wxWindows 2.2: A portable C++ and Python GUI toolkit

Julian Smart, Robert Roebling, Vadim Zeitlin, Robin Dunn, et al

August 13th 2000

Contents

(@70] o) Y/ a o] a1 M g Lo] o] =SSR Xiv
[y oo 11 ox 1 [o] o EU PP 1
WHaL iS WXWINAOWS? ... 1
Why another cross-platform development t00I72.........coooiiiiiii i 1
Changes frOM VEISION LXX ...iieiiiiiiiee ettt e e ettt e e e e e e e ettt e e e e e e e eesbbaa e aaeas 3
Changes fromM VEISION 2.0ot e ettt e e e e e e e abba e as 4
WXWINAOWS FEQUITEIMENTS ...ttt ettt e ettt e e e e e e ea bbb e e e e e e e ee ittt e e e eaeaeeenennnns 4
Availability and location of WXWINAOWScouuiuiiiiiiiiiiiiiii e e 5
ACKNOWIBAGMENLS ...t e et e e ettt e e e e e e e e ettt e aaeaeaeeenennnns 5
Multi-platform development with WXWINAOWS............ccooviiiiiiiiiiiiiiiiiiiin 7
INCIUAE fIlES e 7
LIBraries ... 7
L07e] o1 {Te U1 £=11 o] o HA TP 8
MAKETIES ... 8
WINAOWS-SPECITIC IlES ... et eeeeaaaanas 9
Allocating and deleting WXWINdOWS ODJECLSiiiiiiiiiiiiii e 9
ArChiteCtUre EPENAENCYn ittt e e e et ettt e e e e e e e eetbba e e e e aaaeenes 10
Conditional COMPIIALION.........ooiiii et a e e s 11
G ISSUBS .ottt 11
[1L =T g Lo |1 o To TP 12
Programming Strat@gIeScooiiiiiiiiiiiie et 13
Strategies for reducing Programming ©ITOFSceuuuuuuiiaaeieeeiiiiaa e eeeeerii e e aeeeaaia s 13
Strategies for POrtability ... 13
Strategies for deDUGGINGooiiiii e e e 14
Alphabetical class referenCe...........ooouuuiiiiiii e 16
WXACCEIBIAONENTIY ...ttt e e e e e e e bbb e e e e aaaenes 16
WXACCEIEIALOI TADIE ... 17
WXACHVALEEVENT ... 20
{20 o] o T PP 21
2N 1 = | T T PO UPPPTI 32
N g =\ 1] o PR TURPPPPIIN 44
WXAULOMALIONODJECT. ... et e e e e et eeaaaeee 50
2= g =T o TSP RURPPPPRIN 54
WXBItMAPHEANAIET ...ttt a e e e e e bbb e e e aaaenes 66

CONTENTS

WXBITMAPBULION ... e et ettt e e e e e e ee bbb e e e e e e e e eatbba e e e aeaaaeaes 70
WXBItMAaPDAtAODJECLceeiiiiii et e e et aaaaeae 75
WXBOOIFOIMYAIHALON. ...t e e e e ee bbb eeeaaaenes 77
WXBOOILISTVAITALON ...t e et et e e e e e e e e bbb e e e e aaeenes 77
WXBIOXSIZET ...ttt e ettt e e e e e et e bbb e e e e e e e bbb e aaaaeaes 77
WWXBIIUSKH L. e et oo e ettt e e e e e e et e bbb e e e e e e e e ee bbb e e aaaaeaes 80
WWXBIUSKILIST ...ttt e et ettt e e e e e e et e bbb e e e e e e e e eetbba e e e aaaaaenes 86
WXBUSYCUISOT ...ttt ettt ettt ettt ettt e e e et e e e e et e e e ettt e e e eba e e aeebaaeaenens 88
WXBUSYINTO .. ettt e e et e et et e e e e e e e ee bbb e e e e aaeeae 89
WXBULION L.t e ettt e e et e e e et e e e e et e e e eba e e eeba e eaeneas 89
WXBUFFEredINPUEISTIIEAIMuueiii ettt e e e e e e et e e e aaeeaes 92
WXBUEr@AOULPULSTIEAIM. ettt e e e e e et r e e e e e e ee bbb e e e e eaaeene 93
WXCAICUIAIELAYOULEVENT. ettt e et et e e e e e e eatbb e e e e aaaene 94
T2 (OF= 11T g To F- 1 4 o TSR TURPPPPIIN 95
WXCAIENAAIDALEALLT ...ttt ettt e e e e e e ettt e e e e e e e eebbba e e e aaaaaeees 101
(@=L [T g o F= T Y =T o | PP PSRRI 105
O T PP PRSPPI 105
2O [T o =10 PP PSUPPPPIIN 108
WXCNECKLISIBOX ...ttt e e e et ettt e e e e e e e eetbba e e e e aaaaenes 111
110 g [o] (o TR 113
WXCIASSINTO ..ottt e e e e et ettt e e e e e e e eebbba e e e e aaaaeee 119
WXCHENIDC ..o ——— 121
10 (@ [To] oo T o NPT TR 121
WXCIOSEEVENT. ...t e ettt e e e e e et ettt e e e e e e e e eebbba e e e aaaaaeee 125
WXCIMOLINEPAISEN ...ttt e ettt s e e e e e e e ettt e e e e e e e e eebbba e e e aaaaaenes 127
112 (@do] 011 | TR RSP 136
[0 (@do] (011] 4 D= | - F TP 139
WXCOIOUIDALADASE ...ttt ettt e e e e e et e e e e e e e eebbba e e e aaaaaeees 141
[0 (@de] (o101 4 D] F=1 oo [H PP PSOPPPPIIN 142
{10 (@de]] o o] =Te) QPRSPPI 144
WXCOIMIMANG ..ttt oottt e e e e ettt e bbb e e e e e e e e et bbb e e e e e aeeeesbban e e aaaaaaeees 151
WXCOMMANAEVENT ...ttt e e e et e e et r e e e e e e eetbba e e e eaaaaeees 153
WXCOMMANAPTOCESSON ...ttt e e ettt ettt e et e eet b e e e e e e e e eetba e e e e aaeeesbba e e aaaaaaeees 158
12 (@do] s [o 1 1Te] o DTSRRI 161
WXCONTIGBASE ...ttt e ettt e e e e e e e e et bbb e e e e e e e e eesbba e e e aaaaaeees 162
112 (@do] 1 (| TR PSRRI 177
WXCOUNtINGOULIPUESTIEAM ...ttt ettt e e e e e ettt e e e e e e e eetbbaa s e e aaeaaeees 178
WXCHIHICAISECHION ...ttt e e e e e e ee ittt e e e aeaaeees 179
WXCHIICAISECHONLOCKET et aeees 180
O8] 60 1 |V TP P PRSPPI 181

CONTENTS

WXCUSIOMDALAOD]ECT ...ttt e et et e e e e e e eebtba e e aaaaaeees 182
12O U1 =T | PP TUPPTTR PP 184
WXDALADASE. ... e aaaeae 188
WXDALAFOIMIAL ...ttt ettt e e et e e e et e e e e ra e e e e b e aeanas 195
WXDAEAODJECE ... e ettt e e e e e e et e e e e e e et e aaaaeae 197
WXDataODJECICOMPOSITEuuiieiiieeiite ettt e e et et e e e e e e ettt e e e e e e e eesbbaa e e e aaaeaeaes 201
WXDAtaODJECISIMPIE ...ttt e e e e ee bbb eaaaaaeees 202
WXDALAINPUESTIEAIM ...ttt e et e e e et e e e e ab e e e et e eaeenns 203
WXDAtAOULPULISTIIEAM ...ttt e et e et e e e et e e e et e e e e rb e e aeebaaeaeenns 205
WWXDIALE ... ettt ettt et e et e e e et e e e et eeeaa e e e era e aeanas 207
WWXDALESPAN ...ttt e et e e et e e e ab e e e e aeanas 215
WXDAEETIIME ..ttt e e e ettt et b e e e e e e e e et bbb e e e e e e e e eestba e e e aaaaaeees 215
WXDate TIMeHOlIAYAUTNOIILY ..o e e e e ea b aaaeeeees 243
WXDAETIMEWOIKDAYS ...ttt ettt e e e e e e ettt e e e e e e e eebbbaa e e e aaaaaeees 243
112D o PR RSRPPPPIIN 244
WXDDCOINT ...ttt e e e e e st e e e e e e e e s s abb b b e e e e e e e e e aaan 267
WXDBDCOIFOF ...ttt e ettt e e e e et e ettt e e e e e e e e eebbba e e e aaaaaeee 267
112D o] 1 | PR RSUPPPPIIN 267
WXDDTADIE ...t e e et e e e e e et e e e aaeee 268
WXDDTABIEINT .. et e e e e et e e e aeees 282
112 L PP P PRSPPI 282
WXDDECHENT ...ceiiiei ittt e e ettt e e e e e s s e e bt bbb e e e e e e e s s anbbbbeeeeaaeeeaann 300
(BB] = @] o] o1 Tex i o] o H PP RSUPPPPIIN 301
WXDIDESEIVET ...ttt ettt e e et e e e et e e e et e e e e e e e e et e aeaeas 305
WXDEDUQGCONTIEXE ...ttt e ettt e e e e e e e ettt e e e e e e e eesbba e e e aaaeaene 306
WXDEDbUQGSIIEaMBUT ... et e e e e aeees 312
WXDIAIOQ -ttt e et e e e e e e bbb e aaaaaae 312
WXDITAIUPEVENT ...ttt e ettt e e e e e e ee bbb e e e aaaaaeees 320
DIt 110 o1V F= T F= o = TR 321
10| PP PSPPI 325
[0 (D1 B = (o o TR 327
WXDILOAAEN ...ttt oo e ettt e e e e e e e e et bbb e e e e e e e eebbba e e e aaaaaeee 330
WXDOCCRIIAFTAME ...t e e e e e e e e ee et eeaaaaaeees 332
B Lo 1o\ F= g = To [T TSP PP UPPPT 334
WXDOCMDICRIAFTAME ...ttt e e e e eeab e e e e aaaeees 343
WXDOCMDIPArENTFIAME. ... ettt e e e et e e e e e e e eba e e aeeeas 345
WXDOCPArENTFTAME ... et e e e et e e et e e e eba e e eeeas 346
WXDOCTEMPIALE....... ettt e e e et ettt e e e e e e e eeebba e e e e aaaaeees 348
WXDIOCUIMEBNL ...ttt ettt e ettt e ettt e e et et e e e et e e e e et e e e e sb e e aeebaaeaennns 353
B = Te [T g F= Lo [PP TP PRSPPI 361

CONTENTS

WXDIOPFIIESEVENL. ...t e e ettt e e e e e e eeatb e e aaeaaeees 366
WWXDIOPSOUICE ...ttt ettt e e et e e e e et e e e et e e e e et e e e e ab e e e e ebaaeeenens 368
B o] o1 1= 10 1= TP P PP UPPPT 370
WXENCOAINGCONVEITET ...ttt ettt e e e et ettt e e e e e e e eesbba e e e aaaaaeees 373
WXEFASEEVENTeeii e 376
WXEVENT ... e 377
WXEVEHANAIET ... 380
12 o] S PP P PRSPPI 388
WXEXPIDALADASEo aaaeee 395
WUXFTIE .. et e ettt et e e et e ettt e e e e e e e eebbb e e aaaaeee 398
10 [T TRSRPPPPIIN 404
WXFIIEDAtAODJECT ... et et e e e e e et e aaaeae 409
WXFIIEDIAIOQ . ..ttt e e e e ettt e e e e e e e eebbb e e e aaaaeee 410
12T B do] o = 10 =] TP PSUPPPPIIN 414
WXFTTEHISTONY ..ttt e e e et e ettt e e e e e e e eetbba e e e aaaaaeees 416
WXFIIEINPUESTIIEAIM ...t e ettt e e e e e ee bbb eeaaeaaeees 418
WXFIEOULPULSIIEAIM ...ttt ettt e e e e et ettt e e e e e e e eebbba e e e aaaaaeees 420
WXFTIESIIRAIM . ..o 421
WXFFIIRINPUESTIEAIM ...t e e ettt e e e e e e e eeabb e e e e aaaaeees 421
WXFFIEOUIPUESTIEAM ...ttt e e et ettt e e e e e e eebbba e e e aaaaaeees 423
WXFFIESIIEAM ... 424
WXFIIENamMELIStValIdatoro 424
WXFIIESYSTEIM ..ttt e e et e ettt r e e e e e e eebbba e e e aaaeaeees 425
WXFIlESYSIEMHANAIET ... e a e eeees 427
{0 1L Y oL 430
WXFIEXGIIASIZET ... 434
WXFIEEITNPUESTIEAIM ... e e et e e e e e e e eeabba e e e aaaeeees 435
WXFIIEErOULPUESTIEAM ...ttt e et e e et r e e e e e e ee bbb e e e e aaaaeees 435
WXFOCUSEVENT ... e e e e eeens 436
WXFFONT Lo et e et e ean 437
WXFONTDALAcvvieiii e e e 444
WX ONTDIAIOQ. ettt et ettt e e e e e ettt bbb r e e e e e e eenbba e e aaeaaeee 447
WXFONTENUMEIALOLcciiiiiiiiiii et e e e e e e e e e e eenes 448
WX ONELIST .o 450
o gL 1Y =T o] o1 PP P PRSPPI 451
WXFTAIMIE L.t e e e e et e e e e e e e eae 454
WXFSIIE ...ttt e e oottt e e e e s s s bt bbb e e e e e e e s s e bbb e e e aaaeeaaaaa 467
1Tl N TP P PP TP OUPPPPPRPPT 469
{2 CT= 18 (o [T P PRSPPI 473
WXGDIODJECE ...ttt ettt e ettt e e e e e e s e bt bbb e e e e e e e s s anbbbbeeeeaaeesaann 477

CONTENTS

WXGLCANVAS ...ttt ettt e e e e et e e n e e e e e et e a e e e e e ean 478
WXGENEICVAIIAALON ... 480
1101 4 o TR 481
WX GO SIZET ..o 495
WXHASNTADIE. ... 496
WXHEIDCONIIOIET ... e e ettt e e e e e e eeabb e e e aaaaeees 498
WXHEIMICIL ... 503
WXHEIMICOIOUICEIL ... 509
WXHIMICONTAINEICEIL ... 510
WXHEIMIDCRENUEIE ... 515
WXHEMIEQSYPIINTING ...t et e a e e e e e e ee bbb aeaaaaaeees 518
WXHEMIFILEE <. 521
WXHEIMIHEIPCONIIOIET ...t aeaeeees 522
WXHEMIHEIPDALA. ... e e e e et e e e e e e ee ittt eeaaaaaeees 526
WXHEIMIHEIDFIAME ... et e e e et aaaaeees 528
WXHEMILINKINTO ... 532
WXHEMIP IS ... 533
WXHEMIPTINTOUL ... 537
10 110 01 I =T PRSPPI 539
WXHEIMITAGHANAIET ... et e e e e et aaaaeees 542
WXHEIMITAGSMOAUIE ...t e e et aeaaeees 544
WXHEIMIWIAQEICEID ...t e et e e e e e ee bbb eaaaaaeees 545
WXHEMIWINGOW ... 546
WXHEMIWINPAISEE ... 552
WXHIMIWINTAGHANAIETee e e et aaaeeees 558
1T I PO P T TTOUPPPPPRPPTN 559
WXIAIEEVENT ... 560
WWUXICOM L.t e e et e e e e e e et e e e e eae 562
1210 E= T = TP PRSPPI 569
WXIMAGEHANAIET ...ttt e e e e e eetbb e e e e aaaeees 583
o = Vo =] I L PP RSRPPPPIIN 587
WXINAiVIdUAILAYOULCONSIFAINT ... e e e e et eaaaeeees 591
WXINIEDIAIOGEVENT ...ttt e e et e ettt e e e e e e e ee bbb e e e aaaaaeees 594
WXINPUESTIEAIM ..t e ettt e e ettt e e e et e e e e et e e e e ab e e e e eba e eaenens 595
WXINTEGEIFOrMVAlIAALON e e et aeaaeees 598
WXINEEGEILISTVAlIAALONcceeveiiie ettt e e ettt e e e e ee bbb eeaaaaaeees 598
WXIPVAQAUIESS . ..o 599
WWXJOYSTICK . ettt ettt oo ettt ettt e e e e e e e e et bbb e e e e e e e e eebbba e e e aaaeaeees 600
WXJOYSHCKEVENT ... e e et e e e e e e e e abb e e aaaaaeees 607
WXKBYEVENT ... ettt et e e e et e e e et e e e e ab e e e eba e eeanas 610

CONTENTS

WXLAYOULAIGOITNM ...t e e e e et aeaeeees 614
WXLAYOULCONSIIAINTS ...ttt e ettt e e e e e et ettt e e e e e e e eeebba e e e aaaaaeees 616
1] TR RSP 619
{1 = o) TR PSPPI 625
WXLISTCIT <.ttt e e e e et ettt e e e e e e e eesbba e e e aaaaaeees 634
I S YT o | PP PSRRI 648
WXLIStOFSIHNGSLISTVAlIALONcoiiieeiiie e aeaeeees 651
WXLOCAIE ..ottt e e et e et e e e e e e e bbb aaaaaeae 652
17172 oo PRSP PTPRUPPPT 655
T2 e gTe | o] o o TSP TUP PP UPPPT 660
WWUXIMIBISK .ttt ettt oo e e et e ettt oo e e e e e e et bba e e e e e e eenbba e aaaaaaee 663
WXMBICONV ...ttt e et ettt e e ettt e e e et e e e e et e e e e ra e e e e eba e eeeeeas 665
WXMBCONVFIIE ...ttt e e e e ettt e e e eaaeees 667
WXIMB CONVU T 7 e 668
WXIMBCONVUTES ... 669
WXMDICRIAFTAME ...t e e e e e e e ee bbb eeaaaaaeees 670
WXMDICHENTWINAOWt e ettt e e e e e e eeabba e e aaeaaeees 673
WXMDIPAIENTFTAIMEttt e et e e e et e e e e ta e e e eba e eaeaens 675
WXMEMOIYDIC ...ttt ettt e e ettt e e e et e e e e et e e e e tb e e e e ebaaeaenens 682
WXMEMOIYFSHANAIET ...t e e e e et aaeaaeees 683
WXMEMOIYINPUESTIIEAIM ...ttt e et e e e et e e e et eaeeba e aeenns 685
WXMEMOIYOULPULSTIEAIM ... ittt e ettt e e et e e e et e e e e ab e e e et e aeenns 686
T2 =T o O TR PSP TUPPTTR PP 687
WXIMEBINUBAN ...ttt e et e e ettt e e e et e e e et e e e e ab e e e e eba e eaenens 697
Y =T TN =T o o TP PP UPPPT 706
WXMENUENVENT. ... ettt e e et e e e et e e e et e e e eba e eaennns 711
WXMESSAGEDIAIOQ ...ttt e b aaaaeee 713
WXIMETATIIE ... ettt e e e e e et e e e e aaeees 714
WXMELATIEDIC ...ttt e et ettt e e e e e e e eeebba e e e aaeaaeees 716
WXMIMETYPESIMBNAGET ...ttt e ettt et e e e e e e e e ettt e e e e e aeeeesbbn e e aaaaaaenes 717
Y 1T = 1y = PP TRSUPPPPIIN 720
WXIMIOAUIE ..ot e ettt e e e e e e e e et e bbb e e e e e e e e eeabba e e e aaaaaeee 723
WXMOUSEEVENT ... et e et e e et e e e e e e eanas 725
WXMOVEBEVENT ... ettt e et e e e e e e e e eaeas 733
WXMUILIPIECNOICEDIAIOQttt e e e e e bbb eeaaaaeees 734
Y U= PSP PRSPPI 734
WXIMUEEXLOCKET ...ttt ettt e e e e e e ee et aeaaeaaeees 737
WXNOTEDOOKSIZETttt e e e e e ea b e e e e eaaeees 738
WXINOOEBBASE ...ttt e ettt e e e e e e e e et bbb e e e e e e e e eebbba e e e aaaaaenes 739
WXNOTEDOOK. ... et e e e e e e et e e e e eaeees 741

Vi

CONTENTS

WXNOTEDOOKEVENL. ...ttt e ettt e e e e e e eeabba e e e e aaaaeees 747
V0N (o117 XY= o | TP TPSUPPPPIIN 749
1T0(@] o] =T o TR PSRPPRPIIN 750
WXODJECIREIDALAL. ...ttt e ettt e e e e e e ee ittt e e e aaaeee 754
WXOULPULSTIEAM ...ttt ettt ettt e e e et e e et et e e e e ta e e e e et e e e e sb e e aeebaaeaennns 755
WXPAGESEIUPDIAIOGDALAo eeiieeeiiie ettt e e et e e e e e e e e aaaaeee 756
WXPAGESEIUPDIAIOQceeeiiiti ettt e e et e e e e e e e e e aaeee 761
WXPAINIDIC ...ttt ettt ettt e e ettt e e e eb bt e e e enb bt e e e aabbe e e e e nae e e e anees 763
WXP@INTEVENT. ...t e ettt e e e e e et ettt e e e e e e e e eeabba e e e aaaaaeees 764
WXPAIETEE. ..ottt e e e e e e ettt b e e e e e e e e ebbb e e aaaaaae 764
WXPANEL <. oot e et e e e e e e e e bbb aaaaaeae 768
WXPANEITADVIEW ...ttt e ettt e e e e e e ee et e e aaaaaeees 771
WXPAETNLISTttt e e e et ettt e e e e e ee bbb aaaaaeae 773
1T L= o PP PTTSUPPRT 775
T o] I ST RSOPPPPIIN 782
WXPIOTCUIVE ...t e ettt e e e e et e ettt e e e e e e e e eebbba e e e aaaaaeee 783
1T0d (o1 VAT T e [0V PP PUUPPPPIIN 785
10 o1 PP RSRPPPPIIN 789
WXPOSESCHPEIDC ...ttt e ettt e e e e e e e e et bbb e e e e e e e e eebbba e e aaaaaaenes 790
WXPTEVIEWECANVASiiiiiiiiii ettt oottt e e e ettt ettt e e e e e e e e et bbb e e e e e aaeeesbban e e aaaaaaenes 791
WXPTEVIEWCONIIOIBA ...ttt ettt e ettt a e e e e e e eebbba e e e e aaaaeees 792
WXPTEVIBWETAIME ...t e e ettt e e e e e e e e abb e e e aaaaeees 794
WWXPTINEDALAttt oo e et ettt e e e e e et e ettt b e e e e e e e e eebbba e e e aaeaaene 796
{0 11011 D= oo RSP 801
WXPHINIDIAIOGDALA ...ttt e e et et e e e e e e ee et b e e aaaaeee 803
10 110 (] TP RSUPPPPIIN 807
10 1101 (T L ORI 810
10 101 (o 1 | PR RSUPPPPIIN 811
WWXPTINEPTEVIEW ...ttt e e e e et ettt e e e e e e e eeebba e e e aaaaaenes 814
WXPHIVALEDIOPTAIGEL ...ttt e e et e ettt e e e e e e e eesbba e e e aaaaaeee 818
2 R (0160 PP TP PP UPPPT 819
WXPTOGIESSDIAIOQ. ..ttt e e e et e ettt e e e e e e e ee bbb e e aaaaeee 822
WXPTOCESSEVENT ...t ettt e et e e et e e e eba e e eaeas 824
TR (0] 1= 1 APPSO PPTTR PP 825
WXPTOPErtyFOrMDIAlOQ «..c.vvve et e e e e et aaaeeeees 828
WXPTOPEITYFOIMETAME ...t e et e e e et e e e e e e eeeas 828
WXPTOPErtyFOrMPANELeeiii et e et aaaeeees 829
WXPTOpertyFOrMValIdatorcooiiiii e a e eeees 830
WXPTOPEITYFOIMVIBW. ...ttt ettt e et e et r e e e e e e eebbba e e e e aaaaeees 831
WXPTOPEITYLISIDIAIOQ ... ettt ettt e e e e e e ee bbb e e e aaaaeees 834

