
INTERSCI

A Scilab interfacing tool

Scilab Group

INRIA Meta2 Project/ENPC Cergrene

INRIA - Unité de recherche de Rocquencourt - Projet Meta2
Domaine de Voluceau - Rocquencourt - B.P. 105 - 78153 Le Chesnay Cedex

(France)
E-mail : scilab@inria.fr
Home page : http://www-rocq.inria.fr/scilab

1

Contents

1 Interface description files 2
1.1 Description of Scilab function . 2
1.2 Optional input arguments . 3
1.3 Description of Fortran subroutine . 3

1.3.1 Fortran calling sequence description 3
1.3.2 Fortran variables description . 3

1.4 Description of the output of Scilab function 4
1.5 Dimensions of non scalar variables . 4
1.6 Fortran variables with external type . 5
1.7 Using lists as input Scilab variables . 6
1.8 C functions interfacing . 6

2 Writing compatible code 6
2.1 Messages and Error Messages . 6
2.2 Input and output . 6

3 Examples 7
3.1 Example 1 . 7
3.2 Example 2 . 8
3.3 Example 3 . 8
3.4 Example 4 . 9

4 Building and using the interface 10
4.1 Calling intersci . 10
4.2 Compiling and building library . 11
4.3 Loading in Scilab . 12
4.4 Adding a new interface to the Scilab kernel 12

1 INTERFACE DESCRIPTION FILES 2

Intersci is a program for building an interface file between Scilab and Fortran subrou-
tines or C functions. This interface describes both the routine called and the associated
Scilab function. The interface is automatically

1 Interface description files

To use Intersci one has first to write an interface description file.
The file <interface name>.desc is a sequence of descriptions of pairs formed by the

Scilab function and the corresponding C or Fortran procedure (see table 1). In the follow-
ing, we will essentially consider Fortran subroutine interfacing. The process is nearly the
same for C functions (see 1.8).

<Scilab function name> <function arguments>
<Scilab variable> <Scilab type> <possible arguments>

...
...

...
...

...
<Fortran subroutine name> <subroutine arguments>
<Fortran argument> <Fortran type>

...
...

...
...

out <type> <formal output names>
<formal output name> <variable>

...
...

...
...

Table 1: Description of a pair of Scilab function and Fortran subroutine

Each description is made of three parts:

• description of Scilab function and its arguments

• description of Fortran subroutine and its arguments

• description of the output of Scilab function.

1.1 Description of Scilab function

The first line of the description is composed by the name of the Scilab function followed
by its input arguments.

The next lines describe Scilab variables: the input arguments and the outputs of the
Scilab function, together with the arguments of the Fortran subprogram with type work
(for which memory must be allocated). It is an error not to describe such arguments.

The description of a Scilab variable begins by its name, then its type followed by
possible informations depending on the type.

Types of Scilab variables are:

any any type: only used for an input argument of Scilab function.

column column vector: must be followed by its dimension.

1 INTERFACE DESCRIPTION FILES 3

list list: must be followed by the name of the list, <list name>. This name must cor-
respond to a file <list name>.list which describes the structure of the list (see
1.7).

matrix matrix: must be followed by its two dimensions.

imatrix complex matrix: must be followed by its two dimensions.

bmatrix boolean matrix: must be followed by its two dimensions.

polynom polynomial: must be followed by its dimension (size) and the name of the
unknown.

row row vector: must be followed by its dimension.

scalar scalar.

string character string: must be followed by its dimension (length).

vector row or column vector: must be followed by its dimension.

sparse sparse matrix: must be followed by its dimensions, the number of non zero ele-
ments and its real/complex flag

work working array: must be followed by its dimension. It must not correspond to an
input argument or to the output of the Scilab function.

A blank line and only one ends this description.

1.2 Optional input arguments

Optional arguments are defined as follows:

• [c val] . This means that c is an optional argument with default value val. val
can be a scalar: e.g. [c 10], an array: e.g. [c (4)/1,2,3,4/] or a chain: e.g.
[c pipo]

• {b xx}. This means that b is an optional argument. If not found, one looks for xx
in current existing Scialb variables.

1.3 Description of Fortran subroutine

1.3.1 Fortran calling sequence description

The first line of the description is composed by the name of the Fortran subroutine followed
by its arguments.

