |
y = | 1 0 |x

-->ssprint(s2)

. | 1 -1 | | 1 0 |
x = | 0 1 |x + | 2 1 |u

y = | 1 1 |x + | 1 1 |u

-->s12=s1*s2; //This is equivalent to s12=%lss_m_lss(s1,s2)

-->ssprint(s12)

| 1 2 1 1 | | 1 1 |
. | 3 4 1 1 | | 1 1 |
x = | 0 0 1 -1 |x + | 1 0 |u

| 0 0 0 1 | | 2 1 |

| 0 1 0 0 |
y = | 1 0 0 0 |x

Notice that the use of %lss_m_lss is totally transparent in that the multiplication of the two lists
s1 and s2 is performed using the usual multiplication operator *.

The directory SCIDIR/macros/percent contains all the functions (a very large num-
ber...) which perform operations on linear systems and transfer matrices. Conversions are auto-
matically performed. For example the code for the function %lss_m_lss is there (note that it is
much more complicated that the code given here!).

3.4 Debbuging

The simplest way to debug a Scilab function is to introduce a pause command in the function.
When executed the function stops at this point and prompts -1-> which indicates a different
“level”; another pause gives -2-> ... At the level 1 the Scilab commands are analog to a dif-
ferent session but the user can display all the current variables present in Scilab, which are inside
or outside the function i.e. local in the function or belonging to the calling environment. The
execution of the function is resumed by the command return or resume (the variables used at
the upper level are cleaned). The execution of the function can be interrupted by abort.

It is also possible to insert breakpoints in functions. See the commands setbpt, delbpt,
disbpt. Finally, note that it is also possible to trap errors during the execution of a function:
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see the commands errclear and errcatch. Finally the experts in Scilab can use the function
debug(i) where i=0,..,4 denotes a debugging level.
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Basic Primitives

This chapter briefly describes some basic primitives of Scilab. More detailed information is given
in the “manual” document.

4.1 The Environment and Input/Output

In this chapter we describe the most important aspects of the environment of Scilab: how to
automatically perform certain operations when entering Scilab, and how to read and write data
from and to the Scilab environment.

4.1.1 The Environment

Scilab is loaded with a number of variables and primitives. The command who lists the variables
which are available. whos() lists the variables which are available in a more detailled fashion.

The who command also indicates how many elements and variables are available for use. The
user can obtain on-line help on any of the functions listed by typing help <function-name>.

Variables can be saved in an external binary file using save. Similarly, variables previously
saved can be reloaded into Scilab using load.

Note that after the command clear x y the variables x and y no longer exist in the environ-
ment. The command save without any variable arguments saves the entire Scilab environment.
Similarly, the command clear used without any arguments clears all of the variables, functions,
and libraries in the environment.

Libraries of functions are loaded using lib.
The list of functions available in the library can be obtained by using disp.

4.1.2 Startup Commands by the User

When Scilab is called the user can automatically load into the environment functions, libraries,
variables, and perform commands using the the file .scilab in his home directory. This is
particularly useful when the user wants to run Scilab programs in the background (such as in
batch mode). Another useful aspect of the .scilab file is when some functions or libraries are
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often used. In this case the commands getf exec or load can be used in the .scilab file to
automatically load the desired functions and libraries whenever Scilab is invoked.

4.1.3 Input and Output

Although the commands save and load are convenient, one has much more control over the
transfer of data between files and Scilab by using the Fortran like functions read and write.
These two functions work similarly to the read and write commands found in Fortran. The syntax
of these two commands is as follows.

--> x=[1 2 %pi;%e 3 4]
x =

! 1. 2. 3.1415927 !
! 2.7182818 3. 4. !

--> write(’x.dat’,x)

--> clear x

--> xnew=read(’x.dat’,2,3)
xnew =

! 1. 2. 3.1415927 !
! 2.7182818 3. 4. !

Notice that read specifies the number of rows and columns of the matrix x. Complicated formats
can be specified.

The C like function mfscanf and mfprintf can be also used

--> x=[1 2 %pi;%e 3 4]
x =

! 1. 2. 3.1415927 !
! 2.7182818 3. 4. !

--> fd=mopen(’x_c.dat’,’w’)

--> mfprintf(fd,’%f %f %f\n’,x)

--> mclose(fd)

--> clear x
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--> fd=mopen(’x_c.dat’,’r’)

--> xnew(1,1:3)=mfscanf(fd,’%f %f %f\n’) ;

--> xnew(2,1:3)=mfscanf(fd,’%f %f %f\n’)

xnew =

! 1. 2. 3.141593 !
! 2.718282 3. 4. !
--> mclose(fd)

Here is a table of useful input-output functions:

mprintf print in standard output
mfprintf print in a file
msprintf print in a string matrix
mscanf read in standard input
mfscanf read in a file
msscanf read in a string matrix

fprintfMat formated write a matrix into a file
fscanfMat formated read of a matrix in a file

mgetl read a file as a Scilab string matrix
mputl write a string matrix
mopen open a file
mclose close a file

To manipulate binary files, the following functions are available:

mget read binary data
mput write binary data

mgetstr print in a string matrix
mputstr write a string matrix
mgetstr read in a file
mtell current position in a file
mseek move current position
meof end of file test

4.2 Help

On-line help is available either by clicking on the help button or by entering help item (where
item is usually the name of a function or primitive). apropos keyword looks for keyword
in a whatis file.
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To add a new item or keyword is easy. Just create a .cat ASCII file describing the item and a
whatis file in your directory. Then add your directory path (and a title) in the variable %helps
(see also the README file there). You can use the standard format of the scilab manual (see the
SCIDIR/man/subdirectories and SCIDIR/examples/man-examples). The Scilab
LATEX manual is automatically obtained from the manual items by a Makefile. See the directory
SCIDIR/man/Latex-doc.

4.3 Useful functions

We give here a short list of useful functions and keywords that can be used as entry points in the
Scilab manual. All the functions available can be obtained by entering help. For each manual
entry the SEE ALSO line refers to related functions.

• Elementary functions: sum, prod, sqrt, diag, cos, max, round, sign,
fft

• Sorting: sort, gsort, find

• Specific Matrices: zeros, eye, ones, matrix

• Linear Algebra: det, inv, qr, svd, bdiag, spec, schur

• Polynomials: poly, roots, coeff, horner, clean, freq

• Buttons, dialog: x_choose, x_dialog, x_mdialog, getvalue, addmenu

• GUI (Tcl-tk): TK_EvalStr, TK_GetVar, TK_SetVar, TK_EvalFile

• Linear systems: syslin

• Random numbers: rand, grand

• Programming: function, deff, argn, for, if, end, while, select, warning,
error, break, return

• Comparison symbols: ==, >=, >, =, & (and),| (or)

• Execution of a file: exec

• Debugging: pause, return, abort

• Spline functions, interpolation: splin2d, interp2d, smooth, splin3d

• Character strings: string, part, evstr, execstr, grep

• Graphics: plot2d, set, get, xgrid, locate, plot3d, Graphics

• Ode solvers: ode, dassl, dassrt, odedc

• Optimization: optim, quapro, linpro, lmitool, lsqrsolve
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• Interconnected dynamic systems: scicos

• Adding a C or Fortran routine: link, call, addinter, ilib_for_link, ilib_build

• Graphs, networks: edit_graph, metanet

4.4 Nonlinear Calculation

Scilab has several powerful non-linear primitives for simulation or optimization.