Vil

CONTENTS

WXPTOPEIY LISTFIAME ...ttt e e e e e eea b e e e e aaaeees 834
WXPTOPEIMYLISIPANEL ...t e e e et aaaaeees 835
WXPTOPEIMYLISTVAITALONeeei et e e e e ee et aaeaaeees 836
WXPTOPEITYLISIVIBW ...ttt e et ettt e e e e e e eebbba e e e aaaaaeees 838
WXPTOPEITY SO ... et ettt e e e e ee ittt eeaaaaeees 841
WXPTOPEIMYVAIAALON ...t e e e e e e e e e aaeees 843
WXPTropertyValidatorREGISIIYccoiiiiiiii e e et aaaeeees 844
WXPTOPEITYVAIUR ...ttt e e e e ee it eaaeaaeees 845
{0 (o] o =T 1Y AV =T TR PSPPI 850
WXPTOTOCOL. ...ttt e e e e et ettt e e e e e e e eebbba e e e aaaaaenes 853
112 VL] oY o | TR PSRPPPPIIN 855
WXQUEIYFIEIA ...ttt e ettt e e e e e e e e abb e e e aaaaeees 858
WXQUENYLAYOULINFOEVENT ...ttt e e e et e e e eeees 860
WXREAIOBOX ...ttt e ettt e e e e e e e e bbb aaaaaeae 863
WXREAIOBULTON ...ttt e et ettt e e e e e e eeabb e e e e aaaaeees 869
WXREAIFOIMVAlIAALON ...ttt e e e e e et e e e eaaeees 871
WXREAILISIVAITALONceeeiieiiii et e e e e e e eet bt e e e aaaaeees 871
WXREAIPOINT ...ttt e e e et et e e e e e e e ee bbb e e e aaaaaeees 872
{2 (=T o S PP PRSPPI 873
WXRECONASEL ...ttt e e et et ettt e e e e e e e eeabba e e e aaaaaeees 877
12 {=Te (o] o E PP RRUPPPPIIN 889
WXREGIONITEIALON ...ttt e ettt e e e e e e e eebbba e e e aaeaaeees 893
WXSASNEVENT. ...t e ettt e e e e et e ettt e e e e e e e eebbba e e aaaaaeae 896
WXSASNLAYOUIWINTOW.vtiiieeii ettt e e e et ettt e e e e e e eeebbaa e e e aaaaaeaes 898
WXSASNWINAOW ...t e ettt e e e e ee ittt e e e aaaaeees 901
WXSCIEENDIC ...ttt oot ettt e e e et b e e e et e e e e et e e e e eb e e e et e aeneas 906
S 1ol (o] |17 | TR PSRRI 907
WXSCIOIWWINEVENT. ...t e e e e eea bt e e e aaaaeees 912
WXSCIOIEVENT. ...t e ettt e e e e e e ettt e e e e e e e e eebbba e e e aaaaaene 914
WXSCIOIEAWINTOW. ...ttt e e e e e e ettt e e e e e e e eebbba e e e aaaaaeee 916
WXSINGIECNOICEDIAIOG ...ttt et e e e e eabt e e e e e e aaeees 923
1S 17T PP RSPPPPPIIN 926
WXSIZEEVENL ...t e ettt e e e e e et e ettt e e e e e e e eetbba e e e aaaaaeae 927
[0S 1A= PP RSUPPPPIIN 928
110 eS] o [T PP TRSOPPPPIIN 933
WXSOCKAGAIESS ...ttt e ettt e et e e e e e e e et bbb e e e e e e e e eesbba e e e aaaaaeees 942
WXSOCKEIBASE ...ttt e ettt ettt e e e e e et e et bbb e e e e e e e eenbba e aaaaaaaeee 943
WXSOCKEECTENT ...ttt e e et e ettt e e e e e e e eebbba e e e aaaeaeees 960
WXSOCKEEEVENT ...ttt ettt e e e e e e e ettt e e e e e e e eesbba e e e aaaaaeee 962
WXSOCKEESEIVE ...ttt e ettt e e e e e e e e ettt e e e e e e e e eesbba e e e aaaaaeee 964

viii

CONTENTS

WXSOCKELINPUESTIEAIM ...ttt e et e et e e e e e e eebbba e e e aaaaaeees 966
WXSOCKEIOULPUESTIBAM ...ttt ettt e e e et e ettt e e e e e e e eebbbaa e e e aaaaaeees 967
10 eS] o1 =101 o] o NPT RRSRPPPPIIN 967
110 eS] o1 1 @4 ¢ PR PURPPPPIIN 971
WXSPINEVENT ..ttt e e ettt e et e e e e e e e e et bbb e e e e e aeeeesbba e e aaaaaaeees 973
WXSPIEEEIEVENT. ...ttt e e e e e ettt e e e e e e e eebbba e e e aaaaeeees 974
WXSPIEEEIVWINAOW ...t e et ettt e e e e e e ee bbb e e e aaaaaeees 977
[0S] F= Vo] =] 1 T T o TP TPSRPPPPIIN 987
WX ST CBOX oot 989
WX ST CBOXSIZE ... 991
WX ST CLINE . 991
XS CTEXE .o 993
WXSTATUSBAcvvveii et e e 996
WXSTOPWELCK ..t e et ettt e e e e e e e et e e e aaaaeees 1001
WXSTITEAMBASE ...ttt e e e e e e e e e e een 1003
WXSTTEAMBUITET ... 1005
1065] 11 o OO TTSUPPPTPIN 1011
WXSTHNGFOIMVAIIALONveeieei ettt e e e e e ettt e e e aaaeees 1034
(0S][N TP TSUPPPTIIN 1034
WXSTHNGLISIVAIAAION ...ttt e e e e et aaaaeeees 1036
WXSTINGTOKENIZEN ... e e ettt e e e e e e ettt e e e aaaaeees 1036
WXSYSCOIOUIChaNGEAEVENTottt e e e et a bbb eaeaaeeees 1039
WXSYSTEIMSELEINGS ... eieieeiitiee ettt ettt e e e e et ettt s e e e e e e eatbba e e e e aeaeebbban e e aaaaaaeees 1040
WXTADDEADIAIOG et e et aaaeee 1043
WXTADDEAPANEL ... 1044
WXTADCONIIOL ... 1045
WXTAIDVIBW ..ottt e e e e et ettt e s e e e e e e etbbb e e aaaaaeees 1049
WXTAICH ...ttt e e e e st e e e e e e e e s e bbb b e e e e e e e e e aaes 1057
WXTADEVENT ... 1063
WXTASKBAICON ... 1064
WXTCPCHENT .ttt e e ekt e e e e e e s s s bbb bt e e e e e e e s aanbbbbeeeaaaeeaaanes 1066
WXTCP CONNECHON ... 1067
WXT CPSEIVE ...ttt e et e e e e e e et e e e e e eeens 1071
WXTEIMPFIIE ... et e et ettt e e e e e e e et e e aaaaaeees 1073
WXTEXECHIT ..ottt e e et et ettt e e e e e e e e ettt e e e aaaaeees 1075
WXTEXIDALAODJECT ...ttt e e et e e ettt e e e e e e e ettt e e e aaaaeees 1088
WX TEXUNPUESTIIEAIMt e ettt e et e e e et e e e et e e e eabaaaaaes 1089
WX TEXEOULPULSTIEAM ... ettt ettt e et e et e e et e e ettt e e e et e e e e et e eaeataaaaes 1092
WXTEXEENTIYDIAIOQ. . ettt e e et e e et e e e e e e e e ettt e e aaaaaeees 1094
QL) 1D o] ol =T o =] TP PP UPPTTRRPPPN 1095

CONTENTS

11151 o= Lo TP TTSUPPPTRIN 1097
WXTEXEVAIIAALON ...ttt e e e e et ettt e e e e e e e e ebbbb e e e e aaaaeees 1097
WXTEXEFIIE <.ttt e e e e e et e tbb e e e e e e e e etbbb e e e aaaaaeees 1100
L 11 =T Lo TSP UUPPPTRIN 1105
L1 41T TP TUUPPPIRIN 1113
VWX TIIMIEE Lottt ettt e e e ettt et e oo e e e e ettt bbb e o e e e e e e eetbba e e e aaeeeesbban e aaaaaaaeees 1118
WXTIMEIEVENT. ...t e ettt e e e e e e e e etbb e e e e e e e e etbbba e e e aaaaaeees 1120
WX TIPPTOVIAE ...ttt e e e e e et ettt e e e e e e e e ettt e e e aaaaaeees 1121
WXTOOIBAL ...ttt e e ettt ettt e e e e e e e e e etbba e s e e e e e eesbbaa e e e aaaaaeees 1122
L2 e o I I o TSP SUPPPTRIN 1138
WXTTEECIT ..ottt e e et et ettt e e e e e e e e eabbb s e e e aaaaeees 1139
WXTTEEITEIMDALA ...ttt e et e et e e e et e e e eaba e eaes 1154
WXTEEEEVENT ...t ettt e e et e e e et e e e e e e e eaaa e aaes 1156
WXTEEELAYOUL......eeeee ettt ettt e ettt e e e et e e e e et e e e eta e e e e et e eaenbnaaaes 1157
WXTTEELAYOULSTIONEA. ...ttt e ettt e e e e e eeb e e e aaaaeees 1164
WXUPAAEUIBVENT. ...ttt e e e e ettt e e e e e e ettt e e aaaaaeees 1165
WXURL L.ttt et e e e e et e e e e e s e e e e e e e e e e — e e e e e e s s et b aaaaaeaaaaan 1169
T2 VZ= 1o F= 1o SO UUPPPRRIN 1171
{24 T F= T o | TSP TTUUPPPRRIN 1174
WXV AITANTDALA ...ttt e ettt e e e e e e e eetbb e e e e e e e eebbbb e e e aaaaaeees 1182
VUXV BV .ottt ettt ettt e e ettt ettt e oo oo 2o etttk ba oo e e e e e e et tbba e e e e e e ee et bbb e e aaaaaeees 1184
WXWWBIV ..ttt ettt ettt e et oo et e et e th s e e e et e e ettt e e e e ba e e e et e e aerraaaes 1188
WXWWINAOW ...ttt e e e et ettt e e e e e e e e e etbba e e e e e e e eeebban e e aaaaaaenes 1189
WXWINAOWDIC ...t e ettt e e e e e e e e e etbb e e e e e e e e eetbbba e e e aaaaaeees 1239
WXWINAOWDISADIET ... e e e e eees 1240
WXWIZAID. ...t e ettt e e e e e e e e e etbba e e e e e e e e eebbban e e e aaaaaaees 1240
WXWIZAIAEVENT. ...ttt e e e et e e ettt e s e e e e e e ettt e e aaaaaeees 1243
WXWIZAIAPAGE ...ttt e e e et et e e e e e e e ettt e e e e aaaeees 1244
WXWIiZardPageSimMPIe.......oue ettt e et aaaaeee 1246
WXZIPINPUESTIAM. ...ttt e e e e e et e bbb e s e e e e e e ettt e e aaaaaeees 1247
WXZIIBINPUESTIEAIM ...ttt e e e e e ettt e e e e aaaeees 1248
WXZIIDOULPULSTIIEAIM ...ttt e e e e e ettt e e e e e e e e bbb e e aaaaaeees 1248
FUNCHIONS .. et e e e e e et e e e e e e e eeeenennas 1250
AV] €51 oI 0 = 1o (0 SO TTUUPPPIRIN 1250
TRrEAA fFUNCLIONSe et e e e et e e e e e e eeb e as 1251
FlE FUNCHIONS ..ottt e e e et e ettt e e e e e e e e ee bbb e e e e aaaeeees 1252
NEIWOIK FUNCLIONS ...t e e e ettt e e e e e e e eetbba e e e aaaeeees 1257
USEr identifiCAtIONoeeiiii e e et e e e e eea b aaaaeaes 1258
SHANG FUNCHIONS ... e e et e ettt e e e e e e e e atb b e e e e e e e eenreannns 1259

CONTENTS

(DT oTo 0] o Tox i o] E- 3PP PRI 1261
LT B 100 o T i o] £ TP UPP PP 1267
PrINTEE SEHINGS ...t e ettt e e e e e et ettt e e e e e e e e eetbba e e e aaaaaeaes 1268
(04 [10] oo =170 I {8] g [ex 0] o < PRSPPI 1271
MiSCElIANEOUS TUNCLIONS ...ttt e e e e eetbb e e e e aaaeees 1273
1Y F=Tod {0 SO OPP TP TUPPPTRPPN 1291
WXWINAOWS reSOUICE fUNCLIONScuuutiiiie ettt e e e e et aaaeeees 1299
(oo I8 {1 0o 1 o] o < TSP PURPPPPRIN 1302
TIME FUNCLIONS ... ettt e e e et e bbb e e e e e e e eabbaa e e as 1306
Debugging macros and fUNCHIONS oot eaaeeees 1307
KBYCOUES ..ttt oo e e et e et b o et e e e e e e ettt e e e e e e e e eetbb e e aaaaaaae 1309
ClasSSeS DY CAtEQOIYuuiiiii e e s 1312
TOPIC OVEIVIEWS ...ttt e e e e e e e e e ettt a e e e e e e e e e e eansa e e e e eeaaes 1322
Notes 0N USING the FEfEIrENCEuuei et 1322
Writing a wxWindows application: a rough guide................cooiiiiiiiiiii e 1322
WXWINAOWS "HEIO WOTIA"t eaaeeees 1323
WXWINAOWS SAMPIES ...ttt e ettt e e e e e e etbbb e e aaaaaeees 1326
VWXADD OVEIVIBW. ...ttt ettt e ettt ettt s oo e e e et e et bbb s e e e e e e e eetbba e e e aaeeeesbban e e aaaaaaeees 1335
Run time class information OVEIVIEWoouuuuiiiii it eees 1336
WXSTIING OVEIVIEW. ...ttt ettt e e e et ettt e e e e e e e e eetbba e e e e e e e eebbbaa e e aaaaaaenes 1338
Date and tiMe ClaSSES OVEIVIEWu ittt e e e e eetbb e e e aaeeees 1342
Unicode support in WXWINAOWSuiiiiiiiiiiii et e e eetab e e e e aeeees 1346
WXMBCONV ClASSES OVEIVIEW ...ttt e e e ettt e e e e e e ettt e e e aaaaeees 1349
INEErNAtIONANIZATION ...t e e et ettt e e e e e e e ebb e a e e e aaaeaes 1352
Writing non-English appliCationscooo o 1353
CONLAINET ClASSES OVEIVIEWceviviiiieeeii ettt ettt e e e e ettt e e e e e e eatbba e e e e e e eeennnannns 1356
File classes and fUNCLONS OVEIVIEWc.coiiuuuuiiiie ettt eaaeeees 1357
WXSTFTEAIMS OVEIVIEW ...ttt e ettt e e ettt e e e e e e e e ettt e s e e e e e e eetbba e e e eaaaeesbban e aaaaaaenes 1358
WXLOQ ClASSES OVEIVIEW ...ttt e ettt et e e e e e e e ettt e e aaaaeeees 1359
DEDUQGUING OVEIVIEW ...ttt ettt et e e e e e e ettt e e e e e e e e eetbba e e e aaaaeenes 1362
WXCONTIQ ClASSES OVEIVIEW ...ttt et ettt e e e e e ettt e e e aaaaeees 1365
WWXEXPE OVEIVIEW. ...ttt e ettt e e e e e e e e e bbb e e e e e e e e e bbbba e e e aaaaaeees 1366
WXFIIESYSTEIM ..ot e e et et ettt e e e e e e e eabbb e e e aaaaeees 1369
Event handliNng OVEIVIEWcooiiiiiiiiii et e e e e e et e e e aeeees 1371
WINAOW SEYIES ..ttt oottt e e e e e et e bbb e e e e e e e e e bbbba e e e aaaaaeees 1378
WiINAOW deletion OVEIVIEWccoiiiiiiiii ettt e e e e e et a e e e aaaeees 1378
WXDIAIOG OVEIVIEW ...ttt ettt e e e e e et e tbb e e e e e e e e e bbbba e e e aaaaaeees 1381
WXV AlIHALOT OVEIVIEW ...ttt e e e e ettt e s e e e e e e ebbba e e e aaaaeees 1381
CONSITAINTS OVEIVIBWieeii ettt e ettt e e et ettt e e e e e e e e ettt e e e e e e e e eabbba e e e eaeeeenreannns 1383

Xi

CONTENTS

The WXWINAOWS FE€SOUICE SYSTEIMoeiiiieiiii ettt e ettt e e e e e et e e e e eeabbaa e 1387
SCIOIING OVEIVIBW. ...ttt e e e e e e e ettt e e e e e e e eatbba e e e e e e eeenenannns 1394
Bitmaps and ICONS OVEIVIEW.ccuuiuiie ettt e ettt e e e e e e eetbbe e e e e e e e eetbba e e e aeaaaenes 1396
DEVICE CONEXE OVEIVIEWccceiiiiiiiiii ittt 1399
WXFONT OVEIVIEW ... 1400
FONt @NCOAING OVEIVIEW ...t e e et ettt e e e e e e e eetbba e e e aaaaeeees 1401
WXSPIEENVINAOW OVEIVIEW.ciiiieiiiii ettt e et e e e e e e et e e e e aaaeees 1402
WXTTEECHT OVEIVIEW ... 1404
WXLISTCIITT OVEIVIEW ... 1405
WXIMAGELIST OVEIVIEW ...ttt ettt e e e e e e e ettt e e e e e e e e ebbbb e e e aaaaaeees 1406
COoMMON AIAIOGS OVEIVIEW ...t e ettt e e ettt e e e e e e eatbb e e e e e e eeeneannns 1406
DOCUMENIVIEW OVEIVIEWccoiiiiiiiiiiiieiee ettt 1410
WXTAD ClASSES OVEIVIEW ... 1416
WXTADVIEW OVEIVIEW ... 1420
TOOIDAI OVEIVIEW ...ttt bbb e b nnnnnes 1420
WXGTIA CIASSES OVEIVIEW. ... 1426
WXTIPPTOVIAE OVEIVIEW ...ttt ettt e e ettt ettt e e e e e e e ettt e e e aaaaaeees 1427
PIINTING OVEIVIEW ...ttt e e e et e e ettt e e e e e e e e eetbba e e e aaaaeenes 1427
MUItIENrEAdING OVEIVIEW ...t e e ettt e e e e eetbb e e e e aaeeees 1428
Drag and droP OVEIVIEW.........ccciiiieiiii ettt e e et e e ettt e e e e e e e eetbba e e e e aaaeeees 1429
WXDAtAODJECT OVEIVIEW ...ttt ettt e e e e e e ettt e e e e e e e e eebba e e e aaaaaenes 1431
Database ClasSes OVEIVIEW............cooiviiiiiiiii 1432
Interprocess COMMUNICAtION OVEIVIEW.ceuuuuu e eeeeeeeiiia e e e e e e ettt e e e e e eeabbi e e e e aaeeees 1437
WXHTIML NOTES ... et e e e eans 1441
WXHTML QUICK STAMT ...ttt e e e e e e ettt e e e e e e e eebbb e e aaaaaeees 1441
HTIML PIINEING ©ee ettt e et e ettt e e e e e et e e ettt e s e e e e e aeesbba e e aaeaaaeees 1442
HeEIP FlES FOIMAL ... et e e e e eetbb e e e e aaeeees 1442
INPUL FIIEEIS e ettt e e e e e e e ettt e e e e e e e eeabba e e aaaaaeaes 1444
Cells AN CONLAINEISccvviiiiiiiiiiiiiii i 1444
Tag HANAIBIS ... et e et e e e e e e et 1446
Tags supported DY WXHTML e e s 1448
Property Sheet ClaSSES ... 1452
INEFOTUCTION ... 1452
HEAEIS. ... 1454
TOPIC OVEIVIEBWS ...t e ettt oottt e et et ettt e e e e e et e e ettt e e e e e e e e ea bbb e e e e e e e eenbbaa e e eaaas 1454
ClaSSES DY CAtBYONY ...veiiiieei ettt e e e e earaaaaas 1462
WXPYENON NOTES ...t e e e e e eeanene 1464
WAL IS WXPYINONT ... 1464

Xii

CONTENTS

WHY USE WXPYINONT ...t e e e e e e et eaaaaaeees 1464
Other PYtNON GUISeeie et e et e e e e e eaaeaaaas 1465
BUIIING WXPYENON ... et e e e et eaaaeees 1466
USING WXPYENON..... ettt e e et e e ettt e e e e e e e e eetbba e e e aaaaeenes 1467
wxWindows classes implemented in WXPYIhON ... 1470
Where 10 9O fOr NEIP ... ettt aaeeees 1474
Porting from WXWINAOWS L.XX ..cceeiiiiiiiieeeeeeiieiiiiiie et eeeeeeeaennes 1475
Preparing for VEISION 2.0........coii ettt e e e e ee it e e aaaeaes 1475
THE NEW EVENT SYSTEIM ...ttt ettt e e e e e et e e e e e e eebba e as 1477
ClaSS NIBIAICNYot a b e e e e e earaaaaas 1478
(€7D] le] o] [=Tox (=TT UUPUPPTTTT 1478
Dialogs @nd CONLIOISvuuii ettt e e e e ee it e e e e aaaeees 1478
Device contexts and PAINTINGccuuuuuiiaiiieiiii et e e e e e et e e e e e eetbba e e eaaeeae 1480
MISCEIIANEOUS.......ccoiiiiiiiie e 1480
Backward COMPAtiDIlitycooiiiiiiii e eee 1481
L@ 10 [od [(=] (=] (=T (= PP 1481
RETEIENCES ... et e e e e e e eaeenna 1486
L0 [PP PUUPPPPPPRR 1488

Xiii

Chapter 1 Copyright notice

(c) 1999 Julian Smart, Robert Roebling, Vadim Zeitlin and other members of the
wxWindows team
Portions (c) 1996 Artificial Intelligence Applications Institute

Please also see the wxWindows license files (preamble.txt, Igpl.txt, gpl.txt, license.txt,
licendoc.txt) for conditions of software and documentation use.

wxWindows Library License, Version 3
Copyright (C) 1998 Julian Smart, Robert Roebling, Vadim Zeitlin et al.

Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

WXWINDOWS LIBRARY LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

This library is free software; you can redistribute it and/or modify it under the terms of
the GNU Library General Public License as published by the Free Software Foundation;
either version 2 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Library General Public License for
more details.

You should have received a copy of the GNU Library General Public License along with
this software, usually in a file named COPYING.LIB. If not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.

EXCEPTION NOTICE

1. As a special exception, the copyright holders of this library give permission for
additional uses of the text contained in this release of the library as licensed under the
wxWindows Library License, applying either version 3 of the License, or (at your option)
any later version of the License as published by the copyright holders of version 3 of the
License document.

2. The exception is that you may create binary object code versions of any works using
this library or based on this library, and use, copy, modify, link and distribute such binary
object code files unrestricted under terms of your choice.

3. If you copy code from files distributed under the terms of the GNU General Public

License or the GNU Library General Public License into a copy of this library, as this
license permits, the exception does not apply to the code that you add in this way. To

Xiv

COPYRIGHT

avoid misleading anyone as to the status of such modified files, you must delete this
exception notice from such code and/or adjust the licensing conditions notice
accordingly.

4. If you write modifications of your own for this library, it is your choice whether to
permit this exception to apply to your modifications. If you do not wish that, you must
delete the exception notice from such code and/or adjust the licensing conditions notice
accordingly.

GNU Library General Public License, Version 2

Copyright (C) 1991 Free Software Foundation, Inc. 675 Mass Ave, Cambridge, MA
02139, USA

Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

[This is the first released version of the library GPL. It is numbered 2 because it goes
with version 2 of the ordinary GPL.]

Preamble

The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public Licenses are intended to guarantee your
freedom to share and change free software -- to make sure the software is free for all its
users.

This license, the Library General Public License, applies to some specially designated
Free Software Foundation software, and to any other libraries whose authors decide to
use it. You can use it for your libraries, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute
copies of free software (and charge for this service if you wish), that you receive source
code or can get it if you want it, that you can change the software or use pieces of it in
new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these
rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the library, or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you must
give the recipients all the rights that we gave you. You must make sure that they, too,
receive or can get the source code. If you link a program with the library, you must
provide complete object files to the recipients so that they can relink them with the
library, after making changes to the library and recompiling it. And you must show them
these terms so they know their rights.

Our method of protecting your rights has two steps: (1) copyright the library, and (2) offer
you this license which gives you legal permission to copy, distribute and/or modify the
library.

XV

COPYRIGHT

Also, for each distributor's protection, we want to make certain that everyone
understands that there is no warranty for this free library. If the library is modified by
someone else and passed on, we want its recipients to know that what they have is not
the original version, so that any problems introduced by others will not reflect on the
original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that companies distributing free software will individually obtain patent
licenses, thus in effect transforming the program into proprietary software. To prevent
this, we have made it clear that any patent must be licensed for everyone's free use or
not licensed at all.

Most GNU software, including some libraries, is covered by the ordinary GNU General
Public License, which was designed for utility programs. This license, the GNU Library
General Public License, applies to certain designated libraries. This license is quite
different from the ordinary one; be sure to read it in full, and don't assume that anything
in it is the same as in the ordinary license.

The reason we have a separate public license for some libraries is that they blur the
distinction we usually make between modifying or adding to a program and simply using
it. Linking a program with a library, without changing the library, is in some sense simply
using the library, and is analogous to running a utility program or application program.
However, in a textual and legal sense, the linked executable is a combined work, a
derivative of the original library, and the ordinary General Public License treats it as
such.

Because of this blurred distinction, using the ordinary General Public License for libraries
did not effectively promote software sharing, because most developers did not use the
libraries. We concluded that weaker conditions might promote sharing better.

However, unrestricted linking of non-free programs would deprive the users of those
programs of all benefit from the free status of the libraries themselves. This Library
General Public License is intended to permit developers of non-free programs to use
free libraries, while preserving your freedom as a user of such programs to change the
free libraries that are incorporated in them. (We have not seen how to achieve this as
regards changes in header files, but we have achieved it as regards changes in the
actual functions of the Library.) The hope is that this will lead to faster development of
free libraries.

The precise terms and conditions for copying, distribution and modification follow. Pay
close attention to the difference between a "work based on the library" and a "work that
uses the library". The former contains code derived from the library, while the latter only
works together with the library.

Note that it is possible for a library to be covered by the ordinary General Public License
rather than by this special one.

GNU LIBRARY GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

XVi

COPYRIGHT

0. This License Agreement applies to any software library which contains a notice placed
by the copyright holder or other authorized party saying it may be distributed under the
terms of this Library General Public License (also called "this License"). Each licensee is
addressed as "you".

A "library" means a collection of software functions and/or data prepared so as to be
conveniently linked with application programs (which use some of those functions and
data) to form executables.

The "Library", below, refers to any such software library or work which has been
distributed under these terms. A "work based on the Library" means either the Library or
any derivative work under copyright law: that is to say, a work containing the Library or a
portion of it, either verbatim or with modifications and/or translated straightforwardly into
another language. (Hereinafter, translation is included without limitation in the term
"modification".)

"Source code"” for a work means the preferred form of the work for making modifications
to it. For a library, complete source code means all the source code for all modules it
contains, plus any associated interface definition files, plus the scripts used to control
compilation and installation of the library.

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running a program using the Library is not
restricted, and output from such a program is covered only if its contents constitute a
work based on the Library (independent of the use of the Library in a tool for writing it).
Whether that is true depends on what the Library does and what the program that uses
the Library does.

1. You may copy and distribute verbatim copies of the Library's complete source code as
you receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all
the notices that refer to this License and to the absence of any warranty; and distribute a
copy of this License along with the Library.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it, thus forming a
work based on the Library, and copy and distribute such modifications or work under the
terms of Section 1 above, provided that you also meet all of these conditions:

a) The modified work must itself be a software library.

b) You must cause the files modified to carry prominent notices stating that you
changed the files and the date of any change.

¢) You must cause the whole of the work to be licensed at no charge to all third
parties under the terms of this License.

d) If a facility in the modified Library refers to a function or a table of data to be
supplied by an application program that uses the facility, other than as an

XVil

COPYRIGHT

argument passed when the facility is invoked, then you must make a good faith
effort to ensure that, in the event an application does not supply such function or
table, the facility still operates, and performs whatever part of its purpose remains
meaningful.

(For example, a function in a library to compute square roots has a purpose that is
entirely well-defined independent of the application. Therefore, Subsection 2d
requires that any application-supplied function or table used by this function must
be optional: if the application does not supply it, the square root function must still
compute square roots.)

These requirements apply to the modified work as a whole. If identifiable sections of that
work are not derived from the Library, and can be reasonably considered independent
and separate works in themselves, then this License, and its terms, do not apply to
those sections when you distribute them as separate works. But when you distribute the
same sections as part of a whole which is a work based on the Library, the distribution of
the whole must be on the terms of this License, whose permissions for other licensees
extend to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work
written entirely by you; rather, the intent is to exercise the right to control the distribution
of derivative or collective works based on the Library.

