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Notations

n number of variables

x = (x1, x2, . . . , xn)T ∈ Rn the unknown

x0 ∈ Rn the initial guess

v ∈ Rn a vertex

S = {vi}i=1,m a complex, where m ≥ n+ 1 is the number of vertices

S = {vi}i=1,n+1 a simplex (with n+ 1 vertices)

(vi)j the j-th component of the i-th vertex

S0 the initial simplex

Sk the simplex at iteration k

f : Rn → R the cost function

Fig. 1 : Notations used in this document



Chapter 1

Simplex theory

In this section, we present the various definitions connected to simplex algorithms. We introduce

several methods to measure the size of a simplex, including the oriented length. We present

several methods to compute an initial simplex, that is, the regular simplex used by Spendley et

al., the axis-by-axis simplex, Pfeffer’s simplex and the randomized bounds simplex.

1.1 The simplex

Definition 1.1.1 ( Simplex) A simplex S in Rn is the convex hull of n + 1 vertices, that is, a

simplex S = {vi}i=1,n+1 is defined by its n+ 1 vertices vi ∈ Rn for i = 1, n+ 1.

The j-th coordinate of the i-th vertex vi ∈ Rn is denoted by (vi)j ∈ R.

Box extended the Nelder-Mead algorithm to handle bound and non linear constraints [1]. To

be able to manage difficult cases, he uses a complex made of m ≥ n+ 1 vertices.

Definition 1.1.2 ( Complex) A complex S in Rn is a set of m ≥ n+1 vertices, that is, a simplex

S = {vi}i=1,m is defined by its m vertices vi ∈ Rn for i = 1,m.

In this chapter, we will state clearly when the definition and results can only be applied to a

simplex or to a more general a complex.

We assume that we are given a cost function f : Rn → R. Each vertex vi is associated with a

function value

fi = f(vi) for i = 1,m. (1.1)

For any complex, the vertices can be sorted by increasing function values

f1 ≤ f2 ≤ . . . ≤ fn ≤ fm. (1.2)

The sorting order is not precisely defined neither in Spendley’s et al paper [11] nor in Nelder

and Mead’s [8]. In [6], the sorting rules are defined precisely to be able to state a theoretical

convergence result. In practical implementations, though, the ordering rules have no measurable

influence.
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1.2 The size of the complex

Several methods are available to compute the size of a complex.

In this section, we use the euclidian norm ‖.‖2 the defined by

‖v‖2 =
∑
j=1,n

(vj)
2. (1.3)

Definition 1.2.1 ( Diameter) The simplex diameter diam(S) is defined by

diam(S) = max
i,j=1,m

‖vi − vj‖2. (1.4)

In practical implementations, computing the diameter requires two nested loops over the

vertices of the simplex, i.e. requires m2 operations. This is why authors generally prefer to use

lengths which are less expensive to compute.

Definition 1.2.2 ( Oriented length) The two oriented lengths σ−(S) and σ+(S) are defined by

σ+(S) = max
i=2,m

‖vi − v1‖2 and σ−(S) = min
i=2,m

‖vi − v1‖2. (1.5)

Proposition 1.2.3 The diameter and the maximum oriented length satisfy the following inequal-

ities

σ+(S) ≤ diam(S) ≤ 2σ+(S). (1.6)

Proof We begin by proving that

σ+(S) ≤ diam(S). (1.7)

This is directly implied by the inequality

max
i=2,m

‖vi − v1‖2 ≤ max
i=1,m

‖vi − v1‖2 (1.8)

≤ max
i,j=1,m

‖vi − vj‖2, (1.9)

which concludes the first part of the proof. We shall now proove the inequality

diam(S) ≤ 2σ+(S). (1.10)

We decompose the difference vi − vj into

vi − vj = (vi − v1) + (v1 − vj). (1.11)

Hence,

‖vi − vj‖2 ≤ ‖vi − v1‖2 + ‖v1 − vj‖2. (1.12)
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We take the maximum over i and j, which leads to

max
i,j=1,m

‖vi − vj‖2 ≤ max
i=1,m

‖vi − v1‖2 + max
j=1,m

‖v1 − vj‖2 (1.13)

≤ 2 max
i=1,m

‖vi − v1‖2. (1.14)

With the definitions of the diameter and the oriented length, this immediately prooves the in-

equality 1.10.