4.4.1 Nonlinear Primitives

Scilab provides several facilities for nonlinear calculations.
Numerical simulation of systems of differential equations is made by the ode primitive. Many

solvers are available, mostly from odepack, for solving stiff or non-stiff systems. Implicit sys-
tems can be solved by dassl. It is also possible to solve systems with stopping time: integration
is performed until the state is crossing a given surface. See ode and dassrt commands. There is
a number of optional arguments available for solving ode’s (tolerance parameters, jacobian, order
of approximation, time steps etc). For �ode solvers, these parameters are set by the global variable
%ODEOPTIONS.

Minimizing non linear functions is done the optim function. Several algorithms (including
non differentiable optimization) are available. Codes are from INRIA’s modulopt library. Enter
help optim for more a more detailed description.

4.4.2 Argument functions

Specific Scilab functions or C or Fortran routines can be used as an argument of some high-level
primitives (such as ode, optim, dassl...). These fonctions are called argument functions or
externals. The calling sequence of this function or routine is imposed by the high-level primitive
which sets the argument of this function or routine.

For example the function costfunc is an argument of the optim primitive. Its calling
sequence must be: [f,g,ind]=costfunc(x,ind) as imposed by the optim primitive. The
following non-linear primitives in Scilab need argument functions or subroutines: ode, optim,
impl, dassl, intg, odedc, fsolve. For problems where computation time is important, it
is recommended to use C or Fortran subroutines. Examples of such subroutines are given in the
directory SCIDIR/routines/default. See the README file there for more details.

When such a subroutine is written it must be linked to Scilab. This link operation can be done
dynamically by the link command. It is also possible to introduce the code in a more permanent
manner by inserting it in a specific interface in SCIDIR/routines/default and rebuild a
new Scilab by a make all command in the Scilab directory.

4.5 XWindow Dialog

It may be convenient to open a specific XWindow window for entering interactively parameters
inside a function or for a demo. This facility is possible thanks to e.g. the functions x_dialog,



CHAPTER 4. BASIC PRIMITIVES 49

x_choose, x_mdialog, x_matrix and x_message. The demos which can be executed by
clicking on the demo button provide simple examples of the use of these functions.

4.6 Tk-Tcl Dialog

An interface between Scilab and Tk-Tcl exists. A Graphic User Interface object can be cre-
ated by the function uicontrol. Basic primitives are TK_EvalFile, TK_EvalStr and
TK_GetVar, TK_Setvar. Examples are given by invoking the help of these functions.

Let us give a simple dialog. We pass a script to TK as a Scilab string matrix, TK opens a
dialog box, and the result is returned to Scilab as a string, using TK_GetVar.

-->TK_script=["toplevel .dialog";
"label .dialog.1 -text ""Enter your input\n here""";
"pack .dialog.1";
"entry .dialog.e -textvariable scivar";
"set scivar """"";
"pack .dialog.e"];

-->TK_EvalStr(TK_script);
-->text=TK_GetVar(scivar);
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Graphics

The graphics primitives in Scilab release 3.0 accept two graphic “styles”, the “old” style which is
based on a pre-processing treatment and the “new” style, used by default, which is based on an
object oriented environment.

These two styles are not fully compatible. To switch to the old style, use the command
set old_style on.

The old style mode is essentially based on two functions, xset and xsetech which act on
the graphic environment. Once the graphic environment parameters are set, the graphic commands
are used for plotting.

In the new style mode, once the plotting command is issued, it is possible to act on the graphic
environment by changing the properties of the graphic objects made by the plot command. The
graphic environment is post-processed.

Scilab graphics are based on a set a graphics functions such as plot2d, plot3d . . . and an
object oriented graphic environment. The properties of the graphic objects (color, thickness, ...)
are manipulated with the functions get and set. The main graphic objects are the figure entity
and the axes entity. We give here a description of the most useful functions illustrated by simple
examples. For more sophisticated examples, it is necessary to read the on-line help pages. The
graphic demos are also useful and it is a good way to start.

5.1 Function plot2d

The basic graphic function used for plotting one or several 2D curves is plot2d. The simplest
graphic command is plot2d(x,y) where x and y are two vectors with same dimension. This com-
mand gives the graph of the polyline which links each point with coordinates (x(i),y(i)) with the
next point with coordinates (x(i+1),y(i+1)). The vectors x et y must have at least two components.
The vector x can be omitted, its default value being 1:n where n is the size of y.

Let us start with a simple example. Entering the commands

Figure 5.1: A simple graph
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Figure 5.2: Two plots: superposing curves

-->x=linspace(0,2*%pi,100);plot2d(x,sin(x))

opens a graphic window and produces a graph of the sine function for 100 values of x equally
spaced between 0 and 2π. The plot2d command opens a graphic window (see figure 5.1) in which
the plot appears. The graph is plotted in a rectangular frame and the bottom and left sides are used
for axes with ticks.

By default, plot2d does not erase the graphic window, but the plot is made in the current
windows, which possibly contains older plots. Thus, if after the preceding command the following
is entered :

t=linspace(0,4*%pi,100);plot2d(t,0.5*cos(t))

we get figure 5.2) in which the graph of th two functions, sine and cosine, appear with a common
x axis. (note that the x-axis goes from 0 to 4π after the second plot command).

To clear the graphic window, the command xbasc() should be used or just click the Clear
button of the File menu.

Using the standard menus, it is possible to zoom a part of the graph or to export the graphic
window into a file or to see the 2D plot in a 3D figure. Menus can be interactively added or
removed, using delmenu addmenu functions.

Parameters such as the color or the thickness of the frame can be given to the plot2d func-
tion. Note that the graphic parameters are given to plot2d with a particular syntax. For instance
to select a color or a line style we can use the “style” keyword inside the plot2d command as
follows:

-->plot2d(x,y,style=5) //5 means ‘‘red’’

The basic properties of a figure can be accessed by clicking on the Edit button of the graphic
window. For instance to select a particular color (as done with style=5 before) we can use the
command

-->plot2d(x,y)

and select the Start entity picker item of the Edit button, then click on the curve, select
a particular color and finally select the Stop entity picker item.