In addition, mere aggregation of another work not based on the Library with the Library
(or with a work based on the Library) on a volume of a storage or distribution medium
does not bring the other work under the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public License instead
of this License to a given copy of the Library. To do this, you must alter all the notices
that refer to this License, so that they refer to the ordinary GNU General Public License,
version 2, instead of to this License. (If a newer version than version 2 of the ordinary
GNU General Public License has appeared, then you can specify that version instead if
you wish.) Do not make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the ordinary
GNU General Public License applies to all subsequent copies and derivative works
made from that copy.

This option is useful when you wish to copy part of the code of the Library into a program
that is not a library.

4. You may copy and distribute the Library (or a portion or derivative of it, under Section
2) in object code or executable form under the terms of Sections 1 and 2 above provided
that you accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange.

If distribution of object code is made by offering access to copy from a designated place,
then offering equivalent access to copy the source code from the same place satisfies
the requirement to distribute the source code, even though third parties are not
compelled to copy the source along with the object code.

Xvili

COPYRIGHT

5. A program that contains no derivative of any portion of the Library, but is designed to
work with the Library by being compiled or linked with it, is called a "work that uses the

Library". Such a work, in isolation, is not a derivative work of the Library, and therefore

falls outside the scope of this License.

However, linking a "work that uses the Library" with the Library creates an executable
that is a derivative of the Library (because it contains portions of the Library), rather than
a "work that uses the library". The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.

When a "work that uses the Library" uses material from a header file that is part of the
Library, the object code for the work may be a derivative work of the Library even though
the source code is not. Whether this is true is especially significant if the work can be
linked without the Library, or if the work is itself a library. The threshold for this to be true
is not precisely defined by law.

If such an object file uses only numerical parameters, data structure layouts and
accessors, and small macros and small inline functions (ten lines or less in length), then
the use of the object file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the Library will still fall
under Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute the object code
for the work under the terms of Section 6. Any executables containing that work also fall
under Section 6, whether or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also compile or link a "work that uses
the Library" with the Library to produce a work containing portions of the Library, and
distribute that work under terms of your choice, provided that the terms permit
modification of the work for the customer's own use and reverse engineering for
debugging such modifications.

You must give prominent notice with each copy of the work that the Library is used in it
and that the Library and its use are covered by this License. You must supply a copy of
this License. If the work during execution displays copyright notices, you must include
the copyright notice for the Library among them, as well as a reference directing the user
to the copy of this License. Also, you must do one of these things:

a) Accompany the work with the complete corresponding machine-readable source
code for the Library including whatever changes were used in the work (which
must be distributed under Sections 1 and 2 above); and, if the work is an
executable linked with the Library, with the complete machine-readable "work that
uses the Library", as object code and/or source code, so that the user can modify
the Library and then relink to produce a modified executable containing the
modified Library. (It is understood that the user who changes the contents of
definitions files in the Library will not necessarily be able to recompile the
application to use the modified definitions.)

b) Accompany the work with a written offer, valid for at least three years, to give
the same user the materials specified in Subsection 6a, above, for a charge no

XiX

COPYRIGHT

more than the cost of performing this distribution.

c) If distribution of the work is made by offering access to copy from a designated
place, offer equivalent access to copy the above specified materials from the same
place.

d) Verify that the user has already received a copy of these materials or that you
have already sent this user a copy.

For an executable, the required form of the "work that uses the Library" must include any
data and utility programs needed for reproducing the executable from it. However, as a
special exception, the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler, kernel,
and so on) of the operating system on which the executable runs, unless that component
itself accompanies the executable.

It may happen that this requirement contradicts the license restrictions of other
proprietary libraries that do not normally accompany the operating system. Such a
contradiction means you cannot use both them and the Library together in an executable
that you distribute.

7. You may place library facilities that are a work based on the Library side-by-side in a
single library together with other library facilities not covered by this License, and
distribute such a combined library, provided that the separate distribution of the work
based on the Library and of the other library facilities is otherwise permitted, and
provided that you do these two things:

a) Accompany the combined library with a copy of the same work based on the
Library, uncombined with any other library facilities. This must be distributed under
the terms of the Sections above.

b) Give prominent notice with the combined library of the fact that part of it is a
work based on the Library, and explaining where to find the accompanying
uncombined form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute the Library except as
expressly provided under this License. Any attempt otherwise to copy, modify,
sublicense, link with, or distribute the Library is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

9. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Library or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Library (or any work based on the Library), you indicate
your acceptance of this License to do so, and all its terms and conditions for copying,
distributing or modifying the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the Library), the
recipient automatically receives a license from the original licensor to copy, distribute,

XX

COPYRIGHT

link with or modify the Library subject to these terms and conditions. You may not
impose any further restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to this License.

11. If, as a consequence of a court judgment or allegation of patent infringement or for
any other reason (not limited to patent issues), conditions are imposed on you (whether
by court order, agreement or otherwise) that contradict the conditions of this License,
they do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Library at all. For
example, if a patent license would not permit royalty-free redistribution of the Library by
all those who receive copies directly or indirectly through you, then the only way you
could satisfy both it and this License would be to refrain entirely from distribution of the
Library.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply, and the section as a whole
is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property
right claims or to contest validity of any such claims; this section has the sole purpose of
protecting the integrity of the free software distribution system which is implemented by
public license practices. Many people have made generous contributions to the wide
range of software distributed through that system in reliance on consistent application of
that system; it is up to the author/donor to decide if he or she is willing to distribute
software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

12. If the distribution and/or use of the Library is restricted in certain countries either by
patents or by copyrighted interfaces, the original copyright holder who places the Library
under this License may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if written in the body
of this License.

13. The Free Software Foundation may publish revised and/or new versions of the
Library General Public License from time to time. Such new versions will be similar in
spirit to the present version, but may differ in detail to address new problems or
concerns.

Each version is given a distinguishing version number. If the Library specifies a version
number of this License which applies to it and "any later version”, you have the option of
following the terms and conditions either of that version or of any later version published
by the Free Software Foundation. If the Library does not specify a license version
number, you may choose any version ever published by the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose
distribution conditions are incompatible with these, write to the author to ask for
permission. For software which is copyrighted by the Free Software Foundation, write to

XXi

COPYRIGHT

the Free Software Foundation; we sometimes make exceptions for this. Our decision will
be guided by the two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY
AND PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD THE LIBRARY
PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY TO OPERATE WITH
ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS
Appendix: How to Apply These Terms to Your New Libraries

If you develop a new library, and you want it to be of the greatest possible use to the
public, we recommend making it free software that everyone can redistribute and
change. You can do so by permitting redistribution under these terms (or, alternatively,
under the terms of the ordinary General Public License).

To apply these terms, attach the following notices to the library. It is safest to attach
them to the start of each source file to most effectively convey the exclusion of warranty;
and each file should have at least the "copyright" line and a pointer to where the full
notice is found.

<one line to give the library's nane and a brief idea of what it does.>
Copyright (C <year> <nane of author>

This library is free software; you can redistribute it and/or
modify it under the terns of the GNU Li brary General Public

Li cense as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any |ater version.

This library is distributed in the hope that it will be useful,

XXil

COPYRIGHT

but W THOUT ANY WARRANTY; wi thout even the inplied warranty of
MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE. See the G\U
Li brary General Public License for nore details.

You shoul d have received a copy of the GNU Library General Public
Li cense along with this library; if not, wite to the Free
Sof tware Foundation, Inc., 675 Mass Ave, Canbridge, MA 02139, USA

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a "copyright disclaimer" for the library, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclains all copyright interest in the
library "Frob' (a library for tweaking knobs) witten by Janes Random
Hacker .

<signature of Ty Coon>, 1 April 1990
Ty Coon, President of Vice

That's all there is to it!

XXili

Chapter 2 Introduction

What is wxWindows?

wxWindows is a C++ framework providing GUI (Graphical User Interface) and other
facilities on more than one platform. Version 2 currently supports MS Windows (16-bit,
Windows 95 and Windows NT), Unix with GTK+, Unix with Motif, and Mac. An OS/2 port
is in progress.

wxWindows was originally developed at the Artificial Intelligence Applications Institute,
University of Edinburgh, for internal use, and was first made publicly available in 1993.
Version 2 is a vastly improved version written and maintained by Julian Smart, Robert
Roebling, Vadim Zeitlin and many others.

This manual discusses wxWindows in the context of multi-platform development.

Please note that in the following, "MS Windows" often refers to all platforms related to
Microsoft Windows, including 16-bit and 32-bit variants, unless otherwise stated. All
trademarks are acknowledged.

Why another cross-platform development tool?

wxWindows was developed to provide a cheap and flexible way to maximize investment
in GUI application development. While a number of commercial class libraries already
existed for cross-platform development, none met all of the following criteria:

low price;

source availability;

simplicity of programming;

support for a wide range of compilers.

PoONPE

Since wxWindows was started, several other free or almost-free GUI frameworks have
emerged. However, none has the range of features, flexibility, documentation and the
well-established development team that wxWindows has.

As open source software, wxWindows has benefited from comments, ideas, bug fixes,
enhancements and the sheer enthusiasm of users. This gives wxWindows a certain
advantage over its commercial competitors (and over free libraries without an
independent development team), plus a robustness against the transience of one
individual or company. This openness and availability of source code is especially
important when the future of thousands of lines of application code may depend upon
the longevity of the underlying class library.

CHAPTER 2

Version 2 goes much further than previous versions in terms of generality and features,
allowing applications to be produced that are often indistinguishable from those
produced using single-platform toolkits such as Motif, GTK+ and MFC.

The importance of using a platform-independent class library cannot be overstated,
since GUI application development is very time-consuming, and sustained popularity of
particular GUIs cannot be guaranteed. Code can very quickly become obsolete if it
addresses the wrong platform or audience. wxWindows helps to insulate the
programmer from these winds of change. Although wxWindows may not be suitable for
every application (such as an OLE-intensive program), it provides access to most of the
functionality a GUI program normally requires, plus many extras such as network
programming, PostScript output, and HTML rendering; and it can of course be extended
as needs dictate. As a bonus, it provides a far cleaner and easier programming
interface than the native APIs. Programmers may find it worthwhile to use wxWindows
even if they are developing on only one platform.

It is impossible to sum up the functionality of wxWindows in a few paragraphs, but here
are some of the benefits:

Low cost (free, in fact!)

You get the source.

Available on a variety of popular platforms.

Works with almost all popular C++ compilers and Python.
Over 50 example programs.

Over 1000 pages of printable and on-line documentation.

Includes Tex2RTF, to allow you to produce your own documentation in Windows
Help, HTML and Word RTF formats.

Simple-to-use, object-oriented API.

Flexible event system.

Graphics calls include lines, rounded rectangles, splines, polylines, etc.
Constraint-based and sizer-based layouts.

Print/preview and document/view architectures.

Toolbar, notebook, tree control, advanced list control classes.

PostScript generation under Unix, normal MS Windows printing on the PC.
MDI (Multiple Document Interface) support.

Can be used to create DLLs under Windows, dynamic libraries on Unix.
Common dialogs for file browsing, printing, colour selection, etc.

Under MS Windows, support for creating metafiles and copying them to the
clipboard.

An API for invoking help from applications.

Ready-to-use HTML window (supporting a subset of HTML).

Dialog Editor for building dialogs.

Network support via a family of socket and protocol classes.

Support for platform independent image processing.

Built-in support for many file formats (BMP, PNG, JPEG, GIF, XPM, PNM, PCX).

CHAPTER 2

Changes from version 1.xx

These are a few of the major differences between versions 1.xx and 2.0.

Removals:

XView is no longer supported;
all controls (panel items) no longer have labels attached to them;
wxForm has been removed;

wxCanvasDC, wxPanelDC removed (replaced by wxClientDC, wxWindowDC,
wxPaintDC which can be used for any window);

wxMultiText, wxTextWindow, wxText removed and replaced by wxTextCtrl;
classes no longer divided into generic and platform-specific parts, for efficiency.

Additions and changes:

class hierarchy changed, and restrictions about subwindow nesting lifted;
header files reorganized to conform to normal C++ standards;

classes less dependent on each another, to reduce executable size;
wxString used instead of char* wherever possible;

the number of separate but mandatory utilities reduced;

the event system has been overhauled, with virtual functions and callbacks
being replaced with MFC-like event tables;

new controls, such as wxTreeCtrl, wxListCtrl, wxSpinButton;

less inconsistency about what events can be handled, so for example mouse
clicks or key presses on controls can now be intercepted;

the status bar is now a separate class, wxStatusBar, and is implemented in
generic wxWindows code;

some renaming of controls for greater consistency;

wxBitmap has the notion of bitmap handlers to allow for extension to new
formats without ifdefing;

new dialogs: wxPageSetupDialog, wxFileDialog, wxDirDialog,
wxMessageDialog, wxSingleChoiceDialog, wxTextEntryDialog;

GDI objects are reference-counted and are now passed to most functions by
reference, making memory management far easier;

wxSystemSettings class allows querying for various system-wide properties
such as dialog font, colours, user interface element sizes, and so on;

better platform look and feel conformance;

toolbar functionality now separated out into a family of classes with the same
API;

device contexts are no longer accessed using wxWindow::GetDC - they are
created temporarily with the window as an argument;

events from sliders and scrollbars can be handled more flexibly;

the handling of window close events has been changed in line with the new
event system;

the concept of validator has been added to allow much easier coding of the
relationship between controls and application data;

CHAPTER 2

the documentation has been revised, with more cross-referencing.

Platform-specific changes:

The Windows header file (windows.h) is no longer included by wxWindows
headers;

wx.dll supported under Visual C++;

the full range of Windows 95 window decorations are supported, such as modal
frame borders;

MDI classes brought out of wxFrame into separate classes, and made more
flexible.

Changes from version 2.0

These are a few of the differences between versions 2.0 and 2.2.

Removals:

GTK 1.0 no longer supported.
Additions and changes:

Corrected many classes to conform better to documented behaviour.
Added handlers for more image formats (Now GIF, JPEG, PCX, BMP, XPM,
PNG, PNM).

Improved support for socket and network functions.

Support for different national font encodings.

Sizer based layout system.

HTML widget and help system.

Added some controls (e.g. wxSpinCtrl) and supplemented many.
Many optical improvements to GTK port.

Support for menu accelerators in GTK port.

Enhanced and improved support for scrolling, including child windows.
Complete rewrite of clipboard and drag and drop classes.

Improved support for ODBC databases.

Improved tab traversal in dialogs.

wxWindows requirements

To make use of wxWindows, you currently need one or both of the following setups.

(a) PC:

CHAPTER 2

=

A 486 or higher PC running MS Windows.

2. A Windows compiler: most are supported, but please see i nstal | . t xt for
details. Supported compilers include Microsoft Visual C++ 4.0 or higher, Borland
C++, Cygwin, Metrowerks CodeWatrrior.

3. Atleast 60 MB of disk space.

(b) Unix:

1. Almost any C++ compiler, including GNU C++ (EGCS 1.1.1 or above).
2. Almost any Unix workstation, and one of: GTK+ 1.2, Motif 1.2 or higher, Lesstif.
3. Atleast 60 MB of disk space.

Availability and location of wxWindows

wxWindows is available by anonymous FTP and World Wide Web from
ftp://lwww.remstar.com/pub/wxwin (f t p: / / www. r enst ar . com pub/ wxwi n) and/or
http://mww.wxwindows.org (ht t p: / / www. wxwi ndows. or g).

You can also buy a CD-ROM using the form on the Web site, or by contacting:

Julian Smart

12 North Street West
Uppingham

Rutland

LE15 9SG
julian.smart@ukonline.co.uk

Acknowledgments

Thanks are due to AlAI for being willing to release the original version of wxWindows
into the public domain, and to our patient partners.

We would particularly like to thank the following for their contributions to wxWindows,
and the many others who have been involved in the project over the years. Apologies for
any unintentional omissions from this list. Yiorgos Adamopoulos, Jamshid Afshar,
Alejandro Aguilar-Sierra, AlAl, Patrick Albert, Karsten Ballueder, Michael Bedward, Kai
Bendorf, Yura Bidus, Keith Gary Boyce, Chris Breeze, Pete Britton, lan Brown, C.
Buckley, Dmitri Chubraev, Robin Corbet, Cecil Coupe, Andrew Davison, Neil Dudman,
Robin Dunn, Hermann Dunkel, Jos van Eijndhoven, Tom Felici, Thomas Fettig,
Matthew Flatt, Pasquale Foggia, Josep Fortiana, Todd Fries, Dominic Gallagher,
Guillermo Rodriguez Garcia, Wolfram Gloger, Norbert Grotz, Stefan Gunter, Bill Hale,
Patrick Halke, Stefan Hammes, Guillaume Helle, Harco de Hilster, Cord Hockemeyer,
Markus Holzem, Olaf Klein, Leif Jensen, Bart Jourquin, Guilhem Lavaux, Jan Lessner,
Nicholas Liebmann, Torsten Liermann, Per Lindgvist, Thomas Runge, Tatu Mannisto,

CHAPTER 2

Scott Maxwell, Thomas Myers, Oliver Niedung, Stefan Neis, Hernan Otero, lan Perrigo,
Timothy Peters, Giordano Pezzoli, Harri Pasanen, Thomaso Paoletti, Garrett Potts,
Marcel Rasche, Robert Roebling, Dino Scaringella, Jobst Schmalenbach, Arthur Seaton,
Paul Shirley, Vaclav Slavik, Stein Somers, Petr Smilauer, Neil Smith, Kari Syst&, Arthur
Tetzlaff-Deas, Jonathan Tonberg, Jyrki Tuomi, David Webster, Janos Vegh, Andrea
Venturoli, Vadim Zeitlin, Xiaokun Zhu, Edward Zimmermann.

‘Graphplace’, the basis for the wxGraphLayout library, is copyright Dr. Jos T.J. van
Eijndhoven of Eindhoven University of Technology. The code has been used in
wxGraphLayout with his permission.

We also acknowledge the author of XFIG, the excellent Unix drawing tool, from the
source of which we have borrowed some spline drawing code. His copyright is included
below.

XFig2.1 is copyright (c) 1985 by Supoj Sutanthavibul. Permission to use, copy, modify,
distribute, and sell this software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in all copies and that both
that copyright notice and this permission notice appear in supporting documentation, and
that the name of M.L.T. not be used in advertising or publicity pertaining to distribution of
the software without specific, written prior permission. M.I.T. makes no representations
about the suitability of this software for any purpose. It is provided "as is" without
express or implied warranty.

Chapter 3 Multi-platform development with
wxWindows

This chapter describes the practical details of using wxWindows. Please see the file
install.txt for up-to-date installation instructions, and changes.txt for differences between
versions.

Include files

The main include file is " wx/ wx. h"; this includes the most commonly used modules of
wxWindows.

To save on compilation time, include only those header files relevant to the source file. If
you are using precompiled headers, you should include the following section before any
other includes:

/1 For conpilers that support preconpilation, includes "wx.h"
#i ncl ude <wx/wxprec. h>

#i fdef __BORLANDC _
#pragma hdr st op
#endi f

#i f ndef WK_PRECOWP

/1 1nclude your mnimal set of headers here, or wx.h
#i ncl ude <wx/wx. h>

#endi f

now your other include files ...

The file " wx/ wxpr ec. h" includes " wx/ wx. h" . Although this incantation may seem
quirky, it is in fact the end result of a lot of experimentation, and several Windows
compilers to use precompilation (those tested are Microsoft Visual C++, Borland C++
and Watcom C++).

Borland precompilation is largely automatic. Visual C++ requires specification of

"wx/ wxprec. h" as the file to use for precompilation. Watcom C++ is automatic apart
from the specification of the .pch file. Watcom C++ is strange in requiring the
precompiled header to be used only for object files compiled in the same directory as
that in which the precompiled header was created. Therefore, the wxWindows Watcom
C++ makefiles go through hoops deleting and recreating a single precompiled header
file for each module, thus preventing an accumulation of many multi-megabyte .pch files.

Libraries

CHAPTER 3

The GTK and Motif ports of wxWindow can create either a static library or a shared
library on most Unix or Unix-like systems. The static library is called libwx_gtk.a and
libwx_motif.a whereas the name of the shared library is dependent on the system it is
created on and the version you are using. The library name for the GTK version of
wxWindows 2.2 on Linux and Solaris will be libwx_gtk-2.2.50.0.0.0, on HP-UX, it will be
libwx_gtk-2.2.sl, on AIX just libwx_gtk.a etc.

Under Windows, use the library wx.lib (release) or wxd.lib (debug) for stand-alone
Windows applications, or wxdll.lib (wxdlld.lib) for creating DLLSs.

Configuration

Options are configurable in the file " wx/ XXX/ set up. h" where XXX is the required
platform (such as msw, motif, gtk, mac). Some settings are a matter of taste, some help
with platform-specific problems, and others can be set to minimize the size of the library.
Please see the setup.h file and i nst al | . t xt files for details on configuration.

Under Unix (GTK and Motif) the corresponding setup.h files are generated automatically
when configuring the wxWindows using the "configure" script. When using the RPM
packages for installing wxWindows on Linux, a correct setup.h is shipped in the package
and this must not be changed.

Makefiles

At the moment there is no attempt to make Unix makefiles and PC makefiles compatible,
i.e. one makefile is required for each environment. The Unix ports use a sophisticated
system based on the GNU autoconf tool and this system will create the makefiles as
required on the respective platform. Although the makefiles are not identical in Windows,
Mac and Unix, care has been taken to make them relatively similar so that moving from
one platform to another will be painless.

Sample makefiles for Unix (suffix .unx), MS C++ (suffix .DOS and .NT), Borland C++
(.BCC and .B32) and Symantec C++ (.SC) are included for the library, demos and
utilities.

The controlling makefile for wxWindows is in the MS-Windows directory sr ¢/ nswfor the
different Windows compiler and in the build directory when using the Unix ports. The
build directory can be chosen by the user. It is the directory in which the "configure"
script is run. This can be the normal base directory (by running . / conf i gur e there) or
any other directory (e.g. . . / conf i gur e after creating a build-directory in the directory
level above the base directory).

CHAPTER 3

Please see the platform-specifici nst al | . t xt file for further details.

Windows-specific files

wxWindows application compilation under MS Windows requires at least two extra files,
resource and module definition files.

Resource file

The least that must be defined in the Windows resource file (extension RC) is the
following statement:

rci ncl ude "wx/ nsw wx. rc"

which includes essential internal wxWindows definitions. The resource script may also
contain references to icons, cursors, etc., for example:

WXi con i con wWx.ico

The icon can then be referenced by name when creating a frame icon. See the MS
Windows SDK documentation.

Note: include wx.rc after any ICON statements so programs that search your executable
for icons (such as the Program Manager) find your application icon first.

Module definition file

A module definition file (extension DEF) is required for 16-bit applications, and looks like

the following:

NAME Hel | o

DESCRI PTION ' Hell o'

EXETYPE W NDOWS

STUB "W NSTUB. EXE'

CODE PRELCAD MOVEABLE DI SCARDABLE
DATA PRELCAD MOVEABLE MULTI PLE
HEAPSI ZE 1024

STACKSI ZE 8192

The only lines which will usually have to be changed per application are NAME and
DESCRIPTION.

Allocating and deleting wxWindows objects

CHAPTER 3

In general, classes derived from wxWindow must dynamically allocated with new and
deleted with delete. If you delete a window, all of its children and descendants will be
automatically deleted, so you don't need to delete these descendants explicitly.

When deleting a frame or dialog, use Destroy rather than delete so that the wxWindows
delayed deletion can take effect. This waits until idle time (when all messages have been
processed) to actually delete the window, to avoid problems associated with the GUI
sending events to deleted windows.

Don't create a window on the stack, because this will interfere with delayed deletion.

If you decide to allocate a C++ array of objects (such as wxBitmap) that may be cleaned
up by wxwWindows, make sure you delete the array explicitly before wxWindows has a
chance to do so on exit, since calling delete on array members will cause memory
problems.

wxColour can be created statically: it is not automatically cleaned up and is unlikely to be
shared between other objects; it is lightweight enough for copies to be made.

Beware of deleting objects such as a wxPen or wxBitmap if they are still in use.
Windows is particularly sensitive to this: so make sure you make calls like
wxDC::SetPen(wxNullPen) or wxDC::SelectObject(wxNullBitmap) before deleting a
drawing object that may be in use. Code that doesn't do this will probably work fine on
some platforms, and then fail under Windows.

Architecture dependency

A problem which sometimes arises from writing multi-platform programs is that the basic
C types are not defined the same on all platforms. This holds true for both the length in
bits of the standard types (such as int and long) as well as their byte order, which might
be little endian (typically on Intel computers) or big endian (typically on some Unix
workstations). wxWindows defines types and macros that make it easy to write
architecture independent code. The types are:

wxInt32, wxInt16, wxInt8, wxUint32, wxUint16 = wxWord, wxUint8 = wxByte

where wxInt32 stands for a 32-bit signed integer type etc. You can also check which
architecture the program is compiled on using the wxBYTE_ORDER define which is
either wxBIG_ENDIAN or wxLITTLE_ENDIAN (in the future maybe wxPDP_ENDIAN as
well).

The macros handling bit-swapping with respect to the applications endianness are
described in the Macros (p. 1291) section.

10

CHAPTER 3

Conditional compilation

One of the purposes of wxWindows is to reduce the need for conditional compilation in
source code, which can be messy and confusing to follow. However, sometimes it is
necessary to incorporate platform-specific features (such as metafile use under MS
Windows). The symbols listed in the file synbol s. t xt may be used for this purpose,
along with any user-supplied ones.

C++ issues

The following documents some miscellaneous C++ issues.

Templates

wxWindows does not use templates since it is a notoriously unportable feature.

RTTI

wxWindows does not use run-time type information since wxWindows provides its own
run-time type information system, implemented using macros.

Type of NULL

Some compilers (e.g. the native IRIX cc) define NULL to be OL so that no conversion to
pointers is allowed. Because of that, all these occurrences of NULL in the GTK port use
an explicit conversion such as

wxW ndow *ny_wi ndow = (wxW ndow*) NULL;

It is recommended to adhere to this in all code using wxWindows as this make the code
(a bit) more portable.

Precompiled headers

Some compilers, such as Borland C++ and Microsoft C++, support precompiled
headers. This can save a great deal of compiling time. The recommended approach is to
precompile " wx. h" , using this precompiled header for compiling both wxWindows itself
and any wxWindows applications. For Windows compilers, two dummy source files are

11

CHAPTER 3

provided (one for normal applications and one for creating DLLS) to allow initial creation
of the precompiled header.