In Nash’s book [7], the size of the simplex sN(S) is measured based on the 1-norm and is

defined by

sN(S) =
∑

i=2,m

‖vi − v1‖1 (1.15)

where the 1-norm is defined by

‖vi‖1 =
∑
j=1,n

|(vi)j|. (1.16)

The optimsimplex size function provides all these size algorithms. In the following example,

we create an axis-by-axis simplex with length unity and compute its length by several methods.
xx0 = [ 0 . 0 0 . 0 ] ;

s i = optimsimplex new ( ”axes” , x0 ) ;

method l i s t = [

”sigmaplus”

”sigmaminus”

”Nash”

”diameter”

] ;

for i = 1 : s ize ( methodl i st , ”∗”)

m = method l i s t ( i ) ;

s s = opt ims imp l ex s i z e ( s i , m ) ;

mprintf ( ”%s: %f\n” , m , s s ) ;

end

opt ims implex dest roy ( s i )

The previous script produces the following output.
s igmaplus : 1 .000000

sigmaminus : 1 .000000

Nash : 2 .000000

diameter : 1 .414214

We check that the diameter is equal to diam(S) =
√

2. We see that inequality 1.6 is satisfied

since σ+(S) = 1 ≤
√

2 ≤ 2 = 2σ+(S).

1.3 The initial simplex

While most of the theory can be developed without being very specific about the initial simplex,

it plays a very important role in practice. All approaches are based on the initial guess x0 ∈ Rn

and create a geometric shape based on this point.

In this section, we present the various approach to design the initial simplex. In the first part,

we emphasize the importance of the initial simplex in optimization algorithms. Then we present

the regular simplex by Spendley et al., the axis-by-axis simplex, the randomized bounds approach

by Box and Pfeffer’s simplex.
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Fig. 1.1 : Typical pattern with fixed-shape Spendley’s et al algorithm

1.3.1 Importance of the initial simplex

The initial simplex is particularily important in the case of Spendley’s et al method, where the

shape of the simplex is fixed during the iterations. Therefore, the algorithm can only go through

points which are on the pattern defined by the initial simplex. The pattern presented in figure

1.1 is typical a fixed-shape simplex algorithm (see [12], chapter 3, for other patterns of a direct

search method). If, by chance, the pattern is so that the optimum is close to one point defined

by the pattern, the number of iteration may be small. On the contrary, the number of iterations

may be large if the pattern does not come close to the optimum.

The variable-shape simplex algorithm designed by Nelder and Mead is also very sensitive to

the initial simplex. One of the problems is that the initial simplex should be consistently scaled

with respect to the unknown x. In ”An investigation into the efficiency of variants on the simplex

method” [9], Parkinson and Hutchinson explored several improvements of Nelder and Mead’s

algorithm. First, they investigate the sensitivity of the algorithm to the initial simplex. Two

parameters were investigated, that is, the initial length and the orientation of the simplex. The

conclusion of their study with respect to the initial simplex is the following. ”The orientation of

the initial simplex has a significant effect on efficiency, but the relationship can be too sensitive

for an automatic predictor to provide sufficient accuracy at this time.”

Since no initial simplex clearly improves on the others, in practice, it may be convenient to

try different approaches.
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Fig. 1.2 : Regular simplex in 2 dimensions

1.3.2 Spendley’s et al regular simplex

In their paper [11], Spendley, Hext and Himsworth use a regular simplex with given size ` > 0.

We define the parameters p, q > 0 as

p =
1

n
√

2

(
n− 1 +

√
n+ 1

)
, (1.17)

q =
1

n
√

2

(√
n+ 1− 1

)
. (1.18)

We can now define the vertices of the simplex S = {xi}i=1,n+1. The first vertex of the simplex is

the initial guess

v1 = x0. (1.19)

The other vertices are defined by

(vi)j =

{
(x0)j + `p, if j = i− 1,

(x0)j + `q, if j 6= i− 1,
(1.20)

for vertices i = 2, n + 1 and components j = 1, n, where ` ∈ R is the length of the simplex and

satisfies ` > 0. Notice that this length is the same for all the edges which keeps the simplex

regular.

The regular simplex is presented in figure 1.2.