5.2 Figure, axes, etc

Once a graphic command has been issued, the properties of the figure obtained are retrieved by
the command

-->f=gcf()
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Here f is a handle which describes the figure properties. It has many fields which can be modified
to change the properties of the figure. For instance, issuing

-->f.figure_name=’My figure’

will modify the figure_name field and change the name of the figure which appears in the
current graphic window.

The handle f has a field called “children” which is an handle descrining the properties of the
axes of the figure.

Assume now that we have plotted a graph by the plot2d(x,y) command want add a title to
the graph obtained. The handle associated with the figure is f=gcf(). To access to the properties
of the axes of the figure one can enter

-->a=f.children

and we see that the handle a has a field named “title”. Now if we enter

-->l=a.title

we see that l is itself a handle with a field named “text”. We can give a title to the plot by the
command l.text=My plot’Of course it is possible to obtain the same result by the command

f.children.title.text=’My plot’

This simple example illustrates how to manipulate graphics within Scilab.

5.3 Graphic objects properties

Help on the graphics objects can obtained by the command

-->help graphics_entities

The properties of the various graphic objects are obtained by the command

-->help object_properties

where object_properties is in the following table.
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agregation_properties
arc_properties
axes_properties
axis_properties
champ_properties
fec_properties

figure_properties
grayplot_properties
label_properties
legend_properties
param3d_properties
polyline_properties
rectangle_properties

segs_properties
text_properties
title_properties

To get a handle associated with a graphic object, one can use the functions gcf() (current
Figure), gca() (current Axes), or gce() (current Entity). From the top figure handle, one can
access the complete tree of (sub)handles by selecting the various children and parents of a given
handle.

5.4 Some useful plotting functions

5.4.1 2D plots

plot2d basic plot function
plot3d plot surface
param3d parametric plot
(f)champ vector field plot

contour, fcontour, (f)contour2d,
contourf, fcontour2d level curve plot

errbar add error bar
Matplot 2D plot of a matrix using colors
histplot histogram
errbar vertical bars

S(f)grayplot smooth 2D plot of surface
(f)grayplot 2D plot of surface
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5.4.2 3D plots

(f)plot3d plot surface
param3d(1) parametric plot
contour level curve plot
hist3d 3D histogram

genfac3d, eval3dp compute factes
hist3d histogram
geom3d 3D projection

S(f)grayplot smooth 2D plot of surface
(f)grayplot 2D plot of surface

5.4.3 Low level 2D plots

xpoly polyline plot
xpolys multi-polyline plot
xrpoly regular polygon plot
xsegs draw unconnected segments

xfpoly(s) filled polygon(s)
xrect rectangle plot
xfrect filled rectangle plot
xrects draw or fill rectangles

5.4.4 Strings, ...

xstring, xstringl, xstringb string plots
xarrows arrows plot

xarc(s), xfarc, xfarcs arcs plot

5.4.5 Colors
colormap set colormap
getcolor select color
addcolor add color to colormap

graycolormap gray colormap
hotcolormap red to yellow colormap

5.4.6 Mouse position

xclick wait for a mouse click
locate mouse selection of a set of points
xgetmouse add color to colormap

graycolormap get the current position of the mouse
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5.5 Animated plot

5.5.1 pixmap mode

To run the pixmap mode, get the handle of the current figure f=gcf(); and activate the pixmap
mode f.pixmap=’on’.

When the pixmap mode is on, the pixels of the graphic window are stored into a temporary
buffer which is displayed upon request. The various steps corresponding to the creation of the
image are not displayed.

An animated plot using this mode is generally obtained by a a for or while loop which produces
a new image at each iteration.

When the image is ready, the screen display is realized by the show_pixmap() command.
In the animation mode, it is often necessary to set a frame with given dimensions in which the

animated plotting command will take place.
To fix an appropriate frame with extremal values rect=[xmin,ymin,xmax,ymax] one can set

properties of the axes (data_bounds field obtained by gca()) or alternaltively enter the com-
mand

plot2d([],[],rect=[xmin,ymin,xmax,ymax]).

Assume that y=phi(x,t) is a vector with the same dimension as x and depending on the param-
eter t. The animated graph of y as a function of t (for a fixed x vector), is seen by the following
code :

f.pixmap=’on’; //The data is sent into a pixmap
plot2d(x,phi(x,theta(1))); //First y for t=theta(1)
w=gce(); //The current entity
for t=theta
w.children.data(:,2)=phi(x,t)’; //update y
show_pixmap(); //display the pixmap content

end

The role of pixmap mode is to avoid image blinking. Any modification of a graphic property
implies a complete display of the new graph (including axes, titles etc). In the pixmap mode the
new image is built and displayed afterwards by the show_pixmap() command.

Function xpause can be used to slow down the graphic display.
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Interfacing C or Fortran programs

Scilab can be easily interfaced with Fortran or C programs. This is useful to have faster code or
to use specific numerical code for, e.g., the simulation or optimization of user defined systems,
or specific Lapack or netlib modules. In fact, interfacing numerical code appears necessary
in most nontrivial applications. For interfacing C or Fortran programs, it is of course necessary
to link these programs with Scilab. This can be done by a dynamic (incremental) link or by
creating a new executable code for Scilab. For executing a C or Fortran program linked with
Scilab, its input parameters must be given specific values transferred from Scilab and its output
parameters must be transformed into Scilab variables. It is also possible that a linked program is
automatically executed by a high-level primitive: for instance the ode function can integrate the
differential equation ẋ = f(t, x) with a rhs function f defined as a C or Fortran program which is
dynamically linked to Scilab (see 4.4.2).

The simplest way to call external programs is to use the link primitive (which dynamically
links the user’s program with Scilab) and then to interactively call the linked routine by call
primitive which transmits Scilab variables (matrices or strings) to the linked program and trans-
forms back the output parameters into Scilab variables. Note that all the parameters of the routine
called by the call primitive must be pointers. In particular Fortran routines can be called using
the call primitive.

Note that ode/dae solvers and non linear optimization primitives can be directly used with C
or Fortran user-defined programs dynamically linked (see 6.1.1). .

An other way to add C or Fortran code to Scilab is by building an interface program. The
interface program can be written by the user following the examples given in the directories
routines/examples/interface-*. The simplest way to build an interface program is
to copy/paste one of the examples given there and to adapt the code to your problem.

Examples of Matlab-like mexfunction interfaces are given in the directory routines/examples/mexfiles.
The interface program can also be generated by the tool intersci. Intersci builds the

interface program from a .desc file which describes both the C or Fortran program(s) to be used
and the name and parameters of the corresponding Scilab function(s).
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6.1 Using dynamic link

Several simple examples of dynamic link are given in the directory examples/link-examples.
In this section, we briefly describe how to call a dynamically linked program.