However, there are several downsides to using precompiled headers. One is that to take
advantage of the facility, you often need to include more header files than would
normally be the case. This means that changing a header file will cause more
recompilations (in the case of wxWindows, everything needs to be recompiled since
everything includes " wx. h" 1)

A related problem is that for compilers that don't have precompiled headers, including a
lot of header files slows down compilation considerably. For this reason, you will find (in
the common X and Windows parts of the library) conditional compilation that under Unix,
includes a minimal set of headers; and when using Visual C++, includes wx. h. This
should help provide the optimal compilation for each compiler, although it is biased
towards the precompiled headers facility available in Microsoft C++.

File handling

When building an application which may be used under different environments, one
difficulty is coping with documents which may be moved to different directories on other
machines. Saving a file which has pointers to full pathnames is going to be inherently
unportable. One approach is to store filenames on their own, with no directory
information. The application searches through a number of locally defined directories to
find the file. To support this, the class wxPathList makes adding directories and
searching for files easy, and the global function wxFileNameFromPath allows the
application to strip off the filename from the path if the filename must be stored. This has
undesirable ramifications for people who have documents of the same name in different
directories.

As regards the limitations of DOS 8+3 single-case filenames versus unrestricted Unix
filenames, the best solution is to use DOS filenames for your application, and also for
document filenames if the user is likely to be switching platforms regularly. Obviously
this latter choice is up to the application user to decide. Some programs (such as YACC
and LEX) generate filenames incompatible with DOS; the best solution here is to have
your Unix makefile rename the generated files to something more compatible before
transferring the source to DOS. Transferring DOS files to Unix is no problem, of course,
apart from EOL conversion for which there should be a utility available (such as
dos2unix).

See also the File Functions section of the reference manual for descriptions of
miscellaneous file handling functions.

12

Chapter 4 Programming strategies

This chapter is intended to list strategies that may be useful when writing and debugging
wxWindows programs. If you have any good tips, please submit them for inclusion here.

Strategies for reducing programming errors

Use ASSERT

Although | haven't done this myself within wxWindows, it is good practice to use
ASSERT statements liberally, that check for conditions that should or should not hold,
and print out appropriate error messages. These can be compiled out of a non-
debugging version of wxWindows and your application. Using ASSERT is an example of
‘defensive programming': it can alert you to problems later on.

Use wxString in preference to character arrays

Using wxString can be much safer and more convenient than using char *. Again, |
haven't practiced what I'm preaching, but I'm now trying to use wxString wherever
possible. You can reduce the possibility of memory leaks substantially, and it is much
more convenient to use the overloaded operators than functions such as strcmp.
wxString won't add a significant overhead to your program; the overhead is
compensated for by easier manipulation (which means less code).

The same goes for other data types: use classes wherever possible.

Strategies for portability

Use relative positioning or constraints

Don't use absolute panel item positioning if you can avoid it. Different GUIs have very
differently sized panel items. Consider using the constraint system, although this can be
complex to program.

Alternatively, you could use alternative .wrc (wxWindows resource files) on different

platforms, with slightly different dimensions in each. Or space your panel items out to
avoid problems.

13

CHAPTER 4

Use wxWindows resource files

Use .wrc (wxWindows resource files) where possible, because they can be easily
changed independently of source code. Bitmap resources can be set up to load different
kinds of bitmap depending on platform (see the section on resource files).

Strategies for debugging

Positive thinking

It is common to blow up the problem in one's imagination, so that it seems to threaten
weeks, months or even years of work. The problem you face may seem insurmountable:
but almost never is. Once you have been programming for some time, you will be able to
remember similar incidents that threw you into the depths of despair. But remember, you
always solved the problem, somehow!

Perseverance is often the key, even though a seemingly trivial problem can take an
apparently inordinate amount of time to solve. In the end, you will probably wonder why
you worried so much. That's not to say it isn't painful at the time. Try not to worry -- there
are many more important things in life.

Simplify the problem

Reduce the code exhibiting the problem to the smallest program possible that exhibits
the problem. If it is not possible to reduce a large and complex program to a very small
program, then try to ensure your code doesn't hide the problem (you may have
attempted to minimize the problem in some way: but now you want to expose it).

With luck, you can add a small amount of code that causes the program to go from
functioning to non-functioning state. This should give a clue to the problem. In some
cases though, such as memory leaks or wrong deallocation, this can still give totally
spurious results!

Use a debugger

This sounds like facetious advice, but it is surprising how often people don't use a
debugger. Often it is an overhead to install or learn how to use a debugger, but it really
is essential for anything but the most trivial programs.

Use logging functions

14

CHAPTER 4

There is a variety of logging functions that you can use in your program: see Logging
functions (p. 1302).

Using tracing statements may be more convenient than using the debugger in some

circumstances (such as when your debugger doesn't support a lot of debugging code, or
you wish to print a bunch of variables).

Use the wxWindows debugging facilities

You can use wxDebugContext to check for memory leaks and corrupt memory: in fact in
debugging mode, wxWindows will automatically check for memory leaks at the end of
the program if wxWindows is suitably configured. Depending on the operating system
and compiler, more or less specific information about the problem will be logged.

You should also use debug macros (p. 1307) as part of a 'defensive programming’
strategy, scattering WxASSERTS liberally to test for problems in your code as early as
possible. Forward thinking will save a surprising amount of time in the long run.

See the debugging overview (p. 1362) for further information.

Check Windows debug messages

Under Windows, it is worth running your program with DbgView

(http://ww. sysi nt ernal s. com running or some other program that shows
Windows-generated debug messages. It is possible it will show invalid handles being
used. You may have fun seeing what commercial programs cause these normally
hidden errors! Microsoft recommend using the debugging version of Windows, which
shows up even more problems. However, | doubt it is worth the hassle for most
applications. wxWindows is designed to minimize the possibility of such errors, but they
can still happen occasionally, slipping through unnoticed because they are not severe
enough to cause a crash.

Genetic mutation

If we had sophisticated genetic algorithm tools that could be applied to programming, we
could use them. Until then, a common -- if rather irrational -- technique is to just make
arbitrary changes to the code until something different happens. You may have an
intuition why a change will make a difference; otherwise, just try altering the order of
code, comment lines out, anything to get over an impasse. Obviously, this is usually a
last resort.

15

Chapter 5 Alphabetical class reference

wxAcceleratorEntry

An object used by an application wishing to create an accelerator table (p. 17).
Derived from

None

Include files

<wx/accel.h>

See also

wxAcceleratorTable (p. 17), wxWindow::SetAcceleratorTable (p. 1226)

wxAcceleratorEntry::wxAcceleratorEntry

wxAcceleratorEntry()

Default constructor.

wxAcceleratorEntry(int flags, int keyCode, int cmd)

Constructor.

Parameters

flags
One of wxACCEL_ALT, wxACCEL_SHIFT, wxACCEL_CTRL and
WXACCEL_NORMAL. Indicates which modifier key is held down.

keyCode
The keycode to be detected. See Keycodes (p. 1309) for a full list of keycodes.

cmd
The menu or control command identifier.

wxAcceleratorEntry::GetCommand

CHAPTER 5

int GetCommand() const

Returns the command identifier for the accelerator table entry.

wxAcceleratorEntry::GetFlags

int GetFlags() const

Returns the flags for the accelerator table entry.

wxAcceleratoreEntry::GetKeyCode

int GetKeyCode() const

Returns the keycode for the accelerator table entry.

wxAcceleratorEntry::Set

void Set(int flags, int keyCode, int cmd)

Sets the accelerator entry parameters.

Parameters

flags
One of wxACCEL_ALT, wxACCEL_SHIFT, wxACCEL_CTRL and
WXACCEL_NORMAL. Indicates which maodifier key is held down.

keyCode
The keycode to be detected. See Keycodes (p. 1309) for a full list of keycodes.

cmd
The menu or control command identifier.

wxAcceleratorTable

An accelerator table allows the application to specify a table of keyboard shortcuts for
menus or other commands. On Windows, menu or button commands are supported; on
GTK, only menu commands are supported.

The object wxNullAcceleratorTable is defined to be a table with no data, and is the
initial accelerator table for a window.

CHAPTER 5

Derived from
wxObiject (p. 750)
Include files
<wx/accel.h>

Example

wxAccel eratorEntry entries[4];

entries[0].Set (WACCEL_CTRL, (int) 'N, | D_NEW W NDOW ;
entries[1].Set (WwACCEL_CTRL, (int) 'X, wxl D EXIT);
entries[2].Set (WwxACCEL_SH FT, (int) '"A', | D_ABQUT) ;
entries[3]. Set (WxACCEL_NORVAL, WKK_DELETE, wx| D_CUT) ;

wxAccel er at or Tabl e accel (4, entries);
franme- >Set Accel er at or Tabl e(accel) ;

Remarks

An accelerator takes precedence over normal processing and can be a convenient way
to program some event handling. For example, you can use an accelerator table to
enable a dialog with a multi-line text control to accept CTRL-Enter as meaning 'OK' (but
not in GTK at present).

See also

wxAcceleratorEntry (p. 16), wxWindow::SetAcceleratorTable (p. 1226)

wxAcceleratorTable::wxAcceleratorTable

wxAcceleratorTable()

Default constructor.

wxAcceleratorTable(const wxAcceleratorTable& bitmap)
Copy constructor.

wxAcceleratorTable(int n, wxAcceleratorEntry entries][])
Creates from an array of wxAcceleratorEntry (p. 16) objects.
wxAcceleratorTable(const wxString& resource)

Loads the accelerator table from a Windows resource (Windows only).

18

CHAPTER 5

Parameters

Number of accelerator entries.

entries
The array of entries.

resource
Name of a Windows accelerator.

wxPython note: The wxPython constructor accepts a list of wxAcceleratorEntry objects,

or 3-tuples consisting of flags, keyCode, and cmd values like you would construct
wxAcceleratorEntry objects with.

wxAcceleratorTable::~wxAcceleratorTable

~wxAcceleratorTable()

Destroys the wxAcceleratorTable object.

wxAcceleratorTable::Ok

bool Ok() const

Returns TRUE if the accelerator table is valid.

wxAcceleratorTable::operator =

wxAcceleratorTable& operator =(const wxAcceleratorTable& accel)

Assignment operator. This operator does not copy any data, but instead passes a
pointer to the data in accel and increments a reference counter. It is a fast operation.

Parameters

accel
Accelerator table to assign.

Return value

Returns reference to this object.

wxAcceleratorTable::operator ==

19

CHAPTER 5

bool operator ==(const wxAcceleratorTable& accel)

Equality operator. This operator tests whether the internal data pointers are equal (a fast
test).

Parameters

accel
Accelerator table to compare with

Return value

Returns TRUE if the accelerator tables were effectively equal, FALSE otherwise.

wxAcceleratorTable::operator !=

bool operator !=(const wxAcceleratorTable& accel)

Inequality operator. This operator tests whether the internal data pointers are unequal (a
fast test).

Parameters

accel
Accelerator table to compare with

Return value

Returns TRUE if the accelerator tables were unequal, FALSE otherwise.

wxActivateEvent

An activate event is sent when a window or application is being activated or deactivated.
Derived from

wxEvent (p. 377)
wxObiject (p. 750)

Include files
<wx/event.h>
Event table macros

To process an activate event, use these event handler macros to direct input to a

20

CHAPTER 5

member function that takes a wxActivateEvent argument.

EVT_ACTIVATE(func) Process a wxEVT_ACTIVATE event.
EVT_ACTIVATE_APP(func) Process a wxEVT_ACTIVATE_APP event.
Remarks

A top-level window (a dialog or frame) receives an activate event when is being
activated or deactivated. This is indicated visually by the title bar changing colour, and a
subwindow gaining the keyboard focus.

An application is activated or deactivated when one of its frames becomes activated, or
a frame becomes inactivate resulting in all application frames being inactive. (Windows

only)

See also

wxWindow::OnActivate (p. 1210), wxApp::OnActivate (p. 25), Event handling overview
(p. 1371)

wxActivateEvent::wxActivateEvent

wxActivateEvent(WXTYPE eventType = 0, bool active = TRUE, int id = 0)

Constructor.

wxActivateEvent::m_active

bool m_active

TRUE if the window or application was activated.

wxActivateEvent::GetActive

bool GetActive() const

Returns TRUE if the application or window is being activated, FALSE otherwise.

WXAppP

The wxApp class represents the application itself. It is used to:

21

CHAPTER 5

set and get application-wide properties;

implement the windowing system message or event loop;

initiate application processing via wxApp::Onlinit (p. 28);

allow default processing of events not handled by other objects in the
application.

You should use the macro IMPLEMENT_APP(appClass) in your application
implementation file to tell wxWindows how to create an instance of your application
class.

Use DECLARE_APP(appClass) in a header file if you want the wxGetApp function
(which returns a reference to your application object) to be visible to other files.

Derived from

wxEvtHandler (p. 380)
wxObject (p. 750)

Include files
<wx/app.h>
See also

WXApp overview (p. 1335)

WXAppP::WXAPpP

void wxApp()

Constructor. Called implicitly with a definition of a wxApp object.

WXApPP::~WXApPpP

void ~wxApp()

Destructor. Will be called implicitly on program exit if the wxApp object is created on the
stack.

WXApp::argc

int argc

Number of command line arguments (after environment-specific processing).

22

CHAPTER 5

WXApp::argv

char ** argv

Command line arguments (after environment-specific processing).

wWxApp::CreateLogTarget

virtual wxLog* CreateLogTarget()

Creates a wxLog class for the application to use for logging errors. The default
implementation returns a new wxLogGui class.

See also

wxLog (p. 655)

WxApp::Dispatch

void Dispatch()
Dispatches the next event in the windowing system event queue.

This can be used for programming event loops, e.g.

whi | e (app. Pendi ng())
Di spatch();

See also

wxApp::Pending (p. 29)

WxApp::GetAppName

wxString GetAppName() const

Returns the application name.

Remarks

wxWindows sets this to a reasonable default before calling wxApp::Onlnit (p. 28), but the

application can reset it at will.

WxApp::GetAuto3D

23

CHAPTER 5

bool GetAuto3D() const
Returns TRUE if 3D control mode is on, FALSE otherwise.
See also

wxApp::SetAuto3D (p. 30)

WxApp::GetClassName

wxString GetClassName() const

Gets the class name of the application. The class name may be used in a platform
specific manner to refer to the application.

See also

wxApp::SetClassName (p. 30)

WXApp::GetExitOnFrameDelete

bool GetExitFrameOnDelete() const

Returns TRUE if the application will exit when the top-level window is deleted, FALSE
otherwise.

See also

wxApp::SetExitOnFrameDelete (p. 31)

WxApp::GetTopWindow

wxWindow * GetTopWindow() const
Returns a pointer to the top window.
Remarks

If the top window hasn't been set using wxApp::SetTopWindow (p. 31), this function will
find the first top-level window (frame or dialog) and return that.

See also

SetTopWindow (p. 31)

24

CHAPTER 5

WxApp::GetUseBestVisual

bool GetUseBestVisual() const

Returns TRUE if the application will use the best visual on systems that support different
visuals, FALSE otherwise.

See also

SetUseBestVisual (p. 32)

WxApp::GetVendorName

wxString GetVendorName() const

Returns the application's vendor name.

WxApp::ExitMainLoop

void ExitMainLoop()

Call this to explicitly exit the main message (event) loop. You should normally exit the
main loop (and the application) by deleting the top window.

WxApp::Initialized

bool Initialized()

Returns TRUE if the application has been initialized (i.e. if wxApp::Onlinit (p. 28) has
returned successfully). This can be useful for error message routines to determine
which method of output is best for the current state of the program (some windowing
systems may not like dialogs to pop up before the main loop has been entered).

WXxApp::MainLoop

int MainLoop()

Called by wxWindows on creation of the application. Override this if you wish to provide
your own (environment-dependent) main loop.

Return value

Returns 0 under X, and the wParam of the WM_QUIT message under Windows.

WXxApp::OnActivate

25

CHAPTER 5

void OnActivate(wxActivateEvent& event)

Provide this member function to know whether the application is being activated or
deactivated (Windows only).

See also

wxWindow::OnActivate (p. 1210), wxActivateEvent (p. 20)

WXAppP::OnExit

int OnExit()

Provide this member function for any processing which needs to be done as the
application is about to exit.

WxApp::OnCharHook

void OnCharHook(wxKeyEvent& event)

This event handler function is called (under Windows only) to allow the window to
intercept keyboard events before they are processed by child windows.

Parameters

event
The keypress event.

Remarks
Use the wxEVT_CHAR_HOOK macro in your event table.

If you use this member, you can selectively consume keypress events by calling
wxEvent::Skip (p. 380) for characters the application is not interested in.

See also
wxKeyEvent (p. 610), wxWindow::OnChar (p. 1210), wxWindow::OnCharHook (p. 1211),
wxDialog::OnCharHook (p. 316)

WXApp::OnFatalException

void OnFatalException()

This function may be called if something fatal happens: an unhandled exception under
Win32 or a a fatal signal under Unix, for example. However, this will not happen by

26

CHAPTER 5

default: you have to explicitly call wxHandleFatalExceptions (p. 1284) to enable this.
Generally speaking, this function should only show a message to the user and return.
You may attempt to save unsaved data but this is not guaranteed to work and, in fact,
probably won't.

See also

wxHandleFatalExcetions (p. 1284)

WxApp::Onidle

void Onldle(wxldleEvent& event)

Override this member function for any processing which needs to be done when the
application is idle. You should call wxApp::Onldle from your own function, since this
forwards Onldle events to windows and also performs garbage collection for windows
whose destruction has been delayed.

wxWindows' strategy for Onldle processing is as follows. After pending user interface
events for an application have all been processed, wxWindows sends an Onldle event to
the application object. wxApp::Onldle itself sends an Onldle event to each application
window, allowing windows to do idle processing such as updating their appearance. If
either wxApp::Onldle or a window Onldle function requested more time, by caling
wxldleEvent::RequestMore (p. 561), wxWindows will send another Onldle event to the
application object. This will occur in a loop until either a user event is found to be
pending, or Onldle requests no more time. Then all pending user events are processed
until the system goes idle again, when Onldle is called, and so on.

See also

wxWindow::Onldle (p. 1216), wxldleEvent (p. 560), wxWindow::SendldleEvents (p. 29)

WXApp::OnEndSession

void OnEndSession(wxCloseEvent& event)

This is an event handler function called when the operating system or GUI session is
about to close down. The application has a chance to silently save information, and can
optionally close itself.

Use the EVT_END_SESSION event table macro to handle query end session events.

The default handler calls wxWindow::Close (p. 1195) with a TRUE argument (forcing the
application to close itself silently).

Remarks

27

CHAPTER 5

Under X, OnEndSession is called in response to the 'die’ event.

Under Windows, OnEndSession is called in response to the WM_ENDSESSION
message.

See also
wxWindow::Close (p. 1195), wxWindow::OnCloseWindow (p. 1213), wxCloseEvent (p.
125), wxApp::OnQueryEndSession (p. 28)

WXAppP::Onlnit

bool Oninit()

This must be provided by the application, and will usually create the application's main
window, optionally calling wxApp::SetTopWindow (p. 31).

Return TRUE to continue processing, FALSE to exit the application.

WXAppP::OnQueryEndSession

void OnQueryEndSession(wxCloseEvent& event)

This is an event handler function called when the operating system or GUI session is
about to close down. Typically, an application will try to save unsaved documents at this
point.

If wxCloseEvent::CanVeto (p. 125) returns TRUE, the application is allowed to veto the
shutdown by calling wxCloseEvent::Veto (p. 126). The application might veto the
shutdown after prompting for documents to be saved, and the user has cancelled the
save.

Use the EVT_QUERY_END_SESSION event table macro to handle query end session
events.

You should check whether the application is forcing the deletion of the window using
wxCloseEvent::GetForce (p. 126). If this is TRUE, destroy the window using
wxWindow::Destroy (p. 1197). If not, it is up to you whether you respond by destroying
the window.

The default handler calls wxWindow::Close (p. 1195) on the top-level window, and
vetoes the shutdown if Close returns FALSE. This will be sufficient for many
applications.

Remarks

Under X, OnQueryEndSession is called in response to the 'save session' event.

28

CHAPTER 5

Under Windows, OnQueryEndSession is called in response to the
WM_QUERYENDSESSION message.

See also

wxWindow::Close (p. 1195), wxWindow::OnCloseWindow (p. 1213), wxCloseEvent (p.
125), wxApp::OnEndSession (p. 27)

WXApp::ProcessMessage

bool ProcessMessage(MSG *msg)

Windows-only function for processing a message. This function is called from the main
message loop, checking for windows that may wish to process it. The function returns
TRUE if the message was processed, FALSE otherwise. If you use wxWindows with
another class library with its own message loop, you should make sure that this function
is called to allow wxWindows to receive messages. For example, to allow co-existance
with the Microsoft Foundation Classes, override the PreTranslateMessage function:

/1 Provide wxW ndows nessage | oop conpatibility
BOOL CTheApp: : PreTransl at eMessage(M5G *nsQ)

if (wxTheApp && wxTheApp- >Pr ocessMessage(nsg))
return TRUE;

el se
return CW nApp: : PreTransl at eMessage(nsq) ;

WxApp::Pending

bool Pending()
Returns TRUE if unprocessed events are in the window system event queue.
See also

wxApp::Dispatch (p. 23)

wWxApp::SendldleEvents

bool SendldleEvents()
Sends idle events to all top-level windows.
bool SendldleEvents(wxWindow* win)

Sends idle events to a window and its children.

29

CHAPTER 5

Remarks

These functions poll the top-level windows, and their children, for idle event processing.
If TRUE is returned, more Onldle processing is requested by one or more window.

See also

wxApp::Onldle (p. 27), wxWindow::Onldle (p. 1216), wxldleEvent (p. 560)

WxApp::SetAppName

void SetAppName(const wxString& name)

Sets the name of the application. The name may be used in dialogs (for example by the
document/view framework). A default name is set by wxWindows.

See also

WxApp::GetAppName (p. 23)

WXApp::SetAuto3D

void SetAuto3D(const bool auto3D)

Switches automatic 3D controls on or off.

Parameters

auto3D
If TRUE, all controls will be created with 3D appearances unless overridden for a
control or dialog. The default is TRUE

Remarks

This has an effect on Windows only.

See also

WxApp::GetAuto3D (p. 23)

wWxApp::SetClassName

void SetClassName(const wxString& name)

Sets the class name of the application. This may be used in a platform specific manner
to refer to the application.

30

CHAPTER 5

See also

wxApp::GetClassName (p. 24)

WXApp::SetExitOnFrameDelete

void SetExitOnFrameDelete(bool flag)

Allows the programmer to specify whether the application will exit when the top-level
frame is deleted.

Parameters
flag

If TRUE (the default), the application will exit when the top-level frame is deleted. If
FALSE, the application will continue to run.

WXApp::SetTopWindow

void SetTopWindow(wxWindow* window)

Sets the 'top' window. You can call this from within wxApp::Oninit (p. 28) to let
wxWindows know which is the main window. You don't have to set the top window; it is
only a convenience so that (for example) certain dialogs without parents can use a
specific window as the top window. If no top window is specified by the application,
wxWindows just uses the first frame or dialog in its top-level window list, when it needs
to use the top window.

Parameters

window
The new top window.

See also

WxApp::GetTopWindow (p. 24), wxApp::Onlnit (p. 28)

WxApp::SetVendorName

void SetVendorName(const wxString& name)

Sets the name of application's vendor. The name will be used in registry access. A
default name is set by wxWindows.

See also

wxApp::GetVendorName (p. 25)

31

CHAPTER 5

WxApp::GetStdicon

virtual wxlcon GetStdlcon(int which) const

Returns the icons used by wxWindows internally, e.g. the ones used for message
boxes. This function is used internally and can be overridden by the user to change the
default icons.

Parameters

which
One of the wxICON_XXX specifies which icon to return.

See wxMessageBox (p. 1266) for a list of icon identifiers.

WXApp::SetUseBestVisual

void SetUseBestVisual(bool flag)

Allows the programmer to specify whether the application will use the best visual on
systems that support several visual on the same display. This is typically the case under
Solaris and IRIX, where the default visual is only 8-bit whereas certain appications are
supposed to run in TrueColour mode.

Note that this function has to be called in the constructor of the wxApp instance and
won't have any effect when called later on.

This function currently only has effect under GTK.
Parameters

flag
If TRUE, the app will use the best visual.

WXArray

This section describes the so called dynamic arrays. This is a C array-like data structure
i.e. the member access time is constant (and not linear according to the number of
container elements as for linked lists). However, these arrays are dynamic in the sense
that they will automatically allocate more memory if there is not enough of it for adding a
new element. They also perform range checking on the index values but in debug mode
only, so please be sure to compile your application in debug mode to use it (see
debugging overview (p. 1362) for details). So, unlike the arrays in some other
languages, attempt to access an element beyond the arrays bound doesn't automatically

32

CHAPTER 5

expand the array but provokes an assertion failure instead in debug build and does
nothing (except possibly crashing your program) in the release build.

