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Chapter 1

Nelder-Mead bibliography

In this section, we present a brief overview of selected papers, sorted in chronological order, which

deal with the Nelder-Mead algorithm

1.1 Spendley, Hext, Himsworth, 1962

”Sequential Application of Simplex Designs in Optimisation and Evolutionary Operation”, Spend-

ley W., Hext G. R. and Himsworth F. R., American Statistical Association and American Society

for Quality, 1962

This article [21] presents an algorithm for unconstrained optimization in which a simplex is

used. The simplex has a fixed, regular (i.e. all lengths are equal), shape and is made of n+1

vertices (where n is the number of parameters to optimize). The algorithm is based on the

reflection of the simplex with respect to the centroid of better vertices. One can add a shrink

step so that the simplex size can converge to zero. Because the simplex shape cannot change,

the convergence rate may be very slow if the eigenvalues of the hessian matrix have very different

magnitude.

1.2 Nelder, Mead, 1965

”A Simplex Method for Function Minimization”, Nelder J. A. and Mead R., The Computer Jour-

nal, 1965

This article [12] presents the Nelder-Mead unconstrained optimization algorithm. It is based

on a simplex made of n+1 vertices and is a modification of the Spendley’s et al algorithm. It

includes features which enables the simplex to adapt to the local landscape of the cost function.

The additional steps are expansion, inside contraction and outside contraction. The stopping

criterion is based on the standard deviation of the function value on the simplex.

The convergence of the algorithm is better than Spendley’s et al. The method is compared

against Powell’s free-derivative method (1964) with comparable behavior. The algorithm is
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”greedy” in the sense that the expansion point is kept if it improves the best function value

in the current simplex. Most Nelder-Mead variants which have been analyzed after are keeping

the expansion point only if it improves over the reflection point.

1.3 Box, 1965

”A New Method of Constrained Optimization and a Comparison With Other Methods”, M. J.

Box, The Computer Journal 1965 8(1):42-52, 1965, British Computer Society

In this paper [2], Box presents a modification of the NM algorithm which takes into accounts

for bound constraints and non-linear constraints. This variant is called the Complex method. The

method expects that the initial guess satisfies the nonlinear constraints. The nonlinear constraints

are supposed to define a convex set. The algorithm ensures that the simplex evolves in the feasible

space.

The method to take into account for the bound constraints is based on projection of the

parameters inside the bounded domain. If some nonlinear constraint is not satisfied, the trial

point is moved halfway toward the centroid of the remaining points (which are all satisfying the

nonlinear constraints).

The simplex may collapse into a subspace if a projection occurs. To circumvent this problem,

k>=n+1 vertices are used instead of the original n+1 vertices. A typical value of k is k=2n. The

initial simplex is computed with a random number generator, which takes into account for the

bounds on the parameters. To take into account for the nonlinear constraints, each vertex of the

initial simplex is moved halfway toward the centroid of the points satisfying the constraints (in

which the initial guess already is).

1.4 Guin, 1968

”Discussion and correspondence: modification of the complex method of constrained optimiza-

tion”, J. A. Guin, The Computer Journal, 1968

In this article [3], Guin suggest 3 rules to improve the practical convergence properties of Box’s

complex method. These suggestions include the use of the next-to-worst point when the worst

point does not produce an improvement of the function value. The second suggestion is to project

the points strictly into the bounds, instead of projecting inside the bounds. The third suggestion

is related to the failure of the method when the centroid is no feasible. In that case, Guin suggest

to restrict the optimization in the subspace defined by the best vertex and the centroid.

1.5 O’Neill, 1971

”Algorithm AS47 - Function minimization using a simplex procedure”, R. O’Neill, 1971, Applied

Statistics
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In this paper [13], R. O’Neill presents a fortran 77 implementation of the Nelder-Mead algo-

rithm. The initial simplex is computed axis-by-axis, given the initial guess and a vector of step

lengths. A factorial test is used to check if the computed optimum point is a local minimum.

1.6 Parkinson and Hutchinson, 1972

In [14], ”An investigation into the efficiency of variants on the simplex method”, Parkinson and

Hutchinson explored several ways of improvement. First, they investigate the sensitivity of the

algorithm to the initial simplex. Two parameters were investigated, i.e. the initial length and

the orientation of the simplex. An automatic setting for the orientation, though very desirable,

is not easy to design. Parkinson and Hutchinson tried to automatically compute the scale of

the initial simplex by two methods, based on a ”line search” and on a local ”steepest descent”.