6.1.1 Dynamic link

The command link(’path/pgm.o’,’pgm’,flag) links the compiled program pgm to
Scilab. Here pgm.o is an object file located in the path directory and pgm is an entry point
(program name) in the file pgm.o (An object file can have several entry points: to link them, use
a vector of character strings such as [’pgm1’,’pgm2’]).

flag should be set to ’C’ for a C-coded program and to ’F’ for a Fortran subroutine. (’F’
is the default flag and can be omitted).

If the link operation is OK, scilab returns an integer n associated with this linked program. To
undo the link enter ulink(n).

The command c_link(’pgm’) returns true if pgm is currently linked to Scilab and false if
not.
Here is a example, with the Fortran BLAS daxpy subroutine used in Scilab:

-->n=link(SCI+’/routines/blas/daxpy.o’,’daxpy’)
linking files /usr/local/lib/scilab-2.4/routines/calelm/daxpy.o
to create a shared executable.
Linking daxpy (in fact daxpy_)
Link done
n =

0.
-->c_link(’daxpy’)
ans =

T
-->ulink(n)

-->c_link(’daxpy’)
ans =

F

For more details, enter help link. The link primitive can load a set of object files and/or
a static library and/or a dynamic library.

6.1.2 Calling a dynamically linked program

The call function can be used to call a dynamically linked program. Consider for example the
daxpy Fortran routine. It performs the simple vector operation y=y+a*x or, to be more specific,
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y(1)=y(1)+a*x(1), y(1+incy)=y(1+incy)+a*x(1+incx),...
y(1+n*incy)=y(1+n*incy)+a*x(1+n*incx)

where y and x are two real vectors. The calling sequence for daxpy is as follows:

subroutine daxpy(n,a,x,incx,y,incy)

The parameters of a Fortran program are pointers. The C code for the same function would be :

void daxpy(int *n,double *a,double *x,int *incx,double *y,int *incy)

To call daxpy from Scilab we must use a syntax as follows:

[y1,y2,y3,...]=call(’daxpy’, inputs description, ...
’out’, outputs description)

Here inputs description is a set of parameters
x1,p1,t1, x2,p2,t2, x3,p3,t3 ...

where xi is the Scilab variable (real vector or matrix) sent to daxpy, pi is the position number
of this variable in the calling sequence of daxpy and ti is the type of xi in daxpy (t=’i’
t=’r’ t=’d’ t=’c’ stands for integer, real, double, char respectively).
outputs description is a set of parameters

[r1,c1],p1,t1, [r2,c2],p2,t2, [r3,c3],p3,t3,..
which describes each output variable. [ri,ci] is the 1 x 2 integer vector giving the number of
rows and columns of the ith output variable yi. The position, pi, and the type, ti, are as for
input variables (they can be omitted if a variable is both input and output).

We see that the arguments of call divided into four groups. The first argument ’daxpy’
is the name of the called subroutine. The argument ’out’ divides the remaining arguments
into two groups. The group of arguments between ’daxpy’ and ’out’ is the list of input
arguments, their positions in the call to daxpy, and their data type. The group of arguments at the
right of ’out’ are the dimensions of the output variables, their positions in the calling sequence
of daxpy, and their data type. The possible data types are real, integer, double and character
which are indicated, respectively, by the strings ’r’, ’i’, ’d’ and ’c’. Here we calculate
y=y+a*x by a call to daxpy (assuming that the link command has been done). We have six
input variables x1=n, x2=a, x3=x, x4=incx, x5=y, x6=incy. Variables x1, x4
and x6 are integers and variables x2, x3, x5 are double. There is one output variable y1=y
at position p1=5. To simplify, we assume here that x and y have the same length and we take
incx=incy=1.

-->a=3;

-->x=[1,2,3,4];y=[1,1,1,1];

-->incx=1;incy=1;

-->n=length(x); //n=4
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-->y=call(’daxpy’,...
n,1,’i’,...
a,2,’d’,...
x,3,’d’,...
incx,4,’i’,...
y,5,’d’,...
incy,6,’i’,...

’out’,...
[1,n],5,’d’);

y =

! 4. 7. 10. 13. !

(Since y is both input and output parameter, we could also use the simplified syntax call(...,’out’,5)
instead of call(...,’out’[1,n],5,’d’)).

The same example with the C function daxpy (from CBLAS):

int daxpy(int *n, double *da, double *dx, int *incx, double *dy, int *incy)
...

-->link(’daxpy.o’,’daxpy’,’C’)
linking files daxpy.o to create a shared executable
Linking daxpy (in fact daxpy)
Link done
ans =

1.

-->y=call(’daxpy’,...
n,1,’i’,...
a,2,’d’,...
x,3,’d’,...
incx,4,’i’,...
y,5,’d’,...
incy,6,’i’,...

’out’,...
[1,n],5,’d’);

-->y
y =

! 4. 7. 10. 13. !

The routines which are linked to Scilab can also access internal Scilab variables: see the
examples in given in the examples/links directory.
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6.1.3 Building a dynamic library

The simple link of an object file as illustrated above may not work on some platforms. In this case,
it is neccesary to build a (possibly dynamic) library containing a set of programs and to link the li-
brary with Scilab. Examples are given the directory SCIDIR/example/link-examples-so
which are built to run in both a Linux/Unix (.so or .sl library) or Windows environment (.dll li-
brary). The library is constructed by a specific Scilab function ilib_for_link (which make
use of libtool for Unix/ Linux libraries). Enter -->exec ext1c.sce at the Scilab prompt,
in this directory to see the simplest C example. The script file ext1c.sce contains a call to
ilib_for_link with appropriate parameters (files to be compiled, others libraries required,
etc). The library is built using the environment parameters known by Scilab (compiler, linker etc).
In addition a Scilab script with generic name loader.sce is created in the current directory.
This script contains contains the code necessary to link the library with Scilab. Typically, it is a
call to the link primitive, with an appropriate entry point (usually the name of the linked func-
tion). Note that the script file performs two tasks: building of the library and link of the library
with the running Scilab. The first task is generally performed once while the second should be
made in every Scilab session which needs linking the library.

6.2 Interface programs

6.2.1 Building an interface program

Many examples of interface programs are given in the directories/subdirectories SCIDIR/examples/interface-*.
The interface programs use a set of C or Fortran routines which are given in SCIDIR/routines/stack-c.h

and known by Scilab when this file is included in the interface program.
The simplest way to learn how to build an interface program is to look at the examples provided

in the directory interface-tutorial.
Note that a unique interface program can be used to interface an arbitrary (but less that 99)

number of functions.

6.2.2 Example

Let us consider an example given in examples/interface-tutorial.
We have the following C function matmul which performs a matrix multiplication. Only the

calling sequence is important.