The array classes were designed to be reasonably efficient, both in terms of run-time
speed and memory consumption and the executable size. The speed of array item
access is, of course, constant (independent of the number of elements) making them
much more efficient than linked lists (wxList (p. 619)). Adding items to the arrays is also
implemented in more or less constant time - but the price is preallocating the memory in
advance. In the memory management (p. 35) section you may find some useful hints
about optimizing wxArray memory usage. As for executable size, all wxArray functions
are inline, so they do not take any space at all.

wxWindows has three different kinds of array. All of them derive from wxBaseArray class
which works with untyped data and can not be used directly. The standard macros
WX_DEFINE_ARRAY(), WX_DEFINE_SORTED_ARRAY() and
WX_DEFINE_OBJARRAY() are used to define a new class deriving from it. The classes
declared will be called in this documentation wxArray, wxSortedArray and wxObjArray
but you should keep in mind that no classes with such names actually exist, each time
you use one of WX_DEFINE_XXXARRAY macro you define a class with a new name. In
fact, these names are "template" names and each usage of one of the macros
mentioned above creates a template specialization for the given element type.

wxArray is suitable for storing integer types and pointers which it does not treat as
objects in any way, i.e. the element pointed to by the pointer is not deleted when the
element is removed from the array. It should be noted that all of wxArray's functions are
inline, so it costs strictly nothing to define as many array types as you want (either in
terms of the executable size or the speed) as long as at least one of them is defined and
this is always the case because wxArrays are used by wxWindows internally. This class
has one serious limitation: it can only be used for storing integral types (bool, char, short,
int, long and their unsigned variants) or pointers (of any kind). An attempt to use with
objects of sizeof() greater than sizeof(long) will provoke a runtime assertion failure,
however declaring a wxArray of floats will not (on the machines where sizeof(float) <=
sizeof(long)), yet it will not work, please use wxObjArray for storing floats and doubles
(NB: a more efficient wxArrayDouble class is scheduled for the next release of
wxWindows).

wxSortedArray is a wxArray variant which should be used when searching in the array is
a frequently used operation. It requires you to define an additional function for comparing
two elements of the array element type and always stores its items in the sorted order
(according to this function). Thus, itis Index() (p. 41) function execution time is
O(log(N)) instead ofO(N) for the usual arrays but the Add() (p. 40) method is slower: it is
O(log(N)) instead of constant time (neglecting time spent in memory allocation routine).
However, in a usual situation elements are added to an array much less often than
searched inside it, so wxSortedArray may lead to huge performance improvements
compared to wxArray. Finally, it should be noticed that, as wxArray, wxSortedArray can
be only used for storing integral types or pointers.

wxObjArray class treats its elements like "objects". It may delete them when they are
removed from the array (invoking the correct destructor) and copies them using the
objects copy constructor. In order to implement this behaviour the definition of the
wxObjArray arrays is split in two parts: first, you should declare the new wxObjArray

33

CHAPTER 5

class using WX_DECLARE_OBJARRAY() macro and then you must include the file
defining the implementation of template type: <wx/arrimpl.cpp> and define the array
class with WX_DEFINE_OBJARRAY() macro from a point where the full (as opposed to
‘forward’) declaration of the array elements class is in scope. As it probably sounds very
complicated here is an example:

#i ncl ude <wx/dynarray. h>

/1 we must forward declare the array because it is used inside the
cl ass

/1 declaration

class MyDirectory;

cl ass MyFil e;

/1 this defines two new types: ArrayOfDirectories and ArrayO Fil es
whi ch can be

/1 now used as shown bel ow

WK_DECLARE_OBJARRAY(MyDirectory, ArrayOfDirectories);

WK_DECLARE_OBJARRAY(MYFi | e, ArrayO Fil es);
class MyDirectory
{
ArrayOFDirectories msubdirectories; // all subdirectories
ArrayOrFil es mfiles; /1 all files in this directory
i

/1 now that we have MyDirectory declaration in scope we may finish the
/1 definition of ArrayODirectories -- note that this expands into sone
C++

/1 code and so should only be conpiled once (i.e., don't put this in

t he

/1 header, but into a source file or you will get linkin errors)
#include <wx/arrinpl.cpp>// this is a magic incantation which nust be
done!

WK_DEFI NE_OBJARRAY(ArrayOrDi rectori es);

/[l that's all!
Itis not as elegant as writing

typedef std::vector<MyDirectory> ArrayO'Directories;

but is not that complicated and allows the code to be compiled with any, however dumb,
C++ compiler in the world.

Things are much simpler for wxArray and wxSortedArray however: it is enough just to
write

WK_DEFI NE_ARRAY(M/Di rectory *, ArrayOfrDirectories);
WK_DEFI NE_SORTED_ARRAY(MW/File *, ArrayOFiles);

See also:

CHAPTER 5

Container classes overview (p. 1356), wxList (p. 619)
Include files

<wx/dynarray.h> for wxArray and wxSortedArray and additionally <wx/arrimpl.cpp> for
wxObjArray.

Macros for template array definition

To use an array you must first define the array class. This is done with the help of the
macros in this section. The class of array elements must be (at least) forward declared
for WX_DEFINE_ARRAY, WX_DEFINE_SORTED_ARRAY and
WX_DECLARE_OBJARRAY macros and must be fully declared before you use
WX_DEFINE_OBJARRAY macro.

WX_DEFINE_ARRAY (p. 36)
WX_DEFINE_EXPORTED_ARRAY (p. 36)
WX_DEFINE_SORTED_ARRAY (p. 37)
WX_DEFINE_SORTED_EXPORTED_ARRAY (p. 37)
WX_DECLARE_EXPORTED_OBJARRAY (p. 37)
WX_DEFINE_OBJARRAY (p. 38)

Constructors and destructors

Array classes are 100% C++ objects and as such they have the appropriate copy
constructors and assignment operators. Copying wxArray just copies the elements but
copying wxObjArray copies the arrays items. However, for memory-efficiency sake,
neither of these classes has virtual destructor. It is not very important for wxArray which
has trivial destructor anyhow, but it does mean that you should avoid deleting
wxObjArray through a wxBaseArray pointer (as you would never use wxBaseArray
anyhow it shouldn't be a problem) and that you should not derive your own classes from
the array classes.

wxArray default constructor (p. 39)

wxArray copy constructors and assignment operators (p. 39)
~wxArray (p. 40)

Memory management

Automatic array memory management is quite trivial: the array starts by preallocating
some minimal amount of memory (defined by WX_ARRAY_DEFAULT_INITIAL_SIZE)
and when further new items exhaust already allocated memory it reallocates it adding
50% of the currently allocated amount, but no more than some maximal number which is
defined by ARRAY_MAXSIZE_INCREMENT constant. Of course, this may lead to some

35

CHAPTER 5

memory being wasted (ARRAY_MAXSIZE_INCREMENT in the worst case, i.e. 4Kb in
the current implementation), so the Shrink() (p. 43) function is provided to unallocate the
extra memory. The Alloc() (p. 40) function can also be quite useful if you know in
advance how many items you are going to put in the array and will prevent the array
code from reallocating the memory more times than needed.

Alloc (p. 40)
Shrink (p. 43)

Number of elements and simple item access

Functions in this section return the total number of array elements and allow to retrieve
them - possibly using just the C array indexing [] operator which does exactly the same
as Item() (p. 42) method.

Count (p. 41)
GetCount (p. 41)
ISEmpty (p. 42)
Item (p. 42)

Last (p. 42)

Adding items

Add (p. 40)
Insert (p. 42)
WX_APPEND_ARRAY (p. 38)

Removing items

WX_CLEAR_ARRAY (p. 39)
Empty (p. 41)

Clear (p. 40)

RemoveAt (p. 43)

Remove (p. 43)

Searching and sorting

Index (p. 41)
Sort (p. 43)

WX_DEFINE_ARRAY

WX_DEFINE_ARRAY(T, name)

36

CHAPTER 5

WX_DEFINE_EXPORTED_ARRAY(T, name)

This macro defines a new array class named name and containing the elements of type
T. The second form is used when compiling DLL under Windows and array needs to be
visible outside the DLL. Example:

WK_DEFI NE_ARRAY(i nt, wxArraylnt);

cl ass Myd ass;
WK_DEFI NE_ARRAY(MW/O ass *, wxArrayOrf Myd ass);

Note that wxWindows predefines the following standard array classes: wxArrayint,
wxArrayLong and wxArrayPtrVoid.

WX_DEFINE_SORTED_ARRAY

WX_DEFINE_SORTED_ARRAY(T, name)
WX_DEFINE_SORTED_EXPORTED_ARRAY(T, name)

This macro defines a new sorted array class named name and containing the elements
of type T. The second form is used when compiling DLL under Windows and array
needs to be visible outside the DLL.

Example:
WK_DEFI NE_SORTED ARRAY(int, wxSortedArraylnt):

cl ass Myd ass;
WK_DEFI NE_SORTED _ARRAY(MW/ ass *, wxArrayOf Myd ass);

You will have to initialize the objects of this class by passing a comparison function to
the array object constructor like this:

int Conmparelnts(int nl, int n2)
{

}

wxSort edArrayl nt sorted(Conparelnts);

return nl - n2;

i nt ConpareM/Cl assObj ects(MyC ass *itenl, M/Class *iten?)

/] sort the itenms by their address...
return Stricnp(itenl->Cet Address(), itenR->CGet Address());

}
WXAr raytf MyCl ass anot her (Conpar eMyd assObj ect s) ;

WX_DECLARE_OBJARRAY

37

CHAPTER 5

WX_DECLARE_OBJARRAY(T, name)

WX_DECLARE_EXPORTED_OBJARRAY(T, name)

This macro declares a new object array class named name and containing the elements
of type T. The second form is used when compiling DLL under Windows and array

needs to be visible outside the DLL.

Example:

cl ass Myd ass;
WK_DEFI NE_OBJARRAY(MyCl ass, wxArrayOf Myd ass); // note: not "M/C ass

wn]

You must use WX_DEFINE_OBJARRAY() (p. 38) macro to define the array class -
otherwise you would get link errors.

WX_DEFINE_OBJARRAY

WX_DEFINE_OBJARRAY (name)

This macro defines the methods of the array class name not defined by the
WX_DECLARE_OBJARRAY() (p- 37) macro. You must include the file <wx/arrimpl.cpp>
before using this macro and you must have the full declaration of the class of array
elements in scope! If you forget to do the first, the error will be caught by the compiler,
but, unfortunately, many compilers will not give any warnings if you forget to do the
second - but the objects of the class will not be copied correctly and their real destructor
will not be called.

Example of usage:

/|l first declare the cl ass!
cl ass Myd ass

{

publi c:
My ass(const Myd assé&);
virtual ~Myd ass();

i

#i ncl ude <wx/arrinmpl.cpp>
WK_DEFI NE_OBJARRAY(WxAr rayOf Myl ass) ;

WX_APPEND_ARRAY

void WX_APPEND_ARRAY (wxArray& array, wxArray& other)

38

CHAPTER 5

This macro may be used to append all elements of the other array to the array. The two
arrays must be of the same type.

WX_CLEAR_ARRAY

void WX_CLEAR_ARRAY (wxArray& array)

This macro may be used to delete all elements of the array before emptying it. It can not
be used with wxObjArrays - but they will delete their elements anyhow when you call

Empty().

Default constructors

wxArray()

wxObjArray()

Default constructor initializes an empty array object.

wxSortedArray(int (*)(T first, T second)compareFunction)

There is no default constructor for wxSortedArray classes - you must initialize it with a
function to use for item comparison. It is a function which is passed two arguments of
type T where T is the array element type and which should return a negative, zero or

positive value according to whether the first element passed to it is less than, equal to or
greater than the second one.

WxArray copy constructor and assignment operator

wxArray(const wxArray& array)

wxSortedArray(const wxSortedArray& array)

wxObjArray(const wxObjArray& array)

wxArray& operator=(const wxArray& array)

wxSortedArray& operator=(const wxSortedArray& array)

wxObjArray& operator=(const wxObjArray& array)

The copy constructors and assignment operators perform a shallow array copy (i.e. they
don't copy the objects pointed to even if the source array contains the items of pointer

type) for wxArray and wxSortedArray and a deep copy (i.e. the array element are copied
too) for wxObjArray.

39

CHAPTER 5

WXArray::~wxArray

~wxArray()

~wxSortedArray()

~wxObjArray()

The wxObjArray destructor deletes all the items owned by the array. This is not done by

wxArray and wxSortedArray versions - you may use WX_CLEAR_ARRAY (p. 39) macro
for this.

wxArray::Add

void Add(T item)

void Add(T *item)

void Add(T &item)

Appends a new element to the array (where T is the type of the array elements.)

The first version is used with wxArray and wxSortedArray. The second and the third are
used with wxObjArray. There is an important difference between them: if you give a
pointer to the array, it will take ownership of it, i.e. will delete it when the item is deleted
from the array. If you give a reference to the array, however, the array will make a copy
of the item and will not take ownership of the original item. Once again, it only makes
sense for wxObjArrays because the other array types never take ownership of their
elements.

You may also use WX_APPEND_ARRAY (p. 38) macro to append all elements of one
array to another one.

wxArray::Alloc

void Alloc(size_t count)

Preallocates memory for a given number of array elements. It is worth calling when the

number of items which are going to be added to the array is known in advance because
it will save unneeded memory reallocation. If the array already has enough memory for

the given number of items, nothing happens.

wxArray::Clear

void Clear()

This function does the same as Empty() (p. 41) and additionally frees the memory

40

CHAPTER 5

allocated to the array.

wxArray::Count

size_t Count() const

Same as GetCount() (p. 41). This function is deprecated - it exists only for compatibility.

wxObjArray::Detach

T * Detach(size_t index)

Removes the element from the array, but, unlike, Remove() (p. 43) doesn't delete it. The
function returns the pointer to the removed element.

WxArray::Empty

void Empty()
Empties the array. For wxObjArray classes, this destroys all of the array elements. For

wxArray and wxSortedArray this does nothing except marking the array of being empty -
this function does not free the allocated memory, use Clear() (p. 40) for this.

wxArray::GetCount

size_t GetCount() const

Return the number of items in the array.

wxArray::Index

int Index(T& item, bool searchFromEnd = FALSE)
int Index(T& item)

The first version of the function is for wxArray and wxObjArray, the second is for
wxSortedArray only.

Searches the element in the array, starting from either beginning or the end depending
on the value of searchFromEnd parameter. wxNOT_FOUND is returned if the element is
not found, otherwise the index of the element is returned.

Linear search is used for the wxArray and wxObjArray classes but binary search in the
sorted array is used for wxSortedArray (this is why searchFromEnd parameter doesn't
make sense for it).

41

CHAPTER 5

NB: even for wxObjArray classes, the operator==() of the elements in the array is not
used by this function. It searches exactly the given element in the array and so will only
succeed if this element had been previously added to the array, but fail even if another,
identical, element is in the array.

WxArray::Insert

void Insert(T item, size_t n)
void Insert(T *item, size_t n)
void Insert(T &item, size_t n)

Insert a new item into the array before the item n - thus, Insert(something, Ou) will insert
an item in such way that it will become the first array element.

Please see Add() (p. 40) for explanation of the differences between the overloaded
versions of this function.

WxArray::IsEmpty

bool IsEmpty() const

Returns TRUE if the array is empty, FALSE otherwise.

WxArray::ltem

T& Item(size_t index) const

Returns the item at the given position in the array. If index is out of bounds, an assert
failure is raised in the debug builds but nothing special is done in the release build.

The returned value is of type "reference to the array element type" for all of the array
classes.

WxArray::Last

T& Last() const

Returns the last element in the array, i.e. is the same as Item(GetCount() - 1). An assert
failure is raised in the debug mode if the array is empty.

The returned value is of type "reference to the array element type" for all of the array
classes.

42

CHAPTER 5

WxArray::Remove

Remove(T item)

Removes an element from the array by value: the first item of the array equal to item is
removed, an assert failure will result from an attempt to remove an item which doesn't
exist in the array.

When an element is removed from wxObjArray it is deleted by the array - use Detach()
(p- 41) if you don't want this to happen. On the other hand, when an object is removed
from a wxArray nothing happens - you should delete it manually if required:

T *item= array[n];
delete item
array. Remove(n)

See also WX_CLEAR_ARRAY (p. 39) macro which deletes all elements of a wxArray
(supposed to contain pointers).

WxArray::RemoveAt

RemoveAt(size_t index)

Removes an element from the array by index. When an element is removed from
wxObijArray it is deleted by the array - use Detach() (p. 41) if you don't want this to
happen. On the other hand, when an object is removed from a wxArray nothing happens
- you should delete it manually if required:

T *item= array[n];
delete item
array. RenmoveAt (n)

See also WX_CLEAR_ARRAY (p. 39) macro which deletes all elements of a wxArray
(supposed to contain pointers).

wxArray::Shrink

void Shrink()
Frees all memory unused by the array. If the program knows that no new items will be

added to the array it may call Shrink() to reduce its memory usage. However, if a new
item is added to the array, some extra memory will be allocated again.

WxATrray::Sort

void Sort(CMPFUNC<T> compareFunction)

43

CHAPTER 5

The notation CMPFUNC<T> should be read as if we had the following declaration:

tenplate int COWFUNC(T *first, T *second);

where T is the type of the array elements. l.e. it is a function returning int which is
passed two arguments of type T *.

Sorts the array using the specified compare function: this function should return a
negative, zero or positive value according to whether the first element passed to it is less
than, equal to or greater than the second one.

wxSortedArray doesn't have this function because it is always sorted.

WxArrayString

wxArrayString is an efficient container for storing wxString (p. 1011) objects. It has the
same features as all wxArray (p. 32) classes, i.e. it dynamically expands when new
items are added to it (so it is as easy to use as a linked list), but the access time to the
elements is constant, instead of being linear in number of elements as in the case of
linked lists. It is also very size efficient and doesn't take more space than a C array
wxString[] type (wxArrayString uses its knowledge of internals of wxString class to
achieve this).

This class is used in the same way as other dynamic arrays (p. 32), except that no
WX_DEFINE_ARRAY declaration is needed for it. When a string is added or inserted in
the array, a copy of the string is created, so the original string may be safely deleted
(e.g. if it was a char * pointer the memory it was using can be freed immediately after
this). In general, there is no need to worry about string memory deallocation when using
this class - it will always free the memory it uses itself.

The references returned by Item (p. 48), Last (p. 48) or operator[] (p. 46) are not
constant, so the array elements may be modified in place like this

array. Last (). MakeUpper ();

There is also a varian of wxArrayString called wxSortedArrayString which has exactly
the same methods as wxArrayString, but which always keeps the string in it in
(alphabetical) order. wxSortedArrayString uses binary search in its Index (p. 47) function
(insteadf of linear search for wxArrayString::Index) which makes it much more efficient if
you add strings to the array rarely (because, of course, you have to pay for Index()
efficiency by having Add() be slower) but search for them often. Several methods should
not be used with sorted array (basicly, all which break the order of items) which is
mentioned in their description.

Final word: none of the methods of wxArrayString is virtual including its destructor, so
this class should not be used as a base class.

Derived from

CHAPTER 5

Although this is not true strictly speaking, this class may be considered as a
specialization of wxArray (p. 32) class for the wxString member data: it is not
implemented like this, but it does have all of the wxArray functions.

Include files

<wx/string.h>

See also

wxArray (p. 32), wxString (p. 1011), wxString overview (p. 1338)

WxArrayString::wxArrayString

wxArrayString()
wxArrayString(const wxArrayString& array)

Default and copy constructors.

Note that when an array is assigned to a sorted array, its contents is automatically
sorted during construction.

WxArrayString::~wxArrayString

~wxArrayString()

Destructor frees memory occupied by the array strings. For the performance reasons it
is not virtual, so this class should not be derived from.

WxArrayString::operator=

wxArrayString & operator =(const wxArrayString& array)

Assignment operator.

WxArrayString::operator==

bool operator ==(const wxArrayString& array) const

Compares 2 arrays respecting the case. Returns TRUE only if the arrays have the same
number of elements and the same strings in the same order.

45

CHAPTER 5

WxArrayString::operator!=

bool operator I=(const wxArrayString& array) const

Compares 2 arrays respecting the case. Returns TRUE if the arrays have different
number of elements or if the elements don't match pairwise.

WxArrayString::operator(]

wxString& operator[](size_t nindex)

Return the array element at position nindex. An assert failure will result from an attempt
to access an element beyond the end of array in debug mode, but no check is done in
release mode.

This is the operator version of Item (p. 48) method.

wxArrayString::Add

size_t Add(const wxString& str)

Appends a new item to the array and return the index of th new item in the array.
Warning: For sorted arrays, the index of the inserted item will not be, in general, equal
to GetCount() (p. 47) - 1 because the item is inserted at the correct position to keep the

array sorted and not appended.

See also: Insert (p. 47)

wxArrayString::Alloc

void Alloc(size_t nCount)

Preallocates enough memory to store nCount items. This function may be used to
improve array class performance before adding a known number of items consecutively.

See also: Dynamic array memory management (p. 35)

wxArrayString::Clear

void Clear()
Clears the array contents and frees memory.

See also: Empty (p. 47)

46

CHAPTER 5

wxArrayString::Count

size_t Count() const

Returns the number of items in the array. This function is deprecated and is for
backwards compatibility only, please use GetCount (p. 47) instead.

WxArrayString::Empty

void Empty()

Empties the array: after a call to this function GetCount (p. 47) will return 0. However,
this function does not free the memory used by the array and so should be used when
the array is going to be reused for storing other strings. Otherwise, you should use Clear
(p. 46) to empty the array and free memory.

wxArrayString::GetCount

size_t GetCount() const

Returns the number of items in the array.

WxArrayString::Index

int Index(const char * sz, bool bCase = TRUE, bool bFromEnd = FALSE)

Search the element in the array, starting from the beginning ifoFromEnd is FALSE or

from end otherwise. If bCase, comparison is case sensitive (default), otherwise the case
is ignored.

This function uses linear search for wxArrayString and binary search for

wxSortedArrayString, but it ignores the bCase and bFromEnd parameters in the latter
case.

Returns index of the first item matched or wxNOT_FOUND if there is no match.

wxArrayString::lnsert

void Insert(const wxString& str, size_t nindex)

Insert a new element in the array before the position nindex. Thus, for example, to insert
the string in the beginning of the array you would write

Insert("foo", 0);

a7

CHAPTER 5

If nindex is equal to GetCount() + 1 this function behaves as Add (p. 46).

Warning: this function should not be used with sorted arrays because it could break the
order of items and, for example, subsequent calls to Index() (p. 47) would then not work!

WxArrayString::ISEmpty

ISEmpty()

Returns TRUE if the array is empty, FALSE otherwise. This function returns the same
result as GetCount() == 0 but is probably easier to read.

WxArrayString::ltem

wxString& Item(size_t nindex) const

Return the array element at position nindex. An assert failure will result from an attempt
to access an element beyond the end of array in debug mode, but no check is done in
release mode.

See also operator[] (p. 46) for the operator version.

wxArrayString::Last

Last()

Returns the last element of the array. Attempt to access the last element of an empty
array will result in assert failure in debug build, however no checks are done in release

mode.

WxArrayString::Remove

void Remove(const char * sz)

Removes the first item matching this value. An assert failure is provoked by an attempt
to remove an element which does not exist in debug build.

See also: Index (p. 47)
void Remove(size_t nindex)

Removes the item at given position.

wxArrayString::Shrink

48

CHAPTER 5

void Shrink()

Releases the extra memory allocated by the array. This function is useful to minimize the
array memory consumption.

See also: Alloc (p. 46), Dynamic array memory management (p. 35)

WxArrayString::Sort

void Sort(bool reverseOrder = FALSE)

Sorts the array in alphabetical order or in reverse alphabetical order if reverseOrder is
TRUE.

Warning: this function should not be used with sorted array because it could break the
order of items and, for example, subsequent calls to Index() (p. 47) would then not work!

void Sort(CompareFunction compareFunction)

Sorts the array using the specified compareFunction for item
comparison.CompareFunction is defined as a function taking two const wxString&
parameters and returning an int value less than, equal to or greater than O if the first
string is less than, equal to or greater than the second one.

Example

The following example sorts strings by their length.

static int ConpareStringLen(const wxString& first, const wxString&
second)

{
}

return first.length() - second.|ength();

WXArrayString array,

array. Add("one");
array. Add("two");
array. Add("three");
array. Add("four");

array. Sort (ConpareStringlLen);

Warning: this function should not be used with sorted array because it could break the
order of items and, for example, subsequent calls to Index() (p. 47) would then not work!

49

CHAPTER 5

wxAutomationObject

The wxAutomationObiject class represents an OLE automation object containing a
single data member, an IDispatch pointer. It contains a number of functions that make it
easy to perform automation operations, and set and get properties. The class makes
heavy use of the wxVariant (p. 1174) class.

The usage of these classes is quite close to OLE automation usage in Visual Basic. The
APl is high-level, and the application can specify multiple properties in a single string.

The following example gets the current Excel instance, and if it exists, makes the active
cell bold.

wxAut omat i onChj ect excel Qbj ect ;
i f (excel Object.CGetlnstance("Excel . Application"))
excel oj ect . Put Property("ActiveCell.Font.Bold", TRUE);

Note that this class works under Windows only, and currently only for Visual C++.
Derived from

wxObiject (p. 750)

Include files

<wx/msw/ole/automtn.h>

See also

wxVariant (p. 1174)

wxAutomationObject::wxAutomationObject

wxAutomationObject(WXIDISPATCH* dispatchPtr = NULL)

Constructor, taking an optional IDispatch pointer which will be released when the object
is deleted.

wxAutomationObject::~wxAutomationObject

~wxAutomationObject()

Destructor. If the internal IDispatch pointer is non-null, it will be released.

50

CHAPTER 5

wxAutomationObject::CallMethod

wxVariant CallMethod(const wxString& method, int noArgs, wxVariant args[]) const
wxVariant CallMethod(const wxString& method, ...) const

Calls an automation method for this object. The first form takes a method name, number
of arguments, and an array of variants. The second form takes a method name and zero
to six constant references to variants. Since the variant class has constructors for the
basic data types, and C++ provides temporary objects automatically, both of the
following lines are syntactically valid:

wxVariant res = obj.Call Method("Suni, wxVariant(1l.2),
wxVariant (3.4));
wxVariant res = obj.Call Method("Sunt, 1.2, 3.4);

Note that method can contain dot-separated property names, to save the application
needing to call GetProperty several times using several temporary objects. For example:

obj ect. Cal | Met hod(" Acti veCel I . Font . ShowDi al og", "My caption");

wxAutomationObject::Createlnstance

bool Createlnstance(const wxString& classld) const

Creates a new object based on the class id, returning TRUE if the object was
successfully created, or FALSE if not.

wxAutomationObject::GetDispatchPtr

IDispatch* GetDispatchPtr() const

Gets the IDispatch pointer.

wxAutomationObject::Getinstance

bool Getinstance(const wxString& classld) const

Retrieves the current object associated with a class id, and attaches the IDispatch
pointer to this object. Returns TRUE if a pointer was succesfully retrieved, FALSE

51

CHAPTER 5

otherwise.
Note that this cannot cope with two instances of a given OLE object being active

simultaneously, such as two copies of Excel running. Which object is referenced cannot
currently be specified.

wxAutomationObject::GetObject

bool GetObject(wxAutomationObject&obj const wxString& property, int noArgs = 0,
wxVariant args[] = NULL) const

Retrieves a property from this object, assumed to be a dispatch pointer, and initialises
obj with it. To avoid having to deal with IDispatch pointers directly, use this function in
preference to wxAutomationObject::GetProperty (p. 52) when retrieving objects from
other objects.

Note that an IDispatch pointer is stored as a void* pointer in wxVariant objects.

See also

wxAutomationObject::GetProperty (p. 52)

wxAutomationObject::GetProperty

wxVariant GetProperty(const wxString& property, int noArgs, wxVariant argsl])
const

wxVariant GetProperty(const wxString& property, ...) const

Gets a property value from this object. The first form takes a property name, number of
arguments, and an array of variants. The second form takes a property name and zero
to six constant references to variants. Since the variant class has constructors for the
basic data types, and C++ provides temporary objects automatically, both of the
following lines are syntactically valid:

wxVari ant res
wxVari ant res

obj . Get Property("Range", wxVariant("Al"));
obj . Get Property("Range", "Al1");

Note that property can contain dot-separated property names, to save the application
needing to call GetProperty several times using several temporary objects.

wxAutomationObject::Invoke

bool Invoke(const wxString& member, int action, wxVariant& retValue, int noArgs,
wxVariant args[], const wxVariant* ptrArgs[] = 0) const

52

CHAPTER 5

This function is a low-level implementation that allows access to the IDispatch Invoke
function. It is not meant to be called directly by the application, but is used by other
convenience functions.