Their second investigation adds a new step to the algorithm, the unlimited expansion. After

a sucessful expansion, the algorithm tries to produce an expansion point by taking the largest

possible number of expansion steps. After an unlimited expansion steps is performed, the simplex

is translated, so that excessive modification of the scale and shape is avoided. Combined and

tested against low dimension problems, the modified algorithm, named PHS, provides typical

gains of 20function evaluations.

1.7 Richardson and Kuester, 1973

”Algorithm 454: the complex method for constrained optimization”, Richardson Joel A. and

Kuester J. L., Commun. ACM, 1973

In this paper [18], Richardson and Kuester shows a fortran 77 implementation of Box’s complex

optimization method. The paper clarifies several specific points from Box’s original paper while

remaining very close to it. Three test problems are presented with the specific algoritmic settings

(such as the number of vertices for example) and number of iterations.

1.8 Shere, 1973

”Remark on algorithm 454 : The complex method for constrained optimization”, Shere Kenneth

D., Commun. ACM, 1974

In this article [20], Shere presents two counterexamples where the algorithm 454, implemented

by Richardson and Kuester produces an infinite loop. ”This happens whenever the corrected point,

the centroid of the remaining complex points, and every point on the line segment joining these

two points all have functional values lower than the functional values at each of the remaining

complex points.
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1.9 Routh, Swartz, Denton, 1977

”Performance of the Super-Modified Simplex”, M.W. Routh, P.A. Swartz, M.B. Denton, Analytical

Chemistry, 1977

In this article [19], Routh, Swartz and Denton present a variant of the Nelder-Mead algorithm,

which is called the Modified Simplex Method (SMS) in their paper. The algorithm is modified in

the following way. After determination of the worst response (W), the responses at the centroid

(C) and reflected (R) vertices are measured and a second-order polynomial curve is fitted to the

responses at W, C and R. Furthermore, the curve is extrapolated beyond W and R by a percentage

of the W-R vector resulting in two types of curve shapes. In the concave down case, a maximum

occurs within the interval. Assuming a maximization process, evaluation of the derivative of the

curve reveals the location of the predicted optimum whose response is subsequently evaluated, the

new vertex is located at that position, and the optimization process is continued. In the concave up

case, a response maximum does not occur within the interval so the extended interval boundary

producing the highest predicted response is chosen as the new vertex location, its response is

determined, and the optimization is continued. If the response at the predicted extended interval

boundary location does not prove to be greater than the response at R, the vertex R may instead

be retained as the new vertex and the process continued. The slope at the extended interval

boundary may additionally be evaluated dictating the magnitude of the expansion coefficient,

i.e. the greater the slope (indicating rapid approach to the optimum location), the smaller the

required expansion coefficient and, conversely, the smaller the slope (indicating remoteness from

the optimum location), the larger the required expansion coefficient.

Some additional safeguard procedure must be used in order to prevent the collapse of the

simplex.

1.10 Van Der Wiel, 1980

”Improvement of the Super-Modified Simplex Optimization Procedure”, P.F.A., Van Der Wiel

Analytica Chimica Acta, 1980

In this article [23], Van Der Wiel tries to improve the SMS method by Routh et al.. His

modifications are based on a Gaussian fit, weighted reflection point and estimation of response

at the reflection point. Van Der Wiel presents a simplified pseudo-code for one algorithm The

method is tested in 5 cases, where the cost function is depending on the exponential function.

1.11 Walters, Parker, Morgan and Deming, 1991

”Sequential Simplex Optimization for Quality and Productivity in Research, Development, and

Manufacturing”, F. S. Walters, L. R. Parker, Jr., S. L. Morgan, and S. N. Deming, 1991
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In this book [24], Walters, Parker, Morgan and Deming give a broad view on the simplex

methods in chemistry. The Spendley et al. and Nelder-Mead algorithms are particularily deeply

analyzed, with many experiments analyzed in great detail. Template tables are given, so that an

engineer can manually perform the optimization and make the necessary calculations. Practical

advices are given, which allow to make a better use of the algorithms.