/*Matrix multiplication C=A*B, (A,B,C stored columnwise) */

#define A(i,k) a[i + k*n]
#define B(k,j) b[k + j*m]
#define C(i,j) c[i + j*n]

void matmul(a,n,m,b,l,c)
double a[],b[],c[];
int n,m,l;
{
int i,j,k; double s;
for( i=0 ; i < n; i++)

{
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for( j=0; j < l; j++)
{
s = 0.;
for( k=0; k< m; k++)

{
s += A(i,k)*B(k,j);

}
C(i,j) = s;
}

}
}

We want to have a new Scilab function (also called matmul) which is such that the Scilab
command

-->C=matmul(A,B)

returns in C the matrix product A*B computed by the above C function. Here A, B and C are
standard numeric Scilab matrices. Thus, the Scilab matrices A and B should be sent to the C
function matmul and the matrix C should be created, filled, and sent back to Scilab.

To create the Scilab function matmul, we have to write a gateway function (an interface func-
tion). A gateway function is a C function which must include the header file stack-c.h. Fortran
gatways include the file stack.h. These files are located in the SCIDIR/routines directory.

The following C gateway function called intmatmul is an example of interface for the ma-
trix multiplication program matmul. See the file
SCIDIR/examples/interface-tutorial/intmatmul.c.

#include "stack-c.h"

int intmatmul(fname)
char *fname;

{
int l1, m1, n1, l2, m2, n2, l3;
int minlhs=1, maxlhs=1, minrhs=2, maxrhs=2;

/* Check number of inputs (Rhs=2) and outputs (Lhs=1) */
CheckRhs(minrhs,maxrhs) ; CheckLhs(minlhs,maxlhs) ;

/* Get A (#1) and B (#2) as double ("d") */
GetRhsVar(1, "d", &m1, &n1, &l1);
GetRhsVar(2, "d", &m2, &n2, &l2);

/* Check dimensions */
if (!(n1==m2)) {Scierror(999,"%s: Uncompatible dimensions\r\n",fname);

return 0;}

/* Create C (#3) as double ("d") with m1 rows and n1 columns */
CreateVar(3, "d", &m1, &n2, &l3);

/* Call the multiplication function matmul
inputs:stk(l1)->A, stk(l2)->B output:stk(l3)->C */

matmul(stk(l1), m1, n1, stk(l2), n2, stk(l3));

/* Return C (3) */
LhsVar(1) = 3;
return 0;

}
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Let us now explain each step of the gateway function intmatmul. The gateway function
must include the file SCIDIR/routines/stack-c.h. This is the first line of the file. The
name of the routine is intmatmul and it admits one input parameter which is fname. fname
must be declared as char *. The name of the gateway routine (here intmatmul) is arbitrary
but the parameter fname is compulsory. The gateway routine then includes the declarations of
the C variables used. In the gateway function intmatmul the Scilab matrices A, B and C are
referred to as numbers, respectively 1, 2 and 3.

The line

CheckRhs(minrhs,maxrhs); CheckLhs(minlhs,maxlhs);

is to check that the Scilab function matmul is called with a correct number of RHS and LHS pa-
rameters. For instance, typing -->matmul(A) will give an error message made by CheckRhs.
The function CheckRhs just compares the C variable Rhs (transmitted in the include file stack-c.h)
with the bounds minrhs and maxrhs.
The next step is to deal with the Scilab variables A, B and C. In a gateway function, all the Scilab
variables are referred to as integer numbers. Here, the Scilab matrices A, B and C are respectively
numbered 1, 2 and 3. Each input variable of the newly created Scilab function matmul (i.e. A
and B) should be processed by a call to GetRhsVar. The first two parameters of GetRhsVar
are inputs and the last three parameters are outputs. The line

GetRhsVar(1, "d", &m1, &n1, &l1);

means that we process the RHS variable numbered 1 (i.e. A). The first parameter of GetRhsVar
(here 1) refers to the first parameter (here A) of the Scilab function matmul. This variable is
a Scilab numeric matrix which should be seen ("d") as a double C array, since the C routine
matmul is expecting a double array. The second parameter of GetRhsVar (here "d") refers
to the type (double, int, char etc) of the variable. From the call to GetRhsVar we know that A
has m1 rows and n1 columns.
The line

if (n1 !=m2 )
{Scierror(999,"%s: Uncompatible dimensions\r\n",fname);

return 0;}

is to make a return to Scilab if the matrices A and B passed to matmul have uncompatible dimen-
sions. The number of columns of A should be equal to the number of rows of B.
The next step is to create the output variable C. This is done by

CreateVar(3, "d", &m1, &n2, &l3);

Here we create a variable numbered 3 (1 was for A and 2 was for B). It is an array of double
("d"). It has m1 rows and n2 columns. The calling sequence of CreateVar is the same as the
calling sequence of GetRhsVar, but the four first parameters of CreateVar are inputs.

The next step is the call to matmul. Remember the calling sequence :

void matmul(a,n,m,b,l,c)
double a[],b[],c[]; int n,m,l;
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We must send to this function (double) pointers to the numeric data in A, B and C. This is done
by :

matmul(stk(l1), m1, n1, stk(l2), n2, stk(l3));

Here stk(l1) is a double pointer to the content of the A matrix. The entries of the A matrix are
stored columnwise in stk(l1)[0], stk(l1)[1] etc. Similarly, after the call to the C func-
tion matmul the (double) numbers stk(l3)[0], stk(l3)[1] are the values of the matrix
product A*B stored columnwise as computed by matmul. The last parameter of the functions
GetRhsVar and CreateVar is an output parameter which allow to access the data through a
pointer (here the double pointers stk(l1), stk(l2) and stk(l3).

The final step is to return the result, i.e. the C matrix to Scilab. This is done by

LhsVar(1) = 3;

This statement means that the first LHS variable of the Scilab function matmul is the variable
numbered 3.

Once the gateway routine is written, it should be compiled, linked with Scilab and a script file
should be executed in Scilab for loading the new function.

It is possible to build a static or a dynamic library. The static library corresponding the the ex-
ample just described here is built in the directory SCIDIR/examples/interface-tutorial
and the dynamic library is built into the directory SCIDIR/examples/interface-tutorial-so.

Static library

In the directory SCIDIR/examples/interface-tutorial just enter the make command
in an Unix platform or in the Windows environment with the Visual C++ environment enter
nmake /f Makefile.mak. This command produces the following file tutorial_gateway.c
which is a C function produced by the Makefile :

#include "mex.h"
extern Gatefunc intview;
extern Gatefunc intmatmul;

static GenericTable Tab[]={
{(Myinterfun)sci_gateway, intview,"error msg"},
{(Myinterfun)sci_gateway, intmatmul,"error msg"},

};

int C2F(tutorial_gateway)()
{ Rhs = Max(0, Rhs);
(*(Tab[Fin-1].f))(Tab[Fin-1].name,Tab[Fin-1].F);
return 0;

}

This function is essentially the table of C functions which are dynamically linked wih Scilab.
The following file tutorial.sce is also produced by the Makefile :

scilab_functions =[...
"view";
"matmul";

];
auxiliary="";
files=G_make(["tutorial_gateway.o","tutorial.a", auxiliary],"void(Win)");
addinter(files,"tutorial_gateway",scilab_functions);
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The Scilab function addinter makes the correspondance between the C gateway functions
(such as intmatmul) and their names as Scilab functions.