Parameters

member
The member function or property name.

action
Bitlist: may contain DISPATCH_PROPERTYPUT,
DISPATCH_PROPERTYPUTREF, DISPATCH_METHOD.
retValue
Return value (ignored if there is no return value)
NoArgs

Number of arguments in args or ptrArgs.

args
If non-null, contains an array of variants.

ptrArgs
If non-null, contains an array of constant pointers to variants.

Return value

TRUE if the operation was successful, FALSE otherwise.

Remarks

Two types of argument array are provided, so that when possible pointers are used for

efficiency.

wxAutomationObject::PutProperty

bool PutProperty(const wxString& property, int noArgs, wxVariant args[]) const
bool PutProperty(const wxString& property, ...)

Puts a property value into this object. The first form takes a property name, number of
arguments, and an array of variants. The second form takes a property name and zero
to six constant references to variants. Since the variant class has constructors for the
basic data types, and C++ provides temporary objects automatically, both of the
following lines are syntactically valid:

obj . Put Property("Val ue", wxVariant(23));

53

CHAPTER 5

obj . Put Property("Val ue", 23);

Note that property can contain dot-separated property names, to save the application
needing to call GetProperty several times using several temporary objects.

wxAutomationObject::SetDispatchPtr

void SetDispatchPtr(WXIDISPATCH* dispatchPtr)

Sets the IDispatch pointer. This function does not check if there is already an IDispatch
pointer.

You may need to cast from IDispatch* to WXIDISPATCH* when calling this function.

wxBitmap

This class encapsulates the concept of a platform-dependent bitmap, either
monochrome or colour.

Derived from

wxGDIObject (p. 477)
wxObiject (p. 750)

Include files
<wx/bitmap.h>
Predefined objects
Objects:
wxNullBitmap

See also

wxBitmap overview (p. 1396),supported bitmap file formats (p. 1397),wxDC::Blit (p.
283),wxlcon (p. 562), wxCursor (p. 184), wxBitmap (p. 54),wxMemoryDC (p. 682)

wxBitmap::wxBitmap

CHAPTER 5

wxBitmap()

Default constructor.

wxBitmap(const wxBitmap& bitmap)

Copy constructor.

wxBitmap(void* data, int type, int width, int height, int depth = -1)

Creates a bitmap from the given data which is interpreted in platform-dependent
manner.

wxBitmap(const char bits[], int width, int height
int depth = 1)

Creates a bitmap from an array of bits.

You should only use this function for monochrome bitmaps (depth 1) in portable
programs: in this case the bits parameter should contain an XBM image.

For other bit depths, the behaviour is platform dependent: under Windows, the data is
passed without any changes to the underlying Cr eat eBi t map() API. Under other
platforms, only monochrome bitmaps may be created using this constructor and
wxIlmage (p. 569) should be used for creating colour bitmaps from static data.
wxBitmap(int width, int height, int depth = -1)

Creates a new bitmap. A depth of -1 indicates the depth of the current screen or visual.
Some platforms only support 1 for monochrome and -1 for the current colour setting.

wxBitmap(const char** bits)

Creates a bitmap from XPM data.
wxBitmap(const wxString& name, long type)
Loads a bitmap from a file or resource.
Parameters

bits
Specifies an array of pixel values.

width
Specifies the width of the bitmap.

height
Specifies the height of the bitmap.

depth

55

CHAPTER 5

Specifies the depth of the bitmap. If this is omitted, the display depth of the screen
is used.

name

This can refer to a resource name under MS Windows, or a filename under MS
Windows and X. Its meaning is determined by the type parameter.

type
May be one of the following:

wWxBITMAP_TYPE_BMP Load a Windows bitmap file.

wWxBITMAP_TYPE_BMP_RESOURCE Load a Windows bitmap from the
resource database.

WxBITMAP_TYPE_GIF Load a GIF bitmap file.

WXxBITMAP_TYPE_XBM Load an X bitmap file.

WXxBITMAP_TYPE_XPM Load an XPM bitmap file.
wWxBITMAP_TYPE_RESOURCE Load a Windows resource name.

The validity of these flags depends on the platform and wxWindows configuration.
If all possible wxWindows settings are used, the Windows platform supports BMP
file, BMP resource, XPM data, and XPM. Under wxGTK, the available formats are
BMP file, XPM data, XPM file, and PNG file. Under wxMotif, the available formats
are XBM data, XBM file, XPM data, XPM file.

In addition, wxBitmap can read all formats that wxlmage (p. 569) can, which
currently include wxBITMAP_TYPE_JPEG, wxBITMAP_TYPE_TIF,
WXBITMAP_TYPE_PNG, wxBITMAP_TYPE_GIF, wxBITMAP_TYPE_PCX, and
WxBITMAP_TYPE_PNM. Of course, you must have wxlmage handlers loaded.

Remarks

The first form constructs a bitmap object with no data; an assignment or another
member function such as Create or LoadFile must be called subsequently.

The second and third forms provide copy constructors. Note that these do not copy the
bitmap data, but instead a pointer to the data, keeping a reference count. They are
therefore very efficient operations.

The fourth form constructs a bitmap from data whose type and value depends on the
value of the type argument.

The fifth form constructs a (usually monochrome) bitmap from an array of pixel values,
under both X and Windows.

The sixth form constructs a new bitmap.

56

CHAPTER 5

The seventh form constructs a bitmap from pixmap (XPM) data, if wxWindows has been
configured to incorporate this feature.

To use this constructor, you must first include an XPM file. For example, assuming that
the file mybi t map. xpmcontains an XPM array of character pointers called mybitmap:

#i ncl ude "nybit map. xpnt

wxBi t map *bitmap = new wxBi t map(nybi t map) ;

The eighth form constructs a bitmap from a file or resource. name can refer to a
resource name under MS Windows, or a filename under MS Windows and X.

Under Windows, type defaults to wxBITMAP_TYPE_BMP_RESOURCE. Under X, type
defaults to wxBITMAP_TYPE_XPM.

See also
wxBitmap::LoadFile (p. 61)
wxPython note: Constructors supported by wxPython are:
wxBitmap(name, flag) Loads a bitmap from a file
wxBitmapFromData(data, type, width, height, depth=1) Creates a
bitmap from the given data, which can be of
arbitrary type.
wxNoRefBitmap(name, flag) This one won't own the reference, so
Python won't call the destructor, this is good for
toolbars and such where the parent will

manage the bitmap.

wxEmptyBitmap(width, height, depth = -1) Creates an empty bitmap
with the given specifications

wxBitmap::~wxBitmap

~wxBitmap()

Destroys the wxBitmap object and possibly the underlying bitmap data. Because
reference counting is used, the bitmap may not actually be destroyed at this point - only
when the reference count is zero will the data be deleted.

If the application omits to delete the bitmap explicitly, the bitmap will be destroyed
automatically by wxWindows when the application exits.

57

CHAPTER 5

Do not delete a bitmap that is selected into a memory device context.

wxBitmap::AddHandler

static void AddHandler(wxBitmapHandler* handler)

Adds a handler to the end of the static list of format handlers.

handler
A new bitmap format handler object. There is usually only one instance of a given
handler class in an application session.

See also

wxBitmapHandler (p. 66)

wxBitmap::CleanUpHandlers

static void CleanUpHandlers()
Deletes all bitmap handlers.

This function is called by wxWindows on exit.

wxBitmap::Create

virtual bool Create(int width, int height, int depth = -1)

Creates a fresh bitmap. If the final argument is omitted, the display depth of the screen is
used.

virtual bool Create(void* data, int type, int width, int height, int depth = -1)
Creates a bitmap from the given data, which can be of arbitrary type.
Parameters

width
The width of the bitmap in pixels.

height
The height of the bitmap in pixels.

depth
The depth of the bitmap in pixels. If this is -1, the screen depth is used.

data

58

CHAPTER 5

Data whose type depends on the value of type.

type
A bitmap type identifier - see wxBitmap::wxBitmap (p. 54) for a list of possible
values.

Return value

TRUE if the call succeeded, FALSE otherwise.

Remarks

The first form works on all platforms. The portability of the second form depends on the
type of data.

See also

wxBitmap::wxBitmap (p. 54)

wxBitmap::FindHandler

static wxBitmapHandler* FindHandler(const wxString& name)

Finds the handler with the given name.

static wxBitmapHandler* FindHandler(const wxString& extension, long bitmapType)
Finds the handler associated with the given extension and type.

static wxBitmapHandler* FindHandler(long bitmapType)

Finds the handler associated with the given bitmap type.

name
The handler name.

extension
The file extension, such as "bmp".

bitmapType
The bitmap type, such as wxBITMAP_TYPE_BMP.

Return value
A pointer to the handler if found, NULL otherwise.
See also

wxBitmapHandler (p. 66)

59

CHAPTER 5

wxBitmap::GetDepth

int GetDepth() const

Gets the colour depth of the bitmap. A value of 1 indicates a monochrome bitmap.

wxBitmap::GetHandlers

static wxList& GetHandlers()
Returns the static list of bitmap format handlers.
See also

wxBitmapHandler (p. 66)

wxBitmap::GetHeight

int GetHeight() const

Gets the height of the bitmap in pixels.

wxBitmap::GetPalette

wxPalette* GetPalette() const

Gets the associated palette (if any) which may have been loaded from a file or set for the
bitmap.

See also

wxPalette (p. 764)

wxBitmap::GetMask

wxMask* GetMask() const

Gets the associated mask (if any) which may have been loaded from a file or set for the
bitmap.

See also

wxBitmap::SetMask (p. 64), wxMask (p. 663)

60

CHAPTER 5

wxBitmap::GetWidth

int GetWidth() const
Gets the width of the bitmap in pixels.
See also

wxBitmap::GetHeight (p. 60)

wxBitmap::GetSubBitmap

wxBitmap GetSubBitmap(const wxRect&rect) const

Returns a sub bitmap of the current one as long as the rect belongs entirely to the
bitmap. This function preserves bit depth and mask information.

wxBitmap::InitStandardHandlers

static void InitStandardHandlers()

Adds the standard bitmap format handlers, which, depending on wxWindows
configuration, can be handlers for Windows bitmap, Windows bitmap resource, and
XPM.

This function is called by wxWindows on startup.

See also

wxBitmapHandler (p. 66)

wxBitmap::InsertHandler

static void InsertHandler(wxBitmapHandler* handler)

Adds a handler at the start of the static list of format handlers.

handler
A new bitmap format handler object. There is usually only one instance of a given
handler class in an application session.

See also

wxBitmapHandler (p. 66)

wxBitmap::LoadFile

61

CHAPTER 5

bool LoadFile(const wxString& name, long type)
Loads a bitmap from a file or resource.
Parameters

name

Either a filename or a Windows resource name. The meaning of name is
determined by the type parameter.

type
One of the following values:

wWxBITMAP_TYPE_BMP Load a Windows bitmap file.

wWxBITMAP_TYPE_BMP_RESOURCE Load a Windows bitmap from the
resource database.

WxBITMAP_TYPE_GIF Load a GIF bitmap file.
WXxBITMAP_TYPE_XBM Load an X bitmap file.
WXxBITMAP_TYPE_XPM Load an XPM bitmap file.
The validity of these flags depends on the platform and wxWindows configuration.
In addition, wxBitmap can read all formats that wxlmage (p. 569) can
(WxBITMAP_TYPE_JPEG, wxBITMAP_TYPE_PNG, wxBITMAP_TYPE_GIF,
WXBITMAP_TYPE_PCX, wxBITMAP_TYPE_PNM). (Of course you must have
wxIimage handlers loaded.)
Return value
TRUE if the operation succeeded, FALSE otherwise.
Remarks
A palette may be associated with the bitmap if one exists (especially for colour Windows
bitmaps), and if the code supports it. You can check if one has been created by using
the GetPalette (p. 60) member.

See also

wxBitmap::SaveFile (p. 63)

wxBitmap::Ok

bool Ok() const

62

CHAPTER 5

Returns TRUE if bitmap data is present.

wxBitmap::RemoveHandler

static bool RemoveHandler(const wxString& name)
Finds the handler with the given name, and removes it. The handler is not deleted.

name
The handler name.

Return value
TRUE if the handler was found and removed, FALSE otherwise.
See also

wxBitmapHandler (p. 66)

wxBitmap::SaveFile

bool SaveFile(const wxString& name, int type, wxPalette* palette = NULL)
Saves a bitmap in the named file.
Parameters

name
A filename. The meaning of name is determined by the type parameter.

type
One of the following values:

wWxBITMAP_TYPE_BMP Save a Windows bitmap file.
WxBITMAP_TYPE_GIF Save a GIF bitmap file.

WXBITMAP_TYPE_XBM Save an X bitmap file.

WXBITMAP_TYPE_XPM Save an XPM bitmap file.

The validity of these flags depends on the platform and wxWindows configuration.
In addition, wxBitmap can save all formats that wxlmage (p. 569) can
(WxBITMAP_TYPE_JPEG, wxBITMAP_TYPE_PNG). (Of course you must have

wxIimage handlers loaded.)

palette

63

CHAPTER 5

An optional palette used for saving the bitmap.
Return value

TRUE if the operation succeeded, FALSE otherwise.

Remarks

Depending on how wxWindows has been configured, not all formats may be available.
See also

wxBitmap::LoadFile (p. 61)

wxBitmap::SetDepth

void SetDepth(int depth)
Sets the depth member (does not affect the bitmap data).
Parameters
depth
Bitmap depth.

wxBitmap::SetHeight

void SetHeight(int height)

Sets the height member (does not affect the bitmap data).
Parameters

height

Bitmap height in pixels.

wxBitmap::SetMask

void SetMask(wxMask* mask)

Sets the mask for this bitmap.

Remarks

The bitmap object owns the mask once this has been called.

See also

CHAPTER 5

wxBitmap::GetMask (p. 60), wxMask (p. 663)

wxBitmap::SetOk

void SetOk(int isOk)
Sets the validity member (does not affect the bitmap data).
Parameters
isOk
Validity flag.

wxBitmap::SetPalette

void SetPalette(const wxPalette& palette)
Sets the associated palette.
Parameters

palette
The palette to set.

See also

wxPalette (p. 764)

wxBitmap::SetWidth

void SetWidth(int width)

Sets the width member (does not affect the bitmap data).
Parameters

width

Bitmap width in pixels.

wxBitmap::operator =

wxBitmap& operator =(const wxBitmap& bitmap)

Assignment operator. This operator does not copy any data, but instead passes a
pointer to the data in bitmap and increments a reference counter. It is a fast operation.

65

CHAPTER 5

Parameters

bitmap
Bitmap to assign.

Return value

Returns 'this' object.

wxBitmap::operator ==

bool operator ==(const wxBitmapé& bitmap)

Equality operator. This operator tests whether the internal data pointers are equal (a fast
test).

Parameters

bitmap
Bitmap to compare with 'this’

Return value

Returns TRUE if the bitmaps were effectively equal, FALSE otherwise.

wxBitmap::operator =

bool operator I=(const wxBitmap& bitmap)

Inequality operator. This operator tests whether the internal data pointers are unequal (a
fast test).

Parameters

bitmap
Bitmap to compare with 'this’

Return value

Returns TRUE if the bitmaps were unequal, FALSE otherwise.

wxBitmapHandler

Overview (p. 1396)

66

CHAPTER 5

This is the base class for implementing bitmap file loading/saving, and bitmap creation
from data. It is used within wxBitmap and is not normally seen by the application.

If you wish to extend the capabilities of wxBitmap, derive a class from wxBitmapHandler
and add the handler using wxBitmap::AddHandler (p. 58) in your application initialisation.

Derived from
wxObiject (p. 750)
Include files
<wx/bitmap.h>
See also

wxBitmap (p. 54), wxlcon (p. 562), wxCursor (p. 184)

wxBitmapHandler::wxBitmapHandler

wxBitmapHandler()

Default constructor. In your own default constructor, initialise the members m_name,
m_extension and m_type.

wxBitmapHandler::~wxBitmapHandler

~wxBitmapHandler()

Destroys the wxBitmapHandler object.

wxBitmapHandler::Create

virtual bool Create(wxBitmap* bitmap, void* data, int type, int width, int height, int
depth =-1)

Creates a bitmap from the given data, which can be of arbitrary type. The wxBitmap
object bitmap is manipulated by this function.

Parameters

bitmap
The wxBitmap object.

width

67

CHAPTER 5

The width of the bitmap in pixels.

height
The height of the bitmap in pixels.

depth
The depth of the bitmap in pixels. If this is -1, the screen depth is used.

data
Data whose type depends on the value of type.

type
A bitmap type identifier - see wxBitmapHandler::wxBitmapHandler (p. 54) for a list
of possible values.

Return value

TRUE if the call succeeded, FALSE otherwise (the default).

wxBitmapHandler::GetName

wxString GetName() const

Gets the name of this handler.

wxBitmapHandler::GetExtension

wxString GetExtension() const

Gets the file extension associated with this handler.

wxBitmapHandler::GetType

long GetType() const

Gets the bitmap type associated with this handler.

wxBitmapHandler::LoadFile

bool LoadFile(wxBitmap* bitmap, const wxString& name, long type)
Loads a bitmap from a file or resource, putting the resulting data into bitmap.
Parameters

bitmap

68

CHAPTER 5

The bitmap object which is to be affected by this operation.
name

Either a filename or a Windows resource name. The meaning of name is
determined by the type parameter.

type
See wxBitmap::wxBitmap (p. 54) for values this can take.

Return value

TRUE if the operation succeeded, FALSE otherwise.
See also

wxBitmap::LoadFile (p. 61)

wxBitmap::SaveFile (p. 63)
wxBitmapHandler::SaveFile (p. 69)

wxBitmapHandler::SaveFile

bool SaveFile(wxBitmap* bitmap, const wxString& name, int type, wxPalette* palette
= NULL)

Saves a bitmap in the named file.
Parameters

bitmap
The bitmap object which is to be affected by this operation.

name
A filename. The meaning of name is determined by the type parameter.

type
See wxBitmap::wxBitmap (p. 54) for values this can take.

palette
An optional palette used for saving the bitmap.

Return value

TRUE if the operation succeeded, FALSE otherwise.
See also

wxBitmap::LoadFile (p. 61)

wxBitmap::SaveFile (p. 63)
wxBitmapHandler::LoadFile (p. 68)

69

CHAPTER 5

wxBitmapHandler::SetName

void SetName(const wxString& name)
Sets the handler name.

Parameters

name

Handler name.

wxBitmapHandler::SetExtension

void SetExtension(const wxString& extension)
Sets the handler extension.

Parameters

extension

Handler extension.

wxBitmapHandler::SetType

void SetType(long type)
Sets the handler type.
Parameters

name
Handler type.

wxBitmapButton

A bitmap button is a control that contains a bitmap. It may be placed on a dialog box (p.
312) or panel (p. 768), or indeed almost any other window.

Derived from

wxButton (p. 89)
wxControl (p. 177)
wxWindow (p. 1189)
wxEvtHandler (p. 380)

70

CHAPTER 5

wxObiject (p. 750)

Include files

<wx/bmpbuttn.h>

Remarks

A bitmap button can be supplied with a single bitmap, and wxWindows will draw all

button states using this bitmap. If the application needs more control, additional bitmaps

for the selected state, unpressed focused state, and greyed-out state may be supplied.

Window styles

wxBU_AUTODRAW If this is specified, the button will be drawn automatically
using the label bitmap only, providing a 3D-look border. If

this style is not specified, the button will be drawn without
borders and using all provided bitmaps. WIN32 only.

wxBU_LEFT Left-justifies the bitmap label. WIN32 only.

wxBU_TOP Aligns the bitmap label to the top of the button. WIN32
only.

wxBU_RIGHT Right-justifies the bitmap label. WIN32 only.

wxBU_BOTTOM Aligns the bitmap label to the bottom of the button. WIN32
only.

See also window styles overview (p. 1378).

Event handling

EVT_BUTTON(id, func) Process a
wXEVT_COMMAND_BUTTON_CLICKED
event, when the button is clicked.

See also

wxButton (p. 89)

wxBitmapButton::wxBitmapButton

wxBitmapButton()
Default constructor.
wxBitmapButton(wxWindow* parent, wxWindowlID id, const wxBitmap& bitmap,

const wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long
style = wxBU_AUTODRAW, const wxValidator& validator = wxDefaultValidator, const

71

CHAPTER 5

wxString& name = "button”)
Constructor, creating and showing a button.
Parameters

parent
Parent window. Must not be NULL.

id
Button identifier. A value of -1 indicates a default value.

bitmap
Bitmap to be displayed.

pos
Button position.

size
Button size. If the default size (-1, -1) is specified then the button is sized
appropriately for the bitmap.

style
Window style. See wxBitmapButton (p. 70).

validator
Window validator.

name
Window name.

Remarks

The bitmap parameter is normally the only bitmap you need to provide, and wxWindows
will draw the button correctly in its different states. If you want more control, call any of
the functions wxBitmapButton::SetBitmapSelected (p. 75),
wxBitmapButton::SetBitmapFocus (p. 74), wxBitmapButton::SetBitmapDisabled (p. 74).
Note that the bitmap passed is smaller than the actual button created.

See also

wxBitmapButton::Create (p. 73), wxValidator (p. 1171)

wxBitmapButton::~wxBitmapButton

~wxBitmapButton()

Destructor, destroying the button.

72

CHAPTER 5

wxBitmapButton::Create

bool Create(wxWindow* parent, wxWindowlID id, const wxBitmapé& bitmap, const
wxPoint& pos, const wxSize& size = wxDefaultSize, long style = 0, const
wxValidator& validator, const wxString& name = "button")

Button creation function for two-step creation. For more details, see
wxBitmapButton::wxBitmapButton (p. 71).

wxBitmapButton::GetBitmapDisabled

wxBitmap& GetBitmapDisabled() const
Returns the bitmap for the disabled state.
Return value

A reference to the disabled state bitmap.
See also

wxBitmapButton::SetBitmapDisabled (p. 74)

wxBitmapButton::GetBitmapFocus

wxBitmap& GetBitmapFocus() const
Returns the bitmap for the focused state.
Return value

A reference to the focused state bitmap.
See also

wxBitmapButton::SetBitmapFocus (p. 74)

wxBitmapButton::GetBitmapLabel

wxBitmap& GetBitmapLabel() const

Returns the label bitmap (the one passed to the constructor).
Return value

A reference to the button's label bitmap.

73

CHAPTER 5

See also

wxBitmapButton::SetBitmapLabel (p. 75)

wxBitmapButton::GetBitmapSelected

wxBitmap& GetBitmapSelected() const
Returns the bitmap for the selected state.
Return value

A reference to the selected state bitmap.
See also

wxBitmapButton::SetBitmapSelected (p. 75)

wxBitmapButton::SetBitmapDisabled

void SetBitmapDisabled(const wxBitmapé& bitmap)
Sets the bitmap for the disabled button appearance.
Parameters

bitmap
The bitmap to set.

See also
wxBitmapButton::GetBitmapDisabled (p. 73), wxBitmapButton::SetBitmapLabel (p. 75),
wxBitmapButton::SetBitmapSelected (p. 75), wxBitmapButton::SetBitmapFocus (p. 74)

wxBitmapButton::SetBitmapFocus

void SetBitmapFocus(const wxBitmapé& bitmap)
Sets the bitmap for the button appearance when it has the keyboard focus.
Parameters

bitmap
The bitmap to set.

See also

74

CHAPTER 5

wxBitmapButton::GetBitmapFocus (p. 73), wxBitmapButton::SetBitmapLabel (p. 75),
wxBitmapButton::SetBitmapSelected (p. 75), wxBitmapButton::SetBitmapDisabled (p.
74)

wxBitmapButton::SetBitmapLabel

void SetBitmapLabel(const wxBitmapé& bitmap)
Sets the bitmap label for the button.
Parameters

bitmap
The bitmap label to set.

Remarks

This is the bitmap used for the unselected state, and for all other states if no other
bitmaps are provided.

See also

wxBitmapButton::GetBitmapLabel (p. 73)

wxBitmapButton::SetBitmapSelected

void SetBitmapSelected(const wxBitmapé& bitmap)
Sets the bitmap for the selected (depressed) button appearance.
Parameters

bitmap
The bitmap to set.

See also

wxBitmapButton::GetBitmapSelected (p. 74), wxBitmapButton::SetBitmapLabel (p. 75),
wxBitmapButton::SetBitmapFocus (p. 74), wxBitmapButton::SetBitmapDisabled (p. 74)

wxBitmapDataObject

wxBitmapDataObiject is a specialization of wxDataObject for bitmap data. It can be used
without change to paste data into the wxClipboard (p. 121) or a wxDropSource (p. 368).

75

CHAPTER 5

A user may wish to derive a new class from this class for providing a bitmap on-demand
in order to minimize memory consumption when offering data in several formats, such as
a bitmap and GIF.

wxPython note: If you wish to create a derived wxBitmapDataObiject class in wxPython
you should derive the class from wxPyBitmapDataObject in order to get Python-aware
capabilities for the various virtual methods.

Virtual functions to override

This class may be used as is, but GetBitmap (p. 76) may be overridden to increase
efficiency.

Derived from

wxDataObjectSimple (p. 202)
wxDataObject (p. 197)

Include files

<wx/dataobj.h>

See also

Clipboard and drag and drop overview (p. 1429), wxDataObject (p. 197),
wxDataObjectSimple (p. 202), wxFileDataObject (p. 409), wxTextDataObject (p. 1088),
wxDataObject (p. 197)

wxBitmapDataObject(const wxBitmap& bitmap = wxNullBitmap)

Constructor, optionally passing a bitmap (otherwise use SetBitmap (p. 76) later).

wxBitmapDataObject::GetBitmap

virtual wxBitmap GetBitmap() const
Returns the bitmap associated with the data object. You may wish to override this

method when offering data on-demand, but this is not required by wxWindows' internals.
Use this method to get data in bitmap form from the wxClipboard (p. 121).

wxBitmapDataObject::SetBitmap

virtual void SetBitmap(const wxBitmap& bitmap)

Sets the bitmap associated with the data object. This method is called when the data
object receives data. Usually there will be no reason to override this function.

76

CHAPTER 5

wxBoolFormValidator

This class validates a boolean value for a form view (p. 831). The associated control
must be a wxCheckBox.