In the following Scilab session, we define a regular simplex with the optimsimplex new func-

tion.
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x0 = [ 0 . 0 0 . 0 ] ;

s i = optimsimplex new ( ”spendley” , x0 ) ;

method l i s t = [

”sigmaplus”

”sigmaminus”

”diameter”

] ;

for i = 1 : s ize ( methodl i st , ”∗”)

m = method l i s t ( i ) ;

s s = opt ims imp l ex s i z e ( s i , m ) ;

mprintf ( ”%s: %f\n” , m , s s ) ;

end

opt ims implex dest roy ( s i ) ;

The previous script produces the following output.
s igmaplus : 1 .000000

sigmaminus : 1 .000000

diameter : 1 .000000

We check that the three sizes diam(S), σ+(S) and σ−(S) are equal, as expected from a regular

simplex.

1.3.3 Axis-by-axis simplex

A very efficient and simple approach leads to an axis-by-axis simplex. This simplex depends on

a vector of positive lengths l ∈ Rn. The first vertex of the simplex is the initial guess

v1 = x0. (1.21)

The other vertices are defined by

(vi)j =

{
(x0)j + `j, if j = i− 1,

(x0)j, if j 6= i− 1,
(1.22)

for vertices i = 2, n+ 1 and components j = 1, n.

This type of simplex is presented in figure 1.3, where `1 = 1 and `2 = 2. The axis-by-axis

simplex is used in the Nelder-Mead algorithm provided in Numerical Recipes in C [10]. As stated

in [10], the length vector l can be used as a guess for the characteristic length scale of the problem.

1.3.4 Randomized bounds

Assume that the variable x ∈ Rn is bounded so that

mj ≤ xj ≤Mj, (1.23)

for j = 1, n, where mj,Mj ∈ R are minimum and maximum bounds and mj ≤ Mj. A method

suggested by Box in [1] is based on the use of pseudo-random numbers. Let {θi,j}i=1,n+1,j=1,n ∈
[0, 1] be a sequence of random numbers uniform in the interval [0, 1]. The first vertex of the

simplex is the initial guess

v1 = x0. (1.24)
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Fig. 1.3 : Axis-based simplex in 2 dimensions – Notice that the length along the x axis is 1 while the
length along the y axis is 2.

The other vertices are defined by

(vi)j = mj + θi,j(Mj −mj), (1.25)

for vertices i = 2, n+ 1 and components j = 1, n.

1.3.5 Pfeffer’s method

This initial simplex is used in the function fminsearch and presented in [2]. According to [2], this

simplex is due to L. Pfeffer at Stanford. The goal of this method is to scale the initial simplex

with respect to the characteristic lengths of the problem. This allows, for example, to manage

cases where x1 ≈ 1 and x2 ≈ 105. As we are going to see, the scaling is defined with respect to

the initial guess x0, with an axis-by-axis method.

The method proceeds by defining δu, δz > 0, where δu is used for usual components of x0 and

δz is used for the case where one component of x0 is zero. The default values for δu and δz are

δu = 0.05 and δz = 0.0075. (1.26)

The first vertex of the simplex is the initial guess

v1 = x0. (1.27)

The other vertices are defined by

(vi)j =


(x0)j + δu(x0)j, if j = i− 1 and (x0)j−1 6= 0,

δz, if j = i− 1 and (x0)j−1 = 0,

(x0)j, if j 6= i− 1,

(1.28)
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for vertices i = 2, n+ 1 and components j = 1, n.

1.4 The simplex gradient

In this section, we present the simplex gradient and proove that this gradient is an approximation

of the gradient of the objective function, provided that the condition of the matrix of simplex

directions. We derive the forward simplex gradient.

1.4.1 Matrix of simplex directions

We consider here simplices made of m = n + 1 vertices only. This allows to define the matrix of

simplex directions as presented in the following definition.

Definition 1.4.1 ( Matrix of simplex directions) Assume that S is a set of m = n + 1 vertices.

The n× n matrix of simplex directions D(S) is defined by

D(S) = (v2 − v1,v2 − v1, . . . ,vn+1 − v1). (1.29)

We define by {di}i=1,n the columns of the n× n matrix D(S), i.e.

D(S) = (d1,d2, . . . ,dn). (1.30)

We say that the simplex S is nonsingular if the matrix D(S) is nonsingular. We define the

simplex condition as the l2 condition number of the matrix of simplex directions κ(D(S)).