1.3.2 Fortran variables description

The next lines describe Fortran variables: the arguments of the Fortran subroutine. The
description of a Fortran variable is made of its name and its type. Most Fortran variables
correspond to Scilab variables (except for dimensions, see 1.5) and must have the same
name as the corresponding Scilab variable.

Types of Fortran variables are:

1 INTERFACE DESCRIPTION FILES 4

char character array.

double double precision variable.

int integer variable.

real real variable.

Other types types also exist, that are called “external” types see 1.6.
A blank line and only one ends this description.

1.4 Description of the output of Scilab function

The first line of this description must begin by the word out followed by the type of Scilab
output.

Types of output are:

empty the Scilab function returns nothing.

list a Scilab list: must be followed by the names of Scilab variables which form the list.

sequence a Scilab sequence: must be followed by the names of Scilab variables elements
of the sequence. This is the usual case.

This first line must be followed by other lines corresponding to output type conversion.
This is the case when an output variable is also an input variable with different Scilab
type: for instance an input column vector becomes an output row vector. The line which
describes this conversion begins by the name of Scilab output variable followed by the
name of the corresponding Scilab input variable. See 3.3 as an example.

A line beginning with a star “*” ends the description of a pair of Scilab function and
Fortran subroutine. This line is compulsory even if it is the end of the file. Do not forget
to end the file by a carriage return.

1.5 Dimensions of non scalar variables

When defining non scalar Scilab variables (vectors, matrices, polynomials and character
strings) dimensions must be given. There are a few ways to do that:

• It is possible to give the dimension as an integer (see 3.1).

• The dimension can be the dimension of an input argument of Scilab function. This
dimension is then denoted by a formal name (see 3.2).

• The dimension can be defined as an output of the Fortran subroutine. This means
that the memory for the corresponding variable is allocated by the Fortran subrou-
tine. The corresponding Fortran variable must necessary have an external type (see
1.6 and 3.3).

Intersci is not able to treat the case where the dimension is an algebraic expression of
other dimensions. A Scilab variable corresponding to this value must defined.

1 INTERFACE DESCRIPTION FILES 5

1.6 Fortran variables with external type

External types are used when the dimension of the Fortran variable is unknown when
calling the Fortran subroutine and when its memory size is allocated in this subroutine.
This dimension must be an output of the Fortran subroutine. In fact, this will typically
happen when we want to interface a C function in which memory is dynamically allocated.

Existing external types:

cchar character string allocated by a C function to be copied into the corresponding
Scilab variable.

ccharf the same as cchar but the C character string is freed after the copy.

cdouble C double array allocated by a C function to be copied into the corresponding
Scilab variable.

cdoublef the same as cdouble but the C double array is freed after the copy.

cint C integer array allocated by a C function to be copied into the corresponding Scilab
variable.

cintf the same as cint but the C integer array is freed after the copy.

csparse C sparse matrix allocated by a C function, to be copied into the corresponding
Scilab variable. the copy.

csparsef the same as csparse but the C sparse array is freed after the copy.

In fact, the name of an external type corresponds to the name of a C function. This
C function has three arguments: the dimension of the variable, an input pointer and an
output pointer.

For instance, below is the code for external type cintf:

#include "../machine.h"

/* ip is a pointer to a Fortran variable coming from SCILAB
which is itself a pointer to an array of n integers typically
coming from a C function

cintf converts this integer array into a double array in op
moreover, pointer ip is freed */

void C2F(cintf)(n,ip,op)
int *n;
int *ip[];
double *op;
{

int i;
for (i = 0; i < *n; i++)
op[i]=(double)(*ip)[i];

free((char *)(*ip));
}

2 WRITING COMPATIBLE CODE 6

<comment on the variable element of the list>
<name of the variable element of list> <type> <possible arguments>

Table 2: Description of a variable element of a list

For the meaning of #include "../machine.h" and C2F see 1.8.
Then, the user can create its own external types by creating its own C functions with

the same arguments. Intersci will generate the call of the function.

1.7 Using lists as input Scilab variables

An input argument of the Scilab function can be a Scilab list. If <list name> is the name
of this variable, a file called <list name>.list must describe the structure of the list.
This file permits to associate a Scilab variable to each element of the list by defining its
name and its Scilab type. The variables are described in order into the file as described
by table 2.

Then, such a variable element of the list, in the file <interface name>.desc is referred
to as its name followed by the name of the corresponding list in parenthesis. For instance,
la1(g) denotes the variable named la1 element of the list named g.

An example is shown in 3.4.