See also

Property validator classes (p. 1462)

wxBoolFormValidator::wxBoolFormValidator

void wxBoolFormValidator(long flags=0)

Constructor.

wxBoolListValidator

This class validates a boolean value for a property list view (p. 838).
See also

Validator classes (p. 1462)

wxBoolListValidator::wxBoolListValidator

void wxBoolListValidator(long flags=0)

Constructor.

wxBoxSizer

The basic idea behind a box sizer is that windows will most often be laid out in rather
simple basic geomerty, typically in a row or a column or several hierachies of either.

As an example, we will construct a dialog that will contain a text field at the top and two
buttons at the bottom. This can be seen as a top-hierarchy column with the text at the

77

CHAPTER 5

top and buttons at the bottom and a low-hierchary row with an OK button to the left and
a Cancel button to the right. In many cases (particulary dialogs under Unix and normal
frames) the main window will be resizable by the user and this change of size will have
to get propagated to its children. In our case, we want the text area to grow with the
dialog, whereas the button shall have a fixed size. In addition, there will be a thin border
around all controls to make the dialog look nice and - to make matter worse - the buttons
shall be centred as the width of the dialog changes.

It is the unique feature of a box sizer, that it can grow in both directions (height and
width) but can distribute its growth in the main direction (horizontal for a row) unevenly
among its children. In our example case, the vertical sizer is supposed to propagate all
its height changes to only the text area, not to the button area. This is determined by the
option parameter when adding a window (or another sizer) to a sizer. It is interpreted as
a weight factor, i.e. it can be zero, indicating that the window may not be resized at all, or
above zero. If several windows have a value above zero, the value is interpreted relative
to the sum of all weight factors of the sizer, so when adding two windows with a value of
1, they will both get resized equally much and each half as much as the sizer owning
them. Then what do we do when a column sizer changes its width? This behaviour is
controlled by flags (the second parameter of the Add() function): Zero or no flag
indicates that the window will preserve it is original size, wxGROW flag (same as
WXEXPAND) forces the window to grow with the sizer, and wxSHAPED flag tells the
window to change it is size proportionally, preserving original aspect ratio. When
wXGROW flag is not used, the item can be aligned within available space.
WXALIGN_LEFT, wxALIGN_TOP, wxALIGN_RIGHT, wxALIGN_BOTTOM,
WXALIGN_CENTER_HORIZONTAL and wxALIGN_CENTER_VERTICAL do what they
say. WXALIGN_CENTRE (same as wxALIGN_CENTER) is defined as
(WXALIGN_CENTER_HORIZONTAL | wxALIGN_CENTER_VERTICAL). Default
alignment is wxALIGN_LEFT | wxALIGN_TOP.

As mentioned above, any window belonging to a sizer may have border, and it can be
specified which of the four sides may have this border, using the wxTOP, wxLEFT,
WXRIGHT and wxBOTTOM constants or wxALL for all directions (and you may also use
WXNORTH, wxWEST etc instead). These flags can be used in combination with the
alignment flags above as the second parameter of the Add() method using the binary or
operator |. The sizer of the border also must be made known, and it is the third
parameter in the Add() method. This means, that the entire behaviour of a sizer and its
children can be controlled by the three parameters of the Add() method.

/1 we want to get a dialog that is stretchabl e because it
/!l has a text ctrl at the top and two buttons at the bottom

MyDi al og: : MyDi al og(wxFrame *parent, wxWndow D id, const wxString
&itle)

wxDi al og(parent, id, title, wxDefaultPosition, wxDefaultSize,
wxDl ALOG STYLE | wxRESI ZE_BORDER)
{

wxBoxSi zer *topsizer = new wxBoxSi zer (wxVERTI CAL);

/1 create text ctrl with mninml size 100x60
t opsi zer - >Add(
new wxTextCtrl (this, -1, "My text.", wxDefaultPosition,
wxSi ze(100, 60), WXTE_MULTI LI NE),

78

CHAPTER 5

1, /1 make vertically stretchable
WXEXPAND | /1 make horizontally stretchable
WXALL, /1 and make border all around
10); /1 set border width to 10

wxBoxSi zer *button_sizer = new wxBoxSi zer (wxHORI ZONTAL)
button_si zer - >Add(
new wxButton(this, wxlD OK "K'),

0, /1 make horizontally unstretchable
WXALL, /1 make border all around (inplicit top alignnent)
10); /1 set border width to 10

button_si zer - >Add(
new wxButton(this, wxl D CANCEL, "Cancel"),

0, /1 make horizontally unstretchable
WXALL, /1 make border all around (inplicit top alignnent)
10); /1 set border width to 10

t opsi zer - >Add(
button_si zer,
0, /1 make vertically unstretchable
WXALI GN_CENTER); // no border and centre horizontally

Set Aut oLayout (TRUE); /1 tell dialog to use sizer

Set Si zer (topsizer); /] actually set the sizer

topsizer->Fit(this); /] set size to mninmmsize as
cal cul ated by the sizer

topsi zer->Set Si zeHi nts(this); /1 set size hints to honour m ni num
si ze

}

Derived from

wxSizer (p. 928)
wxObiject (p. 750)

wxBoxSizer::wxBoxSizer

wxBoxSizer(int orient)

Constructor for a wxBoxSizer. orient may be either of wx\VERTICAL or wxHORIZONTAL
for creating either a column sizer or a row sizer.

wxBoxSizer::RecalcSizes

void RecalcSizes()

Implements the calculation of a box sizer's dimensions and then sets the size of its its
children (calling wxWindow::SetSize (p. 1233) if the child is a window). It is used
internally only and must not be called by the user. Documented for information.

79

CHAPTER 5

wxBoxSizer::CalcMin

wxSize CalcMin()

Implements the calculation of a box sizer's minimal. It is used internally only and must
not be called by the user. Documented for information.

wxBoxSizer::GetOrientation

int GetOrientation()

Returns the orientation of the box sizer, either wxVERTICAL or wxHORIZONTAL.

wxBrush

A brush is a drawing tool for filling in areas. It is used for painting the background of
rectangles, ellipses, etc. It has a colour and a style.

Derived from

wxGDIObject (p. 477)
wxObiject (p. 750)

Include files
<wx/brush.h>
Predefined objects
Objects:
wxNullBrush
Pointers:

wxBLUE_BRUSH
WXGREEN_BRUSH
WXWHITE_BRUSH
WXBLACK_BRUSH
WXGREY_BRUSH
wWxXMEDIUM_GREY_BRUSH
WXLIGHT_GREY_BRUSH
WXTRANSPARENT_BRUSH
WXCYAN_BRUSH
wWXRED_BRUSH

80

CHAPTER 5

Remarks

On a monochrome display, wxWindows shows all brushes as white unless the colour is
really black.

Do not initialize objects on the stack before the program commences, since other
required structures may not have been set up yet. Instead, define global pointers to
objects and create them in wxApp::Onlinit (p. 28) or when required.

An application may wish to create brushes with different characteristics dynamically, and
there is the consequent danger that a large number of duplicate brushes will be created.
Therefore an application may wish to get a pointer to a brush by using the global list of
brushes wxTheBrushList, and calling the member function FindOrCreateBrush.

wxBrush uses a reference counting system, so assignments between brushes are very
cheap. You can therefore use actual wxBrush objects instead of pointers without
efficiency problems. Once one wxBrush object changes its data it will create its own
brush data internally so that other brushes, which previously shared the data using the
reference counting, are not affected.

See also

wxBrushList (p. 86), wxDC (p. 282), wxDC::SetBrush (p. 297)

wxBrush::wxBrush

wxBrush()

Default constructor. The brush will be uninitialised, and wxBrush::Ok (p. 83) will return
FALSE.

wxBrush(const wxColouré& colour, int style)
Constructs a brush from a colour object and style.
wxBrush(const wxString& colourName, int style)
Constructs a brush from a colour name and style.
wxBrush(const wxBitmap& stippleBitmap)
Constructs a stippled brush using a bitmap.
wxBrush(const wxBrushé& brush)

Copy constructor. This uses reference counting so is a cheap operation.

81

CHAPTER 5

Parameters

colour
Colour object.

colourName
Colour name. The name will be looked up in the colour database.

style
One of:
WXTRANSPARENT Transparent (no fill).
wxSOLID Solid.
wxBDIAGONAL_HATCH Backward diagonal hatch.
WXCROSSDIAG_HATCH Cross-diagonal hatch.
wWxFDIAGONAL_HATCH Forward diagonal hatch.
WXCROSS_HATCH Cross hatch.
WxXHORIZONTAL_ HATCH Horizontal hatch.
WXVERTICAL_HATCH Vertical hatch.

brush

Pointer or reference to a brush to copy.

stippleBitmap
A bitmap to use for stippling.

Remarks
If a stipple brush is created, the brush style will be set to wxSTIPPLE.
See also

wxBrushList (p. 86), wxColour (p. 136), wxColourDatabase (p. 141)

wxBrush::~wxBrush

void ~wxBrush()
Destructor.
Remarks

The destructor may not delete the underlying brush object of the native windowing
system, since wxBrush uses a reference counting system for efficiency.

Although all remaining brushes are deleted when the application exits, the application
should try to clean up all brushes itself. This is because wxWindows cannot know if a
pointer to the brush object is stored in an application data structure, and there is a risk of
double deletion.

82

CHAPTER 5

wxBrush::GetColour

wxColour& GetColour() const
Returns a reference to the brush colour.
See also

wxBrush::SetColour (p. 84)

wxBrush::GetStipple

wxBitmap * GetStipple() const

Gets a pointer to the stipple bitmap. If the brush does not have a wxSTIPPLE style, this
bitmap may be non-NULL but uninitialised (wxBitmap::Ok (p. 62) returns FALSE).

See also

wxBrush::SetStipple (p. 84)

wxBrush::GetStyle

int GetStyle() const

Returns the brush style, one of:

WXTRANSPARENT Transparent (no fill).
wxSOLID Solid.
wxBDIAGONAL_HATCH Backward diagonal hatch.
WXCROSSDIAG_HATCH Cross-diagonal hatch.
wWxFDIAGONAL_HATCH Forward diagonal hatch.
WXCROSS_HATCH Cross hatch.
WxHORIZONTAL_HATCH Horizontal hatch.
WXVERTICAL_HATCH Vertical hatch.
WXSTIPPLE Stippled using a bitmap.
WXSTIPPLE_MASK_OPAQUE Stippled using a bitmap's mask.
See also

wxBrush::SetStyle (p. 85), wxBrush::SetColour (p. 84), wxBrush::SetStipple (p. 84)

wxBrush::0k

83

CHAPTER 5

bool Ok() const
Returns TRUE if the brush is initialised. It will return FALSE if the default constructor has

been used (for example, the brush is a member of a class, or NULL has been assigned
to it).

wxBrush::SetColour

void SetColour(wxColour& colour)

Sets the brush colour using a reference to a colour object.

void SetColour(const wxString& colourName)

Sets the brush colour using a colour name from the colour database.

void SetColour(const unsigned char red, const unsigned char green, const
unsigned char blue)

Sets the brush colour using red, green and blue values.
See also

wxBrush::GetColour (p. 83)

wxBrush::SetStipple

void SetStipple(const wxBitmapé& bitmap)
Sets the stipple bitmap.
Parameters

bitmap
The bitmap to use for stippling.

Remarks

The style will be set to wxSTIPPLE, unless the bitmap has a mask associated to it, in
which case the style will be set to wxSTIPPLE_MASK_OPAQUE.

If the wxSTIPPLE variant is used, the bitmap will be used to fill out the area to be drawn.
If the wxSTIPPLE_MASK_OPAQUE is used, the current text foreground and text
background determine what colours are used for displaying and the bits in the mask
(which is a mono-bitmap actually) determine where to draw what.

Note that under Windows 95, only 8x8 pixel large stipple bitmaps are supported,
Windows 98 and NT as well as GTK support arbitrary bitmaps.

CHAPTER 5

See also

wxBitmap (p. 54)

wxBrush::SetStyle

void SetStyle(int style)

Sets the brush style.

style
One of:
WXTRANSPARENT Transparent (no fill).
wxSOLID Solid.
wxBDIAGONAL_HATCH Backward diagonal hatch.
WXCROSSDIAG_HATCH Cross-diagonal hatch.
wWxFDIAGONAL_HATCH Forward diagonal hatch.
WxXCROSS_HATCH Cross hatch.
WXHORIZONTAL_HATCH Horizontal hatch.
WXVERTICAL_HATCH Vertical hatch.
WXSTIPPLE Stippled using a bitmap.
WXSTIPPLE_MASK_OPAQUE Stippled using a bitmap's mask.

See also

wxBrush::GetStyle (p. 83)

wxBrush::operator =

wxBrush& operator =(const wxBrush& brush)

Assignment operator, using reference counting. Returns a reference to 'this'.

wxBrush::operator ==

bool operator ==(const wxBrushé& brush)

Equality operator. Two brushes are equal if they contain pointers to the same underlying

brush data. It does not compare each attribute, so two independently-created brushes
using the same parameters will fail the test.

wxBrush::operator !=

85

CHAPTER 5

bool operator !=(const wxBrush& brush)

Inequality operator. Two brushes are not equal if they contain pointers to different
underlying brush data. It does not compare each attribute.

wxBrushList

A brush list is a list containing all brushes which have been created.
Derived from

wxList (p. 619)
wxObiject (p. 750)

Include files
<wx/gdicmn.h>
Remarks

There is only one instance of this class: wxTheBrushList. Use this object to search for
a previously created brush of the desired type and create it if not already found. In some
windowing systems, the brush may be a scarce resource, so it can pay to reuse old
resources if possible. When an application finishes, all brushes will be deleted and their
resources freed, eliminating the possibility of 'memory leaks'. However, it is best not to
rely on this automatic cleanup because it can lead to double deletion in some
circumstances.

There are two mechanisms in recent versions of wxWindows which make the brush list
less useful than it once was. Under Windows, scarce resources are cleaned up internally
if they are not being used. Also, a referencing counting mechanism applied to all GDI
objects means that some sharing of underlying resources is possible. You don't have to
keep track of pointers, working out when it is safe delete a brush, because the
referencing counting does it for you. For example, you can set a brush in a device
context, and then immediately delete the brush you passed, because the brush is
‘copied'.

So you may find it easier to ignore the brush list, and instead create and copy brushes
as you see fit. If your Windows resource meter suggests your application is using too
many resources, you can resort to using GDI lists to share objects explicitly.

The only compelling use for the brush list is for wxWindows to keep track of brushes in
order to clean them up on exit. It is also kept for backward compatibility with earlier
versions of wxWindows.

See also

86

CHAPTER 5

wxBrush (p. 80)

wxBrushList::wxBrushList

void wxBrushList()

Constructor. The application should not construct its own brush list: use the object
pointer wxTheBrushList.

wxBrushList::AddBrush

void AddBrush(wxBrush *brush)

Used internally by wxWindows to add a brush to the list.

wxBrushList::FindOrCreateBrush

wxBrush * FindOrCreateBrush(const wxColour& colour, int style)

Finds a brush with the specified attributes and returns it, else creates a new brush, adds
it to the brush list, and returns it.

wxBrush * FindOrCreateBrush(const wxString& colourName, int style)

Finds a brush with the specified attributes and returns it, else creates a new brush, adds
it to the brush list, and returns it.

Finds a brush of the given specification, or creates one and adds it to the list.
Parameters

colour
Colour object.

colourName
Colour name, which should be in the colour database.

style
Brush style. See wxBrush::SetStyle (p. 85) for a list of styles.

wxBrushList::RemoveBrush

void RemoveBrush(wxBrush *brush)

87

CHAPTER 5

Used by wxWindows to remove a brush from the list.

wxBusyCursor

This class makes it easy to tell your user that the program is temporarily busy. Just
create a wxBusyCursor object on the stack, and within the current scope, the hourglass
will be shown.

For example:
wxBusyCur sor wait;

for (int i = 0; i < 100000; i ++)
DoACal cul ation();

It works by calling wxBeginBusyCursor (p. 1274) in the constructor, and
wxEndBusyCursor (p. 1277) in the destructor.

Derived from
None
Include files
<wx/utils.h>
See also

wxBeginBusyCursor (p. 1274), wxEndBusyCursor (p. 1277), wxWindowDisabler (p.
1240)

wxBusyCursor::wxBusyCursor

wxBusyCursor(wxCursor* cursor = wxHOURGLASS_CURSOR)

Constructs a busy cursor object, calling wxBeginBusyCursor (p. 1274).

wxBusyCursor::~wxBusyCursor

~wxBusyCursor()

Destroys the busy cursor object, calling wxEndBusyCursor (p. 1277).

88

CHAPTER 5

wxBusylnfo

This class makes it easy to tell your user that the program is temporarily busy. Just
create a wxBusylInfo object on the stack, and within the current scope, a message
window will be shown.

For example:
wxBusyl nfo wait("Pl ease wait, working...");
for (int i = 0; i < 100000; i ++)

DoACal cul ation();
It works by creating a window in the constructor, and deleting it in the destructor.
Derived from
None
Include files

<wx/busyinfo.h>

wxBusylnfo::wxBusylnfo

wxBusylInfo(const wxString& msg)

Constructs a busy info object, displays msg.

wxButton

A button is a control that contains a text string, and is one of the commonest elements of
a GUI. It may be placed on a dialog box (p. 312) or panel (p. 768), or indeed almost any
other window.

Derived from
wxControl (p. 177)
wxWindow (p. 1189)
wxEvtHandler (p. 380)
wxObiject (p. 750)

Include files

89

CHAPTER 5

<wx/button.h>

Window styles

wxBU_LEFT Left-justifies the label. WIN32 only.

wxBU_TOP Aligns the label to the top of the button. WIN32 only.
wxBU_RIGHT Right-justifies the bitmap label. WIN32 only.
wxBU_BOTTOM Aligns the label to the bottom of the button. WIN32 only.

See also window styles overview (p. 1378).

Event handling

EVT_BUTTON(id, func) Process a
wWXEVT_COMMAND_BUTTON_CLICKED
event, when the button is clicked.

See also

wxBitmapButton (p. 70)

wxButton::wxButton

wxButton()

Default constructor.

wxButton(wxWindow* parent, wxWindowID id, const wxString& label, const
wxPoint& pos, const wxSize& size = wxDefaultSize, long style = 0, const
wxValidator& validator, const wxString& name = "button")

Constructor, creating and showing a button.

Parameters

parent
Parent window. Must not be NULL.

id
Button identifier. A value of -1 indicates a default value.

label
Text to be displayed on the button.

pos

90

CHAPTER 5

Button position.

size
Button size. If the default size (-1, -1) is specified then the button is sized
appropriately for the text.

style
Window style. See wxButton (p. 89).

validator
Window validator.

name
Window name.

See also

wxButton::Create (p. 91), wxValidator (p. 1171)

wxButton::~wxButton

~wxButton()

Destructor, destroying the button.

wxButton::Create

bool Create(wxWindow* parent, wxWindowID id, const wxString& label, const
wxPoint& pos, const wxSize& size = wxDefaultSize, long style = 0, const
wxValidator& validator, const wxString& name = "button")

Button creation function for two-step creation. For more details, see wxButton::wxButton
(p- 90).

wxButton::GetLabel

wxString GetLabel() const

Returns the string label for the button.
Return value

The button's label.

See also

wxButton::SetLabel (p. 92)

91

CHAPTER 5

wxButton::GetDefaultSize

wxSize GetDefaultSize()
Returns the default size for the buttons. It is advised to make all the dialog buttons of the

same size and this function allows to retrieve the (platform and current font dependent
size) which should be the best suited for this.

wxButton::SetDefault

void SetDefault()
This sets the button to be the default item for the panel or dialog box.

Remarks

Under Windows, only dialog box buttons respond to this function. As normal under
Windows and Motif, pressing return causes the default button to be depressed when the
return key is pressed. See also wxWindow::SetFocus (p. 1230) which sets the keyboard
focus for windows and text panel items, and wxPanel::SetDefaultltem (p. 771).

Note that under Motif, calling this function immediately after creation of a button and
before the creation of other buttons will cause misalignment of the row of buttons, since
default buttons are larger. To get around this, call SetDefault after you have created a
row of buttons: wxWindows will then set the size of all buttons currently on the panel to
the same size.

wxButton::SetLabel

void SetLabel(const wxString& label)
Sets the string label for the button.
Parameters

label
The label to set.

See also

wxButton::GetLabel (p. 91)

wxBufferedinputStream

92

CHAPTER 5

This stream acts as a cache. It caches the bytes read from the specified input stream
(See wxFilterInputStream (p. 435)). It uses wxStreamBuffer and sets the default in-buffer
size to 1024 bytes. This class may not be used without some other stream to read the
data from (such as a file stream or a memory stream).

Derived from

wxFilterinputStream (p. 435)

Include files

<wx/stream.h>

See also

wxStreamBuffer (p. 1005), wxInputStream (p. 595),wxBufferedOutputStream (p. 93)

wxBufferedOutputStream

This stream acts as a cache. It caches the bytes to be written to the specified output
stream (See wxFilterOutputStream (p. 435)). The data is only written when the cache is
full, when the buffered stream is destroyed or when calling SeekO().

This class may not be used without some other stream to write the data to (such as a file
stream or a memory stream).

Derived from
wxFilterOutputStream (p. 435)
Include files

<wx/stream.h>

See also

wxStreamBuffer (p. 1005), wxOutputStream (p. 755)

wxBufferedOutputStream::wxBufferedOutputStream

wxBufferedOutputStream(const wxOutputStream& parent)

Creates a buffered stream using a buffer of a default size of 1024 bytes for cashing the

93

CHAPTER 5

stream parent.

wxBufferedOutputStream::~wxBufferedOutputStream

~wxBufferedOutputStream()

Destructor. Calls Sync() and destroys the internal buffer.

wxBufferedOutputStream::SeekO

off_t SeekO(off_t pos, wxSeekMode mode)

Calls Sync() and changes the stream position.

wxBufferedOutputStream::Sync

void Sync()

Flushes the buffer and calls Sync() on the parent stream.

wxCalculateLayoutEvent

This event is sent by wxLayoutAlgorithm (p. 614) to calculate the amount of the
remaining client area that the window should occupy.

Derived from

wxEvent (p. 377)
wxObiject (p. 750)

Include files

<wx/laywin.h>

Event table macros

EVT_CALCULATE_LAYOUT(func) Process a wxEVT_CALCULATE_LAYOUT
event, which asks the window to take a 'bite’
out of a rectangle provided by the algorithm.

See also

wxQueryLayoutinfoEvent (p. 860), wxSashLayoutWindow (p. 898), wxLayoutAlgorithm

94

CHAPTER 5

(p. 614).

wxCalculateLayoutEvent::wxCalculateLayoutEvent

wxCalculateLayoutEvent(wxWindowlID id = 0)

Constructor.

wxCalculateLayoutEvent::GetFlags

int GetFlags() const

Returns the flags associated with this event. Not currently used.

wxCalculateLayoutEvent::GetRect

wxRect GetRect() const

Before the event handler is entered, returns the remaining parent client area that the
window could occupy. When the event handler returns, this should contain the remaining

parent client rectangle, after the event handler has subtracted the area that its window
occupies.

wxCalculateLayoutEvent::SetFlags

void SetFlags(int flags)

Sets the flags associated with this event. Not currently used.

wxCalculateLayoutEvent::SetRect

void SetRect(const wxRect& rect)

Call this to specify the new remaining parent client area, after the space occupied by the
window has been subtracted.

wxCalendarCtrl

The calendar control allows the user to pick a date interactively. For this, it displays a

95

CHAPTER 5

window containing several parts: the control to pick the month and the year at the top
(either or both of them may be disabled) and a month area below them which shows all
the days in the month. The user can move the current selection using the keyboard and
select the date (generating EVT_CALENDAR event) by pressing <Ret ur n> or double
clicking it.

It has advanced possibilities for the customization of its display. All global settings (such
as colours and fonts used) can, of course, be changed. But also, the display style for
each day in the month can be set independently using wxCalendarDateAttr (p. 101)
class.

An item without custom attributes is drawn with the default colours and font and without
border, but setting custom attributes with SetAttr (p. 101) allows to modify its
appearance. Just create a custom attribute object and set it for the day you want to be
displayed specially (note that the control will take ownership of the pointer, i.e. it will
delete it itself). A day may be marked as being a holiday, even if it is not reckognized as
oen by wxDateTime (p. 1346) using SetHoliday (p. 103) method.

As the attributes are specified for each day, they may change when the month is

changed, so you will often want to update them in EVT_CALENDAR _MONTH event

handler.

Derived from

wxControl (p. 177)

wxWindow (p. 1189)

wxEvtHandler (p. 380)

wxObject (p. 750)

Include files

<wx/calctrl.h>

Window styles

WXCAL_SUNDAY_FIRST Show Sunday as the first day in the week

wWXCAL_MONDAY_FIRST Show Monday as the first day in the week

wxCAL_SHOW_HOLIDAYS Highlight holidays in the calendar

wxCAL_NO_YEAR_CHANGE Disable the year changing

wWxCAL_NO_MONTH_CHANGE Disable the month (and, implicitly, the year)
changing

The default calendar style is wx CAL_SHOW HOLI DAYS.

Event table macros

96

CHAPTER 5

To process input from a calendar control, use these event handler macros to direct input
to member functions that take a wxCalendarEvent (p. 105) argument.

EVT_CALENDAR(id, func) A day was double clickedi n the calendar.

EVT_CALENDAR_SEL_CHANGED(id, func) The selected date changed.

EVT_CALENDAR_DAY(id, func) The selected day changed.

EVT_CALENDAR_MONTH(id, func) The selected month changed.

EVT_CALENDAR_YEAR(id, func) The selected year changed.

EVT_CALENDAR_WEEKDAY_CLICKED(id, func) User clicked on the week day
header

Note that changing the selected date will result in either of EVT_CALENDAR_DAY, MONTH

or YEAR events and EVT_CALENDAR_SEL CHANGED one.