In chapter 5, ”Comments on Fixed-size and Variable-size Simplexes”, comparing the path of

the two algorithms allows to check that a real optimum has been found. When the authors analyze

the graph produced by the response depending on the number of iteration, the general behavior of

the fixed-size algorithm is made of four steps. Gains in response are initially rapid, but the rate of

return decreases as the simplex probes to find the ridge and then moves along the shallower ridge

to find the optimum. The behavior from different starting locations is also analyzed. Varying

the size of the initial simplex is also analyzed for the fixed-size simplex algorithm. The many

iterations which are produced when a tiny initial simplex is used with the fixed-size simplex is

emphasized.

The chapter 6, ”General Considerations”, warns that the user may setup an degenerate initial

simplex, leading to a false convergence of the algorithm. Various other initial simplices are

analyzed. Modifications in the algorithm to take into account for bounds contraints are presented.

The behavior of the fixed-size and variable-size simplex algorithms is analyzed when the simplex

converges. The ”k+1” rule, introduced by Spendley et al. to take into account for noise in the

cost function is presented.

The chapter 7, ”Additional Concerns and Topics” deals with advanced questions regarding

these algorithms. The variable size simplex algorithm is analyzed in the situation of a ridge.

Partially oscillatory collapse of the Nelder-Mead algorithm is presented. The same behavior is

presented in the case of a saddle point. This clearly shows that practionners were aware of the

convergence problem of this algorithm well before Mc Kinnon presented a simple counter example

(in 1998). The ”Massive Contraction” step of Nelder and Mead is presented as a solution for this

oscillatory behavior. The authors present a method, due to Ernst, which allows to keep the volume

of the simplex, instead of shrinking it. This method is based on a translation of the simplex. This

modification requires n+ 1 function evaluations. A more efficient method, due to King, is based

on reflection with respect to the next-to-worst vertex. This modification was first suggested by

Spendley et al. in their fixed-size simplex algorithm.

In the same chapter, the authors present the behavior of the algorithms in the case of multiple

optima. They also present briefly other types of simplex algorithms.

A complete bibliography (from 1962 to 1990) on simplex-based optimization is given in the

end of the book.



Chapter 1. Nelder-Mead bibliography 8

1.12 Subrahmanyam, 1989

”An extension of the simplex method to constrained nonlinear optimization”, M. B. Subrah-

manyam, Journal of Optimization Theory and Applications, 1989

In this article [22], the simplex algorithm of Nelder and Mead is extended to handle nonlinear

optimization problems with constraints. To prevent the simplex from collapsing into a subspace

near the constraints, a delayed reflection is introduced for those points moving into the infeasible

region. Numerical experience indicates that the proposed algorithm yields good results in the

presence of both inequality and equality constraints, even when the constraint region is narrow.

If a vertex becomes infeasible, we do not increase the value at this vertex until the next

iteration is completed. Thus, the next iteration is accomplished using the actual value of the

function at the infeasible point. At the end of the iteration, in case the previous vertex is not the

worst vertex, it is assigned a high value, so that it then becomes a candidate for reflection during

the next iteration.

The paper presents numerical experiments which are associated with thousands of calls to the

cost function. This may be related with the chosen reflection factor equal to 0.95, which probably

cause a large number of reflections until the simplex can finally satisfy the constraints.

1.13 Numerical Recipes in C, 1992

”Numerical Recipes in C, Second Edition”, W. H. Press, Saul A. Teukolsky, William T. Vetterling

and Brian P. Flannery, 1992

In this book [17], an ANSI C implementation of the Nelder-Mead algorithm is given. The

initial simplex is based on the axis. The termination criterion is based on the relative difference

of the function value of the best and worst vertices in the simplex.

1.14 Lagarias, Reeds, Wright, Wright, 1998

”Convergence Properties of the Nelder–Mead Simplex Method in Low Dimensions”, Jeffrey C. La-

garias, James A. Reeds, Margaret H. Wright and Paul E. Wright, SIAM Journal on Optimization,

1998

This paper [9] presents convergence properties of the Nelder-Mead algorithm applied to stricly

convex functions in dimensions 1 and 2. Proofs are given to a minimizer in dimension 1, and

various limited convergence results for dimension 2.