The directions di can be seen as offsets, leading from the first vertex to each vertex vi, i.e.

vi = v1 + d1, for i = 1, n. (1.31)

Example (A non degenerate simplex ) Consider the axis-by-axis simplex, with first vertex at

origin and lengths unity. The vertices are defined by

v1 = (0, 0)T , v2 = (1, 0)T , v3 = (0, 1)T , (1.32)

so that the matrix of simplex directions is given by

D =

(
1 0

0 1

)
. (1.33)

Such a matrix has a unity condition number.

The following Scilab session uses the optimsimplex component to generate a axis-by-axis sim-

plex and computes the matrix of directions with the optimsimplex dirmat function.
x0 = [ 0 . 0 0 . 0 ] ;

s i = optimsimplex new ( ”axes” , x0 ) ;

D = optimsimplex dirmat ( s i )

k = cond(D)

opt ims implex dest roy ( s i )
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0 1

ε

x

x2

10.5

Fig. 1.4 : A ”flat” simplex in 2 dimensions

The previous script produces the following output.
−−>D = optimsimplex dirmat ( s i )

D =

1 . 0 .

0 . 1 .

−−>k = cond(D)

k =

1 .

We check that an axis-by-axis simplex has a very low condition number. �

Example (A degenerate simplex ) In this example, we show that a flat simplex is associated with

a high condition number. Consider a flat simplex, defined by its vertices:

v1 = (0, 0)T , v2 = (1, 0)T , v3 = (1/2, ε)T , (1.34)

with ε = 10−10. This simplex is presented in figure 1.4.
coords = [

0 .0 0 .0

1 .0 0 .0

0 .5 1 . e−10

] ;

s i = optimsimplex new ( coords ) ;

D = optimsimplex dirmat ( s i )

k = cond(D)

opt ims implex dest roy ( s i ) ;

The previous script produces the following output.
−−>D = optimsimplex dirmat ( s i )

D =

1 . 0 .5

0 . 1 .000D−10

−−>k = cond(D)

k =

1.250D+10

We see that a flat simplex is associated with a high condition number. Indeed, a low condition

number of the matrix of directions is an indication of the non-degeneracy of the simplex. �

There is a close relationship between the oriented length σ+(S) and the l2 norm of the matrix

of directions D(S) as prooved in the following proposition.
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Proposition 1.4.2 Let S be a simplex and consider the euclidian norm ‖.‖. Therefore,

‖di‖ ≤ σ+(S) ≤ ‖D‖, (1.35)

for all i = 1, . . . , n.

Proof It is easy to prove that

‖di‖ ≤ σ+(S). (1.36)

Indeed, the definition of the oriented length σ+(S) in the case where there are n+ 1 vertices is

σ+(S) = max
i=2,n+1

‖vi − v1‖2 (1.37)

= max
i=1,n
‖di‖2, (1.38)

which concludes the first part of the proof.

We shall now proove that

σ+(S) ≤ ‖D‖. (1.39)

The euclidian norm is so that ([3], section 2.3.1, ”Definitions”),

‖Dx‖ ≤ ‖D‖‖x‖, (1.40)

for any vector x ∈ Rn. We choose the specific vector x which has zeros components, except for

the i-th row, which is equal to 1, i.e. x = (0, . . . , 0, 1, 0, . . . , 0)T . With this particular choice of x

we have the properties Dx = di and ‖x‖ = 1, so that the previous inequality becomes

‖di‖ ≤ ‖D‖, (1.41)

for all i = 1, . . . , n. We can now take the maximum of the left hand-size of 1.41 and get the

oriented length σ+(S), which concludes the proof.

Example In the following Scilab session, we define a new simplex by its coordinates, so that the

matrix of directions is not symetric and that the edges do not have unit lengths.
coords = [

0 .0 0 .0

1 .0 0 .5

1 .0 2 .0

] ;

s i = optimsimplex new ( coords ) ;

D = optimsimplex dirmat ( s i )

for i =1:2

nd = norm(D(1 : 2 , i ) , 2 ) ;

mprintf ( ” | | d %d| |=%f\n” , i , nd )

end

s s = opt ims imp l ex s i z e ( s i , ”sigmaplus” ) ;

mprintf ( ”sigma +(S)=%f\n” , s s ) ;

normmatrix = norm(D) ;

mprintf ( ” | |D| |=%f\n” , normmatrix ) ;

opt ims implex dest roy ( s i ) ;

The previous script produces the following output.
| | d 1 | |=1.118034

| | d 2 | |=2.236068

sigma +(S)=2.236068

| |D| |=2.422078

This result is consistent with the inequality 1.35. �
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1.4.2 Taylor’s formula

The simplex gradient proposition that we shall proove in the next section assumes that the

gradient g of the function f satisfies a Lipshitz condition. The following proposition presents

a result satisfied by such functions. In order to simplify the notations, we denote by ‖.‖ the

euclidian norm.