Constants

The following are the possible return values for HitTest (p. 101) method:

enum wxCal endar H t Test Resul t

{

wxCAL_HI TTEST_NOWHERE, /1 outside of anything
wxCAL_H TTEST_HEADER, /1 on the header (weekdays)
wWXCAL_HI TTEST_DAY /1 on a day in the cal endar
1
See also

Calendar sample (p. 1327)
wxCalendarDateAttr (p. 101)
wxCalendarEvent (p. 105)

wxCalendarCtrl::wxCalendarCtrl

wxCalendarCtrl()

Default constructor, use Create (p. 98) after it.

wxCalendarCtrl::wxCalendarCtrl

97

CHAPTER 5

wxCalendarCtrl(wxWindow* parent, wxWindowID id, const wxDateTime& date =
wxDefaultDateTime, const wxPoint& pos = wxDefaultPosition, const wxSize& size =
wxDefaultSize, long style = wxCAL_SHOW_HOLIDAYS, const wxString& name =
wxCalendarNameStr)

Does the same as Create (p. 98) method.

wxCalendarCtrl::Create

bool Create(wxWindow* parent, wxWindowlID id, const wxDateTime& date =
wxDefaultDateTime, const wxPoint& pos = wxDefaultPosition, const wxSize& size =
wxDefaultSize, long style = wxCAL_SHOW_HOLIDAYS, const wxString& name =
wxCalendarNameSitr)

Creates the control. See wxWindow (p. 1191) for the meaning of the parameters and the
control overview for the possible styles.

wxCalendarCtrl::~wxCalendarCtrl

~wxCalendarCtrl()

Destroys the control.

wxCalendarCtrl::SetDate

void SetDate(const wxDateTime& date)

Sets the current date.

wxCalendarCtrl::GetDate

const wxDateTime& GetDate() const

Gets the currently selected date.

wxCalendarCtrl::EnableYearChange

void EnableYearChange(bool enable = TRUE)

This function should be used instead of changing wxCAL_NO_YEAR CHANGESstyle bit
directly. It allows or disallows the user to chaneg the year interactively.

wxCalendarCtrl::EnableMonthChange

98

CHAPTER 5

void EnableMonthChange(bool enable = TRUE)

This function should be used instead of changing wx CAL_NO_MONTH_CHANGE style bit.
It allows or disallows the user to change the month interactively. Note that if the month
can not be changed, the year can not be changed neither.

wxCalendarCtrl::EnableHolidayDisplay

void EnableHolidayDisplay(bool display = TRUE)

This function should be used instead of changing wx CAL_ SHOW HOL| DAYSstyle bit
directly. It enables or disables the special highlighting of the holidays.

wxCalendarCtrl::SetHeaderColours

void SetHeaderColours(const wxColour& colFg, const wxColouré& colBg)

Set the colours used for painting the weekdays at the top of the control.

wxCalendarCtrl::GetHeaderColourFg

const wxColour& GetHeaderColourFg() const

Gets the foreground colour of the header part of the calendar window.

See also

SetHeaderColours (p. 99)

wxCalendarCtrl::GetHeaderColourBg

const wxColour& GetHeaderColourBg() const

Gets the background colour of the header part of the calendar window.

See also

SetHeaderColours (p. 99)

wxCalendarCtrl::SetHighlightColours

void SetHighlightColours(const wxColour& colFg, const wxColour& colBg)

Set the colours to be used for highlighting the currently selected date.

99

CHAPTER 5

wxCalendarCtrl::GetHighlightColourFg

const wxColour& GetHighlightColourFg() const
Gets the foreground highlight colour.
See also

SetHighlightColours (p. 99)

wxCalendarCtrl::GetHighlightColourBg

const wxColour& GetHighlightColourBg() const
Gets the background highlight colour.
See also

SetHighlightColours (p. 99)

wxCalendarCtrl::SetHolidayColours

void SetHolidayColours(const wxColour& colFg, const wxColour& colBg)

Sets the colours to be used for the holidays highlighting (only used if the window style
includes wx CAL_SHOW HOLI DAYS flag).

wxCalendarCtrl::GetHolidayColourFg

const wxColour& GetHolidayColourFg() const
Return the foregound colour currently used for holiday highlighting.
See also

SetHolidayColours (p. 100)

wxCalendarCtrl::GetHolidayColourBg

const wxColour& GetHolidayColourBg() const
Return the background colour currently used for holiday highlighting.

See also

100

CHAPTER 5

SetHolidayColours (p. 100)

wxCalendarCtrl::GetAttr

wxCalendarDateAttr * GetAttr(size_t day) const
Returns the attribute for the given date (should be in the range 1...31).

The returned pointer may be NULL.

wxCalendarCtrl::SetAttr

void SetAttr(size_t day, wxCalendarDateAttr* attr)
Associates the attribute with the specified date (in the range 1...31).

If the pointer is NULL, the items attribute is cleared.

wxCalendarCtrl::SetHoliday

void SetHoliday(size_t day)

Marks the specified day as being a holiday in the current month.

wxCalendarCtrl::ResetAttr

void ResetAttr(size_t day)

Clears any attributes associated with the given day (in the rangel...31).

wxCalendarCtrl::HitTest

wxCalendarHitTestResult HitTest(const wxPoint& pos, wxDateTime* date = NULL,
wxDateTime::WeekDay* wd = NULL)

Returns one of wxCAL_HI TTEST_ XXX constants (p. 95) and fills either date or wd
pointer with the corresponding value depending on the hit test code.

wxCalendarDateAttr

101

CHAPTER 5

wxCalendarDateAttr is a custom attributes for a calendar date. The objects of this class
are used with wxCalendarCtrl (p. 95).

Derived from
No base class
Constants

Here are the possible kinds of borders which may be used to decorate a date:

enum wxCal endar Dat eBor der

wx CAL_ BORDER NONE, /1 no border (default)
wx CAL_ BORDER SQUARE, /1 a rectangul ar border
wx CAL_ BORDER ROUND /1 a round border

See also

wxCalendarCtrl (p. 95)

wxCalendarDateAttr::wxCalendarDateAttr

wxCalendarDateAttr()

wxCalendarDateAttr(const wxColour& colText, const wxColour& colBack =
wxNullColour, const wxColour& colBorder = wxNullColour, const wxFont& font =
wxNullFont, wxCalendarDateBorder border = wxCAL_BORDER_NONE)

wxCalendarDateAttr(wxCalendarDateBorder border, const wxColour& colBorder =
wxNullColour)

The constructors.

wxCalendarDateAttr::SetTextColour

void SetTextColour(const wxColouré& colText)

Sets the text (foreground) colour to use.

wxCalendarDateAttr::SetBackgroundColour

102

CHAPTER 5

void SetBackgroundColour(const wxColouré& colBack)

Sets the text background colour to use.

wxCalendarDateAttr::SetBorderColour

void SetBorderColour(const wxColour& col)

Sets the border colour to use.

wxCalendarDateAttr::SetFont

void SetFont(const wxFont& font)

Sets the font to use.

wxCalendarDateAttr::SetBorder

void SetBorder(wxCalendarDateBorder border)

Sets the border kind (p. 101)

wxCalendarDateAttr::SetHoliday

void SetHoliday(bool holiday)

Display the date with this attribute as a holiday.

wxCalendarDateAttr::HasTextColour

bool HasTextColour() const

Returns TRUE if this item has a non default text foreground colour.

wxCalendarDateAttr::HasBackgroundColour

bool HasBackgroundColour() const

Returns TRUE if this attribute specifies a non default text background colour.

wxCalendarDateAttr::HasBorderColour

103

CHAPTER 5

bool HasBorderColour() const

Returns TRUE if this attribute specifies a non default border colour.

wxCalendarDateAttr::HasFont

bool HasFont() const

Returns TRUE if this attribute specifies a non default font.

wxCalendarDateAttr::HasBorder

bool HasBorder() const

Returns TRUE if this attribute specifies a non default (i.e. any) border.

wxCalendarDateAttr::IsHoliday

bool IsHoliday() const

Returns TRUE if this attribute specifies that this item should be displayed as a holiday.

wxCalendarDateAttr::GetTextColour

const wxColour& GetTextColour() const

Returns the text colour to use for the item with this attribute.

wxCalendarDateAttr::GetBackgroundColour

const wxColour& GetBackgroundColour() const

Returns the background colour to use for the item with this attribute.

wxCalendarDateAttr::GetBorderColour

const wxColour& GetBorderColour() const

Returns the border colour to use for the item with this attribute.

wxCalendarDateAttr::GetFont

104

CHAPTER 5

const wxFont& GetFont() const

Returns the font to use for the item with this attribute.

wxCalendarDateAttr::GetBorder

wxCalendarDateBorder GetBorder() const

Returns the border (p. 101) to use for the item with this attribute.

wxCalendarEvent

The wxCalendarEvent class is used together with wxCalendarCtrl (p. 95).

See also

wxCalendarCtrl (p. 95)

wxCalendarEvent::GetDate

wxcalendareventgetdate
const wxDateTime& GetDate() const

Returns the date. This function may be called for all event types except
EVT_CALENDAR WEEKDAY_CLI CKED one for which it doesn't make sense.

wxCalendarEvent::GetWeekDay

wxcalendareventgetweekday

wxDateTime::WeekDay GetWeekDay() const

Returns the week day on which the user clicked in EVT_CALENDAR_WEEKDAY_CLI CKED
handler. It doesn't make sense to call this function in other handlers.

wxCaret

105

CHAPTER 5

A caret is a blinking cursor showing the position where the typed text will appear. The
text controls usually have a caret but wxCaret class also allows to use a caret in other
windows.

Currently, the caret appears as a rectangle of the given size. In the future, it will be
possible to specify a bitmap to be used for the caret shape.

A caret is always associated with a window and the current caret can be retrieved using
wxWindow::GetCaret (p. 1199). The same caret can't be reused in two different
windows.

Derived from

No base class

Include files

<wx/caret.h>

Data structures

wXxCaret::wxCaret

wxCaret()

Default constructor: you must use one of Create() functions later.
wxCaret(wxWindow* window, int width, int height)

wxCaret(wxWindowBase* window, const wxSize& size)

Create the caret of given (in pixels) width and height and associates it with the given

window.

wXxCaret::Create

bool Create(wxWindowBase* window, int width, int height)
bool Create(wxWindowBase* window, const wxSize& size)
Create the caret of given (in pixels) width and height and associates it with the given

window (same as constructor).

wxCaret::GetBlinkTime

106

CHAPTER 5

static int GetBlinkTime()

Returns the blink time which is measured in milliseconds and is the time elapsed
between 2 inversions of the caret (blink time of the caret is the same for all carets, so

this functions is static).

wxCaret::GetPosition

void GetPosition(int* x, int* y) const
wxPoint GetPosition() const

Get the caret position (in pixels).

wxCaret::GetSize

void GetSize(int* width, int* height) const
wxSize GetSize() const

Get the caret size.

wxCaret::GetWindow

wxWindow* GetWindow() const

Get the window the caret is associated with.

wxCaret::Hide

void Hide()

Same as wxCaret::Show(FALSE) (p. 108).

wxCaret::IsOk

bool IsOk() const

Returns TRUE if the caret was created successfully.

wxCaret::IsVisible

bool IsVisible() const

107

CHAPTER 5

Returns TRUE if the caret is visible and FALSE if it is permanently hidden (if it is is
blinking and not shown currently but will be after the next blink, this method still returns
TRUE).

wxCaret::Move

void Move(int x, int y)
void Move(const wxPoint& pt)

Move the caret to given position (in logical coordinates).

wxCaret::SetBlinkTime

static void SetBlinkTime(int milliseconds)
Sets the blink time for all the carets.
Remarks

Under Windows, this function will change the blink time for all carets permanently (until
the next time it is called), even for the carets in other applications.

See also

GetBlinkTime (p. 106)

wxCaret::SetSize

void SetSize(int width, int height)
void SetSize(const wxSize& size)

Changes the size of the caret.

wxCaret::Show

void Show(bool show = TRUE)

Shows or hides the caret. Notice that if the caret was hidden N times, it must be shown
N times as well to reappear on the screen.

wxCheckBox

108

CHAPTER 5

A checkbox is a labelled box which is either on (checkmark is visible) or off (no
checkmark).

Derived from

wxControl (p. 177)

wxWindow (p. 1189)

wxEvtHandler (p. 380)

wxObiject (p. 750)

Include files

<wx/checkbox.h>

Window styles

There are no special styles for wxCheckBox.
See also window styles overview (p. 1378).
Event handling

EVT_CHECKBOX(id, func) Process a

wxEVT_COMMAND_CHECKBOX_ CLICKED
event, when the checkbox is clicked.

See also

wxRadioButton (p. 869), wxCommandEvent (p. 153)

wxCheckBox::wxCheckBox

wxCheckBox()

Default constructor.

wxCheckBox(wxWindow* parent, wxWindowID id, const wxString& label, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
0, const wxValidator& val, const wxString& name = "checkBox")

Constructor, creating and showing a checkbox.

Parameters

parent
Parent window. Must not be NULL.

109

CHAPTER 5

id
Checkbox identifier. A value of -1 indicates a default value.
label
Text to be displayed next to the checkbox.
pos
Checkbox position. If the position (-1, -1) is specified then a default position is
chosen.
size
Checkbox size. If the default size (-1, -1) is specified then a default size is chosen.
style
Window style. See wxCheckBox (p. 108).
validator
Window validator.
name
Window name.
See also

wxCheckBox::Create (p. 110), wxValidator (p. 1171)

wxCheckBox::~wxCheckBox

~wxCheckBox()

Destructor, destroying the checkbox.

wxCheckBox::Create

bool Create(wxWindow* parent, wxWindowID id, const wxString& label, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
0, const wxValidator& val, const wxString& name = "checkBox")

Creates the checkbox for two-step construction. See wxCheckBox::wxCheckBox (p.
109) for details.

wxCheckBox::GetValue

bool GetValue() const

Gets the state of the checkbox.

110

CHAPTER 5

Return value

Returns TRUE if it is checked, FALSE otherwise.

wxCheckBox::SetValue

void SetValue(const bool state)

Sets the checkbox to the given state. This does not cause a
WXEVT_COMMAND_CHECKBOX_CLICKED event to get emitted.

Parameters

state
If TRUE, the check is on, otherwise it is off.

wxCheckListBox

A checklistbox is like a listbox, but allows items to be checked or unchecked.

This class is currently implemented under Windows and GTK. When using this class
under Windows wxWindows must be compiled with USE_OWNER_DRAWN set to 1.

Only the new functions for this class are documented; see also wxListBox (p. 625).
Derived from
wxListBox (p. 625)
wxControl (p. 177)
wxWindow (p. 1189)
wxEvtHandler (p. 380)
wxObiject (p. 750)
Include files
<wx/checklst.h>
Window styles

See wxListBox (p. 625).
Event handling

EVT_CHECKLISTBOX(id, func) Process a
WXEVT_COMMAND_CHECKLISTBOX_TOGG

111

CHAPTER 5

LE event, when an item in the check list box is
checked or unchecked.

See also

wxListBox (p. 625), wxChoice (p. 113), wxComboBox (p. 144), wxListCtrl (p. 634),
wxCommandEvent (p. 153)

wxCheckListBox::wxCheckListBox

wxCheckListBox()

Default constructor.

wxCheckListBox(wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, int n, const wxString
choices[] = NULL, long style = 0, const wxValidatoré& validator = wxDefaultValidator,
const wxString& name = "listBox")

Constructor, creating and showing a list box.

Parameters

parent
Parent window. Must not be NULL.

id
Window identifier. A value of -1 indicates a default value.
pos
Window position.
size
Window size. If the default size (-1, -1) is specified then the window is sized
appropriately.
n
Number of strings with which to initialise the control.
choices
An array of strings with which to initialise the control.
style
Window style. See wxCheckListBox (p. 111).
validator

Window validator.

112

CHAPTER 5

name
Window name.

wxPython note: The wxCheckListBox constructor in wxPython reduces the nand
choi ces arguments are to a single argument, which is a list of strings.

wxCheckListBox::~wxCheckListBox

void ~wxCheckListBox()

Destructor, destroying the list box.

wxCheckListBox::Check

void Check(int item, bool check = TRUE)
Checks the given item.
Parameters

item
Index of item to check.

check
TRUE if the item is to be checked, FALSE otherwise.

wxCheckListBox::IsChecked

bool IsChecked(int item) const
Returns TRUE if the given item is checked, FALSE otherwise.
Parameters

item
Index of item whose check status is to be returned.

wxChoice

A choice item is used to select one of a list of strings. Unlike a listbox, only the selection
is visible until the user pulls down the menu of choices.

Derived from

113

CHAPTER 5

wxControl (p. 177)

wxWindow (p. 1189)

wxEvtHandler (p. 380)

wxObiject (p. 750)

Include files

<wx/choice.h>

Window styles

There are no special styles for wxChoice.

See also window styles overview (p. 1378).

Event handling

EVT_CHOICE(id, func) Process a
WXEVT_COMMAND_CHOICE_SELECTED
event, when an item on the list is selected.

See also

wxListBox (p. 625), wxComboBox (p. 144), wxCommandEvent (p. 153)

wxChoice::wxChoice

wxChoice()

Default constructor.

wxChoice(wxWindow *parent, wxWindowlID id, const wxPoint& pos, const wxSize&
size, int n, const wxString choices|[], long style = 0, const wxValidator& validator =
wxDefaultValidator, const wxString& name = "choice")

Constructor, creating and showing a choice.

Parameters

parent
Parent window. Must not be NULL.

id
Window identifier. A value of -1 indicates a default value.

pos

114

CHAPTER 5

Window position.
size
Window size. If the default size (-1, -1) is specified then the choice is sized
appropriately.
Number of strings with which to initialise the choice control.

choices
An array of strings with which to initialise the choice control.

style
Window style. See wxChoice (p. 113).

validator
Window validator.

name
Window name.

See also
wxChoice::Create (p. 116), wxValidator (p. 1171)
wxPython note: The wxChoice constructor in wxPython reduces the nand choi ces

arguments are to a single argument, which is a list of strings.

wxChoice::~wxChoice

~wxChoice()

Destructor, destroying the choice item.

wxChoice::Append

void Append(const wxString& item)

Adds the item to the end of the choice control.

void Append(const wxString& item, void* clientData)

Adds the item to the end of the combobox, associating the given data with the item.
Parameters

item
String to add.

115

CHAPTER 5

clientData

Client data to associate with the item.

wxChoice::Clear

void Clear()

Clears the strings from the choice item.

wxChoice::Create

bool Create(wxWindow *parent, wxWindowID id, const wxPoint& pos, const
wxSize& size, int n, const wxString choices[], long style = 0, const wxString& name

= "choice")

Creates the choice for two-step construction. See wxChoice::wxChoice (p. 114).

wxChoice::FindString

int FindString(const wxString& string) const

Finds a choice matching the given string.
Parameters

string
String to find.

Return value

Returns the position if found, or -1 if not found.

wxChoice::GetColumns

int GetColumns() const

Gets the number of columns in this choice item.

Remarks

This is implemented for Motif only.

wxChoice::GetClientData

116

CHAPTER 5

void* GetClientData(int n) const
Returns a pointer to the client data associated with the given item (if any).
Parameters

n
An item, starting from zero.

Return value

A pointer to the client data, or NULL if the item was not found.

wxChoice::GetSelection

int GetSelection() const

Gets the id (position) of the selected string, or -1 if there is no selection.

wxChoice::GetString

wxString GetString(int n) const
Returns the string at the given position.
Parameters

n
The zero-based position.

Return value

The string at the given position, or the empty string if n is invalid.

wxChoice::GetStringSelection

wxString GetStringSelection() const

Gets the selected string, or the empty string if no string is selected.

wxChoice::Number

int Number() const

Returns the number of strings in the choice control.

117

CHAPTER 5

wxChoice::SetClientData

void SetClientData(int n, void* data)
Associates the given client data pointer with the given item.
Parameters

n
The zero-based item.

data
The client data.

wxChoice::SetColumns

void SetColumns(int n = 1)
Sets the number of columns in this choice item.

Parameters

Number of columns.
Remarks

This is implemented for Motif only.

wxChoice::SetSelection

void SetSelection(int n)

Sets the choice by passing the desired string position. This does not cause a
WXEVT_COMMAND_CHOICE_SELECTED event to get emitted.

Parameters

The string position to select, starting from zero.
See also

wxChoice::SetStringSelection (p. 118)

wxChoice::SetStringSelection

118

CHAPTER 5

void SetStringSelection(const wxString& string)

Sets the choice by passing the desired string. This does not cause a
WXEVT_COMMAND_CHOICE_SELECTED event to get emitted.

Parameters

string
The string to select.

See also

wxChoice::SetSelection (p. 118)

wxClassinfo

This class stores meta-information about classes. Instances of this class are not
generally defined directly by an application, but indirectly through use of macros such as
DECLARE_DYNAMIC CLASS and IMPLEMENT_DYNAMIC CLASS.

Derived from

No parent class.

Include files

<wx/object.h>

See also

Overview (p. 1337), wxObject (p. 750)

wxClassInfo::wxClassInfo

wxClassiInfo(char* className, char* baseClassl, char* baseClass2, int size,
wxObjectConstructorFn fn)

Constructs a wxClassInfo object. The supplied macros implicitly construct objects of this
class, so there is no need to create such objects explicitly in an application.

wxClassinfo::CreateObject

119

CHAPTER 5

wxObject* CreateObject()

Creates an object of the appropriate kind. Returns NULL if the class has not been
declared dynamically creatable (typically, it is an abstract class).

wxClassinfo::FindClass

static wxClassInfo * FindClass(char* name)

Finds the wxClassInfo object for a class of the given string name.

wxClassInfo::GetBaseClassNamel

char* GetBaseClassNamel() const

Returns the name of the first base class (NULL if none).

wxClassinfo::GetBaseClassName?2

char* GetBaseClassName2() const

Returns the name of the second base class (NULL if none).

wxClassinfo::GetClassName

char * GetClassName() const

Returns the string form of the class name.

wxClasslInfo::GetSize

int GetSize() const

Returns the size of the class.

wxClassInfo::InitializeClasses

static void InitializeClasses()

Initializes pointers in the wxClassInfo objects for fast execution of IsKindOf. Called in
base wxWindows library initialization.

120

CHAPTER 5

wxClassinfo::IsKindOf

bool IsKindOf(wxClassInfo* info)

Returns TRUE if this class is a kind of (inherits from) the given class.

wxClientDC

A wxClientDC must be constructed if an application wishes to paint on the client area of
a window from outside an OnPaint event. This should normally be constructed as a
temporary stack object; don't store a wxClientDC object.

To draw on a window from within OnPaint, construct a wxPaintDC (p. 763) object.

To draw on the whole window including decorations, construct a wxWindowDC (p. 1239)
object (Windows only).

Derived from

wxWindowDC (p. 1239)
wxDC (p. 282)

Include files
<wx/dcclient.h>
See also

wxDC (p. 282), wxMemoryDC (p. 682), wxPaintDC (p. 763), wxWindowDC (p. 1239),
wxScreenDC (p. 906)

wxClientDC::wxClientDC

wxClientDC(wxWindow* window)

Constructor. Pass a pointer to the window on which you wish to paint.

wxClipboard

A class for manipulating the clipboard. Note that this is not compatible with the clipboard

121

CHAPTER 5

class from wxWindows 1.xx, which has the same name but a different implementation.
To use the clipboard, you call member functions of the global wxTheClipboard object.
See also the wxDataObject overview (p. 1431) for further information.

Call wxClipboard::Open (p. 124) to get ownership of the clipboard. If this operation
returns TRUE, you now own the clipboard. Call wxClipboard::SetData (p. 124) to put
data on the clipboard, or wxClipboard::GetData (p. 123) to retrieve data from the
clipboard. Call wxClipboard::Close (p. 123) to close the clipboard and relinquish
ownership. You should keep the clipboard open only momentarily.

For example:

/!l Wite sone text to the clipboard
if (wxThed i pboar d->0Open())

{
/1 This data objects are held by the clipboard,

/! so do not delete themin the app.
wxThed i pboar d- >Set Dat a(new wxText Dat aCbj ect (" Sorme text"));
wxThed i pboar d- >Cl ose() ;

}

/] Read sone text
if (wxThed i pboar d->0Open())

i f (wxThed i pboar d->I sSupported(wxDF_TEXT))

{
wxText Dat aCbj ect dat a;

wxThed i pboar d- >CGet Data(data);
wxMessageBox(data. Get Text());

}
wxThed i pboar d- >Cl ose() ;
}

Derived from
wxObiject (p. 750)
Include files
<wx/clipbrd.h>
See also

Drag and drop overview (p. 1429), wxDataObject (p. 197)

wxClipboard::wxClipboard

wxClipboard()

122

CHAPTER 5

Constructor.

wxClipboard::~wxClipboard

~wxClipboard()

Destructor.

wxClipboard::AddData

bool AddData(wxDataObject* data)

Call this function to add the data object to the clipboard. You may call this function
repeatedly after having cleared the clipboard using wxClipboard::Clear (p. 123).

After this function has been called, the clipboard owns the data, so do not delete the
data explicitly.

See also

wxClipboard::SetData (p. 124)

wxClipboard::Clear

void Clear()

Clears the global clipboard object and the system's clipboard if possible.

wxClipboard::Close

bool Close()

Call this function to close the clipboard, having opened it with wxClipboard::Open (p.
124).

wxClipboard::GetData

bool GetData(wxDataObject& data)

Call this function to fill data with data on the clipboard, if available in the required format.
Returns TRUE on success.

wxClipboard::IsOpened

123

CHAPTER 5

bool IsOpened() const

Returns TRUE if the clipboard has been opened.

wxClipboard::IsSupported

bool IsSupported(const wxDataFormat& format)

Returns TRUE if the format of the given data object is available on the clipboard.

wxClipboard::Open

bool Open()

Call this function to open the clipboard before calling wxClipboard::SetData (p. 124) and
wxClipboard::GetData (p. 123).

Call wxClipboard::Close (p. 123) when you have finished with the clipboard. You should
keep the clipboard open for only a very short time.

Returns TRUE on success. This should be tested (as in the sample shown above).

wxClipboard::SetData

bool SetData(wxDataObject* data)

Call this function to set the data object to the clipboard. This function will clear all
previous contents in the clipboard, so calling it several times does not make any sense.

After this function has been called, the clipboard owns the data, so do not delete the
data explicitly.

See also

wxClipboard::AddData (p. 123)

wxClipboard::UsePrimarySelection

void UsePrimarySelection(bool primary = TRUE)

On platforms supporting it (currently only GTK), selects the so called PRIMARY
SELECTION as the clipboard as opposed to the normal clipboard, if primary is TRUE.

124

CHAPTER 5

wxCloseEvent

This event class contains information about window and session close events.
Derived from

wxEvent (p. 377)

Include files

<wx/event.h>

Event table macros

To process a close event, use these event handler macros to direct input to member
functions that take a wxCloseEvent argument.

EVT_CLOSE(func) Process a close event, supplying the member
function. This event applies to wxFrame and
wxDialog classes.

EVT_QUERY_END_SESSION(func) Process a query end session event, supplying
the member function. This event applies to
WXApp only.

EVT_END_SESSION(func) Process an end session event, supplying the
member function. This event applies to wxApp
only.

See also
wxWindow::OnCloseWindow (p. 1213), wxWindow::Close (p. 1195),

WxApp::OnQueryEndSession (p. 28), wxApp::OnEndSe