1.15 Mc Kinnon, 1998

”Convergence of the Nelder–Mead Simplex Method to a Nonstationary Point”, SIAM J. on Opti-

mization, K. I. M. McKinnon, 1998
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In this article [10], Mc Kinnon analyzes the behavior of the Nelder-Mead simplex method for

a family of examples which cause the method to converge to a nonstationnary point. All the ex-

amples use continuous functions of two variables. The family of functions contains strictly convex

functions with up to three continuous derivatives. In all the examples, the method repeatedly

applies the inside contraction step with the best vertex remaining fixed. The simplices tend to a

straight line which is orthogonal to the steepest descent direction. It is shown that this behavior

cannot occur for functions with more than three continuous derivatives.

1.16 Kelley, 1999

”Detection and Remediation of Stagnation in the Nelder–Mead Algorithm Using a Sufficient

Decrease Condition”, SIAM J. on Optimization, Kelley, C. T., 1999

In this article [7], Kelley presents a test for sufficient decrease which, if passed for the entire

iteration, will guarantee convergence of the Nelder-Mead iteration to a stationary point if the

objective function is smooth. Failure of this condition is an indicator of potential stagnation.

As a remedy, Kelley propose to restart the algorithm with an oriented simplex, smaller than

the previously optimum simplex, but with a better shape and which approximates the steepest

descent step from the current best point. The method is experimented against Mc Kinnon test

function and allow to converge to the optimum, where the original Nelder -Mead algorithm was

converging to a non-stationary point. Although the oriented simplex works well in practice,

other strategies may be chosen with similar results, such as a simplex based on axis, a regular

simplex (like Spendley’s) or a simplex based on the variable magnitude (like Pfeffer’s suggestion

in Matlab’s fminsearch). The paper also shows one convergence theorem which prove that if the

sufficient decrease condition is satisfied and if the product of the condition of the simplex by the

simplex size converge to zero, therefore, with additional assumptions on the cost function and the

sequence of simplices, any accumulation point of the simplices is a critical point of f.

The same ideas are presented in the book [8].

1.17 Han, 2000

In his Phd thesis [4], Lixing Han analyzes the properties of the Nelder-Mead algorithm. Han

present two examples in which the Nelder-Mead simplex method does not converge to a single

point. The first example is a nonconvex function with bounded level sets and it exhibits similar

nonconvergence properties with the Mc Kinnon counterexample f(ξ1, ξ2) = ξ2
1 − ξ2(ξ2 − 2). The

second example is a convex function with bounded level sets, for which the Nelder-Mead simplices

converge to a degenerate simplex, but not to a single point. These nonconvergent examples

support the observations by some practitionners that in the Nelder-Mead simplices may collapse

into a degenerate simplex and therefore support the use of a restart strategy. Han also investigates

the effect of the dimensionality of the Nelder-Mead method. It is shown that the Nelder-Mead
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simplex method becomes less efficient as the dimension increases. Specifically, Han consider the

quadratic function ξ2
1 + . . . + ξn

1 and shows that the Nelder-Mead method becomes less efficient

as the dimension increases. The considered example offers insight into understanding the effect

of dimensionnality on the Nelder-Mead method. Given all the known failures and inefficiencies

of the Nelder-Mead method, a very interesting question is why it is so popular in practice. Han

present numerical results of the Nelder-Mead method on the standard collection of Moré-Garbow-

Hillstrom with dimensions n ≤ 6. Han compare the Nelder-Mead method with a finite difference

BFGS method and a finite difference steepest descent method. The numerical results show that

the Nelder-Mead method is much more efficient than the finite difference steepest descent method

for the problems he tested with dimensions n ≤ 6. It is also often comparable with the finite

difference BFGS method, which is believed to be the best derivative-free method. Some of these

results are reproduced in [5] by Han and Neumann, ”Effect of dimensionality on the Nelder-

ĂŞMead simplex method”and in [6], ”On the roots of certain polynomials arising from the analysis

of the Nelder-Mead simplex method”.

1.18 Nazareth, Tseng, 2001

”Gilding the Lily: A Variant of the Nelder-Mead Algorithm Based on Golden-Section Search”

Computational Optimization and Applications, 2001, Larry Nazareth and Paul Tseng

The article [11] propose a variant of the Nelder-Mead algorithm derived from a reinterpretation

of univariate golden-section direct search. In the univariate case, convergence of the variant can

be analyzed analogously to golden-section search.