Proposition 1.4.3 Assume that f : Rn → R is differentiable and assume that its gradient g is

defined and continuous. Let x ∈ Rn be a given point and p ∈ Rn a vector. Assume that the

gradient g is Lipshitz continuous in a neighbourhood of x and x + p with Lipshitz constant L.

Then

|f(x + p)− f(x)− pT g(x)| ≤ 1

2
L‖p‖2. (1.42)

Proof We can write Taylor’s expansion of f in a neighbourhood of x

f(x + p) = f(x) +

∫ 1

0

pT g(x + tp)dt. (1.43)

By definition of the Lipshitz condition on g, we have

‖g(x)− g(y)‖ ≤ L‖x− y‖, (1.44)

for x and y in that neighbourhood. Assume that t ∈ [0, 1] and use the particular point y = x+tp.

We get

‖g(x + tp)− g(x)‖ ≤ tL‖p‖. (1.45)

We now use equality 1.43, substract the term pT g(x) and get

f(x + p)− f(x)− pT g(x) =

∫ 1

0

pT (g(x + tp)− g(x)) dt. (1.46)

Therefore, ∣∣f(x + p)− f(x)− pT g(x)
∣∣ =

∣∣∣∣∫ 1

0

pT (g(x + tp)− g(x)) dt

∣∣∣∣ (1.47)

≤
∫ 1

0

‖p‖ ‖g(x + tp)− g(x)‖ dt (1.48)

We plug 1.45 into the previous equality and get∣∣f(x + p)− f(x)− pT g(x)
∣∣ ≤ ∫ 1

0

Lt‖p‖2dt (1.49)

≤ 1

2
L‖p‖2, (1.50)

which concludes the proof.
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1.4.3 Forward difference simplex gradient

Finite difference formulas are a common tool to compute the numerical derivative of a function.

In this section, we introduce the simplex gradient, which allows to compute an approximation of

the gradient of the cost function. As we are going to see, this approximation is more accurate

when the simplex has a low condition number.

We denote by δ(S) the vector of objective function differences

δ(S) = (f(v2)− f(v1), f(v3)− f(v1), . . . , f(vn+1)− f(v1))
T . (1.51)

As with classical finite difference formulas, the vector of function can be used to compute the

simplex gradient.

Definition 1.4.4 ( Simplex gradient) Let S be a non singular simplex. The simplex gradient

g(S) is the unique solution of the linear system of equations

D(S)T g(S) = δ(S). (1.52)

By hypothesis, the simplex S is nonsingular so that the linear system of equations has a unique

solution, which is equal to

g(S) = (D(S)T )−1δ(S). (1.53)

By hypothesis, the matrix D(S) is non singular, therefore the transpose of the inverse is equal

to the inverse of the transpose ([3], section 2.1.3, ”Matrix Inverse”), i.e. (D(S)T )−1 = (D(S)−1)T .

We denote by D(S)−T the inverse of the transpose so that the previous equality becomes

g(S) = D(S)−T δ(S). (1.54)

In practice, the matrix of simplex direction is not inverted and the solution of 1.52 is computed

directly, using classical linear algebra libraries, like Lapack for example.

The simplex gradient is an approximation of the gradient g of the function f , as presented in

the following proposition.