To load the newly created function matmul, one has to execute this script and then the func-
tion matmul can be called into Scilab

-->exec tutorial.sce

-->A=rand(2,3);B=rand(3,3);C=matmul(A,B); //C=A*B

Summing up, to build an static interface, the user has to write a gateway function such as
intmatmul. Then he has to edit the Makefile in SCIDIR/examples/interface-tutorial
(or a copy of it) and to put there the name of his gateway function(s) (e.g. intmatmul.o) in
the target CINTERFACE and the name of the corresponding Scilab function (e.g. matmul) in the
target CFUNCTIONS with the same ordering. Typing make produces the static library and a script
file (here tutorial.sce) which should be executed each time the newly created function(s) are
needed. Of course, it is possible to perform this operation automatically when Scilab is launched
by creating a startup file .scilab identical to tutorial.sce.

Dynamic library

The directory SCIDIR/examples/interface-tutorial-so contains the material nec-
essary to create a dynamic library (or a dll in the Windows environment) that can be dynamically
linked with Scilab. This directory contains the following file called builder.sce :

// This is the builder.sce
// must be run from this directory

ilib_name = "libtutorial" // interface library name
files = ["intview.o","intmatmul.o"] // objects files

//
libs = [] // other libs needed for linking
table = [ "view", "intview"; // table of (scilab_name,interface-name)

"matmul","intmatmul"]; //

// do not modify below
// ----------------------------------------------
ilib_build(ilib_name,table,files,libs)

The user should edit this file, which is a Scilab script, and in particular the variables files (a row
vector of strings) anf table a two column matrix of strings. files should contain the names
of all the object files (gateway functions and C functions called). Each row of table is a pair of
two strings: the first is the name of the Scilab function, and the second the name of the gateway
function. Here we have two functions view which has intview as gateway and matmul which
has intmatmul as gateway. This is the example given above. After the file builder.sce has
been edited, it should be executed in Scilab by the command

-->exec builder.sce

Scilab then generates the file loader.sce :
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// generated by builder.sce
libtutorial_path=get_file_path(’loader.sce’);
functions=[ ’view’;

’matmul’;
];
addinter(libtutorial_path+’/libtutorial.so’,’libtutorial’,functions);

This file should be executed in Scilab to load the newly created function matmul

-->exec loader.sce

-->A=rand(2,3);B=rand(3,3);C=matmul(A,B); //C=A*B

Summing up, to build a dynamic interface the user has to write a gateway function (such as
intmatmul), then he has to edit the file builder.sce (or a copy of it) to enter the name of the
Scilab function and the necessary C functions, then he has to execute the script builder.sce.
This produce the dynamic library and the script loader.sce. Then each time he needs the
newly created function(s), he has to execute the script loader.sce.

6.2.3 Functions used for building an interface

The functions used to build an interface are Fortran subroutines when the interface is written in
Fortran and are coded as C macros when the interface is coded in C. An interface (gateway) routine
is a standard C function or Fortran program which include the file SCIDIR/routines/stack-c.h
(C coded gateway) or SCIDIR/routines/stack.h (Fortran coded gateway).

The C functions which can be used in an interface program are available as soon as SCIDIR/routines/stack-c.h
is included in the source code.

The main functions are the following:

• CheckRhs(minrhs, maxrhs)
CheckLhs(minlhs, maxlhs)

Function CheckRhs is used to check that the Scilab function is called with
minrhs <= Rhs <= maxrhs. Function CheckLhs is used to check that the ex-

pected return values are in the range minlhs <= Lhs <= maxlhs. (Usually one has
minlhs=1 since a Scilab function can be always be called with less lhs arguments than
expected).

• GetRhsVar(k,ct,&mk,&nk,&lk)
Note that k (integer) and ct (string) are inputs and mk,nk and lk (integers) are outputs
of GetRhsVar. This function defines the type (ct) of input variable numbered k, i.e. the
kth input variable in the calling sequence of the Scilab function. The pair mk,nk gives
the dimensions (number of rows and columns) of variable numbered k if it is a matrix.
If it is a chain mk*nk is its length. lk is the adress of variable numbered k in Scilab
internal stack. The type of variable number k, ct, should be set to "d", "r", "i"
,"z" or "c" which stands for double, float (real), integer, double complex or character
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respectively. The interface should call function GetRhsVar for each of the rhs variables
of the Scilab function with k=1, k=2,..., k=Rhs. Note that if the Scilab argument
doesn’t match the requested type then Scilab enters an error function and returns from the
interface function.

• CreateVar(k,ct,&mk,&nk,&lk)
Here k,ct,&mk,&nk are inputs of CreateVar and lk is an output of CreateVar. The
parameters are as above. Variable numbered k is created in Scilab internal stack at adress
lk. When calling CreateVar, k must be greater than Rhs i.e. k=Rhs+1, k=Rhs+2,
.... If due to memory lack, the argument can’t be created, then a Scilab error function is
called and the interface function returns.

• CreateVarFromPtr(k,ct,&mk,&nk,&lk)
Here k,ct,&mk,&nk,&lk are all inputs of CreateVarFromPtr and lk is pointer
created by a call to a C function. This function is used when a C object was created inside
the interfaced function and a Scilab object is to be created using a pointer to this C object.

Once the variables have been processed by GetRhsVar or created by CreateVar, they
are given values by calling one or several numerical routine. The call to the numerical routine is
done in such a way that each argument of the routine points to the corresponding Scilab variable.
Character, integer, real, double and double complex type variables are respectively in the cstk,
istk, sstk, stk, zstk Scilab internal stack at the adresses lk’s returned by GetRhsVar or
CreateVar.

Then they are returned to Scilab as lhs variables. The interface should define how the lhs
(output) variables are numbered. This is done by the global variable LhsVar. For instance

LhsVar(1) = 5;
LhsVar(2) = 3;
LhsVar(3) = 1;
LhsVar(4) = 2;

means that the Scilab function has at most 4 output parameters which are variables numbered
k= 5, k=3, k=1, k=2 respectively.

The functions sciprint(amessage) and Error(k) are used for managing messages
and errors.

Other useful functions which can be used are the following.

• GetMatrixptr("Aname", &m, &n, &lp);

This function reads a matrix in Scilab internal stack. Aname is a character string, name
of a Scilab matrix. Outputs are integers m,n and lp, the entries of the matrix are ordered
columnwise.