The idea is based on a particular choice of the reflection, expansion, inside and outside contrac-

tion parameters, based on the golden ratio. This variant of the Nelder-Mead algorithm is called

Nelder-Mead-Golden- Ratio, or NM-GS. In one dimension, the authors exploit the connection

with golden-search method and allows to prove a convergence theorem on unimodal univariate

functions. This is marked contrast to the approach taken by Lagarias et al. where considerable

effort is expended to show convergence of the original NM algorithm on strictly convex univari-

ate functions. With the NM-GS variant, one obtain convergence in the univariate case (using a

relatively simple proof) on the broader class of unimodal functions.

In the multivariate case, the authors modify the variant by replacing strict descent with

fortified descent and maintaining the interior angles of the simplex bounded away from zero.

Convergence of the modified v ariant can be analyzed by applying results for a fortified- descent

simplicial search method. Some numerical experience with the variant is reported.

1.19 Perry, Perry, 2001

”A New Method For Numerical Constrained Optimization” by Ronald N. Perry, Ronald N. Perry,

March 2001
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In this report [15], we propose a new method for constraint handling that can be applied

to established optimization algorithms and which significantly improves their ability to traverse

through constrained space. To make the presentation concrete, we apply the new constraint

method to the Nelder and Mead polytope algorithm. The resulting technique, called SPIDER,

has shown great initial promise for solving difficult (e.g., nonlinear, nondifferentiable, noisy)

constrained problems.

In the new method, constraints are partitioned into multiple levels. A constrained perfor-

mance, independent of the objective function, is defined for each level. A set of rules, based

on these partitioned performances, specify the ordering and movement of vertices as they strad-

dle constraint boundaries; these rules [...] have been shown to significantly aid motion along

constraints toward an optimum. Note that the new approach uses not penalty function and

thus does not warp the performance surface, thereby avoiding the possible ill-conditioning of the

objective function typical in penalty methods.

No numerical experiment is presented.

1.20 Andersson, 2001

”Multiobjective Optimization in Engineering Design - Application to fluid Power Systems” Johan

Andersson, 2001

This PhD thesis [1] gives a brief overview of the Complex method by Box in section 5.1.

1.21 Peters, Bolte, Marschner, Nüssen and Laur, 2002

In [16], ”Enhanced Optimization Algorithms for the Development of Microsystems”, the authors

combine radial basis function interpolation methods with the complex algorithm by Box. Interpo-

lation with radial basis functions is a linear approach in which the model function f is generated

via the weighted sum of the basis functions Φi(r). The parameter r describes the distance of the

current point from the center xi of the ith basis function. It is calculated via the euclidean norm.

It is named ComplInt strategy. The name stands for Complex in combination with interpolation.

The Complex strategy due to Box is very well suited for the combination with radial basis function

interpolation for it belongs to the polyhedron strategies. The authors presents a test performed

on a pratical application, which leaded them to the following comment : ”The best result achieved

with the ComplInt strategy is not only around 10% better than the best result of the Complex

strategy due to Box, the ComplInt also converges much faster than the Complex does: while the

Complex strategy needs an average of 7506, the ComplInt only calls for an average of 2728 quality

function evaluations.”
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1.22 Han, Neumann, 2006

”Effect of dimensionality on the Nelder-Mead simplex method”, L. Han and M. Neumann (2006),

In this article [5], the effect of dimensionality on the Nelder-Mead algorithm is investigated. It

is shown that by using the quadratic function f(x) = xT ∗x, the Nelder-Mead simplex method de-

teriorates as the dimension increases. More precisely, in dimension 1, with the quadratic function

f(x) = x2 and a particular choice of the initial simplex, applies inside contraction step repeat-

edly and the convergence rate (as the ratio between the length of the simplex at two consecutive

steps) is 1/2. In dimension 2, with a particular initial simplex, the NM algorithm applies outside

contraction step repeatedly and the convergence rate is
√

(2)/2.

For n>=3, a numerical experiment is performed on the quadratic function with the fminsearch

algorithm from Matlab. It is shown that the original NM algorithm has a convergence rate which

is converging towards 1 when n increases. For n=32, the rate of convergence is 0.9912.

1.23 Singer, Nelder, 2008

http://www.scholarpedia.org/article/Nelder-Mead_algorithm Singer and Nelder

This article is a complete review of the Nelder-Mead algorithm. Restarting the algorithm is

adviced when a premature termination occurs.

http://www.scholarpedia.org/article/Nelder-Mead_algorithm
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