Proposition 1.4.5 Let S be a simplex. Let the gradient g be Lipshitz continuous in a neigh-

bourhood of S with Lipshitz constant L. Consider the euclidian norm ‖.‖. Then, there is K > 0,

depending only on L such that

‖g(v1)− g(S)‖2 ≤ Kκ(S)σ+(S). (1.55)

Proof We can write the difference between the simplex gradient and the gradient in the following

form

g(S)− g(v1) = D(S)−T
(
D(S)T g(S)−D(S)T g(v1)

)
. (1.56)
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We now plug the simplex gradient definition 1.52 into the previous equality and get

g(S)− g(v1) = D(S)−T
(
δ(S)−D(S)T g(v1)

)
. (1.57)

The fact that the euclidian norm ‖.‖ satisfies the inequality

‖AB‖ ≤ ‖A‖‖B‖, (1.58)

for any matrices A and B with suitable number of rows and columns ([3], section 2.3, ”Matrix

Norms”) plays an important role in the results that we are going to derive. Indeed, we can

compute the euclidian norm of both sides of equation 1.57 and get

‖g(S)− g(v1)‖ =
∥∥D(S)−T

(
δ(S)−D(S)T g(v1)

)∥∥ . (1.59)

Therefore,

‖g(S)− g(v1)‖ ≤
∥∥D(S)−T

∥∥∥∥δ(S)−D(S)T g(v1)
∥∥ . (1.60)

The suite of the proof is based on the computation of the right-hand side of equation 1.60, that

is, the computation of the norm of the vector δ(S)−D(S)T g(v1).

By hypothesis, the gradient g is Lipshitz continuous in a neighbourhood of S. By proposition

1.4.3, we have ∣∣f(v1 + di)− f(v1)− dT
i g(v1)

∣∣ ≤ 1

2
L‖di‖2, (1.61)

for i = 1, n. By definition of the direction di, we have v1 + di = vi for i = 1, n. By proposition

1.4.2, we have ‖dj‖ ≤ σ+(S) for all j = 1, n. Hence,∣∣f(vi)− f(v1)− dT
i g(v1)

∣∣ ≤ 1

2
Lσ+(S)2, (1.62)

We can use this to compute the euclidian norm of the vector δ(S) −DT g(v1). Using ineguality

1.62, the square of the norm of this vector is∥∥δ(S)−DT g(v1)
∥∥2

=
∑
i=1,n

(
f(vi)− f(v1)− dT

i g(v1)
)2

(1.63)

≤
∑
i=1,n

(
1

2
Lσ+(S)2

)2

(1.64)

≤ n

(
1

2
Lσ+(S)2

)2

(1.65)

which finally implies ∥∥δ(S)−DT g(v1)
∥∥2 ≤ 1

2

√
nLσ+(S)2. (1.66)
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Let us define the constant K = 1
2

√
nL. The previous inequality becomes∥∥δ(S)−DT g(v1)

∥∥2 ≤ Kσ+(S)2. (1.67)

We can now plug the previous equality into inequality 1.60 and get

‖g(S)− g(v1)‖ ≤ K
∥∥D(S)−T

∥∥σ+(S)2. (1.68)

By proposition 1.4.2, we have σ+(S) ≤ ‖D‖, so that the previous inequality is transformed into

‖g(S)− g(v1)‖ ≤ K
∥∥D(S)−T

∥∥ ‖D(S)‖σ+(S). (1.69)

The l2 norm of the matrix D(S) is the largest eigenvalue of the matrix D(S)TD(S), so that

the norm is not affected by transposition, which implies that
∥∥D(S)−T

∥∥ = ‖D(S)−1‖. The

condition number of the matrix of direction κ(S) is equal to ‖D(S)−1‖ ‖D(S)‖ ([3], section 2.7.2,

”Condition”), which concludes the proof.

Example (Simplex gradient with a non-degenerate simplex ) In the following Scilab session, we

define the function f(x) = x2
1 + x2

2, where x ∈ R2. The exact gradient of this function is

g = (x1, x2)
T . We create an axis-by-axis simplex based on the relatively small length ` = 10−3.