• ReadString("Aname",&n,str)
This function reads a string in Scilab internal stack. n is the length of the string.

The Fortran functions have the same syntax and return logical values.
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6.2.4 Examples

There are many examples of external functions interfaced with Scilab in the directories SCIDIR/examples/interface-tour
and
SCIDIR/examples/interface-tour-so. Examples are given in C and Fortran. The best
way to build an interface is to copy one of the examples given there and to adapt the code to
particular needs.

6.3 Argument functions

Some built-in nonlinear solvers, such as ode or optim, require a specific function as argument.
For instance in the Scilab command ode(x0,t0,t,fydot), fydot is the specific argument
function for the ode primitive. This function can be a either Scilab function or an external function
written in C or Fortran. In both cases, the argument function must obey a specific syntax. In the
following we will consider, as running example, using the ode primitive with a rhs function
written in Fortran. The same steps should be followed for all primitives which require a function
as argument.

If the argument function is written in C or Fortran, there are two ways to call it:

• -Use dynamic link

-->link(’myfydot.o’,’myfydot’)
//or -->link(’myfydot.o’,’myfydot’,’C’)
-->ode(x0,t0,t,’myfydot’)

• -Use the Ex-ode.f interface in the routines/default directory (and make all in
Scilab directory). The call to the ode function is as above:

-->ode(x0,t0,t,’myfydot’)

In this latter case, to add a new function, two files should be updated:

• The Flist file: Flist is list of entry points. Just add the name of your function at in the
appropriate list of functions.

ode_list= ... myfydot

• The Ex-ode.f (or Ex-ode-more.f) file: this file contains the source code for argument
functions. Add your function here.

Many exemples are provided in the default directory. More complex examples are also
given. For instance it is shown how to use Scilab variables as optional parameters of fydot.
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6.4 Mexfiles

The directories under SCIDIR/examples/mexfiles contain some examples of Matlab mex-
files which can be used as interfaces in the Scilab environment. The Scilab mexlib library em-
ulates the most commonly used Matlab mxfunctions such as mxGetM, mxGetPr, mxGetIr
etc. Not all the mxfunctions are available but standard mexfiles which make use of matri-
ces (possibly sparse), structs, character strings and n-dimensional arrays can be used without any
modification in the Scilab environment. If the source program is already compiled and the mexfile
given as a dynamic library, it is possible to link the library with Scilab (examples are provided for
Linux (.glnx extension) or Windows (.dll extension)).

6.5 Complements

6.5.1 Examining the data, function GetData

The functions GetRhsVar and CreateVar described above for building an interface program
can be used for most programs involving matrices. Many other functions can be used for handling
Scilab more complex data such as lists. See the examples in the directories examples/interfaces.
It is also possible to define new objects from scratch within an interface. Let us first describe how
to scan the Scilab objects. This can be done by the function GetData. Consider the following
simple interface program:

#include "stack-c.h"
void intscan()
{

int *header; double *data;
header = GetData(1);
printf("%i %i %i %i\n", header[0], header[1], header[2], header[3]);
data = (double *) &header[4];
printf("%f %f %f\n", data[0]);

}

This interface can be built by the following Scilab script, scan.sce:

ilib_name = ’libintscan’;
files = [’intscan.o’];
libs = [];
table = [’scan’, ’intscan’];
ilib_build(ilib_name,table,files,libs);

After entering -->exec scan.sce at Scilab prompt, a file loader.sce is made:

libintscan_path=get_file_path(’loader.sce’);
functions=[’scan’;];
addinter(libintscan_path+’/libintscan.so’,’libintscan’,functions);
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Entering -->exec loader.sce allows to call the new scan function. Now we can see the
output of scan(A) for, e.g., A=[4,2,3]. We see that the Scilab variable A is represented
internally by a set of 4 integers (1,1,3,0) (the “header”) followed by 3 doubles (4,2,3) (the “data”).
The header is made of the following: type (1 stands for “numeric matrix”), number of rows (1 since
A is a row vector), number of columns (3 since A has three columns), complex type (0 since A is
real). The data contains the entries of A. All entries are considered (and stored) as double. Cleary,
the function can be used to examine how Scilab variables are stored internally. For instance if
B=int32(A) we see that B is stored with the header (8,1,3,4) and the int data (2,3,4). All integer
matrix have the type 8, and int32 receive the flag 4.

The following program shows how a matrix of strings is represented.

#include "stack-c.h"
void intscan()
{

int *header;
int k,length,start,number;
header = (int *) GetData(1);
/* header = [10,Mrows,Ncols,0] ... */
sciprint("string-type= %i, nrows= %i, ncols=%i, (reserved=) %i \n",
header[0],header[1],header[2],header[3]);

/* ..[1, 1+length(entry 1),., 1+ .. +length(entry M*N) ].. */
number=header[1]*header[2];
start=5+number;
/* codes entry 1, ..., codes entry M*N */
for (k=5; k<5+number; k++) {

length=header[k]-header[k-1];
sciprint("string %i has length %i\n", k-4, length);
sciprint("Code: first char =%i last char = %i\n",header[start],
header[start+length-1]);

start=start+length;
}

}

We see here that string matrices are internally represented by integers. When a string matrix is
passed to an interface and the string matrix is processed by GetRhsVar(n,’c’,&M,&N,&l)
then the strings are transformed into C chars. They can be obtained by the following piece of
interface:

#include "stack-c.h"
void intscan()
{

int M,N,l; char *str;
GetRhsVar(1, "c", &M, &N, &l);
str = (char *) cstk(l);

}



CHAPTER 6. INTERFACING C OR FORTRAN PROGRAMS 70

6.5.2 Creating new data types, function CreateData

Consider now the interface program:

#include "stack-c.h"
void intmy133()
{

int *header;
CreateData(1, 5*sizeof(int));
header = GetData(1);
header[0]=133; header[1]=1; header[2]=3; header[3]=0;
header[4]=35;
LhsVar(1)=1;

}

This interface can be built by the following Scilab script, my133.sce:

ilib_name = ’lib133’;
files = [’intmy133.o’];
libs = [];
table = [’my133’, ’intmy133’];
ilib_build(ilib_name,table,files,libs);

After entering -->exec my133.sce at Scilab prompt, a file loader.sce is made, in the cur-
rent directory and the new scilab function my133 is available after entering -->exec loader.sce.
Let us call this function. We get:

-->X=my133()
X =

Undefined display for this data type
-->type(X)
ans =

133.

A new variable has been created. Scilab knows its type 133 which is the first integer in the header,
but Scilab is unable to display this variable. We can attach a generic name to the type 133, by doing
the following:

-->typename(’mytype’, 133)

The list of current names and types is obtained by the command [names,types]=typname()
. The command typeof(X) now returns mytype. Now we can overload a function to display
X.