1.8 C functions interfacing

The C function must be considered as a procedure i.e. its type must be void or the
returned value must not be used.

The arguments of the C function must be considered as Fortran arguments i.e. they
must be only pointers.

Moreover, the name of the C function must be recognized by Fortran. For that, the
include file machine.h located in the directory <Scilab directory>/routines should be
included in C functions and the macro C2F should be used.

2 Writing compatible code

2.1 Messages and Error Messages

To write messages in the Scilab main window, user must call the out Fortran routine or
cout C procedure with the character string of the desired message as input argument.

To return an error flag of an interfaced routine user must call the erro Fortran routine
or cerro C procedure with the character string of the desired message as input argument.
This call will produce the edition of the message in the Scilab main window and the error
exit of Scilab associated function.

2.2 Input and output

To open files in Fortran, it is highly recommended to use the Scilabroutine clunit. If
the interfaced routine uses the Fortran open instruction, logical units must in any case be
greater than 40.

3 EXAMPLES 7

call clunit(lunit, file, mode)

with:

• file the file name character string

• mode a two integer vector defining the opening mode mode(2) defines the record
length for a direct access file if positive. mode(1) is an integer formed with three
digits f, a and s

– f defines if file is formatted (0) or not (1)

– a defines if file has sequential (0) or direct access (1)

– s defines if file status must be new (0), old (1), scratch (2) or unknown (3)

Files opened by a call to clunit must be close by

call clunit(-lunit, file, mode)

In this case the file and mode arguments are not referenced.

3 Examples

3.1 Example 1

The Scilab function is a=calc(str). Its input is a string and its output is a scalar.
The corresponding Fortran subroutine is

subroutine fcalc(str,a,n)
character*(*) str
integer a

c
c

if (str(1:n).eq.’one’) then
a=1

elseif (str(1:n).eq.’two’) then
a=2

else
a=-1

endif
end

Its arguments are a string str (used as input) and an integer a (used as output) and the
string dimension. This last argument is useful if the subroutine has to be called by a C
program. The description file is the following:

calc str
str string n
a scalar

fcalc str a n
str char
a integer

3 EXAMPLES 8

n integer

out sequence a

3.2 Example 2

The name of the Scilab function is c=som(a,b). Its two inputs are row vectors and its
output is a column vector.
The corresponding C procedure is:

int csom_(n, a, b, c)
int *n;
float *a, *b, *c;

{
int k;
for (k = 0; k < *n; ++k)

c[k] = a[k] + b[k];
return(0);

}

. Its arguments are a real array with dimension n (used as input), another real array with
dimension m (used as input) and a real array (used as output). These dimensions m and
n are determined at the calling of the Scilab function and do not need to appear as Scilab
variables.

Intersci will do the job to make the necessary conversions to transform the double
precision (default in Scilab) row vector a into a real array and to transform the real array
c into a double precision row vector.

The description file is the following:

som a b
a row m
b row n
c column n

csom a n b m c
a real
n integer
b real
m integer
c real

out sequence c

3.3 Example 3

The Scilab function is [o,b]=ext(a). Its input is a matrix and its outputs are a matrix
and a column vector.

3 EXAMPLES 9

The corresponding Fortran subroutine is fext(a,m,n,b,p) and its arguments are an
integer array (used as input and output), its dimensions m,n (used as input) and another
integer array and its dimension p (used as outputs).

The dimension p of the output b is computed by the Fortran subroutine and the
memory for this variable is also allocated by the Fortran subroutine (perhaps by to a call
to another C function). So the type of the variable is external and we choose cintf.

Moreover, the output a of the Scilab function is the same as the input but its type
changes from a m× n matrix to a n×m matrix. This conversion is made my introducing
the Scilab variable o

The description file is the following:

ext a
a matrix m n
b column p
o matrix n m

fext a m n b p
a integer
m integer
n integer
b cintf
p integer

out sequence o b
o a

3.4 Example 4

The name of the Scilab function is contr. Its input is a list representing a linear system
given by its state representation and a tolerance. Its return is a scalar (for instance the
dimension of the controllable subspace).

The name of the corresponding Fortran subroutine is contr and its arguments are the
dimension of the state of the system (used as input), the number of inputs of the system
(used as input), the state matrix of the system (used as input), the input matrix of the
system (used as input), an integer giving the dimension of the controllable subspace (used
as output), and the tolerance (used as input).