This simplex defines a rectangular triangle, similar to the one presented in figure 1.3, but with

smaller edges.
function y = myfunction ( x )

y = x (1)ˆ2 + x (2)ˆ2

endfunction

x0 = [ 1 . 0 1 . 0 ] ;

l en = 1 . e−3;

s i = optimsimplex new ( ”axes” , x0 , myfunction , l en ) ;

sg = opt ims implex grad i ent fv ( s i ) ;

mprintf ( ”Simplex Gradient=(%f %f)ˆT\n” , sg ( 1 ) , sg ( 2 ) ) ;

eg = [2 ∗ x0 (1) 2 ∗ x0 ( 2 ) ] . ’ ;

mprintf ( ”Exact Gradient=(%f %f)ˆT\n” , eg (1 ) , eg ( 2 ) ) ;

e r r = norm( sg−eg )/norm( eg ) ;

mprintf ( ”Relative Error = %e\n” , e r r ) ;

e r r = norm( sg−eg ) ;

mprintf ( ”Absolute Error = %e\n” , e r r ) ;

D = optimsimplex dirmat ( s i ) ;

k = cond(D) ;

mprintf ( ”k(D)=%f\n” , k ) ;

s s = opt ims imp l ex s i z e ( s i ) ;

mprintf ( ”sigma +(D)=%e\n” , s s ) ;

opt ims implex dest roy ( s i ) ;

The previous script produces the following output.
Simplex Gradient =(2.001000 2 .001000)ˆT

Exact Gradient =(2.000000 2 .000000)ˆT

Absolute Error = 1.414214 e−003

k (D)=1.000000

sigma +(D)=1.000000 e−003

We check that the inequality 1.55 gives an accurate measure of the approximation. Indeed, since

the Lipshitz constant for the gradient g is L = 2, we have the constant K =
√

2. �

Example (Simplex gradient with a simplex close to degenerate) We consider what happens when

an axis-by-axis simplex is transformed into a degenerate simplex. This situation is presented in
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0 1+1.e-3

1

x2

x11

1+0.5e-3

Fig. 1.5 : An axis-by-axis simplex which degenerates into a ”flat” simplex in 2 dimensions.

θ (̊) σ+(S) ‖g(S)− g(v1)‖ κ(S)

90.000000 1.000000e-003 1.118034e-003 2.000000e+000

10.000000 1.000000e-003 2.965584e-003 1.432713e+001

1.000000 1.000000e-003 2.865807e-002 1.432397e+002

0.100000 1.000000e-003 2.864799e-001 1.432395e+003

0.010000 1.000000e-003 2.864789e+000 1.432394e+004

0.001000 1.000000e-003 2.864789e+001 1.432394e+005

figure 1.5, where the third vertex moves on a circle with radius 0.5.10−3 toward the center of an

edge. Therefore the simplex degenerates and its condition number increases dramatically.

In the following Scilab script, we create a simplex as presented in figure 1.5. We use decreasing

values of the angle θ between the two directions, starting from θ = 90 (̊) and going down to

θ = 0.001 (̊). Then we compute the gradient and the absolute error, as well as the condition

number and the size of the simplex.
R = 0.5 e−3

coords = [

1 .0 1 .0

1.0+1. e−3 1 .0

] ;

for theta = [ 9 0 . 0 10 .0 1 .0 0 .1 0 .01 0 . 0 0 1 ]

C(1 ,1 ) = 1 .0 + R ∗ cos ( theta ∗%pi /180) ;

C(1 ,2 ) = 1 .0 + R ∗ sin ( theta ∗%pi /180) ;

coords ( 3 , 1 : 2 ) = C;

s i = optimsimplex new ( coords , myfunction ) ;

sg = opt ims implex grad i ent fv ( s i ) ;

eg = [2 ∗ x0 (1) 2 ∗ x0 ( 2 ) ] . ’ ;

e r r = norm( sg−eg ) ;

D = optimsimplex dirmat ( s i ) ;

k = cond(D) ;

s s = opt ims imp l ex s i z e ( s i ) ;

mprintf ( ”%f %e %e %e\n” , theta , s s , e r r , k ) ;

opt ims implex dest roy ( s i ) ;

end

The results are presented in table 1.4.3.

We see that while the oriented length σ+(S) is constant, the simplex gradient is more and

more inaccurate as the condition number κ(S) is increasing. �
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1.5 References and notes

The section 1.4.3 and some elements of the section 1.2 are taken from Kelley’s book [5], ”Iterative

Methods for Optimization”. While this book focus on Nelder-Mead algorithm, Kelley gives a

broad view on optimization and present other algorithms for noisy functions, like implicit filtering,

multidirectional search and the Hooke-Jeeves algorithm.

The section 1.4.2, which present Taylor’s formula with a Lisphitz continous gradient is based

on [4], ”Elements of Analysis, Geometry, Topology”, section ”Mean Value Theorem”.
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