-->function %mytype_p(X)
-->disp(’Cannot display this variable!’)
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-->endfunction

-->X
X =

Cannot display this variable!

Indeed, at this stage we have created a new type of variable, 133 with name mytype. To really
display the variable, we need to write a new interface function. Let us consider the following:

#include "stack-c.h"
void intdisp133()
{

int *header;
header = GetData(1);
header[0]=8;
LhsVar(1)=1;

}

This function does nothing, except changing header[0] from 133 to 8. We can build a library
with the two functions my133 and disp133 with the scilab script:

ilib_name = ’lib133’;
files = [’intmy133.o’, ’intdisp133.o’];
libs = [];
table = [’my133’, ’intmy133’;

’disp133’ ,’intdisp133’];
ilib_build(ilib_name,table,files,libs);

We can redefined the display function for variables tagged "mytype" by typename.

-->function %mytype_p(X)
-->disp(disp133(X))
-->endfunction

-->X
X =

35

When X is typed at the scilab prompt, the function %mytype is searched to display X, since X
is a variable of type 133 and such variables have the generic name "mytype", set by the com-
mand typename(’mytype’,133). The function disp133 transforms the variable X into a
standard 1 x 1 integer matrix containing the constant 35. (Note that only the type needs to be set).
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6.5.3 Values or references

By default, the arguments given to the interface are passed “by value”. This means that, in the in-
terface program, one is working with a copy of the Scilab data. Consider for instance the following
gateway function:

#include "stack-c.h"
void inttstfct()
{ int m1,n1,l1;

GetRhsVar(1, "d", &m1, &n1, &l1);
stk(l1)[0] = 1;
LhsVar(1) = 1;

}

for the Scilab function X=tstfct(A). We assume that the variable A passed to tstfct is a
standard real matrix. Note that we could use the following gateway which performs the same job.

#include "stack-c.h"
void inttstfct()
{ int *header; double *data;

header = (int *) GetData(1);
data = (double *) &header[4];
data[0] = 1;
LhsVar(1) = 1;

}

This function is installed into Scilab by executing the script

ilib_name = ’libinttstfct’;
files = [’inttstfct.o’];
libs = [];
table = [’tstfct’, ’inttstfct’];
ilib_build(ilib_name,table,files,libs);

and executing the newly created script loader.sce.
Assume also that A is the 2 x 2 matrix A=zeros(2,2), and consider the Scilab command

-->B=tstfct(A). In the interface program, before its assignment, stk(l1)[0] is equal
to 0, i.e. the first entry of A, A(1,1). The output B will be, as expected, the Scilab matrix
[1 0;0 0]. But the Scilab variable A will not be modified. This behavior is similar with the
usual Scilab functions: the input parameters of the function are not modified when the function
is called. It is however possible to pass the parameters by reference. This can be useful if the
interfaced program do not alter the input data (the data can be used in read-only mode). Let us
enter the command -->funptr tstfct. We get:

-->funptr tstfct
ans =

50101.
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which means: the function tstfct has number 01 in interface number 501. It is possible to
convert the gateway function into a gateway in which the variables are passed by reference. This
is done as follows by the function intppty.

-->intppty(501) // adding gateway 501 to the list.

-->intppty()
ans =

! 6. 13. 16. 19. 21. 23. 41. 42. 501. !

Note that if several Scilab functions are built together in the same inerface they will all receive
input parameters as reference. The behavior of tstfct is changed. Its argument is modified
when tstfct is called:

-->A
A =

! 0. 0. !
! 0. 0. !
-->tstfct(A)
ans =

! 1. 0. !
! 0. 0. !
-->A
A =

! 1. 0. !
! 0. 0. !

Finally, we note that the function GetRawData gives the internal representation of the reference
variable and GetData gives the internal representation of the value variable pointed to by the
reference.

6.6 Intersci

The directory SCIDIR/examples/intersci-examples-so contains several examples for
using intersci which is a tool for producing gateway routines from a descriptor file. Let us
describe a simple example, ex01. We want to build an interface for the following C function :

int ext1c(n, a, b, c)
int *n;
double *a, *b, *c;

{
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int k;
for (k = 0; k < *n; ++k)

c[k] = a[k] + b[k];
return(0);

}

This function just adds the two real vectors a and b with n entries and returns the result in c.
We want to have in Scilab a function c=ext1c(a,b) which performs this operation by calling
ext1c. For that, we provide a .desc file, ex01fi.desc :

ext1c a b
a vector m
b vector m
c vector m

ext1c m a b c
m integer
a double
b double
c double

out sequence c

***********************

This file in divided into three parts separated by a blank line. The upper part (four first lines)
describes the Scilab function c=ext1c(a,b). Then (next five lines) the C function is described.
The last line of ex01fi.desc gives the name of output variables. To run intersci with this
file as input we enter the command :

SCIDIR/bin/intersci-n ex01fi

Two files are created : ex01fi.c and ex01fi_builder.sce. The file ex01fi.c is the C
gateway function needed for interfacing ext1c with Scilab. It is a gateway file built as explained
above (see 6.2.2) :

#include "stack-c.h"
int intsext1c(fname)

char *fname;
{
int m1,n1,l1,mn1,m2,n2,l2,mn2,un=1,mn3,l3;
CheckRhs(2,2);
CheckLhs(1,1);
/* checking variable a */
GetRhsVar(1,"d",&m1,&n1,&l1);
CheckVector(1,m1,n1);
mn1=m1*n1;
/* checking variable b */
GetRhsVar(2,"d",&m2,&n2,&l2);
CheckVector(2,m2,n2);
mn2=m2*n2;
/* cross variable size checking */
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CheckDimProp(1,2,m1*n1 != m2*n2);
CreateVar(3,"d",(un=1,&un),(mn3=mn1,&mn3),&l3);/* named: c */
C2F(ext1c)(&mn1,stk(l1),stk(l2),stk(l3));
LhsVar(1)= 3;
return 0;
}

The file ex01fi_builder.sce is the following :

// generated with intersci
ilib_name = ’libex01fi’// interface library name

table =["ext1c","intsext1c"];
ilib_build(ilib_name,table,files,libs);

This builder file is to be executed by Scilab after the variables files and libs have been
set :

-->files = [’ex01fi.o’ , ’ex01c.o’];
-->libs = [] ;
-->exec ex01fi_builder.sce

A dynamic library is then created as well as a file loader.sce. Executing loader.sce loads
the library into Scilab and executes the addinter command to link the library and associate the
name of the function ext1c to it. We can then call the new function ;

-->exec loader.sce
-->a=[1,2,3];b=[4,5,6]; c=ext1c(a,b);

To use intersci one has to construct a .desc file. The keywords which describe the Scilab
function and the function to be called can be found in the examples given.
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