The description file is the following:

contr sys tol
tol scalar
sys list lss
icontr scalar

contr nstate(sys) nin(sys) a(sys) b(sys) icontr tol
a(sys) double
b(sys) double
tol double
nstate(sys) integer

4 BUILDING AND USING THE INTERFACE 10

nin(sys) integer
icontr integer

out sequence icontr

The type of the list is lss and a file describing the list lss.list is needed. It is shown
below:

1 type
type string 3

2 state matrix
a matrix nstate nstate

3 input matrix
b matrix nstate nin

4 output matrix
c matrix nout nstate

5 direct tranfer matrix
d matrix nout nin

6 initial state
x0 column nstate

7 time domain
t any

The number of the elements is not compulsory in the comment describing the elements
of the list but is useful.

4 Building and using the interface

4.1 Calling intersci

To use Intersci execute the command:
intersci-n <interface name> where <interface name>.desc is the file describing the
interface (see above).

The intersci-n script file are located in the directory SCIDIR/bin.
Using intersci-n two files are created : <interface name>.c and <interface name> builder.sce

are created. The file T<interface name>.c contains the interfacing procedures for each
new Scilab function. The file <interface name> builder.sce is a Scilab script which real-
izes the incremental linking of the gateway file. It has to be customized to set the file
variable to the names of the object file associated to the gateway and the users objects
and library files needed.

4 BUILDING AND USING THE INTERFACE 11

Example: Suppose that the descriptions given in the example 1 and 2 above are written
down in the file myex.desc.
Running intersci-n one obtains:

$% intersci-n myex

INTERSCI Version 3.0 (SEP 2000)
Copyright (C) INRIA/ENPC All rights reserved

processing SCILAB function "calc"

generating C interface for function (fcalc) Scilab function "calc"

processing SCILAB function "som"

generating C interface for function (fsom) Scilab function "som"

C file "myex.c" has been created
Scilab file "loader.sce" has been created

file "myex_builder.sce" has been created

The Scilab script myex_builder.sce contains:

// generated with intersci
ilib_name = ’libmyex’// interface library name

table =["calc","intscalc";
"som","intssom"];
ilib_build(ilib_name,table,files,libs);

Suppose that the procedures fcalc and csom are defined in the Fortran file fcalc.f and
the C file csom.c
The file ex01fi_builder.sce has to be customized as follow:

// generated with intersci
ilib_name = ’libmyex’; // interface library name
files=[’myex’,’fcalc’,’csom’] ;
libs=[]; //no libs required
table =["calc","intscalc";

"som","intssom"];
ilib_build(ilib_name,table,files,libs);

4.2 Compiling and building library

This builder file is to be executed by Scilab:

-->exec myex_builder.sce;
generate a gateway file
generate a loader file
generate a Makefile: Makelib
running the makefile

4 BUILDING AND USING THE INTERFACE 12

The generated file lib<interface name>.c is the C gateway needed for interfacing all
routines defined in <interface> name with Scilab.

A dynamic library is then created as well as a file loader.sce.

4.3 Loading in Scilab

Executing loader.sce loads the library into Scilab and executes the addinter command
to link the library and associate the names of the functions to it. We can then call the
new functions :

-->exec loader.sce;
Loading shared executable ./libmyex.so
shared archive loaded
Linking libmyex (in fact libmyex_)
Interface 0 libmyex

Of course this instruction can be written in one of the Scilab startup files not to have to
re-enter it each time Scilab is started.

These new functions can then be used as the others:

-->a=[1,2,3];b=[4,5,6];
-->c=som(a,b)
c =

! 5. !
! 7. !
! 9. !
-->calc(’one’)
ans =

1.

4.4 Adding a new interface to the Scilab kernel

It is possible to add a set a new built-in functions to Scilab by a permanent link the
interface program. For that, it is necessary to update the files default/fundef and
routines/callinter.h.

When intersci is invoked as follows:

intersci <interface name> <interface number>

intersci then builds a .fundef file which is used to update the default/fundef file.
To add a new interface the user needs also to update the routines/callinter.h file

with a particular value of fun Fortran variable corresponding to the new interface number.
Two unused empty interface routines called by default (matusr.f and matus2.f) are

predefined and may be replaced by the interface program. Their interface numbers 14 and
24 respectively. They can be used as default interface programs. The executable code of
Scilab is then made by typing “make all” or “make bin/scilex” in Scilab directory.

